❞ 📚 كتب الهندسة التحليلية ❝

❞ 📚 كتب الهندسة التحليلية ❝

الهندسة التحليلية Free Download . جميع الكتب المتعلقة بـ الهندسة التحليلية . في الرياضيات الكلاسيكية، الهندسة التحليلية (بالإنجليزية: Analytic geometry)‏ وتدعى أيضاً الهندسة الإحداثية أو التنسيقية وسابقاً الهندسة الديكارتية، هي فرع المعرفة الرياضية الذي يدرس الهندسة باستعمال نظام الإحداثيات ومبادئ الجبر والتحليل الرياضي. تستعمل الهندسة التحليلية بشكل واسع في الفيزياء والهندسة التطبيقية كما تمثل الأساس الذي بُني عليه باقي مجالات الهندسة كالهندسة الجبرية والهندسة التفاضلية والهندسة المتقطعة والهندسة الحاسوبية. تهتم الهندسة التحليلية بالمواضيع ذاتها التي تهتم بها الهندسة التقليدية، غير أنها تتيح طرقاً أيسر لبرهان العديد من النظريات وتلعب دوراً مهما في حساب المثلثات وحساب التفاضل والتكامل، وتهتم أيضا بدراسة الخواص الهندسية للأشكال باستخدام الوسائل الجبرية. عادة تستخدم جمل إحداثيات ديكارتية لوصف نقاط الفراغ بدلالة أعداد هي الإحداثيات ثم يتم إيجاد المعادلة الجبرية التي تصف الدائرة أوالقطع الناقص أوالقطع المكافيء أو غيرها. التاريخ في القرن الحادي عشر الميلادي، رأى عالم الرياضيات الفارسي عمر الخيام علاقة قوية بين الجبر والهندسة، متجهاً نحو الاتجاه الصحيح حينما ساعد على سد الفراغ الموجود بين الجبر العددي والجبر الهندسي من خلال حلحلته الهندسية للمعادلات التكعيبية العامة، ولكن الخطوة النهائية أتت فيما بعد مع ديكارت. عادة ما تنسب الهندسة التحليلية إلى ديكارت الذي حقق تطورات مهمة نشرها في عمل له عنوانه الهندسة. كتب هذا العمل باللغة الفرنسية ونُشر عام 1637. كان بيير دي فيرما أيضا من السباقين في تطور الهندسة التحليلية. المبادئ الأساسية تمثيل لنظام إحداثي ديكارتي مستو. بُينت أربع نقاط مع إحداثياتهن على صورة (س،ص): (3,2) باللون الأخضر، (−1,3) باللون الأحمر، (−1.5,−2.5) باللون الأزرق، وأصل المَعلم (0,0) باللون البنفسجي. الإحداثيات Crystal Clear app kdict.png مقالة مفصلة: نظام إحداثي في الهندسة التحليلية، يزود المستوى بنظام إحداثيات، حيث تمتلك كل نقطة زوجا إحداثيات يعبر عنها بأعداد حقيقية. أكثر نظم الإحداثيات استعمالا وانتشارا هو نظام الإحداثيات الديكارتي، وفيه يتم تمثيل كل نقطة بزوج مرتب من الإحادثيات يُرمز له بالرمز: (س، ص) أو بالإنجليزية (من اليسار إلى اليمين): {displaystyle (x,y)}{displaystyle (x,y)}. حيث تمثل (س) الإحداثي الأفقي، وتمثل (ص) الإحداثي الرأسي. ويمكن توسيع ذلك عند الحديث عن الفراغ الثلاثي الأبعاد أو ما يُعرف بالفضاء الإقليدي حيث نستخدم الإحداثي الثالث (ع) أو {displaystyle (z)}{displaystyle (z)} ليتم التعبير عن النقطة على صورة: (س،ص، ع) أو بالإنجليزية: {displaystyle (x,y,z)}{displaystyle (x,y,z)}. معادلات المنحنيات في الهندسة التحليلية، أي معادلةتمثل مجموعة جزئية من المستوى تسمى مجموعة الحل لهذه المعادلة. فالمعادلة {displaystyle y=x}{displaystyle y=x} تمثل مجموعة كل النقط في مستوى {displaystyle xy}{displaystyle xy} التي تكون قيمة إحداثي {displaystyle x}x لها تساوي قيمة إحداثي {displaystyle y}{displaystyle y}. وهذه النقط تكون خط، وتسمى الصيغة {displaystyle y=x}{displaystyle y=x} بأنها معادلة هذا الخط. وبصورة عامة فإن المعادلات الخطية تمثل خطوطا، والمعادلة التربيعية تمثل قطعا مخروطيا بينما المعادلات ذات الدرجات الأعلى تمثل منحنيات أكثر تعقيدا. فالمعادلة {displaystyle r^{2}=x^{2}+y^{2}}{displaystyle r^{2}=x^{2}+y^{2}} تمثل دائرة نصف قطرها {displaystyle r}r. وفي العادة فإن المعادلة الواحدة يمثلها منحنى في المستوى. ولكن لهذه القاعدة بعض الاستثناءات، فمثلا المعادلة: {displaystyle x=x}{displaystyle x=x} تمثل كل المستوى، بينما المعادلة {displaystyle x^{2}+y^{2}=0}{displaystyle x^{2}+y^{2}=0} فتمثل نقطة واحدة هي {displaystyle (0,0)}{displaystyle (0,0)}. في الفراغ الثلاثي نجد أن المعادلة عادة ما تمثل سطح، ويكون المنحنى هو تقاطع سطحين معا. المسافة والزاوية الصيغة التي تعطي المسافة بن نقطتين في المستوى تنبثق من مبرهنة فيثاغورس. لتكن {displaystyle [AB]}{displaystyle [AB]} قطعة مستقيمة حيث {displaystyle A=(x_{a},y_{a})}{displaystyle A=(x_{a},y_{a})} و {displaystyle B=(x_{b},y_{b})}{displaystyle B=(x_{b},y_{b})} معرفتين في المستوى. المسافة بين النقطتين {displaystyle A}A و {displaystyle B}{displaystyle B}هي : {displaystyle AB={sqrt {(x_{b}-x_{a})^{2}+(y_{b}-y_{a})^{2}}}!}{displaystyle AB={sqrt {(x_{b}-x_{a})^{2}+(y_{b}-y_{a})^{2}}}!} وفي الشكل المجاور تكون المسافة {displaystyle [d]}{displaystyle [d]} بين النقطتين {displaystyle (x_{1},y_{1})}{displaystyle (x_{1},y_{1})} و {displaystyle (x_{2},y_{2})}{displaystyle (x_{2},y_{2})} تعطى بالقانون: {displaystyle d={sqrt {(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}}!}{displaystyle d={sqrt {(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}}!} تقوم الهندسة التحليلية بوصف الأشكال الهندسية بطريقة جبرية عددية، واستخراج معلومات رقمية من تمثيلات هندسية. مثال الشكل الجبري للدائرة هي : {displaystyle (x-2)^{2}+(y-2)^{2}=25}{displaystyle (x-2)^{2}+(y-2)^{2}=25} حيث نصف قطر الدائرة هنا هو 5 الذي حصلنا عليه من جذر الطرف الآخر من المعادلة. وصف مستوى الإحداثيات يتم تمثيل كل نقطة في المستوي ببعدها عن مستقيمين متعامدين يلتقيان في نقطة تسمى نقطة الأصل (0، 0). يسمي المستقيمان المتعامدان محوري الإحداثيات. المحور الأفقي هو المحور السيني (س) أو محور {displaystyle (x)}{displaystyle (x)} والمحور الرأسي هو المحو الصادي (ص) أو محور {displaystyle (y)}{displaystyle (y)}، ويحدد موقع النقاط في المستوي بإعطائها إحداثيين على خطي الأعداد على صورة (س، ص) أو بالإنجليزية {displaystyle (x,y)}{displaystyle (x,y)}. ويسمي {displaystyle x}x الإحداثي السيني وهو يحدد موقع النقطة بالنسبة لمحور السينات بينما يحدد {displaystyle y}{displaystyle y} الإحداثي الصادي موقع النقطة بالنسبة لمحور الصادات ويكتب هذان الإحداثيان على صورة زوج مرتب {displaystyle (x,y)}{displaystyle (x,y)}. ترتبط كل نقطة في المستوي بزوج مرتب وحيد من الأعداد {displaystyle (x,y)}{displaystyle (x,y)} وأيضا كل زوج مرتب يرتبط بنقطة واحدة وواحدة فقط في المستوي. محوري الإحداثيات يقسمان المستوي الإحداثي إلى أربعة أجزاء : الربع الأول: وفيه كل نقطة {displaystyle (x,y)}{displaystyle (x,y)} تحقق الشرطين:{displaystyle (x>0,y>0)}{displaystyle (x>0,y>0)}. الربع الثاني: وفيه كل نقطة {displaystyle (x,y)}{displaystyle (x,y)} تحقق الشرطين:{displaystyle (x<0,y>0)}{displaystyle (x<0,y>0)}. الربع الثالث: وفيه كل نقطة {displaystyle (x,y)}{displaystyle (x,y)} تحقق الشرطين:{displaystyle (x<0,y<0)}{displaystyle (x<0,y<0)}. الربع الرابع: وفيه كل نقطة {displaystyle (x,y)}{displaystyle (x,y)} تحقق الشرطين:{displaystyle (x>0,y<0)}{displaystyle (x>0,y<0)}. كذلك يمكن وصف المحور السيني والمحور الصادي كمجموعة من النقاط كالتالي : المحور السيني : وفيه كل نقطة {displaystyle (x,y)}{displaystyle (x,y)} تحقق الشرط:(y = 0). المحور الصادي: وفيه كل نقطة {displaystyle (x,y)}{displaystyle (x,y)} تحقق الشرط:(x = 0). بعض القوانين في الهندسة التحيلية إحداثيا نقطة منتصف قطعة مستقيمة إحداثيا نقطة المنتصف لقطعة مستقيمة AB هي : {displaystyle [(x1+x2)/2,(y1+y2)/2]}{displaystyle [(x1+x2)/2,(y1+y2)/2]} ميل الخط المستقيم ميل الخط المستقيم هو ظل الزاوية المحصورة بين محور السينات الموجب والمستقيم. ويساوي التغير في الاحداثيات الصادية إلى التغير في الاحداثيات السينية. المستقيم الذي يمر بالنقطتين (x1،y1) و (x2،y2) ميله هو: م= (y2-y1)/(x2-x1) حيث x1 لا تساوي x2. م= ظاهـ، حيث هـ هي الزاوية المحصورة بين محور السينات الموجب والمستقيم. المستقيم الذي يوازي محور الصادات ميله غير محدد، والمستقيم الذي يوازي محور السينات ميله يساوي صفرا...

🏆 💪 أكثر الكتب تحميلاً في الهندسة التحليلية:

قراءة و تحميل كتاب حلول تمارين الرياضيات المنتهيه PDF

حلول تمارين الرياضيات المنتهيه PDF

قراءة و تحميل كتاب حلول تمارين الرياضيات المنتهيه PDF مجانا

قراءة و تحميل كتاب موسوعة ألغاز الرياضيات والمنطق والاستنتاج PDF

موسوعة ألغاز الرياضيات والمنطق والاستنتاج PDF

قراءة و تحميل كتاب موسوعة ألغاز الرياضيات والمنطق والاستنتاج PDF مجانا

قراءة و تحميل كتاب مبادئ علم الإحصاء PDF

مبادئ علم الإحصاء PDF

قراءة و تحميل كتاب مبادئ علم الإحصاء PDF مجانا

قراءة و تحميل كتاب البحث عن الحل الاسلوب الرياضى من زاوية جديدة PDF

البحث عن الحل الاسلوب الرياضى من زاوية جديدة PDF

قراءة و تحميل كتاب البحث عن الحل الاسلوب الرياضى من زاوية جديدة PDF مجانا

قراءة و تحميل كتاب الحساب الذهني PDF

الحساب الذهني PDF

قراءة و تحميل كتاب الحساب الذهني PDF مجانا

قراءة و تحميل كتاب الرياضيات التطبيقية PDF

الرياضيات التطبيقية PDF

قراءة و تحميل كتاب الرياضيات التطبيقية PDF مجانا

قراءة و تحميل كتاب الوافي في الرياضيات PDF

الوافي في الرياضيات PDF

قراءة و تحميل كتاب الوافي في الرياضيات PDF مجانا

المزيد من الكتب الأكثر تحميلاً في الهندسة التحليلية

📚 عرض جميع كتب الهندسة التحليلية:


قراءة و تحميل كتاب تعلم الأرقام من واحد لعشرة للأطفال PDF

تعلم الأرقام من واحد لعشرة للأطفال PDF

قراءة و تحميل كتاب تعلم الأرقام من واحد لعشرة للأطفال PDF مجانا

قراءة و تحميل كتاب تحليل كثيرات الحدود PDF

تحليل كثيرات الحدود PDF

قراءة و تحميل كتاب تحليل كثيرات الحدود PDF مجانا

قراءة و تحميل كتاب البداية مع ماثماتكيا Mathematica 8 PDF

البداية مع ماثماتكيا Mathematica 8 PDF

قراءة و تحميل كتاب البداية مع ماثماتكيا Mathematica 8 PDF مجانا

قراءة و تحميل كتاب المتباينات و المعادلات ذات متغيرين PDF

المتباينات و المعادلات ذات متغيرين PDF

قراءة و تحميل كتاب المتباينات و المعادلات ذات متغيرين PDF مجانا

قراءة و تحميل كتاب تحليل الحدوديات PDF

تحليل الحدوديات PDF

قراءة و تحميل كتاب تحليل الحدوديات PDF مجانا

قراءة و تحميل كتاب حساب النهايات PDF

حساب النهايات PDF

قراءة و تحميل كتاب حساب النهايات PDF مجانا

قراءة و تحميل كتاب معضلة في النهايات PDF

معضلة في النهايات PDF

قراءة و تحميل كتاب معضلة في النهايات PDF مجانا

قراءة و تحميل كتاب موسوعة قوانين التكامل PDF

موسوعة قوانين التكامل PDF

قراءة و تحميل كتاب موسوعة قوانين التكامل PDF مجانا

قراءة و تحميل كتاب ملخص في التحويلات النقطية PDF

ملخص في التحويلات النقطية PDF

قراءة و تحميل كتاب ملخص في التحويلات النقطية PDF مجانا

قراءة و تحميل كتاب ملخص في الدوال الأسية واللوغرتمبة PDF

ملخص في الدوال الأسية واللوغرتمبة PDF

قراءة و تحميل كتاب ملخص في الدوال الأسية واللوغرتمبة PDF مجانا

قراءة و تحميل كتاب ملخص في المتاليات PDF

ملخص في المتاليات PDF

قراءة و تحميل كتاب ملخص في المتاليات PDF مجانا

قراءة و تحميل كتاب ملخص في الأعداد المركبة PDF

ملخص في الأعداد المركبة PDF

قراءة و تحميل كتاب ملخص في الأعداد المركبة PDF مجانا

قراءة و تحميل كتاب الهندسة التآلفية لمصطفى دبة PDF

الهندسة التآلفية لمصطفى دبة PDF

قراءة و تحميل كتاب الهندسة التآلفية لمصطفى دبة PDF مجانا

قراءة و تحميل كتاب مبرهنة المنصف الداخلي عكسها PDF

مبرهنة المنصف الداخلي عكسها PDF

قراءة و تحميل كتاب مبرهنة المنصف الداخلي عكسها PDF مجانا

قراءة و تحميل كتاب حلول فصل الثاني للثالث متوسط PDF

حلول فصل الثاني للثالث متوسط PDF

قراءة و تحميل كتاب حلول فصل الثاني للثالث متوسط PDF مجانا

المزيد ●●●

مناقشات واقتراحات حول صفحة الهندسة التحليلية: