Tl = ST2- A
72 = ST1-B
73 = ST3-(C-B)
T4 = ST2 - (C+B)
ST1 = (ST1+T1)-T2+FS
ST2 = (ST2+T2+T3)-T1 -
ST3 = (ST3+T4-T1) T3

Tl

 Automating Manufacturing Systems
with PLCs

ST3 C B
T3

C

B

(Version 5.1, March 21, 2008)

T1

first scan

ST2

Hugh Jack
T2

T3

page 0

Copyright (¢) 1993-2008 Hugh Jack (jackh@gvsu.edu).

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation License".

This document is provided as-is with no warranty, implied or otherwise. There
have been attempts to eliminate errors from this document, but there is no doubt
that errors remain. As a result, the author does not assume any responsibility for

errors and omissions, or damages resulting from the use of the information pro-
vided.

Additional materials and updates for this work will be available at http://clay-
more.engineer.gvsu.edu/~jackh/books.html

http://claymore.engineer.gvsu.edu/~jackh/books.html

page i

1.1 TODO LIST 1.3

PROGRAMMABLE LOGIC CONTROLLERS 2.1
2.1 INTRODUCTION 2.1
2.1.1 Ladder Logic 2.1

2.1.2 Programming 2.6

2.1.3 PLC Connections 2.10

2.14 Ladder Logic Inputs 2.11

2.1.5 Ladder Logic Outputs 2.12

2.2 A CASE STUDY 2.13
2.3 SUMMARY 2.14
24 PRACTICE PROBLEMS 2.15
2.5 PRACTICE PROBLEM SOLUTIONS 2.15
2.6 ASSIGNMENT PROBLEMS 2.16
PLCHARDWARE 3.1
3.1 INTRODUCTION 3.1
3.2 INPUTS AND OUTPUTS 3.2
3.2.1 Inputs 3.3

3.2.2 Output Modules 3.7

33 RELAYS 3.13
34 A CASE STUDY 3.14
3.5 ELECTRICAL WIRING DIAGRAMS 3.15
3.5.1 JIC Wiring Symbols 3.18

3.6 SUMMARY 3.22
3.7 PRACTICE PROBLEMS 3.22
3.8 PRACTICE PROBLEM SOLUTIONS 3.25
3.9 ASSIGNMENT PROBLEMS 3.28
LOGICAL SENSORS e 4.1
4.1 INTRODUCTION 4.1
4.2 SENSOR WIRING 4.1
421 Switches 4.2

422 Transistor Transistor Logic (TTL) 4.3

423 Sinking/Sourcing 4.3

4.2.4 Solid State Relays 4.10

4.3 PRESENCE DETECTION 4.11
43.1 Contact Switches 4.11

432 Reed Switches 4.11

433 Optical (Photoelectric) Sensors 4.12

434 Capacitive Sensors 4.19

4.3.5 Inductive Sensors 4.23

4.3.6 Ultrasonic 4.25

437 Hall Effect 4.25

4.4 SUMMARY
4.5 PRACTICE PROBLEMS
4.6 PRACTICE PROBLEM SOLUTIONS
4.7 ASSIGNMENT PROBLEMS
LOGICAL ACTUATORS
5.1 INTRODUCTION
52 SOLENOIDS
53 VALVES
54 CYLINDERS
5.5 HYDRAULICS
5.6 PNEUMATICS
5.7 MOTORS
5.8 OTHERS
59 SUMMARY
5.10 PRACTICE PROBLEMS
5.11 PRACTICE PROBLEM SOLUTIONS
5.12 ASSIGNMENT PROBLEMS
BOOLEAN LOGIC DESIGN
6.1 INTRODUCTION
6.2 BOOLEAN ALGEBRA
6.3 LOGIC DESIGN
6.3.1 Boolean Algebra Techniques
6.4 COMMON LOGIC FORMS
6.4.1 Complex Gate Forms
6.4.2 Multiplexers
6.5 SIMPLE DESIGN CASES
6.5.1 Basic Logic Functions
6.5.2 Car Safety System
6.5.3 Motor Forward/Reverse
6.5.4 A Burglar Alarm
6.6 SUMMARY
6.7 PRACTICE PROBLEMS
6.8 PRACTICE PROBLEM SOLUTIONS
6.9 ASSIGNMENT PROBLEMS
KARNAUGH MAPS
7.1 INTRODUCTION
7.2 SUMMARY
7.3 PRACTICE PROBLEMS

7.4

page ii

43.8 Fluid Flow

PRACTICE PROBLEM SOLUTIONS

..............................

............................

4.26
4.26
4.27
4.30
4.36

5.1

5.1
5.1
5.2
54
5.6
5.8
59
5.10
5.10
5.10
5.11
5.12

6.1

6.1

6.1

6.6
6.13
6.14
6.14
6.15
6.17
6.17
6.18
6.18
6.19
6.23
6.24
6.27
6.37

7.1

7.1
7.4
7.5
7.11

10.

7.5 ASSIGNMENT PROBLEMS
PLC OPERATION,

8.1 INTRODUCTION

8.2 OPERATION SEQUENCE
8.2.1 The Input and Output Scans
8.2.2 The Logic Scan

8.3 PLC STATUS

8.4 MEMORY TYPES

8.5 SOFTWARE BASED PLCS

8.6 SUMMARY

8.7 PRACTICE PROBLEMS

8.8 PRACTICE PROBLEM SOLUTIONS

8.9 ASSIGNMENT PROBLEMS

LATCHES, TIMERS, COUNTERS AND MORE

9.1
9.2
9.3
94
9.5
9.6
9.7

9.8
9.9
9.10
9.11

STRUCTURED LOGIC DESIGN

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

page iii

INTRODUCTION
LATCHES

TIMERS

COUNTERS

MASTER CONTROL RELAYS (MCRs)

INTERNAL BITS

DESIGN
9.7.1

CASES
Basic Counters And Timers

9.7.2 More Timers And Counters
9.7.3 Deadman Switch
9.7.4 Conveyor
9.7.5 Accept/Reject Sorting
9.7.6 Shear Press
SUMMARY
PRACTICE PROBLEMS
PRACTICE PROBLEM SOLUTIONS
ASSIGNMENT PROBLEMS

INTRODUCTION
PROCESS SEQUENCE BITS

TIMING
DESIGN

DIAGRAMS
CASES

SUMMARY

PRACTICE PROBLEMS

PRACTICE PROBLEM SOLUTIONS
ASSIGNMENT PROBLEMS

page iv

11. FLOWCHART BASED DESIGN 11.1

11.1 INTRODUCTION 11.1

11.2 BLOCK LOGIC 11.4

11.3 SEQUENCE BITS 11.11

11.4 SUMMARY 11.15

11.5 PRACTICE PROBLEMS 11.15

11.6 PRACTICE PROBLEM SOLUTIONS 11.16

11.7 ASSIGNMENT PROBLEMS 11.26

12. STATEBASEDDESIGN 12.1
12.1 INTRODUCTION 12.1

12.1.1 State Diagram Example 12.4

12.1.2 Conversion to Ladder Logic 12.7

Block Logic Conversion 12.7

State Equations 12.16

State-Transition Equations 12.24

12.2 SUMMARY 12.29

12.3 PRACTICE PROBLEMS 12.29

12.4 PRACTICE PROBLEM SOLUTIONS 12.34

12.5 ASSIGNMENT PROBLEMS 12.49

13. NUMBERS AND DATA 13.1
13.1 INTRODUCTION 13.1

13.2 NUMERICAL VALUES 13.2

13.2.1 Binary 13.2

Boolean Operations 13.5

Binary Mathematics 13.6

13.2.2 Other Base Number Systems 13.10

13.2.3 BCD (Binary Coded Decimal) 13.11

13.3 DATA CHARACTERIZATION 13.11
13.3.1 ASCII (American Standard Code for Information Interchange)

13.11

13.3.2 Parity 13.14

13.3.3 Checksums 13.15

13.34 Gray Code 13.16

13.4 SUMMARY 13.17

13.5 PRACTICE PROBLEMS 13.17

13.6 PRACTICE PROBLEM SOLUTIONS 13.20

13.7 ASSIGNMENT PROBLEMS 13.23

14. PLCMEMORY e 14.1
14.1 INTRODUCTION 14.1

14.2 PROGRAM VS VARIABLE MEMORY 14.1

15.

16.

14.3 PROGRAMS
14.4 VARIABLES (TAGS)
14.4.1 Timer and Counter Memory
14.4.2 PLC Status Bits
14.4.3 User Function Control Memory
14.5 SUMMARY
14.6 PRACTICE PROBLEMS
14.7 PRACTICE PROBLEM SOLUTIONS
14.8 ASSIGNMENT PROBLEMS
LADDER LOGIC FUNCTIONS
15.1 INTRODUCTION
15.2 DATA HANDLING
15.2.1 Move Functions
15.2.2 Mathematical Functions
15.2.3 Conversions
15.2.4 Array Data Functions
Statistics
Block Operations
15.3 LOGICAL FUNCTIONS
15.3.1 Comparison of Values
15.3.2 Boolean Functions
15.4 DESIGN CASES
15.4.1 Simple Calculation
15.4.2 For-Next
15.4.3 Series Calculation
15.4.4 Flashing Lights
15.5 SUMMARY
15.6 PRACTICE PROBLEMS
15.7 PRACTICE PROBLEM SOLUTIONS
15.8 ASSIGNMENT PROBLEMS

ADVANCED LADDER LOGIC FUNCTIONS

16.1
16.2

16.3

16.4

page v

INTRODUCTION
LIST FUNCTIONS
16.2.1 Shift Registers
16.2.2 Stacks
16.2.3 Sequencers
PROGRAM CONTROL
16.3.1 Branching and Looping
16.3.2 Fault Handling
16.3.3 Interrupts
INPUT AND OUTPUT FUNCTIONS
16.4.1 Immediate 1/O Instructions

14.3
14.3
14.6
14.8
14.11
14.12
14.12
14.13
14.15

15.1

15.1

15.3

15.3

15.5
15.10
15.11
15.12
15.13
15.15
15.15
15.21
15.22
15.22
15.23
15.24
15.25
15.25
15.26
15.28
15.34

16.1

16.1
16.1
16.1
16.3
16.6
16.9
16.9
16.14
16.15
16.17
16.17

17.

18.

19.

20.

page vi

16.5 DESIGN TECHNIQUES
16.5.1 State Diagrams
16.6 DESIGN CASES
16.6.1 [f-Then
16.6.2 Traffic Light

16.7 SUMMARY
16.8 PRACTICE PROBLEMS
16.9 PRACTICE PROBLEM SOLUTIONS
16.10 ASSIGNMENT PROBLEMS
OPEN CONTROLLERS
17.1 INTRODUCTION
17.2 IEC 61131
17.3 OPEN ARCHITECTURE CONTROLLERS
17.4 SUMMARY
17.5 PRACTICE PROBLEMS
17.6 PRACTICE PROBLEM SOLUTIONS
17.7 ASSIGNMENT PROBLEMS

INSTRUCTION LIST PROGRAMMING

18.1 INTRODUCTION

18.2 THE IEC 61131 VERSION

18.3 THE ALLEN-BRADLEY VERSION
18.4 SUMMARY

18.5 PRACTICE PROBLEMS

18.6 PRACTICE PROBLEM SOLUTIONS
18.7 ASSIGNMENT PROBLEMS

STRUCTURED TEXT PROGRAMMING

19.1 INTRODUCTION
19.2 THE LANGUAGE
19.2.1 Elements of the Language
19.2.2 Putting Things Together in a Program

19.3 AN EXAMPLE

19.4 SUMMARY

19.5 PRACTICE PROBLEMS

19.6 PRACTICE PROBLEM SOLUTIONS
19.7 ASSIGNMENT PROBLEMS

SEQUENTIAL FUNCTION CHARTS

20.1 INTRODUCTION
20.2 A COMPARISON OF METHODS
20.3 SUMMARY

16.19
16.19
16.24
16.24
16.25
16.25
16.26
16.28
16.37

17.1

17.1
17.2
17.3
17.4
17.4
17.4
17.4

18.1

18.1
18.1
18.4
18.9
18.10
18.10
18.10

19.1

19.1
19.2
19.3
19.9
19.14
19.16
19.16
19.16
19.16

20.1

20.1
20.16
20.16

21.

22.

23.

page vii

20.4 PRACTICE PROBLEMS 20.17
20.5 PRACTICE PROBLEM SOLUTIONS 20.18
20.6 ASSIGNMENT PROBLEMS 20.25
FUNCTION BLOCK PROGRAMMING 21.1
21.1 INTRODUCTION 21.1
21.2 CREATING FUNCTION BLOCKS 21.3
21.3 DESIGN CASE 21.4
214 SUMMARY 21.4
21.5 PRACTICE PROBLEMS 21.5
21.6 PRACTICE PROBLEM SOLUTIONS 21.5
21.7 ASSIGNMENT PROBLEMS 21.5
ANALOG INPUTS AND OUTPUTS 22.1
22.1 INTRODUCTION 22.1
22.2 ANALOG INPUTS 22.2
22.2.1 Analog Inputs With a PLC-5 22.9
22.3 ANALOG OUTPUTS 22.13
22.3.1 Analog Outputs With A PLC-5 22.16
22.3.2 Pulse Width Modulation (PWM) Outputs 22.18
22.3.3 Shielding 22.20
22.4 DESIGN CASES 22.22
22.4.1 Process Monitor 22.22
22.5 SUMMARY 22.22
22.6 PRACTICE PROBLEMS 22.23
22.7 PRACTICE PROBLEM SOLUTIONS 22.24
22.8 ASSIGNMENT PROBLEMS 22.29
CONTINUOUS SENSORS 23.1
23.1 INTRODUCTION 23.1
23.2 INDUSTRIAL SENSORS 23.2
23.2.1 Angular Displacement 233
Potentiometers 23.3
23.2.2 Encoders 234
Tachometers 23.8
23.2.3 Linear Position 23.8
Potentiometers 23.8

Linear Variable Differential Transformers (LVDT)23.9
Moire Fringes 23.11
Accelerometers 23.12
23.2.4 Forces and Moments 23.15
Strain Gages 23.15
Piezoelectric 23.18
23.2.5 Liquids and Gases 23.20

24.

25.

pH
Conductivity

23.2.9 Others
23.3 INPUT ISSUES
234 SENSOR GLOSSARY
23.5 SUMMARY
23.6 REFERENCES
23.7 PRACTICE PROBLEMS
23.8 PRACTICE PROBLEM SOLUTIONS
23.9 ASSIGNMENT PROBLEMS

CONTINUOUS ACTUATORS ...

24.1 INTRODUCTION
24.2 ELECTRIC MOTORS

24.2.1 Basic Brushed DC Motors

24.2.2 AC Motors

2423 Brushless DC Motors

242.4 Stepper Motors

24.2.5 Wound Field Motors
243 HYDRAULICS
24.4 OTHER SYSTEMS
24.5 SUMMARY
24.6 PRACTICE PROBLEMS
24.7 PRACTICE PROBLEM SOLUTIONS
24.8 ASSIGNMENT PROBLEMS

CONTINUOUS CONTROL

25.1

page viii

Pressure
Venturi Valves
Coriolis Flow Meter
Magnetic Flow Meter
Ultrasonic Flow Meter
Vortex Flow Meter
Positive Displacement Meters
Pitot Tubes
23.2.6 Temperature
Resistive Temperature Detectors (RTDs)
Thermocouples
Thermistors
Other Sensors
23.2.7 Light
Light Dependant Resistors (LDR)
23.2.8 Chemical

INTRODUCTION

.........................

page ix

25.2 CONTROL OF LOGICAL ACTUATOR SYSTEMS 25.4

25.3 CONTROL OF CONTINUOUS ACTUATOR SYSTEMS 25.5
25.3.1 Block Diagrams 25.5

25.3.2 Feedback Control Systems 25.6

2533 Proportional Controllers 25.8

253.4 PID Control Systems 25.12

25.4 DESIGN CASES 25.14
254.1 Oven Temperature Control 25.14

25.4.2 Water Tank Level Control 25.17

254.3 Position Measurement 25.20

25.5 SUMMARY 25.20
25.6 PRACTICE PROBLEMS 25.21
25.7 PRACTICE PROBLEM SOLUTIONS 25.22
25.8 ASSIGNMENT PROBLEMS 25.26
FUZZY LOGIC e 26.1
26.1 INTRODUCTION 26.1
26.2 COMMERCIAL CONTROLLERS 26.7
26.3 REFERENCES 26.7
26.4 SUMMARY 26.7
26.5 PRACTICE PROBLEMS 26.8
26.6 PRACTICE PROBLEM SOLUTIONS 26.8
26.7 ASSIGNMENT PROBLEMS 26.8
SERIAL COMMUNICATION 27.1
27.1 INTRODUCTION 27.1
27.2 SERIAL COMMUNICATIONS 27.2
27.2.1 RS-232 27.5

ASCII Functions 27.9

27.3 PARALLEL COMMUNICATIONS 27.13
27.4 DESIGN CASES 27.14
27.4.1 PLC Interface To a Robot 27.14

27.5 SUMMARY 27.15
27.6 PRACTICE PROBLEMS 27.15
27.7 PRACTICE PROBLEM SOLUTIONS 27.16
27.8 ASSIGNMENT PROBLEMS 27.18
NETWORKING e 28.1
28.1 INTRODUCTION 28.1
28.1.1 Topology 28.2

28.1.2 OSI Network Model 28.3

28.1.3 Networking Hardware 28.5

28.1.4 Control Network Issues 28.7

28.2 NETWORK STANDARDS 28.8

29.

28.2.1 Devicenet
28.2.2 CANbus
28.2.3 Controlnet
28.2.4 Ethernet
28.2.5 Profibus
28.2.6 Sercos
28.3 PROPRIETARY NETWORKS
28.3.1 Data Highway
28.4 NETWORK COMPARISONS
28.5 DESIGN CASES
28.5.1 Devicenet
28.6 SUMMARY
28.7 PRACTICE PROBLEMS
28.8 PRACTICE PROBLEM SOLUTIONS
28.9 ASSIGNMENT PROBLEMS
INTERNET e
29.1 INTRODUCTION
29.1.1 Computer Addresses
IPV6
29.1.2 Phone Lines
29.1.3 Mail Transfer Protocols
29.14 FTP - File Transfer Protocol
29.1.5 HTTP - Hypertext Transfer Protocol
29.1.6 Novell
29.1.7 Security
Firewall
[P Masquerading
29.1.8 HTML - Hyper Text Markup Language
29.1.9 URLs
29.1.10 Encryption
29.1.11 Compression
29.1.12 Clients and Servers
29.1.13 Java
29.1.14 Javascript
29.1.15 CGlI
29.1.16 ActiveX
29.1.17 Graphics
29.2 DESIGN CASES
29.2.1 Remote Monitoring System
29.3 SUMMARY
29.4 PRACTICE PROBLEMS
29.5 PRACTICE PROBLEM SOLUTIONS
29.6 ASSIGNMENT PROBLEMS

page x

28.8
28.12
28.13
28.14
28.15
28.15
28.16
28.16
28.20
28.22
28.22
28.23
28.23
28.24
28.28

29.1
29.2
293
293
293
29.4
29.4
29.4
29.5
29.5
295
29.5
29.6
29.6
29.7
29.7
29.9
29.9
29.9
29.9
29.10
29.10
29.10
29.11
29.11
29.11
29.11

page xi

30. HUMAN MACHINE INTERFACES (HMI) 30.1

30.1 INTRODUCTION 30.1
30.2 HMI/MMI DESIGN 30.2
30.3 DESIGN CASES 30.3
30.4 SUMMARY 30.3
30.5 PRACTICE PROBLEMS 30.4
30.6 PRACTICE PROBLEM SOLUTIONS 30.4
30.7 ASSIGNMENT PROBLEMS 30.4
31. ELECTRICAL DESIGN AND CONSTRUCTION 31.1
31.1 INTRODUCTION 31.1
31.2 ELECTRICAL WIRING DIAGRAMS 31.1
31.2.1 Selecting Voltages 31.8

31.2.2 Grounding 31.9

31.2.3 Wiring 31.12

31.2.4 Suppressors 31.13

31.2.5 PLC Enclosures 31.14

31.2.6 Wire and Cable Grouping 31.16

31.3 FAIL-SAFE DESIGN 31.17
31.4 SAFETY RULES SUMMARY 31.18
31.5 REFERENCES 31.20
31.6 SUMMARY 31.20
31.7 PRACTICE PROBLEMS 31.20
31.8 PRACTICE PROBLEM SOLUTIONS 31.20
31.9 ASSIGNMENT PROBLEMS 31.20
32. SOFTWARE ENGINEERING 32.1
32.1 INTRODUCTION 32.1
32.1.1 Fail Safe Design 32.1

32.2 DEBUGGING 32.2
32.2.1 Troubleshooting 323

32.2.2 Forcing 32.3

323 PROCESS MODELLING 323
32.4 PROGRAMMING FOR LARGE SYSTEMS 32.8
32.4.1 Developing a Program Structure 32.8

32.4.2 Program Verification and Simulation 32.11

32.5 DOCUMENTATION 32.12
32.6 COMMISIONING 32.20
32.7 SAFETY 32.20
32.7.1 IEC 61508/61511 safety standards 32.21

32.8 LEAN MANUFACTURING 32.22
32.9 REFERENCES 32.23

32.10 SUMMARY 32.23

33.

34.

35.

page xii

32.11 PRACTICE PROBLEMS
32.12 PRACTICE PROBLEM SOLUTIONS
32.13 ASSIGNMENT PROBLEMS
SELECTING APLC
33.1 INTRODUCTION
33.2 SPECIAL I/O0 MODULES
33.3 SUMMARY
334 PRACTICE PROBLEMS
33.5 PRACTICE PROBLEM SOLUTIONS
33.6 ASSIGNMENT PROBLEMS
FUNCTION REFERENCE
34.1 FUNCTION DESCRIPTIONS
34.1.1 General Functions
34.1.2 Program Control
34.1.3 Timers and Counters
34.1.4 Compare
34.1.5 Calculation and Conversion
34.1.6 Logical
34.1.7 Move
34.1.8 File
34.1.9 List
34.1.10 Program Control
34.1.11 Advanced Input/Output
34.1.12 String
34.2 DATA TYPES

COMBINED GLOSSARY OF TERMS

35.1
35.2
353
354
35.5
35.6
35.7
35.8
35.9
35.10
35.11
35.12
35.13
35.14
35.15

OZZOCR—=—"IQUmWUAO®»

...................

32.23
32.23
32.23

33.1

33.1
33.6
33.9
33.10
33.10
33.10

34.1

34.1

34.1

343

34.5
34.10
34.14
34.20
34.21
34.22
34.27
34.30
34.34
34.37
34.42

35.1

35.1

35.2

35.5

35.9
35.11
35.12
35.13
35.14
35.14
35.16
35.16
35.17
35.17
35.19
35.20

36.

37.

35.16
35.17
35.18
35.19
35.20
35.21
35.22
35.23
35.24
35.25
35.26

PLC REFERENCES

36.1
36.2
36.3

GNU Free Documentation License

37.1
37.2
37.3
37.4
37.5
37.6
37.7
37.8
37.9
37.10
37.11
37.12

page xiii

N<Mg<C a0 m0

SUPPLIERS
PROFESSIONAL INTEREST GROUPS
PLC/DISCRETE CONTROL REFERENCES

PREAMBLE

APPLICABILITY AND DEFINITIONS
VERBATIM COPYING

COPYING IN QUANTITY
MODIFICATIONS

COMBINING DOCUMENTS
COLLECTIONS OF DOCUMENTS
AGGREGATION WITH INDEPENDENT WORKS
TRANSLATION

TERMINATION

FUTURE REVISIONS OF THIS LICENSE
How to use this License for your documents

..............................

plc wiring - 1.1

PREFACE

Designing software for control systems is difficult. Experienced controls engineers
have learned many techniques that allow them to solve problems. This book was written to
present methods for designing controls software using Programmable Logic Controllers
(PLCs). It is my personal hope that by employing the knowledge in the book that you will
be able to quickly write controls programs that work as expected (and avoid having to
learn by costly mistakes.)

This book has been designed for students with some knowledge of technology,
including limited electricity, who wish to learn the discipline of practical control system
design on commonly used hardware. To this end the book will use the Allen Bradley Con-
trolLogix processors to allow depth. Although the chapters will focus on specific hard-
ware, the techniques are portable to other PLCs. Whenever possible the IEC 61131
programming standards will be used to help in the use of other PLCs.

In some cases the material will build upon the content found in a linear controls
course. But, a heavy emphasis is placed on discrete control systems. Figure 1.1 crudely
shows some of the basic categories of control system problems.

CONTROL
CONTINUOUS DISCRETE
LINEAR NON LINEAR CONDITIONAL SEQUENTIAL
\ / RAC EVENT BASED
e.g. M TEMPORAL
e.g. PID BOOLEAN \
e.g. FUZZY LOGIC e.g. COUNTERS

EXPERT SYSTEMS ¢-& TIMERS

Figure 1.1 Control Dichotomy

* Continuous - The values to be controlled change smoothly. e.g. the speed of a car.
* Logical/Discrete - The value to be controlled are easily described as on-off. e.g.
the car motor is on-off. NOTE: all systems are continuous but they can be
treated as logical for simplicity.
e.g. “When I do this, that always happens!” For example, when the power
is turned on, the press closes!

plc wiring - 1.2

* Linear - Can be described with a simple differential equation. This is the pre-
ferred starting point for simplicity, and a common approximation for real world
problems.

e.g. A car can be driving around a track and can pass same the same spot at
a constant velocity. But, the longer the car runs, the mass decreases, and
it travels faster, but requires less gas, etc. Basically, the math gets
tougher, and the problem becomes non-linear.

e.g. We are driving the perfect car with no friction, with no drag, and can
predict how it will work perfectly.

* Non-Linear - Not Linear. This is how the world works and the mathematics
become much more complex.

e.g. As rocket approaches sun, gravity increases, so control must change.

* Sequential - A logical controller that will keep track of time and previous events.

The difference between these control systems can be emphasized by considering a
simple elevator. An elevator is a car that travels between floors, stopping at precise
heights. There are certain logical constraints used for safety and convenience. The points
below emphasize different types of control problems in the elevator.

Logical:
1. The elevator must move towards a floor when a button is pushed.
2. The elevator must open a door when it is at a floor.
3. It must have the door closed before it moves.
etc.
Linear:
1. If the desired position changes to a new value, accelerate quickly
towards the new position.
2. As the elevator approaches the correct position, slow down.
Non-linear:
1 Accelerate slowly to start.
2. Decelerate as you approach the final position.
3. Allow faster motion while moving.
4. Compensate for cable stretch, and changing spring constant, etc.

Logical and sequential control is preferred for system design. These systems are
more stable, and often lower cost. Most continuous systems can be controlled logically.
But, some times we will encounter a system that must be controlled continuously. When
this occurs the control system design becomes more demanding. When improperly con-
trolled, continuous systems may be unstable and become dangerous.

When a system is well behaved we say it is self regulating. These systems don’t
need to be closely monitored, and we use open loop control. An open loop controller will
set a desired position for a system, but no sensors are used to verify the position. When a

plc wiring - 1.3

system must be constantly monitored and the control output adjusted we say it is closed
loop. A cruise control in a car is an excellent example. This will monitor the actual speed
of a car, and adjust the speed to meet a set target speed.

Many control technologies are available for control. Early control systems relied
upon mechanisms and electronics to build controlled. Most modern controllers use a com-
puter to achieve control. The most flexible of these controllers is the PLC (Programmable
Logic Controller).

The book has been set up to aid the reader, as outlined below.

Sections labeled A4side: are for topics that would be of interest to one disci-
pline, such as electrical or mechanical.

Sections labeled Note. are for clarification, to provide hints, or to add
explanation.

Each chapter supports about 1-4 lecture hours depending upon students
background and level in the curriculum.

Topics are organized to allow students to start laboratory work earlier in the
semester.

Sections begin with a topic list to help set thoughts.

Objective given at the beginning of each chapter.

Summary at the end of each chapter to give big picture.

Significant use of figures to emphasize physical implementations.

Worked examples and case studies.

Problems at ends of chapters with solutions.

Glossary.

1.1 TODO LIST

- Finish writing chapters
- fuzzy logic chapter
* - internet chapter
- hmi chapter
- modify chapters
* - electrical wiring chapter
- fix wiring and other issues in the implementation chapter
- software chapter - improve P&ID section
- appendices - complete list of instruction data types in appendix
- small items
- update serial 10 slides
- all chapters
* - grammar and spelling check
* - add a resources web page with links

plc wiring - 1.4

- links to software/hardware vendors, iec1131, etc.
- pictures of hardware and controls cabinet

plc wiring - 2.1

2. PROGRAMMABLE LOGIC CONTROLLERS

Topics:
* PLC History
* Ladder Logic and Relays
* PLC Programming
* PLC Operation
* An Example

Objectives:
* Know general PLC issues
* To be able to write simple ladder logic programs
* Understand the operation of a PLC

2.1 INTRODUCTION

Control engineering has evolved over time. In the past humans were the main
method for controlling a system. More recently electricity has been used for control and
early electrical control was based on relays. These relays allow power to be switched on
and off without a mechanical switch. It is common to use relays to make simple logical
control decisions. The development of low cost computer has brought the most recent rev-
olution, the Programmable Logic Controller (PLC). The advent of the PLC began in the
1970s, and has become the most common choice for manufacturing controls.

PLCs have been gaining popularity on the factory floor and will probably remain
predominant for some time to come. Most of this is because of the advantages they offer.

* Cost effective for controlling complex systems.

* Flexible and can be reapplied to control other systems quickly and easily.
» Computational abilities allow more sophisticated control.

* Trouble shooting aids make programming easier and reduce downtime.

* Reliable components make these likely to operate for years before failure.

2.1.1 Ladder Logic

Ladder logic is the main programming method used for PLCs. As mentioned
before, ladder logic has been developed to mimic relay logic. The decision to use the relay

plc wiring - 2.2

logic diagrams was a strategic one. By selecting ladder logic as the main programming
method, the amount of retraining needed for engineers and tradespeople was greatly
reduced.

Modern control systems still include relays, but these are rarely used for logic. A
relay is a simple device that uses a magnetic field to control a switch, as pictured in Figure
2.1. When a voltage is applied to the input coil, the resulting current creates a magnetic
field. The magnetic field pulls a metal switch (or reed) towards it and the contacts touch,
closing the switch. The contact that closes when the coil is energized is called normally
open. The normally closed contacts touch when the input coil is not energized. Relays are
normally drawn in schematic form using a circle to represent the input coil. The output
contacts are shown with two parallel lines. Normally open contacts are shown as two
lines, and will be open (non-conducting) when the input is not energized. Normally closed
contacts are shown with two lines with a diagonal line through them. When the input coil
is not energized the normally closed contacts will be closed (conducting).

plc wiring - 2.3

o

input coil 7
i

e O
WARE
normally

closed normally

open
— @

.4

o -

L @

o
Figure 2.1 Simple Relay Layouts and Schematics

Relays are used to let one power source close a switch for another (often high cur-
rent) power source, while keeping them isolated. An example of a relay in a simple control
application is shown in Figure 2.2. In this system the first relay on the left is used as nor-
mally closed, and will allow current to flow until a voltage is applied to the input A. The
second relay is normally open and will not allow current to flow until a voltage is applied
to the input B. If current is flowing through the first two relays then current will flow
through the coil in the third relay, and close the switch for output C. This circuit would
normally be drawn in the ladder logic form. This can be read logically as C will be on if A
is off and B is on.

plc wiring - 2.4

(H1I5VAC

(o)
ﬁ_wall plug)

r——n r—I— —n
I I .
| — | I | relay logic
'E:_‘—I—'—:
! — |
LH -I T
: output C
input A input B
(nI())Imally closed) (normally open) (normally open)

A B
% ladder logic

7

Figure 2.2 A Simple Relay Controller

N
)

The example in Figure 2.2 does not show the entire control system, but only the
logic. When we consider a PLC there are inputs, outputs, and the logic. Figure 2.3 shows a
more complete representation of the PLC. Here there are two inputs from push buttons.
We can imagine the inputs as activating 24V DC relay coils in the PLC. This in turn drives
an output relay that switches 115V AC, that will turn on a light. Note, in actual PLCs
inputs are never relays, but outputs are often relays. The ladder logic in the PLC is actually
a computer program that the user can enter and change. Notice that both of the input push
buttons are normally open, but the ladder logic inside the PLC has one normally open con-
tact, and one normally closed contact. Do not think that the ladder logic in the PLC needs
to match the inputs or outputs. Many beginners will get caught trying to make the ladder
logic match the input types.

plc wiring - 2.5

push buttons €1

o o
1
¢ o o—
power
supply
+24V|
com|
PLC
¢
nputs : : G
ladder ‘ /{/\/ ||
oo | [0 AT 5 T
|
outputs ||

N 7
11 5Vac4©m
AC power / .
neut,

Figure 2.3 A PLC Illustrated With Relays

Many relays also have multiple outputs (throws) and this allows an output relay to
also be an input simultaneously. The circuit shown in Figure 2.4 is an example of this, it is
called a seal in circuit. In this circuit the current can flow through either branch of the cir-
cuit, through the contacts labelled A or B. The input B will only be on when the output B
is on. If B is off, and A is energized, then B will turn on. If B turns on then the input B will
turn on, and keep output B on even if input A goes off. After B is turned on the output B
will not turn off.

plc wiring - 2.6

A B

O

Note: When A is pushed, the output B will turn on, and
the input B will also turn on and keep B on perma-
nently - until power is removed.

Note: The line on the right is being left off intentionally
and is implied in these diagrams.

Figure 2.4 A Seal-in Circuit

2.1.2 Programming

The first PLCs were programmed with a technique that was based on relay logic
wiring schematics. This eliminated the need to teach the electricians, technicians and engi-
neers how to program a computer - but, this method has stuck and it is the most common
technique for programming PLCs today. An example of ladder logic can be seen in Figure
2.5. To interpret this diagram imagine that the power is on the vertical line on the left hand
side, we call this the hot rail. On the right hand side is the neutral rail. In the figure there
are two rungs, and on each rung there are combinations of inputs (two vertical lines) and
outputs (circles). If the inputs are opened or closed in the right combination the power can
flow from the hot rail, through the inputs, to power the outputs, and finally to the neutral
rail. An input can come from a sensor, switch, or any other type of sensor. An output will
be some device outside the PLC that is switched on or off, such as lights or motors. In the
top rung the contacts are normally open and normally closed. Which means if input 4 is on
and input B is off, then power will flow through the output and activate it. Any other com-
bination of input values will result in the output X being off.

plc wiring - 2.7

HOT NEUTRAL
A B X @7
C D, G, Y
‘ N (- - . | | @7
7 4
- o . E - s li - " H
INPUTS OUTPUTS

Note: Power needs to flow through some combination of the inputs
(A,B,C,D,E,F,GH) to turn on outputs (X,Y).

Figure 2.5 A Simple Ladder Logic Diagram

The second rung of Figure 2.5 is more complex, there are actually multiple combi-
nations of inputs that will result in the output Y turning on. On the left most part of the
rung, power could flow through the top if C is off and D is on. Power could also (and
simultaneously) flow through the bottom if both £ and F are true. This would get power
half way across the rung, and then if G or H is true the power will be delivered to output Y.
In later chapters we will examine how to interpret and construct these diagrams.

There are other methods for programming PLCs. One of the earliest techniques
involved mnemonic instructions. These instructions can be derived directly from the lad-
der logic diagrams and entered into the PLC through a simple programming terminal. An
example of mnemonics is shown in Figure 2.6. In this example the instructions are read
one line at a time from top to bottom. The first line 00000 has the instruction LDN (input
load and not) for input 4. This will examine the input to the PLC and if it is off it will
remember a / (or true), if it is on it will remember a 0 (or false). The next line uses an LD
(input load) statement to look at the input. If the input is off it remembers a 0, if the input
is on it remembers a / (note: this is the reverse of the LD). The AND statement recalls the
last two numbers remembered and if the are both true the result is a 7, otherwise the result
is a 0. This result now replaces the two numbers that were recalled, and there is only one
number remembered. The process is repeated for lines 00003 and 00004, but when these
are done there are now three numbers remembered. The oldest number is from the AND,
the newer numbers are from the two LD instructions. The AND in line 00005 combines the
results from the last LD instructions and now there are two numbers remembered. The OR
instruction takes the two numbers now remaining and if either one is a / the resultis a /,
otherwise the result is a (. This result replaces the two numbers, and there is now a single

plc wiring - 2.8

number there. The last instruction is the ST (store output) that will look at the last value
stored and if it is /, the output will be turned on, if it is 0 the output will be turned off.

00000 LDN
00001 LD

00002 AND
00003 LD

00004 LD

00005 AND
00006 OR

00007 ST X

00008 END A B <

@

the mnemonic code is equivalent to
the ladder logic below

oo w»

END

Note: The notation shown aboveis ~ SOR
not standard Allen-Bradley BST
notation. The program to the XIC A
right would be the A-B equiva- XIO B
lent. NXB

XIO C
XIOD
BND
OTE X
EOR
END

Figure 2.6 An Example of a Mnemonic Program and Equivalent Ladder Logic

The ladder logic program in Figure 2.6, is equivalent to the mnemonic program.
Even if you have programmed a PLC with ladder logic, it will be converted to mnemonic
form before being used by the PLC. In the past mnemonic programming was the most
common, but now it is uncommon for users to even see mnemonic programs.

plc wiring - 2.9

Sequential Function Charts (SFCs) have been developed to accommodate the pro-
gramming of more advanced systems. These are similar to flowcharts, but much more
powerful. The example seen in Figure 2.7 is doing two different things. To read the chart,
start at the top where is says start. Below this there is the double horizontal line that says
follow both paths. As a result the PLC will start to follow the branch on the left and right
hand sides separately and simultaneously. On the left there are two functions the first one
is the power up function. This function will run until it decides it is done, and the power
down function will come after. On the right hand side is the flash function, this will run
until it is done. These functions look unexplained, but each function, such as power up
will be a small ladder logic program. This method is much different from flowcharts
because it does not have to follow a single path through the flowchart.

’-' @ o

power up Execution follows

multiple paths

flash

- oam s mm

1
1
1
1
\

powerdown| ¥ _ ——-

A

End

Figure 2.7 An Example of a Sequential Function Chart

Structured Text programming has been developed as a more modern programming
language. It is quite similar to languages such as BASIC. A simple example is shown in
Figure 2.8. This example uses a PLC memory location i. This memory location is for an
integer, as will be explained later in the book. The first line of the program sets the value
to 0. The next line begins a loop, and will be where the loop returns to. The next line
recalls the value in location i, adds 1 to it and returns it to the same location. The next line
checks to see if the loop should quit. If i is greater than or equal to 10, then the loop will
quit, otherwise the computer will go back up to the REPEAT statement continue from
there. Each time the program goes through this loop i will increase by 1 until the value
reaches /0.

plc wiring - 2.10

1:=0;

REPEAT
1:=1+1;
UNTIL 1>=10
END REPEAT;

Figure 2.8 An Example of a Structured Text Program

2.1.3 PLC Connections

When a process is controlled by a PLC it uses inputs from sensors to make deci-
sions and update outputs to drive actuators, as shown in Figure 2.9. The process is a real
process that will change over time. Actuators will drive the system to new states (or modes
of operation). This means that the controller is limited by the sensors available, if an input
is not available, the controller will have no way to detect a condition.

PROCESS

Feedbackl from Connections to
sensors/switches actuators

PLC

Figure 2.9 The Separation of Controller and Process

The control loop is a continuous cycle of the PLC reading inputs, solving the lad-
der logic, and then changing the outputs. Like any computer this does not happen
instantly. Figure 2.10 shows the basic operation cycle of a PLC. When power is turned on
initially the PLC does a quick sanity check to ensure that the hardware is working prop-
erly. If there is a problem the PLC will halt and indicate there is an error. For example, if
the PLC power is dropping and about to go off this will result in one type of fault. If the
PLC passes the sanity check it will then scan (read) all the inputs. After the inputs values
are stored in memory the ladder logic will be scanned (solved) using the stored values -
not the current values. This is done to prevent logic problems when inputs change during
the ladder logic scan. When the ladder logic scan is complete the outputs will be scanned

plc wiring - 2.11

(the output values will be changed). After this the system goes back to do a sanity check,
and the loop continues indefinitely. Unlike normal computers, the entire program will be
run every scan. Typical times for each of the stages is in the order of milliseconds.

PLC program changes output
by examining inputs

Set new outputs

THE
CONTROL
LOOP

Power turned on

Process changes and PLC pauses

Read inputs while it checks its own operation

Figure 2.10 The Scan Cycle of a PLC

2.1.4 Ladder Logic Inputs

PLC inputs are easily represented in ladder logic. In Figure 2.11 there are three
types of inputs shown. The first two are normally open and normally closed inputs, dis-
cussed previously. The /IT (Immediate InpuT) function allows inputs to be read after the
input scan, while the ladder logic is being scanned. This allows ladder logic to examine
input values more often than once every cycle. (Note: This instruction is not available on
the ControlLogix processors, but is still available on older models.)

plc wiring - 2.12

all

| | Normally open, an active input x will close the contact
and allow power to flow.

X
/‘/}/ Normally closed, power flows when the input x is not open.

X
IIT

immediate inputs will take current values, not those from
the previous input scan. (Note: this instruction is actually
an output that will update the input table with the current
input values. Other input contacts can now be used to
examine the new values.)

Figure 2.11 Ladder Logic Inputs

2.1.5 Ladder Logic Outputs

In ladder logic there are multiple types of outputs, but these are not consistently
available on all PLCs. Some of the outputs will be externally connected to devices outside
the PLC, but it is also possible to use internal memory locations in the PLC. Six types of
outputs are shown in Figure 2.12. The first is a normal output, when energized the output
will turn on, and energize an output. The circle with a diagonal line through is a normally
on output. When energized the output will turn off. This type of output is not available on
all PLC types. When initially energized the OSR (One Shot Relay) instruction will turn on
for one scan, but then be off for all scans after, until it is turned off. The L (latch) and U
(unlatch) instructions can be used to lock outputs on. When an L output is energized the
output will turn on indefinitely, even when the output coil is deenergized. The output can
only be turned off using a U output. The last instruction is the /OT (Immediate OutpuT)
that will allow outputs to be updated without having to wait for the ladder logic scan to be
completed.

plc wiring - 2.13

When power is applied (on) the output x is activated for the left output, but turned
off for the output on the right.

C X S X
An input transition on will cause the output x to go on for one scan
(this is also known as a one shot relay)

When the L coil is energized, x will be toggled on, it will stay on until the U coil
is energized. This is like a flip-flop and stays set even when the PLC is turned off.

—O- —OF
Some PLCs will allow immediate outputs that do not wait for the program scan to

end before setting an output. (Note: This instruction will only update the outputs using
the output table, other instruction must change the individual outputs.)

—(°

Note: Outputs are also commonly shown using parentheses -(')- instead of
the circle. This is because many of the programming systems are text
based and circles cannot be drawn.

Figure 2.12 Ladder Logic Outputs

2.2 A CASE STUDY

Problem: Try to develop (without looking at the solution) a relay based controller
that will allow three switches in a room to control a single light.

plc wiring - 2.14

Solution: There are two possible approaches to this problem. The first assumes that any
one of the switches on will turn on the light, but all three switches must be off for the
light to be off.

switch 1 .
Q light

switch 2

switch 3

The second solution assumes that each switch can turn the light on or off, regardless of
the states of the other switches. This method is more complex and involves thinking
through all of the possible combinations of switch positions. You might recognize
this problem as an exclusive or problem.

switch 1 switch 2 switch 3
b gt Q light

svx@c h 1 swi}c h 2 svx@c h 3
|

svatm 1 S\RQIZCI 2 switch 3

switch 1 swi}m 2 switch 3

Note: It is important to get a clear understanding of how the controls are expected to
work. In this example two radically different solutions were obtained based upon a
simple difference in the operation.

2.3 SUMMARY

* Normally open and closed contacts.

* Relays and their relationship to ladder logic.

* PLC outputs can be inputs, as shown by the seal in circuit.

* Programming can be done with ladder logic, mnemonics, SFCs, and structured
text.

* There are multiple ways to write a PLC program.

plc wiring - 2.15

2.4 PRACTICE PROBLEMS

1. Give an example of where a PLC could be used.
2. Why would relays be used in place of PLCs?

3. Give a concise description of a PLC.

4. List the advantages of a PLC over relays.

5. A PLC can effectively replace a number of components. Give examples and discuss some good
and bad applications of PLCs.

6. Explain why ladder logic outputs are coils?

7. In the figure below, will the power for the output on the first rung normally be on or off? Would
the output on the second rung normally be on or off?

8. Write the mnemonic program for the Ladder Logic below.
A

(—
(—
QY_

2.5 PRACTICE PROBLEM SOLUTIONS

1. To control a conveyor system
2. For simple designs

3. A PLC is a computer based controller that uses inputs to monitor a process, and uses outputs to
control a process using a program.

plc wiring - 2.16

4. Less expensive for complex processes, debugging tools, reliable, flexible, easy to expand, etc.
5. A PLC could replace a few relays. In this case the relays might be easier to install and less
expensive. To control a more complex system the controller might need timing, counting and

other mathematical calculations. In this case a PLC would be a better choice.

6. The ladder logic outputs were modelled on relay logic diagrams. The output in a relay ladder
diagram is a relay coil that switches a set of output contacts.

7. off, on

8. Generic: LD A, LD B, OR, ST Y, END; Allen Bradley: SOR, BST, XIO A, NXB, XIO B,
BND, OTE Y, EOR, END

2.6 ASSIGNMENT PROBLEMS

1. Explain the trade-offs between relays and PLCs for control applications.

2. Develop a simple ladder logic program that will turn on an output X if inputs A and B, or input
Cis on.

plc wiring - 3.1

3. PLC HARDWARE

Topics:
* PLC hardware configurations
* Input and outputs types
* Electrical wiring for inputs and outputs
* Relays
* Electrical Ladder Diagrams and JIC wiring symbols

Objectives:
* Be able to understand and design basic input and output wiring.
* Be able to produce industrial wiring diagrams.

3.1 INTRODUCTION

Many PLC configurations are available, even from a single vendor. But, in each of
these there are common components and concepts. The most essential components are:

Power Supply - This can be built into the PLC or be an external unit. Common
voltage levels required by the PLC (with and without the power supply) are
24Vdc, 120Vac, 220Vac.

CPU (Central Processing Unit) - This is a computer where ladder logic is stored
and processed.

I/O (Input/Output) - A number of input/output terminals must be provided so that
the PLC can monitor the process and initiate actions.

Indicator lights - These indicate the status of the PLC including power on, program
running, and a fault. These are essential when diagnosing problems.

The configuration of the PLC refers to the packaging of the components. Typical
configurations are listed below from largest to smallest as shown in Figure 3.1.

Rack - A rack is often large (up to 18 by 30” by 10”) and can hold multiple cards.
When necessary, multiple racks can be connected together. These tend to be the
highest cost, but also the most flexible and easy to maintain.

Mini - These are smaller than full sized PLC racks, but can have the same 10
capacity.

Micro - These units can be as small as a deck of cards. They tend to have fixed
quantities of I/O and limited abilities, but costs will be the lowest.

Software - A software based PLC requires a computer with an interface card, but

plc wiring - 3.2

allows the PLC to be connected to sensors and other PLCs across a network.

Figure 3.1 Typical Configurations for PLC

3.2 INPUTS AND OUTPUTS

Inputs to, and outputs from, a PLC are necessary to monitor and control a process.
Both inputs and outputs can be categorized into two basic types: logical or continuous.
Consider the example of a light bulb. If it can only be turned on or off; it is logical control.
If the light can be dimmed to different levels, it is continuous. Continuous values seem
more intuitive, but logical values are preferred because they allow more certainty, and
simplify control. As a result most controls applications (and PLCs) use logical inputs and
outputs for most applications. Hence, we will discuss logical I/O and leave continuous I/O
for later.

Outputs to actuators allow a PLC to cause something to happen in a process. A
short list of popular actuators is given below in order of relative popularity.

Solenoid Valves - logical outputs that can switch a hydraulic or pneumatic flow.

Lights - logical outputs that can often be powered directly from PLC output
boards.

Motor Starters - motors often draw a large amount of current when started, so they
require motor starters, which are basically large relays.

Servo Motors - a continuous output from the PLC can command a variable speed
or position.

plc wiring - 3.3

Outputs from PLCs are often relays, but they can also be solid state electronics
such as transistors for DC outputs or Triacs for AC outputs. Continuous outputs require
special output cards with digital to analog converters.

Inputs come from sensors that translate physical phenomena into electrical signals.
Typical examples of sensors are listed below in relative order of popularity.

Proximity Switches - use inductance, capacitance or light to detect an object logi-
cally.

Switches - mechanical mechanisms will open or close electrical contacts for a log-
ical signal.

Potentiometer - measures angular positions continuously, using resistance.

LVDT (linear variable differential transformer) - measures linear displacement
continuously using magnetic coupling.

Inputs for a PLC come in a few basic varieties, the simplest are AC and DC inputs.
Sourcing and sinking inputs are also popular. This output method dictates that a device
does not supply any power. Instead, the device only switches current on or off, like a sim-
ple switch.

Sinking - When active the output allows current to flow to a common ground. This
is best selected when different voltages are supplied.

Sourcing - When active, current flows from a supply, through the output device
and to ground. This method is best used when all devices use a single supply
voltage.

This is also referred to as NPN (sinking) and PNP (sourcing). PNP is more popu-
lar. This will be covered in detail in the chapter on sensors.

3.2.1 Inputs

In smaller PLCs the inputs are normally built in and are specified when purchasing
the PLC. For larger PLCs the inputs are purchased as modules, or cards, with 8 or 16
inputs of the same type on each card. For discussion purposes we will discuss all inputs as
if they have been purchased as cards. The list below shows typical ranges for input volt-
ages, and is roughly in order of popularity.

12-24 Vdc
100-120 Vac
10-60 Vdc
12-24 Vac/dc

plc wiring - 3.4

5 Vdc (TTL)
200-240 Vac
48 Vdc
24 Vac

PLC input cards rarely supply power, this means that an external power supply is
needed to supply power for the inputs and sensors. The example in Figure 3.2 shows how
to connect an AC input card.

PLC Input Card
24V AC
normally open push-button O
00
24V AC Hot O 01
Power
Supply O 02
Neut.
O 03
O 04
normally open O 05
temperature switch O 06
O 07
O COM
Pushbutton (bob:3:1.Data.1) itis in rack "bob"
slot 3

Tempsensor (bob:3:1.Data.3)

Note: inputs are normally high impedance. This means that they will
use very little current.

Figure 3.2 An AC Input Card and Ladder Logic

plc wiring - 3.5

In the example there are two inputs, one is a normally open push button, and the
second is a temperature switch, or thermal relay. (NOTE: These symbols are standard and
will be discussed later in this chapter.) Both of the switches are powered by the positive/
hot output of the 24 Vac power supply - this is like the positive terminal on a DC supply.
Power is supplied to the left side of both of the switches. When the switches are open there
is no voltage passed to the input card. If either of the switches are closed power will be
supplied to the input card. In this case inputs 1 and 3 are used - notice that the inputs start
at 0. The input card compares these voltages to the common. If the input voltage is within
a given tolerance range the inputs will switch on. Ladder logic is shown in the figure for
the inputs. Here it uses Allen Bradley notation for ControlLogix. At the top is the tag
(variable name) for the rack. The input card (’I’) is in slot 3, so the address for the card is
bob:3.1.Data.x, where ’x’ is the input bit number. These addresses can also be given alias
tags to make the ladder logic less confusing.

NOTE: The design process will be much easier if the inputs and outputs are planned first,

and the tags are entered before the ladder logic. Then the program is entered using the
much simpler tag names.

Many beginners become confused about where connections are needed in the cir-
cuit above. The key word to remember is circuit, which means that there is a full loop that
the voltage must be able to follow. In Figure 3.2 we can start following the circuit (loop) at
the power supply. The path goes through the switches, through the input card, and back to
the power supply where it flows back through to the start. In a full PLC implementation
there will be many circuits that must each be complete.

A second important concept is the common. Here the neutral on the power supply
is the common, or reference voltage. In effect we have chosen this to be our 0V reference,
and all other voltages are measured relative to it. If we had a second power supply, we
would also need to connect the neutral so that both neutrals would be connected to the
same common. Often common and ground will be confused. The common is a reference,
or datum voltage that is used for 0V, but the ground is used to prevent shocks and damage
to equipment. The ground is connected under a building to a metal pipe or grid in the
ground. This is connected to the electrical system of a building, to the power outlets,
where the metal cases of electrical equipment are connected. When power flows through
the ground it is bad. Unfortunately many engineers, and manufacturers mix up ground and
common. It is very common to find a power supply with the ground and common misla-
beled.

plc wiring - 3.6

Remember - Don’t mix up the ground and common. Don’t connect them together if the
common of your device is connected to a common on another device.

One final concept that tends to trap beginners is that each input card is isolated.
This means that if you have connected a common to only one card, then the other cards are
not connected. When this happens the other cards will not work properly. You must con-
nect a common for each of the output cards.

There are many trade-offs when deciding which type of input cards to use.

* DC voltages are usually lower, and therefore safer (i.e., 12-24V).

* DC inputs are very fast, AC inputs require a longer on-time. For example, a 60Hz
wave may require up to 1/60sec for reasonable recognition.

* DC voltages can be connected to larger variety of electrical systems.

* AC signals are more immune to noise than DC, so they are suited to long dis-
tances, and noisy (magnetic) environments.

* AC power is easier and less expensive to supply to equipment.

» AC signals are very common in many existing automation devices.

plc wiring - 3.7

ASIDE: PLC inputs must convert a variety of logic levels to the 5Vdc logic levels
used on the data bus. This can be done with circuits similar to those shown below.
Basically the circuits condition the input to drive an optocoupler. This electrically
isolates the external electrical circuitry from the internal circuitry. Other circuit
components are used to guard against excess or reversed voltage polarity.

+5V
optocoupler
:__ " TTL
1nput AN T \\.
|
COM ° L+ — — =
hot
AN /& o
AC optocoupler
input = — — _ [
gy N
N/
neut. W :
L 4+~ — — — 4

Figure 3.3 Aside: PLC Input Circuits

3.2.2 Output Modules

WARNING - ALWAYS CHECK RATED VOLTAGES AND CURRENTS FOR PLC’s

AND NEVER EXCEED!

plc wiring - 3.8

As with input modules, output modules rarely supply any power, but instead act as
switches. External power supplies are connected to the output card and the card will
switch the power on or off for each output. Typical output voltages are listed below, and
roughly ordered by popularity.

120 Vac

24 Vdc
12-48 Vac
12-48 Vdc
5Vdc (TTL)
230 Vac

These cards typically have 8 to 16 outputs of the same type and can be purchased
with different current ratings. A common choice when purchasing output cards is relays,
transistors or triacs. Relays are the most flexible output devices. They are capable of
switching both AC and DC outputs. But, they are slower (about 10ms switching is typi-
cal), they are bulkier, they cost more, and they will wear out after millions of cycles. Relay
outputs are often called dry contacts. Transistors are limited to DC outputs, and Triacs are
limited to AC outputs. Transistor and triac outputs are called switched outputs.

Dry contacts - a separate relay is dedicated to each output. This allows mixed volt-
ages (AC or DC and voltage levels up to the maximum), as well as isolated out-
puts to protect other outputs and the PLC. Response times are often greater than
10ms. This method is the least sensitive to voltage variations and spikes.

Switched outputs - a voltage is supplied to the PLC card, and the card switches it to
different outputs using solid state circuitry (transistors, triacs, etc.) Triacs are
well suited to AC devices requiring less than 1A. Transistor outputs use NPN or
PNP transistors up to 1A typically. Their response time is well under 1ms.

plc wiring - 3.9

ASIDE: PLC outputs must convert the 5Vdc logic levels on the PLC data bus to exter-
nal voltage levels. This can be done with circuits similar to those shown below.
Basically the circuits use an optocoupler to switch external circuitry. This electri-
cally isolates the external electrical circuitry from the internal circuitry. Other cir-
cuit components are used to guard against excess or reversed voltage polarity.

O +v
optocoupler
TTL | | A
| 7 Sourcing DC output
| AR N O g p
|
L 4+~ — — — 4
optocoupler % I
TTL , | A - AC
| | output
Vs S
| I
L 4+~ — — — 4 . O

Note: Some AC outputs will
also use zero voltage detec-
tion. This allows the output
to be switched on when the
voltage and current are
effectively off, thus prevent-
ing surges.

Figure 3.4 Aside: PLC Output Circuits

Caution is required when building a system with both AC and DC outputs. If AC is

plc wiring - 3.10

accidentally connected to a DC transistor output it will only be on for the positive half of
the cycle, and appear to be working with a diminished voltage. If DC is connected to an
AC triac output it will turn on and appear to work, but you will not be able to turn it off
without turning off the entire PLC.

ASIDE: A transistor is a semiconductor based device that can act as an adjustable valve.
When switched oft it will block current flow in both directions. While switched on it
will allow current flow in one direction only. There is normally a loss of a couple of
volts across the transistor. A triac is like two SCRs (or imagine transistors) connected
together so that current can flow in both directions, which is good for AC current.
One major difference for a triac is that if it has been switched on so that current flows,
and then switched off, it will not turn off until the current stops flowing. This is fine
with AC current because the current stops and reverses every 1/2 cycle, but this does
not happen with DC current, and so the triac will remain on.

A major issue with outputs is mixed power sources. It is good practice to isolate all
power supplies and keep their commons separate, but this is not always feasible. Some
output modules, such as relays, allow each output to have its own common. Other output
cards require that multiple, or all, outputs on each card share the same common. Each out-
put card will be isolated from the rest, so each common will have to be connected. It is
common for beginners to only connect the common to one card, and forget the other cards
- then only one card seems to work!

The output card shown in Figure 3.5 is an example of a 24Vdc output card that has
a shared common. This type of output card would typically use transistors for the outputs.

plc wiring - 3.11

24V DC 120 V AC
Output Card

Power

Suppl
00 O PPy
Neut.

01 O Relay

02 O

03 O

04 O I

05O 24 V Lamp

06 O

07 O +24 V DC
Power

comMO Supply

COM

rack "sue"
slot 2

Motor (sue:2.0.Data.3)
O

Lamp (sue:2.0.Data.3)

)
N

Figure 3.5 An Example of a 24Vdc Output Card (Sinking)

In this example the outputs are connected to a low current light bulb (lamp) and a
relay coil. Consider the circuit through the lamp, starting at the 24Vdc supply. When the
output 07 is on, current can flow in 07 to the COM, thus completing the circuit, and allow-
ing the light to turn on. If the output is off the current cannot flow, and the light will not
turn on. The output 03 for the relay is connected in a similar way. When the output 03 is
on, current will flow through the relay coil to close the contacts and supply 120Vac to the
motor. Ladder logic for the outputs is shown in the bottom right of the figure. The notation
is for an Allen Bradley ControlLogix. The output card (’O’) is in a rack labelled ’sue’ in
slot 2. As indicated for the input card, it is good practice to define and use an alias tag for
an output (e.g. Motor) instead of using the full description (e.g. sue:2.0.Data.3). This card

plc wiring - 3.12

could have many different voltages applied from different sources, but all the power sup-
plies would need a single shared common.

The circuits in Figure 3.6 had the sequence of power supply, then device, then PLC
card, then power supply. This requires that the output card have a common. Some output
schemes reverse the device and PLC card, thereby replacing the common with a voltage
input. The example in Figure 3.5 is repeated in Figure 3.6 for a voltage supply card.

24V DC

Output Card
Power

Supply
v+ O 24VDC COM

00 O

01 O Relay

02 O 120 V AC
03 O Power

Supply
04 O Iml Neut.
05 O

24 V lamp

06 O

07 O |

Figure 3.6 An Example of a 24Vdc Output Card With a Voltage Input (Sourcing)

In this example the positive terminal of the 24Vdc supply is connected to the out-
put card directly. When an output is on power will be supplied to that output. For example,
if output 07 is on then the supply voltage will be output to the lamp. Current will flow
through the lamp and back to the common on the power supply. The operation is very sim-
ilar for the relay switching the motor. Notice that the ladder logic (shown in the bottom
right of the figure) is identical to that in Figure 3.5. With this type of output card only one
power supply can be used.

We can also use relay outputs to switch the outputs. The example shown in Figure

plc wiring - 3.13

3.5 and Figure 3.6 is repeated yet again in Figure 3.7 for relay output.

120 V AC/DC
Output Card

24V DC

00

01

02

03

Power
Supply

04

05

06

07

éééééébééTéééééé

in rack 01
I/O group 2

Figure 3.7 An Example of a Relay Output Card

In this example the 24Vdc supply is connected directly to both relays (note that
this requires 2 connections now, whereas the previous example only required one.) When
an output is activated the output switches on and power is delivered to the output devices.
This layout is more similar to Figure 3.6 with the outputs supplying voltage, but the relays
could also be used to connect outputs to grounds, as in Figure 3.5. When using relay out-
puts it is possible to have each output isolated from the next. A relay output card could

Relay

24 V lamp

120 V AC
Power

Supply

have AC and DC outputs beside each other.

3.3 RELAYS

Although relays are rarely used for control logic, they are still essential for switch-

plc wiring - 3.14

ing large power loads. Some important terminology for relays is given below.

Contactor - Special relays for switching large current loads.

Motor Starter - Basically a contactor in series with an overload relay to cut off
when too much current is drawn.

Arc Suppression - when any relay is opened or closed an arc will jump. This
becomes a major problem with large relays. On relays switching AC this prob-
lem can be overcome by opening the relay when the voltage goes to zero (while
crossing between negative and positive). When switching DC loads this prob-
lem can be minimized by blowing pressurized gas across during opening to sup-
press the arc formation.

AC coils - If a normal coil is driven by AC power the contacts will vibrate open
and closed at the frequency of the AC power. This problem is overcome by
relay manufacturers by adding a shading pole to the internal construction of the
relay.

The most important consideration when selecting relays, or relay outputs on a
PLC, is the rated current and voltage. If the rated voltage is exceeded, the contacts will
wear out prematurely, or if the voltage is too high fire is possible. The rated current is the
maximum current that should be used. When this is exceeded the device will become too
hot, and it will fail sooner. The rated values are typically given for both AC and DC,
although DC ratings are lower than AC. If the actual loads used are below the rated values
the relays should work well indefinitely. If the values are exceeded a small amount the life
of the relay will be shortened accordingly. Exceeding the values significantly may lead to
immediate failure and permanent damage. Please note that relays may also include mini-
mum ratings that should also be observed to ensure proper operation and long life.

* Rated Voltage - The suggested operation voltage for the coil. Lower levels can
result in failure to operate, voltages above shorten life.

* Rated Current - The maximum current before contact damage occurs (welding or
melting).

3.4 A CASE STUDY

(Try the following case without looking at the solution in Figure 3.8.) An electrical
layout is needed for a hydraulic press. The press uses a 24Vdc double actuated solenoid
valve to advance and retract the press. This device has a single common and two input
wires. Putting 24Vdc on one wire will cause the press to advance, putting 24Vdc on the
second wire will cause it to retract. The press is driven by a large hydraulic pump that
requires 220Vac rated at 20A, this should be running as long as the press is on. The press
is outfitted with three push buttons, one is a NC stop button, the other is a NO manual
retract button, and the third is a NO start automatic cycle button. There are limit switches

plc wiring - 3.15

at the top and bottom of the press travels that must also be connected.

SOLUTION
24VDC 24VDC
output card input card
solenoid
Na — o o—1/0
o o o I/l
S
oo o |12
advance
O/
oo o113
retract —
e o o o 1/4
relay for
hydraulic N
pump -
24VDC com

Figure 3.8 Case Study for Press Wiring

The input and output cards were both selected to be 24Vdc so that they may share
a single 24Vdc power supply. In this case the solenoid valve was wired directly to the out-
put card, while the hydraulic pump was connected indirectly using a relay (only the coil is
shown for simplicity). This decision was primarily made because the hydraulic pump
requires more current than any PLC can handle, but a relay would be relatively easy to
purchase and install for that load. All of the input switches are connected to the same sup-
ply and to the inputs.

3.5 ELECTRICAL WIRING DIAGRAMS

When a controls cabinet is designed and constructed ladder diagrams are used to
document the wiring. A basic wiring diagram is shown in Figure 3.9. In this example the
system would be supplied with AC power (120Vac or 220Vac) on the left and right rails.

plc wiring - 3.16

The lines of these diagrams are numbered, and these numbers are typically used to number
wires when building the electrical system. The switch before line 010 is a master discon-
nect for the power to the entire system. A fuse is used after the disconnect to limit the
maximum current drawn by the system. Line 020 of the diagram is used to control power
to the outputs of the system. The stop button is normally closed, while the start button is
normally open. The branch, and output of the rung are CR1, which is a master control
relay. The PLC receives power on line 30 of the diagram.

The inputs to the PLC are all AC, and are shown on lines 040 to 070. Notice that
Input I:0/0 is a set of contacts on the MCR CRI. The three other inputs are a normally
open push button (line 050), a limit switch (060) and a normally closed push button (070).
After line 080 the MCR CRI can apply power to the outputs. These power the relay out-
puts of the PLC to control a red indicator light (040), a green indicator light (050), a sole-
noid (060), and another relay (080). The relay on line 080 switches a relay that turn on
another device drill station.

010

020

030

040

050

060

070

080

090

100

110

120

130

L1 N
stop _I_start CR
e o o MC
| |CRl
|
L1 PLC N
90-1 090
i L0 0:0/0) WL
(5B
100-1 Ve AN
PBIJ_= L0/1 0:0/1 100> ()
(S
LSI
. 1:0/2 110-1 AN
~? 0:0/2 1o o
PB2 1:0/3 .
-1
0:0/3 120)
ac com ™ /\CRZ
N
—L_CRI1
=035)
e 0%0)
——050)
120-1 < ?/? >
CR2 Drill Station
| | L1 N
Figure 3.9 A Ladder Wiring Diagram

plc wiring - 3.17

plc wiring - 3.18

In the wiring diagram the choice of a normally close stop button and a normally
open start button are intentional. Consider line 020 in the wiring diagram. If the stop but-
ton is pushed it will open the switch, and power will not be able to flow to the control
relay and output power will shut off. If the stop button is damaged, say by a wire falling
off, the power will also be lost and the system will shut down - safely. If the stop button
used was normally open and this happened the system would continue to operate while the
stop button was unable to shut down the power. Now consider the start button. If the but-
ton was damaged, say a wire was disconnected, it would be unable to start the system, thus
leaving the system unstarted and safe. In summary, all buttons that stop a system should be
normally closed, while all buttons that start a system should be normally open.

3.5.1 JIC Wiring Symbols

To standardize electrical schematics, the Joint International Committee (JIC) sym-
bols were developed, these are shown in Figure 3.10, Figure 3.11 and Figure 3.12.

plc wiring - 3.19

564, o\ o\ ©
I

disconnect circuit interrupter
(3 phase AC) (3 phase AC)
O——T70

O\o
normally open
limit switch

L
O O

normally open
push-button

normally closed
limit switch

Quble pole

push-button

normally closed
push-button

T

=
thermal é}
overload relay fuse motor (3 phase AC)
liquid level liquid level

normally open normally closed

Figure 3.10 JIC Schematic Symbols

O O O
O O O
O O O
breaker (3 phase AC)
TN

Q1 O

mushroom head
push-button

O

vacuum pressure
normally closed

vacuum pressure
normally open

plc wiring - 3.20

O
O
:

temperature

normally open temperature

normally closed

normally open

flow
normally closed

- e —O— —CF

relay contact relay contact relay coil

normally open normally closed

o O O—C

A

relay time delay on

relay time delay on normally closed

normally open

@)

relay time delay off
normally open

horn buzzer bell
2-H
solenoid 2-position

hydraulic solenoid

<>

normally open normally closed
proximity switch proximity switch

Figure 3.11 JIC Schematic Symbols

indicator lamp

O—C0

\2

relay time delay off
normally closed

HI H3 H2 H4
LU
X1 X2

control transformer

—

Male connector

—

Female connector

plc wiring - 3.21

— A —

i \

Resistor Tapped Resistor Variable Resistor
(potentiometer)
—\p— I al
| |
Rheostat Capacitor Polarized Capacitor
(potentiometer)
T K ol

Variable Capacitor

- [Y

Capacitor Battery

Crystal Thermocouple Antenna
= 77 =
\ -~ _\J D
Shielded Conductor Shielded Grounded
_Jrrrrw
_Jrrroru
Coil or Inductor o]
Common Coil with magnetic core
JTVL o U
_Jrrrru —
. _JTTTTO
Tapped Coil Transformer

Transformer magnetic core

Figure 3.12 JIC Schematic Symbols

plc wiring - 3.22

3.6 SUMMARY

* PLC inputs condition AC or DC inputs to be detected by the logic of the PLC.

* Outputs are transistors (DC), triacs (AC) or relays (AC and DC).

* Input and output addresses are a function of the card location/tag name and input
bit number.

* Electrical system schematics are documented with diagrams that look like ladder
logic.

3.7 PRACTICE PROBLEMS

1. Can a PLC input switch a relay coil to control a motor?

[\S}

. How do input and output cards act as an interface between the PLC and external devices?
3. What is the difference between wiring a sourcing and sinking output?

4. What is the difference between a motor starter and a contactor?

N

. Is AC or DC easier to interrupt?

o)

. What can happen if the rated voltage on a device is exceeded?

~

. What are the benefits of input/output modules?

8. (for electrical engineers) Explain the operation of AC input and output conditioning circuits.
9. What will happen if a DC output is switched by an AC output.

10. Explain why a stop button must be normally closed and a start button must be normally open.

11. For the circuit shown in the figure below, list the input and output addresses for the PLC. If
switch A controls the light, switch B the motor, and C the solenoid, write a simple ladder logic

program.

200

201

202

W
- 0

203
204 solenpid

valve,
205
206

+

207 24VD(C
com

plc wiring - 3.23

100

101

102

103

104

105

106

107

com

12VDC

12. We have a PLC rack with a 24 VDC input card in slot 3, and a 120VAC output card in slot 2.
The inputs are to be connected to 4 push buttons. The outputs are to drive a 120VAC light bulb,
a 240VAC motor, and a 24VDC operated hydraulic valve. Draw the electrical connections for
the inputs and outputs. Show all other power supplies and other equipment/components

required.

13. You are planning a project that will be controlled by a PLC. Before ordering parts you decide
to plan the basic wiring and select appropriate input and output cards. The devices that we will
use for inputs are 2 limit switches, a push button and a thermal switch. The output will be for a
24Vdc solenoid valve, a 110Vac light bulb, and a 220Vac SOHP motor. Sketch the basic wiring
below including PLC cards.

14. Add three push buttons as inputs to the figure below. You must also select a power supply, and

plc wiring - 3.24

show all necessary wiring.

com

com

com

com

com

15. Three 120Vac outputs are to be connected to the output card below. Show the 120Vac source,
and all wiring.

\Y

00
01
02
03

04

05

06

07

16. Sketch the wiring for PLC outputs that are listed below.
- a double acting hydraulic solenoid valve (with two coils)
- a24Vdc lamp
- a 120 Vac high current lamp
- a low current 12Vdc motor

3.

plc wiring - 3.25

8 PRACTICE PROBLEM SOLUTIONS

.1no - a plc OUTPUT can switch a relay

. input cards are connected to sensors to determine the state of the system. Output cards are con-

nected to actuators that can drive the process.

. sourcing outputs supply current that will pass through an electrical load to ground. Sinking

inputs allow current to flow from the electrical load, to the common.

. a motor starter typically has three phases
. AC is easier, it has a zero crossing
. it will lead to premature failure

. by using separate modules, a PLC can be customized for different applications. If a single mod-

ule fails, it can be replaced quickly, without having to replace the entire controller.

. AC input conditioning circuits will rectify an AC input to a DC waveform with a ripple. This

will be smoothed, and reduced to a reasonable voltage level to drive an optocoupler. An AC
output circuit will switch an AC output with a triac, or a relay.

.an AC output is a triac. When a triac output is turned off, it will not actually turn off until the

AC voltage goes to 0V. Because DC voltages don’t go to 0V, it will never turn off.

10. If a NC stop button is damaged, the machine will act as if the stop button was pushed and shut

down safely. If a NO start button is damaged the machine will not be able to start.

I1.

outputs:

200 - light || 100 200
202 - motor ‘ ‘

204 - solenoid

inputs: 102 202

100 - switch A
102 - switch B
104 - switch C

104 Q 210

12.

13.

plc wiring - 3.26

N
0 * o 0
1
1 LI 1
N
2 ° o 2
1
3 ° o 3
4 4
5 5
6 6
7 + 7
24VDC
com - com
1 | o L
- 0 o O N +
L 24Vdc
I Y -
o 1 1 ()
o 2 7 | }7
L hot
'g‘ 3 3 220Vac
4 4 [@ neut.
5 5 -
| hot
6 6 L[120Vac
neut.
+ 7 7 O
24VDC
- com Note: relays are used to reduce the total

number of output cards

14.

15.

plc wiring - 3.27

I
S e o 1
24Vdc com
I
e o 2
com
o o 3
com
4
com
5
com
\V4 hot
00 Load 1 120Vac
t.
01 Load 2 ® new
02
Load 3
03
04
05
06

07

plc wiring - 3.28

16.

relay output card

o + power
00 supply
m 24Vdc
s -
01 %
02

hot power

— supply
03 Q e 120Vac
neut.
power

04 supply
12Vdc

3.9 ASSIGNMENT PROBLEMS

1. Describe what could happen if a normally closed start button was used on a system, and the
wires to the button were cut.

2. Describe what could happen if a normally open stop button was used on a system and the wires
to the button were cut.

3. a) For the input (’in”) and output ("out’) cards below, add three output lights and three normally

plc wiring - 3.29

open push button inputs. b) Redraw the outputs so that it uses a relay output card.

in:0.I.Data.x out:1.0.Data.x
0 \Y% +|
1 0
2 1
3 2
4 3
5 4
T 6 5
- 7 6
com 7

4. Draw an electrical wiring (ladder) diagram for PLC outputs that are listed below.
- a solenoid controlled hydraulic valve
- a24Vdc lamp
- a 120 Vac high current lamp
- a low current 12Vdc motor

5. Draw an electrical ladder diagram for a PLC that has a PNP and an NPN sensor for inputs. The
outputs are two small indicator lights. You should use proper symbols for all components. You
must also include all safety devices including fuses, disconnects, MCRs, etc...

6. Draw an electrical wiring diagram for a PLC controlling a system with an NPN and PNP input
sensor. The outputs include an indicator light and a relay to control a 20A motor load. Include
ALL safety circuitry.

7. Develop a wiring diagram for a system that has the following elements. Include all safety cir-
cuitry.

2 NPN proximity sensors

2 N.O. pushbuttons

3 solenoid outputs

A 440Vac 3ph. 20HP (i.e., large) motor
8. Draw a ladder wiring diagram for a system that has 2 PNP inputs, and 2 solenoid outputs. All
inputs and outputs are 24Vdc. Include ALL safety circuitry.

9. Develop a ladder wiring diagram, including all safety circuitry that uses an PNP and an NPN

plc wiring - 3.30

input sensors. The outputs is a relay controlled AC light.

10. Draw a complete ladder wiring diagram for a PLC based control system with the following
components. Include all necessary safety circuitry.
1 large 3 phase (AC) motor
2 PNP sensors
1 NO pushbutton
1 NC pushbutton
1 solenoid output

discrete sensors - 4.1

4. LOGICAL SENSORS

Topics:
* Sensor wiring; switches, TTL, sourcing, sinking

* Proximity detection; contact switches, photo-optics, capacitive, inductive and
ultrasonic

Objectives:
* Understand the different types of sensor outputs.
» Know the basic sensor types and understand application issues.

4.1 INTRODUCTION

Sensors allow a PLC to detect the state of a process. Logical sensors can only
detect a state that is either true or false. Examples of physical phenomena that are typically
detected are listed below.

* inductive proximity - is a metal object nearby?

* capacitive proximity - is a dielectric object nearby?

* optical presence - is an object breaking a light beam or reflecting light?
» mechanical contact - is an object touching a switch?

Recently, the cost of sensors has dropped and they have become commodity items,
typically between $50 and $100. They are available in many forms from multiple vendors
such as Allen Bradley, Omron, Hyde Park and Turck. In applications sensors are inter-
changeable between PLC vendors, but each sensor will have specific interface require-
ments.

This chapter will begin by examining the various electrical wiring techniques for
sensors, and conclude with an examination of many popular sensor types.

4.2 SENSOR WIRING

When a sensor detects a logical change it must signal that change to the PLC. This
is typically done by switching a voltage or current on or off. In some cases the output of
the sensor is used to switch a load directly, completely eliminating the PLC. Typical out-

discrete sensors - 4.2

puts from sensors (and inputs to PLCs) are listed below in relative popularity.

Sinking/Sourcing - Switches current on or off.
Plain Switches - Switches voltage on or off.

Solid State Relays - These switch AC outputs.
TTL (Transistor Transistor Logic) - Uses OV and 5V to indicate logic levels.

4.2.1 Switches

The simplest example of sensor outputs are switches and relays. A simple example

is shown in Figure 4.1.

normally open push-button

24 Vdc
Power

Supply

|

PLC Input Card
24V DC

00

R

Figure 4.1

sensor
relay
output

01
02
03
04
05
06

V-

O O O OO0 00 00 O0

07

An Example of Switched Sensors

O COM

In the figure a NO contact switch is connected to input 0. A sensor with a relay
output is also shown. The sensor must be powered separately, therefore the V+ and V- ter-
minals are connected to the power supply. The output of the sensor will become active
when a phenomenon has been detected. This means the internal switch (probably a relay)
will be closed allowing current to flow and the positive voltage will be applied to input 06.

discrete sensors - 4.3

4.2.2 Transistor Transistor Logic (TTL)

Transistor-Transistor Logic (TTL) is based on two voltage levels, OV for false and
5V for true. The voltages can actually be slightly larger than OV, or lower than 5V and still
be detected correctly. This method is very susceptible to electrical noise on the factory
floor, and should only be used when necessary. TTL outputs are common on electronic
devices and computers, and will be necessary sometimes. When connecting to other
devices simple circuits can be used to improve the signal, such as the Schmitt trigger in
Figure 4.2.

) Vi
Vi Vo T /_/w-\=—

VOT

Figure 4.2 A Schmitt Trigger

A Schmitt trigger will receive an input voltage between 0-5V and convert it to 0V
or 5V. If the voltage is in an ambiguous range, about 1.5-3.5V it will be ignored.

If a sensor has a TTL output the PLC must use a TTL input card to read the values.
If the TTL sensor is being used for other applications it should be noted that the maximum
current output is normally about 20mA.

4.2.3 Sinking/Sourcing

Sinking sensors allow current to flow into the sensor to the voltage common, while
sourcing sensors allow current to flow out of the sensor from a positive source. For both of
these methods the emphasis is on current flow, not voltage. By using current flow, instead
of voltage, many of the electrical noise problems are reduced.

When discussing sourcing and sinking we are referring to the output of the sensor
that is acting like a switch. In fact the output of the sensor is normally a transistor, that will
act like a switch (with some voltage loss). A PNP transistor is used for the sourcing out-
put, and an NPN transistor is used for the sinking input. When discussing these sensors the

discrete sensors - 4.4

term sourcing is often interchanged with PNP, and sinking with NPN. A simplified exam-
ple of a sinking output sensor is shown in Figure 4.3. The sensor will have some part that
deals with detection, this is on the left. The sensor needs a voltage supply to operate, so a
voltage supply is needed for the sensor. If the sensor has detected some phenomenon then
it will trigger the active line. The active line is directly connected to an NPN transistor.
(Note: for an NPN transistor the arrow always points away from the center.) If the voltage
to the transistor on the active line is 0V, then the transistor will not allow current to flow
into the sensor. If the voltage on the active line becomes larger (say 12V) then the transis-
tor will switch on and allow current to flow into the sensor to the common.

' +
Vil M
i |
physical
phenomenonf | sensor
| output
R < /\ Sensor | current flows in
| NPN when switched on
S and | — - = —---
Detector |
Active |
Line |
|
vl V-

Aside: The sensor responds to a physical phenomenon. If the sensor is inactive (nothing
detected) then the active line is low and the transistor is off, this is like an open
switch. That means the NPN output will have no current in/out. When the sensor is
active, it will make the active line high. This will turn on the transistor, and effec-
tively close the switch. This will allow current to flow into the sensor to ground
(hence sinking). The voltage on the NPN output will be pulled down to V-. Note: the
voltage will always be 1-2V higher because of the transistor. When the sensor is off,
the NPN output will float, and any digital circuitry needs to contain a pull-up resistor.

Figure 4.3 A Simplified NPN/Sinking Sensor

Sourcing sensors are the complement to sinking sensors. The sourcing sensors use
a PNP transistor, as shown in Figure 4.4. (Note: PNP transistors are always drawn with the
arrow pointing to the center.) When the sensor is inactive the active line stays at the V+

discrete sensors - 4.5

value, and the transistor stays switched off. When the sensor becomes active the active
line will be made 0V, and the transistor will allow current to flow out of the sensor.

V+
VH_|
physical |
phenomenon| |
R Active |
N Line | |
N | current flows out
censor | when switched on
and | R EELE 2
Detector PNP
" sensor
: output
V- : V-

Aside: The sensor responds to the physical phenomenon. If the sensor is inactive (nothing
detected) then the active line is high and the transistor is off, this is like an open switch.
That means the PNP output will have no current in/out. When the sensor is active, it
will make the active line high. This will turn on the transistor, and effectively close the
switch. This will allow current to flow from V+ through the sensor to the output (hence
sourcing). The voltage on the PNP output will be pulled up to V+. Note: the voltage
will always be 1-2V lower because of the transistor. When off, the PNP output will
float, if used with digital circuitry a pull-down resistor will be needed.

Figure 4.4 A Simplified Sourcing/PNP Sensor

Most NPN/PNP sensors are capable of handling currents up to a few amps, and
they can be used to switch loads directly. (Note: always check the documentation for rated
voltages and currents.) An example using sourcing and sinking sensors to control lights is
shown in Figure 4.5. (Note: This example could be for a motion detector that turns on
lights in dark hallways.)

discrete sensors - 4.6

sensor v+ I v+
power sinking
NPN m supply
V- V- (common)
sensor & &
power sourcing
PNP m supply
V- l V- (common)

Note: remember to check the current and voltage ratings for the sensors.

Note: When marking power terminals, there will sometimes be two sets of
markings. The more standard is V+ and COM, but sometimes you will see
devices and power supplies without a COM (common), in this case assume
the V- is the common.

Figure 4.5 Direct Control Using NPN/PNP Sensors

In the sinking system in Figure 4.5 the light has V+ applied to one side. The other
side is connected to the NPN output of the sensor. When the sensor turns on the current
will be able to flow through the light, into the output to V- common. (Note: Yes, the cur-
rent will be allowed to flow into the output for an NPN sensor.) In the sourcing arrange-
ment the light will turn on when the output becomes active, allowing current to flow from
the V+, thought the sensor, the light and to V- (the common).

At this point it is worth stating the obvious - The output of a sensor will be an input
for a PLC. And, as we saw with the NPN sensor, this does not necessarily indicate where
current is flowing. There are two viable approaches for connecting sensors to PLCs. The
first is to always use PNP sensors and normal voltage input cards. The second option is to
purchase input cards specifically designed for sourcing or sinking sensors. An example of
a PLC card for sinking sensors is shown in Figure 4.6.

discrete sensors - 4.7

PLC Input Card for Sinking Sensors

+V

@

_QD/
GDK

00

SOTUOXIOA[H pIe)) [euIu]

O

01

s
_____Fi__
|

i >)
PLC Data Bus External Electrical

+V
+V power
~ NPN supply
NPN' sensor M
)
T-v l
(I
7

Note: When a PLC input card does not have a
common but it has a V+ instead, it can be
used for NPN sensors. In this case the cur-
rent will flow out of the card (sourcing) and
we must switch it to ground.

and currents.

ASIDE: This card is shown with 2 optocouplers (one for each output). Inside these
devices the is an LED and a phototransistor, but no electrical connection. These
devices are used to isolate two different electrical systems. In this case they pro-
tect the 5V digital levels of the PLC computer from the various external voltages

Figure 4.6 A PLC Input Card for Sinking Sensors

The dashed line in the figure represents the circuit, or current flow path when the
sensor is active. This path enters the PLC input card first at a V+ terminal (Note: there is
no common on this card) and flows through an optocoupler. This current will use light to
turn on a phototransistor to tell the computer in the PLC the input current is flowing. The
current then leaves the card at input 00 and passes through the sensor to V-. When the sen-

sor is inactive the current will not flow, and the light in the optocoupler will be off. The
optocoupler is used to help protect the PLC from electrical problems outside the PLC.

The input cards for PNP sensors are similar to the NPN cards, as shown in Figure

4.7.

discrete sensors - 4.8

- ~
\
+V

00) l

_ PNP |
GD { PNP sensor | current flow

&~
'/‘ ~) | -V |
\ |

\ +V
\ power

N supply

L

SOTUOIOR[H PIe)) JeuIu]

com

Note: When we have a PLC input card that has
a common then we can use PNP sensors. In
this case the current will flow into the card
and then out the common to the power sup-

ply.

Figure 4.7 PLC Input Card for Sourcing Sensors

The current flow loop for an active sensor is shown with a dashed line. Following
the path of the current we see that it begins at the V'+, passes through the sensor, in the
input 00, through the optocoupler, out the common and to the V-.

Wiring is a major concern with PLC applications, so to reduce the total number of
wires, two wire sensors have become popular. But, by integrating three wires worth of
function into two, we now couple the power supply and sensing functions into one. Two
wire sensors are shown in Figure 4.8.

discrete sensors - 4.9

+V
PLC Input Card two wire
for Sourcing Sensors 00 Sensor
@ v
01
+V
QD power
supply
-V

Note: These sensors require a certain leakage
current to power the electronics.

PLC Input Card
for Sinking Sensors 00
QD +V
two wire
sensor
01
-V +V
QD power
supply
-V

Figure 4.8 Two Wire Sensors

A two wire sensor can be used as either a sourcing or sinking input. In both of
these arrangements the sensor will require a small amount of current to power the sensor,
but when active it will allow more current to flow. This requires input cards that will allow
a small amount of current to flow (called the leakage current), but also be able to detect
when the current has exceeded a given value.

discrete sensors - 4.10

When purchasing sensors and input cards there are some important considerations.
Most modern sensors have both PNP and NPN outputs, although if the choice is not avail-
able, PNP is the more popular choice. PLC cards can be confusing to buy, as each vendor
refers to the cards differently. To avoid problems, look to see if the card is specifically for
sinking or sourcing sensors, or look for a V+ (sinking) or COM (sourcing). Some vendors
also sell cards that will allow you to have NPN and PNP inputs mixed on the same card.

When drawing wiring diagrams the symbols in Figure 4.9 are used for sinking and
sourcing proximity sensors. Notice that in the sinking sensor when the switch closes
(moves up to the terminal) it contacts the common. Closing the switch in the sourcing sen-
sor connects the output to the V+. On the physical sensor the wires are color coded as indi-
cated in the diagram. The brown wire is positive, the blue wire is negative and the output
is white for sinking and black for sourcing. The outside shape of the sensor may change
for other devices, such as photo sensors which are often shown as round circles.

V+ brown

NPN (sinking)
NPN white blue V-
. PNP
PNP (sourcing)
V-

Figure 4.9 Sourcing and Sinking Schematic Symbols

4.2.4 Solid State Relays

Solid state relays switch AC currents. These are relatively inexpensive and are
available for large loads. Some sensors and devices are available with these as outputs.

discrete sensors - 4.11

4.3 PRESENCE DETECTION

There are two basic ways to detect object presence; contact and proximity. Contact
implies that there is mechanical contact and a resulting force between the sensor and the
object. Proximity indicates that the object is near, but contact is not required. The follow-
ing sections examine different types of sensors for detecting object presence. These sen-
sors account for a majority of the sensors used in applications.

4.3.1 Contact Switches

Contact switches are available as normally open and normally closed. Their hous-
ings are reinforced so that they can take repeated mechanical forces. These often have roll-
ers and wear pads for the point of contact. Lightweight contact switches can be purchased
for less than a dollar, but heavy duty contact switches will have much higher costs. Exam-
ples of applications include motion limit switches and part present detectors.

4.3.2 Reed Switches

Reed switches are very similar to relays, except a permanent magnet is used
instead of a wire coil. When the magnet is far away the switch is open, but when the mag-
net is brought near the switch is closed as shown in Figure 4.10. These are very inexpen-
sive an can be purchased for a few dollars. They are commonly used for safety screens and
doors because they are harder to trick than other sensors.

2230

N %

C_ - _") ~ &
~ 3 £~
L'____/

4 5 7

Note: With this device the magnet is moved towards the reed switch. As it gets
closer the switch will close. This allows proximity detection without contact, but
requires that a separate magnet be attached to a moving part.

Figure 4.10 Reed Switch

discrete sensors - 4.12

4.3.3 Optical (Photoelectric) Sensors

Light sensors have been used for almost a century - originally photocells were
used for applications such as reading audio tracks on motion pictures. But modern optical
sensors are much more sophisticated.

Optical sensors require both a light source (emitter) and detector. Emitters will
produce light beams in the visible and invisible spectrums using LEDs and laser diodes.
Detectors are typically built with photodiodes or phototransistors. The emitter and detec-
tor are positioned so that an object will block or reflect a beam when present. A basic opti-
cal sensor is shown in Figure 4.11.

Squar€ wave

J'LI'LI'LI'LI- smaller signal
+V ™ ™ ™ +V

L]
’ lens lens

light amplifier
. e AL demodulator
oscillator N/ } S UUUY | A detector and
switching circuits|
LED b 4
e
L phofotransistor

Figure 4.11 A Basic Optical Sensor

In the figure the light beam is generated on the left, focused through a lens. At the
detector side the beam is focused on the detector with a second lens. If the beam is broken
the detector will indicate an object is present. The oscillating light wave is used so that the
sensor can filter out normal light in the room. The light from the emitter is turned on and
off at a set frequency. When the detector receives the light it checks to make sure that it is
at the same frequency. If light is being received at the right frequency then the beam is not
broken. The frequency of oscillation is in the KHz range, and too fast to be noticed. A side
effect of the frequency method is that the sensors can be used with lower power at longer
distances.

An emitter can be set up to point directly at a detector, this is known as opposed
mode. When the beam is broken the part will be detected. This sensor needs two separate

components, as shown in Figure 4.12. This arrangement works well with opaque and
reflective objects with the emitter and detector separated by distances of up to hundreds of

feet.

discrete sensors -

emitter

4.13

_______ 1 object

Figure 4.12 Opposed Mode Optical Sensor

Having the emitter and detector separate increases maintenance problems, and
alignment is required. A preferred solution is to house the emitter and detector in one unit.
But, this requires that light be reflected back as shown in Figure 4.13. These sensors are

well suited to larger objects up to a few feet away.

emitter
detector
\ \
|
emitter - \
M
- — P -7 /
detector /Y

detector

object

reflector

reflector

Note: the reflector is constructed with polarizing screens oriented at 90 deg. angles. If
the light is reflected back directly the light does not pass through the screen in front
of the detector. The reflector is designed to rotate the phase of the light by 90 deg.,

so it will now pass through the screen in front of the detector.

Figure 4.13

Retroreflective Optical Sensor

discrete sensors - 4.14

In the figure, the emitter sends out a beam of light. If the light is returned from the
reflector most of the light beam is returned to the detector. When an object interrupts the
beam between the emitter and the reflector the beam is no longer reflected back to the
detector, and the sensor becomes active. A potential problem with this sensor is that
reflective objects could return a good beam. This problem is overcome by polarizing the
light at the emitter (with a filter), and then using a polarized filter at the detector. The
reflector uses small cubic reflectors and when the light is reflected the polarity is rotated
by 90 degrees. If the light is reflected off the object the light will not be rotated by 90
degrees. So the polarizing filters on the emitter and detector are rotated by 90 degrees, as
shown in Figure 4.14. The reflector is very similar to reflectors used on bicycles.

emitter
reflector
have filters for detector light reflected with
emitted light same polarity
rotated by 90 deg.
emitter light rotated by 90 deg.
reflector
detector

Figure 4.14 Polarized Light in Retroreflective Sensors

For retroreflectors the reflectors are quite easy to align, but this method still
requires two mounted components. A diffuse sensors is a single unit that does not use a
reflector, but uses focused light as shown in Figure 4.15.

discrete sensors - 4.15

emitter ha ~ \
~ \)
M object
detector * — ';/
/

Note: with diffuse reflection the light is scattered. This reduces the quantity of light
returned. As a result the light needs to be amplified using lenses.

Figure 4.15 Diffuse Optical Sensor

Diffuse sensors use light focused over a given range, and a sensitivity adjustment
is used to select a distance. These sensors are the easiest to set up, but they require well
controlled conditions. For example if it is to pick up light and dark colored objects prob-
lems would result.

When using opposed mode sensors the emitter and detector must be aligned so that
the emitter beam and detector window overlap, as shown in Figure 4.16. Emitter beams
normally have a cone shape with a small angle of divergence (a few degrees of less).
Detectors also have a cone shaped volume of detection. Therefore when aligning opposed
mode sensor care is required not just to point the emitter at the detector, but also the detec-
tor at the emitter. Another factor that must be considered with this and other sensors is that
the light intensity decreases over distance, so the sensors will have a limit to separation
distance.

discrete sensors - 4.16

,effective beam

effective

detector detector

angle

emitter /) .
effective alignment
“i is required
- I >
intensity oc 5
r

Figure 4.16 Beam Divergence and Alignment

If an object is smaller than the width of the light beam it will not be able to block
the beam entirely when it is in front as shown in Figure 4.17. This will create difficulties
in detection, or possibly stop detection altogether. Solutions to this problem are to use nar-
rower beams, or wider objects. Fiber optic cables may be used with an opposed mode opti-
cal sensor to solve this problem, however the maximum effective distance is reduced to a
couple feet.

B

emitter detector

m———

the smaller beam width is good (but harder to align

Figure 4.17 The Relationship Between Beam Width and Object Size

Separated sensors can detect reflective parts using reflection as shown in Figure
4.18. The emitter and detector are positioned so that when a reflective surface is in posi-
tion the light is returned to the detector. When the surface is not present the light does not
return.

discrete sensors - 4.17

reflective surface

Figure 4.18 Detecting Reflecting Parts

Other types of optical sensors can also focus on a single point using beams that
converge instead of diverge. The emitter beam is focused at a distance so that the light
intensity is greatest at the focal distance. The detector can look at the point from another
angle so that the two centerlines of the emitter and detector intersect at the point of inter-
est. If an object is present before or after the focal point the detector will not see the
reflected light. This technique can also be used to detect multiple points and ranges, as
shown in Figure 4.20 where the net angle of refraction by the lens determines which detec-
tor is used. This type of approach, with many more detectors, is used for range sensing
systems.

focal point

emitter

detector

Figure 4.19 Point Detection Using Focused Optics

discrete sensors - 4.18

distance 1 distance 2

lens A | |
emitter > |

detector 2

detector 1

Figure 4.20 Multiple Point Detection Using Optics

Some applications do not permit full sized photooptic sensors to be used. Fiber
optics can be used to separate the emitters and detectors from the application. Some ven-
dors also sell photosensors that have the phototransistors and LEDs separated from the
electronics.

Light curtains are an array of beams, set up as shown in Figure 4.21. If any of the
beams are broken it indicates that somebody has entered a workcell and the machine needs
to be shut down. This is an inexpensive replacement for some mechanical cages and barri-
ers.

y

Figure 4.21 A Light Curtain

The optical reflectivity of objects varies from material to material as shown in Fig-

discrete sensors - 4.19

ure 4.22. These values show the percentage of incident light on a surface that is reflected.
These values can be used for relative comparisons of materials and estimating changes in
sensitivity settings for sensors.

Reflectivity
nonshiny materials Kodak white test card 90%
white paper 80%
kraft paper, cardboard 70%
lumber (pine, dry, clean) 75%
rough wood pallet 20%
beer foam 70%
opaque black nylon 14%
black neoprene 4%
black rubber tire wall 1.5%
shiny/transparent materials jear plastic bottle 40%
translucent brown plastic bottle 60%
opaque white plastic 87%
unfinished aluminum 140%
straightened aluminum 105%
unfinished black anodized aluminum 115%
stainless steel microfinished 400%
stainless steel brushed 120%

Note: For shiny and transparent materials the reflectivity can be higher
than 100% because of the return of ambient light.

Figure 4.22 Table of Reflectivity Values for Different Materials [Banner Handbook of
Photoelectric Sensing]

4.3.4 Capacitive Sensors

Capacitive sensors are able to detect most materials at distances up to a few centi-
meters. Recall the basic relationship for capacitance.

discrete sensors - 4.20

=%

where, C = capacitance (Farads)
k = dielectric constant
A = area of plates
d = distance between plates (electrodes)

In the sensor the area of the plates and distance between them is fixed. But, the
dielectric constant of the space around them will vary as different materials are brought
near the sensor. An illustration of a capacitive sensor is shown in Figure 4.23. an oscillat-
ing field is used to determine the capacitance of the plates. When this changes beyond a
selected sensitivity the sensor output is activated.

) Y
electric
field
T
; — — 1 clectrode oscillator | load
oblect - switching
~ e T T T T 8
AN - |
. — — - electrode detector |
|

NOTE: For this sensor the proximity of any material near the electrodes will
increase the capacitance. This will vary the magnitude of the oscillating signal
and the detector will decide when this is great enough to determine proximity.

Figure 4.23 A Capacitive Sensor

These sensors work well for insulators (such as plastics) that tend to have high
dielectric coefficients, thus increasing the capacitance. But, they also work well for metals
because the conductive materials in the target appear as larger electrodes, thus increasing
the capacitance as shown in Figure 4.24. In total the capacitance changes are normally in
the order of pF.

discrete sensors - 4.21

electrode | — — - metal electrode | dielectric
- NN
VAN
I)
!/ 7/
- — /7
electrode | — — - electrode |

Figure 4.24 Dielectrics and Metals Increase the Capacitance

The sensors are normally made with rings (not plates) in the configuration shown
in Figure 4.25. In the figure the two inner metal rings are the capacitor electrodes, but a
third outer ring is added to compensate for variations. Without the compensator ring the
sensor would be very sensitive to dirt, oil and other contaminants that might stick to the

SENSor.

electrode

compensating Note: the. compensating electrode is used for
electrode negative feedback to make the sensor
more resistant to variations, such as con-
taminations on the face of the sensor.

Figure 4.25 Electrode Arrangement for Capacitive Sensors

A table of dielectric properties is given in Figure 4.26. This table can be used for
estimating the relative size and sensitivity of sensors. Also, consider a case where a pipe
would carry different fluids. If their dielectric constants are not very close, a second sensor
may be desired for the second fluid.

Material

ABS resin pellet
acetone

acetyl bromide
acrylic resin

air

alcohol, industrial
alcohol, isopropyl
ammonia

aniline

aqueous solutions
ash (fly)

bakelite

barley powder
benzene

benzyl acetate
butane

cable sealing compound
calcium carbonate
carbon tetrachloride
celluloid

cellulose

cement

cement powder
cereal

charcoal

chlorine, liquid
coke

corn

ebonite

epoxy resin
ethanol

ethyl bromide
ethylene glycol
flour

FreonTM R22,R502 liq.
gasoline

glass

glass, raw material
glycerine

Constant

1.5-2.5
19.5
16.5
2.7-4.5
1.0
16-31
18.3
15-25
5.5-7.8
50-80
1.7
3.6
3.0-4.0
23

5

1.4

2.5

9.1

2.2

3.0
3.2-7.5
1.5-2.1
5-10
3-5
1.2-1.8
2.0
1.1-2.2
5-10
2.7-2.9
2.5-6
24

4.9
38.7
2.5-3.0
6.1

2.2
3.1-10
2.0-2.5
47

discrete sensors - 4.22

Material

hexane

hydrogen cyanide
hydrogen peroxide
isobutylamine
lime, shell

marble

melamine resin
methane liquid
methanol

mica, white

milk, powdered
nitrobenzene
neoprene

nylon

oil, for transformer
oil, paraftin

oil, peanut

oil, petroleum

oil, soybean

oil, turpentine
paint

paraffin

paper

paper, hard

paper, oil saturated
perspex

petroleum

phenol

phenol resin
polyacetal (Delrin TM)
polyamide (nylon)
polycarbonate
polyester resin
polyethylene
polypropylene
polystyrene
polyvinyl chloride resin
porcelain

press board

Constant

1.9
95.4
84.2
4.5

1.2
8.0-8.5
4.7-10.2
1.7
33.6
4.5-9.6
3.5-4
36

6-9

4-5
2.2-24
2.2-4.8
3.0

2.1
2.9-3.5
2.2

5-8
1.9-2.5
1.6-2.6
4.5

4.0
3.2-3.5
2.0-2.2
9.9-15
4.9

3.6

2.5

2.9
2.8-8.1
23
2.0-2.3
3.0
2.8-3.1
4.4-7
2-5

discrete sensors - 4.23

Material Constant Material Constant
quartz glass 3.7 Teflon (TM), PCTFE 2.3-2.8
rubber 2.5-35 Teflon (TM), PTFE 2.0
salt 6.0 toluene 2.3
sand 3-5 trichloroethylene 3.4
shellac 2.0-3.8 urea resin 6.2-9.5
silicon dioxide 4.5 urethane 3.2
silicone rubber 3.2-9.8 vaseline 2.2-2.9
silicone varnish 2.8-3.3 water 48-88
styrene resin 2.3-34 wax 2.4-6.5
sugar 3.0 wood, dry 2-7
sugar, granulated 1.5-2.2 wood, pressed board 2.0-2.6
sulfur 34 wood, wet 10-30
sulfuric acid 84 xylene 2.4

Figure 4.26 Dielectric Constants of Various Materials [Turck Proximity Sensors Guide]

The range and accuracy of these sensors are determined mainly by their size.
Larger sensors can have diameters of a few centimeters. Smaller ones can be less than a
centimeter across, and have smaller ranges, but more accuracy.

4.3.5 Inductive Sensors

Inductive sensors use currents induced by magnetic fields to detect nearby metal
objects. The inductive sensor uses a coil (an inductor) to generate a high frequency mag-
netic field as shown in Figure 4.27. If there is a metal object near the changing magnetic
field, current will flow in the object. This resulting current flow sets up a new magnetic
field that opposes the original magnetic field. The net effect is that it changes the induc-
tance of the coil in the inductive sensor. By measuring the inductance the sensor can deter-
mine when a metal have been brought nearby.

These sensors will detect any metals, when detecting multiple types of metal mul-
tiple sensors are often used.

discrete sensors - 4.24

inductive coil
metal

CE +V
\\ oscillator output

and level switching
detector

Note: these work by setting up a high frequency field. If a target nears the field will
induce eddy currents. These currents consume power because of resistance, so
energy is in the field is lost, and the signal amplitude decreases. The detector exam-
ines filed magnitude to determine when it has decreased enough to switch.

Figure 4.27 Inductive Proximity Sensor

The sensors can detect objects a few centimeters away from the end. But, the
direction to the object can be arbitrary as shown in Figure 4.28. The magnetic field of the
unshielded sensor covers a larger volume around the head of the coil. By adding a shield
(a metal jacket around the sides of the coil) the magnetic field becomes smaller, but also
more directed. Shields will often be available for inductive sensors to improve their direc-
tionality and accuracy.

discrete sensors - 4.25

AN
7. — \\ ———_\\ | ,l
nnNnn-" _ nnnn o
e Ry
-y e
U U u R \ U U U - -~ \
___// _____ » J |
_____ // |

shielded unshielded

Figure 4.28 Shielded and Unshielded Sensors

4.3.6 Ultrasonic

An ultrasonic sensor emits a sound above the normal hearing threshold of 16KHz.
The time that is required for the sound to travel to the target and reflect back is propor-
tional to the distance to the target. The two common types of sensors are;

electrostatic - uses capacitive effects. It has longer ranges and wider bandwidth,
but is more sensitive to factors such as humidity.

piezoelectric - based on charge displacement during strain in crystal lattices. These
are rugged and inexpensive.

These sensors can be very effective for applications such as fluid levels in tanks
and crude distance measurement.

4.3.7 Hall Effect

Hall effect switches are basically transistors that can be switched by magnetic
fields. Their applications are very similar to reed switches, but because they are solid state
they tend to be more rugged and resist vibration. Automated machines often use these to
do initial calibration and detect end stops.

discrete sensors - 4.26

4.3.8 Fluid Flow

We can also build more complex sensors out of simpler sensors. The example in
Figure 4.29 shows a metal float in a tapered channel. As the fluid flow rate increases the
pressure forces the float upwards. The tapered shape of the float ensures an equilibrium
position proportional to flowrate. An inductive proximity sensor can be positioned so that
it will detect when the float has reached a certain height, and the system has reached a
given flowrate.

—p-fluid flow out

metal |:Imductwe proximity sensor

float

fluid flow in

-

As the fluid flow increases the float is forced higher. A proximity sensor
can be used to detect when the float reaches a certain height.

Figure 4.29 Flow Rate Detection With an Inductive Proximity Switch

4.4 SUMMARY

* Sourcing sensors allow current to flow out from the V+ supply.

» Sinking sensors allow current to flow in to the V- supply.

* Photo-optical sensors can use reflected beams (retroreflective), an emitter and
detector (opposed mode) and reflected light (diffuse) to detect a part.

» Capacitive sensors can detect metals and other materials.

* Inductive sensors can detect metals.

» Hall effect and reed switches can detect magnets.

» Ultrasonic sensors use sound waves to detect parts up to meters away.

discrete sensors - 4.27

4.5 PRACTICE PROBLEMS

1. Given a clear plastic bottle, list 3 different types of sensors that could be used to detect it.

2. List 3 significant trade-offs between inductive, capacitive and photooptic sensors.

3. Why is a sinking output on a sensor not like a normal switch?

4. a) Sketch the connections needed for the PLC inputs and outputs below. The outputs include a

24Vdc light and a 120Vac light. The inputs are from 2 NO push buttons, and also from an opti-
cal sensor that has both PNP and NPN outputs.

24Vdc 24Vdc
tput i t
outputs N inputs
V+ 24VDC 0
0 1
1 2
2 3
; =< :
4 OR 5
5 © 6
C— O
6 7
7 com

b) State why you used either the NPN or PNP output on the sensor.

5. Select a sensor to pick up a transparent plastic bottle from a manufacturer. Copy or print the
specifications, and then draw a wiring diagram that shows how it will be wired to an appropri-
ate PLC input card.

6. Sketch the wiring to connect a power supply and PNP sensor to the PLC input card shown

discrete sensors - 4.28

below.

00

01

02

+ G\\O 03

24VDC 04

05

06

07

COM

7. Sketch the wiring for inputs that include the following items.
3 normally open push buttons
1 thermal relay
3 sinking sensors
1 sourcing sensor

8. A PLC has eight 10-60Vdc inputs, and four relay outputs. It is to be connected to the following
devices. Draw the required wiring.
* Two inductive proximity sensors with sourcing and sinking outputs.
* A NO run button and NC stop button.
* A 120Vac light.
* A 24Vdc solenoid.

discrete sensors - 4.29

in:2.I.Data.x out:4.0.Data.x

0 0

1

2 1

3

4 2

5

6 3

7

com

9. Draw a ladder wiring diagram (as done in the lab) for a system that has two push-buttons and a
sourcing/sinking proximity sensors for 10-60Vdc inputs and two 120Vac output lights. Don’t

discrete sensors - 4.30

forget to include hard-wired start and stop buttons with an MCR.

L1 N
L1 PLC N
.0 — — Vac
0.0
I.1
0.1
1.2
0.2
1.3
com — — 03

4.6 PRACTICE PROBLEM SOLUTIONS

1. capacitive proximity, contact switch, photo-optic retroreflective/diffuse, ultrasonic
2. materials that can be sensed, environmental factors such as dirt, distance to object

3. the sinking output will pass only DC in a single direction, whereas a switch can pass AC and
DC.

discrete sensors - 4.31

24Vdc 24Vdc
outputs inputs

V+

0

PO &

) 1
1
hot 1
|
4 neut. |
1
5 1
|
6 \ 4
~~-____.___.__l',
7 com

b) the PNP output was selected. because it will supply current, while the input card
requires it. The dashed line indicates the current flow through the sensor and input card.

discrete sensors - 4.32

A transparent bottle can be picked up with a capacitive, ultrasonic, diffuse optical sen-
sor. A particular model can be selected at a manufacturers web site (eg., www.ban-
ner.com, www.hydepark.com, www.ab.com, etc.) The figure below shows the
sensor connected to a sourcing PLC input card - therefore the sensor must be sink-
ing, NPN.

+ V+
24VDC_ 0
1
2

c
L
w

24VDC

discrete sensors - 4.33

~

00

01

02

03

04

05

06

07

COM

discrete sensors - 4.34

o F T

+
power

24Vde supply

+

00
01
02
03
04
05
06
07
COM

V+

00

01

02

03

6.0

6.0

power
24Vde supply

L o -

discrete sensors - 4.35

power
supply]

O

in:2.1.Data.x out:4.0.Data.x
.—
power
supply 1
- 2 1
V+ 3
PNP | |
V- 4 2
‘—
5
V+
PNP 6 3
V-
o | 7

com

120Vac
power

neuuPPLy

L1

discrete sensors - 4.36

stop start Cl
1
P . / MCR
ci N
L1 PLC N
i
o o O — — Vac
L1
PB2 | 0.0 n Y.
e o L1)) AN
L2«
PRI 0.1 3 O
- B o AL
0.2
1.3
Cl
com — — 03
| |
_J _J
V+ V-
L1 N

4.7 ASSIGNMENT PROBLEMS

1. What type of sensor should be used if it is to detect small cosmetic case mirrors as they pass
along a belt. Explain your choice.

2. Summarize the tradeoffs between capacitive, inductive and optical sensors in a table.

3. Clearly and concisely explain the difference between wiring PNP and NPN sensors.

discrete sensors - 4.37

4. a) Show the wiring for the following sensor, and circle the output that you are using, NPN or
PNP. Redraw the sensor using the correct symbol for the sourcing or sinking sensor chosen.

24Vdc
i t
N inputs
24VDC V+
0
1
2
00
o) 3
4
5
O
O 6
7

5. A PLC has three NPN and two PNP sensors as inputs, and outputs to control a 24Vdc solenoid
and a small 115Vac motor. Develop the required wiring for the inputs and outputs.

discrete actuators - 5.1

5. LOGICAL ACTUATORS

Topics:
* Solenoids, valves and cylinders

* Hydraulics and pneumatics
* Other actuators

Objectives:
» Be aware of various actuators available.

5.1 INTRODUCTION

Actuators Drive motions in mechanical systems. Most often this is by converting
electrical energy into some form of mechanical motion.

5.2 SOLENOIDS

Solenoids are the most common actuator components. The basic principle of oper-
ation is there is a moving ferrous core (a piston) that will move inside wire coil as shown
in Figure 5.1. Normally the piston is held outside the coil by a spring. When a voltage is
applied to the coil and current flows, the coil builds up a magnetic field that attracts the
piston and pulls it into the center of the coil. The piston can be used to supply a linear
force. Well known applications of these include pneumatic values and car door openers.

M WWW
7 U U u 7

current off current on

Figure 5.1 A Solenoid

discrete actuators - 5.2

As mentioned before, inductive devices can create voltage spikes and may need
snubbers, although most industrial applications have low enough voltage and current rat-
ings they can be connected directly to the PLC outputs. Most industrial solenoids will be
powered by 24Vdc and draw a few hundred mA.

5.3 VALVES

The flow of fluids and air can be controlled with solenoid controlled valves. An
example of a solenoid controlled valve is shown in Figure 5.2. The solenoid is mounted on
the side. When actuated it will drive the central spool left. The top of the valve body has
two ports that will be connected to a device such as a hydraulic cylinder. The bottom of the
valve body has a single pressure line in the center with two exhausts to the side. In the top
drawing the power flows in through the center to the right hand cylinder port. The left
hand cylinder port is allowed to exit through an exhaust port. In the bottom drawing the
solenoid is in a new position and the pressure is now applied to the left hand port on the
top, and the right hand port can exhaust. The symbols to the left of the figure show the
schematic equivalent of the actual valve positions. Valves are also available that allow the
valves to be blocked when unused.

solenoid

=Nyl f
Cg exhaust out p8wer in

The solenoid has two positions and when
actuated will change the direction that
fluid flows to the device. The symbols
shown here are commonly used to ‘ .
represent this type of valve.

SRty
6

solenoid

..
power 1n exhaust out

Figure 5.2 A Solenoid Controlled 5 Ported, 4 Way 2 Position Valve

discrete actuators - 5.3

Valve types are listed below. In the standard terminology, the 'n-way’ designates
the number of connections for inlets and outlets. In some cases there are redundant ports
for exhausts. The normally open/closed designation indicates the valve condition when

power is off. All of the valves listed are two position valve, but three position valves are
also available.

2-way normally closed - these have one inlet, and one outlet. When unenergized,
the valve is closed. When energized, the valve will open, allowing flow. These
are used to permit flows.

2-way normally open - these have one inlet, and one outlet. When unenergized, the
valve is open, allowing flow. When energized, the valve will close. These are
used to stop flows. When system power is off, flow will be allowed.

3-way normally closed - these have inlet, outlet, and exhaust ports. When unener-
gized, the outlet port is connected to the exhaust port. When energized, the inlet
is connected to the outlet port. These are used for single acting cylinders.

3-way normally open - these have inlet, outlet and exhaust ports. When unener-
gized, the inlet is connected to the outlet. Energizing the valve connects the out-
let to the exhaust. These are used for single acting cylinders

3-way universal - these have three ports. One of the ports acts as an inlet or outlet,
and is connected to one of the other two, when energized/unenergized. These
can be used to divert flows, or select alternating sources.

4-way - These valves have four ports, two inlets and two outlets. Energizing the
valve causes connection between the inlets and outlets to be reversed. These are
used for double acting cylinders.

Some of the ISO symbols for valves are shown in Figure 5.3. When using the sym-
bols in drawings the connections are shown for the unenergized state. The arrows show
the flow paths in different positions. The small triangles indicate an exhaust port.

discrete actuators - 5.4

normally closed normally open

Two way, two position L
I T

normally closed normally open

Three way, two position T \ \ T
L TIT T T
® ®

Four way, two position T ¢ ><

él) T

Figure 5.3 ISO Valve Symbols

When selecting valves there are a number of details that should be considered, as
listed below.

pipe size - inlets and outlets are typically threaded to accept NPT (national pipe
thread).
flow rate - the maximum flow rate is often provided to hydraulic valves.
operating pressure - a maximum operating pressure will be indicated. Some valves
will also require a minimum pressure to operate.
electrical - the solenoid coil will have a fixed supply voltage (AC or DC) and cur-
rent.
response time - this is the time for the valve to fully open/close. Typical times for
valves range from 5ms to 150ms.
enclosure - the housing for the valve will be rated as,
type 1 or 2 - for indoor use, requires protection against splashes
type 3 - for outdoor use, will resists some dirt and weathering
type 3R or 3S or 4 - water and dirt tight
type 4X - water and dirt tight, corrosion resistant

5.4 CYLINDERS

A cylinder uses pressurized fluid or air to create a linear force/motion as shown in
Figure 5.4. In the figure a fluid is pumped into one side of the cylinder under pressure,

discrete actuators - 5.5

causing that side of the cylinder to expand, and advancing the piston. The fluid on the
other side of the piston must be allowed to escape freely - if the incompressible fluid was
trapped the cylinder could not advance. The force the cylinder can exert is proportional to
the cross sectional area of the cylinder.

F
q
B B advancing
Fluid pumped in Fluid flows out
at pressure P at low pressure
F
h
retracting
| |

v

Fluid flows out Fluid pumped in
at low pressure at pressure P
For Force:
p=-= F = PA
A
where,

P = the pressure of the hydraulic fluid
A = the area of the piston
F = the force available from the piston rod

Figure 5.4 A Cross Section of a Hydraulic Cylinder

Single acting cylinders apply force when extending and typically use a spring to
retract the cylinder. Double acting cylinders apply force in both direction.

discrete actuators - 5.6

single acting spring return cylinder

AN
VYV Y

double acting cylinder

Figure 5.5 Schematic Symbols for Cylinders

Magnetic cylinders are often used that have a magnet on the piston head. When it
moves to the limits of motion, reed switches will detect it.

5.5 HYDRAULICS

Hydraulics use incompressible fluids to supply very large forces at slower speeds
and limited ranges of motion. If the fluid flow rate is kept low enough, many of the effects
predicted by Bernoulli’s equation can be avoided. The system uses hydraulic fluid (nor-
mally an oil) pressurized by a pump and passed through hoses and valves to drive cylin-
ders. At the heart of the system is a pump that will give pressures up to hundreds or
thousands of psi. These are delivered to a cylinder that converts it to a linear force and dis-
placement.

discrete actuators - 5.7

Hydraulic systems normally contain the following components;

1. Hydraulic Fluid

2. An Oil Reservoir

3. A Pump to Move Oil, and Apply Pressure

4. Pressure Lines

5. Control Valves - to regulate fluid flow

6. Piston and Cylinder - to actuate external mechanisms

The hydraulic fluid is often a noncorrosive oil chosen so that it lubricates the com-
ponents. This is normally stored in a reservoir as shown in Figure 5.6. Fluid is drawn from
the reservoir to a pump where it is pressurized. This is normally a geared pump so that it
may deliver fluid at a high pressure at a constant flow rate. A flow regulator is normally
placed at the high pressure outlet from the pump. If fluid is not flowing in other parts of
the system this will allow fluid to recirculate back to the reservoir to reduce wear on the
pump. The high pressure fluid is delivered to solenoid controlled vales that can switch
fluid flow on or off. From the vales fluid will be delivered to the hydraulics at high pres-
sure, or exhausted back to the reservoir.

air filter

| fluid return outlet tube
(D | 1) ﬁ
VA
|
| I : | ; 7 /: | |
| | I m— - access hatch
| o ! 0, o o for cleaning
refill oil filter — ¢ | Lo
- | (I -
y——— —— e+ — - =
/ [s/
/ L level
7 I 17 7 auge
Y [/ y gaug
/ | Va4 \/

\bafﬂe - isolates the

outlet fluid from
turbulence in the inlet

discrete actuators - 5.8

Figure 5.6 A Hydraulic Fluid Reservoir

Hydraulic systems can be very effective for high power applications, but the use of
fluids, and high pressures can make this method awkward, messy, and noisy for other
applications.

5.6 PNEUMATICS

Pneumatic systems are very common, and have much in common with hydraulic
systems with a few key differences. The reservoir is eliminated as there is no need to col-
lect and store the air between uses in the system. Also because air is a gas it is compress-
ible and regulators are not needed to recirculate flow. But, the compressibility also means
that the systems are not as stiff or strong. Pneumatic systems respond very quickly, and are
commonly used for low force applications in many locations on the factory floor.

Some basic characteristics of pneumatic systems are,

- stroke from a few millimeters to meters in length (longer strokes have more
springiness

- the actuators will give a bit - they are springy

- pressures are typically up to 85psi above normal atmosphere

- the weight of cylinders can be quite low

- additional equipment is required for a pressurized air supply- linear and rotatory
actuators are available.

- dampers can be used to cushion impact at ends of cylinder travel.

When designing pneumatic systems care must be taken to verify the operating
location. In particular the elevation above sea level will result in a dramatically different
air pressure. For example, at sea level the air pressure is about 14.7 psi, but at a height of
7,800 ft (Mexico City) the air pressure is 11.1 psi. Other operating environments, such as
in submersibles, the air pressure might be higher than at sea level.

Some symbols for pneumatic systems are shown in Figure 5.7. The flow control
valve is used to restrict the flow, typically to slow motions. The shuttle valve allows flow
in one direction, but blocks it in the other. The receiver tank allows pressurized air to be
accumulated. The dryer and filter help remove dust and moisture from the air, prolonging
the life of the valves and cylinders.

discrete actuators - 5.9

Flow control valve

Shuttle valve

Receiver tank

Dryer

Pump

— £ —

O
—C
%_
4®7

Pressure regulator S

Figure 5.7 Pneumatics Components

5.7 MOTORS

Motors are common actuators, but for logical control applications their properties
are not that important. Typically logical control of motors consists of switching low cur-
rent motors directly with a PLC, or for more powerful motors using a relay or motor
starter. Motors will be discussed in greater detail in the chapter on continuous actuators.

discrete actuators - 5.10

5.8 OTHERS

There are many other types of actuators including those on the brief list below.

Heaters - The are often controlled with a relay and turned on and off to maintain a
temperature within a range.

Lights - Lights are used on almost all machines to indicate the machine state and
provide feedback to the operator. most lights are low current and are connected
directly to the PLC.

Sirens/Horns - Sirens or horns can be useful for unattended or dangerous machines
to make conditions well known. These can often be connected directly to the
PLC.

Computers - some computer based devices may use TTL 0/5V logic levels to trig-
ger actions. Generally these are prone to electrical noise and should be avoided
if possible.

5.9 SUMMARY

* Solenoids can be used to convert an electric current to a limited linear motion.

* Hydraulics and pneumatics use cylinders to convert fluid and gas flows to limited
linear motions.

* Solenoid valves can be used to redirect fluid and gas flows.

* Pneumatics provides smaller forces at higher speeds, but is not stiff. Hydraulics
provides large forces and is rigid, but at lower speeds.

* Many other types of actuators can be used.

5.10 PRACTICE PROBLEMS

1. A piston is to be designed to exert an actuation force of 120 Ibs on its extension stroke. The
inside diameter of the cylinder is 2.0 and the ram diameter is 0.375”. What shop air pressure
will be required to provide this actuation force? Use a safety factor of 1.3.

2. Draw a simple hydraulic system that will advance and retract a cylinder using PLC outputs.
Sketches should include details from the PLC output card to the hydraulic cylinder.

3. Develop an electrical ladder diagram and pneumatic diagram for a PLC controlled system. The
system includes the components listed below. The system should include all required safety
and wiring considerations.

a 3 phase 50 HP motor
1 NPN sensor
1 NO push button

discrete actuators - 5.11

1 NC limit switch
1 indicator light
a doubly acting pneumatic cylinder
4. What are the trade-offs between 3-phase and single-phase AC power.

5.11 PRACTICE PROBLEM SOLUTIONS

1. A =pi*r"2 =3.14159n"2, P=FS*(F/A)=1.3(120/3.14159)=49.7psi. Note, if the cylinder were
retracting we would need to subtract the rod area from the piston area. Note: this air pressure is
much higher than normally found in a shop, so it would not be practical, and a redesign would
be needed.

cylinder

\4 -
24Vdc

00 /il]
01 S |
02 = >< y
03 pressure
regulator
4 Tefease |
sump pump
>

discrete actuators - 5.12

ADD SOLUTION

4. 3-phase power is ideal for large loads such as motors. Single phase power is suited to small
loads, and the power usage on each phase must be balanced someplace on the electrical grid.

5.12 ASSIGNMENT PROBLEMS

1. Draw a schematic symbol for a solenoid controlled pneumatic valve and explain how the valve
operates.

2. A PLC based system has 3 proximity sensors, a start button, and an E-stop as inputs. The sys-
tem controls a pneumatic system with a solenoid controlled valve. It also controls a robot with
a TTL output. Develop a complete wiring diagram including all safety elements.

3. A system contains a pneumatic cylinder with two inductive proximity sensors that will detect
when the cylinder is fully advanced or retracted. The cylinder is controlled by a solenoid con-
trolled valve. Draw electrical and pneumatic schematics for a system.

4. Draw an electrical ladder wiring diagram for a PLC controlled system that contains 2 PNP sen-
sors, a NO push button, a NC limit switch, a contactor controlled AC motor and an indicator
light. Include all safety circuitry.

5. We are to connect a PLC to detect boxes moving down an assembly line and divert larger
boxes. The line is 12 inches wide and slanted so the boxes fall to one side as they travel by.
One sensor will be mounted on the lower side of the conveyor to detect when a box is present.
A second sensor will be mounted on the upper side of the conveyor to determine when a larger
box is present. If the box is present, an output to a pneumatic solenoid will be actuated to divert
the box. Your job is to select a specific PLC, sensors, and solenoid valve. Details (the absolute
minimum being model numbers) are expected with a ladder wiring diagram. (Note: take

discrete actuators - 5.13

advantage of manufacturers web sites.)

6. Develop a wiring diagram for a system that has the following elements. Include all safety cir-
cuitry.
2 NPN proximity sensors
2 N.O. pushbuttons
3 solenoid outputs
A 440Vac 3ph. 20HP (i.e., large) motor

plc boolean - 6.1

6. BOOLEAN LOGIC DESIGN

Topics:
* Boolean algebra
* Converting between Boolean algebra and logic gates and ladder logic
* Logic examples

Objectives:
* Be able to simplify designs with Boolean algebra

6.1 INTRODUCTION

The process of converting control objectives into a ladder logic program requires
structured thought. Boolean algebra provides the tools needed to analyze and design these
systems.

6.2 BOOLEAN ALGEBRA

Boolean algebra was developed in the 1800’s by James Bool, an Irish mathemati-
cian. It was found to be extremely useful for designing digital circuits, and it is still
heavily used by electrical engineers and computer scientists. The techniques can model a
logical system with a single equation. The equation can then be simplified and/or manipu-
lated into new forms. The same techniques developed for circuit designers adapt very well
to ladder logic programming.

Boolean equations consist of variables and operations and look very similar to nor-
mal algebraic equations. The three basic operators are AND, OR and NOT; more complex
operators include exclusive or (EOR), not and (NAND), not or (NOR). Small truth tables
for these functions are shown in Figure 6.1. Each operator is shown in a simple equation
with the variables A and B being used to calculate a value for X. Truth tables are a simple
(but bulky) method for showing all of the possible combinations that will turn an output
on or off.

plc boolean - 6.2

Note: By convention a false state is also called off or 0 (zero). A true state is also
called on or 1.

AND OR NOT
A A A

S X
B)X B) X e
X=A4-B X=A+B X=4
A B X A B X A X
0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1
1 1 1 1 1 1
NAND NOR EOR
A A A

X=A4-B X=A4+8B X=A®B

A B X A B X A B X
0 O 1 0 O 1 0 O 0
0 1 1 0 1 0 0 1 1
1 0 1 1 0 0 1 0 1
1 1 0 1 1 0 1 1 0

Note: The symbols used in these equations, such as + for OR are not universal stan-
dards and some authors will use different notations.

Note: The EOR function is available in gate form, but it is more often converted to
its equivalent, as shown below.

X=A®B=A-B+A4-B

Figure 6.1 Boolean Operations with Truth Tables and Gates

In a Boolean equation the operators will be put in a more complex form as shown

plc boolean - 6.3

in Figure 6.2. The variable for these equations can only have a value of 0 for false, or 1 for
true. The solution of the equation follows rules similar to normal algebra. Parts of the
equation inside parenthesis are to be solved first. Operations are to be done in the
sequence NOT, AND, OR. In the example the NOT function for C is done first, but the
NOT over the first set of parentheses must wait until a single value is available. When
there is a choice the AND operations are done before the OR operations. For the given set
of variable values the result of the calculation is false.

given _
X=(A+B-C)+4-(B+C)

assuming A=1, B=0, C=1
X=(1+0-1)+1-(0+1)
X=(1+0)+1-(0+0)

Figure 6.2 A Boolean Equation

The equations can be manipulated using the basic axioms of Boolean shown in
Figure 6.3. A few of the axioms (associative, distributive, commutative) behave like nor-
mal algebra, but the other axioms have subtle differences that must not be ignored.

plc boolean - 6.4

Idempotent

A+4 =4 A-A=4
Associative

(A+B)+C =A4+(B+C) (A4-B)-C=4-(B-0)
Commutative

A+B =B+4 A-B=B-4
Distributive

A+(B-C)=(A4+B)-(4+0C) A-(B+C)=(4-B)+(4-0)
Identity

A+0 =4 A+1 =1

A-0=0 A-1 =4
Complement

A+d =1 (A) = 4

A-4=0 1=0
DeMorgan’s

(A+B) =A4-B (A-B) = A+B
Duality

interchange AND and OR operators, as well as all Universal, and Null
sets. The resulting equation is equivalent to the original.

Figure 6.3 The Basic Axioms of Boolean Algebra

An example of equation manipulation is shown in Figure 6.4. The distributive
axiom is applied to get equation (1). The idempotent axiom is used to get equation (2).
Equation (3) is obtained by using the distributive axiom to move C outside the parenthe-
ses, but the identity axiom is used to deal with the lone C. The identity axiom is then used
to simplify the contents of the parentheses to get equation (4). Finally the Identity axiom is

plc boolean - 6.5

used to get the final, simplified equation. Notice that using Boolean algebra has shown
that 3 of the variables are entirely unneeded.

A=B-(C.(D+E+C)+F-C)

A=B-(D-C+E-C+C-C+F-C) (1)
A=B-(D-C+E-C+C+F-C) 2)
A=B-C-(D+E+1+F) 3)
4=B-C-(1) (4)
A=B-C (5)

Figure 6.4 Simplification of a Boolean Equation

Note: When simplifying Boolean algebra, OR operators have a lower priority, so they
should be manipulated first. NOT operators have the highest priority, so they should be
simplified last. Consider the example from before.

X=(A+B-C)+4-(B+0O) The higher priority operators are

Y- (AJJr—(BC) FA-(B+ 6) put in parentheses

_) - DeMorgan’s theorem is applied

=) B-O)+4-(B+C
_ DeMorgan’s theorem is applied again
+4-(B+C) -

The equation is expanded

I
|
=i
+
SI

Il
|
ov]]
l’
'
a
|
'
oy
l’
'
(@

Terms with common terms are
collected, here it is only NOT C

- - The redundant term is eliminated

Il
|
(ov]]
l’
@

N
+
>
|
'
oy

- «——— ABoolean axiom is applied to
' simplify the equation further

S T
I I
| |
oo oo
+ +
Q ~~
v R
e a
> N
8
|.
R
oy

plc boolean - 6.6

6.3 LOGIC DESIGN

Design ideas can be converted to Boolean equations directly, or with other tech-
niques discussed later. The Boolean equation form can then be simplified or rearranges,
and then converted into ladder logic, or a circuit.

Aside: The logic for a seal-in circuit can be analyzed using a Boolean equation as shown
below. Recall that the START is NO and the STOP is NC.

START STOP

ON' = (START+ ON) - STOP

o
z

STOP START ON’

stop pushed, not active

stop pushed, not active

not active

start pushed, becomes active
stop pushed, not active

stop pushed, not active

active, start no longer pushed
becomes active and start pushed

—_— = — OO OO
—_—— O O == OO
— O —m O = O~ O
_——_0 O == O O O

If we can describe how a controller should work in words, we can often convert it
directly to a Boolean equation, as shown in Figure 6.5. In the example a process descrip-
tion is given first. In actual applications this is obtained by talking to the designer of the
mechanical part of the system. In many cases the system does not exist yet, making this a
challenging task. The next step is to determine how the controller should work. In this
case it is written out in a sentence first, and then converted to a Boolean expression. The
Boolean expression may then be converted to a desired form. The first equation contains
an EOR, which is not available in ladder logic, so the next line converts this to an equiva-
lent expression (2) using ANDs, ORs and NOTs. The ladder logic developed is for the sec-
ond equation. In the conversion the terms that are ANDed are in series. The terms that are
ORed are in parallel branches, and terms that are NOTed use normally closed contacts.
The last equation (3) is fully expanded and ladder logic for it is shown in Figure 6.6. This
illustrates the same logical control function can be achieved with different, yet equivalent,

plc boolean - 6.7

ladder logic.

Process Description:

A heating oven with two bays can heat one ingot in each bay. When the
heater is on it provides enough heat for two ingots. But, if only one
ingot is present the oven may become too hot, so a fan is used to
cool the oven when it passes a set temperature.

Control Description:
If the temperature is too high and there is an ingot in only one bay then
turn on fan.

Define Inputs and Outputs:
B1 =bay 1 ingot present
B2 = bay 2 ingot present
F =fan
T = temperature overheat sensor

Boolean Equation:

F=T-(B-By+B, B,))
F=B,-By,-T+B,-B,-T 3)
Ladder Logic for Equation (2):
BI B2 T F ‘
|| ()
| N |
Bl B2
Note: the result for conditional logic
is a single step in the ladder

Warning: in spoken and written english OR and EOR are often not clearly defined. Con-
sider the traffic directions "Go to main street then turn left or right." Does this or mean
that you can drive either way, or that the person isn’t sure which way to go? Consider
the expression "The cars are red or blue.", Does this mean that the cars can be either red
or blue, or all of the cars are red, or all of the cars are blue. A good literal way to
describe this condition is "one or the other, but not both".

Figure 6.5 Boolean Algebra Based Design of Ladder Logic

plc boolean - 6.8

Ladder Logic for Equation (3):
B1 B2 T F ‘

O

B1 B2 T

Figure 6.6 Alternate Ladder Logic

Boolean algebra is often used in the design of digital circuits. Consider the exam-
ple in Figure 6.7. In this case we are presented with a circuit that is built with inverters,
nand, nor and, and gates. This figure can be converted into a boolean equation by starting
at the left hand side and working right. Gates on the left hand side are solved first, so they
are put inside parentheses to indicate priority. Inverters are represented by putting a NOT
operator on a variable in the equation. This circuit can’t be directly converted to ladder
logic because there are no equivalents to NAND and NOR gates. After the circuit is con-
verted to a Boolean equation it is simplified, and then converted back into a (much sim-
pler) circuit diagram and ladder logic.

plc boolean - 6.9

o

L
—

O »w O W @

o)

The circuit is converted to a Boolean equation and simplified. The most nested terms
in the equation are on the left hand side of the diagram.

_ (m).B.(A+6)
(

A+B+C+B)-B-(4-C)

=A-B-A-C+B-B-A-C+C-B-A-C+B-B-4-C
B-A-C+B-A-C+0+B-4-C

X=B-4-C

This simplified equation is converted back into a circuit and equivalent ladder logic.

I_j X
=

1%)

Figure 6.7 Reverse Engineering of a Digital Circuit

To summarize, we will obtain Boolean equations from a verbal description or
existing circuit or ladder diagram. The equation can be manipulated using the axioms of
Boolean algebra. after simplification the equation can be converted back into ladder logic
or a circuit diagram. Ladder logic (and circuits) can behave the same even though they are
in different forms. When simplifying Boolean equations that are to be implemented in lad-

plc boolean - 6.10

der logic there are a few basic rules.

1. Eliminate NOTs that are for more than one variable. This normally includes
replacing NAND and NOR functions with simpler ones using DeMorgan’s the-
orem.

2. Eliminate complex functions such as EORs with their equivalent.

These principles are reinforced with another design that begins in Figure 6.8.
Assume that the Boolean equation that describes the controller is already known. This
equation can be converted into both a circuit diagram and ladder logic. The circuit dia-
gram contains about two dollars worth of integrated circuits. If the design was mass pro-
duced the final cost for the entire controller would be under $50. The prototype of the
controller would cost thousands of dollars. If implemented in ladder logic the cost for each
controller would be approximately $500. Therefore a large number of circuit based con-
trollers need to be produced before the break even occurs. This number is normally in the
range of hundreds of units. There are some particular advantages of a PLC over digital cir-
cuits for the factory and some other applications.

» the PLC will be more rugged,
* the program can be changed easily
* less skill is needed to maintain the equipment

plc boolean - 6.11

Given the controller equation;

A=B-(C-(D+E+C)+F-C)

The circuit is given below, and equivalent ladder logic is shown.

A —

c L

F%D jiA
=0

The gates can be purchased for
about $0.25 each in bulk.

D C X Inputs and outputs are
I I Q typically 5V

E

C

An inexpensive PLC is worth
X B QA at least a few hundred dollars

|| Consider the cost trade-off!

Figure 6.8 A Boolean Equation and Derived Circuit and Ladder Logic

The initial equation is not the simplest. It is possible to simplify the equation to the
form seen in Figure 6.8. If you are a visual learner you may want to notice that some sim-
plifications are obvious with ladder logic - consider the C on both branches of the ladder
logic in Figure 6.9.

plc boolean - 6.12

A=B-C-(D+E+F)

e >
5 ~—o |

D C B
] | A
| | W
E
F

Figure 6.9 The Simplified Form of the Example

The equation can also be manipulated to other forms that are more routine but less
efficient as shown in Figure 6.10. The equation shown is in disjunctive normal form - in
simpler words this is ANDed terms ORed together. This is also an example of a canonical
form - in simpler terms this means a standard form. This form is more important for digital
logic, but it can also make some PLC programming issues easier. For example, when an
equation is simplified, it may not look like the original design intention, and therefore
becomes harder to rework without starting from the beginning.

plc boolean - 6.13

A=(B-C-D)+(B-C-E)+(B-C-F)
B

C [\
p— 0 /

— HO

=

o1
-
NG

A

Figure 6.10 A Canonical Logic Form

6.3.1 Boolean Algebra Techniques

There are some common Boolean algebra techniques that are used when simplify-
ing equations. Recognizing these forms are important to simplifying Boolean Algebra
with ease. These are itemized, with proofs in Figure 6.11.

plc boolean - 6.14

A+C4 =A4+C proof: A+C4
(A+C)A+4)
(4+C)(1)
A+C

AB+A = 4 proof: AB+4
AB+ A1
AB+1)
A(1)
4

|
oo
al

A+B+C = proof: A+B+C
(A+B)+C
(4+B)C
(AB)C
ABC

Figure 6.11 Common Boolean Algebra Techniques

6.4 COMMON LOGIC FORMS

Knowing a simple set of logic forms will support a designer when categorizing
control problems. The following forms are provided to be used directly, or provide ideas
when designing.

6.4.1 Complex Gate Forms

In total there are 16 different possible types of 2-input logic gates. The simplest are
AND and OR, the other gates we will refer to as complex to differentiate. The three popu-
lar complex gates that have been discussed before are NAND, NOR and EOR. All of these
can be reduced to simpler forms with only ANDs and ORs that are suitable for ladder
logic, as shown in Figure 6.12.

plc boolean - 6.15

NAND NOR EOR

I
N
&Y

S
I
N

: -
LY
S
I
M
@
XY

>
Il
|
l’
ov]]

O 5o O

X |

Figure 6.12 Conversion of Complex Logic Functions

6.4.2 Multiplexers

Multiplexers allow multiple devices to be connected to a single device. These are
very popular for telephone systems. A telephone switch is used to determine which tele-
phone will be connected to a limited number of lines to other telephone switches. This
allows telephone calls to be made to somebody far away without a dedicated wire to the
other telephone. In older telephone switch boards, operators physically connected wires
by plugging them in. In modern computerized telephone switches the same thing is done,
but to digital voice signals.

In Figure 6.13 a multiplexer is shown that will take one of four inputs bits D1, D2,

D3 or D4 and make it the output X, depending upon the values of the address bits, A1 and
A2.

plc boolean - 6.16

— Al A2 | X
D1 multiplexer
0 0 X=DlI
=
D2 7 X 0 1 X=D2
L 1 0 X=D3
1 1 X=D4
—>
D3
—>
D4

Al A2

Figure 6.13 A Multiplexer

Ladder logic form the multiplexer can be seen in Figure 6.14.

Al A2 D2
\l\lr\ | | | |
I || ||
Al A2 D3
|| I ||
I \t\?\ I
Al A2 D4
| | | | | |

Figure 6.14 A Multiplexer in Ladder Logic

plc boolean - 6.17

6.5 SIMPLE DESIGN CASES

The following cases are presented to illustrate various combinatorial logic prob-
lems, and possible solutions. It is recommended that you try to satisfy the description
before looking at the solution.

6.5.1 Basic Logic Functions

Problem: Develop a program that will cause output D to go true when switch A
and switch B are closed or when switch C is closed.

Solution:
D=(A4-B)+C
A B
|| D
[1
C

Figure 6.15 Sample Solution for Logic Case Study A

Problem: Develop a program that will cause output D to be on when push button A
is on, or either B or C are on.

plc boolean - 6.18

Solution:

D=4+(B®C)

\ %

Figure 6.16 Sample Solution for Logic Case Study B

6.5.2 Car Safety System

Problem: Develop Ladder Logic for a car door/seat belt safety system. When the
car door is open, and the seatbelt is not done up, the ignition power must not be applied. If
all is safe then the key will start the engine.

Solution:

Door Open Seat Belt Key .
| [p [[] Ignition Q
|1 |1 I

Figure 6.17 Solution to Car Safety System Case

6.5.3 Motor Forward/Reverse

Problem: Design a motor controller that has a forward and a reverse button. The
motor forward and reverse outputs will only be on when one of the buttons is pushed.

plc boolean - 6.19

When both buttons are pushed the motor will not work.

Solution:

BF - BR where,

L F = motor forward
R = BF - BR R = motor reverse
BF = forward button
BR = reverse button

BF BR

Figure 6.18 Motor Forward, Reverse Case Study

6.5.4 A Burglar Alarm

Consider the design of a burglar alarm for a house. When activated an alarm and
lights will be activated to encourage the unwanted guest to leave. This alarm be activated
if an unauthorized intruder is detected by window sensor and a motion detector. The win-
dow sensor is effectively a loop of wire that is a piece of thin metal foil that encircles the
window. If the window is broken, the foil breaks breaking the conductor. This behaves like
a normally closed switch. The motion sensor is designed so that when a person is detected
the output will go on. As with any alarm an activate/deactivate switch is also needed. The
basic operation of the alarm system, and the inputs and outputs of the controller are item-
ized in Figure 6.19.

plc boolean - 6.20

The inputs and outputs are chosen to be;

A = Alarm and lights switch (1 = on)
W = Window/Door sensor (1 = OK)
M = Motion Sensor (0 = OK)

S = Alarm Active switch (1 = on)

The basic operation of the alarm can be described with rules.
1. If alarm is on, check sensors.

2. If window/door sensor is broken (turns off), sound alarm and turn on
lights

Note: As the engineer, it is your responsibility to define these items before starting
the work. If you do not do this first you are guaranteed to produce a poor
design. It is important to develop a good list of inputs and outputs, and give
them simple names so that they are easy to refer to. Most companies will use
wire numbering schemes on their diagrams.

Figure 6.19 Controller Requirements List for Alarm

The next step is to define the controller equation. In this case the controller has 3
different inputs, and a single output, so a truth table is a reasonable approach to formaliz-
ing the system. A Boolean equation can then be written using the truth table in Figure
6.20. Of the eight possible combinations of alarm inputs, only three lead to alarm condi-
tions.

plc boolean - 6.21

Inputs Output

>

alarm off
i ;alarm on/no thief
alarm on/thief detected

note the binary sequence

—_— == O O OO W
—_—_O O == OO z

—_O = O = OO g
—_——O = O O OO

Figure 6.20 Truth Table for the Alarm

The Boolean equation in Figure 6.21 is written by examining the truth table in Fig-
ure 6.20. There are three possible alarm conditions that can be represented by the condi-
tions of all three inputs. For example take the last line in the truth table where when all
three inputs are on the alarm should be one. This leads to the last term in the equation. The

other two terms are developed the same way. After the equation has been written, it is sim-
plified.

plc boolean - 6.22

A= -M-W)y+(S-M-W)+(S-M-W)
A=S-(M-W+M-W+M-W)

cA=S8S-(M-W+M-Wy+(M-W+M-W))

A= (S-W)+(S-M) =S-(W+M)
AW D ~ W (S*W)
— (S*W)+(S*M)
: —) >—
A
y N
(S*M)

Figure 6.21 A Boolean Equation and Implementation for the Alarm

The equation and circuits shown in Figure can also be further simplified, as shown
in Figure 6.22.

plc boolean - 6.23

= (S*W)+(S*M)

s P

Figure 6.22 The Simplest Circuit and Ladder Diagram

Aside: The alarm could also be implemented in programming languages. The pro-
gram below is for a Basic Stamp II chip. (www.parallaxinc.com)

w=1;s=2;m=3;a=4

input m; input w; input s

output a

loop:

if (in2 = 1) and (inl =0 or in3 = 1) then on
low a; goto loop ‘alarm off

on:

high a; goto loop ‘alarm on

Figure 6.23 Alarm Implementation Using A High Level Programming Language

6.6 SUMMARY

* Logic can be represented with Boolean equations.

* Boolean equations can be converted to (and from) ladder logic or digital circuits.
* Boolean equations can be simplified.

* Different controllers can behave the same way.

» Common logic forms exist and can be used to understand logic.

plc boolean - 6.24

» Truth tables can represent all of the possible state of a system.

6.7 PRACTICE PROBLEMS

1. Is the ladder logic in the figure below for an AND or an OR gate?

2. Draw a ladder diagram that will cause output D to go true when switch A and switch B are
closed or when switch C is closed.

3. Draw a ladder diagram that will cause output D to be on when push button A is on, or either B
or C are on.

4. Design ladder logic for a car that considers the variables below to control the motor M. Also
add a second output that uses any outputs not used for motor control.

- doors opened/closed (D)
- keys in ignition (K)

- motor running (M)

- transmission in park (P)
- ignition start (I)

5. a) Explain why a stop button must be normally closed and a start button must be normally open.

b) Consider a case where an input to a PLC is a normally closed stop button. The contact used in
the ladder logic is normally open, as shown below. Why are they both not the same? (i.e., NC

or NO)
start stop
i I Q motor

motor

6. Make a simple ladder logic program that will turn on the outputs with the binary patterns when

plc boolean - 6.25

the corresponding buttons are pushed.

OUTPUTS
INPUTS
HG FE DC BA
I 1 0 1 0 1 0 1 Input X on
1 0 1 0 0 0 1 Input Y on
1 0 0 1 0 1 1 1 Input Z on

7. Convert the following Boolean equation to the simplest possible ladder logic.

X=4-(A+4-B)
8. Simplify the following boolean equations.

ay A(B+A4B) b) A(B+4B)
¢) A(B+ AB) dy A(B+A4B)

9. Simplify the following Boolean equations,
a) (A+B)-(4+B)

b) ABCD + ABCD + ABCD + ABCD

10. Simplify the Boolean expression below.

((4-B)+(B+4))-C+(B-C+B-0C)

11. Given the Boolean expression a) draw a digital circuit and b) a ladder diagram (do not sim-
plify), ¢) simplify the expression.

X=4-B-C+(C+B)

12. Simplify the following Boolean equation and write corresponding ladder logic.

Y = (ABCD + ABCD + ABCD + ABCD)+ D

13. For the following Boolean equation,
X=A4A+B(A+CB+DAC)+ABCD

a) Write out the logic for the unsimplified equation.

plc boolean - 6.26

b) Simplify the equation.
c¢) Write out the ladder logic for the simplified equation.

14. a) Write a Boolean equation for the following truth table. (Hint: do this by writing an expres-
sion for each line with a true output, and then ORing them together.)

A B C D Result

e e el = N = = N e e N e N o)

et e et ek O O O O == = = O OO O
—— O O = = OO = = OO === OO0
— O P ORPR O, O, O, O~,O—O
—_—— O O R OO R = OO —=OO —

b) Write the results in a) in a Boolean equation.
¢) Simplify the Boolean equation in b)

15. Simplify the following Boolean equation, and create the simplest ladder logic.

16. Simplify the following boolean equation with Boolean algebra and write the corresponding
ladder logic.

X=(A+B-A)+(C+D+EC)

17. Convert the following ladder logic to a Boolean equation. Then simplify it, and convert it back

plc boolean - 6.27

to simpler ladder logic.

A B D D
Y
| | | | | | | |
|| || || ||
B A
\l\1|\ | |
I ||
A C D
| | | | |
|| || \‘\1\

18. a) Develop the Boolean expression for the circuit below.
b) Simplify the Boolean expression.
c¢) Draw a simpler circuit for the equation in b).

o

aQ W >

L
o

-

>

D

19. Given a system that is described with the following equation,
X=A4+B-(A+C)+C)+A4-B-(D+E)

a) Simplify the equation using Boolean Algebra.
b) Implement the original and then the simplified equation with a digital circuit.
c¢) Implement the original and then the simplified equation in ladder logic.

20. Simplify the following and implement the original and simplified equations with gates and
ladder logic.

A+(B+C+D)- (B+C)+A4-B-(C+D)

21. Convert the following ladder logic to a Boolean equation. Simplify the equation and convert it

plc boolean - 6.28

back to ladder logic.
A B C D
O X
A B C D
A B C D
A B C D
A B C D
A B C D

22. Use Boolean equations to develop simplified ladder logic for the following truth table where
A, B, C and D are inputs, and X and Y are outputs.

>
vs]
@)
o
>
=

e e e el = = N e N e e e N e e
e = ==l R N o B e S e)
—_——_ 0O OoOPRPr)OO, P, OO~ —,OO
= N = e R R e R N = =)
—_, O =) O R O, OO0 —=O —O
——_, e, O OO OO0 R, PR =, OO0 OoO0o

6.8 PRACTICE PROBLEM SOLUTIONS

1. AND

plc boolean - 6.29

2.
A BH D
l O
C
3.
B C
)
B C
A
4.
I P
) O™
M
K D
| OB
where,

B = the alarm that goes "Bing" to warn that the keys are still in the car.

5. a) If a NC stop button is damaged, the machine will act as if the stop button was pushed and
shut down safely. If a NO start button is damaged the machine will not be able to start.)

b) For the actual estop which is NC, when all is ok the power to the input is on, when there is a
problem the power to the input is off. In the ladder logic an input that is on (indicating all is ok)

plc boolean - 6.30

will allow the rung to turn on the motor, otherwise an input that is off (indicating a stop) will
break the rung and cut the power.)

X -O
Y

Z

X O
Y -O
X -O
Z

ETC....

a) AB b) A+B c) AB d A+B

b)

10.C

I1.

12.

plc boolean - 6.31

(A+B)-(A+B) = (AB)(4B) = 0

ABCD+ ABCD+ ABCD+ ABCD = BCD+ ABD = B(CD + AD)

X=B-(4-C+C)

Y = (ABCD+ ABCD + ABCD + ABCD) + D
Y = (ABCD + ABCD+ ABCD + ABCD)D
Y = (0+ABCD+0+0)D

Y = ABCD

Y N N

O

plc boolean - 6.32

13,
A
a) | |
|]
B A,
B,
A C
A C D
by A+DCB
J il
D N B

14.

plc boolean - 6.33

B, B
§
D
C A B
[
R
D

ABCD+ABCD +ABCD + ABCD + ABCD+ ABCD + ABCD + ABCD

BCD+ ACD+BCD+ ABD+ BCD+ ACD + ABC
BCD+ CD(A+A)+CD(B+B)+ABD+ ABC

BCD+ D(C+AB)+ABC

15.

16.

plc boolean - 6.34

y = 6{‘ + (;1 +(Be(a+ BCDH

v =+ (3 eano)

Y = CZ+(Z+(EC’(A+E+C)))}

v=c(a+dvo)

Y = C(m) |
Y = C(A+(1))
Y = C(4+0)

Y = CA

Y=C+4

X=(4+B 1)+(C DD

X = (A+B-Z[)(C+D+E6)
X = (A)(B-4)(C+D+EC)

X = (A)(B-A)(C+D+EC)
X = AB(C+D+EC)

X = AB(C+D+E)

OR

X = (A+B.;1)+(CT+E6)

X=A4+B-A+CD(E+C)
X = A+B+CDE

X = AB(CDE)

X = AB(C+D+E)

17.

18.

plc boolean - 6.35

CAB

R

B I—J
C

plc boolean - 6.36

19.

a) X=A4+B-(A+C)+C)+4-B-(D+E)
X=A4+B-A+B-C+C)+A4-B-D+A-B-E
X=A4-(1+B-D+B-E)+B-A+C-(B+1)
X=A4+B-A+C
ABCDE

b) 1“ D&DLJIE}

L

20.

plc boolean - 6.37

: O
B A
C
C
A| | B D
|
E
i O
B A|
o
C

A+(B+C+D)-(B+C)+A4-B-(C+D)
A-(1+B-(C+D)+(B+C+D)-B+(B+C+D)-C
A+(C+D)-B+C

A+C-B+D-B+C

A+D-B+C

- 6.38

plc boolean

A+D-B+C

21.

plc boolean - 6.39

22.
(The equations.....) X = D(B+A) Y =B(D+C)

6.9 ASSIGNMENT PROBLEMS

1. Simplify the following Boolean equation and implement it in ladder logic.

X=A+BA+BC+D+C

2. Simplify the following Boolean equation and write a ladder logic program to implement it.

X = (ABC+ABC+ ABC + ABC + ABC)

3. Convert the following ladder logic to a Boolean equation. Simplify the equation using Boolean
algebra, and then convert the simplified equation back to ladder logic.

e] ()

plc boolean - 6.40

4. Convert the truth table below to a Boolean equation, and then simplify it. The output is X and
the inputs are A, B, C and D.

A B C D X
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

5. Simplify the following Boolean equation. Convert both the unsimplified and simplified equa-
tions to ladder logic.

X = (ABC)(4+BC)

6. Convert the following ladder logic to a Boolean equation. Simplify the equation and convert it
back to ladder logic.

A B C D
O %
A B C D
A B C D
A B C D
A B C D
A B C D

plc karnaugh - 7.1

7. KARNAUGH MAPS

Topics:
* Truth tables and Karnaugh maps

Objectives:
* Be able to simplify designs with Boolean algebra and Karnaugh maps

7.1 INTRODUCTION

Karnaugh maps allow us to convert a truth table to a simplified Boolean expres-
sion without using Boolean Algebra. The truth table in Figure 7.1 is an extension of the
previous burglar alarm example, an alarm quiet input has been added.

Given

A, W, M, S as before
Q = Alarm Quiet (0 = quiet)

Stepl: Draw the truth table

e e e e e = N = N e e e N Nl o N]
=l =l e lelelole el =22 =

— e = = O O OO === = OO OO

—t m O O = = O O = = OO = OO0
— O, O, O, OR,ROR,RO~,O~O

plc karnaugh - 7.2

Figure 7.1 Truth Table for a Burglar Alarm

Instead of converting this directly to a Boolean equation, it is put into a tabular
form as shown in Figure 7.2. The rows and columns are chosen from the input variables.
The decision of which variables to use for rows or columns can be arbitrary - the table will
look different, but you will still get a similar solution. For both the rows and columns the
variables are ordered to show the values of the bits using NOTs. The sequence is not
binary, but it is organized so that only one of the bits changes at a time, so the sequence of
bits is 00, 01, 11, 10 - this step is very important. Next the values from the truth table that
are true are entered into the Karnaugh map. Zeros can also be entered, but are not neces-
sary. In the example the three true values from the truth table have been entered in the
table.

Step 2: Divide the input variables up. I choose SQ and MW

Step 3: Draw a Karnaugh map based on the input variables

M W (=00)| MW (=01) | MW (=11) | MW (=10)
S Q (=00)
SQ|(=01)
SQ|(=11) 1 1 1
SQ\(=10)

Added for clarity

Note: The inputs are arranged so that only one bit changes at a time for the Karnaugh
map. In the example above notice that any adjacent location, even the top/bottom
and left/right extremes follow this rule. This is done so that changes are visually

grouped. If this pattern is not used then it is much more difficult to group the bits.

Figure 7.2 The Karnaugh Map

When bits have been entered into the Karnaugh map there should be some obvious
patterns. These patterns typically have some sort of symmetry. In Figure 7.3 there are two
patterns that have been circled. In this case one of the patterns is because there are two bits
beside each other. The second pattern is harder to see because the bits in the left and right
hand side columns are beside each other. (Note: Even though the table has a left and right
hand column, the sides and top/bottom wrap around.) Some of the bits are used more than
once, this will lead to some redundancy in the final equation, but it will also give a simpler

plc karnaugh - 7.3
expression.

The patterns can then be converted into a Boolean equation. This is done by first
observing that all of the patterns sit in the third row, therefore the expression will be
ANDed with SQ. There are two patterns in the third row, one has M as the common term,
the second has W as the common term. These can now be combined into the equation.
Finally the equation is converted to ladder logic.

Step 4: Look for patterns in the map
M is the common term
MW (MW | MW |MW

S
SQ 4 .
SQ rﬂ - :l])/ all are in row SQ

sQll
_/ W is the common term

Step 5: Write the equation using the patterns

A=S8-0-(M+W)
Step 6: Convert the equation into ladder logic
M S Q
I N .
| | | \J
\W%

Figure 7.3 Recognition of the Boolean Equation from the Karnaugh Map

Karnaugh maps are an alternative method to simplifying equations with Boolean
algebra. It is well suited to visual learners, and is an excellent way to verify Boolean alge-
bra calculations. The example shown was for four variables, thus giving two variables for
the rows and two variables for the columns. More variables can also be used. If there were
five input variables there could be three variables used for the rows or columns with the
pattern 000, 001, 011, 010, 110, 111, 101, 100. If there is more than one output, a Kar-
naugh map is needed for each output.

plc karnaugh - 7.4

Aside: A method developed by David Luque Sacaluga uses a circular format for the table.
A brief example is shown below for comparison.

A B C D | X

Convert the truth table to a circle using the Gray code
0 0 0 0 0 for sequence. Bits that are true in the truth table are
0 0 0 1 0 shaded in the circle.
0 0 1 0 0
0 0 1 1 0 1000 0000
0 1 0 1 0 1011
0 1 1 0 1 0011
0 1 1 1 1
1 0 0 0|0 1010 0010
1 0 0 1 0
1 0 1 1 0
1 1 0 0 0
)) 0 1 0 1111 0111
1 1 1 0 1
1 1 1 1 1 1100

Look for large groups of repeated patterns.

1. In this case ’B’ is true in the bottom half of the circle, so the equation becomes,
X=B-(..)

2. There is left-right symmetry, with *’C’ as the common term, so the equation becomes
X=B-C-(...)

3. The equation covers all four values, so the final equation is,
X=8B-C

Figure 7.4 Aside: An Alternate Approach

7.2 SUMMARY

 Karnaugh maps can be used to convert a truth table to a simplified Boolean equa-
tion.

plc karnaugh - 7.5

7.3 PRACTICE PROBLEMS

1. Setup the Karnaugh map for the truth table below.

Result

S OO — —

—_ e OO — OO —

S — O — O

— O I OO —~O — O —

SO —— O

O el O O e = O O v v

S OO O —

_—e e (O O O O v

SO OO O

OO O ™ e —

2. Use a Karnaugh map to simplify the following truth table, and implement it in ladder logic.

plc karnaugh - 7.6

3. Write the simplest Boolean equation for the Karnaugh map below,

CD | CD | CD | CD

AB 1 0 0 1

4. Given the truth table below find the most efficient ladder logic to implement it. Use a structured
technique such as Boolean algebra or Karnaugh maps.

A B CD| XY
0 00 0 1]0O
0 0 0 1 0 1
0 01 000
0 0 1 1 0 0
01 0 0 0O
0 1 0 1 0 0
011 0 |01
0 1 1 1 0 1
1 0 0 O 1 0
1 0 0 1 11
1 01 0 |0 O
1 0 1 1 0 0
1 1 0 0 1 0
1 1 0 1 1 0
1 1 1 0 01
1 1 1 1 0 1

plc karnaugh - 7.7

5. Examine the truth table below and design the simplest ladder logic using a Karnaugh map.

o
es!

F G Y

e e e e el = = N e N e M e M as R as Bl an
—_—— = = O O OO === = O O OO

—t m O O = = OO == OO = OO
—_OoO RO, O, O, OO =0 =0
—, O, O, O, OO —OOo 0o oo

6. Find the simplest Boolean equation for the Karnaugh map below without using Boolean alge-
bra to simplify it. Draw the ladder logic.

ABC ABC ABC ABC ABC ABC ABC ABC

DE | 1 |1 0 1 0| 0 0 0
DE| 1 |1 0 0 0| 0 0 0
pE | 1 |1 0 0 0| 0 0 0
pE | 1 | 1 0 1 0| 0 0 0

7. Given the following truth table for inputs A, B, C and D and output X. Convert it to simplified

plc karnaugh - 7.8

ladder logic using a Karnaugh map.

A B C D X
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

8. Consider the following truth table. Convert it to a Karnaugh map and develop a simplified

plc karnaugh - 7.9

Boolean equation (without Boolean algebra). Draw the corresponding ladder logic.

output

inputs

plc karnaugh - 7.10

9. Given the truth table below

e e R R R R = = O OO OO OO O >
et et = O O OO = = = OO OO o
ekt et QO = = OO = OO — OO O
—_ o OoO—=O—RO—O—RO—=O—O T
—_,eE O OO O =R OOOOO | N

a) find a Boolean algebra expression using a Karnaugh map.
b) draw a ladder diagram using the truth table (not the Boolean expression).

10. Convert the following ladder logic to a Karnaugh map.

| A C A X@
|

B D

11. a) Construct a truth table for the following problem.
1) there are three buttons A, B, C.
i1) the output is on if any two buttons are pushed.
ii1) if C is pressed the output will always turn on.
b) Develop a Boolean expression.
c) Develop a Boolean expression using a Karnaugh map.

12. Develop the simplest Boolean expression for the Karnaugh map below,

a) graphically.
b) by Boolean Algebra
AB| AB| AB| AB
CD 1 1
CD 1 1
CD
CD 1 1

plc karnaugh - 7.11

13. Consider the following boolean equation.

X = (A+BA)A+(CD+CD+ CD)

a) Can this Boolean equation be converted directly ladder logic. Explain your
answer, and if necessary, make any changes required so that it may be converted
to ladder logic.

b) Write out ladder logic, based on the result in step a).

¢) Simplify the equation using Boolean algebra and write out new ladder logic.

d) Write a Karnaugh map for the Boolean equation, and show how it can be used to
obtain a simplified Boolean equation.

7.4 PRACTICE PROBLEM SOLUTIONS

AB

CD | 1 1
B 11 o |1
cg o0 |0 |1
e 0 |0 [0 |1
CD
00 01 11 10

00 |0

ol | o0 X = BC

1| o

10 | o0

B

plc karnaugh - 7.12

5 CD CD CD CD -For all, B is true
\ / H
AB 1 0 1
AB 0 0 0 0 __
- B(AD + AD)
AB 0 0 0 0
AB 0 ‘ 1 1 > 0
FOR X FORY
CD CD
00 o01 11 10 00 o01 11 10
00 0 0 0 0 00
AB 01 0 0 0 0 AB 01
11 1 1 0 0 11
10 1 1 0 0 10
X=4-C Y =
A C
B C D| |
||
B C

plc karnaugh - 7.13

Y = G(E+D)

G | E v
||
D
ABLARC ABC, ABC, ABC ABC ABC ABC
DE 1 1 0 \31/ 0 0 0 0
DE 1 1 0 0 0 0 0 0
DE 1 1 0 0 0 0 0 0
DE 1 1 0 1 0 0 0 0
__ ABCE o
AB output = AB+ ABCE
A B
O output
A B | %
NN
B

Qx

DE
DE

DE

plc karnaugh - 7.14

ABC ABC ABC ABC ABC ABC ABC ABC
0| o o |)| o 0
0 0 0 1 0 0
ﬁA B Y
0 1 qﬁ 1 1, 0
0 ll l 0 1 0 0

X = ABC+ D(ABC+ABC +EC)

B C
A B
A B
E

Qx

plc karnaugh - 7.15

O

AB AB AB AB

Dl 1 | o | o 1

cb 1 |0 0 1 Z=B*(C+D)+*ABCD

cp O 0 0 0

cpl |1 1 0 1
A C D
A C D
A C D
A C D
A C D
A C D
A C D

plc karnaugh - 7.16

10.

cb CD CD CD

AB

I1.

out

C+4-B

plc karnaugh - 7.17

12.
DA+ ACD
ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
ACD+ ACD+ ACD
AD+ ACD
13.

a) X = AB+ A4+ (C+D)(C+D)(C+D)

c) X=A+B+CD
CDh CD CD CD

AB| 1 1 1 1

AB| 1 0 0 0

AB 1 1 1 1

7.5 ASSIGNMENT PROBLEMS

1. Use the Karnaugh map below to create a simplified Boolean equation. Then use the equation to
create ladder logic.

AB AB AB AB

Chl | | 4 1 1

plc karnaugh - 7.18

2. Use a Karnaugh map to develop simplified ladder logic for the following truth table where A,
B, C and D are inputs, and X and Y are outputs.

A B C D X Y
o o0 o0 O 0 O
o 0 0 1 1 0
0 O 1 0 0 O
0 0 1 1 1 0
0 1 0 0 0 O
0 1 0 1 0 1
0 1 1 0 0 1
0 1 1 1 0 1
1 0 0 O 0 O
1 0 O 1 1 0
1 0 1 0 0 O
1 0 1 1 1 0
1 1 0 0 0 O
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 1 1 1

3. You are planning the basic layout for a control system with the criteria provided below. You
need to plan the wiring for the input and output cards, and then write the ladder logic for the
controller. You decide to use a Boolean logic design technique to design the ladder logic.
AND, your design will be laid out on the design sheets found later in this book.

* There are two inputs from PNP photoelectric sensors part and busy.

* There is a NO cycle button, and NC stop button.

* There are two outputs to indicator lights, the running light and the stopped light.

* There is an output to a conveyor, that will drive a high current 120Vac motor.

* The conveyor is to run when the part sensor is on and while the cycle button is
pushed, but the busy sensor is off. If the sfop button is pushed the conveyor will
stop.

» While the conveyor is running the running light will be on, otherwise the stopped
light will be on.

plc karnaugh - 7.19

4. Convert the following truth table to simplified ladder logic using a Karnaugh map AND Bool-
ean equations. The inputs are A, B, C and D and the output is X.

A

w
9!
=)
s

— e e e e e e —m O O O OO OO O
—_— = = O O OO == =0 OO0 O
—_—_ O O R, P, OO = =) OO == OO0
—_— O, O, O, O, O —=O—=O =0
O ORP OO, OO —=—=)O0O —rM—

plc operation - 8.1

8. PLC OPERATION

Topics:
* The computer structure of a PLC

* The sanity check, input, output and logic scans
« Status and memory types

Objectives:
* Understand the operation of a PLC.

8.1 INTRODUCTION

For simple programming the relay model of the PLC is sufficient. As more com-
plex functions are used the more complex vonNeumann model of the PLC must be used.
A vonNeumann computer processes one instruction at a time. Most computers operate this
way, although they appear to be doing many things at once. Consider the computer com-
ponents shown in Figure 8.1.

Keyboard
(Input) \

' x86 p SVGA Screen
Serial CPU (Output)
Mouse
(Input) | 5

1GB Memory 30 GB Disk
(Storage) (Storage)

Figure 8.1 Simplified Personal Computer Architecture

Input is obtained from the keyboard and mouse, output is sent to the screen, and
the disk and memory are used for both input and output for storage. (Note: the directions
of these arrows are very important to engineers, always pay attention to indicate where
information is flowing.) This figure can be redrawn as in Figure 8.2 to clarify the role of

plc operation - 8.2

inputs and outputs.

|
. : o o
inputs input circuits | computer output circuits outputs
|
|

Keyboard

Input Uart [
|

|
|
|
|
|
|
\L Monitot
+ Graphics /I/'J '

—_ |
—_

/'ﬂ x86 CPU onrd
|
|
| \
~
/

|
|
|
Digital output $ LED display
|
|
|
|
|
|
|

y —
/ Disk Controlleq ™
y N
N
/ ~
/ AN
/ Memory ICs Disk b

|
I
I
I
>
I
I
I
Mouse _I‘ Serial Input Uart
I
I
I
I
I
I
I
|

~

storage

Figure 8.2 An Input-Output Oriented Architecture

In this figure the data enters the left side through the inputs. (Note: most engineer-
ing diagrams have inputs on the left and outputs on the right.) It travels through buffering
circuits before it enters the CPU. The CPU outputs data through other circuits. Memory
and disks are used for storage of data that is not destined for output. If we look at a per-
sonal computer as a controller, it is controlling the user by outputting stimuli on the
screen, and inputting responses from the mouse and the keyboard.

A PLC is also a computer controlling a process. When fully integrated into an
application the analogies become;

inputs - the keyboard is analogous to a proximity switch

input circuits - the serial input uart is like a 24Vdc input card

computer - the x86 CPU is like a PLC CPU unit

output circuits - a graphics card is like a triac output card

outputs - a monitor is like a light

storage - memory in PLCs is similar to memories in personal computers

plc operation - 8.3

It is also possible to implement a PLC using a normal Personal Computer,
although this is not advisable. In the case of a PLC the inputs and outputs are designed to
be more reliable and rugged for harsh production environments.

8.2 OPERATION SEQUENCE

All PLCs have four basic stages of operations that are repeated many times per
second. Initially when turned on the first time it will check it’s own hardware and software
for faults. If there are no problems it will copy all the input and copy their values into
memory, this is called the input scan. Using only the memory copy of the inputs the ladder
logic program will be solved once, this is called the logic scan. While solving the ladder
logic the output values are only changed in temporary memory. When the ladder scan is
done the outputs will updated using the temporary values in memory, this is called the out-
put scan. The PLC now restarts the process by starting a self check for faults. This process
typically repeats 10 to 100 times per second as is shown in Figure 8.3.

Selff input| logic| output | Self input| logic| output | Self input| logic
test| scan | solve| scan test| scan | solve| scan test| scan | solve
| —
0 ranges from <1 to 100 ms are possible time
A N
PLC turns on

SELF TEST - Checks to see if all cards error free, reset watch-dog timer, etc. (A watchdog
timer will cause an error, and shut down the PLC if not reset within a short period of
time - this would indicate that the ladder logic is not being scanned normally).

INPUT SCAN - Reads input values from the input cards, and copies their values to mem-
ory. This makes the PLC operation faster, and avoids cases where an input changes
from the start to the end of the program (e.g., an emergency stop). There are special
PLC functions that read the inputs directly, and avoid the input tables.

LOGIC SOLVE/SCAN - Based on the input table in memory, the program is executed 1
step at a time, and outputs are updated. This is the focus of the later sections.

OUTPUT SCAN - The output table is copied from memory to the outputs. These then
drive the output devices.

Figure 8.3 PLC Scan Cycle

The input and output scans often confuse the beginner, but they are important. The

plc operation - 8.4

input scan takes a snapshot of the inputs, and solves the logic. This prevents potential
problems that might occur if an input that is used in multiple places in the ladder logic pro-
gram changed while half way through a ladder scan. Thus changing the behaviors of half
of the ladder logic program. This problem could have severe effects on complex programs
that are developed later in the book. One side effect of the input scan is that if a change in
input is too short in duration, it might fall between input scans and be missed.

When the PLC is initially turned on the normal outputs will be turned off. This
does not affect the values of the inputs.

8.2.1 The Input and Output Scans

When the inputs to the PLC are scanned the physical input values are copied into
memory. When the outputs to a PLC are scanned they are copied from memory to the
physical outputs. When the ladder logic is scanned it uses the values in memory, not the
actual input or output values. The primary reason for doing this is so that if a program uses
an input value in multiple places, a change in the input value will not invalidate the logic.
Also, if output bits were changed as each bit was changed, instead of all at once at the end
of the scan the PLC would operate much slower.

8.2.2 The Logic Scan

Ladder logic programs are modelled after relay logic. In relay logic each element
in the ladder will switch as quickly as possible. But in a program elements can only be
examines one at a time in a fixed sequence. Consider the ladder logic in Figure 8.4, the
ladder logic will be interpreted left-to-right, top-to-bottom. In the figure the ladder logic
scan begins at the top rung. At the end of the rung it interprets the top output first, then the
output branched below it. On the second rung it solves branches, before moving along the
ladder logic rung.

plc operation - 8.5

Figure 8.4 Ladder Logic Execution Sequence

The logic scan sequence become important when solving ladder logic programs
which use outputs as inputs, as we will see in Chapter 8. It also becomes important when
considering output usage. Consider Figure 8.5, the first line of ladder logic will examine
input 4 and set output X to have the same value. The second line will examine input B and
set the output X to have the opposite value. So the value of X was only equal to 4 until the
second line of ladder logic was scanned. Recall that during the logic scan the outputs are
only changed in memory, the actual outputs are only updated when the ladder logic scan is
complete. Therefore the output scan would update the real outputs based upon the second
line of ladder logic, and the first line of ladder logic would be ineffective.

A QXi

B QXi

Note: It is a common mistake for beginners to unintentionally repeat
the same ladder logic output more than once. This will basically

invalidate the first output, in this case the first line will never do
anything.

Figure 8.5 A Duplicated Output Error

plc operation - 8.6
8.3 PLC STATUS

The lack of keyboard, and other input-output devices is very noticeable on a PLC.
On the front of the PLC there are normally limited status lights. Common lights indicate;

power on - this will be on whenever the PLC has power

program running - this will often indicate if a program is running, or if no program
is running

fault - this will indicate when the PLC has experienced a major hardware or soft-
ware problem

These lights are normally used for debugging. Limited buttons will also be pro-
vided for PLC hardware. The most common will be a run/program switch that will be
switched to program when maintenance is being conducted, and back to run when in pro-
duction. This switch normally requires a key to keep unauthorized personnel from altering
the PLC program or stopping execution. A PLC will almost never have an on-off switch or
reset button on the front. This needs to be designed into the remainder of the system.

The status of the PLC can be detected by ladder logic also. It is common for pro-

grams to check to see if they are being executed for the first time, as shown in Figure 8.6.
The ’first scan’ or ’first pass’ input will be true the very first time the ladder logic is
scanned, but false on every other scan. In this case the address for *first pass’ in Control-
Logix is ’S:FS’. With the logic in the example the first scan will seal on ’light’, until
“clear’ is turned on. So the light will turn on after the PLC has been turned on, but it will
turn off and stay off after "clear’ is turned on. The ’first scan’ bit is also referred to at the
“first pass’ bit.

first scan
S:FS clear

\}\lN Q light
light

Figure 8.6 ~ An program that checks for the first scan of the PLC

8.4 MEMORY TYPES

There are a few basic types of computer memory that are in use today.

plc operation - 8.7

RAM (Random Access Memory) - this memory is fast, but it will lose its contents
when power is lost, this is known as volatile memory. Every PLC uses this
memory for the central CPU when running the PLC.

ROM (Read Only Memory) - this memory is permanent and cannot be erased. It is
often used for storing the operating system for the PLC.

EPROM (Erasable Programmable Read Only Memory) - this is memory that can
be programmed to behave like ROM, but it can be erased with ultraviolet light
and reprogrammed.

EEPROM (Electronically Erasable Programmable Read Only Memory) - This
memory can store programs like ROM. It can be programmed and erased using
a voltage, so it is becoming more popular than EPROMs.

Hard Disk - Software based PLCs run on top of another operating system (such as
Windows) that will read and save values to a hard drive, in case power is lost.

All PLCs use RAM for the CPU and ROM to store the basic operating system for
the PLC. When the power is on the contents of the RAM will be kept, but the issue is what
happens when power to the memory is lost. Originally PLC vendors used RAM with a bat-
tery so that the memory contents would not be lost if the power was lost. This method is
still in use, but is losing favor. EPROMs have also been a popular choice for programming
PLCs. The EPROM is programmed out of the PLC, and then placed in the PLC. When the
PLC is turned on the ladder logic program on the EPROM is loaded into the PLC and run.
This method can be very reliable, but the erasing and programming technique can be time
consuming. EEPROM memories are a permanent part of the PLC, and programs can be
stored in them like EPROM. Memory costs continue to drop, and newer types (such as
flash memory) are becoming available, and these changes will continue to impact PLCs.

8.5 SOFTWARE BASED PLCS

The dropping cost of personal computers is increasing their use in control, includ-
ing the replacement of PLCs. Software is installed that allows the personal computer to
solve ladder logic, read inputs from sensors and update outputs to actuators. These are
important to mention here because they don’t obey the previous timing model. For exam-
ple, if the computer is running a game it may slow or halt the computer. This issue and
others are currently being investigated and good solutions should be expected soon.

8.6 SUMMARY

* A PLC and computer are similar with inputs, outputs, memory, etc.

» The PLC continuously goes through a cycle including a sanity check, input scan,
logic scan, and output scan.

» While the logic is being scanned, changes in the inputs are not detected, and the

plc operation - 8.8

outputs are not updated.
* PLCs use RAM, and sometime EPROMs are used for permanent programs.

8.7 PRACTICE PROBLEMS

1. Does a PLC normally contain RAM, ROM, EPROM and/or batteries.
2. What are the indicator lights on a PLC used for?
3. A PLC can only go through the ladder logic a few times per second. Why?

4. What will happen if the scan time for a PLC is greater than the time for an input pulse? Why?

N

. What is the difference between a PLC and a desktop computer?

)

. Why do PLCs do a self check every scan?

~

. Will the test time for a PLC be long compared to the time required for a simple program.

8. What is wrong with the following ladder logic? What will happen if it is used?

<X <X

L

9. What is the address for a memory location that indicates when a PLC has just been turned on?

8.8 PRACTICE PROBLEM SOLUTIONS

1. Every PLC contains RAM and ROM, but they may also contain EPROM or batteries.
2. Diagnostic and maintenance

3. Even if the program was empty the PLC would still need to scan inputs and outputs, and do a
self check.

4. The pulse may be missed if it occurs between the input scans

plc operation - 8.9

5. Some key differences include inputs, outputs, and uses. A PLC has been designed for the fac-
tory floor, so it does not have inputs such as keyboards and mice (although some newer types
can). They also do not have outputs such as a screen or sound. Instead they have inputs and
outputs for voltages and current. The PLC runs user designed programs for specialized tasks,
whereas on a personal computer it is uncommon for a user to program their system.

6. This helps detect faulty hardware or software. If an error were to occur, and the PLC continued
operating, the controller might behave in an unpredictable way and become dangerous to peo-
ple and equipment. The self check helps detect these types of faults, and shut the system down
safely.

7. Yes, the self check is equivalent to about Ims in many PLCs, but a single program instruction is
about 1 micro second.

8. The normal output Y is repeated twice. In this example the value of Y would always match B,
and the earlier rung with 4 would have no effect on Y.

9. S2:1/14 for micrologix, S2:1/15 for PLC-5, S:FS for ControlLogix processor

8.9 ASSIGNMENT PROBLEMS

1. Describe the basic steps of operation for a PLC after it is turned on.
2. Repeating a normal output in ladder logic should not be done normally. Discuss why.

3. Why does removing a battery from some older PLCs clear the memory?

plc timers - 9.1

9. LATCHES, TIMERS, COUNTERS AND MORE

Topics:
* Latches, timers, counters and MCRs

* Design examples
* Internal memory locations are available, and act like outputs

Objectives:
» Understand latches, timers, counters and MCRs.
* To be able to select simple internal memory bits.

9.1 INTRODUCTION

More complex systems cannot be controlled with combinatorial logic alone. The
main reason for this is that we cannot, or choose not to add sensors to detect all conditions.
In these cases we can use events to estimate the condition of the system. Typical events

used by a PLC include;

first scan of the PLC - indicating the PLC has just been turned on
time since an input turned on/off - a delay

count of events - to wait until set number of events have occurred
latch on or unlatch - to lock something on or turn it off

The common theme for all of these events is that they are based upon one of two
questions "How many?" or "How long?". An example of an event based device is shown
in Figure 9.1. The input to the device is a push button. When the push button is pushed the
input to the device turns on. If the push button is then released and the device turns off, it
is a logical device. If when the push button is release the device stays on, is will be one
type of event based device. To reiterate, the device is event based if it can respond to one
or more things that have happened before. If the device responds only one way to the

immediate set of inputs, it is logical.

plc timers - 9.2

e.g. A Start Push Button

Push Button
+V S
© Device
On/Off
A

Push Button BE—

Device (Logical Response)
Device | (Event Response)

» time

Figure 9.1 An Event Driven Device

9.2 LATCHES

A latch is like a sticky switch - when pushed it will turn on, but stick in place, it
must be pulled to release it and turn it off. A latch in ladder logic uses one instruction to
latch, and a second instruction to unlatch, as shown in Figure 9.2. The output with an L
inside will turn the output D on when the input 4 becomes true. D will stay on even if 4
turns off. Output D will turn off if input B becomes true and the output with a U inside
becomes true (Note: this will seem a little backwards at first). If an output has been latched
on, it will keep its value, even if the power has been turned off.

FTT

Figure 9.2 A Ladder Logic Latch

plc timers - 9.3

The operation of the ladder logic in Figure 9.2 is illustrated with a timing diagram
in Figure 9.3. A timing diagram shows values of inputs and outputs over time. For exam-
ple the value of input A starts low (false) and becomes high (true) for a short while, and
then goes low again. Here when input 4 turns on both the outputs turn on. There is a slight
delay between the change in inputs and the resulting changes in outputs, due to the pro-
gram scan time. Here the dashed lines represent the output scan, sanity check and input
scan (assuming they are very short.) The space between the dashed lines is the ladder logic
scan. Consider that when 4 turns on initially it is not detected until the first dashed line.
There is then a delay to the next dashed line while the ladder is scanned, and then the out-
put at the next dashed line. When 4 eventually turns off, the normal output C turns off, but
the latched output D stays on. Input B will unlatch the output D. Input B turns on twice,
but the first time it is on is not long enough to be detected by an input scan, so it is ignored.
The second time it is on it unlatches output D and output D turns off.

event too short to be noticed (aliasing)

Timing Diagram

These lines indicate PLC input/output refresh times. At this time
all of the outputs are updated, and all of the inputs are read.
Notice that some inputs can be ignored if at the wrong time,

and there can be a delay between a change in input, and a change
in output.

The space between the lines is the scan time for the ladder logic.
The spaces may vary if different parts of the ladder diagram are
executed each time through the ladder (as with state space code).
The space is a function of the speed of the PLC, and the number of
Ladder logic elements in the program.

Figure 9.3 A Timing Diagram for the Ladder Logic in Figure 9.2

plc timers - 9.4

The timing diagram shown in Figure 9.3 has more details than are normal in a tim-
ing diagram as shown in Figure 9.4. The brief pulse would not normally be wanted, and
would be designed out of a system either by extending the length of the pulse, or decreas-
ing the scan time. An ideal system would run so fast that aliasing would not be possible.

s

Figure 9.4 A Typical Timing Diagram

A more elaborate example of latches is shown in Figure 9.5. In this example the
addresses are for an older Allen-Bradley Micrologix controller. The inputs begin with 7/,
followed by an input number. The outputs begin with O/, followed by an output number.

plc timers - 9.5

1/0 0/0
1/0 O/L .
/1 /1
U >7
1/0 012
/1 0/2
A
o | [M - 1
1 [1
o/0—L I 1 [e e

o/1—— L | | [

072

[
T

Figure 9.5 A Latch Example

A normal output should only appear once in ladder logic, but latch and unlatch
instructions may appear multiple times. In Figure 9.5 a normal output O/2 is repeated
twice. When the program runs it will examine the fourth line and change the value of O/2
in memory (remember the output scan does not occur until the ladder scan is done.) The
last line is then interpreted and it overwrites the value of O/2. Basically, only the last line
will change O/2.

Latches are not used universally by all PLC vendors, others such as Siemens use

plc timers - 9.6

flip-flops. These have a similar behavior to latches, but a different notation as illustrated in
Figure 9.6. Here the flip-flop is an output block that is connected to two different logic
rungs. The first rung shown has an input 4 connected to the S setting terminal. When 4
goes true the output value Q will go true. The second rung has an input B connected to the
R resetting terminal. When B goes true the output value O will be turned off. The output O
will always be the inverse of Q. Notice that the S and R values are equivalent to the L and
U values from earlier examples.

A
S Q
B —
R Q
A
AT 1 1 M
B | 1 1 1
Ql— 1 I |
Q1 1 |
>

Figure 9.6 Flip-Flops for Latching Values

9.3 TIMERS

There are four fundamental types of timers shown in Figure 9.7. An on-delay timer
will wait for a set time after a line of ladder logic has been true before turning on, but it
will turn off immediately. An off-delay timer will turn on immediately when a line of lad-
der logic is true, but it will delay before turning off. Consider the example of an old car. If
you turn the key in the ignition and the car does not start immediately, that is an on-delay.
If you turn the key to stop the engine but the engine doesn’t stop for a few seconds, that is
an off delay. An on-delay timer can be used to allow an oven to reach temperature before
starting production. An off delay timer can keep cooling fans on for a set time after the

plc timers - 9.7

oven has been turned off.

on-delay off-delay
retentive RTO RTF
nonretentive TON TOF

TON - Timer ON
TOF - Timer OFf
RTO - Retentive Timer On
RTF - Retentive Timer oFf

Figure 9.7 The Four Basic Timer Types

A retentive timer will sum all of the on or off time for a timer, even if the timer
never finished. A nonretentive timer will start timing the delay from zero each time. Typi-
cal applications for retentive timers include tracking the time before maintenance is
needed. A non retentive timer can be used for a start button to give a short delay before a
conveyor begins moving.

An example of an Allen-Bradley TON timer is shown in Figure 9.8. The rung has a
single input 4 and a function block for the TON. (Note: This timer block will look differ-
ent for different PLCs, but it will contain the same information.) The information inside
the timer block describes the timing parameters. The first item is the timer ’example’. This
is a location in the PLC memory that will store the timer information. The preset is the
millisecond delay for the timer, in this case it is 4s (4000ms). The accumulator value gives
the current value of the timer as (. While the timer is running the accumulated value will
increase until it reaches the preset value. Whenever the input A4 is true the EN output will
be true. The DN output will be false until the accumulator has reached the preset value.
The EN and DN outputs cannot be changed when programming, but these are important
when debugging a ladder logic program. The second line of ladder logic uses the timer DN
output to control another output B.

plc timers - 9.8

TON

A] | Timer example

|| Preset 4000 [(EN)

Accumulator 0

—(DN)

example.DN

Al

example.

example.

example.

B

example.]

0 3 6 9 13 14 17 19

Note: For the older Allen-Bradley equipment the notations are similar, although the
tag names are replaced with a more strict naming convention. The timers are kept
in ’files’ with names starting with *T4:’, followed by a timer number. The exam-
ples below show the older (PLC-5 and micrologix notations compared to the new
RS-Logix (5000) notations. In the older PLCs the timer is given a unique number,
in the RSLogix 5000 processors it is given a tag name (in this case ’t’) and type

"TIMER’.
Older Newer
T4:0/DN t.DN
T4:0/EN t.EN
T4:0.PRE t.PRE
T4:0.ACC t.ACC
T4:0/TT t.TT

Figure 9.8 An Allen-Bradley TON Timer

plc timers - 9.9

The timing diagram in Figure 9.8 illustrates the operation of the TON timer with a
4 second on-delay. 4 is the input to the timer, and whenever the timer input is true the EN
enabled bit for the timer will also be true. If the accumulator value is equal to the preset
value the DN bit will be set. Otherwise, the 77 bit will be set and the accumulator value
will begin increasing. The first time 4 is true, it is only true for 3 seconds before turning
off, after this the value resets to zero. (Note: in a retentive time the value would remain at
3 seconds.) The second time 4 is true, it is on more than 4 seconds. After 4 seconds the 77T
bit turns off, and the DN bit turns on. But, when A4 is released the accumulator resets to
zero, and the DN bit is turned off.

A value can be entered for the accumulator while programming. When the pro-
gram is downloaded this value will be in the timer for the first scan. If the TON timer is
not enabled the value will be set back to zero. Normally zero will be entered for the preset
value.

The timer in Figure 9.9 is identical to that in Figure 9.8, except that it is retentive.
The most significant difference is that when the input A4 is turned off the accumulator
value does not reset to zero. As a result the timer turns on much sooner, and the timer does
not turn off after it turns on. A reset instruction will be shown later that will allow the
accumulator to be reset to zero.

RTO
AI | Timer example ——(EN)
I Preset 4000
Accum. 0 —(DN)

AL
example.EN y—|

example.DN

g

example. Ll—\

]

Xﬁ.---

example., ACC 0

plc timers - 9.10

Figure 9.9 An Allen Bradley Retentive On-Delay Timer

An off delay timer is shown in Figure 9.10. This timer has a time base of 0.01s,
with a preset value of 3500, giving a total delay of 3.5s. As before the EN enable for the
timer matches the input. When the input 4 is true the DN bit is on. Is is also on when the
input 4 has turned off and the accumulator is counting. The DN bit only turns off when the
input 4 has been off long enough so that the accumulator value reaches the preset. This
type of timer is not retentive, so when the input 4 becomes true, the accumulator resets.

TOF
| A| | Timer example ——(EN)
| || Preset 3500

Accum. 0 —(DN)

A ! | N ; ! :
example. EN |—|: | |' |_'—|_
example. PN |_|
example. |—|_|7
example.

0 . ’ B ‘ I—/ .

0 3 6 9.5 10 16 18 20

Figure 9.10 An Allen Bradley Off-Delay Timer

Retentive off-delay (RTF) timers have few applications and are rarely used, there-
fore many PLC vendors do not include them.

An example program is shown in Figure 9.11. In total there are four timers used in
this example,t 1,t 2,t 3,andt 4. The timer instructions are shown with the accumulator
values omitted, assuming that they start with a value of zero. All four different types of
counters have the input ‘go’. Output 'done’ will turn on when the TON counter ¢ [is
done. All four of the timers can be reset with input reset’.

plc timers - 9.11

g? TON t 1
| I delay 4 sec
RTO t 2
gT I delay 4 sec
g? TOF 3
| I delay 4 sec
RTF ¢ 4
gT I delay 4 sec
t I.DN /done
| N >
reset RES 1
t
reset RES 5
t
reset RES 3
t
reset RES 7
t

Figure 9.11 A Timer Example

A timing diagram for this example is shown in Figure 9.12. As input go is turned
on the TON and RTO timers begin to count and reach 4s and turn on. When reset becomes
true it resets both timers and they start to count for another second before go is turned off.
After the input is turned off the TOF and RTF both start to count, but neither reaches the
4s preset. The input go is turned on again and the TON and RTO both start counting. The
RTO turns on one second sooner because it had 1s stored from the 7-8s time period. After
go turns off again both the off delay timers count down, and reach the 4 second delay, and
turn on. These patterns continue across the diagram.

plc timers - 9.12

A
11 T | [
£0 N | o I
| N | N N
resetl | LI L] [11 | L[
| [[[] | [
| I N ||
t 1.DN H||| T T
| N | N N
t 2.DNI L] [T 1 L1 | L
B | [[[] | [
Ll L L L1
t 3.DN R o L L
| N | N N
t 4.DNI rrr] L1 | |1
o | [[[] | [
| B N ||
donel L L1 !]
[TT1 |||||||||il|||I||||i|||||||||i|||||||||itﬁne
0 5 10 15 20 25 30 35 40 (sec)

Figure 9.12 A Timing Diagram for Figure 9.11

Consider the short ladder logic program in Figure 9.13 for control of a heating
oven. The system is started with a Start button that seals in the Auto mode. This can be
stopped if the Stop button is pushed. (Remember: Stop buttons are normally closed.)
When the Auto goes on initially the TON timer is used to sound the horn for the first 10
seconds to warn that the oven will start, and after that the horn stops and the heating coils
start. When the oven is turned off the fan continues to blow for 300s or 5 minutes after.

plc timers - 9.13

Start Sto
| ﬁ) Auto
|
Auto
Auto TON
Timer heat
Delay 10s
TOF
Timer cooling
Delay 300s
heat. TT
Q Horn
heat. DN . .
Q Heating Coils
cooling. DN
Q Fan

Note: For the remainder of the text I will use the shortened notation for timers
shown above. This will save space and reduce confusion.

Figure 9.13 A Timer Example

A program is shown in Figure 9.14 that will flash a light once every second. When
the PLC starts, the second timer will be off and the ¢ on. DN bit will be off, therefore the
normally closed input to the first timer will be on. #_off will start timing until it reaches
0.5s, when it is done the second timer will start timing, until it reaches 0.5s. At that point
t on.DN will become true, and the input to the first time will become false. ¢ off'is then set
back to zero, and then ¢ on is set back to zero. And, the process starts again from the
beginning. In this example the first timer is used to drive the second timer. This type of
arrangement is normally called cascading, and can use more that two timers.

plc timers - 9.14

\—i\;\ Timer t_off
Delay 0.5s
|| Timer t _on
Delay 0.5s
t on.TT
‘{ I Q Light

Figure 9.14 Another Timer Example

9.4 COUNTERS

There are two basic counter types: count-up and count-down. When the input to a
count-up counter goes true the accumulator value will increase by 1 (no matter how long
the input is true.) If the accumulator value reaches the preset value the counter DN bit will
be set. A count-down counter will decrease the accumulator value until the preset value is
reached.

An Allen Bradley count-up (CTU) instruction is shown in Figure 9.15. The
instruction requires memory in the PLC to store values and status, in this case is example.
The preset value is 4 and the value in the accumulator is 2. If the input 4 were to go from
false to true the value in the accumulator would increase to 3. If 4 were to go off, then on
again the accumulator value would increase to 4, and the DN bit would go on. The count
can continue above the preset value. If input B becomes true the value in the counter accu-
mulator will become zero.

plc timers - 9.15

CTU
A| I Counter example (CU)
] Preset 4
Accum. 2 (DN)
example.DN

R RES [example

& O

Note: The notations for older Allen-Bradley equipment are very similar to the newer
notations. The examples below show the older (PLC-5 and micrologix notations
compared to the new RS-Logix (5000) notations. In the older PLCs the counter is
given a unique name, in the RSLogix 5000 processors it is given a name (in this
case ’c’) and the type 'TCOUNTER’.

Older Newer
C5:0/DN c¢.DN
C5:0/CU c.CU
C5:0.PRE c.PRE
C5:0.ACC c.ACC
C5:0/CD c.CD

Figure 9.15 An Allen Bradley Counter

Count-down counters are very similar to count-up counters. And, they can actually
both be used on the same counter memory location. Consider the example in Figure 9.16,
the example input cnt_up drives the count-up instruction for counter example. Input
cnt_down drives the count-down instruction for the same counter location. The preset
value for a counter is stored in memory location example so both the count-up and count-
down instruction must have the same preset. Input reset will reset the counter.

plc timers - 9.16

cnt_ up CTU example
preset 3
cnt, down CTD example
preset 3

reset
RES example

example.DN output_thingy
A
ent up | [T LI LI LI LI LT Mo
cnt_down puplply
reset M M
example.DN M] —
output thingy
>

Figure 9.16 A Counter Example

The timing diagram in Figure 9.16 illustrates the operation of the counter. If we
assume that the value in the accumulator starts at 0, then the positive edges on the cnt_up
input will cause it to count up to 3 where it turns the counter example done bit on. It is then
reset by input reset and the accumulator value goes to zero. Input cnt_up then pulses again
and causes the accumulator value to increase again, until it reaches a maximum of 5. Input
cnt_down then causes the accumulator value to decrease down below 3, and the counter
turns off again. Input cnt_up then causes it to increase, but input reset resets the accumula-
tor back to zero again, and the pulses continue until 3 is reached near the end.

plc timers - 9.17

The program in Figure 9.17 is used to remove 5 out of every 10 parts from a con-
veyor with a pneumatic cylinder. When the part is detected both counters will increase
their values by 1. When the sixth part arrives the first counter will then be done, thereby
allowing the pneumatic cylinder to actuate for any part after the fifth. The second counter
will continue until the eleventh part is detected and then both of the counters will be reset.

part T;Tresent CTU
||

Counter parts_cnt
Preset 6

CTU
Counter parts _max|
Preset 11

parts_max.DN
| T

B RES) parts cnt

RES) parts max

par1|:sTcnt.DN part|p|resent
| |

pneumatic
cylinder

@G

Figure 9.17 A Counter Example

9.5 MASTER CONTROL RELAYS (MCRys)

In an electrical control system a Master Control Relay (MCR) is used to shut down
a section of an electrical system, as shown earlier in the electrical wiring chapter. This
concept has been implemented in ladder logic also. A section of ladder logic can be put
between two lines containing MCR’s. When the first MCR coil is active, all of the inter-
mediate ladder logic is executed up to the second line with an MCR coil. When the first
MCR coil in inactive, the ladder logic is still examined, but all of the outputs are forced
off.

Consider the example in Figure 9.18. If 4 is true, then the ladder logic after will be

plc timers - 9.18

executed as normal. If 4 is false the following ladder logic will be examined, but all of the
outputs will be forced off. The second MCR function appears on a line by itself and marks
the end of the MCR block. After the second MCR the program execution returns to nor-
mal. While 4 is true, X will equal B, and Y can be turned on by C, and off by D. But, if 4
becomes false X will be forced off, and Y will be left in its last state. Using MCR blocks to
remove sections of programs will not increase the speed of program execution signifi-
cantly because the logic is still examined.

M

i

<

DOOOE

Note: If a normal input is used inside an MCR block it will be forced off. If the
output is also used in other MCR blocks the last one will be forced off. The
MCR is designed to fully stop an entire section of ladder logic, and is best
used this way in ladder logic designs.

Figure 9.18 MCR Instructions

If the MCR block contained another function, such as a TON timer, turning off the

MCR block would force the timer off. As a general rule normal outputs should be outside
MCR blocks, unless they must be forced off when the MCR block is off.

plc timers - 9.19

9.6 INTERNAL BITS

Simple programs can use inputs to set outputs. More complex programs also use
internal memory locations that are not inputs or outputs. These Boolean memory locations
are sometimes referred to as ’internal relays’ or ’control relays’. Knowledgeable program-
mers will often refer to these as "bit memory’. In the newer Allen Bradley PLCs these can
be defined as variables with the type "SBOOL’. The programmer is free to use these mem-
ory locations however they see fit.

NOTE: In the older Allen Brad- bit memory bit memory
ley PLCs these addresses number | location number | location
begin with ’B3’ by default.

The first bit in memory is 0 B3:0/0 18 B3:1/2
’B3:0/0°, where the first zero 1 B3:0/1 19 B3:1/3
represents the first 16 bit 2 B3:0/2 20 B3:1/4
word, and the second zero 3 B3:0/3 21 B3:1/5
represents the first bit in the 4 B3:0/4 22 B3:1/6
word. The sequence of bits 5 B3:0/5 23 B3:1/7
is shown to the right. 6 B3:0/6 24 B3:1/8
7 B3:0/7 25 B3:1/9
8 B3:0/8 26 B3:1/10
9 B3:0/9 27 B3:1/11
10 B3:0/10 28 B3:1/12
11 B3:0/11 29 B3:1/13
12 B3:0/12 30 B3:1/14
13 B3:0/13 31 B3:1/15
14 B3:0/14 32 B3:2/0
15 B3:0/15 33 B3:2/1
16 B3:1/0 34 B3:2/2
17 B3:1/1 etc... etc...

An example of bit memory usage is shown in Figure 9.19. The first ladder logic
rung will turn on the internal memory bit ’A_pushed’ (e.g., B3:0/0) when input "hand A’
is activated, and input ’clear’ is off. (Notice that the Boolean memory is being used as
both an input and output.) The second line of ladder logic similar. In this case when both
inputs have been activated, the output ’press on’ is active.

plc timers - 9.20

hand A clear
(1:0/0) (1:0/2) A pushed
M Q (B3:0/0)
A pushed
(B3:0/0)
hand B clear
(1;0/1) (I:O(2) B pushed
\t\?\ (B3:0/1)
B _pushed
(B3:0/1)
A_pushed B_pushed
(B3:0/0) (B3:0/1)
|| | | press_on
| | (0:0/0)

Figure 9.19 An example using bit memory (older notations are in parentheses)

Bit memory was presented briefly here because it is important for design tech-
niques in the following chapters, but it will be presented in greater depth after that.

9.7 DESIGN CASES

The following design cases are presented to help emphasize the principles pre-
sented in this chapter. I suggest that you try to develop the ladder logic before looking at
the provided solutions.

9.7.1 Basic Counters And Timers

Problem: Develop the ladder logic that will turn on an output light, 15 seconds
after switch 4 has been turned on.

plc timers - 9.21

Solution:

TON delay

Preset 15s

delay.DN _
I I Light Q

Figure 9.20 A Simple Timer Example

>

Problem: Develop the ladder logic that will turn on a light, after switch 4 has been
closed 10 times. Push button B will reset the counters.

Solution:

A CTU count

Preset 10

Accum. 0
count.DN .

Light Q

B count
I I RES

Figure 9.21 A Simple Counter Example

9.7.2 More Timers And Counters

Problem: Develop a program that will latch on an output B 20 seconds after input
A has been turned on. After 4 is pushed, there will be a 10 second delay until 4 can have
any effect again. After 4 has been pushed 3 times, B will be turned off.

plc timers - 9.22

Solution:

>
©)
=
@

On TON t 0
Time base: 1.0
Preset 20

t 0.DN Light @

t 0.DN TON t 1
Time base: 1.0
Preset 10

t 1.DN On @

On CTU count
Preset 3
Accum. 0

count. DN Light @

Figure 9.22 A More Complex Timer Counter Example

9.7.3 Deadman Switch

Problem: A motor will be controlled by two switches. The Go switch will start the
motor and the Stop switch will stop it. If the Stop switch was used to stop the motor, the
Go switch must be thrown twice to start the motor. When the motor is active a light should
be turned on. The Stop switch will be wired as normally closed.

plc timers - 9.23

Solution:
Motor Stop
I I \H C5:0 (rEs
Go Motor CTU count
| | \I\!\
| | | Preset 2
Accum. 1
count.DN Stop
[] [Motor
I I Q
Motor .
[1 Light Q
I

Consider:
What will happen if stop is pushed and the motor is not running?

Figure 9.23 A Motor Starter Example

9.7.4 Conveyor

Problem: A conveyor is run by switching on or off a motor. We are positioning
parts on the conveyor with an optical detector. When the optical sensor goes on, we want
to wait 1.5 seconds, and then stop the conveyor. After a delay of 2 seconds the conveyor
will start again. We need to use a start and stop button - a light should be on when the sys-
tem is active.

plc timers - 9.24

Solution:
Go Sto .
| F Light
[1
Light
Part Detect TON incoming
Preset 1.5s
Iir}coming.DN TON stopped
[Preset 2s

incoming. DN ILlight Mot
otor

stopped. DN {ncoming
RES

stopped.DN topped
RES

Consider: What is assumed about part arrival and departure?

O

Figure 9.24 A Conveyor Controller Example

9.7.5 Accept/Reject Sorting

Problem: For the conveyor in the last case we will add a sorting system. Gages
have been attached that indicate good or bad. If the part is good, it continues on. If the part
is bad, we do not want to delay for 2 seconds, but instead actuate a pneumatic cylinder.

plc timers - 9.25

Solution:
Go Stop Light
I
Light
Part Detect TON incoming
Preset 1.5s
Iinlcoming.DN IPlart_Good TON stopped
I I
Preset 2s
Iinlcoming.DN IPar‘[_Good TON rejected
I I
Preset 0.5s
stopped.EN Light
PP | |g Motor
I
rejected. EN .
Cylind¢r
stopped.DN . .
incoming [RES
‘ rejectied.DN
stopped. DN
stopped (' RES
rejected. DN .
rejected RES

Figure 9.25 A Conveyor Sorting Example

plc timers - 9.26

9.7.6 Shear Press

Problem: The basic requirements are,

1. A toggle start switch (TS1) and a limit switch on a safety gate (LS1) must both
be on before a solenoid (SOL1) can be energized to extend a stamping cylinder
to the top of a part.

2. While the stamping solenoid is energized, it must remain energized until a limit
switch (LS2) is activated. This second limit switch indicates the end of a stroke.
At this point the solenoid should be de-energized, thus retracting the cylinder.

3. When the cylinder is fully retracted a limit switch (LS3) is activated. The cycle
may not begin again until this limit switch is active.

4. A cycle counter should also be included to allow counts of parts produced.
When this value exceeds 5000 the machine should shut down and a light lit up.

5. A safety check should be included. If the cylinder solenoid has been on for more
than 5 seconds, it suggests that the cylinder is jammed or the machine has a
fault. If this is the case, the machine should be shut down and a maintenance
light turned on.

plc timers - 9.27

Solution:
TSI LS1 LS3 part cnt. DN
W || L SOL1 /7
[1 [1 |
LS2
SOLI @
extend.DN
SOL1 CTU part_cnt
Preset 5000
Accum. 0
ISIOL 1 RTO extend
[
Preset 5s
extend.DN
LIGHT@
part_cnt.DN

RESET
extend @

- what do we need to do when the machine is reset?

Figure 9.26 A Shear Press Controller Example

9.8 SUMMARY

* Latch and unlatch instructions will hold outputs on, even when the power is
turned off.

* Timers can delay turning on or off. Retentive timers will keep values, even when
inactive. Resets are needed for retentive timers.

* Counters can count up or down.

* When timers and counters reach a preset limit the DN bit is set.

plc timers - 9.28

* MCRs can force off a section of ladder logic.

9.9 PRACTICE PROBLEMS

1. What does edge triggered mean? What is the difference between positive and negative edge
triggered?

2. Are reset instructions necessary for all timers and counters?
3. What are the numerical limits for typical timers and counters?
4. If a counter goes below the bottom limit which counter bit will turn on?

5. a) Write ladder logic for a motor starter that has a start and stop button that uses latches. b)
Write the same ladder logic without latches.

6. Use a timing diagram to explain how an on delay and off delay timer are different.

7. For the retentive off timer below, draw out the status bits.

RTF
A)
Timer t
‘ | | (
‘ | Preset 3.5s EN)
Accum. 0
—(DN)
A ; ; :
A ! ! 5
t.EN
t.DN
t.TT
t.ACC -

plc timers - 9.29

8. Complete the timing diagrams for the two timers below.

RTO
EN
| A|| Timer t (EN)
‘ || Preset 10s (DN)
Accum. 1
A ! ! ;
A ! ! !
t.EN
tTT
tDN
t.ACC e
0 3 6 9 14 17 19 20
TOF
A)
Timer t
| | | (
| || Preset 0.05s EN)
Accum. 0
—(DN)
A ! ; ;
: 1 1
A ! ! !
t.EN
t.TT
t.DN
t.ACC . ’ . -
0 15 45 150 200 ' 225

plc timers - 9.30

9. Given the following timing diagram, draw the done bits for all four fundamental timer types.
Assume all start with an accumulated value of zero, and have a preset of 1.5 seconds.

A

T T
| | | | | | |
TON | | | | | | |
S | | | | | | |
| | | | | | |
| | | | | | |
RTO| | | | | | | |
| | | | | | |
| | | | | | |
TOF| | | | | | | |
| | | | | | |
| | | | | | |
RTF| | | | | | | |
| | | | | | |
R T
0 1 2 3 4 5 6 7

10. Design ladder logic that allows an RTO to behave like a TON.
11. Design ladder logic that uses a timer and counter to measure a time of 50.0 days.

12. Develop the ladder logic that will turn on an output (light), 15 seconds after switch (A) has
been turned on.

13. Develop the ladder logic that will turn on a output (light), after a switch (A) has been closed
10 times. Push button (B) will reset the counters.

14. Develop a program that will latch on an output (B), 20 seconds after input (A) has been turned
on. The timer will continue to cycle up to 20 seconds, and reset itself, until A has been turned
off. After the third time the timer has timed to 20 seconds, B will be unlatched.

15. A motor will be connected to a PLC and controlled by two switches. The GO switch will start
the motor, and the STOP switch will stop it. If the motor is going, and the GO switch is thrown,
this will also stop the motor. If the STOP switch was used to stop the motor, the GO switch
must be thrown twice to start the motor. When the motor is running, a light should be turned on
(a small lamp will be provided).

16. In dangerous processes it is common to use two palm buttons that require a operator to use
both hands to start a process (this keeps hands out of presses, etc.). To develop this there are
two inputs that must be turned on within 0.25s of each other before a machine cycle may begin.

plc timers - 9.31

17. Design a conveyor control system that follows the design guidelines below.

- The conveyor has an optical sensor S/ that detects boxes entering a workcell

- There is also an optical sensor S2 that detects boxes leaving the workcell

- The boxes enter the workcell on a conveyor controlled by output C/

- The boxes exit the workcell on a conveyor controlled by output C2

- The controller must keep a running count of boxes using the entry and exit sen-
sors

- If there are more than five boxes in the workcell the entry conveyor will stop

- If there are no boxes in the workcell the exit conveyor will be turned off

- If the entry conveyor has been stopped for more than 30 seconds the count will be
reset to zero, assuming that the boxes in the workcell were scrapped.

18. Write a ladder logic program that does what is described below.
- When button 4 is pushed, a light will flash for 5 seconds.
- The flashing light will be on for 0.25 sec and off for 0.75 sec.
- If button A4 has been pushed 5 times the light will not flash until the system is
reset.
- The system can be reset by pressing button B

19. Write a program that will turn on a flashing light for the first 15 seconds after a PLC is turned
on. The light should flash for half a second on and half a second off.

20. A buffer can hold up to 10 parts. Parts enter the buffer on a conveyor controller by output con-
veyor. As parts arrive they trigger an input sensor enter. When a part is removed from the
buffer they trigger the exit sensor. Write a program to stop the conveyor when the buffer is full,
and restart it when there are fewer than 10 parts in the buffer. As normal the system should also
include a start and stop button.

21. What is wrong with the following ladder logic? What will happen if it is used?

L@L@

22. We are using a pneumatic cylinder in a process. The cylinder can become stuck, and we need
to detect this. Proximity sensors are added to both endpoints of the cylinder’s travel to indicate
when it has reached the end of motion. If the cylinder takes more than 2 seconds to complete a
motion this will indicate a problem. When this occurs the machine should be shut down and a
light turned on. Develop ladder logic that will cycle the cylinder in and out repeatedly, and
watch for failure.

plc timers - 9.32

9.10 PRACTICE PROBLEM SOLUTIONS

1. edge triggered means the event when a logic signal goes from false to true (positive edge) or
from true to false (negative edge).

2. no, but they are essential for retentive timers, and very important for counters.

3. Timers on PLC-5s and Micrologix are 16 bit, so they are limited to a range of -32768 to
+32767. ControlLogix timers are 32 bit and have a range of -2,147,483,648 to 2,147,483,647.

4. the un underflow bit. This may result in a fault in some PLCs.

5.
first pass
@ motor
stop
start
@ motor
start stop
] Q motor
motor
6.
A . .
input
I
TON delays turning on =3B
! |
TOF J,-» delays turning off
|
|

t.EN

t.DN
t.TT

t.ACC

plc timers - 9.33

RTF

Timer t

Preset 3.5s
Accum. 0

— (EN)

—(DN)

Iﬁl

10

16

18

' 20

plc timers - 9.34

RTO

EN
N Timer t (EN)

||
‘ Preset 10s (DN)

Accum. 1

CTT —] |’ L
t.DN = = 5 l—

t.ACC

TOF

| Timer t

Preset 0.5s
Accum. 0 —(DN)

t.EN

-
F
(TT e 1 I L
H

t.DN

t.ACC

0 15 45 150 200 1225

plc timers - 9.35

input——|

TON

RTO

TOF

I

I

RTE-

10.

P> sec

RTO

Timer t

Preset 2s

I1.

TON

Timer tick
Base 1.0
Preset 3600

CTU

Counter wait
Preset 1200

Q Light

12.

13.

plc timers - 9.36

A
seal@
seal in
. TON
seal_in timer delay
delay 15 sec
B
} cnt RES
CTU
‘ A counter cnt
‘ presetR 10

14.

plc timers - 9.37

TON
| ‘ A ‘ delay.DN timer delay
| ‘ | delay 20 s
TON
| ‘ delay.DN timer A_held
‘ ‘ delay 20 s
delay.DN B
@
CTU
A_held.DN counter cnt
preset 3
cnt.DN B
@

plc timers - 9.38

g0 st|01|) c_Ol.D|N c 1.D|N
| | —Nc (O motor

motor

CTU
Counterc 0

Preset 2
Accumulator 1

CTU

Counter c_1
Preset 3
Accumulator 1

RES c_()

)

CTD

m Counter ¢_0
| Preset 2
Accumulator 1

CTD

Counter c_1
Preset 3
Accumulator 1

16.

left button
T

plc timers - 9.39

TON
Timer left

ri FITt_button

Preset 0.25s

TON
Timer right

left. TT

Preset 0.25s

ri%ht.TT
|
[

17.

plc timers - 9.40

CTU

Counter C 0
Preset 6

CTU

Counter C 1
Preset 1

CTD

C_0/DN

Counter C 0
Preset 6

CTD

Counter C 1
Preset 1

OO

TON

Timer T 0
Preset 30s

a

@
S

RES

0

C 0

18.

plc timers - 9.41

C5:0/DN

T4:0/TT

T4:1/TT

BN

T4:0/TT
| |

T4:2/DN

TON
timer T4:0
delay 5s

T4:|1/|DN

BES

TON
timer T4:1
delay 0.25s

TON
timer T4:2
delay 0.75s

CTU
counter C5:0
preset 5

Q light

RES

plc timers - 9.42

19.
First scan
TON
T4:0
delay 15s
T4:.0/TT
T4:2/DN
\¢\’|\ TON
! T4:1
delay 0.5s
T4:1/DN
| | TON
I T4:2
delay 0.5s
T42|2/ iTT llght
|
20.
start stop
I I O active
active
enter CTU
counter C5:0
preset 10
le?jit CTD
|| counter C5:0
preset 10
active C5:0/DN
] K O wive

21. The normal output ‘Y’ is repeated twice. In this example the value of Y’ would always match
‘B’, and the earlier rung with ‘A’ would have no effect on ‘Y.

plc timers - 9.43

22.

GIVE SOLUTION

9.11 ASSIGNMENT PROBLEMS

1. Draw the timer and counter done bits for the ladder logic below. Assume that the accumulators

plc timers - 9.44

of all the timers and counters are reset to begin with.

TON
1] Timer T_0

Preset 2s

RTO
Timer T 1

Preset 2s

TOF
Timer T 2

Preset 2s

CTU
Counter C 0
Preset 2
Acc. 0

CTD
Counter C 1
Preset 2
Acc. 0

T 0/DN
T 1/DN
T 2/DN
C_0/DN

C_1/DN
p-f(s€C)

_— -

0 5 0 15 20

2. Write a ladder logic program that will count the number of parts in a buffer. As parts arrive they
activate input 4. As parts leave they will activate input B. If the number of parts is less than 8
then a conveyor motor, output C, will be turned on.

plc timers - 9.45

3. Explain what would happen in the following program when A is on or off.

] (e

TON

t
5s
@

4. Write a simple program that will use one timer to flash a light. The light should be on for 1.0
seconds and off for 0.5 seconds. Do not include start or stop buttons.

5. We are developing a safety system (using a PLC-5) for a large industrial press. The press is
activated by turning on the compressor power relay (R, connected to O:013/05). After R has
been on for 30 seconds the press can be activated to move (P connected to O:013/06). The
delay is needed for pressure to build up. After the press has been activated (with P) the system
must be shut down (R and P off), and then the cycle may begin again. For safety, there is a sen-
sor that detects when a worker is inside the press (S, connected to 1:011/02), which must be off
before the press can be activated. There is also a button that must be pushed 5 times (B, con-
nected to 1:011/01) before the press cycle can begin. If at any time the worker enters the press
(and S becomes active) the press will be shut down (P and R turned off). Develop the ladder
logic. State all assumptions, and show all work.

6. Write a program that only uses one timer. When an input A is turned on a light will be on for 10
seconds. After that it will be off for two seconds, and then again on for 5 seconds. After that
the light will not turn on again until the input A is turned off.

7. A new printing station will add a logo to parts as they travel along an assembly line. When a
part arrives a ‘part’ sensor will detect it. After this the ‘clamp’ output is turned on for 10 sec-
onds to hold the part during the operation. For the first 2 seconds the part is being held a
‘spray’ output will be turned on to apply the thermoset ink. For the last 8 seconds a ‘heat’ out-
put will be turned on to cure the ink. After this the part is released and allowed to continue
along the line. Write the ladder logic for this process.

8. Write a ladder logic program. that will turn on an output Q five seconds after an input A is

turned on. If input B is on the delay will be eight seconds. YOU MAY ONLY USE ONE
TIMER.

plc design - 10.1

10. STRUCTURED LOGIC DESIGN

Topics:
* Timing diagrams
* Design examples
* Designing ladder logic with process sequence bits and timing diagrams

Objectives:
» Know examples of applications to industrial problems.
* Know how to design time base control programs.

10.1 INTRODUCTION

Traditionally ladder logic programs have been written by thinking about the pro-
cess and then beginning to write the program. This always leads to programs that require
debugging. And, the final program is always the subject of some doubt. Structured design
techniques, such as Boolean algebra, lead to programs that are predictable and reliable.
The structured design techniques in this and the following chapters are provided to make
ladder logic design routine and predictable for simple sequential systems.

Note: Structured design is very important in engineering, but many engineers will write
software without taking the time or effort to design it. This often comes from previous
experience with programming where a program was written, and then debugged. This
approach is not acceptable for mission critical systems such as industrial controls. The
time required for a poorly designed program is 10% on design, 30% on writing, 40%
debugging and testing, 10% documentation. The time required for a high quality pro-
gram design is 30% design, 10% writing software, 10% debugging and testing, 10%
documentation. Yes, a well designed program requires less time! Most beginners per-
ceive the writing and debugging as more challenging and productive, and so they will
rush through the design stage. If you are spending time debugging ladder logic pro-
grams you are doing something wrong. Structured design also allows others to verify
and modify your programs.

Axiom: Spend as much time on the design of the program as possible. Resist the tempta-
tion to implement an incomplete design.

plc design - 10.2

Most control systems are sequential in nature. Sequential systems are often
described with words such as mode and behavior. During normal operation these systems
will have multiple steps or states of operation. In each operational state the system will
behave differently. Typical states include start-up, shut-down, and normal operation. Con-
sider a set of traffic lights - each light pattern constitutes a state. Lights may be green or
yellow in one direction and red in the other. The lights change in a predictable sequence.
Sometimes traffic lights are equipped with special features such as cross walk buttons that
alter the behavior of the lights to give pedestrians time to cross busy roads.

Sequential systems are complex and difficult to design. In the previous chapter
timing charts and process sequence bits were discussed as basic design techniques. But,
more complex systems require more mature techniques, such as those shown in Figure
10.1. For simpler controllers we can use limited design techniques such as process
sequence bits and flow charts. More complex processes, such as traffic lights, will have
many states of operation and controllers can be designed using state diagrams. If the con-
trol problem involves multiple states of operation, such as one controller for two indepen-
dent traffic lights, then Petri net or SFC based designs are preferred.

sequential
problem

buffered (waiting)
iggers

steps vith L SEQUENCE BITS

som¢ deviations

PETRINET

shorter

no waiting with
FLOW CHART develo

singlg states

BLOCK LOGIC EQUATIONS SFC/GRAFSET

Figure 10.1 Sequential Design Techniques

10.2 PROCESS SEQUENCE BITS

A typical machine will use a sequence of repetitive steps that can be clearly identi-

plc design - 10.3

fied. Ladder logic can be written that follows this sequence. The steps for this design
method are;

1. Understand the process.

2. Write the steps of operation in sequence and give each step a number.

3. For each step assign a bit.

4. Write the ladder logic to turn the bits on/off as the process moves through its
states.

5. Write the ladder logic to perform machine functions for each step.

6. If the process is repetitive, have the last step go back to the first.

Consider the example of a flag raising controller in Figure 10.2 and Figure 10.3.
The problem begins with a written description of the process. This is then turned into a set
of numbered steps. Each of the numbered steps is then converted to ladder logic.

plc design - 10.4

Description:

A flag raiser that will go up when an up button is pushed, and down when a
down button is pushed, both push buttons are momentary. There are
limit switches at the top and bottom to stop the flag pole. When turned
on at first the flag should be lowered until it is at the bottom of the pole.

Steps:
1. The flag is moving down the pole waiting for the bottom limit switch.
2. The flag is idle at the bottom of the pole waiting for the up button.
3. The flag moves up, waiting for the top limit switch.
4. The flag is idle at the top of the pole waiting for the down button.

Ladder Logic:

first scan

step 1

step 2

This section of ladder logic forces the flag raiser
to start with only one state on, in this case it

should be the first one, step 1. step 3

CACICIC

step 4

step 1
down
motor

O

step 1 bottom lifnit switch
L (D s

The ladder logic for step 1 turns on the motor to lower the flag @ step 1
and when the bottom limit switch is hit it goes to step 2.

Note: recall that [imit switches should be normally
closed for safety when they stop motion.

step 2 flag up button
|| | |
N] (D) step3

The ladder logic for step 2 only waits for the @ step 2
push button to raise the flag.

Figure 10.2 A Process Sequence Bit Design Example

plc design - 10.5

step 3
(O w
motor
step 3 top limit |switch
SN (D s
The ladder logic for step 3 turns on the motor to @ step 3

raise the flag and when the top limit switch is
hit it goes to step 4.

step 4 flag down button
I I || step 1

The ladder logic for step 4 only waits for the
push button to lower the flag.

step 4

@ @

Figure 10.3 A Process Sequence Bit Design Example (continued)

The previous method uses latched bits, but the use of latches is sometimes discour-
aged. A more common method of implementation, without latches, is shown in Figure
10.4.

plc design - 10.6

step4 ﬂ?g| down button | step2
stepl
| Ne () step
stepl
FS
stepl bo}:tom LS | step3
step2
== N () step
step2
step2 flag up button step4
| | | step3
| N () step
step3
step3 tolT LS | stepl
step4
== N () step
step4
step 1 O
down
motor
step 3
up
O motor

Figure 10.4 Process Sequence Bits Without Latches

Similar methods are explored in further detail in the book Cascading Logic
(Kirckof, 2003).

10.3 TIMING DIAGRAMS

Timing diagrams can be valuable when designing ladder logic for processes that
are only dependant on time. The timing diagram is drawn with clear start and stop times.
Ladder logic is constructed with timers that are used to turn outputs on and off at appropri-

plc design - 10.7

ate times. The basic method is;

1. Understand the process.

2. Identify the outputs that are time dependant.

3. Draw a timing diagram for the outputs.

4. Assign a timer for each time when an output turns on or off.

5. Write the ladder logic to examine the timer values and turn outputs on or off.

Consider the handicap door opener design in Figure 10.5 that begins with a verbal
description. The verbal description is converted to a timing diagram, with t=0 being when
the door open button is pushed. On the timing diagram the critical times are 2s, 10s, 14s.
The ladder logic is constructed in a careful order. The first item is the latch to seal-in the
open button, but shut off after the last door closes. auto is used to turn on the three timers
for the critical times. The logic for opening the doors is then written to use the timers.

plc design - 10.8

Description: A handicap door opener has a button that will open two doors. When the but-
ton is pushed (momentarily) the first door will start to open immediately, the second
door will start to open 2 seconds later. The first door power will stay open for a total of
10 seconds, and the second door power will stay on for 14 seconds. Use a timing dia-
gram to design the ladder logic.

Timing Diagram: A
| | |
door 1 ! ! '
| | |
AOOT 2 el | i
! — -~
2s 10s 14s
Ladder Logic:
open button t 1|4.DN
BAN () auto
auto
auto
TON
Timer t 2
Delay 2s
TON
Timert 10
Delay 10s
TON
Timert 14
Delay 14s
t 10.TT
Q door 1
t 2.TT thiDN
R O door 2

Figure 10.5 Design With a Timing Diagram

plc design - 10.9

10.4 DESIGN CASES

10.5 SUMMARY

* Timing diagrams can show how a system changes over time.
* Process sequence bits can be used to design a process that changes over time.
* Timing diagrams can be used for systems with a time driven performance.

10.6 PRACTICE PROBLEMS

1. Write ladder logic that will give the following timing diagram for B after input 4 is pushed.
After A is pushed any changes in the state of 4 will be ignored.

A

true

false t(sec)

2. Design ladder logic for the timing diagram below. When an input 4 becomes active the
sequence should start.

A
X] —

Y. LI LI 1

>
t (ms)
100 300 500 700 900 1100 1900

3. A wrapping process is to be controlled with a PLC. The general sequence of operations is
described below. Develop the ladder logic using process sequence bits.
1. The folder is idle until a part arrives.
2. When a part arrives it triggers the part sensor and the part is held in place by
actuating the hold actuator.

plc design - 10.10

3. The first wrap is done by turning on output paper for 1 second.

4. The paper is then folded by turning on the crease output for 0.5 seconds.

5. An adhesive is applied by turning on output tape for 0.75 seconds.

6. The part is release by turning off output 4old.

7. The process pauses until the part sensors goes off, and then the machine returns
to idle.

4. Draw a timing diagram for the following ladder logic.
start t 20.DN

K O

TON

TON
t 10
10s

TON
t 15
15s
TON
t 20
t3EN t9DN 20s

t 10.DN t 15.DN

t 3DN 91T

t 20EN t 15.TT

plc design - 10.11

10.7 PRACTICE PROBLEM SOLUTIONS

on TON

I Timert a

| Base 1s
Preset 2

t a.DN TON

17 Timert b

|| Base 1s
Preset 3

t b.DN TON

|7 Timert c

| Base 1s
Preset 1

t ¢.DN TON

17 Timert d

|| Base 1s
Preset 2

t d.DN TON

17 Timert e

| Base 1s
Preset 1

t aTT

Q output
t c.TT
t eTT

plc design - 10.12

t 1.TT

TON
t 1
0.100 s

TON
t3
0300 s

TON
t5
0.500 s

TON
t7
0.700 s

TON
t9
0.900 s

TON
t 11
1.100 s

TON
£ 19
1.900 s

/((-P

19.DN

/((-P

3.DN

7.DN

11.DN

(for both solutions

step

2

plc design - 10.13

step

3

step

4

step

5

step

2

Q hold

O paper

step

3

step

4

O crease

O tape

A
A LI 1
B _
I
l
3 9 10 15 20 t(@)

plc design - 10.14

(without latches
fi ’s‘T pass part

\H\ Ostep 1

stlepl

part

stop

art paper_delay.DN stop

i \H\ I I Ostepz

step2
TON

i paper_delay
delay 1 s

paper_delay. DN crease_delay.DN stop

\H\ I I Ostep?:

step3
TON
step3 crease_deldy
delay 0.5 s
crease_delay.DN tape_delay. DN stop

S| s

step4
TON
step tape delay
delay 0.75 s
taIpe_delay.DN part stop
|

| || stepS
| | | | (ptep

stlepS
I

plc design - 10.15

(with latches
first pass
‘I P Dstepl
stepl step2
step3
stop step4
stepS
part
I L step2
L (pystepl
step2 TON
paper_delay
delay 1's
paper_delay.DN
1)step3
L (1)step2
step3 TON
crease_delay
delay 0.5 s
crease delay.DN
1)step4
L (1ystep3
step4 TON
tape delay
delay 0.75 s
tape delay.DN
1)stepS
L (1)step4
step5 part
\H\ L)stepl
L (1ystepS

10.8 ASSIGNMENT PROBLEMS

1. Convert the following timing diagram to ladder logic. It should begin when input ‘A’ becomes

plc design - 10.16

true.
X A
.)) t(SeC)
|
0 0.2 0.5 1213 14 1.6 20

2. Use the timing diagram below to design ladder logic. The sequence should start when input X

turns on. X may only be on momentarily, but the sequence should continue to execute until it
ends at 26 seconds.

A
. [| L
B |
| .
0 305 11 2 26 t (sec)

3. Use the timing diagram below to design ladder logic. The sequence should start when input X
turns on. X may only be on momentarily, but the sequence should execute anyway.

A

A1

—
B | | [
| |]

| | >
23 5 7 11 16 2 26 t (sec)

4. Write a program that will execute the following steps. When in steps b) or d), output C will be
true. Output X will be true when in step c).
a) Start in an idle state. If input G becomes true go to b)
b) Wait until P becomes true before going to step c).
c¢) Wait for 3 seconds then go to step d).
d) Wait for P to become false, and then go to step b).

5. Write a program that will execute the following steps. When in steps b) or d), output C will be
true. Output X will be true when in step c).

plc design - 10.17

a) Start in an idle state. If input G becomes true go to b)

b) Wait until P becomes true before going to step c). If input S becomes true then go to step a).
c¢) Wait for 3 seconds then go to step d).

d) Wait for P to become false, and then go to step b).

6. A PLC is to control an amusement park water ride. The ride will fill a tank of water and splash
a tour group. 10 seconds later a water jet will be ejected at another point. Develop ladder logic
for the process that follows the steps listed below.

1. The process starts in ‘idle’.

2. The ‘cart_detect’ opens the ‘filling’ valve.

3. After a delay of 30 seconds from the start of the filling of the tank the tank ‘out-
let’ valve opens. When the tank is ‘full’ the ‘filling” valve closes.

4. When the tank is empty the ‘outlet’ valve is closed.

5. After a 10 second delay, from the tank outlet valve opening, a water ‘jet’ is
opened.

6. After ‘2’ seconds the water ‘jet’ is closed and the process returns to the ‘idle
state.

7. Write a ladder logic program to extend and retract a cylinder after a start button is pushed.
There are limit switches at the ends of travel. If the cylinder is extending if more than 5 sec-
onds the machine should shut down and turn on a fault light. If it is retracting for more than 3
seconds it should also shut down and turn on the fault light. It can be reset with a reset button.

8. Design a program with sequence bits for a hydraulic press that will advance when two palm
buttons are pushed. Top and bottom limit switches are used to reverse the advance and stop
after a retract. At any time the hands removed from the palm button will stop an advance and
retract the press. Include start and stop buttons to put the press in and out of an active mode.

9. A machine has been built for filling barrels. Use process sequence bits to design ladder logic
for the sequential process as described below.
1. The process begins in an idle state.
2. If the ‘fluid pressure’ and ‘barrel present’ inputs are on, the system will open a flow valve
for 2 seconds with output ‘flow’.
3. The ‘flow’ valve will then be turned off for 10 seconds.
4. The ‘flow’ valve will then be turned on until the ‘full” sensor indicates the barrel is full.
5. The system will wait until the ‘barrel present’ sensor goes off before going to the idle state.

10. Design ladder logic for an oven using process sequence bits. (Note: the solution will only be

graded if the process sequence bit method is used.) The operations are as listed below.

1. The oven begins in an IDLE state.

2. An operator presses a start button and an ALARM output is turned on for 1 minute.

3. The ALARM output is turned off and the HEAT is turned on for 3 minutes to allow the tem-
perature to rise to the acceptable range.

4. The CONVEYOR output is turned on.

5. If the STOP input is activated (turned off) the HEAT will be turned off, but the CON-
VEYOR output will be kept on for two minutes. After this the oven returns to IDLE.

plc design - 10.18

11. We are developing a safety system (using a PLC-5) for a large industrial press. The press is
activated by turning on the compressor power relay (R, connected to O:013/05). After R has
been on for 30 seconds the press can be activated to move (P connected to O:013/06). The
delay is needed for pressure to build up. After the press has been activated (with P for 1.0 sec-
onds) the system must be shut down (R and P off), and then the cycle may begin again. For
safety, there is a sensor that detects when a worker is inside the press (S, connected to 1:011/
02), which must be off before the press can be activated. There is also a button that must be
pushed 5 times (B, connected to 1:011/01) before the press cycle can begin. If at any time the
worker enters the press (and S becomes active) the press will be shut down (P and R turned
off). Develop the process sequence and sequence bits, and then ladder logic for the states. State
all assumptions, and show all work.

12. A machine is being designed to wrap boxes of chocolate. The boxes arrive at the machine on a
conveyor belt. The list below shows the process steps in sequence.
1. The box arrives and is detected by an optical sensor (P), after this the
conveyor is stopped (C) and the box is clamped in place (H).
2. A wrapping mechanism (W) is turned on for 2 seconds.
3. A sticker cylinder (S) is turned on for 1 second to put consumer labelling
on the box.
4. The clamp (H) is turned off and the conveyor (C) is turned on.
5. After the box leaves the system returns to an idle state.
Develop ladder logic programs for the system using the following methods. Don’t
forget to include regular start and stop inputs.
1) a timing diagram
ii) process sequence bits

plc flowchart - 11.1

11. FLOWCHART BASED DESIGN

Topics:
* Describing process control using flowcharts
* Conversion of flowcharts to ladder logic
Objectives:
* Ba able to describe a process with a flowchart.
* Be able to convert a flowchart to ladder logic.

11.1 INTRODUCTION

A flowchart is ideal for a process that has sequential process steps. The steps will
be executed in a simple order that may change as the result of some simple decisions. The
symbols used for flowcharts are shown in Figure 11.1. These blocks are connected using
arrows to indicate the sequence of the steps. The different blocks imply different types of
program actions. Programs always need a start block, but PLC programs rarely stop so the
stop block is rarely used. Other important blocks include operations and decisions. The
other functions may be used but are not necessary for most PLC applications.

Start/Stop

Operation

Decision

/O

Disk/Storage

Subroutine

DO

Figure 11.1 Flowchart Symbols

plc flowchart - 11.2

A flowchart is shown in Figure 11.2 for a control system for a large water tank.
When a start button is pushed the tank will start to fill, and the flow out will be stopped.
When full, or the stop button is pushed the outlet will open up, and the flow in will be
stopped. In the flowchart the general flow of execution starts at the top. The first operation
is to open the outlet valve and close the inlet valve. Next, a single decision block is used to
wait for a button to be pushed. when the button is pushed the yes branch is followed and
the inlet valve is opened, and the outlet valve is closed. Then the flow chart goes into a
loop that uses two decision blocks to wait until the tank is full, or the stop button is
pushed. If either case occurs the inlet valve is closed and the outlet valve is opened. The
system then goes back to wait for the start button to be pushed again. When the controller
is on the program should always be running, so only a start block is needed. Many begin-
ners will neglect to put in checks for stop buttons.

plc flowchart - 11.3

START

Open outlet valve
Close inlet valve

start button pushed?

Open inlet valve
Close outlet valve

Open outlet valve
Close inlet valve

stop button pushed?
yes

Figure 11.2 A Flowchart for a Tank Filler

The general method for constructing flowcharts is:

1. Understand the process.
2. Determine the major actions, these are drawn as blocks.
3. Determine the sequences of operations, these are drawn with arrows.

plc flowchart - 11.4

4. When the sequence may change use decision blocks for branching,.

Once a flowchart has been created ladder logic can be written. There are two basic
techniques that can be used, the first presented uses blocks of ladder logic code. The sec-
ond uses normal ladder logic.

11.2 BLOCK LOGIC

The first step is to name each block in the flowchart, as shown in Figure 11.3. Each
of the numbered steps will then be converted to ladder logic

plc flowchart - 11.5

STEP 1: Add labels to each block in the flowchart

START

F1

Open outlet valve
Close inlet valve

start button pushed?

Open inlet valve
Close outlet valve

F6

Open outlet valve
Close inlet valve

stop button pushed?
yes

Figure 11.3 Labeling Blocks in the Flowchart

Each block in the flowchart will be converted to a block of ladder logic. To do this
we will use the MCR (Master Control Relay) instruction (it will be discussed in more
detail later.) The instruction is shown in Figure 11.4, and will appear as a matched pair of
outputs labelled MCR. If the first MCR line is true then the ladder logic on the following
lines will be scanned as normal to the second MCR. If the first line is false the lines to the

plc flowchart - 11.6

next MCR block will all be forced off. If a normal output is used inside an MCR block, it
may be forced off. Therefore latches will be used in this method.

Note: We will use MCR instructions to implement some of the state based programs.
This allows us to switch off part of the ladder logic. The one significant note to
remember is that any normal outputs (not latches and timers) will be FORCED
OFF. Unless this is what you want, put the normal outputs outside MCR blocks.

| MCR

If A is true then the MCR will cause the ladder in between
to be executed. If A is false the outputs are forced off.

MCR

Figure 11.4 The MCR Function

The first part of the ladder logic required will reset the logic to an initial condition,
as shown in Figure 11.5. The line will only be true for the first scan of the PLC, and at that
time it will turn on the flowchart block F/ which is the reset all values off operation. All
other operations will be turned off.

plc flowchart - 11.7

STEP 2: Write ladder logic to force the PLC into the first state

first scan

F3

F4

F5

F6

AOAOAC

Figure 11.5 Initial Reset of States

The ladder logic for the first state is shown in Figure 11.6. When F is true the
logic between the MCR lines will be scanned, if '/ is false the logic will be ignored. This
logic turns on the outlet valve and turns off the inlet valve. It then turns off operation £/,
and turns on the next operation F2.

plc flowchart - 11.8

STEP 3: Write ladder logic for each function in the flowchart

|| C

outlet

inlet

F1

F2

MC

HOAOOE

Figure 11.6 Ladder Logic for the Operation F'/

The ladder logic for operation F2 is simple, and when the start button is pushed, it
will turn off /2 and turn on F3. The ladder logic for operation '3 opens the inlet valve and
moves to operation F4.

plc flowchart - 11.9

F2
C
start
F2
F3
MC
F3

@

outlet

inlet

1
W

1
N

<
a

Figure 11.7 Ladder Logic for Flowchart Operations F2 and F3

The ladder logic for operation F4 turns off F4, and if the tank is full it turns on F6,
otherwise F5 is turned on. The ladder logic for operation F5 is very similar.

plc flowchart - 11.10

F4
u S
@ F4
tank full F6
)
tank full Fs
)
S
F5
| S
@ F5
stop
@ F6
stop
@ F4
@

Figure 11.8 Ladder Logic for Operations F4 and F'5

The ladder logic for operation F6 turns the outlet valve on and turns off the inlet
valve. It then ends operation F6 and returns to operation F2.

plc flowchart - 11.11

| | C

outlet

inlet

F6

F2

C

HOAOOE

Figure 11.9 Ladder Logic for Operation F'6

11.3 SEQUENCE BITS

In general there is a preference for methods that do not use MCR statements or
latches. The flowchart used in the previous example can be implemented without these
instructions using the following method. The first step to this process is shown in Figure
11.10. As before each of the blocks in the flowchart are labelled, but now the connecting
arrows (transitions) in the diagram must also be labelled. These transitions indicate when
another function block will be activated.

plc flowchart - 11.12

START

F1 T1

Open outlet valve
Close inlet valve

is the NO
start button pushed?

no

Open inlet valve
Close outlet valve

Fé6

Open outlet valve
Close inlet valve

is the NC
stop button pushed?

Figure 11.10 Label the Flowchart Blocks and Arrows

The first section of ladder logic is shown in Figure 11.11. This indicates when the
transitions between functions should occur. All of the logic for the transitions should be
kept together, and appear before the state logic that follows in Figure 11.12.

plc flowchart - 11.13

FS

Om
F1

ok
F6
F2 start
F2 start

O
F3

Q T4
F5 stop
F4 full

O
F4 full

ok
F5 stop

Figure 11.11 The Transition Logic

The logic shown in Figure 11.12 will keep a function on, or switch to the next
function. Consider the first ladder rung for £/, it will be turned on by transition 7'/ and
once function F/ is on it will keep itself on, unless 72 occurs shutting it off. If 72 has
occurred the next line of ladder logic will turn on 2. The function logic is followed by
output logic that relates output values to the active functions.

plc flowchart - 11.14

S on
o
2y o
1;1 T5 \H\T6 oL
O
T o
ik () outlet
F2
F6
i () inlet
F4
F5

Figure 11.12 The Function Logic and Outputs

plc flowchart - 11.15

11.4 SUMMARY

* Flowcharts are suited to processes with a single flow of execution.
* Flowcharts are suited to processes with clear sequences of operation.

11.5 PRACTICE PROBLEMS

1. Convert the following flow chart to ladder logic.

A on

* es
<Lr?

no

A off

e

yes

2. Draw a flow chart for cutting the grass, then develop ladder logic for three of the actions/deci-
sions.

3. Design a garage door controller using a flowchart. The behavior of the garage door controller is
as follows,

- there is a single button in the garage, and a single button remote control.

- when the button is pushed the door will move up or down.

- if the button is pushed once while moving, the door will stop, a second push will
start motion again in the opposite direction.

- there are top/bottom limit switches to stop the motion of the door.

- there is a light beam across the bottom of the door. If the beam is cut while the
door is closing the door will stop and reverse.

- there is a garage light that will be on for 5 minutes after the door opens or closes.

plc flowchart - 11.16

11.6 PRACTICE PROBLEM SOLUTIONS

1.

first scan

]
p—

]
[\)

iyes

1
N

F1

A on

F1
| MR -
A
@ F3 A off
4@ Fl
‘@ F2 . F4
F2 @ yes
. B
@ F2
— F4
| MR
Ch c
F3

1
N

56

¢

plc flowchart - 11.17

Get mower and
gas can

F1

F3

get gas

Fill mower
F5 | A E—
Pull cord
Fé6
no
e
F7 Y
Push Mower
F8 no

€S
F9 4

Stop mower

F10 y

Put gas and
mower away

plc flowchart - 11.18

FS

=

]
\9}

m ™
AW

o]
9]

s
3

!
o0

eyl
O

F10

5600000k

2

mower

gas can

]
\9}

117

F2||

@

1
(O8]

gas can empty
|

gas,can empty

oy
N

[0

g3
\S}

2

F3||

plc flowchart - 11.19

|
ga\i\j\an full
|

e

O fill gas tank

®F4
4@F3

e

ey

TON

t_o.|D|g\1

Timert 0
Delay 5s

t O.DN

@Fs
4@F4

O pour gas

F5||

e

|
c d|pulled

ey

Q pull cord

|
cord pulled
1

Fé6

mower on

mowcer on

plc flowchart - 11.20

is

ST1 remote or
button pushed?
ST2 | turn on door close
ST3
limit pushed?
ST5
turn off door close
ST6 is
remote or
button pushed?
ST7
turn on door open
ST femote or
button or top
limit pushed?
ST9

turn off door open

no

first scan

plc flowchart - 11.21

ST2

w
=

ST2

ST3

ST4

STS

ST6

ST7

ST8

ST9

door open

door close

OOOOOOOOOOC

TOF

t st2
preset 300s

garage light

O

plc flowchart - 11.22

ST1
C
button
ST1
remote ST2
MC
ST2

@

ST3

door close

<
o

iyangiins!

plc flowchart - 11.23

ST3
@
button
@ ST3
remote : : ST5
bottom limit
ST3
@ ST3
: : ST4
@
ST4
@
light beam
@ ST4
i : ST7
light beam
| | @ ST4
i : ST3
@

plc flowchart - 11.24

ST5
] (3
@ ST5
: : ST6
:: : door close
®
ST6
e
button
@ ST6
remote : : ST7
G
ST7
u e
@ ST7
:: : ST
i: : door open

<
a

—

plc flowchart - 11.25

ST8
C
button
ST8
remote ST9
top limit
MC
ST9

Q

ST1

door open

@)

LT L

plc flowchart - 11.26

11.7 ASSIGNMENT PROBLEMS

1. Develop ladder logic for the flowchart below.

Turn A on
no
yes
Turn A off
yes
no

2. Use a flow chart to design a parking gate controller.

keycard entry

cars enter/leave

-

light

s

N/
/Q\
gatg

car detector

- the gate will be raised by one output

and lowered by another. If the gate
gets stuck an over current detector
will make a PLC input true. If this
is the case the gate should reverse
and the light should be turned on
indefinitely.

- if a valid keycard is entered a PLC

input will be true. The gate is to
rise and stay open for 10 seconds.

- when a car is over the car detector a

PLC input will go true. The gate is
to open while this detector is
active. If it is active for more that
30 seconds the light should also
turn on until the gate closes.

plc flowchart - 11.27

3. A welding station is controlled by a PLC. On the outside is a safety cage that must be closed
while the cell is active. A belt moves the parts into the welding station and back out. An induc-
tive proximity sensor detects when a part is in place for welding, and the belt is stopped. To
weld, an actuator is turned on for 3 seconds. As normal the cell has start and stop push buttons.

a) Draw a flow chart

b) Implement the chart in ladder logic

Inputs Outputs

DOOR OPEN (NC) CONVEYOR ON
START (NO) WELD

STOP (NC)

PART PRESENT

4. Convert the following flowchart to ladder logic.

Turn off motor

Turn on motor

5. A machine is being designed to wrap boxes of chocolate. The boxes arrive at the machine on a
conveyor belt. The list below shows the process steps in sequence.
1. The box arrives and is detected by an optical sensor (P), after this the
conveyor is stopped (C) and the box is clamped in place (H).
2. A wrapping mechanism (W) is turned on for 2 seconds.
3. A sticker cylinder (S) is turned on for 1 second to put consumer labelling

plc flowchart - 11.28

on the box.
4. The clamp (H) is turned off and the conveyor (C) is turned on.
5. After the box leaves the system returns to an idle state.
Develop ladder logic for the system using a flowchart. Don’t forget to include reg-
ular start and stop inputs.

plc states - 12.1

12. STATE BASED DESIGN

Topics:
* Describing process control using state diagrams

* Conversion of state diagrams to ladder logic
* MCR blocks

Objectives:
* Be able to construct state diagrams for a process.
* Be able to convert a state diagram to ladder logic directly.
* Be able to convert state diagrams to ladder logic using equations.

12.1 INTRODUCTION

A system state is a mode of operation. Consider a bank machine that will go
through very carefully selected states. The general sequence of states might be idle, scan
card, get secret number, select transaction type, ask for amount of cash, count cash, deliver
cash/return card, then idle.

A State based system can be described with system states, and the transitions
between those states. A state diagram is shown in Figure 12.1. The diagram has two states,
State I and State 2. If the system is in state 1 and 4 happens the system will then go into
state 2, otherwise it will remain in State 1. Likewise if the system is in state 2, and B hap-
pens the system will return to state 1. As shown in the figure this state diagram could be
used for an automatic light controller. When the power is turned on the system will go into
the lights off state. If motion is detected or an on push button is pushed the system will go
to the lights on state. If the system is in the lights on state and 1 hour has passed, or an off
push button is pushed then the system will go to the lights off state. The else statements
are omitted on the second diagram, but they are implied.

plc states - 12.2

else else

This diagram could describe the operation of energy efficient lights in a room operated
by two push buttons. State 1 might be lights off and state 2 might be lights on. The
arrows between the states are called transitions and will be followed when the condi-
tions are true. In this case if we were in state 1 and A occurred we would move to
state 2. The else loop indicate that a state will stay active if a transition are is not fol-
lowed. These are so obvious they are often omitted from state diagrams.

off pushbutton OR 1 hour timer

powem

Figure 12.1 A State Diagram

on_pushbutton
OR motion detector

The most essential part of creating state diagrams is identifying states. Some key
questions to ask are,

1. Consider the system,
What does the system do normally?
Does the system behavior change?
Can something change how the system behaves?
Is there a sequence to actions?
2. List modes of operation where the system is doing one identifiable activity that
will start and stop. Keep in mind that some activities may just be to wait.

Consider the design of a coffee vending machine. The first step requires the identi-
fication of vending machine states as shown in Figure 12.2. The main state is the idle state.
There is an inserting coins state where the total can be displayed. When enough coins have
been inserted the user may select their drink of choice. After this the make coffee state will

plc states - 12.3

be active while coffee is being brewed. If an error is detected the service needed state will
be activated.

STATES

idle - the machine has no coins and is doing nothing

inserting coins - coins have been entered and the total is displayed

user choose - enough money has been entered and the user is making coffee selection
make coffee - the selected type is being made

service needed - the machine is out of coffee, cups, or another error has occurred

Notes:

1. These states can be subjective, and different designers might pick others.
2. The states are highly specific to the machine.

3. The previous/next states are not part of the states.

4. There is a clean difference between states.

Figure 12.2 Definition of Vending Machine States

The states are then drawn in a state diagram as shown in Figure 12.3. Transitions
are added as needed between the states. Here we can see that when powered up the
machine will start in an idle state. The transitions here are based on the inputs and sensors
in the vending machine. The state diagram is quite subjective, and complex diagrams will
differ from design to design. These diagrams also expose the controller behavior. Consider
that if the machine needs maintenance, and it is unplugged and plugged back in, the ser-
vice needed statement would not be reentered until the next customer paid for but did not
receive their coffee. In a commercial design we would want to fix this oversight.

plc states - 12.4

power up

inserting
coins

reset button coin inserted

L

service

coin return

no cups .
right amount

OR jam sensor entered

coffee choose

button pushed

Figure 12.3 State Diagram for a Coffee Machine

12.1.1 State Diagram Example

Consider the traffic lights in Figure 12.4. The normal sequences for traffic lights
are a green light in one direction for a long period of time, typically 10 or more seconds.
This is followed by a brief yellow light, typically 4 seconds. This is then followed by a
similar light pattern in the other direction. It is understood that a green or yellow light in
one direction implies a red light in the other direction. Pedestrian buttons are provided so
that when pedestrians are present a cross walk light can be turned on and the duration of

the green light increased.

plc states - 12.5

Figure 12.4 Traffic Lights

The first step for developing a controller is to define the inputs and outputs of the
system as shown in Figure 12.5. First we will describe the system variables. These will
vary as the system moves from state to state. Please note that some of these together can
define a state (alone they are not the states). The inputs are used when defining the transi-
tions. The outputs can be used to define the system state.

We have eight items that are ON or OFF

L1
L2 Note that each state will lead
L3 UTPUTS to a different set of out-
L4 puts. The inputs are often
L5 part, or all of the transi-
% tions.

oO.O.EoEE: o INPUT S

A simple diagram can be drawn to show sequences for the lights

Figure 12.5 Inputs and Outputs for Traffic Light Controller

plc states - 12.6

Previously state diagrams were used to define the system, it is possible to use a
state table as shown in Figure 12.6. Here the light sequences are listed in order. Each state
is given a name to ease interpretation, but the corresponding output pattern is also given.
The system state is defined as the bit pattern of the 6 lights. Note that there are only 4 pat-
terns, but 6 binary bits could give as many as 64.

Step 1: Define the System States and put them (roughly) in sequence

System State
L1L2L3L4L5L6 A binary number

0 = light off
1 = light on
State Table
State Description | 4 | L1 L2 L3 L4 L5 L6
Green East/West 1 1 0 o0 o0 o0 1
Yellow East/West Here the four states
cliow Last/Wesh 2 1 0 0 0 1 0 determine how the 6
Green North/South 3 0 0 1 1 0 0 outputs are switched
Yellow North/South! 4 o 1 0o 1 0 0 on/off.

Figure 12.6 System State Table for Traffic Lights

Transitions can be added to the state table to clarify the operation, as shown in Fig-
ure 12.7. Here the transition from Green E/W to Yellow E/W is S1. What this means is
that a cross walk button must be pushed to end the green light. This is not normal, nor-
mally the lights would use a delay. The transition from Yellow E/W to Green N/S is
caused by a 4 second delay (this is normal.) The next transition is also abnormal, requiring
that the cross walk button be pushed to end the Green N/S state. The last state has a 4 sec-
ond delay before returning to the first state in the table. In this state table the sequence will
always be the same, but the times will vary for the green lights.

plc states - 12.7

Step 2: Define State Transition Triggers, and add them to the list of states

Description # | L1 L2 L3 L4 L5 L6 | transition
Green East/Westf | 1 O 0 0 0 1 1
Yellow East/Westf 2 1 0 0O 0 1 0 delay delay 4 sec
Green North/South 3 0 0 1 1 0 0 ‘:260
Yellow North/South! 4 0 1 0 1 0 0

Figure 12.7 State Table with Transitions

A state diagram for the system is shown in Figure 12.8. This diagram is equivalent
to the state table in Figure 12.7, but it can be valuable for doing visual inspection.

Step 3: Draw the State Transition Diagram

@ pushbutton NS (i.e., $1,S2 = 10)

delay 4sec

first scan
delay 4se

Figure 12.8 A Traffic Light State Diagram

pushbutton EW (i.e. 01)

12.1.2 Conversion to Ladder Logic

12.1.2.1 - Block Logic Conversion

plc states - 12.8

State diagrams can be converted directly to ladder logic using block logic. This
technique will produce larger programs, but it is a simple method to understand, and easy
to debug. The previous traffic light example is to be implemented in ladder logic. The
inputs and outputs are defined in Figure 12.9, assuming it will be implemented on an
Allen Bradley Micrologix. first scan is the address of the first scan in the PLC. The loca-
tions state 1 to state 4 are internal memory locations that will be used to track which
states are on. The behave like outputs, but are not available for connection outside the
PLC. The input and output values are determined by the PLC layout.

STATES OUTPUTS INPUTS
state_1 - green E/W L1 -red N/S S1 - cross
state_2 - yellow E/W L2 - yellow N/S S2 - cross
state 3 - green N/S L3 - green N/S S:FS - first scan
state 4 - yellow N/S L4 - red E/W

L5 - yellow E/'W
L6 - green E/W

Figure 12.9 Inputs and Outputs for Traffic Light Controller

The initial ladder logic block shown in Figure 12.10 will initialize the states of the
PLC, so that only state 1 is on. The first scan indicator first scan will execute the MCR
block when the PLC is first turned on, and the latches will turn on the value for state 1 and
turn off the others.

plc states - 12.9

RESET THE STATES

S:FS MCR

| | -
|| AN

L—
LoH—
LH—
LH—
O—

Figure 12.10 Ladder Logic to Initialize Traffic Light Controller

Note: We will use MCR instructions to implement some of the state based programs.
This allows us to switch off part of the ladder logic. The one significant note to
remember is that any normal outputs (not latches and timers) will be FORCED
OFF. Unless this is what you want, put the normal outputs outside MCR blocks.

| MCR

If A is true then the MCR will cause the ladder in between
to be executed. If A is false the outputs are forced off.

MCR

The next section of ladder logic only deals with outputs. For example the output O/
1 1s the N/S red light, which will be on for states 1 and 2, or B3/ and B3/2 respectively.
Putting normal outputs outside the MCR blocks is important. If they were inside the

plc states - 12.10

blocks they could only be on when the MCR block was active, otherwise they would be
forced off. Note: Many beginners will make the careless mistake of repeating outputs in
this section of the program.

TURN ON LIGHTS AS REQUIRED

state 1 L1 >—
state 2

state 4 L2 >—
state 3 L3 >—
state 3 L4 >—
state 4

state 2 L5 >—
state 1 L6 >—

Figure 12.11 General Output Control Logic

The first state is implemented in Figure 12.10. If state 1 is active this will be
active. The transition is S1 which will end state 1 and start state 2.

plc states - 12.11

FIRST STATE WAIT FOR TRANSITIONS

state 1 MCR

L1

CD—

L2

S1

S1

MCR

-
AN

Figure 12.12 Ladder Logic for First State

The second state is more complex because it involves a time delay, as shown in
Figure 12.13. When the state is active the TON timer will be timing. When the timer is
done state 2 will be unlatched, and state 3 will be latched on. The timer is nonretentive, so
if state 2 if off the MCR block will force all of the outputs off, including the timer, caus-
ing it to reset.

plc states - 12.12

SECOND STATE WAIT FOR TRANSITIONS

statle_[Z M;R
[AN >

TON

t st2

delay 4 s

t st2.DN state 2
U

t st2.DN state 3

CH—
MCR
< >—

Figure 12.13 Ladder Logic for Second State

The third and fourth states are shown in Figure 12.14 and Figure 12.15. Their lay-
out is very similar to that of the first two states.

THIRD STATE WAIT FOR TRANSITIONS

state 3 MCR

O

AN
S state 3

C U>Hy——
2 state 4

O >

C L

MCR

>_

Figure 12.14 Ladder Logic for State Three

plc states - 12.13

FOURTH STATE WAIT FOR TRANSITIONS

statle_[4 M;R
[AN >

t st4
RT

delay 4s

t st4. DN state 4
U

t st4.DN stzﬁe_l
CD>—
t st4.DN t_st4

RST>_

MCR

>_

Figure 12.15 Ladder Logic for State Four

The previous example only had one path through the state tables, so there was
never a choice between states. The state diagram in Figure 12.16 could potentially have
problems if two transitions occur simultaneously. For example if state S7B is active and A
and C occur simultaneously, the system could go to either S74 or STC (or both in a poorly
written program.) To resolve this problem we should choose one of the two transitions as
having a higher priority, meaning that it should be chosen over the other transition. This
decision will normally be clear, but if not an arbitrary decision is still needed.

plc states - 12.14

first scan

Figure 12.16 A State Diagram with Priority Problems

The state diagram in Figure 12.16 is implemented with ladder logic in Figure
12.17 and Figure 12.18. The implementation is the same as described before, but for state
STB additional ladder logic is added to disable transition 4 if transition C is active, there-
fore giving priority to C.

plc states - 12.15

<
Q

first scan
| | @ STB
@ STA
@ STC
STA
I MC
B
| @ STA
@ STB
@
STB
MC
C
@ STB
Note: if A and C are true at the same time then C
will have priority. PRIORITIZATION is impor- STC
tant when simultaneous branches are possible.
A C
| | |
Nk @ STB

plc states - 12.16

Figure 12.17 State Diagram for Prioritization Problem

STC
MC
D
@ sTC
@ STB
<

Figure 12.18 State Diagram for Prioritization Problem

The Block Logic technique described does not require any special knowledge and
the programs can be written directly from the state diagram. The final programs can be
easily modified, and finding problems is easier. But, these programs are much larger and
less efficient.

12.1.2.2 - State Equations

State diagrams can be converted to Boolean equations and then to Ladder Logic.
The first technique that will be described is state equations. These equations contain three
main parts, as shown below in Figure 12.19. To describe them simply - a state will be on if
it is already on, or if it has been turned on by a transition from another state, but it will be
turned off if there was a transition to another state. An equation is required for each state
in the state diagram.

plc states - 12.17

Informally,

State X = (State X + just arrived from another state) and has not left for another state

Formally,

n m
STATE, = (STATEZ.+ 3 (Tj’l.oSTATEj)] o [(T STATE))
j=1 k=1

where, STATE,; = A variable that will reflect if state 1 is on
n = the number of transitions to state i

m = the number of transitions out of state i

Tj ; = The logical condition of a transition from state j to i

T; , = The logical condition of a transition out of state i to k

Figure 12.19 State Equations

The state equation method can be applied to the traffic light example in Figure
12.8. The first step in the process is to define variable names (or PLC memory locations)
to keep track of which states are on or off. Next, the state diagram is examined, one state at
a time. The first equation if for ST1, or state 1 - green NS. The start of the equation can be
read as ST1 will be on if it is on, or if ST4 is on, and it has been on for 4s, or if it is the first
scan of the PLC. The end of the equation can be read as ST1 will be turned off if it is on,
but S1 has been pushed and S2 is off. As discussed before, the first half of the equation
will turn the state on, but the second half will turn it off. The first scan is also used to turn
on ST1 when the PLC starts. It is put outside the terms to force ST1 on, even if the exit
conditions are true.

plc states - 12.18

Defined state variables:
ST1 = state 1 - green NS

ST2 = state 2 - yellow NS
ST3 = state 3 - green EW
ST4 = state 4 - yellow EW

The state entrance and exit condition equations:

ST1 = (ST1+ST4 - TON,(ST4, 4s)) - ST1 - S1- 82+ FS

ST2 = (ST2+ST1-S1-52)-ST2- TON,(ST2, 4s)

ST3 = (ST3+ST2 - TON,(ST2, 4s)) - ST3 - §1 - 52

ST4 = (ST4+ST3 - S1-S2) - ST4- TON,(ST4, 4s)

Note: Timers are represented in these equations in the form TONi(4, delay). TON indi-
cates that it is an on-delay timer, 4 is the input to the timer, and delay is the timer
delay value. The subscript i is used to differentiate timers.

Figure 12.20 State Equations for the Traffic Light Example

The equations in Figure 12.20 cannot be implemented in ladder logic because of
the NOT over the last terms. The equations are simplified in Figure 12.21 so that all NOT
operators are only over a single variable.

plc states - 12.19

Now, simplify these for implementation in ladder logic.

ST1 = (ST1+ST4- TON,(ST4,4)) - (ST1 +S1+S2) + FS

ST2 = (ST2+ST1-51-52) - (ST2 + TON, (ST2, 4))

ST3 = (ST3+ST2- TON,(ST2,4)) - (ST3 +S1+S2)

ST4 = (ST4+ ST3 - S1-82)- (ST4+ TON,(ST4, 4))

Figure 12.2]1 Simplified Boolean Equations

These equations are then converted to the ladder logic shown in Figure 12.22 and
Figure 12.23. At the top of the program the two timers are defined. (Note: it is tempting to
combine the timers, but it is better to keep them separate.) Next, the Boolean state equa-
tions are implemented in ladder logic. After this we use the states to turn specific lights on.

plc states - 12.20

Figure 12.22 Ladder Logic for the State Equations

DEFINE THE TIMERS
ST4 timer on
t st4
delay 4 sec
ST2 timer on
t st2
delay 4 sec
THE STATE EQUATIONS
ST1 ST}
O ST1X
ST4 t st2.DN
ol SL
|
S2
first scan
ST2 ST2 <>Ssz
S1 S2 t st4.DN
ST1 B \4\;\ 3
|| |
ST3 ST3
() smx
ST2 t St4.DN Sl
1|
|
2,
ST4 ST4 ST4X
2 S1 S2 t st2.DN
| A

plc states - 12.21

OUTPUT LOGIC FOR THE LIGHTS

ST1 L1
O

ST2

ST4 L2
O

ST3 L3
O

ST3 L4
O

ST4

ST2 L5
O

ST1 L6
O

Figure 12.23 Ladder Logic for the State Equations

This method will provide the most compact code of all techniques, but there are
potential problems. Consider the example in Figure 12.23. If push button S/ has been
pushed the line for ST1 should turn off, and the line for ST2 should turn on. But, the line
for ST2 depends upon the value for S77 that has just been turned off. This will cause a
problem if the value of ST1 goes off immediately after the line of ladder logic has been
scanned. In effect the PLC will get /ost and none of the states will be on. This problem
arises because the equations are normally calculated in parallel, and then all values are
updated simultaneously. To overcome this problem the ladder logic could be modified to
the form shown in Figure 12.24. Here some temporary variables are used to hold the new
state values. After all the equations are solved the states are updated to their new values.

plc states - 12.22

THE STATE EQUATIONS

ST1 ST}
O ST1X
ST4 t st4.DN
ol S
| |
S2
first scan
ST2 ST2 <>Ssz
S1 S2 t st2.DN
ST g \lr\ St
| | |
ST3 ST3
() smx
ST2 t st2.DN Sl
1
||
S2,
ST4 ST4 ST4X
A S1 S2 t st4.DN
LN T ~
| ||
STIX
- ;F Q ST1
- ;f Q ST2
srek s
| Q ST4

Figure 12.24 Delayed State Updating

When multiple transitions out of a state exist we must take care to add priorities.

plc states - 12.23

Each of the alternate transitions out of a state should be give a priority, from highest to
lowest. The state equations can then be written to suppress transitions of lower priority
when one or more occur simultaneously. The state diagram in Figure 12.25 has two transi-
tions 4 and C that could occur simultaneously. The equations have been written to give A
a higher priority. When 4 occurs, it will block C in the equation for S7TC. These equations
have been converted to ladder logic in Figure 12.26.

first scan

STA = (STA+STB-A)-STA-B

STB = (STB+STA-B+STC-D)-STB-A-STB-C+FS

STC = (STC+STB-C-A)-STC-D

Figure 12.25 State Equations with Prioritization

plc states - 12.24

STA STA

STB STH.

STA B

/ >

STC D

STC

STC

STB C A

STAX

STBX

STCX

Figure 12.26 Ladder Logic with Prioritization

12.1.2.3 - State-Transition Equations

plc states - 12.25

A state diagram may be converted to equations by writing an equation for each
state and each transition. A sample set of equations is seen in Figure 12.27 for the traffic
light example of Figure 12.8. Each state and transition needs to be assigned a unique vari-
able name. (Note: It is a good idea to note these on the diagram) These are then used to
write the equations for the diagram. The transition equations are written by looking at the
each state, and then determining which transitions will end that state. For example, if ST1
is true, and crosswalk button S/ is pushed, and S2 is not, then transition 7/ will be true.
The state equations are similar to the state equations in the previous State Equation
method, except they now only refer to the transitions. Recall, the basic form of these equa-
tions is that the state will be on if it is already on, or it has been turned on by a transition.
The state will be turned off if an exiting transition occurs. In this example the first scan
was given it’s own transition, but it could have also been put into the equation for T4.

defined state and transition variables:

ST1 = state 1 - green NS T1 = transition from ST1 to ST2
ST2 = state 2 - yellow NS T2 = transition from ST2 to ST3
ST3 = state 3 - green EW T3 = transition from ST3 to ST4
ST4 = state 4 - yellow EW T4 = transition from ST4 to ST1

T5 = transition to ST1 for first scan

state and transition equations:

T4 = ST4 - TON,(ST4, 4) ST1 = (ST1 + T4 +T5)-T1
Tl = ST1-S1-82 ST2 = (ST2+T1)-T2

T2 = ST2 - TON,(ST2,4) ST3 = (ST3+T2)- T3

T3 = ST3-51-82 ST4 = (ST4+T3)- T4

T5 = FS

Figure 12.27 State-Transition Equations

These equations can be converted directly to the ladder logic in Figure 12.28, Fig-
ure 12.29 and Figure 12.30. It is very important that the transition equations all occur
before the state equations. By updating the transition equations first and then updating the
state equations the problem of state variable values changing is negated - recall this prob-
lem was discussed in the State Equations section.

plc states - 12.26

UPDATE TIMERS
ST4 timer on
I | t st4
delay 4 sec
ST2 timer on
I I t st2
delay 4 sec
CALCULATE TRANSITION EQUATIONS
ST4 t st4.DN
N OT4
S1 S2 Tl
% O
|
ST2 t st2.DN
O"
3 S1 S2 T3
| O
|
FS TS5

Figure 12.28 Ladder Logic for the State-Transition Equations

O

plc states - 12.27

CALCULATE STATE EQUATIONS

ST1

ST2

ST3

ST4

ST1 |T1
N
T4
TS
ST2 sz
N
Tl
ST3 |T3
|
T2
ST4 |T4
|
T3

Figure 12.29 Ladder Logic for the State-Transition Equations

plc states - 12.28

UPDATE OUTPUTS

ST1 L1
O

ST2

ST4 L2
O

ST3 L3
O

ST3 L4
O

ST4

ST2 L5
O

ST1 L6
O

Figure 12.30 Ladder Logic for the State-Transition Equations

The problem of prioritization also occurs with the State-Transition equations.
Equations were written for the State Diagram in Figure 12.31. The problem will occur if
transitions 4 and C occur simultaneously. In the example transition 72 is given a higher
priority, and if it is true, then the transition 73 will be suppressed when calculating STC. In
this example the transitions have been considered in the state update equations, but they
can also be used in the transition equations.

plc states - 12.29

T1
first scan (FS)
T1 = FS§ STA = (STA+T2)-T5
I2 = STB-4 STB = (STB+T5+T4+T1)-T2-T3
T3 = STB-C STC = (STC+T3-T2)- T4
T4 = STC-D
T5 = STA-B

Figure 12.31 Prioritization for State Transition Equations

12.2 SUMMARY

» State diagrams are suited to processes with a single flow of execution.

» State diagrams are suited to problems that has clearly defines modes of execu-
tion.

* Controller diagrams can be converted to ladder logic using MCR blocks

» State diagrams can also be converted to ladder logic using equations

* The sequence of operations is important when converting state diagrams to lad-
der logic.

12.3 PRACTICE PROBLEMS

1. Draw a state diagram for a microwave oven.

plc states - 12.30

2. Convert the following state diagram to equations.

Inputs Outputs A(C+D)
A P

B Q

C R

D

E

F

state | P Q R
SO |0 1 1
S1 1 0 1
S2 1 1 0

3. Implement the following state diagram with equations.

plc states - 12.31

4. Given the following state diagram, use equations to implement ladder logic.

A
4 C*B

C+B

5. Convert the following state diagram to logic using equations.

6. You have been asked to program a PLC that is controlling a handicapped access door opener.
The client has provided the electrical wiring diagram below to show how the PLC inputs and
outputs have been wired. Button A is located inside and button B is located outside. When
either button is pushed the motor will be turned on to open the door. The motor is to be kept on
for a total of 15 seconds to allow the person to enter. After the motor is turned off the door will
fall closed. In the event that somebody gets caught in the door the thermal relay will go off, and
the motor should be turned off. After 20,000 cycles the door should stop working and the light

plc states - 12.32

should go on to indicate that maintenance is required.

24V DC 120 V AC
Output Card

Power
Suppl

00 O PPYY

COM.

01 O Relay

02 O

03 O

04 O I

050 24 V lamp

06 O

07 O +24 V DC
Power
comMO Supply

GND

rack machine’
slot 0

plc states - 12.33

PLC Input Card
24V AC
O
00
24V AC button A O o1
Power — button B
Supply O 02
O 03
thermal relay O o4
1 O 05
- O 06
O 07
O com

rack 'machine’
e — slot 1
a) Develop a state diagram for the control of the door.
b) Convert the state diagram to ladder logic. (list the input and the output addresses
first)
c) Convert the state diagram to Boolean equations.

7. Design a garage door controller using a) block logic, and b) state-transition equations. The
behavior of the garage door controller is as follows,

- there is a single button in the garage, and a single button remote control.

- when the button is pushed the door will move up or down.

- if the button is pushed once while moving, the door will stop, a second push will
start motion again in the opposite direction.

- there are top/bottom limit switches to stop the motion of the door.

- there is a light beam across the bottom of the door. If the beam is cut while the
door is closing the door will stop and reverse.

- there is a garage light that will be on for 5 minutes after the door opens or closes.

plc states - 12.34

8. Convert the following ladder logic to Boolean equations and then draw the state diagram for the
system. Is something missing from the system?

STA| B| STAX
| “Ne O
™0
| | | |FS
|
ST]|3 A| ¢ STBX
| “Ne O
STA B
STC B
ST(f B| STCX
| “Ne O
S|TB |C|
| | |
STAX
O STA
STBX
O STB
STCX
O STC

9. A program is to perform the following actions for a self-service security check. The device will
allow bags to be inserted to the test chamber through an entrance door. If the bag passes the
check it can be removed through an exit door, otherwise an alarm is sounded. Create a state
diagram using the steps below.

1. The machine starts in an ‘idle’ state. The ‘open_entry’ output is activated to open the input
door. The ‘open_exit’ output is deactivated to close the output door.

2. When a bag is inserted the ‘bag_detected’ input goes high. The ‘open_entry’ output should
be deactivated to close the door.

3. When the ‘entry door closed’ and ‘exit_door closed’ inputs are active then a ‘test’ output
will be set high to start a scan of the bags.

4. When the scan of the bags is complete a ‘scan_done’ input is set. The ‘test’ output should
be turned off.

plc states - 12.35

5. The scan results in two real values ‘nitrates’ and ‘mass’. The calculation below is per-
formed. If the ‘risk’ is below 0.3, or above 23.5, then the machine enters an alarm state (step
8), otherwise it continues to step 6.

. jtrat .
risk = 4" + sqgrt(mass)nitrates

6. The ‘open_exit’ output is activated to open the exit door. The machine waits until the
‘bag_detected’ input goes low.

7. The ‘open_exit’ output is deactivated to close the door. The machine waits until the
‘exit_door closed’ input is high before returning to the ‘idle state.

8. In the alarm state an operator input ‘key’ must be active to open the exit door. After this
input is released the door will close and return to the ‘idle’ state.

12.4 PRACTICE PROBLEM SOLUTIONS

Time Button
Timer Done + Cancel Button + Poor Open

Time Button

Cancel Button

Power Button

Start Button

plc states - 12.36

T1 = FS
T2 = S1(BA) Sl = (S1+T1+T3+75)7274 £ = S1+52
— 0 =50+82
73 = S2(E(C+D+F)) S2 =(82+712)T3
R = SO+ S1

T4 = SI(F+E) S0 = (SO + T4T2)T5

T5 = SO(A(C+ D))

plc states - 12.37

T1 = STleAd ST1 = (ST1+T2+T4+T6)-T1-T3-T5
12 = 5728 ST2 = (ST2+T1-T3-T5)- T2

T3 = STleC _

T4 = ST3 e D ST3 = (ST3+T73-T75)-T4

T5 = STl o E ST4 = (ST4+T5+FS)-T6

76 = ST4 e F
ST1 A

-

—
\9]

ST2

ool

ST1

—
w

o_1O
—
~

ST3

ST1

es]
—
w

ST F

—
N

ST1

OOO00O0O0O

ST1 T]\H\ T3\H\ TS\H\

T2

T4

T6

ST2

ST2 T2*¢\
!

Tl , T3, , T4,

O

ST3

ST3 T4*4\
!

O

T3, , TS,

ST4 TQ*W\ ST4
|
| O

TS5

FS

plc states - 12.38

FS = first scan

Tl = ST2- 4
-4 C*B T2 = ST1-B
T - T3 = ST3-(C- B)
T4 = ST2 - (C+ B)
B\ T2 T4 ST1 = (ST1+T1)-T2+FS
ST2 = (ST2+T2+T3)-TI - T4
+ JR— JR—
C+B ST3 = (ST3+T4-T1)- T3
ST2 A
STI B Q -
ST3 C B
N T3
ST2
C Q T4
B
T2
e T Ok
T1
first scan
T1 T4
\4\1|\ ST2 ST2
|
T2
T3
T3
SN 8 Ok

T4 \H\Tl

plc states - 12.39

TA = ST2- A ST1 = (ST1+TA+TC)-TB-TD
TB = ST1-B ST2 = (ST2+TB+TF)-TA-TE
TC = ST3-C ST3 = (ST3+TD+TE)-TC-TF
TD = ST1-D-B
TE = ST2-E-4
TF = ST3-F-C

Sle A

sJ{l B

SJP C

sJ{l D B

stz E A

lers FI C

ST B TD

TA

TC

ST2 TTx TF

TN

TF

ST3 T|C TF

I

TE

plc states - 12.40

%) button A + button B
. motor on
door idle door opening
counter > 20,000
thermal relay + 15 sec delay
service mode
reset button - assumed
b) Legend '

button A Machine:0.1.Data.1

button B Machine:0.1.Data.2

motor Machine:1.0.Data.3

thermal relay Machine:0.1.Data.3

reset button Machine:0.I.Data.4 - assumed

state 1

state 2

state 3

lamp Machine:1.0.Data.7

plc states - 12.41

} % first scan @
@ state 1
i: : state 2
i: : state 3
@
state 2 Q motor
state 3 Q light
} state 1 @
button A Q state 2
L
button B —® state 1
@

plc states - 12.42

} I state 2 @
TON
t st2
preset 15s
t st2.DN @ state 1
thermal relay i: : state 2
CTU
maintain
preset 20000
| ‘ maintain.DN state 3
state 2
state 1

C

booc

plc states - 12.43

‘ state 3 C

‘ reset button ?? state 1

state 3

counter

C

S0 = (S0 + S1(delay(15) + thermal))SO0(buttonA + buttonB)

S1 = (S1+S0(buttonA + buttonB))S1(delay(15) + thermal)S3(counter)
S3 = (83 +S2(counter))S3(reset)

motor = S1

light = 83

plc states - 12.44

a) block logic method
remote OR button

remote OR button

door
opening
(state 4)

door light sensor
closing

(state 2)

remote OR button remote OR button OR top limit

plc states - 12.45

C

B FS L state 1
|
4@ state_2
4@ state 3
4@ state 4
state 2 Q close doo
state 4 Q open_dooi
state 2 TOF
light on
preset 300s
state 4
light on.DN .
B Q garage light
state 1
@
remote @ state 1
button 4@ state 2
@

state 2
| |

plc states - 12.46

<

remote

button

bottom_limit

light beam

<
Q

state 3
]

<
Q

remote

button

Q

OO PROG OOC

state 2

state 3

state 2

state 4

state 3

state 4

plc states - 12.47

state 4
il MC
|
remote @ state 4
button 4@ state 1
top_limit
@

plc states - 12.48

b) state-transition equations
remote OR button

remote OR button OK bottom lim

door
opening
(state 4)

door light sensor
closing

(state 2)

remote OR button remote OR button OR top limit

using the previous state diagram.

ST1 = state 1 T1 = state 1 to state 2
ST2 = state 2 T2 = state 2 to state 3
ST3 = state 3 T3 = state 2 to state 4
ST4 = state 4 T4 = state 3 to state 4
FS = first scan TS5 = state 4 to state 1
ST1 = (ST1+T5)-T1 Tl = ST1 - (remote + button)

ST2 = (ST2+T1)- .73 T2 = ST2 - (remote + button + bottomlimit)
T3 = ST2 - (remote + button)

T4 = ST3 -(lighbeam)

ST4 = (ST4+T3+T4)-T5 75 = §T4. (remote + button + toplimit) + FS

ST3 = (ST3+T2)- T4

plc states - 12.49

STl| | remote
||
button
ST2| | remote
|
button
bottom limit
ST?I | remote
|
button
ST3 lig]Q_beam
ST4 remote
button
top_limit

first_scan

plc states - 12.50

T1 | ST1 ST1
N
T5
T2 | T3 | ST2 ST2
M
T1
T4 | ST3 ST3
N
T2
T5 | ST4 ST4
B
T3
T4
ST2 Q close do
ST4 Q open do«
ST2 TOF
light on
preset 300s
ST4
light on.DN
11

Q garage light

plc states - 12.51

FS

priority is missing

FS

Bag Detected)
Idle p\ Closing Door

Entry Door Closed e Exit\Door Closed
Key Scan_Done o ((Risk < 0.3) e (Risk > 23.5))
-

Chamber
Closed

Exit Dogr Closed

Closing Exit)«g— | Bag Cleared

Bag Detected

Scan_Done o ((Risk > 0.3) e (Risk <23.5))

12.5 ASSIGNMENT PROBLEMS

1. Describe the difference between the block logic, delayed update, and transition equation meth-

plc states - 12.52

ods for converting state diagrams to ladder logic.

2. Write the ladder logic for the state diagram below using the block logic method.
A

— T—a

B

FS — p

3. Convert the following state diagram to ladder logic using the block logic method. Give the stop
button higher priority.

D + STOP

plc states - 12.53

4. Convert the following state diagram to ladder logic using the delayed update method.

part

FS

par
RN -

jam
reset

5. Use equations to develop ladder logic for the state diagram below using the delayed update
method. Be sure to deal with the priority problems.

FS

plc states - 12.54

6. Implement the State-Transition equations.in the figure below with ladder logic.

T1
first scan (FS)
T1 = FS§ STA = (STA+T2)-T5
I2 = STB-4 STB = (STB+T5+T4+T1)-T2-T3
T3 = STB-C STC = (STC+T3-T2)- T4
T4 = STC-D
T5 = STA-B

7. Write ladder logic to implement the state diagram below using state transition equations.

8. Convert the following state diagram to ladder logic using a) an equation based method, b) a

plc states - 12.55

method that is not based on equations.

FS START

5s delay
STOP
FAULT

9. The state diagram below is for a simple elevator controller. a) Develop a ladder logic program
that implements it with Boolean equations. b) Develop the ladder logic using the block logic
technique. c) Develop the ladder logic using the delayed update method.

up_reques

FS -
up_request

down_request

down_request

10. Write ladder logic for the state diagram below a) using an equation based method. b) without

plc states - 12.56

using an equation based method.

OFFHOOK OFFHOOK

OFFHOOK

OFFHOOK

ANSWERED

DIALED

11. For the state diagram for the traffic light example, add a 15 second green light timer and speed
up signal for an emergency vehicle. A strobe light mounted on fire trucks will cause the lights
to change so that the truck doesn’t need to stop. Modify the state diagram to include this
option. Implement the new state diagram with ladder logic.

12. Design a program with a state diagram for a hydraulic press that will advance when two palm
buttons are pushed. Top and bottom limit switches are used to reverse the advance and stop
after a retract. At any time the hands removed from the palm button will stop an advance and
retract the press. Include start and stop buttons to put the press in and out of an active mode.

13. In dangerous processes it is common to use two palm buttons that require a operator to use
both hands to start a process (this keeps hands out of presses, etc.). To develop this there are
two inputs (P1 and P2) that must both be turned on within 0.25s of each other before a machine
cycle may begin.

Develop ladder logic with a state diagram to control a process that has a start
(START) and stop (STOP) button for the power. After the power is on the palm
buttons (P1 and P2) may be used as described above to start a cycle. The cycle
will consist of turning on an output (MOVE) for 2 seconds. After the press has
been cycled 1000 times the press power should turn off and an output (LIGHT)
should go on.

plc states - 12.57

14. Use a state diagram to design a parking gate controller.

i - the gate will be raised by one output
keycard entry \O/ fight and lowered by another. If the gate
/N gets stuck an over current detector

will make a PLC input true. If this
is the case the gate should reverse
and the light should be turned on
indefinitely.
- if a valid keycard is entered a PLC
input will be true. The gate is to
cars enter/leave car detector rise and stay open for 10 seconds.
- - - when a car is over the car detector a
PLC input will go true. The gate is
to open while this detector is
active. If it is active for more that
30 seconds the light should also
- turn on until the gate closes.

gatg

15. This morning you received a call from Mr. lan M. Daasprate at the Old Fashioned Widget
Company. In the past when they built a new machine they would used punched paper cards for
control, but their supplier of punched paper readers went out of business in 1972 and they have
decided to try using PLCs this time. He explains that the machine will dip wooden parts in var-
nish for 2 seconds, and then apply heat for 5 minutes to dry the coat, after this they are manu-
ally removed from the machine, and a new part is put in. They are also considering a premium
line of parts that would call for a dip time of 30 seconds, and a drying time of 10 minutes. He
then refers you to the project manager, Ann Nooyed.

You call Ann and she explains how the machine should operate. There should be start and stop
buttons. The start button will be pressed when the new part has been loaded, and is ready to be
coated. A light should be mounted to indicate when the machine is in operation. The part is
mounted on a wheel that is rotated by a motor. To dip the part, the motor is turned on until a
switch is closed. To remove the part from the dipping bath the motor is turned on until a second
switch is closed. If the motor to rotate the wheel is on for more that 10 seconds before hitting a
switch, the machine should be turned off, and a fault light turned on. The fault condition will
be cleared by manually setting the machine back to its initial state, and hitting the start button
twice. If the part has been dipped and dried properly, then a done light should be lit. To select a
premium product you will use an input switch that needs to be pushed before the start button is
pushed. She closes by saying she will be going on vacation and you need to have it done before
she returns.

You hang up the phone and, after a bit of thought, decide to use the following outputs and inputs,

plc states - 12.58

INPUTS OUTPUTS
I/1 - start push button O/1 - start button
/2 - stop button O/2 - in operation
I/3 - premium part push button O/3 - fault light
1/4 - switch - part is in bath on wheel O/4 - part done light
I/5 - switch - part is out of bath on wheel O/5 - motor on

O/6 - heater power supply

a) Draw a state diagram for the process.

b) List the variables needed to indicate when each state is on, and list any timers
and counters used.

c¢) Write a Boolean expression for each transition in the state diagram.

d) Do a simple wiring diagram for the PLC.

e) Write the ladder logic for the state that involves moving the part into the dipping
bath.

16. Design ladder logic with a state diagram for the following process description.

a) A toggle start switch (TS1) and a limit switch on a safety gate (LS1) must both
be on before a solenoid (SOL1) can be energized to extend a stamping cylinder
to the top of a part. Should a part detect sensor (PS1) also be considered?
Explain your answer.

b) While the stamping solenoid is energized, it must remain energized until a limit
switch (LS2) is activated. This second limit switch indicates the end of a stroke.
At this point the solenoid should be de-energized, thus retracting the cylinder.

c) When the cylinder is fully retracted a limit switch (LS3) is activated. The cycle
may not begin again until this limit switch is active. This is one way to ensure
that a new part is present, is there another?

d) A cycle counter should also be included to allow counts of parts produced.
When this value exceeds some variable amount (from 1 to 5000) the machine
should shut down, and a job done light lit up.

e) A safety check should be included. If the cylinder solenoid has been on for more
than 5 seconds, it suggests that the cylinder is jammed, or the machine has a
fault. If this is the case the machine should be shut down, and a maintenance
light turned on.

f) Implement the ladder diagram on a PLC in the laboratory.

g) Fully document the ladder logic and prepare a short report - This should be of
use to another engineer that will be maintaining the system.

plc numbers - 13.1

13. NUMBERS AND DATA

Topics:
* Number bases; binary, octal, decimal, hexadecimal
* Binary calculations; 2s compliments, addition, subtraction and Boolean opera-
tions
* Encoded values; BCD and ASCII
* Error detection; parity, gray code and checksums

Objectives:

* To be familiar with binary, octal and hexadecimal numbering systems.
* To be able to convert between different numbering systems.

* To understand 2s compliment negative numbers.

* To be able to convert ASCII and BCD values.

* To be aware of basic error detection techniques.

13.1 INTRODUCTION

Base 10 (decimal) numbers developed naturally because the original developers
(probably) had ten fingers, or 10 digits. Now consider logical systems that only have wires
that can be on or off. When counting with a wire the only digits are 0 and 1, giving a base
2 numbering system. Numbering systems for computers are often based on base 2 num-
bers, but base 4, 8, 16 and 32 are commonly used. A list of numbering systems is give in
Figure 13.1. An example of counting in these different numbering systems is shown in
Figure 13.2.

Base Name Data Unit
2 Binary Bit

8 Octal Nibble

10 Decimal Digit

16 Hexadecimal Byte

Figure 13.1 Numbering Systems

plc numbers - 13.2

decimal binary octal hexadecimal
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7 Note: As with all numbering systems
8 1000 10 8
9 1001 11 9 most significant digits are at left,
10 1010 12 a least significant digits are at right.
11 1011 13 b
12 1100 14 C
13 1101 15 d
14 1110 16 e
15 1111 17 f
16 10000 20 10
17 10001 21 11
18 10010 22 12
19 10011 23 13
20 10100 24 14

Figure 13.2 Numbers in Decimal, Binary, Octal and Hexadecimal

The effect of changing the base of a number does not change the actual value, only
how it is written. The basic rules of mathematics still apply, but many beginners will feel
disoriented. This chapter will cover basic topics that are needed to use more complex pro-
gramming instructions later in the book. These will include the basic number systems,
conversion between different number bases, and some data oriented topics.

13.2 NUMERICAL VALUES

13.2.1 Binary

Binary numbers are the most fundamental numbering system in all computers. A
single binary digit (a bit) corresponds to the condition of a single wire. If the voltage on
the wire is true the bit value is /. If the voltage is off the bit value is 0. If two or more wires
are used then each new wire adds another significant digit. Each binary number will have
an equivalent digital value. Figure 13.3 shows how to convert a binary number to a deci-
mal equivalent. Consider the digits, starting at the right. The least significant digit is /, and

plc numbers - 13.3

is in the Oth position. To convert this to a decimal equivalent the number base (2) is raised
to the position of the digit, and multiplied by the digit. In this case the least significant
digit is a trivial conversion. Consider the most significant digit, with a value of / in the 6th
position. This is converted by the number base to the exponent 6 and multiplying by the
digit value of 1. This method can also be used for converting the other number system to
decimal.

20=64 2°=32 2*=16 P’= =1

\\e\l}l‘

1(26)— 64
1(2)— 32
1(2)— 16
02 = 0
0(22)— 0
0(2)— 0
12% = 1
113

Figure 13.3 Conversion of a Binary Number to a Decimal Number

Decimal numbers can be converted to binary numbers using division, as shown in
Figure 13.4. This technique begins by dividing the decimal number by the base of the new
number. The fraction after the decimal gives the least significant digit of the new number
when it is multiplied by the number base. The whole part of the number is now divided
again. This process continues until the whole number is zero. This method will also work
for conversion to other number bases.

plc numbers - 13.4

start with decimal number 932

\

232 _ 466 2(0.0)=0
for binary~ -~ 2 /
(base:2) ‘%;/233 2(0.0) =0
2373;/1 16 2(0.5)=1
116

=2 — 58 2(0.0)=0

o
28 _ 19
2

2—9:/14
2

e
v
1-3

»

2(0.0)=0

2(0.5)=1

2(0.0)=0 1110100100

2(0.5)=1

2(0.5)=1

1

AN

—

2(0.5)=1

|
=)

&

done) . o
multiply places after decimal by division

base, in this case it is 2 because of the binary.

* This method works for other number bases also, the divisor and multipliers
should be changed to the new number bases.

Figure 13.4 Conversion from Decimal to Binary

Most scientific calculators will convert between number bases. But, it is important
to understand the conversions between number bases. And, when used frequently enough
the conversions can be done in your head.

Binary numbers come in three basic forms - a bit, a byte and a word. A bit is a sin-
gle binary digit, a byte is eight binary digits, and a word is 16 digits. Words and bytes are

plc numbers - 13.5

shown in Figure 13.5. Notice that on both numbers the least significant digit is on the right
hand side of the numbers. And, in the word there are two bytes, and the right hand one is
the least significant byte.

BYTE WORD
MSB LS\B MSB LSB
0110 1011 0110 1011 0100 0010
most least
significant significant
byte byte

Figure 13.5 Bytes and Words

Binary numbers can also represent fractions, as shown in Figure 13.6. The conver-
sion to and from binary is identical to the previous techniques, except that for values to the
right of the decimal the equivalents are fractions.

binary: 101.011

P

12 =4 o02)=0 12%=1 o2 =0 129 127 =

0=

=44+0+1+0+=+= = 5375 decimal

=
o

Figure 13.6 A Binary Decimal Number

13.2.1.1 - Boolean Operations

In the next chapter you will learn that entire blocks of inputs and outputs can be
used as a single binary number (typically a word). Each bit of the number would corre-
spond to an output or input as shown in Figure 13.7.

plc numbers - 13.6

There are three motors M, M, and M5 represented with three bits in a binary
number. When any bit is on the corresponding motor is on.

100 = Motor 1 is the only one on
111 = All three motors are on

in total there are 2" or 2° possible combinations of motors on.

Figure 13.7 Motor Outputs Represented with a Binary Number

We can then manipulate the inputs or outputs using Boolean operations. Boolean
algebra has been discussed before for variables with single values, but it is the same for
multiple bits. Common operations that use multiple bits in numbers are shown in Figure
13.8. These operations compare only one bit at a time in the number, except the shift
instructions that move all the bits one place left or right.

Name Example Result

AND 0010 * 1010 0010

OR 0010 + 1010 1010

NOT 0010 1101

EOR 0010 eor 1010 1000

NAND 0010 * 1010 1101

shift left 111000 110001 (other results are possible)
shift right 111000 011100 (other results are possible)
etc.

Figure 13.8 Boolean Operations on Binary Numbers

13.2.1.2 - Binary Mathematics

Negative numbers are a particular problem with binary numbers. As a result there
are three common numbering systems used as shown in Figure 13.9. Unsigned binary
numbers are common, but they can only be used for positive values. Both signed and 2s
compliment numbers allow positive and negative values, but the maximum positive values
is reduced by half. 2s compliment numbers are very popular because the hardware and
software to add and subtract is simpler and faster. All three types of numbers will be found
in PLCs.

plc numbers - 13.7

Type Description Range for Byte
unsigned binary numbers can only have positive values. 0 to 255
signed the most significant bit (MSB) of the binary number| -127 to 127

is used to indicate positive/negative.
2s compliment | negative numbers are represented by complimenting| -128 to 127

the binary number and then adding 1.

Figure 13.9 Binary (Integer) Number Types

Examples of signed binary numbers are shown in Figure 13.10. These numbers use

the most significant bit to indicate when a number is negative.

decimal binary byte
2 00000010
1 00000001
0 00000000
-0 10000000 k Note: there are two zeros
-1 10000001
-2 10000010

Figure 13.10 Signed Binary Numbers

An example of 2s compliment numbers are shown in Figure 13.11. Basically, if the
number is positive, it will be a regular binary number. If the number is to be negative, we
start the positive number, compliment it (reverse all the bits), then add 1. Basically when
these numbers are negative, then the most significant bit is set. To convert from a negative

2s compliment number, subtract 1, and then invert the number.

plc numbers - 13.8

decimal binary byte METHOD FOR MAKING A NEGATIVE NUMBER
2 00000010 1. write the binary number for the positive
1 00000001 . _
0 00000000 for -30 we write 30 = 00011110
-1 11111111 2. Invert (compliment) the number
-2 11111110

00011110 becomes 11100001

3.Add 1
11100001 + 00000001 = 11100010

Figure 13.11 2s Compliment Numbers

Using 2s compliments for negative numbers eliminates the redundant zeros of
signed binaries, and makes the hardware and software easier to implement. As a result
most of the integer operations in a PLC will do addition and subtraction using 2s compli-
ment numbers. When adding 2s compliment numbers, we don’t need to pay special atten-
tion to negative values. And, if we want to subtract one number from another, we apply
the twos compliment to the value to be subtracted, and then apply it to the other value.

Figure 13.12 shows the addition of numbers using 2s compliment numbers. The
three operations result in zero, positive and negative values. Notice that in all three opera-
tion the top number is positive, while the bottom operation is negative (this is easy to see
because the MSB of the numbers is set). All three of the additions are using bytes, this is
important for considering the results of the calculations. In the left and right hand calcula-
tions the additions result in a 9th bit - when dealing with 8 bit numbers we call this bit the
carry C. If the calculation started with a positive and negative value, and ended up with a
carry bit, there is no problem, and the carry bit should be ignored. If doing the calculation
on a calculator you will see the carry bit, but when using a PLC you must look elsewhere
to find it.

plc numbers - 13.9

00000001 =1 00000001 =1 00000010 =2

+ 11111111 =-1 4+ 11111110 =-2 + 1111111 =-1

C+00000000 =0 LTI =-1 C+00000001 =1
ignore the carry bits Note: Normally the carry bit is ignored during the oper-

ation, but some additional logic is required to make
sure that the number has not overflowed and moved
outside of the range of the numbers. Here the 2s com-
pliment byte can have values from -128 to 127.

Figure 13.12 Adding 2s Compliment Numbers

The integers have limited value ranges, for example a 16 bit word ranges from -
32,768 to 32,767 whereas a 32 bit word ranges from -2,147,483,648 to 2,147,483,647. In
some cases calculations will give results outside this range, and the Overflow O bit will be
set. (Note: an overflow condition is a major error, and the PLC will probably halt when
this happens.) For an addition operation the Overflow bit will be set when the sign of both
numbers is the same, but the sign of the result is opposite. When the signs of the numbers
are opposite an overflow cannot occur. This can be seen in Figure 13.13 where the num-
bers two of the three calculations are outside the range. When this happens the result goes
from positive to negative, or the other way.

01111111 =127 10000001 = -127 10000001 = -127
4+ 00000011 =3 4+ 11111111 =-1 L 11111110 =-2

10000010 =-126 10000000 = -128 01111111 = 127

C=0 C=1 C=1

O =1 (error) O = 0 (no error) O =1 (error)

Note: If an overflow bit is set this indicates that a calculation is outside and
acceptable range. When this error occurs the PLC will halt. Do not ignore the
limitations of the numbers.

Figure 13.13 Carry and Overflow Bits

These bits also apply to multiplication and division operations. In addition the PLC
will also have bits to indicate when the result of an operation is zero Z and negative N.

plc numbers - 13.10

13.2.2 Other Base Number Systems

Other number bases are typically converted to and from binary for storage and
mathematical operations. Hexadecimal numbers are popular for representing binary val-
ues because they are quite compact compared to binary. (Note: large binary numbers with
a long string of 1s and Os are next to impossible to read.) Octal numbers are also popular
for inputs and outputs because they work in counts of eight; inputs and outputs are in
counts of eight.

An example of conversion to, and from, hexadecimal is shown in Figure 13.14 and
Figure 13.15. Note that both of these conversions are identical to the methods used for
binary numbers, and the same techniques extend to octal numbers also.

163 = 4096 =256 =16 16°=1

\ké/

f8a

15(163) = 61440
8(162) = 2048

10(16)= 160
3(16%) = 3
63651

Figure 13.14 Conversion of a Hexadecimal Number to a Decimal Number

%‘ = 35775 —® 16(0.75)=12"¢
357 — =
== = 223125 16(0.3125)=5

f—é — 1375 —® 16(0.375)=6 165¢

% = 00625 —® 16(0.0625)=1

Figure 13.15 Conversion from Decimal to Hexadecimal

plc numbers - 13.11

13.2.3 BCD (Binary Coded Decimal)

Binary Coded Decimal (BCD) numbers use four binary bits (a nibble) for each
digit. (Note: this is not a base number system, but it only represents decimal digits.) This
means that one byte can hold two digits from 00 to 99, whereas in binary it could hold
from 0 to 255. A separate bit must be assigned for negative numbers. This method is very
popular when numbers are to be output or input to the computer. An example of a BCD
number is shown in Figure 13.16. In the example there are four digits, therefore 16 bits are
required. Note that the most significant digit and bits are both on the left hand side. The
BCD number is the binary equivalent of each digit.

decimal

1263 Note: this example shows four digits
/ /\\ in two bytes. The hex values

0001 0010 0110 0011 BCD would also be 1263.

Figure 13.16 A BCD Encoded Number

Most PLCs store BCD numbers in words, allowing values between 0000 and 9999.
They also provide functions to convert to and from BCD. It is also possible to calculations
with BCD numbers, but this is uncommon, and when necessary most PLCs have functions
to do the calculations. But, when doing calculations you should probably avoid BCD and
use integer mathematics instead. Try to be aware when your numbers are BCD values and
convert them to integer or binary value before doing any calculations.

13.3 DATA CHARACTERIZATION

13.3.1 ASCII (American Standard Code for Information Interchange)

When dealing with non-numerical values or data we can use plain text characters
and strings. Each character is given a unique identifier and we can use these to store and
interpret data. The ASCII (American Standard Code for Information Interchange) is a very
common character encryption system is shown in Figure 13.17 and Figure 13.18. The
table includes the basic written characters, as well as some special characters, and some
control codes. Each one is given a unique number. Consider the letter 4, it is readily recog-
nized by most computers world-wide when they see the number 65.

O 0 I ONn bk W —O decimal

MO AW > O 09 v s wio— o hexadecimal

Figure 13.17 ASCII Character Table

binary

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111

00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111

00010000
00010001
00010010
00010011
00010100
00010101
00010110
00010111

00011000
00011001
00011010
00011011
00011100
00011101

00011110
00011111

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

decimal

32

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

plc numbers - 13.12

L LY LY LD LY LY LY LY LY LY LY L)LY LYW LR MMM NN NN NN NN hexadecimal
TMHUAOE>O0OX® AR LND—~OoTHOgATE» OX IR0 RLON—D

binary

00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100
00101101
00101110
00101111

00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111

00111000
00111001
00111010
00111011
00111100
00111101

00111110
00111111

+ %~

O 0NN P WLWND—O ™~

VLA

plc numbers - 13.13

= =

E E

'§ ' = Té fé 2 =
§ < Q ‘5 § < Q
o .E 2 O o .5 A
<= 5 < o = © <
40 01000000 @ 96 60 01100000 °
41 01000001 A 97 61 01100001 a
42 01000010 B 98 62 01100010 b
43 01000011 C 99 63 01100011 ¢
44 01000100 D 100 64 01100100 d
45 01000101 E 101 65 01100101 e
46 01000110 F 102 66 01100110 f
47 01000111 G 103 67 01100111 g
48 01001000 H 104 68 01101000 h
49 01001001 1 105 69 01101001 1
4A 01001010 J 106 6A 01101010 j
4B 01001011 K 107 6B 01101011 k
4C 01001100 L 108 6C 01101100 1
4D 01001101 M 109 6D 01101101 m
4E 01001110 N 110 6E 01101110 n
4F 01001111 O 111 6F 01101111 o
50 01010000 P 112 70 01110000 p
51 01010001 Q 113 71 01110001 ¢
52 01010010 R 114 72 01110010 r
53 01010011 S 115 73 01110011 s
54 01010100 T 116 74 01110100 t
55 01010101 U 117 75 01110101 u
56 01010110 V 118 76 01110110 v
57 01010111 W 119 77 01110111 w
58 01011000 X 120 78 01111000 x
59 01011001 Y 121 79 01111001 'y
5A 01011010 Z 122 7A 01111010 z
5B 01011011 [123 7B 01111011 {
5C 01011100 yen 124 7C 01111100 |
5D 01011101] 125 7D 01111101 }
5E 01011110 A~ 126 7E 01111110 r arr.
S5F 01011111 127 7F 01111111 | arr.

Figure 13.18 ASCII Character Table

This table has the codes from 0 to 127, but there are more extensive tables that
contain special graphics symbols, international characters, etc. It is best to use the basic
codes, as they are supported widely, and should suffice for all controls tasks.

plc numbers - 13.14

An example of a string of characters encoded in ASCII is shown in Figure 13.19.

e.g. The sequence of numbers below will convert to

A W e e T e s t
A 65
space 32
w 87
e 101
e 101
space 32
T 84
e 101
S 115
t 116

Figure 13.19 A String of Characters Encoded in ASCII

When the characters are organized into a string to be transmitted and LF and/or CR
code are often put at the end to indicate the end of a line. When stored in a computer an
ASCII value of zero is used to end the string.

13.3.2 Parity

Errors often occur when data is transmitted or stored. This is very important when
transmitting data in noisy factories, over phone lines, etc. Parity bits can be added to data
as a simple check of transmitted data for errors. If the data contains error it can be retrans-
mitted, or ignored.

A parity bit is normally a 9th bit added onto an 8 bit byte. When the data is
encoded the number of true bits are counted. The parity bit is then set to indicate if there
are an even or odd number of true bits. When the byte is decoded the parity bit is checked
to make sure it that there are an even or odd number of data bits true. If the parity bit is not
satisfied, then the byte is judged to be in error. There are two types of parity, even or odd.
These are both based upon an even or odd number of data bits being true. The odd parity
bit is true if there are an odd number of bits on in a binary number. On the other hand the

Even parity is set if there are an even number of true bits. This is illustrated in Figure
13.20.

plc numbers - 13.15

data parity
bits bit
Odd Parity 10101110 1
10111000 0
Even Parity 00101010 0
10111101 1

Figure 13.20 Parity Bits on a Byte

Parity bits are normally suitable for single bytes, but are not reliable for data with a
number of bits.

Note: Control systems perform important tasks that can be dangerous in certain circum-
stances. If an error occurs there could be serious consequences. As a result error
detection methods are very important for control system. When error detection occurs
the system should either be robust enough to recover from the error, or the system
should fail-safe. If you ignore these design concepts you will eventually cause an
accident.

13.3.3 Checksums

Parity bits are suitable for a few bits of data, but checksums are better for larger
data transmissions. These are simply an algebraic sum of all of the data transmitted.
Before data is transmitted the numeric values of all of the bytes are added. This sum is
then transmitted with the data. At the receiving end the data values are summed again, and
the total is compared to the checksum. If they match the data is accepted as good. An
example of this method is shown in Figure 13.21.

plc numbers - 13.16

DATA
124

43
255
9
27
47

CHECKSUM
505

Figure 13.21 A Simplistic Checksum

Checksums are very common in data transmission, but these are also hidden from
the average user. If you plan to transmit data to or from a PLC you will need to consider
parity and checksum values to verify the data. Small errors in data can have major conse-
quences in received data. Consider an oven temperature transmitted as a binary integer
(1023d = 0000 0100 0000 0000Db). If a single bit were to be changed, and was not detected
the temperature might become (0000 0110 0000 0000b = 1535d) This small change would
dramatically change the process.

13.3.4 Gray Code

Parity bits and checksums are for checking data that may have any value. Gray
code is used for checking data that must follow a binary sequence. This is common for
devices such as angular encoders. The concept is that as the binary number counts up or
down, only one bit changes at a time. Thus making it easier to detect erroneous bit
changes. An example of a gray code sequence is shown in Figure 13.22. Notice that only
one bit changes from one number to the next. If more than a single bit changes between
numbers, then an error can be detected.

ASIDE: When the signal level in a wire rises or drops, it induces a magnetic pulse that
excites a signal in other nearby lines. This phenomenon is known as cross-talk. This
signal is often too small to be noticed, but several simultaneous changes, coupled with
background noise could result in erroneous values.

plc numbers - 13.17

decimal gray code

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

OO0 IN NI WN—O

et
npbhwWwNh—O

Figure 13.22 Gray Code for a Nibble

13.4 SUMMARY

* Binary, octal, decimal and hexadecimal numbers were all discussed.

* 2s compliments allow negative binary numbers.

* BCD numbers encode digits in nibbles.

* ASCII values are numerical equivalents for common alphanumeric characters.
* Gray code, parity bits and checksums can be used for error detection.

13.5 PRACTICE PROBLEMS

1. Why are binary, octal and hexadecimal used for computer applications?
2. Is a word is 3 nibbles?
3. What are the specific purpose for Gray code and parity?

4. Convert the following numbers to/from binary

plc numbers - 13.18

a) from base 10: 54,321 b) from base 2: 110000101101

5. Convert the BCD number below to a decimal number,

01100010 0111 1001

6. Convert the following binary number to a BCD number,

0100 1011

7. Convert the following binary number to a Hexadecimal value,

0100 1011

8. Convert the following binary number to a octal,

0100 1011

9. Convert the decimal value below to a binary byte, and then determine the odd parity bit,
97

10. Convert the following from binary to decimal, hexadecimal, BCD and octal.

a) 101101 C) 10000000001
b) 11011011 d) 0010110110101

I1.

12.

13.

14.

15.

16.

plc numbers - 13.19

Convert the following from decimal to binary, hexadecimal, BCD and octal.
a) 1 c) 20456
b) 17 d) -10
Convert the following from hexadecimal to binary, decimal, BCD and octal.
a) 1 C) ABC
b) 17 d) -A
Convert the following from BCD to binary, decimal, hexadecimal and octal.
a) 1001 c) 0011 0110 0001
b) 1001 0011 d) 0000 0101 0111 0100
Convert the following from octal to binary, decimal, hexadecimal and BCD.
a) 7 c) 777
b) 17 d 32634

a) Represent the decimal value thumb wheel input, 3532, as a Binary Coded Deci-
mal (BCD) and a Hexadecimal Value (without using a calculator).
i) BCD
i1) Hexadecimal
b) What is the corresponding decimal value of the BCD value,
1001111010011011?

Add/subtract/multiply/divide the following numbers.

a) binary 101101101 + 01010101111011 1) octal 123 - 777

b) hexadecimal 101 + ABC J) 2s complement bytes 10111011 + 00000011
c) octal 123 + 777 k) 2s complement bytes 00111011 + 00000011
d) binary 110110111 - 0101111 1) binary 101101101 * 10101

e) hexadecimal ABC - 123 m) octal 123 * 777

f) octal 777 - 123 n) octal 777/ 123

g) binary 0101111 - 110110111 0) binary 101101101 / 10101

h) hexadecimal 123-ABC p) hexadecimal ABC /123

plc numbers - 13.20

17. Do the following operations with 8 bit bytes, and indicate the condition of the overflow and
carry bits.

a) 10111011 + 00000011 d) 110110111 - 01011111
b) 00111011 + 00000011 e) 01101011 + 01111011
¢) 11011011 + 11011111 f) 10110110 - 11101110

18. Consider the three BCD numbers listed below.

1001 0110 0101 0001
0010 0100 0011 1000
0100 0011 0101 0001

a) Convert these numbers to their decimal values.

b) Convert the decimal values to binary.

c) Calculate a checksum for all three binary numbers.

d) What would the even parity bits be for the binary words found in b).
19. Is the 2nd bit set in the hexadecimal value F49?

20. Explain where grey code occurs when creating Karnaugh maps.

21. Convert the decimal number 1000 to a binary number, and then to hexadecimal.

13.6 PRACTICE PROBLEM SOLUTIONS

1. base 2, 4, 8, and 16 numbers translate more naturally to the numbers stored in the computer.

2. no, it is four nibbles

3. Both of these are coding schemes designed to increase immunity to noise. A parity bit can be
used to check for a changed bit in a byte. Gray code can be used to check for a value error in a
stream of continuous values.

4.a) 1101 0100 0011 0001, b) 3117

5.6279

6.0111 0101

7.4B

8. 113

9. 1100001 odd parity bit =1

10.

I1.

12.

13.

plc numbers - 13.21

binary 101101 11011011 10000000001 0010110110101
BCD 01000101 00100001 1001 0001 000000100101 0001 010001100001
decimal 45 219 1025 1461

hex 2D DB 401 5B5

octal 55 333 2001 2665

decimal 1 17 20456 -10

BCD 0001 00010111 0010 0000 0100 0101 0110 -0001 0000

binary 1 10001 0100 1111 1110 1000 1111 1111 1111 0110
hex 1 11 4FE8 FFF6

octal 1 21 47750 177766

hex 1 17 ABC -A

BCD 0001 00100011 00100111 0100 1000 -0001 0000

binary 1 10111 0000 1010 1011 1100 1111 1111 1111 0110
decimal 1 23 2748 -10

octal 1 27 5274 177766

BCD 1001 1001 0011 0011 0110 0001 0000 0101 0111 0100
binary 1001 101 1101 10110 1001 100011 1110

decimal 9 93 361 0574

hex 9 5D 169 23E

octal 11 135 551 1076

plc numbers - 13.22

14.
octal 7 17 777 32634
binary 111 1111 11111 1111 0011 0101 1001 1100
decimal 7 15 511 13724
hex 7 F 1FF 359C
BCD 0111 0001 0101 0101 0001 0001 0001 0011 0111 0010 0100

15.2)3532=0011 0101 0011 0010 = DCC, b0 the number is not a valid BCD

16.
a) 0001 0110 1110 1000 i) -654
b) BBD j) 0000 0001 0111 1010
c) 1122 k) 0000 0000 0011 1110
d) 0000 0001 1000 1000 1) 0001 1101 1111 0001
e) 999 m) 122655
f) 654 n) 6
g) 1111 1110 0111 1000 0) 0000 0000 0001 0001
h) -999 p) 9
17.
a) 10111011 +00000011=1011 1110 d) 110110111 - 01011111=0101 1000+C+O
b) 00111011 + 00000011=0011 1110 e) 01101011 +01111011=1110 0110

c) 11011011 + 11011111=1011 1010+C+O f) 10110110 - 11101110=1100 1000

18.2) 9651, 2438, 4351,) 0010 0101 1011 0011, 0000 1001 1000 0110, 0001 0000 1111 1111, ¢)
16440, d) 1, 0, 0

19. The binary value is 1111 0100 1001, so the second bit is 0
20. when selecting the sequence of bit changes for Karnaugh maps, only one bit is changed at a

time. This is the same method used for grey code number sequences. By using the code the bits
in the map are naturally grouped.

plc numbers - 13.23

21.
1000,, = 1111101000, = 38,

13.7 ASSIGNMENT PROBLEMS

1. Why are hexadecimal numbers useful when working with PLCs?

plc memory - 14.1

14. PLC MEMORY

Topics:
* ControlLogix memory types; program and data
* Data types; output, input, status, bit, timer, counter, integer, floating point, etc.
» Memory addresses; words, bits, data files, expressions, literal values and indirect.

Objectives:
* To know the basic memory types available
* To be able to use addresses for locations in memory

14.1 INTRODUCTION

Advanced ladder logic functions such as timers and counters allow controllers to
perform calculations, make decisions and do other complex tasks. They are more complex
than basic input contacts and output coils and they rely upon data stored in the memory of
the PLC. The memory of the PLC is organized to hold different types of programs and
data. This chapter will discuss these memory types. Functions that use them will be dis-
cussed in following chapters.

14.2 PROGRAM VS VARIABLE MEMORY

The memory in a PLC is divided into program and variable memory. The program
memory contains the instructions to be executed and cannot be changed while the PLC is
running. (Note: some PLCs allow on-line editing to make minor program changes while a
program is running.) The variable memory is changed while the PLC is running. In Con-
trolLogix the memory is defined using variable names (also called tags and aliases).

plc memory - 14.2

ASIDE: In older Allen Bradley PLCs the memory was often organized as files. There
are two fundamental types of memory used in Allen-Bradley PLCs - Program and
Data memory. Memory is organized into blocks of up to 1000 elements in an array
called a file. The Program file holds programs, such as ladder logic. There are eight
Data files defined by default, but additional data files can be added if they are needed,

Program Files Data Files
2 00
Outputs
O ’
I Inputs
3
— }—O Sz Status
. B3 Bits
|
: T4 Timers
|
' CS Counters

999

}H —O) R6 Control

N7 Integer

These are a collection of up to 1000
slots to store up to 1000 pro- F8 Float
grams. The main program will
be stored in program file 2. SFC
programs must be in file 1’ and This is where the variable data is
file 0 is used for program and stored that the PLC programs
password information. All other operate on. This is quite compli-
program files from 3 to 999 can cated, so a detailed explanation

be used for subroutines. follows.

plc memory - 14.3

14.3 PROGRAMS

The PLC has a list of ’Main Tasks’ that contain the main program(s) run each scan
of the PLC. Additional programs can be created that are called as subroutines. Valid pro-
gram types include Ladder Logic, Structured Text, Sequential Function Charts, and Func-
tion Block Diagrams.

Program files can also be created for ’Power-Up Handling’ and ’Controller
Faults’. The power-up programs are used to initialize the controller on the first scan. In
previous chapters this was done in the main program using the ’S:FS’ bit. Fault programs
are used to respond to specific failures or issues that may lead to failure of the control sys-
tem. Normally these programs are used to recover from minor failures, or shut down a sys-
tem safely.

14.4 VARIABLES (TAGS)

Allen Bradley uses the terminology ’tags’ to describe variables, status, and input/
output (I/O) values for the controller. ’Controller Tags’ include status values and I/O defi-
nitions. These are scoped, meaning that they can be global and used by all programs on the
PLC. These can also be local, limiting their use to a program that owns it.

Variable tags can be an alias for another tags, or be given a data type. Some of the
common tag types are listed below.

Type Description
BOOL Holds TRUE or FALSE values
CONTROL General purpose memory for complex instructions
COUNTER Counter memory
DINT 32 bit 2s compliment integer -2,147,483,648 to 2,147,483,647
INT 16 bit 2s compliment integer -32,768 to 32,767
MESSAGE Used for communication with remote devices
PID Used for PID control functions
REAL 32 bit floating point value +/-1.1754944¢-38 to +/-3.4028237¢38
SINT 8 bit 2s compliment integer -128 to 127
STRING An ASCII string
TIMER Timer memory
Figure 14.1 Selected ControlLogic Data Types

plc memory - 14.4

Interface to 0:000
outside world I:nnn
S2:nnn
B3:nnn
T4:nnn
C5:nnn
R6:nnn
N7:nnn

F8:nnn
]

Fixed types of
Data files

Rack

1/O slot number in rack

For older Allen Bradley PLCs data files are used for storing different informa-
tion types, as shown below. These locations are numbered from 0 to 999.
The letter in front of the number indicates the data type. For example, F8§: is
read as floating point numbers in data file 8. Numbers are not given for O:
and /., but they are implied to be O0: and /1/:. The number that follows the :
is the location number. Each file may contain from 0 to 999 locations that
may store values. For the input /: and output O: files the locations are con-
verted to physical locations on the PLC using rack and slot numbers. The
addresses that can be used will depend upon the hardware configuration.
The status S2: file is more complex and is discussed later. The other mem-
ory locations are simply slots to store data in. For example, /'§:35 would
indicate the 36th value in the 8th data file which is floating point numbers.

outputs

inputs

processor status

bits in words

timers

counters

control words

integer numbers
floating point numbers

I Other files 9-999 can be created and used.
I The user defined data files can have different

v data types.

Data values do not always need to be stored in memory, they can be define liter-
ally. Figure 14.2 shows an example of two different data values. The first is an integer, the
second is a real number. Hexadecimal numbers can be indicated by following the number
with H, a leading zero is also needed when the first digit is 4, B, C, D, E or F. A binary

number is indicated by adding a B to the end of the number.

plc memory - 14.5

8 - an integer

8.5 - a floating point number

O8FH - a hexadecimal value 8F
01101101B - a binary number 01101101

Figure 14.2 Literal Data Values

Data types can be created in variable size 1D, 2D, or 3D arrays.

Sometimes we will want to refer to an array of values, as shown in Figure 14.3.
This data type is indicated by beginning the number with a pound or hash sign ’#’. The
first example describes an array of floating point numbers staring in file § at location 5.
The second example is for an array of integers in file 7 starting at location 0. The length of
the array is determined elsewhere.

test[1, 4] - returns the value in the 2nd row and 5th column of array test

Figure 14.3 Arrays

Expressions allow addresses and functions to be typed in and interpreted when the
program is run. The example in Figure 14.4 will get a floating point number from ’test’,
perform a sine transformation, and then add 1.3. The text string is not interpreted until the
PLC is running, and if there is an error, it may not occur until the program is running - so
use this function cautiously.

expression - a text string that describes a complex operation.

“sin(test) + 1.3” - a simple calculation

Figure 14.4 Expressions

These data types and addressing modes will be discussed more as applicable func-
tions are presented later in this chapter and book.

plc memory - 14.6

Figure 14.5 shows a simple example ladder logic with functions. The basic opera-
tion is such that while input 4 is true the functions will be performed. The first statement
will move (MOV) the literal value of /30 into integer memory X. The next move function
will copy the value from X to Y. The third statement will add integers value in X and Y and
store the results in Z.

A MOV
|| source 130
destination X

MOV
source X
destination Y

ADD
sourceA X
sourceB Y
destination Z

Figure 14.5 An Example of Ladder Logic Functions

14.4.1 Timer and Counter Memory

Previous chapters have discussed the basic operation of timers and counters. The
ability to address their memory directly allows some powerful tools. The bits and words
for timers are;

EN - timer enabled bit

TT - timer timing bit

DN - timer done bit

FS - timer first scan

LS - timer last scan

OV - timer value overflowed
ER - timer error

PRE - preset word

ACC - accumulated time word

Counter have the following bits and words.

plc memory - 14.7

CU - count up bit

CD - count down bit

DN - counter done bit

OV - overflow bit

UN - underflow bit

PRE - preset word

ACC - accumulated count word

As discussed before we can access timer and counter bits and words. Examples of
these are shown in Figure 14.6. The bit values can only be read, and should not be
changed. The presets and accumulators can be read and overwritten.

Words

timer.PRE - the preset value for timer T4:0

timer.ACC - the accumulated value for timer T4:0
counter.PRE - the preset value for counter C5:0
counter. ACC - the accumulated value for counter C5:0

Bits
timer.EN - indicates when the input to timer T4:0 is true
timer. TT - indicates when the timer T4:0 is counting
timer.DN - indicates when timer T4:0 has reached the maximum
counter.CU - indicates when the count up instruction is true for C5:0
counter.CD - indicates when the count down instruction is true for C5:0
counter.DN - indicates when the counter C5:0 has reached the preset

counter.OV - indicates when the counter C5:0 passes the maximum value (2,147,483,647)
counter.UN - indicates when the counter C5:0 passes the minimum value (-2,147,483,648)

Figure 14.6 ~ Examples of Timer and Counter Addresses

Consider the simple ladder logic example in Figure 14.7. It shows the use of a
timer timing 77 bit to seal on the timer when a door input has gone true. While the timer is
counting, the bit will stay true and keep the timer counting. When it reaches the 10 second
delay the 77 bit will turn off. The next line of ladder logic will turn on a light while the
timer is counting for the first 10 seconds.

plc memory - 14.8

DOOR

K TON

|| example

delay 10s

example. TT

| |

|
example. TT

» Q LIGHT
||

Figure 14.7 Door Light Example

14.4.2 PLC Status Bits

Status memory allows a program to check the PLC operation, and also make some
changes. A selected list of status bits is shown in Figure 14.8 for Allen-Bradley Control-
Logix PLCs. More complete lists are available in the manuals. The first six bits are com-
monly used and are given simple designations for use with simple ladder logic. More
advanced instructions require the use of Get System Value (GSV) and Set System Value
(SSV) functions. These functions can get/set different values depending upon the type of
data object is being used. In the sample list given one data object is the "'WALLCLOCK-
TIME’. One of the attributes of the class is the DateTime that contains the current time. It
is also possible to use the ’'PROGRAM’ object instance MainProgram’ attribute
’LastScanTime’ to determine how long the program took to run in the previous scan.

plc memory - 14.9

Immediately accessible status values

S:FS - First Scan Flag

S:N - The last calculation resulted in a negative value

S:Z - The last calculation resulted in a zero

S:V - The last calculation resulted in an overflow

S:C - The last calculation resulted in a carry

S:MINOR - A minor (non-critical/recoverable) error has occurred

Examples of SOME values available using the GSV and SSV functions

CONTROLLERDEVICE - information about the PLC
PROGRAM - information about the program running
LastScanTime
MaxScanTime
TASK
EnableTimeout
LastScanTime
MaxScanTime
Priority
StartTime
Watchdog
WALLCLOCKTIME - the current time
DateTime
DINTI[O] - year
DINT([1] - month 1=january
DINT([2] - day 1 to 31
DINT][3] - hour 0 to 24
DINT[4] - minute 0 to 59
DINT][5] - second 0 to 59
DINT[6] - microseconds 0 to 999,999

Figure 14.8 Status Bits and Words for ControlLogix

An example of getting and setting system status values is shown in Figure 14.9.
The first line of ladder logic will get the current time from the class "'WALLCLOCK-
TIME". In this case the class does not have an instance so it is blank. The attribute being
recalled is the DateTime that will be written to the DINT array time[0..6]. For example
"time[3]” should give the current hour. In the second line the Watchdog time for the Main-
Program is set to 200 ms. If the program MainProgram takes longer than 200ms to execute

plc memory - 14.10

a fault will be generated.

GSV

Class Name: WALLCLOCKTIME
Instance Name:

Attribute Name: DateTime

Dest: time[0]

SSV

Class Name: TASK

Instance Name: MainProgram
Attribute Name: Watchdog
Source: 200

Figure 14.9 Reading and Setting Status bits with GSV and SSV

As always, additional classes and attributes for the status values can be found in
the manuals for the processors and instructions being used.

plc memory - 14.11

A selected list of status bits is shown below for Allen-Bradley Micrologic and PLC-
5 PLCs. More complete lists are available in the manuals. For example the first
four bits S2:0/x indicate the results of calculations, including carry, overflow, zero
and negative/sign. The S2:1/15 will be true once when the PLC is turned on - this
is the first scan bit. The time for the last scan will be stored in S2:8. The date and
clock can be stored and read from locations S2:7/8 to S2:23.

S2:0/0 carry in math operation

S2:0/1 overflow in math operation

S2:0/2 zero in math operation

S2:0/3 sign in math operation

S2:1/15 first scan of program file

S2:8 the scan time (ms)

S2:18 year

S2:19 month

S2:20 day

S2:21 hour

S2:22 minute

S2:23 second

S2:28 watchdog setpoint

S2:29 fault routine file number

S2:30 STI (selectable timed interrupt) setpoint
S2:31 STI file number
S2:46-S2:54,52:55-S2:56 PII (Programmable Input Interrupt) settings
S2:55 STI last scan time (ms)

S2:77 communication scan time (ms)

14.4.3 User Function Control Memory

Simple ladder logic functions can complete operations in a single scan of ladder
logic. Other functions such as timers and counters will require multiple ladder logic scans
to finish. While timers and counters have their own memory for control, a generic type of
control memory is defined for other function. This memory contains the bits and words in
Figure 14.10. Any given function will only use some of the values. The meaning of partic-
ular bits and words will be described later when discussing specific functions.

plc memory - 14.12

EN - enable bit

EU - enable unload
DN - done bit

EM - empty bit

ER - error bit

UL - unload bit

IN - inhibit bit

FD - found bit

LEN - length word
POS - position word

Figure 14.10 Bits and Words for Control Memory

14.5 SUMMARY

* Program are given unique names and can be for power-up, regular scans, and
faults.

* Tags and aliases are used for naming variables and I/O.

* Files are like arrays and are indicated with [].

* Expressions allow equations to be typed in.

» Literal values for binary and hexadecimal values are followed by B and H.

14.6 PRACTICE PROBLEMS

1. How are timer and counter memory similar?
2. What types of memory cannot be changed?

3. Develop Ladder Logic for a car door/seat belt safety system. When the car door is open, or the
seatbelt is not done up, a buzzer will sound for 5 seconds if the key has been switched on. A
cabin light will be switched on when the door is open and stay on for 10 seconds after it is
closed, unless a key has started the ignition power.

4. Write ladder logic for the following problem description. When button 4 is pressed a value of
1001 will be stored in X. When button B is pressed a value of -345 will be stored in ¥, when it
is not pressed a value of 99 will be stored in ¥. When button C is pressed X and Y will be added,
and the result will be stored in Z.

5. Using the status memory locations, write a program that will flash a light for the first 15 sec-

plc memory - 14.13

onds after it has been turned on. The light should flash once a second.
6. How many words are required for timer and counter memory?
7. A machine is being designed for a foreign parts supplier. As part of the contractual agreement

the logic will run until February 26, 2008. However, after that date the machine will enable a
‘contract_expired’ value and no longer run. Write the ladder logic.

14.7 PRACTICE PROBLEM SOLUTIONS

1. both are similar. The timer and counter memories both use double words for the accumulator
and presets, and they use bits to track the status of the functions. These bits are somewhat dif-
ferent, but parallel in function.

2. Inputs cannot be changed by the program, and some of the status bits/words cannot be changed
by the user.

3.

Inputs | Outputs

door open buzzer

seat belt connected | light

key on

door open key on
| TON
; Timer t_remind
seat belt connected Delay 5s

t remind. TT
Q buzzer

door open

TOF
Timer t_light
Delay 10s

t light DN ke?r on
| () e

plc memory - 14.14

MOV
Source 1001
Dest X

MOV
Source -345
DestY

MOV
Source 99
DestY

ADD
Source A X
Source BY
Dest Z

plc memory - 14.15

RTF
t_initial
delay 15s

first scan

t initial. DN RTO
— t off

delay 0.5 s

t off. DN RTO
t on

d_elay 0.5s

t on.DN t of] RES

t on.DN

L OV RES

®

t initjal. DNt joff.DN

0/1
|

6. three long words (3 * 32 bits) are used for a timer or a counter.
7.

GSV

Class Name: WALLCLOCKTIME
Instance Name:

Attribute Name: DateTime

Dest: time[0] --> time:DINT[7]

GEQ GEQ GEQ L \contract expired
time[0] time[0] time[0]
2008 2 26

plc memory - 14.16

14.8 ASSIGNMENT PROBLEMS

1. Could timer ‘T’ and counter ‘C’ memory types be replaced with control ‘R’ memory types?
Explain your answer.

plc basic functions - 15.1

15. LADDER LOGIC FUNCTIONS

Topics:
* Functions for data handling, mathematics, conversions, array operations, statis-

tics, comparison and Boolean operations.
* Design examples

Objectives:
* To understand basic functions that allow calculations and comparisons
* To understand array functions using memory files

15.1 INTRODUCTION

Ladder logic input contacts and output coils allow simple logical decisions. Func-
tions extend basic ladder logic to allow other types of control. For example, the addition of
timers and counters allowed event based control. A longer list of functions is shown in
Figure 15.1. Combinatorial Logic and Event functions have already been covered. This
chapter will discuss Data Handling and Numerical Logic. The next chapter will cover
Lists and Program Control and some of the Input and Output functions. Remaining func-
tions will be discussed in later chapters.

plc basic functions - 15.2

Combinatorial Logic

- relay contacts and coils
Events

- timer instructions

- counter instructions
Data Handling

- moves

- mathematics

- conversions
Numerical Logic

- boolean operations

- comparisons
Lists

- shift registers/stacks

- sequencers
Program Control

- branching/looping

- immediate inputs/outputs

- fault/interrupt detection
Input and Output

- PID

- communications

- high speed counters

- ASCII string functions

Figure 15.1 Basic PLC Function Categories

Most of the functions will use PLC memory locations to get values, store values
and track function status. Most function will normally become active when the input is
true. But, some functions, such as TOF timers, can remain active when the input is off.
Other functions will only operate when the input goes from false to true, this is known as
positive edge triggered. Consider a counter that only counts when the input goes from
false to true, the length of time the input is true does not change the function behavior. A
negative edge triggered function would be triggered when the input goes from true to
false. Most functions are not edge triggered: unless stated assume functions are not edge
triggered.

plc basic functions - 15.3

NOTE: I do not draw functions exactly as they appear in manuals and programming soft-
ware. This helps save space and makes the instructions somewhat easier to read. All of
the necessary information is given.

15.2 DATA HANDLING

15.2.1 Move Functions

There are two basic types of move functions;

MOV (value,destination) - moves a value to a memory location
MVM(value,mask,destination) - moves a value to a memory location, but with a
mask to select specific bits.

The simple MOV will take a value from one location in memory and place it in
another memory location. Examples of the basic MOV are given in Figure 15.2. When 4
is true the MOV function moves a floating point number from the source to the destination
address. The data in the source address is left unchanged. When B is true the floating point
number in the source will be converted to an integer and stored in the destination address
in integer memory. The floating point number will be rounded up or down to the nearest
integer. When C is true the integer value of 123 will be placed in the integer file test int.

plc basic functions - 15.4

A MOV
|| Source test real 1
Destination test_real 2

B MOV
| | Source test real 1
Destination test_int

C MOV
| | Source 123
Destination test_int

NOTE: when a function changes a value, except for inputs and outputs, the value is
changed immediately. Consider Figure 15.2, if 4, B and C are all true, then the
value in test _real 2 will change before the next instruction starts. This is different
than the input and output scans that only happen before and after the logic scan.

Figure 15.2 Examples of the MOV Function

A more complex example of move functions is given in Figure 15.3. When 4
becomes true the first move statement will move the value of 130 into in¢ (. And, the sec-
ond move statement will move the value of -9385 from int I to int 2. (Note: The number
is shown as negative because we are using 2s compliment.) For the simple MOVs the
binary values are not needed, but for the MVM statement the binary values are essential.
The statement moves the binary bits from int_3 to int_5, but only those bits that are also
on in the mask int 4, other bits in the destination will be left untouched. Notice that the
first bit int 5.0 is true in the destination address before and after, but it is not true in the
mask. The MVM function is very useful for applications where individual binary bits are
to be manipulated, but they are less useful when dealing with actual number values.

plc basic functions - 15.5

MOV
| source 130
dest int 0

MOV
source int_1
dest int_2

MVM
source int_3
mask int 4
destint 5

MVM
source int 3
mask int 4
dest int 6

‘ before , , after .
binary decimal binary decimal
int 0 0000000000000000 0 0000000010000010 130
int 1 1101101101010111 -9385 1101101101010111 -9385
int 2= 1000000000000000 -32768 e 1101101101010111 -9385
int 3 0101100010111011 22715 0101100010111011 22715

becomes
int 4 0010101010101010 10922 0010101010101010 10922
int 5 0000000000000001 1 0000100010101011 2219
int 6 1101110111111111 1101110111111111

NOTE: the concept of a mask is very useful, and it will be used in other functions.
Masks allow instructions to change a couple of bits in a binary number without hav-
ing to change the entire number. You might want to do this when you are using bits in
a number to represent states, modes, status, etc.

Figure 15.3 Example of the MOV and MVM Statement with Binary Values

15.2.2 Mathematical Functions

Mathematical functions will retrieve one or more values, perform an operation and

plc basic functions - 15.6

store the result in memory. Figure 15.4 shows an ADD function that will retrieve values
from int I and real 1, convert them both to the type of the destination address, add the
floating point numbers, and store the result in real_ 2. The function has two sources
labelled source A and source B. In the case of ADD functions the sequence can change,
but this is not true for other operations such as subtraction and division. A list of other
simple arithmetic function follows. Some of the functions, such as the negative function
are unary, so there is only one source.

ADD

| source A int 1
source B real 1
destination real 2

ADD(value,value,destination) - add two values
SUB(value,value,destination) - subtract
MUL(value,value,destination) - multiply

DIV (value,value,destination) - divide
NEG(value,destination) - reverse sign from positive/negative
CLR(value) - clear the memory location

NOTE: To save space the function types are shown in the shortened notation above.
For example the function ADD(value, value, destination) requires two source val-
ues and will store it in a destination. It will use this notation in a few places to
reduce the bulk of the function descriptions.

Figure 15.4 Arithmetic Functions

An application of the arithmetic function is shown in Figure 15.5. Most of the
operations provide the results we would expect. The second ADD function retrieves a
value from in¢ 3, adds 1 and overwrites the source - this is normally known as an incre-
ment operation. The first DIV statement divides the integer 25 by 10, the result is rounded
to the nearest integer, in this case 3, and the result is stored in in¢t 6. The NEG instruction
takes the new value of -/0, not the original value of 0, from int 4 inverts the sign and
stores it in int_7.

plc basic functions - 15.7

ADD
source A int 0
source B int 1
dest. int 2
ADD addr. before after
source A 1
source B int 3 int 0 10 10
dest. int 3 int_1 25 25
— int2 0 35
SUB int3 0 1
source A }nt_l int 4 0 -10
source Bint 2 int 5 0 250
dest. int 4 int6 0 3
MULT int 7 0 10
source A int_0 int 8 100 0
source B int_1
dest. int 5 flit 0 10.0 10.0
— flt 1 250 25.0
biv. ft2 0 2.5
source A }nt_l flt 3 0 25
source B int 0
dest. int 6
NEG
source A int_4 Note: recall, integer
dest. int 7 values are limited
to ranges between -
CLR 32768 and 32767,
dest. int 8 and there are no
DIV fractions.
source A flt 1
source B flt 0
dest. flt 2
DIV
source A int 1
source B int 0
dest. flt 3

Figure 15.5 Arithmetic Function Example

A list of more advanced functions are given in Figure 15.6. This list includes basic
trigonometry functions, exponents, logarithms and a square root function. The last func-
tion CPT will accept an expression and perform a complex calculation.

plc basic functions - 15.8

ACS(value,destination) - inverse cosine
COS(value,destination) - cosine
ASN(value,destination) - inverse sine
SIN(value,destination) - sine
ATN(value,destination) - inverse tangent
TAN(value,destination) - tangent

XPY (value,value,destination) - X to the power of Y
LN(value,destination) - natural log
LOG(value,destination) - base 10 log
SQR(value,destination) - square root
CPT(destination,expression) - does a calculation

Figure 15.6 ~ Advanced Mathematical Functions

Figure 15.7 shows an example where an equation has been converted to ladder
logic. The first step in the conversion is to convert the variables in the equation to unused
memory locations in the PLC. The equation can then be converted using the most nested
calculations in the equation, such as the LN function. In this case the results of the LN
function are stored in another memory location, to be recalled later. The other operations
are implemented in a similar manner. (Note: This equation could have been implemented
in other forms, using fewer memory locations.)

plc basic functions - 15.9

given

A= JlnB + eCacos(D)

LN
Source B
Dest. temp 1

XPY

SourceA 2.718
SourceB C
Dest temp 2

ACS
SourceA D
Dest. temp 3

MUL

SourceA temp 2
SourceB temp 3
Dest temp 4

ADD

SourceA temp 1
SourceB temp 4
Dest temp_5

SQR
SourceA temp 5
Dest. A

Figure 15.7 An Equation in Ladder Logic

The same equation in Figure 15.7 could have been implemented with a CPT func-
tion as shown in Figure 15.8. The equation uses the same memory locations chosen in Fig-
ure 15.7. The expression is typed directly into the PLC programming software.

plc basic functions - 15.10

&0 CPT

|| Dest. A
Expression
SQR(LN(B)+XPY(2.718,C)*ACS(D))

Figure 15.8 Calculations with a Compute Function

Math functions can result in status flags such as overflow, carry, etc. care must be
taken to avoid problems such as overflows. These problems are less common when using
floating point numbers. Integers are more prone to these problems because they are lim-
ited to the range.

15.2.3 Conversions

Ladder logic conversion functions are listed in Figure 15.9. The example function
will retrieve a BCD number from the D type (BCD) memory and convert it to a floating
point number that will be stored in F§:2. The other function will convert from 2s compli-
ment binary to BCD, and between radians and degrees.

| A FRD
| Source A D10:5
‘ Dest. F&:2

TOD(value,destination) - convert from BCD to 2s compliment
FRD(value,destination) - convert from 2s compliment to BCD
DEG(value,destination) - convert from radians to degrees
RAD(value,destination) - convert from degrees to radians

Figure 15.9 Conversion Functions

Examples of the conversion functions are given in Figure 15.10. The functions
load in a source value, do the conversion, and store the results. The TOD conversion to
BCD could result in an overflow error.

plc basic functions - 15.11

FRD

Source bed 1
Dest. int_ 0

TOD

Source int 1
Dest. bed 0

DEG
Source real 0

Dest. real 2

RAD
Source real 1

Addr. Before

mt0 O
int 1 548
real 0 3.141
real 1 45
real 2 0
real 3 0

Dest. real 3

after

1793
548
3.141
45
180
0.785

bed 0 0000 0000 0000 0000 0000 0101 0100 1000
bed 1 0001 0111 1001 0011 0001 0111 1001 0011

Figure 15.10 Conversion Example

15.2.4 Array Data Functions

these are shown in
binary BCD form

Arrays allow us to store multiple data values. In a PLC this will be a sequential
series of numbers in integer, floating point, or other memory. For example, assume we are
measuring and storing the weight of a bag of chips in floating point memory starting at
weight[0]. We could read a weight value every 10 minutes, and once every hour find the
average of the six weights. This section will focus on techniques that manipulate groups of
data organized in arrays, also called blocks in the manuals.

plc basic functions - 15.12

15.2.4.1 - Statistics

Functions are available that allow statistical calculations. These functions are
listed in Figure 15.11. When 4 becomes true the average (AVE) conversion will start at
memory location weight/()] and average a total of 4 values. The control word
weight control is used to keep track of the progress of the operation, and to determine
when the operation is complete. This operation, and the others, are edge triggered. The
operation may require multiple scans to be completed. When the operation is done the
average will be stored in weight avg and the weight control. DN bit will be turned on.

A AVE

B File weight[0]

Dest weight_avg
Control weight control
length 4

position 0

AVE(start value,destination,control,length) - average of values
STD(start value,destination,control,length) - standard deviation of values
SRT(start value,control,length) - sort a list of values

Figure 15.11 Statistic Functions

Examples of the statistical functions are given in Figure 15.12 for an array of data
that starts at weight/(0] and is 4 values long. When done the average will be stored in
weight _avg, and the standard deviation will be stored in weight std. The set of values will
also be sorted in ascending order from weight[0] to weight[3]. Each of the function should
have their own control memory to prevent overlap. It is not a good idea to activate the sort
and the other calculations at the same time, as the sort may move values during the calcu-
lation, resulting in incorrect calculations.

plc basic functions - 15.13

A AVE

| File weight[0]
Dest weight_avg
Control ¢ 1
length 4

position 0

B STD

| File weight[0]
Dest weight _std
Control ¢ 2
length 4
position 0

C SRT
| File weight[0]
Control ¢ 3

Addr. before | after A| after B| after C 1eﬂgth 4
position 0

weight[0] 3
weight[1] 1
weight[2] 2
weight[3] 4
0
0

N — W
W N =

weight _avg
weight std

ON BN~ W
N
AN

1.29 1.29

Figure 15.12 Statistical Calculations

ASIDE: These function will allow a real-time calculation of SPC data for con-
trol limits, etc. The only PLC function missing is a random function that
would allow random sample times.

15.2.4.2 - Block Operations

A basic block function is shown in Figure 15.13. This COP (copy) function will

plc basic functions - 15.14

copy an array of 10 values starting at n/50] to n/40]. The FAL function will perform math-
ematical operations using an expression string, and the FSC function will allow two arrays
to be compared using an expression. The FLL function will fill a block of memory with a

single value.

COP
‘ B Source n[50]

Dest n[40]
Length 10

COP(start value,destination,length) - copies a block of values

FAL(control,length,mode,destination,expression) - will perform basic math
operations to multiple values.

FSC(control,length,mode,expression) - will do a comparison to multiple values

FLL(value,destination,length) - copies a single value to a block of memory

Figure 15.13 Block Operation Functions

Figure 15.14 shows an example of the FAL function with different addressing
modes. The first FAL function will do the following calculations n/5/=n/0]+35,
n[6]=n[1]+5, n[7]=n[2]+5, n[7]=n[3]+5, n[9]=n[4]+5. The second FAL statement will
be n/5]=n[0]+5, n[6]=n[0]+5, n[7]=n[0]+5, n[7]=n[0]+5, n[9]=n[0]+5. With a mode
of 2 the instruction will do two of the calculations when there is a positive edge from B
(i.e., a transition from false to true). The result of the last FAL statement will be
n[5]=n[0]+5, n[5]=n[1]+5, n[5]=n[2]+5, n[5]=n[3]+5, n[5]=n[4]+5. The last opera-
tion would seem to be useless, but notice that the mode is incremental. This mode will do
one calculation for each positive transition of C. The a/l mode will perform all five calcu-
lations in a single scan whenever there is a positive edge on the input. It is also possible to
put in a number that will indicate the number of calculations per scan. The calculation
time can be long for large arrays and trying to do all of the calculations in one scan may
lead to a watchdog time-out fault.

plc basic functions - 15.15

FAL

A Controlc 0
| | length 5 array to array
I position 0

Mode all

Destination n[c_0.POS + 5]

Expression n[c_0.POS] + 5

FAL
B Control c_1
I I length 5 element to array
position 0 array to element
Mode 2

Destination n[c_1.POS + 5]
Expression n[0] + 5

FAL
C Control ¢ 2
| | length 5
3 position 0 array to element
Mode incremental
Destination n[5]
Expression n[c_2.POS] + 5

Figure 15.14 File Algebra Example

15.3 LOGICAL FUNCTIONS

15.3.1 Comparison of Values

Comparison functions are shown in Figure 15.15. Previous function blocks were
outputs, these replace input contacts. The example shows an EQU (equal) function that
compares two floating point numbers. If the numbers are equal, the output bit /ight is true,
otherwise it is false. Other types of equality functions are also listed.

plc basic functions - 15.16

ligh
v ol
N>

B

EQU(value,value) - equal

NEQ(value,value) - not equal

LES(value,value) - less than

LEQ(value,value) - less than or equal

GRT(value,value) - greater than

GEQ(value,value) - greater than or equal

CMP(expression) - compares two values for equality
MEQ(value,mask,threshold) - compare for equality using a mask
LIM(low limit,value,high limit) - check for a value between limits

Figure 15.15 Comparison Functions

The example in Figure 15.16 shows the six basic comparison functions. To the
right of the figure are examples of the comparison operations.

plc basic functions - 15.17

00 O_0=0
EQU . 0 _1=1
A int_3 Q int 3=5 0_2=0
Bint 2 int 2=3 O_3=0
NEQ 01 0 4=1
0 5=1
Aint 3 O -
Bint 2
02
LES /\— 0 0=1
Aint 3 O_1=0
- N
Bint 2 int 3=3 0_2=0
0 3 int_2=3 0_3:1
LEQ ~ 0 _4=0
Bint 2
GRT 0.4
Aint 3 O 8—?2(1)
Bint 2 . —
- o s int 3=1 O_2=1
_ int 2=3 O 3=1
GEQ 11’1t_2 3 -
Aint 3 O 0_4=0
Bint 2 0_5=0

Figure 15.16 Comparison Function Examples

The ladder logic in Figure 15.16 is recreated in Figure 15.17 with the CMP func-
tion that allows text expressions.

plc basic functions - 15.18

CMP 0
expression

int 3=1int 2

CMP !
expression

int 3<>int 2

[\S}

CMP
expression
int 3 <int 2

(O8]

CMP
expression
int 3 <=int 2

A

CMP
expression
int 3>int 2

N

CMP
expression
int 3>=int 2

o (o e s (s (e

Figure 15.17 Equivalent Statements Using CMP Statements

Expressions can also be used to do more complex comparisons, as shown in Figure
15.18. The expression will determine if B is between 4 and C.

expression
B>A)& (B<O)

CMP Xf\ ‘
N

Figure 15.18 A More Complex Comparison Expression

The LIM and MEQ functions are shown in Figure 15.19. The first three functions
will compare a test value to high and low limits. If the high limit is above the low limit and
the test value is between or equal to one limit, then it will be true. If the low limit is above

plc basic functions - 15.19

the high limit then the function is only true for test values outside the range. The masked
equal will compare the bits of two numbers, but only those bits that are true in the mask.

LIM
low limit 1pt_0 int 5.0
test value int_1 -
high limit int_2
LIM
low limit ipt_2 int 5.1
test value int 1 -
high limit int 0
LIM
low limit ipt_2 int 5.2
test value int 3 -
high limit int 0
MEQ
source int 0 int 5.3
mask int 1 -
compare int_2
MEQ
source int 0 int 5.4
mask int 1 -
compare int 4
Addr. | before (decimal) before (binary) after (binary)
int 0 | 1 0000000000000001 | 0000000000000001
int 1 |5 0000000000000101 | 0000000000000101
int 2 | 11 0000000000001011 | 0000000000001011
int 3 15 0000000000001111 | 0000000000001111
int 4 0000000000001000| 0000000000001000
int5 0 0000000000000000 0000000000001101

Figure 15.19 Complex Comparison Functions

plc basic functions - 15.20

Figure 15.20 shows a numberline that helps determine when the LIM function will
be true.

® high limit i low limit

high limit

® low limit $

Figure 15.20 A Number Line for the LIM Function

File to file comparisons are also permitted using the FSC instruction shown in Fig-
ure 15.21. The instruction uses the control word c¢_0. It will interpret the expression 10
times, doing two comparisons per logic scan (the Mode is 2). The comparisons will be
JI10]<f[0]. fI11]<f[0] then f[12]<f]0], f[13]<f[0] then f[14]<f[0], f[15]<f[0] then
f116]<f]0], fT17]<f[0] then f]18]<f[0], f]19]<f[0]. The function will continue until a
false statement is found, or the comparison completes. If the comparison completes with
no false statements the output 4 will then be true. The mode could have also been A/l to
execute all the comparisons in one scan, or Increment to update when the input to the
function is true - in this case the input is a plain wire, so it will always be true.

FSC A
Control ¢ 0

Length 10

Position 0

Mode 2

Expression f{10+c_0.POS] < {]0]

Figure 15.21 File Comparison Using Expressions

plc basic functions - 15.21

15.3.2 Boolean Functions

Figure 15.22 shows Boolean algebra functions. The function shown will obtain
data words from bit memory, perform an and operation, and store the results in a new loca-
tion in bit memory. These functions are all oriented to word level operations. The ability to
perform Boolean operations allows logical operations on more than a single bit.

‘ A AND
| | source int_ A
| source int B
dest. int X

AND(value,value,destination) - Binary and function
OR(value,value,destination) - Binary or function
XOR(value,value,destination) - Binary exclusive or function
NOT(value,destination) - Binary not function

Figure 15.22 Boolean Functions

The use of the Boolean functions is shown in Figure 15.23. The first three func-
tions require two arguments, while the last function only requires one. The AND function
will only turn on bits in the result that are true in both of the source words. The OR func-
tion will turn on a bit in the result word if either of the source word bits is on. The XOR
function will only turn on a bit in the result word if the bit is on in only one of the source
words. The NOT function reverses all of the bits in the source word.

plc basic functions - 15.22

AND
source A n[0]

source B n[1]
dest. n[2]

OR

source A n[0]
source B n[1]
dest. n[3]

XOR
source A n[0]

source B n[1]
dest. n[4]

NOT
source A n[0]
dest. n[5]

addr. data (binary)
n[0] 0011010111011011

n[1] 1010010011101010
afte$ n[2] 0010010011001010
n[3] 1011010111111011
n[4] 1001000100110001
n[5] 1100101000100100

Figure 15.23 Boolean Function Example

15.4 DESIGN CASES

15.4.1 Simple Calculation

Problem: A switch will increment a counter on when engaged. This counter can be
reset by a second switch. The value in the counter should be multiplied by 2, and then dis-
played as a BCD output using (0:0.0/0 - O:0.0/7)

plc basic functions - 15.23

Solution:

SW1 CTU
| | Counter cnt
I Preset 0

MUL

SourceA cnt. ACC
SourceB 2

Dest. dbl

MVM

Source dbl

Mask 00FFh

Dest. output_word

SW2
| @ cnt

Figure 15.24 A Simple Calculation Example

15.4.2 For-Next

Problem: Design a for-next loop that is similar to ones found in traditional pro-
gramming languages. When 4 is true the ladder logic should be active for 10 scans, and
the scan number from 1 to 10 should be stored in n0.

Solution:
A
GRT MOV
I SourceA n0 Source 0
SourceB 10 Dest n0
LEQ ADD
SourceA n0 SourceA n0
SourceB 10 SourceB 1
Dest. n0

Figure 15.25 A Simple Comparison Example

plc basic functions - 15.24

As designed the program differs from traditional loops because it will only com-
plete one ’loop’ each time the logic is scanned.

15.4.3 Series Calculation

Problem: Create a ladder logic program that will start when input 4 is turned on
and calculate the series below. The value of » will start at 1 and with each scan of the lad-
der logic n will increase until n=100. While the sequence is being incremented, any
change in 4 will be ignored.

x =2(n-1)

Solution:

MOV

i I \H\ Source A 1

Dest. n

g0
LEQ
Source A n

g0 Source B 100

CPT

Dest. x
Expression
2*¥(-1)

ADD

|] Source A 1
Source Bn
Dest. n

Figure 15.26 A Series Calculation Example

plc basic functions - 15.25

15.4.4 Flashing Lights

Problem: We are designing a movie theater marquee, and they want the traditional
flashing lights. The lights have been connected to the outputs of the PLC from O[0] to
O[17] - an INT. When the PLC is turned, every second light should be on. Every half sec-
ond the lights should reverse. The result will be that in one second two lights side-by-side
will be on half a second each.

Solution:
t b.DN TON
\H\ timert a
Delay 0.5s
t a.DN TON
I i timer t b
Delay 0.5s
t aTT MOV
| [= S
B ource pattern
Dest O
t aTT NOT
\H\ Source pattern
Dest O

pattern =0101 0101 0101 0101

Figure 15.27 A Flashing Light Example

15.5 SUMMARY

* Functions can get values from memory, do simple operations, and return the
results to memory.

* Scientific and statistics math functions are available.

» Masked function allow operations that only change a few bits.

* Expressions can be used to perform more complex operations.

* Conversions are available for angles and BCD numbers.

* Array oriented file commands al