
Oracle Forms Developer 10g:
Build Internet Applications

Instructor Guide • Volume 3

D17251GC10

Edition 1.0

June 2004

D39560

®

Copyright © 2004, Oracle. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure and
is also protected by copyright law. Reverse engineering of the software is prohibited.
If this documentation is delivered to a U.S. Government Agency of the Department of
Defense, then it is delivered with Restricted Rights and the following legend is
applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate III (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Redwood Shores, CA 94065. Oracle
Corporation does not warrant that this document is error-free.

Oracle and all references to Oracle Products are trademarks or registered trademarks
of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Author

Pam Gamer

Technical Contributors
and Reviewers

Alena Bugarova
Purjanti Chang
Laurent Dereac
Punita Handa
Mark Pare
Jasmin Robayo
Bryan Roberts
Divya Sandeep
Raza Siddiqui
John Soltani
Lex van der Werff

Editors

Nishima Sachdeva
Elizabeth Treacy

Publisher

Giri Venugopal

Preface

I Introduction
Objectives I-2
Course Objectives I-3
Course Content I-5

1 Introduction to Oracle Forms Developer and Oracle Forms Services
Objectives 1-2
Internet Computing Solutions 1-3
Plugging into the Grid 1-4
Oracle Enterprise Grid Computing 1-5
Oracle 10g Products and Forms Development 1-7
Oracle Application Server 10g Architecture 1-8
Oracle Application Server 10g Components 1-9
Oracle Forms Services Overview 1-10
Forms Services Architecture 1-11
Benefits and Components of Oracle Developer Suite 10g 1-12
Oracle Developer Suite 10g Application Development 1-13
Oracle Developer Suite 10g Business Intelligence 1-14
Oracle Forms Developer Overview 1-15
Oracle Forms Developer: Key Features 1-16
Summit Office Supply Schema 1-17
Summit Application 1-18
Summary 1-20

2 Running a Forms Developer Application
Objectives 2-2
Testing a Form: OC4J Overview 2-3
Testing a Form: Starting OC4J 2-4
Running a Form 2-5
Running a Form: Browser 2-6
The Java Runtime Environment 2-7
Starting a Run-Time Session 2-8
The Forms Servlet 2-11
The Forms Client 2-12
The Forms Listener Servlet 2-13
The Runtime Engine 2-14
What You See at Run Time 2-15
Identifying the Data Elements 2-17
Navigating a Forms Developer Application 2-18
Modes of Operation: Enter-Query Mode 2-20
Modes of Operation: Normal Mode 2-21
Retrieving Data 2-22
Retrieving Restricted Data 2-23
Query/Where Dialog Box 2-25
Inserting, Updating, and Deleting 2-27

Contents

iii

Making Changes Permanent 2-29
Displaying Errors 2-30
Summary 2-31
Practice 2 Overview 2-34

3 Working in the Forms Developer Environment
Objectives 3-2
Forms Builder Key Features 3-3
Forms Builder Components: Object Navigator 3-4
Forms Builder Components: Property Palette 3-5
Forms Builder Components: Layout Editor 3-6
Forms Builder Components: PL/SQL Editor 3-7
Getting Started in the Forms Builder Interface 3-8
Forms Builder: Menu Structure 3-10
Blocks, Items, and Canvases 3-12
Navigation in a Block 3-14
Data Blocks 3-15
Forms and Data Blocks 3-17
Form Module Hierarchy 3-19
Customizing Your Forms Builder Session 3-21
Saving Preferences 3-23
Using the Online Help System 3-24
Forms Developer Executables 3-25
Forms Developer Module Types 3-27
Defining Forms Environment Variables for Run Time 3-29
Defining Forms Environment Variables for Design Time 3-30
Environment Variables and Y2K Compliance 3-32
Forms Files to Define Run-Time Environment Variables 3-34
Testing a Form: The Run Form Button 3-35
Summary 3-37
Practice 3 Overview 3-39

4 Creating a Basic Form Module
Objectives 4-2
Creating a New Form Module 4-3
Form Module Properties 4-6
Creating a New Data Block 4-8
Navigating the Wizards 4-10
Launching the Data Block Wizard 4-11
Data Block Wizard: Type Page 4-12
Data Block Wizard: Table Page 4-13

iv

Data Block Wizard: Finish Page 4-14
Layout Wizard: Items Page 4-15
Layout Wizard: Style Page 4-16
Layout Wizard: Rows Page 4-17
Data Block Functionality 4-18
Template Forms 4-19
Saving a Form Module 4-20
Compiling a Form Module 4-21
Module Types and Storage Formats 4-22
Deploying a Form Module 4-24
Text Files and Documentation 4-25
Summary 4-26
Practice 4 Overview 4-27

5 Creating a Master-Detail Form
Objectives 5-2
Form Block Relationships 5-3
Data Block Wizard: Master-Detail Page 5-5
Relation Object 5-7
Creating a Relation Manually 5-8
Join Condition 5-9
Deletion Properties 5-10
Modifying a Relation 5-11
Coordination Properties 5-12
Running a Master-Detail Form Module 5-13
Modifying the Structure of a Data Block 5-14
Modifying the Layout of a Data Block 5-15
Summary 5-17
Practice 5 Overview 5-18

6 Working with Data Blocks and Frames
Objectives 6-2
Managing Object Properties 6-3
Displaying the Property Palette 6-4
Property Palette: Features 6-5
Property Controls 6-6
Visual Attributes 6-8
How to Use Visual Attributes 6-9
Font, Pattern, and Color Pickers 6-10
Controlling Data Block Behavior and Appearance 6-11
Navigation Properties 6-12

v

Records Properties 6-13
Database Properties 6-15
Scroll Bar Properties 6-18
Controlling Frame Properties 6-19
Displaying Multiple Property Palettes 6-21
Setting Properties on Multiple Objects 6-22
Copying Properties 6-24
Creating a Control Block 6-26
Deleting a Data Block 6-27
Summary 6-28
Practice 6 Overview 6-29

7 Working with Text Items
Objectives 7-2
Text Item Overview 7-3
Creating a Text Item 7-4
Modifying the Appearance of a Text Item: General and Physical Properties 7-6
Modifying the Appearance of a Text Item: Records Properties 7-7
Modifying the Appearance of a Text Item: Font and Color Properties 7-8
Modifying the Appearance of a Text Item: Prompts 7-9
Associating Text with an Item Prompt 7-10
Controlling the Data of a Text Item 7-11
Controlling the Data of a Text Item: Format 7-12
Controlling the Data of a Text Item: Values 7-13
Controlling the Data of a Text Item: Copy Value from Item 7-15
Controlling the Data of a Text Item: Synchronize with Item 7-16
Altering Navigational Behavior of Text Items 7-17
Enhancing the Relationship Between Text Item and Database 7-18
Adding Functionality to a Text Item 7-19
Adding Functionality to a Text Item: Conceal Data Property 7-20
Adding Functionality to a Text Item: Keyboard Navigable and Enabled 7-21
Adding Functionality to a Text Item: Multi-line Text Items 7-22
Displaying Helpful Messages: Help Properties 7-23
Summary 7-24
Practice 7 Overview 7-26

8 Creating LOVs and Editors
Objectives 8-2
Overview of LOVs and Editors 8-3
LOVs and Record Groups 8-6
Creating an LOV Manually 8-8

vi

Creating an LOV with the LOV Wizard: SQL Query Page 8-9
Creating an LOV with the LOV Wizard: Column Selection Page 8-10
Creating an LOV with the LOV Wizard: Column Properties Page 8-11
Creating an LOV with the LOV Wizard: Display Page 8-12
Creating an LOV with the LOV Wizard: Advanced Properties Page 8-13
Creating an LOV with the LOV Wizard: Assign to Item Page 8-14
LOV Properties 8-15
Setting LOV Properties 8-16
LOVs: Column Mapping 8-17
Defining an Editor 8-19
Setting Editor Properties 8-20
Associating an Editor with a Text Item 8-21
Summary 8-22
Practice 8 Overview 8-23

9 Creating Additional Input Items
Objectives 9-2
Input Items Overview 9-3
Check Boxes Overview 9-4
Creating a Check Box 9-5
Converting an Existing Item into a Check Box 9-6
Creating a Check Box in the Layout Editor 9-7
Setting Check Box Properties 9-8
Check Box Mapping of Other Values 9-10
List Items Overview 9-11
Creating a List Item 9-13
Converting an Existing Item into a List Item 9-14
Creating a List Item in the Layout Editor 9-15
Setting List Item Properties 9-16
List Item Mapping of Other Values 9-17
Radio Groups Overview 9-18
Creating a Radio Group 9-19
Converting Existing Item to Radio Group 9-20
Creating Radio Group in Layout Editor 9-21
Setting Radio Properties 9-22
Radio Group Mapping of Other Values 9-23
Summary 9-24
Practice 9 Overview 9-25

10 Creating Noninput Items
Objectives 10-2
Noninput Items Overview 10-3

vii

Display Items 10-4
Creating a Display Item 10-5
Image Items 10-6
Image File Formats 10-8
Creating an Image Item 10-9
Setting Image-Specific Item Properties 10-10
Push Buttons 10-12
Push Button Actions 10-13
Creating a Push Button 10-14
Setting Push Button Properties 10-15
Calculated Items 10-16
Creating a Calculated Item by Setting Properties 10-17
Setting Item Properties for the Calculated Item 10-18
Summary Functions 10-19
Calculated Item Based on a Formula 10-20
Rules for Calculated Item Formulas 10-21
Calculated Item Based on a Summary 10-22
Rules for Summary Items 10-23
Creating a Hierarchical Tree Item 10-24
Setting Hierarchical Tree Item Properties 10-25
Bean Area Items 10-26
Creating a Bean Area Item 10-27
Setting Bean Area Item Properties 10-28
The JavaBean at Run Time 10-29
Summary 10-30
Practice 10 Overview 10-32

11 Creating Windows and Content Canvases
Objectives 11-2
Windows and Canvases 11-3
Window, Canvas, and Viewport 11-4
The Content Canvas 11-5
Relationship Between Windows and Content Canvases 11-6
The Default Window 11-7
Displaying a Form Module in Multiple Windows 11-8
Creating a New Window 11-9
Setting Window Properties 11-10
GUI Hints 11-11
Displaying a Form Module on Multiple Layouts 11-12
Creating a New Content Canvas 11-13
Setting Content Canvas Properties 11-15

viii

Summary 11-16
Practice 11 Overview 11-17

12 Working with Other Canvas Types
Objectives 12-2
Overview of Canvas Types 12-3
The Stacked Canvas 12-4
Creating a Stacked Canvas 12-6
Setting Stacked Canvas Properties 12-8
The Toolbar Canvas 12-9
The MDI Toolbar 12-10
Creating a Toolbar Canvas 12-11
Setting Toolbar Properties 12-12
The Tab Canvas 12-13
Creating a Tab Canvas 12-14
Creating a Tab Canvas in the Object Navigator 12-15
Creating a Tab Canvas in the Layout Editor 12-16
Setting Tab Canvas, Tab Page, and Item Properties 12-17
Placing Items on a Tab Canvas 12-18
Summary 12-19
Practice 12 Overview 12-21

13 Introduction to Triggers
Objectives 13-2
Trigger Overview 13-3
Grouping Triggers into Categories 13-4
Defining Trigger Components 13-6
Trigger Type 13-7
Trigger Code 13-9
Trigger Scope 13-10
Specifying Execution Hierarchy 13-12
Summary 13-14

14 Producing Triggers
Objectives 14-2
Creating Triggers in Forms Builder 14-3
Creating a Trigger 14-4
Setting Trigger Properties 14-7
PL/SQL Editor Features 14-8
The Database Trigger Editor 14-10
Writing Trigger Code 14-11

ix

Using Variables in Triggers 14-13
Forms Builder Variables 14-14
Adding Functionality with Built-In Subprograms 14-16
Limits of Use 14-18
Using Built-In Definitions 14-19
Useful Built-Ins 14-21
Using Triggers: When-Button-Pressed Trigger 14-23
Using Triggers: When-Window-Closed Trigger 14-24
Summary 14-25
Practice 14 Overview 14-27

15 Debugging Triggers
Objectives 15-2
The Debugging Process 15-3
The Debug Console 15-4
The Debug Console: Stack Panel 15-5
The Debug Console: Variables Panel 15-6
The Debug Console: Watch Panel 15-7
The Debug Console: Form Values Panel 15-8
The Debug Console: PL/SQL Packages Panel 15-9
The Debug Console: Global/System Variables Panel 15-10
The Debug Console: Breakpoints Panel 15-11
The Debug Console 15-12
Setting Breakpoints in Client Code 15-13
Setting Breakpoints in Stored Code 15-14
Debugging Tips 15-15
Running a Form in Debug Mode 15-16
Stepping Through Code 15-17
Debug Example 15-18
Summary 15-20
Practice 15 Overview 15-21

16 Adding Functionality to Items
Objectives 16-2
Item Interaction Triggers 16-3
Coding Item Interaction Triggers 16-5
Interacting with Check Boxes 16-7
Changing List Items at Run Time 16-8
Displaying LOVs from Buttons 16-9
LOVs and Buttons 16-11
Populating Image Items 16-13

x

Loading the Right Image 16-15
Populating Hierarchical Trees 16-16
Displaying Hierarchical Trees 16-18
Interacting with JavaBeans 16-19
Summary 16-25
Practice 16 Overview 16-27

17 Run Time Messages and Alerts
Objectives 17-2
Run-Time Messages and Alerts Overview 17-3
Detecting Run-Time Errors 17-5
Errors and Built-Ins 17-7
Message Severity Levels 17-9
Suppressing Messages 17-11
The FORM_TRIGGER_FAILURE Exception 17-13
Triggers for Intercepting System Messages 17-15
Handling Informative Messages 17-17
Setting Alert Properties 17-19
Planning Alerts 17-21
Controlling Alerts 17-22
SHOW_ALERT Function 17-24
Directing Errors to an Alert 17-26
Causes of Oracle Server Errors 17-27
Trapping Server Errors 17-29
Summary 17-30
Practice 17 Overview 17-33

18 Query Triggers
Objectives 18-2
Query Processing Overview 18-3
SELECT Statements Issued During Query Processing 18-5
WHERE Clause 18-7
ONETIME_WHERE Property 18-8
ORDER BY Clause 18-9
Writing Query Triggers: Pre-Query Trigger 18-10
Writing Query Triggers: Post-Query Trigger 18-11
Writing Query Triggers: Using SELECT Statements in Triggers 18-12
Query Array Processing 18-13
Coding Triggers for Enter-Query Mode 18-15
Overriding Default Query Processing 18-19
Obtaining Query Information at Run Time 18-22

xi

Summary 18-25
Practice 18 Overview 18-27

19 Validation
Objectives 19-2
The Validation Process 19-3
Controlling Validation Using Properties: Validation Unit 19-5
Controlling Validation Using Properties: Validate from List 19-7
Controlling Validation Using Triggers 19-9
Example: Validating User Input 19-11
Using Client-Side Validation 19-13
Tracking Validation Status 19-16
Controlling When Validation Occurs with Built-Ins 19-18
Summary 19-20
Practice 19 Overview 19-22

20 Navigation
Objectives 20-2
Navigation Overview 20-3
Understanding Internal Navigation 20-5
Using Object Properties to Control Navigation 20-7
Mouse Navigate Property 20-9
Writing Navigation Triggers 20-10
Navigation Triggers 20-11
When-New-<object>-Instance Triggers 20-12
SET_<object>_PROPERTY Examples 20-13
The Pre- and Post-Triggers 20-15
Post-Block Trigger Example 20-17
The Navigation Trap 20-18
Using Navigation Built-Ins in Triggers 20-19
Summary 20-21
Practice 20 Overview 20-23

21 Transaction Processing
Objectives 21-2
Transaction Processing Overview 21-3
The Commit Sequence of Events 21-6
Characteristics of Commit Triggers 21-8
Common Uses for Commit Triggers 21-10
Life of an Update 21-12
Delete Validation 21-14

xii

Assigning Sequence Numbers 21-16
Keeping an Audit Trail 21-18
Testing the Results of Trigger DML 21-19
DML Statements Issued During Commit Processing 21-21
Overriding Default Transaction Processing 21-23
Running Against Data Sources Other than Oracle 21-25
Getting and Setting the Commit Status 21-27
Array DML 21-31
Effect of Array DML on Transactional Triggers 21-32
Implementing Array DML 21-33
Summary 21-34
Practice 21 Overview 21-38

22 Writing Flexible Code
Objectives 22-2
What Is Flexible Code? 22-3
Using System Variables for Current Context 22-4
System Status Variables 22-6
GET_<object>_PROPERTY Built-Ins 22-7
SET_<object>_PROPERTY Built-Ins 22-9
Referencing Objects by Internal ID 22-11
FIND_ Built-Ins 22-12
Using Object IDs 22-13
Increasing the Scope of Object IDs 22-15
Referencing Objects Indirectly 22-17
Summary 22-20
Practice 22 Overview 22-22

23 Sharing Objects and Code
Objectives 23-2
Benefits of Reusing Objects and Code 23-3
What Are Property Classes? 23-5
Creating a Property Class 23-6
Inheriting from a Property Class 23-8
What Are Object Groups? 23-10
Creating and Using Object Groups 23-11
Copying and Subclassing Objects and Code 23-13
Subclassing 23-14
What Are Object Libraries? 23-16
Benefits of the Object Library 23-18
Working with Object Libraries 23-19

xiii

What Is a SmartClass? 23-20
Working with SmartClasses 23-21
Reusing PL/SQL 23-22
What Are PL/SQL Libraries? 23-24
Writing Code for Libraries 23-25
Creating Library Program Units 23-26
Attach Library Dialog Box 23-27
Calls and Searches 23-28
Summary 23-30
Practice 23 Overview 23-32

24 Using WebUtil to Interact with the Client
Objectives 24-2
WebUtil Overview 24-3
Benefits of the WebUtil Utility 24-4
Integrating WebUtil into a Form 24-11
When to Use WebUtil Functionality 24-13
Interacting with the Client 24-14
Example: Opening a File Dialog on the Client 24-15
Example: Reading an Image File into Forms from the Client 24-16
Example: Writing Text Files on the Client 24-17
Example: Executing Operating System Commands on the Client 24-18
Example: Performing OLE Automation on the Client 24-19
Example: Obtaining Environment Information about the Client 24-22
Summary 24-23
Practice 24 Overview 24-24

25 Introducing Multiple Form Applications
Objectives 25-2
Multiple Form Applications Overview 25-3
Multiple Form Session 25-4
Benefits of Multiple Form Applications 25-5
Starting Another Form Module 25-6
Defining Multiple Form Functionality 25-8
Conditional Opening 25-10
Closing the Session 25-11
Closing a Form with EXIT_FORM 25-12
Other Useful Triggers 25-13
Sharing Data Among Modules 25-15
Linking by Global Variables 25-16
Global Variables: Opening Another Form 25-17
Global Variables: Restricted Query at Startup 25-18

xiv

Assigning Global Variables in the Opened Form 25-19
Linking by Parameter Lists 25-20
Linking by Global Record Groups 25-23
Linking by Shared PL/SQL Variables 25-24
Summary 25-26
Practice 25 Overview 25-28

Appendix A: Practice Solutions

Appendix B: Table Descriptions

Appendix C: Introduction to Query Builder

Appendix D: Locking in Forms

Appendix E: Oracle Object Features

Appendix F: Using the Layout Editor

xv

Preface

Oracle Forms Developer 10g: Build Internet Applications Preface - 2

Oracle Forms Developer 10g: Build Internet Applications Preface - 3

Profile

Before you begin this course
Before you begin this course, you should be able to:

• Create SQL statements.
• Create PL/SQL constructs, including conditional statements, loops, procedures and functions.
• Create PL/SQL stored (server) procedures, functions, and packages.
• Use a graphical user interface (GUI).
• Use a Web browser.

Prerequisites
Either

• Oracle Database 10g: SQL Fundamentals I
• or the following CBT Library:

– Oracle SQL: Basic SELECT statements
– Oracle SQL: Data Retrieval Techniques
– Oracle SQL: DML and DDL

• or Introduction to Oracle Database 10g for Experienced SQL Users (InClass)
• or Oracle Database 10g: Introduction to SQL (InClass)

And either
• Oracle Database 10g: Program with PL/SQL (InClass)
• or the following CBT Library:

– PL/SQL: Basics
– PL/SQL: Procedures, Functions, and Packages
– PL/SQL: Database Programming

• Or both:
– Oracle Database 10g: PL/SQL Fundamentals (InClass)
– Oracle Database 10g: Develop PL/SQL Program Units (InClass)

Suggested prerequisites
• Oracle Database 10g: SQL Fundamentals II (InClass) (if you attended the Oracle Database 10g:

SQL Fundamentals I (InClass))
• Oracle Database 10g: Advanced PL/SQL (InClass)
• Oracle Forms Developer 10g: Move to the Web (eStudy)

How this course is organized
Oracle Forms Developer 10g: Build Internet Applications is an instructor-led course featuring lecture
and hands-on exercises. Online demonstrations and written practice sessions reinforce the concepts and
skills introduced.

Oracle Forms Developer 10g: Build Internet Applications Preface - 4

Related Publications

Oracle publications
Title Part Number
Oracle Forms Developer, Release 6i:

Getting Started (Windows 95/NT) A73154-01
Oracle Forms Developer and Reports Developer, Release 6i:
Guidelines for Building Applications A73073-02
Oracle Application Server Forms Services Deployment Guide B10470-01
10g (9.0.4)

Additional publications
Release notes: <ORACLE_HOME\doc\welcome\release_notes\chap_forms.htm

Oracle Forms Developer 10g: Build Internet Applications Preface - 5

Typographic Conventions
Typographic conventions in text

Convention Element Example
Bold italic Glossary term (if there is

a glossary)

The algorithm inserts the new key.

Caps and
lowercase

Buttons,
check boxes,
triggers,
windows

Click the Executable button.
Select the Can’t Delete Card check box.
Assign a When-Validate-Item trigger to the
ORDERS block.
Open the Master Schedule window.

Courier new,
case sensitive
(default is
lowercase)

Code output,
directory names,
filenames,
passwords,
pathnames,
URLs,
user input,
usernames

Code output: debug.set (‘I”, 300);
Directory: bin (DOS), $FMHOME (UNIX)
Filename: Locate the init.ora file.
Password: User tiger as your password.
Pathname: Open c:\my_docs\projects
URL: Go to http://www.oracle.com
User input: Enter 300
Username: Log on as scott

Initial cap Graphics labels
(unless the term is a
proper noun)

Customer address (but Oracle Payables)

Italic Emphasized words and
phrases,
titles of books and
courses,
variables

Do not save changes to the database.

For further information, see Oracle7 Server SQL
Language Reference Manual.

Enter user_id@us.oracle.com, where
user_id is the name of the user.

Quotation
marks

Interface elements with
long names that have
only initial caps;
lesson and chapter titles
in cross-references

Select “Include a reusable module component”
and click Finish.

This subject is covered in Unit II, Lesson 3,
“Working with Objects.”

Uppercase SQL column names,
commands, functions,
schemas, table names

Use the SELECT command to view information
stored in the LAST_NAME
column of the EMP table.

Oracle Forms Developer 10g: Build Internet Applications Preface - 6

Typographic Conventions (continued)
Typographic conventions in text (continued)

Typographic conventions in code

Convention Element Example

Right arrow Menu paths Select File > Save.

Brackets Key names

Press [Enter].

Commas Key sequences Press and release keys one at a time:
[Alternate], [F], [D]

Plus signs Key combinations Press and hold these keys simultaneously:
[Ctrl]+[Alt]+[Del]

Convention Element Example

Caps and
lowercase

Oracle Forms
triggers

When-Validate-Item

Lowercase Column names,
table names

SELECT last_name
FROM s_emp;

 Passwords DROP USER scott
IDENTIFIED BY tiger;

 PL/SQL objects OG_ACTIVATE_LAYER
 (OG_GET_LAYER (‘prod_pie_layer’))

Lowercase italic Syntax variables CREATE ROLE role

Uppercase SQL commands
and functions

SELECT userid
FROM emp;

Copyright © 2004, Oracle. All rights reserved.

Introduction

Schedule: Timing Topic
15 minutes Lecture
15 minutes Total

Oracle Forms Developer 10g: Build Internet Applications I-2

I-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Identify the course objectives
• Identify the course content and structure

Introduction
Overview
This lesson introduces you to the Oracle Forms Developer 10g: Build Internet
Applications course:

• The objectives that the course intends to meet
• The topics that it covers
• How the topics are structured over the duration of the course

Oracle Forms Developer 10g: Build Internet Applications I-3

I-3 Copyright © 2004, Oracle. All rights reserved.

Course Objectives

After completing this course, you should be able to do
the following:
• Create form modules including components for

database interaction and GUI controls.
• Display form modules in multiple windows and a

variety of layout styles.
• Test form modules in a Web browser.
• Debug form modules in a three-tier environment.

Course Objectives
Course Description
In this course, you will learn to build, test, and deploy interactive Internet applications.
Working in a graphical user interface (GUI) environment, you will learn how to create
and customize forms with user input items such as check boxes, list items, and radio
groups. You will also learn how to modify data access by creating event-related triggers,
and you will display Forms elements and data in multiple canvases and windows.

Oracle Forms Developer 10g: Build Internet Applications I-4

I-4 Copyright © 2004, Oracle. All rights reserved.

Course Objectives

• Implement triggers to:
– Enhance functionality
– Communicate with users
– Supplement validation
– Control navigation
– Modify default transaction processing
– Control user interaction

• Reuse objects and code
• Link one form module to another

Oracle Forms Developer 10g: Build Internet Applications I-5

I-5 Copyright © 2004, Oracle. All rights reserved.

Course Content

Day 1
• Lesson 1: Introduction to Oracle Forms Developer

and Oracle Forms Services
• Lesson 2: Running a Forms Builder Application
• Lesson 3: Working in the Forms Developer

Environment
• Lesson 4: Creating a Basic Form Module
• Lesson 5: Creating a Master-Detail Form
• Lesson 6: Working with Data Blocks and Frames

Course Content
The lesson titles show the topics that is covered in this course, and the usual sequence of
lessons. However, the daily schedule is an estimate, and may vary for each class.

Oracle Forms Developer 10g: Build Internet Applications I-6

I-6 Copyright © 2004, Oracle. All rights reserved.

Course Content

Day 2
• Lesson 7: Working with Text Items
• Lesson 8: Creating LOVs and Editors
• Lesson 9: Creating Additional Input Items
• Lesson 10: Creating Noninput Items

Oracle Forms Developer 10g: Build Internet Applications I-7

I-7 Copyright © 2004, Oracle. All rights reserved.

Course Content

Day 3
• Lesson 11: Creating Windows and Content

Canvases
• Lesson 12: Working with Other Canvas Types
• Lesson 13: Introduction to Triggers
• Lesson 14: Producing Triggers
• Lesson 15: Debugging Triggers

Oracle Forms Developer 10g: Build Internet Applications I-8

I-8 Copyright © 2004, Oracle. All rights reserved.

Course Content

Day 4
• Lesson 16: Adding Functionality to Items
• Lesson 17: Run-time Messages and Alerts
• Lesson 18: Query Triggers
• Lesson 19: Validation
• Lesson 20: Navigation

Oracle Forms Developer 10g: Build Internet Applications I-9

I-9 Copyright © 2004, Oracle. All rights reserved.

Course Content

Day 5
• Lesson 21: Transaction Processing
• Lesson 22: Writing Flexible Code
• Lesson 23: Sharing Objects and Code
• Lesson 24: Using WebUtil to Interact with the

Client
• Lesson 25: Introducing Multiple Form Applications

Copyright © 2004, Oracle. All rights reserved.

Practice Solutions

Oracle Forms Developer 10g: Build Internet Applications A-2

Practice 2 Solutions
1. Start an instance of OC4J.

Double-click the desktop shortcut labeled Start OC4J Instance. You can
minimize the window when it displays the message: Oracle Application Server
Containers for J2EE 10g (9.0.4.0.0) initialized

2. Invoke Internet Explorer and enter the following URL:
http://<machine>:<port>/forms90/f90servlet?form=customers.fmx
Your instructor will tell you the machine name and port number to use, as well as
the username, password, and database for connection.
No formal solution.

3. Select Help > Keys from the menu.
No formal solution.

5. Click OK to close the Keys window. Browse through the records that were returned
by the unrestricted query that executed automatically when the form started.
Select Query > Execute, or press [Ctrl]+[F11], or click Execute Query.
Press [Up] and [Down] to browse through the records returned.

6. Execute a restricted query to retrieve information about the customer with the ID of
212.
Put the form module in Enter-Query mode (press [F11] or select Query > Enter
from the menu or click Enter Query).
Notice that the status line displays the mode Enter-Qu… (for Enter-Query
mode).
Move to the Customer: ID item and enter the search value 212.
Execute the query (press [Ctrl]+[F11] or select Query > Execute from the menu
or click Execute Query).
Notice that only one record is retrieved.

7. Try each of these restricted queries:
a. Retrieve all cities starting with San.

Select Query > Enter.
Click the Contact Information Tab.
Type San% in the City item.
Select Query > Execute.

b. Retrieve all customers based in the USA with a low credit limit.
Select Query > Enter.
Click the Contact Information Tab.
Type US in the Country_Id item.
Click the Account Information Tab.
Select the Low credit limit.
Select Query > Execute.

8. Display the customer details for Harrison Sutherland and click Orders to invoke the
Orders form module.
Execute an unrestricted query (select Query > Execute).
Press [Next Record] until you see Harrison Sutherland.
Click Orders.

Oracle Forms Developer 10g: Build Internet Applications A-3

Practice 2 Solutions (continued)
9. Click Image Off and notice that the image item is no longer displayed. Click Image

On and notice that the image item is displayed.
No formal solution.

10. Query only those orders that were submitted online.
Select Query > Enter.
Check the Online checkbox.
Select Query > Execute.

11. Move to the fourth record (Product ID 2322) in the Item block of Order 2355 and
click Stock.
The Inventory block is displayed in a separate window with stock information for
that item.
No formal solution.

12. Close the Stock Levels window. For the customer Harrison Sutherland, insert a new
record in the ORDER block, as detailed below.
Click the X in upper right of Stock Levels window. Move to the ORDER block
and select Record > Insert, or click Insert Record on the toolbar.
Notice that some items are already populated with default values. Enter the
following:

13. Insert a new record in the ITEM block with the following values:
Move to the ITEM block and enter the following:

14. Save the new records.
Select Action > Save or click Save.

15. Update the order that you have just placed and save the change.
Note: You may receive a message indicating that there are no changes to save. This
message is generated by the Customers form, because both forms are saved at the
same time. Changes to the Orders form should be saved successfully, so you can
acknowledge the message and then ignore it.
Change the Order Date to last Monday and click Save.

16. Attempt to delete the order that you have just placed. What happens?
Move to the Orders block and select Record > Remove. You are not able to
delete the order because there are detail (item) records.

Item Value
Online Unchecked
Status New Credit Order (poplist)
Sales Rep ID 151 (Enter the ID, or click the List

button and select David Bernstein)

Item Value
Product ID 2289 (Enter the ID, or click the List

button and select KB 101/ES.
Quantity 2

Oracle Forms Developer 10g: Build Internet Applications A-4

Practice 2 Solutions (continued)
17. Delete the line item for your order and save the change.

Move to the Item block and select Record > Remove. Click Save.
18. Now attempt to delete your order and save the change.

Move to the ORDER block and select Record > Remove. Click Save.
19. Exit the run-time session and close the browser window.

Choose Action > Exit from the menu, or click Exit on the toolbar.
Close the browser window.

Oracle Forms Developer 10g: Build Internet Applications A-5

Practice 3 Solutions
1. Invoke Forms Builder. If the Welcome page is displayed, select “Open an existing

form”. If the Welcome page is not displayed, select File > Open.
No formal solution.

2. Open the Orders.fmb form module from the Open Dialog window.
No formal solution.

3. Set your preferences so that Welcome dialogs display when you first open Forms
Builder and when you use any of the wizards.
Select Edit > Preferences from the default menu system. Click the Wizards tab
in the Preferences dialog box.
Check all boxes. Click OK.

4. Close the Orders form.
With the Orders form selected, choose File > Close from the menu.

5. Open the Summit.fmb form module.
No formal solution.

6. Expand the Data Blocks node.
No formal solution.

7. Expand the Database Objects node. If you cannot expand the node, connect to the
database and try again. What do you see below this node?
No formal solution.

8. Collapse the Data Blocks node.
No formal solution.

9. Change the layout of the Summit.fmb form module to match the following
screenshot. At the end, save your changes.

Oracle Forms Developer 10g: Build Internet Applications A-6

Practice 3 Solutions (continued)
a. Invoke the Layout Editor.

With the Summit form selected, select Tools > Layout Editor from the
menu.

b. Move the three summit shapes to the top-right corner of the layout. Align the
objects along the bottom edge.
Shift-click each of the three shapes to select them together. Move them to
the top-right corner of the layout. With all three shapes still selected,
select Layout > Align Components, and select the option to Align Bottom.
Click OK.

c. Select the summit shape in the middle and place it behind the other two shapes.
Click outside the shapes to deselect them, then select the middle summit
shape and select Layout > Send to Back.

d. Draw a box with no fill around the summit shapes.
Select the Rectangle tool from the Tool Palette and draw a rectangle
around the three summit shapes. With the rectangle still selected, click the
Fill Color tool and select No Fill.

e. Add the text Summit Office Supply in the box. If necessary, enlarge the box.
Select the text tool from the Tool Palette and enter the text within the
rectangle. Choose a suitable font size and style.
Click outside the text, then from the menu select Layout > Justify >
Center.

f. Move the Manager_Id and Location_Id items to match the screenshot.
Select and move the Manager_Id and Location_Id items below the
Department_Name item. Shift-click the Dept_Id, Department_Name,
Manager_Id, and Location_Id items to select them together. Click Align
Left to align these items. To distribute them evenly, select Layout > Align
Components, then select the Distribute option under the Vertically column
and click OK.

g. Move the First_Name item up to align it at the same level as the Last_Name
item.
Select the First_Name and Last_Name items together, and click Align
Top.

h. Resize the scroll bar to make it the same height as the three records in the
Employees block.
Select the scroll bar and resize it with the mouse.

i. Save the form module.
In the Object Navigator, select File > Save (or click Save).

Oracle Forms Developer 10g: Build Internet Applications A-7

Practice 3 Solutions (continued)
10. Set the run-time preferences for Forms Builder to use OC4J to test your applications.

Set the Application Server URL by pressing Reset to Default, which will enter the
following settings:

From the Forms Builder menu, choose Edit > Preferences.
Select the Runtime tab.
Click Reset to Default.

11. In Forms Builder, open and run the Customers form located in your local directory
(you must have OC4J running first). Note: Run-time fonts may look different than
the fonts used in Forms Builder because Forms Builder uses operating system
specific fonts, but at run time only Java fonts are used. In addition, the appearance is
different from the Layout Editor because the Oracle (rather than the Generic) look
and feel is used by default.
Click Open, or choose File > Open from the menu.
Open customers.fmb.
Click Run Form, or choose Program > Run Form from the menu.
Enter the connect information in the Logon dialog and click Connect.

12. Click the Account Information tab. You should be able to see the image of a
flashlight on the List button. Exit the run-time session and close the browser
window.
No formal solution.

13. In Forms Builder, open the Layout Editor for the CV_Customer canvas by
expanding the Canvases node in the Object Navigator and double-clicking the
CV_Customer canvas icon. In the Layout Editor, click the Account Information tab.
What do you observe about the List button?
The List button displays without an iconic image.

14. From the Windows Start menu, choose Run, type regedit, and click OK. Expand
the registry nodes HKEY_LOCAL_MACHINE > SOFTWARE > ORACLE. Click into
the ORACLE node, or into one of the HOME nodes beneath it; your instructor will tell
you which node to open. Ensure that you have opened the correct node by verifying
that the key FORMS90 exists in that node.
No formal solution.

15. Set the path for Forms Builder to locate icons:
a) Double-click the UI_ICON key to open it for editing.
b) For the value data, append the path to the .gif file that you will use for the
button icon, which is the \icons subdirectory of your lab directory. Separate this
path from the remainder of the string with a semicolon; for example:
;e:\labs\lab\icons, then click OK.
No formal solution.

URL Component Value
Machine name 127.0.0.1 (or your local machine

name)
Port 8889 (for OC4J)(or the OC4J port

on your local machine)
Pointer to Forms Servlet forms90/f90servlet

Oracle Forms Developer 10g: Build Internet Applications A-8

Practice 3 Solutions (continued)
16. In a similar fashion, set the value for Forms Builder to use for the icon extension,

then close the registry editor.
If the key UI_ICON_EXTENSION exists, ensure that it is set to "gif". If it
does not exist, from the registry menu, select Edit > New > String Value. Enter
the name UI_ICON_EXTENSION. Double-click the string to open it for editing.
For the value data, enter gif, then click OK.

17. Close and reopen Forms Builder. Open the Customers form and verify that the
flashlight icon now displays in the Layout Editor.
No formal solution.

Oracle Forms Developer 10g: Build Internet Applications A-9

Practice 4 Solutions
1. Create a new form module.

Create a new single block by using the Data Block Wizard.
Base it on the CUSTOMERS table and include all columns.
Display the CUSTOMERS block on a new content canvas called CV_CUSTOMER
and show just one record at a time. Set the frame title to Customers. Set column
names and widths as shown in the following table:

If you are not already in Forms Builder, run Forms Builder and create a new
form module by selecting "Use the Data Block Wizard" from the Welcome
Wizard.
If you are already in Forms Builder, then create a new form module by
selecting File > New > Form or by highlighting the Forms node in the Object
Navigator and clicking Create. To begin creating a block, choose Tools > Data
Block Wizard from the menu.
Select the block type as Table or View.
Set the Table or View field to CUSTOMERS.
Click Refresh. Click >> to include all columns, then click Next.
Click Next, and select the “Create the data block, then call the Layout Wizard”
option, and click Finish.
In the Layout Wizard, select [New Canvas] and make sure the Type field is set
to Content. Click Next.
Include all items and click Next.
Set values for prompt, width, and height as shown, then click Next.
Set the Style to Form and click Next.
Set the Frame Title to Customers and click Finish.
In Object Navigator, rename the canvas as CV_CUSTOMER:

Select the canvas.
Click the name.
The cursor changes to an I-beam; edit the name and press [Enter].

Oracle Forms Developer 10g: Build Internet Applications A-10

Practice 4 Solutions (continued)
2. Save the new module to a file called CUSTGXX, where XX is the group number that

your instructor has assigned to you.
No formal solution

3. Run your form module and execute a query.
Navigate through the fields. Exit the run-time session and return to Forms Builder.
No formal solution.

4. Change the form module name in the Object Navigator to CUSTOMERS.
Select the form module. Click the name. The cursor changes to an
I-beam. Edit the name, and then press [Enter].

5. In the Layout Editor, reposition the items and edit item prompts so that the canvas
resembles the following:
Hint: First resize the canvas. Do not attempt to resize the frame, or the items will
revert to their original positions.
Reposition the items by dragging and dropping them.
Use the Align Left and Align Right buttons to line the items up with one
another. Edit the following item prompts to include a carriage return as
pictured: Last Name, First Name, State Province, Country Id, Credit Limit,
and Account Mgr Id. (Click twice in the item prompt to edit it – the cursor
changes to an I-beam.)

6. Save and compile the form module.
Click Run Form to run the form. Execute a query.
No formal solution.

7. Exit the run-time session and close the browser window.
No formal solution.

Oracle Forms Developer 10g: Build Internet Applications A-11

Practice 5 Solutions
1. Create a new form module.

Create a new block by using the Data Block Wizard.
Base it on the ORDERS table and include all columns except ORDER_TOTAL and
PROMOTION_ID.
Display the ORDERS block on a new content canvas called CV_ORDER and show
just one record at a time. Use a form style layout. Set the frame title to Orders.
Create a new form module by selecting File > New > Form or by clicking
Create.
Use Tools > Data Block Wizard to create a block.
Select the block type as Table or View.
Set the Table or View field to ORDERS.
Click Refresh and include all columns except Order_Total and Promotion_Id.
Click Next twice, select “Create the data block, then call the Layout Wizard”
option, and click Finish.
In the Layout Wizard, select a new canvas and make sure the Type field is set to
Content.
Include all items.
Set Style to Form.
Set Frame Title to Orders, and click Finish.
In the Object Navigator, rename the canvas as CV_ORDER.

2. Create a new block by using the Data Block Wizard.
Base the block on the ORDER_ITEMS table and include all columns.
Create a relationship and select the master block as ORDERS.
Display all items except ORDER_ID on the CV_ORDER canvas.
Display six records in this detail block on the same canvas as the master block.
Use a tabular style layout and include a scroll bar.
Change the order of the blocks in the Object Navigator, moving the ORDER_ITEMS
block after the ORDERS block. Set the frame title to Items.
In the same module, create a new block by using Tools > Data Block Wizard.
(Ensure that you do not have a frame selected in the Object Navigaor when you
invoke the Data Block Wizard, or it will be in reentrant mode to modify that
frame. If this happens, click Cancel, select a different object in the form, and
invoke the Data Block Wizard again.)
Select block type as Table or View.
Set the Base Table to ORDER_ITEMS.
Include all columns.
Click Create Relationship.
Select ORDERS block as the master block and click OK.
Click Finish.
Use the Layout Wizard to create a layout.
Select Canvas as CV_ORDER.

Oracle Forms Developer 10g: Build Internet Applications A-12

Practice 5 Solutions (continued)
Include all items except ORDER_ID.
Do not change any prompts.
Set the Style to Tabular.
Set the Frame Title to Items.
Set the Records Displayed to 6.
Select the Display Scrollbar check box.
In the Object Navigator, if ORDER_ITEMS is displayed first, drag and drop the
ORDER_ITEMS block to a position below the ORDERS block.

3. Save the new module to a file called ORDGXX, where XX is the group number that
your instructor has assigned to you.
No formal solution.

4. Create a new block based on INVENTORIES (do not create any relationships with
other blocks at this time) to display on a different canvas.
Base it on the INVENTORIES table.
Display four records in this block and ensure that they are displayed on a new
content canvas called CV_INVENTORY.
Use a tabular style layout, and include a scroll bar.
In the Object Navigator, move the INVENTORIES block after the ORDER_ITEMS
block. Set the frame title to Stock.
Do not create any relationships between blocks at this stage.
In the same module, create a new block by using Tools > Data Block Wizard.
(Ensure that you do not have a frame selected in the Object Navigaor when you
invoke the Data Block Wizard, or it will be in reentrant mode to modify that
frame. If this happens, click Cancel, select a different object in the form, and
invoke the Data Block Wizard again.)
Select block type as Table or View.
Set the Base Table to INVENTORIES.
Include all columns.
Use the Layout Wizard to create a layout.
Select a New Canvas.
Include all items.
Do not change any prompts.
Set the Style to Tabular.
Set the Frame Title to Stock.
Set the Records Displayed to 4.
Select the Display Scrollbar check box.
In the Object Navigator, rename the canvas to CV_INVENTORY.
In the Object Navigator, if INVENTORIES is not displayed last in the block list,
move the INVENTORIES block after the ORDER_ITEMS block.

Oracle Forms Developer 10g: Build Internet Applications A-13

Practice 5 Solutions (continued)
5. Explicitly create a relation called Order_Items_Inventories between the

ORDER_ITEMS and INVENTORIES blocks.
Ensure that line item records can be deleted independently of any related inventory.
Set the coordination so that the Inventories block is not queried until you explicitly
execute a query.
Create the relation: Select the Relations node in the ORDER_ITEMS block in the
Object Navigator and click Create. The New Relation dialog box appears.
Select INVENTORIES as the detail block. Select the Isolated option. Check
Deferred and uncheck Auto Query. Enter the join condition
order_items.product_id = inventories.product_id and click
OK.

6. On the ORDER_ITEMS block, change the prompt for the Line Item ID item to Item#
by using the reentrant Layout Wizard. First select the relevant frame in the Layout
Editor, and then use the Layout Wizard.
Select the frame for the ORDER_ITEMS block under the CV_ORDER canvas in
the Object Navigator or in the Layout Editor, and select Tools > Layout Wizard
from the menu.
Select the Items tab page.
Change the prompt for the Line Item ID item to Item#, and click Finish.

7. In the INVENTORIES data block, change the prompt for Quantity on Hand to In
Stock by using the Layout Wizard.
In the Object Navigator or in the Layout Editor, select the frame that is
associated with the INVENTORIES data block.
Select Tools > Layout Wizard from the menu.
Select the Items tab page and change the prompt for Quantity on Hand to In
Stock, and click Finish.

8. Save and compile your form module.
Click Run Form to run your form module.
Execute a query.
Navigate through the blocks so that you see the INVENTORIES block.
Exit the run-time session, close the browser, and return to Forms Builder.
To navigate through the blocks, choose Block > Next from the menu or click
Next Block on the Toolbar.

9. Change the form module name in the Object Navigator to ORDERS and save.
No formal solution.

Oracle Forms Developer 10g: Build Internet Applications A-14

Practice 6 Solutions
CUSTGXX Form

1. Create a control block in the CUSTGXX form.
Create a new block manually, and rename this block CONTROL.
Set the Database Data Block, Query Allowed, Insert Allowed, Update Allowed, and
Delete Allowed Database properties to No. Set the Query Data Source Type
property to None. Set the Single Record property to Yes. Leave other properties as
default.
Move the CONTROL block after the CUSTOMERS block.
Select the Data Blocks node in the Object Navigator.
Click the Create icon in the Object Navigator, or select Edit > Create option
from menu to create a new data block.
Select the “Build a new data block manually” option.
Rename this new data block as CONTROL.
Right-click this block, and open the Property Palette. Find the Database
category in the Property Palette.
Set the Database Data Block, Query Allowed, Insert Allowed, Update Allowed,
and Delete Allowed properties to No.
Set the Query Data Source Type property to None.
Find the Records category.
Set the Single Record property to Yes.
Leave other properties as default.
In the Object Navigator, if the CONTROL block is not displayed last, move the
CONTROL block after the CUSTOMERS block.

2. Ensure that the records retrieved in the CUSTOMERS block are sorted by the
customer’s ID.
In the Property Palette for the CUSTOMERS block, set the ORDER BY Clause
property to customer_id.

3. Set the frame properties for the CUSTOMERS block as follows:
Remove the frame title, and set the Update Layout property to Manually. Once you
have done this, you may resize the frame if desired without having the items revert
to their original positions.
In the Layout Editor for the CV_Customer canvas, select the frame that covers
the CUSTOMERS block and open the Property Palette. Remove the Frame Title
property value and set the Update Layout property to Manually. You may
resize the frame if desired.

4. Save and run the CUSTGXX form.
Test the effects of the properties that you have set.
Ensure that records are sorted by Customer_Id and that the frame title is no
longer displayed.
Note: The Compilation Errors window displays a warning that advises you that the
CONTROL block has no items. This is expected (until you add some items to the
CONTROL block in a later lesson).

Oracle Forms Developer 10g: Build Internet Applications A-15

Practice 6 Solutions (continued)
ORDGXX Form

5. Create a CONTROL block in the ORDGXX form.
Create a new block manually, and rename this block CONTROL.
Set the Database Data Block, Query Allowed, Insert Allowed, Update Allowed, and
Delete Allowed database properties to No. Set the Query Data Source Type property
to None. Set the Single Record property to Yes. Leave other properties as default.
Position the CONTROL block after the INVENTORIES block in the Object
Navigator.
Select the Data Blocks node in the Object Navigator.
Click the Create icon in the Object Navigator, or select the Edit > Create option
from the menu to create a new data block.
Select the “Build a new data block manually” option.
Rename this new data block CONTROL.
Right-click this block, and open the Property Palette.
Find the Database category in the Property Palette.
Set the Database Data Block, Query Allowed, Insert Allowed, Update Allowed,
and Delete Allowed properties to No.
Set the Query Data Source Type property to None.
Find the Records category.
Set the Single Record property to Yes.
Leave other properties as default.
In the Object Navigator, move the CONTROL block after the INVENTORIES
block.

6. Ensure that the records retrieved in the ORDERS block are sorted by the
ORDER_ID.
For the ORDERS data block, set the ORDER BY Clause property to ORDER_ID.

7. Ensure that the current record is displayed differently from the others in both the
ORDER_ITEMS and INVENTORIES blocks.
Create a Visual Attribute called Current_Record.
Using the Color Picker, set the foreground color to white and the background color
to gray. Using the Pattern Picker, set the pattern to a light and unobtrusive pattern.
Using the Font Picker, set the font to MS Serif italic 10 point.
Use the multiple selection feature on both data blocks to set the relevant block
property to use this Visual Attribute.
In the Object Navigator, select the Visual Attributes node, and create a new
Visual Attribute.
In the Property Palette, set the Name property to CURRENT_RECORD.
Select the Foreground Color property and click the More button, which is
labeled “…”.

Oracle Forms Developer 10g: Build Internet Applications A-16

Practice 6 Solutions (continued)
The Foreground Color color picker dialog box is displayed. Set Foreground
Color to White. Repeat the process to set the Background Color to gray.
In the Property Palette, select the Fill Pattern property. Click More (…). Select
the third pattern from the left in the top row, which sets the pattern to gray3.3
(you could type this value if you did not want to use the Pattern Picker).
In the Property Palette, select the Font category heading. (Do not select any of
the properties under the Font category heading.) Click More… and the Font
dialog box appears. Select MS Serif, Italic, 10 point, and click OK.
In the Object Navigator, to use the multiple selection feature, select both of the
ORDER_ITEMS and the INVENTORIES blocks by pressing the [Shift] key and
the left mouse button, and then open the Property Palette.
Set the Current Record Visual Attribute Group property to
CURRENT_RECORD.

8. For the ORDER_ITEMS block, change the number of records displayed to 4 and
resize the scroll bar accordingly.
In the Object Navigator, select the ORDER_ITEMS block and open the Property
Palette. Set the Number of Records Displayed property
to 4. In the Layout Editor for the CV_ORDER canvas, resize the scroll bar to
match the number of records displayed.

9. Ensure that the records retrieved in the ORDER_ITEMS block are sorted by the
LINE_ITEM_ID.
For the ORDER_ITEMS data block, set the ORDER BY Clause property to
LINE_ITEM_ID.

10. Set the ORDER_ITEMS block to automatically navigate to the next record when the
user presses [Next Item] while the cursor is in the last item of a record.
For the ORDER_ITEMS block, set the Navigation Style to Change Record.

11. Set the frame properties for all blocks as follows:
Remove the frame title and set the Update Layout property to Manually.
In the Object Navigator, expand all nodes under the Canvases node. Multi-
select all frames under the Graphics nodes and open the Property Palette.
Remove the Frame Title property value and set the Update Layout property to
Manually.

12. Save and compile the ORDGXX form.
Click Run Form to run your form.
Test the effects of the properties that you have set.
Note: The Compilation Errors window displays a warning that advises you that the
CONTROL block has no items. This is expected (until you add some items to the
CONTROL block in a later lesson).
No formal solution.

Oracle Forms Developer 10g: Build Internet Applications A-17

Practice 7 Solutions
CUSTGXX Form

1. Remove the NLS_Language and NLS_Territory items.
In the Layout Editor, select and delete the two items.

2. Make sure that the Phone_Numbers item accepts multiline text to display. The
database column is long enough to accept two phone numbers if the second one is
entered without “+1” in front of the number.
For the Phone Numbers item, set Multi-line to Yes. Set Height to 30 and Width
to 100.

3. Automatically display a unique, new customer number for each new record and
ensure that it cannot be changed.
Use the CUSTOMERS_SEQ sequence.
In the Property Palette for Customer_Id, set Initial Value to
:sequence.customers_seq.nextval.
Set the properties Insert Allowed and Update Allowed to No.

4. In the CUSTGXX form, resize and reposition the items. Add the boilerplate text
Customer Information. Reorder the items in the Object Navigator. Use the
screenshot as a guide.

5. Save and compile your form.
Test the changes by clicking Run Form to run the form.
Note: The entire form may not be visible at this time. This will be addressed in a
later lesson.
No formal solution.

Oracle Forms Developer 10g: Build Internet Applications A-18

Practice 7 Solutions (continued)
ORDGXX Form

6. In the ORDERS block, create a new text item called Customer_Name.
Ensure that Customer_Name is not associated with the ORDERS table.
Do not allow insert, update, or query operations on this item, and make sure that
navigation is possible only by means of the mouse. Set the Prompt text to Customer
Name. Display this item on CV_ORDER canvas.
Create a text item in the ORDERS block and name it Customer_Name.
Item Type should be set to Text Item.
Set the Database Item, Insert Allowed, Update Allowed, Query Allowed, and
Keyboard Navigable properties to No.
Set the Prompt to Customer Name.
Set the Prompt Attachment Offset to 5.
Set the Canvas property to CV_ORDER.

7. In the ORDERS block, create a new text item called Sales_Rep_Name.
Ensure that Sales_Rep_Name is not associated with the ORDERS table.
Do not allow insert, update, or query operations on this item and make sure that
navigation is possible only by means of the mouse. Set the Prompt text to Sales Rep
Name. Display this item on the CV_ORDER canvas.
Create a text item in the ORDERS block and name it Sales_Rep_Name.
Item Type should be set to Text Item.
Set the Database Item, Insert Allowed, Update Allowed, Query Allowed, and
Keyboard Navigable properties to No.
Set the Prompt to Sales Rep Name.
Set the Prompt Attachment Offset to 5.
Set the Canvas property to CV_ORDER.

8. Set the relevant property for Order_Date, so that it displays the current date
whenever a new record is entered.
For Order_Date, set Initial Value to: $$date$$

9. In the ORDER_ITEMS block, create a new text item called Item_Total.
Ensure that Item_Total is not associated with the ORDER_ITEMS table.
Do not allow insert, update, or query operations on this item and make sure that
navigation is possible only by means of the mouse.
Allow numeric data only and display it by using a format of 999G990D99.
Set the Prompt text to Item Total. Display this item on the CV_ORDER canvas.
Create a text item in the ORDER_ITEMS block and name it Item_Total.
Set the Item Type to Text Item.
Set the Database Item, Insert Allowed, Update Allowed, Query Allowed, and
Keyboard Navigable properties to No.
Set the Data Type to Number.
Set the Format Mask to: 999G990D99

Oracle Forms Developer 10g: Build Internet Applications A-19

Practice 7 Solutions (continued)
Set the Prompt to Item Total.
Set the Prompt Attachment Edge to Top.
Set the Prompt Alignment to Center.
Set the Height to 14.
Set the Canvas property to CV_ORDER.

10. Justify the values of Unit_Price, Quantity, and Item_Total to the right.
For each of the items, set Justification to Right.

11. Alter the Unit_Price item, so that navigation is possible only by means of the mouse,
and updates are not allowed. Set its format mask to be the same as that used for
Item_Total.
For Unit_Price, set Keyboard Navigable and Update Allowed to No.
Set the Format Mask to: 999G990D99

12. In the ORDGXX form, resize and reposition the items according to the screenshot
and the following table.
Resize items by setting the width in the corresponding property palette.
Drag and drop items to reposition in navigation order.

ORDERS
Block Items

Suggested
Width

Order_Id 60
Order_Date 65
Order_Mode 40
Customer_ID 40
Customer_Name 150
Order_Status 15
Sales_Rep_ID 40
Sales_Rep_Name 150

ORDER_ITEMS
Block Items

Suggested
Width

Line_Item_Id 25
Product_ID 35
Unit_Price 40
Quantity 40
Item_Total 50

Oracle Forms Developer 10g: Build Internet Applications A-20

Practice 7 Solutions (continued)
13. In the INVENTORIES block, alter the number of instances of the Product_ID, so

that it is displayed just once. Make its prompt display to the left of the item.
In the property palette for Product_ID, set Number of Items Displayed to 1.
Set the Prompt Attachment Edge to Start.
Set the Prompt Attachment Offset to 5.

14. Arrange the items and boilerplate on CV_INVENTORY, so that it resembles the
screenshot.
Hint: Set the Update Layout property for the frame to Manually.
No formal solution.

15. Save, compile, and run the form to test the changes.
No formal solution.

Instructor Note
Customer_Name and Sales_Rep_Name are created as text items in this course. They
could also be created as display items. Display items use less memory than text items.
Students may find that text items created in this practice are different in appearance
from those created with the Data Block Wizard. This is due to bug 2020548. If you
create objects on a canvas and then click on the canvas, the next object you create on
the canvas has a different background color.

Oracle Forms Developer 10g: Build Internet Applications A-21

Practice 8 Solutions
1. In the ORDGXX form, create an LOV to display product numbers and descriptions

to be used with the Product_Id item in the ORDER_ITEMS block.
Use the PRODUCTS table and select the Product_Id and Product_Name columns.
Assign a title of Products to the LOV. Sort the list by the product name. Assign a
column width of 25 for Product_Id, and assign the LOV a width of 200 and a height
of 300. Position the LOV 30 pixels below and to the right of the upper-left corner.
For the Product_Id column, set the return item to ORDER_ITEMS.PRODUCT_ID.
Attach the LOV to the Product_Id item in the ORDER_ITEMS block. Change the
name of the LOV to PRODUCTS_LOV and the name of the record group to
PRODUCTS_RG.
Create a new LOV: In the Object Navigator, select the LOVs node and click
Create. Click OK to use the LOV Wizard.
Select the “New Record Group based on a query” option, and click Next.
In the SQL Query Statement, enter or import the following SQL query from
pr8_1.txt:
select PRODUCT_ID, PRODUCT_NAME
from PRODUCTS
order by PRODUCT_NAME

and click Next.
Click >> and then Next to select both of the record group values. With the
Product_ID column selected, click Look up return item. Select
ORDER_ITEMS.PRODUCT_ID and click OK.
Set the display width for PRODUCT_ID to 25 and click Next.
Enter the title Products. Assign the LOV a width of 200 and a height of 300.
Select the “No, I want to position it manually” option, and set both Left and
Top to 30. Click Next.
Click Next to accept the default advanced properties.
Click > and then Finish to create the LOV and attach it to the Product_Id item.
In the Object Navigator, change the name of the new LOV to PRODUCTS_LOV
and change the name of the new record group to PRODUCTS_RG.

2. In the ORDGXX form, use the LOV Wizard to create an LOV to display sales
representatives’ numbers and their names. Use the EMPLOYEES table,
Employee_Id, First_Name, and Last_Name columns. Concatenate the First_Name
and the Last_Name columns and give the alias of Name. Select employees whose
Job_ID is SA_REP.

Oracle Forms Developer 10g: Build Internet Applications A-22

Practice 8 Solutions (continued)
Assign a title of Sales Representatives to the LOV. Assign a column width of 20 for
ID, and assign the LOV a width of 200 and a height of 300. Position the LOV 30
pixels below and to the right of the upper-left corner. For the ID column, set the
return item to ORDERS.SALES_REP_ID; for the Name column, set the return item
to ORDERS.SALES_REP_NAME. Attach the LOV to the Sales_Rep_Id item in the
ORDERS block.
Change the name of the LOV to SALES_REP_LOV and the record group to
SALES_REP_RG.
Create a new LOV. Click OK to use the LOV Wizard.
Select the “New Record Group based on a query” option, and click Next.
In the SQL Query Statement, enter or import the following SQL query from
pr8_2.txt:
select employee_id, first_name || ' '||last_name name
from employees
where job_id = 'SA_REP'
order by last_name

and click Next.
Click >> and then Next to select both of the record group values.
With the Employee_ID column selected, click Look up return item. Select
ORDERS.SALES_REP_ID and click OK.
With the Name column selected, the Look up return item. Select
ORDERS.SALES_REP_NAME and click OK. Set the display width for
Employee_ID to 20 and click Next.
Enter the title Sales Representatives. Assign the LOV a width of 200
and a height of 300. Select the “No, I want to position it manually” option, and
set both Left and Top to 30. Click Next.
Click Next to accept the default advanced properties.
Select ORDERS.SALES_REP_ID and click > and then Finish to create the LOV
and attach it to the Sales_Rep_Id item.
In the Object Navigator, change the name of the new LOV to SALES_REP_LOV
and the new record group to SALES_REP_RG.

3. Save and compile your form.
Click Run Form to run the form and test the changes.
No formal solution.

Oracle Forms Developer 10g: Build Internet Applications A-23

Practice 8 Solutions (continued)
4. In the CUSTGXX form, use the LOV Wizard to create an LOV to display account

managers’ numbers and their names. Use the EMPLOYEES table, Employee_Id,
First_Name, and Last_Name columns. Concatenate the First_Name and the
Last_Name columns and give the alias of Name. Select employees whose Job_ID is
SA_MAN.
Assign a title of Account Managers to the LOV. Assign a column width of 20 for ID,
and assign the LOV a width of 200 and a height of 300. Position the LOV 30 pixels
below and to the right of the upper-left corner. For the ID column, set the return item
to CUSTOMERS.ACCOUNT_MGR_ID. Attach the LOV to the Account_Mgr_Id
item in the CUSTOMERS block.
Change the name of the LOV to ACCOUNT_MGR_LOV and the record group to
ACCOUNT_MGR_RG.
Create a new LOV. Click OK to use the LOV Wizard.
Select the “New Record Group based on a query” option, and click Next.
In the SQL Query Statement, enter or import the following SQL query from
pr8_4.txt:
select employee_id, first_name || ' '||last_name name
from employees
where job_id = 'SA_MAN'
order by last_name
and click Next.
Click >> and then Next to select both of the record group values.
With the Employee_ID column selected, click Look up return item. Select
CUSTOMERS.ACCOUNT_MGR_ID and click OK.
Set the display width for ID to 20 and click Next.
Enter the title Account Managers. Assign the LOV a width of 200 and a
height of 300. Select the “No, I want to position it manually” option, and set
both Left and Top to 30. Click Next.
Click Next to accept the default advanced properties.
Click > and then Finish to create the LOV and attach it to the Account_Mgr_Id
item.
In the Object Navigator, change the name of the new LOV to
ACCOUNT_MGR_LOV and the new record group to ACCOUNT_MGR_RG.

Instructor Note
If students try to include an object type column in the query, they will receive an error.
See Bug 2338467.

Oracle Forms Developer 10g: Build Internet Applications A-24

Practice 8 Solutions (continued)
5. In the CUSTGXX form, create an editor and attach it to the Phone_Numbers item.

Set the title to Phone Numbers, the bottom title to Max 30 Characters, the
background color to gray, and the foreground color to yellow.
Create a new editor. Change the name to Phone_Number_Editor.
Set the X Position and Y Position properties to 175.
Set the Width property to 100 and the Height property to 100.
Set the title to Phone Numbers, the bottom title to Max 30 Characters,
Background Color property to gray, and the Foreground Color property to
yellow.
In the Property Palette of the Phone_Numbers item, set the Editor property to
Phone_Number_Editor.

6. Save, compile, and run the form to test the changes. Resize the window if necessary.
No formal solution.

Oracle Forms Developer 10g: Build Internet Applications A-25

Practice 9 Solutions
1. In the ORDGXX form, convert the Order_Status item into a pop-up list item.

Add list elements shown in the table below.
Display any other values as Unknown.
Ensure that new records display the initial value New CASH order.
Resize the poplist item in the Layout Editor, so that the elements do not truncate at
run time.

For Order_Status, set Item Type to List Item.
Set the Initial Value to 0.
Set the List Style to Poplist (this is the default).
Set the Mapping of Other Values to 11.
Select the Elements in List property and click More to invoke the List Elements
dialog box.
Enter the elements shown in the table. Enter the corresponding database values
in the List Item Value box.
Click OK to accept and close the dialog.
Open the Layout Editor and resize the item so that elements do not truncate.

2. In the ORDGXX form, convert the Order_Mode text item to a check box.
Set the checked state to represent the base table value of online and the
unchecked state to represent direct.
Ensure that new records are automatically assigned the value online.
Display any other values as unchecked.
Remove the existing prompt and set label to: Online?
In the Layout Editor, resize the check box so that its label is fully displayed to the
right. Resize it a little longer than needed in Forms Builder so that the label does not
truncate at run-time.

List Element List Item Value
New CASH order 0
CASH order being processed 1
CASH Backorder 2
CASH order shipped 3
New CREDIT order 4
CREDIT order being processed 5
CREDIT Backorder 6
CREDIT order shipped 7
CREDIT order billed 8
CREDIT order past due 9
CREDIT order paid 10
Unknown 11

Oracle Forms Developer 10g: Build Internet Applications A-26

Practice 9 Solutions (continued)
For Order_Mode, set Item Type to Check Box.
Set the Value when Checked to: online
Set the Value when Unchecked to: direct
Set the Check Box Mapping of Other Values to Unchecked.
Set the Initial Value to: online
Delete the Prompt property; set the Label property to: Online?
Open the Layout Editor and resize the check box so that its label is fully
displayed.

3. Save and compile the form.
Click Run Form to run your form and test the changes.
No formal solution.

4. In the CUSTGXX form, convert the Credit_Limit text item into a radio group.
Add radio buttons for Low, Medium, and High to represent database values of 500,
2000, and 5000.
Define access keys of L for Low, M for Medium, and H for High.
Add text Credit Limit to describe the radio group’s purpose.
Set Label to Low for the Low radio button, Medium for the Medium radio button,
and High for the High radio button.
Ensure that new records display the default of Low, and that existing records with
other values display as Medium.
For Credit_Limit, set Item Type to Radio Group.
Set the Initial Value to 500 and the Mapping of Other Values to 2000.
In the Object Navigator, expand the Credit_Limit node.
The Radio Buttons node is displayed.
Create three buttons; name them Low_Button, Medium_Button, and
High_Button.
For the first button, set Access Key to L, Label to Low, and Radio Button Value
to 500. For the second button, set Access Key to M, Label to Medium, and
Radio Button Value to 2000. For the third button, set Access Key to H, Label to
High, and Radio Button Value to 5000.
Use the Layout Editor to position the radio buttons so that all can be seen.
In the Layout Editor, create boilerplate text to identify radio buttons as
Credit Limit.

5. Save, compile, and run the form to test the changes.
No formal solution.

Oracle Forms Developer 10g: Build Internet Applications A-27

Practice 10 Solutions
1. In the ORDER_ITEMS block of the ORDGXX form, create a display item called

Description. Set the Prompt property to Description and display the prompt centered
above the item. Rearrange the items in the layout so that all are visible.
Open the Layout Editor, ensure that the block is set to ORDER_ITEMS, and
select the Display Item tool.
Place the Display Item to the right of the Product_Id. Move the other items to
the right to accommodate the display item.
Set the Name property of the display item to DESCRIPTION.
Set the Maximum Length to 50.
Set the Width to 80. Set Height to 14.
Set the Database Item to No.
Set the Prompt property to Description, the Prompt Attachment Edge
property to Top, and the Prompt Alignment to Center.

2. Create an image item called Product_Image in the CONTROL block of the ORDGXX
form. (Use the Control block because you do not want to pick up the Current Record
Visual Attribute Group of the ORDER_ITEMS block, and this is a non base table
item.) Position this and the other items you create in this practice so that your form
looks like the screenshot.
Note: The image will not display in the image item at this point; you will add code
to populate the image item in Practice 20.

Display the Layout Editor; ensure that the block is set to CONTROL.
Select the Image Item tool.
Click and drag a box and place it so that it matches the screenshot.
Display the Property Palette for the image.
Change the name to PRODUCT_IMAGE.
Include these properties for the image item:
Keyboard Navigable: No, Sizing Style: Adjust, Database Item: No.

Oracle Forms Developer 10g: Build Internet Applications A-28

Practice 10 Solutions (continued)
3. Create another display item, Image_Description, in the ORDER_ITEMS block. This

should synchronize with the Description item. Set the Maximum Length property to
the same value as the Description item.
Display the Layout Editor.
Ensure that the block is set to ORDER_ITEMS.
Select the Display Item tool.
Place the Display Item to just below the Product_Image.
Set the Name to IMAGE_DESCRIPTION.
Set the Synchronize with Item to Description.
Set the Maximum Length property to 0.
Set the Database Item to No.
Set the Number of Items Displayed to 1.
Set the Width to 90. Set the Height to 14.

4. In the CONTROL block of the ORDGXX form, create an iconic button called
Product_LOV_Button. Use the list file (do not include the .ico or .gif
extension). Set the Keyboard Navigable property and the Mouse Navigate property
to No.
Display the Layout Editor and ensure that the block is set to CONTROL.
Select the Button tool.
Create a push button and place it close to the Product_Id.
Set the Name to Product_LOV_Button.
Set the Iconic property to Yes, and set the Icon Filename to: list
Set the Keyboard Navigable property to No.
Set the Mouse Navigate property to No.
Set the Width and Height to 17.
Note: If you completed Practice 3 successfully, you should now be able to see the
flashlight icon on the Product_LOV_Button button in the Layout Editor.

5. To display item total information, set the following properties for the Item_Total
item in the ORDER_ITEMS block:
Change the Item Type to Display Item.
Set the Calculation Mode property to Formula.
Set the Formula property to: nvl(:ORDER_ITEMS.quantity,0) *
nvl(:ORDER_ITEMS.unit_price,0)
In the Object Navigator, select the Item_Total item in the ORDER_ITEMS
block, and open the Property Palette.
Change the Item Type to Display Item.
Set the Calculation Mode property to Formula.
Set the Formula property to: nvl(:ORDER_ITEMS.quantity,0) *
nvl(:ORDER_ITEMS.unit_price,0)

Oracle Forms Developer 10g: Build Internet Applications A-29

Practice 10 Solutions (continued)
6. To display the total of the item totals, create a new nondatabase display item in the

CONTROL block.
Set the Position, Size, and Prompt properties according to the screenshot.
Set the Format Mask property to 9G999G990D99.
Set the Justification property to Right.
Set the Number of Items Displayed property to 1.
Set the Keyboard Navigable property to No.
Make CONTROL.total a summary item and display summaries of the item_total
values in the ORDER_ITEMS block. Ensure that you have set the Query All Records
property to Yes for the ORDER_ITEMS block.
In the Object Navigator, create a new text item in the CONTROL block.
Change the Item Type to Display Item.
Set the Name property to TOTAL, and the Prompt property to Order Total,
with a Prompt Attachment Offset of 5.
Set the Canvas property to CV_ORDER.
Set the Number of Items Displayed property to 1.
Set the Data Type property to Number.
Set the Format Mask property to: 9G999G990D99
Set the Justification property to Right.
Set the Database Item property to No, the Calculation Mode property to
Summary, and the Summary Function property to Sum.
Set the Summarized Block property to ORDER_ITEMS and Summarized Item
property to Item_Total.
Set the Keyboard Navigable property to No.
Resize and reposition the item according to the screenshot.
Set the Query All Records property to Yes for the ORDER_ITEMS block; that is
necessary for summary items to compute the sum of all the records.

7. Save the form and click Run Form to run it. Perform a query in the ORDGXX form
to ensure that the new items do not cause an error. Did you remember to switch off
the Database Item property for items that do not correspond to columns in the base
table? Also, check that the calculated items function correctly.
No formal solution.

Oracle Forms Developer 10g: Build Internet Applications A-30

Practice 10 Solutions (continued)
8. In the CUSTGXX form, create an iconic button similar to the one created in question

4, in the CONTROL block. Use the list file (do not include the .ico or .gif
extension). Name the push button Account_Mgr_Lov_Button, and place it next to
Account_Mgr_ID.
Display the Layout Editor and ensure that the block is set to CONTROL.
Select the Button tool.
Create a push button and place it close to Account_Mgr_ID.
Resize the push button to a Width of 17 and a Height of 17.
Set Name to Account_Mgr_LOV_Button.
Set Keyboard Navigable to No.
Set Mouse Navigate to No.
Set Iconic to Yes.
Set Icon File Name to: list
Note: If you completed Practice 3 successfully, you should now be able to see the
flashlight icon on the Account_Mgr_LOV_Button button in the Layout Editor.

9. In the CUSTGXX form, create a bean area in the CONTROL block and name it
Colorpicker. This bean has no visible component on the form, so set it to display as
a tiny dot in the upper left corner of the canvas. Ensure that users cannot navigate to
the bean area item with either the keyboard or mouse. You will not set an
implementation class; in Lesson 19 you learn how to programmatically instantiate
the JavaBean at run time.
Display the Layout Editor and ensure that the block is set to CONTROL.
Select the Bean Area tool and click the upper left of the canvas.
Set the NAME to COLORPICKER.
Set X Position and Y Position to 0.
Set Width and Height to 1.
Set Keyboard Navigable and Mouse Navigate to No.

10. Save and compile the form. Click Run Form to run your form and test the changes.
No formal solution.

Instructor Note
Students may ask questions about setting the Maximum Length property to 0 in question
3. They would not be wrong if they set it to the same value as Description. However,
setting it to 0 makes it pick up the same Maximum Length as the item with which it is
synchronized, so that if the Maximum Length of the Description item changes, the
Maximum Length of the Image_Description item does not have to be changed manually.

Oracle Forms Developer 10g: Build Internet Applications A-31

Practice 11 Solutions
1. Modify the window in the CUSTGXX form. Change the name of the window to

WIN_CUSTOMER, and change its title to Customer Information. Check that the
size and position are suitable.
Set the Name property of the existing window to WIN_CUSTOMER.
Change the Title property to Customer Information.
In the Layout Editor, look at the lowest and rightmost positions of objects on
the canvas, and plan the height and width for the window.
Change the height and width of the window in the Property Palette.
The suggested size is Width 450, Height 210.
The suggested X, Y positions are 10, 10.

2. Save, compile, and run the form to test the changes.
No formal solution.

3. Modify the window in the ORDGXX form. Ensure that the window is called
WIN_ORDER. Also change its title to Orders and Items. Check that the size and
position are suitable.
Set the Name property of the existing window to WIN_ORDER.
Set the Title property to Orders and Items.
In the Layout Editor, look at the lowest and rightmost positions of objects on
the canvas, and plan the height and width for the window.
Change the height and width of the window in the Property Palette.
The suggested size is Width 440, Height 265.
The suggested X, Y positions are 10, 10.

4. In the ORDGXX form, create a new window called WIN_INVENTORY suitable for
displaying the CV_INVENTORY canvas. Use the rulers in the Layout Editor to help
you plan the height and width of the window. Set the window title to Stock Levels.
Place the new window in a suitable position relative to WIN_ORDER. Ensure that
the window does not display when the user navigates to an item on a different
window.
Create a new window called WIN_INVENTORY.
Set the Title property to Stock Levels.
In the Layout Editor, look at the lowest and rightmost positions of objects on
the canvas, and plan the height and width for the window. Look at the
CV_ORDERS canvas to plan the X and Y positions for the window.
Set the size and position in the Property Palette.
The suggested size is Width 200, Height 160.
The suggested position is X 160, Y 100.
Set Hide on Exit to Yes.

Oracle Forms Developer 10g: Build Internet Applications A-32

Practice 11 Solutions (continued)
5. Associate the CV_INVENTORY canvas with the window WIN_INVENTORY.

Compile the form. Click Run Form to run the form. Ensure that the INVENTORIES
block is displayed in WIN_INVENTORY when you navigate to this block. Also
make sure that the WIN_INVENTORY window is hidden when you navigate to one
of the other blocks.
Set the canvas Window property to WIN_INVENTORY.
Click Run Form to compile and run the form.

6. Save the form.
No formal solution.

Oracle Forms Developer 10g: Build Internet Applications A-33

Practice 12 Solutions
Toolbar Canvases

1. In the ORDGXX form, create a horizontal toolbar canvas called Toolbar in the
WIN_ORDER window, and make it the standard toolbar for that window. Suggested
height is 30.
Create a new canvas. Set Name to TOOLBAR and Height to 30. Set Canvas Type
to Horizontal Toolbar and Window to WIN_ORDER.
In the Property Palette of the WIN_ORDER window, set Horizontal Toolbar
Canvas to Toolbar.

2. Save, compile, and run the form to test.
Notice that the toolbar now uses part of the window space. Adjust the window size
accordingly.
Set the Height property of the WIN_ORDER window to add 30 to the height, to
accommodate the horizontal toolbar.

3. Create three push buttons in the CONTROL block, as shown in the following table,
and place them on the Toolbar canvas. Resize the Toolbar if needed.
Suggested positions for the push buttons are shown in the illustration.

In the Layout Editor of the TOOLBAR canvas, with the CONTROL block
selected, use the Button tool to create three push buttons. Select all three,
invoke the Property Palette, and set the Mouse Navigate, Keyboard Navigable,
Height, Width, and Background Color properties. Then select each button
individually and set the Name and Label properties. In the Layout Editor,
resize and reposition the buttons. Although gray in the Layout Editor, the
buttons will be white at run time. Change the Width of the Toolbar if needed.

Push Button Name Details
Stock_Button Label: Stock

Mouse Navigate: No
Keyboard Navigable: No
Canvas: Toolbar Background Color: white
Height: 16 Width: 50

Show_Help_Button Label: Show Help
Mouse Navigate: No
Keyboard Navigable: No
Canvas: Toolbar Background Color: white
Height: 16 Width: 50

Exit_Button Label: Exit
Mouse Navigate: No
Keyboard Navigable: No
Canvas: Toolbar Background Color: white
Height: 16 Width: 50

Oracle Forms Developer 10g: Build Internet Applications A-34

Practice 12 Solutions (continued)
Stacked Canvases

4. Create a stacked canvas named CV_HELP to display help in the WIN_ORDER
window of the ORDGXX form. Suggested visible size is Viewport Width 250,
Viewport Height 225 (points). Select a contrasting color for the canvas. Place some
application help text on this canvas, similar to that shown:

Create a new canvas.
If the Property Palette is not already displayed, click the new canvas object in
the Object Navigator and select Tools > Property Palette.
Set the Canvas Type to Stacked. Name the canvas CV_HELP. Assign it to the
WIN_ORDER window. Set the Viewport Width and Height and the
Background Color properties.
Display the stacked canvas in the Layout Editor, and create some boilerplate
text objects with help information about the form.

5. Position the view of the stacked canvas so that it appears in the center of
WIN_ORDER. Ensure that it will not obscure the first enterable item.
Do this by planning the top-left position of the view in the Layout Editor, while
showing CV_ORDER. Define the Viewport X and Viewport Y Positions in the
Property Palette. You can move and resize the view in the Layout Editor to set the
positions.
In the Layout Editor, display the CV_ORDER canvas, select
View > Stacked Views from the menu, and select CV_HELP from the list. You
can see both canvases in this way. Change Viewport X Position and Viewport Y
Position properties in the Property Palette for CV_Help canvas. Suggested
coordinates: 100, 30. You can also move and resize the view of the CV_Help
canvas as you see it displayed on the CV_ORDER canvas.

Oracle Forms Developer 10g: Build Internet Applications A-35

Practice 12 Solutions (continued)
6. Organize CV_HELP so that it is the last canvas in sequence.

Do this in the Object Navigator. (This ensures the correct stacking order at run
time.)
Drag the CV_Help canvas so that it is the last canvas displayed under the
Canvases node in the Object Navigator.

7. Save and compile the form. Click Run Form to run your form and test the changes.
Note that the stacked canvas is initially displayed until it obscures the current item
in the form.
No formal solution.

8. Switch off the Visible property of CV_HELP, and then create a push button in the
CONTROL block to hide the Help information when it is no longer needed. You
will add the code later. Display this push button on the CV_HELP canvas.
Set the Visible Property to No for the CV_HELP canvas.
Create a push button in the CONTROL block with the following properties:

Push Button Name Details
Hide_Help_Button Label: Hide Help

Mouse Navigate: No
Keyboard Navigable: No
Canvas: CV_HELP
Width, Height: 65, 16
X, Y Positions: 180, 200

Oracle Forms Developer 10g: Build Internet Applications A-36

Practice 12 Solutions (continued)
Tab Canvases
Modify the CUSTGXX form in order to use a tab canvas:

9. In the Layout Editor, delete the frame object that surrounds the CUSTOMERS block.
Create a tab canvas (you may need to first enlarge the content canvas).
In the Property Palette, set the Background Color property to gray, Corner Style
property to Square, and Bevel property to None.
In the Layout Editor, select the frame that surrounds the CUSTOMERS block
and delete. Select the content canvas and resize it if necessary to make it large
enough to accommodate the tab canvas you are about to create. Click Tab
Canvas in the toolbar. Create a tab canvas by drawing a rectangle on the
content canvas.
In the Object Navigator, select the new tab canvas and open the Property
Palette. Set the Background Color property to gray, Corner Style property to
Square, and Bevel property to None.

10. Rename the TAB_CUSTOMER tab canvas. Create another tab page in addition to
the two tab pages created by default. Name the tab pages as Name, Contact, and
Account. Label them as Name, Contact Information, and Account Information.
In the Property Palette, set the Name property to TAB_CUSTOMER.
In the Object Navigator, expand this tab canvas and create one more tab page,
for a total of three tab pages. Set the tab pages Name properties as Name,
Contact, and Account. Set the Label properties as Name, Contact
Information, and Account Information.

11. Design the tab pages according to the following screenshots. Set the item properties
to make them display on the relevant tab pages.
In the Object Navigator, select the CUST_LAST_NAME and
CUST_FIRST_NAME items of the CUSTOMERS block and open the Property
Palette for this multiple selection. Set the Canvas property to
TAB_CUSTOMER. Set the Tab Page property to the NAME tab page.
In the Layout Editor, arrange the items according to the screenshot.

Instructor Note
If students appear to “lose” items after setting their Canvas properties, have them set the
items’ X and Y positions to 0 to move them to the upper left of the tab page, where they
can be seen and then moved to the desired positions.

Oracle Forms Developer 10g: Build Internet Applications A-37

Practice 12 Solutions (continued)
In the Object Navigator, select the Cust_Address_Street_Address,
Cust_Address_City, Cust_Address_State_Province,
Cust_Address_Postal_Code, Cust_Address_Country_Id, Cust_Email, and
Phone Number items of the CUSTOMERS block. Open the Property Palette for
this multiple selection.
Set the Canvas property to TAB_CUSTOMER.
Set the Tab Page property to the CONTACT tab page.
In the Layout Editor, arrange the items according to the screenshot. For the
Phone_Numbers item, open the Property Palette and change the Prompt to
Phone Numbers, the Prompt Attachment Edge to Top, and the Prompt
Attachment Offset to 0.

Similarly, place the following items on the ACCOUNT tab page of the
TAB_CUSTOMER canvas: Account_Mgr_ID and Credit_Limit from the
CUSTOMERS block, and Account_Mgr_LOV_Button from the CONTROL block.
In the Object Navigator, select the text object under the Graphics node of the
CV_Customer canvas that corresponds with the Credit Limit boilerplate text.
Drag the text object to the Account tab page.
In the Layout Editor, arrange the items according to the screenshot and create
a rectangle to surround the Credit Limit radio buttons.

Oracle Forms Developer 10g: Build Internet Applications A-38

Practice 12 Solutions (continued)
The content canvas should now look similar to the screenshot:

12. Reorder the items according to the tab page sequence. Ensure that the user moves
smoothly from one tab page to another when tabbing through items. Set the Next
Navigation Item and Previous Navigation Item properties to make it impossible to
tab to the Customer_Id item once you tab out of that item initially.
Note: Since Customer_Id is now the only item on the CV_CUSTOMER canvas,
setting either its Enabled or Keyboard Navigable properties to No has the effect of
making the item not visible. This is because Forms must be able to navigate to an
item on a canvas in order to display that canvas’ items.
In the Object Navigator, reorder the items according to their order in the tab
pages. Set the Previous Navigation Item and Next Navigation Items properties
for the first and last items in the tab pages: For the Credit_Limit item, set Next
Navigation Item to CUST_FIRST_NAME; for the Cust_First_Name item, set
Previous Navigation Item to CREDIT_LIMIT.

13. Save and compile the form. Click Run Form to run your form and test the changes.
No formal solution.

Oracle Forms Developer 10g: Build Internet Applications A-39

Practice 14 Solutions
1. In the CUSTGXX form, write a trigger to display the Account_Mgr_Lov when the

Account_Mgr_Lov_Button is selected. To create the When-Button-Pressed trigger,
use the Smart triggers feature. Find the relevant built-in in the Object Navigator
under built-in packages, and use the “Paste Name and Arguments” feature.
Right-click the Account_Mgr_Lov_Button in the Object Navigator, select
SmartTriggers in the pop-up menu, and select the When-Button-Pressed trigger
from the list.
When-Button-Pressed on CONTROL.Account_Mgr_Lov_Button:
IF SHOW_LOV(‘account_mgr_lov') THEN

NULL;
END IF;

2. Create a When-Window-Closed trigger at the form level in order to exit form.
When-Window-Closed at the form level:
EXIT_FORM;

3. Save, compile, and run the form. Test to see that the LOV is invoked when you press
the Account_Mgr_Lov_Button and that the form exits when you close the Customer
Information window.
No formal solution.

4. In the ORDGXX form, write a trigger to display the Products_Lov when the
Product_Lov_Button is selected.
When-Button-Pressed on CONTROL.Product_Lov_Button:
IF SHOW_LOV('products_lov') THEN

NULL;
END IF;

5. Write a trigger that exits the form when the Exit_Button is selected.
When-Button-Pressed on CONTROL.Exit_Button:
EXIT_FORM;

6. Save, compile, and run the form. Test to see that the LOV is invoked when you press
the Product_Lov_Button and that the form exits when you press the Exit_Button.
No formal solution.

7. Create a When-Button-Pressed trigger on CONTROL.Show_Help_Button that uses
the SHOW_VIEW built-in to display the CV_HELP.
When-Button-Pressed on CONTROL.Show_Help_Button:
SHOW_VIEW('CV_HELP');

8. Create a When-Button-Pressed trigger on CONTROL.Hide_Help_Button that hides
the CV_HELP. Use the HIDE_VIEW built-in to achieve this.
When-Button-Pressed on CONTROL.Hide_Help_Button
HIDE_VIEW('CV_HELP');

Oracle Forms Developer 10g: Build Internet Applications A-40

Practice 14 Solutions (continued)
9. Create a When-Button-Pressed trigger on CONTROL. Stock_Button that uses the

GO_BLOCK built-in to display the INVENTORIES block.
When-Button-Pressed on CONTROL.Stock_Button:
GO_BLOCK('INVENTORIES');
EXECUTE_QUERY;

10. Write a form-level When-Window-Closed trigger to hide the WIN_INVENTORY
window if the user attempts to close it, and to exit the form if the user attempts to
close the WIN_ORDER window.
Hint: Use the system variable :SYSTEM.TRIGGER_BLOCK to determine what
block the cursor is in when the trigger fires.
When-Window-Closed trigger on form:
IF :SYSTEM.TRIGGER_BLOCK = 'INVENTORIES' THEN

GO_BLOCK('ORDERS');
ELSE

EXIT_FORM;
END IF;

11. Save and compile the form. Click Run Form to run your form and test the changes..
The stacked canvas, CV_HELP, is displayed only if the current item will not be
obscured. Ensure, at least, that the first entered item in the form is one that will not
be obscured by CV_HELP.
You might decide to advertise Help only while the cursor is in certain items, or
move the stacked canvas to a position that does not overlay enterable items.
The CV_HELP canvas, of course, could also be shown in its own window, if
appropriate.
No formal solution.

Oracle Forms Developer 10g: Build Internet Applications A-41

Practice 15 Solutions
1. Open your CUSTGXX.FMB file. In this form, create a procedure that is called

List_Of_Values. Import code from the pr15_1.txt file:
PROCEDURE list_of_values(p_lov in VARCHAR2,p_text in
VARCHAR2) IS

v_lov BOOLEAN;
BEGIN

v_lov:= SHOW_LOV(p_lov);
IF v_lov = TRUE THEN

MESSAGE('You have just selected a(n) '||p_text);
ELSE

MESSAGE('You have just cancelled the List of Values');
END IF;

END;
Select the Program Units node in the Object Navigator. Click Create.
In the New Program Unit window, type the name List_Of_Values, and click
OK.
In the PL/SQL Editor, select all the text and press [Delete] to delete it.
From the menu, select File > Import PL/SQL Text.
In the Import window, click the poplist in the "Files of type:" field to change
the File type to All Files (*.*).
Select pr15_1.txt and click Open.
In the PL/SQL Editor, click Compile PL/SQL code, the icon at the upper left of
the window.

2. Modify the When-Button-Pressed trigger of
CONTROL.Account_Mgr_LOV_Button in order to call this procedure. Misspell the
parameter to pass the LOV name.
When-Button-Pressed on CONTROL.Account_Mgr_LOV_Button:
LIST_OF_VALUES('ACCOUNT_MGR_LO', 'Account Manager');

3. Click Run Form to run your form and test the changes. Press the LOV button for the
Account Manager. Notice that the LOV does not display, and you receive a message
that 'You have just cancelled the List of Values‘. No formal solution.

4. Now click Run Form Debug to run the form in debug mode. Set a breakpoint in your
When-Button-Pressed trigger, and investigate the call stack. Try stepping through
the code to monitor its progress. Look at the Variables panel to see the value of the
parameters you passed to the procedure, and the value of the p_lov variable in the
procedure. How would this information help you to figure out where the code was in
error?
Click Run Form Debug. I
n Forms Builder, open the PL/SQL Editor for the When-Button-Pressed trigger
on the CONTROL.Account_Mgr_LOV_Button. Double-click the gray area to
the left of the code to create a breakpoint.

Oracle Forms Developer 10g: Build Internet Applications A-42

Practice 15 Solutions (continued)
In the running form, press the Account_Mgr_Button. The debugger takes
control of the form because the breakpoint is encountered. The running form
now appears as a blank applet.
In Forms Builder, the Debug Console is displayed. If the Stack panel and the
Variables panel are not shown, click the appropriate icons of the Debug
Console window to display them.
In the Forms Builder toolbar, click Step Into. This adds the List_Of_Values
procedure to the Stack panel. In addition, some variables now appear in the
Variables panel.
Resize the Value column of the Variables panel so that you can see the value of
the variables. You can see that the p_lov value is incorrect.
Click Go in the Forms Builder toolbar to execute the remaining code. Control
returns to the running form. Click Stop to dismiss the debugger.
Exit the form and the browser, then correct the code in the When-Button-
Pressed trigger. You can then run the form again to retest it.

Oracle Forms Developer 10g: Build Internet Applications A-43

Practice 16 Solutions
1. In the CUSTGXX form, write a trigger that fires when the credit limit changes. The

trigger should display a message warning the user if a customer’s outstanding credit
orders (those with an order status between 4 and 9) exceed the new credit limit. You
can import the pr16_1.txt file.
Create a When-Radio-Changed trigger on CUSTOMERS.Credit_Limit. With
the the PL/SQL Editor open, select File > Import PL/SQL Text.
In the Import window, click the poplist in the "Files of type:" field to change
the File type to All Files (*.*).
Select pr16_1.txt and click Open.
In the PL/SQL Editor, click Compile PL/SQL code, the icon at the upper left of
the window.
When-Radio-Changed on CUSTOMERS.Credit_Limit:
DECLARE v_unpaid_orders NUMBER;
BEGIN

SELECT SUM(nvl(unit_price,0)*nvl(quantity,0))

INTO v_unpaid_orders

FROM orders o, order_items i

WHERE o.customer_id = :customers.customer_id

AND o.order_id = i.order_id

-- Unpaid credit orders have status between 4 and 9

AND (o.order_status > 3 AND o.order_status < 10);

IF v_unpaid_orders > :customers.credit_limit THEN

MESSAGE('This customer''s current orders exceed the
new credit limit');

END IF;

END;

2. Click Run Form to run your form and test the functionality.
Hint: Most customers who have outstanding credit orders exceed the credit limits,
so you should receive the warning for most customers. (If you wish to see a list of
customers and their outstanding credit orders, run the CreditOrders.sql script
in SQL*Plus.) Customer 120 has outstanding credit orders of less than $500, so you
shouldn’t receive a warning when changing this customer’s credit limit.
No formal solution.

3. Begin to implement a JavaBean for the ColorPicker bean area on the CONTROL
block that will enable a user to choose a color from a color picker.
Create a button on the CV_CUSTOMER canvas to enable the user to change the
canvas color using the ColorPicker bean.
Set the following properties on the button:

Label: Canvas Color Mouse Navigate: No
Keyboard Navigable: No Background color: gray

Oracle Forms Developer 10g: Build Internet Applications A-44

Practice 16 Solutions (continued)
The button should call a procedure named PickColor, with the imported text from
the the pr16_3.txt file.
The bean will not function at this point, but you will write the code to instantiate it
in Practice 20.
Create a procedure under the Program Units node of the Object Navigator.
Name the procedure PickColor. With the PL/SQL Editor open, select File >
Import Text. The code in pr16_3.txt is:
PROCEDURE PickColor(pvcTarget in VARCHAR2) IS
vcOldColor VARCHAR2(12 char);
vcNewColor VARCHAR2(12 char);
hCanvas CANVAS := FIND_CANVAS('CV_CUSTOMER');
hColorPicker ITEM := FIND_ITEM('CONTROL.COLORPICKER');
vnPos1 NUMBER;
vnPos2 NUMBER;

BEGIN
-- First get the current Color for this target
vcOldColor := get_canvas_property(hCanvas,background_color);
vnPos1 := instr(vcOldColor,'g',1);
vnPos2 := instr(vcOldColor,'b',vnPos1 + 1);
vcOldColor := substr(vcOldColor,2,vnPos1 - 2)||
' '||substr(vcOldColor,vnPos1+1,vnPos2 - vnPos1 -1)||
' '||substr(vcOldColor,vnPos2 + 1,length(vcOldColor)-vnPos2);

-- now display the picker with that color as an initial value
vcNewColor :=
FBean.Invoke_char(hColorPicker,1,'showColorPicker','"Select
color for '||pvcTarget||'","'||vcOldColor||'"');

-- finally if vcColor is not null reset the Canvas property
if (vcNewColor is not null) then
vnPos1 := instr(vcNewColor,' ',1);
vnPos2 := instr(vcNewColor,' ',vnPos1 + 1);
vcNewColor := 'r'||substr(vcNewColor,1,vnPos1 - 1)||
'g'||substr(vcNewColor,vnPos1+1,vnPos2 - vnPos1 -1)||
'b'||substr(vcNewColor,vnPos2 + 1,length(vcNewColor)-
vnPos2);

set_canvas_property(hCanvas,background_color,vcNewColor);
end if;

END;

Create a button in the CONTROL block called Color_Button on the
CV_CUSTOMER canvas, setting its properties as shown above. Define a When-
Button-Pressed trigger for the button:

PickColor('Canvas');
4. Save and compile the form. You will not be able to test the Color button yet,

because the bean does not function until you instantiate it in Practice 20.
No formal solution.

Oracle Forms Developer 10g: Build Internet Applications A-45

Practice 16 Solutions (continued)
5. In the ORDGXX form CONTROL block, create a new button called Image_Button

and position it on the toolbar. Set the Label property to Image Off. Set the
navigation and color properties like the other toolbar buttons.
Display the Layout Editor. Make sure the Toolbar canvas and the Control
block are selected.
Select the Button tool.
Create a button and place it on the toolbar.
Set the Name to Image_Button.
Set the Keyboard Navigable property to No.
Set the Mouse Navigate property to No.
Set the Label property to Image Off.
Set the Background Color property to white.

6. Import the pr16_6.txt file into a trigger that fires when the Image_Button is
clicked. The file contains code that determines the current value of the visible
property of the Product Image item. If the current value is True, the visible property
toggles to False for both the Product Image item and the Image Description item.
Finally, the label changes on the Image_Button to reflect its next toggle state.
However, if the visible property is currently False, the visible property toggles to
True for both the Product Image item and the Image Description item.
Create a When-Button-Pressed trigger on CONTROL.Image_Button. With the
the PL/SQL Editor open, select File > Import Text.
In the Import window, click the poplist in the "Files of type:" field to change
the File type to All Files (*.*).
Select pr16_6.txt and click Open.
When-Button-Pressed on Control.Image_Button:
IF GET_ITEM_PROPERTY('CONTROL.product_image',VISIBLE)='TRUE' THEN

SET_ITEM_PROPERTY('CONTROL.product_image', VISIBLE,
PROPERTY_FALSE);

SET_ITEM_PROPERTY('ORDER_ITEMS.image_description',
VISIBLE,PROPERTY_FALSE);

SET_ITEM_PROPERTY('CONTROL.image_button',LABEL,'Image On');

ELSE

SET_ITEM_PROPERTY('CONTROL.product_image', VISIBLE,
PROPERTY_TRUE);

SET_ITEM_PROPERTY('ORDER_ITEMS.image_description',
VISIBLE,PROPERTY_TRUE);

SET_ITEM_PROPERTY('CONTROL.image_button',LABEL,'Image Off');

END IF;

7. Save and compile the form. Click Run Form to run your form. Note: The image will
not display in the image item at this point; you will add code to populate the image
item in Practice 20.
No formal solution.

Oracle Forms Developer 10g: Build Internet Applications A-46

Practice 17 Solutions
1. Create an alert in CUSTGXX called Credit_Limit_Alert with one OK button. The

message should read “This customer's current orders exceed the new credit limit”.
Create an alert.
Set Name to Credit_Limit_Alert.
Set Title to Credit Limit.
Set Alert Style to Caution.
Set Button1 Label to OK.
Set Message to “This customer's current orders exceed the
new credit limit”
Remove the labels for the other buttons.

2. Alter the When-Radio-Changed trigger on Credit_Limit to show the
Credit_Limit_Alert instead of the message when a customer’s credit limit is
exceeded.
When-Radio-Changed on ORDERS.Credit_Limit (arrows denote changed or
added lines):
DECLARE

n NUMBER;
v_unpaid_orders NUMBER;

BEGIN
SELECT SUM(nvl(unit_price,0)*nvl(quantity,0))
INTO v_unpaid_orders
FROM orders o, order_items i
WHERE o.customer_id = :customers.customer_id
AND o.order_id = i.order_id
-- Unpaid credit orders have status between 4 and 9
AND (o.order_status > 3 AND o.order_status < 10);
IF v_unpaid_orders > :customers.credit_limit THEN

n := SHOW_ALERT('credit_limit_alert');
END IF;

END;

3. Save and compile the form. Click Run Form to run your form and test the changes.
4. Create a generic alert in ORDGXX called Question_Alert that allows Yes and No

replies.
Create an alert.
Set Name to QUESTION_ALERT.
Set Title to Question.
Set Alert Style to Stop.
Set Button1 Label to Yes.
Set Button2 Label to No.

Oracle Forms Developer 10g: Build Internet Applications A-47

Practice 17 Solutions (continued)
5. Alter the When-Button-Pressed trigger on CONTROL. Exit_Button to use the

Question_Alert to ask the operator to confirm that the form should terminate. (You
can import the text from pr17_5.txt.)
When-Button-Pressed on CONTROL.Exit_Button:
SET_ALERT_PROPERTY('Question_Alert',

ALERT_MESSAGE_TEXT,
'Do you really want to leave the form?');

IF SHOW_ALERT('Question_Alert') = ALERT_BUTTON1 THEN
EXIT_FORM;

END IF;

6. Save and compile the form. Click Run Form to run your form and test the changes.
No formal solution.

Oracle Forms Developer 10g: Build Internet Applications A-48

Practice 18 Solutions
1. In the ORDGXX form, write a trigger that populates the Customer_Name and the

Sales_Rep_Name for every row fetched by a query on the ORDERS block. You can
import the text from pr18_1.txt.
Post-Query on ORDERS block:
BEGIN

IF :orders.customer_id IS NOT NULL THEN
SELECT cust_first_name || ' ' || cust_last_name
INTO :orders.customer_name
FROM customers
WHERE customer_id = :orders.customer_id;

END IF;
IF :orders.sales_rep_id IS NOT NULL THEN

SELECT first_name || ' ' || last_name
INTO :orders.sales_rep_name
FROM employees
WHERE employee_id = :orders.sales_rep_id;

END IF;
END;

2. Write a trigger that populates the Description for every row fetched by a query on
the ORDER_ITEMS block. You can import the text from pr18_2.txt.
Post-Query on ORDER_ITEMS block:
BEGIN

IF :order_items.product_id IS NOT NULL THEN
SELECT translate(product_name using char_cs)
INTO :order_items.description
FROM products
WHERE product_id = :order_items.product_id;

END IF;
END;

3. Change the When-Button-Pressed trigger on the Stock_Button in the CONTROL
block so that users will be able to execute a second query on the INVENTORIES
block that is not restricted to the current Product_ID in the ORDER_ITEMS block.
You can import the text from pr18_3.txt.
When-Button-Pressed on Stock_Button:
SET_BLOCK_PROPERTY('INVENTORIES',ONETIME_WHERE,

'product_id='||:ORDER_ITEMS.product_id);
GO_BLOCK('INVENTORIES');
EXECUTE_QUERY;

Oracle Forms Developer 10g: Build Internet Applications A-49

Practice 18 Solutions (continued)
4. Ensure that the Exit_Button has no effect in Enter-Query mode.

Set Fire in Enter-Query Mode property to No for the
When-Button-Pressed trigger.

5. Click Run Form to run your form and test the changes.
No formal solution.

6. Open the CUSTGXX form module. Adjust the default query interface. Add a check
box called CONTROL. Case_Sensitive to the form so that the user can specify
whether or not a query for a customer name should be case sensitive. Place the
check box on the Name page of the TAB_CUSTOMER canvas. You can import the
pr18_6.txt file into the
When-Checkbox-Changed trigger. Set the initial value property to Y, and the
Checked/Unchecked properties to Y and N.
Set the Mouse Navigate property to No.
Open the Layout Editor and check that the canvas is TAB_CUSTOMER and
the block is CONTROL. Click the Name tab.
Using the Checkbox tool, place a check box on the canvas.
Open the Property Palette for the new check box. Set the Name to
CASE_SENSITIVE, the Initial Value to Y, Value when Checked to Y, Value
when Unchecked to N, and Mouse Navigate to No. Set the Label to: Perform
case sensitive query on name?
In the Layout Editor, resize the check box so that the label fully displays.
When-Checkbox-Changed trigger on the CONTROL. Case_Sensitive item
(checkbox):
IF NVL(:CONTROL.case_sensitive, 'Y') = 'Y' THEN

SET_ITEM_PROPERTY('CUSTOMERS.cust_first_name',
CASE_INSENSITIVE_QUERY, PROPERTY_FALSE);

SET_ITEM_PROPERTY('CUSTOMERS.cust_last_name',
CASE_INSENSITIVE_QUERY, PROPERTY_FALSE);

ELSE
SET_ITEM_PROPERTY('CUSTOMERS.cust_first_name',

CASE_INSENSITIVE_QUERY, PROPERTY_TRUE);
SET_ITEM_PROPERTY('CUSTOMERS.cust_last_name',

CASE_INSENSITIVE_QUERY, PROPERTY_TRUE);
END IF;

Oracle Forms Developer 10g: Build Internet Applications A-50

Practice 18 Solutions (continued)
7. Add a check box called CONTROL. Exact_Match to the form so that the user can

specify whether or not a query condition for a customer name should exactly match
the table value. (If a nonexact match is allowed, the search value can be part of the
table value.) Set the label to: Exact match on query?
Set the initial value property to Y, and the Checked/Unchecked properties to Y and
N. Set the Mouse Navigate property to No. You can import the pr18_7.txt file
into the Pre-Query Trigger.
Create the check box as in 18-6 and set its properties.
Pre-Query trigger on the CUSTOMERS block:
IF NVL(:CONTROL.exact_match, 'Y') = 'N' THEN

IF :customers.cust_first_name IS NOT NULL THEN
:CUSTOMERS.cust_first_name := '%' ||
:CUSTOMERS.cust_first_name || '%';

END IF;
IF :customers.cust_last_name IS NOT NULL THEN

:CUSTOMERS.cust_last_name := '%' ||
:CUSTOMERS.cust_last_name || '%';

END IF;
END IF;

8. Ensure that the When-Radio-Changed trigger for the Credit_Limit item does not fire
when in Enter-Query mode.
Open the Property Palette for the When-Radio-Changed trigger on the
Credit_Limit item. Set Fire in Enter-Query Mode property to No

9. Click Run Form to run your form and test the changes.
No formal solution.

Oracle Forms Developer 10g: Build Internet Applications A-51

Practice 19 Solutions
1. In the CUSTGXX form, cause the Account_Mgr_Lov to be displayed whenever the

user enters an Account_Mgr_Id that does not exist in the database.
Set the Validate from List property to Yes for the Account_Mgr_Id item in the
CUSTOMERS block.

2. Save and compile the form. Click Run Form to run your form and test the changes.
No formal solution.

3. In the ORDGXX form, write a validation trigger to check that if the Order_Mode is
online, the Order_Status indicates a CREDIT order (values between 4 and 10). You
can import the text from pr19_3.txt.
When-Validate-Record on ORDERS block (shows error if an online order is
not a credit order):
IF :ORDERS.order_mode = 'online' and

:ORDERS.order_status not between 4 and 10 THEN
MESSAGE('Online orders must be CREDIT orders');
RAISE form_trigger_failure;

END IF;

4. In the ORDGXX form, create a trigger to write the correct values to the
Customer_Name, Sales_Rep_Name, and Sales_Rep_Id items whenever validation
occurs on Customer_Id. Fail the trigger if the data is not found. You can import text
from pr19_4a.txt and pr19_4b.txt.
When-Validate-Item on ORDERS.Customer_Id:
SELECT cust_first_name || ' ' || cust_last_name
INTO :orders.customer_name
FROM customers
WHERE customer_id = :orders.customer_id;
EXCEPTION

WHEN NO_DATA_FOUND THEN
MESSAGE('Invalid customer id');
RAISE form_trigger_failure;

When-Validate-Item on ORDERS.Sales_Rep_Id:
SELECT first_name || ' ' || last_name

INTO :orders.sales_rep_name
FROM employees
WHERE employee_id = :orders.sales_rep_id
AND job_id = 'SA_REP';

EXCEPTION
WHEN NO_DATA_FOUND THEN

MESSAGE('Invalid sales rep id');
RAISE form_trigger_failure;

Oracle Forms Developer 10g: Build Internet Applications A-52

Practice 19 Solutions (continued)
5. Create another validation trigger on ORDER_ITEMS.Product_Id to derive the name

of the product and suggested wholesale price, and write them to the Description item
and the Price item. Fail the trigger and display a message if the product is not found.
You can import the text from pr19_5.txt.
When-Validate-Item on ORDER_ITEMS.Product_Id:
SELECT product_name, list_price
INTO :order_items.description,

:order_items.unit_price
FROM products
WHERE product_id = :order_items.product_id;
EXCEPTION

WHEN NO_DATA_FOUND THEN
MESSAGE('Invalid product id');
RAISE form_trigger_failure;

6. Perform client-side validation on the ORDER_ITEMS.Quantity item using a
Pluggable Java Component to filter the keystrokes and allow only numeric values.
The full path to the PJC class is oracle.forms.demos.KeyFilter (this is
case sensitive), to be used as the Implementation Class for the item. You will set the
filter for the item in the next practice, so the validation is not yet functional. Open
the Property Palette for the :ORDER_ITEMS.Quantity item. Set the
Implementation Class property to: oracle.forms.demos.KeyFilter

7. Save and compile the form. Click Run Form to run your form and test the changes.
Do not test the validation on the Quantity item because it will not function until after
you set the filter on the item in Practice 20.
No formal solution.

Oracle Forms Developer 10g: Build Internet Applications A-53

Practice 20 Solutions
1. When the ORDGXX form first opens, set a filter on the ORDER_ITEMS. Quantity

Pluggable Java Component, and execute a query . You can import the code for the
trigger from pr20_1.txt.
When-New-Form-Instance at form level:
SET_CUSTOM_PROPERTY('order_items.quantity',1,

'FILTER_TYPE','NUMERIC');
GO_BLOCK('ORDERS');
EXECUTE_QUERY;

2 Write a trigger that fires as the cursor arrives in each record of the ORDER_ITEMS
block to populate the Product_Image item with a picture of the product, if one exists.
First create a procedure called get_image to populate the image, then call that
procedure from the appropriate trigger. You can import the code for the procedure
from pr20_2.txt.
Get_Image procedure
PROCEDURE get_image IS

filename VARCHAR2(250);
BEGIN

filename := to_char(:order_items.product_id)
|| '.jpg';

READ_IMAGE_FILE(filename,'jpeg',
'control.product_image');

END;
When-New-Record-Instance on ORDER_ITEMS block:
get_image;

3. Define the same trigger type and code on the ORDERS block.
When-New-Record-Instance on ORDERS block: get_image;

4. Is there another trigger where you might also want to place this code?
When-Validate-Item on ORDER_ITEMS.Product_Id is a candidate for the
code.

5. Save and compile the form. Click Run Form to run your form and test the changes.
No formal solution.

Oracle Forms Developer 10g: Build Internet Applications A-54

Practice 20 Solutions (continued)
6. Notice that you receive an error if the image file does not exist. Code a trigger to

gracefully handle the error by populating the image item with a default image called
blank.jpg. You can import the code from pr20_6.txt.
On-Error trigger on ORDGXX form:
IF ERROR_CODE = 47109 THEN

READ_IMAGE_FILE('blank.jpg','jpeg',
'control.product_image');

ELSE
MESSAGE(ERROR_TYPE || '-' || TO_CHAR(ERROR_CODE) ||

': ' || ERROR_TEXT);
END IF;

7. The image item has a lot of blank space when the image does not take up the entire
area. To make it look better, set its Background Color of both the
CONTROL.Product_Image item and the CV_ORDER canvas to the same value,
such as r0g75b75. Set the Bevel for the Product_Image item to None.
With both the CONTROL.Product_Image item and the CV_ORDER canvas
selected in the Object Navigator, open the Property Palette. Set the Background
Color for both objects to r0g75b75. With just the Product_Image item selected,
open the Property Palette and set Bevel to None.

8. Click Run Form to run your form again and test the changes.
No formal solution.

9. In the CUSTGXX form, register the ColorPicker bean (making its methods available
to Forms) when the form first opens, and also execute a query on the CUSTOMERS
block. You can import the code from pr20_9.txt.
When-New-Form-Instance trigger on the CUSTGXX form:

FBean.Register_Bean('control.colorpicker',1,
'oracle.forms.demos.beans.ColorPicker');

GO_BLOCK(‘customers’);
EXECUTE_QUERY;

10. Save, compile, and click Run Form to run your form and test the Color button. You
should be able to invoke the ColorPicker bean from the Color button, now that the
bean has been registered at form startup.
No formal solution.

Oracle Forms Developer 10g: Build Internet Applications A-55

Practice 21 Solutions
1. In the ORDGXX form, write a transactional trigger on the ORDERS block that

populates ORDERS.Order_Id with the next value from the ORDERS_SEQ
sequence. You can import the code from pr21_1.txt.
Pre-Insert on ORDERS block:
SELECT orders_seq.NEXTVAL INTO :orders.order_id

FROM sys.dual;
EXCEPTION

WHEN OTHERS THEN
MESSAGE('Unable to assign order id');
RAISE form_trigger_failure;

2. In the ORDERS block, set the Enabled property for the Order_ID item to No. Set the
Required property for the Order_ID item to No. To ensure that the data remains
visible, set the Background Property to gray.
In the Property Palette, set the Enabled and Required properties to No for
ORDERS.Order_Id. Set Background Color to gray.

3. Save, compile, and run the form to test.
No formal solution.

4. Create a similar trigger on the ORDER_ITEMS block that assigns the Line_Item_Id
when a new record is saved. Set the properties for the item as you did on
ORDERS.ORDER_ID. You can import the code from pr21_4.txt.
Pre-Insert on ORDER_ITEMS block:
SELECT NVL(MAX(line_item_id),0) + 1
INTO :ORDER_ITEMS.line_item_id

FROM ORDER_ITEMS
WHERE :ORDER_ITEMS.order_id = order_id;

EXCEPTION
WHEN OTHERS THEN

MESSAGE('Unable to assign line item id');
RAISE form_trigger_failure;

Set the Required and Enabled properties to No and the Background Color to
gray for ORDER_ITEMS.Line_Item_Id.

5. Save and compile the form. Click Run Form to run your form and test.
No formal solution.

Instructor Note
Solution 21-4 is not the safest way. The better solution is to keep the total number of rows
in another table that you can lock, but this solution is too advanced at this stage.

Oracle Forms Developer 10g: Build Internet Applications A-56

Practice 21 Solutions (continued)
6. Open the CUSTGXX form module. Create three global variables called

GLOBAL.INSERT, GLOBAL.UPDATE, and GLOBAL.DELETE. These variables
indicate respectively the number of inserts, updates, and deletes. You need to write
Post-Insert, Post-Update, and Post-Delete triggers to initialize and increment the
value of each global variable.
Post-Insert at form level:

DEFAULT_VALUE('0', 'GLOBAL.insert');
:GLOBAL.insert := TO_CHAR(TO_NUMBER(:GLOBAL.insert) + 1);

Post-Update at form level:

DEFAULT_VALUE('0', 'GLOBAL.update');
:GLOBAL.update := TO_CHAR(TO_NUMBER(:GLOBAL.update) + 1);

Post-Delete at form level:

DEFAULT_VALUE('0', 'GLOBAL.delete');
:GLOBAL.delete := TO_CHAR(TO_NUMBER(:GLOBAL.delete) + 1);

7. Create a procedure called HANDLE_MESSAGE. Import the pr21_7a.txt file.
This procedure receives two arguments. The first one is a message number, and the
second is a Boolean error indicator. This procedure uses the three global variables to
display a customized commit message and then erases the global variables.
PROCEDURE handle_message(message_number IN NUMBER,
message_line IN VARCHAR2) IS

BEGIN
IF message_number IN (40400, 40406, 40407) THEN

DEFAULT_VALUE('0', 'GLOBAL.insert');
DEFAULT_VALUE('0', 'GLOBAL.update');
DEFAULT_VALUE('0', 'GLOBAL.delete');
MESSAGE('Save Ok: ' ||
:GLOBAL.insert || ' records inserted, ' ||
:GLOBAL.update || ' records updated, ' ||
:GLOBAL.delete || ' records deleted !!!');
ERASE('GLOBAL.insert');
ERASE('GLOBAL.update');
ERASE('GLOBAL.delete');

ELSE
MESSAGE(message_line);

END IF;
END ;

Oracle Forms Developer 10g: Build Internet Applications A-57

Practice 21 Solutions (continued)
Call the procedure when an error occurs. Pass the error code and an error message to
be displayed. You can import the code from pr21_7b.txt.
Call the procedure when a message occurs. Pass the message code and a message to
be displayed. You can import the code from pr21_7c.txt.
On-Error at form level:
handle_message(error_code, 'ERROR: ' || ERROR_TYPE ||
'-' || TO_CHAR(ERROR_CODE) || ': '|| ERROR_TEXT);
On-Message at form level:
handle_message(message_code, MESSAGE_TYPE || '-' ||
TO_CHAR(MESSAGE_CODE) || ': ' || MESSAGE_TEXT);

8. Write an On-Logon trigger to control the number of connection tries. Use the
LOGON_SCREEN built-in to simulate the default login screen and LOGON to
connect to the database. You can import the pr21_8.txt file.
On-Logon at form level:
DECLARE

connected BOOLEAN := FALSE;
tries NUMBER := 3;
un VARCHAR2(30);
pw VARCHAR2(30);
cs VARCHAR2(30);

BEGIN
SET_APPLICATION_PROPERTY(CURSOR_STYLE, 'DEFAULT');
WHILE connected = FALSE and tries > 0 LOOP

LOGON_SCREEN;
un := GET_APPLICATION_PROPERTY(USERNAME);
pw := GET_APPLICATION_PROPERTY(PASSWORD);
cs := GET_APPLICATION_PROPERTY

(CONNECT_STRING);
LOGON(un, pw || '@' || cs, FALSE);
IF FORM_SUCCESS THEN

connected := TRUE ;
END IF;
tries := tries - 1;

END LOOP;
IF NOT CONNECTED THEN

MESSAGE('Too many tries!');
RAISE FORM_TRIGGER_FAILURE;

END IF;
END;

9. Click Run Form to run your form and test the changes.
No formal solution.

Oracle Forms Developer 10g: Build Internet Applications A-58

Practice 22 Solutions
1. In the ORDGXX form, alter the code called by the triggers that populate the

Product_Image item when the image item is displayed.
Add a test in the code to check Product_Image. Perform the trigger actions only if
the image is currently displayed. Use the GET_ITEM_PROPERTY built-in function.
The code is contained in pr22_1.txt.
The get_image procedure is called by When-New-Record-Instance on
ORDERS and ORDER_ITEMS blocks. Modify the procedure under the
Program Units node as follows (note the change in the call to
READ_IMAGE_FILE denoted by italicized plain text):
PROCEDURE get_image IS

product_image_id ITEM :=
FIND_ITEM('control.product_image');

image_button_id ITEM:=
FIND_ITEM('CONTROL.image_button');

filename VARCHAR2(250);
BEGIN

IF GET_ITEM_PROPERTY(product_image_id,VISIBLE)='TRUE'
THEN

filename := to_char(:order_items.product_id) ||'.jpg';
READ_IMAGE_FILE(filename,'jpeg',product_image_id);

END IF;
END;

Oracle Forms Developer 10g: Build Internet Applications A-59

Practice 22 Solutions (continued)
2. Alter the When-Button-Pressed trigger on the Image_Button so that object IDs are

used.
Use a FIND_object function to obtain the IDs of each item referenced by the trigger.
Declare variables for these IDs, and use them in each item reference in the trigger.
The code is contained in pr22_2.txt.
When-Button-Pressed on CONTROL.image_button:
DECLARE

product_image_id ITEM :=
FIND_ITEM('CONTROL.product_image');

image_desc_id ITEM :=
FIND_ITEM('ORDER_ITEMS.image_description');

image_button_id ITEM := FIND_ITEM('CONTROL.image_button');
BEGIN

IF GET_ITEM_PROPERTY(product_image_id, VISIBLE)='TRUE'
THEN

SET_ITEM_PROPERTY(product_image_id, VISIBLE,
PROPERTY_FALSE);

SET_ITEM_PROPERTY(image_desc_id,VISIBLE,
PROPERTY_FALSE);

SET_ITEM_PROPERTY(image_button_id,LABEL,'Image On');
ELSE

SET_ITEM_PROPERTY(product_image_id, VISIBLE,
PROPERTY_TRUE);

SET_ITEM_PROPERTY(image_desc_id,VISIBLE,PROPERTY_TRUE);
SET_ITEM_PROPERTY(image_button_id,LABEL,'Image Off');

END IF;
END;

Oracle Forms Developer 10g: Build Internet Applications A-60

Practice 22 Solutions (continued)
3. Create a button called Blocks_Button in the CONTROL block and place it on the

Toolbar canvas. Label the button Show Blocks. Set its navigation and color
properties the same as the other toolbar buttons.
The code for the button should print a message showing what block the user is
currently in. It should keep track of the block and item where the cursor was located
when the trigger was invoked (:SYSTEM.CURSOR_BLOCK and
:SYSTEM.CURSOR_ITEM). It should then loop through the remaining navigable
blocks of the form and print a message giving the names
(:SYSTEM.CURRENT_BLOCK) of all the navigable blocks in the form. Finally, it
should navigate back to the block and item where the cursor was located when the
trigger began to fire. Be sure to set the Mouse Navigate property of the button to No.
You may import the code for the trigger from pr22_3.txt.
Create a button on the TOOLBAR canvas and set its properties:

Name: Blocks_Button Label: Show Blocks
Mouse Navigate: No Keyboard Navigable: No
Height: 16 Background Color: white

When-Button-Pressed on Blocks_Button:
DECLARE

vc_startblk VARCHAR2(30) := :SYSTEM.cursor_block;
vc_startitm VARCHAR2(30) := :SYSTEM.cursor_item;
vc_otherblks VARCHAR2(80) := NULL;

BEGIN
MESSAGE('You are in the ' || vc_startblk || ' block.');
NEXT_BLOCK;
WHILE :SYSTEM.current_block != vc_startblk LOOP

vc_otherblks := vc_otherblks || ' ' ||
:system.current_block;

NEXT_BLOCK;
END LOOP;
message('Other block(s) in the form:‘ || vc_otherblks);
GO_BLOCK(vc_startblk);
GO_ITEM(vc_startitm);

END;

4. Save, compile, and run the form to test these features.
No formal solution.

5. The trigger code above is generic, so it will work with any form. Open the
CUSTGXX form and define a similar Blocks_Button, labeled Show Blocks, in the
CONTROL block, and place it just under the Color button on the CV_CUSTOMER
canvas. Drag the When-Button-Pressed trigger you created for the Blocks_Button of
the ORDGXX form to the Blocks_Button of the CUSTGXX form. Run the
CUSTGXX form to test the button.
No formal solution. The code should print messages about the blocks in the
CUSTOMERS form, with no code changes.

Oracle Forms Developer 10g: Build Internet Applications A-61

Practice 23 Solutions
1. In the ORDGXX form, create an object group, called Stock_Objects, consisting of

the INVENTORIES block, CV_INVENTORY canvas, and WIN_INVENTORY
window.
Select the Object Groups node and click the Create icon. Rename the group to
STOCK_OBJECTS.
Drag the INVENTORIES block, CV_INVENTORY canvas, and
WIN_INVENTORY window under the Object Group Children entry.

2. Save the form.
No formal solution.

3. Create a new form module and copy the Stock_Objects object group into it.
Select the Forms node and click the Create icon.
Drag Stock_Objects from the ORDERS form to your new module under the
Object Groups node. Select the Copy option.

4. In the new form module, create a property class called ClassA. Include the following
properties and settings:

Font Name: Arial
Format Mask: 99,999

Font Size: 8
Justification: Right

Delete Allowed: No
Background Color: DarkRed
Foreground Color: Gray

Select the Property Classes node and click the Create icon.
In the Property Palette for the property class, set the Name to CLASSA.
Add the properties listed by clicking the Add Property icon and selecting from
the list displayed.
Set the properties to the values listed above.

5. Apply ClassA to CV_INVENTORY and the Quantity_on_Hand item.
In the Property Palette for each of the objects, select the Subclass Information
property, and click More. In the Subclass Information dialog box, select the
Property Class radio option and set the Property Class Name list item to
ClassA.

6. Save the form module as STOCKXX.fmb, compile, and run the form and note the
error.
You should receive the following error:
FRM-30047: Cannot resolve item reference ORDER_ITEMS.PRODUCT_ID.

Oracle Forms Developer 10g: Build Internet Applications A-62

Practice 23 Solutions (continued)
7. Correct the error. Save, compile, and run the form again.

Make Copy Value from Item a variant property. In the Property Palette for
PRODUCT_ID, delete ORDER_ITEMS.PRODUCT_ID from the Copy Value
from Item Property.
The form should run without error and show the objects and properties from
the Object Group and the Property Class.

8. Create an object library and name it summit_olb.
Create two tabs in the object library called Personal and Corporate.
Add the CONTROL block, the Toolbar, and the Question_Alert from the Orders form
to the Personal tab of the object library.
Save the object library as summit.olb.
Select the Object Libraries node in the Object Navigator, and click Create.
Rename this object library SUMMIT_OLB.
Select the Library Tabs node in the Object Navigator.
Click Create twice to create two tabs. Set the Name and Label properties for
the first tab as Personal and for the second tab as Corporate.
Open the object library by double-clicking its icon in the Object Navigator.
From the ORDGXX form, drag the CONTROL block, the Toolbar, and the
Question_Alert to the Personal tab of the object library.
Save the Summit object library.

9. Create a new form, and create a data block based on the DEPARTMENTS table,
including all columns. Use the Form layout style.
Drag the Toolbar canvas, CONTROL block, and Question_Alert from the object
library into the new form and select to subclass the objects. For proper behavior, the
DEPARTMENTS block must precede the CONTROL block in the Object Navigator.
Some items are not applicable to this form. Set the Canvas property for the
following items to NULL: Image_Button, Stock_Button, Show_Help_Button,
Product_Lov_Button, Hide_Help_Button, Product_Image, Total.
The code of some of the triggers does not apply to this form. Set the code for the
When-Button-Pressed triggers for the above buttons to: NULL;
For the Total item, set the Calculation Mode and Summary Function properties to
None, and set the Summarized Block property to Null.
Use Toolbar as the Horizontal Toolbar canvas for this form.
Set the Window property to WINDOW1 for the Toolbar canvas.
Set the Horizontal Toolbar Canvas property to TOOLBAR for the window.
Follow the practice steps; for a solution see the DEPTwk23.fmb file in the
Solutions directory.

10. Save this form as DEPTGXX, compile, and run the form to test it.
No formal solution.
Notice the color of the Exit button is white; you will change this shortly in the
Object Library to see how it affects subclassed objects.

Oracle Forms Developer 10g: Build Internet Applications A-63

Practice 23 Solutions (continued)
11. Try to delete items on the Null canvas. What happens and why?

You cannot delete the objects because the toolbar and contents are subclassed
from another object. If you had copied the objects, you would have been able to
delete items, but any changes made to the objects in the Object Library would
not be reflected in the form.

12. Change the Exit button of the Object Library’s CONTROL block to have a gray
background. Run the Departments form again to see that the Exit button is now gray.
Create a new form module and drag the CONTROL block into it from the
Object Library. Use the Copy option.
In the form, change the Background Color of the Exit button to gray.
Drag the CONTROL block back into the Object Library. Answer Yes to the
Alert: “An object with this name already exists. Replace it with the new
object?”
You can delete the new form module, because you will not be using it. You
created it only to use in editing the Object Library.
Run the Departments form again. You should see the Exit button is now gray,
rather than white as it was before.

13. Create two sample buttons, one for wide buttons and one for medium buttons, by
means of width.
Create a sample date field. Set the width and the format mask to your preferred
standard.
Drag these items to the Corporate tab of your object library.
Mark these items as SmartClasses.
Create a new form and a new data block in the form. Apply these SmartClasses in
your form. Place the Toolbar canvas in the new form.
No formal solution. See Employeeswk23.fmb in the Solutions directory
for an example.

14. In the Orders form, note the similarity of the code in the Post-Query trigger of the
Orders block and in the When-Validate-Item triggers of the Orders.Customer_Id and
Orders.Sales_Rep_Id items. Move the similar code to PL/SQL program units and
call the program units from the triggers, then run the form to test the changes..
In the PL/SQL Editor, open the When-Validate-Item trigger for the
Orders.Customer_Id item. Copy the code.
In the Object Navigator, select the Program Units node and click Create. Enter
the procedure name GET_CUSTOMER_NAME and click OK. Paste the copied
code into the program unit and click Compile. The code should be as follows:
PROCEDURE GET_CUSTOMER_NAME IS
BEGIN

SELECT cust_first_name || ' ' || cust_last_name
INTO :orders.customer_name
FROM customers

WHERE customer_id = :orders.customer_id;

Oracle Forms Developer 10g: Build Internet Applications A-64

Practice 23 Solutions (continued)
EXCEPTION

WHEN NO_DATA_FOUND THEN
MESSAGE('Invalid customer id');
RAISE form_trigger_failure;

END;

In the PL/SQL Editor, open the When-Validate-Item trigger for the
Orders.Sales_Rep_Id item. Copy the code.

In the Object Navigator, select the Program Units node and click Create. Enter
the procedure name GET_SALES_REP_NAME and click OK. Paste the copied
code into the program unit and click Compile. The code should be as follows:
PROCEDURE GET_SALES_REP_NAME IS
BEGIN
SELECT first_name || ' ' || last_name

INTO :orders.sales_rep_name
FROM employees
WHERE employee_id = :orders.sales_rep_id

AND job_id = 'SA_REP';
EXCEPTION
WHEN NO_DATA_FOUND THEN

MESSAGE('Invalid sales rep id');
RAISE form_trigger_failure;

END;

In the When-Validate-Item trigger for Orders.Customer_Id item, replace the
existing code with:
GET_CUSTOMER_NAME;

In the When-Validate-Item trigger for Orders.Sales_Rep_Id item, replace the
existing code with:
GET_SALES_REP_NAME;

In the Post-Query trigger of the Orders block, replace the existing code with:
GET_CUSTOMER_NAME;
GET_SALES_REP_NAME;

Run the form to test that the Customer Name and Sales Rep Id items are
populated correctly when the form first displays and when you make changes to
the Customer Id or the Sales Rep Id values.

Oracle Forms Developer 10g: Build Internet Applications A-65

Practice 24
1. In the ORDGXX form, integrate the WebUtil objects and library.

Open the Ordgxx.fmb form. Also open the webutil.olb object library
from the e:\webutil_102\forms directory. See the previous lesson for the
steps to attach a PL/SQL library to a form.
In the Object Navigator, double-click the icon for the WEBUTIL object library
to open it. Select the WEBUTIL object group from the object library and drag
it to the Object Groups node of the Orders form.
Choose to Subclass, rather than Copy, the objects.
In the Object Navigator, drag the WEBUTIL block to the last position under
the Blocks node.
Attach the WebUtil library (.pll file) from the d:\webutil_102\forms
directory, choosing to remove the hard-coded path.

2. Save the form.
No formal solution.

3. Change the Exit button in the Control block. Rename it: New_Image_Btn. Relabel
it: New Image. Delete the current code for the button and write code to enable the
user to choose a new JPEG image to display in the Product_Image item.
Hint: You will need to use CLIENT_GET_FILENAME and
CLIENT_IMAGE.READ_IMAGE_FILE. You may import the code from
pr24_3.txt.
Open the Property Palette for the Control.Exit_Button button. Change its name
to NEW_IMAGE_BTN and its Label to New Image.
Open the When-Button-Pressed trigger for the button and replace its code with
the following code imported from pr24_3.txt:
DECLARE

v_file VARCHAR2(250):=
client_get_file_name('','','JPEG Files|*.jpg|',

'Select a product image',open_file,TRUE);
it_image_id ITEM :=
FIND_ITEM('control.product_image');

BEGIN
client_image.read_image_file(v_file,'',it_image_id);

END;
4. Set the Forms Builder run-time preferences to use a WebUtil configuration that has

been set up for you, ?config=webutil, then run the form to test it. Try to load
one of the .jpg images in the lab directory.
Note: Because the image item is not a base table item, the new image is not saved
when the form is exited.
In Forms Builder, select Edit > Preferences. Click the Runtime tab. Click Reset
to Default. Append to the Application Server URL: ?config=webutil

Oracle Forms Developer 10g: Build Internet Applications A-66

Practice 24 (continued)
Click OK. Click Run.
The first time you run a form with WebUtil configured, you must respond to
the JInitiator Security Warning. Choose "Grant this session" if you want to see
the warning again the next time you run a form, or choose "Grant always" to
eliminate the warning the next time.
(If you receive an error about the Forms session being aborted, be sure to drag
the WEBUTIL block to the last position under the Blocks node in the Object
Navigator and then run the form again.)
When running the form, click New Image. In the File dialog, navigate to the lab
directory and select one of the .jpg files in that directory. Click Open. The
new image should be displayed. (If not, you may have chosen the same image
that was displayed previously, so click New Image again and choose a different
image.)

4. If you have time, experiment with some of the other client-server parity APIs by
adding additional code to the New_Image_Btn button. For example, you could:

a. Display a message on the status line that contains the value of the
ORACLE_HOME environment variable. You can import the code from
pr24_4a.txt.
To the end of the trigger, add the code:

DECLARE
v_message VARCHAR2(30);

BEGIN
CLIENT_TOOL_ENV.GETVAR('ORACLE_HOME',v_message);
MESSAGE('ORACLE_HOME='||v_message);

END;
b. Create a file called hello.txt in the c:\temp directory that contains the

text “Hello World” and invoke Notepad to display this file. You can import the
code from pr24_4b.txt.
DECLARE
v_dir VARCHAR2(250) := 'c:\temp';
ft_tempfile CLIENT_TEXT_IO.FILE_TYPE;

begin
ft_tempfile := CLIENT_TEXT_IO.FOPEN(v_dir ||
'\hello.txt','w');

CLIENT_TEXT_IO.PUT_LINE(ft_tempfile,'Hello
World');

CLIENT_TEXT_IO.FCLOSE(ft_tempfile);
CLIENT_HOST('cmd /c notepad c:\temp\hello.txt');

END;

If desired, you can reset the preferences to delete the configuration
parameter: Select Edit > Preferences. Click the Runtime tab. Click Reset
to Default. However, this step is not necessary, because the webutil
configuration parameter will not affect the remaining practices.

Oracle Forms Developer 10g: Build Internet Applications A-67

Practice 25 Solutions
1. In the ORDGXX form, create a Pre-Form trigger to ensure that a global variable

called Customer_Id exists.
Pre-Form at form level:
DEFAULT_VALUE('','GLOBAL.customer_id');

2. Add a trigger to ensure that queries on the ORDERS block are restricted by the
value of GLOBAL.Customer_Id
Pre-Query on ORDERS block:
:ORDERS.customer_id := :GLOBAL.customer_id;

3. Save, compile, and run the form to test that it works as a stand-alone.
No formal solution.

4. In the CUSTGXX form, create a CONTROL block button called Orders_Button and
set appropriate properties. Place in on the CV_CUSTOMER canvas below the
Customer_Id item.
Create a button.
Set the Name to ORDERS_BUTTON.
Set Label to Orders.
Set Keyboard Navigable and Mouse Navigate to No.
Set Height to 16.

5. Define a trigger for CONTROL.Orders_Button that initializes
GLOBAL.Customer_Id with the current customer’s ID, and then opens the
ORDGXX form, passing control to it.
When-Button-Pressed on CONTROL.Orders_Button:
:GLOBAL.customer_id := :CUSTOMERS.customer_id;
OPEN_FORM('ordgxx');

6. Save and compile each form. Run the CUSTGXX form and test the button to open
the Orders form.
No formal solution.

7. Change the window location of the ORDGXX form, if required.
No formal solution.

Oracle Forms Developer 10g: Build Internet Applications A-68

Practice 25 Solutions (continued)
8. Alter the Orders_Button trigger in CUSTGXX so that it does not open more than one

instance of the Orders form, but uses GO_FORM to pass control to ORDGXX if the
form is already running. Use the FIND_FORM built-in for this purpose.
When-Button-Pressed on Orders_Button:
:GLOBAL.customer_id := :CUSTOMERS.customer_id;
IF ID_NULL(FIND_FORM('ORDERS'))THEN

OPEN_FORM('ORDGXX');
ELSE

GO_FORM('ORDERS');
END IF;

Remember that you need to use the module name in the FIND_FORM and
GO_FORM built-ins, and the filename in the OPEN_FORM built-in.

9. If you navigate to a second customer record and click Orders, the Orders form still
displays the records for the previous customer. Write a trigger to reexecute the query
in the ORDERS form in this situation.
When-Form-Navigate trigger on ORDERS form:
IF :GLOBAL.customer_id IS NOT NULL
AND :ORDERS.customer_id != :GLOBAL.customer_id THEN

EXECUTE_QUERY;
END IF;

10. Write a When-Create-Record trigger on the ORDERS block that uses the value of
GLOBAL.Customer_Id as the default value for ORDERS.Customer_Id.
When-Create-Record on ORDERS block:
:ORDERS.customer_id := :GLOBAL.customer_id;

11. Add code to the CUSTGXX form so that GLOBAL.Customer_Id is updated when
the current Customer_Id changes.
When-Validate-Item on CUSTOMERS.Customer_Id:
:GLOBAL.customer_id := :CUSTOMERS.customer_id;

12. Save and compile the ORDGXX form. Save, compile, and run the CUSTGXX form
to test the functionality.
No formal solution.

13. If you have time, you can modify the appearance of the ORDXX form to make it
easier to read, similar to what you see in ORDERS.fmb.

Modify prompts and add boilerplate text and rectangles. With the rectangles
selected, choose Layout > Send to Back.

Copyright © 2004, Oracle. All rights reserved.

Table Descriptions

Oracle Forms Developer 10g: Build Internet Applications B-2

Summit Office Supply Database Diagram

*Unique occurrences are identified by PRODUCT_ID and WAREHOUSE_ID.
Note: What follows is not a complete list of schema objects, but only those relevant to the
Summit Office Supply application.

ORDER_ITEMS

DEPARTMENTS

PRODUCTS

INVENTORIES

ORDERS

CUSTOMERS

EMPLOYEES

PRODUCT_ID

PRODUCT_ID

*

PRODUCT_ID

PRODUCT_ID

EMPLOYEE_ID

SALES_REP_ID

ACCOUNT_MGR_ID

EMPLOYEE_ID

CUSTOMER_ID

CUSTOMER_ID

DEPARTMENT_ID

DEPARTMENT_ID

ORDER_IDORDER_ID

Oracle Forms Developer 10g: Build Internet Applications B-3

CUSTOMERS Description

SQL> desc customers
Name Null? Type
------------------ -------- -------------
CUSTOMER_ID NOT NULL NUMBER(6)
CUST_FIRST_NAME NOT NULL VARCHAR2(20)
CUST_LAST_NAME NOT NULL VARCHAR2(20)
CUST_ADDRESS CUST_ADDRESS_TYP
PHONE_NUMBERS VARCHAR2(30)
NLS_LANGUAGE VARCHAR2(3)
NLS_TERRITORY VARCHAR2(30)
CREDIT_LIMIT NUMBER(9,2)
CUST_EMAIL VARCHAR2(30)
ACCOUNT_MGR_ID NUMBER(6)

SQL> desc cust_address_typ
Name Null? Type
------------------ -------- ------------
STREET_ADDRESS VARCHAR2(40)
POSTAL_CODE VARCHAR2(10)
CITY VARCHAR2(30)
STATE_PROVINCE VARCHAR2(10)
COUNTRY_ID CHAR(2)

Related object creation statements

CREATE TYPE cust_address_typ
AS OBJECT

(street_address VARCHAR2(40)
, postal_code VARCHAR2(10)
, city VARCHAR2(30)
, state_province VARCHAR2(10)
, country_id CHAR(2)
);

CREATE TABLE customers
(customer_id NUMBER(6)
, cust_first_name VARCHAR2(20) CONSTRAINT

cust_fname_nn NOT NULL
, cust_last_name VARCHAR2(20) CONSTRAINT

cust_lname_nn NOT NULL
, cust_address cust_address_typ
, phone_numbers varchar2(30)
, nls_language VARCHAR2(3)

Oracle Forms Developer 10g: Build Internet Applications B-4

CUSTOMERS Description (continued)
, nls_territory VARCHAR2(30)
, credit_limit NUMBER(9,2)
, cust_email VARCHAR2(30)
, account_mgr_id NUMBER(6)
, CONSTRAINT customer_credit_limit_max

CHECK (credit_limit <= 5000)
, CONSTRAINT customer_id_min

CHECK (customer_id > 0)) ;

CREATE UNIQUE INDEX customers_pk
ON customers (customer_id) ;

ALTER TABLE customers
ADD (CONSTRAINT customers_pk

PRIMARY KEY (customer_id)) ;

ALTER TABLE customers
ADD (CONSTRAINT customers_account_manager_fk

FOREIGN KEY (account_mgr_id)
REFERENCES employees(employee_id)

ON DELETE SET NULL) ;

CREATE SEQUENCE customers_seq
START WITH 982
INCREMENT BY 1
NOCACHE
NOCYCLE;

Sample record (1 out of 319 customers):
CUSTOMER_ID CUST_FIRST_NAME CUST_LAST_NAME
----------- -------------------- --------------------
CUST_ADDRESS(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE,

COUNTRY_ID)
--

PHONE_NUMBERS NLS NLS_TERRITORY

CREDIT_LIMIT
------------------------------ --- -----------------------------

- ------------
CUST_EMAIL ACCOUNT_MGR_ID
------------------------------ --------------

101 Constantin Welles
CUST_ADDRESS_TYP('514 W Superior St', '46901', 'Kokomo', 'IN',

'US')
+1 317 123 4104 us AMERICA

100
Constantin.Welles@ANHINGA.COM

Oracle Forms Developer 10g: Build Internet Applications B-5

DEPARTMENTS Description
SQL> desc departments
Name Null? Type
------------------- -------- ------------
DEPARTMENT_ID NOT NULL NUMBER(4)
DEPARTMENT_NAME NOT NULL VARCHAR2(30)
MANAGER_ID NUMBER(6)
LOCATION_ID NUMBER(4)

Related object creation statements

CREATE TABLE departments
(department_id NUMBER(4)
, department_name VARCHAR2(30)
CONSTRAINT dept_name_nn NOT NULL
, manager_id NUMBER(6)
, location_id NUMBER(4)
) ;

CREATE UNIQUE INDEX dept_id_pk
ON departments (department_id) ;

ALTER TABLE departments
ADD (CONSTRAINT dept_id_pk

PRIMARY KEY (department_id)
, CONSTRAINT dept_loc_fk

FOREIGN KEY (location_id)
REFERENCES locations (location_id)

) ;

Note: The Locations table is not documented here because it is not used in the Summit
Office Supply application.
Rem Useful for any subsequent addition of rows to

departments table

Rem Starts with 280

CREATE SEQUENCE departments_seq

START WITH 280

INCREMENT BY 10

MAXVALUE 9990

NOCACHE

NOCYCLE;

Oracle Forms Developer 10g: Build Internet Applications B-6

DEPARTMENTS Description (continued)
SQL> select * from departments;

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID LOCATION_ID

------------- ----------------- ---------- -----------

10 Administration 200 1700

20 Marketing 201 1800

30 Purchasing 114 1700

40 Human Resources 203 2400

50 Shipping 121 1500

60 IT 103 1400

70 Public Relations 204 2700

80 Sales 145 2500

90 Executive 100 1700

100 Finance 108 1700

110 Accounting 205 1700

120 Treasury 1700

130 Corporate Tax 1700

140 Control And Credit 1700

150 Shareholder Services 1700

160 Benefits 1700

170 Manufacturing 1700

180 Construction 1700

190 Contracting 1700

200 Operations 1700

210 IT Support 1700

220 NOC 1700

230 IT Helpdesk 1700

240 Government Sales 1700

250 Retail Sales 1700

260 Recruiting 1700

270 Payroll 1700

27 rows selected.

Oracle Forms Developer 10g: Build Internet Applications B-7

EMPLOYEES Description
SQL> desc employees

Name Null? Type

------------------ -------- ------------

EMPLOYEE_ID NOT NULL NUMBER(6)

FIRST_NAME VARCHAR2(20)

LAST_NAME NOT NULL VARCHAR2(25)

EMAIL NOT NULL VARCHAR2(25)

PHONE_NUMBER VARCHAR2(20)

HIRE_DATE NOT NULL DATE

JOB_ID NOT NULL VARCHAR2(10)

SALARY NUMBER(8,2)

COMMISSION_PCT NUMBER(2,2)

MANAGER_ID NUMBER(6)

DEPARTMENT_ID NUMBER(4)

Related object creation statements
CREATE TABLE employees

(employee_id NUMBER(6)
, first_name VARCHAR2(20)
, last_name VARCHAR2(25)
CONSTRAINT emp_last_name_nn NOT NULL
, email VARCHAR2(25)
CONSTRAINT emp_email_nn NOT NULL
, phone_number VARCHAR2(20)
, hire_date DATE
CONSTRAINT emp_hire_date_nn NOT NULL
, job_id VARCHAR2(10)
CONSTRAINT emp_job_nn NOT NULL
, salary NUMBER(8,2)
, commission_pct NUMBER(2,2)
, manager_id NUMBER(6)
, department_id NUMBER(4)
, CONSTRAINT emp_salary_min

CHECK (salary > 0)
, CONSTRAINT emp_email_uk

UNIQUE (email)
) ;

Oracle Forms Developer 10g: Build Internet Applications B-8

EMPLOYEES Description (continued)
CREATE UNIQUE INDEX emp_emp_id_pk

ON employees (employee_id) ;

ALTER TABLE employees

ADD (CONSTRAINT emp_emp_id_pk

PRIMARY KEY (employee_id)

, CONSTRAINT emp_dept_fk

FOREIGN KEY (department_id)

REFERENCES departments

, CONSTRAINT emp_job_fk

FOREIGN KEY (job_id)

REFERENCES jobs (job_id)

, CONSTRAINT emp_manager_fk

FOREIGN KEY (manager_id)

REFERENCES employees

) ;

ALTER TABLE departments

ADD (CONSTRAINT dept_mgr_fk

FOREIGN KEY (manager_id)

REFERENCES employees (employee_id)

) ;

Rem Useful for any subsequent addition of rows to
employees table

Rem Starts with 207

CREATE SEQUENCE employees_seq

START WITH 207

INCREMENT BY 1

NOCACHE

NOCYCLE;

Sample records (2 out of 107 employees):
EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL PHONE_NUMBER HIRE_DATE

----------- ---------- --------- -------- ------------ ----------

JOB_ID SALARY COMMISSION_PCT MANAGER_ID DEPARTMENT_ID

-------- ------ -------------- ---------- -------------

100 Steven King SKING 515.123.4567 17-JUN-87
AD_PRES 24000 90

101 Neena Kochhar NKOCHHAR 515.123.4568 21-SEP-89
AD_VP 17000 100 90

Oracle Forms Developer 10g: Build Internet Applications B-9

INVENTORIES Description and Data
SQL> desc inventories
Name Null? Type
--- -------- ---------
PRODUCT_ID NOT NULL NUMBER(6)
WAREHOUSE_ID NOT NULL NUMBER(3)
QUANTITY_ON_HAND NOT NULL NUMBER(8)

Related object creation statements:
CREATE TABLE inventories

(product_id NUMBER(6)
, warehouse_id NUMBER(3) CONSTRAINT

inventory_warehouse_id_nn NOT NULL
, quantity_on_hand NUMBER(8)

CONSTRAINT inventory_qoh_nn NOT NULL
, CONSTRAINT inventory_pk PRIMARY KEY (product_id,

warehouse_id)
) ;

ALTER TABLE inventories
ADD (CONSTRAINT inventories_warehouses_fk

FOREIGN KEY (warehouse_id)
REFERENCES warehouses (warehouse_id)
ENABLE NOVALIDATE

) ;

ALTER TABLE inventories
ADD (CONSTRAINT inventories_product_id_fk

FOREIGN KEY (product_id)
REFERENCES product_information (product_id)

) ;

Sample records (11 out of 1112 inventory items):
PRODUCT_ID WAREHOUSE_ID QUANTITY_ON_HAND
---------- ------------ ----------------

1733 1 106
1734 1 106
1737 1 106
1738 1 107
1745 1 108
1748 1 108
2278 1 125
2316 1 131
2319 1 117
2322 1 118
2323 1 118

Oracle Forms Developer 10g: Build Internet Applications B-10

PRODUCTS Description and Data
SQL> desc products
Name Null? Type
---------------------- -------- ---------------
PRODUCT_ID NOT NULL NUMBER(6)
LANGUAGE_ID VARCHAR2(3)
PRODUCT_NAME NVARCHAR2(250)
CATEGORY_ID NUMBER(2)
PRODUCT_DESCRIPTION NVARCHAR2(4000)
WEIGHT_CLASS NUMBER(1)
WARRANTY_PERIOD NUMBER(5)
SUPPLIER_ID NUMBER(6)
PRODUCT_STATUS VARCHAR2(20)
LIST_PRICE NUMBER(8,2)
MIN_PRICE NUMBER(8,2)
CATALOG_URL VARCHAR2(50)

Related object creation statements:
CREATE OR REPLACE VIEW products
AS
SELECT i.product_id
, d.language_id
, CASE WHEN d.language_id IS NOT NULL

THEN d.translated_name
ELSE TRANSLATE(i.product_name USING NCHAR_CS)

END AS product_name
, i.category_id
, CASE WHEN d.language_id IS NOT NULL

THEN d.translated_description
ELSE TRANSLATE(i.product_description USING NCHAR_CS)

END AS product_description
, i.weight_class
, i.warranty_period
, i.supplier_id
, i.product_status
, i.list_price
, i.min_price
, i.catalog_url
FROM product_information i
, product_descriptions d
WHERE d.product_id (+) = i.product_id
AND d.language_id (+) = sys_context('USERENV','LANG');

Oracle Forms Developer 10g: Build Internet Applications B-11

PRODUCTS Description and Data (continued)
CREATE TABLE product_information

(product_id NUMBER(6)
, product_name VARCHAR2(50)
, product_description VARCHAR2(2000)
, category_id NUMBER(2)
, weight_class NUMBER(1)
, warranty_period NUMBER(5)
, supplier_id NUMBER(6)
, product_status VARCHAR2(20)
, list_price NUMBER(8,2)
, min_price NUMBER(8,2)
, catalog_url VARCHAR2(50)
, CONSTRAINT product_status_lov

CHECK (product_status in ('orderable',
'planned',development','obsolete'))) ;

ALTER TABLE product_information
ADD (CONSTRAINT product_information_pk PRIMARY KEY

(product_id));

CREATE TABLE product_descriptions
(product_id NUMBER(6)
, language_id VARCHAR2(3)
, translated_name NVARCHAR2(50)

CONSTRAINT translated_name_nn NOT NULL
, translated_description NVARCHAR2(2000)

CONSTRAINT translated_desc_nn NOT NULL);

CREATE UNIQUE INDEX prd_desc_pk
ON product_descriptions(product_id,language_id) ;

ALTER TABLE product_descriptions
ADD (CONSTRAINT product_descriptions_pk

PRIMARY KEY (product_id, language_id));

Sample records (4 out of 288 products; only 3 columns shown):
PRODUCT_ID PRODUCT_NAME LIST_PRICE
---------- ------------------------------ ----------

1726 LCD Monitor 11/PM 259
2359 LCD Monitor 9/PM 249
3060 Monitor 17/HR 299
2243 Monitor 17/HR/F 350

Oracle Forms Developer 10g: Build Internet Applications B-12

ORDER_ITEMS Description
SQL> desc order_items;
Name Null? Type
-------------------- -------- -----------
ORDER_ID NOT NULL NUMBER(12)
LINE_ITEM_ID NOT NULL NUMBER(3)
PRODUCT_ID NOT NULL NUMBER(6)
UNIT_PRICE NUMBER(8,2)
QUANTITY NUMBER(8)

Related object creation statements:
CREATE TABLE order_items

(order_id NUMBER(12)
, line_item_id NUMBER(3) NOT NULL
, product_id NUMBER(6) NOT NULL
, unit_price NUMBER(8,2)
, quantity NUMBER(8)
) ;

CREATE UNIQUE INDEX order_items_pk
ON order_items (order_id, line_item_id) ;

CREATE UNIQUE INDEX order_items_uk
ON order_items (order_id, product_id) ;

ALTER TABLE order_items
ADD (CONSTRAINT order_items_pk PRIMARY KEY (order_id,

line_item_id)
);

ALTER TABLE order_items
ADD (CONSTRAINT order_items_order_id_fk

FOREIGN KEY (order_id)
REFERENCES orders(order_id)
ON DELETE CASCADE enable novalidate) ;

ALTER TABLE order_items
ADD (CONSTRAINT order_items_product_id_fk

FOREIGN KEY (product_id)
REFERENCES product_information(product_id)) ;

Oracle Forms Developer 10g: Build Internet Applications B-13

ORDER_ITEMS Description (continued)
CREATE OR REPLACE TRIGGER insert_ord_line

BEFORE INSERT ON order_items
FOR EACH ROW
DECLARE

new_line number;
BEGIN

SELECT (NVL(MAX(line_item_id),0)+1) INTO new_line
FROM order_items
WHERE order_id = :new.order_id;

:new.line_item_id := new_line;
END;

Sample records (11 out of 665 order items):
ORDER_ID LINE_ITEM_ID PRODUCT_ID UNIT_PRICE QUANTITY

---------- ------------ ---------- ---------- ----------
2355 1 2289 46 200
2356 1 2264 199.1 38
2357 1 2211 3.3 140
2358 1 1781 226.6 9
2359 1 2337 270.6 1
2360 1 2058 23 29
2361 1 2289 46 180
2362 1 2289 48 200
2363 1 2264 199.1 9
2364 1 1910 14 6
2365 1 2289 48 92

Oracle Forms Developer 10g: Build Internet Applications B-14

ORDERS Description and Data
SQL> desc orders
Name Null? Type
------------------ -------- -----------
ORDER_ID NOT NULL NUMBER(12)
ORDER_DATE NOT NULL DATE
ORDER_MODE VARCHAR2(8)
CUSTOMER_ID NOT NULL NUMBER(6)
ORDER_STATUS NUMBER(2)
ORDER_TOTAL NUMBER(8,2)
SALES_REP_ID NUMBER(6)
PROMOTION_ID NUMBER(6)

Related object creation statements:

CREATE TABLE orders
(order_id NUMBER(12)
, order_date DATE

CONSTRAINT order_date_nn NOT NULL
, order_mode VARCHAR2(8)
, customer_id NUMBER(6)

CONSTRAINT order_customer_id_nn NOT NULL
, order_status NUMBER(2)
, order_total NUMBER(8,2)
, sales_rep_id NUMBER(6)
, promotion_id NUMBER(6)
, CONSTRAINT order_mode_lov

CHECK (order_mode in
('direct','online'))
, constraint order_total_min

check (order_total >= 0)) ;

CREATE UNIQUE INDEX order_pk
ON orders (order_id) ;

ALTER TABLE orders
ADD (CONSTRAINT order_pk

PRIMARY KEY (order_id));

ALTER TABLE orders
ADD (CONSTRAINT orders_sales_rep_fk

FOREIGN KEY (sales_rep_id)
REFERENCES employees(employee_id)
ON DELETE SET NULL) ;

Oracle Forms Developer 10g: Build Internet Applications B-15

ORDERS Description and Data (continued)
ALTER TABLE orders
ADD (CONSTRAINT orders_customer_id_fk

FOREIGN KEY (customer_id)
REFERENCES customers(customer_id)
ON DELETE SET NULL) ;

Sample records (12 out of 105 orders):
ORDER_ID ORDER_DAT ORDER_MO CUSTOMER_ID ORDER_STATUS ORDER_TOTAL

---------- --------- -------- ----------- ------------ ----------
SALES_REP_ID PROMOTION_ID
------------ ------------

2458 16-AUG-99 direct 101 0 78279.6
153

2397 19-NOV-99 direct 102 1 42283.2
154

2454 02-OCT-99 direct 103 1 6653.4
154

2354 14-JUL-00 direct 104 0 46257
155

2358 08-JAN-00 direct 105 2 7826
155

2381 14-MAY-00 direct 106 3 23034.6
156

2440 31-AUG-99 direct 107 3 70576.9
156

2357 08-JAN-98 direct 108 5 59872.4
158

2394 10-FEB-00 direct 109 5 21863
158

2435 02-SEP-99 direct 144 6 62303
159

2455 20-SEP-99 direct 145 7 14087.5
160

2379 16-MAY-99 direct 146 8 17848.2
161

Copyright © 2004, Oracle. All rights reserved.

Introduction to Query Builder

Oracle Forms Developer 10g: Build Internet Applications C-2

C-2 Copyright © 2004, Oracle. All rights reserved.

Query Builder Features

• Easy-to-use data access tool
• Point-and-click graphical user interface
• Distributed data access
• Powerful query building

Lesson Aim
This lesson teaches you more about using Query Builder, the tool used in the LOV wizard
to build the query on which a record group is based.

What Is Query Builder?
Easy-to-Use Data Access Tool
Query Builder is an easy-to-use data access tool. It provides a logical and intuitive means
to access information stored in networked, distributed databases for analysis and
reporting.
Point-and-Click Graphical User Interface
Query Builder enables you to become productive quickly because its graphical user
interface works like your other applications. A toolbar enables you to perform common
operations quickly.
Distributed Data Access
Query Builder represents all database objects (tables, views, and so on) as graphical
datasources, which look and work exactly the same way regardless of which database or
account the data came from.

Oracle Forms Developer 10g: Build Internet Applications C-3

Lesson Aim (continued)
What Is Query Builder? (continued)

• Performing distributed queries on complex, enterprisewide databases is no more
difficult than querying a single database.

• Locating database objects is easy because Query Builder uses a single hierarchical
directory that lists all accessible data in your account, in other accounts, and in other
databases.

Powerful Query Building
Query Builder is designed for professionals who do not have a computer programming or
database background. However, because of its powerful query features and its support of
Structured Query Language (SQL) statements, experienced database users and
programmers will find that Query Builder serves many of their needs as well.

• Graphical representation of tables and their relationships enables you to see the
structure of your data.

• You can build queries by clicking the columns that you want to retrieve from the
database. The browser generates the necessary SQL statements behind the scenes.

• You can specify exactly which rows to retrieve from the database by using
conditions, which consist of any valid SQL expression that evaluates to true or false.

• You can combine and nest conditions graphically using logical operators. You can
disable conditions temporarily for what-if analysis.

Oracle Forms Developer 10g: Build Internet Applications C-4

C-4 Copyright © 2004, Oracle. All rights reserved.

Query Builder Window

2 3

1

The Query Builder Window
The Query Builder graphical user interface consists of one window, the Query window,
where you build your queries.
The Query Builder window is comprised of:

1. The Toolbar that enables you to issue commands with a click of the mouse. You can
create conditions, add new datasources, or define new columns.

2. The Conditions panel where you specify conditions to refine your queries
3. The Datasource panel where you display and select tables and columns for a query

Oracle Forms Developer 10g: Build Internet Applications C-5

C-5 Copyright © 2004, Oracle. All rights reserved.

Building a New Query

Building a New Query
To build a query, you must select the tables you want to include and the columns you
want to retrieve.
How to Include a Table

1. Choose Select Data Tables from the toolbar.
The Select Data Tables dialog box appears.
Note: When you open Query Builder to create a new query, the Select Data Tables
dialog box is open by default.

2. Select the table name and then click Include, or simply double-click the desired
table name.
The selected table appears in the Query window.

3. Click Close to close the dialog box.
You can at any time include additional tables in the query by following these steps.
How to Delete a Table

1. Select the data source in the Query window.
2. Select Clear from the toolbar or press [Delete].

Oracle Forms Developer 10g: Build Internet Applications C-6

C-6 Copyright © 2004, Oracle. All rights reserved.

Datasource Components

Datasource
name

Object
type

Column
datatype

Recursive
relationship

Comment

Primary Key

Column name

Foreign Key

Datasource Components
Datasource name
An object that has been included in a query is referred to as a datasource. It is displayed
as a rectangular graphic in the Datasource panel of the Query window. The top part of the
rectangle contains the table name and an icon representing the object type:

Object Type Description
 Table Stores data in the database
 View Acts like a table when you execute a query, but is really a pointer to

either a subset of a table, a combination of tables, or a join of two or
more tables.

 Synonym Another name for an object. Sometimes table names can be rather
cryptic, such as emp_em_con_tbl. You can create a synonym that
simply calls this table Contracts.

 Alias Query Builder uses an alias name for a table when the table is used
more than once in a query, mostly with self-joins. You can also
rename a table.

Oracle Forms Developer 10g: Build Internet Applications C-7

Datasource Components (continued)
Columns
The body of the rectangle contains column names listed vertically. To the right of the
column name is an icon representing the datatype.
Columns also provide additional information.

• Primary keys are displayed in bold.
• Foreign keys are displayed in italics.
• Recursive relationships are indicated by a self-relationship icon.

Comments
If the table or column is commented, an icon appears to indicate the presence of a
comment. You can double-click the icon to read the comment.

Oracle Forms Developer 10g: Build Internet Applications C-8

C-8 Copyright © 2004, Oracle. All rights reserved.

Refining a Query

Refining a Query
Adding Columns to a Query
You can add a column to a query either by selecting the check box to the left of the
column name, or by double-clicking the column name. To include all columns from any
single table, double-click the table heading.
Removing Columns from a Query
You can remove columns from a query either by clearing the check box to the right of the
column name, or by double-clicking the column name. To remove all columns from any
single table, double-click the table heading.
Changing Column Position in a Query
By default, Query Builder places columns in the order in which you select them. You can
resequence them by selecting the Column Sequence tool.
The Column Sequence dialog box appears. Column names are shown in the Displayed
Columns list in order of their appearance in the query. Drag any column to a new position.
Note: You can also use the Column Sequence dialog box to add columns to or remove
them from a query.

Oracle Forms Developer 10g: Build Internet Applications C-9

C-9 Copyright © 2004, Oracle. All rights reserved.

Sorting Data

Sorting Data
By default, a query returns the data in no specific order. To sort the data, you must add an
ORDER BY clause to the query.
How to Add an ORDER BY Clause to a Query

1. Select the Sort tool. The Sort dialog box appears.
2. Select the column you want to sort from the Available Columns list.
3. Select Copy.

Query Builder adds the column to the Sorted Columns list and places an up arrow in
the list box to indicate the default sort ascending order.
Note: You can sort by more than one column. Query Builder sorts according to the
order in which columns appear in the Sorted Columns list.

4. You can change the sorting order by selecting the column name in the Sorted
Columns list and selecting the desired option button.

5. Select OK to close the dialog box.

Oracle Forms Developer 10g: Build Internet Applications C-10

C-10 Copyright © 2004, Oracle. All rights reserved.

Viewing and Saving Queries

Viewing and Saving Queries
Viewing a Query
Select the Show SQL tool to view the query text that Query Builder will create.
How to Save a Query
You can save your query as a SQL statement to the file system.

1. Select the Save tool from the toolbar.
The Save As dialog box appears.

2. Enter a filename.
Note: If you do not enter a file extension, Query Builder automatically appends the
.SQL file extension.

3. Select a destination.
4. Click OK.

Oracle Forms Developer 10g: Build Internet Applications C-11

C-11 Copyright © 2004, Oracle. All rights reserved.

Including Additional Tables

Including Additional Tables
Often, all of the data needed to create a desired report cannot be found in a single table.
With Query Builder, you can include multiple tables in a single query.
Remember that you can see the names of all the tables in your schema by choosing the
Select Data Tables tool. This brings up the Select Data Tables dialog box. You can also
use this dialog box to show only certain types of datasources as well as datasources in
other schemas and databases.
How to Find Tables in Other Schemas
If you do not find the table you are looking for in the Select Data Tables dialog box in
your own schema, you can search other schemas.

1. Open the pop-up menu to display the name of the current database and the option
databases.

2. Select the current database name.
The list box displays a list of schemas that contain tables you can access.

3. Select the name of the schema in the list and then click Open, or simply double-click
the schema name. This opens the schema and displays a list of objects in the
schema.

4. Follow the normal procedure for including objects in the Query window.

Oracle Forms Developer 10g: Build Internet Applications C-12

Including Additional Tables (continued)
How to Find Tables in Other Databases
If you do not find the table you are looking for in the Select Data Tables dialog box in
your own schema, you can search other databases.

1. Open the pop-up menu to display the name of the current database and the option
databases.

2. Select databases.
The list box displays a list of databases you can access.

3. Select the name of the database in the list and then click Open, or simply double-
click the account name.

4. Follow the normal procedure for including tables in the Query window.

Oracle Forms Developer 10g: Build Internet Applications C-13

C-13 Copyright © 2004, Oracle. All rights reserved.

Viewing Comments

How to View Comments
Sometimes, details about the kind of data stored in the database are not reflected by the
table or column names. This can often make it difficult to decide which objects to include
in your query. Query Builder features the Get Info dialog box to provide this kind of
information for tables and columns.
To open the dialog box, follow these steps:

1. In the Datasource panel, select the table or column name.
2. Select the Get Info tool.

Alternatively, you can double-click the Comment icon in each table or column in the
Datasources panel.

Oracle Forms Developer 10g: Build Internet Applications C-14

C-14 Copyright © 2004, Oracle. All rights reserved.

Including Related Tables

Relationships
To combine data from multiple tables into one query, Query Builder enables you to search
for relationships between tables and to create user-defined relationships if they do not
exist. Additionally, you can activate or deactivate relationships to suit your needs.
How to Find and Include Related Tables

1. Select the table in the Datasource panel.
2. Choose the Select Related Tables tool.

A list of tables that have relationships defined with the selected table appears.
3. Select the table name and click Include, or simply double-click the table name.

The selected table appears in the Datasource panel. Relationships between the tables
are identified by relationship lines, drawn from the primary keys in one table to the
foreign keys in another.

4. Click Close to close the dialog box.
Once you have included the table, you can retrieve its columns.
Note: When you select a foreign key column before selecting related tables, only the table
to which the foreign key refers appears in the Select Related Tables dialog box.

Oracle Forms Developer 10g: Build Internet Applications C-15

C-15 Copyright © 2004, Oracle. All rights reserved.

Creating a User-Defined Relationship

Creating a User-Defined Relationship
When you create a user-defined relationship, Query Builder draws a relationship line
connecting the related columns.
How to Create a Relationship

1. Select the Set Table Relationship tool.
The Set Relationship dialog box appears.

2. Enter the foreign key (A >) and primary key (B >) column names.
3. Type the complete table and column names (separate the table name from its column

name with a period).
4. Click OK to close the dialog box.

How to Create a Relationship (Optional Method)
1. Select the column that you want to relate (foreign key).
2. Press and hold the mouse button, and drag the cursor to the related column in the

second table (the primary key).
You are drawing a relationship line as you do so.

3. Once the target column is selected, release the mouse button to anchor the
relationship line.

Oracle Forms Developer 10g: Build Internet Applications C-16

C-16 Copyright © 2004, Oracle. All rights reserved.

Unmatched Rows

Retrieving Unmatched Rows
Query Builder enables you to choose whether to retrieve any unmatched rows when you
are using a relationship in a query. An unmatched row occurs when the relationship
connects tables where there are values on one side that have no corresponding values on
the other side.
There are three types of relationships that you can choose from:

• Display records from table A not found in table B
• Display records from table B not found in table A
• Suppress any mismatched records (default)

How to Create an Unmatched Relationship
1. Click on the relationship line that connects the tables.

Both the column names and the relationship line should be selected.
2. Select the Set Table Relationship tool from the toolbar.

The Set Relationship dialog box appears.
3. Choose one of the three relationship option buttons.
4. Click OK.

An unmatched relationship icon is placed on the relationship line next to the column
that returns unmatched rows.

Oracle Forms Developer 10g: Build Internet Applications C-17

C-17 Copyright © 2004, Oracle. All rights reserved.

Conditions

Selecting Rows with Conditions
The Conditions Panel
The Query window contains two independently scrollable panels, the Conditions panel

and the Datasource panel. The Datasource panel is where you include tables and
columns. The Conditions panel is where you apply conditions. You enter conditions
into the Condition field of the panel.

How to Add Conditions to a Query
1. Activate the Conditions field.
2. Enter the text that describes the condition in one of the following ways:

Type the conditions directly into the Condition field
Click in the columns in the Datasource panel and enter the rest of the condition
Select columns and functions, using the appropriate tools.

Note: Character and date values must be enclosed in single quotes.

Oracle Forms Developer 10g: Build Internet Applications C-18

Selecting Rows with Conditions (continued)
3. Closing and Validating the Condition: Query Builder automatically validates the

condition when you close the Condition field. You can close the Condition field in
the following ways:

Press [Return].
Click in the Conditions panel outside the Condition field.
Select Accept from the toolbar.

Note: If a column is used in a condition but it is not displayed in the results window, a
gray check mark appears to the left of the column name in the datasource in the Query
Window.
The Toolbar
The logical operators and the Accept and Cancel tools in the toolbar are active whenever
the Condition field is active. You can insert an operator from the toolbar into the
condition by clicking it.

Oracle Forms Developer 10g: Build Internet Applications C-19

C-19 Copyright © 2004, Oracle. All rights reserved.

Operators

Arithmetic
• Perform calculations on numeric and date

columns
• Examples: +, -, x, /

Logical
• Combine conditions
• Examples: AND, OR, NOT

Comparison
• Compare one expression with another
• Examples: =, <>, <, IN, IS NULL,

BETWEEN ... AND

Operators
An operator is a character or reserved word that is used to perform some operation in
Query Builder, such as the + operator, which performs addition. Query Builder uses
several types of operators.
Arithmetic Operators
Arithmetic (+, -, x, /) operators are used to perform calculations on numeric and date
columns. In handling calculations, Query Builder first evaluates any multiplication or
division, and then evaluates any addition or subtraction.
Logical Operators
Logical operators are used to combine conditions. They include:

• AND: Causes the browser to retrieve only data that meets all conditions
• OR: Causes the browser to retrieve all data that meets at least one of the conditions
• NOT: Used to make a negative condition, such as NOT NULL

Comparison Operators
Comparison operators are used to compare one expression with another, such that the
result will either be true or false. The browser returns all data for which the result
evaluates true.

Oracle Forms Developer 10g: Build Internet Applications C-20

Operators (continued)

Oracle Forms Developer 10g: Build Internet Applications C-21

C-21 Copyright © 2004, Oracle. All rights reserved.

Multiple Conditions

Entering Multiple Conditions
There is no limit to the number of conditions you can include in a browser query. Multiple
conditions are always combined using logical operators. You can add conditions to any
query either before or after execution.
How to Add Conditions
The Conditions panel always displays a blank Condition field at the bottom of the list of
conditions. Use this field to enter multiple conditions.

1. Click in the empty Condition field to activate it.
2. Enter the new condition.

Each time you add a condition, a new blank Condition field is created.
Note: Pressing [Shift]-[Return] following the entry of each condition is the fastest
way to create multiple conditions, because it moves the cursor and prompt down one
line so that you can enter another condition.

3. Press [Return] to close and validate the condition.
How to Change Logical Operators
By default, Query Builder combines multiple conditions with the AND operator. To
change the logical operator:

Oracle Forms Developer 10g: Build Internet Applications C-22

Entering Multiple Conditions (continued)
1. Select the logical operator in the Conditions panel.
2. Click a new operator on the toolbar or select one from the Data menu.

How to Create Nested Conditions
Query Builder enables you to combine logical operators to produce complex queries made
up of multiple levels of conditions. These are referred to as nested conditions. To nest two
or more conditions:

1. Build each condition to be included in the nest.
2. While you press and hold [Shift], click in the box to the left of each condition to be

nested.
3. Select the logical operator to combine the conditions—either AND or OR.

Query Builder draws a box around the highlighted conditions in the Conditions
panel and combines them with the operator that you specified.

Oracle Forms Developer 10g: Build Internet Applications C-23

C-23 Copyright © 2004, Oracle. All rights reserved.

Deactivating a Condition

Changing Conditions
If you change your mind about including one or more conditions in your query, you can
delete, deactivate, or edit any of them in the Conditions panel.
How to Delete a Condition

1. Click inside the Condition field to activate it.
2. Select Clear from the toolbar or select Delete.

The condition is removed from the query.
How to Deactivate a Condition
Query Builder enables you to temporarily deactivate a condition so that you can test
different scenarios without having to re-create the conditions each time.
Double-clicking the box to the left of the condition or its operator acts as a toggle switch,
alternately turning the condition on and off. Deactivated conditions remain in the
Condition field but appear dimmed.
Additionally, you can turn conditions on and off by using the Data menu:

1. Select the box to the left of the condition or its operator.
Note: Hold down the [Shift] key to select multiple conditions.

2. Double-click in the box to deactivate the condition.

Oracle Forms Developer 10g: Build Internet Applications C-24

C-24 Copyright © 2004, Oracle. All rights reserved.

Defining Columns Using an Expression

Defining Columns Using an Expression
Besides retrieving columns of data stored in a table, Query Builder enables you to define
new columns that are derived or calculated from the values in another column.
How to Define a Column
When you define a column, it exists only in your query, not in the database.

1. Select the table where you want to define a new column.
2. Select the Define Column tool.

The Defined Column dialog box appears, which displays a list of all columns
currently defined in the query (if any).

3. Click in the Defined Column field to activate it, and then enter the name for your
new column.

4. Move your cursor to the Defined As field and enter the formula or expression that
defines your column.

5. Select Define.
The new column is added to the list of defined columns in the dialog box and
appears in the Datasource panel.

6. Click OK to close the dialog box.

Oracle Forms Developer 10g: Build Internet Applications C-25

Defining Columns Using an Expression (continued)
How to Enter Expressions
You can enter information in the Defined As field in the following ways:

• Type the expression in directly.
• Select Paste Column.

The Paste Column dialog box appears.
Select the column from the displayed list.
Click OK to paste the column into your expression and return to the Define
Column dialog box.

How to Display and Hide Defined Columns
You display or hide defined columns from a query in exactly the same manner as you do
ordinary columns.

Oracle Forms Developer 10g: Build Internet Applications C-26

C-26 Copyright © 2004, Oracle. All rights reserved.

Defining Columns Using a Function

Defining Columns Using a Function
The browser also enables you to define columns using a variety of built-in functions
provided by the Oracle Server. You can type a function directly in the Defined As field of
the Define Columns dialog box, or click Paste Function to select from a list.
What Is a Function?
A function is similar to an operator in that it performs a calculation and returns a result.
Functions consist of a function name followed by parentheses, in which you indicate the
arguments.
An argument is an expression that supplies information for the function to use. Functions
usually include at least one argument, most commonly the name of the column on which
the operation will be performed.
Single-Row Functions

• Return one value for every data row operated on
• Examples: INITCAP(), SUBSTR(), TRUNC()

Aggregate Functions
• Return a single row based on the input of multiple rows of data
• Examples: AVG(), COUNT(), SUM()

Oracle Forms Developer 10g: Build Internet Applications C-27

Defining Columns Using a Function (continued)
How to Select a Function

1. Click in the Defined As field to activate it.
2. Select Paste Function.

The Paste Function dialog box appears.
3. Select or deselect the Show Categories check boxes to view the desired list of

functions.
4. Select the function from the displayed list.
5. Select the Paste Arguments check box (optional).

Note: If this check box is selected, a description or datatype name of the arguments
appropriate for the function is pasted into your expression. You then replace the
description with the actual arguments.

6. Click OK to paste the function into your expression and return to the Define
Columns dialog box.

Copyright © 2004, Oracle. All rights reserved.

Locking in Forms

Schedule: Timing Topic
17 minutes Lecture
17 minutes Total

Oracle Forms Developer 10g: Build Internet Applications D-2

D-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Identify the locking mechanisms in Forms
• Write triggers to invoke or intercept the locking

process
• Plan trigger code to minimize overheads

on locking

Overview
Locking is an important consideration in multiuser applications that access the database.
This lesson shows you how Forms handles locking and how you can design forms with
these mechanisms in mind.

Oracle Forms Developer 10g: Build Internet Applications D-3

D-3 Copyright © 2004, Oracle. All rights reserved.

Locking

Table in (RX)

Row in (X)

Row in (X)

Insert, update, or delete

Insert, update, or delete

Query

Locking
In database applications, locking maintains the consistency and integrity of the data,
where several users are potentially accessing the same tables and rows. Forms
applications are involved in this locking process when they access database information.
Oracle Locking
Forms applications that connect to an Oracle database are subject to the standard locking
mechanisms employed by the server. Here is a reminder of the main points:

• Oracle uses row-level locking to protect data that is being inserted, updated, or
deleted.

• Queries do not prevent other database sessions from performing data manipulation.
This also applies to the reverse situation.

• Locks are released at the end of a database transaction (following a rollback or
commit).

Oracle Forms Developer 10g: Build Internet Applications D-4

Locking (continued)
A session issues locks to prevent other sessions from performing certain actions on a row
or table. The main Oracle locks that affect Forms applications are the following:

Lock Type Description
Exclusive (X) row lock Allows other sessions to only read the affected rows
Row Share (RS) table lock Prevents the above lock (X) from being applied to

the entire table; usually occurs because of SELECT
… FOR UPDATE

Row Exclusive (RX) table lock Allows write operations on a table from several
sessions simultaneously, but prevents (X) lock on
entire table; usually occurs because of a DML
operation

Oracle Forms Developer 10g: Build Internet Applications D-5

D-5 Copyright © 2004, Oracle. All rights reserved.

Default Locking in Forms

Insert record

Update record

Delete record

SaveAction

No locks

RS on table

RS on table

RX on above

Default Locking in Forms
Forms initiates locking automatically when the operator inserts, updates, or deletes
records in a base table block. These locks are released when a save is complete.
Forms causes the following locks on Oracle base tables and rows, when the operator
performs actions:

*Update of nondatabase items with the Lock Record property set to Yes also causes this.
The exclusive locks are applied to reserve rows that correspond to records that the
operator is deleting or updating, so that other users cannot perform conflicting actions on
these rows until the locking form has completed (Saved) its transaction.

Operator Action Locks
Insert a record No locks
Update database items in a
record*

Row Share (RS) on base table
Exclusive (X) on corresponding row

Save Row Exclusive (RX) on base tables during the
posting process (Locks are released when actions are
completed successfully.)

Oracle Forms Developer 10g: Build Internet Applications D-6

D-6 Copyright © 2004, Oracle. All rights reserved.

Concurrent Updates and Deletes

• When users compete for the same record, normal
locking protection applies.

• Forms tells the operator if another user has
already locked the record.

Concurrent Updates and Deletes
What Happens When Users Compete for the Same Row?
Users who are only querying data are not affected here. If two users are attempting to
update or delete the same record, then integrity is protected by the locking that occurs
automatically at row level.
Forms also keeps each user informed of these events through messages and alerts when:

• A row is already locked by another user. The user has the option of waiting or trying
again later.

• Another user has committed changes since a record was queried. The user must
requery before the user’s own change can be applied.

Oracle Forms Developer 10g: Build Internet Applications D-7

D-7 Copyright © 2004, Oracle. All rights reserved.

User A: Step 1

Example: Two Users Accessing the Same Record
1. User A is running the Personnel application and queries the sales

representatives. The record for employee 15, Dumas, is updated so that his
department is changed to 31.
User A does not save the change at this point in time. The row that corresponds to
the changed record is now locked (exclusively).

Oracle Forms Developer 10g: Build Internet Applications D-8

D-8 Copyright © 2004, Oracle. All rights reserved.

User B: Step 2

Example: Two Users Accessing the Same Record (continued)
2. User B is running the same application and has started a form that accesses the sales

representatives. Employee Dumas still appears in department 15 in this form,
because User A has not yet saved the change to the database.
User B attempts to update the record by changing the sales representative’s name to
Agasi. Since this action requests a lock on the row, and this row is already locked by
User A, Forms issues an alert saying the attempt to reserve the record failed. This
user can request additional attempts or reply No and try later.
User B replies No. This results in the fatal error message 40501, which confirms that
the original update action has failed.

Instructor Note
Show a similar example, by starting two separate Forms run-time sessions.
Apply the actions as given in steps 1-4.

Oracle Forms Developer 10g: Build Internet Applications D-9

D-9 Copyright © 2004, Oracle. All rights reserved.

User A: Step 3

Example: Two Users Accessing the Same Record (continued)
3. Back in the Personnel form, User A now saves the change to Dumas’ department,

which applies the change to the database row and then releases the lock at the end of
the transaction.

Oracle Forms Developer 10g: Build Internet Applications D-10

D-10 Copyright © 2004, Oracle. All rights reserved.

User B: Step 4

Example: Two Users Accessing the Same Record (continued)
4. In the Sales Representatives form, User B can now alter the record. However,

because the database row itself has now changed since it was queried in this form,
Forms tells User B that it must be requeried before a change can be made.
This situation is shown in the lower slide, opposite. Once User B requeries, the
record can then be changed.

Oracle Forms Developer 10g: Build Internet Applications D-11

D-11 Copyright © 2004, Oracle. All rights reserved.

Locking in Triggers

Achieved by:
• SQL data manipulation language
• SQL explicit locking statements
• Built-in subprograms
• DML statements

Locking in Triggers
In addition to the default locking described earlier, database locks can occur in Forms
applications because of actions that you include in triggers. These can be:

• SQL data manipulation language (DML): Sometimes you may need to perform
INSERT, UPDATE, and DELETE statements, which add to those that Forms does
during the saving process (posting and committing). These trigger SQL commands
cause implicit locks on the tables and rows that they affect.

• SQL locking statements: You can explicitly issue locks from a trigger through the
SELECT . . . FOR UPDATE statement. The LOCK TABLE statement is also
allowed, though rarely necessary.

• Built-in subprograms: Certain built-ins allow you to explicitly lock rows that
correspond to the current record (LOCK_RECORD) or to records fetched on a query
(ENTER_QUERY and EXECUTE_QUERY).

To keep locking duration to a minimum, DML statements should be used only in
transactional triggers. These triggers fire during the process of applying and saving the
user’s changes, just before the end of a transaction when locks are released.

Oracle Forms Developer 10g: Build Internet Applications D-12

Locking in Triggers (continued)
Locking by DML Statements
If you include DML statements in transactional triggers, their execution causes:

• Row exclusive lock on the affected table
• Exclusive lock on the affected rows

Because locks are not released until the end of the transaction, when all changes have
been applied, it is advantageous to code DML statements as efficiently as possible, so
that their actions are completed quickly.

Oracle Forms Developer 10g: Build Internet Applications D-13

D-13 Copyright © 2004, Oracle. All rights reserved.

Locking with Built-Ins

• ENTER_QUERY (FOR_UPDATE)
• EXECUTE_QUERY (FOR_UPDATE)

Locking with Built-Ins
Forms maintains a hidden item called rowid in each base table block. This item stores the
ROWID value for the corresponding row of each record. Updates or deletes in triggers
that apply to such rows can identify them most efficiently using this value, as in the
example below:

UPDATE orders
SET order_date = SYSDATE
WHERE ROWID = :orders.rowid;

Locking with Built-in Subprograms
The following built-ins allow locking:
• EXECUTE_QUERY (FOR_UPDATE) and ENTER_QUERY (FOR_UPDATE):

When called with the FOR_UPDATE option, these built-ins exclusively lock the
rows fetched for their query. Care should be taken when reserving rows in this way,
because large queries cause locking on many rows.

• LOCK_RECORD: This built-in locks the row that corresponds to the current record
in the form. This is typically used in an On-Lock trigger, where it has the same
effect as Forms’s default locking.

Oracle Forms Developer 10g: Build Internet Applications D-14

D-14 Copyright © 2004, Oracle. All rights reserved.

On-Lock Trigger

Example

IF USER = 'MANAGER' THEN

LOCK_RECORD;

ELSE

MESSAGE('You are not authorized to change

records here');

RAISE form_trigger_failure;

END IF;

On-Lock Trigger
This block-level trigger replaces the default locking that Forms normally carries out,
typically when the user updates or deletes a record in a base table block. The trigger fires
before the change to the record is displayed. On failure, the input focus is set on the
current item.
Use this trigger to:

• Bypass locking on a single-user system, hence speeding processing
• Conditionally lock the record or fail the trigger (Failing the trigger effectively fails

the user’s action.)
• Handle locking when directly accessing non-Oracle data sources

If this trigger succeeds, but its action does not lock the record, then the row remains
unlocked after the user’s update or delete operation. Use the LOCK_RECORD built-in
within the trigger if locking is not to be bypassed.

Oracle Forms Developer 10g: Build Internet Applications D-15

On-Lock Trigger (continued)
Example
The following On-Lock trigger on the block Stock only permits the user MANAGER to
lock records for update or delete.

IF USER = 'MANAGER' THEN
LOCK_RECORD;

IF NOT FORM_SUCCESS THEN
RAISE form_trigger_failure;

END IF;
ELSE

MESSAGE('You are not authorized to change records
here');
RAISE form_trigger_failure;

END IF;

Oracle Forms Developer 10g: Build Internet Applications D-16

D-16 Copyright © 2004, Oracle. All rights reserved.

Summary

• Default locking
– Locks rows during update and delete
– Informs user of concurrent update and delete

• Locking in triggers
– Use SQL and certain built-ins
– On-Lock trigger: LOCK_RECORD built-in available

Summary
Default Locking

• Locks rows during update and delete
• Informs user about concurrent update and delete

Locking in Triggers
• Use SQL and certain built-ins
• On-Lock trigger: LOCK_RECORD built-in available

Copyright © 2004, Oracle. All rights reserved.

Oracle Object Features

Oracle Forms Developer 10g: Build Internet Applications E-2

E-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the Oracle scalar datatypes
• Describe object types and objects
• Describe object tables, object columns, and object

views
• Describe the INSTEAD-OF triggers
• Describe object REFs
• Identify the display of objects in the Object

Navigator

Overview
Introduction
In this lesson, you will review certain object features of Oracle. This lesson also explains
how objects are displayed in the Object Navigator.
Objectives
After completing this lesson, you should be able to do the following:

• Describe the Oracle scalar datatypes
• Describe object types and objects
• Describe object tables, object columns, and object views
• Describe the INSTEAD-OF triggers
• Describe object REFs
• Identify the display of objects in the Object Navigator

Oracle Forms Developer 10g: Build Internet Applications E-3

E-3 Copyright © 2004, Oracle. All rights reserved.

Oracle Scalar Datatypes

• Automatically converted:
– FLOAT
– NLS types

NCHAR
NVARCHAR2

• Unsupported:
– Timestamp
– Interval

Oracle Datatypes
In Oracle Forms Builder, these datatypes are automatically converted to existing Forms
item datatypes. Three new scalar datatypes were introduced with Oracle8i:
• NCHAR stores fixed-length (blank-padded if necessary) NLS (National Language

Support) character data.
• NVARCHAR2 stores variable-length NLS character data.
• FLOAT is a subtype of NUMBER. However, you cannot specify a scale for FLOAT

variables. You can only specify a binary precision, which is the total number of
binary digits.

NLS (National Language Support) Types in Oracle: In the Oracle database, data stored
in columns of NCHAR or NVARCHAR2 datatypes are exclusively stored in Unicode,
regardless of the database character set. This enables users to store Unicode in a database
that may not use Unicode as the database character set. The Oracle database supports two
Unicode encodings for the Unicode datatypes: AL16UTF16 and UTF8 .
With NLS, number and date formats adapt automatically to the language conventions
specified for a user session. Users around the world can interact with the Oracle server in
their native languages. NLS is discussed in Oracle Database Globalization Support
Guide.
Unsupported: Timestamp and interval datatypes (new with Oracle9i).

Oracle Forms Developer 10g: Build Internet Applications E-4

E-4 Copyright © 2004, Oracle. All rights reserved.

Object Types

Attributes

po_no
custinfo

line_items
amount

Methods

Ship

Cancel

Hold

Check status

ORDER

Object Types
An object type is a user-defined composite datatype. Oracle requires enough knowledge
of a user-defined datatype to interact with it. Thus, in some sense an object type is similar
to a record type, and in some sense it is similar to a package.
An object type must have one or more attributes and can contain methods.
Attributes: An object type is similar to a record type in that it is declared to be composed
of one or more subparts that are of predefined datatypes. Record types call these subparts
fields, but object types call them attributes. Attributes define the object structure.

CREATE TYPE address_type AS OBJECT
(address VARCHAR2(30),
city VARCHAR2(15),
state CHAR(2),
zip CHAR(5));

CREATE TYPE phone_type AS OBJECT
(country NUMBER(2),
area NUMBER(4),
phone NUMBER(9));

Oracle Forms Developer 10g: Build Internet Applications E-5

Object Types (continued)
Just as the fields of a record type can be of other record types, the attributes of an object
type can be of other object types. Such an object type is called nested.

CREATE TYPE address_and_phone_type AS OBJECT
(address address_type,
phone phone_type);

Object types are like record types in another sense: Both of them must be declared as
types before the actual object or record can be declared.

Methods

An object type is also similar to a package. Once an object is declared, its attributes are
similar to package variables. Like packages, object types can contain procedures and
functions. In object types, these subprograms are known as methods. A method describes
the behavior of an object type.

Like packages, object types can be declared in two parts: a specification and a body. As
with package variables, attributes declared in the object type specification are public and
those declared in the body are private. As with package subprograms, all methods are
defined in the package body, but only those whose specification appears in the object type
specification are public methods.

Here is an example of an object type:
CREATE TYPE dept_type AS OBJECT

(dept_id NUMBER(2),
dname VARCHAR2(14),
loc VARCHAR2(3),
MEMBER PROCEDURE set_dept_id (d_id NUMBER),

PRAGMA RESTRICT_REFERENCES (set_dept_id,
RNDS,WNDS,RNPS,WNPS),

MEMBER FUNCTION get_dept_id RETURN NUMBER,
PRAGMA RESTRICT_REFERENCES (get_dept_id,
RNDS,WNDS,RNPS,WNPS));

CREATE TYPE BODY dept_type AS
MEMBER PROCEDURE set_dept_id (d_id NUMBER)
IS
BEGIN

dept_id := d_id;
END;
MEMBER FUNCTION get_dept_id

RETURN NUMBER
IS
BEGIN

RETURN (dept_id);
END;

END;

Oracle Forms Developer 10g: Build Internet Applications E-6

E-6 Copyright © 2004, Oracle. All rights reserved.

Object Tables

Object table based on object type

Creating Oracle Objects
Once you have declared an object type, you can create objects based on the type.
Object Tables
One way to create an object is to create a table whose rows are objects of that object type.
Here is an example of an object table declaration:

CREATE TABLE o_dept OF dept_type;

SQL and PL/SQL treat object tables very similarly to relational tables, with the attribute
of the object corresponding to the columns of the table. But there are significant
differences. The most important difference is that rows in an object table are assigned
object IDs (OIDs) and can be referenced using a REF type.
Note: REF types are reviewed later.

Instructor Note
At this point, review the fact that object types are not themselves objects. They are only
blueprints for objects. The term object can be confusing because Oracle uses the term to
refer to constructs within the database—for example, tables, views, procedures, and so on.
This is a completely different usage. Make certain that your students are aware of the
overloading of this term.

Oracle Forms Developer 10g: Build Internet Applications E-7

E-7 Copyright © 2004, Oracle. All rights reserved.

Object Columns

Object column based on object type

Object Columns
Another construct that can be based on an object type is an object column in a relational
table. Here is an example of a relational table creation statement with an object column:

CREATE TABLE o_customer (
custid NUMBER (6) NOT NULL,
name VARCHAR2 (45),
repid NUMBER (4) NOT NULL,
creditlimit NUMBER (9,2),
address address_type,
phone phone_type);

In the object table, the rows of a table are objects. In a relational table with an object
column, the column is an object. The table will usually have standard columns, as well as
one or more object columns.
Object columns are not assigned object IDs (OIDs) and therefore cannot be referenced
using object REF values.
Note: Object REFs are reviewed later in this section.

Oracle Forms Developer 10g: Build Internet Applications E-8

E-8 Copyright © 2004, Oracle. All rights reserved.

Object Views

Object views based on object types

Object
view

Object-oriented
application

Relational
table

Object Views
Often, the most difficult part of adopting a new technology is the conversion process
itself. For example, a large enterprise might have several applications accessing the same
data stored in relational tables. If such an enterprise decided to start using object-relational
technology, the enterprise would not convert all of the applications at once. It would
convert the applications one at a time.
That presents a problem. The applications that have been converted need the data stored
as objects, whereas the applications that have not been converted need the data stored in
relational tables.
This dilemma is addressed by object views. Like all views, an object view transforms the
way a table appears to a user, without changing the actual structure of the table. Object
views make relational tables look like object tables. This allows the developers to
postpone converting the data from relational structures to object-relational structures until
after all of the applications have been converted. During the conversion process, the
object-relational applications can operate against the object view; the relational
applications can continue to operate against the relational tables.
Objects accessed through object views are assigned object IDs (OIDs), and can be
referenced using object REFs.

Oracle Forms Developer 10g: Build Internet Applications E-9

Object Views (continued)
Note: Object REFs are reviewed later in this section.
Here is an example of an object view creation statement:

CREATE VIEW emp_view OF emp_type
WITH OBJECT OID (eno)
AS
SELECT e.empno, e.ename, e.sal, e.job
FROM emp e;

Oracle Forms Developer 10g: Build Internet Applications E-10

E-10 Copyright © 2004, Oracle. All rights reserved.

INSTEAD-OF Triggers

INSTEAD-OF
Trigger

Nonupdatable
view

DECLARE

BEGIN

EXCEPTION

END;

Object Views (continued)
INSTEAD-OF Triggers: INSTEAD-OF triggers provide a transparent way of modifying
views that cannot be modified directly through SQL DML statements (INSERT,
UPDATE, and DELETE).
These triggers are called INSTEAD-OF triggers because, unlike other types of triggers,
the Oracle server fires the trigger instead of executing the triggering statement. The
trigger performs update, insert, or delete operations directly on the underlying tables.
Users write normal INSERT, DELETE, and UPDATE statements against the view, and
the INSTEAD-OF trigger works invisibly in the background to make the right actions take
place.
INSTEAD-OF triggers are activated for each row.
Note: Although INSTEAD-OF triggers can be used with any view, they are typically
needed with object views.

Oracle Forms Developer 10g: Build Internet Applications E-11

E-11 Copyright © 2004, Oracle. All rights reserved.

References to Objects

OID

REF

Referencing Objects
Introduction
In relational databases, primary key values are used to uniquely identify records. In
object-relational databases, OIDs provide an alternative method.
When a row in an object table or object view is created, it is automatically assigned a
unique identifier called an object ID (OID).
Object REFs
With relational tables, you can associate two records by storing the primary key of one
record in one of the columns (the foreign key column) of another.
In a similar way, you can associate a row in a relational table to an object by storing the
OID of an object in a column of a relational table.
You can associate two objects by storing the OID of one object in an attribute of another.
The stored copy of the OID then becomes a pointer, or reference (REF), to the original
object. The attribute or column that holds the OID is of datatype REF.

Oracle Forms Developer 10g: Build Internet Applications E-12

Referencing Objects (continued)
Note: Object columns are not assigned OIDs and cannot be pointed to by a REF.
Here is an example of a table declaration that includes a column with a REF datatype:

CREATE TABLE o_emp
(empno NUMBER(4) NOT NULL,
ename VARCHAR2(10),
job VARCHAR2(10),
mgr NUMBER(4),
hiredate DATE,
sal NUMBER(7,2),
comm NUMBER(7,2),
dept REF dept_type SCOPE IS o_dept) ;

Note: The REF is scoped here to restrict the reference to a single table, O_DEPT. The
object itself is not stored in the table, only the OID value for the object.

Oracle Forms Developer 10g: Build Internet Applications E-13

E-13 Copyright © 2004, Oracle. All rights reserved.

Object Types in Object Navigator

Displaying Oracle Objects in the Object Navigator
The Object Navigator lists declared types in the “Database Objects” section, along with
tables, views, and other Oracle objects.
Object Types
Both the attributes and the methods are listed under each type. Also, the nested types
within a type are displayed in an indented sublevel.
This convention is used for nested object and object type displays throughout Oracle
Developer.

Oracle Forms Developer 10g: Build Internet Applications E-14

E-14 Copyright © 2004, Oracle. All rights reserved.

Object Type Wizard

Oracle8 Type Wizard
Object types can be created using the Oracle8 Type Wizard. The wizard allows you to
define the attributes and methods. You invoke the Oracle8 Type Wizard from Forms
Builder by selecting the Types node in a schema under Database Objects, then clicking
the Create icon.
Note: The Type Wizard is called Oracle8 Type Wizard, even though it is invoked from
Oracle Developer Suite 10g Forms Builder connected to an Oracle9i database.

Oracle Forms Developer 10g: Build Internet Applications E-15

E-15 Copyright © 2004, Oracle. All rights reserved.

Object Tables and Columns
in Object Navigator

Object Tables and Columns
Object Tables
Object tables are displayed like relational tables, with the attributes of the object displayed
like columns in a relational table. Also, the object table type name is displayed in
parentheses after the name of the object table.
Object Columns
Object columns are displayed with the object type in parentheses after the column name
and with the attributes of the type indented underneath the column name.

Oracle Forms Developer 10g: Build Internet Applications E-16

E-16 Copyright © 2004, Oracle. All rights reserved.

Object Views in Object Navigator

Object Views
Object views are displayed like any other view, except that the object type on which they
are based is written in parentheses after the view name.

Oracle Forms Developer 10g: Build Internet Applications E-17

E-17 Copyright © 2004, Oracle. All rights reserved.

INSTEAD-OF Trigger Dialog Box

Object Views
Object views are displayed like any other view, except that the object type on which they
are based is written in parentheses after the view name.
INSTEAD-OF Triggers: INSTEAD-OF database triggers can now be created through
the trigger creation dialog box, just like any other database trigger.
INSTEAD-OF INSERT, UPDATE, and DELETE triggers allow you to directly insert,
update, and delete against object views. They can also be used with any other type of view
that does not allow direct DML.
When a view has an INSTEAD-OF trigger, the code in the trigger is executed in place of
the triggering DML code.
Reference: For more information about INSTEAD-OF triggers, see Oracle Application
Developer’s Guide – Fundamentals or Oracle Database Concepts.

Oracle Forms Developer 10g: Build Internet Applications E-18

E-18 Copyright © 2004, Oracle. All rights reserved.

Object REFs in Object Navigator

Object REFs
Object types that contain attributes of type REF, and relational tables that have columns
of type REF, display the keyword REF before the name of the object type that is being
referenced.
The attributes of the referenced object type are displayed indented under the column or
attribute.

Oracle Forms Developer 10g: Build Internet Applications E-19

E-19 Copyright © 2004, Oracle. All rights reserved.

Summary

• Oracle8 introduced three scalar datatypes.
• Objects and object types allow representation of

complex data.
• Three kinds of objects are object tables, object

columns, and object views.

Oracle Forms Developer 10g: Build Internet Applications E-20

E-20 Copyright © 2004, Oracle. All rights reserved.

Summary

• INSTEAD-OF triggers allow DML on object views.
• Object REFs store the object identifier of certain

types of objects.
• The Object Navigator can display certain types of

objects.

Summary
Oracle Datatypes
Oracle8 introduced three scalar datatypes and composite datatypes, such as object types.
Objects
Three kinds of objects are object tables, object columns, and object views.
INSTEAD-OF triggers allow DML on object views.
Object REFs store the object identifier of certain types of objects.
Oracle Objects in the Object Navigator
The Object Navigator can display certain types of objects.

Copyright © 2004, Oracle. All rights reserved.

Using the Layout Editor

Schedule: Timing Topic
20 minutes Lecture
20 minutes Total

Oracle Forms Developer 10g: Build Internet Applications F-2

F-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Control the position and size of objects in a layout
• Add lines and geometric shapes
• Define the colors and fonts used for text
• Color the body and boundaries of objects
• Import images onto the layout

Overview
Introduction
In this lesson, you learn the graphical features of the Layout Editor of Oracle Forms
Developer. This will help you control the visual arrangement and appearance of objects in
your applications.
Objectives
After completing this lesson, you should be able to do the following:

• Control the position and size of objects in a layout
• Add lines and geometric shapes
• Define the colors and fonts used for text
• Color the body and boundaries of objects
• Import images onto the layout

Oracle Forms Developer 10g: Build Internet Applications F-3

F-3 Copyright © 2004, Oracle. All rights reserved.

Using the Layout Editor

Common features:
• Moving and resizing objects and text
• Defining colors and fonts
• Importing and manipulating images and drawings
• Creating geometric lines and shapes
• Layout surface: Forms canvas view

Why Use the Layout Editor?
The Layout Editor is a graphical tool for defining the arrangement and appearance of
visual objects. The Layout Editor opens windows in Forms Builder to present the surfaces
on which you can arrange objects.
The following are functions of the Layout Editor:

• Moving objects to new positions in the layout and aligning them with each other
• Resizing objects and text
• Defining the colors of text and visual objects
• Creating lines, boxes, and other geometric shapes
• Importing and manipulating images on the layout
• Changing the font style and weight of text
• Accessing the properties of objects that you see in the layout

You can use the Layout Editor to control the visual layout on canvas views in Oracle
Forms Developer. A canvas is the surface on which you arrange a form’s objects. Its view
is the portion of that canvas that is initially visible in a window at run time. You can also
see stacked or tabbed canvas views in the Layout Editor; their views might overlay others
in the same window. You can also display stacked views in the Layout Editor.

Oracle Forms Developer 10g: Build Internet Applications F-4

F-4 Copyright © 2004, Oracle. All rights reserved.

Invoking the Layout Editor

How to Access the Layout Editor
You can invoke the Layout Editor from either the Builder menus or the Object Navigator.
This applies whether you are doing so for the first time in a session or at a later stage. If
you have minimized an existing Layout Editor window, you can also reacquire it in the
way that you would any window.
Opening from the Object Navigator
Double-click a canvas view icon in a form hierarchy.
Opening from the Builder Menus

• Make sure that you have a context for a form by selecting the appropriate objects in
the Navigator.

• Select Tools > Layout Editor from the Builder menu.

Oracle Forms Developer 10g: Build Internet Applications F-5

How to Access the Layout Editor (continued)
In Forms, you can open several Layout Editor windows—one for each canvas view. Make
sure that you have the canvas that you want.
Closing the Layout Editor
You can close or minimize the Layout Editor window or windows as you would any
window.

Instructor Note
Demonstration

• Accessing through the Tools menu
• Access through the Navigator
• Closing and minimizing the Layout Editor window
• Reopening the Layout Editor

Oracle Forms Developer 10g: Build Internet Applications F-6

F-6 Copyright © 2004, Oracle. All rights reserved.

Layout Editor: Components

1

Components of the Layout Editor
Common components of the Layout Editor are:

• Menu facilities: While the Layout Editor window is active, the options available on
the Edit, View, and Layout Builder menus expand. The new choices are submenus
for controlling the Layout Editor.
The slide above shows the Edit, View, and Layout menus. The top screenshots show
what these menus look like when the Object Navigator is active, while those on the
bottom show the expanded choices when the Layout Editor is active.

Oracle Forms Developer 10g: Build Internet Applications F-7

F-7 Copyright © 2004, Oracle. All rights reserved.

Layout Editor: Components

2

5

3

4

6

9

8 7

Components of the Layout Editor (continued)
• Title bar: Displays the name of the current form, the name of the canvas being

edited, and the name of the current block. When you create an item by drawing it on
a canvas in the Layout Editor, Forms Builder assigns the item to the current block,
as indicated by Layout Editor block context. You can change Layout Editor block
context using the Block poplist on the title bar.

• Horizontal toolbar: Contains buttons that enable you to update the layout or
associate text with an item prompt.

• Style bar: Appears under the title bar and horizontal toolbar. The style bar contains
buttons that are a subset of the View and Layout menus.

• Vertical toolbar: Contains the tools for creating and modifying objects on the
layout. Note that some tools in the palette may be hidden if you have reduced the
size of the Layout Editor window. If so, scroll buttons appear on the vertical toolbar.
There are three types of tools:

Graphics tools for creating and modifying lines and shapes
Tools for creating specific types of items
Manipulation tools for controlling color and patterns

Oracle Forms Developer 10g: Build Internet Applications F-8

Components of the Layout Editor (continued)
• Rulers and ruler guides: Rulers are horizontal and vertical markers to aid

alignment; they appear at the top and side of the layout region. You can switch
these off or have their units altered, as required. Drag ruler guides from the rulers
across the layout region to mark positions in the layout.

• Layout/Painting region: The main area where you can place and manipulate
objects. A grid pattern can be displayed in this area to aid alignment of objects.
You can switch off or rescale this grid if required (the grid is hidden in the canvas
portion of the layout/painting region if the View > Show Canvas option is
switched on).

• Canvas: The portion of the layout/painting area where objects must be placed in
order for the form module to successfully compile. If objects are outside this area
upon compilation, you will receive an error.

• Status line: Appears at the bottom of the window. It shows you the mouse
position and drag distance (when moving objects) and the current magnification
level.

Oracle Forms Developer 10g: Build Internet Applications F-9

F-9 Copyright © 2004, Oracle. All rights reserved.

Tool Palette

1

2

3

5

6

7

8

9

10

11

12

13

4

Creating and Modifying Objects in the Layout
You can perform actions in the Layout Editor by selecting from the vertical toolbar and
the Builder menus and by controlling objects directly in the layout region.
Creating Lines and Shapes
Create geometric lines and shapes by selecting from the graphics tools in the vertical
toolbar. These include: Rectangles/squares, ellipses/circles, polygons and polylines, lines
and arcs, and the freehand tool.

1 Select 8 Rotate
2 Magnify 9 Reshape
3 Rectangle 10 Line
4 Ellipse 11 Arc
5 Polygon 12 Polyline
6 Rounded rectangle 13 Freehand
7 Text

Oracle Forms Developer 10g: Build Internet Applications F-10

Creating and Modifying Objects in the Layout (continued)
Creating a New Line or Shape

1. Select the required graphic tool from the vertical toolbar with a mouse click. This
selects the tool for a single operation on the layout (a double-click causes the tool to
remain active for subsequent operations).

2. Position the mouse at the start point for the new object in the layout, and then click-
and-drag to the required size and shape.

3. Release the mouse button.
Notice that the object remains selected after this procedure (selection handles appear on
its boundaries) until you deselect it by clicking elsewhere.
Note: You can produce constrained shapes (for example, a circle instead of an ellipse) by
pressing the [Shift] key during step 2.
Creating Text
The Text tool (T) lets you open a Boilerplate Text object on the layout. You can type one
or more lines of text into this object while it is selected with the Text tool. Uses of text
objects vary according to the Oracle Developer tool in which you create them.

Instructor Note
Show in the Layout Editor:

• Creating a line and at least one other shape
• Using the Freehand tool
• Creating a circle or square using Constrained mode
• Creating boilerplate text, with text over multiple lines
• Double-clicking the palette tool to retain selection

Oracle Forms Developer 10g: Build Internet Applications F-11

F-11 Copyright © 2004, Oracle. All rights reserved.

Selecting Objects

Selecting Objects for Modification
The default tool in the vertical toolbar is Select, with which you can select and move
objects. If the Select tool is active, you can select one or more objects on the layout to
move or modify.
To select one object, do one of the following:

• Click the object with the mouse
• Draw a bounding box around it

If the object is small or narrow, it is sometimes easier to use the second method. Also, an
object may be transparent (No Fill), which can present a similar problem where it has no
center region to select.
It is convenient to select several objects, so that an operation can be performed on them
simultaneously.
To select several objects together, do one of the following:

• Hold down the [Shift] key and then click each object to be selected
• Draw a bounding box around the objects (providing the objects are adjacent to each

other)

Oracle Forms Developer 10g: Build Internet Applications F-12

F-12 Copyright © 2004, Oracle. All rights reserved.

Manipulating Objects

Expand/contract
in one direction

Expand/contract
diagonally

Changing the Size or Ratio
When an object is selected, two types of selection handles are visible:

• Corner handles: Position the mouse on one of these to change the size or ratio of the
object diagonally.

• Midpoint handles: Position the mouse on one of these to change the size or ratio in a
horizontal or vertical direction.

Note: By holding down the [Shift] key, you can resize an object without changing its
ratios. This means that squares remain as squares, and images do not become distorted
when resized.

Oracle Forms Developer 10g: Build Internet Applications F-13

F-13 Copyright © 2004, Oracle. All rights reserved.

Moving, Aligning, and Overlapping

Moving and Aligning Objects
When one or more objects are selected in the layout, you can:

• Move them to a new location: Do this by dragging to the required position and
releasing the mouse button. You can use the grid and ruler lines to help you position
them properly.

• Align the objects with each other: Objects can be aligned with the leftmost,
rightmost, highest, or lowest object selected. They can also be centered and aligned
with the grid. You can do this using the Alignment feature in the Layout menu:
Select Layout > Align Components, and then set the options required in the Align
Objects dialog box. You can also use the Align icons in the horizontal toolbar.

A Note on Grid-Snap Alignment: You can ensure that all objects that you move align
with snap points that are defined on the grid. To activate these, select
View > Snap to Grid from the menu. You can also use the View options to change the
grid-snap spacing and units.
Note: If you position an object using one grid-snap spacing, and then try to position other
objects under different settings, it may prove difficult to align them with each other. Try
to stick to the same snap units, if you use grid-snap at all.

Oracle Forms Developer 10g: Build Internet Applications F-14

Moving and Aligning Objects (continued)
Overlapping Objects
You can position objects on top of each other. If they are transparent, then one object can
be seen through another (this is explained in detail later in this lesson).
Change the stacking order of overlapping objects by selecting the object to move and then
choosing the following as required, from the Layout menu:

• Bring to Front
• Send to Back
• Move Forward
• Move Backward

Instructor Note
Create your own objects to show the following:

• Selecting multiple objects by pressing and holding [Shift] while you click the
objects

• Selecting by a bounding box
• Losing the association after you deselect
• Expanding and contracting in different directions, pointing out handles
• Moving an object on the layout
• Lining up several objects using the Align Objects dialog box
• Moving objects while grid-snap is on
• How grid and grid-snap can be turned on/off and how units can be altered (pointing

out the warning opposite)
• Overlapping some objects and changing layering through the Layout menu

Oracle Forms Developer 10g: Build Internet Applications F-15

F-15 Copyright © 2004, Oracle. All rights reserved.

Groups in the Layout

• Groups allow several objects to be repeatedly
treated as one.

• Groups can be colored, moved, or resized.
• Tool-specific operations exist for groups.
• Groups have a single set of selection handles.
• Members can be added or removed.

Manipulating Objects As a Group
Sometimes, you want to group objects together in the layout so that they behave as a
single object.
Placing Objects into a Group

1. Select the objects in the layout that are to be grouped together.
2. Select Layout > Group Operations > Group from the menu.

You will notice there is now a single set of selection handles for the group, which you can
treat as a single object whenever you select a member within it. The Layout menu also
gives you options to add and remove members. Resizing, moving, coloring, and other
operations will now apply to the group.
Manipulating Individual Group Members
To manipulate group members individually, select the group and then click the individual
member. You can use options in the Group Operations menu to remove objects from the
group or to reselect the parent group.

Oracle Forms Developer 10g: Build Internet Applications F-16

Manipulating Objects As a Group (continued)
Other Tools for Manipulating Objects

• Rotate: You can rotate a line or shape through an angle, using the tool’s selection
handles.

• Reshape: You can change size/ratio of a shape that has been rotated or change the
sweep angle of an arc. You can also reshape a polygon or polyline.

• Magnify: You can increase magnification when you click at a desired zoom position
on the layout region. Pressing and holding [Shift] while you click reduces
magnification.

Note: You can undo your previous action in the current Layout Editor session by selecting
Edit > Undo from the menu.

Instructor Note
Create your own objects to do the following:

• Place some objects into a group, and then show how they can be manipulated as one.
Point out the single set of handles.

• Point out or mention the other grouping options (Group Operations menu).
• Demonstrate zooming in/out using the Magnify tool.
• Show Undo/Redo of a Layout Editor operation from the Edit menu.

Oracle Forms Developer 10g: Build Internet Applications F-17

F-17 Copyright © 2004, Oracle. All rights reserved.

Edit and Layout Menus

Formatting Objects in the Layout
The Builder’s Layout and Edit menus provide a variety of facilities for changing the style
and appearance of objects in the layout. These include:

• Font sizes and styles
• Spacing in lines of text
• Alignment of text in a text object
• Line thickness and dashing of lines
• Bevel (3D) effects on objects
• General drawing options (for example, style of curves and corners)

Whichever formatting option you intend to use, first select the objects that you intend to
change on the layout, and then choose the necessary option from the menu.
Some of the format options are available from the style bar.

Oracle Forms Developer 10g: Build Internet Applications F-18

Formatting Objects in the Layout (continued)
Changing Fonts on Textual Objects
There are a number of ways to change the font characteristics of textual objects. The
common steps provided by the Layout Editor are:

• Select the objects in the layout whose content text you want to change (these may be
boilerplate text objects and other textual object types).

• Select the font style and size that you require from the style bar or select Layout
from the Builder menu, and the select the font style and size that you require.

Note: In Microsoft Windows, selecting Font from the menu opens the standard Windows
Font dialog. In other GUI environments, the font choices may appear in the Layout menu
itself. Font settings are ignored if the application is run in character mode.

Instructor Note
Provide an overview of the Layout and Edit menu options and demonstrate:

• Changing the line thickness of a shape
• Producing bevel effects on this shape
• Changing the font size and style of boilerplate text

Oracle Forms Developer 10g: Build Internet Applications F-19

F-19 Copyright © 2004, Oracle. All rights reserved.

Color and Pattern Tools

2
3

1

4

Coloring Objects and Text
The vertical toolbar contains tools for coloring objects. These are:

1. Sample Window: Shows the fill, line, and text color of the currently selected object.
If no object is selected, shows the settings for new objects.

2. Fill Color: Use this tool to define the colors and pattern for an object’s body.
3. Line Color: Use this tool to define the color of a line or the boundary line around an

object.
4. Text Color: Use this tool to choose the color for the text.

Coloring Objects
You can separately color the fill area (body) of an object and its boundary line (a line
object has no body).
Coloring a Line

• With the desired layout objects selected, click the Line Color tool. The color palette
opens.

• Select the color for lines and bounding lines from this color palette. Select No Line
at the bottom of this window to remove the objects’ boundary lines.

Note: If you set both No Fill and No Line, the affected objects become invisible.

Oracle Forms Developer 10g: Build Internet Applications F-20

Coloring Objects and Text (continued)
Coloring an Area

1. Select the objects whose color you want to change.
2. Select the Fill Color tool. The color palette appears.

If you want the objects to become transparent, select No Fill at the bottom of the
color palette window.

3. Select a color from the color palette. If you want the fill area to be patterned instead
of plain, then select Patterns from the bottom of the color palette, and follow the
next step.

4. If you select Patterns, another window appears with patterns for you to choose.
Select one. You can define separate colors for the two shades of the pattern by
selecting the pattern color buttons at the bottom of the Fill Pattern palette; each
button opens a further color palette.

Coloring Text
1. Select the textual objects whose color you want to change in the layout.
2. Select the Text Color tool. The color palette appears, showing the available colors.
3. Select a color from the color palette (click the appropriate square).
4. Notice that the selected objects on the layout have adopted the chosen text color.

Also, the sample area in the vertical toolbar shows a T with the selected color, and
this color appears next to the Text Color tool. This indicates the current text color
setting.

Altering the Color Palette
By selecting Edit > Layout Options > Color Palette from the menu, you can edit the color
palette that is presented when selecting colors. This option is available only when the
Builder option Color Palette Mode is set to Editable in the Preferences dialog (Edit >
Preferences). Changes to the color palette are saved with the current module.
Note: Modifications to the color palette will not be apparent until you close the document
and reopen it.

Instructor Note
Show the following:

• Coloring the body of a shape
• Changing the fill pattern and how elements of the pattern can be colored
• Making an object transparent and how other objects can then be seen through it
• Coloring lines and removing them completely
• Coloring text
• How color palettes can be torn off and repositioned
• How color settings are retained in the Layout Editor
• How to modify the color palette

Oracle Forms Developer 10g: Build Internet Applications F-21

F-21 Copyright © 2004, Oracle. All rights reserved.

Importing Images

Importing Images
Oracle Forms Developer allows both static and dynamic bit-mapped images to be
integrated into the application. This section discusses how you can import static images—
that is, those that are fixed on the layout. These might include:

• Company logos
• Photographs for inclusion in a report or display
• Background artwork

You can import images onto the layout from either the file system or the database. Select
Edit > Import > Image from the menus, and set the Import Image options:

• File/Database radio buttons: Specify location from which to import
• Filename: File to be imported (click Browse to locate file)
• Format: Image format; choices are TIFF , JFIF (JPEG), BMP, TGA, PCX, PICT,

GIF, CALS, RAS
• Quality: Range from Excellent to Poor. There is a trade-off between image

resolution and memory required.

Oracle Forms Developer 10g: Build Internet Applications F-22

Importing Images (continued)
Manipulating the Imported Image
When the imported image appears on the layout, you can move it or resize it like other
objects on the layout. It is usually better to resize images in Constrained mode (while
pressing the [Shift] key) so the image does not become distorted.

Instructor Note
Show how to import an image from the file system, pointing out the various file formats
that are supported. Recommend using SummitLogo.jpg.
Show that boilerplate images can be moved and resized on the layout.

Oracle Forms Developer 10g: Build Internet Applications F-23

F-23 Copyright © 2004, Oracle. All rights reserved.

Summary

• You can create objects by:
– Choosing a palette tool
– Clicking and dragging on a layout region

• There are color palette tools for fill area, lines, and
text.

• View, Edit, and Layout menus display additional
options for layout.

• Objects can be grouped for operations.
• You can import images by using Edit > Import.

Summary
• You can create objects by:

Choosing the correct toolbar tool
Clicking and dragging the layout region

• There are color palette tools for fill area, lines, and text.
• View, Edit, and Layout menus display additional options while you are in the

Layout Editor.
• You can group objects for operations.
• You can import images by selecting Edit > Import.

	CIG3.pdf
	Toc.pdf
	preface.pdf
	Intro.pdf
	xppA.pdf
	xppB.pdf
	xppC.pdf
	xppD.pdf
	xppE.pdf
	xppF.pdf

