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1 Specializing Environments for Novices

The task of specializing programming environments for novices begins with the recog-
nition that programming is a hard skill to learn. The lack of student programming
skill even after a year of undergraduate studies in computer science was noted and
measured in the early 80’s [32] and again in this decade [20]. We know that students
have problems with looping constructs [31], conditionals [8], and assembling programs
out of base components [33]—and there are probably other factors, and interactions
between these factors, too.

What are the critical pieces? What pieces, if we “fixed” them (made them better
for novice programmers), would make programming into a more manageable, learn-
able skill? If we developed a language that changed how conditionals work or loops,
or make it easier to integrate components, would programming become easier? That’s
the issue that developers of educational programming environments are asking.

Each novice programming environment (or family of environments) is attempting
to answer the question, “What makes programming hard?” FEach answer to that
question implies a family of environments that address the concern with a set of
solutions. Each environment discussed in this chapter attempts to use several of
these answers to make programming easier for novices.

Obviously, there are a great many answers to the question “What makes program-
ming hard?” For each answer, there are a great many potential environments that
act upon that answer, and then there are a great many other potential environments
that deal with multiple answers to that question. That’s not surprising, since it’s
almost certainly true that there is no one correct answer to the question that applies
to all people.

Not all of these potential environments have been built and explored, however.
The field of Computer Science Education Research is too new, and there are too few
people doing work in this field. We are still in the stage of the field of identifying



potential answers to key questions—indeed, even figuring out what the key questions
are!

Nonetheless, there are many novice programming environments that have been
built, and not all can be discussed in a short primer. Instead, this chapter will focus
on three families that have been particularly influential in the development of modern
environments and in the thinking of the CS Ed research community.

e The Logo family of programming environments, that began as an off-shoot
of the Al-programming language Lisp and spawned a rich variety of novice
programming environments.

e The rule-based family of programming environments, that drew from both Logo
and Smalltalk-72, but even more directly, Prolog.

e The traditional programming language family of novice programming environ-
ments, which tried not to change the language, but instead provide new student-
centered supports for existing programming languages.

The audience for these environments ranges from young school children for the
Logo environments to undergraduate university students for some of the traditional
programming language environments. In this chapter, the issue of student differences
(e.g., age, background, motivation) is simply glossed over. Such a huge simplification
is acceptable in this situation because the problem is so hard. No matter what the age
of the students, programming is hard to learn. Whether students attempt to learn
to program at a young age or at the age of young adults, the tasks and difficulties
remain similar. The environments in the sections below are attempting to deal with
those challenges at whatever the age of the student audience.

2 Logo and its Descendants: The Goal of Compu-
tational Literacy

Logo was developed in the mid-1960’s by Wally Feuzeig and Danny Bobrow at BBN
Labs, in consultation with Seymour Papert at nearby MIT. Logo was designed to be
“Lisp without parentheses.” Lisp was a popular programming language for artificial
intelligence programming. Lisp was known for its flexibility and the ease with which
data could become program, or vice-versa, making it very easy for programs to manip-
ulate their own components. Lisp was especially good for creating and manipulating
representations of knowledge. (See Figure 1 for the family tree of this section.)

The answer to the question of “What makes programming hard?” for the Logo
developers was another question. When Logo was first being developed, people didn’t
know that programming was going to be so hard for so many. Programming was still
a curiosity, an activity practiced only by the few who had access to the still-rare
machines. The Logo developers asked instead “Why should students program?”
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Figure 1: The Logo family of novice programming environments (italics indicate real
environments tuned to novices)

The answer to that question was related to Piagetian thinking about learning.
Seymour Papert worked for a time in Jean Piaget’s laboratory. The goal for Logo
was for students to think about their own thinking, by expressing themselves in their
programs and then debugging the programs until they worked [23]. By debugging
their programs, the argument went, the students were debugging their own think-
ing. Logo proponents argued that Logo then led students to thinking about their
own thinking and gain higher-order thinking skills (such as skills at debugging and
planning).

Students’ early activities with Logo involved mathematical and word games. Logo
was especially strong at playing games with language, e.g., creating a Pig Latin
generator or a Haiku generator. Later, a robot “turtle” was added to the Logo
environment, so that students could control the robot with commands like forward
1 to move the robot forward a little bit, right 1 to turn right one degree, and
pendown so that the robot’s pen (literally, a pen attached to the robot) would draw
on the surface below the robot as it moved. With the turtle, Logo could be used for
graphics, and in reverse, graphics could be used to understand mathematics. When
Logo was moved onto graphical user interfaces (the first uses of Logo were on paper-
scrolling teletype terminals), the turtle went with it, but as a graphical object that
left graphical pen trails on the screen. With turtle graphics (using the turtle to draw),
mathematics, and language support in Logo, student programs in Logo could range
over a broad set of knowledge areas.

However, Logo soon became intimately linked with turtle graphics. For many,
Logo was only turtle graphics, and any program that offered turtle graphics was
consequently some form of Logo. Logo proponents and researchers pointed out that
turtle graphics was significant in its complexity and scope. A book by Abelson and
diSessa pointed out how much of mathematics could be addressed through the geom-
etry available through turtle graphics, often in interesting and even novel ways [1].
Nonetheless, the close relationship between Logo and the turtle led some to believe
that Logo was limited to just explorations of geometry.



Logo use grew through the early 1980’s. Many different forms of Logo were de-
veloped, and many are still available today . Because of its linkage with turtle
graphics, Logo was fairly popular in science and math classes, but not much farther.
Further, questions started to be raised about whether students were really learning
to program [18], and what benefits (if any) were to be gained from learning to pro-
gram [24, 14]. In general, studies of the relationship between higher-order thinking
skills and programming never showed any significant correlation [22].

2.1 Examples of Logo

The basic commands of Logo could be combined and iterated using recursion or simple
looping constructs, like repeat. Executing:

repeat 4 [fd 100 rt 90]

generates:

The syntax of Logo is simple and sparse, like Lisp. It has few special characters.
Most of the syntax derives directly from the provided procedures: If you know the
procedure, you can figure out how the statements parse. The argument for this kind
of syntax was to make it simple for the students to learn the rules and understand
the programs.

There are no end line markers (e.g., semi-colons) in Logo. Instead, each procedure
(like £d) knows how many inputs it needs. The parsing and evaluation are tied tightly
in Logo. Code can be contained in lists which are delimited with square brackets ([
1). Thus repeat is a function that takes two inputs: A number of iterations to
execute, and a list of code to execute (evaluate) that many times.

We can define procedures to “teaching the turtle” to do something (the language
used to explain to children what programming was about). Here is the procedure
used for defining the word square to mean the procedure of drawing a square.

to square
repeat 4 [fd 100 rt 90]
end

We can now generate the square with square. By parameterizing the square
procedure, we can draw squares of different sizes.

http://el.media.mit.edu/logo-foundation/products/software.html



to square :size
repeat 4 [fd size rt 90]
end

We can now generate the square with square 100.

The syntax for specifying parameters in Logo is drawn from the general syntax for
variables. Unlike most programming languages, Logo remained close to its Lisp roots
and distinguished between the wvalue of the variable and the name of the variable.
Logo proponents argued that such distinctions improved students’ understanding of
what the programs were doing. We can see the use of parameterization by exploring
the square procedure the way that children were expected to play with squares.

If we move the turtle slightly and then repeat the square procedure, we can get
interesting designs. repeat 100 [square 100 fd 10 rt 30] generates a figure like
this:
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Language play is just as natural in Logo. In the below example, the procedure
start defines three lists. Each time that makeOne is executed, a random (pick)
element from the list is selected and composed into a sentence (se) which is then
shown (show). The result are sentences like “Mommy runs quickly” and “Daddy
jumps high”. We see here the syntax for defining a variable (make) requires the name
of the variable (e.g., "names) versus the syntax for accessing the variable (:names).

to start

make "names [Matthew Katie Jenny Mommy Daddy]

make "verbs [runs eats jumps poops walks sits]

make "adverbs [high quickly perfectly slowly peacefully]
end

to makeOne
show (se pick :names pick :verbs pick :adverbs)
end

2.2 Programming in support of a task

The next step in the evolution of Logo was to consider “What tasks did students
want to use programming for?” Or, to build upon the core question of Logo, “What



domains did students want to learn about through programming?” The first ver-
sions of Logo basically offered a programming environment that was a variation of a
command line: A graphical area was visible.

The first kind of Logo that really changed the students’ programming environment
LogoWriter. LogoWriter integrated a word-processor, capable of both graphics and
text, with a Logo interpreter. From a language perspective, the LogoWriter turtle
could now act as a cursor changing letters beneath it, or stamping graphics onto the
page. From an environment perspective, LogoWriter felt as much like an applications
program as a programming language. Now, students could do language manipula-
tion where they saw the language manipulation (as the cursor moved and the words
changed), and create programs that constructed mixed text-and-graphics the way
that they might in other applications software. LogoWriter took seriously providing
task support so that the range of potential domains to explore with programming
was as broad as possible.

LogoWriter was used by Idit Harel in her thesis studies where she had fourth-
graders (10 years old) building software to teach fractions to third-graders [13]. Her
fourth-graders created software that wasn’t too sophisticated, but did mix text and
graphics utilizing the special features of LogoWriter. In the end, the fourth-graders
learned significantly more about fractions than a comparison group of fourth-graders
taking a traditional math curriculum.

StarLogo followed along the path of extending the language and the environment
to focus on a particular kind of task. StarLogo supported exploration of distributed
environments [27]. Mitchel Resnick provided students with not one turtle, but liter-
ally thousands of turtles—all running essentially the same, small program. He also
introduced the notion of a patch, a spot on the screen that could hold state (such
as a color) and could run programs, but could not move as a turtle could. By using
patches to represent food for ants or wood chips for termites, StarLogo could be used
to explore how ants (turtles) gather food or how termites (turtles) create piles, all
without coordination but through the power of simple, distributed programs.

2.3 MOOSE Crossing: Practical Logo for Communities

MOOSE Crossing (by Amy Bruckman) again tuned Logo to a particular domain and
task, but a social one rather than a scientific or academic task. MOOSE Crossing is
a shared, textual, virtual reality. Students sign on to MOOSE with specialized client
software and explore a world created by peer students (all under 12 years old)—
and extend the world themselves. Students might create specialized rooms where
everything said in the room is turned into Pig Latin, or specialized objects like pet
dragons that follow their owners around. Students move around, control their world,
and interact through Logo-like commands. These commands can then be strung
together in procedures such that the dragon “wags its tail” (i.e., displays the words
“dragon wags its tail” to all those in the same room of the virtual space) when the
dragon is “pet” (i.e., some user in the same room types “pet the dragon.”) The turtle
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Figure 2: The MOOSE client running on a Macintosh

is replaced with text describing the student-created world (Figure 2).

Bruckman made several changes in the language for MOOSE, based on the expe-
rience of years of work in Logo and her concern about making the language accessible
to novice programmers. For example, she decided to remove the distinction between
the name and the value of the variable. Variables were simply known by name, and
whether the value or name was being accessed was determined by context, as in more
traditional programming languages. Bruckman used the design principle of “Prefer
intuitive simplicity over formal elegance” in make this tradeoff [6]. She made sim-
ilar tradeoffs elsewhere in her language. Where say ‘‘Hi there! How is your
project coming?’’ was acceptable in MOOSE, so was say Hi there! How is
your project coming? in recognition that students had difficulty with syntax like
matching quotes.

Bruckman’s design principle is an important recognition of what novices under-
stand and what’s needed to understand abstractions. The simple observation that
students are not the same as experts is common in the cognitive science literature,
especially with respect to novice and expert software designers and programmers [16]
[2]. A programming language or environment feature that may make sense for experts
may be confounding for novices. Current learning theory, based on the work by Jean
Piaget, suggests that students need concrete experiences before they can understand
abstractions on the experiences [34]. The abstraction of separating names and val-
ues may make more sense to experts who have significant experiences than students
facing their first programming environment.
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Bruckman found that students did learn programming in this environment, sup-
ported and motivated by the social context [4]. Students in MOOSE Crossing were
able to communicate with one another, share their creations, and even teach each
other to program with no external (e.g., adult) support—a surprising event that she
documented in a detailed case study. Her studies showed that MOOSE defeated some
gender stereotypes by showing that girls were just as successful at programming as
boys, if the context is motivating [5]. This was a strong finding in favor of Papert’s
initial premise that it was what one did with programming that really mattered most.

2.4 Boxer and Smalltalk: Extending Beyond Logo

Andrea diSessa also extended Logo, but in a different direction. Rather than tune it
to a specific task, he tried to think about what computation would look like if it were
a real literacy—as ubiquitous as text reading and writing is today [7]. Boxer was
based on a principle of naive realism: Every object in the system has an on-screen
graphical representation that can be inspected, modified, and extended. For example,
variables are not just names in Boxer. Creating a variable creates a named boxr on
the screen which corresponds to that variable. Setting the variable’s value changes
(visibly) the contents of the corresponding box. Changing the contents of the box
(with direct manipulation and typing) changes the value of the variable. Lists exist
in Boxer, but so do

diSessa answers the question about “What’s hard about programming?” with the
answer, “The interface and its relation to the language” Too much is abstract and
hidden in traditional programming languages. Boxer both makes the system easy to
understand (because of naive realism) and easy to apply to domains because, like
LogoWriter, it plays upon similarity to applications software.

However diSessa is also answer the question with the answer, “The culture.” Pro-
gramming will also be challenging, but no more challenging than learning to read and
write. If programming skill was something that one started at an early age, and it
was something that everyone did, it would be easier for students to pick up. The
interesting question is what such computational literacy means for a society. Does
science and mathematics become easier to learn because everyone has the computa-
tional skills to develop models and visualizations to explore and better understand
complex concepts?

Smalltalk-72, by Alan Kay, Dan Ingalls, Adele Goldberg, and other members of
the Xerox PARC Learning Research Group, extended the model of Logo in several
different ways. Smalltalk was developed along the path to creating the Dynabook,
a computer whose purpose is to support learning through creation and exploration
of the rich range of media that a computer enables [17]. Kay agreed with Papert
that computers should be used by students for knowledge expression and learning
through debugging of those expressions. However, he felt that the computational
power provided by Logo was too weak, so he invented object-oriented programming
as a way of enabling much more complex artifacts to be created in exploration of



more complex domains. The command-line metaphors of Logo were too weak for
the drawing, painting, and typeset-quality text that Kay felt was critical in order to
enable rich media creation, so he and his group literally invented the desktop user
interface as we know it today (Figure 3). Within this metaphor, Smalltalk provided
a wide variety of programmer tools within the environment, including code browsers,
object inspectors, and powerful debugging tools.
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Figure 3: Smalltalk-72, the first system with overlapping windows, icons, menus, and
a mouse pointing device—all designed for the novice programmer.

Smalltalk’s syntax is similar to Logo’s, in that there are a small number of gram-
matical rules and very few reserved syntactic structures. Smalltalk developers felt
that the few number of rules would make it simpler to learn. In Smalltalk, every
statement is of the form <receiverObject> <message>.

o A statement like 4 printString means “Send the integer 4 the message printString
(which returns the text representation of the object).”



e Even control structures have this basic form. (a=b) ifTrue: [Smalltalk
beep] means “Test if a is equal to b. Whatever boolean object is returned,
send that object the message ifTrue:. If the boolean object is True, the block
Smalltalk beep will be executed.”

e Standard control structures like while and for follow the same consistent pat-
tern. 1 to: 10 do: [:index | sum := sum + index] adds the numbers
1 to 10 into the sum. to:do: is a message to the integer 1, which takes the
arguments 10 and the code block.

While Smalltalk-72 was tested successfully with novice programmers, the later
versions emphasized object-oriented programming for expert programmers and the
desktop user interface for applications software—and de-emphasized the computational
literacy ideas that Kay shared with diSessa. The notion of Smalltalk for novice
programmers all but disappeared for perhaps 15 years.

The United Kingdom Open University adopted a form of Smalltalk for its in-
troductory computing course. The Smalltalk used in the OU course is basically
VisualWorks (a direct ancestor of Smalltalk-72), but with several enhancements.

e The programming environment was carefully constructed so that few windows
would be on the screen at once and only the portions of the environment relevant
to the students’ current project would be accessible.

e The domain of projects was mostly graphical with much of the programming
projects centered in a three-dimensional graphical world where students could
control objects and construct simulations.

One of the latest versions of Smalltalk, Squeak [15, 10], is being used again with
students, especially younger children. Squeak is Smalltalk from the late 1970’s min-
imally updated to run on modern machines, but then augmented with a wide range
of new features, especially in support for multimedia. An alternative interface for us-
ing Squeak has been implemented e-toys that allows for a drag-and-drop tiling-based
programming environment. Students literally drag variables, values, and methods
from place-to-place to define procedures, mostly to control graphical objects (Fig-
ure 4)—and mostly with more complex syntax than in traditional Smalltalk. Like in
Bruckman’s MOOSE Crossing, the Squeak e-toys interface favors concreteness and
ease of use to powerful abstractions. The e-toys interface has been used with success
with 10-12 year old students [12].

3 Rule-Based Programming: Changing the Lan-
guage and the Interface

Another set of answers to the question “What makes programming hard?” includes
“The interface” (as diSessa said) but also “The kind of programming” (as Kay said).
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Figure 4: An example of a car-driving project in Squeak using the tiling-based

One direction of research in novice programming environments has developed non-
textual programming environments oriented around rule-based programming rather
than traditional imperative or procedural programming. Students using rule-based
programming describe states of the world as opposed to telling the computer how to
operate upon the world.

Prolog was a popular rule-based programming language, even with novices, even
when it simply had a command-line kind of interface. In Prolog, one states facts
about the world, e.g., “The factorial of n is 1 if n = 1, and otherwise, it’s the factorial
of n—1.7 That isn’t explicitly telling the computer how to get a factorial: It states a
definition of factorial, which happens to be complete enough to be executable. That’s
how Prolog works. Prolog avoids some of the complexities of loops and conditionals
with which research shows students have difficulty.

For example, Prolog can be taught facts by simply entering them, e.g.,
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| parent(tom, bob).
| parent(bob, jim).

| parent(tom, 1iz).

The database can then be queried, using specific statements or parameterized
patterns, as in:

| ?- parent(tom, bob).
yes

| ?- parent(tom, john).
no

| ?- parent(tom, X).

X = bob 7

Note that X in the above example is not a variable in the sense of most program-
ming languages. X is not a name associated with some data. Instead, X is an unbound
variable whose binding is found by search in the Prolog logic database.

We can state logical relations on top of these facts, such as the grandchildren of
Tom being those Y’s who are children of X where Tom is X’s parent.

| ?- parent(tom, X), parent(X, Y).

X = bob

Prolog thus emphasizes the logic of programming, without confusing the matter
with graphics or even procedures. Programmers in Prolog specify how things are
related without specifying what is to be done-leaving those details to Prolog. For
Prolog proponents, Prolog boils programming down to the basic activity of stating
logical relations.

3.1 Extending Prolog into graphical domains

Some versions of Prolog could be used to generate graphics or other media, but the
core of Prolog’s descendants are entirely graphical. They have boiled the language
down to a matching rules representation. The Prolog While some versions of Pro-
log could be used for graphical and other tasks not strictly textual, other languages
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Figure 5: An AgentSheets simulation of a train

carried Prolog into a purely graphical language. These latter languages emphasize
applications in a concrete, graphical domain appropriate to creating graphical simu-
lations or videogames. It’s a domain motivating for many students, and it lends itself
toward providing immediate feedback to students’ explorations. Just as we saw in the
progression of Logo environments, and in the movement from Smalltalk to the Squeak
e-toys interface, the progression of environments after Prolog is toward concreteness
and graphical domains.

Stagecast Creator? and AgentSheets® both explicitly support rule-based program-
ming and a different kind of interface for programming. The developers of Stagecast
(formerly KidSim and Cocoa) explicitly aimed to use all that was learned about
direct-manipulation interfaces to make the task of programming easier [28]. In both
of these tools, the user defines rules that describe how the state of the world should
change if particular conditions are met.

For example, consider the AgentSheets simulation of a train (in Figure 5). The
rule appears on the right of Figure 5 (from [26]). The rule states that if the train is
on the track on the left of the track, the train should move forward onto the right of
the track.

Both AgentSheets and Stagecast Creator are most often used for building sim-
ulations or video games (Figure 6). The graphical nature of rules lend themselves
to the kinds of motion and manipulations that many videogames provide. Both
AgentSheets and Stagecast Creator support non-graphical rules, as well. For exam-
ple, a more complex if condition can lead to a set of then actions, including sounds
and setting variable values.

Both are used extensively in educational settings. Stagecast Creator has been used
by kids to build a variety of videogames, including several for Internet competitions.
AgentSheets has been used in some quite remarkable simulations for exploring social

’http://www.stagecast.com
3http://www.agentsheets.com
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Figure 6: StageCast Simulation

Figure 7: ToonTalk characters manipulate Lego-like data

studies, e.g., simulations of how peaceful protests can become riots, in a StarLogo-like
fashion [25].

ToonTalk? by Ken Kahn is explicitly influenced by the work of Seymour Pa-
pert, but it follows the rule-based and non-text model of Stagecast Creator and
AgentSheets. ToonTalk takes the model of programming-as-videogame much fur-
ther than these other two environments. In ToonTalk, a student’s program explicitly
manipulates characters who, in turn, manipulate data and structures of data which
appear as Lego bricks (Figure 7). The rendering of ToonTalk is exceptionally high-
quality: The look-and-feel is as nice as a high-end videogame (Figure 8).

ToonTalk gives the same answers to “What makes programming hard?” as Stage-
cast Creator and AgentSheets, but it provides some additional ones.

e ToonTalk is concerned with making it obvious who is doing what a program

‘http://www.toontalk.com
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Figure 8: ToonTalk running has multiple characters and assembled data elements, all
rendered in beautiful quality

commands. Agency is made visible through its characters.

o Like Boxer, ToonTalk includes naive realism in that everything is visible. What’s
more, ToonTalk provides the metaphor of Lego to make clear how virtual ob-
jects are, literally, assembled.

e ToonTalk takes great pains to make sure that its execution has the same realism
as high-end videogames. For example, ToonTalk (like StarLogo) provides a high
degree of concurrency—things happen at once, just as they do in the real world.
Kahn believes that this makes it easier for students to understand and develop
in ToonTalk.

4 Putting a New Face on an Old Language: Pro-
gramming for Future Programmers

Still another answer to the question of “What makes programming hard?” is to
say, “It’s not the programming language at all.” There’s an argument that using
idiosyncratic or ad hoc programming languages decreases student motivation, since
the programming skills developed can’t be used elsewhere. Perhaps the answer is
“It’s the programming environment—it needs to support learning the skills of expert
programmers.” This answer is probably most relevant to those students studying
computer science as a potential profession, since they are clearly motivated to learn
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existing programming languages. Some researchers have argued that it’s also relevant
to students studying programming to learn problem-solving skills [30]. Environments
that act upon this answer emphasize teaching design skills and scaffolding (providing
additional support that students need but experts don’t [3]) students to use tradi-
tional languages. In particular, the more complex syntax of traditional programming
languages was viewed as a stumbling block for novice programmers, so much of the
scaffolding was aimed at relieving syntax complexity.

Most of this work was done when Pascal was the dominant programming language
in schools (Figure 9). These environments had in common support for structured edit-
ing and design support. Structured editing refers to how the text of the program is
manipulated. Rather than simply typing the textual program, structured editors sup-
port specification of elements (e.g., from menus) and the completion of placeholders
that fill in the details of the program.

Pascal
Genie GPCeditor
X
Emile
Modellt!

Figure 9: Family of novice programming environments based on supporting tradi-
tional programming languages

Probably the largest effort to create structured Pascal editors for students was
the Genie effort at Carnegie-Mellon University [21]. Over some ten years, several
different Genie editors were created. All of them provided structured editing support.
For example, a user might choose a for loop to be inserted into her code. The loop
would be inserted with placeholders identifying where additional pieces needed to be
specified (Figure 10), which could be completed by selecting placeholders and making
menu selections. Genie also provided visualizations in its debuggers so that diSessa’s
principle of naive realism was used to facilitate debugging (Figure 11).

The Genie developers also realized that part of students’ problem with program-
ming was in figuring out how to start and how to move forward to completion. Stu-
dents lacked design skills [30]. Genie provided design views of programs that explicitly
encouraged to see their programs as sets of components that they were assembling
(Figure 12).

The GPCeditor was another Pascal-based structured editor, like Genie, but it
started from the design view [11]. Rather then choose language elements, students
using the GPCeditor specified their goals, and then selected plans from a Plan Library,
which were instantiated as code (thus, Goal-Plan-Code editor). Figure 13 shows the
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For Scontrol-variable$ = Sstart-value$ Sdirection$ Send-values Do
Begin
Sstatements
End

Figure 10: A Genie for loop with placeholders to-be-completed

students goal-plan decomposition in the upper left, their Plan Library in upper right,
the actual code (with the selected code corresponding to the highlight goal-plan) in
lower left, and the hierarchy of goal-plans in the lower right (overlapped with the
execution window of a running program).

The GPCeditor was notable for its evaluation effort. It was used in secondary
schools for several years, and findings suggest that students did develop design skills
that transferred from GPCeditor to more traditional Pascal programming environ-
ments [11]. However, it’s not clear that GPCeditor made the task any easier.

Successors to GPCeditor followed the same progression as Logo, in that they
provided support for specific kinds of tasks that might themselves be motivating to
students. Emile supported students building hypermedia (based on HyperCard) pro-
grams that simulated physical systems [9], using a goal-plan-code structure to ease the
editing of the (fairly) traditional programming language. The study of Emile showed
that students did learn a lot about physics through construction of their simulations,
but less about programming. A still later successor, Modellt [29], supported simula-
tion of systems, but moved away from programming to a direct-manipulation system
that supported specification of relationships between simulation factors as manipula-
tion of graphical and textual statements—a similar progression as from Prolog to its
SUCCEeSSOTs.

5 Summary: Trends and Future Directions

In the over forty years of programming environments for novices that we skimmed
over here, it is clear that the research community has only started to address the
question of “What’s hard about programming?” We can identify several trends in
the research.

First, there is a clear trend toward a more traditional language syntax. The
powerful abstractions of the earliest programming languages for novices have been de-
emphasized in favor of programming languages that are easier to read, perhaps with
support to make them easier to write. The syntax of Bruckman’s MOOSE Crossing
and of Squeak’s e-toys are more complex than the Logo and Smalltalk ancestors—the
parser has to work harder to figure out what’s going on and the number of rules for
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Figure 11: Genie’s editor with visualizations of data elements

interpreting what’s going on grows. Why should a more complex language be easier
for students to understand? It’s not obvious, but we can make some conjectures.

e Novice programmers may not actually think about the process of interpretation
or compilation. To think about how the language is understood by the computer
is a level of abstraction that is beyond the novice.

e Natural language is complex and ambiguous. As the programming languages
reflect natural complexity, they may become easier for the novice to understand,
even though the mathematical and logical clarity decreases.

e Finally, it’s not clear how much computer science influences novice program-
mers, especially when the students are in secondary or post-secondary educa-
tion. In one of our recent introductory courses at Georgia Tech, 83% of the
student respondents to a survey claimed that they had no previous program-
ming experience. But when interviewed, most professed to using Logo or Basic
in elementary school, or looking through books or magazines about program-
ming at some point. Computer science is part of modern culture, and some of
the predominant programming cultures have some influence on students.
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Figure 12: Genie’s design view

Second, there is another trend toward relevance and applicability. Students want
to work on computational artifacts that have meaning for them, e.g., that are inter-
esting and relevant. Research studying how students relate to computer science and
why they don’t stay with it has shown that a lack of meaning and relevance are key
issues for students’ distaste for computer science (e.g., [19]). The turtle graphics of
Logo and logic databases of Prolog have faded in favor of building video games, text
and graphical virtual realities, and simulations.

Third, related to the trend toward relevance and applicability is a trend toward
environments and tasks that give students immediate feedback on their work. Stu-
dents want to “pet Rover” and see their car turn and move their robot. The issue is
more than just being motivating to pet the dog and see the graphical reaction. If the
students’ programs work, they see immediate and understandable responses: Rover
wags his tail, the car turns, and the robot moves. Contrast this with a program to
sort a list of names or compute the n-th digit of 7 and then printing the result. The
student has to analyze the result and decide if it really is sorted or really does reflect
the correct digit of m. When students are dealing with the complexity of learning
programming, they don’t want or need to deal with subtle shades of correctness—they
want it to be right or wrong, so that they can correct it and move on.

There are a great many issues that have scarcely been addressed in novice pro-
gramming environments, and many more that arise due to new technologies. Moore’s
Law constantly changes the technological scenery, thus changing what’s possible for
novice programming and what novices can do with their new programming skills.

e For example, we know that today’s children use processors all the time, but not
on the desktop—in their handheld videogames, cellphones, and Palm Pilots. Is
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programming too locked to the desktop? What does programming mean on
these smaller devices that might be more motivating (relevant and applicable)
for students to manipulate?

e In some new work that we’re undertaking at Georgia Tech, we have students
learning to program by manipulating media, such as changing pixel color values
to generate grayscale or by moving sound samples to modify sounds. Students
start our writing relatively short programs that loop over the pixels or samples—
but the loops loop many times. Four seconds of sound at low-quality is some
88,000 samples. If something goes wrong in the students’ programs, printing
variable values doesn’t make sense. Nobody wants to wade through 88,000 lines
of output. Traditional debuggers and breakpoints aren’t useful, either—most
debuggers are too confusing for novices, and nobody wants to hit the button
Continue from Breakpoint 88,000 times. How do we help students to understand
their programs in this kind of domain?

e The interaction between the programming environment and language has just
started to be addressed. Computer speed is such that the parser can be run-
ning all the time, while editing, so that immediate feedback is offered during
program entry. How do we use this computational power to scaffold the novice
programmer?

Finally, it may be that “What makes programming hard?” is not the most fruitful
question to ask. Perhaps we don’t know yet what programming really is or what it
could be (as diSessa suggests in his book [7]). Perhaps we don’t know yet what
students would really want to learn programming for.

Designing programming environments for novices is a fascinating field that we
have only just started to explore. There is a great many more questions and answers
to explore, and some wonderful environments yet to build and try in that exploration.
The progress in the field is toward making programming more interesting, more rel-
evant, and more powerful for students. The research opportunities could hardly be
broader, and promise enormous potential impact.
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