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SOLUTIONS TO PROBLEMS

PREFACE

This section of instructor's resource materials contains solutions and answers to
all problems and questions that appear in the textbook. My penmanship leaves
something to be desired; therefore, | generated these solutions/answers using
computer software so that the resulting product would be "readable.” Furthermore, |
endeavored to provide complete and detailed solutions in order that: (1) the instructor,
without having to take time to solve a problem, will understand what principles/skills are
to be learned by its solution; and (2) to facilitate student understanding/learning when
the solution is posted.

| would recommend that the course instructor consult these solutions/answers
before assigning problems and questions. In doing so, he or she ensures that the
students will be drilled in the intended principles and concepts. In addition, the
instructor may provide appropriate hints for some of the more difficult problems.

With regard to symbols, in the text material | elected to boldface those symbols
that are italicized in the textbook. Furthermore, | also endeavored to be consistent
relative to symbol style. However, in several instances, symbols that appear in the
textbook were not available, and it was necessary to make appropriate substitutions.
These include the following: the letter a (unit cell edge length, crack length) is used in
place of the cursive a. And Roman E and F replace script E (electric field in Chapter
18) and script F (Faraday's constant in Chapter 17), respectively.

| have exercised extreme care in designing these problems/questions, and then
in solving them. However, no matter how careful one is with the preparation of a work
such as this, errors will always remain in the final product. Therefore, corrections,
suggestions, and comments from instructors who use the textbook (as well as their
teaching assistants) pertaining to homework problems/solutions are welcomed. These
may be sent to me in care of the publisher.
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CHAPTER 2
ATOMIC STRUCTURE AND INTERATOMIC BONDING
PROBLEM SOLUTIONS

(@) When two or more atoms of an element have different atomic masses, each is termed an
isotope.

(b) The atomic weights of the elements ordinarily are not integers because: (1) the atomic masses
of the atoms generally are not integers (except for 12C), and (2) the atomic weight is taken as the

weighted average of the atomic masses of an atom's naturally occurring isotopes.

2.2 Atomic mass is the mass of an individual atom, whereas atomic weight is the average (weighted) of

2.3

2.4

the atomic masses of an atom's naturally occurring isotopes.

(@) In order to determine the number of grams in one amu of material, appropriate manipulation of

the amu/atom, g/mol, and atom/mol relationships is all that is necessary, as

#glamu = [ 1 mol ]( 1 g/mol )
6.023 x 1023 atoms/\1 amu/atom

=1.66 x 1024 g/amu

(b) Since there are 453.6 g/Ibm,

1llb-mol = (453.6 g/ImeG.OZS x 1023 atoms/g—mol)

=273 x 1026 atoms/Ib-mol

(&) Two important quantum-mechanical concepts associated with the Bohr model of the atom are
that electrons are particles moving in discrete orbitals, and electron energy is quantized into shells.

(b) Two important refinements resulting from the wave-mechanical atomic model are that electron
position is described in terms of a probability distribution, and electron energy is quantized into both

shells and subshells--each electron is characterized by four quantum numbers.

2.5 The n quantum number designates the electron shell.



The | quantum number designates the electron subshell.
The m, quantum number designates the number of electron states in each electron subshell.

The m, quantum number designates the spin moment on each electron.

2.6 For the L state, n = 2, and eight electron states are possible. Possible | values are 0 and 1, while

1
possible m, values are 0 and +1. Therefore, for the s states, the quantum numbers are 200(;) and
1 1 1 1 1
200(—5). For the p states, the quantum numbers are 210(;), 210(—5), 211(5), 211(——2),
1 1
21(-1)(5), and 21(-1)(——2).

For the M state, n = 3, and 18 states are possible. Possible | values are 0, 1, and 2;

. . 1
possible m, values are 0, 1, and *2; and possible m_ values are iE' Therefore, for the s states,

S

1 1 1 1 1
the quantum numbers are 300 (E)’ 300(- E)’ for the p states they are 310 (E)’ 310(- E)’ 311(5),

1 1 1 1 1 1
311(——2), 31(-1)(5), and 31(-1)(—5); for the d states they are 320(;), 320(—5), 321(5),

1 1 1 1 1 1 1
321(-3), 32(1)(), 32(-1)(-3), 322 (5), 322 (-3), 32(-2) (5), and 32(-2) (7).

2.7 The electron configurations of the ions are determined using Table 2.2.

Fe2t - 15%25%2pP3s23p03d®
FeS - 15%25%2p%3s23p03d®
cu” - 15225%2p°3s23p034 10

Ba2+ - 1522322p63523p63d104324p64d105325p6

Br - 1522322p63sz3p63d104324p6

s% . 1322322p63323p6

NN

+ . . . .
2.8 The Na ion is just a sodium atom that has lost one electron; therefore, it has an electron
configuration the same as neon (Figure 2.6).
The CI ion is a chlorine atom that has acquired one extra electron; therefore, it has an

electron configuration the same as argon.

2.9 Each of the elements in Group IIA has two s electrons.

2.10 (a) The 1322522p63523p63d7452 electron configuration is that of a transition metal because of an

incomplete d subshell.



(b) The 1522522p6332

3p6 electron configuration is that of an inert gas because of filled 3s and 3p
subshells.

(c) The 1522322p5 electron configuration is that of a halogen because it is one electron deficient
from having a filled L shell.

(d) The 1322522p6332 electron configuration is that of an alkaline earth metal because of two s
electrons.

(e) Thels2 29p035%3p034%

2s"2p 3s"3p 3d 432 electron configuration is that of a transition metal because of an
incomplete d subshell.

2,2.6,2 6,1 , o . .
(f) The 1s72s"2p 3s"3p 4s™ electron configuration is that of an alkali metal because of a single s

electron.

2.11 (a) The 4f subshell is being filled for the rare earth series of elements.

(b) The 5f subshell is being filled for the actinide series of elements.

2.12 The attractive force between two ions F A is just the derivative with respect to the interatomic
separation of the attractive energy expression, Equation (2.8), which is just

A
-2
dEA_ r) A

Eo= _ - A
A dr dr r2

2

The constant A in this expression is defined in footnote 3. Since the valences of the Ca * and 02'

ions (Zl and 22) are both 2, then

!Zle !ZZe )

F, =
A 2
4naor

(2)(2)@.6 x 10719 c)Z

(4)(7:)@.85 x 10712 F/m)Xl.zs x 1079 m)Z

=589 x 1010 N

2.13 (a) Differentiation of Equation (2.11) yields

dEy, A 8 _
dr - r(1+1) r(n+1) -




(b) Now, solving forr (= ro)

A _ _nB

2 - T+l
I fé )

or

(A)l/(l- n)
r. = |——

0 nB

(c) Substitution for Mo into Equation (2.11) and solving for E (= Eo)

B
n
IfO

2.14 (a) Curves of EA’ ER’ and EN are shown on the plot below.

\
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(b) From this plot

r0 =0.24 nm
E =-53eV
[0}
(c) From Equation (2.11) for EN
A=1.436
B=7.32x10"°
n=8
Thus,
s (A)l/(l- n)
o \nB
/(1 -8)
Y R ~ 0236 nm
(8)6.32 X 10'6)
and
- 1.436 . 732 x 1070
0 . -8 T 8/0-8)
| 1.436 | | 1.436 |
L(s) (7.32 x 10‘6)J L(S) (732 x 10‘6”
=-532eV

2.15 This problem gives us, for a hypothetical x*-Y"ion pair, values for o (0.35 nm), EO (-6.13 eV), and

n (10), and asks that we determine explicit expressions for attractive and repulsive energies of
Equations 2.8 and 2.9. In essence, it is necessary to compute the values of A and B in these
equations. Expressions for o and Eo in terms of n, A, and B were determined in Problem 2.13,

which are as follows:

_ [A)ll(l- n)

;
0 nB



A B
E = -

(Ajll(l-n) * (A)n/(l-n)
nB nB

Thus, we have two simultaneous equations with two unknowns (viz. A and B). Upon substitution of
values for o and E, in terms of n, these equations take the forms

A (- 10)
0.35nm = [ﬁj
A B
-6.13eV = - +
A j1/(1— 10) ( A jlol(l ~10)
10B 10B

Simultaneous solution of these two equations leads to A = 2.38 and B = 1.88 x 10'5. Thus,
Equations (2.8) and (2.9) become

Of course these expressions are valid for r and E in units of nanometers and electron volts,
respectively.

2.16 (a) Differentiating Equation (2.12) with respect to r yields
Atr=rg, dE/dr =0, and

_— 2.12b
- - (2.12b)

Solving for C and substitution into Equation (2.12) yields an expression for E0 as



_ r
Eo = De (I'O/p) [l - —Oj
p

(b) Now solving for D from Equation (2.12b) above yields

/
Cpe t,/p)

D= >

o

Substitution of this expression for D into Equation (2.12) yields an expression for E,as

2.17 (a) The main differences between the various forms of primary bonding are:
lonic--there is electrostatic attraction between oppositely charged ions.
Covalent--there is electron sharing between two adjacent atoms such that each atom assumes a

stable electron configuration.

Metallic--the positively charged ion cores are shielded from one another, and also "glued" together

by the sea of valence electrons.
(b) The Pauli exclusion principle states that each electron state can hold no more than two

electrons, which must have opposite spins.

2.18 Covalently bonded materials are less dense than metallic or ionically bonded ones because
covalent bonds are directional in nature whereas metallic and ionic are not; when bonds are

directional, the atoms cannot pack together in as dense a manner, yielding a lower mass density.

2.19 The percent ionic character is a function of the electron negativities of the ions XA and XB

according to Equation (2.10). The electronegativities of the elements are found in Figure 2.7.

For MgO, ng =1.2and XO = 3.5, and therefore,
2
%IC = {1 ~ e(025@5-12) }x 100 = 73.4%

For GaP, xGa =1.6and Xp = 2.1, and therefore,



2
%IC = [1 _ ¢(-025(2.1-1.6) }x 100 = 6.1%
For CsF, XCs =0.7 and XF = 4.0, and therefore,
2
%IC = {1 _ ¢(+029(4.0-0.7) } x 100 = 93.4%
For CdS, XCd =1.7 and XS = 2.5, and therefore,
2
%IC = {1 _ ¢(-029(25-17) }x 100 = 14.8%
For FeO, XFe =1.8 and XO = 3.5, and therefore,

2
WIC = {1 _ (-025(3.5-18) }xlOO = 51.4%

2.20 Below is plotted the bonding energy versus melting temperature for these four metals. From this
plot, the bonding energy for copper (melting temperature of 1084°C) should be approximately 3.6
eV. The experimental value is 3.5 eV.
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2.21 For silicon, having the valence electron structure 3323p2, N' = 4; thus, there are 8 - N' = 4 covalent
bonds per atom.
For bromine, having the valence electron structure 4324p5, N' =7; thus, thereis8-N' =1
covalent bond per atom.
For nitrogen, having the valence electron structure 2522p3, N'=5; thus, thereare 8-N'=3
covalent bonds per atom.
For sulfur, having the valence electron structure 3323p4, N' = 6; thus, there are 8 - N' =

covalent bonds per atom.

2.22 For brass, the bonding is metallic since it is a metal alloy.

For rubber, the bonding is covalent with some van der Waals. (Rubber is composed
primarily of carbon and hydrogen atoms.)

For BasS, the bonding is predominantly ionic (but with some covalent character) on the basis
of the relative positions of Ba and S in the periodic table.

For solid xenon, the bonding is van der Waals since xenon is an inert gas.

For bronze, the bonding is metallic since it is a metal alloy (composed of copper and tin).

For nylon, the bonding is covalent with perhaps some van der Waals. (Nylon is composed
primarily of carbon and hydrogen.)

For AIP the bonding is predominantly covalent (but with some ionic character) on the basis

of the relative positions of Al and P in the periodic table.

2.23 The intermolecular bonding for HF is hydrogen, whereas for HCI, the intermolecular bonding is van
der Waals. Since the hydrogen bond is stronger than van der Waals, HF will have a higher melting

temperature.

2.24 The geometry of the H,O molecules, which are hydrogen bonded to one another, is more restricted

2
in the solid phase than for the liquid. This results in a more open molecular structure in the solid, and

a less dense solid phase.

10



CHAPTER 3
THE STRUCTURE OF CRYSTALLINE SOLIDS
PROBLEM SOLUTIONS

3.1 Atomic structure relates to the number of protons and neutrons in the nucleus of an atom, as well as
the number and probability distributions of the constituent electrons. On the other hand, crystal

structure pertains to the arrangement of atoms in the crystalline solid material.

3.2 A crystal structure is described by both the geometry of, and atomic arrangements within, the unit
cell, whereas a crystal system is described only in terms of the unit cell geometry. For example,
face-centered cubic and body-centered cubic are crystal structures that belong to the cubic crystal

system.
3.3 For this problem, we are asked to calculate the volume of a unit cell of aluminum. Aluminum has an

FCC crystal structure (Table 3.1). The FCC unit cell volume may be computed from Equation (3.4)

as
Ve = 16R%2 = (16) @.143x 10°° miﬁ = 6.62x102% m3

3.4 This problem calls for a demonstration of the relationship a = 4R\/_3 for BCC. Consider the BCC

unit cell shown below

Using the triangle NOP

11



2

(@)2: a’+ a®=2a’

And then for triangle NPQ,
(NQ?= (QP)? + (NP)?

But N_Q = 4R, R being the atomic radius. Also, @ = a. Therefore,

(4R)2 =a% + 2a2, or

4R

T

3.5 We are asked to show that the ideal c/a ratio for HCP is 1.633. A sketch of one-third of an HCP unit

cell is shown below.

(7]

39

<

Consider the tetrahedron labeled as JKLM, which is reconstructed as

12



The atom at point M is midway between the top and bottom faces of the unit cell--that is MH = c/2.

And, since atoms at points J, K, and M, all touch one another,
JM=JK=2R=a
where R is the atomic radius. Furthermore, from triangle JHM,
M2 = @GH)? + (MH), or

- 5]

Now, we can determine the JH length by consideration of triangle JKL, which is an equilateral

triangle,

. _ al2_ +3
cos 30 ——JH— 2,and

-
V3
Substituting this value for JH in the above expression yields

2

az_[i]2+(sj2_a_2+c_
V3 2) 3 4

and, solving for c/a

13



c 8
— = 4= =1.633
a J;

3.6 We are asked to show that the atomic packing factor for BCC is 0.68. The atomic packing factor is

defined as the ratio of sphere volume to the total unit cell volume, or

Since there are two spheres associated with each unit cell for BCC

3

3
4R 8nR
Vg = 2(sphere volume) = 2( = J: i

3 3

Also, the unit cell has cubic symmetry, that is V . = a3. But a depends on R according to Equation

C
(3.3), and

. (ﬁjs _ 64RS

C {3 33
Thus,

3
APF = 8”2—/3 = 0.68
64R° /343

3.7 This problem calls for a demonstration that the APF for HCP is 0.74. Again, the APF is just the total

sphere-unit cell volume ratio. For HCP, there are the equivalent of six spheres per unit cell, and thus

3
_ 4R | 3
VS = G{T] = 8nR

Now, the unit cell volume is just the product of the base area times the cell height, c. This base area

is just three times the area of the parallelepiped ACDE shown below.

14



The area of ACDE is just the length of CD times the height BC. But CD is justa or 2R, and

BC = 2R cos (30°) = %ﬁ
Thus, the base area is just
—_— 2R+3
AREA = (3)(CD)(BC) = (3)(2R)[—2‘/-j = 6R?y3

and since ¢ = 1.633a = 2R(1.633)

Ve = (AREA)() = 6R%c43 = @RZ@)Z)(l.ese)R = 1243 (1.633)R3

Thus,

\ g R>
APF = —S= . 5= 074
Ve o 124/3(1.633)R

3.8 This problem calls for a computation of the density of iron. According to Equation (3.5)

NACq

VeNa

p_

For BCC, n = 2 atoms/unit cell, and

15



"3
|hUS,

(2 atoms/unit cell(55.9 g/mol)

3
{(4)@.124 x 1077 cm)3 /ﬁ} I(unit cell) @.023 x 1023 atoms/mol]

=7.90 g/cm3
The value given inside the front cover is 7.87 g/cm3.

3.9 We are asked to determine the radius of an iridium atom, given that Ir has an FCC crystal structure.
For FCC, n = 4 atoms/unit cell, and VC = 16R3\/§ [Equation (3.4)]. Now,

nA,

C A

And solving for R from the above two expressions yields

1/3
nAIr
R=|—I—
16pN ,v2

1/3
(4 atoms/unit cell)192.2 g/mol)

«5116)(22.4 g/cm3£.023 X 1023 atoms/mol)

8

=1.36 x10 ° cm = 0.136 nm

3.10 This problem asks for us to calculate the radius of a vanadium atom. For BCC, n = 2 atoms/unit cell,

and

_(4rR)® _ e4R®
VC_

Y3/ 7 33

16



Since,

and solving for R

64pN |

- [SnJgAV]US

1/3
(3\/§ XZ atoms/unit cell)(50.9 g/mol)

(64)63.96 g/cm3X3.023 x 1023 atoms/mol)

=1.32x10°8 cm = 0.132 nm

3.11 For the simple cubic crystal structure, the value of n in Equation (3.5) is unity since there is only a

single atom associated with each unit cell. Furthermore, for the unit cell edge length, a = 2R.

Therefore, employment of Equation (3.5) yields

nA nA
VeNa RN,

p:

(1 atom/unit cell)(74.5 g/mol)

3
{[(2)(1.45 X 10'8 cmj /(unit cell)} (6.023 X 1023 atoms/mol)

5.07 g/cm3

3.12. (a) The volume of the Ti unit cell may be computed using Equation (3.5) as

VC =

Now, for HCP, n = 6 atoms/unit cell, and for Ti, ATi =47.9 g/mol. Thus,

17



B (6 atoms/unit cell)(47.9 g/mol)
@.51 g/cm3XS.023 X 1023 atoms/mol)

Ve

=1.058 x 10'22 cm3/unit cell = 1.058 x 10'28 m3/unit cell

(b) From the solution to Problem 3.7, since a = 2R, then, for HCP

3\/3 a’c
2

Ve

but, since ¢ = 1.58a

3
1. -
—3‘@( 258)a = 1.058 x 10722 cm>/unit cell

Ve =

Now, solving for a

3
(2)(L.058 x 1022 em?)

2 (3)(3)158)

2.96 x 10°8 ¢cm = 0.296 nm

And finally
¢ = 1.58a = (1.58)(0.296 nm) = 0.468 nm

3.13 This problem asks that we calculate the theoretical densities of Al, Ni, Mg, and W.
Since Al has an FCC crystal structure, n = 4, and VC = (ZRJE)s. Also, R =0.143 nm (1.43

X 10'8 cm) and AAI = 26.98 g/mol. Employment of Equation (3.5) yields

(4 atoms/unit cell)(26.98 g/mal)

{[2)(1.43 X 10'8 cm)(\@):r/(unit cell)}@.OZS X 1023 atoms/mol)

p:

=271 g/cm3

The value given in the table inside the front cover is 2.71 g/cm3.

18



Nickel also has an FCC crystal structure and therefore

(4 atoms/unit cell)(58.69 g/mol)

p =
{[2)(1.25 x 108 cm)(\@):r/(unit cell)}(6.023 x 1023 atoms/mol)

=8.82 g/cm3
The value given in the table is 8.90 g/cm3.

Magnesium has an HCP crystal structure, and from Problem 3.7,

3\@ azc

Ve = >

and, since ¢ = 1.624a and a = 2R = 2(1.60 x 10°8 cm) = 3.20 x 108 cm

3
33 (1.624)@.20 x 1078 cm)

Ve > = 1.38x 10_22 cm3/unit cell

Also, there are 6 atoms/unit cell for HCP. Therefore the theoretical density is

_ Mg
VCNA

(6 atoms/unit cell)(24.31 g/mol)
22 cm3/unit celI%.OZS X 1023

(1.38 x 107 atoms/mol)

=1.75 g/cm3

The value given in the table is 1.74 g/cm3.

. 4R
Tungsten has a BCC crystal structure for whichn =2 and a = ﬁ ; also AW =183.85 g/mol

and R =0.137 nm. Therefore, employment of Equation (3.5) leads to

19



(2 atoms/unit cell}183.85 g/mol)

(4)(1.37 x 10 cm)3

V3

/(unit cell) @.023 x 1023 atoms/mol)

=19.3 g/cm3

The value given in the table is 19.3 g/cm3.

3.14 In order to determine whether Nb has an FCC or BCC crystal structure, we need to compute its
density for each of the crystal structures. For FCC,n =4,anda = 2 R‘/_Z . Also, from Figure 2.6, its

atomic weight is 92.91 g/mol. Thus, for FCC

nANb

p=——a—
(2RV2) N,

(4 atoms/unit cell)(92.91 g/maol)

{[(2) @.43 x 10 cmXﬁ )]3 /(unitcell)} @.023 x 1023 atoms/mol)

=9.33 g/cm3

ForBCC,n=2,anda= % , thus

(2 atoms/unit cell)(92.91 g/mol)

(4)@.43 x 1078 cm) °
g

/(unitcell) (6.023 x 1022 atoms/ mol)

=8.57 g/cm3
which is the value provided in the problem. Therefore, Nb has a BCC crystal structure.
3.15 For each of these three alloys we need to, by trial and error, calculate the density using Equation

(3.5), and compare it to the value cited in the problem. For SC, BCC, and FCC crystal structures,

20



the respective values of n are 1, 2, and 4, whereas the expressions for a (since Ve = a3) are 2R,

2RY2,and 4R /43 .

For alloy A, let us calculate p assuming a BCC crystal structure.

nAA

p =
VCNA

(2 atoms/unit cell)(43.1 g/mol)

(4)(1.22 x 1078 cm) °

V3

/(unit cell) @.023 x 1023 atoms/mol)

= 6.40 g/cm®

Therefore, its crystal structure is BCC.

For alloy B, let us calculate p assuming a simple cubic crystal structure.

(1 atom/unit cell)(184.4 g/mol)
3
ﬂ@446xmgcmj/@Mcﬂ%@ﬂ%xﬂﬁgmMMng

=12.3 g/cm3

Therefore, its crystal structure is simple cubic.

For alloy C, let us calculate p assuming a BCC crystal structure.

(2 atoms/unit cell)(91.6 g/mol)

(4)(1.37 x 1078 cm) :

3

/(unit cell) (6.023 x 1023 atoms/mol)

= 9.60 g/cm®

Therefore, its crystal structure is BCC.

21



3.16 In order to determine the APF for U, we need to compute both the unit cell volume (VC) which is
just the product of the three unit cell parameters, as well as the total sphere volume (VS) which is
just the product of the volume of a single sphere and the number of spheres in the unit cell (n). The
value of n may be calculated from Equation (3.5) as

PVcNa

n =
AU

(19.05)(2.86)(5.87)(4.95) 610'2‘%3.023 X 1023)
- 283.03

= 4.01 atoms/unit cell

Therefore

ve @ (g n R3)

AP =Y. T Tame

(4)[%(7:)(0.1385)3}
~ 10.286)(0.587)(0.495)

=0.536

3.17 (a) From the definition of the APF

4
n—TCR3
=y >

we may solve for the number of atoms per unit cell, n, as

. (APF)a’c
ﬂ7:R3
3

22



(0.693)(4.59)2(4.95) €0'24 cm3)

%Tr (1.625 x 1078 cm)77

= 4.0 atoms/unit cell

(b) In order to compute the density, we just employ Equation (3.5) as

_ nA

2
a cNA

(4 atoms/unit cell)(114.82 g/mol)

[@.59 X 10'8 cm)z @.95 X lO'8 cm)unit cell} @.023 X 1023 atoms/mol)

=7.31 g/cm3
3. 18 (a) We are asked to calculate the unit cell volume for Be. From the solution to Problem 3.7
Ve = 6R%c43
But, ¢ = 1.568a, and a = 2R, or ¢ = 3.14R, and
Ve = (6)3.14)R343

= (6)(3.14)(¥3 )E).1143 x 107 cm:r = 4.87 x 10722 cm®/unit cell

(b) The density of Be is determined as follows:

”ABe
VCNA

p_

For HCP, n = 6 atoms/unit cell, and for Be, A e 9.01 g/mol. Thus,

B

(6 atoms/unit cell)(9.01 g/mol)
p =
@.87 x 10723 cm3/unit cell}.023 x 1023

atoms/mol)

23



=1.84 g/cm3
The value given in the literature is 1.85 g/cm3.

3.19 This problem calls for us to compute the atomic radius for Mg. In order to do this we must use
Equation (3.5), as well as the expression which relates the atomic radius to the unit cell volume for

HCP; from Problem 3.7 it was shown that

Ve = 6R%c43

In this case ¢ = 1.624(2R). Making this substitution into the previous equation, and then solving

for R using Equation (3.5) yields

1/3
nAM 9

(1.624)12¥3 )pN ,

/3
(6 atoms/unit cell)24.31 g/mol )

(1.624)(12@%.74 g/cm3 ﬁ.OZB x 1023 atoms/mol)

8

=1.60x 10™° cm = 0.160 nm

3.20 This problem asks that we calculate the unit cell volume for Co which has an HCP crystal structure.

In order to do this, it is necessary to use a result of Problem 3.7, that is
Ve = 6R%c43
The problem states that ¢ = 1.623a, and a = 2R. Therefore
Ve = (1.623)(1243)R3

= (1.623)(12J§)(1.253 x 1078 cm)3 = 6.64x10%3 cm® = 6.64x 107 nm°
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3.21 (a) The unit cell shown in the problem belongs to the tetragonal crystal system since a = b = 0.35
nm, ¢ =0.45nm, and o = =y = 90°.
(b) The crystal structure would be called body-centered tetragonal.

(c) As with BCC, n = 2 atoms/unit cell. Also, for this unit cell

Vo = @5x107° cm)z(4.5 x 1078 cm)

= 551x 10_23 cm3/unit cell

Thus,

nA
VC NA

p_

(2 atoms/unit cell)(141 g/mol)
23 om3unit ceIIX6.023 x 1023

(5.51 x 10 atoms/mol)

=8.50 g/cm3

3.22 First of all, open ‘Notepad” in Windows. Now enter into “Notepad” commands to generate the

AuCu3 unit cell. One set of commands that may be used is as follows:

[DisplayProps]
Rotatez=-30
Rotatey=-15

[AtomProps]
Gold=LtRed,0.14
Copper=LtYellow,0.13

[BondProps]
SingleSolid=LtGray

[Atoms]

Aul=1,0,0,Gold
Au2=0,0,0,Gold
Au3=0,1,0,Gold
Au4=1,1,0,Gold
Au5=1,0,1,Gold
Au6=0,0,1,Gold
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Au7=0,1,1,Gold

Au8=1,1,1,Gold

Cul1=0.5,0,0.5,Copper
Cu2=0,0.5,0.5,Copper
Cu3=0.5,1,0.5,Copper
Cu4=1,0.5,0.5,Copper
Cu5=0.5,0.5,1,Copper
Cu6=0.5,0.5,0,Copper

[Bonds]
B1=Aul,Au5,SingleSolid
B2=Au5,Au6,SingleSolid
B3=Au6,Au2,SingleSolid
B4=Au2,Aul,SingleSolid
B5=Au4,Au8,SingleSolid
B6=Au8,Au7,SingleSolid
B7=Au7,Au3,SingleSolid
B8=Au3,Au4,SingleSolid
B9=Aul,Au4,SingleSolid
B10=Au8,Au5,SingleSolid
B11=Au2,Au3,SingleSolid
B12=Au6,Au7,SingleSolid

Under the "File" menu of "Note Pad," click "Save As", and then assign the file for this figure a name
followed by a period and "mdf"; for example, “AuCu3.mdf”. And, finally save this file in the “mdf” file
inside of the “Interactive MSE” folder (which may be found in its installed location).

Now, in order to view the unit cell just generated, bring up “Interactive MSE”, and then
open any one of the three submodules under “Crystallinity and Unit Cells” or the “Ceramic
Structures” module. Next select “Open” under the “File” menu, and then open the “mdf” folder.
Finally, select the name you assigned to the item in the window that appears, and hit the “OK”
button. The image that you generated will now be displayed.

3.23 First of all, open ‘Notepad” in Windows.. Now enter into “Notepad” commands to generate the AuCu

unit cell. One set of commands that may be used is as follows:

[DisplayProps]
Rotatez=-30
Rotatey=-15

[AtomProps]
Gold=LtRed,0.14
Copper=LtYellow,0.13

[BondProps]
SingleSolid=LtGray

[Atoms]
Aul1=0,0,0,Gold
Au2=1,0,0,Gold
Au3=1,1,0,Gold
Au4=0,1,0,Gold
Au5=0,0,1.27,Gold
Au6=1,0,1.27,Gold
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Au7=1,1,1.27,Gold
Au8=0,1,1.27,Gold
Cul1=0.5,0.5,0.635,Copper

[Bonds]
B1=Aul,Au2,SingleSolid
B2=Au2,Au3,SingleSolid
B3=Au3,Au4,SingleSolid
B4=Aul,Au4,SingleSolid
B5=Aub5,Au6,SingleSolid
B6=Au6,Au7,SingleSolid
B7=Au7,Au8,SingleSolid
B8=Au5,Au8,SingleSolid
B9=Aul,Au5,SingleSolid
B10=Au2,Au6,SingleSolid
B11=Au3,Au7,SingleSolid
B12=Au4,Au8,SingleSolid

Under the "File" menu of "Note Pad," click "Save As", and then assign the file for this figure a name
followed by a period and "mdf*; for example, “AuCu.mdf”. And, finally save this file in the “mdf” file
inside of the “Interactive MSE” folder (which may be found in its installed location).

Now, in order to view the unit cell just generated, bring up “Interactive MSE”, and then
open any one of the three submodules under “Crystallinity and Unit Cells” or the “Ceramic
Structures” module. Next select “Open” under the “File” menu, and then open the “mdf” folder.
Finally, select the name you assigned to the item in the window that appears, and hit the “OK”
button. The image that you generated will now be displayed.

3.24 A unit cell for the face-centered orthorhombic crystal structure is presented below.

3.25 This problem asks that we list the point coordinates for all of the atoms that are associated with the

FCC unit cell. From Figure 3.1b, the atom located of the origin of the unit cell has the coordinates
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11
000. Coordinates for other atoms in the bottom face are 100, 110, 010, and 5—20 (The z

coordinate for all these points is zero.)
. . 11
For the top unit cell face, the coordinates are 001, 101, 111, 011, and 531 (These

coordinates are the same as bottom-face coordinates except that the “0” z coordinate has been
replaced by a “1".)

Coordinates for only those atoms that are positioned at the centers of both side faces, and
centers of both front and back faces need to be specified. For the front and back-center face atoms,

. 11 11 . . . .
the coordinates are 1—25 and O—ZE , respectively. While for the left and right side center-face atoms,

. . 1 1 1.1
the respective coordinates are EOE and El;

3.26 (a) Here we are asked list point coordinates for both sodium and chlorine ions for a unit cell of the
sodium chloride crystal structure, which is shown in Figure 12.2.

In Figure 12.2, the chlorine ions are situated at all corners and face-centered positions.

Therefore, point coordinates for these ions are the same as for FCC, as presented in the previous

11 11 11 11 1 1
problem—that is, 000, 100, 110, 010, 001, 101, 111, 011, 5—20 -=1, I-—, 0—— EOE and
1.1
_1_

22 22’ 22’
2727

Furthermore, the sodium ions are situated at the centers of all unit cell edges, and, in
addition, at the unit cell center. For the bottom face of the unit cell, the point coordinates are as
1 1 1 1 . .
follows: EOO’ 1—20, 510, 0—20. While, for the horizontal plane that passes through the center of
1 111

: L : : : 1
the unit cell (which includes the ion at the unit cell center), the coordinates are OOE’ 102 555

1 1 1 1 1 1
11;, and 015' And for the four ions on the top face 501, 1—21, 511, and 051.

(b) This portion of the problem calls for us to list the point coordinates of both the zinc and sulfur
atoms for a unit cell of the zinc blende structure, which is shown in Figure 12.4.
First of all, the sulfur atoms occupy the face-centered positions in the unit cell, which from
. 11 11
the solution to Problem 3.25, are as follows: 000, 100, 110, 010, 001, 101, 111, 011, 5—20 5—21
11 11 1 1 1.1
——,0-—,-0—-,and -1—-.
22 22 2 2 2 2
Now, using an x-y-z coordinate system oriented as in Figure 3.4, the coordinates of the zinc

. . . 311
atom that lies toward the lower-left-front of the unit cell has the coordinates ZZ Z , Wwhereas the atom
. . . . 131 .
situated toward the lower-right-back of the unit cell has coordinates of ZZZ' Also, the zinc atom
. . 113 .
that resides toward the upper-left-back of the unit cell has the ZZZ coordinates. And, the

. . . . . 333
coordinates of the final zinc atom, located toward the upper-right-front of the unit cell, are ZZZ'
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. . 1 111 . . .
3.27 A tetragonal unit in which are shown the 11; and EZE point coordinates is presented below.

111 : A
24 2 o
. |: c
& 7
111-"“/7: !
2 J,ﬂ------- - Y
,"l"
il 1
y'3
X

3.28 This portion of the problem calls for us to draw a [12_1] direction within an orthorhombic unit cell (a
#b #c,a=p=v=90°. Such a unit cell with its origin positioned at point O is shown below. We
first move along the +x-axis a units (from point O to point A), then parallel to the +y-axis 2b units
(from point A to point B). Finally, we proceed parallel to the z-axis -c units (from point B to point C).
The [12 1] direction is the vector from the origin (point O) to point C as shown.

N

We are now asked to draw a (210) plane within an orthorhombic unit cell. First remove the three

indices from the parentheses, and take their reciprocals--i.e., 1/2, 1, and «. This means that the
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plane intercepts the x-axis at a/2, the y-axis at b, and parallels the z-axis. The plane that satisfies

these requirements has been drawn within the orthorhombic unit cell below.

3.29 (a) This portion of the problem asks that a [0_1 1] direction be drawn within a monoclinic unit cell (a
#b #c,and a = =90° #y). One such unit cell with its origin at point O is sketched below. For this
direction, there is no projection along the x-axis since the first index is zero; thus, the direction lies in
the y-z plane. We next move from the origin along the minus y-axis b units (from point O to point R).
Since the final index is a one, move from point R parallel to the z-axis, ¢ units (to point P). Thus, the

[0_1 1] direction corresponds to the vector passing from the origin to point P, as indicated in the

figure.

\
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(b) A (002) plane is drawn within the monoclinic cell shown below. We first remove the parentheses

and take the reciprocals of the indices; this gives «, «, and 1/2. Thus, the (002) plane parallels

both x- and y-axes, and intercepts the z-axis at c/2, as indicated in the drawing.

\

3.30 (a) We are asked for the indices of the two directions sketched in the figure. For direction 1, the

projection on the x-axis is zero (since it lies in the y-z plane), while projections on the y- and z-axes
are b/2 and c, respectively. This is an [012] direction as indicated in the summary below

X y z
Projections Oa b/2 c
Projections in terms of a, b,
and c 0 1/2 1
Reduction to integers 0 1 2
Enclosure [012]

Direction 2 is [115] as summarized below.

X y z

Projections al2 b/2 -C
Projections in terms of a, b,

and c 1/2 1/2 -1

Reduction to integers 1 1 -2
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Enclosure [115]

(b) This part of the problem calls for the indices of the two planes which are drawn in the sketch.
Plane 1 is an (020) plane. The determination of its indices is summarized below.

X y Z
Intercepts wa b/2 o C
Intercepts in terms of a, b,
and c o0 1/2 00
Reciprocals of intercepts 0 2 0
Enclosure (020)

Plane 2 is a (251) plane, as summarized below.

X y z
Intercepts al2 -b/2 c
Intercepts in terms of a, b,
and c 1/2 -1/2 1
Reciprocals of intercepts 2 -2 1
Enclosure (251)
3.31 The directions asked for are indicated in the cubic unit cells shown below.
z
I
I
|
I
/ |
[101] :
[312] | |
i I e e e - — - 1
| ! |
______ I .
[211] .ﬁ——v >y
I -~
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N

[102]

3.32 Direction A is a [_1 10] direction, which determination is summarized as follows. We first of all
position the origin of the coordinate system at the tail of the direction vector; then in terms of this

new coordinate system

X y Z
Projections -a b Oc
Projections in terms of a, b,
and c -1 1 0
Reduction to integers not necessary
Enclosure [_1 10]

Direction B is a [121] direction, which determination is summarized as follows. The vector

passes through the origin of the coordinate system and thus no translation is necessary. Therefore,

1<
=<
IN

_— a c
Projections = b =
2 2

Projections in terms of a, b,
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1 1

and c = 1 =

2 2

Reduction to integers 1 2 1
Enclosure [121]

Direction C is a [0_15] direction, which determination is summarized as follows. We first of

all position the origin of the coordinate system at the tail of the direction vector; then in terms of this

new coordinate system

X y Z
L b
Projections Oa _E -C
Projections in terms of a, b,
1
and c 0 -= -1
2
Reduction to integers 0 -1 -2
Enclosure [0_15]

Direction D is a [151] direction, which determination is summarized as follows. We first of all

position the origin of the coordinate system at the tail of the direction vector; then in terms of this

new coordinate system

X y A
Projections 2 -b <
2 2
Projections in terms of a, b,
1 1
and c = -1 =
2 2
Reduction to integers 1 -2 1
Enclosure [151]

3.33 Direction A is a [331] direction, which determination is summarized as follows. We first of all

position the origin of the coordinate system at the tail of the direction vector; then in terms of this

new coordinate system

1<
=<
IN

Projections a b -

wlo

Projections in terms of a, b,
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1

and c 1 1 - =

3

Reduction to integers 3 3 -1
Enclosure [331 |

Direction B is a [ZO?%] direction, which determination is summarized as follows. We first of

all position the origin of the coordinate system at the tail of the direction vector; then in terms of this

new coordinate system

X Y z
— 2
Projections - ?a Ob <
Projections in terms of a, b,
2 1
and c - = 0 - =
3 2
Reduction to integers -4 0 -3
Enclosure [403]

Direction C is a [561] direction, which determination is summarized as follows. We first of

all position the origin of the coordinate system at the tail of the direction vector; then in terms of this

new coordinate system

X y Z
Projections (2 b -
2 6
Projections in terms of a, b,
1 1
and ¢ - = 1 =
2 6
Reduction to integers -3 6 1
Enclosure [§61]

Direction D is a [_1 1_1] direction, which determination is summarized as follows. We first of

all position the origin of the coordinate system at the tail of the direction vector; then in terms of this

new coordinate system

1<
IN

NIT K
[Ke)

Projections -

N |

Projections in terms of a, b,
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and c -

P N
R N

Reduction to integers -

P N

Enclosure [111]

3.34 For tetragonal crystalsa=b # c and a = =y = 90°; therefore, projections along the x and y axes
are equivalent, which are not equivalent to projections along the z axis.
(a) Therefore, for the [011] direction, equivalent directions are the following: [101], [_1 0_1], [_1 01],
[10 1], [011], [011], and [01 1].

(b) Also, for the [100] direction, equivalent directions are the following: [_1 00], [010], and [0_10].

3.35 (a) We are asked to convert [100] and [111] directions into the four- index Miller-Bravais scheme for
hexagonal unit cells. For [100]

< <
non
o r

2
1
o

From Equations (3.6)

n n 2n
= =@u'-v)= =(2-0)= —
u= @' -v)= Z@2-0)= 3

n n n

==@v'-u)==-0-1)=-—

vEg@e-u)= 0-D=-3

2n n n

= - + = |- -]z

t= -+ ( 3 3) 3
w=nw'=0

Ifweletn=3,thenu=2,v=-1,t=-1,andw = 0. Thus, the direction is represented as [uvtw] =
[2110].
For[111],u'=1,v'=1,andw'=1; therefore,

u=3@-1=
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If we againletn =3,thenu =1,v=1,t=-2, and w = 3. Thus, the direction is represented as
[1123].
(b) This portion of the problem asks for the same conversion of the (010) and (101) planes. A plane
for hexagonal is represented by (hkil) where i = - (h + k), and h, k, and | are the same for both

systems. For the (010) plane, h =0,k =1,1=0, and
i=-(0+1)=-1
Thus, the plane is now represented as (hkil) = (01_1 0).
For the (101) plane, i =- (1 + 0) = -1, and (hkil) = (10-1 1.

3.36 For plane A we will leave the origin at the unit cell as shown. If we extend this plane back into the
plane of the page, then itis a (111) plane, as summarized below.

X y z
Intercepts a b -C
Intercepts in terms of a, b,
and c 1 1 -1
Reciprocals of intercepts 1 1 -1
Reduction not necessary
Enclosure (11-1)

For plane B we will leave the origin of the unit cell as shown; this is a (230) plane, as

summarized below.

1<
IN

Intercepts °oC

N o
wlo =<

Intercepts in terms of a, b,
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1 1
andc = = 0
2 3
Reciprocals of intercepts 2 3 0
Enclosure (230)

3.37 For plane A we will move the origin of the coordinate system one unit cell distance to the right along
the y axis; thus, thisis a (1_10) plane, as summarized below.

X y z
a b

Intercepts = - = © C
2 2

Intercepts in terms of a, b,
1 1

and c = - = 0

2 2

Reciprocals of intercepts 2 -2

Reduction 1 -1 0

Enclosure (1_10)

For plane B we will leave the origin of the unit cell as shown; thus, this is a (122) plane, as

summarized below.

X y z
b c
Intercepts a = =
2 2
Intercepts in terms of a, b,
1 1
and c 1 = =
2 2
Reciprocals of intercepts 1 2 2
Reduction not necessary
Enclosure (122)

3.38 For plane A since the plane passes through the origin of the coordinate system as shown, we will

move the origin of the coordinate system one unit cell distance vertically along the z axis; thus, this
isa (21_1) plane, as summarized below.
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X<
=<
IN

a
Intercepts —2 b -C
Intercepts in terms of a, b,
1
and c = 1 -1
2
Reciprocals of intercepts 2 1 -1
Reduction not necessary
Enclosure (21_1)

For plane B, since the plane passes through the origin of the coordinate system as shown,
we will move the origin one unit cell distance vertically along the z axis; this is a (02_1) plane, as

summarized below.

X y z
b
Intercepts g E -C
Intercepts in terms of a, b,
1
and c 0 = -1
2
Reciprocals of intercepts 0 2 -1
Reduction not necessary
Enclosure (02_1)

3.39 The (01_1 1) and (21_10) planes in a hexagonal unit cell are shown below.

(2110)
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3.40 (a) For this plane we will leave the origin of the coordinate system as shown; thus, this is a (1511)

plane, as summarized below.

a, a, ag z
a
Intercepts a - E a c
. 1
Intercepts in terms of a's and ¢ 1 - E 1 1
Reciprocals of intercepts 1 -2 1 1
Reduction not necessary
Enclosure (1511)

(b) For this plane we will leave the origin of the coordinate system as shown; thus, this is a
(21_12) plane, as summarized below.

a, a, a, z
Intercepts a2 -a -a cl2
Intercepts in terms of a's and ¢ 1/2 -1 -1 1/2
Reciprocals of intercepts 2 -1 -1 2
Reduction not necessary
Enclosure (21 1 2

3.41 The planes called for are plotted in the cubic unit cells shown below.

(211)

(313) TN |

s | _>Y

(101)
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L 3 ¥

(301)

3.42 (a) The atomic packing of the (100) plane for the FCC crystal structure is called for. An FCC unit

cell, its (100) plane, and the atomic packing of this plane are indicated below.

O P

L/ N

1

O
(100) __— /t,’ O______
Plane g (il

(b) For this part of the problem we are to show the atomic packing of the (111) plane for the BCC

crystal structure. A BCC unit cell, its (111) plane, and the atomic packing of this plane are indicated

O OO0
OO 00O
g OO0 O
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3.43 (a) The unit cell in Problem 3.21 is body-centered tetragonal. Only the (100) (front face) and (01 0)

(left side face) planes are equivalent since the dimensions of these planes within the unit cell (and
therefore the distances between adjacent atoms) are the same (namely 0.45 nm x 0.35 nm), which

are different than the (001) (top face) plane (namely 0.35 nm x 0.35 nm).
(b) The equivalent planes are (101), (011), and (_1 01); the dimensions of these planes within the

/2
unit cell are the same--that is 0.35 nm x E0.35 nm)? + (0.45 nm)2] :

(c) All of the (111), (1_1 1), (111), and (_1 11) planes are equivalent.

3.44 (a) The intersection between (110) and (111) planes results in a [_1 10], or equivalently, a [11 0]

direction.
(b) The intersection between (110) and (1_10) planes results in a [001], or equivalently, a [001]

direction.
(c) The intersection between (111) and (001) planes results in a [_1 10], or equivalently, a [11 0]

direction.

3.45 (a) Inthe figure below is shown a [100] direction within an FCC unit cell.

[100]

For this [100] direction there is one atom at each of the two unit cell corners, and, thus, there is
the equivalent of 1 atom that is centered on the direction vector. The length of this direction vector is just
the unit cell edge length, 2Rv2 [Equation (3.1)]. Therefore, the expression for the linear density of this

plane is

LD _number of atoms centered on [100] direction vector
100 length of [100] direction vector

latom 1

T 2Ry 2 2Ry2

An FCC unit cell within which is drawn a [111] direction is shown below.



For this [111] direction, the vector shown passes through only the centers of the single atom at each
of its ends, and, thus, there is the equivalence of 1 atom that is centered on the direction vector. The

length of this direction vector is denoted by z in this figure, which is equal to
z :J 24 y2

where x is the length of the bottom face diagonal, which is equal to 4R. Furthermore, y is the unit
cell edge length, which is equal to 2RY2 [Equation (3.1)]. Thus, using the above equation, the

length z may be calculate as follows:

z :J(4R)2 + (2R\/§)2 - y24R? = 2R{®

Therefore, the expression for the linear density of this plane is

number of atoms centered on [111] direction vector
length of [111] direction vector

LDiqq =

latom 1

" 2R{6 2R{6

(b) From the table inside the front cover, the atomic radius for copper is 0.128 nm. Therefore, the

linear density for the [100] direction is

1

LDygo(CW) =75 42 (2(0.128 nm)y2

—2.76nm t=276x10 2 m"”

While for the [111] direction
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1

1 -1 9 -
LD, 4(Cu) = = =159nmn$m “=1.59x10 " m
112(C) 2Ry6  (2)(0.128 nm)/ 6

3.46 (a) Inthe figure below is shown a [110] direction within a BCC unit cell.

[110]

For this [110] direction there is one atom at each of the two unit cell corners, and, thus, there is the

equivalence of 1 atom that is centered on the direction vector. The length of this direction vector is

denoted by x in this figure, which is equal to

where y is the unit cell edge length, which, from Equation (3.3) is equal to % Furthermore, z is

the length of the unit cell diagonal, which is equal to 4R Thus, using the above equation, the length x

may be calculate as follows:

2 2

Therefore, the expression for the linear density of this direction is

number of atoms centered on [110] direction vector

LD = - .
110 length of [110] direction vector

_ 1latom _ J_3

A BCC unit cell within which is drawn a [111] direction is shown below.
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[111

”

&

For although the [111] direction vector shown passes through the centers of three atoms, there is an
equivalence of only two atoms associated with this unit cell—one-half of each of the two atoms at the
end of the vector, in addition to the center atom belongs entirely to the unit cell. Furthermore, the
length of the vector shown is equal to 4R, since all of the atoms whose centers the vector passes

through touch one another. Therefore, the linear density is equal to

number of atoms centered on [111] direction vector
length of [111] direction vector

LDyqg =

4R 2R

a 2atoms 1

(b) From the table inside the front cover, the atomic radius for iron is 0.124 nm. Therefore, the

linear density for the [110] direction is

3 3
LDy, Fe) = /3 _ /3 =2.47nm =247 x10 % m?
4RY2  (4)(0.124 nm)/2
While for the [111] direction
1 1

1 - —_ —
LD111(Fe) = =403 nm 1_ 4.03x 10 9 m

2R ~ (2)(0.124 nm)

3.47 (a) In the figure below is shown a (100) plane for an FCC unit cell.
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O

G D

For this (100) plane there is one atom at each of the four cube corners, each of which is shared with
four adjacent unit cells, while the center atom lies entirely within the unit cell. Thus, there is the
equivalence of 2 atoms associated with this FCC (100) plane. The planar section represented in the

above figure is a square, wherein the side lengths are equal to the unit cell edge length, 2Rv2
2
[Equation (3.1)]; and, thus, the area of this square is just (ZRJE) = 8R2. Hence, the planar density

for this (100) plane is just

number of atoms centered on (100) plane
area of (100) plane

PDigo =

3 2 atoms 1

8R2 4R?

That portion of an FCC (111) plane contained within a unit cell is shown below.

|«<— ar —>|

There are six atoms whose centers lie on this plane, which are labeled A through F. One-sixth of
each of atoms A, D, and F are associated with this plane (yielding an equivalence of one-half atom),
with one-half of each of atoms B, C, and E (or an equivalence of one and one-half atoms) for a total
equivalence of two atoms. Now, the area of the triangle shown in the above figure is equal to one-
half of the product of the base length and the height, h. If we consider half of the triangle, then
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(2R)? + h? = (4R)?
which leads to h = 2 R\/_3. Thus, the area is equal to

4R(h) (4R)(2R1/_) Ry

Area=

And, thus, the planar density is

PD _number of atoms centered on (111) plane
11~ area of (111) plane

2 atoms 1

RZ,/_ 2R? 3

(b) From the table inside the front cover, the atomic radius for aluminum is 0.143 nm. Therefore, the
planar density for the (100) plane is
1 1 - -
17 m 2

-2
PD; 1 (Al) = - =12.23nm % =1.223x 10
100 4R2  4(0.143 nm)?

While for the (111) plane

1 1 _ 17 -
PD;q4(Al) = = = 1412nm2 =1412 x 10 m™?

2R2/3  2,/3(0.143 nm)?

3.48 (&) A BCC unit cell within which is drawn a [100] plane is shown below.

)

. .

For this (100) plane there is one atom at each of the four cube corners, each of which is shared with
four adjacent unit cells. Thus, there is the equivalence of 1 atom associated with this BCC (100)

plane. The planar section represented in the above figure is a square, wherein the side lengths are
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. 4R . . .
equal to the unit cell edge length, ﬁ [Equation (3.3)]; and, thus, the area of this square is just

2 2
4R 16R _ . .
[ﬁ} = . Hence, the planar density for this (100) plane is just

number of atoms centered on (100) plane

PD, . =
100 area of (100) plane
_latom 3
16 RZ 16 R2
3

A BCC unit cell within which is drawn a [110] plane is shown below.

O
/’9______
(_/’ £

For this (110) plane there is one atom at each of the four cube corners through which it passes, each
of which is shared with four adjacent unit cells, while the center atom lies entirely within the unit cell.
Thus, there is the equivalence of 2 atoms associated with this BCC (110) plane. The planar section

represented in the above figure is a rectangle, as noted in the figure below.

>
G 2

>

C O
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From this figure, the area of the rectangle is the product of x and y. The length x is just the unit cell

. . . 4R . .
edge length, which for BCC [Equation (3.3)] is ﬁ Now, the diagonal length z is equal to 4R. For

the triangle bounded by the lengths x, y, and z

Or

Thus, in terms of R, the area of this (110) plane is just

2
Area(110) = xy = [%J [43\_/3_2] _16 Rgﬁ

And, finally, the planar density for this (110) plane is just

number of atoms centered on (110) plane
area of (110) plane

PD;1g =

2 atoms 3

T 16RZJZ  8R%2
3

(b) From the table inside the front cover, the atomic radius for molybdenum is 0.136 nm. Therefore,

the planar density for the (100) plane is

3 3 _ 17
PD; gg(Mo) = = =10.14nm % =1.014x 10 " m

16R?  16(0.136 nm)?

2

While for the (110) plane

3

3 _ -2
8R2J2  8(0.136 nm)2{2

—1434nm 2 =1434x10 " m

3.49 (a) A (0001) plane for an HCP unit cell is show below.
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2R

Each of the 6 perimeter atoms in this plane is shared with three other unit cells, whereas the center
atom is shared with no other unit cells; this gives rise to three equivalent atoms belonging to this

plane.
In terms of the atomic radius R, the area of each of the 6 equilateral triangles that have been
drawn is R® 3, or the total area of the plane shown is 6R2J_3. And the planar density for this

(0001) plane is equal to

number of atoms centered on (0001) plane
PDooo1 =
area of (0001) plane

3 3 atoms 1

T 6R2{3  2R23

(b) From the table inside the front cover, the atomic radius for titanium is 0.145 nm. Therefore, the

planar density for the (0001) plane is

1

1 -2
2R% /3 2,/3(0.145 nm)?

PD(001(TN) = =1373nm 2 =1373x 10" m

3.50 Unit cells are constructed below from the three crystallographic planes provided in the problem.
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0.55 nm

(a) This unit cell belongs to the tetragonal system since a=b =0.40 nm, ¢ =0.55nm,anda = =y

= 90°.
(b) This crystal structure would be called body-centered tetragonal since the unit cell has tetragonal

symmetry, and an atom is located at each of the corners, as well as the cell center.

3.51 The unit cells constructed below show the three crystallographic planes that were provided in the

problem.

z

_)y

0.20 nm

s }A‘
X f————> oP

0.30 nm
(110)
(a) This unit cell belongs to the orthorhombic crystal system since a = 0.25 nm, b = 0.30 nm, ¢ =

0.20nm, and a. = =y = 90°.
(b) This crystal structure would be called face-centered orthorhombic since the unit cell has

orthorhombic symmetry, and an atom is located at each of the corners, as well as at each of the

face centers.
(c) In order to compute its atomic weight, we employ Equation (3.5), with n = 4; thus
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PVeNA
n

A =

(18.91 g/cmS)(Z.O)(Z.S)(S.O) 6( 10"%* cm3/unit ceIIX6.023 x 1023 atoms/mol)

4 atoms/unit cell

=42.7 g/mol

3.52 Although each individual grain in a polycrystalline material may be anisotropic, if the grains have
random orientations, then the solid aggregate of the many anisotropic grains will behave

isotropically.

3.53W From the table, aluminum has an FCC crystal structure and an atomic radius of 0.1431 nm. Using

Equation (3.1), the lattice parameter a may be computed as
a=2Ry 2 =(2)(0.1431 nm)4/2 = 0.4048 nm
Now, the interplanar spacing d110 maybe determined using Equation (3.3W) as

a _ 0.4048 nm — 02862 nm
J? + @2+« 02 2

digo =

3.54W We must first calculate the lattice parameter using Equation (3.3) and the value of R cited in Table
3.1las

= = ﬁ = 0.2884 nm

Next, the interplanar spacing may be determined using Equation (3.3W) according to

d310 _ a _ 0.2884 nm — 0.0912 nm
JE2 + @2 + 02 V10

And finally, employment of Equation (3.2W) yields
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o (1)(0.0711 nm) _
SIN 6 = 54~ 2)0.0912 nm) ~ 0-3%

0 = sin"%(0.390) = 22.94°

And

20 = (2)(22.94°) = 45.88°

3.55W From the table, a-iron has a BCC crystal structure and an atomic radius of 0.1241 nm. Using

Equation (3.3) the lattice parameter, a, may be computed as

4R (4)(0.1241nm)

a:ﬁ:TZO.ZS(SG nm

Now, the d111 interplanar spacing may be determined using Equation (3.3W) as

a 0.2866 nm
111 = J > > > = 1/_ = 0.1655 nm
=+ @O +Q

d

And, similarly for d211

a 0.2866 nm
le:J > > > = 1/3 = 0.1170 nm
2" + (@) + (1)

d

3.56W (a) From the data given in the problem, and realizing that 36.12° = 26, the interplanar spacing for
the (311) set of planes may be computed using Equation (3.3W) as

_ . nk__ (1)(0.0711 nm) _
4311 = Zsine - (2)(5"1 36.12"] = 0.1147 nm
2

(b) In order to compute the atomic radius we must first determine the lattice parameter, a, using

Equation (3.3W), and then R from Equation (3.1) since Rh has an FCC crystal structure. Therefore,

a= d3lﬂl 37 + 1 + (1)? = (0.1147 nm)(Y1L)= 0.3804 nm
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And
a 0.3804 nm

R = = = 0.1345
2@ 2& nm

3.57W. (a) From the data given in the problem, and realizing that 75.99° = 26, the interplanar spacing for
the (211) set of planes may be computed using Equation (3.2W) as

na (1)(0.1659 nm)
Aoy = - = 0.1348
2117 Jsing (2)(5”1 75.990) nm
2

(b) In order to compute the atomic radius we must first determine the lattice parameter, a, using

Equation (3.3W), and then R from Equation (3.3) since Nb has a BCC crystal structure. Therefore,

a= dzml @° + (1 + (1)* =(0.1347 nm)(¥ 6)=0.3300 nm

And

. av3 _ (0.3300 nmy3

R
4 4

=0.1429 nm

3.58W The first step to solve this problem is to compute the interplanar spacing using Equation (3.2W).
Thus,

nA (1)(0.1542 nm)
d = =0.2035 nm
hkl 2 sin 0 (2)(5”1 44.53°j

Now, employment of both Equations (3.3W) and (3.1), and the value of R for nickel from Table 3.1
(0.1246 nm) leads to

N

2R
Jh2+k2+I2: 2 _

dth dth

_ (2)(0.1246 nm)y/ 2
~ (0.2035 nm)

=1.732

This means that
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W + K2 + 12 = (1732 = 3.0

By trial and error, the only three integers which are all odd or even, the sum of the squares of which
equals 3.0 are 1, 1, and 1. Therefore, the set of planes responsible for this diffraction peak is the

(111) set.

3.59W For each peak, in order to compute the interplanar spacing and the lattice parameter we must

employ Equations (3.3W) and (3.2W), respectively. For the first peak which occurs at 31.3°

na (1)(0.1542 nm)
d = - = = 0.2858
111 © 2sino (2)(sin 31.3°) nm
2

And

a= dher 2 + (K + ()% = dlll‘/ W% + (L% + @)
= (0.2858 nm)y 3= 0.4950 nm

Similar computations are made for the other peaks which results are tabulated below:

Peak Index 20 ghkl(nm) a (nm

200 36.6 0.2455 0.4910
220 52.6 0.1740 0.4921
311 62.5 0.1486 0.4929
222 65.5 0.1425 0.4936

3.60W The first four diffraction peaks that will occur for BCC consistent with h + k + | being even are

(110), (200), (211), and (220).

3.61W (a) Since W has a BCC crystal structure, only those peaks for which h + k + | are even will
appear. Therefore, the first peak results by diffraction from (110) planes.
(b) For each peak, in order to calculate the interplanar spacing we must employ Equation (3.2W).

For the first peak which occurs at 40.2°
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nA (1)(0.1542 nm)
- - = 0.2244
910 = Zsin o (2)(8"1 40.20) 0 nm
2

(c) Employment of Equations (3.3W) and (3.3) is hecessary for the computation of R for W as

R = a‘/_s - (dhk|)(\/_3)|/(h)2 + (K2 + ()2
=== 4

(0.2244 nm)(,/_s)\/(l)2 + (12 + (0)2
- 4

=0.1374 nm

3.62 A material in which atomic bonding is predominantly ionic in nature is less likely to form a
noncrystalline solid upon solidification than a covalent material because covalent bonds are
directional whereas ionic bonds are nondirectional; it is more difficult for the atoms in a covalent

material to assume positions giving rise to an ordered structure.
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CHAPTER 4
IMPERFECTIONS IN SOLIDS
PROBLEM SOLUTIONS

4.1 In order to compute the fraction of atom sites that are vacant in lead at 600 K, we must employ
Equation (4.1). As stated in the problem, QV = 0.55 eV/atom. Thus,

&: exp (_&L} = exp| - 0.55 eV/atom
N kT (8.62 x 1075 eV/atom-K)eoo K)

=2.41x 10'5

4.2 Determination of the number of vacancies per cubic meter in gold at 900°C (1173 K) requires the

utilization of Equations (4.1) and (4.2) as follows:

N
N, = Nexp (— Q—VJ = —APAu exp [— Q—VJ

A AU KT

@.023 X 1023atoms/moIX9.32 g/cm3) 0.98 eV/atom
= exp | —
196.9 g/mol @.62 x 1075 eV/atom—K)1173 K)

18 Cm_3 24 -3

=3.65x10 =3.65x10

4.3 This problem calls for the computation of the energy for vacancy formation in silver. Upon
examination of Equation (4.1), all parameters besides QV are given except N, the total number of

atomic sites. However, N is related to the density, (p), Avogadro's number (NA), and the atomic
weight (A) according to Equation (4.2) as
NaPAg

AAg

@.023 x 1028 atoms/moIX10.49 g/cm3)
B 107.87 g/mol
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3

=5.86 x 1022 atoms/cm™ = 5.86 x 1028 atoms/m3

Now, taking natural logarithms of both sides of Equation (4.1), and, after some algebraic

manipulation

_ N
Qy = - RTIn(N]

= _ (8.62x10‘5 eV/atom-K)1073 K) In —
586 x 1028 m-

3.60 x 1023 m‘T

=1.11 eV/atom

4.4 In this problem we are asked to cite which of the elements listed form with Cu the three possible solid
solution types. For complete substitutional solubility the following criteria must be met: 1) the
difference in atomic radii between Cu and the other element (AR%) must be less than +15%, 2) the
crystal structures must be the same, 3) the electronegativities must be similar, and 4) the valences

should be the same, or nearly the same. Below are tabulated, for the various elements, these

criteria.
Crystal AElectro-

Element AR% Structure negativity Valence
Cu FCC 2+

-44
H -64
o) -53
Ag +13 FCC 0 1+
Al +12 FCC -0.4 3+
Co -2 HCP -0.1 2+
Cr -2 BCC -0.3 3+
Fe -3 BCC -0.1 2+
Ni -3 FCC -0.1 2+
Pd +8 FCC +0.3 2+
Pt +9 FCC +0.3 2+
Zn +4 HCP -0.3 2+

58



(&) Ni, Pd, and Pt meet all of the criteria and thus form substitutional solid solutions having complete
solubility.

(b) Ag, Al, Co, Cr, Fe, and Zn form substitutional solid solutions of incomplete solubility. All these
metals have either BCC or HCP crystal structures, and/or the difference between their atomic radii
and that for Cu are greater than £15%, and/or have a valence different than 2+.

(¢) C, H, and O form interstitial solid solutions. These elements have atomic radii that are

significantly smaller than the atomic radius of Cu.

4.5 In the drawing below is shown the atoms on the (100) face of an FCC unit cell; the interstitial site is

at the center of the edge.

The diameter of an atom that will just fit into this site (2r) is just the difference between the unit cell
edge length (a) and the radii of the two host atoms that are located on either side of the site (R); that

is
2r=a-2R

However, for FCC a is related to R according to Equation (3.1) as a = ZRﬁ; therefore, solving for

r gives

a-2R _ 2R\/§2—2R: 0.41R

A (100) face of a BCC unit cell is shown below.
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The interstitial atom that just fits into this interstitial site is shown by the small circle. It is situated in
the plane of this (100) face, midway between the two vertical unit cell edges, and one quarter of the
distance between the bottom and top cell edges. From the right triangle that is defined by the three

arrows we may write
2 2
a a
3 &) =2
. 4R .
However, from Equation (3.3), a = E and, therefore, the above equation takes the form

4R

2 2
4R 2 2
—=| +|—F| = R°+2Rr+r
(2«/5 j (4\@}
After rearrangement the following quadratic equation results:

r? + 2Rr — 0.667R2 = 0

And upon solving for r, r = 0.291R.
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Thus, for a host atom of radius R, the size of an interstitial site for FCC is approximately 1.4
times that for BCC.

4.6 (a) This problem asks that we derive Equation (4.7a). To begin, C1 is defined according to Equation

(4.3) as
my
C, = ———— x 100
m, + m,
or, equivalently
C, = — 0 x 100
m; + my

where the primed m's indicate masses in grams. From Equation (4.4) we may write

My = Nmify
My = N2 Ay
And, substitution into the C, expression
n_.A
Cp = —— T —— x 100
M1+ Mm2 A2

From Equation (4.5) it is the case that

Ci @ml + nm2)

ml 100
n — CZ @ml + ”mz)
m2 100

And substitution of these expressions into the above equation leads to
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C;A
c, = —1— x 100

CiA1 + CHA,
which is just Equation (4.7a).

(b) This problem asks that we derive Equation (4.9a). To begin, Cll' is defined as the mass of

component 1 per unit volume of alloy, or

m
c, = =
1 Y

If we assume that the total alloy volume V is equal to the sum of the volumes of the two constituents-
-.e,V= Vit V2——then

v, = =

This leads to

From Equation (4.3), my and m, may be expressed as follows:

_ Cl!ml + m, )

m =
1 100
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_ C2!m1+ mz)

m =
2 100

Substitution of these equations into the preceding expression yields

Cl(ml + m2)
- 100
Cl(m1 + m2) 02 (m1 + m2)
100 n 100
P1 P2

Cq

_S
c, C
©G.%
P1 P2

If the densities Py and p, are given in units of g/cm3, then conversion to units of kg/m3 requires that

we multiply this equation by 103, inasmuch as
103 g/em3 = 1 kg/m®

Therefore, the previous equation takes the form

Cq
C C
$.%

P1 P2

. 3
C; = x 10

which is the desired expression.

(c) Now we are asked to derive Equation (4.10a). The density of an alloy Pave is just the total alloy mass

M divided by its volume V
- M
Y

Pave =

Or, in terms of the component elements 1 and 2
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m1+ m2

Pave = "y 1 v,

Here it is assumed that the total alloy volume is equal to the separate volumes of the individual
components, which is only an approximation; normally V will not be exactly equal to (V1 + V2).

Each of Vl and V2 may be expressed in terms of its mass density, which when substituted into the

above equation

m; + m,
Pave m, m,

—+ ==

Furthermore, from Equation (4.3)

Cl!m1 + my }
my =

100

C2 !ml + my )
m2 =

100

Which, when substituted into the above Pave expression yields

m; + m,
Pave =
Cl(m1 + m2) 02 (m1 + m2)
100 N 100
P1 P2
100
B C
=, =2
Py Py

(d) And, finally, the derivation of Equation (4.11b) for Aave is requested. The alloy average

molecular weight is just the ratio of total alloy mass in grams M' and the total number of moles in the
alloy Nm' That is

VE m; + m,
A = ----=-" """
ave

N, +n.

r]ml 2
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But using Equation (4.4) we may write

my = NppAg

my = Ny Ay

Which, when substituted into the above Aav e expression yields

N AL+ N Ay

nml + I’]m

M
Aave = N~
m

2

Furthermore, from Equation (4.5)

n - Ci (nml + ”mz)
ml 100

n _ CI2 @ml + nm2)
m2 100

Thus

CiA (O + N ) . Co Ay (O + M)
N 100 100

ave
nml + nm2

C]'A] + C2' A2
B 100

which is the desired result.

4.7 In order to compute composition, in atom percent, of a 92.5 wt% Ag-7.5 wt% Cu alloy, we employ
Equation (4.6) as

CAQACu

g C:AgACu Jrc:CuAAg

Ca

x 100
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_ (92.5)(63.55 g/mol)
"~ (925)(6355 g/mol) + (7.5)(107.87g/mol)

x 100

=87.9 at%

CCuAAg

u =
Caglcu * CauPag

Cc x 100

: (7.5)(107.87 g/mol)
"~ (925)(6355 g/mol) + (7.5)(107.87g/mol) X

100

=12.1 at%

4.8 In order to compute composition, in weight percent, of a 5 at% Cu-95 at% Pt alloy, we employ

Equation (4.7) as

C. A
_ Cu” Cu
CCu = . ) x 100
CCuACu +CPtAPt

: (5)(63.55 g/mol)
~ 5)(63.55 g/mol) + (95)(195.08 g/mol)

100

=1.68 wt%

Co,A

Pt Pt

cucu T CptPpt

Cpy = x 100

C

_ (95)(195.08 g/mol)
"~ (5)(63.55 g/mol)+(95)(195.08 g/mol)

x 100

= 98.32 wt%

4.9 The concentration, in weight percent, of an element in an alloy may be computed using a
modification of Equation (4.3). For this alloy, the concentration of iron (CFe) is just
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m
Cre = Ee x 100
mFe + mC + mCr

105 kg
- 100 = 98.87 Wi
105 kg + 0.2 kg +1.0 kg W

Similarly, for carbon

0.2 kg
Cp= 100 = 0.19 wt%
C~ 705 kg + 0.2 kg + 1.0 kg e
And for chromium
1.0 k
Ce, = J X 100 = 0.94 wi%

105 kg + 0.2 kg +1.0 kg

4.10 The concentration of an element in an alloy, in atom percent, may be computed using Equation
(4.5). With this problem, it first becomes necessary to compute the number of moles of both Cu and

Zn, for which Equation (4.4) is employed. Thus, the number of moles of Cu is just

m 33
N = Cu _ g = 0.519 mol
Cu Acy 63.55 g/mol
Likewise, for Zn
47 g
n = ——— = 0.719 mol
M 65.39 g/mol
Now, use of Equation (4.5) yields
nm
Coy= —=— x 100
n, +n.
Cu Zn

0.519 mol
= - o
0.519 mol + 0.719 mol * 100 = 41.9a%

Also,
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. 0.719 mol
C,,= x 100 = 58.1 at%
Zn~ 0519 mol + 0.719 mol ’

4.11 In this problem we are asked to determine the concentrations, in atom percent, of the Ag-Au-Cu

alloy. ltis first necessary to convert the amounts of Ag, Au, and Cu into grams.
mAg = (44.5 Ib)(453.6 g/lb ) = 20,185 g
My, = (83.7 Ib,)(453.6 gllb,)) = 37,966 g
me, = (5.3 1b,)(453.6 g/lb,) = 2,404 g
These masses must next be converted into moles [Equation (4.4)], as
MA

20,1
n, =% - 01859  _ 1871 mol
Ag AAg 107.87 g/ mol

37,966 g

_ = 192.8 mol
"m,, = 196.97 g/mol mo

m

2,404
N - =220 . 37.8 mol
cu 63.55 g/mol
Now, employment of a modified form of Equation (4.5)
nm
. A
Clhg = : X 100
9 n, +n.  +n.
Ag Au Cu

187.1 mol
= = 0,
187.1 mol + 192.8 mol + 37.8 mol 100 = 44.8 at%

. 192.8 mol
C = 100 = 46.2 at%
A 1871 mol + 192.8 mol + 37.8 mol 0

. 37.8 mol
C. = x 100 = 9.0 at%
Cu ~ 187.1 mol + 1928 mol + 37.8 mol °
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4.12 We are asked to compute the composition of an alloy in atom percent. Employment of Equation
(4.6) leads to

C.. A
' Pb” "Sn
Cppn = x 100
Pb
CPbASn + CSnAPb

5.5(118.69 g/mol)

= 100
55(18.69 g/mol) + 94.5(207.2 g/mol) X
=3.2 at%

C. A

' Sn” Pb
Ceo, = x 100
Sn
CSnAPb + CPbASn
94.5(207.2 g/
- ( g/mo) x 100

94.5(207.2 g/mol) + 5.5(118.69 g/mol)

= 96.8 at%

4.13 This problem calls for a conversion of composition in atom percent to composition in weight percent.
The composition in atom percent for Problem 4.11 is 44.8 at% Ag, 46.2 at% Au, and 9.0 at% Cu.

Modification of Equation (4.7) to take into account a three-component alloy leads to the following

C P
AgTA
Cpg = - X 100

g . . .
CAgAAg + CAuAAu + CCuACu

(44.8)(107.87 g/mol)

= (44.8)(10787 g/mo) + (46.2)(196.97 g/mol) + (9.0)(63.55 g/mol) * 00
= 33.3 W%
Cau = o x 100
Cag”ag * Carfau * Couvcu
(46.2)(196.97 g/mol) o

~ (44.8)(107.87 g/mo)) + (46.2)(196.97 g/mol) + (9.0)(63.55 g/mol)
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=62.7 wt%

Cr A
Coy = crcy x 100
CAgAAg + C:AuAAu + CCuACu

_ (9.0)(63.55 g/mol)
~ (44.8)(107.87 g/mo) + (46.2)(196.97 g/moal) + (9.0)(63.55 g/mol)

100

= 4.0 wt%

4.14 This problem calls for a determination of the number of atoms per cubic meter for aluminum. In

order to solve this problem, one must employ Equation (4.2),

Na P Al

AAI

N =
The density of Al (from the table inside of the front cover) is 2.71 g/cm3, while its atomic weight is
26.98 g/mol. Thus,

@.023 x 10%3 atoms/molXZ.?l g/cm3)
B 26.98 g/mol

N

22 3 28 3

=6.05 x 107~ atoms/cm® = 6.05 x 107~ atoms/m

4.15 In order to compute the concentration in kg/m3 of Siin a 0.25 wt% Si-99.75 wt% Fe alloy we must

employ Equation (4.9) as

Ce.

Si
= ——=— x 10
! CSi+ CFe

Psi Pre

. 3
Cs

3

From inside the front cover, densities for silicon and iron are 2.33 and 7.87 g/cm®, respectively; and,

therefore

.o 0.25 3
Csi= 025 9975 x 10

233 g/cm®  7.87 g/cm’
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=19.6 kg/m3

4.16 We are asked in this problem to determine the approximate density of a high-leaded brass that has
a composition of 64.5 wt% Cu, 33.5 wt% Zn, and 2 wt% Pb. In order to solve this problem, Equation

(4.10a) is modified to take the following form:

p =
ave Ccu n Czn n Cpp

Pcu Pzn Ppp

And, using the density values for Cu, Zn, and Pb that appear inside the front cover of the text, the

density is computed as follows:

100
Pave = " 64.5 wi% , 335 w% 2 wth

8.94 g/cm3 7.13 g/cm3 11.35 g/cm3

=8.27 glem®

4.17 This problem asks that we derive Equation (4.17), using other equations given in the chapter. The
concentration of component 1 in atom percent (C'l) is just 1000'1 where c'1 is the atom fraction of

component 1. Furthermore, ¢, is defined as ¢; = N,/N where N; and N are, respectively, the

number of atoms of component 1 and total number of atoms per cubic centimeter. Thus, from the

above the following holds:

i B
Ny 100

Substitution into this expression of the appropriate form of N from Equation (4.2) yields

CyNaPave

N, =
1 100A o
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Finally, substitution into this equation expressions for C'1 [Equation (4.63a)], Pave [Equation (4.10a)],

Ave [Equation (4.11a)], realizing that C, = (C1 - 100), and after some algebraic manipulation we

obtain the desired expression:

NACy

N, =
1o A

A
o + p—zl(loo - cl)

4.18 This problem asks us to determine the number of molybdenum atoms per cubic centimeter for a
16.4 wt% Mo-83.6 wt% W solid solution. To solve this problem, employment of Equation (4.17) is

necessary, using the following values:

Cy=Cyp = 16.4 Wt%
P1=PMo = 10.22 g/cm3
Py =Py = 19.3 g/cm3

A=Ay = 9594 g/mol
Thus
Ne. = NaCmo
Mo — C,, A A
Mo “*M
> =+ Mo - cyy)
PMo Pw

(6.023 x 1023 atoms/mol)(16.4)

(16.4)(95.94 g/mol) N 95.94 g/mol
(10.22 g/cm?3) 193 g/cm?

(100 - 16.4)

=173x 1022 atoms/cm3

4.19 This problem asks us to determine the number of niobium atoms per cubic centimeter for a 24 wt%
Nb-76 wt% V solid solution. To solve this problem, employment of Equation (4.17) is necessary,

using the following values:

C = 24 wt%

1~ Cnb
3
PL=PND 8.57 g/cm

Py =Py = 6.10 g/cm3
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Thus

Al = A\, =92.91 g/mol

Nb ~

Neo = NACND
N CpAnb . Ao (00 - Cyy)
Nb
PNb Pv

(6.023 x 1023 atoms/mo|)24)
= (24)(92.91 g/mol) , 92,91 g/mol
(8.57 g/cm3) 6.10 g/cm3

(100 — 24)

=1.02 x 1022 atoms/cm3

4.20 This problem asks that we derive Equation (4.18), using other equations given in the chapter. The

number of atoms of component 1 per cubic centimeter is just equal to the atom fraction of

component 1 (c'l) times the total number of atoms per cubic centimeter in the alloy (N). Thus,

using the equivalent of Equation (4.2), we may write

Realizing that

and

and substitution of the expressions for p_,, . and A

ciN, p
' 1 "A Fave
N, =c,N = ———
1 1
Aave
o G
17 100

C, = 100 - C}

ave’ Equations (4.10b) and (4.11b) leads to

C1NaPave

A
ave
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NACiPyP,

Ci PrA + (100 - Clj PA,

And, solving for C;

100 N, p, A,
NaP Py = Nipp Ay + Nypy Ay
Substitution of this expression for C'1 into Equation (4.7a)
C,A
C, = 11
G A

CiA; + 100(1— C'lez

yields
100
1= Np P p
1+ A2 22
NiAp Py

the desired expression.

4.21 This problem asks us to determine the weight percent of Au that must be added to Ag such that the
resultant alloy will contain 5.5 x 1021 Au atoms per cubic centimeter. To solve this problem,

employment of Equation (4.18) is necessary, using the following values:

N1 = NAu =55x 1021 atoms/cm3
PL=PaAy " 19.32 g/cm3
3

Py = pAg =10.49 g/cm
Ay =Ap, = 19697 g/mol
A, = Ag =107.87 g/mol
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Thus

co - 100
Au ~ N,p )
14 AFAg  Ag
NAuAAu Pau
100

@.023 x 1023 atoms/mol)10.49 g/cm3)
1+ —
(5.5 x 1021 atoms/cms)(196.97 g/mol)

=15.9 wt%

10.49 g/cm®
19.32 g/cm3

4.22 This problem asks us to determine the weight percent of Ge that must be added to Si such that the

resultant alloy will contain 2.43 x1021

Ge atoms per cubic centimeter.

To solve this problem,

employment of Equation (4.18) is necessary, using the following values:

N, = 3

_ 21
1 o= 2.43 x 10~ atoms/cm

NG
P1=Pge = 5.32 g/cm3
Py = Pgj = 2.33 g/cm3
A1 = AGe =72.59 g/mol
A2 = ASi = 28.09 g/mol

Thus
100
C =
14+ AFSi FSi
NeePge PGe
100

@.023 x10%3 atoms/mol)2.33 g/cm3)

1+ 21 3
(2.43 x10“~ atoms/cm )72.59 g/mol)

=11.7 wt%

(2.33 o/ cmsj
5.32 g/cm3

4.23 This problems asks that we compute the unit cell edge length for a 95 wt% Pt-5 wt% Cu alloy. First
of all, the atomic radii for Cu and Pt (Table 3.1) are 0.1278 and 0.1387 nm, respectively. Also, using
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Equation (3.5) it is possible to compute the unit cell volume, and inasmuch as the unit cell is cubic,
the unit cell edge length is just the cube root of the volume. However, it is first necessary to
calculate the density and atomic weight of this alloy using Equations (4.10a) and (4.11a). For the

density

_ 100

p -
Ve Cou, Ce

Pcu Ppt

100
5 wt% + 95 wt%

8.94 g/ cm’ 21.45 g/cm3

= 20.05 g/cm®

And for the atomic weight

100
St
Apt

A =
ave Ccy

ACu
100

5 wt% N 95 wt%
6355 g/mole 195.08 g/mol

=176.79 g/mol
Now, VC is determined from Equation (3.5) as

nAave
P ave NA

_ (4 atoms/unitcell)(176.79 g/mol)
(20.05 g/cm3ﬁ.023 x1023 atoms/mol)

3

= 5.856 x 10"2° cm>/unit cell

And, finally
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. (VC)IIS

/3
= (5.856x10 _23cm3/unit cell)1

=3.883 x10°8 cm = 0.3883 nm

4.24 The Burgers vector and dislocation line are perpendicular for edge dislocations, parallel for screw

dislocations, and neither perpendicular nor parallel for mixed dislocations.
4.25 (a) The Burgers vector will point in that direction having the highest linear density. From Section
3.11, the linear density for the [110] direction in FCC is 1/2R, the maximum possible; therefore for

FCC

a
b = < [110]

From Problem 3.46 the linear density for the [111] direction in BCC is also 1/2R, and
therefore for BCC

a
b = 2 [111]

For simple cubic, a unit cell of which is shown in Figure 3.19, the atom spheres touch one
another along the cube edges (i.e., in [100] directions) and therefore, the atomic packing is greatest

in these directions. Therefore, the Burgers vector is

|

b = =[100]

2

(b) For Cu which has an FCC crystal structure, R = 0.1278 nm (Table 3.1) and a = ZR,/E =

0.3615 nm [Equation (3.1)]; therefore

b= S4h% + K2+ P

_0.3615 nm

5 J(l)2 + @) + (002 = 0.2556 nm
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For Fe which has a BCC crystal structure, R = 0.1241 nm (Table 3.1) and a = = 0.2866

Pk

nm [Equation (3.3)]; hence

_0.2866 nm
- 2

Y02+ @2+ 02 = 0.2482 nm

4.26 (a) The surface energy of a single crystal depends on crystallographic orientation because the
atomic packing is different for the various crystallographic planes, and, therefore, the number of
unsatisfied bonds will vary from plane to plane.
(b) The surface energy will be greater for an FCC (100) plane than for a (111) plane because the
(111) plane is more densely packed (i.e., has more nearest neighbor atoms in the plane)—see
Problem 3.47; as a consequence, more atomic bonds will be satisfied for the (111) plane, giving rise

to a lower surface energy.

4.27 (a) The surface energy will be greater than the grain boundary energy since some atoms on one
side of the boundary will bond to atoms on the other side--i.e., there will be fewer unsatisfied bonds
along a grain boundary.

(b) The small angle grain boundary energy is lower than for a high angle one because more atoms

bond across the boundary for the small angle, and, thus, there are fewer unsatisfied bonds.

4.28 (a) A twin boundary is an interface such that atoms on one side are located at mirror image
positions of those atoms situated on the other boundary side. The region on one side of this
boundary is called a twin.

(b) Mechanical twins are produced as a result of mechanical deformation and generally occur in
BCC and HCP metals. Annealing twins form during annealing heat treatments, most often in FCC

metals.

4.29 (a) The interfacial defect that exists for this stacking sequence is a twin boundary, which occurs at

the following position

ABCABCBACBA
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The stacking sequence on one side of this position is mirrored on the other side.
(b) The interfacial defect that exists within this FCC stacking sequence is a stacking fault, which

occurs over the region indicated

ABCABCBCABC

For this region, the BCBC stacking sequence is HCP.

4.30 (a) This problem calls for a determination of the average grain size of the specimen which
microstructure is shown in Figure 4.12b. Seven line segments were drawn across the micrograph,
each of which was 60 mm long. The average number of grain boundary intersections for these lines

was 8.7. Therefore, the average line length intersected is just

60 mm
= 6.9 mm
8.7
Hence, the average grain diameter, d, is
q = ave. line Iength mtersected _ 6.9 mm _ 6.9 x 102 mm
magnification 100

(b) This portion of the problem calls for us to estimate the ASTM grain size number for this same
material. The average grain size number, n, is related to the number of grains per square inch, N, at
a magnification of 100x according to Equation 4.16. Inasmuch as the magnification is 100x, the
value of N is measured directly from the micrgraph, which is approximately 12 grains. Rearranging

Equation 4.16 and solving for n leads to

log N
log 2 "

log 12
log 2

+1=46

4.31 (a) This portion of the problem calls for a determination of the average grain size of the specimen

which microstructure is shown in Figure 9.22a. Seven line segments were drawn across the
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micrograph, each of which was 60 mm long. The average number of grain boundary intersections

for these lines was 6.3. Therefore, the average line length intersected is just

60 mm
= 9.5 mm
6.3
Hence, the average grain diameter, d, is
ave. line length intersected 9.5 mm
d = g - = = 0.106 mm
magnification 90

(b) This portion of the problem calls for us to estimate the ASTM grain size humber for this same
material. The average grain size number, n, is related to the number of grains per square inch, N, at
a maghnification of 100x according to Equation 4.16. However, the magnification of this micrograph is

not 100x, but rather 90x. Consequently, it is necessary to use the following equation:

2
M n-1
Ny, —| =2
M(looj

where Ny, = the number of grains per square inch at magnification M, and n is the ASTM grain size

number. (The above equation makes use of the fact that, while magnification is a length parameter,
area is expressed in terms of units of length squared. As a consequence, the number of grains per
unit area increases with the square of the increase in magnification.) Solving the above expression

for n leads to

logN,, + 2lo (M)
n= il ? 100 +1
- log 2

From Figure 9.22a, N, is measured to be approximately 4, which leads to

90
log 4 + 2 log (—j
N 100 1
a log 2
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4.32 (a) This part of problem asks that we compute the number of grains per square inch for an ASTM
grain size of 6 at a magnification of 100x. All we need do is solve for the parameter N in Equation
4.16, inasmuch as n = 6. Thus

N = 2n—1

6

=26-1-3 grains/in.2

(b) Now it is necessary to compute the value of N for no magnification. In order to solve this
problem it is necessary to use the following equation:

2
ﬂ _ ,n-1
NM(lOO) =2

where Ny, = the number of grains per square inch at magnification M, and n is the ASTM grain size

number. (The above equation makes use of the fact that, while magnification is a length parameter,
area is expressed in terms of units of length squared. As a consequence, the number of grains per
unit area increases with the square of the increase in magnification.) Without any magnification, M

in the above equation is 1, and therefore,

12 6-1
Nl(ﬁ) =2 =32

And, solving for N, N4 = 320,000 grains/in.z.

4.33 This problem asks that we determine the ASTM grain size number if 30 grains per square inch are
measured at a magnification of 250. In order to solve this problem we make use of the equation
cited in Problem 4.31b—i.e.,

2
M n-1
Ny, —| =2
M(looj

where Ny, = the number of grains per square inch at magnification M, and n is the ASTM grain size

number. Solving the above equation for n, and realizing that Ny, = 30, while M = 250, we have
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log Ny, + 2log (ﬂ)

n= 100 +1
B log 2
250
log 30 + 2log (—)
= 100 + 1=25
- log 2 -

4.34 This problem asks that we determine the ASTM grain size humber if 25 grains per square inch are
measured at a magnification of 75. In order to solve this problem we make use of the equation cited
in Problem 4.31b—i.e.,

2
M n-1
Ny, | —| =2
M(loo)

where Ny, = the number of grains per square inch at magnification M, and n is the ASTM grain size

number. Solving the above equation for n, and realizing that Ny, = 25, while M = 75, we have

log Ny, + 2 log (ﬂ)

. 100 1
log 2
log 25 + 2log (%)
= +1=438
log 2

Design Problems

4.D1 This problem calls for us to compute the concentration of lithium (in wt%) that, when added to
aluminum, will yield an alloy having a density of 2.55 g/cm3. Solution of this problem requires the

use of Equation (4.10a), which takes the form

100

Pave = ¢, 100 - C
— + ——

PLi Pal

inasmuch as CitCp = 100. According to the table inside the front cover, the respective densities

3

of Li and Al are 0.534 and 2.71 g/cm™. Upon solving for Ci from the above equation
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100p (P~ Pave)

pave@AI - pLi)

Cu =

(100)@.534 g/cm3X2.71 g/cm3 - 255 g/cm3)
B 255 g/cm3(2.71 g/cm3 - 0.534 g/cm3)

= 1.537 wt%

4.D2 This problem asks that we determine the concentration (in weight percent) of V that must be added

to Fe so as to yield a unit cell edge length of 0.289 nm. To begin, it is necessary to employ Equation
(3.5), and solve for the unit cell volume, Ve as

nA
_ ave
Ve = —

P ave NA

where Ave and Payve Ar€ the atomic weight and density, respectively, of the Fe-V alloy. Inasmuch

as both of these materials have the BCC crystal structure, which has cubic symmetry, Ve is just the

cube of the unit cell length, a. That is
Ve = a® = (0.289 nm)°
(2.89 x1078 cmi -2.414x10 2 cm®

It is now necessary to construct expressions for Aave and Pave in terms of the concentration of

vanadium, CV using Equations (4.11a) and (4.10a). For Aave we have

N 100
ave = C,, (100 - C)
— + ——
AV AFe
_ 100
Cy (L00 - C,)

+
50.94 g/mol 55.85 g/mol

whereas for Pave

83



_ 100
Pave = 'C,, (100 - C,)
— + —

Py Pre

100
Cy , 100 - cy)

6.10 g/cm3 7.87 g/cm3

Within the BCC unit cell there are 2 equivalent atoms, and thus, the value of n in Equation (3.5) is 2;

hence, this expression may be written in terms of the concentration of V in weight percent as follows:

Ve =2414x1023 cm®
— nAave
paveNA
(2 atoms/unit cell) Cy 100 (100 - C)

+
50.94 g/mol 55.85 g/ mol

100
Cy (100 — Cy)

+
6.10 g/ cm3 7.87 g/ cm3

(6.023 X 1023 atoms/mol)

And solving this expression for CV leads to CV =12.9 wt%.
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CHAPTER 5

DIFFUSION

PROBLEM SOLUTIONS

5.1 Self-diffusion is atomic migration in pure metals--i.e., when all atoms exchanging positions are of the

same type. Interdiffusion is diffusion of atoms of one metal into another metal.

5.2 Self-diffusion may be monitored by using radioactive isotopes of the metal being studied. The motion

5.3

of these isotopic atoms may be monitored by measurement of radioactivity level.

(@) With vacancy diffusion, atomic motion is from one lattice site to an adjacent vacancy. Self-
diffusion and the diffusion of substitutional impurities proceed via this mechanism. On the other
hand, atomic motion is from interstitial site to adjacent interstitial site for the interstitial diffusion
mechanism.

(b) Interstitial diffusion is normally more rapid than vacancy diffusion because: (1) interstitial atoms,
being smaller, are more mobile; and (2) the probability of an empty adjacent interstitial site is greater

than for a vacancy adjacent to a host (or substitutional impurity) atom.

5.4 Steady-state diffusion is the situation wherein the rate of diffusion into a given system is just equal to

the rate of diffusion out, such that there is no net accumulation or depletion of diffusing species--i.e.,

the diffusion flux is independent of time.

5.5 (a) The driving force is that which compels a reaction to occur.

5.6

(b) The driving force for steady-state diffusion is the concentration gradient.

This problem calls for the mass of hydrogen, per hour, that diffuses through a Pd sheet. It first
becomes necessary to employ both Equations (5.1a) and (5.3). Combining these expressions and
solving for the mass yields

AC

M = JAt = — DAt—
AX

3
- _ (1.0 x 1078 mz/sX).z m2)3600 s/ 28— 24 gg/m
5x10™ m
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= 2.6 x 10" kg/h

5.7 We are asked to determine the position at which the nitrogen concentration is 2 kg/m3. This problem

is solved by using Equation (5.3) in the form

j= _pia—Ca
A 7 XB

If we take CA to be the point at which the concentration of nitrogen is 4 kg/m3, then it becomes

necessary to solve for Xg» as

c, - C
- —ZA B
XB_XA+D|: 3 }

Assume XA is zero at the surface, in which case

(4 kg/m3 -2 kg/ms)
1.2 x 1077 kg/mz-s

xg = 0+ (6 x 1011 m2/s)

3

=1x10°m=1mm

5.8 This problem calls for computation of the diffusion coefficient for a steady-state diffusion situation.
Let us first convert the carbon concentrations from wt% to kg C/m3 using Equation (4.9a). For 0.012
wt% C

o Cc 10
= ———— X
¢ S, Cre

Pc PFe
0.012 3

= T 0.012 , 99988 x 10

2.25 g/ cm3 7.87 g/ cm3

0.944 kg C/m°
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Similarly, for 0.0075 wt% C

.o 0.0075 3
Cc= ~oo0075 . _99.9925 X 10
2.25 g/cm3 7.87 g/cm3
= 0.590 kg C/m3
Now, using a form of Equation (5.3)
Xp — X
D= -1 {CA CB}
A~ B
-3
, -1
= - €.40x108kg/m2—s 30 u 3
0.944 kg/m°® — 0.590 kg/m
=3.95x 101 m?%s

5.9 This problems asks for us to compute the diffusion flux of hydrogen gas through a 1-mm thick plate of
iron at 250°C when the pressures on the two sides are 0.15 and 7.5 MPa. Ultimately we will employ
Equation (5.3) to solve this problem. However, it first becomes necessary to determine the

concentration of hydrogen at each face using Equation (5.11). At the low pressure (or B) side

2 27,200 J/mol }
Coumy = (1.34 102 )/0.15 MP {—
H(B) X & &P| =831 J/mol-K)250 + 273 K)

6

9.93 x 10~ wt%

Whereas, for the high pressure (or A) side

2 27,200 J/mol }
Coypy = (1.34 102 )75 MP {—
H(A) X 2 8XP| =831 3/ mol-K)(250 + 273 K)

7.02 x 10 wi%
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We now convert concentrations in weight percent to mass of hydrogen per unit volume of solid. At

face B there are 9.93 x 10'6 g (or 9.93 x 10'9 kg) of hydrogen in 100 g of Fe, which is virtually pure
iron. From the density of iron (7.87 g/cm3), the volume iron in 100 g (VB) is just

100 :
5 = - 127em® =127x10% m®

- 7.87 g/cm3

Therefore, the concentration of hydrogen at the B face in kilograms of H per cubic meter of alloy
[CI‘—'l(B)] is just

C

o - ZH(@)
HB) ~ v
B
-9
9.93x10 ~ k ,
= X—S%: 7.82x 104 kg/m3
127 x10™ m

At the A face the volume of iron in 100 g (VA) will also be 1.27 x 10'5 m3, and

C

o CHA)
H(A) —
(A) A
-8
7.02x 1078 k i
= 3= 553x10° kg/m®
127 x107° m

Thus, the concentration gradient is just the difference between these concentrations of hydrogen

divided by the thickness of the iron membrane; that is

-4 3 -3 3
7.82 x 10 kg/m® - 5.53x 1073 kg/
= a R 9M_ _ _ 475 kgim?
107° m

At this time it becomes necessary to calculate the value of the diffusion coefficient at 250°C using
Equation (5.8). Thus,
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D = D_ex —&
= Po®P | TRy

7 5 13,400 J/ mol
= (L4 x 107" m?/s)exp| -
(Lax S Xp( (8.3LJ/mol —K)(250 + 273 K)

=6.41x 1070 m?/s
And, finally, the diffusion flux is computed using Equation (5.3) by taking the negative product of this
diffusion coefficient and the concentration gradient, as

Ac
AX

J=-D
- _ @.41 x 107 m2/sX— 475 kg/m4): 3.05x 1078 kg/m? -s

5.10 It can be shown that

X2
exp - (4—[)12]

(@]
x
1]
B

is a solution to

o _ _&%C
ot x2

simply by taking appropriate derivatives of the CX expression. When this is carried out,

c_pe__ 8 [ ) [ x%
ot " x2  2pU23/2|2Dt P~ aDt

5.11 We are asked to compute the diffusion time required for a specific nonsteady-state diffusion

situation. It is first necessary to use Equation (5.5).

c,-C
ﬁ: 1—erf[ X ]
s~ Co 24 Dt
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wherein, C, = 0.45, C,= 0.20, C = 1.30,and x =2 mm =2 x 10_3 m. Thus,

C,-C 0.45 — 0.20 [ X J
X 0 . .

= =02273 =1 - erf| ——

C,-C, 130-0.20 24/Dt

or

X
erf | —=|= 1 - 0.2273 = 0.7727
(2,/DJ

By linear interpolation from Table 5.1

z erf(z)
0.85 0.7707
z 0.7727
0.90 0.7970

z-0.850 07727 - 0.7707
0.900 — 0.850  0.7970 — 0.7707

From which

Now, from Table 5.2, at 1000°C (1273 K)

148,000 J/mol }

5 2
D = 2 l -
( 3x107 m ’S)exp{ (8.31 J/mol-K)(1273 K)

=1.03x 10 m%s

Thus,

2 X 10_3 m

0.854 =
(24(1 93x10 1 m? /s)t)
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Solving for t yields

t=71x10%s=19.7h

5.12 This problem asks that we determine the position at which the carbon concentration is 0.25 wt%
after a 10-h heat treatment at 1325 K when C, =0.55wt% C. From Equation (5.5)

C,-C, 025-055 [ X ]
X 0]

- = 05455 =1 — erf| ——
C.,-C, 0-055 2,/Dt

Thus,

Using data in Table 5.1 and linear interpolation

z erf (2)
0.40 0.4284

z 0.4545
0.45 0.4755

z—-0.40 04545 - 04284
045 — 0.40 04755 — 04284

And,
z2=0.4277

Which means that
X
—— = 0.4277
2,/ Dt

And, finally

x = 2(0.4277)Y Dt = (0.8554)J (4.3 x 10711 m2 /SXS.G x 10% s)

=1.06x 103 m = 1.06 mm
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5.13 This problem asks us to compute the nitrogen concentration (CX) at the 1 mm position after a 10 h

diffusion time, when diffusion is nonsteady- state. From Equation (5.5)

c,-C C,-0
X 2 - X =1 - erf| —
C, -G, 01-0 24/ Dt

103 m

(2)J (2.5 x 1011 m? /s)lo h)(3600 s /h)

=1 - erf

=1-erf (0.527)

Using data in Table 5.1 and linear interpolation

z erf (z)
0.500 0.5205
0.527 y
0.550 0.5633
0527 - 0.500 _ y — 0.5205

0550 — 0.500 05633 — 0.5205

from which
y = erf (0.527) = 0.5436
Thus,
Cx =9 10 _ 05438
o1-o0 O 7

This expression gives

CX =0.046 wt% N

5.14 (a) The solution to Fick's second law for a diffusion couple composed of two semi-infinite solids of

the same material is as follows:
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for the boundary conditions

C=C1forx<0,andt=0
C=C2forx>0,andt=0

(b) For this particular silver-gold diffusion couple for which C1 =5 wt% Au and C2 = 2 wt% Au, we

are asked to determine the diffusion time at 750°C that will give a composition of 2.5 wt% Au at the

50 um position. Thus, the equation in part (a) takes the form
-6
5 +2 5 -2 50x 10 " m
25 = ( )— ( )erf
2 2 2,/ Dt

It now becomes necessary to compute the diffusion coefficient at 750°C (1023 K) given that D, =85

x 102 m2/s and Qg = 202,100 J/mol. From Equation (5.8) we have

D = D_ex —&
= Po®P TRy

5 2 202,100 J/mol
= (8.5 x 10 /) -
( x0T ms eXp{ (8:313/mol —K)(1023 K)

=4.03x 10'15 m2/s

Substitution of this value into the above equation leads to

-6
2_5:(5;2)_ (ngjerf 50 x 10 ® m
2«4.03 x 10715 mzls)t)

This expression reduces to the following form:
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_ [39384s
0.6667 = erf(—‘/—t ]

Using data in Table 5.1 and linear interpolation

z erf (2)
0.650 0.6420
y 0.6667
0.700 0.6778

y — 0650  0.6667 — 0.6420

0.700 - 0.650  0.6778 — 0.6420

from which

393 .8]z ]

y = 0.6844 = 7

And, solving for t gives

t=3.31x10°s=92h

5.15 This problem calls for an estimate of the time necessary to achieve a carbon concentration of 0.45

wit% at a point 5 mm from the surface. From Equation (5.6b),

2
— = constant

Dt
But since the temperature is constant, so also is D constant, and

X2
—t = constant

or
2 2
_%
b b
Thus,
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(25 mm)2 _ (5.0 mm)2

10h t,

from which
t,=40h

5.16 We are asked to compute the diffusion coefficients of C in both a and y iron at 900°C. Using the
data in Table 5.2,

D, = (6.2 x 1077 m2/s)exp{— 80,000 J/ mol }

(8.31 J/mol-K)(1173 K)

=1.69 x 1019 m%/s

, 14 I
Dy = (2.3x105 mzls)exp{— 8,000 J/mo }

(831 J/mol-K)(1173 K)

=5.86 X 1012 m2/s

The D for diffusion of C in BCC « iron is larger, the reason being that the atomic packing
factor is smaller than for FCC y iron (0.68 versus 0.74); this means that there is slightly more

interstitial void space in the BCC Fe, and, therefore, the motion of the interstitial carbon atoms

occurs more easily.

5.17 This problem asks us to compute the magnitude of D for the diffusion of Zn in Cu at 650°C (923 K).
From Table 5.2

5 9 189,000 J/mol }
D = (2.4 10° m?/ )e {—
X3S )RR =831 3/mol-K)(923 K)

=48x10 8 mZs

5.18 We are asked to calculate the temperature at which the diffusion coefficient for the diffusion of Cu in

-17

Ni has a value of 6.5 x 10 m2/s. Solving for T from Equation (5.9a)
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Qqg
R(nD - In DO)

T= -

and using the data from Table 5.2 for the diffusion of Cu in Ni

256,000 J/mol
(8.31 J/mol -K)[In (6.5 x 1017 )— In (2.7 X 10'5)}

T = —

=1152 K=879°C

5.19 For this problem we are given DO and Qd for the diffusion of Cr in Ni, and asked to compute the

temperature at which D = 1.2 x 10'14 m2/s. Solving for T from Equation (5.9a) yields

Q4
R(nD, InD)

B 272,000 J/mol
(8.31 J/mol - K)[In é.l X 10'4) “In (1.2 X 10'14j

= 1427 K = 1154°C

5.20 In this problem we are given Qd for the diffusion of Cu in Ag (i.e., 193,000 J/mol) and asked to

-14 m2/s.

compute D at 1200 K given that the value of D at 1000 K is 1.0 x 10 It first becomes

necessary to solve for D0 from Equation (5.8) as

)
D, = Dexp RT

14 2 193,000 J/mol
= (L.ox 10 Isp
(Lo m s Xp{(8.31 J/mol - K)(1000 K)

=1.22x10% m%s

Now, solving for D at 1200 K gives
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4 o 193,000 J/mol
D = (1.22 104 m /s)e -
X Xp[ (8.31 J/mol-K)(1200 K)

=48x10 13 m?s

5.21 (a) Using Equation (5.9a), we set up two simultaneous equations with Qd and D0 as unknowns.

Solving for Qd in terms of temperatures T1 and T2 (1273 K and 1473 K) and D1 and D2 (9.4 x 10'16

and 2.4 x 1014 mzls), we get

InD, — InD

- p—1 "2
Qa =~ R=7 71
T, T2

(8.31 J/mol- K)[In (9.4 X 10'16) ~ i (2.4 X 10'14j

1 1
1273K  1473K

= 252,400 J/mol

Now, solving for D0 from Equation (5.8)

_ Qq
D, = Dyexp RT

16 2 252,400 J/mol
= (9.4 x 10 /)e
( X m1s Xp{(8.31 J/mol -K)(1273 K)

=22x107 m2/s

(b) Using these values of Do and Qd' D at 1373 K is just

5 92 252,400 J/mol
D = (2.2 10 /)e -
X ms Xp{ (8.31 J/mol-K)(1373 K)

=54x10 m2/s
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5.22 (a) Using Equation (5.9a), we set up two simultaneous equations with Qd and DO as unknowns.
Solving for Qd in terms of temperatures T1 and T2 (873 K [600°C] and 973 K [700°C]) and D1 and

D, (55x 10% and3.9x 10713 m2/s), we get

InD, — InD

_ by - Inby
Qa=-R™3 71
Tl T2

(8.31 J/mol - K)[In (‘5.5 X 10'14) —In (3.9 X 10'131

1 1
873K 973K

= 138,300 J/mol

Now, solving for D0 from Equation (5.8)

_ Qq
D, = Dyexp E

i 14 2 138,300 J/mol
= (5.5x 10 m /S)EXp[(g_gl J/ mol-K)(873 K)

=1.05x 10" m%/s

(b) Using these values of Do and Qd' D at 1123 K (850°C) is just

) 5 9 138,300 J/mol
D = (1-05X1° m /S)EXp{_ (8.31 J/mol -K)(1123 K)

=38x10 2 m%s
5.23 This problem asks us to determine the values of Q4 and D, for the diffusion of Au in Ag from the
plot of log D versus 1/T. According to Equation (5.9b) the slope of this plot is equal to - Qd/2.3R
(rather than - Qd/R since we are using log D rather than In D) and the intercept at 1/T = 0 gives the

value of log Do' The slope is equal to
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A(logD) _ logD; —logD,

A(_lj 1 _1

T LERP

slope =

Taking 1/T, and 1/T, as 1.0 X 1073 and 0.90 x 103 K'l, respectively, then the values of log D; and

log D2 are —14.68 and —-13.57, respectively. Therefore,

_ A(log D)
Qq =-23R A(—lj

T

-14.68 — (-13.57)
(1.0 x 1073 — 0.90 x 103 )K—l

= —(2.3)(8.31 J/mol-K)

= 212,200 J/mol

Rather than trying to make a graphical extrapolation to determine Do' a more accurate value is

obtained analytically using Equation (5.9b) taking a specific value of both D and T (from 1/T) from
the plot given in the problem; for example, D = 1.0 x 1014 m2/s at T = 1064 K (/T =0.94 x 10'3).

Therefore

D, = Dex &
o = POPIRT

) o 212,200 J/ mol
= (1-0X10 m /S)EXp{(s.sl J/mol - K)(1064 K)}

=2.65Xx 10'4 m2/s

5.24  This problem asks that we compute the temperature at which the diffusion flux is 6.3 x 10'10

kg/mz-s. Combining Equations (5.3) and (5.8) yields

Solving for T from this expression leads to
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_ (so,ooo J/mol) 1
831 J/mol-KJ 162 x1077 m?/s)045 kg/m®)
In

@.3 x 10710 kg/m2 -leO_2 m)

=900 K =627°C

5.25 In order to solve this problem, we must first compute the value of DO from the data given at 1200°C

(1473 K); this requires the combining of both Equations (5.3) and (5.8). Solving for D0 from these

expressions gives

D, = - s ex&
o T T aciax P RT

7.8 x 107 kg/m? -s o 145,000 J/mol
500 kg/m? Pl (831 J/mol-K)(1473 K)

=218x10™° m?/s

The value of the diffusion flux at 1273 K may be computed using these same two equations as

follows:
_ AC Qg
)= _DO[ Ax] &P (_ RTJ

=- (2.18 x 107 m?/s }500 kg/m4 )3xp {—

145,000 J/mol
(8.31 J/mol-K)(1273 K)

=1.21x10° kg/m2—s
5.26 To solve this problem it is necessary to employ Equation (5.7) which takes on the form

Dgooteoo = Dttt
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At 900°C, and using the data from Table 5.2

_ 5 2 148,000 J/mol
Dogo = (23x10° m /S>Xp[ (831 J/mol-K)(900 + 273 K)

=59 x10 2 m%/s

Thus,
@.9 x 10712 m2/s)15 h) = Dy h)

And

D, =4.43x 101 m2s

Solving for T from Equation (5.9a)

Qg
R(nD; - In DO)

T =

148,000 J/mol
(8.31 J/mol - K)[ln (4.43 X 10'11) —In (2.3 X 10'5)}

= 1353 K =1080°C

5.27 (a) We are asked to calculate the diffusion coefficient for Cu in Al at 500°C. Using the data in Table
5.2

D =D, ex &
- Po P TRy

5 2 136,000 J/mol
= . 1 } -
(65X 0= m%s Xp{ (8.31 J/mol -K)(500 + 273 K)

-415x 104 m2/s
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(b) This portion of the problem calls for the time required at 600°C to produce the same diffusion
result as for 10 h at 500°C. Equation (5.7) is employed as

Dsoots00 = Peooteoo

Now, from Equation (5.8)

5 2 136,000 J/mol
Dggg = (6.5 x 10 m?/ -
s = 5x10°m S)EX'O{ (831 J/mol-K)(600 + 273 K)

= 4.69 x 1013 m%/s

Thus,
¢~ Dsoo's00
600 ~
DGOO

(4.15 x 10714 m? /3)10 h)

= = 0.88h
(4.69 x 10713 m?2 /s)

5.28 In order to determine the temperature to which the diffusion couple must be heated so as to

produce a concentration of 3.0 wt% Ni at the 2-mm position, we must first utilize Equation (5.6b) with
time t being a constant. That is

Or
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2l 4 o ( 236,000 J/mol ]T
(2 mm) {(2'7 x1074m? /s) exp "(8:31 J/mol-K)1273 K)) |

ammf

=221 x10 8 mZs

We now need to find the T at which D has this value. This is accomplished by rearranging Equation

(5.9a) and solving for T as

Qg
T =
R(nD - InD)
0

B 236,000 J/mol
(8.31 J/mol - K)[In (2.7 X 10'4) ~In (2.21 X 10'13)J

=1357 K=1084°C

5.29 In order to determine the position within the diffusion couple at which the concentration of A in B is

2.5 wt%, we must employ Equation (5.6b) with t constant. That is

X2

— = constant
D

Or

2 2
X800 _ *1000
Pgoo  P1ooo

It is necessary to compute both D800 and D1000 using Equation (5.8), as follows:

N (15X10_4 m2/5>x { 125,000 J/mol }
goo = - P17 @31 3/mol-K)1073 K)

=122 x10710 mZss

o (15X10_4 m2/s)ex { 125,000 J/mol }
1000 = Pl ™ (8:31 3/mal-K)(1273 K)

=111 x102 m%s
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Now, solving for X1000 yields

_ P1000
X1000 = X800y p
800

. mm)J 111 x 109m? /s

1.22 x 10 9m?2/s

=15.1 mm

5.30 In order to compute the diffusion time at 900°C to produce a carbon concentration of 0.75 wt% at a

position 0.5 mm below the surface we must employ Equation (5.6b) with position constant; that is

Dt = constant
Or
Dsooteoo = Pgootano

In addition, it is necessary to compute both D600 and D900 using Equation (5.8). From Table 5.2, for

the diffusion of C in a Fe, Qd = 80,000 J/mol and D0 =6.2X 10'7 m2/s. Therefore,

7 80,000 J/mol
Dyn = @.2 107 m?/ )e _
600 X S Xp{ (831 J/mol-K)(600 + 273 K)
=1.01x 10 m?ss
7 2 80,000 J/mol
Den = (6.2 107 m? )e -
900 X2 mis Xp{ (831 J/mol-K)(900 + 273 K)
=1.69 x 10'10 m2/s
Now, solving for t900 gives
¢ - Peoo's0o
900 = Tp
900
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@.01 X 10‘11m2/s)1oo min)

169 x 10710m2/g

=5.98 min

5.31 This problem asks us to compute the temperature at which a nonsteady-state 48 h diffusion anneal

was carried out in order to give a carbon concentration of 0.30 wt% C in FCC Fe at a position 3.5

mm below the surface. From Equation (5.5)

C, -C, 030 - 010 { X ]
X 0]

- = 0.2000 = 1- erf | ——

C,-C, 110- 010 2,/Dt

Or

X
erf = 0.8000
[2‘/ Dtj

Now it becomes necessary to, using the data in Table 5.1 and linear interpolation, to determine the

X
value of .
2,/ Dt
z erf (z)
0.90 0.7970
y 0.8000
0.95 0.8209
y — 090  0.8000 — 0.7970
095 — 0.90 0.8209 — 0.7970
From which
y =0.9063
Thus,

X
——= 0.9063
2{ Dt

And sincet =48 hand x = 3.5 mm
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X2

D= ———
(41)(0.9063)2

(3.5 X 10‘3)Z m?

2
"~ (4)(172,800 s)(0.821) !

2.16x 101 m

S

Now, in order to solve for the temperature at which D has the above value, we must employ

Equation (5.9a); solving for T yields

T = q
R(InDo— InD)

From Table 5.2, D0 and Qd for the diffusion of C in FCC Fe are 2.3 x 10'5 m2/s and 148,000 J/mol,

respectively. Therefore

B 148,000 J/mol
(8.31 J/mol - K)[In (2.3 X 10'5) - In (2.16 X 10'11j

T

=1283 K=1010°C

Design Problems

5.D1 This problem calls for us to ascertain whether or not a hydrogen-nitrogen gas mixture may be
enriched with respect to hydrogen partial pressure by allowing the gases to diffuse through an iron
sheet at an elevated temperature. If this is possible, the temperature and sheet thickness are to be
specified; if such is not possible, then we are to state the reasons why. Since this situation involves
steady-state diffusion, we employ Fick's first law, Equation (5.3). Inasmuch as the partial pressures
on the high-pressure side of the sheet are the same, and the pressure of hydrogen on the low

pressure side is five times that of nitrogen, and concentrations are proportional to the square root of
the partial pressure, the diffusion flux of hydrogen JH is the square root of 5 times the diffusion flux

of nitrogen J N--i.e.

Iy =45y
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Thus, equating the Fick's law expressions incorporating the given equations for the diffusion

coefficients and concentrations in terms of partial pressures leads to the following

IH
1
= —X
AX
. 27.8kJ . 13.4kJ
(2.5 x107° )y0.1013 MPa - y/0.05TMPa Jexp| - (L4 x 107 m?/s pxp| -
RT RT
IE
==X
AX
37.6 kJ . 76.15 kJ
(2.75 X 103)(,/ 0.1013 MPa — 4/ 0.01013 MPa)exp(— . ](3.0 x10~" m? /s)exp(—?J

The Ax's cancel out, which means that the process is independent of sheet thickness. Now solving

the above expression for the absolute temperature T gives
T =3467 K

which value is extremely high (surely above the vaporization point of iron). Thus, such a diffusion

process is not possible.

5.D2 This problem calls for us to ascertain whether or not an Az'Bz gas mixture may be enriched with

respect to the A partial pressure by allowing the gases to diffuse through a metal sheet at an
elevated temperature. If this is possible, the temperature and sheet thickness are to be specified; if
such is not possible, then we are to state the reasons why. Since this situation involves steady-state

diffusion, we employ Fick's first law, Equation (5.3). Inasmuch as the partial pressures on the high-
pressure side of the sheet are the same, and the pressure of A2 on the low pressure side is 2.5

times that of Bz' and concentrations are proportional to the square root of the partial pressure, the

diffusion flux of A, JA, is the square root of 2.5 times the diffusion flux of nitrogen JB--i.e.

Ip =4253
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Thus, equating the Fick's law expressions incorporating the given equations for the diffusion

coefficients and concentrations in terms of partial pressures leads to the following

Ia
1
= — X
AX
3 20.0 kJ 7 2 130 kJ
(15 x 10° )y 01013 MPa - /0,051 MPa)exp[— = (60 x1077 m? /s )exp| - ==
- ¥253,
J25
= X
AX
27.0 kJ . 21.0 kJ
(2.0x 10° )y 0.1013 MPa - 0.0203 MPa)axp(— ?j (.0x10®m? /s)sxp(—T)

The Ax's cancel out, which means that the process is independent of sheet thickness. Now solving

the above expression for the absolute temperature T gives
T =568 K (295°C)

5.D3 This is a nonsteady-state diffusion situation; thus, it is necessary to employ Equation (5.5), utilizing

the following values for the concentration parameters:

Co =0.0025 wt% N
Cs =0.45wt% N
CX =0.12 wt% N

Therefore

Cy-C, 012 -0.0025
C, - C, "~ 0.45 - 0.0025

= 0.2626 = 1- erf| —
24Dt
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And thus

1- 0.2626 = 0.7374 = erf| —
24Dt

Using linear interpolation and the data presented in Table 5.1

z erf (2)
0.7500 0.7112
y 0.7374
0.8000 0.7421
0.7374 - 0.7112 _ y —0.7500

0.7421- 07112 ~ 0.8000 - 0.7500

From which

X
=——=— = 0.7924
Y 2y Dt

The problem stipulates that x = 0.45 mm = 4.5 x 10'4 m. Therefore

-4

4.

45x10 "'m _ j-go
24/Dt

Which leads to

Dt = 8.06 x 108 m?

Furthermore, the diffusion coefficient depends on temperature according to Equation (5.8); and, as
stipulated in the problem, Do =3X 10'7 m2/s and Qd = 76,150 J/mol. Hence

Qg 8 2
Dt = Doexp(—ﬁ ()= 8.06x10" m

4 76,150 J/mol ) 8 2
@.0x10 m /s)axp[ B3t aimol- K (O = 808 X107 m
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And solving for the time t

0.269

exp (_ 9163.7)
T

Thus, the required diffusion time may be computed for some specified temperature (in K). Below are

t(ins) =

tabulated t values for three different temperatures that lie within the range stipulated in the problem.

Temperature Time
(°C) S h
500 37,900 10.5
550 18,400 5.1
600 9,700 2.7

5.D4 This is a nonsteady-state diffusion situation; thus, it is necessary to employ Equation (5.5), utilizing

the following values for the following parameters:

CO =0.15wt% C
12 wt% C SCSS1.4W’[%C
CX=O.75 wt% C

X = 0.65 mm

Let us begin by assuming a specific value for the surface concentration within the specified range—
say 1.2 wt% C. Therefore

Cy-C, 075-0.15
C,-C, ~ 120-0.15

X
= 05714 = 1-erf
(2‘/ Dt]

And thus

110



1- 05714 = 0.4286 = erf| —
24Dt

Using linear interpolation and the data presented in Table 5.1

z erf (2)
0.4000 0.4284
y 0.4286
0.4500 0.4755
04286 — 0.4284 y —0.4000

0.4755 — 0.4284 ~ 0.4500 — 0.4000

From which

X
=——=— = 0.4002
Y 2y/ Dt

The problem stipulates that x = 0.65 mm = 6.5 x 10'4 m. Therefore

-4
65x10 'm — 0.4002
24Dt

Which leads to

Dt = 6.59 x 10/ m?

Furthermore, the diffusion coefficient depends on temperature according to Equation (5.8); and, as

noted in Design Example 5.1, D0 =2.3X 10'5 m2/s and Qd = 148,000 J/mol. Hence

Qq 7 2
Dt = Doexp(—ﬁ ()= 6.59x10" m

5 5 148,000 J/ mol ) 4
(2.3x10 m /s)axp[ Bat ima K (O = 659 x107 m

And solving for the time t
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2.86 x 1072

tne) == 17 810y
oo 7]

Thus, the required diffusion time may be computed for some specified temperature (in K). Below are

tabulated t values for three different temperatures that lie within the range stipulated in the problem.

Temperature Time
(°C) S h
1000 34,100 9.5
1100 12,300 3.4
1200 5,100 1.4

Now, let us repeat the above procedure for two other values of the surface concentration, say 1.3
wt% C and 1.4 wt% C. Below is a tabulation of the results, again using temperatures of 1000°C,
1100°C, and 1200°C.

Cq Temperature Time
(Wt% C) (°C) s h
1000 26,700 7.4
1.3 1100 9,600 2.7
1200 4,000 11
1000 21,100 6.1
14 1100 7,900 2.2
1200 1,500 0.9
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CHAPTER 6

MECHANICAL PROPERTIES OF METALS

PROBLEM SOLUTIONS

6.1 This problem asks that we derive Equations (6.4a) and (6.4b), using mechanics of materials
principles. In Figure (a) below is shown a block element of material of cross-sectional area A that is
subjected to a tensile force P. Also represented is a plane that is oriented at an angle 0 referenced
to the plane perpendicular to the tensile axis; the area of this plane is A' = A/cos 6. In addition, the
forces normal and parallel to this plane are labeled as P' and V', respectively. Furthermore, on the
left-hand side of this block element are shown force components that are tangential and
perpendicular to the inclined plane. In Figure (b) are shown the orientations of the applied stress o,
the normal stress to this plane o', as well as the shear stress t' taken parallel to this inclined plane.
In addition, two coordinate axis systems in represented in Figure (c): the primed x and y axes are

referenced to the inclined plane, whereas the unprimed x axis is taken parallel to the applied stress.

P

P sin 9:;

b (c)
(@) (b)

Normal and shear stresses are defined by Equations (6.1) and (6.3), respectively. However,
we now chose to express these stresses in terms (i.e., general terms) of normal and shear forces (P

and V) as

Q
I
> U

a
1]
>|<

For static equilibrium in the x' direction the following condition must be met:
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which means that

P'—Pcos6=0

Or that

P'= Pcos6

Now it is possible to write an expression for the stress o' in terms of P' and A" using the above

expression and the relationship between A and A' [Figure (a)]:

However, it is the case that P/A = o; and, after make this substitution into the above expression, we

have Equation (6.4a)--that is

c'=0o 00529

Now, for static equilibrium in the y' direction, it is necessary that
DR =0

=-V'+ Psin®

Or

V'=Psin0

We now write an expression for ' as
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_V
’C—AI

And, substitution of the above equation for V' and also the expression for A' gives

—Bsine cos 0
T A

= o sind cos6
which is just Equation (6.4b).

6.2 (a) Below are plotted curves of cosze (for ¢") and sin 6 cos 6 (for ') versus 6.

1.0 T T T T T T T T

o8l 0032 0

sin 6 cos®

cosze, sin 0 cos®

0.0 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

0 (degrees)

(b) The maximum normal stress occurs at an inclination angle of 0°.
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6.3

6.4

6.5 This problem asks us to compute the elastic modulus of steel. For a square cross-section, A0 = b2

(c) The maximum shear stress occurs at an inclination angle of 45°.

This problem calls for us to calculate the elastic strain that results for an aluminum specimen
stressed in tension. The cross-sectional area is just (10 mm) x (12.7 mm) = 127 mm2 (=1.27 x 10'4
m2 =0.20 in.2); also, the elastic modulus for Al is given in Table 6.1 as 69 GPa (or 69 x 10° N/m2).

Combining Equations (6.1) and (6.5) and solving for the strain yields

F 35,500 N

3
= = 41x10
A E €.27 X 10_4m2X39 x 109 N/m2)

e =

mla

We are asked to compute the maximum length of a cylindrical titanium alloy specimen that is

deformed elastically in tension. For a cylindrical specimen

where d0 is the original diameter. Combining Equations (6.1), (6.2), and (6.5) and solving for Io

leads to

| EndZAl
o 4F

i éo7 x 10° N/mz)(n)(3.8 X 10‘3m)2@.42 x 1073 m)

(4)(2000 N)

=0.25m =250 mm (10 in.)

O L
where b0 is the edge length. Combining Equations (6.1), (6.2), and (6.5) and solving for E, leads to

-3
Fl, (89,000 N)éOOxlO m)

o -
beAl (20 x 10-3 m)z(o.lo x 1073 m)

= 223 x 109 Nim? = 223 GPa (31.3 x 10° psi)
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6.6 In order to compute the elongation of the Ni wire when the 300 N load is applied we must employ
Equations (6.1), (6.2), and (6.5). Solving for Al and realizing that for Ni, E = 207 GPa (30 x 109 psi)
(Table 6.1),

_ (4)(300 N)(30 m)
- (207 x 10° N/m2X2 x 1073 m)2

=0.0138 m = 13.8 mm (0.53 in.)

6.7 (a) This portion of the problem calls for a determination of the maximum load that can be applied
without plastic deformation (Fy). Taking the vyield strength to be 345 MPa, and employment of

Equation (6.1) leads to

F, = 0,A, = (45x10° Nim? )30 x 10 m?)

= 44,850 N (10,000 Iby)

(b) The maximum length to which the sample may be deformed without plastic deformation is

determined from Equations (6.2) and (6.5) as

e

345 MPa

= (76 mm){1+ —
103 x 10° MPa

}: 76.25 mm (3.011in.)

6.8 This problem asks us to compute the diameter of a cylindrical specimen to allow an elongation of

0.50 mm. Employing Equations (6.1), (6.2), and (6.5), assuming that deformation is entirely elastic
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Or

L [AF
0 nE Al

(4) (380 x1073 m)(eeao N)

(n)(llo x 102 N/mZXJ.S x1073 m)

= 765x1073

m =7.65 mm (0.30in.)
6.9 This problem asks that we calculate the elongation Al of a specimen of steel the stress-strain
behavior of which is shown in Figure 6.24. First it becomes necessary to compute the stress when a

load of 65,250 N is applied as

F F 65,250 N .

o= = == 5 = 1150 MPa (170,000 psi)
0 [doj (8.5 x103m
") "N 2

Referring to Figure 6.24, at this stress level we are in the elastic region on the stress-strain curve,

which corresponds to a strain of 0.0054. Now, utilization of Equation (6.2) yields

Al = ¢l = (0.0054)(80 mm) = 0.43 mm (0.017 in.)

6.10 (a) This portion of the problem asks that the tangent modulus be determined for the gray cast iron,
the stress-strain behavior of which is shown in Figure 6.25. The slope (i.e., Ac/Ag) of a tangent
drawn through this curve at 25 MPa (3625 psi) is about 90 GPa (15 x 106 psi).

(b) The secant modulus taken from the origin is calculated by taking the slope of a secant drawn
from the origin through the stress-strain curve at 35 MPa (5,000 psi). When such a secant is drawn,

a modulus of approximately 100 GPa (14.5 x 106 psi) is obtained.

6.11 We are asked, using the equation given in the problem, to verify that the modulus of elasticity
values along [110] directions given in Table 3.3 for aluminum, copper, and iron are correct. The a, f3,
and y parameters in the equation correspond, respectively, to the cosines of the angles between the
[110] direction and [100], [010] and [001] directions. Since these angles are 45°, 45°, and 90°, the

values of a, B, and y are 0.707, 0.707, and 0, respectively. Thus, the given equation takes the form
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1

E<110>
_ 1 1 1 2 2 2 2 2 2
= -3 = - 0.707)7(0.707)“ + (0.707)~(0)” + (0)~(0.707)
<100> <100> <11
1 1 1
<100> <100> <111>
Utilizing the values of E<100> and E<111> from Table 3.3 for Al
1 1 1 1
E ~63.7GP _(0'75){637 GPa 76.1GP }
410> . a . a . a
Thus, E_110> = 72.6 GPa, which is the value given in the table.
For Cu,

1 1 1 1

= — (0.75) -

E_ .. 06.7GPa 66.7 GPa 191.1GPa
>

from which E<llO> =130.3 GPa, which is the value given in the table.

Similarly, for Fe

1 1 1

= ~ (0.75) -

E_0. 125.0GPa 125.0GPa 2727 GPa
>

and E<110> = 210.5 GPa, which is also the value given in the table.

6.12 This problem asks that we derive an expression for the dependence of the modulus of elasticity, E,

on the parameters A, B, and n in Equation (6.36). It is first necessary to take dEN/dr in order to

obtain an expression for the force F; this is accomplished as follows:
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nB
I,(n+1)

A
2

The second step is to set this dEN/dr expression equal to zero and then solve for r (= ro). This

procedure is carried out in Problem 2.13, with the result that

~ (A)ll(l - n)

r
Y nB

Next it becomes necessary to take the derivative of the force (dF/dr), which is accomplished as

A d __nB_
dF d[ﬁj ( r(”+1)J
— +

dr dr dr

follows:

2A  (N)(nh+ 1B
& TP
r3 r(n+ 2)

Now, substitution for "o into this equation yields

daF ) _ 2A . M + 1B
dr . - (Aja/(l_n) (Aj(nJrZ)/(l—n)

nB nB

which is the expression to which the modulus of elasticity is proportional.
6.13 This problem asks that we rank the magnitudes of the moduli of elasticity of the three hypothetical
metals X, Y, and Z. From Problem 6.12, it was shown for materials in which the bonding energy is

dependent on the interatomic distance r according to Equation (6.36), that the modulus of elasticity E

is proportional to
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2A nNn+1HB
(Ajsl(l—n) + (A)(n-r 2) /(L)

E o« —

nB

nB

6

For metal X, A=1.5,B=7x10", and n = 8. Therefore,

: Ba-9) * B+ 2)/(l-8)
| 1.5 | 1.5
| ®(7x107°) ]| ®)(7 x107°)

=830

Formetal Y,A=2.0,B=1x 10'5, and n =9. Hence

E T Bia-9 (9 +2)/1-9)
| 2.0 | 20
|©(x107)] (9)(1x 10’5)
= 683

And, for metal Z, A=35,B =4x10°°, andn = 7. Thus

2.5 7)7 + 1)@ X 10‘6)
E m_r Bla-7 * 7+2/1-7)
| 3.5 ‘ 3.5
™ (4 x 10‘6” (7)(4X 10_6)
= 7425

Therefore, metal Z has the highest modulus of elasticity.

6.14 (a) We are asked, in this portion of the problem, to determine the elongation of a cylindrical

specimen of aluminum. Using Equations (6.1), (6.2), and (6.5)
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I
m
o~ |=

3
7 .\
a
hLDN
N—e——

Or

4Fl,
2
ndOE

Al =

(4)(48,800 N)(200 X 10‘3m)

= = 0.50 mm (0.02in.)
(n)€9 x 1073 m)2 (69 x 109N/ m2)

(b) We are now called upon to determine the change in diameter, Ad. Using Equation (6.8)

€

& Ad/dg
V__—__

£, AI/IO

From Table 6.1, for Al, v = 0.33. Now, solving for Ad yields

_vAldy  (033)(0.50 mm)(19 mm)

Ad = =
I0 200 mm

=-157x102 mm (-6.2x10"%in)

The diameter will decrease.

6.15 This problem asks that we calculate the force necessary to produce a reduction in diameter of 3 x

10'3 mm for a cylindrical bar of steel. Combining Equations (6.1), (6.5), and (6.8), realizing that

ndg
AO::—Z—
and
_ Ad
&y = g
0

Now, solving for F leads to
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~ dOAdnE
4v

F =

From Table (6.1), for steel, v = 0.30 and E = 207 GPa. Thus,

(10 x 1073 m)(—3.o x107° m)(rr)(ZO? x 109 N /mz)
- (4)(0.30)

=

= 16,250 N (3770 Iby)

6.16 This problem asks that we compute Poisson's ratio for the metal alloy. From Equations (6.5) and

(6.1)
o FIA, F AF
d ndE
n[—oj E °
2
Since the transverse strain &y is just
. _Ad
NE
dO

and Poisson's ratio is defined by Equation (6.8) then

- _fx _ Ad/d0 _ _dOAdnE
€

z [ 4F ] 4F
2
ndOE

(10 x 1073 mX—? x107° m)(n)(lOO x 10° N/m2)
- = 0.367
(4)(15,000 N)

6.17 This problem asks that we compute the original length of a cylindrical specimen that is stressed in

compression. It is first convenient to compute the lateral strain g, as

Ad  30.04 mm-30.00 mm 3
& = = = 1.33x10
d0 30.00 mm
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In order to determine the longitudinal strain &, we need Poisson's ratio, which may be computed

z

using Equation (6.9); solving for v yields

65.5 x10° MPa

E
v=——-1= -1 =0.289
2G (2)(25.4 x 103 MPa)
Now &, may be computed from Equation (6.8) as
& 1.33x10° 60 x 102
bz 77 T 0289
Now solving for Io using Equation (6.2)
- —
o 1+ e,
105.20 mm
= = 105.69 mm
1- 460x10°3

6.18 This problem asks that we calculate the modulus of elasticity of a metal that is stressed in tension.

Combining Equations (6.5) and (6.1) leads to

E:E: =
€

N
™
N
3]
N
a
/N
o
o
~—
N
™
N
a
o
onN

From the definition of Poisson's ratio, [Equation (6.8)] and realizing that for the transverse strain, &=
Ad
d

0]

& A
. = ——2 = _—
A%

z

Therefore, substitution of this expression for &, into the above equation yields

4F  4Fv
5 =
gzndo TEdOAd

E =
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(4)(1500 N)(0.35)

= =10 Pa = 100 GPa (14.7 x 10° psi)
n (10 x 1073 mXG.? x 1077 m)

6.19 We are asked to ascertain whether or not it is possible to compute, for brass, the magnitude of the
load necessary to produce an elongation of 7.6 mm (0.30 in.). It is first necessary to compute the
strain at yielding from the yield strength and the elastic modulus, and then the strain experienced by
the test specimen. Then, if

g(test) < g(yield)
deformation is elastic, and the load may be computed using Equations (6.1) and (6.5). However, if
g(test) > g(yield)
computation of the load is not possible inasmuch as deformation is plastic and we have neither a
stress-strain plot nor a mathematical expression relating plastic stress and strain. We compute

these two strain values as

and

Therefore, computation of the load is not possible as already explained.

6.20 (a) This part of the problem asks that we ascertain which of the metals in Table 6.1 experience an
elongation of less than 0.080 mm when subjected to a stress of 28 MPa. The maximum strain that

may be sustained is just

Since the stress level is given, using Equation (6.5) it is possible to compute the minimum modulus

of elasticity which is required to yield this minimum strain. Hence

28 MP
E=2=—""—""_=875GPa
& 32x10°

Which means that those metals with moduli of elasticity greater than this value are acceptable

candidates--namely, brass, Cu, Ni, steel, Ti and W.
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(b) This portion of the problem further stipulates that the maximum permissible diameter decrease is
1.2x 103 mm. Thus, the maximum possible lateral strain &y is just

_Ad 12X 10~ mm
& =

22 - _ -5
X do 127 mm 9.45x 10

Since we now have maximum permissible values for both axial and lateral strains, it is possible to

determine the maximum allowable value for Poisson's ratio using Equation (6.8). Thus

=-———7>=0.295

& -945x107°
v =-—=
g, 32x107

Or, the value of Poisson's ratio must be less than 0.295. Of the metals in Table 6.1, only W meets

both of these criteria.

6.21 (a) This portion of the problem asks that we compute the elongation of the brass specimen. The

first calculation necessary is that of the applied stress using Equation (6.1), as

F 10,000 N .
= = > = 127 MPa (17,900 psi)

2
d, 10x 103 m

T| — Tl ———
2 2

From the stress-strain plot in Figure 6.12, this stress corresponds to a strain of about 1.5 x 1073,

_F
° A
(0]

From the definition of strain, Equation (6.2)

Al =¢ly = (1.5 X 10'3)101.6 mm) = 0.15mm (6.0 x 1073 in.)

(b) In order to determine the reduction in diameter Ad, it is necessary to use Equation (6.8) and the
definition of lateral strain (i.e., &y = Ad/do) as follows

_ _ _ -3
Ad = dg, = —dgve, = —(10 mm)(o.35)@.5x10 )

= -5.25 x 10" mm (-2.05 x 104 in.)
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6.22 Elastic deformation is time-independent and nonpermanent, anelastic deformation is time-

dependent and nonpermanent, while plastic deformation is permanent.

6.23 This problem asks that we assess the four alloys relative to the two criteria presented. The first
criterion is that the material not experience plastic deformation when the tensile load of 35,000 N is
applied; this means that the stress corresponding to this load not exceed the yield strength of the
material. Upon computing the stress

F 35,000 N
- - 5 = 200 10% N/m? = 200 MPa

2
[do) (15 x 1073 m}
T| —™ | ————
2 2

Of the alloys listed in the table, the Al, Ti and steel alloys have yield strengths greater than 200 MPa.

c =

£
AO

Relative to the second criterion, it is necessary to calculate the change in diameter Ad for

these two alloys. From Equation (6.8)

- B Ad/d g
7 cl/E
Now, solving for Ad from this expression,
vod
Ad = ——2
E

For the aluminum alloy

A = (0:33)(00 Mga)(lS MM - 162 mm
70 x 10° MPa
Therefore, the Al alloy is not a candidate.
For the steel alloy
Ag = 0271200 MPR)A5 mm) _ o2

205 x 10° MPa

Therefore, the steel is a candidate.
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For the Ti alloy

~ (0.36)(200 MPa)(15 mm) _

2 ~1.0x 102 mm
105 x 103 MPa

Ad =

Hence, the titanium alloy is also a candidate.

6.24 This problem asks that we ascertain which of four metal alloys will 1) not experience plastic
deformation, and 2) not elongate more than 0.9 mm when a tensile load is applied. It is first
necessary to compute the stress using Equation (6.1); a material to be used for this application must
necessarily have a yield strength greater than this value. Thus,

24 N
= 500 = 312 MPa

F
A . 2
0 n[lo x 103m
2

c =

Of the metal alloys listed, only brass and steel have yield strengths greater than this stress.
Next, we must compute the elongation produced in both brass and steel using Equations

(6.2) and (6.5) in order to determine whether or not this elongation is less than 0.9 mm. For brass

ol 312 MPa)(380 mm
AI=—°=( )(3 )=1.19mm
E 100 x 10° MPa

Thus, brass is not a candidate. However, for steel

cl 312 MPa)(380
o _( 2)E80 mm) _ oo

E 207 x 103 MPa

Al =

Therefore, of these four alloys, only steel satisfies the stipulated criteria.

6.25 Using the stress-strain plot for a steel alloy (Figure 6.24), we are asked to determine several of its
mechanical characteristics.
(@) The elastic modulus is just the slope of the initial linear portion of the curve; or, from the inset

and using Equation (6.10)

G, -Gy (1300 — 0) MPa

= =210 x 10° MPa = 210 GPa (30.5 x 10° psi)
&, ~ & @.25 x 1073 - o)

E =
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The value given in Table 6.1 is 207 GPa.
(b) The proportional limit is the stress level at which linearity of the stress-strain curve ends, which is
approximately 1370 MPa (200,000 psi).
(c) The 0.002 strain offset line intersects the stress-strain curve at approximately 1570 MPa
(228,000 psi).
(d) The tensile strength (the maximum on the curve) is approximately 1970 MPa (285,000 psi).

6.26 We are asked to calculate the radius of a cylindrical brass specimen in order to produce an
elongation of 5 mm when a load of 100,000 N is applied. It first becomes necessary to compute the
strain corresponding to this elongation using Equation (6.2) as

Al 5 mm ")

=— ==———=5x10
¢ I0 100 mm X

From Figure 6.12, a stress of 335 MPa (49,000 psi) corresponds to this strain. Since for a cylindrical
specimen, stress, force, and initial radius ro are related as

E
G = —
2

TEI'0

then

! F | 100,000 N

o Jnc _{n(335x106 N/m2)

=0.0097 m=9.7 mm (0.38 in.)

6.27 This problem asks us to determine the deformation characteristics of a steel specimen, the stress-
strain behavior of which is shown in Figure 6.24.
(@) In order to ascertain whether the deformation is elastic or plastic, we must first compute the
stress, then locate it on the stress-strain curve, and, finally, note whether this point is on the elastic
or plastic region. Thus,

140,000 N .
= 5 =1782 MPa (250,000 psi)

£
A _
0 T{lo x 10 3m

o =

2
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The 1782 MPa point is past the linear portion of the curve, and, therefore, the deformation will be
both elastic and plastic.
(b) This portion of the problem asks us to compute the increase in specimen length. From the

stress-strain curve, the strain at 1782 MPa is approximately 0.017. Thus, from Equation (6.2)

Al =¢ly =(0.017)(500 mm) = 8.5 mm (0.34 in.)

6.28 (a) We are asked to compute the magnitude of the load necessary to produce an elongation of 2.25
mm for the steel displaying the stress-strain behavior shown in Figure 6.24. First, calculate the

strain, and then the corresponding stress from the plot.

This is within the elastic region; from the inset of Figure 6.24, this corresponds to a stress of about
1250 MPa (180,000 psi). Now,

F=0cA,= ob?
in which b is the cross-section side length. Thus,
F= (1250 x 108 N/m?2 Xs.s x 1073 m)2 = 37,800 N (8500 Ib,)

(b) After the load is released there will be no deformation since the material was strained only

elastically.

6.29 This problem calls for us to make a stress-strain plot for aluminum, given its tensile load-length data,
and then to determine some of its mechanical characteristics.
(a) The data are plotted below on two plots: the first corresponds to the entire stress-strain curve,

while for the second, the curve extends just beyond the elastic region of deformation.
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300 -
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Stress (MPa)

100

00 0.10
Strain

oo

300

200

Stress (MPa)

100

74 1 | 1 | 1 1

0 i i
0.000 0.002 0.004 0.006 0.008 0.010 0.012

Strain

(b) The elastic modulus is the slope in the linear elastic region as

As 200 MPa — 0 MPa 3 .
- 625310 WPa=625 Gpa. 610 )
Ac 0.0032 — 0 62.5x 10> MPa = 62.5GPa (9.1 x 10° psi

(c) For the yield strength, the 0.002 strain offset line is drawn dashed. It intersects the stress-strain

curve at approximately 285 MPa (41,000 psi ).
(d) The tensile strength is approximately 370 MPa (53,500 psi), corresponding to the maximum

stress on the complete stress-strain plot.
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(e) The ductility, in percent elongation, is just the plastic strain at fracture, multiplied by one-
hundred. The total fracture strain at fracture is 0.165; subtracting out the elastic strain (which is
about 0.005) leaves a plastic strain of 0.160. Thus, the ductility is about 16%EL.
(f) From Equation (6.14), the modulus of resilience is just

2

(¢
u ==%
T 2E

which, using data computed in the problem, yields a value of

(285 MPa)?
2) (62.5 x 103 MPa)

U

r =6.5x10% Jm> (93.8 in.-Iby/in? )

6.30 This problem calls for us to make a stress-strain plot for a magnesium, given its tensile load-length
data, and then to determine some of its mechanical characteristics.
(@) The data are plotted below on two plots: the first corresponds to the entire stress-strain curve,

while for the second, the curve extends just beyond the elastic region of deformation.

I I I I I
200 -

©
o
=
@
o 100 - -
)

O 1 1 1 1 1 1 1 1 1 1 1

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Strain
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0 1 1
0.000 0.002 0.004 0.006 0.008 0.010 0.012
Strain

(b) The elastic modulus is the slope in the linear elastic region as

50 MPa — 0 MPa
0.001-0

A
E :A—G - — 50 x 108 MPa = 50 GPa (7.3 x 108 psi)
€

(c) For the yield strength, the 0.002 strain offset line is drawn dashed. It intersects the stress-strain
curve at approximately 150 MPa (21,750 psi).

(d) The tensile strength is approximately 240 MPa (34,800 psi), corresponding to the maximum
stress on the complete stress-strain plot.

(e) From Equation (6.14), the modulus of resilience is just

C
1]
JES

which, using data computed in the problem, yields a value of

U

(150 x10° N/mz)z e . 2
= =225x10° Im* (@26 in.-Ibg/in*)

B (2)@0 x 109 N/mz)_

(f) The ductility, in percent elongation, is just the plastic strain at fracture, multiplied by one-hundred.
The total fracture strain at fracture is 0.110; subtracting out the elastic strain (which is about 0.003)

leaves a plastic strain of 0.107. Thus, the ductility is about 10.7%EL.
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6.31 This problem calls for ductility in both percent reduction in area and percent elongation.

reduction in area is computed using Equation (6.12) as

R

%RA = x 100

in which dO and d, are, respectively, the original and fracture cross-sectional areas. Thus,

f

(12.8 mm)z (6.60 mm)z
| — - n|————

%RA = 2 2 X 100 = 73.4%

(12.8 mmjz
[(12.8 mm
2

While, for percent elongation, Equation (6.11) is used as

L — |
%EL :(f | OJ x 100
(0]

_72.14 mm - 50.80 mm
- 50.80 mm

x 100 = 42%

Percent

6.32 This problem asks us to calculate the moduli of resilience for the materials having the stress-strain

behaviors shown in Figures 6.12 and 6.24. According to Equation (6.14), the modulus of resilience

Ur is a function of the yield strength and the modulus of elasticity as

C
1
JES

The values for oy and E for the brass in Figure 6.12 are 250 MPa (36,000 psi) and 93.9 GPa (13.6 x

106 psi), respectively. Thus

(250 MPa)?
2) (93.9 x 103 MPa)

U

r = 332 x10° Im°> (@7.6in.-Ioyin®)
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Values of the corresponding parameters for the steel alloy (Figure 6.24) are 1570 MPa
(230,000 psi) and 210 GPa (30.5 x 106 psi), respectively, and therefore

_ (1570 MPa)?
(2)(210 x103 MPa)

3
r =587x10° ym® @67 in.-Ibgin.>"

6.33 The moduli of resilience of the alloys listed in the table may be determined using Equation (6.14).
Yield strength values are provided in this table, whereas the elastic moduli are tabulated in Table
6.1.

For steel

G2

U =
r 2E

(830 x108 N /m2)Z

@ (207 x 10° N/m2)

=16.6 x 10° Jim> (240 in.-lb/in?)

For the brass

@80 x 108 N/m2)2

B (2)(97 x 10° N/m2)

u

r =7.44x10° Jm® (108 in.-Ibg/in>’

For the aluminum alloy

(275 x 10° N/m2)2

B (2)(69 x 10° N/m2)

r =5.48x10° J/m® (0.0 in.-lb/in*)

And, for the titanium alloy

(690 x10° N/m2)2 e s .
= =222x10° Im® (323 in.-Iby/in®)

Y= (2)(107 x 10° N/mz)_

r
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6.34 The modulus of resilience, yield strength, and elastic modulus of elasticity are related to one

another through Equation (6.14); the value of E for steel given in Table 6.1 is 207 GPa. Solving for

Sy from this expression yields

o, = J2UE :J(z)(2.07 MPa)(207 x 103 MPa)

=925 MPa (134,000 psi)

6.35 (a) In the schematic plot shown below, curve (1) represents the tensile true stress-strain behavior

for a typical metal alloy.

(1)

(2)

Stress

Strain

(b) The compressive stress-strain behavior is also represented by curve (1), which is virtually the
same as that for the tensile behavior inasmuch as both compressive and tensile true stress take into
account the cross-sectional area over which deformation is occurring (i.e., within the neck region for
tensile behavior).

(c) Curve (2) in this plot represents the compression engineering stress-strain behavior for this

same alloy; this curve lies below curve (1) which is for compression true stress and strain. The
reason for this is that during compression the cross-sectional area is increasing (that is, Ai > Ao)’

and since ¢ = F/A0 and o1 = F/Ai, then it follows that or<o.

6.36 To show that Equation (6.18a) is valid, we must first rearrange Equation (6.17) as
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But, from Equation (6.2)

Or

Thus,

For Equation (6.18b)

is valid since

and

from above.

azl—'— 1
0
i
l—:g+1
0
|
GT:GE =o(e + 1)

6.37 This problem asks us to demonstrate that true strain may also be represented by
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Rearrangement of Equation (6.17) leads to
Thus, Equation (6.16) takes the form

Ag

The expression e = In(TJ is more valid during necking because Ai is taken as the area of the
i

neck.

6.38 These true stress-strain data are plotted below.

500

400

300

200

True stress (MPa)

100

0 \ .
0.0 0.1 0.2
True strain

6.39 We are asked to compute the true strain that results from the application of a true stress of 600 MPa
(87,000 psi); other true stress-strain data are also given. It first becomes necessary to solve for n in

Equation (6.19). Taking logarithms of this expression and after rearrangement we have
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log 6 - log K
- log &
log (575 MPa) — log (860 MPa)

= 05 0.2) = 0.250

Expressing &1 as the dependent variable, and then solving for its value from the data stipulated in

the problem, leads to

1/

(o) (600 Mpaj1’°-25 0037

°T "'k ) ~\860 MPa e

6.40 We are asked to compute how much elongation a metal specimen will experience when a true
stress of 415 MPa is applied, given the value of n and that a given true stress produces a specific
true strain. Solution of this problem requires that we utilize Equation (6.19). It is first necessary to

solve for K from the given true stress and strain. Rearrangement of this equation yields

_ Or 345 MPa
(e)" (0.02)922

=816 MPa (118,000 psi)

Next we must solve for the true strain produced when a true stress of 415 MPa is applied, also using
Equation (6.19). Thus

1n 1/0.22
s (w) 00463 = In| L
T K 816 MPa ' l

Now, solving for Ii gives

| =1,6%9403 = (500 mm)e®04®3 = 523.7 mm (20.948 in.)
And finally, the elongation Al is just
Al=1 — 15 =523.7 mm -500 mm = 23.7 mm (0.948 in.)
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6.41 For this problem, we are given two values of &1 and o1 from which we are asked to calculate the

true stress which produces a true plastic strain of 0.25. After taking logarithms of Equation (6.19),

we may set up two simultaneous equations with two unknowns (the unknowns being K and n), as
log (50,000 psi) = log K + nlog (0.10)

log (60,000 psi) = log K + nlog (0.20)

From these two expressions,

_ log (50,000) — log (60,000)
" log(0.1) - log(0.2) 0.263

log K =4.96 or K = 91,623 psi

Thus, for & = 0.25

0.263

.263 . .
or = K(gT)O = (91,623 psi)(0.25) = 63,700 psi (440 MPa)

6.42 For this problem we first need to convert engineering stresses and strains to true stresses and
strains so that the constants K and n in Equation (6.19) may be determined. Since or = o(l +¢)

then

o1, = (315 MPa)(1+ 0.105) = 348 MPa
o1, = (340 MPa)(1 + 0.220) = 415 MPa
Similarly for strains, since & = In(1 + €) then
g1, = In (1 + 0.105) = 0.09985
g1, = In (1 + 0.220) =0.19885

Taking logarithms of Equation (6.19), we get

log ot =log K + nlog et
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which allows us to set up two simultaneous equations for the above pairs of true stresses and true
strains, with K and n as unknowns. Thus

log (348) =log K + nlog (0.09985)
log (415) =log K + nlog (0.19885)

Solving for these two expressions yields K = 628 MPa and n = 0.256.

Now, converting € = 0.28 to true strain
er =In(1 + 0.28) = 0.247
The corresponding o to give this value of - [using Equation (6.19)] is just
or = KeJ = (628 MPa)(0.247)*2%° = 439 MPa
Now converting this ortoan engineering stress

_ O 439 MPa
" 1+¢ 1+ 028

c =343 MPa

6.43 This problem calls for us to compute the toughness (or energy to cause fracture). The easiest way

to do this is to integrate both elastic and plastic regions, and then add them together.

Toughness = Ic de

0.01 0.75
= J.Eads + J-Ksnds
0 0.01
5 0.01 0.75
_ Ee& LK 0+
2 n+1
0 0.01
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9 2 6 2 -
172 x 10" N/m 2 6900 x10~ N/m 3 3
= 0.01)" + 0.75)" - (0.01

2 ( ) (1.0 + 0.3) K )1 ( )1

= 3.65x 10 Jm> (5.20 x 10° in--Ibgin.%)
6.44 This problem asks that we determine the value of &1 for the onset of necking assuming that necking

begins when

dGT

=0
dz—:.l. T

Let us take the derivative of Equation (6.19), set it equal to o) and then solve for e from the

resulting expression. Thus

{K@T)} e, 0 -

However, from Equation (6.19), or = K(sT)n, which, when substituted into the above expression,

yields

Kn e jn- = 8T)

Now solving for &1 from this equation leads to
er=n

as the value of the true strain at the onset of necking.

6.45 This problem calls for us to utilize the appropriate data from Problem 6.29 in order to determine the
values of n and K for this material. From Equation (6.38) the slope and intercept of a log o Versus

log &1 plot will yield values for n and log K, respectively. However, Equation (6.19) is only valid in

the region of plastic deformation to the point of necking; thus, only the 7th, 8th, 9th, and 10th data

points may be utilized. The log-log plot with these data points is given below.
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log true strain

The slope yields a value of 0.136 for n, whereas the intercept gives a value of 2.7497 for log K, and
thus K = 562 MPa.

6.46 (a) In order to determine the final length of the brass specimen when the load is released, it first

becomes necessary to compute the applied stress using Equation (6.1); thus

F 11,750 N
= = L 5 =150 MPa (22,000 psi)

2
. & 10 x10°m
2 2

Upon locating this point on the stress-strain curve (Figure 6.12), we note that it is in the linear, elastic

_F
°~A
(0]

region; therefore, when the load is released the specimen will return to its original length of 120 mm
(4.721in.).

(b) In this portion of the problem we are asked to calculate the final length, after load release, when
the load is increased to 23,500 N (5280 Ibf). Again, computing the stress

23,500 N .
c = > = 300 MPa (44,200 psi)

10 x 103 m
.| 10 x10 "m
2
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The point on the stress-strain curve corresponding to this stress is in the plastic region. We are able
to estimate the amount of permanent strain by drawing a straight line parallel to the linear elastic

region; this line intersects the strain axis at a strain of about 0.012 which is the amount of plastic
strain. The final specimen length Ii may be determined from Equation (6.2) as

I =1,(1 + &) = (120 mm)(1 + 0.012) = 121.44 mm (4.78 in.)

6.47 (a) We are asked to determine both the elastic and plastic strains when a tensile force of 110,000 N
(25,000 Ibf) is applied to the steel specimen and then released. First it becomes necessary to

determine the applied stress using Equation (6.1); thus

__F

_E
AO bOdO

(o)

where b0 and dO are cross-sectional width and depth (19 mm and 3.2 mm, respectively). Thus

110,000 N
o =
(19 xlO_3 mX’u.Z xlO_3 m)

=1.810 x10° N/m? = 1810 MPa (265,000 psi)

From Figure 6.24, this point is in the plastic region so there will be both elastic and plastic strains
present. The total strain at this point, & is about 0.020. We are able to estimate the amount of

permanent strain recovery &g from Hooke's law, Equation (6.5) as

g
Se = E

And, since E = 207 GPa for steel (Table 6.1)
1810 MPa

€ =T _ 3. - 0.009
207 x 10° MPa

The value of the plastic strain, & is just the difference between the total and elastic strains; that is

&, gt Eg = 0.020 - 0.0087 = 0.011

(b) If the initial length is 610 mm (24.0 in.) then the final specimen length Ii may be determined from

Equation (6.2) using the plastic strain value as
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= 1o(L + &) = (610 mm)(1 + 0.011) = 616.7 mm (24.26 in.)

6.48 (a) We are asked to compute the Brinell hardness for the given indentation. It is necessary to use
the equation in Table 6.4 for HB, where P = 1000 kg, d = 2.50 mm, and D = 10 mm. Thus, the

Brinell hardness is computed as

2P
nD[D —{D? —dz}

HB =

_ (2)(1000 kg) 2005

(n)(10 mm){lo mm —J(lo mm)2 —(2.50 mm)z}

(b) This part of the problem calls for us to determine the indentation diameter d which will yield a

300 HB when P =500 kg. Solving for d from this equation in Table 6.4 gives

2
_ 2 2P
d ‘JD - {D - (HB)nD}

2
:‘/(10 mm)? —{10 mm - —2(500 kg) } =1.45 mm

~ (300)(m)(10 mm)

6.49 This problem calls for estimations of Brinell and Rockwell hardnesses.
(a) For the brass specimen, the stress-strain behavior for which is shown in Figure 6.12, the tensile
strength is 450 MPa (65,000 psi). From Figure 6.19, the hardness for brass corresponding to this
tensile strength is about 125 HB or 70 HRB.
(b) The steel alloy (Figure 6.24) has a tensile strength of about 1970 MPa (285,000 psi). This
corresponds to a hardness of about 560 HB or ~55 HRC from the line (extended) for steels in Figure
6.19.

6.50 This problem calls for us to specify expressions similar to Equations (6.20a) and (6.20b) for nodular

cast iron and brass. These equations, for a straight line, are of the form

TS = C + (E)(HB)
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where TS is the tensile strength, HB is the Brinell hardness, and C and E are constants, which need
to be determined.
One way to solve for C and E is analytically--establishing two equations from TS and HB

data points on the plot, as

(TS); = C + (E)(BH),
(TS), = C + (E)(BH),

Solving for E from these two expressions yields

_{Ts) - (9),
(HB), - (HB),

For nodular cast iron, if we make the arbitrary choice of (HB)1 and (HB)2 as 200 and 300,
respectively, then, from Figure 6.19, (TS)1 and (TS)2 take on values of 87,000 psi (600 MPa) and

160,000 psi (1100 MPa), respectively. Substituting these values into the above expression and

solving for E gives

_ 87,000 psi— 160,000 psi
~ 200 HB - 300 HB

= 730 psi/HB (5.0 MPa/HB)

Now, solving for C yields

C=(T9); - E)BH),

= 87,000 psi - (730 psi/HB)(200 HB) = -59,000 psi (-400 MPa)

Thus, for nodular cast iron, these two equations take the form

TS(psi) =-59,000 + 730 x HB
TS(MPa) = -400 + 5.0 x HB

Now for brass, we take (HB)1 and (HB)2 as 100 and 200, respectively, then, from Figure
6.19, (TS)1 and (TS)2 take on values of 54,000 psi (370 MPa) and 95,000 psi (660 MPa),

respectively. Substituting these values into the above expression and solving for E gives
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_ 54,000 psi — 95,000 psi
" 100 HB - 200 HB

= 410 psi/HB (2.9 MPa/HB)

Now, solving for C yields
C=(TS); - (E)(BH),
= 54,000 psi - (410 psi/HB)(100 HB) = 13,000 psi (80 MPa)
Thus, for brass these two equations take the form

TS(psi) = 13,000 + 410 x HB
TS(MPa) = 80 + 2.9 x HB

6.51 The five factors that lead to scatter in measured material properties are the following: 1) test
method; 2) variation in specimen fabrication procedure; 3) operator bias; 4) apparatus calibration;

and 5) material inhomogeneities and/or compositional differences.

6.52 The average of the given hardness values is calculated using Equation (6.21) as

_ 47.3+52.1+45.6....+49.7
- 18

= 48.4

And we compute the standard deviation using Equation (6.22) as follows:

18 —
> (HRGi - HRG)2
i1

18-1

S =

2 2 2 1/2
| (473 - 48.4) + (52.1- 484 +. ...+ (49.7 - 48.4) }
B 17
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64.95
=y —— =195
17

6.53 The criteria upon which factors of safety are based are 1) consequences of failure, 2) previous
experience, 3) accuracy of measurement of mechanical forces and/or material properties, and 4)

economics.

6.54 The working stresses for the two alloys the stress-strain behaviors of which are shown in Figures

6.12 and 6.24 are calculated by dividing the yield strength by a factor of safety, which we will take to
be 2. For the brass alloy (Figure 6.12), since Gy = 250 MPa (36,000 psi), the working stress is 125

MPa (18,000 psi), whereas for the steel alloy (Figure 6.24), o-y = 1570 MPa (228,000 psi), and,
therefore, Oy = 785 MPa (114,000 psi).

Design Problems

6.D1 For this problem the working stress is computed using Equation (6.24) with N = 2, as

Since the force is given, the area may be determined from Equation (6.1), and subsequently the
original diameter d0 may be calculated as

And

= (4)(13,300 N)
dO :J :J

no,, n(430 x 108 N/mZ)

-63x1073

m =6.3 mm (0.25in.)

6.D2 (a) This portion of the problem asks for us to compute the wall thickness of a thin-walled cylindrical
Ni tube at 300°C through which hydrogen gas diffuses. The inside and outside pressures are,
respectively, 1.013 and 0.01013 MPa, and the diffusion flux is to be no greater than 1 x 10'7 moI/mZ—

s. This is a steady-state diffusion problem, which necessitates that we employ Equation (5.3). The
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concentrations at the inside and outside wall faces may be determined using Equation (6.39), and,

furthermore, the diffusion coefficient is computed using Equation (6.40). Solving for Ax

= X
1 x10~7 mol/m2/s

5 39,560 J/mol
4.76 x 10 )e -
( X Xp[ (831 J/mol-K)(300 + 273 K)) *

12,300 J/mol
(8.31 J/mol-K)(300 + 273 K)

(30.8)exp(— J(,/ 1013 MPa -+ 001013 MPa)

=0.0025m=2.5mm

(b) Now we are asked to determine the circumferential stress; from Equation (6.41)

_rap
%7 AAx

_ (1.013 MPa — 0.01013 MPa)(0.1 m)

- (4)(0.0025 m)

=10 MPa

(c) Now we are to compare this value of stress to the yield strength of Ni at 300°C, from which it is
possible to determine whether or not the 2.5 mm wall thickness is suitable. From the information
given in the problem, we may write an equation for the dependence of yield strength on temperature

as follows:

o, =100 MPa ~0.1 MPa (T- 20)

for temperature in degrees Celsius. Thus, at 300°C

oy = 100 MPa — 0.1 MPa (300- 20)=72 MPa
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Inasmuch as the circumferential stress (10 MPa) is much less than the yield strength (72 MPa), this

thickness is entirely suitable.

(d) And, finally, this part of the problem asks that we specify how much this thickness may be
reduced and still retain a safe design. Let us use a working stress by dividing the yield stress by a
factor of safety, according to Equation (6.24). On the basis of our experience, let us use a value of

2.0 for N. Thus

Using this value for O and Equation (6.41), we now compute the tube thickness as

rAp

AX =
4GW

~ (0.1 m)(1.013 MPa - 0.01013 MPa)
B 4(36 MPa)

=0.0007 m=0.7 mm

Substitution of this value into Fick's first law [Equation (5.3)] we calculate the diffusion flux as follows:

A
3 =_pi&
AX
7 39,560 J/mol
= (.76 x 10 )e _
( X Xp{ (8.31 J/mol-K)(300 + 273 K) |
(30.8)exp{— 12,300_J/mol }(,/1.013 MPa — /0.01013 Mpa )
(8.31 J/mol-K)(300 + 273 K)
0.0007 m

=3.63x 10'7 mol/mz—s

Thus, the flux increases by approximately a factor of 3.5, from 1 x 10'7 to 3.63 x 10'7 mol/mz—s with

this reduction in wall thickness.
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6.D3 This problem calls for the specification of a temperature and cylindrical tube wall thickness that will
give a diffusion flux of 5 x 10'8 moI/m2—s for the diffusion of hydrogen in nickel; the tube radius is
0.125 m and the inside and outside pressures are 2.026 and 0.0203 MPa, respectively. There are
probably several different approaches that may be used; and, of course, there is not one unique
solution. Let us employ the following procedure to solve this problem: 1) assume some wall
thickness, and, then, using Fick's first law for diffusion [which also employs Equations (5.3) and
(5.8)], compute the temperature at which the diffusion flux is that required; 2) compute the yield
strength of the nickel at this temperature using the dependence of yield strength on temperature as
stated in Problem 6.D2; 3) calculate the circumferential stress on the tube walls using Equation
(6.41); and 4) compare the yield strength and circumferential stress values--the yield strength
should probably be at least twice the stress in order to make certain that no permanent deformation
occurs. If this condition is not met then another iteration of the procedure should be conducted with

a more educated choice of wall thickness.
As a starting point, let us arbitrarily choose a wall thickness of 2 mm (2 x 10'3 m). The

steady-state diffusion equation, Equation (5.3), takes the form

J=-D—
A

=5x 10'8 moI/mz—s

i 7 39,560 J/mol
= (4.76 x 10 )”‘p{ (8.31 J/mol-K)(T)| *

12,300 J/mol
(8.31 J/mol-K)(T)
0002 m

(30.8)exp[— }(42.026 MPa — /0.0203 MPa)

Solving this expression for the temperature T gives T = 514 K = 241°C.

The next step is to compute the stress on the wall using Equation (6.41); thus

rAp
4 AX

o =

_ (0125 m)(2.026 MPa — 0.0203 MPa)
(4)(2 x1073 m)
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=31.3 MPa

Now, the yield strength of Ni at this temperature may be computed as

Sy =100 MPa - 0.1 MPa (241°C - 20°C) = 77.9 MPa

Inasmuch as this yield strength is greater than twice the circumferential stress, wall thickness and

temperature values of 2 mm and 241°C, respectively, are satisfactory design parameters.

6.D4 (a) This portion of the problem asks for us to determine which of the materials listed in the
database of Appendix B (or contained on the CD-ROM) have torsional strength performance indices

greater than 12.5 (in Sl units) and, in addition, shear strengths greater that 300 MPa. To begin, it is
noted in Section 6.13 that the shear yield strength, T, = 0.6c,,. On this basis, and given that

y y
1:2/3
y

P= [Equation (6.33) in the textbook], it follows that

Thus, the minimum value of the performance index in terms of yield strength value is (12.5)/(0.6)2/3

2/3
T

= 17.57. When a ratio query is performed on the CD-ROM for using a minimum value of

17.57, ten metal alloys are found to satisfy this criterion; these are listed in the table below.

2/3
(0.6 cy)
Alloy Condition e c
p y

4340 Steel QIT, 315°C 17.57 1620
440A Stainless QIT, 315°C 17.90 1650
2024 Al T3 17.75 345
7075 Al T6 22.64 505
7075 Al T651 22.64 505
AZ31B Mg Rolled 20.59 220
AZ31B Mg Extruded 19.32 200
Ti-5Al-2.5Sn Annealed 18.59 760
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Ti-6Al-4V Annealed 19.94 830
Ti-6Al-4V Aged 24.10 1103

Now, the second criterion calls for the material to have a shear strength greater than 300
MPa. Again, since cy = ry/0.6, the minimum vyield strength required is Gy = 300 MPa/0.6, or Gy =

500 MPa. Values of cy from the database are also given in this table. It is noted that the 2024 Al

and both magnesium alloys are eliminated on the basis of this second criterion.

(b) This portion of the problem calls for us to conduct a cost analysis for these seven remaining

p

W, relative cost c (as taken from
fele)
y

alloys. Below is given a tabulation of values for

Appendix C), and the product of these two parameters. (It should be noted that no values of c are
given for four of these materials.) The three remaining materials are ranked on the basis of cost,

from least to most expensive.

Alloy Condition % c (E)%
(O.GGy) (0 6csy)

7075 Al T6 0.0621 13.4 0.832

Ti-6Al-4V Annealed 0.0705 132 9.31

Ti-5Al-2.5Sn  Annealed 0.0756 157 11.87

Ti-6Al-4V Aged 0.0583 - -

4340 Steel Q/T, 315°C 0.0800 -- -

440A Stain.  QIT, 315°C 0.0785 -- -

7075 Al T651 0.0621 -- --

Thus, the 7075-T6 aluminum alloy is the overwhelming choice of the three materials for which cost

2/3}

data are given since it has the lowest value for the (E)[p/(0.6cy) product.

6.D5 This problem asks that we conduct a stiffness-to-mass performance analysis on a solid cylindrical
shaft that is subjected to a torsional stress. The stiffness performance index P is given as Equation

(6.35) in the textbook:
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nY
1

in which G is the shear modulus and p is the density. Densities for the five materials are tabulated in
Table 6.6. Shear moduli for the glass- and fiber-reinforced composites were stipulated in the
problem (8.6 and 9.2 GPa, respectively). For the three metal alloys, values of the shear modulus
may be computed using Equation (6.9) and the values of the modulus of elasticity and Poisson's

ratio given in Tables B.2 and B.3 in Appendix B. For example, for the 2024-T6 aluminum alloy

E
G =
2(1+v)

724 GPa
21+ 033

= 27.2 GPa
Values of G for the titanium alloy and 4340 steel are, respectively, 42.5 and 79.6 GPa.
Below are tabulated the density, shear modulus, and stiffness performance index for these

five materials.

P G E

p
Material (Mg/m3) (GPa) EGPa)ll 2m3/Mg:|
Carbon fiber-reinforced 15 9.2 2.02
composite

Aluminum alloy (2024-T6) 2.8 27.2 1.86
Titanium alloy (Ti-6Al-4V) 4.4 425 1.48

Glass fiber-reinforced 2.0 8.6 1.47
composite
4340 Steel (oil-quenched 7.8 79.6 1.14

and tempered)

Thus, the carbon fiber-reinforced composite has the highest stiffness performance index, % and

the tempered steel the least.
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The table shown below contains the reciprocal of the performance index in the first column,
the relative cost (<-:), and the product of these two factors, which provides a comparison of the
relative costs of the materials to be used for this torsional shaft, when stiffness is an important

consideration.

L - E(L]
¥G ¥G
Material prorcPa)?m?- ($/9) (/%) frarcra2m? |
4340 Steel (oil-quenched 0.877 5 4.39
and tempered)
Aluminum alloy (2024-T6) 0.538 15 8.06
Glass fiber-reinforced 0.680 40 27.2
composite
Carbon fiber-reinforced 0.495 80 39.6
composite
Titanium alloy (Ti-4AI-6V) 0.676 110 74.4

Thus, a shaft constructed of the tempered steel would be the least expensive, whereas the most

costly shaft would employ the titanium alloy.

6.D6 (a) This portion of the problem asks that we derive a performance index expression for strength
analogous to Equation (6.33) for a cylindrical cantilever beam that is stressed in the manner shown
in the accompanying figure. The stress on the unfixed end, o, for an imposed force, F, is given by

the expression [Equation (6.42) in the textbook]

FL
G = —Ir (6.D1)

where L and r are the rod length and radius, respectively, and | is the moment of inertia; for a

cylinder the expression for | is provided in Figure 12.29:

| = —— (6.D2)
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Substitution for | into Equation (6.D1) leads to

4F
o=—% (6.D3)
mr

—

Now, the mass m of some given quantity of material is the product of its density (p) and volume.

Inasmuch as the volume of a cylinder is just nr2L, then

m = Tcr2Lp (6.D4)
From this expression, the radius is just
m
r=J— (6.D5)
nLp

Inclusion of Equation (6.D5) into Equation (6.D3) yields

1/2,5/2 3/2
42|
6= 5" (6.D6)
m

And solving for the mass gives
/3
— 2,5 p
m = (167cF L)1 4 (6.D7)

To ensure that the beam will not fail, we replace stress in Equation (6.D7) with the yield strength (cy)

divided by a factor of safety (N) as

/3
m = (16nF2|_5|\12)1 £ (6.08)
(e}

y

Thus, the best materials to be used for this cylindrical cantilever beam when strength is a
p
2/3

(o}

y

consideration are those having low ratios. Furthermore, the strength performance index, P, is

just the reciprocal of this ratio, or
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p= Y (6.D9)

The second portion of the problem asks for an expression for the stiffness performance
index. Let us begin by consideration of Equation (6.43) which relates 8, the elastic deflection at the
unfixed end, to the force (F), beam length (L), the modulus of elasticity (E), and moment of inertia (I)
as

FL3

= 3E (6.43)

Again, Equation (6.D2) gives an expression for | for a cylinder, which when substituted into Equation
(6.43) yields

4F13
3nEr?

(6.D10)

And, substitution of the expression for r [Equation (6.D5)] into Equation (6.D10), leads to
4F13
- 4
3nE| J—
" [i“LP]

5_2
4FL
= —- (6.D11)
3Em

Now solving this expression for the mass m yields

4F1° v
m:[ ”J £ (6.D12)

35 JE

Or, for this cantilever situation, the mass of material experiencing a given deflection produced by a

specific force is proportional to the ﬁ ratio for that material. And, finally, the stiffness performance

index, P, is just the reciprocal of this ratio, or
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P :% (6.D13)

(b) Here we are asked to select those metal alloys in the database that have stiffness performance
indices greater than 3.0 (in Sl units). (Note: for this performance index of 3.0, density has been

taken in terms of g/cm3 rather than in the Sl units of kg/m3.) Seventeen metal alloys satisfy this
criterion; they and their \/E/p values are listed below, and ranked from highest to lowest value.

Alloy Condition %

AZ31B Mg Rolled 3.790
AZ31B Mg Extruded 3.790
AZ91D Mg As cast 3.706
356.0 Al As cast, high production  3.163
356.0 Al As cast, custom 3.163
356.0 Al T6 3.163
6061 Al 0] 3.077
6061 Al T6 3.077
6061 Al T651 3.077
2024 Al @] 3.072
2024 Al T3 3.072
2024 Al T351 3.072
1100 Al @] 3.065
1100 Al H14 3.065
7075 Al @] 3.009
7075 Al T6 3.009
7075 Al T651 3.009

(c) We are now asked to do a cost analysis on the above alloys. Below are tabulated the ﬁ ratio,

the relative material cost (E), and the product of these two parameters; also those alloys for which

cost data are provided are ranked, from least to most expensive.
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p

. -l _p
Allo Condition - cl—7—=
g VE L/EJ

ol

AZ91D Mg As cast 0.2640 54 1.43
6061 Al T6 0.3250 7.6 2.47
356.0 Al As cast, high production 0.3162 7.9 2.50
6061 Al T651 0.3250 8.7 2.83
AZ31B Mg Extruded 0.2640 12.6 3.33
1100 Al O 0.3263 12.3 4.01
AZ31B Mg Rolled 0.2640 15.7 4.14
7075 Al T6 0.3323 134 4.45
2024 Al T3 0.3255 14.1 4.59
356.0 Al As cast, custom 0.3162 15.7 4.96
356.0 Al T6 0.3162 16.6 5.25
2024 Al T351 0.3255 16.2 5.27
1100 Al H14 0.3263 -- --

2024 Al 0] 0.3255 -- -

6061 Al ) 0.3250 -- -

7075 Al o] 0.3323 -- -

7075 Al T651 0.3323 -- --

It is up to the student to select the best metal alloy to be used for this cantilever beam on a stiffness-

per-mass basis, including the element of cost, and other relevant considerations.

(d) We are now asked to select those metal alloys in the database that have strength performance
indices greater than 18.0 (in Sl units). (Note: for this performance index of 18.0, density has been

taken in terms of g/cm3 rather than in the Sl units of kg/m3.) Seven alloys satisfy this criterion; they
2/3
(o)

and their ratios [Equation (6.D9)] are listed below; here they are ranked from highest to

lowest ratio value.

02/ 3
Alloy Condition
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(e) We are now asked to do a cost analysis on the above alloys. Below are tabulated the

Ti-6Al-4V
7075 Al
7075 Al
AZ31B Mg
Ti-6Al-4V
AZ31B Mg
Ti-5Al-2.5Sn

Soln. treated/aged
T6

T651

Rolled

Annealed
Extruded

Annealed

24.10
22.65
22.65
20.59
19.94
19.32
18.59

273
Sy

values, the relative material cost (E ), and the product of these two parameters; also those alloys for

which cost data are provided are ranked, from least to most expensive.

Alloy Condition 10 273 c 273
y y
7075 Al T6 4.42 13.4 0.592
AZ31B Mg Extruded 5.18 12.6 0.653
AZ31B Mg Rolled 4.86 15.7 0.763
Ti-6Al-4V Soln. treated/aged 4.15 132 5.48
Ti-6Al-4V Annealed 5.02 132 6.63
Ti-5Al-2.5Sn  Annealed 5.38 157 8.45
7075 Al T651 4.42 -- --

It is up to the student to select the best metal alloy to be used for this cantilever beam on a stiffness-

per-mass basis, including the element of cost and any other relevant considerations.

(f) The student should use his or her own discretion in selecting the material to be used for this
application when stiffness- and strength-per-mass, as well as cost are to be considered.

Furthermore, the student should be able to justify the decision.
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6.D7 (a) This portion of the problem asks that we derive strength and stiffness performance index
expressions analogous to Equations (6.33) and (6.35) for a bar specimen having a square cross-
section that is pulled in uniaxial tension along it longitudinal axis.

For stiffness, we begin by consideration of the elongation, Al, in Equation (6.2) where the
initial length IO is replaced by L. Thus, Equation (6.2) may now be written as

Al = Le (6.D14)

in which ¢ is the engineering strain. Furthermore, assuming that the deformation is entirely elastic,
Hooke's law, Equation (6.5), is obeyed by this material (i.e., o = Eg), where o is the engineering

stress. Thus

L
Al = Lg = — (6.D15)
E
And, since o is defined by Equation (6.1) as
F
c = A_ (6.1)
[0}
A0 being the original cross-sectional area; in this case A0 = c2. Thus, incorporation of these
relationships into Equation (6.D15) leads to an expression for Al as
LF
Al = — (6.D16)
Ec?

The mass of material, m, is just the product of the density, p, and the volume of the beam, which

volume is just ch; that is

2 (6.D17)

Or

(6.D18)

2

Substitution for ¢~ into Equation (6.D16) yields
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2
Al = EE2 (6.D19)

And solving for the mass
L2F
m = (—JE (6.D20)

Thus, the best materials to be used for a light bar that is pulled in tension when stiffness is a
consideration are those having low p/E ratios. The stiffness performance index, Pg is the reciprocal

of this ratio, or

_E
Po= (6.D21)

Now we will consider rod strength. The stress o imposed on this beam by F may be

determined using Equation (6.1); thatis

F F
== ? (6.D22)
[0}
In the stiffness treatment [(Equation (6.D18)] it was shown that 02 =m/pL, and thus
FL
o = —P (6.D23)
m
Now, solving for the mass, m, leads to
- 2
m = (FL) (6.D24)
(e}
And replacement of stress with yield strength, cy, divided by a factor of safety, N
- £
m = (FLN) (6.D25)
(e}

y

Hence, the best materials to be used for a light bar that is pulled in tension when strength is a
consideration are those having low p/O'y ratios; and the strength performance index, P, is just the

reciprocal of this ratio, or

162



O,
P = —pl (6.D26)

(b) Here we are asked to select those metal alloys in the database that have stiffness performance
indices [i.e., E/p ratios, Equation (6.D21)] greater than 26.3 (in Sl units). (Note: for this performance
index of 26.3, density has been taken in terms of g/cm3 rather than in the Sl units of kg/m3.) Twenty
seven metal alloys satisfy this criterion. All of the twenty-one plain carbon and low alloy steels
contained in the database fall into this group, and, in addition several other alloys. These E/p ratios
are listed below, and are ranked from highest to lowest value. (All of the twenty one steel alloys
have the same E/p ratio, and therefore are entered as a single item in the table.) These materials

are ranked from highest to lowest ratio.

Alloy(s) Condition E
Molybdenum Sheet/rod 31.31
356.0 Al As cast, high production  26.91
356.0 Al As cast, custom 26.91
356.0 Al T6 26.91
17-7PH stainless Plate, CR 26.67
17-7PH stainless Pptn. hardened 26.67
Plain carbon/low

alloy steels Various 26.37

(c) We are now asked to do a cost analysis on the above alloys. Below are tabulated the p/E ratio,
the relative material cost (E), and the product of these two parameters; only those alloys in the
previous table for which cost data are given are included in the table; these are ranked, from least to

most expensive.

Alloy Condition 102 £ c 1072 (-:(Bj
E E

1020 steel Plate, HR 3.79 0.8 3.03

A36 steel Plate, HR 3.79 1.0 3.79
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1040 steel Plate, HR 3.79 1.1 4.17

A36 steel Angle bar, HR 3.79 1.6 6.06
1020 steel Plate, CR 3.79 1.6 6.06
1040 steel Plate, CR 3.79 1.9 7.20
4140 steel Bar, normalized 3.79 2.6 9.85
4340 steel Bar, annealed 3.79 35 13.3
4140H steel  Round, normalized 3.79 4.2 15.9
4340 steel Bar, normalized 3.79 4.7 17.8
356.0 Al Cast, high prod. 3.72 7.9 29.4
17-7PH SS Plate, CR 3.75 12 45.0
356.0 Al Cast, custom 3.72 15.7 58.4
356.0 Al T6 3.72 16.6 61.8
Molybdenum Sheet/rod 3.19 143 456

It is up to the student to select the best metal alloy to be used for this bar pulled in tension on a

stiffness-per-mass basis, including the element of cost and other relevant considerations.

(d) We are now asked to select those metal alloys in the database that have strength performance
indices greater than 100 (in Sl units). (Note: for this performance index of 100, density has been

taken in terms of g/cm3 rather than in the Sl units of kg/m3.) Eighteen alloys satisfy this criterion;
they and their O'y/p ratios [per Equation (6.D26)] are listed below; here the ranking is from highest to

lowest ratio value.
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(e) We are now asked to do a cost analysis on the above alloys. Below are tabulated the p/cy

values, the relative material cost (E ), and the product of these two parameters; also those alloys for

Alloy Condition pr
Ti-6Al-4V Soln. treated/aged 249
440A stainless QIT, 315°C 212
4340 steel Q/T, 315°C 206
4140 steel QIT, 315°C 200
Ti-6Al-4V Annealed 187
7075 Al T6 180
7075 Al T651 180
17-7PH stainless Pptn. hardened 171
Ti-5Al-2.5Sn Annealed 170
17-7PH stainless Plate, CR 158
C17200 Cu Soln. treated/aged 132
2024 Al T3 125
AZ31B Mg Sheet, rolled 124
2024 Al T351 117
AZ31B Mg Sheet, extruded 113
4340 steel Normalized @870°C 110
6061 Al T6 102
6061 Al T651 102

which cost data are provided are ranked, from least to most expensive.

Alloy Condition 108 £ c 1072 ELi]
(e} (e}
y y
4340 steel Normalized @ 870°C 9.09 4.7 4.3
6061 Al T6 9.80 7.6 7.4
7075 Al T6 5.56 134 7.5
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17-7PHSS  Plate, CR 6.33 12.0 7.6
6061 Al T651 9.80 8.7 8.5
AZ31B Mg Sheet, extruded 8.85 12.6 11.2
2024 Al T3 8.00 141 11.3
AZ31B Mg Sheet, rolled 8.06 15.7 12.7
2024 Al T351 8.55 16.2 13.9
C17200 Cu  Soln. treated/aged 7.58 51.4 39.0
Ti-6Al-4V Soln. treated/aged 4.02 132 53.1
Ti-6Al-4V Annealed 5.35 132 70.6
Ti-5Al-2.5Sn  Annealed 5.88 157 92.3
440A SS Q/T, 315°C 4.72 -- --
4340 steel Q/T, 315°C 4.85 -- --
4140 steel Q/T, 315°C 5.00 -- --
7075 Al T651 5.56 -- --
17-7PH SS Pptn. hardened 5.85 -- --

It is up to the student to select the best metal alloy to be used for this bar pulled in tension on a

strength-per-mass basis, including the element of cost and other relevant considerations.

(f) The student should use his or her own discretion in the selection the material to be used for this
application when stiffness- and strength-per-mass, as well as cost are to be considered.

Furthermore, the student should be able to justify the decision.

6.D8 (a) The first portion of this problem asks that we derive a performance index expression for the
strength for a plate that is supported at its ends and subjected to a force that is uniformly distributed
over the upper face. Equation (6.44) in the textbook is an expression for the deflection & of the
underside of the plate at L/2 in terms of the force F, the modulus of elasticity E, as well as the plate

dimensions as shown in the accompanying figure. This equation is as follows:

_ 5FL3
32Ewt3

(6.D27)

Now, the mass m of the plate is the product of its density (p) and volume. Inasmuch as the volume

of the plate is Lwt, then
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m = Lwtp (6.D28)

From this expression, the thickness t is just

t = 6.D29
Lwp ( )
Inclusion of Equation (6.D29) into Equation (6.D27) yields
6,,,2.3
5FL°w
5= b (6.D30)
32Em
And solving for the mass gives
1/3
m = | LW D (6.D31)
B 3258 gl/3 '

Now, the stiffness performance index P1 is just the reciprocal of the El_p/3 term of this expression, or

E1/3
P =— (6.D32)
p

For determination of the strength performance index, we substitute the expression for t
[Equation (6.D29)] into Equation (6.45) in the textbook, which yields

3FL3wp?
c =5

> (6.D33)

4m

Now, as in the previous problems, in order to ensure that the plate will not fail, we replace stress in
the previous expression with the yield strength (cy) divided by a factor of safety (N) as

Oy _ 3FL3wp?

(6.D34)
N 4m?

Now solving Equation (6.D34) for the mass
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3 1/2
3NFL3w o
m = (6.D35)
(o)

4 1/2
y
And, finally, the stiffness performance index P, is the reciprocal of the % ratio as
%y

1/2

Oy

P, = (6.D36)

p

(b) Here we are asked to select those metal alloys in the database that have stiffness performance
1/3

indices [i.e., T ratios, Equation (6.D32)] greater than 1.50 (in Sl units). (Note: for this

performance index of 1.50, density has been taken in terms of g/cm3 rather than in the Sl units of
1/3

kg/m3.) Fourteen metal alloys satisfy this criterion. They and their ratios are listed below.

Furthermore, these materials are ranked from highest to lowest ratio.

El/3
Alloy Condition T
AZ31B Mg Rolled 2.010
AZ31B Mg Extruded 2.010
AZ91B Mg As cast 1.965
356.0 Al Cast, high production 1.549
356.0 Al As cast, custom 1.549
356.0 Al T6 1.549
6061 Al ] 1.519
6061 Al T6 1.519
6061 Al T651 1.519
1100 Al 0] 1.513
1100 Al H14 1.513
2024 Al @] 1.505
2024 Al T3 1.505
2024 Al T351 1.505
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(c) We are now asked to do a cost analysis on the above alloys. Below are tabulated the El%

ratio, the relative material cost (E), and the product of these two parameters; these alloys are

ranked from least to most expensive.

Alloy Condition El_F;?’ c c (El%j
AZ91B Mg As cast 0.509 5.4 2.75
6061 Al T6 0.658 7.6 5.00
356.0 Al Cast, high production 0.645 7.9 5.10
6061 Al T651 0.658 8.7 5.72
AZ31B Mg Extruded 0.498 12.6 6.27
AZ31B Mg Rolled 0.498 15.7 7.82
1100 Al ] 0.661 12.3 8.13
2024 Al T3 0.665 141 9.38
356.0 Al Cast, custom 0.645 15.7 10.13
356.0 Al T6 0.645 16.6 10.71
2024 Al T351 0.665 16.2 10.77
1100 Al H14 0.661 -- --

2024 Al @] 0.665 - -

6061 Al @] 0.658 - -

It is up to the student to select the best metal alloy to be used for this plate on a stiffness-per-mass

basis, including the element of cost, as well as other relevant considerations.

(d) We are now asked to select those metal alloys in the database that have strength performance
indices greater than 6.0 (in Sl units). (Note: for this performance index of 6.0, density has been

taken in terms of g/cm3 rather than in the Sl units of kg/m3.) Twelve alloys satisfy this criterion; they
1/2
(¢}

and their yT ratios [per Equation (6.D36)] are listed below; here the ranking is from highest to

lowest ratio value.

169



ol 2

Alloy Condition —pL
AZ31B Mg Sheet, rolled 8.380
AZ31B Mg Sheet, extruded 8.380
7075 Al T6 8.026
7075 Al T651 8.026
Ti-6Al-4V Soln. treated/aged 7.497
2024 Al T3 6.706
2024 Al T351 6.508
Ti-6Al-4V Annealed 6.503
Ti-5Al-2.5Sn Annealed 6.154
6061 Al T6 6.153
6061 Al T651 6.153
AZ91D Mg As cast 6.104
(e) We are now asked to do a cost analysis on the above alloys. Below are tabulated the ﬁ
y

values, the relative material cost (E), and the product of these two parameters; also those alloys for

which cost data are provided are ranked, from least to most expensive.

Alloy Condition ﬁ c c Gl_plz
y y
AZ91D Mg As cast 0.1639 5.4 0.885
6061 Al T6 0.1625 7.6 1.24
6061 Al T651 0.1625 8.7 1.41
AZ31B Mg Sheet, extruded 0.1193 12.6 1.50
7075 Al T6 0.1246 134 1.67
AZ31B Mg Sheet, rolled 0.1193 15.7 1.87
2024 Al T3 0.1491 14.1 2.10
2024 Al T351 0.1537 16.2 2.49
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Ti-6Al-4V Soln. treated/aged 0.1334 132 17.61

Ti-6Al-4V Annealed 0.1538 132 20.30
Ti-5Al-2.55n  Annealed 0.1625 157 25.51
7075 Al T651 0.1246 -- --

It is up to the student to select the best metal alloy to be used for this plate on a strength-per-mass

basis, including the element of cost, as well as other relevant considerations.
(f) The student should use his or her own discretion in the selection the material to be used for this

application when stiffness- and strength-per-mass, as well as cost are to be considered.

Furthermore, the student should be able to justify the decision.
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CHAPTER 7
DISLOCATIONS AND STRENGTHENING MECHANISMS
PROBLEM SOLUTIONS

7.1 The dislocation density is just the total dislocation length per unit volume of material (in this case per
cubic millimeters). Thus, the total length in 1000 mm3 of material having a density of 105 mm_2 is
just

(105 mm‘2X1000 mm3): 108 mm=10° m=62 mi

Similarly, for a dislocation density of 10° mm 2, the total length is

(109 mm'2X1000 mm3)= 1012 mm = 109 m=6.2 x 10° mi

7.2 When the two edge dislocations become aligned, a planar region of vacancies will exist between the
dislocations as:

O

O Vacancies that extend
O ¢ into and out of the

g plane of the paper

7.3 ltis possible for two screw dislocations of opposite sign to annihilate one another if their dislocation
lines are parallel. This is demonstrated in the figure below.

Ll L L L L LLY
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7.4 For the various dislocation types, the relationships between the direction of the applied shear stress
and the direction of dislocation line motion are as follows:
edge dislocation--parallel
screw dislocation--perpendicular

mixed dislocation--neither parallel nor perpendicular

7.5 (a) A slip system is a crystallographic plane, and, within that plane, a direction along which
dislocation maotion (or slip) occurs.
(b) All metals do not have the same slip system. The reason for this is that for most metals, the slip
system will consist of the most densely packed crystallographic plane, and within that plane the most

closely packed direction. This plane and direction will vary from crystal structure to crystal structure.

7.6 (a) Forthe FCC crystal structure, the planar density for the (110) plane is given in Equation (3.12) as

10477
4R2 2  R?

PDy1FCC) =

Furthermore, the planar densities of the (100) and (111) planes are calculated in Homework

Problem 3.47, which are as follows:

1 025

PP1oo(FCC) = 702 =2
1 29

PD, {,(FCC) = —5— = —=
119 = e 13 " R

(b) For the BCC crystal structure, the planar densities of the (100) and (110) planes were

determined in Homework Problem 3.48, which are as follows:

3 0.19

PD, .,(BCC) = e
100(BCC) 16 R2 2
3 0.27

PD,;(BCC) = ——= = ——

8R2/2 R?

Below is a BCC unit cell, within which is shown a (111) plane.
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(@)

The centers of the three corner atoms, denoted by A, B, and C lie on this plane. Furthermore, the
(111) plane does not pass through the center of atom D, which is located at the unit cell center. The
atomic packing of this plane is presented in the following figure; the corresponding atom positions

from the Figure (a) are also noted.

48

X

(b)

Inasmuch as this plane does not pass through the center of atom D, it is not included in the atom
count. One sixth of each of the three atoms labeled A, B, and C is associated with this plane, which
gives an equivalence of one-half atom.

In Figure (b) the triangle with A, B, and C at its corners is an equilateral triangle. And, from
Figure (b), the area of this triangle is xy/2. The triangle edge length, x, is equal to the length of a

face diagonal, as indicated in Figure (a). And its length is related to the unit cell edge length, a, as

174



or

For BCC, a = % and, therefore,

Also, with respect to the length y we may write

2
2 (X)) .2
o (2] -
which leadsto y = - - And, substitution for the above expression for x yields

£ (050 =8

¥3 )2

y:

Thus, the area of this triangle is equal to

AREA = Elxy= (Elj(éljlfj [4R2ﬁ] B i/_R;

And, finally, the planar density for this (111) plane is

05atom 3 011
8R2  16R? R?

73

Below is shown the atomic packing for a BCC {110} type plane. The arrows indicate two different

PD, 14(BCC) =

<111> type directions.
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7.8 Below is shown the atomic packing for an HCP {0001} type plane. The arrows indicate three

different <1120> type directions.

7.9 Resolved shear stress is the shear component of an applied tensile (or compressive) stress
resolved along a slip plane that is other than perpendicular or parallel to the stress axis. The critical

resolved shear stress is the value of resolved shear stress at which yielding begins; it is a property

of the material.

7.10 We are asked to compute the Schmid factor for an FCC crystal oriented with its [100] direction
parallel to the loading axis. With this scheme, slip may occur on the (111) plane and in the [11 0]

direction as noted in the figure below.

[111] 1

The angle between the [100] and [1_1 0] directions, A, is 45°. For the (111) plane, the angle

av2

between its normal (which is the [111] direction) and the [100] direction, ¢, is tan'1 [?] =54.74°,

therefore
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COoS A €0s ¢ = cos(45°)cos(54.74°) = 0.408

7.11 This problem calls for us to determine whether or not a metal single crystal having a specific
orientation and of given critical resolved shear stress will yield. We are given that ¢ = 60°, A = 35°,
and that the values of the critical resolved shear stress and applied tensile stress are 6.2 MPa (900

psi) and 12 MPa (1750 psi), respectively. From Equation (7.1)

TR = o CO0s ¢ cos i = (12 MPa)(cos 60°)(cos 35°) = 4.91 MPa (717 psi)

Since the resolved shear stress (4.91 MPa) is less that the critical resolved shear stress (6.2 MPa),
the single crystal will not yield.

However, from Equation (7.3), the stress at which yielding occurs is

°y T cos cosn (cos 60°)(cos 35°)

= 15.1MPa (2200 psi)

7.12 We are asked to compute the critical resolved shear stress for Zn. As stipulated in the problem, ¢ =
65°, while possible values for A are 30°, 48°, and 78°.
(a) Slip will occur along that direction for which (cos ¢ cos A) is a maximum, or, in this case, for the

largest cos A. The cosines for the possible A values are given below.

cos(30°) =0.87
cos(48°) = 0.67
cos(78°) =0.21

Thus, the slip direction is at an angle of 30° with the tensile axis.

(b) From Equation (7.3), the critical resolved shear stress is just

Terss = cy(cos ¢ COS M)hax

= (2.5 MPa)[cos(65°)cos(30°)] = 0.90 MPa (130 psi)

7.13 This problem asks that we compute the critical resolved shear stress for silver. In order to do this,
we must employ Equation (7.3), but first it is necessary to solve for the angles A and ¢ from the

sketch below.
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[001] Direction

Direction normal to
— (111) plane

(111) Plane
(Slip Plane)

— y

V4 _
X \ [101] Direction
(Slip Direction)

If the unit cell edge length is a, then

A =tan™t (—a) = 45°
a

For the angle ¢, we must examine the triangle OAB. The length of line OA is just a, whereas, the
length of AB is aﬁ. Thus,

And, finally

Terss = csy(cos ¢ cos A)

= (1.1 MPa)[cos(54.7°)cos(45°)|= 0.45 MPa (65.4 psi)

7.14 This problem asks that, for a metal that has the FCC crystal structure, we compute the applied

stress(s) that are required to cause slip to occur on a (111) plane in each of the [1-10], [10_1], and

[0_1 1] directions. In order to solve this problem it is necessary to employ Equation (7.3), which

means that we will need to solve for the for angles A and ¢ for the three slip systems.
In the sketch below is shown the unit cell and (111)- [110] slip configuration.
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[111]

The angle between the [100] and [1_1 0] directions, A, is 45°. For the (111) plane, the angle between

a2

its normal (which is the [111] direction) and the [100] direction, ¢, is tan'1 (T] =54.7°, therefore,

solving for the yield strength from Equation (7.3)

G - Tcrss
Y (cos¢ cosh)

~ 0.5 MPa ___05MPa
~ cos(54.7°) cos(459  (0.578)(0.707)

=122 MPa

The (111)- [10_1] slip configuration is represented in the following sketch.

[111]

_ — (111)
[101]

______ | 3 Y

[100]
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For this situation values for A and ¢ are the same as for the previous situation—i.e., A = 45° and ¢ =

54.7°. This means that the yield strength for this slip system is the same as for (111)-[110]; that is

oy = 1.22 MPa.

The unit cell and final (111)-[0_1 1] slip system are presented in the following illustration.

N

[111] i -
: [011]

(111) ——]

[100]

In this case, ¢ has the same value as previously (i.e., 54.7°); however the value for A is 90°. Thus,
the yield strength for this configuration is

G - Terss
Y (cos¢ cosl)

0.5 MPa 0.5 MPa
— = = 0
cos (54.7°) cos(90°)  (0.578)(0)

which means that slip will not occur on this (111)- [0_1 1] slip system.

7.15 This problem asks, for a BCC metal, that we compute the applied stress(s) that are required to
cause slip to occur in the [11 1] direction on each of the (110), (011), and (101) planes. In order to

solve this problem it is necessary to employ Equation (7.3), which means that we need to solve for
the for angles A and ¢ for the three slip systems.

In the sketch below is shown the unit cell and the (110)—[11 1] slip configuration.
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[111]

The angle ¢ between the [11 1] slip direction and the normal to the (110) plane (i.e., the [110]
direction) is 45°. Now, in order to determine the angle between the [11 1] direction and the [100]
direction (i.e., the direction of stress application), A, we consult the illustration of this same unit cell

as shown below.

— A
[111]
' c
a
N - > Y
2 ”~ - a
X a B
. . 1 AB —— .
For the triangle ABC, the angle A is equal to tan ﬁ . The length B C is equal to the unit cell

av2

edge length a. From triangle ABD, AB =ay 2, and, therefore, A = [T] =54.7°. And, solving

for the resolved shear stress from Equation (7.1)

TR = 0 COS¢ COSA
= (4.0 MPa)[cos(45°)cos(54.7°)] = (4.0 MPa)(0.707)(0.578) = 1.63 MPa

The (011)—[11 1] slip configuration is represented in the following sketch.
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In this case, A has the same value as previously (i.e., 54.7°); however the value for ¢ is 90°. Thus,

the resolved shear stress for this configuration is

TR = 0 COS¢ COSA
= (4.0 MPa)[cos(90°)cos(54.7°)] = (4.0 MPa)(0)(0.578) = 0 MPa

And, finally the (101)—[11 1] slip configuration is shown below.

[111]

Here, the value of ¢ is 45°, which again leads to

TR = 0 COS¢ COSA

=(4.0 MPa)[cos(45°)cos(54.7°)] = (4.0 MPa)(0.707)(0.578) = 1.63 MPa
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(b) The most favored slip system(s) is (are) the one(s) that has (have) the largest t value. Both
(110)—[1-1 1] and (10-1)—[11 1] slip systems are most favored since they have the same 1t (1.63
MPa), which is larger than the t value for (011)—[11 1] (viz., 0 MPa).

7.16 In order to determine the maximum possible yield strength for a single crystal of Cu pulled in
tension, we simply employ Equation (7.4) as

Oy = 2Tggs

=(2)(0.48 MPa) = 0.96 MPa (140 psi)

7.17W Four major differences between deformation by twinning and deformation by slip are as follows:
1) with slip deformation there is no crystallographic reorientation, whereas with twinning there is a
reorientation; 2) for slip, the atomic displacements occur in atomic spacing multiples, whereas for
twinning, these displacements may be other than by atomic spacing multiples; 3) slip occurs in
metals having many slip systems, whereas twinning occurs in metals having relatively few slip
systems; and 4) normally slip results in relatively large deformations, whereas only small

deformations result for twinning.

7.18 Small-angle grain boundaries are not as effective in interfering with the slip process as are high-
angle grain boundaries because there is not as much crystallographic misalignment in the grain

boundary region for small-angle, and therefore not as much change in slip direction.

7.19 Hexagonal close packed metals are typically more brittle than FCC and BCC metals because there

are fewer slip systems in HCP.
7.20 These three strengthening mechanisms are described in Sections 7.8, 7.9, and 7.10.

7.21 (a) Perhaps the easiest way to solve for o, and ky in Equation (7.5) is to pick two values each of

o, and d_ll2 from Figure 7.13, and then set up and solve two simultaneous equations. For example

y
a2 (mm)™/2 o, (MPa)
4 75
12 175

The two equations are thus
75=0,+ 4ky
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175 = o, + 12k,

These yield the values of

k, =12.5 MPa(mm)"? ESlO psi(mm) 2]
0o = 25 MPa (3630 psi)

3 1

(b) Whend =1.0x 10> mm, dY2 =316 mm™2, and, using Equation (7.5),

_ -1/2
o, =04+ kyd

y

= (25 MPa)+[L2.5 MPa (mm /2131.6 mm‘1’2): 420 MPa (61,000 psi)

7.22 We are asked to determine the grain diameter for an iron which will give a yield strength of 205 MPa

(30,000 psi). The best way to solve this problem is to first establish two simultaneous expressions of
Equation (7.5), solve for S, and ky' and finally determine the value of d when oy = 205 MPa. The

data pertaining to this problem may be tabulated as follows:

o d (mm) d2 (mm) 172
135 MPa 5 x 10'2 4.47
260 MPa 8 x 10'3 11.18

The two equations thus become

135 MPa=o, + (4.47)k,
260 MPa = o, + (11.18)k,

Which yield the values, 6, =51.7 MPa and ky =18.63 MPa(mm)llz. At a yield strength of 205 MPa

205 MPa =51.7 MPa + [18.63 |\/|F>a(mm)1’2]1'1’2

ord¥?=823 (mm)'llz, which gives d = 1.48 x 102 mm.
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7.23 This problem asks that we determine the grain size of the brass which is the subject of Figure 7.17.
From Figure 7.17(a), the yield strength of brass at 0%CW is approximately 175 MPa (26,000 psi).

This yield strength from Figure 7.13 corresponds to a d_ll2 value of approximately 12.0 (mm)_1/2.

Thus, d = 6.9 x 10_3 mm.

7.24 Below is shown an edge dislocation and the location where an interstitial impurity atom would be
situated. Compressive lattice strains are introduced by the impurity atom. There will be a net
reduction in lattice strain energy when these lattice strains partially cancel tensile strains associated

with the edge dislocation; such tensile strains exist just below the bottom of the extra half-plane of
atoms (Figure 7.4).

OO

00O
OO Interstitial Impurity

O
O

000
O00

00O
O0Q
QOO

7.25 The hardness measured from an indentation that is positioned very close to a preexisting

indentation will be high. The material in this vicinity was cold-worked when the first indentation was
made.

7.26 (a) We are asked to show, for a tensile test, that

%CW:( £ J x 100
ce+1

From Equation (7.6)

Ao_Ad
%CW = A_ X 100 = |1-
o}

>|>
o

}xlOO

o

Which is also equal to
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|
[1 - %} x 100
d

since Ad/Ao = Io/Id, the conservation of volume stipulation in the problem. Now, from the definition

of engineering strain [Equation (6.2)]

€= | = I_d -1
(0] (0]
Or,
b __1
|d e+1
Substitution in the %CW expression above gives
lo 1 S
%CW=|1-—|x100=|1 - x 100 = x 100
|d e+ 1 e +1

(b) From Figure 6.12, a stress of 415 MPa (60,000 psi) corresponds to a strain of 0.16. Using the

above expression

6 0.16
%CW = 100 = | ———=— | x 100 = 13.8%CW
° L N 1} X {0.16 N 1.00}( °

7.27 In order for these two cylindrical specimens to have the same deformed hardness, they must be

deformed to the same percent cold work. For the first specimen

A, — Ay nil — mrl

%CW:OA— x 100 =—2—9 x 100

2 2
15 mm)~ - 12 mm
o ) “(2 ) 4 100 = 36%CW
n (15 mm)

For the second specimen, the deformed radius is computed using the above equation and solving
for rqas
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- %CW
d~ o 100

, 36%CW
=(11 1-———=8.80
(112 mm) 100 mm

7.28 We are given the original and deformed cross-sectional dimensions for two specimens of the same

metal, and are then asked to determine which is the hardest after deformation. The hardest
specimen will be the one that has experienced the greatest degree of cold work. Therefore, all we

need do is to compute the %CW for each specimen using Equation (7.6). For the circular one

A — A
%CW:{OA—d} x 100
(0]

(15.2 mm)z (11.4 mmjz
|—| - | ——

= 2 2 x 100 = 43.8%CW

(15.2 mm)z
"2

For the rectangular one

(125 mm)(175 mm) — (75 mm)(200 mm)
(125 mm)(175 mm)

%CW = { x 100 = 31.4%CW

Therefore, the deformed circular specimen will be harder.

7.29 This problem calls for us to calculate the precold-worked radius of a cylindrical specimen of copper
that has a cold-worked ductility of 25%EL. From Figure 7.17(c), copper that has a ductility of 25%EL
will have experienced a deformation of about 11%CW. For a cylindrical specimen, Equation (7.6)

becomes

Since rq= 10 mm (0.40 in.), solving for o yields
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r
Pl = ————— =106 mm (0.424 in.)

7.30 (a) We want to compute the ductility of a brass that has a yield strength of 275 MPa (40,000 psi).
In order to solve this problem, it is necessary to consult Figures 7.17(a) and (c). From Figure
7.17(a), a yield strength of 275 MPa for brass corresponds to 10%CW. A brass that has been cold-
worked 10% will have a ductility of about 44%EL [Figure 7.17(c)].

(b) This portion of the problem asks for the Brinell hardness of a 1040 steel having a yield strength
of 690 MPa (100,000 psi). From Figure 7.17(a), a yield strength of 690 MPa for a 1040 steel
corresponds to about 11%CW. A 1040 steel that has been cold worked 11% will have a tensile

strength of about 790 MPa [Figure 7.17(b)]. Finally, using Equation (6.20a)

_ TS(MPa) _ 790 MPa
T 345 345

HB =230

7.31 We are asked in this problem to compute the critical resolved shear stress at a dislocation density

of 106 mm'z. It is first necessary to compute the value of the constant A from the one set of data as

Terss ~ %o 0.69 MPa — 0.069 MPa

o JP_D J104 mm ™2

- 6.21x 10”2 MPa - mm (0.90 psi—mm)

Now, the critical resolved shear stress may be determined at a dislocation density of 106 mm'2 as

Tarss ~To T AYPD

= (0.069 MPa) + (6.21 x 10~ MPa -mm )J 108 mm™2 = 6.28 MPa (910 psi)

7.32 Forrecovery, there is some relief of internal strain energy by dislocation motion; however, there are
virtually no changes in either the grain structure or mechanical characteristics.  During
recrystallization, on the other hand, a new set of strain-free grains forms, and the material becomes

softer and more ductile.

7.33 We are asked to estimate the fraction of recrystallization from the photomicrograph in Figure 7.19c.

Below is shown a square grid onto which is superimposed the recrystallized regions from the
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micrograph. Approximately 400 squares lie within the recrystallized areas, and since there are 672

total squares, the specimen is about 60% recrystallized.

: 7

L1

7.34 During cold-working, the grain structure of the metal has been distorted to accommodate the
deformation. Recrystallization produces grains that are equiaxed and smaller than the parent

grains.

7.35 Metals such as lead and tin do not strain harden at room temperature because their recrystallization

temperatures lie below room temperature (Table 7.2).

7.36 (a) The driving force for recrystallization is the difference in internal energy between the strained
and unstrained material.
(b) The driving force for grain growth is the reduction in grain boundary energy as the total grain

boundary area decreases.

7.37 In this problem, we are asked for the length of time required for the average grain size of a brass
material to increase a specified amount using Figure 7.23.
(a) At 500°C, the time necessary for the average grain diameter to increase from 0.01 to 0.1 mmis
approximately 3500 min.

(b) At 600°C the time required for this same grain size increase is approximately 150 min.

7.38 (a) Using the data given and Equation (7.7) and taking n = 2, we may set up two simultaneous
equations with do and K as unknowns; thus
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(3.9 x 1072 mm)2 ~ d% = (30 min)K

@.6 x 102 mm)2 ~ d? = (90 min)K

Solution of these expressions yields a value for do’ the original grain diameter, of

d0 =0.01 mm,

Also
K=4.73x 10'5 mm2/min

(b) At 150 min, the diameter is computed as
_ 2
d —v dO + Kt

:J(o.01 mm)2 + (4.73 x 1072 mm?2 /min)150 min) =0.085 mm

7.39 Yes, it is possible to reduce the average grain diameter of an undeformed alloy specimen from
0.050 mm to 0.020 mm. In order to do this, plastically deform the material at room temperature (i.e.,
cold work it), and then anneal it at an elevated temperature in order to allow recrystallization and

some grain growth to occur until the average grain diameter is 0.020 mm.

7.40 (a) The temperature dependence of grain growth is incorporated into the constant K in Equation

(7.7).
(b) The explicit expression for this temperature dependence is of the form
_ 2)
K=Kg, exp( RT

in which K0 is a temperature-independent constant, the parameter Q is an activation energy, and R

and T are the gas constant and absolute temperature, respectively.

7.41 This problem calls for us to calculate the yield strength of a brass specimen after it has been heated

to an elevated temperature at which grain growth was allowed to occur; the yield strength was given
at a grain size of 0.01 mm. It is first necessary to calculate the constant ky in Equation (7.5) as
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o, — O

-y 9
I(y Togl2
150 MPa — 25 MPa
= 5 — =12.5 MPa- mm*/2
(0.01 mm)

Next, we must determine the average grain size after the heat treatment. From Figure 7.23 at 500°C

after 1000 s (16.7 min) the average grain size of a brass material is about 0.016 mm. Therefore,
calculating cy at this new grain size using Equation (7.5) we get

_ -1/2
Oy =04 + kyd

1/2

= 25 MPa + @2.5 MPa-mml/2)0.016 mmy Y2 =124 MPa (18,000 psi)

Design Problems

7.D1 This problem calls for us to determine whether or not it is possible to cold work steel so as to give a
minimum Brinell hardness of 240 and a ductility of at least 15%EL. According to Figure 6.19, a
Brinell hardness of 240 corresponds to a tensile strength of 800 MPa (116,000 psi). Furthermore,
from Figure 7.17(b), in order to achieve a tensile strength of 800 MPa, deformation of at least
13%CW is necessary. Finally, if we cold work the steel to 13%CW, then the ductility is 15%EL from
Figure 7.17(c). Therefore, it is possible to meet both of these criteria by plastically deforming the

steel.

7.D2 We are asked to determine whether or not it is possible to cold work brass so as to give a minimum
Brinell hardness of 150 and at the same time a ductility of at least 20%EL. According to Figure 6.19,
a Brinell hardness of 150 corresponds to a tensile strength of 500 MPa (72,000 psi.) Furthermore,
from Figure 7.17(b), in order to achieve a tensile strength of 500 MPa, deformation of at least
36%CW is necessary. Finally, if we are to achieve a ductility of at least 20%EL, then a maximum
deformation of 23%CW is possible from Figure 7.17(c). Therefore, it is not possible to meet both of

these criteria by plastically deforming brass.

7.D3 (a) For this portion of the problem we are to determine the ductility of cold-worked steel that has a

Brinell hardness of 240. From Figure 6.19, a Brinell hardness of 240 corresponds to a tensile
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strength of 820 MPa (120,000 psi), which, from Figure 7.17(b), requires a deformation of 17%CW.
Furthermore, 17%CW yields a ductility of about 13%EL for steel, Figure 7.17(c).
(b) We are now asked to determine the radius after deformation if the uncold-worked radius is 10

mm (0.40 in.). From Equation (7.6) and for a cylindrical specimen

TCr2 TCTZ
%ew = | —2—4d

2

] x 100
nre

Now, solving for g from this expression, we get

17 .
= (10 mm)4/1- 100 -~ 9.11 mm (0.364 in.)

7.D4 This problem asks us to determine which of copper, brass, and a 1040 steel may be cold-worked
so as to achieve a minimum yield strength of 345 MPa (50,000 psi) while maintaining a minimum
ductility of 20%EL. For each of these alloys, the minimum cold work necessary to achieve the yield
strength may be determined from Figure 7.17(a), while the maximum possible cold work for the

ductility is found in Figure 7.17(c). These data are tabulated below.

Yield Strength Ductility
(> 345 MPa) (> 20%EL)

Steel Any %CW < 5%CW
Brass > 20%CW < 23%CW
Copper > 54%CW < 15%CW

Thus, both the 1040 steel and brass are possible candidates since for these alloys there is an

overlap of percents coldwork to give the required minimum yield strength and ductility values.

7.D5 This problem calls for us to explain the procedure by which a cylindrical rod of steel may be
deformed so as to produce a given final diameter, as well as a specific tensile strength and ductility.
First let us calculate the percent cold work and attendant tensile strength and ductility if the drawing

is carried out without interruption. From Equation (7.6)
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%CW = x 100
dO
'}
(15.2 mmjz (10 mm)z
T T
= > x 100 = 56%CW
(15.2 mmj
o[12:2_ mm
2

At 56%CW, the steel will have a tensile strength on the order of 920 MPa (133,000 psi) [Figure
7.17(b)], which is adequate; however, the ductility will be less than 10%EL [Figure 7.17(c)], which is
insufficient.

Instead of performing the drawing in a single operation, let us initially draw some fraction of
the total deformation, then anneal to recrystallize, and, finally, cold-work the material a second time
in order to achieve the final diameter, tensile strength, and ductility.

Reference to Figure 7.17(b) indicates that 20%CW is necessary to yield a tensile strength of
840 MPa (122,000 psi). Similarly, a maximum of 21%CW is possible for 12%EL [Figure 7.17(c)].
The average of these extremes is 20.5%CW. If the final diameter after the first drawing is d , , then

2
d, (10 mmj2
| — — T
2 2
20.5%CW = > x 100
"
.y
2

And, solving for d  , yields d ; =11.2 mm (0.45in.).

7.D6 Let us first calculate the percent cold work and attendant yield strength and ductility if the drawing is

carried out without interruption. From Equation (7.6)
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(10.2 mm)z (7.6 mmjz
| —— —-n|——

- 2 2 x 100 = 44.5%CW

(10.2 mmj2
i 2

At 44.5%CW, the brass will have a yield strength on the order of 420 MPa (61,000 psi), Figure
7.17(a), which is adequate; however, the ductility will be about 5%EL, Figure 7.17(c), which is
insufficient.

Instead of performing the drawing in a single operation, let us initially draw some fraction of
the total deformation, then anneal to recrystallize, and, finally, cold work the material a second time
in order to achieve the final diameter, yield strength, and ductility.

Reference to Figure 7.17(a) indicates that 26%CW is necessary to give a yield strength of
380 MPa. Similarly, a maximum of 27.5%CW is possible for 15%EL [Figure 7.17(c)]. The average
of these two values is 26.8%CW, which we will use in the calculations. If the final diameter after the

first drawing is d ; , then

26.8%CW = x 100

And, solving for d ; yields d ; =9.4 mm (0.37 in.).

7.D7 This problem calls for us to cold work some brass stock that has been previously cold worked in
order to achieve minimum tensile strength and ductility values of 450 MPa (65,000 psi) and 13%EL,
respectively, while the final diameter must be 12.7 mm (0.50 in.). Furthermore, the material may not
be deformed beyond 65%CW. Let us start by deciding what percent coldwork is necessary for the
minimum tensile strength and ductility values, assuming that a recrystallization heat treatment is
possible. From Figure 7.17(b), at least 27%CW is required for a tensile strength of 450 MPa.
Furthermore, according to Figure 7.17(c), 13%EL corresponds a maximum of 30%CW. Let us take
the average of these two values (i.e., 28.5%CW), and determine what previous specimen diameter
is required to yield a final diameter of 12.7 mm. For cylindrical specimens, Equation (7.6) takes the

form
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d 12.7 mm
d - .
d =——=———== ——=———==15.0mm (0.591 in.
0 1 %CW ,/1 - 0.285 ( )
100

Now, let us determine its undeformed diameter realizing that a diameter of 19.0 mm
corresponds to 35%CW. Again solving for d0 using the above equation and assuming dd =19.0

mm yields

dy 19.0 mm

d =—/—2——= ————— =236 mm (0.930 in.
0 1 %CW ,/1—0.35 ( )
f 100

At this point let us see if it is possible to deform the material from 23.6 mm to 15.0 mm without

exceeding the 65%CW limit. Again employing Equation (7.6)

(23.6 mm)2 (15.0 mmj2
n|—— - n|——

%CW = 2 2 x 100 = 59.6%CW

(23.6 mm)z
T 2

In summary, the procedure which can be used to produce the desired material would be as
follows: cold work the as-received stock to 15.0 mm (0.591 in.), heat treat it to achieve complete
recrystallization, and then cold work the material again to 12.7 mm (0.50 in.), which will give the

desired tensile strength and ductility.
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CHAPTER 8
FAILURE
PROBLEM SOLUTIONS

8.1 Several situations in which the possibility of failure is part of the design of a component or product
are as follows: (1) the pull tab on the top of aluminum beverage cans; (2) aluminum utility/light
poles that reside along freeways--a minimum of damage occurs to a vehicle when it collides with the
pole; and (3) in some machinery components, shear pin are used to connect a gear or pulley to a
shaft--the pin is designed shear off before damage is done to either the shaft or gear in an overload
situation.

8.2W The theoretical cohesive strength of a material is just E/10, where E is the modulus of elasticity.
For the ceramic materials listed in Table 12.5, all we need do is divide E by 10, and therefore

SigN,~30.4 GPa (4.4 x 10° psi)

3

7r0.,--20.5 GPa (3.0 x 10° psi)

2

SiC--34.5 GPa (5.0 x 10° psi)
Al,0,--39.3 GPa (5.7 x 10%psi)

Glass ceramic--12.0 GPa (1.7 x 106 psi)

Mullite—-14.5 GPa (2.1 x 108 psi)
MgAI,0,,--26 GPa (3.8 x 10° psi)

MgO--22.5 GPa (3.3 x 10° psi)
Fused silica-7.3 GPa (1.1 x 10° psi)
Soda-lime glass—-6.9 GPa (1.0 x 10° psi)

8.3 This problem asks that we compute the magnitude of the maximum stress that exists at the tip of an

internal crack. Equation (8.1) is employed to solve this problem, as

1/2
a
Om = 2(50(_]
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) 1/2
2.5 x10 ©“ mm

2 .
= (2)(170 MPa = 2404 MPa (354,000 psi
X ) 25 x10-% mm ( Ps)

8.4 In order to estimate the theoretical fracture strength of this material it is necessary to calculate Sm

3

using Equation (8.1) given that O, = 1035 MPa, a = 0.5 mm, and P = 5x 107 mm. Thus,

05
= (2)(1035 MPa) | ———="— =2.07 x 10* MPa= 207 GPa (3 x 10° psi)
5 x107™° mm

8.5 In order to determine whether or not this ceramic material will fail we must compute its theoretical
fracture (or cohesive) strength; if the maximum strength at the tip of the most severe flaw is greater
than this value then fracture will occur--if less than, then there will be no fracture. The theoretical
fracture strength is just E/10 or 25 GPa (3.63 x 106 psi), inasmuch as E = 250 GPa (36.3 x 106 psi).

The magnitude of the stress at the most severe flaw may be determined using Equation

(8.1) as

’ (0.20 mm)/2 ( 6 )
=(2)(750 MPa)| ————— =1 P 22x1
(2)(750 a 0.00Lmm 5 GPa x 10° psi

Therefore, fracture will not occur since this value is less than E/10.

8.6 We may determine the critical stress required for the propagation of an internal crack in aluminum

oxide using Equation (8.3); taking the value of 393 GPa (Table 12.5) as the modulus of elasticity, we
2By
°c Y ra
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(2)(393 x10° N/m2)0.90 N/m) .

= =33.6 x10° N/m“ = 33.6 MPa
4 x10% m

()| —————

2

8.7 The maximum allowable surface crack length for MgO may be determined using Equation (8.3);

taking the value of 225 GPa as the modulus of elasticity (Table 12.5), and solving for a, leads to

2Ey, (2)(225 x 10° N/mz)l.o N/ m)

2
nog (n)(13.5 x 10° N/m2)2

a=

=7.9%x10%m=0.79 mm (0.031in.)

8.8W This problem calls for us to calculate the normal oy and oy stresses in front on a surface crack of

length 2.0 mm at various positions when a tensile stress of 100 MPa is applied. Substitution for K =
o4 ma into Equations (8.9aW) and (8.9bW) leads to

oy =of (6) >
oy = cfy(e) >

where fx(e) and fy(e) are defined in the accompanying footnote 2. For 6 = 0°, fx(e) =1.0 and fy(e) =
1.0, whereas for 6 = 45°, fx(e) = 0.60 and fy(e) =1.25.

(&) Forr=0.1 mmand® =0°,

a 2.0 mm
=o, = 1.0)/ — (100 MP /— =316 MPa (45,800 psi
Ox =0y = olLOy 5 = ( N D01mm a (45,800 psi)

(b) Forr=0.1 mm and 0 = 45°,

(2)(0.1 mm)

a 2.0 mm .
Gy = c(1.25) o7 - (200 MPa)(l.ZS)" 201 mm) 395 MPa (57,300 psi)
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(c) Forr=0.5mm and 6 = 0°,

a 2.0 mm .
=5, = 1.0)'/— = (100 MPa J— =141 MPa (20,400 ps
Ox = oy = ooy 5 =( N 205 mm ( psi)

(d) Forr=0.5mm and 6 = 45°,

_ a _ 2.0 mm .
oy = G(O'G)J; =(100 MPa)(O.G)]f —(2)(0'5 ) 84.8 MPa (12,300 psi)

a 2.0 mm
= o(1.25),/ — = (100 MPa)(1.25) —— =177 MP 25,600 psi
oy = of )]/ o = (1250 505 mm) a ( psi)

8.9W (a) In this portion of the problem we are asked to determine the radial position at which o, = 100

MPa (14,500 psi) for 6 = 30°, a = 2.0 mm, and o = 150 MPa (21,750 psi). Substitution for K into
Equation (8.9aW) leads to
a

o, =of, (0 E

Now, solving for r from this expression yields

e

2Gx

For 6 = 30°, fx(e) =0.79, and therefore

.2 mm{(lSO MPa)(0.79)

2
> 100 MPa } =1.40 mm (0.055in.)

(b) Now we are asked to compute o, at this position. This is done by using Equation (8.9bW); for 6

y
= 30°, fy(e) = 1.14, and therefore
a
Gy = ny(e)." >
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2.0 mm

= (150 MPa)(L-14) 5120 mm)

=145 MPa (21,000 psi)

8.10W (a) In this portion of the problem it is necessary to compute the stress at point P when the applied
stress is 140 MPa (20,000 psi). In order to determine the stress concentration it is necessary to
consult Figure 8.2cW. From the geometry of the specimen, w/h = (40 mm)/(20 mm) = 2.0;
furthermore, the r/h ratio is (4 mm)/(20 mm) = 0.20. Using the w/h = 2.0 curve in Figure 8.2cW, the

G,
K, value atr/h =0.20 is 1.8. And since K = — then
(¢)
(0]

o = Kiog = (1.8)(140 MPa) = 252 MPa (36,000 psi)
(b) Now it is necessary to determine how much r must be increased to reduce om by 25%; this
reduction corresponds to a stress of (0.75)(252 MPa) = 189 MPa (27,000 psi). The value of Kt is

o 189 MPa _ N
therefore, K, = —L - ——— =135 Using the w/h = 2.0 curve in Figure 8.2cW, the value of

S, 140 MPa

r/h for Kt = 1.35is about 0.60. Therefore

r = (0.60)h = (0.60)(20 mm) = 12.0 mm

Or, the radius r must be increased from 4.0 mm to 12.0 mm in order to reduce the stress

concentration by 25%.

8.11W (@) This portion of the problem calls for us to compute the stress at the edge of a circular through-

the-thickness hole in a steel sheet when a tensile stress is applied in a length-wise direction. We
19 mm

first must utilize Figure 8.2aW--d/w =
127 mm

= 0.15. From the figure and using this value, Kt =

(o7
2.5. since K; == and o = 34.5 MPa (5000 psi) then
(o)
(0}

oy = Ko, = (2.5)(34.5 MPa) = 86.3 MPa (12,500 psi)

(b) Now it becomes necessary to compute the stress at the hole edge when the external stress is

applied in a width-wise direction; this simply means that w = 254 mm. The d/w then is 19 mm/254
mm = 0.075. From Figure 8.2aW, Ky is about 2.7. Therefore, for this situation

o, = Ko, = (2.7)(34.5 MPa) = 93.2 MPa (13,500 psi)
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8.12W The stress intensity factor is a parameter used in expressions such as Equations (8.9W); its
value is variable and dependent on applied stress and crack length according to the expression
provided in Problem 8.8W. On the other hand, plane strain and plane stress fracture toughnesses
represent unique and critical values of K at which crack propagation occurs. However, plane strain
fracture toughness is this critical value for specimens thicker than some minimum threshold

thickness, while plane stress is for specimens thinner than this threshold.
8.13W This problem calls for us to determine the value of B, the minimum component thickness for which

the condition of plane strain is valid using Equation (8.14W), for the metal alloys listed in Table 8.1.

For the 7075-T651 aluminum alloy

2 2
B =25 alt o 5)| 22 MPay m 0.0059 5.9 0.23 |
= Z. — = . s —— = V. m = o. mm . n.

Gy (2.5) 495 MPa ( )

For the 2024-T3 aluminum alloy

2 2

Kic 44 MPaym .

B =25|—| =(2.5) —a =0.0406 m=40.6 mm (1.60 in.)

(o)
y

For the Ti-6Al-4V titanium alloy

2
55 MPaJZm .
B=(2.5) =0.0091 m=9.1 mm (0.36 in.)

910 MPa

For the 4340 alloy steel tempered at 260°C

2
50 MP§3Zm .
B =(2.5) =0.0023 m=2.3 mm (0.09 in.)

1640 MPa

For the 4340 alloy steel tempered at 425°C

87.4 MPaJZm 2 )
B =(2.5) =0.0095 m=9.5 mm (0.38 in.)

1420 MPa
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8.14 This problem asks us to determine whether or not the 4340 steel alloy specimen will fracture when

exposed to a stress of 1030 MPa, given the values of ch’ Y, and the largest value of a in the

material. This requires that we solve for o from Equation (8.7). Thus

_ K 548 MPaym

Yyra (14(7:)@.5 x 107 m)

o =1380 MPa (199,500 psi)

Therefore, fracture will not occur because this specimen will tolerate a stress of 1380 MPa (199,500

psi) before fracture, which is greater than the applied stress of 1030 MPa (150,000 psi).

8.15 We are asked to determine if an aircraft component will fracture for a given fracture toughness (40
MPay/ m ), stress level (260 MPa), and maximum internal crack length (6.0 mm), given that fracture
occurs for the same component using the same alloy for another stress level and internal crack
length. It first becomes necessary to solve for the parameter Y for the conditions under which

fracture occurred using Equation (8.5). Therefore,

K 40 MPa4y m
y=—_ - Jm =1.68

- Gm B -3
(300 MPa)J (n)[wj

2

Now we will solve for the product Yoy ma for the other set of conditions, so as to ascertain whether
or not this value is greater than the KIC for the alloy. Thus,

3
Yoy ma = (1.68)(260 MPa)J (n)[WJ

= 42.4 MPaym (39 ksiin.)

Therefore, fracture will occur since this value (42.4 MPa,/r_n) is greater than the Kic of the material,

40 MPay/m .

8.16 This problem asks us to determine the stress level at which an aircraft component will fracture for a
given fracture toughness (26 MPaﬁ) and maximum internal crack length (6.0 mm), given that

fracture occurs for the same component using the same alloy at one stress level and another internal
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crack length. It first becomes necessary to solve for the parameter Y for the conditions under which

fracture occurred using Equation (8.5). Therefore,

v Ko 26 MPaym 00
T oyna 3 N
8.6 x10 > m
(112 MPa)J (n) (XTJ
Now we will solve for o using Equation (8.6) as
K 26 MPaym
o, == = Jm =134 MPa (19,300 psi)
Yyna 6 x 103 m
(20 )| ———

8.17 For this problem, we are given values of K, , o, and Y for a large plate and are asked to determine

Ic’
the minimum length of a surface crack that will lead to fracture. All we need do is to solve for a.

using Equation (8.7); therefore

2 2
1(Kje 1| 82.4 MPaJm _
=l | _Lljoes VPV 0182 m=18.2 0.72 in,
ag n(ch n{(l)(345 MPa) m mm . (0.72 in.)

8.18 This problem asks us to calculate the maximum internal crack length allowable for the Ti-6Al-4V

titanium alloy in Table 8.1 given that it is loaded to a stress level equal to one-half of its yield
strength. For this alloy, K|, =55 MPaJr_n (50 ksi\( in); also, o= ()'y/2 = (910 MPa)/2 = 455 MPa

(66,000 psi). Now solving for 2aC using Equation (8.7) yields

2 2
2 (Kie 2| 55 MPaym _
oa =<|2le| 2| 2N | 00041 m=41 0.16 in.
&c n[ch n{(l.S)(455 MPa) m mm  (0.16 in.)

8.19 This problem asks that we determine whether or not a critical flaw in a wide plate is subject to
detection given the limit of the flaw detection apparatus (3.0 mm), the value of KIC (98.9 MPaﬁ),

the design stress (cy/2 in which Sy =860 MPa), and Y = 1.0. We first need to compute the value of
a. using Equation (8.7); thus

98.9 MPaym
(860 MPa)
2

=0.0168 m=16.8 mm (0.66 in.)

)

(]

I
Al
VR
< |~
Q |o
N—

N

1

IS I 'S

(1.0)
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Therefore, the critical flaw is subject to detection since this value of a. is greater than the 3.0 mm

resolution limit.

8.20W We are asked in this problem to determine whether or not it is possible to compute the critical
length of a surface flaw within the flat plate given its thickness (25.4 mm), yield strength (700 MPa),
plane strain fracture toughness [49.5 MPa,/Tn (45 ksi,/ in.)] and the value of Y (1.65). The first

thing we must do is to ascertain whether or not conditions of plane strain exist for this plate by using
Equation (8.14W) as

2 2
B—25& _st =0.0125m=125 0.50 i
=2. 5, =(2.5) ~00 MPa =0. m=125 mm (0.50 in.)

The situation is one of plane strain since the thickness of the plate (25.4 mm) is greater than this

calculated B (12.5 mm).
Now, in order to determine the value of a, we utilize Equation (8.7):

2

_ 4K 2 _1|_49.5MPaym
¢ n\Yo T 700 MPaj
2

=0.0023 m = 2.3 mm (0.092 in.)
(1.65)(

8.21 The student should do this problem on his/her own.

8.22 (a) The plot of impact energy versus temperature is shown below.

120 L} I o I L} I o I L} I
100 -
)
& 80 .
@
=
b  fm—————————
Ty 60 | .
e | __________ |
3 |
- 40 I -
|
|
20 " I " | I 1 " 1 I
-250 -200 -150 -100 -50 0 50

Temperature (°C)

(b) The average of the maximum and minimum impact energies from the data is
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105 J 24 J
Average = + =645 J

As indicated on the plot by the one set of dashed lines, the ductile-to-brittle transition temperature
according to this criterion is about -100°C.

(c) Also, as noted on the plot by the other set of dashed lines, the ductile-to-brittle transition

temperature for an impact energy of 50 J is about -110°C.

8.23 The plot of impact energy versus temperature is shown below.

80

60

40

20

Impact Energy (J)

-60 -40 -20 0 20 40 60
Temperature (°C)

(b) The average of the maximum and minimum impact energies from the data is

76 J 2]
Average :+ =397

As indicated on the plot by the one set of dashed lines, the ductile-to-brittle transition temperature
according to this criterion is about 10°C.
(c) Also, as noted on the plot by the other set of dashed lines, the ductile-to-brittle transition

temperature for an impact energy of 20 J is about -2°C.

8.24 With decreasing temperature, FCC metals do not experience a ductile-to-brittle transition because a
relatively large number of slip systems remain operable at very low temperatures. On the other
hand, BCC and HCP metals normally experience this transition because the number of operable slip

systems decreases with decreasing temperature.
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8.25 (a) Given the values of S (70 MPa) and oy (210 MPa) we are asked to compute S

Smin- From Equation (8.14)

Or,

Furthermore, utilization of Equation (8.16) yields

(e} — O
c =w=21OMPa

Or,

c in =420 MPa

max ~ °m

Simultaneously solving these two expressions leads to

Gmax = 280 MPa (40,000 psi)

pin = —140 MPa (20,000 psi)

(b) Using Equation (8.17) the stress ratio R is determined as follows:

Gmin _ —140 MPa _

O hax 280 MPa

R= -0.50

(c) The magnitude of the stress range o, is determined using Equation (8.15) as

Oy = Omax ~ Omin = 280 MPa — (-140 MPa) = 420 MPa (60,000 psi)

ax

and

8.26 This problem asks that we determine the minimum allowable bar diameter to ensure that fatigue

failure will not occur for a 1045 steel that is subjected to cyclic loading for a load amplitude of 66,700
N (15,000 Ibf). From Figure 8.44, the fatigue limit stress amplitude for this alloy is 310 MPa (45,000

F
psi). Stress is defined in Equation (6.1) as o = — . For a cylindrical bar

AO

d, )2
A0=n7
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Now we may solve for d0 from these expressions, taking stress as the fatigue limit divided by the

factor of safety. Thus

66,700 N
=@ 6 N/m?2
310 x 10% N/m
() >

J =234 x10 2 m=234 mm (0.92 in)

8.27 We are asked to determine the fatigue life for a cylindrical 2014-T6 aluminum rod given its diameter

(6.4 mm) and the maximum tensile and compressive loads (+5340 N and -5340 N, respectively).
The first thing that is necessary is to calculate values of Smax and Smin using Equation (6.1). Thus

a
- Fmax - Fmax
max 2
)
2
5340 N .
= 5 =166 x 10° N/m” =166 MPa (24,400 psi)
6.4 x10° m
(m)
2
- Fmin
min 2
dO
)
5340 N
= 5 =-166 x 10° N/m® = ~166 MPa (24,400 psi)
6.4 X 10_3 m
() — 5

Now it becomes necessary to compute the stress amplitude using Equation (8.16) as

_ Smax ~ %min _ 166 MPa — (-166 MPa)
Oy = > = >

=166 MPa (24,400 psi)

From Figure 8.44, for the 2014-T6 aluminum, the number of cycles to failure at this stress amplitude

is about 1 x 107 cycles.
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8.28 This problem asks that we compute the maximum and minimum loads to which a 15.2 mm (0.60 in.)
diameter 2014-T6 aluminum alloy specimen may be subjected in order to yield a fatigue life of 1.0 x
108 cycles; Figure 8.44 is to be used assuming that data were taken for a mean stress of 35 MPa
(5,000 psi). Upon consultation of Figure 8.44, a fatigue life of 1.0 x 108 cycles corresponds to a
stress amplitude of 140 MPa (20,000 psi). Or, from Equation (8.16)

Smax — Omin = 204 = (2)(140 MPa) = 280 MPa (40,000 psi)

max

Since Om = 35 MPa, then from Equation (8.14)

Smax * Omin = 26y = (2)(35 MPa) = 70 MPa (10,000 psi)

Simultaneous solution of these two expressions for Omax and Smin yields

a

F
c =+175 MPa (+25,000 psi) and ,... . =-105 MPa (-15,000 psi). Now, inasmuch as ¢ =—
max min Ao

2
d
[Equation (6.1)], and A j = n(?oj then

o2 (075 x 10° N/m? )(m) (15.2 x 107 m)2
F = =

max 4 4

=31,750 N (7070 lb;)

_ nd2 _ (—105 x 108 N/mz)(n)€5.2 x 1073 m)z

_ Zmin
Frnin 4 4

=-19,000 N (4240 lb,)

8.29 (a) The fatigue data for this alloy are plotted below.

180 — T T T T T T 1
160-
140-
120-

100

Stress Amplitude (MPa)

(00]
o

(o)}

o
i
(43}

6 T 8 9 10
Log cycles to failure

(b) As indicated by one set of dashed lines on the plot, the fatigue strength at 4 x 106 cycles [log (4
x 108) = 6.6] is about 100 MPa.
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(c) As noted by the other set of dashed lines, the fatigue life for 120 MPa is about 6 x 105 cycles
(i.e., the log of the lifetime is about 5.8).

8.30 We are asked to compute the maximum torsional stress amplitude possible at each of several
fatigue lifetimes for the brass alloy the fatigue behavior of which is given in Problem 8.29. For each
lifetime, first compute the number of cycles, and then read the corresponding fatigue strength from
the above plot.

(a) Fatigue lifetime = (1 yr)(365 days/year)(24 h/day)(60 min/h)(1800 cycles/min) = 9.5 x 108 cycles.
The stress amplitude corresponding to this lifetime is about 74 MPa.

(b) Fatigue lifetime = (30 days)(24 h/day)(60 min/h)(1800 cycles/min) = 7.8 X 107 cycles. The stress
amplitude corresponding to this lifetime is about 80 MPa.

(c) Fatigue lifetime = (24 h)(60 min/h)(1800 cycles/min) = 2.6 X 105 cycles. The stress amplitude
corresponding to this lifetime is about 103 MPa.

(d) Fatigue lifetime = (60 min/h)(1800 cycles/min)

corresponding to this lifetime is about 145 MPa.

108,000 cycles. The stress amplitude

8.31 (a) The fatigue data for this alloy are plotted below.

500 T . . . .
450 [ .
‘E‘ ’
o
=
8 400 .
=
S
E ss0f .
(]
(/1]
2
@ 300 i 5 . 7
250 1 1 1 1 1
3 4 5 6 7 8 9

Log cycles to failure

(b) The fatigue limit is the stress level at which the curve becomes horizontal, which is 290 MPa
(42,200 psi).
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(c) From the plot, the fatigue lifetimes at a stress amplitude of 415 MPa (60,000 psi) is about 50,000
cycles (log N = 4.7). At 275 MPa (40,000 psi) the fatigue lifetime is essentially an infinite number of
cycles since this stress amplitude is below the fatigue limit.

(d) Also from the plot, the fatigue strengths at 2 x 104 cycles (log N = 4.30) and 6 x 105 cycles (log
N = 5.78) are 440 MPa (64,000 psi) and 325 MPa (47,500 psi), respectively.

8.32 This problem asks that we determine the maximum lifetimes of continuous driving that are possible
at an average rotational velocity of 600 rpm for the alloy the fatigue data of which is provided in
Problem 8.31 and at a variety of stress levels.

(&) For a stress level of 450 MPa (65,000 psi), the fatigue lifetime is approximately 18,000 cycles.
This translates into (1.8 x 104 cycles)(1 min/600 cycles) = 30 min.

(b) For a stress level of 380 MPa (55,000 psi), the fatigue lifetime is approximately 1.5 x 105 cycles.
This translates into (1.5 x 105 cycles)(1 min/600 cycles) = 250 min = 4.2 h.

(c) For a stress level of 310 MPa (45,000 psi), the fatigue lifetime is approximately 1 x 106 cycles.
This translates into (1 x 106 cycles)(1 min/600 cycles) = 1667 min = 27.8 h.

(d) For a stress level of 275 MPa (40,000 psi), the fatigue lifetime is essentially infinite since we are
below the fatigue limit.

8.33 For this problem we are given, for three identical fatigue specimens of the same material, S max and

Smin data and are asked to rank the lifetimes from the longest to the shortest. In order to do this it
is necessary to compute both the mean stress and stress amplitude for each specimen. Since from

Equation (8.14)

450 MPa + (~150 MPa
o (A) = i 2( ) _ 150 MPa

300 MPa + (-300 MPa
o (B) = +2( ) _ o Mpa

500 MPa + (200 MPa
6(C) = +2( )~ 150 MPa

Furthermore, using Equation (8.16)
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450 MPa - (150 MPa)

6 4(A) = > = 300 MPa
300 MPa — (300 MP

o, (B) = a 2( 3 _ 300 MPa
500 MPa — (-200 MP

c,(C) = a 2( 3) _ 350 MPa

On the basis of these results, the fatigue lifetime for specimen B will be greater than specimen A

which in turn will be greater than specimen C. This conclusion is based upon the following S-N plot

on which curves are plotted for two Sm values.

350 MPa

300 MPa

Stress Amplitude

1 -
: O = 150
N N NB

Log cycles to failure

8.34 Five factors that lead to scatter in fatigue life data are 1) specimen fabrication and surface
preparation, 2) metallurgical variables, 3) specimen alignment in the test apparatus, 4) variation in

mean stress, and 5) variation in test cycle frequency.
8.35 For a stress ratio (R) of +1, then, from Equation (8.17),
max ~ °min

This is to say that the stress remains constant (or does not fluctuate) with time. Thus, the fatigue

plot would appear as
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Maximum Stress

Log cycles to failure

8.36 This question asks us to demonstrate that increasing R produces a decrease in 6. From Equation

o
(8.17)

... =Ro

min max

Furthermore, Equation (8.16) is

Incorporation of the former expression into the latter gives

c - Ro c
_ Zmax max _ n;ax @ - R)

a 2

Therefore, as the magnitude of R increases (or becomes more positive) the magnitude of o

decreases.

8.37 To crystallize means to become crystalline. Thus, the statement "The metal fractured because it
crystallized" is erroneous inasmuch as the metal was crystalline prior to being stressed (virtually all

metals are crystalline).

8.38 (a) With regard to size, beachmarks are normally of macroscopic dimensions and may be observed
with the naked eye; fatigue striations are of microscopic size and it is necessary to observe them
using electron microscopy.

(b) With regard to origin, beachmarks result from interruptions in the stress cycles; each fatigue

striation corresponds to the advance of a fatigue crack during a single load cycle.
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8.39 Four measures that may be taken to increase the fatigue resistance of a metal alloy are:
1) Polish the surface to remove stress amplification sites.
2) Reduce the number of internal defects (pores, etc.) by means of altering processing and
fabrication techniques.
3) Modify the design to eliminate notches and sudden contour changes.
4) Harden the outer surface of the structure by case hardening (carburizing, nitriding) or shot

peening.

8.40 Creep becomes important at 0.4Tm, Tm being the absolute melting temperature of the metal.
For Ni, 0.4T = (0.4)(1455 + 273) = 691 K or 418°C (785°F)
For Cu, 0.4T = (0.4)(1085 + 273) = 543 K or 270°C (518°F)
For Fe, 0.4T = (0.4)(1538 + 273) = 725 K or 450°C (845°F)
For W, 0.4T = (0.4)(3410 + 273) = 1473 K or 1200°C (2190°F)
For Pb, 0.4T = (0.4)(327 + 273) = 240 K or -33°C (-27°F)
For Al, 0.4T = (0.4)(660 + 273) = 373 K or 100°C (212°F)

8.41 Schematic creep curves at both constant stress and constant load are shown below.

Constant Load

Strain

Constant Stress

Time

With increasing time, the constant load curve becomes progressively higher than the constant stress
curve. Since these tests are tensile ones, the cross-sectional area diminishes as deformation
progresses. Thus, in order to maintain a constant stress, the applied load must correspondingly be

diminished since stress = load/area.

8.42 These creep data are plotted below.
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0'00 10 20 30 40

Time (min)

The steady-state creep rate (Ag/At) is the slope of the linear region as

Ag 0.230 — 0.09

_ 1
At~ 30 min — 10 min

=70 x 10'3 min’

8.43 This problem asks that we determine the total elongation of a low carbon-nickel alloy that is
exposed to a tensile stress of 70 MPa (10,000 psi) at 427°C for 10,000 h; the instantaneous and

primary creep elongations are 1.3 mm (0.05 in.).
From the 427°C line in Figure 8.29, the steady state creep rate, é(s , is about 0.035 %/1000 h

5 .

(or 3.5 x 10" %/h) at 70 MPa. The steady state creep strain, &g therefore, is just the product of é(s

and time as
eg =¥ x (time)
- (3.5 x 107 %/h)lo,ooo h) = 0.35 % = 3.5 x10™

Strain and elongation are related as in Equation (6.2); solving for the steady state elongation, AIS,

leads to
Alg = | e = (1015 mm)(3.5 X 10'3): 3.6 mm (0.14 in.)

Finally, the total elongation is just the sum of this Al s and the total of both instantaneous and primary

creep elongations [i.e., 1.3 mm (0.05 in.)]. Therefore, the total elongation is 4.9 mm (0.19 in.).
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8.44 We are asked to determine the tensile load necessary to elongate a 635 mm long low carbon-nickel
alloy specimen 6.4 mm after 5,000 h at 538°C. It is first necessary to calculate the steady state
creep rate so that we may utilize Figure 8.29 in order to determine the tensile stress. The steady

state elongation, AIS, is just the difference between the total elongation and the sum of the

instantaneous and primary creep elongations; that is,

Aly=6.4 mm-18 mm=4.6 mm (0.18 in.)

Now the steady state creep rate, é(s is just

Ae _ Alg/ly (4.6 mm)/(635 mm)
STOAtT At 5,000 h

=1.45x 10°% ()1 = 0.145 %1000 h

Employing the 538°C line in Figure 8.29, a steady state creep rate of 0.145 %/1000 h corresponds to
a stress o of about 40 MPa (5,800 psi). From this we may compute the tensile load using Equation
(6.1) as

2
-3
19.0 x 10
= @o x 108 N/m? )n)(XTmJ =11,300 N (2560 Ib;)

8.45 This problem asks us to calculate the rupture lifetime of a component fabricated from a low carbon-
nickel alloy exposed to a tensile stress of 31 MPa at 649°C. All that we need do is read from the

649°C line in Figure 8.28 the rupture lifetime at 31 MPa; this value is about 10,000 h.

8.46 We are asked in this problem to determine the maximum load that may be applied to a cylindrical
low carbon-nickel alloy component that must survive 10,000 h at 538°C. From Figure 8.28, the

stress corresponding to 104 h is 70 MPa (10,000 psi). Since stress is defined in Equation (6.1) as o
= F/AO, and for a cylindrical specimen, A j = nroz, then
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2
3
191 x 10
- (70 x 10° N/mz)n)[%] =20,000 N (4420 Ib;)

8.47 The slope of the line from a log é(s versus log o plot yields the value of n in Equation (8.19); that is

A log ¥

n=
Alog o

We are asked to determine the values of n for the creep data at the three temperatures in Figure
8.29. This is accomplished by taking ratios of the differences between two log é{s and log o values.

Thus for 427°C

A log & log (10 1) log @o 2)
“"Alogs  log(85 MPa) — log (55 MPa) _

While for 538°C

A log & log (1.0) - log (10_2)
" Alogos ~ log(59 MPa) — log (23 MPa)

And at 649°C

A log & log (1.0) - log (10_2)
~ Alogs  log(15 MPa) — log (8.3 MPa)

8.48 (a) We are asked to estimate the activation energy for creep for the low carbon-nickel alloy having
the steady-state creep behavior shown in Figure 8.29, using data taken at ¢ = 55 MPa (8000 psi)

and temperatures of 427°C and 538°C. Since o is a constant, Equation (8.20) takes the form

Q Q
é( ch exp BT Kzexp T

where K'2 is now a constant. (Note: the exponent n has about the same value at these two

temperatures per Problem 8.47.) Taking natural logarithms of the above expression
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i . Q¢
InXs= InK, - AT

For the case in which we have creep data at two temperatures (denoted as T and T2) and their
corresponding steady-state creep rates (é(s and é(s ), it is possible to set up two simultaneous
1 2

equations of the form as above, with two unknowns, namely K'2 and Qc' Solving for QC yields

Rlé?—lk?]

Q = (nsl nsz

B
LI

Let us choose T1 as 427°C (700 K) and T2 as 538°C (811 K); then from Figure 8.29, at o = 55 MPa,
1

¥, =001%1000h=1x10" (W and & =0.8%/1000h =08 x 10" (h)
2

s . Substitution of
1

these values into the above equation leads to

(831 J/moI-K)[In (10—7)_ In (0_8 x10‘5j

e % - R
700 K 811K

= 186,200 J/mol

(b) We are now asked to calculate é(s at 649°C (922 K). It is first necessary to determine the value

of K'2, which is accomplished using the first expression above, the value of Qc' and one value each
of & and T (say & and T,). Thus,
1

o Q.
Ky = é(slexp (RTJ

B 7 1 186,200 J/mol _ 6 1
- [10 ) ]EXp[(s.sl J/mol - K)(700 K)}_ 8.0 x 10 (h)

Now it is possible to calculate é(s at 922 K as follows:
. , Q¢
é(s = K,exp ( “RT
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) o1 186,200 J/mol
= E-O x10"" () ]Exp{(s.:al J/mol - K)©922 K)}

=2.23x10°% ()1 = 22.3 %1000 h

8.49 This problem gives é(s values at two different stress levels and 200°C, and the activation energy for

creep, and asks that we determine the steady-state creep rate at 250°C and 48 MPa (7000 psi).
Taking the natural logarithm of Equation (8.20) yields

Inysz InK2 +nino —R—_‘I:_

With the given data there are two unknowns in this equation--namely K2 and n. Using the data

provided in the problem we can set up two independent equations as follows:

. 140,000 J/mol
in[25 x102 (|- Nk, + nin(55 MPa) -
n X (h) nKy +nin 3) (8.31 J/mol-K)(473 K)

PN 140,000 J/mol
| [2.4 102 (h ]: INK, + nIn(69 MPa) —
n X (h) nKy + nin( 3) (8.31 J/mol-K)(473 K)

Now, solving simultaneously for K2 and n leads to n = 9.97 and K2 = 3.27 x 107 (h)'l. Thus it is
now possible to solve for é(s at 48 MPa and 523 K using Equation (8.20) as

. Q
_ n C
¥ =Kyo exp [——RTJ

_ -5 -1 9.97 140,000 J/mol
B [3'2” 107 0 ](48 MPa) eXp{ (8.31 J/mol-K)(523 K)

1.94x 102 ()1

8.50 This problem gives é(s values at two different temperatures and 140 MPa (20,000 psi), and the

stress exponent n = 8.5, and asks that we determine the steady-state creep rate at a stress of 83
MPa (12,000 psi) and 1300 K.

Taking the natural logarithm of Equation (8.20) yields
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In ¥,

s = InK2 +nlno -

=c
RT

With the given data there are two unknowns in this equation--namely K, and Qc' Using the data

provided in the problem we can set up two independent equations as follows:

Q¢
(8.31 J/mol-K)(1090 K)

|nE3.6 x1074 (h)‘l]: INK, + (8.5)In(140 MPa) —

Q¢
(8.31 J/mol-K)(1200 K)

|nE3.8 x 1072 (h)‘l]: INK, + (8.5)In(140 MPa) —

Now, solving simultaneously for K2 and QC leads to K2 =575 (h)'1 and QC = 483,500 J/mol. Thus,
it is now possible to solve for é(s at 83 MPa and 1300 K using Equation (8.20) as

. Q
_ n C
¥ = Kyo exp [__RTJ

» . 483,500 J/mol
- b75 (n ](83 MP -
[5 ) 3 ex‘{ (8.31 J/mol-K)(1300 K)

4.31x102 (h)L
8.51 Three metallurgical/processing techniques that are employed to enhance the creep resistance of

metal alloys are 1) solid solution alloying, 2) dispersion strengthening by using an insoluble second

phase, and 3) increasing the grain size or producing a grain structure with a preferred orientation.

Design Problems

8.D1W This problem asks us to calculate the minimum K| Necessary to ensure that failure will not occur

for a flat plate given the following: an expression from which Y(a/W) may be determined, the internal
crack length, 2a (25 mm), the plate width, W (100 mm), and the value of o (415 MPa). First we
compute the value of Y(a/W) using Equation (8.12W), as follows:

1/2
Y(a/W) = {% tan “Wa}
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[ 100 mm (m)(12.5 mm) [2 L opr
~ [(n)125 mm) 100 mm T

Now, using Equation (8.13W) [or Equation (8.5)] it is possible to determine KIC; thus

Kie = Y(@/W)oy na

= (1.027)(415 MPa)J (n)€.2.5 x 1073 m)= 84.5 MPaym (77.2 ksiyin.)

8.D2W For this problem we are asked to determine the critical crack length for a flat plate containing a

centrally positioned, through-thickness crack as shown in Figure 8.6W; for this plate,
Kic = 50 MPaﬁ, W = 60 mm, and the design stress ¢ = 375 MPa. The plane-strain fracture

toughness is defined by Equation (8.13W) [or Equation (8.5)]; furthermore, for this case, Y is a
function of crack length a and plate width W according to Equation (8.12W). Combining these

expressions leads to

Kie = Y(@/W)oy na

Now solving this expression for a which is just the critical crack length a. yields

2
(w1 Kie
ac = tan >
T oW

2
_ (60 x 1073 m] o (50 MPay'm)

(375 MPa)Z@o x 1073 m)

T

=55x10° m=55mm (0.22in.)
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8.D3W This problem asks that we determine, for a steel plate having a through-thickness edge crack, the

minimum allowable plate width to ensure that fracture will not occur if the minimum crack length that
is subject to detection is 3 mm (0.12 in.). We are also given that KIC = 65 MPay m and that the

plate may be loaded to half its yield strength, where 6, = 1000 MPa. First of all the applied stress is

y
just

o =—-=———>—— =500 MPa (72,500 psi)

Now, using Equation (8.13W) [equivalently Equation (8.5)] we solve for the value of Y assuming that

a=3.0mm, as

Kic

Y ra

_ 65 MPaym
(500 MPa)J (n) (3 x 1073 m)

= 134

In Figure 8.7aW is plotted Y versus a/W for the crack-plate geometry of this problem; from this plot,
for Y = 1.34, a/W = 0.20. Since the minimum crack length for detection is 3 mm, the minimum width

allowable is just

8.D4W This problem asks that we consider a steel plate having a through-thickness edge crack, and to

determine if fracture will occur given the following: W = 40 mm, B = 6.0 mm,
Kic =60 MPaﬁ (54.6 ksiJ in.), oy = 1400 MPa, o = 200 MPa, and a = 16 mm. The first thing to

do is determine whether conditions of plane strain exist. From Equation (8.14W),

2
25 [ﬁ]
(e}
y

60 MPaym )’

=25 (m} =0.0046 m= 4.6 mm (0.19 in.)
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Inasmuch as the plate thickness is 6 mm (which is greater than 4.6 mm), the situation is a plane
strain one. Next, we must determine the a/W ratio, which is just 16 mm/40 mm = 0.40. From this

ratio and using Figure 8.7aW, Y = 2.12. At this point it becomes necessary to determine the value of
the Yc‘/n a product; if it is greater than KIC then fracture will occur. Thus

Yoy ma = (2.12)(200 MPa)J (n)(16 x1073 m)

=95.0 MPaym (86.5 ksiyin. )

Therefore, fracture will occur since this value (95.0 MPaJr_n) is greater than the KIC for the steel

(60 MPa4y/m).

8.D5W We are to determine the maximum load that may be applied without failure to a thin bar of
rectangular cross-section that is loaded in three-point bending per Figure 8.7cW. It first becomes
necessary to determine the value of Y for the given geometry, which is possible using this figure;

however, this determination necessitates the computation of a/W and S/W ratios as

a 05 mm
—=—=0.2
W 25 mm 0.20

10 mm _
25 mm

S
w
From Figure 8.7cW, Y = 0.96 from the S/W = 4 curve and for a/W = 0.20. Now solving for the

applied load F using the equation also provided in this figure

2
_ 4K .W"B

F= 3SY4/ na

_4(060 MPaym)5 x10°° m)2(1.5 X107 m)
i 3(10 x 1073 m)(o.ge)J (n)@.s x 1073 m)

=1.97x10° MN=19.7 N (4.69 Iby)
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8.D6 (a) This portion of the problem calls for us to rank four polymers relative to critical crack length in

the wall of a spherical pressure vessel. In the development of Design Example 8.1, it was noted that
critical crack length is proportional to the square of the ch-oy ratio. Values of KIC and o, as taken

from Tables B.4 and B.5 are tabulated below. (Note: when a range of _, or KIC values is given, the

y
average value is used.)

Material Kic (MPaﬁ) o, (MPa)

Nylon 6,6 2.75 51.7

Polycarbonate 2.2 62.1
Polyethylene terephthlate 5.0 59.3
Polymethyl methacrylate 1.2 63.5

On the basis of these values, the five polymers are ranked per the squares of the ch-cy ratios as

follows:

2

, Kic

Material —_ (mm)
(e}

y
PET 7.11
Nylon 6,6 2.83
PC 1.26
PMMA 0.36

These values are smaller than those for the metal alloys given in Table 8.2, which range from 0.93 to
43.1 mm.

(b) Relative to the leak-before-break criterion, the K|2C -o,, ratio is used. The five polymers are

y

ranked according to values of this ratio as follows:

2
: ch
Material —(MPa -m)

%y
PET 0.422
Nylon 6,6 0.146
PC 0.078
PMMA 0.023
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These values are all smaller than those for the metal alloys given in Table 8.3, which values range
from 1.2 to 11.2 MPa-m.

8.D7W We are asked in this problem to estimate the maximum tensile stress that will yield a fatigue life

of 3.2 x 105 cycles, given values of a,. a.. m, A, and Y. Since Y is independent of crack length we

C!

may utilize Equation (8.29W) which, upon integration, takes the form

a
1 ¢ m/?2
N, = J-a_ da
f Anmlz(AG)mYm

aq

And form =4

a

1 ¢ 2
N =————F Ia_ da
f AnZ(A0)4Y4

)

_ 1 _ (L _ 1L
Anz(A0)4Y4 a a

Cc (0]
Now, solving for Ac from this expression yields
1 1 1/4
AG = a'0 aC
N A2 Y4
1 1 /4

B 25x10%m 5x10°3m
(3.2 x 10° cycles)(s X 10_15)75)2(2)4

=350 MPa
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This 350 MPa will be the maximum tensile stress since we can show that the minimum stress is a

compressive one--when Omin IS Negative, Ac is taken to be Smax: If we take Smax = 350 MPa, and
since S is stipulated in the problem to have a value of 25 MPa, then from Equation (8.14)
Smin = 29m ~ Smax = 2(25 MPa) — 350 MPa = — 300 MPa

Therefore Smin is negative and we are justified in taking Smax © be 350 MPa.

8.D8W This problem calls for us to estimate the fatigue life of a large flat plate given that o, = 150 MPa,

a, = 0.75 mm, KIC =35MPaym, m=25 A=2x 10'12, and Y = 1.75. It first becomes necessary

to compute the critical crack length, a_.. Employment of Equation (8.7), and assuming a stress level

c

of 150 MPa, since this is the maximum tensile stress, leads to

2
a0 =S
¢ xloY

__1[ 35 MPaym
T

(150 MPa)(1.75)

2
J = 566 x10° m

We now want to solve Equation (8.29W) using a lower integration limit, a, of 7.5 x 10™* m as stated

in the problem; also, the value Ac is 150 MPa. Therefore, integration yields for Nf

a
1 d m/2
N; = ja_ da
f Anm/Z(AG)mYm

8q

And form =25

a

1 ¢ 25/2

N, = J-a_ ' da
f A752.5/2(&5)2.5\(2.5

&

a

_ 1 (_ 1 ja—o.25
Arl 25 (A0 5v25\ 025
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_ 4 1 1
B — 25 .25
@ x 1072 Yy 25(150)%5(1.75)%° (666 x 10—3j3 (75 x 10‘4))

=1.0x 106 cycles

8.D9W We are asked in this problem to estimate the critical surface crack length that will yield a fatigue

2 -23

life of 5 x 106 cycles, given that a, =2.0x 10°in., o = 25,000 psi, m = 3.5, A=13x10 “~,

max
and Y = 2.25. Since Y is independent of crack length we may utilize Equation (8.29W) which, upon

integration, takes the form

a
1 ¢ m/2
N¢ = ja_ da
T AR/ 2(pg)mym
a
0
And form = 3.5
a
C
1 _
N = J.a 35/2 da

Ar3572(75)35y35

8

= - An1.75(Ac15)3.5Y3.5 (_0_175J [(ac)—0.75 - @0)_0.75}

Solving for a. from this expression leads to

1/0.75
1

c @0)—0-75 N [\IfA(@.75)(n)1.75(A0)3.5 3.5

1/0.75
1

] (2 X 10‘2)_0'75 + [(5 X 106X1.3 X 10‘23)4).75)(75)1-75(25,000)3-5 (2.25)3-5}

=0.1851n.
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8.D10W (a) For this part of the problem we are asked to calculate, for the plot of Figure 8.17W, values of
the A and m parameters in Equation (8.24W). Taking logarithms of both sides of this expression
leads to Equation (8.26bW), that is
da

Iog(ﬁ) =mlog AK + log A

Then all we need do is take two values of log (da/dN) from the line shown in Figure 8.17W, and their

corresponding log (AK) values, and then develop two expressions of the above equation and solve
simultaneously for A and m. First of all, for S units, let us take log (da/dN); = -2 and log (da/dN), =

-4; thus, their corresponding log (AK) values are log (AK)4 = 2.041 and log (AK), = 1.442. Thus,

the resulting two equations are as follows:
—-2=2.041(m) + log A
-4 =1442 (m) + log A

Simultaneous solution of these expressions leads to m = 3.34 and A = 1.52 x 1079,
Now for Customary U.S. units, let us take log (da/dN); = -4 and log (da/dN), = -5, which

lead to log (AK)41 = 1.9140 and log (AK), = 1.5530. And the two equations are
-4 =1.9140 (m) + log A
-5 =1.5530 (m) +log A
And, the resulting solutions are m =2.77 and A =5 X 10710,
(b) And, for this problem part, for this Ni-Mo-V alloy, we are to compute the maximum initial surface
crack length to yield a minimum fatigue lifetime of 3 x 10° cycles, assuming a critical surface crack
length of 1.5 mm, a maximum tensile stress of 30 MPa, and Y has a value of 1.25 that is

independent of crack length.

Using values of m and A (for Sl units), Equation (8.29W) takes the form

a
1 © 2
N, = J-am da
a

P Anm/Z(AG)m ym
o)
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a

C
1 -3.34/2
N; = Ja ) da
t An334/2(75)3.34y3.34

a9

1 1 0.67 0.67
T T ARl 67(5)334 334 (_0_67j [@c) - (aO) }

Solving for a, from this expression leads to

1/0.67
a = 1
o~ —0.67
(ac) _ [\If A(—067)(ﬁ)167 (AG)3'34 Y3.34

1/0.67
1

] @5x103)067—[@Lnun5)@52x109)ea6nmf57@m334a2533f

=1.1x10%m=0.11 mm

8.11W This problem asks that we estimate the fatigue life of a flat plate that has a centrally positioned
through-thickness crack, given that W = 25 mm, 2a0 =0.10 mm, 2aC =6.0mm, m=4.0,and A=6x

10'12. Furthermore, inasmuch as reverse stress cycling is to be used Ac = 120 MPa. For this plate

and crack geometry, the parameter Y in Equation (8.5) is defined by Equation (8.12W), and,
therefore, is dependent on crack length. Hence, the equation for N]c [Equation (8.29W)] now

becomes

(o]

_ 1 da
Anm/Z(AG)m am/Z(W najm/Z
a

N
— tan —

ma
(0]

ac

- 1 m/2(1&
= AWT2 (20T jcot (Wjda

8

For m = 4, this equation takes the form
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ac

N = AW (a0 AWZ(AG)4 COt( j

2

Here, values for a and a., are 0.05 mm and 3.0 mm, respectively. Integration of the preceding

expression leads to the solution

-3
1 25 x 1 .
{—{ 5 x10 Jcot@—gj - (3 x10 Si
@ X 10‘12X25 X 10‘3)2(120)4 "

-3
+ 1 [[25 x10 jcot(ofsnj + @.05 X 10_3i
(6 X 10‘12X25 X 10‘3)2(120)4 "

=1.6X 106 cycles

8.D12W For this problem we are given an expression for Y(a/W) for an edge crack of finite width (Figure

8.7aW), and are asked to estimate the fatigue life for a tension-compression reversed cycle situation
given the following:

W =60 mm (0.06 m)
ay=5mm (5x 1073 m)

a,=12mm (1.2 x 1072 m)

m=3.5
A=15x1012

Since it is a reversed stress cycle and given that Crin = -135 MPa, it is the case that Cnax = +135

MPa; this also means that Ac in Equation (8.29W) is also 135 MPa. Upon substitution the

expression for Y(a/W) [Equation (8.21)] into Equation (8.29W), the fatigue life is equal to the
following expression:
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SO

N, = 1 a1 "da
f - ( —12) 75 3.5 35
1.5 x 10712 Yn)L- 75 (135)
1.1(1—%j
w

Nf may now be determined using the E-Z Solve equation solver.

After opening E-Z Solve, the following text is entered into the workspace of the window that

appears:

a=t
T =1K*aN-1.75)/ (L.1* (1 - 0.2 *a/ W) / (1 - a/ W)N(3/2))*3.5
K = 1.5e-12 * pi*1.75 * 135"3.5

W = 0.06

It is next necessary to click on the calculator icon ("Solve new run") located on the tool bar near the
top of the window. At this time another window appears within which the integration limits are

specified. In the "IC" window, under the "Independent Variable" column, in the "Start" box is entered
"5e-3", which is the lower limit of the integral (i.e., ao). Furthermore, in the "End" box is entered the

upper integration limit (aC), which is "1.2e-2", and in the "# Points" box is entered the value "1".

Under the "Initial Conditions" column, in the "t" box is again entered the lower integration limit--"5e-
3"; in the "T" box is left the default value of "0". Itis now necessary to click on the "Solve New Run"
box at the bottom of this window, at which time the equation solver is engaged. Finally, at the
bottom of the first window now appears the data that has been entered as well as the solution. The
value for the fatigue life (Nf) is given as the nonzero value that appears in the T column--i.e., 4.17 x

10* cycles.

8.D13 This problem asks that we derive an expression for the fatigue life of the spherical tank shown in
Figure 8.10 that is alternately pressurized and depressurized between atmospheric pressure and a

positive pressure p. For Y being independent of crack length a, Equation (8.29W) takes the form

a

1 ¢ 12
N = J-a_m da
f Anm/Z(Ac)mYm

49
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But Ac is just equal to the expression for ¢ in Equation (8.8). Making this substitution into the above

equation leads to

1 o
Nf = o J.a_m/zda
r
AnmIZ(%J ym a,
2M¢m

% /12
-m
a da
m .[
Y a

(o]

- A/ 2(p r)m

This expression must next be integrated which yields

_ 2(m+ 1)ym [a 1-mi2) _ 4 (1-m/2)}
A@ - ma™/2@nmym L °

Nt

which is the desired result.

8.D14W (a) This portion of the problem asks that we compute the maximum tensile load that may be
applied to a spring constructed of a Zl hard 304 stainless steel such that the total deflection is less

than 5 mm; there are 10 coils in the spring, whereas, its center-to-center diameter is 15 mm, and the
wire diameter is 2.0 mm. The total spring deflection 85 may be determined by combining Equations

(8.32W) and (8.33W); solving for the load F from the combined equation leads to
s5.d%G

F= =2
8N D3
C

However, it is also necessary to determine the value of the shear modulus G. This is possible using
Equation (6.9) and values of the modulus of elasticity (193 GPa) and Poisson's ratio (0.30) as taken
from Tables B.2 and B.3 in Appendix B. Thus

__E
T o2(1+ V)

193 GPa

= =2 2T g406P
2(1 + 030) a
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Substitution of this value and values of the other parameters into the above equation for F leads to

@ x 1073 mXZ x1073 m)4(74.2 x 10° N/m2)
F =

(8)(10 coils)€5 x 1073 m)3

= 220N (5.11by)

(b) We are now asked to compute the maximum tensile load that may be applied without any
permanent deformation of the spring wire. This requires that we combine Equations (8.30W) and
(8.31W), and then solve for F. However, it is first necessary to calculate the shear yield strength and
substitute it for T in Equation (8.30W). The problem statement stipulates that Ty =06 o, From

Table B.4 in Appendix B, we note that the tensile yield strength for this alloy in the 1/4 hardened
state is 515 MPa; thus Ty =309 MPa. Now, solving for F as outlined above

m'yd3
j—0.140

16®0O) >

n(309 x 10° N/m2X2 x 1073 m)3

~0.140
-3
3 Y15 x103 m
(1.6)(8)(15 x10 > m)————
2 x103 m

= 53.6 N (125 Iby)

8.D15W (a) In this portion of the problem we are asked to select candidate materials for a spring that
consists of eight coils and which is not to plastically deform nor experience a deflection of more that

10 mm when a tensile force of 30 N is applied. The coil-to-coil diameter and wire diameter are 12

mm and 1.75 mm, respectively. In addition, we are to assume that Ty = O.GGy and G = 0.4E. Letus

first determine the minimum modulus of elasticity that is required such that the total deflection 8S is

less than 10 mm. This requires that we begin by computation of the deflection per coil 8c using

Equation (8.33W) as
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5. === = _s =1.25 mm/coil

Now, upon rearrangement of Equation (8.32W) and solving for E, realizing that G = 0.4E, we have

_ 8FD°
(0.4)6Cd4

(8)(30 N)(12 x 1073 m)3

- 4
(0.4)(1.25 x 1073 m)(1.75 x 1073 m)

= 88.4x 10° N/m? = 88.4 GPa

Next, we will calculate the minimum required tensile yield strength by employing Equations (8.36W)

and (8.31W). Solving for Oy and since Ty = 0.60'y the following may be written

_ 3,(0.4E)d D) 0-140
e [1.60(d)

(L.25 x10° m)0.4)(88.4 x10° N/m? (175 x 10° m ( 12 mm j-o.14o]
= 1.60| -
- 175
(0.6)(7:)(12 x 1073 m)2 mm

= 348 x 10° N/m? = 348 MPa

After perusing the database on the CD-ROM or Appendix B in the textbook, it is observed
that 30 materials satisfy the two criteria that were determined above (viz. E = 88.4 GPa and S, =348

MPa). These materials are listed below, along with their values of E, Oy %EL, and relative cost (E ).
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Material Condition E (GPa) oy (MPa) %EL c($/9)

1020 steel Plate, CR 207 350 15 1.6
1040 steel Plate, CR 207 490 12 1.9
1040 steel Annealed 207 355 30.2 --
1040 steel Normalized 207 375 28 --
4140 steel Annealed 207 417 25.7 --
4140 steel Bar, normalized 207 655 17.7 2.6
4140 steel Q/T @ 315°C 207 1570 115 --
4340 steel Bar, annealed 207 472 22 35
4340 steel Bar, normalized 207 862 12.2 4.7
4340 steel Q/T @ 315°C 207 1620 12 -
304 SS CW, 1/4 hard 193 515 10 4.0
440A SS Plate, annealed 200 415 20 6.7
440A SS Q/T @ 315°C 200 1650 5 --
17-7PH SS Plate, CR 204 1210 1 12.0
17-7PHSS  Ptn. hardened 204 1310 35 --
Ductile Iron

(80-55-06) As cast, high prod. 168 379 6 2.4
Ductile Iron

(80-55-06) As cast, low prod. 168 379 6 5.9
Ductile Iron

(120-90-02) QIT, high prod. 164 621 2 2.4
Ductile Iron

(120-90-02) QIT, low prod. 164 621 2 5.9
C17200 Cu  Soln. treated/aged 128 905-1205 4-10 51.4
C26000 Cu CW, HO4 110 435 8 6.0
C71500 Cu  CW, H80 150 545 3 12.9
Ti-5Al-2.5Sn  Annealed 110 760 16 157
Ti-6Al-4V Annealed 114 830 14 132
Ti-6Al-4V Soln. treated/aged 114 1103 10 132
Molybdenum Sheet/rod 320 500 25 143
Tungsten Sheet 400 760 2 111
Tungsten Rod 400 760 2 166
Inconel 625  Annealed 207 517 42.5 35.0
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Haynes 25 -- 236 445 62 135

The student should make his or her own decision as to which material would be most desirable for
this application. Consideration should be given to the magnitude of both the elastic modulus and
yield strength, in that they should be somewhat greater than the required minima, yet not excessively
greater than the minima. Furthermore, the alloy will have to be drawn into a wire, and, thus, the
ductility in percent elongation is also a parameter to be considered. And, of course cost is important,
as well as the corrosion resistance of the material; corrosion resistant issues for these various alloys
are discussed in Chapter 17. And, as called for in the problem statement, the student should justify

his or her decision.

8.D16W This problem involves a spring having 10 coils, a coil-to-coil diameter of 0.4 in., which is to
deflect no more than 0.80 in. when a tensile load of 12.9 Ib]c is applied. We are asked to calculate
the minimum diameter to which a cold-drawn steel wire may be drawn such that plastic deformation
of the spring wire will not occur. The spring will plastically deform when the right-hand side of
Equation (8.36W) equals the shear yield strength of the cold-drawn wire. Furthermore, the shear
yield strength is a function of wire diameter according to Equation (8.22). When we set this
expression equal to the right-hand side of Equation (8.36W), the only unknown is the wire diameter,

d, since, from Equation (8.33W)

5 _ 8 _0.80 in.
C” N 10 coils

=0.080 in./call
Therefore,
63,000 8.Gd  5.Gd D) ~0.140
YETP2 T op2fwT T2 1.60(dj

Now, this expression reduces to

63,000 (0.08 in/coi(115 x10° psi)(d) {1 60(0_40 in_) —o.1401

02 7(0.40 in.)2 d
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Or

63,000
d0.2

= 3.33 x 100 (@)t

And

1.89x 102 = (@d)134
Finally, solving for d leads to

d =0.052 in.

8.D17W This problem involves a spring that is to be constructed from a 4340 steel wire 2 mm in
diameter; the design also calls for 12 coils, a coil-to-coil diameter of 12 mm, and the spring
deflection is to be no more than 3.5 mm when a tensile load of 27 N is applied. We are asked to
specify the heat treatment for this 4340 alloy such that plastic deformation of the spring wire will not
occur. The spring will plastically deform when the right-hand side of Equation (8.36W) equals the
shear vyield strength of wire. However, we must first determine the value of SC using Equation

(8.33W). Thus,

ds 3.5 mm

§.=—=
C N 12 coils

= 0.292 mm/coil

Now, solving for T

5 .Gd 5.Gd -0.140
7, = —%—K =-% 1.60(9)
y nD2 w TCD2 d

-3 9 2 -3
0.292 x10 " m )80 x10” N/m“~ J2 x10 " m -0.140
12
_ & X X ){1_60( mmj ]

(rc)(12 x 1073 m)2 2 mm

=129 x 10% N/m? =129 MPa
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It is now possible to solve for the tensile yield strength Gy as

_ Ty _ 129 MPa

=Y =214 MP
y =06 0.6 a

(e

Thus, it is necessary to heat treat this 4340 steel in order to have a tensile yield strength of 214 MPa.
One way this could be accomplished is by first austenitizing the steel, quenching it in oil, and then
tempering it. In Figure 10.25 is shown the yield strength as a function of tempering temperature for
a 4340 alloy that has been oil quenched. From this plot, in order to achieve a yield strength of 214

MPa, tempering (for 1 h) at approximately 380°C is required.
8.18W This problem asks that we compute the maximum allowable stress level to give a rupture lifetime

of 20 days for an S-590 iron component at 923 K. It is first necessary to compute the value of the

Larson-Miller parameter as follows:
T(20 + logt, )= (923 K){20 + log [(20 days)(24 hiday)]}
=20.9x10°

From the curve in Figure 8.25W, this value of the Larson-Miller parameter corresponds to a stress
level of about 280 MPa (40,000 psi).

8.D19W We are asked in this problem to calculate the temperature at which the rupture lifetime is 200 h
when an S-590 iron component is subjected to a stress of 55 MPa (8000 psi). From the curve

shown in Figure 8.25W, at 55 MPa, the value of the Larson-Miller parameter is 26.7 X 103 (K-h).
Thus,

26.7 x 10° (K-h)= T(0 + logt,)
= T[20 + log(200 h)]
Or, solving for T yields T = 1197 K (924°C).

8.20W This problem asks that we determine, for an 18-8 Mo stainless steel, the time to rupture for a
component that is subjected to a stress of 100 MPa (14,500 psi) at 600°C (873 K). From Figure
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8.45, the value of the Larson-Miller parameter at 100 MPa is about 22.4 x 103, for Tin K and t, in h.

Therefore,
22.4 x10° =T (20 + logt, )
= 873(20 + logt, )
And, solving for t,

25.77 =20 + logt,

5

which leads to t, = 4.6 x10° h=52yr.

8.D21W We are asked in this problem to calculate the stress levels at which the rupture lifetime will be 1
year and 15 years when an 18-8 Mo stainless steel component is subjected to a temperature of

650°C (923 K). It first becomes necessary to calculate the value of the Larson-Miller parameter for
each time. The values of t, corresponding to 1 and 15 years are 8.76 X 103 h and 1.31 x 105 h,

respectively. Hence, for a lifetime of 1 year
T(@0 + logt, )= 923[20 + log @.76 X 103j =22.10 x 10°

And for t = 15 years
T(@0 + logt, )= 923[20 + log (1.31 X 1o5j =23.18 x 10°

Using the curve shown in Figure 8.45, the stress values corresponding to the one- and fifteen-year

lifetimes are approximately 110 MPa (16,000 psi) and 80 MPa (11,600 psi), respectively.

8.D22W Each student or group of students is to submit their own report on a failure analysis investigation

that was conducted.
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9.1

9.2

9.3

9.4

9.5

CHAPTER 9
PHASE DIAGRAMS
PROBLEM SOLUTIONS

Three variables that determine the microstructure of an alloy are 1) the alloying elements present, 2)

the concentrations of these alloying elements, and 3) the heat treatment of the alloy.

In order for a system to exist in a state of equilibrium the free energy must be a minimum for some

specified combination of temperature, pressure, and composition.

Diffusion occurs during the development of microstructure in the absence of a concentration gradient
because the driving force is different than for steady state diffusion as described in Section 5.3; for

the development of microstructure, the driving force is a decrease in free energy.

For the condition of phase equilibrium the free energy is a minimum, the system is completely stable
meaning that over time the phase characteristics are constant. For metastability, the system is not
at equilibrium, and there are very slight (and often imperceptible) changes of the phase

characteristics with time.

This problem asks that we cite the phase or phases present for several alloys at specified
temperatures.
(a) For an alloy composed of 15 wt% Sn-85 wt% Pb and at 100°C, from Figure 9.7, a and B phases

are present, and
Ca =5 wt% Sn-95 wt% Pb

C[3 = 98 wt% Sn-2 wt% Pb

(b) For an alloy composed of 25 wt% Pb-75 wt% Mg and at 425°C, from Figure 9.18, only the a

phase is present; its composition is 25 wt% Pb-75 wt% Mg.

(c) For an alloy composed of 85 wt% Ag-15 wt% Cu and at 800°C, from Figure 9.6, B and liquid

phases are present, and

CB =92 wt% Ag-8 wt% Cu
CL =77 wt% Ag-23 wit% Cu
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(d) For an alloy composed of 55 wt% Zn-45 wt% Cu and at 600°C, from Figure 9.17, B and y phases

are present, and

CB =51 wt% Zn-49 wt% Cu
Cy =58 wt% Zn-42 wt% Cu

(e) For an alloy composed of 1.25 kg Sn and 14 kg Pb and at 200°C, we must first determine the Sn

and Pb concentrations, as

C. = 1.25 kg
Sn " 125 kg + 14 kg

x 100 = 8.2 wt%

c = 14 kg
Pb ™ 1.25 kg + 14 kg

x 100 = 91.8 wt%

From Figure 9.7, only the a phase is present; its composition is 8.2 wt% Sn-91.8 wt% Pb.
(f) For an alloy composed of 7.6 Ibm Cuand 114.4 Ibm Zn and at 600°C, we must first determine the
Cu and Zn concentrations, as

7.6 b
u- 76 b+ 1444 Ib_

Ce x 100 = 5.0 Wt%

144.4 b
n~ 76 b+ 144.4 Ib

c, x 100 = 95.0 Wt%

From Figure 9.17, only the L phase is present; its composition is 95.0 wt% Zn-5.0 wt% Cu

(g) For an alloy composed of 21.7 mol Mg and 35.4 mol Pb and at 350°C, it is first necessary to

determine the Mg and Pb concentrations, which we will do in weight percent as follows:

Mpy, = nmeAPb = (35.4 mol)(207.2 g/mol) = 7335 ¢

Myg = angAMg =(21.7 mol)(24.3 g/mol) =527 g
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73359
Cop = 100 = 93 wt%
Pb = 7335 g 1 527 g wee

Cyvg = 100 wt% — 93 wt% = 7 wt%

g
From Figure 9.18, L and Mg,Pb phases are present, and
C, =94 wt% Pb - 6 wt% Mg
Ciig,pp = 81Wt% Pb —19 wt% Mg
(h) For an alloy composed of 4.2 mol Cu and 1.1 mol Ag and at 900°C, it is first necessary to
determine the Cu and Ag concentrations, which we will do in weight percent as follows:

Ac, = (4.2 mol)(63.55 g/mol) = 266.9 g

m~. =n
Cu me,

Mag = nmAgAAg = (1.1 mol)(107.87 g/mol) = 118.7 ¢

266.9 g
Coy = 100 = 69.2 wi%
Cu~ 726699 + 11879 | e

1187 g
= 100 = 30.8 Wt%
9726699+ 11879 e

Ca

From Figure 9.6, a and liquid phases are present; and
C = 8 Wt% Ag-92 w% Cu

CL =45 wt% Ag-55 wt% Cu

9.6 This problem asks us to determine the phases present and their concentrations at several

temperatures, as an alloy of composition 52 wt% Zn- 48 wt% Cu is cooled. From Figure 9.17:

At 1000°C, a liquid phase is present; WL =1.0
At 800°C, the B phase is present, and WB =1.0

At 500°C, B and y phases are present, and
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WB =1.00-0.33=0.67

At 300°C, the B' and y phases are present, and

€, ~Co  59-52

C -C, 59-50
Y B

WBI = = O .78

Wy =1.00-0.78=0.22

9.7 This problem asks that we determine the phase mass fractions for the alloys and temperatures in
Problem 9.5.

@)

() W,=1.0

(©

W = =0.53
b c,-c ~e2-77
Cy - C
p ~Co 92-85
W, = = = 0.47
L _ _
Cy -CL 92-77
(d) c _c
W, =L -850 5
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Co —05_55—51_057
v’cy -C, 58-51

(e) W_=10

) W =10

(@

CL —Co 9493

W =0.08
Mg,Pb C_ - Cygpp 94-81
2
Co = Cmgpb 03 - 81
W=t ¢ “ 94 _g1 092
L = ~Mg,Pb -
(h) c c
w oL o 45 -308 .o
“"¢c -C 45 — 8
o
C, - C 308 - 8
w, = —=2 @ =0.62

C, -C 45 -8
L o

9.8 (a) In this problem we are asked to derive Equation (9.6a), which is used to convert from phase

weight fraction to phase volume fraction. Volume fraction of phase a, Va, is defined by Equation

(9.5) as

Vo= —a (9.51)

where Vo, and v, are the volumes of the respective phases in the alloy. Furthermore, the density of

each phase is equal to the ratio of its mass and volume, or upon rearrangement

m(l
v, =—% (9.S2a)
p

o
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(9.S2b)

(9.S3)

in which m's and p's denote masses and densities, respectively. Now, the mass fractions of the a

and B phases (i.e., Wa and Wﬁ) are defined in terms of the phase masses as

W:¢
 m +m
o §
m
W, = b
B"m +m
o B

Which, upon rearrangement yield

W
—a
Py
V =
W, Y
Py pB

(9.S4a)

(9.S4b)

(9.S5a)

(9.S5b)

(9.S6)

(b) For this portion of the problem we are asked to derive Equation (9.7a), which is used to convert from
phase volume fraction to phase mass fraction. Mass fraction of the a. phase, W, is defined as
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i a— (9.57)
o p
From Equations (9.S2a) and (9.S2b)
M, =VPq (9.S8a)
Mg = VpgPg (9.S8b)
Substitution of these expressions into Equation (9.S7) yields
VP
w, = — e e (9.59)
VoPo t VpPp
From Equation (9.S1) and its equivalent for Vﬁ the following may be written
v, = Va(va + VB) (9.S10a)
Vg = VB(Va + VB> (9.S10b)

Substitution of Equations (9.510a) and (9.S10b) into Equation (9.S9) yields the desired expression

VP
W, o=—c 9.511
O Vp +Vp ( )
o’ o

PR

9.9 This problem asks that we determine the phase volume fractions for the alloys and temperatures in

Problems 9.5a, b, and d. This is accomplished by using the technique illustrated in Example
Problem 9.3, and the results of Problems 9.5 and 9.7.

(a) Thisis a Sn-Pb alloy at 100°C, wherein

C, = 5 wt% Sn-95 wt% Pb
CB = 98 wt% Sn-2 wt% Pb
W, =0.89
WB =0.11
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3
Pgn = 7.29 g/cm

3
Ppp = 11.27 g/lcm

Using these data it is first necessary to compute the densities of the a and B phases using Equation
(4.10a). Thus

_ 100
Csn(a) . Chppa)

Po.

Psn Ppp

_ 100 _ 3
= 3 R 95 = 10.97 g/cm

7.29 g/ cmd 11.27 g/ cm3

~ 100
Csnp) N Cro(p)
Psn Ppp

Pp

_ 100 _ 3
= o8 . > =7.34 g/lcm

7.29 g/ cm3 11.27 g/ cm3

Now we may determine the Va and V[} values using Equation 9.6. Thus,

_ Pa
Wo VB
Po Pg

\Y
a

0.89

10.97 g/ cms
0.89 N 0.11

10.97 g/cm®  7.34 g/cmd

=0.84
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s

Pp
VB_W W,
o , _bP

Py Pp

0.11

7.34 g/cm3
0.89 N 0.11

10.97 g/cm®  7.34 g/cm3

=0.16

(b) This is a Pb-Mg alloy at 425°C, wherein only the a. phase is present. Therefore, Voc =1.0.

(d) This is a Zn-Cu alloy at 600°C, wherein

C[3 =51 wt% Zn-49 wt% Cu

Cy = 58 wt% Zn-42 wt% Cu

W, =0.43
B

W_=0.57
! 3
Pz, = 6.67 g/em
- 3
Pcu= 8.68 g/cm

Using this data it is first necessary to compute the densities of the B and y phases. Thus

- 100
Cang) | Ccup)

Pp

Pzn Pcu

— _ 3
= 01 R 29 =7.52 g/lcm

6.67 g/cm3 8.68 g/cm3

. 100
" Czngy . Ccuy)

Pzn pCu
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_ 100 _ 3
= o3 R 17 =7.39 g/cm

6.67 g/cm3 8.68 g/cm3

Now we may determine the VB and Vy values using Equation (9.6). Thus,

W
B
Pp
BTwW, W
P, ¥
Pp Py
0.43
7.52 g/ cm3 _
0.43 057 043
+
7.52 g/cm3 7.39 g/cm3
W
_r
Vpp—
YW Wy
— + —
Pp Y
0.57
7. 3
_ 39g/cm - 0.57

0.43 0.57
+
7.52 g/ cms 7.39 g/ cm3

9.10 (a) Spreading salt on ice will lower the melting temperature, since the liquidus line decreases from
0°C to the eutectic temperature at about -21°C. Thus, ice at a temperature below 0°C (and above
-21°C) can be made to form a liquid phase by the addition of salt.

(b) We are asked to compute the concentration of salt necessary to have a 50% ice-50% brine
solution at -10°C (14°F). At -10°C,

C. =0 wt% NaCl-100 wt% H,.O
ice 2

C, . =13 wt% NaCl-87 wt% H, O
brine 2

Thus,
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_ Cbrine _ Co _ 13 - Co

ice ~ C.. —-C__~13-0

Solving for C0 (the concentration of salt) yields a value of 6.5 wt% NaCl-93.5 wt% HZO'

9.11 (a) This part of the problem calls for us to cite the temperature to which a 90 wt% Pb-10 wt% Sn
alloy must be heated in order to have 50% liquid. Probably the easiest way to solve this problem is
by trial and error--that is, moving vertically at the given composition, through the a + L region until
the tie-line lengths on both sides of the given composition are the same (Figure 9.7). This occurs at
approximately 300°C (570°F).

(b) We can also produce a 50% liquid solution at 250°C, by adding Sn to the alloy. At 250°C and

within the o + L phase region

ch =13 wt% Sn-87 wt% Pb
CL = 39 wt% Sn-61 wt% Pb

Let C0 be the new alloy composition to give Wa = WL =0.5. Then,

C, -C, 39-C
W =05=——=20-= 0
o C_-C, 39-13

And solving for CO gives 26 wt% Sn. Now, let mg, be the mass of Sn added to the alloy to

achieve this new composition. The amount of Sn in the original alloy is
(0.10)(1.5 kg) = 0.15 kg

Then, using a modified form of Equation (4.3)

[0.15 kg + mg,

15 kg + m :l X100 =26

Sn

And, solving for me, yields mg, = 0.324 kg.

9.12 (a) We are asked to determine how much sugar will dissolve in 1000 g of water at 80°C. From the
solubility limit curve in Figure 9.1, at 80°C the maximum concentration of sugar in the syrup is about

74 wt%. It is now possible to calculate the mass of sugar using Equation (4.3) as

249



m

sugar
Csugar(wt%) = - x 100
sugar water
m
74 Wit = Sugirooo x 100
sugar + 9
Solving for msugar yields msugar =2846¢g

(b) Again using this same plot, at 20°C the solubility limit (or the concentration of the saturated

solution) is about 64 wt% sugar.

(c) The mass of sugar in this saturated solution at 20°C (m ') may also be calculated using

sugar
Equation (4.3) as follows:
m L}
64 Wi% = ,S”galrooo x 100
sugar + 9
which yields a value for msugar' of 1778 g. Subtracting the latter from the former of these sugar

concentrations yields the amount of sugar that precipitated out of the solution upon cooling

msugar ; thatis

Msugar ~ Msugar ~ Msugar ~ 2846 9-17789=1068¢

9.13 This problem asks us to consider a specimen of ice | which is at -10°C and 1 atm pressure.
(@) In order to determine the pressure at which melting occurs at this temperature, we move
vertically at this temperature until we cross the Ice I-Liquid phase boundary of Figure 9.33. This
occurs at approximately 570 atm; thus the pressure of the specimen must be raised from 1 to 570
atm.
(b) In order to determine the pressure at which sublimation occurs at this temperature, we move
vertically downward from 1 atm until we cross the Ice I-Vapor phase boundary of Figure 9.33. This

intersection occurs at approximately 0.0023 atm.

9.14 The melting and boiling temperatures for ice | at a pressure of 0.01 atm may be determined by
moving horizontally across the pressure-temperature diagram of Figure 9.33 at this pressure. The
temperature corresponding to the intersection of the Ice I-Liquid phase boundary is the melting
temperature, which is approximately 1°C. On the other hand, the boiling temperature is at the

intersection of the horizontal line with the Liquid-Vapor phase boundary--approximately 28°C.
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9.15 (a) This portion of the problem asks that we calculate, for a Pb-Mg alloy, the mass of lead in 7.5 kg
of the solid a phase at 300°C just below the solubility limit. From Figure 9.18, the composition of an
alloy at this temperature is about 17 wt% Pb. Therefore, the mass of Pb in the alloy is just (0.17)(7.5
kg) = 1.3 kg.

(b) At 400°C, the solubility limit of the o phase increases to approximately 32 wt% Pb. In order to
determine the additional amount of Pb that may be added (me.), we utilize a modified form of

Equation (4.3) as

1.3kg + mpy,

Cpp, = 32 W% = x 100

7.5 kg + Moy

Solving for Mpp: yields Mpy: = 1.62 kg.

9.16 (a) Coring is the phenomenon whereby concentration gradients exist across grains in
polycrystalline alloys, with higher concentrations of the component having the lower melting
temperature at the grain boundaries. It occurs, during solidification, as a consequence of cooling
rates that are too rapid to allow for the maintenance of the equilibrium composition of the solid
phase.

(b) One undesirable consequence of a cored structure is that, upon heating, the grain boundary
regions will melt first and at a temperature below the equilibrium phase boundary from the phase

diagram; this melting results in a loss in mechanical integrity of the alloy.

9.17 This problem asks if a noncold-worked Cu-Ni solid solution alloy is possible having a minimum
tensile strength of 380 MPa (55,000 psi) and also a ductility of at least 45%EL. From Figure 9.5a, a
tensile strength greater than 380 MPa is possible for compositions between about 34 and 87 wt% Ni.
On the other hand, according to Figure 9.5b, ductilities greater than 45%EL exist for compositions
less than about 7 wt% and greater than about 71 wt% Ni. Therefore, the stipulated criteria are met

for all compositions between 71 and 87 wt% Ni.

9.18 It is not possible to have a Cu-Ni alloy, which at equilibrium, consists of a liquid phase of
composition 20 wt% Ni-80 wt% Cu and an a phase of composition 37 wt% Ni-63 wt% Cu. From
Figure 9.2a, a single tie line does not exist within the o + L region that intersects the phase
boundaries at the given compositions. At 20 wt% Ni, the L-(a + L) phase boundary is at about

1200°C, whereas at 37 wt% Ni the (L + a)-a phase boundary is at about 1230°C.
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9.19 Itis possible to have a Cu-Ag alloy, which at equilibrium consists of an a. phase of composition 5
wt% Ag-95 wt% Cu and a P phase of composition 95 wt% Ag-5 wt% Cu. From Figure 9.6 a
horizontal tie can be constructed across the a. + B region at 690°C which intersects the a—(a + B)

phase boundary at 5 wt% Ag, and also the (a + B)-p phase boundary at 95 wt% Ag.

9.20 Upon heating a lead-tin alloy of composition 30 wt% Sn-70 wt% Pb from 150°C and utilizing Figure
9.7:
(a) the first liquid forms at the temperature at which a vertical line at this composition intersects the
eutectic isotherm--i.e., at 183°C;
(b) the composition of this liquid phase corresponds to the intersection with the (o + L)-L phase
boundary, of a tie line constructed across the a + L phase region just above this eutectic isotherm--
i.e., C =619 wt% Sn;
(c) complete melting of the alloy occurs at the intersection of this same vertical line at 30 wt% Sn
with the (a + L)-L phase boundary--i.e., at about 260°C;
(d) the composition of the last solid remaining prior to complete melting corresponds to the

intersection with a-(a + L) phase boundary, of the tie line constructed across the a + L phase region
at 260°C--i.e., C is about 13 wt% Sn.

9.21 Upon cooling a 50 wt% Ni-50 wt% Cu alloy from 1400°C and utilizing Figure 9.2a:
(@) The first solid phase forms at the temperature at which a vertical line at this composition
intersects the L-(a + L) phase boundary--i.e., at about 1320°C;
(b) The composition of this solid phase corresponds to the intersection with the L-(a + L) phase
boundary, of a tie line constructed across the a + L phase region at 1320°C--i.e., C = 62 wt% Ni-38
wt% Cu;
(c) Complete solidification of the alloy occurs at the intersection of this same vertical line at 50 wt%
Ni with the (a + L)-a phase boundary--i.e., at about 1270°C;
(d) The composition of the last liquid phase remaining prior to complete solidification corresponds to

the intersection with the L-(a + L) boundary, of the tie line constructed across the a + L phase region
at 1270°C--i.e., C|_is about 37 wt% Ni-63 wt% Cu.

9.22 (a) In order to determine the temperature of a 65 wt% Ni-35 wt% Cu alloy for which a and liquid
phases are present with the a phase of composition 70 wt% Ni, we need to construct a tie line
across the a + L phase region of Figure 9.2a that intersects the solidus line at 70 wt% Ni; this is
possible at about 1340°C.

(b) The composition of the liquid phase at this temperature is determined from the intersection of

this same tie line with liquidus line, which corresponds to about 59 wt% Ni.
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(c) The mass fractions of the two phases are determined using the lever rule, Equations (9.1) and
(9.2) with C, = 65wt% Ni, C_ =59 wt% Ni, and Ca =70 wt% Ni, as

Co —C_  65-59

W, = = =055
@« C -C ~ 70-59

o L

Co ~Co _70-65
w, =—%¢—== =045

C, — ¢ 70-59

a

9.23 The copper-gold phase diagram is constructed below.

1100
4
1050
g 1000
2
3
T 950
Q
3
8 900 .
850 L 1 M 1 " 1 1 1 "
0 20 40 60 80 100

Composition (wi% Au)

9.24 (a) We are given that the mass fractions of o and liquid phases are both 0.5 for a 40 wt% Pb-60
wt% Mg alloy and asked to estimate the temperature of the alloy. Using the appropriate phase
diagram, Figure 9.18, by trial and error with a ruler, a tie line within the o + L phase region that is
divided in half for an alloy of this composition exists at about 540°C.

(b) We are now asked to determine the compositions of the two phases. This is accomplished by

noting the intersections of this tie line with both the solidus and liquidus lines. From these
intersections, Ca = 26 wt% Pb, and C_ =54 wt% Pb.

9.25 The problem is to solve for compositions at the phase boundaries for both a and B phases (i.e., Ca

and CB). We may set up two independent lever rule expressions, one for each composition, in terms

of C _ and C, as follows:
a B

253



N

CB_Ca CB_Ca

Cy — Cop Cp - 30

CB_Ca CB_Ca

In these expressions, compositions are given in weight percent A. Solving for Ca and CB from these

equations, yield

Ca =90 (or 90 wt% A-10 wt% B)

CB = 20.2 (or 20.2 wt% A-79.8 wt% B)

9.26 For this problem

C,, = 55 (or 55 Wt% B-45 wi% A)
Cpy = 90 (0 90 Wi% B-10 i% A)
W_ =W, =05

a P

If we set up the lever rule expression for Wa

And solving for Ca

Ca = 20 (or 20 wt% B-80 wt% A)

9.27 Yes, it is possible to have a Cu-Ag alloy of composition 20 wt% Ag-80 wt% Cu which consists of
mass fractions Wa =0.80 and W =0.20. Using the appropriate phase diagram, Figure 9.6, by trial

and error with a ruler, the tie-line segments within the a + L phase region are proportioned such that

c, -C
W = 08= ——-20

o _
CL C(x
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for C, =20 wt% Ag. This occurs at about 800°C.

9.28 Itis not possible to have a 50 wt% Pb-50 wt% Mg alloy which has masses of 5.13 kg and 0.57 kg
for the o and MgZPb phases, respectively. In order to demonstrate this, it is first necessary to

determine the mass fraction of each phase as follows:

m 5.13 kg

W = Qo =
a m, + My 5.13 kg + 0.57 kg

=0.90
gsz

WMgsz =1.00 - 0.90=0.10
Now, if we apply the lever rule expression for Wa

CMgsz - Co

CMgzpb a Ca

Since the Mgsz phase exists only at 81 wt% Pb, and C, = 50 wt% Pb

81 — 50
W, =0.90 == c

Solving for Ca from this expression yields Ca = 46.6 wt% Pb. From Figure 9.18, the maximum

concentration of Pb in the a phase in the a + Mgsz phase field is about 42 wt% Pb. Therefore, this

alloy is not possible.

9.29 (a) From Figure 9.6, the maximum solubility of Cu in Ag at 700°C corresponds to the position of the
B-(a + B) phase boundary at this temperature, or to about 6 wt% Cu.
(b) From this same figure, the maximum solubility of Ag in Cu corresponds to the position of the a-

(o + B) phase boundary at this temperature, or about 5 wt% Ag.
9.30 We are asked to determine the approximate temperature from which a Pb-Mg alloy was quenched,
given the mass fractions of a and MgZPb phases. We can write a lever-rule expression for the mass

fraction of the a phase as
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CMgsz - C0
W, =0.65 = ﬁ
Mg,Pb — ~a

The value of C0 is stated as 45 wt% Pb-55 wt% Mg, and CM is 81 wt% Pb-19 wt% Mg, which

goPb
is independent of temperature (Figure 9.18); thus,

81 — 45

0.65 = 8l_ C
o

which yields
Ca = 25.6 wt% Pb

The temperature at which the a-(a + MgZPb) phase boundary (Figure 9.18) has a value of 25.6 wt%

Pb is about 360°C (680°F).

9.31 This problem asks if it is possible to have a Mg-Pb alloy for which the mass fractions of primary a
and total a are 0.60 and 0.85, respectively, at 460°C. In order to make this determination we need

to set up the appropriate lever rule expression for each of these quantities. From Figure 9.18 and at

460°C, C_ =41 wt% Pb, CMgsz =8lwt% Pb,and C_ .. i = 67 Wt% Pb.
For primary a
W = Ceutectic ~ Co _ 67 -Gy -0.60
* Ceuteciic ~Coa 67 -4
Solving for CO gives CO =51.4 wt% Pb.
Now the analogous expression for total a
c -C
Mg, Pb 0 81-C
Wy =g =51 a1 =085
MgPb ~ Ta B

And this value of C0 is 47 wt% Pb. Therefore, since these two CO values are different, this alloy is

not possible.
9.32 This problem asks if it is possible to have a Pb-Sn alloy for which the masses of primary g and total

B are 2.21 and 2.53 kg, respectively in 2.8 kg total of the alloy at 180°C. In order to make this

determination we first need to convert these masses to mass fractions. Thus,
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_2.21kg _

P 2o kg 078
_ 253 kg _
Wy =g kg =090

Next it is necessary to set up the appropriate lever rule expression for each of these quantities.

From Figure 9.7 and at 180°C, Ca =18.3 wt% Sn, C, = 97.8 wt% Sn, and C =61.9 wt% Sn.

eutectic

B
For primary B

W, = C0 _ Ceutectic - C0 - 619 = 0.789
p Cp - Coutectic  97-8 — 61.9
Solving for Co gives C0 =90.2 wt% Sn.
Now the analogous expression for total B
C, -C C, —183
W, = —2——% = —0 =0.904
B CB -C, 978-183

And this value of C0 is also 90.2 wt% Sn. Therefore, since these two C0 values are identical, this

alloy is possible.

9.33 (a) This portion of the problem asks that we determine the mass fractions of a and B phases for an

80 wt% Sn-20 wt% Pb alloy (at 180°C). In order to do this it is necessary to employ the lever rule

using a tie line that extends entirely across the a + B phase field (Figure 9.7), as follows:

Cp -~ Co 978 - 80
o C —Ca_97.8—18.3

=0.224

C, - C, __80 — 183
C, -C, 97.8-183

Wy = =0.776

(b) Now it is necessary to determine the mass fractions of primary B and eutectic microconstituents

for this same alloy. This requires us to utilize the lever rule and a tie line that extends from the
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maximum solubility of Pb in the B phase at 180°C (i.e., 97.8 wt% Sn) to the eutectic composition
(61.9 wt% Sn). Thus

Co — Ceutectic ~80.0 - 61.9

W, = —=2 = =0.504
p c[3 - Coutectic 978 — 61.9
Cy, - C
B~ “o 97.8 — 80.0
W, = = =0.496
e c -C 97.8 — 61.9

B eutectic

(c) And, finally, we are asked to compute the mass fraction of eutectic B, We[*}' This quantity is

simply the difference between the mass fractions of total B and primary p as

W, =W, - We, = 0.776 - 0.504 = 0.272
e "B "B

9.34 This problem asks that we determine the composition of a Cu-Ag alloy at 775°C given that Wa. =
0.73 and Weutectic = 0.27. Since there is a primary a. microconstituent present, we know that the

alloy composition, C0 is between 8.0 and 71.9 wt% Ag (Figure 9.6). Furthermore, this figure also

indicates that Ca = 8.0 wt% Ag and Ceutectic = 71.9 wt% Ag. Applying the appropriate lever rule
expression for Wa'

W, = Ceutectic _ Co _ 719 - Co

a Ceutectic —Cq 719 - 80

=0.73

and solving for CO yields CO =25.2 wt% Ag.

9.35 We are given a hypothetical eutectic phase diagram for which Ceutectic = 64 wt% B, Ca =12wt% B
at the eutectic temperature, and also that Wﬁ' = 0.367 and WB = 0.768; from this we are asked to

determine the composition of the alloy. Let us write lever rule expressions for WB' and WB

C,-C, C,-12

W, = = =0.768
p Cy -C, Cy-12
WB' - Eo _ geutectic - go - 64 = 0.367
B~ “eutectic B 64
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Thus, we have two simultaneous equations with Co and Cﬁ as unknowns. Solving them for Co
gives C0 =75wt% B

9.36 Upon solidification, an alloy of eutectic composition forms a microstructure consisting of alternating
layers of the two solid phases because during the solidification atomic diffusion must occur, and with

this layered configuration the diffusion path length for the atoms is a minimum.

9.37 Schematic sketches of the microstructures that would be observed for an 64 wt% Zn-36 wt% Cu
alloy at temperatures of 900°C, 820°C, 750°C, and 600°C are shown below. The phase

compositions are also indicated.

900°C prent
(~ 68 wt% Zn)
(64 w1°/ Zn) (~ 63 Wt% Zn)
750°C —

(64 m% Zn)
(64 wi% Zn)

9.38 Schematic sketches of the microstructures that would be observed for a 76 wt% Pb-24 wt% Mg
alloy at temperatures of 575°C, 500°C, 450°C, and 300°C are shown below. The phase

compositions are also indicated.
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575°C 500°C
L (71 wt% Pb)

L (76 wt% Pb) -
2

(81 wt% Pb)

300°C o
Mg,P 450°C o (17 wi% Pb)
(81 wt% Pb) (40 wt% PD) Mg,Pb

e (81 wt% Pb)
» )
Y,

9.39 Schematic sketches of the microstructures that would be observed for a 52 wt% Zn-48 wt% Cu alloy
at temperatures of 950°C, 860°C, 800°C, and 600°C are shown below. The phase compositions are
also indicated.

950°C 860°C

OOO
QS

L (52 wt% Zn) (51 mlz/ Zn)

L (56 wt% Zn)

800°C 600°C
Y
(58 Wt% Zn)
p p
(52 Wt% Zn) (51 Wt% Zn)
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9.40 The principal difference between congruent and incongruent phase transformations is that for
congruent no compositional changes occur with any of the phases that are involved in the

transformation. For incongruent there will be compositional alterations of the phases.
9.41 In this problem we are asked to specify temperature-composition points for all eutectics, eutectoids,
peritectics, and congruent phase transformations for the tin-gold system.

There are two eutectics on this phase diagram. One exists at 10 wt% Au-90 wt% Sn and

217°C. The reaction upon cooling is

L> a+p

The other eutectic exists at 80 wt% Au-20 wt% Sn and 280°C. This reaction upon cooling is

Lo 8+¢

There are three peritectics. One exists at 30 wt% Au-70 wt% Sn and 252°C. Its reaction

upon cooling is as follows:

L+y—> B

The second peritectic exists at 45 wt% Au-55 wt% Sn and 309°C. This reaction upon cooling is

L+d—> v

The third peritectic exists at 92 wt% Au-8 wt% Sn and 490°C. This reaction upon cooling is

L+n—> ¢

There is one congruent melting point at 62.5 wt% Au-37.5 wt% Sn and 418°C. Its reaction

upon cooling is

No eutectoids are present.
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9.42 In this problem we are asked to specify temperature-composition points for all eutectics, eutectoids,
peritectics, and congruent phase transformations for a portion of the aluminum-copper phase
diagram.

There is one eutectic on this phase diagram, which exists at 8.3 wt% Al-91.7 wt% Cu and

1036°C. lts reaction upon cooling is

L—>a+p

There are four eutectoids for this system. One exists at 11.8 wt% Al-88.2 wt% Cu and

565°C. This reaction upon cooling is

B> aty,

Another eutectoid exists at 15.4 wt% Al-84.6 wt% Cu and 964°C. For cooling the reaction is

x—=>B+1

A third eutectoid exists at 15.5 wt% Al-84.5 wt% Cu and 786°C. For cooling the reaction is

Y. > B +71s

The other eutectoid exists at 23.5 wt% Al-76.5 wt% Cu and 560°C. For cooling the reaction is

82—>6+C1

There are four peritectics on this phase diagram. One exists at 15.3 wt% Al-84.7 wt% Cu

and 1037°C. The reaction upon cooling is

B+L —>

Another peritectic exists at 17 wt% AI-83 wt% Cu and 1021°C. It's cooling reaction is

xtL—> v

Another peritectic exists at 20.5 wt% Al-79.5 wt% Cu and 961°C. The reaction upon cooling is
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y1+L—>81

Another peritectic exists at 28.4 wt% Al-71.6 wt% Cu and 626°C. The reaction upon cooling is

82+L—)1’]1

There is a single congruent melting point that exists at 12.5 wt% AI-87.5 wt% Cu and

1049°C. The reaction upon cooling is

L—> B

9.43W This problem asks for us to compute the maximum number of phases that may be present for a
ternary system assuming that pressure is held constant. For a ternary system (C = 3) at constant

pressure (N = 1), Gibbs phase rule, Equation (9.1W), becomes
P+F=C+N=3+1=4
Or,
Thus, when F = 0, P will have its maximum value of 4, which means that the maximum number of

phases present for this situation is 4.

9.44W We are asked to specify the value of F for Gibbs phase rule at points A, B, and C on the pressure-
temperature diagram for HZO' Gibbs phase rule in general form is

P+F=C+N

For this system, the number of components, C, is 1, whereas N, the number of noncompositional

variables, is 2--viz. temperature and pressure. Thus, the phase rule now becomes

P+F=1+2=3
Or

where P is the number of phases present at equilibrium.

At point A, only a single (liquid) phase is present (i.e., P = 1), or
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F=3-P=3-1=2

which means that both temperature and pressure are necessary to define the system.

At point B which is on the phase boundary between liquid and vapor phases, two phases are
in equilibrium (P = 2); hence

F=3-P=3-2=1

Or that we need to specify the value of either temperature or pressure, which determines the value
of the other (pressure or temperature).

And, finally, at point C, three phases are present—viz. ice |, vapor, and liquid—and the
number of degrees of freedom is zero since

F=3-P=3-3=0

Thus, point C is an invariant point (in this case a triple point), and we have no choice in the selection

of externally controllable variables in order to define the system.

9.45 Below is shown the phase diagram for these two A and B metals.

1000 T T T T T T T T T

900 Liquid ]
3
® 800} A
2
(1]
@ \/‘
=9
3
- 700 I o

600 1 1 1 1 " 1 " 1 i

0 20 40 A 60 A 80 100
AB AB 2
Composition (wt% B)
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9.46 This problem gives us the compositions in weight percent for the two intermetallic compounds AB
and ABZ’ and then asks us to identify element B if element A is potassium. Probably the easiest
way to solve this problem is to first compute the ratio of the atomic weights of these two elements
using Equation (4.6a); then, since we know the atomic weight of potassium (39.10 g/moal), it is
possible to determine the atomic weight of element B, from which an identification may be made.

First of all, consider the AB intermetallic compound; inasmuch as it contains the same
numbers of A and B atoms, its composition in atomic percent is 50 at% A-50 at% B. Equation (4.6a)

may be written in the form:

where AA and AB are the atomic weights for elements A and B, and CA and CB are their

compositions in weight percent. For this AB compound, and making the appropriate substitutions

into the above equation leads to

(65.7 Wt% B)(A )
50 at% B = A

= 1
(343 Wt% A)(Ag) + (65.7 W% B)(A ) 00

Now, solving this expression yields,

Ag=1.916 A,
Since potassium is element A and it has an atomic weight of 39.10 g/mol, the atomic weight of
element B is just

AB = (1.916)(39.10 g/mol) = 74.92 g/mol

Upon consultation of the period table of the elements (Figure 2.6) we note that arsenic has an atomic

weight of 74.92 g/mol; therefore, element B is arsenic.

9.47 This problem asks that we compute the mass fractions of ferrite and cementite in pearlite. The

lever-rule expression for ferrite is

CFe3C N Co

o _
CFe3C Coc

wW
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and, since C =6.70wt% C,C_=0.76 wt% C, and C_ = 0.022 wt% C
FesC 0 o

6.70 — 0.76
== =0.89
@ 6.70 — 0.022

Similarly, for cementite

Co —Cy 076 — 0.022

W = =
Fe,C _ _
3 CFeSC Ca 6.70 — 0.022

=0.11

9.48 A phase is a homogeneous portion of the system having uniform physical and chemical
characteristics, whereas a microconstituent is an identifiable element of the microstructure (that

may consist of more than one phase).

9.49 (a) A hypoeutectoid steel has a carbon concentration less than the eutectoid; on the other hand,
a hypereutectoid steel has a carbon content greater than the eutectoid.
(b) For a hypoeutectoid steel, the proeutectoid ferrite is a microconstituent that formed above the
eutectoid temperature. The eutectoid ferrite is one of the constituents of pearlite that formed at a

temperature below the eutectoid. The carbon concentration for both ferrites is 0.022 wt% C.

9.50 A proeutectoid phase normally forms along austenite grain boundaries because there is an
interfacial energy associated with these boundaries. When a proeutectoid phase forms within
austenite, an interfacial energy also exists at the interface between the two phases. A lower net
interfacial energy increase results when the proeutectoid phase forms along the existing austenite

grain boundaries than when the proeutectoid phase forms within the interior of the grains.

9.51 This problem asks that we compute the carbon concentration of an iron-carbon alloy for which the

fraction of total ferrite is 0.94. Application of the lever rule [of the form of Equation (9.12)] yields

C - C, -
FeqC o 6.70 — CO

W_ =094= =
a _ -
CFe3C Ca 6.70 — 0.022

and solving for C
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C, = 0.42Wt% C

9.52 In this problem we are given values of Wa and WFe c (0.86 and 0.14, respectively) for an iron-
3

carbon alloy and then are asked to specify the proeutectoid phase. Employment of the lever rule for

total a leads to

Cre,c ~Co 670 - C,

CFeBC - Ca 6.70 — 0.022

W, =0.86 =

Now, solving for Co' the alloy composition, leads to CO = 0.96 wt% C. Therefore, the proeutectoid

phase is Fe3C since CO is greater than 0.76 wt% C.

9.53 This problem asks us to consider various aspects of 1.0 kg of austenite containing 1.15 wt% C that

is cooled to below the eutectoid.

(@) The proeutectoid phase will be Fe_,C since 1.15 wt% C is greater than the eutectoid (0.76 wt%

3
C).
(b) For this portion of the problem, we are asked to determine how much total ferrite and cementite

form. Application of the appropriate lever rule expression yields

_ CFe3<3 - Co _ 670 - 1.15

C ~“C 670 _ o022 08
FeSC o

which, when multiplied by the total mass of the alloy (1.0 kg), gives 0.83 kg of total ferrite.

Similarly, for total cementite,

Co —C, 115 - 0.022

W, = =
Fe,C _ —
3 CFeBC Ca 6.70 0.022

=0.17

And the mass of total cementite that forms is (0.17)(1.0 kg) = 0.17 kg.
(c) Now we are asked to calculate how much pearlite and the proeutectoid phase (cementite) form.
Applying Equation (9.20), in which C; = 1.15 wt% C

_ 670 -C, 670 -1.15
P~ 670 - 0.76 6.70 — 0.76

W =0.93

267



which corresponds to a mass of 0.93 kg. Likewise, from Equation (9.21)

C, -076 115 - 0.76
Wee o = — = =0.07
e, 5.94 5.94

which is equivalent to 0.07 kg of the total 1 kg mass.

(d) Schematically, the microstructure would appear as:

Pearlite

""‘“"'— Proeutectoid Fe,C

o Ferrite

Eutectoid Fe3C

9.54 We are called upon to consider various aspects of 2.5 kg of austenite containing 0.65 wt% C, that is
cooled to below the eutectoid.
(a) Ferrite is the proeutectoid phase since 0.65 wt% C is less than 0.76 wt% C.
(b) For this portion of the problem, we are asked to determine how much total ferrite and cementite

form. Application of the appropriate lever rule expression yields

B CFe30 - Co _ 670 - 065 _ .
CFe3C - Ca 6.70 — 0.022
which corresponds to (0.91)(2.5 kg) = 2.26 kg of total ferrite.
Similarly, for total cementite,
Co, - Cy 0.65 — 0.022
Weg ¢ = = =0.09
€3 C e C Ca 6.70 — 0.022

3

Or (0.09)(2.5 kg) = 0.24 kg of total cementite form.

(c) Now consider the amounts of pearlite and proeutectoid ferrite. Using Equation (9.18)

C, — 0022 0,65 - 0.022
W. = (0] = =0.85
p 0.74 074
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This corresponds to (0.85)(2.5 kg) = 2.12 kg of pearlite.
Also, from Equation (9.19),

Or, there are (0.15)(2.5 kg) = 0.38 kg of proeutectoid ferrite.

(d) Schematically, the microstructure would appear as:

[/

Pearlite

\ Proeutectoid ferrite

Eutectoid ferrite

Fe,C

9.55 The mass fractions of proeutectoid ferrite and pearlite that form in a 0.25 wt% C iron-carbon alloy

are considered in this problem. From Equation (9.18)

W = Co — 0022 0.25 — 0.022

= =0.31
p 0.74 0.74

And, from Equation (9.19)

w 2278 C, 076 — 025
o074 074

=0.69

9.56 This problem asks that we determine the carbon concentration in an iron-carbon alloy, given the
mass fractions of proeutectoid ferrite and pearlite (0.286 and 0.714, respectively). From Equation

(9.18)
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which yields C,; =0.55 wt% C.

9.57 In this problem we are given values of Wa and WF63C for an iron-carbon alloy (0.91 and 0.09,

respectively), and then are asked to specify whether the alloy is hypoeutectoid or hypereutectoid.

Employment of the lever rule for total a. leads to

W - oel Cre,c ~C 670 - C,
o T Ce - C_ 670 - 0.022
eSC o

Now, solving for Co’ the alloy composition, leads to Co = 0.62 wt% C. Therefore, the alloy is

hypoeutectoid since Co is less than 0.76 wt% C.

9.58 We are asked in this problem to determine the concentration of carbon in an alloy for which W,
3

=0.11 and Wp =0.89. If we let C0 equal the carbon concentration in the alloy, employment of the

appropriate lever rule expression, Equation (9.20), leads to

6.7 -C,

w o=—=C
P~ 67-0.76

=0.89
Solving for CO yields Co =1.41 wt% C.

9.59 In this problem we are asked to consider 2.0 kg of a 99.6 wt% Fe-0.4 wt% C alloy that is cooled to a
temperature below the eutectoid.

(a) Equation (9.19) must be used in computing the amount of proeutectoid ferrite that forms. Thus,

076 - C, 0.76 — 0.40
W, = Q - =0.49
o 0.74 0.74

Or, (0.49)(2.0 kg) = 0.99 kg of proeutectoid ferrite forms.

(b) In order to determine the amount of eutectoid ferrite, it first becomes necessary to compute the
amount of total ferrite using the lever rule applied entirely across the o + Fe3C phase field, as

_ CFeqC - Co _ 6.70 - 0.40

W = =
a CFeSC - C, 6.70 - 0022

=0.94
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which corresponds to (0.94)(2.0 kg) = 1.89 kg. Now, the amount of eutectoid ferrite is just the

difference between total and proeutectoid ferrites, or
1.89 kg - 0.99 kg = 0.90 kg

(c) With regard to the amount of cementite that forms, again application of the lever rule across the
entirety of the a + Fe3C phase field, leads to

Co —C, 040 — 0.022

W, = =
Fe,C _ —
3 CFesc Ca 6.70 — 0.022

=0.06

which amounts to (0.06)(2 kg) = 0.11 kg cementite in the alloy.

9.60 This problem asks that we compute the maximum mass fraction of proeutectoid cementite possible
for a hypereutectoid iron-carbon alloy. This requires that we utilize Equation (9.21) with C'1 =214

wt% C, the maximum solubility of carbon in austenite. Thus,

W C,-076 214 - 0.76
Fe;C' 7 594 504

=0.232

9.61 This problem asks if it is possible to have an iron-carbon alloy for which W =0.057 and Wa. =

e3C
0.36. In order to make this determination, it is necessary to set up lever rule expressions for these
two mass fractions in terms of the alloy composition, then to solve for the alloy composition of each;
if both alloy composition values are equal, then such an alloy is possible. The expression for the

mass fraction of total cementite is

C,-C, C, - 0.022

W, = =
Fe,C - —
3 CFe Ca 6.70 — 0.022

sC

= 0.057

Solving for this C0 yields C0 = 0.40 wt% C. Now for Wa. we utilize Equation (9.19) as

W 076-Cq

o« =" o7a 0%
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This expression leads to C, = 0.49 wt% C. And, since Co and C, are different this alloy is not

possible.

9.62 This problem asks if it is possible to have an iron-carbon alloy for which Wa = 0.860 and Wp =

0.969. In order to make this determination, it is necessary to set up lever rule expressions for these
two mass fractions in terms of the alloy composition, then to solve for the alloy composition of each;
if both alloy composition values are equal, then such an alloy is possible. The expression for the

mass fraction of total ferrite is

" Cre,c ~Co 670 -C,

a CFesC - Ca 6.70 — 0.022

= 0.860

Solving for this Co yields Co =0.95 wt% C. Now for W_ we utilize Equation (9.20) as

p

This expression leads to C; = 0.95 wt% C. Since C, = C, , this alloy is possible.

9.63 This problem asks that we compute the mass fraction of eutectoid cementite in an iron-carbon alloy
that contains 1.00 wt% C. In order to solve this problem it is necessary to compute mass fractions of
total and proeutectoid cementites, and then to subtract the latter from the former. To calculate the

mass fraction of total cementite, it is necessary to use the lever rule and a tie line that extends
across the entire o + Fe5C phase field as

Co-C, 100 - 0.022

W, = =
Fe,C _ _
3 CFe3C Ca 6.70 0.022

=0.146

Now, for the mass fraction of proeutectoid cementite we use Equation (9.21)

W = C, -076 _100 - 076
Fe,C 5.94 5.94

= 0.040

And, finally, the mass fraction of eutectoid cementite WFegc” is just
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Wee v = Wee ¢ — Wee = 0146 — 0.040 = 0.106

9.64 This problem asks whether or not it is possible to determine the composition of an iron-carbon alloy
for which the mass fraction of eutectoid cementite is 0.109; and if so, to calculate the composition.
Yes, it is possible to determine the alloy composition; and, in fact, there are two possible answers.
For the first, the eutectoid cementite exists in addition to proeutectoid cementite. For this case the
mass fraction of eutectoid cementite (WF e3C") is just the difference between total cementite and

proeutectoid cementite mass fractions; that is

W W,

FesC" ~ Wresc ™ Wreqc

Now, it is possible to write expressions for WFe3C and WFe3C' in terms of Co the alloy composition.

Thus,

C, - C, C, - 0.76

W, . = _
Fe;C" ~ ¢ -C 5.94

C, - 0022 C, -0.76

670 - 0022 504

=0.109

And, solving for Co yields C, =0.84wt% C.

For the second possibility, we have a hypoeutectoid alloy wherein all of the cementite is
eutectoid cementite. Thus, it is necessary to set up a lever rule expression wherein the mass

fraction of total cementite is 0.109. Therefore,

C, - C, G, - 0022

W, = =
Fe,C - —
3 CF63C C(x 6.70 — 0.022

=0.109

And, solving for Co yields Cop =0.75wt% C.

9.65 This problem asks whether or not it is possible to determine the composition of an iron-carbon alloy
for which the mass fraction of eutectoid ferrite is 0.71; and if so, to calculate the composition. Yes, it
is possible to determine the alloy composition; and, in fact, there are two possible answers. For the
first, the eutectoid ferrite exists in addition to proeutectoid ferrite. For this case the mass fraction of
eutectoid ferrite (Wa..) is just the difference between total ferrite and proeutectoid ferrite mass

fractions; thatis
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Now, it is possible to write expressions for Wa and Wa. in terms of Co the alloy composition. Thus,

_Crec ~ %% 076 -C,

W . = -
a _
CFe3C C(x 0.74

6.70 - C, 0.76 - C,
~6.70 - 0.022 0.74

=0.71

And, solving for Co yields C,=0.61wt% C.

For the second possibility, we have a hypereutectoid alloy wherein all of the ferrite is
eutectoid ferrite. Thus, it is necessary to set up a lever rule expression wherein the mass fraction of

total ferrite is 0.71. Therefore,

C - C
W= Fe3C o 6.70 — C0

a CFe3C - COL 6.70 — 0.022

=0.71

And, solving for C0 yields C0 =1.96 wt% C.

9.66 Schematic microstructures for the iron-carbon alloy of composition 3 wt% C-97 wt% Fe and at
temperatures of 1250°C, 1145°C, and 700°C are shown below; approximate phase compositions

are also indicated.

1250°C FesC 1145°C
. (67 Wi%C)
(3.5 wt% C)
(S
Y
(1.5 wt% C)

Y
(2.14 wt% C)

(0.022 wt% C)
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9.67 This problem asks that we determine the approximate Brinell hardness of a 99.8 wt% Fe-0.2 wt% C
alloy. First, we compute the mass fractions of pearlite and proeutectoid ferrite using Equations
(9.18) and (9.19), as

Cy, — 0.022 020 - 0.022

W, = = =0.24
p 0.74 0.74
076 - C, 0.76 - 0.20
W, = o - =0.76
o 0.74 0.74

Now, we compute the Brinell hardness of the alloy as

HB_ oy = HB W, + HB W

alloy PP

= (80)(0.76) + (280)(0.24) = 128

9.68 We are asked in this problem to estimate the composition of the Pb-Sn alloy which microstructure is
shown in Figure 9.15. Primary a and eutectic microconstituents are present in the photomicrograph,
and it is given that their densities are 11.2 and 8.7 g/cm3, respectively. Below is shown a square

grid network onto which is superimposed outlines of the primary a phase areas.

The area fraction of this primary a phase may be determined by counting squares. There

are a total of 644 squares, and of these, approximately 104 lie within the primary o phase particles.

275



Thus, the area fraction of primary o is 104/644 = 0.16, which is also assumed to be the volume
fraction.

We now want to convert the volume fractions into mass fractions in order to employ the lever
rule to the Pb-Sn phase diagram. To do this, it is necessary to utilize Equations (9.7a) and (9.7b) as

follows:

Vi Py

o
V(x'pa' + Veutecticpeutectic

) (0.16)(11.2 g/cm3)
B (0.16)(11.2 glcm3)+ (0.84)@.7 g/cm3)

=0.197

VeutecticPeutectic

Voc'poc' + Veutecticpeutectic

Weutectic =

] (0.84)(8.7 g/cm3)
B (0.16)(11.2 g/cm3)+ (0.84)@.7 g/cm3)

=0.803

From Figure 9.7, we want to use the lever rule and a tie-line that extends from the eutectic
composition (61.9 wt% Sn) to the a-(a + B) phase boundary at 180°C (about 18.3 wt% Sn).
Accordingly

61.9 - C,

W, . =0197 =—7"———~
a 619 - 183

wherein CO is the alloy composition (in wt% Sn). Solving for C0 yields C0 =53.3 wt% Sn. This C0

is close to the 50 wt% Sn value cited in the legend of Figure 9.15.

9.69 This problem asks us to consider an alloy of composition 97.5 wt% Fe, 2.0 wt% Mo, and 0.5 wt% C.
(@) From Figure 9.31, the eutectoid temperature for 2.0 wt% Mo is approximately 850°C.
(b) From Figure 9.32, the eutectoid composition is approximately 0.22 wt% C.
(c) Since the carbon concentration of the alloy (0.5 wt%) is greater than the eutectoid, cementite is

the proeutectoid phase.

9.70 We are asked to consider a steel alloy of composition 93.8 wt% Fe, 6.0 wt% Ni, and 0.2 wt% C.
(a) From Figure 9.31, the eutectoid temperature for 6 wt% Ni is approximately 650°C (1200°F).
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(b) From Figure 9.32, the eutectoid composition is approximately 0.62 wt% C. Since the carbon
concentration in the alloy (0.2 wt%) is less than the eutectoid, the proeutectoid phase is ferrite.
(c) Assume that the a-(a + Fe3C) phase boundary is at a negligible carbon concentration.

Modifying Equation (9.19) leads to
_ 062 -C, 062 -0.20

W . = = =0.68
a 062 -0 0.62

Likewise, using a modified Equation (9.18)

G, -0 020
P 062 -0 062

w =0.32
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CHAPTER 10
PHASE TRANSFORMATIONS IN METALS

PROBLEM SOLUTIONS

10.1 The two stages involved in the formation of particles of a new phase are nucleation and growth.
The nucleation process involves the formation of normally very small particles of the new phase(s)
which are stable and capable of continued growth. The growth stage is simply the increase in size of

the new phase particles.

10.2 This problem calls for us to compute the length of time required for a reaction to go to 99%
completion. It first becomes necessary to solve for the parameter k in Equation (10.1).

Rearrangement of this equation leads to

In@ - y):_ln(l— 0.5)
N 100 st/

k= =276 x10™

Now, solving for the time to go to 99% completion

. [_ In (1k_ yqlln

In(l — 0.99 1/1.7
- _n(_—'z =305 s
2.76 x 10~

10.3 This problem asks that we compute the rate of some reaction given the values of n and k in
Equation (10.1). Since the reaction rate is defined by Equation (10.2), it is first necessary to
determine g5 OF the time necessary for the reaction to reach y = 0.5. Solving for ths from Equation

(10.1) leads to
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n@ - 0.5["
|09 L5703
5 x10™

Now, the rate is just

Ok

10.4 This problem gives us the value of y (0.30) at some time t (100 min), and also the value of n (5.0)
for the recrystallization of an alloy at some temperature, and then asks that we determine the rate of

recrystallization at this same temperature. It is first necessary to calculate the value of k in Equation

(10.1) as
= Ina-y
tn
= Dl-03 557 101
(100 min)

At this point we want to compute t . _, the value of t for y = 0.5, also using Equation (10.1). Thus

0.5’
n
[ In@- 05
tos =7 ¢
In(1- 05 !
n — 0.
= —(—1)1 =114.2 min
3.57 x 10~

And, therefore, from Equation (10.2), the rate is just

1

t0_5 114.2 min

rate = =8.76 x 10 (min)™t

10.5 For this problem, we are given, for the austenite-to-pearlite transformation, two values of y and two
values of the corresponding times, and are asked to determine the time required for 95% of the
austenite to transform to pearlite.

The first thing necessary is to set up two expressions of the form of Equation (10.1), and

then to solve simultaneously for the values of n and k. In order to expedite this process, we will
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rearrange and do some algebraic manipulation of Equation (10.1). First of all, we rearrange as

follows:
1-y=exp (—ktn)
Now taking natural logarithms
In(1-y)=—kt"

Or

—In(@-y)=kt"

which may also be expressed as

In( 1 j:kt”
1-y

Now taking natural logarithms again, leads to

i[5 < i+ o

which is the form of the equation that we will now use. The two equations are thus

In In_ 1|
|1-0.2]
In In_ 1|
|1- 0.6 ]
9

Solving these two expressions simultaneously for n and k yields n = 3.385 and k = 1.162 x 10™~.

Ink + nlIn(280 s)

Ink + nlin(4255s)

Now it becomes necessary to solve for the value of t at which y = 0.95. Algebraic

manipulation of Equation (10.1) leads to an expression in which t is the dependent parameter as
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. [_ In (1k_ y)}lln

_{_ In (L - 0.95) 603 <

1/3.385
1.162 x 10—9}

10.6 For this problem, we are given, for the recrystallization of aluminum, two values of y and two values
of the corresponding times, and are asked to determine the fraction recrystallized after a total time of
116.8 min.

The first thing necessary is to set up two expressions of the form of Equation (10.1), and
then to solve simultaneously for the values of n and k. In order to expedite this process, we will
rearrange and do some algebraic manipulation of Equation (10.1). First of all, we rearrange as

follows:
1-y=exp (—ktn)
Now taking natural logarithms
In(1-vy)=—kt"
Or

—In(1-vy)=kt"

which may also be expressed as

1 n
In|——| =kt
n(l—y]

Now taking natural logarithms again, leads to

ST

which is the form of the equation that we will now use. The two equations are thus
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In {In{l_—lo.so}}: Ink + nlIn(95.2 min)

1 .
In {In{l ~ 0.80}}_ Ink + nIn(126.6 min)

Solving these two expressions simultaneously for n and k yields n = 5.286 and k = 1.239 x 10'11.
Now it becomes necessary to solve for y whent = 116.8 min. Application of Equation (10.1)

leads to
y=1 - exp(—ktn)
=1 - exp[— (230 x 10" Y1168 min)5'286} ~ 0.65

10.7 This problem asks us to consider the percent recrystallized versus logarithm of time curves for
copper shown in Figure 10.2.
(&) The rates at the different temperatures are determined using Equation (10.2), which rates are

tabulated below:

Temperature (°C) Rate (min)-1
135 0.105
2
119 4.4%10
2
113 2.9x10
102 1.25 x 10'2
88 42x10°3
43 3.8x107°

(b) These data are plotted below.
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In Rate (1/min)

-12 L L
0.0024 0.0026 0.0028 0.0030 0.0032

/T (1/K)

The activation energy, Q, is related to the slope of the line drawn through the data points as

Q = - Slope (R)

where R is the gas constant. The slope of this line is -1.126 x 104 K, and thus

Q= (1126 x10* K831 J/mol -K)

= 93,600 J/mol

(c) At room temperature (20°C), 1/T = 3.41 x 10_3 K_l. Extrapolation of the data in the plot to this

1/T value gives

In (rate) = —12.8

which leads to

rate = exp (-12.8) = 2.76 x 10°° (min)'1

But since
1
rate = t_
0.5

then
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1 1
t = =
05" rate 276 x106 (min)2

- 3.62 x 10° min = 250 days

10.8 In this problem we are asked to determine, from Figure 10.2, the values of the constants n and k
[Equation (10.1)] for the recrystallization of copper at 119°C. One way to solve this problem is to
take two values of percent recrystallization [which is just 100y, Equation (10.1)] and their
corresponding time values, then set up two simultaneous equations, from which n and k may be
determined. In order to expedite this process, we will rearrange and do some algebraic manipulation

of Equation (10.1). First of all, we rearrange as follows:
1-y=exp (—ktn)
Now taking natural logarithms
In(1-y)=—kt"

Or

—In(@-y)=kt"

which may also be expressed as

1 n
In| ——| =kt
nil—y]

Now taking natural logarithms again, leads to

SRS

which is the form of the equation that we will now use. From the 119°C curve of Figure 10.2, let us
arbitrarily choose two percent recrystallized values, 20% and 80% (i.e., y; = 0.20 and y, = 0.80).
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Their corresponding time values are t4 = 16.1 min and t, = 30.4 min (realizing that the time axis is

scaled logarithmically). Thus, our two simultaneous equations become

In {In (l _10.2ﬂ =lnk + nin(16.1)

1
In {In [1—0.8”:"”( + nin(304)

from which we obtain the values n = 3.11 and k = 3.9 x 10'5.

10.9 Two limitations of the iron-iron carbide phase diagram are:
1) The nonequilibrium martensite phase does not appear on the diagram; and
2) The diagram provides no indication as to the time-temperature relationships for the formation of
pearlite, bainite, and spheroidite, all of which are composed of the equilibrium ferrite and cementite

phases.

10.10 (a) Superheating and supercooling correspond, respectively, to heating or cooling above or below
a phase transition temperature without the occurrence of the transformation.
(b) Superheating and supercooling occur because right at the phase transition temperature, the
driving force is not sufficient to cause the transformation to occur. The driving force is enhanced

during superheating or supercooling.

10.11 We are called upon to consider the isothermal transformation of an iron-carbon alloy of eutectoid
composition.
(a) From Figure 10.13, a horizontal line at 550°C intersects the 50% and reaction completion curves
at about 2.5 and 6 seconds, respectively; these are the times asked for in the problem.
(b) The pearlite formed will be fine pearlite. From Figure 10.21(a), the hardness of an alloy of

composition 0.76 wt% C that consists of fine pearlite is about 265 HB (27 HRC).

10.12 The microstructures of pearlite, bainite, and spheroidite all consist of a-ferrite and cementite
phases. For pearlite, the two phases exist as layers that alternate with one another. Bainite consists
of very fine and parallel needles of ferrite that are separated by elongated particles of cementite. For
spheroidite, the matrix is ferrite, and the cementite phase is in the shape of spheroidal-shaped

particles.
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Bainite is harder and stronger than pearlite, which, in turn, is harder and stronger than

spheroidite.

10.13 The driving force for the formation of spheroidite is the net reduction in ferrite-cementite phase

boundary area.

10.14 This problem asks us to determine the nature of the final microstructure of an iron-carbon alloy of
eutectoid composition, that has been subjected to various isothermal heat treatments. Figure 10.13
is used in these determinations.

(a) 50% coarse pearlite and 50% martensite

(b) 100% spheroidite

(c) 50% fine pearlite, 25% bainite , and 25% martensite
(d) 100% martensite

(e) 40% bainite and 60% martensite

(f) 100% bainite

(g) 100% fine pearlite

(h) 100% tempered martensite

10.15 Below is shown the isothermal transformation diagram for a eutectoid iron-carbon alloy, with time-
temperature paths that will yield (a) 100% coarse pearlite; (b) 50% martensite and 50% austenite;

and (c) 50% coarse pearlite, 25% bainite, and 25% martensite.
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10.16 We are asked to determine which microconstituents are present in a 1.13 wt% C iron-carbon alloy
that has been subjected to various isothermal heat treatments.
(a) Martensite
(b) Proeutectoid cementite and martensite
(c) Bainite
(d) Spheroidite
(e) Cementite, medium pearlite, bainite, and martensite
(f) Bainite and martensite
(g) Proeutectoid cementite, pearlite, and martensite

(h) Proeutectoid cementite and fine pearlite
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10.17 This problem asks us to determine the approximate percentages of the microconstituents that form
for five of the heat treatments described in Problem 10.16.
(&) 100% martensite
(c) 100% bainite
(d) 100% spheroidite
(f) 60% bainite and 40% martensite
(h) After holding for 7 s at 600°C, the specimen has completely transformed to proeutectoid
cementite and fine pearlite; no further reaction will occur at 450°C. Therefore, we can calculate the

mass fractions using the appropriate lever rule expressions, Equations (9.20) and (9.21), as follows:

C,-0.76 113 - 0.76

We = = 0.062 or 6.2%
Fe,C 594 594 °

6.70-C; 670 — 1.13
1 . .
W = = =0.938 or 93.8%
P~ 504 5.94 ' °

10.18 Below is shown an isothermal transformation diagram for a 1.13 wt% C iron-carbon alloy, with
time-temperature paths that will produce (a) 6.2% proeutectoid cementite and 93.8% coarse pearlite;

(b) 50% fine pearlite and 50% bainite; (c) 100% martensite; and (d) 100% tempered martensite.
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10.19 We are called upon to name the microstructural products that form for specimens of an iron-carbon
alloy of eutectoid composition that are continuously cooled to room temperature at a variety of rates.
Figure 10.18 is used in these determinations.

(a) Atarate of 200°C/s, only martensite forms.
(b) At a rate of 100°C/s, both martensite and pearlite form.

(c) At arate of 20°C/s, only fine pearlite forms.

10.20 Below is shown a continuous cooling transformation diagram for a 0.35 wt% C iron-carbon alloy,
with continuous cooling paths that will produce (a) fine pearlite and proeutectoid ferrite; (b)
martensite; (c) martensite and proeutectoid ferrite; (d) coarse pearlite and proeutectoid ferrite;

and (e) martensite, fine pearlite, and proeutectoid ferrite.

1000 T T T T T T T

8

Temperature (*C)

8

10.21 Two major differences between martensitic and pearlitic transformations are 1) atomic diffusion is
necessary for the pearlitic transformation, whereas the martensitic transformation is diffusionless;
and 2) relative to transformation rate, the martensitic transformation is virtually instantaneous, while

the pearlitic transformation is time-dependent.
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10.22 Two important differences between continuous cooling transformation diagrams for plain carbon
and alloy steels are: 1) for an alloy steel, a bainite nose will be present, which nose will be absent for
plain carbon alloys; and 2) the pearlite-proeutectoid noses for plain carbon steel alloys are

positioned at shorter times than for the alloy steels.

10.23 There is no bainite transformation region on the continuous cooling transformation diagram for an
iron-carbon alloy of eutectoid composition (Figure 10.16) because by the time a cooling curve has

passed into the bainite region, the entirety of the alloy specimen will have transformed to pearlite.

10.24 This problem asks for the microstructural products that form when specimens of a 4340 steel are
continuously cooled to room temperature at several rates. Figure 10.19 is used for these
determinations.

(a) At a cooling rate of 10°C/s, only martensite forms.
(b) At a cooling rate of 1°C/s, both martensite and bainite form.
(c) Ata cooling rate of 0.1°C/s, martensite, proeutectoid ferrite, and bainite form.

(d) At a cooling rate of 0.01°C/s, martensite, proeutectoid ferrite, pearlite, and bainite form.

10.25 This problem asks that we briefly describe the simplest continuous cooling heat treatment
procedure that would be used in converting a 4340 steel from one microstructure to another.
Solutions to this problem require the use of Figure 10.19.

(&) In order to convert from (martensite + ferrite + bainite) to (martensite + ferrite + pearlite + bainite)
it is necessary to heat above about 720°C, allow complete austenitization, then cool to room
temperature at a rate between 0.02 and 0.006°C/s.

(b) To convert from (martensite + ferrite + bainite) to spheroidite the alloy must be heated to about
700°C for several hours.

(c) In order to convert from (martensite + bainite + ferrite) to tempered martensite it is necessary to
heat to above about 720°C, allow complete austenitization, then cool to room temperature at a rate
greater than 8.3°C/s, and finally isothermally heat treat the alloy at a temperature between about 400
and 550°C (Figure 10.25) for about one hour.

10.26 For moderately rapid cooling, the time allowed for carbon diffusion is not as great as for slower
cooling rates. Therefore, the diffusion distance is shorter, and thinner layers of ferrite and cementite

form (i.e., fine pearlite forms).

10.27 (a) Spheroiditic microstructures are more stable than pearlitic ones.

(b) Since pearlite transforms to spheroidite, the latter is more stable.
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10.28 The hardness and strength of iron-carbon alloys that have microstructures consisting of a-ferrite
and cementite phases depend on the boundary area between the two phases. The greater this
area, the harder and stronger the alloy inasmuch as these boundaries impede the motion of
dislocations. Fine pearlite is harder and stronger than coarse pearlite because the alternating ferrite-
cementite layers are thinner for fine, and therefore, there is more phase boundary area. The phase
boundary area between the sphere-like cementite particles and the ferrite matrix is less in

spheroidite than for the alternating layered microstructure found in coarse pearlite.

10.29 Two reasons why martensite is so hard and brittle are: 1) there are relatively few operable slip
systems for the body-centered tetragonal crystal structure, and 2) virtually all of the carbon is in solid

solution, which produces a solid-solution hardening effect.

10.30 This problem asks us to rank four iron-carbon alloys of specified composition and microstructure

according to tensile strength. This ranking is as follows:

0.6 wt% C, fine pearlite
0.6 wt% C, coarse pearlite
0.25 wt% C, coarse pearlite

0.25 wt% C, spheroidite

The 0.25 wt% C, coarse pearlite is stronger than the 0.25 wt% C, spheroidite since coarse pearlite is
stronger than spheroidite; the composition of the alloys is the same. The 0.6 wt% C, coarse pearlite
is stronger than the 0.25 wt% C, coarse pearlite, since increasing the carbon content increases the
strength. Finally, the 0.6 wt% C, fine pearlite is stronger than the 0.6 wt% C, coarse pearlite
inasmuch as the strength of fine pearlite is greater than coarse pearlite because of the many more

ferrite-cementite phase boundaries in fine pearlite.

10.31 This question asks for an explanation as to why the hardness of tempered martensite diminishes
with tempering time (at constant temperature) and with increasing temperature (at constant
tempering time). The hardness of tempered martensite depends on the ferrite-cementite phase
boundary area; since these phase boundaries are barriers to dislocation motion, the greater the
area the harder the alloy. The microstructure of tempered martensite consists of small sphere-like
particles of cementite embedded within a ferrite matrix. As the size of the cementite particles
increases, the phase boundary area diminishes, and the alloy becomes softer. Therefore, with
increasing tempering time, the cementite particles grow, the phase boundary area decreases, and

the hardness diminishes. As the tempering temperature is increased, the rate of cementite particle
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growth also increases, and the alloy softens, again, because of the decrease in phase boundary

area.

10.32 In this problem we are asked to describe the simplest heat treatment that would be required to
convert a eutectoid steel from one microstructure to another. Figure 10.18 is used to solve the
several parts of this problem.

(&) For martensite to spheroidite, heat to a temperature in the vicinity of 700°C (but below the
eutectoid temperature), for on the order of 24 h.

(b) For spheroiridte to martensite, austenitize at a temperature of about 760°C, then quench to room
temperature at a rate greater than about 140°C/s.

(c) For bainite to pearlite, first austenitize at a temperature of about 760°C, then cool to room
temperature at a rate less than about 35°C/s.

(d) For pearlite to bainite, first austenitize at a temperature of about 760°C, rapidly cool to a
temperature between about 220°C and 540°C, and hold at this temperature for the time necessary to
complete the bainite transformation (according to Figure 10.13).

(e) For spheroidite to pearlite, same as (c) above.

() For pearlite to spheroidite, heat at about 700°C for approximately 20 h.

(g) For tempered martensite to martensite, first austenitize at a temperature of about 760°C, and
rapidly quench to room temperature at a rate greater than about 140°C/s.

(h) For bainite to spheroidite, simply heat at about 700°C for approximately 20 h.

10.33 (a) Both tempered martensite and spheroidite have sphere-like cementite particles within a ferrite
matrix; however, these particles are much larger for spheroidite.
(b) Tempered martensite is harder and stronger inasmuch as there is much more ferrite-cementite
phase boundary area for the smaller particles; thus, there is greater reinforcement of the ferrite

phase, and more phase boundary barriers to dislocation motion.

10.34 This problem asks for Rockwell hardness values for specimens of an iron-carbon alloy of eutectoid
composition that have been subjected to some of the heat treatments described in Problem 10.14.
(b) The microstructural product of this heat treatment is 100% spheroidite. According to Figure
10.21(a) the hardness of a 0.76 wt% C alloy with spheroidite is about 87 HRB (180 HB).
(d) The microstructural product of this heat treatment is 100% martensite. According to Figure
10.23, the hardness of a 0.76 wt% C alloy consisting of martensite is about 64 HRC (690 HB).
(f) The microstructural product of this heat treatment is 100% bainite. From Figure 10.22, the
hardness of a 0.76 wt% C alloy consisting of bainite is about 385 HB. And, conversion from Brinell

to Rockwell hardness using Figure 6.18 leads to a hardness of 36 HRC.
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(@) The microstructural product of this heat treatment is 100% fine pearlite. According to Figure
10.21(a), the hardness of a 0.76 wt% C alloy consisting of fine pearlite is about 27 HRC (270 HB).
(h) The microstructural product of this heat treatment is 100% tempered martensite. According to
Figure 10.26, the hardness of a water-quenched eutectoid alloy that was tempered at 315°C for one
hour is about 56 HRC (560 HB).

10.35 This problem asks for estimates of Brinell hardness values for specimens of an iron-carbon alloy of
composition 1.13 wt% C that have been subjected to some of the heat treatments described in
Problem 10.16.

(&) The microstructural product of this heat treatment is 100% martensite. According to Figure
10.23, the hardness of a 1.13 wt% C alloy consisting of martensite is about 700 HB (by
extrapolation).

(d) The microstructural product of this heat treatment is 100% spheroidite. According to Figure
10.21(a), the hardness of a 1.13 wt% C alloy consisting of spheroidite is about 190 HB (by
extrapolation).

(h) The microstructural product of this heat treatment is proeutectoid cementite and fine pearlite.
According to Figure 10.21(a), the hardness of a 1.13 wt% C alloy consisting of fine pearlite is about

310 HB (by extrapolation).

10.36 This problem asks for estimates of tensile strength values for specimens of an iron-carbon alloy of
eutectoid composition that have been subjected to some of the heat treatments described in
Problem 10.19.

(@) The microstructural product of this heat treatment is 100% martensite. According to Figure
10.23, the hardness of a 0.76 wt% C alloy is about 690 HB. For steel alloys, hardness and tensile

strength are related through Equation (6.20a), and therefore

TS (MPa) = 3.45 x HB = (3.45)(690 HB) = 2380 MPa (345,000 psi)

(c) The microstructural product of this heat treatment is 100% fine pearlite. According to Figure
10.21(a), the hardness of a 0.76 wt% C alloy consisting of fine pearlite is about 265 HB. Therefore,

the tensile strength is

TS (MPa) = 3.45 x HB = (3.45)(265 HB) = 915 MPa (132,500 psi)
10.37 For this problem we are asked to describe isothermal heat treatments required to yield specimens

having several Brinell hardnesses.
(& From Figure 10.21(a), in order for a 0.76 wt% C alloy to have a Brinell hardness of 180, the
microstructure must be entirely spheroidite. Thus, utilizing the isothermal transformation diagram for

this alloy, Figure 10.13, we must rapidly cool to a temperature at which pearlite forms (i.e., to
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between 540° C and 660°C), allow the specimen to isothermally and completely transform to
pearlite, cool to room temperature, and then reheat to about 700°C for 18 to 24 h.

(b) This portion of the problem asks for a hardness of 220 HB. According to Figure 10.21(a), for an
alloy of this composition to have this hardness, the microstructure would have to be intermediate
between coarse and fine pearlite—that is, medium pearlite. Thus, an isothermal heat treatment is
necessary at a temperature in between those at which fine and coarse pearlites form—for example,
about 630°C. At this temperature, an isothermal heat treatment for at least 25 s is required.

(c) In order to produce a Brinell hardness of 500, the microstructure could consist of either (1)
100% bainite (Figure 10.22), or (2) tempered martensite (Figure 10.26).

For case (1), according to Figure 10.22, bainite having a hardness of 500 HB results from an
isothermal treatment that is carried out at 320°C. Therefore, after austenitizing, rapidly cool to
320°C, and, from Figure 10.13, hold the specimen at this temperature for at least 1000 seconds in
order for the attainment of 100% bainite. This is followed by cooling to room temperature.

For case (2), after austenitizing, rapidly cool to room temperature in order to achieve 100%

martensite. Then temper this martensite for about 150 s at 425°C (Figure 10.26).

10.38 The (a) and (b) portions of the problem ask that we make schematic plots on the same graph for

the tensile strength versus composition for copper-silver alloys at both room temperature and 600°C;
such a graph is shown below.

Room temperature

=
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c
=
®
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(c) Upon consultation of the Cu-Ag phase diagram (Figure 9.6) we note that at room temperature
(20°C), silver is virtually insoluble in copper (i.e., by extrapolation of the solvus curve, there is no a

phase region at the left extremity of the phase diagram); the same may be said the solubility of
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copper in silver and for the B phase. Thus, only the a and B phases will exist for all compositions at
room temperature; in other words, there will be no solid solution strengthening effects at room
temperature. All other things being equal, the tensile strength will depend (approximately) on the
tensile strengths of each of the a and B phases as well as their phase fractions in a manner

described by the equation given in Problem 9.67 for the elastic modulus. That is, for this problem

(TS)aIon = (TS), Vv, * (TS)BVB

in which TS and V denote tensile strength and volume fraction, respectively, and the subscripts
represent the alloy/phases. Also, mass fractions of the o and B phases change linearly with
changing composition (according to the lever rule). Furthermore, inasmuch as the densities of both
Cu and Ag are similar, weight and volume fractions of the a and p phases will also be similar [see
Equation (9.6)]. In summary, the previous discussion explains the linear dependence of the room
temperature tensile strength on composition as represented in the above plot given that the TS of
pure copper is greater than for pure silver (as stipulated in the problem statement).

At 600°C, the curve will be shifted to significantly lower tensile strengths inasmuch as tensile
strength diminishes with increasing temperature (Section 6.6, Figure 6.14). In addition, according to
Figure 9.6, about 4% of silver will dissolve in copper (i.e., in the a phase), and about 4% of copper
will dissolve in silver (i.e., in the B phase) at 600°C. Therefore, solid solution strengthening will occur
over these compositions ranges, as noted in the graph shown above. Furthermore, between 4% Ag
and 96% Ag, the curve will be approximately linear for the same reasons noted in the previous

paragraph.

Design Problems

10.D1 This problem inquires as to the possibility of producing an iron-carbon alloy of eutectoid
composition that has a minimum hardness of 200 HB and a minimum ductility of 25%RA. If the alloy

is possible, then the continuous cooling heat treatment is to be stipulated.
According to Figures 10.21(a) and (b), the following is a tabulation of Brinell hardnesses and

percents reduction of area for fine and coarse pearlites and spheroidite for a 0.76 wt% C alloy.

Microstructure HB %RA
Fine pearlite 270 22
Coarse pearlite 205 29



Spheroidite 180 68

Therefore, coarse pearlite meets both of these criteria. The continuous cooling heat treatment which
will produce coarse pearlite for an alloy of eutectoid composition is indicated in Figure 10.18. The

cooling rate would need to be considerably less than 35°C/s, probably on the order of 0.1°C/s.

10.D2 This problem asks if it is possible to produce an iron-carbon alloy that has a minimum tensile
strength of 620 MPa (90,000 psi) and a minimum ductility of 50%RA. If such an alloy is possible, its
composition and microstructure are to be stipulated.

From Equation (6.20a), this tensile strength corresponds to a Brinell hardness of

_ TS(MPa) 620 MPa _
HB = 345 345 =180

According to Figures 10.21(a) and (b), the following is a tabulation of the composition ranges for fine

and coarse pearlites and spheroidite which meet the stipulated criteria.

Compositions for Compositions for
Microstructure HB > 180 %RA > 50%
Fine pearlite > 0.38 %C <0.36 %C
Coarse pearlite > 0.47 %C <0.42 %C
Spheroidite > 0.80 %C 0-1.0 %C

Therefore, only spheroidite has a composition range overlap for both of the hardness and ductility
restrictions; the spheroidite would necessarily have to have a carbon content greater than 0.80 wt%

C.

10.D3 This problem inquires as to the possibility of producing an iron-carbon alloy having a minimum
hardness of 200 HB and a minimum ductility of 35%RA. The composition and microstructure are to
be specified; possible microstructures include fine and coarse pearlites and spheroidite.
To solve this problem, we must consult Figures 10.21(a) and (b). The following is a
tabulation of the composition ranges for fine and coarse pearlites and spheroidite which meet the

stipulated criteria.

Compositions for Compositions for
Microstructure HB > 200 %RA > 35%
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Fine pearlite > 0.45 %C <0.54 %C
Coarse pearlite > 0.67 %C <0.64 %C
Spheroidite not possible <1.0 %C

Thus, fine pearlite is the only possibility. Its composition would need to be between 0.45 and 0.54
wt% C. A spheroidite microstructure is not possible since a hardness of 200 HB is not attainable.
Furthermore, coarse pearlite is not possible because there is not a composition overlap for both

hardness and ductility restrictions.

10.D4 This problem asks us to consider the tempering of a water-quenched 1080 steel to achieve a
hardness of 50 HRC. It is necessary to use Figure 10.26.
(a) The time necessary at 425°C is about 650 s.

(b) At 315°C, the time required (by extrapolation) is approximately 4 x 10% s (about 50 days).

10.D5 We are to consider the tempering of an oil-quenched 4340 steel. From Figure 10.25, for a
minimum tensile strength of 1380 MPa (200,000 psi) a tempering temperature of less than 450°C
(840°F) is required. Also, for a minimum ductility of 43%RA, tempering must be carried out at a
temperature greater than 400°C (760°F). Therefore, tempering must occur at between 400 and
450°C (750 and 840°F) for 1 h.

10.D6 This problem asks if it is possible to produce an oil-quenched and tempered 4340 steel that has a
minimum vyield strength of 1240 MPa (180,000 psi) and a minimum ductility of 50%RA, and, if
possible, to describe the tempering heat treatment. In Figure 10.25 is shown the tempering
characteristics of this alloy. According to this figure, in order to achieve a minimum yield strength of
1240 MPa a tempering temperature of less that about 475°C is required. On the other hand,
tempering must be carried out at greater than about 520°C for a minimum ductility of 50%RA. Since
there is no overlap of these temperature ranges, an oil-quenched and tempered 4340 alloy

possessing these characteristics is not possible.
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CHAPTER 11
APPLICATIONS AND PROCESSING OF METAL ALLOYS
PROBLEM SOLUTIONS
11.1 This question asks that we list four classifications of steels, and, for each, to describe properties and

cite typical applications.

Low-Carbon Steels

Properties: nonresponsive to heat treatments; relatively soft and weak; machinable and
weldable.

Typical applications: automobile bodies, structural shapes, pipelines, buildings, bridges, and
tin cans.

Medium-Carbon Steels

Properties: heat treatable, relatively large combinations of mechanical characteristics.
Typical applications: railway wheels and tracks, gears, crankshafts, and machine parts.
High-Carbon Steels

Properties: hard, strong, and relatively brittle.
Typical applications: chisels, hammers, knives, and hacksaw blades.

High-Alloy Steels (Stainless and Tool)

Properties: hard and wear resistant; resistant to corrosion in a large variety of
environments.

Typical applications: cutting tools, drills, cutlery, food processing, and surgical tools.

11.2 (a) Ferrous alloys are used extensively because:
1) Iron ores exist in abundant quantities.
2) Economical extraction, refining, and fabrication techniques are available.
3) The alloys may be tailored to have a wide range of properties.
(b) Disadvantages of ferrous alloys are:
1) They are susceptible to corrosion.
2) They have relatively high densities.

3) They have relatively low electrical conductivities.

11.3 Ferritic and austenitic stainless steels are not heat treatable since "heat treatable” is taken to mean
that martensite may be made to form with relative ease upon quenching austenite from an elevated

temperature.
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For ferritic stainless steels, austenite does not form upon heating, and, therefore, the
austenite-to-martensite transformation is not possible.
For austenitic stainless steels, the austenite phase field extends to such low temperatures

that the martensitic transformation does not occur.

11.4 The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form very

hard and wear-resistant carbide compounds.

11.5 We are asked to compute the volume percent graphite in a 3.5 wt% C cast iron. It first becomes
necessary to compute mass fractions using the lever rule. From the iron-carbon phase diagram
(Figure 11.2), the tie-line in the a and graphite phase field extends from essentially 0 wt% C to 100
wt% C. Thus, for a 3.5 wt% C cast iron

Cor —Co _ 100-35

W, = = = 0.965
@ Cg -C 100 - 0
r a
Co-C 35-0
Wg = =2—2%= = 0.035

r _ - _
CGr Ca 100 -0

Conversion from weight fraction to volume fraction of graphite is possible using Equation (9.6a) as

0.035

2.39/cm3
0.965 N 0.035

7.9 g/cm3 23 g/cm3

=0.111 or 11.1 vol%

11.6 Gray iron is weak and brittle in tension because the tips of the graphite flakes act as points of stress

concentration.

11.7 This question asks us to compare various aspects of gray and malleable cast irons.
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(a) With respect to composition and heat treatment:

Gray iron--2.5 to 4.0 wt% C and 1.0 to 3.0 wt% Si. For most gray irons there is no heat
treatment after solidification.

Malleable iron--2.5 to 4.0 wt% C and less than 1.0 wt% Si. White iron is heated in a
nonoxidizing atmosphere and at a temperature between 800 and 900°C for an extended time period.
(b) With respect to microstructure:

Gray iron--Graphite flakes are embedded in a ferrite or pearlite matrix.

Malleable iron--Graphite clusters are embedded in a ferrite or pearlite matrix.

(c) With respect to mechanical characteristics:
Gray iron--Relatively weak and brittle in tension; good capacity for damping vibrations.

Malleable iron--Moderate strength and ductility.

11.8 Yes, it is possible to produce cast irons that consist of a martensite matrix in which graphite is

embedded in either flake, nodule, or rosette form. For graphite flakes, gray cast iron is formed (as
described in Section 11.2), which is then heated to a temperature at which the ferrite transforms to
austenite; the austenite is then rapidly quenched, which transforms to martensite. For graphite
nodules and rosettes, nodular and malleable cast irons are first formed (again as described in

Section 11.2), which are then austenitized and rapidly quenched.

11.9 This question asks us to compare white and nodular cast irons.

(a) With regard to composition and heat treatment;

White iron--2.5 to 4.0 wt% C and less than 1.0 wt% Si. No heat treatment; however,
cooling is rapid during solidification.

Nodular cast iron--2.5 to 4.0 wt% C, 1.0 to 3.0 wt% Si, and a small amount of Mg or Ce. A
heat treatment at about 700°C may be necessary to produce a ferritic matrix.
(b) With regard to microstructure:

White iron--There are regions of cementite interspersed within pearlite.

Nodular cast iron--Nodules of graphite are embedded in a ferrite or pearlite matrix.
(c) With respect to mechanical characteristics:

White iron--Extremely hard and brittle.

Nodular cast iron--Moderate strength and ductility.

11.10 It is not possible to produce malleable iron in pieces having large cross-sectional dimensions.

White cast iron is the precursor of malleable iron, and a rapid cooling rate is necessary for the

formation of white iron, which may not be accomplished at interior regions of thick cross-sections.
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11.11 The principal difference between wrought and cast alloys is as follows: wrought alloys are ductile
enough so as to be hot- or cold-worked during fabrication, whereas cast alloys are brittle to the

degree that shaping by deformation is not possible and they must be fabricated by casting.

11.12 Both brasses and bronzes are copper-based alloys. For brasses, the principal alloying element is

zinc, whereas the bronzes are alloyed with other elements such as tin, aluminum, silicon, or nickel.

11.13 Rivets of a 2017 aluminum alloy must be refrigerated before they are used because, after being
solution heat treated, they precipitation harden at room temperature. Once precipitation hardened,

they are too strong and brittle to be driven.

11.14 Strengthening of a 3003 aluminum alloy is accomplished by cold working. Welding a structure of a

cold-worked 3003 alloy will cause it to experience recrystallization, and a resultant loss of strength.

11.15 The chief difference between heat-treatable and nonheat-treatable alloys is that heat-treatable
alloys may be strengthened by a heat treatment wherein a precipitate phase is formed (precipitation
hardening) or a martensitic transformation occurs. Nonheat-treatable alloys are not amenable to

strengthening by such treatments.

11.16 This question asks us for the distinctive features, limitations, and applications of several alloy

groups.
Titanium Alloys

Distinctive features: relatively low densities, high melting temperatures, and high strengths
are possible.

Limitation: because of chemical reactivity with other materials at elevated temperatures,
these alloys are expensive to refine.

Applications: aircraft structures, space vehicles, and in chemical and petroleum industries.

Refractory Metals

Distinctive features: extremely high melting temperatures; large elastic moduli, hardnesses,
and strengths.

Limitation: some experience rapid oxidation at elevated temperatures.

Applications: extrusion dies, structural parts in space vehicles, incandescent light filaments,
x-ray tubes, and welding electrodes.
Superalloys

Distinctive features: able to withstand high temperatures and oxidizing atmospheres for long

time periods.
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Applications: aircraft turbines, nuclear reactors, and petrochemical equipment.
Noble Metals

Distinctive features: highly resistant to oxidation, especially at elevated temperatures; soft
and ductile.

Limitation: expensive.

Applications: jewelry, dental restoration materials, coins, catalysts, and thermocouples.

11.17 The advantages of cold working are:

1) A high quality surface finish.
2) The mechanical properties may be varied.
3) Close dimensional tolerances.

The disadvantages of cold working are:
1) High deformation energy requirements.
2) Large deformations must be accomplished in steps, which may be expensive.
3) Aloss of ductility.

The advantages of hot working are:
1) Large deformations are possible, which may be repeated.
2) Deformation energy requirements are relatively low.

The disadvantages of hot working are:
1) A poor surface finish.

2) A variety of mechanical properties is not possible.

11.18 (a) The advantages of extrusion over rolling are as follows:
1) Pieces having more complicated cross-sectional geometries may be formed.
2) Seamless tubing may be produced.
(b) The disadvantages of extrusion over rolling are as follows:
1) Nonuniform deformation over the cross-section.

2) A variation in properties may result over the cross-section of an extruded piece.

11.19 Four situations in which casting is the preferred fabrication technique are:
1) For large pieces and/or complicated shapes.
2) When mechanical strength is not an important consideration.
3) For alloys having low ductilities.

4) When it is the most economical fabrication technique.

11.20 This question asks us to compare sand, die, investment, and continuous casting techniques.
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For sand casting, sand is the mold material, a two-piece mold is used, ordinarily the surface
finish is not an important consideration, the sand may be reused (but the mold may not), casting
rates are low, and large pieces are usually cast.

For die casting, a permanent mold is used, casting rates are high, the molten metal is
forced into the mold under pressure, a two-piece mold is used, and small pieces are normally cast.

For investment casting, a single-piece mold is used, which is not reusable; it results in high
dimensional accuracy, good reproduction of detail, and a fine surface finish; and casting rates are
low.

For continuous casting, at the conclusion of the extraction process, the molten metal is
cast into a continuous strand having either a rectangular or circular cross-section; these shapes are
desirable for subsequent secondary metal-forming operations. The chemical composition and

mechanical properties are relatively uniform throughout the cross-section.

11.21 (a) Some of the advantages of powder metallurgy over casting are as follows:
1) Itis used for alloys having high melting temperatures.
2) Better dimensional tolerances result.
3) Porosity may be introduced, the degree of which may be controlled (which is desirable in some
applications such as self-lubricating bearings).
(b) Some of the disadvantages of powder metallurgy over casting are as follows:
1) Production of the powder is expensive.

2) Heat treatment after compaction is necessary.

11.22 This question asks for the principal differences between welding, brazing, and soldering.
For welding, there is melting of the pieces to be joined in the vicinity of the bond; a filler
material may or may not be used.
For brazing, a filler material is used which has a melting temperature in excess of about
425°C (800°F); the filler material is melted, whereas the pieces to be joined are not melted.
For soldering, a filler material is used which has a melting temperature less than about

425°C (800°F); the filler material is melted, whereas the pieces to be joined are not.

11.23 This problem asks that we specify and compare the microstructures and mechanical properties in
the heat-affected weld zones for 1080 and 4340 alloys assuming that the average cooling rate is
10°C/s. Figure 10.18 shows the continuous cooling transformation diagram for an iron-carbon alloy
of eutectoid composition (1080), and, in addition, cooling curves that delineate changes in
microstructure. For a cooling rate of 10°C/s (which is less than 35°C/s) the resulting microstructure

will be totally pearlite--probably a reasonably fine pearlite. On the other hand, in Figure 10.19 is
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shown the CCT diagram for a 4340 steel. From this diagram it may be noted that a cooling rate of
10°C/s produces a totally martensitic structure. Pearlite is softer and more ductile than martensite,

and, therefore, is most likely more desirable.

11.24 If a steel weld is cooled very rapidly, martensite may form, which is very brittle. In some situations,

cracks may form in the weld region as it cools.

11.25 Full annealing--Heat to between 15 and 40°C above the A3 line (if the concentration of carbon is

less than the eutectoid) or above the A 1 line (if the concentration of carbon is greater than the

eutectoid) until the alloy comes to equilibrium; then furnace cool to room temperature. The final
microstructure is coarse pearlite.

Normalizing--Heat to between 55 and 85°C above the upper critical temperature until the specimen
has fully transformed to austenite, then cool in air. The final microstructure is fine pearlite.
Quenching--Heat to a temperature within the austenite phase region and allow the specimen to fully
austenitize, then quench to room temperature in oil or water. The final microstructure is martensite.
Tempering--Heat a quenched (martensitic) specimen, to a temperature between 450 and 650°C, for
the time necessary to achieve the desired hardness. The final microstructure is tempered

martensite.

11.26 Three sources of residual stresses in metal components are plastic deformation processes,
nonuniform cooling of a piece that was cooled from an elevated temperature, and a phase
transformation in which parent and product phases have different densities.

Two adverse consequences of these stresses are distortion (or warpage) and fracture.

11.27 This question asks that we cite the temperature range over which it is desirable to austenitize

several iron-carbon alloys during a normalizing heat treatment.
(@) For 0.20 wt% C, heat to between 890 and 920°C (1635 and 1690°F) since the A3 temperature is

835°C (1535°F).
(b) For 0.76 wt% C, heat to between 782 and 812°C (1440 and 1494°F) since the A3 temperature is

727°C (1340°F).
(c) For 0.95 wt% C, heat to between 840 and 870°C (1545 and 1600°F) since ACm is 785°C

(1445°F).

11.28 We are asked for the temperature range over which several iron-carbon alloys should be

austenitized during a full-anneal heat treatment.
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(@) For 0.25 wt% C, heat to between 845 and 870°C (1555 and 1600°F) since the A3 temperature is

830°C (1525°F).
(b) For 0.45 wt% C, heat to between 790 and 815°C (1450 and 1500°F) since the A3 temperature is

775°C (1425°F).
(c) For 0.85 wt% C, heat to between 742 and 767°C (1368 and 1413°F) since the A1 temperature is

727°C (1340°F).
(d) For 1.10 wt% C, heat to between 742 and 767°C (1368 and 1413°F) since the A1 temperature is

727°C (1340°F).

11.29 The purpose of a spheroidizing heat treatment is to produce a very soft and ductile steel alloy
having a spheroiditic microstructure. It is normally used on medium- and high-carbon steels, which,

by virtue of carbon content, are relatively hard and strong.

11.30 Hardness is a measure of a material's resistance to localized surface deformation, whereas
hardenability is a measure of the depth to which a ferrous alloy may be hardened by the formation of

martensite. Hardenability is determined from hardness tests.

11.31 The presence of alloying elements (other than carbon) causes a much more gradual decrease in
hardness with position from the quenched end for a hardenability curve. The reason for this effect is
that alloying elements retard the formation of pearlitic and bainitic structures which are not as hard

as martensite.

11.32 A decrease of austenite grain size will decrease the hardenability. Pearlite normally nucleates at
grain boundaries, and the smaller the grain size, the greater the grain boundary area, and,

consequently, the easier it is for pearlite to form.

11.33 The three factors that influence the degree to which martensite is formed are as follows:
1) Alloying elements; adding alloying elements increases the extent to which martensite forms.
2) Specimen size and shape; the extent of martensite formation increases as the specimen
cross-section decreases and as the degree of shape irregularity increases.
3) Quenching medium; the more severe the quench, the more martensite is formed. Water
provides a more severe quench than does oil, which is followed by air. Agitating the medium also

enhances the severity of quench.

11.34 The two thermal properties of a liquid medium that influence its quenching effectiveness are

thermal conductivity and heat capacity.
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11.35 (a) This part of the problem calls for us to construct a radial hardness profile for a 50 mm (2 in.)
diameter cylindrical specimen of an 8640 steel that has been quenched in moderately agitated oil. In
the manner of Example Problem 11.1, the equivalent distances and hardnesses tabulated below
were determined from Figures 11.13 and 11.16(b).

Radial Equivalent HRC
Position Distance, mm (in.) Hardness
Surface 7 (5/16) 54

3/4R 11 (7/16) 50

Midradius 14 (9/16) 45

Center 16 (10/16) 44

The resulting profile is plotted here.

56

54 -
52 :
50 !
48 -

46

Hardness (HRC)

44

42

Position

(b) The radial hardness profile for a 75 mm (3 in.) diameter specimen of a 5140 steel that has been
quenched in moderately agitated oil is desired. The equivalent distances and hardnesses for the

various radial positions, as determined using Figures 11.13 and 11.16(b), are tabulated below.

Radial Equivalent HRC
Position Distance, mm (in.) Hardness
Surface 13 (1/2) 41

3/4R 19 (3/4) 35

Midradius 22 (14/16) 33

Center 25 (1) 31
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The resulting profile

Hardness (HRC)

is plotted here.

42

40
38
36

34

32

30

Position

(c) The radial hardness profile for a 90 mm (3-1/2 in.) diameter specimen of an 8630 steel that has

been quenched in moderately agitated water is desired. The equivalent distances and hardnesses

for the various radial positions, as determined using Figures 11.14 and 11.16(a) are tabulated below.

Radial Equivalent HRC
Position Distance, in. (mm) Hardness
Surface 3 (1/8) 50

3/4R 10 (3/8) 38

Midradius 17 (11/16) 30

Center 20 (13/16) 28

The resulting profile is plotted here.

Hardness (HRC)

60

20

Position
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(d) The radial hardness profile for a 100 mm (4 in.) diameter specimen of a 8660 steel that has been
quenched in moderately agitated water is desired. The equivalent distances and hardnesses for the

various radial positions, as determined using Figures 11.14 and 11.16(a), are tabulated below.

Radial Equivalent HRC
Position Distance, in. (mm) Hardness
Surface 3(1/8) 63

3/4R 11 (7/16) 61

Midradius 20 (13/16) 57

Center 27 (1-1/16) 53

The resulting profile is plotted here.

64

62
60 -
58 -
56 -

54

Hardness (HRC)

52 -

50

Position

11.36 We are asked to compare the effectiveness of quenching in moderately agitated water and oil by
graphing, on a single plot, the hardness profiles for 75 mm (3 in.) diameter cylindrical specimens of
an 8640 steel that had been quenched in both media.

For moderately agitated water, the equivalent distances and hardnesses for the several
radial positions [Figures 11.16(a) and 11.13] are tabulated below.

Radial Equivalent HRC
Position Distance, mm Hardness
Surface 3 56

3/4R 9 53

Midradius 13.5 47

Center 16.5 43
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While for moderately agitated oil, the equivalent distances and hardnesses for the several radial
positions [Figures 11.16(b) and 11.13] are tabulated below.

Radial Equivalent HRC
Position Distance, mm Hardness
Surface 13 48

3/4R 19 41

Midradius 22 38

Center 25 37

These data are plotted here.

60

Hardness (HRC)

Qil

30

Position

11.37 This problem asks us to compare various aspects of precipitation hardening, and the quenching
and tempering of steel.

(a) With regard to the total heat treatment procedure, the steps for the hardening of steel are as
follows:

1) Austenitize above the upper critical temperature.

2) Quench to a relatively low temperature.

3) Temper at a temperature below the eutectoid.

4) Cool to room temperature.

With regard to precipitation hardening, the steps are as follows:

1) Solution heat treat by heating into the solid solution phase region.

2) Quench to a relatively low temperature.

3) Precipitation harden by heating to a temperature that is within the solid two-phase region.
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4) Cool to room temperature.
(b) For the hardening of steel, the microstructures that form at the various heat treating stages in
part (a) are:

1) Austenite

2) Martensite

3) Tempered martensite

4) Tempered martensite

For precipitation hardening, the microstructures that form at the various heat treating stages in
part (a) are:

1) Single phase

2) Single phase--supersaturated

3) Small plate-like particles of a new phase within a matrix of the original phase.

4) Same as 3)
(c) For the hardening of steel, the mechanical characteristics for the various steps in part (a) are
as follows:

1) Not important

2) The steel becomes hard and brittle upon quenching.

3) During tempering, the alloy softens slightly and becomes more ductile.

4) No significant changes upon cooling to or maintaining at room temperature.

For precipitation hardening, the mechanical characteristics for the various steps in part (a) are
as follows:

1) Not important

2) The alloy is relatively soft.

3) The alloy hardens with increasing time (initially), and becomes more brittle; it may soften with
overaging.

4) The alloy may continue to harden or overage at room temperature.

11.38 For precipitation hardening, natural aging is allowing the precipitation process to occur at the

ambient temperature; artificial aging is carried out at an elevated temperature.

Design Problems

11.D1 This problem calls for us to select, from a list, the best alloy for each of several applications and

then to justify each choice.
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(a) Gray cast iron would be the best choice for a milling machine base because it effectively absorbs
vibrations and is inexpensive.

(b) Stainless steel would be the best choice for the walls of a steam boiler because it is corrosion
resistant to the steam and condensate.

(c) Titanium alloys are the best choice for high-speed aircraft because they are light weight, strong,
and easily fabricated. However, one drawback is their cost.

(d) A tool steel would be the best choice for a drill bit because it is very hard and wear resistant,
and, thus, will retain a sharp cutting edge.

(e) For a cryogenic (low-temperature) container, an aluminum alloy would be the best choice;
aluminum alloys have the FCC crystal structure, and therefore, are ductile down to very low
temperatures.

(f) As a pyrotechnic in flares and fireworks, magnesium is the best choice because it ignites easily
and burns readily in air.

(g) Platinum is the best choice for high-temperature furnace elements to be used in oxidizing
atmospheres because it is very ductile, has a relatively high melting temperature, and is highly

resistant to oxidation.

11.D2 (a) Important characteristics required of metal alloys that are used for coins are as follows: they
must be hard, somewhat ductile, corrosion and oxidation resistant, and nontoxic.
(b) Some of the metals and alloys that are used and have been used for coins are gold, silver,

copper, nickel, copper-nickel alloys, and brass alloys.

11.D3 The first part of this question asks for a description of the shape memory phenomenon. A part
having some shape and that is fabricated from a metal alloy that displays this phenomenon is
plastically deformed. It can be made to return to its original shape by heating to an elevated
temperature. Thus, the material has a shape memory, or "remembers" its previous shape.

Next we are asked to explain the mechanism for this phenomenon. A shape memory alloy
is polymorphic (Section 3.6)--that is, it can exist having two crystal structures. One is body-centered
cubic structure (termed an austenite phase) that exists at elevated temperatures; upon cooling, and
at some temperature above the ambient, it transforms to a martensitic structure. Furthermore, this
martensitic phase is highly twinned. Upon application of a stress to this low-temperature martensitic
phase, plastic deformation is accomplished by the migration of twin boundaries to some preferred
orientation. Once the stress is removed, the deformed shape will be retained at this temperature.
When this deformed martensite is subsequently heated to above the phase transformation
temperature, the alloy reverts back to the BCC phase, and assumes the original shape. The

procedure may then be repeated.
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One material that exhibits this behavior is a nickel-titanium alloy. Furthermore, the desired
"memory" shape may is established by forming the material above its phase transition temperature.

Several applications for alloys displaying this effect are eyeglass frames, shrink-to-fit pipe
couplers, tooth-straightening braces, collapsible antennas, greenhouse window openers, antiscald

control valves on showers, women's foundations, and fire sprinkler valves.

11.D4 (a) Compositionally, the metallic glass materials are rather complex; several compositions are as
follows: FGSOBZO’ Fe72Cr8P13C7, Fe67C018814Si, Pd77.5Cu6.OSi16_5, and Fe40Ni38Mo4818.
(b) These materials are exceptionally strong and tough, extremely corrosion resistant, and are easily
magnetized.
(c) Principal drawbacks for these materials are 1) complicated and exotic fabrication techniques are
required; and 2) inasmuch as very rapid cooling rates are required, at least one dimension of the
material must be small--i.e., they are normally produced in ribbon form.
(d) Potential uses include transformer cores, magnetic amplifiers, heads for magnetic tape players,
reinforcements for pressure vessels and tires, shields for electromagnetic interference, security
tapes for library books.
(e) Production techniques include centrifuge melt spinning, planar-flow casting, rapid pressure

application, arc melt spinning.

11.D5 This question provides us with a list of several metal alloys, and then asks us to pick those that
may be strengthened by heat treatment, by cold work, or both. Those alloys that may be heat
treated are either those noted as "heat treatable" (Tables 11.6 through 11.9), or as martensitic
stainless steels (Table 11.4). Alloys that may be strengthened by cold working must not be
exceptionally brittle, and, furthermore, must have recrystallization temperatures above room

temperature (which immediately eliminates lead).

Heat Treatable Cold Workable Both
6150 Steel 6150 Steel 6150 Steel
C17200 Be-Cu C17200 Be-Cu C17200 Be-Cu
6061 Al 6061 Al 6061 Al
304 Stainless Steel
R50500 Ti
C51000 Phosphor Bronze
AZ31B Mg
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11.D6 This problem asks us to select from four alloys (brass, steel, titanium, and aluminum), the one that
will support a 50,000 N (11,250 Ibf) load without plastically deforming, and having the minimum

weight. From Equation (6.1), the cross-sectional area (AO) must necessarily carry the load (F)

without exceeding the yield strength (cy), as

F
Ay =—

(&)

y

Now, given the length I, the volume of material required (V) is just

V =1A, = IF
(o)
y
Finally, the mass of the member (m) is
IF
m= Vp = =
y

in which p is the density. Using the values given for these alloys

@.5 g/cm3)10 ¢m)(50,000 N)
m(brass) = = 102¢g

2
@15 x106N/mzi 12”‘ ]
10° cm

(7.9 g/cm3)1o cm)(50,000 N)
m(steel) = =469

-
(860 x 106 N/mzi L ]
10° cm

(2.7 g/ cm3)1o cm)(50,000 N)
m(aluminum) = = 435¢g

> =
(310 x 108 N/mzi 12m ]
10° cm
(459/cm’)
.5 g/cm” )10 cm)(50,000 N)

2
(550 x 106 N/mzi%]
10 cm

m(titanium) =

= 409
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Thus, titanium would have the minimum weight (or mass), followed by aluminum, steel, and brass.

11.D7 This question asks for us to decide whether or not it would be advisable to hot-work or cold-work
several metals and alloys.

Tin would almost always be hot-worked. Even deformation at room temperature would be
considered hot-working inasmuch as its recrystallization temperature is below room temperature
(Table 7.2).

Tungsten is hard and strong at room temperature, has a high recrystallization temperature,
and experiences oxidation at elevated temperatures. Cold-working is difficult because of its
strength, and hot-working is not practical because of oxidation problems. Most tungsten articles are
fabricated by powder metallurgy, or by using cold-working followed by annealing cycles.

Most aluminum alloys may be cold-worked since they are ductile and have relatively low
yield strengths.

Magnesium alloys are normally hot-worked inasmuch as they are quite brittle at room
temperature. Also, magnesium alloys have relatively low recrystallization temperatures.

A 4140 steel could be cold-worked in an over-tempered state which leaves it soft and
relatively ductile, after which quenching and tempering heat treatments may be employed to
strengthen and harden it. This steel would probably have a relatively high recrystallization

temperature, and hot-working may cause oxidation.

11.D8 A one-inch diameter steel specimen is to be quenched in moderately agitated oil. We are to

decide which of five different steels will have surface and center hardnesses of at least 55 and 50
HRC, respectively.

In moderately agitated oil, the equivalent distances from the quenched end for a one-inch

diameter bar for surface and center positions are 3 mm (1/8 in.) and 8 mm (11/32 in.), respectively

[Figure 11.16(b)]. The hardnesses at these two positions for the alloys cited (as determined using

Figure 11.13) are given below.

Surface Center
Alloy Hardness (HRC) Hardness (HRC)
1040 50 30
5140 55 47
4340 57 57
4140 56 54
8640 56 52.5

314



Thus, alloys 4340, 4140, and 8640 will satisfy the criteria for both surface and center hardnesses.

11.09 (a) This problem calls for us to decide which of 8660, 8640, 8630, and 8620 alloys may be
fabricated into a cylindrical piece 57 mm (2-1/4 in.) in diameter which, when quenched in mildly
agitated water, will produce a minimum hardness of 45 HRC throughout the entire piece.

The center of the steel cylinder will cool the slowest and therefore will be the softest. In
moderately agitated water the equivalent distance from the quenched end for a 57 mm diameter bar
for the center position is about 11 mm (7/16 in.) [Figure 11.16(a)]. The hardnesses at this position

for the alloys cited (Figure 11.14) are given below.

Center
Alloy Hardness (HRC)
8660 61
8640 49
8630 36
8620 25

Therefore, only 8660 and 8640 alloys will have a minimum of 45 HRC at the center, and therefore,
throughout the entire cylinder.

(b) This part of the problem asks us to do the same thing for moderately agitated oil. In moderately
agitated oil the equivalent distance from the quenched end for a 57 mm diameter bar at the center
position is about 17.5 mm (11.16 in.) [Figure 11.16(b)]. The hardnesses at this position for the alloys

cited (Figure 11.14) are given below.

Center
Alloy Hardness (HRC)
8660 59
8640 42
8630 30
8620 21

Therefore, only the 8660 alloy will have a minimum of 45 HRC at the center, and therefore,

throughout the entire cylinder.
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11.D10 A thirty-eight millimeter diameter cylindrical steel specimen is to be heat treated such that the
microstructure throughout will be at least 80% martensite. We are to decide which of several alloys
will satisfy this criterion if the quenching medium is moderately agitated (a) oil, and (b) water.
(a) Since the cooling rate is lowest at the center, we want a minimum of 80% martensite at the
center position. From Figure 11.16(b), the cooling rate is equal to an equivalent distance from the
quenched end of 12 mm (1/2 in.). According to Figure 11.13, the hardness corresponding to 80%
martensite for these alloys is 50 HRC. Thus, all we need do is to determine which of the alloys have
a 50 HRC hardness at an equivalent distance from the quenched end of 12 mm (1/2 in.). At an
equivalent distance of 12 mm (1/2 in.), the following hardnesses are determined from Figure 11.13

for the various alloys.

Alloy Hardness (HRC)
4340 55
4140 52
8640 48
5140 42
1040 25

Thus, only alloys 4340 and 4140 will qualify.
(b) For moderately agitated water, the cooling rate at the center of a 38 mm diameter specimen is 8
mm (5/16 in.) equivalent distance from the quenched end [Figure 11.16(a)]. At this position, the

following hardnesses are determined from Figure 11.13 for the several alloys.

Alloy Hardness (HRC)
4340 56
4140 55
8640 54
5140 49
1040 32

It is still necessary to have a hardness of 50 HRC or greater at the center; thus, alloys 4340,
4140, and 8640 qualify.

11.D11 A fifty-millimeter (two-inch) diameter cylindrical steel specimen is to be quenched in moderately
agitated water. We are to decide which of eight different steels will have surface and center

hardnesses of at least 50 and 40 HRC, respectively.
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In moderately agitated water, the equivalent distances from the quenched end for a 50 mm
diameter bar for surface and center positions are 2 mm (1/16 in.) and 10 mm (3/8 in.), respectively

[Figure 11.16(a)]. The hardnesses at these two positions for the alloys cited are given below.

Surface Center
Alloy Hardness (HRC) Hardness (HRC)
1040 53 28
5140 57 46
4340 57 56
4140 57 54
8620 43 28
8630 52 38
8640 57 52
8660 64 62

Thus, alloys 5140, 4340, 4140, 8640, and 8660 will satisfy the criteria for both surface and center

hardnesses.

11.D12 We are asked to determine the maximum diameter possible for a cylindrical piece of 4140 steel
that is to be quenched in moderately agitated oil such that the microstructure will consist of at least
50% martensite throughout the entire piece. From Figure 11.13, the equivalent distance from the
quenched end of a 4140 steel to give 50% martensite (or a 42.5 HRC hardness) is 26 mm (1-1/16
in.). Thus, the quenching rate at the center of the specimen should correspond to this equivalent
distance. Using Figure 11.16(b), the center specimen curve takes on a value of 26 mm (1-1/16 in.)

equivalent distance at a diameter of about 75 mm (3 in.).

11.D13 In this problem we are asked to describe a heat treatment that may be used on a 45 mm
diameter steel shaft of a 1040 steel such that it will have a uniform tensile strength of at least 620
MPa across the entirety of its cross-section. First of all, if the steel is heat treated so as to produce
martensite or tempered martensite, there will undoubtedly be a variation of tensile strength over the
cross-section. Thus, let us determine if either martensite or tempered martensite is required to give
this desired tensile strength, and, if not, what microstructure is necessary.

From Equation (6.20a) a tensile strength of 620 MPa corresponds to a Brinell hardness of
about 180. Upon consultation of Figure 10.21(a), we note that for an alloy of composition of 0.40
wt% C, in order to achieve a hardness of 180 HB, a microstructure of fine pearlite is required. One

possible heat treatment that may be used to produce fine pearlite is a continuous cooling one. In
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Figure 10.29 is shown a continuous cooling transformation diagram for a 0.35 wt% C alloy, which
would be very similar to that for a 1040 steel. According to this diagram, we would want to
austenitize the alloy at approximately 900°C, and then continuously cool to room temperature such
that the cooling curve would pass through the fine pearlite region of the diagram (per Figure 10.17).
This would correspond to a cooling rate of approximately 3°C/s (Figure 10.18), which would
probably result from air-cooling the shaft from the 900°C austenitizing temperature. For this
relatively low cooling rate, the microstructure, and therefore the tensile strength, will be quite uniform

across the specimen cross section.

11.D14 We are to determine, for a cylindrical piece of 8660 steel, the minimum allowable diameter

possible in order yield a surface hardness of 58 HRC, when the quenching is carried out in
moderately agitated oil.

From Figure 11.14, the equivalent distance from the quenched end of an 8660 steel to give

a hardness of 58 HRC is about 18 mm (3/4 in.). Thus, the quenching rate at the surface of the

specimen should correspond to this equivalent distance. Using Figure 11.16(b), the surface

specimen curve takes on a value of 18 mm equivalent distance at a diameter of about 95 mm (3.75

in.).

11.D15 This problem is concerned with the precipitation-hardening of copper-rich Cu-Be alloys. It is
necessary for us to use the Cu-Be phase diagram (Figure 11.26 ).
(@) The range of compositions over which these alloys may be precipitation hardened is between
approximately 0.2 wt% Be (the maximum solubility of Be in Cu at about 300°C) and 2.7 wt% Be (the
maximum solubility of Be in Cu at 866°C).
(b) The heat treatment procedure, of course, will depend on the composition chosen. First of all, the
solution heat treatment must be carried out at a temperature within the o phase region, after which,
the specimen is quenched to room temperature. Finally, the precipitation heat treatment is
conducted at a temperature within the o + Yo phase region.

For example, for a 1.5 wt% Be-98.5 wt% Cu alloy, the solution heat treating temperature

must be between about 600°C (1110°F) and 900°C (1650°F), while the precipitation heat treatment
would be below 600°C (1110°F), and probably above 300°C (570°F). Below 300°C, diffusion rates

are low, and heat treatment times would be relatively long.

11.D16 We are asked to specify a practical heat treatment for a 2014 aluminum alloy that will produce a
minimum yield strength of 345 MPa (50,000 psi), and a minimum ductility of 12%EL. From Figure
11.25(a), the following heat treating temperatures and time ranges are possible to the give the

required yield strength.
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Temperature (°C) Time Range (h)

260 not possible
204 0.3-15
149 10-700
121 300-?

With regard to temperatures and times to give the desired ductility [Figure 11.25(b)]:

Temperature (°C) Time Range (h)
260 <0.02, >10
204 <0.4, >350
149 <20
121 <1000

From these tabulations, the following may be concluded:

It is not possible to heat treat this alloy at 260°C so as to produce the desired set of
properties--there is no overlap of the two sets of time ranges.

At 204°C, the heat treating time would need to be about 0.4 h, which is practical.

At 149°C, the time range is between 10 and 20 h, which is a little on the long side.

Finally, at 121°C, the time range is unpractically long (300 to 1000 h).

11.D17 This problem inquires as to the possibility of producing a precipitation-hardened 2014 aluminum
alloy having a minimum yield strength of 380 MPa (55,000 psi) and a ductility of at least 15%EL. In
order to solve this problem it is necessary to consult Figures 11.25(a) and 11.25(b). Below are

tabulated the times required at the various temperatures to achieve the stipulated yield strength.

Temperature (°C) Time Range (h)
260 not possible
204 0.5-7
149 10-250
121 500-2500

With regard to temperatures and times to give the desired ductility:
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Temperature (°C) Time Range (h)

260 <0.005
204 <0.13
149 <10
121 <450

Therefore, an alloy having this combination of yield strength and ductility is marginally possible. A
heat treatment at 149°C for 10 h would probably just achieve the stipulated ductility and yield
strength.

320



CHAPTER 12
STRUCTURES AND PROPERTIES OF CERAMICS
PROBLEM SOLUTIONS

12.1 The two characteristics of component ions that determine the crystal structure are: 1) the

magnitude of the electrical charge on each ion; and 2) the relative sizes of the cations and anions.

12.2 In this problem we are asked to show that the minimum cation-to-anion radius ratio for a
coordination number of four is 0.225. If lines are drawn from the centers of the anions, then a

tetrahedron is formed. The tetrahedron may be inscribed within a cube as shown below.

@ Anion (ry )

@ Cation (rg)

The spheres at the apexes of the tetrahedron are drawn at the corners of the cube, and designated
as positions A, B, C, and D. (These are reduced in size for the sake of clarity.) The cation resides
at the center of the cube, which is designated as point E. Let us now express the cation and anion
radii in terms of the cube edge length, designated as a. The spheres located at positions A and B

touch each other along the bottom face diagonal. Thus,

AB = 2r,

But

2 2

(HB)2 - a% +a° = 232
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or

And

There will also be an anion located at the corner, point F (not drawn), and the cube diagonal

AEF will be related to the ionic radii as
AEF = 2(rA + rC)
(The line AEF has not been drawn to avoid confusion.) From the triangle ABF

AB)? + FBY = (AEP?

But,
— 2r
A
B=a=—F/
2
and
AB = 2rA

from above. Thus,

Cra) + [27%]2 - B~ rC)T

Solving for the rC/rA ratio leads to

f 6 — 2

£ - ‘/-T = 0.225

A

12.3 This problem asks us to show, using the rock salt crystal structure, that the minimum cation-to-anion
radius ratio is 0.414 for a coordination number of six. Below is shown one of the faces of the rock
salt crystal structure in which anions and cations just touch along the edges, and also the face

diagonals.
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From triangle FGH,

GF:ZrA and FH:GH:rA+rC

Since FGH is a right triangle

GH)? + FR)? = (FG)?

or
(rA+ r(;)2 + (rA + r(;)2 = (ZrA)2

which leads to

Or, solving for rC/rA

12.4 This problem asks us to show that the minimum cation-to-anion radius ratio for a coordination

number of 8 is 0.732. From the cubic unit cell shown below
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and from the base of the unit cell

the unit cell edge length is 2rA,

x2 = (ZrA)2 + (ZrA)2 = 8r§

X = 2rA\/§

Or

Now from the triangle that involves x, y, and the unit cell edge

2+ @) =y = @rarac)
(ZrA\/E)Z + 4r§ = (ZrA + 2rc)2

Which reduces to

2rA(y/§ - 1): 21
Or

I
L_-z_1=0732
A

12.5 This problem calls for us to predict crystal structures for several ceramic materials on the basis of

ionic charge and ionic radii.
(@) For Csl, from Table 12.3

324



rCs+ _ 0170 nm

- ~0.220 nm

= 0.773

Now, from Table 12.2, the coordination number for each cation (Cs+) is eight, and, using Table 12.4,
the predicted crystal structure is cesium chloride.
(b) For NiO, from Table 12.3

'Niz* _ 0.069 nm

r ,. 0140 nm
o

= 0.493

The coordination number is six (Table 12.2), and the predicted crystal structure is sodium chloride
(Table 12.4).
(c) For Kl, from Table 12.3

'\ 0138 nm

3 = 0.220 nm_ 0627

The coordination number is six (Table 12.2), and the predicted crystal structure is sodium chloride
(Table 12.4).
(d) For NiS, from Table 12.3

'Niz* _ 0.069 nm
r, 0184 nm
S

= 0.375

The coordination number is four (Table 12.2), and the predicted crystal structure is zinc blende
(Table 12.4).

12.6 We are asked to cite the cations in Table 12.3 which would form fluorides having the cesium
chloride crystal structure. First of all, the possibilities would include only the monovalent cations
Cs+, K+, and Na*. Furthermore, the coordination number for each cation must be 8, which means
that 0.732 < rC/rA < 1.0 (Table 12.2). From Table 12.3 the rC/rA ratios for these three cations are

as follows:

= = 0133 nm_ %
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r
K+ 0.138 nm
rF’ 0.133 nm 0

rNa+ _0.102 nm

r 0133 nm_
F

0.77

Thus, only sodium will form the CsCI crystal structure with fluorine.

12.7 This problem asks that we compute the atomic packing factor for the rock salt crystal structure when

rC/rA =0.414. From Equation (3.2)

With regard to the sphere volume, V_, there are four cation and four anion spheres per unit cell.

S!
Thus,

= (4)( nl’Aj+ (4)( nrgj
But, since rC/rA =0.414
_ 16 31
Vg = —nrA [1+ (0.414) ] (17.94)r3

Now, for rC/rA = 0.414 the corner anions in Table 12.2 just touch one another along the cubic unit

cell edges such that

- B ¢ rc)j’

3
- B+ O.414rA)T - (2262)r3
Thus

Vg @799 rA
Vo o (2262)13
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12.8 We are asked to describe the crystal structure for K, O, and then explain why it is called the

2

antifluorite structure. First, let us find the coordination number of each 02_ ion for K,O. Taking the

2

cation-anion radii ratio

From Table 12.2, the coordination number for oxygen is eight. According to Table 12.4, for a
coordination number of eight for both cations and anions, the crystal structure should be cesium
chloride. However, there are twice as many K+ as 02_ ions. Therefore, the centers of the K+ ions
are positioned at the corners of cubic unit cells, while half of the cube centers are occupied by 02_
ions.

This structure is called the antifluorite crystal structure because anions and cations are

interchanged with one another from the fluorite structure (Figure 12.5).

12.9 This question is concerned with the zinc blende crystal structure in terms of close-packed planes of
anions.
(a) The stacking sequence of close-packed planes of anions for the zinc blende crystal structure will
be the same as FCC (and not HCP) because the anion packing is FCC (Table 12.4).
(b) The cations will fill tetrahedral positions since the coordination number for cations is four (Table
12.4).
(c) Only one-half of the tetrahedral positions will be occupied because there are two tetrahedral

sites per anion, and yet only one cation per anion.

12.10 This question is concerned with the corundum crystal structure in terms of close-packed planes of
anions.
(a) For this crystal structure, two-thirds of the octahedral positions will be filled with AI?’Jr ions since
there is one octahedral site per 02_ ion, and the ratio of AI3+ to 02_ ions is two-to-three.
(b) Two close-packed 02_ planes and the octahedral positions that will be filled with AI3+ ions are

sketched below.
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A layer
/ ¥
_\) / B layer (dashed)

AI3* positions (solid circles)

12.11 (a) This portion of the problem asks that we specify which type of interstitial site the Be2+ ions will

occupy in BeO if the ionic radius of Be2* is 0.035 nm and the 02' ions form an HCP arrangement.
Since, from Table 12.4, ro2-= 0.140 nm, then

lhe2+ _ 0035 nm
r o, 0.140 nm
(6]

= 0.250

Inasmuch as rC/rA is between 0.225 and 0.414, the coordination number for Be2+ is 4 (Table 12.2);

therefore, tetrahedral interstitial positions are occupied.
(b) We are now asked what fraction of these available interstitial sites are occupied by Be2+ ions.
Since there are two tetrahedral sites per 02' ion, and the ratio of Be2+ to 02' is 1:1, one-half of

these sites are occupied with Be2+ ions.

12.12 (a) We are first of all asked to cite, for FeTiO3, which type of interstitial site the Fe2+ ions will

occupy. From Table 12.3, the cation-anion radius ratio is

r|:e2+ _0.077 nm

r ,_  0.140 nm
(6]

= 0.550

Since this ratio is between 0.414 and 0.732, the Fe2+ ions will occupy octahedral sites (Table 12.2).

(b) Similarly, for the Ti** ions
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T+ 0.061 nm
2 "~ 0.140 nm

= 0.436

Since this ratio is between 0.414 and 0.732, the Ti** ions will also occupy octahedral sites.

(c) Since both Fe2t and Ti*" ions occupy octahedral sites, no tetrahedral sites will be occupied.
(d) For every FeTiO3 formula unit, there are three 02' ions, and, therefore, three octahedral sites;

since there is one ion each of Fe2* and Ti4+, two-thirds of these octahedral sites will be occupied.

12.13 First of all, open ‘Notepad” in Windows. Now enter into “Notepad” commands to generate the PbO

unit cell. One set of commands that may be used is as follows:

[DisplayProps]
Rotatez=-30
Rotatey=-15

[AtomProps]
Oxygen=LtRed,0.14
Lead=LtCyan,0.10

[BondProps]
SingleSolid=LtGray

[Atoms]
01=0,0,0,0xygen
02=1,0,0,0xygen
03=1,1,0,0xygen
04=0,1,0,0xygen
05=0,0,1.265,0xygen
06=1,0,1.265,0xygen
07=1,1,1.265,0xygen
08=0,1,1.265,0xygen
09=0.5,0.5,0,0xygen
010=0.5,0.5,1.265,0xygen
Pb1=0,0.5,0.3,Lead
Pb2=1,0.5,0.3,Lead
Pb3=0.5,0,0.965,Lead
Pb4=0.5,1,0.965,Lead

[Bonds]
B1=01,02,SingleSolid
B2=02,03,SingleSolid
B3=03,04,SingleSolid
B4=01,04,SingleSolid
B5=05,06,SingleSolid
B6=06,07,SingleSolid
B7=07,08,SingleSolid
B8=05,08,SingleSolid
B9=01,05,SingleSolid
B10=02,06,SingleSolid
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B11=03,07,SingleSolid

B12=04,08,SingleSolid
Under the "File" menu of "Note Pad," click "Save As", and then assign the file for this figure a name
followed by a period and "mdf"; for example, “PbO.mdf". And, finally save this file in the “mdf” file

inside of the “Interactive MSE” folder (which may be found in its installed location).

Now, in order to view the unit cell just generated, bring up “Interactive MSE”, and then
open any one of the three submodules under “Crystallinity and Unit Cells” or the “Ceramic
Structures” module. Next select “Open” under the “File” menu, and then open the “mdf” folder.
Finally, select the name you assigned to the item in the window that appears, and hit the “OK”

button. The image that you generated will now be displayed.

12.14 We are asked to calculate the theoretical density of NiO. This density may be computed using

Equation (12.1) as

p =
VCN A

Since the crystal structure is rock salt, n' = 4 formula units per unit cell, and

3
3
Ve =a" = (ZrNi2+ + 2r02_j = [2(0.069 nm) + 2(0.140 nm)]3

3 3

= 0.0730 —2— = 730x 1023 =
unit cell unit cell

Thus,

(4 formula units/unit cell)(58.69 g/mol + 16.00 g/mol)
p =
6.30 X 10'23 cm3/unit celIX‘a.OZS X 1023 formula units/mol]

=6.79 g/cm3
12.15 This problem calls for us to determine the unit cell edge length for MgO. The density of MgO is

3.58 g/cm3 and the crystal structure is rock salt.
(a) From Equation (12.1)
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1/3
(4 formula units/unit cell)(24.31 g/mol + 16.00 g/mol)

(3.58 g/cm3 £.023 X 1023 formula units/mol)

= 421x108 cm = 0.421 nm

(b) The edge length is to be determined from the M92+ and 02' radii for this portion of the problem.

Now

a=2r + 2r
Mg2* 0%

From Table 12.3

a = 2(0.072 nm) + 2(0.140 nm) = 0.424 nm

12.16 This problem asks that we compute the theoretical density of diamond given that the C—C
distance and bond angle are 0.154 nm and 109.5°, respectively. The first thing we need do is to
determine the unit cell edge length from the given C—C distance. The drawing below shows the

cubic unit cell with those carbon atoms that bond to one another in one-quarter of the unit cell.
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From this figure, ¢ is one-half of the bond angle or ¢ = 109.5°/2 = 54.75°, which means that

6 = 90°- 54.75°

35.25°

since the triangle shown is a right triangle. Also, y = 0.154 nm, the carbon-carbon bond distance.

Furthermore, x = a/4, and therefore,

=ysino

x
I
Ao

Or
a = 4ysin 6 = (4)(0.154 nm)(sin 35.25°) = 0.356 nm

=356 x 1078 cm

The unit cell volume, VC' is just a3, that is
Ve = as = (3.56x10'8 cmi - 451 x10 2 cm?®

We must now utilize a modified Equation (12.1) since there is only one atom type. There are 8

equivalent atoms per unit cell, and therefore

3 (8 atoms/unit cell)(12.01 g/maol)
@.51 X 10'23 cm3/unit ceIIX3.023 X 1023 atoms/mol]

=3.54 g/cm3

The measured density is 3.51 g/cm3.

12.17 This problem asks that we compute the theoretical density of ZnS given that the Zn—S distance
and bond angle are 0.234 nm and 109.5°, respectively. The first thing we need do is to determine

the unit cell volume from the given Zn—S distance. From the previous problem, the unit cell volume
VC is just a3, a being the unit cell edge length, and
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Ve = [aysin6] = [(4)(0.234 nm)(sin 35.25)]°

3 22 Cm3

=0.1576 nm” = 1.576 x 10

Now we must utilize Equation (12.1) with n' = 4 formula units, and AZn and AS being 65.39 and

32.06 g/mol, respectively. Thus

n'(Ag, * Ag)

p =
VCNA

_ (4 formula units/unit cell)(65.39 g/mol + 32.06 g/mol)
(1.576 X 10'22 cm3/unit ceIIXS.OZS X 1023 formula units/mol)

=411 g/cm3

The measured value of the density is 4.10 g/cm3.

12.18 We are asked to determine the number of Cd2+ and 82' ions per unit cell for cadmium sulfide
(CdS). For CdS, a=0.582 nmand p =4.82 g/cm3. Using Equation (12.1)
3
pPVeN . pa Np

ACd+AS ACd+AS

3
@.82 g/cm3 £.82 x 108 cm) @.023 x 1023 formula units/mol]
B (112.40 g/mol + 32.06 g/mol)

=3.96 or almost 4
2+ 2- .
Therefore, there are four Cd™ and four S™ per unit cell.

12.19 (a) We are asked to compute the theoretical density of CsCl. Modifying the result of Problem 3.4,

we get
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2l ¥ 2~ 2(0.170 nm) + 2(0.181 nm)

° - 3 V3

= 0.405 nm = 4.05 x 10°8 cm

From Equation (12.1)

p =
VCNA A

" Best Aci) _ " Bes * Ac)
a3N

For the CsCl crystal structure, n' = 1 formula unit/unit cell, and thus

(1 formula unit/unit cell)(132.91 g/mol + 35.45 g/mol)

p =
{(4.05 X 10'8 cmi/unit cell} (6.023 X 1023 formula units/mol)

=4.20 g/cm3

(b) This value of the theoretical density is greater than the measured density. The reason for this
discrepancy is that the ionic radii in Table 12.3, used for this computation, were for a coordination

number of six, when, in fact, the coordination number of both Cs' and CI is eight. The ionic radii
should be slightly greater, leading to a larger VC value, and a lower theoretical density.

12.20 This problem asks that we compute the theoretical density of Can. A unit cell of the fluorite

structure is shown in Figure 12.5. It may be seen that there are four CaF, units per unit cell (i.e., n’'

2
= 4 formula units/unit cell). Using a modified form of the result of Problem 3.4, we may assume, for
each of the eight small cubes in the unit cell, that

2r +2r
ca%t E-

a:T

and, from Table 12.3

2(0.100 2(0.133 -
q = 2 nm)‘/% ( M) _ 269 nm = 2.69 x 10°® cm

The volume of the unit cell is just
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3
Ve = (2a)° = [(2)@.69 x 1073 cmj ~1.56x 1022 cm®

Thus, from Equation (12.1)

o (Agt 2A)

p =
VCNA

__(4 formula units/unit cell) [40.08 g/mol + (2)(19.00 g/mol)]
(1.56 X 10'22 cm3/unit cell)@.OZB X 1023 formula units/mol)

=3.33 g/cm3
The measured density is 3.18 g/cm3.

12.21 We are asked to specify possible crystal structures for an AX type of ceramic material given its
density (2.10 g/cm3), that the unit cell has cubic symmetry with edge length of 0.57 nm, and the
atomic weights of the A and X elements (28.5 and 30.0 g/mol, respectively). Using Equation (12.1)

and solving for n' yields

PVeNa

n =
DAt 2P

(2.10 g/cm3 1(5.70 x 108 cmj/unit cell }@.023 x 1023 formula units/mol)

(30.0 + 28.5) g/mol

= 4.00 formula units/unit cell

Of the three possible crystal structures, only sodium chloride and zinc blende have four formula units

per unit cell, and therefore, are possibilities.

12.22 This problem asks us to compute the atomic packing factor for Fe3O4 given its density and unit

cell edge length. It is first necessary to determine the number of formula units in the unit cell in order

to calculate the sphere volume. Solving for n' from Equation (12.1) leads to
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PVeNa

n =
DAt DA

63.24 g/cm3 i@sg x 108 cmj/unit cell }@.023 x 1023 formula units/mol)

(3)(55.85 g/moal) + (4)(16.00 g/mol)

= 8.0 formula units/unit cell

2 3+ 2-

Thus, in each unit cell there are 8 Fe +, 16 Fe~ ', and 32 O” ions. From Table 12.3, MEe2+ = 0.077

nm, r 3+ = 0.069 nm, and ro2- = 0.140 nm. Thus, the total sphere volume, VS in Equation (3.2),

is just

Vs = (8) (% ch (7.7 X 10_gcm)3 + (16)(§ nj (6.9 x 1079 cm)3

+ (32)(% n) (1.40 x 1078 cmf

= 4.05x 10722 ¢cm®

Now, the unit cell volume (VC) is just

Ve = a® = @.39 x108 Cmi - 590 x 10722 cm®

Finally, the atomic packing factor (APF) from Equation (3.2) is just

Vg 4.05x 1022 cm®
S _ 05x 10 cm  0.686

Ve 590x10722 ¢cm3

APF =

12.23 This problem asks for us to calculate the atomic packing factor for aluminum oxide given values for

the a and c lattice parameters, and the density. It first becomes necessary to determine the value of
n' in Equation (12.1). This necessitates that we calculate the value of VC’ the unit cell volume. In

Problem 3.7 it was shown that the area of the hexagonal base (AREA) is related to a as
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2
AREA = 6\@(2] = 15a%43

= (1.5)@.759 x 1078 cmf (1.732) = 5.88 x 1012 cm?

The unit cell volume now is just

Ve = (AREA)(C) = (5.88 x 1018 cmz)@.2989 x 1077 Cm)

= 7.64x 10722 cm3

Now, solving for n' in Equation (12.1) yields

PNAVE

) DAt 2 Pa

n

@.99 glend f.ozs x 1023 formula units/molr.64 x 1022 cmB3/unit cell)
= (2)(26.98 g/mol) + (3)(16.00 g/mol)

= 18.0 formula units/unit cell

2

Thus, there are 18 AI203 units per unit cell, or 36 AI3+ ions and 54 O“" ions. From Table 12.3, the

radii of these two ion types are 0.053 and 0.140 nm, respectively. Thus, the total sphere volume, VS

in Equation (3.2), is just
_ a2 -9V (ﬁ j -8 j
Vg = (36)[3@(5.3 x 10 cm) + (5457 (1.4x10 cm

= 6.43x 10722 cm®

Finally, the APF is just

Vs 6.43x10°%% cm®
Ve 7.64x10722 cm3

APF = =0.842

337



12.24 We are asked in this problem to compute the atomic packing factor for the diamond cubic crystal

structure, given that the angle between adjacent bonds is 109.5°. The first thing that we must do is
to determine the unit cell volume Ve in terms of the atomic radius r. From Problem 12.16 the

following relationship was developed
a = 4ysin 6
in which'y = 2r and 6 = 35.25°. Furthermore, since the unit cell is cubic, VC = a3; therefore

Ve = (aysin 0)° = [(4)(2n)(sin 35.25°)] = 98.43 r°

Now, it is necessary to determine the sphere volume in the unit cell, VS' in terms of r. For this unit

cell (Figure 12.15) there are 4 interior atoms, 6 face atoms, and 8 corner atoms. The entirety of
each of the interior atoms, one-half of each face atom, and one-eighth of each corner atom belong to

the unit cell. Therefore, there are 8 equivalent atoms per unit cell; hence

4 3 3
Vg = (8)(5 nr j= 33.51r

Finally, the atomic packing factor is just

Vs 33518
APF = —S = =22L-_ 349

Ve 984313

12.25 We are asked in this problem to compute the atomic packing factor for the CsCl crystal structure.
This requires that we take the ratio of the sphere volume within the unit cell and the total unit cell
volume. From Figure 12.3 there is the equivalent of one Cs and one Cl ion per unit cell; the ionic

radii of these two ions are 0.170 nm and 0.181 nm, respectively (Table 12.3). Thus, the sphere
volume, VS’ is just

4
Vg = 5(n)[0.170 nm)® + (0.181 nm)3]= 0.0454 nm?>

Using a modified form of the result of Problem 3.4, for CsCl we may express the unit cell edge

length, a, in terms of the atomic radii as
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21+ 21 2(0.170 nm) + 2(0.181 nm)

S - S 7

= 0.405 nm

. _.3
Since VC =a

V. = (0.405 nm)* = 0.0664 nm°

And, finally the atomic packing factor is just

Vs 0.0454 nm°
APFE = V—S -

3= 0.684
c 0.0664 nm

12.26 This problem asks that we represent specific crystallographic planes for various ceramic crystal
structures.

(a) A portion of the (100) plane for the rock salt crystal structure would appear as
/ g

Na+

(b) A portion of the (110) plane for the cesium chloride crystal structure would appear as

/m

+
Cs

(c) A portion of the (111) plane for the zinc blende crystal structure would appear as
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2+
Zn

(d) A portion of the (110) plane for the perovskite crystal structure would appear as

12.27 The silicate materials have relatively low densities because the atomic bonds are primarily
covalent in nature (Table 12.1), and, therefore, directional. This limits the packing efficiency of the

atoms, and therefore, the magnitude of the density.

12.28 This problem asks for us to determine the angle between covalent bonds in an Sioi_ tetrahedron.

Below is shown one such tetrahedron situated within a cube.
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(2y)2 =a?+a® = 2a°
or
_ a2
y=7
Furthermore, x = a/2, and
a
X 2 1
tan® = —=—F==—F
y a42 2
2

From which

Now, solving for the angle ¢

¢ = 180°- 90° -35.26° = 54.74°

Finally, the bond angle is just 2¢, or 2¢ = (2)(54.74°) = 109.48°.

12.29 (a) The chemical formula for kaolinite clay may also be written as AI203-28i02-2H20. Thus, if

we remove the chemical water, the formula becomes AI203-ZSi02. The formula weight for AI203 is
just (2)(26.98 g/mol) + (3)(16.00 g/mole) = 101.96 g/mol; and for SiO2 the formula weight is 28.09

g/mol + (2)(16.00 g/mol) = 60.09 g/mol. Thus, the composition of this product, in terms of the

concentration of Al,O, CA|203, in weight percent is just
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c _ 101.96 g/mol
AlL,O; ™ 101.96 g/ mol + (2)(60.09 g/mol)

x 100 = 45.9 wt%

(b) The liquidus and solidus temperatures for this material as determined from the SiOZ—AIZO3

phase diagram, Figure 12.27, are 1800°C and 1587°C, respectively.

12.30 Frenkel defects for anions would not exist in appreciable concentrations because the anion is quite

large and is highly unlikely to exist as an interstitial.

12.31 Stoichiometric means having the exact ratio of anions to cations as specified by the chemical

formula for the compound.

2+~2

12.32 (a) For a Cu“ O“ compound in which a small fraction of the Cu2+ ions exist as Cu+, for each
cu* formed there is one less positive charge introduced (or one more negative charge). In order to
maintain charge neutrality, we must either add an additional positive charge or remove a negative
charge. This may be accomplished be either creating Cu2+ interstitials or 02' vacancies.

(b) There will be two cu® ions required for each of these defects.
(c) The chemical formula for this nonstoichiometric material may be expressed as Cu,,,Oo0rCu0,

< where X is some

small fraction.

12.33 (a) For Li+ substituting for Ca2+ in CaO, oxygen vacancies would be created. For each Li+
substituting for Ca2+, one positive charge is removed; in order to maintain charge neutrality, a
single negative charge may be removed. Negative charges are eliminated by creating oxygen
vacancies, and for every two Li* ions added, a single oxygen vacancy is formed.

(b) For CI substituting for 02' in CaO, calcium vacancies would be created. For each CI
substituting for an 02', one negative charge is removed; in order to maintain charge neutrality, two

Cl ions will lead to the formation of one calcium vacancy.

12.34 For every M92+ ion that substitutes for AI3+ in AI203, a single positive charge is removed. Thus,

in order to maintain charge neutrality, either a positive charge must be added or a negative charge
must be removed.
. . + . " + .
Positive charges are added by forming AI3 interstitials, and one AI3 interstitial would be

formed for every three Mg2+ ions added.
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Negative charges may be removed by forming 02_ vacancies, and one oxygen vacancy

would be formed for every two Mg2+ ions added.

12.35 There is only one eutectic for the portion of the ZrOZ-CaO system shown in Figure 12.26, which,

upon cooling, is

Liquid — cubic ZrO, + CaZrO4

There are two eutectoids, which reactions are as follows:

tetragonal — monoclinic ZrO, + cubic ZrO,

cubic — monoclinic ZrO2 + CaZr409

12.36 (a) For this portion of the problem we are to determine the type of vacancy defect that is

produced on the AIZOS-rich side of the spinel phase field (Figure 12.25) and the percentage of these

vacancies at the maximum nonstoichiometry (82 mol% AI203). On the alumina-rich side of this

phase field, there is an excess of At ions, which means that some of the A" ions substitute for
Mg2+ ions. In order to maintain charge neutrality, Mg2+ vacancies are formed, and for every Mg2+
vacancy formed, two A" ions substitute for three M92+ ions.

Now, we will calculate the percentage of M92+ vacancies that exist at 82 mol% AI203. Let

us arbitrarily choose as our basis 50 MgO—AI203 units of the stoichiometric material which consists

of 50 M92+ ions and 100 AI3+ ions. Furthermore, let us designate the number of M92+ vacancies
as X, which means that 2x AI3+ ions have been added and 3x M92+ ions have been removed (two
of which are filled with AI3+ ions). Using our 50 MgO-AI203 unit basis, the number of moles of
AI203 in the nonstoichiometric material is (100 + 2x)/2; similarly the number of moles of MgO is (50

- 3x). Thus, using a modified form of Equation (4.5), we may write an expression for the mole
percent of AI203 as

100 + 2x
2

+ (50 — 3x)

mol% Al, O, = x 100

100 + 2x
2
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If we solve for x when the mol% of AI203 =82, then x = 12.1. Thus, adding 2x or (2)(12.1) = 24.2

3

AT ions to the original material consisting of 100 A" and 50 M92+ ions will produce 12.1 Mg2+

vacancies. Therefore, the percentage of vacancies is just
2.1

. 12.
% vacancies = m x 100 = 8.1%

(b) Now, we are asked to make the same determinations for the MgO-rich side of the spinel phase
field, for 40 mol% AI203. In this case, M92+ ions are substituting for AI3+ ions. Since the Mg2+ ion

has a lower charge than the ARt ion, in order to maintain charge neutrality, negative charges must
be eliminated, which may be accomplished by introducing 02" vacancies. For every 2 Mg2+ ions
that substitute for 2 A ions, one 0% vacancy is formed.

Now, we will calculate the percentage of 02' vacancies that exist at 40 mol% AI203. Let us
arbitrarily choose as our basis 50 MgO—AI203 units of the stoichiometric material which consist of 50

2 2

Mg * jons 100 AI3+ ions. Furthermore, let us designate the number of O“™ vacancies as y, which

means that 2y M92+ ions have been added and 2y AI3+ ions have been removed. Using our 50
MgO—AI203 unit basis, the number of moles of AI203 in the nonstoichiometric material is (100 -

2y)/2; similarly the number of moles of MgO is (50 + 2y). Thus, the expression for the mole percent
of Al, O, is just
273
100 - 2y

2
100 — 2y (50 + 2y)

If we solve for y when the mole percent of AI203 =40, theny =7.14. Thus, 7.14 02' vacancies are

2-

produced in the original material that had 200 O~ ions. Therefore, the percentage of vacancies is

just

. 714
% vacancies = x 100 = 3.57%

200

12.37 (a) There may be significant scatter in the fracture strength for some given ceramic material

because the fracture strength depends on the probability of the existence of a flaw that is capable of
initiating a crack; this probability varies from specimen to specimen of the same material.

(b) The fracture strength increases with decreasing specimen size because as specimen size

decreases, the probably of the existence of a flaw of that is capable of initiating a crack diminishes.
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12.38 We are asked for the critical crack tip radius for an AIZO material. From Equation (8.1)

1/2

a

6., =206.|—
m O(ptj

3

Fracture will occur when S reaches the fracture strength of the material, which is given as E/10;

thus

Or, solving for Py

From Table 12.5, E = 393 GPa, and thus,

(400)(2 x1073 mm)275 MPa)?
Py =

(393 x 103 Mpaf

7

=3.9x10"" mm=0.39 nm

12.39 This problem asks that we compute the crack tip radius ratio before and after etching. Let

py = original crack tip radius, and

py = etched crack tip radius

Also,

2.
1

Nl a
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Solving for Ll from the following
t

yields

12.40 (a) For this portion of the problem we are asked to compute the flexural strength for a glass
specimen that is subjected to a three-point bending test. The flexural strength [Equation 12.3(a)] is

just
3L
¢ =— >
fs ™ opg?

for a rectangular cross-section. Using the values given in the problem,

(3)(290 N)(45 x 103 m)
_ =78.3 MPa (10,660 psi)

Ots ~
(2)(10 x 1073 m)(5 x 1073 m)2

(b) We are now asked to compute the maximum deflection. From Table 12.5, the elastic modulus
(E) for glass is 69 GPa (10 x 106 psi). Also, the moment of inertia for a rectangular cross section

(Figure 12.29) is just

, = bd®
T12
Thus,
Ay - e RS
3)  4Ebd3
age| 24”
12
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3
(266 N) (45 x 1073 m)

(4)@9 x 10°N/m? )@0 x 1073 mXS x1073 m)3

2

=7.0x10°m=7.0x102mm (25x107in)

12.41 We are asked to calculate the maximum radius of a circular specimen that is loaded using three-

point bending. Solving for R from Equation (12.3b)

1/3
FfL
R =
GfSTE

which, when substituting the parameters stipulated in the problem, yields

| @zs N)(so x 1073 m) 3
B (105 x 108 N/mz)n)

R

=4.0%x10° m=4.0mm (0.16in.)

12.42 For this problem, the load is given at which a circular specimen of aluminum oxide fractures when
subjected to a three-point bending test; we are then are asked to determine the load at which a
specimen of the same material having a square cross-section fractures. It is first necessary to

compute the flexural strength of the alumina using Equation (12.3b), and then, using this value, we
may calculate the value of Ff in Equation (12.3a). From Equation (12.3b)

FL
S rRS3

Of

(3000 N)@O x 1073 m) .
= =306 x 10° N/m? =306 MPa (42,970 psi)
(n)(s.o x 1073 m)3

Now, solving for Ff from Equation (12.3a), realizing that b = d = 12 mm, yields

3
2c de
3L

F =
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e @OG x 10° N/m2X15 X 10‘3m)3
B (3)@0 x 1073 m)

=17,200 N (3870 Ib;)

12.43 (a) This portion of the problem asks that we determine whether or not a cylindrical specimen of
aluminum oxide having a flexural strength of 300 MPa (43,500 psi) and a radius of 5 mm will fracture
when subjected to a load of 7500 N in a three-point bending test; the support point separation is

given as 15 mm. Using Equation (12.3b) we will calculate the value of o; if this value is greater than
Ot (300 MPa), then fracture is expected to occur. Employment of Equation (12.3b) yields

L (7500 N)(15 x 102 m) .
c = = = 286.5x 10" N/m“ =286.5 MPa (40,300 psi)

R (n)(5 x1073 m)3

Since this value is less than the given value of Ot (300 MPa), then fracture is not predicted.

(b) The certainty of this prediction is not 100% because there is always some variability in the
flexural strength for ceramic materials, and since this value of ¢ is relatively close to Ofs then there is

some chance that fracture will occur.

12.44 Crystalline ceramics are harder yet more brittle than metals because they (ceramics) have fewer

slip systems, and, therefore, dislocation motion is highly restricted.

12.45 (a) This portion of the problem requests that we compute the modulus of elasticity for nonporous

spinel given that E = 240 GPa for a material having 5 vol% porosity. Thus, we solve Equation (12.5)
for Eo’ using P = 0.05, which gives

E
E =
© 1_-1.9P + 0.9P2

_ 240 GPa
1 - (1.9)(0.05) + (0.9)(0.05)?

= 265 GPa @8.6 x 10° psij

(b) Now we are asked to determine the value of E at P = 15 vol%. Using Equation (12.5) we get

E =Eofl - 19 + 0.9P?)

348



= (265 GPa)[l - (1.9)0.15) + (0.09)0.15) ]: 195 GPa (28.4 x 10° psij

12.46 (a) This portion of the problem requests that we compute the modulus of elasticity for nonporous

TiC given that E = 310 GPa (45 x 106 psi) for a material having 5 vol% porosity. Thus, we solve
Equation (12.5) for Eo’ using P = 0.05, which gives

E
E, = >
1-19P + 0.9P

_ 310 GPa
1 — (1.9)(0.05) + (0.9)(0.05)2

= 342 GPa @9.6 x 108 psi)

(b) Now we are asked to compute the volume percent porosity at which the elastic modulus of TiC is
240 MPa (35 x 106 psi). Since from part (a), E0 = 342 GPa, and using Equation (12.5) we get

E 240 MPa 2
—=7—"7"—"——=0.702 =1-19P + 0.9P
E0 342 MPa

Or
0.9P2 _ 1.0P + 0298 = 0

Now, solving for the value of P using the quadratic equation solution yields

L Y €192 — (4)(0.9)(0.298)

(2)(0.9)
The positive and negative roots are
P" =194
P =0.171

Obviously, only the negative root is physically meaningful, and therefore the value of the porosity to

give the desired modulus of elasticity is 17.1 vol%.
12.47 (a) This part of the problem asks us to determine the flexural strength of nonporous MgO

assuming that the value of n in Equation (12.6) is 3.75. Taking natural logarithms of both sides of

Equation (12.6) yields

349



Incfs = Inco - nP

In Table 12.5 it is noted that for P = 0.05, Ofg = 105 MPa. For the nonporous material P = 0 and,
In 0y = In O Solving for In S, from the above equation and using these data gives

Incs0 = Incfs + nP

= In (105 MPa) + (3.75)(0.05) = 4.841

e4.841

oro, = =127 MPa (18,100 psi)

(b) Now we are asked to compute the volume percent porosity to yield a Ot of 74 MPa (10,700 psi).

Taking the natural logarithm of Equation (12.6) and solving for P leads to

no, - Inc
p-—=o0 fs
n

_ In(127 MPa) — In (74 MPa)
N 3.75

=0.144 or 14.4 vol%
12.48 (a) Given the flexural strengths at two different volume fraction porosities, we are asked to

determine the flexural strength for a nonporous material. If the natural logarithm is taken of both

sides of Equation (12.6), then

Inog = Inc, — nP
Using the data provided in the problem, two simultaneous equations may be written as
In (100 MPa) = Inc, — (0.05)n
In (50 MPa) = Inc, — (0.20)n

Solving for n and S, leads to n = 4.62 and Oy = 126 MPa. For the nonporous material, P = 0, and,

from Equation (12.6), Oy = Ofg- Thus, Ofs for P =0is 126 MPa.
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(b) Now, we are asked for o;gatP=0.1 for this same material. Utilizing Equation (12.6) yields

Oig = G exp (- nP)
= (126 MPa)exp [-(4.62)(0.1)]

=79.4 MPa

Design Problems

12.D1 This problem asks that we determine the concentration (in weight percent) of GaP that must be
added to GaAs to yield a unit cell edge length of 0.5570 nm. The densities of GaAs and GaP were

given in the problem as 5.307 and 4.130 g/cm3, respectively. To begin, it is necessary to employ
Equation (12.1), and solve for the unit cell volume, VC, for the GaP-GaAs alloy as

V. = n Aave
c- N
Pave A
where Aave and Pave are the atomic weight and density, respectively, of the GaAs-GaP alloy.

Inasmuch as both of these materials have the zinc blende crystal structure, which has cubic
symmetry, VC is just the cube of the unit cell length, a. That is

V. =a° =(0.5570 nm)°

- (5.570 x 1078 cm)3 ~1.728 x 10722 ¢m3

It is now necessary to construct expressions for Aave and Pave in terms of the concentration of

gallium phosphide, CGaP using Equations (4.11a) and (4.10a). For Aave we have

100

M Com, (9 - Coup)

AGaP AGaAs
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100

Coap @'OO _ CGaP)
100.69 g/ mol 144.64 g/mol
Whereas for Pave
100
Pave ~
Ceap N (100 _ CGaP)
PGapP PGaAs
_ 100
Caap _, (90— Copp)
4.130 g/cm3 5307 g/cm’®

Within the zinc blende unit cell there are four formula units, and thus, the value of n' in Equation

(12.1) is 4; hence, this expression may be written in terms of the concentration of GaP in weight

percent as follows:

Ve =1.728x 10722 cm®
— n Aave
paveNA
. 100
(4 fu/ unitcell)
Cgap (100 _ CGaP)
B 100.69 g/mol 144.64 g/mol
100 @.023 x 1023 fu/mole)
Coap__, @9~ Cogp)
| 4.130 g/cm3 5.307 g/cm3 ]

And solving this expression for Caap leads to Coap ™ 34 wit%.

12.D2 This problem asks for us to determine which of the ceramic materials in Table 12.5, when

fabricated into cylindrical specimens and stressed in three-point loading, will not fracture when a load
of 445 N (100 Ibf) is applied, and also will not experience a center-point deflection of more than
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0.021 mm (8.5 x 10'4 in.). The first of these criteria is met by those materials that have flexural

strengths greater than the stress calculated using Equation (12.3b). According to this expression

_ FL
s TCR3

Of

(445 N)(5o.8 x 1073 m)

- 131 x10% N/m? =131 MPa (18,900 psi)
(n)(3.8 x 1073 m)

Of the materials in Table 12.5 the following have flexural strengths greater than this value: Si3N4,
ZrOz, SIiC, AI203, glass-ceramic, mullite, and spinel.

For the second criterion we must solve for the magnitude of the modulus of elasticity, E,

from the equation given in Problem 12.40 where the expression for the cross-sectional moment of

4

N - . . . R .
inertia appears in Figure 12.29; that is, for a circular cross-section | = = Solving for E from

these two expressions

FL3
E=—r—"7—
127R4Ay

(445 N)(50.8 x107 m)3

i (12)(n)@.8 x1073 mjl(o.021 x 1073 m)

=353 x 109 N/m? = 353 GPa (49.3 x 10° psi)

Of those materials that satisfy the first criterion, only AI203 has a modulus of elasticity greater than

this value (Table 12.5), and, therefore, is a possible candidate.
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CHAPTER 13
APPLICATIONS AND PROCESSING OF CERAMICS
PROBLEM SOLUTIONS
13.1 The two desirable characteristics of glasses are optical transparency and ease of fabrication.

13.2 (a) Deuvitrification is the process whereby a glass material is caused to transform to a crystalline
solid, usually by a heat treatment.
(b) Two properties that may be improved by devitrification are 1) a lower coefficient of thermal
expansion, and 2) a higher thermal conductivity. Two properties that may be impaired are 1) a loss
of optical transparency, and 2) a lowering of mechanical strength when stresses are introduced from
volume changes that attend the transformation. In some cases, however, strength may actually be

improved.

13.3 Glass-ceramics may not be transparent because they are polycrystalline. Light will be scattered at
grain boundaries in polycrystalline materials if the index of refraction is anisotropic, and when those
grains adjacent to the boundary have different crystallographic orientations. This phenomenon is

discussed in Section 21.10.

13.4 For refractory ceramic materials, three characteristics that improve with increasing porosity are
decreased thermal expansion and contraction upon thermal cycling, improved thermal insulation,
and resistance to thermal shock. Two characteristics that are adversely affected are load-bearing

capacity and resistance to attack by corrosive materials.

13.5 (a) From Figure 12.25, the maximum temperature without a liquid phase corresponds to the
temperature at the MgO(ss)-[MgO(ss) + Liquid] boundary at this composition, which is approximately

2240°C (4060°F).
(b) This maximum temperature lies at the phase boundary between MgAI204(ss)—(MgAI204 +

Liquid) phase fields (just slightly to the right of the congruent melting point at which the two phase

boundaries become tangent); this temperature is approximately 2090°C (3790°F).

13.6 For each section of this problem two SiOZ-AI203 compositions are given; we are to decide, on the

basis of the SiOZ-AIZO3 phase diagram (Figure 12.27), which is the more desirable as a refractory

and then justify the choice.

354



(@) The 99.8 wt% SiO5-0.2 wt% AI203 will be more desirable because the liquidus temperature will

be greater for this composition; therefore, at any temperature within the cristobalite + liquid region

on the phase diagram, there will be a lower fraction of the liquid phase present than for the 99.0 wt%
Si02-1.0 wit% AI203 composition, and, thus, the mechanical integrity will be greater.

(b) The 74 wt% AI203-26 wt% SiO2 composition will be more desirable because, for this
composition, a liquid phase does not form until about 1750°C [i.e., the temperature at which a
vertical line at 74 wt% AI203 crosses the boundary between the mullite and (mullite + liquid) phase
regions]; for the 70 wt% AI203-30 wt% SiO2 material, a liquid phase forms at a much lower
temperature--1587°C.

(c) The 95 wt% AI203-5 wit% SiO2 composition will be more desirable because the liquidus
temperature will be greater for this composition. Therefore, at any temperature within the alumina +

liquid region on the phase diagram, there will be a lower fraction of the liquid phase present than for
the 90 wt% AI203-1O wit% SiO2 composition, and, thus, the mechanical integrity of the 95 wt%

AI203-5 wt% SiO2 material will be greater.

13.7 This problem calls for us to compute the mass fractions of liquid for two fireclay refractory materials
at 1600°C. In order to solve this problem it is necessary that we use the SiOZ-AIZO3 phase diagram

(Figure 12.27). The mass fraction of liquid, W, as determined using the lever rule and tie line at

1600°C, is just

Cmullite _ Co
Cmullite - CL

where C =72 wt% Al,Og and C| =8 wt% Al,O4, as determined using the tie-line; also, C

mullite
is the composition (in weight percent Al,03) of the refractory material.

(a) Forthe 25 wt% Al,O,- 75 wt% SiO, composition, C_ = 25 wt% Al,0,, and
273 2 o} 2¥3

72 - 25
W, = —— -0.73
L 72-8

b) For the 45 wt% Al,O4,- 55 wt% SiO, composition, C_ = 45 wt% Al,O,, and
273 2 o 273

72 - 45
W, = —— =0.42
L 72 -8
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13.8 (a) This portion of the problem asks that we specify, for the SiOZ-AI203 system, the maximum
temperature possible without the formation of a liquid phase. According to Figure 12.27 this
maximum temperature is 1890°C, which is possible for compositions between about 77 AI203 and
virtually 100 wt% AI203.

(b) For the MgO-AI203 system, Figure 12.25, the maximum temperature without the formation of a

liquid phase is approximately 2800°C which is possible for pure MgO.

13.9 For clay-based aggregates, a liquid phase forms during firing, which infiltrates the pores between
the unmelted particles; upon cooling, this liquid becomes a glass, which serves as the bonding
phase.

With cements, the bonding process is a chemical, hydration reaction between the water that
has been added and the various cement constituents. The cement particles are bonded together by

reactions that occur at the particle surfaces.

13.10 It is important to grind cement into a fine powder in order to increase the surface area of the
particles of cement. The hydration reactions between water and the cement occur at the surface of
the cement particles. Therefore, increasing the available surface area allows for more extensive

bonding.

13.11 We are asked to compute the weight of soda ash and limestone that must be added to 100 Ibm of

SiO,, to yield a glass composition of 75 wt% SiO,,, 15 wt% Na,O, and 10 wt% CaO. Inasmuch as

2 2' 2
the concentration of SiO2 in the glass is 75wt%, the final weight of the glass (mglass) is just
100 Ib
- m _
Mylass = 075 - 133.3 Ib,

Therefore, the weights of Na,O (mNaZO) and CaO (mCaO) are as follows:

15 wt%
M\, 0 =( 00 )(133.3 Iby) = 20.0 Iby,

and

10 wt%
Mcao = (W)(l?:S.S Ib,,) = 13.31b,,

In order to compute the weights of Na2CO3 and CaCO3 we must employ molecular weights, as
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0.0 Ib molecular wit. Na2C03
m = (20.
Na,CO, ( m) molecular wt. Na,O

105.99 g/mol

=3421b
61.98 g/molj m

= (20.0 Ibm)(

and

133 b molecular wt CaCO3
mCa003 = (133 1by,) molecular wt. CaO

100.09 g/mol

= (133 1b = 23.81b
( m)[ 56.08 g/mol} m

13.12 The glass transition temperature is, for a noncrystalline ceramic, that temperature at which there is
a change of slope for the specific volume versus temperature curve (Figure 13.5).
The melting temperature is, for a crystalline material, that temperature at which there is a

sudden and discontinuous decrease in the specific volume versus temperature curve.

13.13 In order to be drawn into fibers, a material must exist as a viscous fluid. Crystalline aluminum
oxide is a solid below its melting temperature and a nonviscous fluid above. On the other hand, a
glass will be a viscous fluid as a supercooled liquid.

13.14 The annealing point is that temperature at which the viscosity of the glass is 1012 Pa-s (1013 P).

From Figure 13.6, these temperatures for the several glasses are as follows:

Glass Annealing Temperature
Soda-lime 500°C (930°F)
Borosilicate 570°C (1060°F)
96% Silica 930°C (1705°F)
Fused Silica 1170°C (2140°F)
13.15 The softening point of a glass is that temperature at which the viscosity is 4 x 106 Pa-s; from

Figure 13.6, these temperatures for the 96% silica, borosilicate, and soda-lime glasses are 1540°C
(2800°F), 830°C (1525°F), and 700°C (1290°F), respectively.
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13.16 (a) Below is shown the logarithm viscosity versus reciprocal of temperature plot for the borosilicate

glass, using the data in Figure 13.6.

40 I I I I

In Viscosity (Pa-s)

0 1 1 1 1
.00e-4 9.00e-4 1.00e-3 1.10e-3 1.20e-3 1.30e-3

1, o
1 K

(b) The activation energy, Qvis’ may be computed from this plot according to

Alnn
(l)
Al —

T

where R is the gas constant, and Aln n/A(1/T) is the slope of the line that has been constructed. The

Qvis =R

value of this slope is 4.36 x 10% K. Therefore,
Quis = (831 J/mol-K) (4.36 x 10* K)
= 362,000 J/mol
13.17 This problem calls for us to determine the maximum temperature to which a cylindrical specimen of

soda-lime glass may be heated in order that its deformation be less than 1 mm over a week's time.

According to Equation (6.1)
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c = AL: IN —5.1X104Pa.
) 5x10°3 m
2
Also,
de d!AI/IO)
dt — dt
1 mm/100 mm 8 -1
= = 1.653 x 10
(1 wk)(7 days/ week)(24 h/day)(3600 s/h) X2D0s
Thus,

s _51x10%*Pa

= = 3.1x10% Pa-s
de/dt 1653 x108 571

n:

From Figure 13.6, the temperature at which the viscosity of the soda-lime glass is 3.1 x 1012 Pa-s is

about 500°C (930°F).

13.18 (a) Residual thermal stresses are introduced into a glass piece when it is cooled because surface
and interior regions cool at different rates, and, therefore, contract different amounts; since the
material will experience very little, if any deformation, stresses are established.

(b) Yes, thermal stresses will be introduced because of thermal expansion upon heating for the
same reason as for thermal contraction upon cooling.

(c) The thinner the thickness of a glass ware the smaller the thermal stresses that are introduced
when it is either heated or cooled. The reason for this is that the difference in temperature across
the cross-section of the ware, and, therefore, the difference in the degree of expansion or contraction

will decrease with a decrease in thickness.

13.19 Borosilicate glasses and fused silica are resistant to thermal shock because they have relatively
low coefficients of thermal expansion; therefore, upon heating or cooling, the difference in the
degree of expansion or contraction across the cross-section of a ware that is constructed from these

materials will be relatively low.

13.20 Thermal tempering of glasses is described in Section 13.8.
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13.21 Chemical tempering will be accomplished by substitution, for Na+, another monovalent cation with
a slightly larger diameter. From Table 12.3, both K+ and Cs+ fill this criterion, having ionic radii of
0.138 and 0.170 nm, respectively. In fact, soda-lime glasses are tempered using a K+-Na+ ion

exchange.

13.22 Two desirable characteristics of clay minerals relative to fabrication processes are 1) they become
hydroplastic (and therefore formable) when mixed with water; and 2) during firing, a clay melts over
a range of temperatures, which allows some fusion and bonding of a ware without complete melting

and a loss of mechanical integrity and shape.

13.23 Clays become hydroplastic when water is added because the water molecules fill in regions
between the layered molecular sheets; these water molecules essentially eliminate the secondary
molecular bonds between adjacent sheets, and also form a thin film around the clay particles. The
net result is that the clay particles are relatively free to move past one another, which is manifested

as the hydroplasticity phenomenon.

13.24 Upon drying, thick ceramic wares are more likely to crack upon drying than thin wares because of
a greater difference in shrinkage between surface and interior cross-sectional regions for the thick
ware. Water being eliminated during drying has a longer distance to travel from the interior to the

surface for the thicker ware.

13.25 The phenomenon of hydroplasticity results when water molecules form a thin film around the small
clay particles. During firing, these individual particles become fused together by the viscous liquid
that fills in the pore volume between the particles--the pore volume occupied by water in the

hydroplastic state. This viscous liquid forms a glass matrix on subsequent cooling.

13.26 (a) The three components of a whiteware ceramic are clay, quartz, and a flux.
(b) With regard to the role that each component plays:
Quartz acts as a filler material.
Clay facilitates the forming operation since, when mixed with water, the mass may be made
to become either hydroplastic or form a slip. Also, since clays melt over a range of temperatures,
the shape of the piece being fired will be maintained.

The flux facilitates the formation of a glass having a relatively low melting temperature.
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13.27 (a) Itis important to control the rate of drying inasmuch as if the rate of drying is too rapid, there
will be nonuniform shrinkage between surface and interior regions, such that warping and/or
cracking of the ceramic ware will result.

(b) Three factors that affect the rate of drying are temperature, humidity, and rate of air flow. The
rate of drying is enhanced by increasing both the temperature and rate of air flow, and by decreasing

the humidity of the air.

13.28 The reason that drying shrinkage is greater for products having smaller clay particles is that there
is more particle surface area, and, consequently, more water will surround a given volume of
particles. The drying shrinkage will thus be greater as this water is removed, and as the interparticle

separation decreases.

13.29 (a) Three factors that influence the degree to which vitrification occurs in clay-based ceramic
wares are: 1) the composition (especially the concentration of flux present); 2) the temperature of
firing; and 3) the time at the firing temperature.

(b) Density will increase with degree of vitrification since the total remaining pore volume decreases.

Firing distortion will increase with degree of vitrification since more liquid phase will be
present at the firing temperature.

Strength will also increase with degree of vitrification inasmuch as more of the liquid phase
forms, which fills in a greater fraction of pore volume. Upon cooling, the liquid forms a glass matrix
of relatively high strength.

Corrosion resistance normally increases also, especially at service temperatures below that
at which the glass phase begins to soften. The rate of corrosion is dependent on the amount of
surface area exposed to the corrosive medium; hence, decreasing the total surface area by filling in
some of the surface pores, diminishes the corrosion rate.

Thermal conductivity will increase with degree of vitrification. The glass phase has a higher

conductivity than the pores that it has filled.

13.30 The principal disadvantage of hot-isostatic pressing is that it is expensive. The pressure is applied
on a pre-formed green piece by a gas. Thus, the process is slow, and the equipment required to

supply the gas and withstand the elevated temperature and pressure is costly.

Design Problem

13.01 (a) Important characteristics that are required of a ceramic material to be used for kitchen

cookware are: 1) it must have a high resistance to thermal shock (Section 19.5) in order to
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withstand relatively rapid changes in temperature; 2) it must have a relatively high thermal
conductivity; 3) it must be relatively strong and tough in order to endure normal kitchen use; and 4)
it must be nontoxic.

(b) Possible materials worth considering are a common soda-lime glass, a borosilicate (Pyrex)
glass, and a glass ceramic. These materials and some of their characteristics are discussed in this
chapter. Using Equation (19.9) a comparison of the resistance to thermal shock may be made. The
student will need to obtain cost information.

(c) ltis left to the student to make this determination and justify the decision.

362



CHAPTER 14

POLYMER STRUCTURES

PROBLEM SOLUTIONS

14.1 Polymorphism is when two or more crystal structures are possible for a material of given

composition. Isomerism is when two or more polymer molecules or mer units have the same

composition, but different atomic arrangements.

14.2 The mer structures called for are sketched below.

(a) Polyvinyl fluoride

H H
|
—c—c¢c—
|
H F
(b) Polychlorotrifluoroethylene
F F
||
—Cc——C —
||
F Cl
(c) Polyvinyl alcohol
H H
|
S C— -
|
H OH
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14.3 Mer weights for several polymers are asked for in this problem.

(@) For polytetrafluoroethylene, each mer unit consists of two carbons and four fluorines (Table
14.3). If AC and AF represent the atomic weights of carbon and fluorine, respectively, then

m = 2(As) + 4(Ap)

= (2)(12.01 g/mol) + (4)(19.00 g/mol) = 100.02 g/mol

(b) For polymethyl methacrylate, from Table 14.3, each mer unit has five carbons, eight hydrogens,

and two oxygens. Thus,

m=5(Ac) + 8(A) + 2(Ag)

= (5)(12.01 g/mol) + (8)(1.008 g/mol) + (2)(16.00 g/mol) = 100.11 g/mol

(c) For nylon 6,6, from Table 14.3, each mer unit has twelve carbons, twenty-two hydrogens, two

nitrogens, and two oxygens. Thus,

m=12(Ac) + 22(A,) + 2(AN) + 2(A0)

=(12)(12.01 g/mol) + (22)(1.008 g/mol) + (2)(14.01 g/mol) + (2)(16.00 g/mol)
=226.32 g/mol

(d) For polyethylene terephthalate, from Table 14.3, each mer unit has ten carbons, eight hydrogens,

and four oxygens. Thus,

m = 10(Ac) + 8(A,) + 4(An)

= (10)(12.01 g/mol) + (8)(1.008 g/mol) + (4)(16.00 g/mol) = 192.16 g/mol

14.4 We are asked to compute the number-average degree of polymerization for polypropylene, given
that the number-average molecular weight is 1,000,000 g/mol. The mer molecular weight of
polypropylene is just

m = 3(AC) + 6(AH)
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= (3)(12.01 g/mol) + (6)(1.008 g/mol) = 42.08 g/mol

If we let N represent the number-average degree of polymerization, then from Equation (14.4a)

6
. :%z 10° g/mol _ 23,700
N m 42.08 g/mol

145 (a) The mer molecular weight of polystyrene is called for in this portion of the problem. For

polystyrene, from Table 14.3, each mer unit has eight carbons and eight hydrogens. Thus,

m=8(Ac) +8(A)

= (8)(12.01 g/mol) + (8)(1.008 g/mol) = 104.14 g/mol

(b) We are now asked to compute the weight-average molecular weight. Since the weight-average
degree of polymerization, Ny’ is 25,000, using Equation (14.4b)

M, = n,,M =(25,000)(104.14 g/mol) = 2.60 x 10° g/mol

14.6 (a) From the tabulated data, we are asked to compute Mn, the number-average molecular weight.

This is carried out below.

Molecular wt

Range Mean M. X, XM,
8,000-16,000 12,000 0.05 600
16,000-24,000 20,000 0.16 3200
24,000-32,000 28,000 0.24 6720
32,000-40,000 36,000 0.28 10,080
40,000-48,000 44,000 0.20 8800
48,000-56,000 52,000 0.07 3640

M, = D> xM; = 33,040 g/mol
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(b) From the tabulated data, we are asked to compute MW, the weight- average molecular weight.

Molecular wt.

Range wi w,
8,000-16,000 12,000 0.02
16,000-24,000 20,000 0.10
24,000-32,000 28,000 0.20
32,000-40,000 36,000 0.30
40,000-48,000 44,000 0.27
48,000-56,000 52,000 0.11

5600
10,800
11,880

5720

M, =D w;M, = 36,240 g/mol

(c) Now we are asked to compute n, (the number-average degree of polymerization), using the

Equation (14.4a). For polypropylene,
m = 3(AC) + 6(AH)
= (3)(12.01 g/mol) + (6)(1.008 g/mol) = 42.08 g/mol

And
o= M, _ 33,040 g/mol _ .
N~ m = 42.08g/mol

(d) And, finally, we are asked to compute N, the weight-average degree of polymerization, which,

using Equation (14.4b), is just

=W — 361
"w= T 42.08 g/mol

14.7 (a) From the tabulated data, we are asked to compute Mn, the number-average molecular weight.

This is carried out below.
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Molecular wt.

Range Mean M, X XM,
8,000-20,000 14,000 0.05 700
20,000-32,000 26,000 0.15 3900
32,000-44,000 38,000 0.21 7980
44,000-56,000 50,000 0.28 14,000
56,000-68,000 62,000 0.18 11,160
68,000-80,000 74,000 0.10 7400
80,000-92,000 86,000 0.03 2580

M, = > xM; = 47,720 g/mol

(b) From the tabulated data, we are asked to compute Mw' the weight- average molecular weight.

This determination is performed as follows:

Molecular wt.

Range wi w; wlMi
8,000-20,000 14,000 0.02 280
20,000-32,000 26,000 0.08 2080
32,000-44,000 38,000 0.17 6460
44,000-56,000 50,000 0.29 14,500
56,000-68,000 62,000 0.23 14,260
68,000-80,000 74,000 0.16 11,840
80,000-92,000 86,000 0.05 4300

I\_/\N = zWiMi = 53,720 g/mol

(c) We are now asked if the number-average degree of polymerization is 477, which of the polymers

in Table 14.3 is this material? It is necessary to compute m in Equation (14.4a) as

— M, 47,720 g/mol
n ]
m=—=—"———"-"— = 10004 /m0|
n 477 9

The mer molecular weights of the polymers listed in Table 14.3 are as follows:
Polyethylene--28.05 g/mol
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Polyvinyl chloride--62.49 g/mol
Polytetrafluoroethylene--100.02 g/mol
Polypropylene--42.08 g/mol
Polystyrene--104.14 g/mol

Polymethyl methacrylate--100.11 g/mol
Phenol-formaldehyde--133.16 g/mol
Nylon 6,6--226.32 g/mol

PET--192.16 g/mol
Polycarbonate--254.27 g/mol

Therefore, polytetrafluoroethylene is the material since its mer molecular weight is closest to that
calculated above.

(d) The weight-average degree of polymerization may be calculated using Equation (14.4b), since

MW and m were computed in portions (b) and (c) of this problem. Thus

I M, _ 53,720 g/mol _ 537
W m  100.04 g/mol

14.8 This problem asks if it is possible to have a polyvinyl chloride homopolymer with the given molecular
weight data and a number-average degree of polymerization of 1120. The appropriate data are

given below along with a computation of the number-average molecular weight.

Molecular wt.
Range wi X xiMI

8,000-20,000 14,000 0.05 700
20,000-32,000 26,000 0.15 3900
32,000-44,000 38,000 0.21 7980
44,000-56,000 50,000 0.28 14,000
56,000-68,000 62,000 0.18 11,160
68,000-80,000 74,000 0.10 7440
80,000-92,000 86,000 0.03 2580

WIW = inMi = 47,720 g/mol

For PVC, from Table 14.3, each mer unit has two carbons, three hydrogens, and one chlorine.
Thus,
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m=2(Ag) +3(AL) + (Ag)

= (2)(12.01 g/mol) + (3)(1.008 g/mol) + (35.45 g/mol) = 62.49 g/mol

Now, we will compute N, from Equation (14.4a) as

M 47,720 g/mol
n - —n - ,—gmo - 764
n m 62.49 g/mol

Thus, such a homopolymer is not possible since the calculated n, is 764 not 1120.

14.9 (a) For chlorinated polyethylene, we are asked to determine the weight percent of chlorine added
for 5% CI substitution of all original hydrogen atoms. Consider 50 carbon atoms; there are 100

possible side-bonding sites. Ninety-five are occupied by hydrogen and five are occupied by CI.
Thus, the mass of these 50 carbon atoms, Me is just

Me = 50(AC) = (50)(12.01 g/mol) = 600.5 g

Likewise, for hydrogen and chlorine,

my = 95(AH) =(95)(1.008 g/mol) =95.76 g
Me) = 5(AC|) =(5)(35.45 g/mol) =177.25¢g

Thus, the concentration of chlorine, CCI’ is just
- 177.25 g
Cl =~ 60059 + 95.76g + 177.25¢g

x 100 = 20.3 wt%

(b) Chlorinated polyethylene differs from polyvinyl chloride, in that, for PVC, 1) 25% of the side-

bonding sites are substituted with CI, and 2) the substitution is probably much less random.

14.10 Relative to polymer chains, the difference between configuration and conformation is that

conformation is used in reference to the outline or shape of the chain molecule, whereas,
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configuration refers to the arrangement of atom positions along the chain that are not alterable

except by the breaking and reforming of primary bonds.

14.11 This problem first of all asks for us to calculate, using Equation (14.11), the average total chain
length, L, for a linear polyethylene polymer having a number-average molecular weight of 300,000
g/mol. It is necessary to calculate the number-average degree of polymerization, N using

Equation (14.4a). For polyethylene, from Table 14.3, each mer unit has two carbons and four

hydrogens. Thus,

m=2(Ac) +4(A)

=(2)(12.01 g/mol) + (4)(1.008 g/mol) = 28.05 g/mol

and

M, 300,000 g/mol
= 4 - ————— =10,695
M m 28.05 g/mol

which is the number of mer units along an average chain. Since there are two carbon atoms per mer
unit, there are two C--C chain bonds per mer, which means that the total number of chain bonds in
the molecule, N, is just (2)(10,695) = 21,390 bonds. Furthermore, assume that for single carbon-
carbon bonds, d = 0.154 nm and 6 = 109° (Section 14.4); therefore, from Equation (14.11)

. (6
L = Ndsm(zj

= (21,390)(0.154 nm) {sin (1

o

09
= 2682
> ﬂ nm

It is now possible to calculate the average chain end-to-end distance, r, using Equation
(14.12) as

r = dyN = (0.154 nm)4/21,390 = 22.5 nm

14.12 (a) This portion of the problem asks for us to calculate the number-average molecular weight for a
linear polytetrafluoroethylene for which L in Equation (14.11) is 2000 nm. It is first necessary to
compute the value of N using this equation, where, for the C--C chain bond, d = 0.154 nm, and 0 =
109°. Thus
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2000 nm
= 15,900
1090)

(0.154 nm) sin (

Since there are two C--C bonds per PTFE mer unit, there is an average of N/2 or 15,900/2 = 7950
mer units per chain, which is also the number-average degree of polymerization, N, In order to

compute the value of Mn using Equation (14.4a), we must first determine m for PTFE. Each PTFE

mer unit consists of two carbon and four fluorine atoms, thus

m = 2(AC) + 4(AF)
= (2)(12.01 g/mol) + (4)(19.00 g/mol) = 100.02 g/mol

Therefore

M, = njm = (7950)(100.02 g/mol) = 795,000 g/mol

(b) Next, we are to determine the number-average molecular weight for r = 15 nm. Solving for N

from Equation (14.12) leads to

which is the total number of bonds per average molecule. Since there are two C--C bonds per mer
unit, then n, = N/2 = 9490/2 = 4745. Now, from Equation (14.4a)

M, = njm = (4745)(100.02 g/mol) = 474,600 g/mol

14.13 We are asked to sketch portions of a linear polypropylene molecule for different configurations.

(a) Syndiotactic polypropylene

R R D O
| | |

—C—C—¢c—C—C—¢—C—Cc—C—C—
| | | | | | | | | |

H H H CH; H H H CHy H H

(b) Atactic polypropylene
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(S S S S O
| |
—C C C C C C C C C cC—
I I | I | I I I | |
H CHj H CHj, H H H CHg H H
(c) Isotactic polypropylene
H CHj H CHg H CHg H CHg H CHg
| | | | | | I | | |
—C C C C C C C C C C—
I I I I I I I I I I
H H H H H H H H H H
14.14 (a) The structure of cis polybutadiene is
Wy owo
H H
The structure of trans butadiene is
T I
"7
H H H
(b) The structure of cis chloroprene is
H Ci H H
I | | |
H H

The structure of trans chloroprene is
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g
=g
H H H

14.15 This question asks for comparisons of thermoplastic and thermosetting polymers.
(a) Thermoplastic polymers soften when heated and harden when cooled, whereas thermosetting
polymers, harden upon heating, while further heating will not lead to softening.
(b) Thermoplastic polymers have linear and branched structures, while for thermosetting polymers,

the structures will normally be network or crosslinked.

14.16 Thermosetting polyesters will be crosslinked, while thermoplastic ones will have linear structures

without any appreciable crosslinking.

14.17 (a) Itis not possible to grind up and reuse phenol-formaldehyde because it is a network thermoset
polymer and, therefore, is not amenable to remolding.

(b) Yes, it is possible to grind up and reuse polypropylene since it is a thermoplastic polymer, will
soften when reheated, and, thus, may be remolded.

14.18 This problem asks for sketches of the mer structures for several alternating copolymers.

(a) For poly(ethylene-propylene)

H H H
S G S
Y g
H H H CHs
(b) For poly(butadiene-styrene)
H H H H H H
I | | | | |
—C———C=——= C C cC—
| | I |
H H CGH5 H
(c) For poly(isobutylene-isoprene)
R N I S
S -
H CH3 H H
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14.19 For a poly(styrene-butadiene) alternating copolymer with a number-average molecular weight of
1,350,000 g/mol, we are asked to determine the average number of styrene and butadiene mer units
per molecule.

Since it is an alternating copolymer, the number of both types of mer units will be the same.
Therefore, consider them as a single mer unit, and determine the number-average degree of
polymerization. For the styrene mer, there are eight carbon atoms and eight hydrogen atoms, while
the butadiene mer consists of four carbon atoms and six hydrogen atoms. Therefore, the styrene-

butadiene combined mer weight is just

m=12(Ac) + 14(A,)

=(12)(12.01 g/mol) + (14)(1.008 g/mol) = 158.23 g/mol

From Equation (14.4a), the number-average degree of polymerization is just

o= M, _ 135,000 g/mol _ 8530
n m 158.23 g/mol

Thus, there is an average of 8530 of both mer types per molecule.
14.20 This problem asks for us to calculate the number-average molecular weight of a random nitrile

rubber copolymer. For the acrylonitrile mer there are three carbon, one nitrogen, and three

hydrogen atoms. Thus, its mer molecular weight is
Mpc = 3(AC) + (AN) + 3(AH)
= (3)(12.01 g/mol) + 14.01 g/mol + (3)(1.008 g/mol) = 53.06 g/mol

The butadiene mer is composed of four carbon and six hydrogen atoms. Thus, its mer molecular

weight is
Mg, = 4Ac) + 6(A)
= (4)(12.01 g/mol) + (6)(1.008 g/mol) = 54.09 g/mol
From Equation (14.5), the average mer molecular weight is just
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nlzik&nAc + %unbu

= (0.70)(53.06 g/mol) + (0.30)(54.09 g/mol) = 53.37 g/mol

Since n,= 2000 (as stated in the problem), Mn may be computed using Equation (14.4a) as
M, = mn, = (53.37 g/mol)(2000) = 106,740 g/mol

14.21 For an alternating copolymer that has a number-average molecular weight of 100,000 g/mol and a
number-average degree of polymerization of 2210, we are to determine one of the mer types if the

other is ethylene. It is first necessary to calculate m using Equation (14.4a) as

— M 100,000 g/mol
mo= 0 = =B IMO 45 55 gmol

n. 2210

Since this is an alternating copolymer we know that chain fraction of each mer type is 0.5; that is fe

= fx = 0.5, fe and fx being, respectively, the chain fractions of the ethylene and unknown mers.

Also, the mer molecular weight for ethylene is

mg = 2(Ac) + 4(A,)

= 2(12.01 g/mol) + 4(1.008 g/mol) = 28.05 g/mol
Now, using Equation (14.5), it is possible to calculate the mer weight of the unknown mer type, m,..

Thus

_ 45.25 g/mol - (()055)(28-05 gimoh) _ s 45 g/mol

Finally, it is necessary to calculate the mer molecular weights for each of the possible other mer

types. These are calculated below:
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Mgyrene = 8(AC) + 8(Ay) = 8(12.01 g/mol) + 8(1.008 g/mol) = 104.16 g/mol
Moropylene = 3(AC) * 6(A) = 3(12.01 g/mol) + 6(1.008 g/mol) = 42.08 g/mol
M e = 2(A0) + 4(Ap) = 2(12.01 g/mol) + 4(19.00 g/mol) = 100.02 g/mol
m

ve = 2(A0) + 3(A) + (Ag) = 2(12.01 g/mol) + 3(1.008 g/mol) + 35.45 g/mol = 62.49 g/mol

Therefore, vinyl chloride is the other mer type since its m value is almost the same as the calculated
m

X"
14.22 (a) This portion of the problem asks us to determine the ratio of butadiene to acrylonitrile mers in a
copolymer having a weight-average molecular weight of 250,000 g/mol and a weight-average degree

of polymerization of 4640. It first becomes necessary to calculate the average mer molecular weight

of the copolymer, m, using Equation (14.4b) as

— M 250,000 g/mol
W [}
m= — = ——— = 53.88 g/mol
n, 4640 g/mo

If we designate fb as the chain fraction of butadiene mers, since the copolymer consists of only two

mer types, the chain fraction of acrylontrile mers fa is just 1 - fb' Now, Equation (14.5) for this

copolymer may be written in the form
m=fmy, +fm, = {my + (1 - fi)m,

in which my and m_ are the mer molecular weights for butadiene and acrylontrile, respectively.

a

These values are calculated as follows:

my = 4(AC) + 6(AH) = 4(12.01 g/mol) + 6(1.008 g/mol) = 54.09 g/mol

m, = 3(AC) + 3(AH) + (Ap) = 3(12.01 g/mol) + 3(1.008 g/mol) + (14.01 g/mol)

=53.06 g/mol.

Solving for fb in the above expression yields

_ m - m,  53.88 g/mol — 53.06 g/mol _

f = =
b m, - m, 54.09 g/mol — 53.06 g/mol

0.80

Furthermore, fa =1- fb =1-0.80=0.20; or the ratio is just
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(b) Of the possible copolymers, the only one for which there is a restriction on the ratio of mer types
is alternating; the ratio must be 1:1. Therefore, on the basis of the result in part (a), the possibilities
for this copolymer are random, graft, and block.

14.23 For a copolymer consisting of 60 wt% ethylene and 40 wt% propylene, we are asked to determine

the fraction of both mer types.

In 100 g of this material, there are 60 g of ethylene and 40 g of propylene. The ethylene
(C2H4) molecular weight is

m(ethylene) = 2(AC) + 4(AH)

= (2)(12.01 g/mol) + (4)(1.008 g/mol) = 28.05 g/mol

The propylene (C3H6) molecular weight is

m(propylene) = 3(AC) + 6(AH)

= (3)(12.01 g/mol) + (6)(1.008 g/mol) = 42.08 g/mol

Therefore, in 100 g of this material, there are

60 g
———— = 2.14 mol of ethyl
28.05 g/mol ol ot ethylene
and
40 g
—=0. I
22.08 g/mol 0.95 mol of propylene

Thus, the fraction of the ethylene mer, f(ethylene), is just

2.14 mol _
2.14 mol + 0.95 mol

f(ethylene) = 0.69
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Likewise,

0.95 mol
f | _ = 0.31
(propylene) === 005 mal

14.24 For a random poly(isobutylene-isoprene) copolymer in which MW = 200,000 g/mol and Ny = 3000,

we are asked to compute the fractions of isobutylene and isoprene mers.

From Table 14.5, the isobutylene mer has four carbon and eight hydrogen atoms. Thus,

Mip = (4)(12.01 g/mol) + (8)(1.008 g/mol) = 56.10 g/mol

Also, from Table 14.5, the isoprene mer has five carbon and eight hydrogen atoms, and

My, = (5)(12.01 g/mol) + (8)(1.008 g/mol) = 68.11 g/mol

From Equation (14.5)

m = fipMip + fMip

Now, let x = such that

fip:
M = 56.10x + (68.11)(1 - X)

since fib + fip =1. Also, from Equation (14.4b)

M,
n, = —
w m

Or

200,000 g/mol
[56.10x + 68.11 (1 — x)] g/mol

3000 =

Solving for x leads to x = fib = f(isobutylene) = 0.12. Also,

f(isoprene) =1 -x=1-0.12=0.88
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14.25 (a) For crystalline metals, the individual atoms are positioned in a periodic or ordered arrangement
over relatively large atomic distances. The long-range order in polymer crystals results from the
packing of adjacent polymer chains.

(b) For noncrystalline ceramic glasses, the atomic randomness exists outside the Sioff unit. The

disorder in polymers results from chain misalignment.

14.26 The tendency of a polymer to crystallize decreases with increasing molecular weight because as
the chains become longer it is more difficult for all regions along adjacent chains to align so as to

produce the ordered atomic array.

14.27 For each of four pairs of polymers, we are asked to 1) state whether it is possible to decide which
is more likely to crystallize; 2) if so, which is more likely and why; and 3) it is not possible to decide
then why.

(a) No, it is not possible to decide for these two polymers. On the basis of tacticity, the isotactic PP
is more likely to crystallize than the atactic PVC. On the other hand, with regard to side-group
bulkiness, the PVC is more likely to crystallize.

(b) Yes, it is possible to decide for these two copolymers. The linear and syndiotactic polypropylene
is more likely to crystallize than crosslinked cis-isoprene since linear polymers are more likely to
crystallize than crosslinked ones.

(c) Yes, itis possible to decide for these two polymers. The linear and isotactic polystyrene is more
likely to crystallize than network phenol-formaldehyde; network polymers rarely crystallize, whereas
isotactic ones crystallize relatively easily.

(d) Yes, it is possible to decide for these two copolymers. The block poly(acrylonitrile-isoprene)
copolymer is more likely to crystallize than the graft poly(chloroprene-isobutylene) copolymer. Block

copolymers crystallize more easily than graft ones.

14.28 Given that polyethylene has an orthorhombic unit cell with two equivalent mer units, we are asked
to compute the density of totally crystalline polyethylene. In order to solve this problem it is
necessary to employ Equation (3.5), in which n represents the number of mer units within the unit
cell (n = 2), and A is the mer molecular weight, which for polyethylene is just

A= 2(AC) + 4(AH)

= (2)(12.01 g/mol) + (4)(1.008 g/mol) = 28.05 g/mol

379



Also, VC is the unit cell volume, which is just the product of the three unit cell edge lengths as shown

in Figure 14.10. Thus,

nA

VeNa

p_

_ (2 mers/uc)(28.05 g/mol)
[6.41 x 1078 cm)@.94 x 108 cm)(2.55 x 1078 cm)uc} @.023 x 1023 mers/mol)

= 0.998 glcm®

14.29 For this problem we are given the density of nylon 6,6 (1.213 g/cm3), an expression for the volume
of its unit cell, and the lattice parameters, and are asked to determine the number of mer units per

unit cell. This computation necessitates the use of Equation (3.5), in which we solve for n. Before
this can be carried out we must first calculate VC' the unit cell volume, and A the mer molecular

weight. For VC

Ve = achl— cos®a — coszﬁ - coszy + 2cosa.cosfcosy

= (0.497)(0.547)(1.729)4/ 1- 0.441 — 0.054 — 0.213 + 2(0.664)(0.232)(0.462)

3 22 Cm3

=0.3098 nm” = 3.098 x 10

The mer unit for nylon 6,6 is shown in Table 14.3, from which the value of A may be determined as

follows:
A= 12(AC) +22(Ap) + 2(Ag) + 2(AN)
=12(12.01 g/mol) + 22(1.008 g/mol) + 2(16.00 g/mol) + 2(14.01 g/mol)
=226.32 g/mol

Finally, solving for n from Equation (3.5) leads to

_ PVcNa
A
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€.213 g/cm3X’>.098 x 10722 cm®unit ceIIX6.023 x 1023 mers/mol)
N 226.32 g/mol

= 1 mer/unit cell

14.30 (a) We are asked to compute the densities of totally crystalline and totally amorphous
polyethylene [pC and Py from Equation (14.10)]. From Equation (14.10) let C = (% crystallinity)/100,

such that

Pcfps - pa)
C =
ps@c h pa)

Rearrangement of this expression leads to
pe(Crs — Ps) * PcPa — Cogpq = O

in which Pe and p, are the variables for which solutions are to be found. Since two values of Ps and

C are specified in the problem, two equations may be constructed as follows:
pe(Cipss— Ps1)* PcPa — CipsiPa = O
pc(CZ Ps2 ~ p52)+ PcPa — CoPsp Py = 0

In which Pgq = 0.965 g/cm3, Psp = 0.925 g/cm3’ C1 = 0.768, and C2 = 0.464. Solving the above

two equations leads to

_ Ps1Ps2 (Cl - CZ)
@ c CoPso

1Ps1 ~

@.965 g/cm3X0.925 g/cm3)o.768 ~ 0.464)

3
= = 0.870 g/cm
(0.768) @.965 g/cm3) - (0.464)@.925 g/cm3)

And
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o - Ps1Ps2 (Cz - Cl)
‘ Ps2 (CZ - 1) ) psl(Cl B 1)

(0.965 g/cm3X0.925 g/cm3)o.464 ~ 0.768)

= = 0.998 g/cm®
@.925 g/cm3)0.464 - 10) - (0.965 g/cm3)0.768 - 1.0)

ow we are to determine the % crystallinity for p_ = 0. glcm”. Again, using Equation
(b) N d ine the % II"st950/3A"E'

(14.10)

o .. PcPs T Pa
% crystallinity = x 100
ps(pc B pa)

@.998 glem3 Xo.950 glem® — 0.870 g/cm3)

= x 100
@.950 g/cm3 X0.998 g/lem3 — 0.870 g/cm3)

=65.7%

14.31 (a) We are asked to compute the densities of totally crystalline and totally amorphous
% crystallinity

polypropylene [pC and Py from Equation (14.10)]. From Equation (14.10) let C = 100 ,

such that

Pc(Ps ~ pa)
C =
ps@c h pa)

Rearrangement of this expression leads to
pe(Crs —Ps) + PcPa — Cogpa = O

in which Pe and p, are the variables for which solutions are to be found. Since two values of Ps and

C are specified in the problem, two equations may be constructed as follows:

pc(clpsl_ ps.l)Jr PcPa — C1PsiPq = 0
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pc(CZPSZ - Psz)+ PePa = CoPsoPy = 0

In which Pgq = 0.904 g/cm3, Pso = 0.895 g/cm3, C1 = 0.628, and C2 = 0.544. Solving the above

two equations leads to

pslpsz(cl - CZ)
Pa " c CoPsp

1Ps1 ~

@.904 g/cm3X).895 g/cm3)o.628—o.544)

= = 0.841 g/cm3
(0.628)@.904 g/cm3}(o.544)(o.895 g/cm3)
And
o = Pslpsz(cz - Cl)
.=
psZ(CZ - 1)_ psl(cl _l)
3 3
(0.904 g/cm )@.895 g/cm )0.544—0.628) ,
= 0.946 g/cm

) @.895 g/cm3)0.544—1.0)—(0.904 g/cm3)o.628—1.0)

(b) Now we are asked to determine the density of a specimen having 74.6% crystallinity. Solving for
P from Equation (14.10) and substitution for [ and Pc which were computed in part (a) yields

~PcPa

Pe " C@c _pa)_ Pc

—@.946 g/cm3X).841 g/cm3)

B (0.746)@.946 g/cm3—0.841 g/cms)—0.946 g/cm3

=0.917 g/cm3
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CHAPTER 15

CHARACTERISTICS, APPLICATIONS, AND PROCESSING OF POLYMERS

PROBLEM SOLUTIONS

15.1 From Figure 15.3, the elastic modulus is the slope in the elastic linear region of the 20°C

curve, which is

_ A(stress) 30 MPa-0 MPa
T A(strain) 9 x103-0

= 3.3 GPa (483,000 psi)

The value range cited in Table 15.1 is 2.24 to 3.24 GPa (325,000 to 470,000 psi). Thus, the
plotted value is a little on the high side.

The tensile strength corresponds to the stress at which the curve ends, which is 52
MPa (7500 psi). This value lies within the range cited in the table--48.3 to 72.4 MPa (7,000
to 10,500 psi).

15.2 The reason that it is not necessary to specify specimen gauge length when citing percent
elongation for semicrystalline polymers is because, for semicrystalline polymers that
experience necking, the neck normally propagates along the entire gauge length prior to
fracture; thus, there is no localized necking as with metals and the magnitude of the percent

elongation is independent of gauge length.
15.3 The explanation of viscoelasticity is given in Section 15.4.

15.4 This problem asks for a determination of the relaxation modulus of a viscoelastic material,

which behavior is according to Equation (15.10)--i.e.,

o(t) = o(0) exp (— t)

T

We want to determine o(10), but it is first necessary to compute t from the data provided in

the problem. Thus,
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-t -30 s

= = =154
o(0) [0.5 MPa} >4
Inl—=| Injlo—————
c(0) 35 MPa
Therefore,
10 s
o(10) =(3.5 MPa) exp(— 154 S) = 1.83 MPa

Now, using Equation (15.1)

c(10) 183 MPa
T 05

E (10) = =3.66 MPa (522 psi)

0]

15.5 Below is plotted the logarithm of Er(lo) versus temperature.
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140

The glass-transition temperature is that temperature corresponding to the abrupt decrease

in log Er(lo), which for this PMMA material is about 115°C.

15.6 We are asked to make schematic strain-time plots for various polystyrene materials and at

several temperatures.

(@) Crystalline polystyrene at 70°C behaves in a glassy manner (Figure 15.8, curve A);

therefore, the strain-time behavior would be as Figure 15.5(b).

(b) Amorphous polystyrene at 180°C behaves as a viscous liquid (Figure 15.8, curve C);

therefore, the strain-time behavior will be as Figure 15.5(d).
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(c) Crosslinked polystyrene at 180°C behaves as a rubbery material (Figure 15.8, curve B);
therefore, the strain-time behavior will be as Figure 15.5(c).
(d) Amorphous polystyrene at 100°C behaves as a leathery material (Figure 15.7);

therefore, the strain-time behavior will be as Figure 15.5(c).

15.7 (a) Stress relaxation tests are conducted by rapidly straining the material elastically in
tension, holding the strain level constant, and then measuring the stress as a function of
time. For viscoelastic creep tests, a stress (usually tensile) is applied instantaneously and
maintained constant while strain is measured as a function of time.

(b) The experimental parameters of interest from the stress relaxation and viscoelastic
creep tests are the relaxation modulus and creep modulus, respectively. The relaxation
modulus is the ratio of stress measured after 10 s and strain [Equation (15.1)]; creep

modulus is the ratio of stress and the strain taken at a specific time [Equation (15.2)].

15.8 (a) This portion of the problem calls for a plot of log Er(lo) versus temperature

demonstrating how the behavior changes with increased molecular weight. Such a plot is
given below. Increasing molecular weight increases both glass-transition and melting

temperatures.

)
=

>

T

2 increasing
= molecular
o weight

L

(1]

>

8

[+1]

[+

o)

)

Temperature

(b) We are now called upon to make a plot of log Er(10) versus temperature demonstrating

how the behavior changes with increased crosslinking. Such a plot is given below.
Increasing the degree of crosslinking will increase the modulus in both glassy and rubbery

regions.

386



increased
crosslinking

A

log Relaxation Modulus

Temperature

15.9 For thermoplastic polymers, five factors that favor brittle fracture are as follows: a reduction
in temperature, an increase in strain rate, the presence of a sharp notch, increased

specimen thickness, and modifications of the polymer structure.

15.10 (a) The fatigue limits for PMMA and the steel alloy are 19 MPa (2800 psi) and 290 MPa
(42,200 psi), respectively.
(b) At 106 cycles, the fatigue strengths for nylon 6 and 2014-T6 aluminum are 22 MPa
(3200 psi) and 200 MPa (30,000 psi ), respectively.

15.11 (a) and (b) The mechanisms by which semicrystalline polymers elastically and plastically
deform are described in Section 15.7.
(c) The explanation of the mechanism by which elastomers elastically deform is provided in
Section 15.9.

15.12 (a) The tensile modulus is not directly influenced by a polymer's molecular weight.

(b) Tensile modulus increases with increasing degree of crystallinity for semicrystalline
polymers. This is due to enhanced secondary interchain bonding which results from a
greater degree of chain segment alignment as percent crystallinity increases. This
enhanced interchain bonding inhibits relative interchain motion.

(c) Deformation by drawing also increases the tensile modulus. The reason for this is that
drawing produces a highly oriented molecular structure, and a relatively high degree of
interchain secondary bonding.

(d) When an undeformed semicrystalline polymer is annealed below its melting

temperature, its tensile modulus increases.
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(e) A drawn semicrystalline polymer that is annealed experiences a decrease in tensile
modulus as a result of a reduction in chain-induced crystallinity, and a reduction in interchain

bonding forces.

15.13 (a) The tensile or yield strength of a semicrystalline polymer increases with increasing
molecular weight. This effect is explained by increased chain entanglements at higher
molecular weights.

(b) Increasing the degree of crystallinity of a semicrystalline polymer leads to an
enhancement of the tensile strength. Again, this is due to enhanced interchain bonding and
forces; in response to applied stresses, interchain motions are thus inhibited.

(c) Deformation by drawing increases the tensile strength of a semicrystalline polymer. This
effect is due to the highly oriented chain structure that is produced by drawing, which gives
rise to higher interchain secondary bonding forces.

(d) Annealing an undeformed semicrystalline polymer produces an increase in its tensile

strength.

15.14 Normal butane has a higher melting temperature as a result of its molecular structure
(Section 14.2). There is more of an opportunity for van der Waals bonds to form between
two molecules in close proximity to one another than for isobutane because of the linear

nature of each normal butane molecule.

15.15 This problem gives us the tensile strengths and associated number-average molecular

weights for two polymethyl methacrylate materials and then asks that we estimate the tensile
strength for M,, = 30,000 g/mol. Equation (15.3) provides the dependence of the tensile

strength on Mn' Thus, using the data provided in the problem, we may set up two
simultaneous equations from which it is possible to solve for the two constants TS _ and A.

These equations are as follows:

A
107 MPa =TS, -~ ———
&= "S» 720,000 g/mol

170 MPa= TS, ————2
~ T® 60,000 g/mol

6

Thus, the values of the two constants are: TS_ = 296 MPa and A = 7.56 x 10~ MPa-

g/mol. Substituting these values into the equation for which Mn = 30,000 g/mol leads to
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A

TS=TS, —~—/7T—
© 30,000 g/mol

7.56 x10° MPa - g/mol
30,000 g/mol

=296 MPa -

= 44 MPa

15.16 This problem gives us the tensile strengths and associated number-average molecular
weights for two polyethylene materials and then asks that we estimate the M, that is

required for a tensile strength of 195 MPa. Equation (15.3) provides the dependence of the
tensile strength on M,,. Thus, using the data provided in the problem, we may set up two

simultaneous equations from which it is possible to solve for the two constants TS and A.

These equations are as follows:

A

8 MPa=TS -————
© 12,700 g/mol

150 MPa= TS S S—
~ T 28500 g/mol

Thus, the values of the two constants are: TS =202 MPa and A = 1.489 x 10° MPa-
g/mol. Solving for Mn in Equation (15.3) and substituting TS = 195 MPa as well as the

above values for TS_ and A leads to

— A
M”_TS -TS
e 0]

_1.489 x10° MPa - g/mol
~ 202 MPa-195 MPa

=213,000 g/mol

15.17 For each of four pairs of polymers, we are to do the following: 1) determine whether or not
it is possible to decide which has the higher tensile modulus; 2) if it is possible, then note
which has the higher tensile modulus and then state the reasons for this choice; and 3) if it
is not possible to decide, then state why.

(@) No, it is not possible. Both syndiotactic and isotactic polystyrene have a tendency to

crystallize, and, therefore, we assume that they have approximately the same crystallinity.
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Furthermore, since tensile modulus is virtually independent of molecular weight, we would
expect both materials to have approximately the same modulus.

(b) Yes, it is possible. The linear and isotactic polyvinyl chloride will display a greater
tensile modulus. Linear polymers are more likely to crystallize than branched ones. In
addition, polymers having isotactic structures normally have higher degrees of crystallinity
than those having atactic structures. Increasing a polymer's crystallinity leads to an increase
in its tensile modulus. In addition, tensile modulus is independent of molecular weight--the
atactic/branched material has the higher molecular weight.

(c) Yes, it is possible. The block styrene-butadiene copolymer with 10% of possible sites
crosslinked will have the higher modulus. Block copolymers normally have higher degrees
of crystallinity than random copolymers of the same material. A higher degree of crystallinity
favors a larger modulus. In addition, the block copolymer also has a higher degree of
crosslinking; increasing the amount of crosslinking also enhances the tensile modulus.

(d) No, it is not possible. Branched polyethylene will tend to have a low degree of
crystallinity since branched polymers don't normally crystallize. The atactic polypropylene
probably also has a relatively low degree of crystallinity; atactic structures also don't tend to
crystallize, and polypropylene has a more complex mer structure than does polyethylene.
Tensile modulus increases with degree of crystallinity, and it is not possible to determine
which polymer is more crystalline. Furthermore, tensile modulus is independent of

molecular weight.

15.18 For each of four pairs of polymers, we are to do the following: 1) determine whether or not
it is possible to decide which has the higher tensile strength; 2) if it is possible, then note
which has the higher tensile strength and then state the reasons for this choice; and 3) if it
is not possible to decide, then state why.

(@) Yes, it is possible. The syndiotactic polystyrene has the higher tensile strength. Both
syndiotactic and isotactic polymers tend to crystallize, and, therefore, we assume that both
materials have approximately the same crystallinity. However, tensile modulus increases
with increasing molecular weight, and the syndiotactic PS has the higher molecular weight
(600,000 g/mol versus 500,000 g/mol for the isotactic material).

(b) Yes, itis possible. The linear and isotactic material will have the higher tensile strength.
Both linearity and isotacticity favor a higher degree of crystallinity than do branching and
atacticity; and tensile strength increases with increasing degree of crystallinity.
Furthermore, the molecular weight of the linear/isotactic material is higher (100,000 g/mol

versus 75,000 g/mol), and tensile strength increases with increasing molecular weight.
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() No, it is not possible. Alternating copolymers tend to be more crystalline than graft
copolymers, and tensile strength increases with degree of crystallinity. However, the graft
material has a higher degree of crosslinking, and tensile strength increases with the
percentage of crosslinks.

(d) Yes, it is possible. The network polyester will display a greater tensile strength.
Relative chain motion is much more restricted than for the lightly branched
polytetrafluoroethylene since there are many more of the strong covalent bonds for the

network structure.

15.19 The strength of a polychlorotrifluoroethylene having the mer structure
|
F Cl
will be greater than for a polytetrafluoroethylene having the same molecular weight and
degree of crystallinity. The replacement of one fluorine atom within the PTFE mer with a
chlorine atom leads to a higher interchain attraction, and, thus, a stronger polymer.

Furthermore, polyvinyl chloride is stronger than polyethylene (Table 15.1) for the same

reason.

15.20 (a) Shown below are the stress-strain curves for the two polyisoprene materials, both of
which have a molecular weight of 100,000 g/mol. These two materials are elastomers and
will have curves similar to curve C in Figure 15.1. However, the curve for the material
having the greater number of crosslinks (20%) will have a higher elastic modulus at all

strains.

20%

Stress

10%

Strain
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(b) Shown below are the stress-strain curves for the two polypropylene materials. These
materials will most probably display the stress-strain behavior of a normal plastic, curve B in
Figure 15.1. However, the syndiotactic polypropylene has a higher molecular weight and will

also undoubtedly have a higher degree of crystallinity; therefore, it will have a higher

strength.

syndiotactic

atactic

Stress

Strain

(c) Shown below are the stress-strain curves for the two polyethylene materials. The
branched polyethylene will display the behavior of a normal plastic, curve B in Figure 15.1.

On the other hand, the heavily crosslinked polyethylene will be stiffer, stronger, and more

brittle (curve A of Figure 15.1).

crosslinked

branched

Stress

0 Strain
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15.21 Two molecular characteristics essential for elastomers are: 1) they must be amorphous,
having chains that are extensively coiled and kinked in the unstressed state; and 2) there

must be some crosslinking.

15.22 This question asks us to choose from a list of materials those which would be expected to
be elastomers and those which would be thermosetting polymers.
(a) Linear and crystalline polyethylene would be neither an elastomer nor a thermoset since
it is a linear polymer.
(b) Phenol-formaldehyde having a network structure would be a thermosetting polymer
since it has a network structure. It would not be an elastomer since it does not have a
crosslinked chain structure.
(c) Heavily crosslinked polyisoprene having a glass transition temperature of 50°C would be
a thermosetting polymer because it is heavily crosslinked. It would not be an elastomer
since it is heavily crosslinked and room temperature is below its Tg.
(d) Lightly crosslinked polyisoprene having a glass transition temperature of -60°C is both

an elastomer and a thermoset. It is an elastomer because it is lightly crosslinked and has a

Tg below room temperature. It is a thermoset because it is crosslinked.

(e) Linear and partially amorphous polyvinyl chloride is neither an elastomer nor a

thermoset. In order to be either it must have some crosslinking.

15.23 The molecules in elastomers must be two-dimensional chains that are lightly crosslinked
and capable of being twisted and kinked in the unstressed state. Phenol-formaldehyde has
a rigid three-dimensional structure consisting of trifunctional mer units, which does not meet

these criteria for chain conformation and flexibility.

15.24 This problem asks that we compute the fraction of possible crosslink sites in 10 kg of
polybutadiene when 4.8 kg of S is added, assuming that, on the average, 4.5 sulfur atoms
participate in each crosslink bond. Given the butadiene mer unit in Table 14.5, we may
calculate its molecular weight as follows:

A(butadiene) = 4(AC) + 6(AH)

= (4)(12.01 g/mol) + 6(1.008 g/mol) = 54.09 g/mol

10,000 g

= 184.9 mal.,
54.09 g/mol mo

Which means that in 10 kg of butadiene there are
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For the vulcanization of polybutadiene, there are two possible crosslink sites per
mer--one for each of the two carbon atoms that are doubly bonded. Furthermore, each of
these crosslinks forms a bridge between two mers. Therefore, we can say that there is the
equivalent of one crosslink per mer. Therefore, let us now calculate the number of moles of
sulfur (nsulfur) that react with the butadiene, by taking the mole ratio of sulfur to butadiene,
and then dividing this ratio by 4.5 atoms per crosslink; this yields the fraction of possible
sites that are crosslinked. Thus

4800 g

n = —————— =149.7 mol
sulfur = 32 06 g/mol

And

149.7 mol

184.9 mol

fraction sites crosslinked = =0.180

15.25 For an alternating chloroprene-acrylonitrile copolymer, we are asked to compute the
weight percent sulfur necessary for complete crosslinking, assuming that, on the average,
five sulfur atoms participate in each crosslink. The chloroprene and acrylonitrile mers are
shown in Table 14.5, from which it may be noted that there are two possible crosslink sites
on each chloroprene mer (one site at each of the two carbon atoms that are doubly bonded),
and no possible crosslink sites for acrylonitrile; also, since it is an alternating copolymer, the
ratio of chloroprene to acrylonitrile mers is 1:1. Thus, for each pair of combined
chloroprene-acrylonitrile mers which crosslink, ten sulfur atoms are required, or, for
complete crosslinking, the sulfur-to-(chloroprene-acrylonitrile) ratio is 5:1.

Now, let us consider as our basis, one mole of the combined chloroprene-
acrylonitrile mer. In order for complete crosslinking, five moles of sulfur are required. Thus,
for us to convert this composition to weight percent, it is necessary to convert moles to
mass. The acrylonitrile mer consists of three carbon atoms, three hydrogen atoms, and one
nitrogen atom; the chloroprene mer is composed of four carbons, five hydrogens, and one

chlorine. This gives a molecular weight for the combined mer of

m(chloroprene-acrylonitrile) = 3(AC) + 3(AH) +tAyt 4(AC) + 5(AH) +Aq

=7(12.01 g/mol) + 8(1.008 g/mol) + 14.007 g/mol + 35.45 g/mol = 141.59 g/mol
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Or, in one mole of this combined mer, there are 141.59 g. Furthermore, for complete

crosslinking, 5.0 mol of sulfur is required, which amounts to (5.0 mol)(32.06 g/mol) = 160.3
g. Thus, the concentration of S in weight percent CS is just

_ 160.3 ¢
S 7 160.3 g+ 141.59 g

X 100 =53.1 wt%

15.26 This problem asks for us to determine how many crosslinks form per isoprene mer when
57 wt% sulfur is added. If we arbitrarily consider 100 g of the vulcanized material, 57 g will
be sulfur and 43 g will be polyisoprene. Next, let us find how many moles of sulfur and

isoprene correspond to these masses. The atomic weight of sulfur is 32.06 g/mol, and thus,

57 ¢

—>L9 ___ 178 mol
3206 g/mol mo

# moles S =

However, there are 6 sulfur atoms in each crosslink, which requires us to divide the number
of moles of sulfur by 6 in order to get the number of moles of sulfur per crosslink, which is
equal to 0.297 moles.

Now, in each isoprene mer unit there are five carbon atoms and eight hydrogen

atoms. Thus, the molecular weight of a mole of isoprene units is
(5)(12.01 g/mol) + (8)(1.008 g/mol) = 68.11 g/mol

Or, in 43 g of polyisoprene

39

68.11 g/mol _ 0631 mol

# moles isoprene =

Therefore, the ratio of moles of S per crosslink to the number of moles of polyisoprene is

1.78 mol
063l mol'l =282:1

When all possible sites are crosslinked, the ratio of the number of moles of sulfur to the
number of moles of isoprene is 6:1, since there are two crosslink sites per mer unit and each
crosslink is shared between mers on adjacent chains, and there are 6 sulfur atoms per
crosslink.  Finally, to determine the fraction of sites that are crosslinked, we just divide the

actual crosslinked sulfur/isoprene ratio by the completely crosslinked ratio. Or,
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fraction of mer sites crosslinked = 2'68/21/1 = 047

15.27 We are asked what weight percent of sulfur must be added to polyisoprene in order to
ensure that 8% of possible sites are crosslinked, assuming that, on the average, three sulfur
atoms are associated with each crosslink. Table 14.5 shows the chemical repeat unit for
cis-isoprene. For each of these units there are two possible crosslink sites; one site is
associated with each of the two carbon atoms that are involved in the chain double bond.
Since 8% of the possible sites are crosslinked, for each 100 isoprene mers 8 of them are
crosslinked; actually there are two crosslink sites per mer, but each crosslink is shared by
two chains. Furthermore, on the average we assume that each crosslink is composed of 3
sulfur atoms; thus, there must be 3 x 8 or 24 sulfur atoms added for every 100 isoprene
mers. In terms of moles, it is necessary to add 24 moles of sulfur to 100 moles of isoprene.
The atomic weight of sulfur is 32.06 g/mol, while the molecular weight of isoprene is

5(A0) + 8(A)

= (5)(12.01 g/mol) + (8)(1.008 g/mol) = 68.11 g/mol

The mass of sulfur added (mS) is

mg = (24 mol)(32.06 g/mol) = 769.4 g

While for isoprene

mip = (100 mol)(68.11 g/mol) = 6811 g

Or, the concentration of sulfur in weight percent is just

_ 7694 ¢
T 769.4 g + 6811 g

Cg x 100 = 10.2 wt%

15.28 The reaction by which a chloroprene rubber may become vulcanized is as follows:
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—§TT T Ty
H H H H
+(p+q)S—> (S)p (S)q
'r '.* '.* '.*
T T
H H Cl H H H Cl H

15.29 (a) Shown below are specific volume-versus-temperature curves for the two polyethylene
materials. The linear polyethylene will be highly crystalline, and, therefore, will exhibit
behavior similar to curve C in Figure 15.17. The branched polyethylene will be
semicrystalline, and, therefore its curve will appear as curve B in this same figure.
Furthermore, since the linear polyethylene has the greater molecular weight, it will also have

the higher melting temperature.
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(b) Shown below are specific volume-versus-temperature curves for the polyvinyl chloride
and polypropylene materials. Since both are 50% crystalline, they will exhibit behavior
similar to curve B in Figure 15.17. However, since the polypropylene has the greater
molecular weight it will have the higher melting temperature. Furthermore, polypropylene
will also have the higher glass-transition temperature inasmuch as its CH3 side group is

bulkier than the CI for PVC.
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Specific Volume

Temperature

(c) Shown below are specific volume-versus-temperature curves for the polystyrene and
polypropylene materials. Since both are totally amorphous, they will exhibit the behavior
similar to curve A in Figure 15.17. However, since the polystyrene mer has a bulkier side
group than polypropylene (Table 14.3), its chain flexibility will be lower, and, thus, its glass-

transition temperature will be higher.

Specific volume
N

Temperature

15.30 (a) Yes, it is possible to determine which polymer has the higher melting temperature. The
linear polyethylene will most likely have a higher percent crystallinity, and, therefore, a
higher melting temperature than the branched polyethylene. The molecular weights of both
materials are the same and, thus, molecular weight is not a consideration.

(b) Yes, it is possible to determine which polymer has the higher melting temperature. Of
these two polytetrafluoroethylene polymers, the PTFE with the higher density (2.20 g/cm3)
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will have the higher percent crystallinity, and, therefore, a higher melting temperature than
the lower density PTFE. The molecular weights of both materials are the same and, thus,
molecular weight is not a consideration.

(c) Yes, it is possible to determine which polymer has the higher melting temperature. The
linear polyethylene will have the greater melting temperature inasmuch as it will have a
higher degree of crystallinity; polymers having a syndiotactic structure do not crystallize as
easily as those polymers having identical single-atom side groups. With regard to molecular
weight, or rather, the number-average degree of polymerization, it is about the same for both
materials (8000), and therefore, is not a consideration.

(d) No, it is not possible to determine which of the two polymers has the higher melting
temperature. The syndiotactic polypropylene will have a higher degree of crystallinity than
the atactic material. On the basis of this effect alone, the syndiotactic PP should have the
greater Tm, since melting temperature increases with degree of crystallinity. However, the
molecular weight for the syndiotactic polypropylene (500,000 g/mol) is less than for the
atactic material (750,000 g/mol); and this factor leads to a lowering of the melting

temperature

15.31 For an amorphous polymer, the elastic modulus may be enhanced by increasing the
number of crosslinks (while maintaining the molecular weight constant); this will also
enhance the glass transition temperature. Thus, the modulus-glass transition temperature

behavior would appear as

Elastic Modulus

Glass-Transition Temperature

15.32 In this problem we are asked to determine the values of the constants n and k [Equation
(10.1)] for the crystallization of polypropylene at 150°C (Figure 15.16). One way to solve this
problem is to take two values of percent recrystallization [which is just 100y, Equation (10.1)]

and their corresponding time values, then set up two simultaneous equations, from which n
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and k may be determined. In order to expedite this process, we will rearrange and do some

algebraic manipulation of Equation (10.1). First of all, we rearrange as follows:
1-y=exp (—ktn)
Now taking natural logarithms
In(1-y)=—kt"

Or

—In(@-y)=kt"

which may also be expressed as

In( 1 ]:kt”
1-y

Now taking natural logarithms again, leads to

i[5 < i+ o

which is the form of the equation that we will now use. From the 150°C curve of Figure
15.16, let us arbitrarily choose two percent crystallized values of 20% and 80% (i.e., y1 =

0.20 and y, = 0.80). Their corresponding time values are t; = 220 min and t, = 460 min

(realizing that the time axis is scaled logarithmically). Thus, our two simultaneous equations

become

In In( 1 j =Ink + nlIn(220)

In|In [1—0.8} =Ink + nlIn(460)

from which we obtain the values n =2.68 and k = 1.2 x 10'7.
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15.33 This question asks us to name which, of several polymers, would be suitable for the
fabrication of cups to contain hot coffee. At its glass transition temperature, an amorphous
polymer begins to soften. The maximum temperature of hot coffee is probably slightly below
100°C (212°F). Of the polymers listed, only polystyrene and polycarbonate have glass
transition temperatures of 100°C or above (Table 15.2), and would be suitable for this

application.

15.34 In order for a polymer to be suited for use as an ice cube tray it must have a glass-
transition temperature below 0°C. Of those polymers listed in Table 15.2 only low-density

and high-density polyethylene, PTFE, and polypropylene satisfy this criterion.

15.35 This question asks for us to determine which of several elastomers are suitable for
automobile tires in Alaska. From Table 15.4, only natural polyisoprene, poly(styrene-
butadiene), and polysiloxane have useful temperature ranges that extend to below -55°C. At
temperatures below the lower useful temperature range limit, the other elastomers listed in

this table become brittle, and, therefore, are not suitable for automobile tires.

15.36 The backbone chain of most polymers consists of carbon atoms that are linked together.
For the silicone polymers, this backbone chain is composed of silicon and oxygen atoms that

alternate positions.

15.37 The liquid silicones will have low molecular weights and very little crosslinking, whereas
the molecular weights for the elastomers will be much higher; the elastomers will also have

some crosslinking.

15.38 Two important characteristics for polymers that are to be used in fiber applications are: 1)
a high molecular weight, and 2) a chain configuration/structure that allows for a high degree

of crystallinity.

15.39 Five important characteristics for polymers that are to be used in thin film applications are:
1) low density; 2) high flexibility; 3) high tensile and tear strengths; 4) resistance to

moisture/chemical attack; and 5) low gas permeability.

15.40 For addition polymerization, the reactant species have the same chemical composition as

the monomer species in the molecular chain. This is not the case for condensation
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polymerization, wherein there is a chemical reaction between two or more monomer
species, producing the repeating mer unit. There is often a low molecular weight by-product

for condensation polymerization; such is not found for addition polymerization.

15.41 In this question we are asked to cite whether the molecular weight of a polymer that is
synthesized by addition polymerization is relatively high, medium, or low for four situations.
(a) For rapid initiation, slow propagation, and rapid termination the molecular weight will be
relatively low.
(b) For slow initiation, rapid propagation, and slow termination the molecular weight will be
relatively high.
(c) For rapid initiation, rapid propagation, and slow termination a medium molecular weight
will be achieved.
(d) For slow initiation, slow propagation, and rapid termination the molecular weight will be

low or medium.

15.42 (a) This problem asks that we determine how much ethylene glycol must be added to 20.0
kg of adipic acid to produce a linear chain structure of polyester according to Equation 15.9.
Since the chemical formulas are provided in this equation we may calculate the molecular

weights of each of these materials as follows:

A(adipic) = B(Ag) + 10(A.) + 4(Ag)

= 6(12.01 g/mol) + 10(1.008 g/mol) + 4(16.00 g/mol) = 146.14 g/mol
A(glycol) = 2(Ac) + 6(Ay) + 2(Ap)
= 2(12.01 g/mol) + 6(1.008 g/mol) + 2(16.00 g/mol) = 62.07 g/mol
20,000 g

The 20.0 kg mass of adipic acid equals 20,000 g or = 136.86 mol. Since,

146.14 g/mol
according to Equation (15.9), each mole of adipic acid used requires one mole of ethylene
glycol, which is equivalent to (136.86 mol)(62.07 g/mol) = 8495 g = 8.495 kg.
(b) Now we are asked for the mass of the resulting polyester. Inasmuch as one mole of
water is given off for every mer unit produced, this corresponds to 136.86 moles or (136.86

mol)(18.02 g/mol) = 2466 g or 2.466 kg since the molecular weight of water is 18.02 g/mol.
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The mass of polyester is just the sum of the masses of the two reactant materials [as

computed in part (a)] minus the mass of water released, or

mass(polyester) = 20.0 kg + 8.495kg - 2.466 kg = 26.03 kg

15.43 The following represents the reaction between hexamethylene diamine and adipic acid to

produce nylon 6,6 with water as a by-product.

H H B 0 H 0
I | I Il | f
N-|-c-|-N + cCc-|-c-|[-C =
| I | | I |
H H H OH H OH
6 4
- 0 H 0
| I I Il
=ps=iarsR=tsl=rsls 6~ #2700
I I I I
H H H H
“6 =4

15.44 This problem asks for us to calculate the masses of hexamethylene diamine and adipic
acid necessary to yield 20 kg of completely linear nylon 6,6. Let us first calculate the
molecular weights of these molecules. (The chemical formula for hexamethylene diamine is

given in Problem 15.43)

A(adipic) = 6(Ac) + 10(A) + HAG)

6(12.01 g/mol) + 10(1.008 g/mol) + 4(16.00 g/mol) = 146.14 g/mol

A(hexamethylene) = 6(Az) + 16(Ay) + 2(Ay)

6(12.01 g/mol) + 16(1.008 g/mol) + 2(14.01 g/mol) = 116.21 g/mol

A(nylon) = 12(Ac) + 22(Ay) + 2(Ay) + 2(Ag)
= 12(12.01 g/mol) + 22(1.008 g/mol) + 2(14.01 g/mol) + 2(16.00 g/mol)
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= 226.32 g/mol

The mass of 20 kg of nylon 6,6 equals 20,000 g or

20,000 g

22632 g/mol . co:37 mol

m(nylon) =

Since, according to the chemical equation in Problem 15.43, each mole of nylon 6,6 that is
produced requires one mole each of adipic acid and hexamethylene diamine, with two moles
of water as the by-product. The masses corresponding to 88.37 moles of adipic acid and

hexamethylene diamine are as follows:

m(adipic) = (88.37 mol)(146.14 g/mol) = 12,914 g = 12.914 kg

m(hexamethylene) = (88.37 mol)(116.21 g/mol) = 10,269 g = 10.269 kg

15.45 (a) If the vapor pressure of a plasticizer is not relatively low, the plasticizer may vaporize,
which will result in an embrittlement of the polymer.
(b) The crystallinity of a polymer to which has been added a plasticizer will be diminished,
inasmuch as the plasticizer molecules fit in between the polymer molecules, which will cause
more misalignment of the latter.
(c) It would be difficult for a crosslinked polymer to be plasticized since the plasticizer
molecules must fit between the chain molecules. This necessarily forces apart adjacent
molecules, which the crosslinked bonds between the chains will resist.
(d) The tensile strength of a polymer will be diminished when a plasticizer is added. As the
plasticizer molecules force the polymer chain molecules apart, the magnitude of the
secondary interchain bonds are lessened, which weakens the material since strength is a

function of the magnitude of these bonds.
15.46 The distinction between dye and pigment colorants is that a dye dissolves within and
becomes a part of the polymer structure, whereas a pigment does not dissolve, but remains

as a separate phase.

15.47 Four factors that determine which fabrication technique is used to form polymeric materials

are: 1) whether the polymer is thermoplastic or thermosetting; 2) if thermoplastic, the
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softening temperature; 3) atmospheric stability; and 4) the geometry and size of the

finished product.

15.48 This question requests that we compare polymer molding techniques. For compression
molding, both heat and pressure are applied after the polymer and necessary additives are
situated between the mold members. For transfer molding, the solid materials (normally
thermosetting in nature) are first melted in the transfer chamber prior to being forced into the
die. And, for injection molding (normally used for thermoplastic materials), the raw materials

are impelled by a ram through a heating chamber, and finally into the die cavity.

15.49 Vulcanization of a rubber component should be carried out prior to the forming operation
since, once it has been vulcanized, plastic deformation (and thus forming) is not possible

since chain crosslinks have been introduced.

15.50 Fiber materials that are melt spun must be thermoplastic because: 1) In order to be melt
spun, they must be capable of forming a viscous liquid when heated, which is not possible
for thermosets. 2) During drawing, mechanical elongation must be possible; inasmuch as
thermosetting materials are, in general, hard and relatively brittle, they are not easily

elongated.

15.51 Of the two polymers cited, the one that was formed by extrusion and then rolled would
have the higher strength. Both blown and extruded materials would have roughly
comparable strengths; however the rolling operation would further serve to enhance the

strength of the extruded material.

Design Problems

15.D1 (a) Several advantages of using transparent polymeric materials for eyeglass lenses are:

they have relatively low densities, and, therefore, are light in weight; they are relatively easy

to grind to desired contours; they are less likely to shatter than are glass lenses; wrap-

around lenses for protection during sports activities are possible; and they filter out more
ultraviolet radiation than do glass lenses.

The principal disadvantage of these types of lenses is that some are relatively soft

and are easily scratched (although antiscratch coatings may be applied). Plastic lenses are

not as mechanically stable as glass, and, therefore, are not as precise optically.
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(b) Some of the properties that are important for polymer lens materials are: they should be
relatively hard in order to resist scratching; they must be impact resistant; they should be
shatter resistant; they must have a relatively high index of refraction such that thin lenses
may be ground for very nearsighted people; and they should absorb significant proportions
of all types of ultraviolet radiation, which radiation can do damage to the eye tissues.
(c) Of those polymers discussed in this chapter and Chapter 14, ones that might appear to
be likely lens candidates are polystyrene, polymethyl methacrylate, and polycarbonate;
these three materials are not easily crystallized, and, therefore, are normally transparent.
Upon consultation of their fracture toughnesses (Table B.5 in Appendix B), polycarbonate is
the most superior of the three.

Commercially, the two plastic lens materials of choice are polycarbonate and allyl
diglycol carbonate (having the trade name CR-39). Polycarbonate is very impact resistant,
but not as hard as CR-39. Furthermore, PC comes in both normal and high refractive-index

grades.

15.D2 There are three primary requirements for polymeric materials that are utilized in the
packaging of food products and drinks; these are: 1) sufficient strength, to include tensile,
tear, and impact strengths; 2) provide barrier protection--that is, be resistant to permeation
by oxygen, water vapor, and carbon dioxide; and 3) be nonreactive with the food/drink
contents--such reactions can compromise the integrity of the packaging material, or they can
produce toxic by-products.

With regard to strength, polyethylene terephthalate (PET or PETE) and oriented
polypropylene (OPP) have high tensile strengths, linear low-density polyethylene (LLDPE)
and low-density polyethylene (LDPE) have high tear strengths, while those polymers having
the best impact strengths are PET and polyvinyl chloride (PVC). Relative to barrier
characteristics, ethylene vinyl alcohol (EVOH) and polyvinylidene chloride (PVDC)
copolymers are relatively impermeable to oxygen and carbon dioxide, whereas high-density
polyethylene (HDPE), polyvinylidene chloride, polypropylene, and LDPE are impervious to
water vapor.

Most common polymers are relatively nonreactive with food products, and are
considered safe; exceptions are acrylonitrile and plasticizers used in PVC materials that
may be harmful.

The aesthetics of packaging polymers are also important in the marketing of food
and drink products. Some packages will be colored, many are adorned with printing, others

need to be transparent and clear, and many need to be resistant to scuffing.
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On the basis of the preceding discussion, some examples of polymers that are used
for specific applications are as follows:

PET(E) for soda pop containers;

PVC for beer containers;

LDPE and HDPE films for packaging bread and bakery products.
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CHAPTER 16

COMPOSITES

PROBLEM SOLUTIONS

16.1 The major difference in strengthening mechanism between large-particle and dispersion-
strengthened particle-reinforced composites is that for large-particle the particle-matrix interactions
are not treated on the molecular level, whereas, for dispersion-strengthening these interactions are

treated on the molecular level.

16.2 The similarity between precipitation hardening and dispersion strengthening is the strengthening
mechanism--i.e., the precipitates/particles effectively hinder dislocation motion.

The two differences are: 1) the hardening/strengthening effect is not retained at elevated

temperatures for precipitation hardening--however, it is retained for dispersion strengthening; and 2)

the strength is developed by a heat treatment for precipitation hardening--such is not the case for

dispersion strengthening.

16.3 The elastic modulus versus volume percent of WC is shown below, on which is included both upper
and lower bound curves; these curves were generated using Equations (16.1) and (16.2),

respectively, as well as the moduli of elasticity for cobalt and WC given in the problem statement.
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16.4 This problem asks for the maximum and minimum thermal conductivity values for a TiC-Co cermet.

Using a modified form of Equation (16.1) the maximum thermal conductivity kmax is calculated as
kmax = kam + kap = kCoVCo + I(TiCVTiC

= (69 W/m-K)(0.15) + (27 W/m-K)(0.85) = 33.3 W/m -K

And, from a modified form of Equation (16.2), the minimum thermal conductivity kmin is

‘ KcoKTic

min ~
VeokTic * Vrickco

~ (69 W/m-K)(27 W/m-K)
~ (0.15)(27 W/m-K) + (0.85)(69 W/m-K)

=29.7 W/m-K

16.5 Given the elastic moduli and specific gravities for copper and tungsten we are asked to estimate the
upper limit for specific stiffness when the volume fractions of tungsten and copper are 0.70 and 0.30,

respectively. There are two approaches that may be applied to solve this problem. The first is to
estimate both the upper limits of elastic modulus [Ec(u)] and specific gravity (pc) for the composite,

using equations of the form of Equation (16.1), and then take their ratio. Using this approach
Ec(u) = ECuVCu + EWVW

= (110 GPa)(0.30) + (407 GPa)(0.70)

=318 GPa
And
Pc = PcuVou T PwVw
= (8.9)(0.30) + (19.3)(0.70) = 16.18
Therefore
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E.(W) 318 GPa
- 16.18

Specific Stiffness = =19.65 GPa

Pc

With the alternate approach, the specific stiffness is calculated, again employing a
modification of Equation (16.1), but using the specific stiffness-volume fraction product for both

metals, as follows:

E
Specific Stiffness = —=U Vou + EALVW
Pcu Pw
110 GPa 407 GPa
= ——(0.30) + —(0.70) = 18.47 GP
gg (030 193 070 a

16.6 (a) The matrix phase is a continuous phase that surrounds the noncontinuous dispersed phase.
(b) In general, the matrix phase is relatively weak, has a low elastic modulus, but is quite ductile.

On the other hand, the fiber phase is normally quite strong, stiff, and brittle.

16.7 (a) Concrete consists of an aggregate of particles that are bonded together by a cement.
(b) Three limitations of concrete are: 1) it is a relatively weak and brittle material; 2) it experiences
relatively large thermal expansions (contractions) with changes in temperature; and 3) it may crack
when exposed to freeze-thaw cycles.
(c) Three reinforcement strengthening techniques are: 1) reinforcement with steel wires, rods, etc.;
2) reinforcement with fine fibers of a high modulus material; and 3) introduction of residual

compressive stresses by prestressing or posttensioning.

16.8 (a) Three functions of the polymer-matrix phase are: 1) to bind the fibers together so that the
applied stress is distributed among the fibers; 2) to protect the surface of the fibers from being
damaged; and 3) to separate the fibers and inhibit crack propagation.

(b) The matrix phase must be ductile and is usually relatively soft, whereas the fiber phase must be
stiff and strong.

(c) There must be a strong interfacial bond between fiber and matrix in order to: 1) maximize the
stress transmittance between matrix and fiber phases; and 2) minimize fiber pull-out, and the

probability of failure.
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16.9 This problem asks that, for a glass fiber-epoxy matrix combination, to determine the fiber-matrix
bond strength if the critical fiber length-fiber diameter ratio is 40. Thus, we are to solve for Te in

I
Equation (16.3). Since we are given that cf* = 3.45 GPa from Table 16.4, and that —g =40, then

d 3 1
= o!|=—|= (3.45 x 103 MP ) = 43.1 MP
T of[mcj (345 x10° MPa G0 = 431 MPa

16.10 (a) The plot of reinforcement efficiency versus fiber length is given below.

1.0 1 I I T

08

06

0.4

Reinforcement efficiency

02

O 0 1 1 1 1
0 10 20 30 40 50

Fiber length (mm)

(b) This portion of the problem asks for the length required for a 0.90 efficiency of reinforcement.

Solving for | from the given expression

Or, when x = 1.25 mm (0.05 in.) and n = 0.90, then

_ (a.25mm) :
| = 1- 090 = 25mm (1.0 in.)
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16.11 This problem calls for us to compute the longitudinal tensile strength and elastic modulus of an
aramid fiber-reinforced polycarbonate composite.

(a) The longitudinal tensile strength is determined using Equation (16.17) as
of = oml-Ve)* ofVy
= (45 MPa)(0.70) + (3600 MPa)(0.30)
= 1100 MPa (160, 000 psi)
(b) The longitudinal elastic modulus is computed using Equation (16.10a) as
EcI = Eme * Efo
= (2.4 GPa)(0.70) + (131 GPa)(0.30)

= 41 GPa (5.95 x 10° psi)

16.12 This problem asks for us to determine if it is possible to produce a continuous and oriented aramid
fiber-epoxy matrix composite having longitudinal and transverse moduli of elasticity of 35 GPa and
5.17 GPa, respectively, given that the modulus of elasticity for the epoxy is 3.4 GPa. Also, from
Table 16.4 the value of E for aramid fibers is 131 GPa. The approach to solving this problem is to
calculate two values of Vf using the data and Equations (16.10b) and (16.16); if they are the same

then this composite is possible.
For the longitudinal modulus Ecl’

Eq = Em@ - Vi) * Epvy
35GPa = (34 GPa)(l - ;) + (131 GPa)V,

Solving this expression for Vfl yields Vfl =0.248.

Now, repeating this procedure for the transverse modulus Ect

_ E E
ot T (1_ Vft)Ef + ViiEm
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(3.4 GPa)(131 GPa)
Q— vﬂ)131 GPa) + V(3.4 GPa)

5.17 GPa =

Solving this expression for Vft leads to Vft = 0.351. Thus, since VfI and Vft are not equal, the

proposed composite is not possible.

16.13 (a) This portion of the problem calls for us to calculate the specific longitudinal strengths of glass-
fiber, carbon-fiber, and aramid-fiber reinforced epoxy composites, and then to compare these values
with the specific strengths of several metal alloys.

The longitudinal specific strength of the glass-reinforced epoxy material (Vf = 0.60) in Table

16.5 is just the ratio of the longitudinal tensile strength and specific gravity as

1020 MPa _ o \ipa
2.1
For the carbon-fiber reinforced epoxy
1240 WPa_ 75 e,

And, for the aramid-fiber reinforced epoxy

1380 MPa
1.4

= 986 MPa

Now, for the metal alloys we use data found in Tables B.1 and B.4 in Appendix B. For the

cold-rolled 7-7PH stainless steel

1380 MPa
_—c1 MP
7.65 80 a

For the normalized 1040 plain carbon steel, the ratio is

590 MPa

= 75 MPa
7.85

For the 7075-T6 aluminum alloy
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572 MPa

>80 204 MPa
For the C26000 brass (cold worked)
525 MPa
853 - 62 MPa

For the AZ31B (extruded) magnesium alloy

262 MPa
177 148 MPa

For the annealed Ti-5Al-2.5Sn titanium alloy

790 MPa

= 176 MP
24.48 6 MPa

(b) The longitudinal specific modulus is just the longitudinal tensile modulus-specific gravity ratio.

For the glass-fiber reinforced epoxy, this ratio is

45 GPa = 21.4 GPa
2.1
For the carbon-fiber reinforced epoxy
145 5P _ 906 GPa
1.6

And, for the aramid-fiber reinforced epoxy

76 GPa
14

= 54.3 GPa

The specific moduli for the metal alloys (Tables B.1 and B.2) are as follows:

For the cold rolled 17-7PH stainless steel

204 GPa

7 65 = 26.7 GPa

For the normalized 1040 plain-carbon steel
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16.14 This problem asks for us to compute the elastic moduli of fiber and matrix phases for a continuous

and oriented fiber-reinforced composite.

And

207 GPa

85 = 26.4 GPa

For the 7075-T6 aluminum alloy

71 GPa

>80 = 25.4 GPa

For the cold worked C26000 brass

110 GPa
=228 159GP
853 9 GPa

For the extruded AZ31B magnesium alloy

45 GPa _ ., pa
1.77
For the Ti-5Al-2.5Sn titanium alloy
110 GPa
——— =246 GP
448 6 GPa

Eq = Enll - Vi) + E
19.7 GPa = E (1 - 0.25) + E£(0.25)
E_E
Bet = -
@ - Vi Es +ViEn,
E, E
3.66 GPa = o

We can write expressions for the longitudinal and
transverse elastic moduli using Equations (16.10b) and (16.16), as

(1- 0.25)E,+ 0.25E _
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Solving these two expressions simultaneously for Em and Es leads to

E, = 279 GPa (4.04x10° psi)
E; = 70.4 GPa (10.2x 10° psi)

16.15 (a)

In order to show that the relationship in Equation (16.11) is valid, we begin with Equation
(16.4), FC = Fm + Ff, which may be manipulated to read

F F
< _ 14+ L
m Fm
or
F_oFR
S
For elastic deformation [Equation (6.5)]
F
c = Z = ¢E
or
F = AcsE

Now we may write expressions for FC and Frn as

Fn = AmeEm

which, when substituted into the above expression gives

B AcE.
F ~ A &E
m m m

But, V. =A /A ,or
m m c
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F

g ey
F

m

Also, from Equation (16.10a), Ec = EmVm + Efo, which, when substituted into the previous

expression, yields

OBt BY
F E V
m m m

E vV, + EVe - E V E.V

Emvm Eme
/FC. We determine this

(b) This portion of the problem asks that we establish an expression for Ff

ratio in a similar manner. Now FC = Ff + Fm’ or

FC FC
which gives
B Fa_ | AxFn | Adfy
F F A cE A E
C C C (o3 c C
Since A_/A_=V__, then
m c m
V_E

V_E
" V.E_+ VE
m-—m ff

VmEm +VfEf —VmEm
V.E +VE
m-m f=f

VfEf VfEf
VmEm * VfEf (1_ Vf)Em + ViEs
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16.16 (a) Given some data for an aligned glass-fiber-reinforced nylon 6,6, we are asked to compute the
volume fraction of fibers that is required such that the fibers carry 94% of a load applied in the

longitudinal direction. From Equation (16.11)

R _ B Vs
Fr EwVm  Epn (1 - Vf)

Now,
F 0.94
L - =—- 1567
F .06
m
Substituting in for Ef and Em
F (725 GPa)V
—L - 1567 = f
F (3.0 GPa)(l - vf)

And, solving for V]c yields, Vf =0.418.

(b) We are now asked for the tensile strength of this composite. From Equation (16.17), and using

values for cf* (3400 MPa) and Gﬁw (30 MPa) given in the problem statement,

o = o= Vi) + of vy
= (30 MPa)(1 - 0.418) + (3400 MPa)(0.0.418)

= 1440 MPa (207,000 psi)

16.17 This problem stipulates that the cross-sectional area of a composite, Ac’ is 320 mm2 (0.50 in.2),

and that the longitudinal load, Fc’ is 44,500 N (10,000 Ibf) for the composite described in Problem

16.11.

(a) First, we are asked to calculate the F /Fm ratio. According to Equation (16.11)

f

F E.V, 131 GPa)(0.30
Ff_= Vi _ 2)(0.30) _ 5 ,
m

E.V, (24 GPa)0.70)
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Or, F, = 23.4F
f m

(b) Now, the actual loads carried by both phases are called for. Since
F + F, = F, = 44,500 N
23.4F,, + F,, = 44,500 N

which leads to

Fpy = 1824 N (410 1by)

F = 44,500 N - 1824 N = 42,676 N (9590 Iby)

(c) To compute the stress on each of the phases, it is first necessary to know the cross-sectional
areas of both fiber and matrix. These are determined as

Af = VA, = (0.30)(320 mm?) = 96 mm? (0.15 in.?)
A=V A = 2y = 2 in.
m = VimAc = (0.70)(320 mm~) = 224 mm~ (0.35in.7)

Now, for the stresses,

T

42,676 N 42,676 N .
of = 7= 5 = ) = 445 MPa (63,930 psi)
£ 96 mm 96 x10™° m

F 1824 N 1824 N

o = =

m .
- = = 8.14 MPa (1170 psi)
moAL 224 mm? 224 x10° m?

(d) The strain on the composite is the same as the strain on each of the matrix and fiber phases, as

o 8.14 MPa ;
g = T T — = 3.39x103
En 24 x10° MPa
o 445 MPa -
g = == — = 3.39x10°
E; 131 x10° MPa
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16.18 For a continuous and aligned fibrous composite, we are given its cross-sectional area (970 mm2),
the stresses sustained by the fiber and matrix phases (215 and 5.38 MPa), the force sustained by
the fiber phase (76,800 N), and the total longitudinal strain (1.56 x 10'3).

(@) For this portion of the problem we are asked to calculate the force sustained by the matrix
phase. It is first necessary to compute the volume fraction of the matrix phase, Vm' This may be

accomplished by first determining \Z and then Vim from Vip = 1- V4 The value of Vi may be

calculated realizing that

O = F = —Ff—
f A VA
C
Or
F 76,800 N
Vp = —— = = 0.369
SA . (215 x 106 N/mz)@g?o x 1073 m2)
Now

Vip = 1=V = 1- 0.369 = 0.631
Therefore, since

o =

F F
- m_ _m
m - A

m m C
then

Fn = VinOmAe = (0.631)(6.38 x 10° N/m? )0.970 x 10® m? )= 3200 N (738 Iby)

(b) We are now asked to calculate the modulus of elasticity in the longitudinal direction. This is

c F_ +F
possible realizing that E_ :?C andthat o, = _mA_f. Thus

B 3290 N + 76,800 N
@.56 X 10—3)@.970 x 1073 m2)

= 52.9 GPa (7.69 x 10° psi)

(c) Finally, it is necessary to determine the moduli of elasticity for the fiber and matrix phases. This

is possible as follows:
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6 2

c c 5.38 x10° N/
E =-m.Zm_ “— " = 3.45x10° N/m?

€ €. 1.56 x 10

= 3.45GPa (5.0 x 10° psi)

of o _ 215 x10° N/m? 11\, 2
Eo= o= 2o 5— = 1.38 x10'" N/m

T 1.56 x 10

= 138 GPa (20 x 10° psi)

16.19 In this problem, for an aligned carbon fiber-epoxy matrix composite, we are given the volume
fraction of fibers (0.20), the average fiber diameter (6 x 10'3 mm), the average fiber length (8.0 mm),
the average fiber fracture strength (4.5 GPa), the fiber-matrix bond strength (75 MPa), the matrix
stress at composite failure (6.0 MPa), and the matrix tensile strength (60 MPa); and we are asked to
compute the longitudinal strength. It is first necessary to compute the value of the critical fiber length
using Equation (16.3). If the fiber length is much greater than IC, then we may determine the
longitudinal strength using Equation (16.17), otherwise, use of either Equation (16.18) or (16.19) is

necessary. Thus,

o/ d @.5 x 103 MPaX6 x1073 mm)

c 21, 2(75 MPa)

= 0.18 mm

Inasmuch as | >> IC (8.0 mm >> 0.18 mm), then use of Equation (16.17) is appropriate. Therefore,

of = o= Vi) * of V4
= (6 MPa)(1 - 0.20) + (4500 MPa)(0.20)
= 905 MPa (130,700 psi)

16.20 In this problem, for an aligned carbon fiber-epoxy matrix composite, we are given the desired

longitudinal tensile strength (500 MPa), the average fiber diameter (1.0 x 10'2

mm), the average
fiber length (0.5 mm), the fiber fracture strength (4000 MPa), the fiber-matrix bond strength (25

MPa), and the matrix stress at composite failure (7.0 MPa); and we are asked to compute the
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volume fraction of fibers that is required. It is first necessary to compute the value of the critical fiber
length using Equation (16.3). If the fiber length is much greater than IC, then we may determine V]c
using Equation (16.17), otherwise, use of either Equation (16.18) or Equation (16.19) is necessary.
Thus,

o7d (4000 MPa)(1.0 x 1072 mm)

= = = 0.80
¢~ 2t 2(25 MPa) mm

Inasmuch as | < IC (0.50 mm < 0.80 mm), then use of Equation (16.19) is required. Therefore,

otg = o Vi *+ o)

@.5 x1073 m)zs MPa)
0.01 x10~3m

500 MPa = ) + @ mPa)1- ;)

Solving this expression for Vf leads to Vf =0.397.

16.21 In this problem, for an aligned glass fiber-epoxy matrix composite, we are asked to compute the
longitudinal tensile strength given the following: the average fiber diameter (0.015 mm), the average
fiber length (2.0 mm), the volume fraction of fibers (0.25), the fiber fracture strength (3500 MPa), the
fiber-matrix bond strength (100 MPa), and the matrix stress at composite failure (5.5 MPa). It s first
necessary to compute the value of the critical fiber length using Equation (16.3). If the fiber length is

much greater than Ic' then we may determine Gél using Equation (16.17), otherwise, use of either

Equation (16.18) or (16.19) is necessary. Thus,

ofd (3500 MPa)(0.015 mm) _
|. = = =0.2 .01 .
c Zrc 2(100 MPa) 0.263 mm (0.010 in.)

Inasmuch as | > IC (2.0 mm > 0.263 mm), but | is not much greater than Ic’ then use of Equation

(16.18) is necessary. Therefore,

* * |C 0
ch = Gfo[l—aJ + Gm(l—Vf)
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0.263 mm

) M} + (5.5 MPa)(1 - 0.25)

= (3500 MPa)(O.ZS){l

=822 MPa (117,800 psi)

16.22 (a) This portion of the problem calls for computation of values of the fiber efficiency parameter.
From Equation (16.20)

Ecqg = KEV; + E Vi

Solving this expression for K yields

Ecd ~EmVm _ Eeg ™ Em(l_ Vf)
Efo Efo

K =

For glass fibers, E, = 72.5 GPa (Table 16.4); using the data in Table 16.2, and taking an average

f

of the extreme Em values given, Em =2.29 GPa (0.333 x 106 psi). And, for V]c =0.20

_ 5.93 GPa— (2.29 GPa)(1 - 0.2) _

K = 0.283
(725 GPa)(0.2)
For Vf =0.3
K = 8.62 GPa — (2.29 GPa)(1 — 0.3) - 0.323
(72.5 GPa)(0.3)
And, for Vf =04
K = 11.6 GPa —(2.29 GPa)(1 — 0.4) - 0.353

(72.5 GPa)(0.4)

(b) For 50 vol% fibers (V]c = 0.50), we must assume a value for K. Since K increases slightly with

Vf, let us assume that the increase in going from Vf = 0.4 to 0.5 is the same as from 0.3 to 0.4--that

is, by a value of 0.03. Therefore, let us assume a value for K of 0.383. Now, from Equation (16.20)

Ec. = KEfV; + E Vi
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= (0.383)(72.5 GPa)(0.5) + (2.29 GPa)(0.5)

= 15.0 GPa (2.18 x 10° psi)

16.23 For discontinuous-oriented fiber-reinforced composites one desirable characteristic is that the
composite is relatively strong and stiff in one direction; a less desirable characteristic is that the
mechanical properties are anisotropic.

For discontinuous and random fiber-reinforced, one desirable characteristic is that the

properties are isotropic; a less desirable characteristic is there is no single high-strength direction.

16.24 (a) The four reasons why glass fibers are most commonly used for reinforcement are listed at the
beginning of Section 16.8 under "Glass Fiber-Reinforced Polymer (GFRP) Composites."
(b) The surface perfection of glass fibers is important because surface flaws or cracks will act as
points of stress concentration, which will dramatically reduce the tensile strength of the material.
(c) Care must be taken not to rub or abrade the surface after the fibers are drawn. As a surface

protection, newly drawn fibers are coated with a protective surface film.

16.25 "Graphite" is crystalline carbon having the structure shown in Figure 12.17, whereas "carbon" will

consist of some noncrystalline material as well as areas of crystal misalignment.

16.26 (a) Reasons for the extensive use of fiberglass-reinforced composites are as follows: 1) glass
fibers are very inexpensive to produce; 2) these composites have relatively high specific strengths;
and 3) they are chemically inert in a wide variety of environments.

(b) Several limitations of these composites are: 1) care must be exercised in handling the fibers
inasmuch as they are susceptible to surface damage; 2) they lack the stiffness found in other

fibrous composites; and 3) they are limited as to maximum temperature use.

16.27 (a) A hybrid composite is one that is reinforced with two or more different fiber materials in a single
matrix.
(b) Two advantages of hybrid composites are: 1) better overall property combinations, and 2) failure

is not as catastrophic as with single-fiber composites.

16.28 (a) For a hybrid composite having all fibers aligned in the same direction

Eol = EmVin + BV + EppVpp
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in which the subscripts f1 and 2 refer to the two types of fibers.

(b) Now we are asked to compute the longitudinal elastic modulus for a glass- and aramid-fiber
hybrid composite. From Table 16.4, the elastic moduli of aramid and glass fibers are, respectively,
131 GPa (19 x 106 psi) and 72.5 GPa (10.5 x 106 psi). Thus, from the previous expression

Ey = (2.5GPa)(1.0 - 0.30 — 0.40) + (131 GPa)(0.30)
+ (72.5 GPa)(0.40)

= 69.1 GPa (10.0 x 10° psi)

16.29 This problem asks that we derive a generalized expression analogous to Equation (16.16) for the
transverse modulus of elasticity of an aligned hybrid composite consisting of two types of continuous
fibers. Let us use the subscripts f1 and f2 to denote the two fiber types, and m , ¢, and t as

subscripts for the matrix, composite, and transverse direction, respectively. For the isostress state,

the expressions analogous to Equations (16.12) and (16.13) are

O¢c = %m = %11~ %
And

gc = emVm * &1Vi1 T eV

Since ¢ = o/E, then

(e} (e} (e}
— ==V .+ —V, + —V,
m f1 f2
Ect Em Efl Ef2
And
\Y V, V,
1 - —m,  f1, _f2
Ect Em Efl Ef2
L ViBeFe VeErEn VB Ey
Ect EmEflEfZ
And, finally
E. = ErEnEp

ct
ViEaEr2 * ViFEmFr2 * ViEmEn
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16.30 Pultrusion, filament winding, and prepreg fabrication processes are described in Section 16.13.

For pultrusion, the advantages are: the process may be automated, production rates are
relatively high, a wide variety of shapes having constant cross-sections are possible, and very long
pieces may be produced. The chief disadvantage is that shapes are limited to those having a
constant cross-section.

For filament winding, the advantages are: the process may be automated, a variety of
winding patterns are possible, and a high degree of control over winding uniformity and orientation is
afforded. The chief disadvantage is that the variety of shapes is somewhat limited.

For prepreg production, the advantages are: resin does not need to be added to the
prepreg, the lay-up arrangement relative to the orientation of individual plies is variable, and the lay-
up process may be automated. The chief disadvantages of this technique are that final curing is
necessary after fabrication, and thermoset prepregs must be stored at subambient temperatures to

prevent complete curing.

16.31 Laminar composites are a series of sheets or panels, each of which has a preferred high-strength

direction. These sheets are stacked and then cemented together such that the orientation of the
high-strength direction varies from layer to layer.
These composites are constructed in order to have a relatively high strength in virtually all

directions within the plane of the laminate.

16.32 (a) Sandwich panels consist of two outer face sheets of a high-strength material that are

separated by a layer of a less-dense and lower-strength core material.

(b) The prime reason for fabricating these composites is to produce structures having high in-plane
strengths, high shear rigidities, and low densities.

(c) The faces function so as to bear the majority of in-plane loading and also transverse bending
stresses. On the other hand, the core separates the faces and resists deformations perpendicular to

the faces.

Design Problems

16.D1 In order to solve this problem, we want to make longitudinal elastic modulus and tensile strength

computations assuming 50 vol% fibers for all three fiber materials, in order to see which meet the

stipulated criteria [i.e., a minimum elastic modulus of 50 GPa (7.3 x 106 psi), and a minimum tensile

426



strength of 1300 MPa (189,000 psi)]. Thus, it becomes necessary to use Equations (16.10b) and
(16.17)withV_=05andV,=0.5,E_=3.1 GPa, and ¢* =75 MPa.
m f m m

For glass, E, = 72.5 GPa and cf* = 3450 MPa. Therefore,

f
Eq = Enll - %)+ Ep
= (3.1 GPa)(1 — 0.5) + (72.5 GPa)(0.5) = 37.8 GPa (5.48 x 10° psi)
Since this is less than the specified minimum, glass is not an acceptable candidate.

For carbon (PAN standard-modulus), Ef = 230 GPa and cf* = 4000 MPa (the average of the

extreme values in Table B.4), thus

E. = (3.1 GPa)(0.5) + (230 GPa)(0.5) = 116.6 GPa (16.9 X 10° psi)
which is greater than the specified minimum. In addition, from Equation (16.17)
o = om(L- )+ of Vy
= (30 MPa)(0.5) + (4000 MPa)(0.5) = 2015 MPa (292,200 psi)

which is also greater than the minimum. Thus, carbon (PAN standard-modulus) is a candidate.

For aramid, Ef =131 GPa and cf* = 3850 MPa (the average of the extreme values in Table

B.4), thus

E, = (3.1GPa)(0.5) + (131 GPa)(0.5) = 67.1GPa (9.73x 10° psi)

which value is greater than the minimum. Also, from Equation (16.17)

= (50 MPa)(0.5) + (3850 MPa)(0.5) = 1950 MPa (283,600 psi)
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which is also greater than the minimum strength value. Therefore, of the three fiber materials, both

the carbon (PAN standard-modulus) and the aramid meet both minimum criteria.

16.D2 This problem asks us to determine whether or not it is possible to produce a continuous and
oriented carbon fiber-reinforced epoxy having a modulus of elasticity of at least 83 GPa in the
direction of fiber alignment, and a maximum specific gravity of 1.40. We will first calculate the
minimum volume fraction of fibers to give the stipulated elastic modulus, and then the maximum
volume fraction of fibers required to yield the maximum permissible specific gravity; if there is an
overlap of these two fiber volume fractions then such a composite is possible.

With regard to the elastic modulus, from Equation (16.10b)
Eq = En(l - V) + Evy
83 GPa = (2.4 GPa) (1 - Vf) + (260 GPa)(V;)

Solving for Vf yields V, = 0.31. Therefore, V, > 0.31 to give the minimum desired elastic modulus.

f f
Now, upon consideration of the specific gravity, p, we employ a modified form of Equation

(16.10b) as
pe = Pl Vi) + o
140 = 1.25( - ;) + 1.80(%)

And, solving for V, from this expression gives V, = 0.27. Therefore, it is necessary for V, < 0.27 in

f f f
order to have a composite specific gravity less than 1.40.

Hence, such a composite is not possible since there is no overlap of the fiber volume
fractions (i.e., 0.31 < Vf < 0.27) as computed using the two stipulated criteria.

16.D3 This problem asks us to determine whether or not it is possible to produce a continuous and
oriented glass fiber-reinforced polyester having a tensile strength of at least 1250 MPa in the
longitudinal direction, and a maximum specific gravity of 1.80. We will first calculate the minimum
volume fraction of fibers to give the stipulated tensile strength, and then the maximum volume
fraction of fibers possible to yield the maximum permissible specific gravity; if there is an overlap of
these two fiber volume fractions then such a composite is possible.

With regard to tensile strength, from Equation (16.17)

428



o = "}n(l - Vf)+ of Vs
1250 MPa = (20 MPa) (L - V; ) + (3500 MPa)(Vy)

= 0.353. Therefore, Vf > 0.353 to give the minimum desired tensile

Solving for Vf yields V
strength.
Now, upon consideration of the specific gravity, p, we employ the following modified form of

Equation (16.10b) as
Pe = Pl — V1) + oy
1.80 = 1.35@ — V; ) + 2.50(V})

And, solving for V, from this expression gives V, = 0.391. Therefore, it is necessary for V, < 0.391

f f

in order to have a composite specific gravity less than 1.80.
Hence, such a composite is possible if 0.353 <V; < 0.391.

f

16.D4 In this problem, for an aligned and discontinuous glass fiber-epoxy matrix composite having a
longitudinal tensile strength of 1200 MPa, we are asked to compute the required fiber fracture
strength, given the following: the average fiber diameter (0.015 mm), the average fiber length (5.0
mm), the volume fraction of fibers (0.35), the fiber-matrix bond strength (80 MPa), and the matrix

stress at fiber failure (6.55 MPa).
To begin, since the value of o is unknown, calculation of the value of IC in Equation (16.3)

is not possible, and, therefore, we are not able to decide which of Equations (16.18) and (16.19) to
use. Thus, it is necessary to substitute for IC in Equation (16.3) into Equation (16.18), solve for the

value of cf*, then, using this value, solve for IC from Equation (16.3). If | > Ic' we use Equation

(16.18), otherwise Equation (16.19) must be used. Note: the cf* parameters in Equations (16.18)
and (16.3) are the same. Realizing this, and substituting for IC in Equation (16.3) into Equation

(16.18) leads to
r

_|
Géd :Gf*vf|1_ |

{ 4TCIJ

Gf*d

+ o -Vvp)
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2V d
= Y, — + G
of Vf 4TC| m

- oVt

This expression is a quadratic equation in which cf* is the unknown. Rearrangement into a more

convenient form leads to

v,d
*2 _f_ * * ' _
of [41 J —of(Vp ¥ [ch o~ Vf)} 0
c

Or
acf*z + bGF +c=0
In which
4o 9
41 |
C
(0.35) (0.015 x 1073 m) ] . . .
= = 3.28x 108 (MPa) E.zs x 1078 (psi)” ]
(4)(80 MPa)(’S x 1073 m)
Furthermore,

b=-V =-035

¢ = oy — ol - V)
= 1200 MPa — (6.55 MPa)(1 — 0.35) = 1195.74 MPa (174,383 psi)

Now solving the above quadratic equation for cf* yields

—bi{b2—4ac

2a

Gf:

—(-035) + J (-0.35)2 — (4) [3.28 x107° (MPa)_111195.74 MPa)

(Z)E.Z8 x 1076 (MPa)—l]
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0.3500 +0.3268 0.3500 + 0.3270
= 5 MPa —g__ Psi
6.56 x10 4.46 x 10

This yields the two possible roots as

0.3500 + 0.3268

o o6 \IPa = 103,200 MPa (152 10° psi)
. X

of(+)=

0.3500 — 0.3268
6.56 x10°°

of(5)= MPa = 3537 MPa (515,700 psi)

Upon consultation of the magnitudes of cf* for various fibers and whiskers in Table 16.4, only

o-f* (-) is reasonable. Now, using this value, let us calculate the value of IC using Equation (16.3) in

order to ascertain if use of Equation (16.18) in the previous treatment was appropriate. Thus

ofd (3537 MPa)(0.015 mm) _
| = = = 0.33 0.0131in.
c = 21 (2)(80 MPa) mm in.)

Since | > |C (5.0 mm > 0.33 mm), our choice of Equation (16.18) was indeed appropriate, and cf* =

3537 MPa (515,700 psi).

16.D5 (a) This portion of the problem calls for the same volume fraction of fibers for the four fiber types
(i.e., Vf = 0.40); thus, the modulus of elasticity will vary according to Equation (16.24a) with cos 6 =

cos (17.5°) = 0.954. Hence
E.e = O.954(Eme + Efo)

And, using data in Table 16.8, the value of E.g May be determined for each fiber material; these are

tabulated in Table 16.D5a.
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Table 16.D5a Composite Elastic Modulus for Each of Glass and Three Carbon Fiber Types for V=040

cs

Fiber Type GPa 106 psi
Glass 29.0 4.2
Carbon--standard modulus 89.1 12.9
Carbon--intermediate modulus 110 16.0
Carbon--high modulus 154 22.3

It now becomes necessary to determine, for each fiber type, the inside diameter di'

Rearrangement of Equation 16.23 leads to

3 /4
q = d4 B 4FL
7 |70 3rEAY

The di values may be computed by substitution into this expression for E the ECS data in Table

16.D5a and the following

F=100N
L=0.75m
Ay =2.5mm

d 0" 100 mm
These di data are tabulated in the second column of Table 16.D5b. No entry is included for glass.

The elastic modulus for glass fibers is so low that it is not possible to use them for a tube that meets
the stipulated criteria; mathematically, the term within brackets in the above equation for di is

negative, and no real root exists. Thus, only the three carbon types are candidate fiber materials.
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Table 16.D5b Inside Tube Diameter, Total Volume, and Fiber, Matrix, and Total Costs for Three Carbon-

Fiber Epoxy-Matrix Composites

Inside Total Fiber Matrix Total
Diameter Volume Cost Cost Cost
Fiber Type (mm) (cm3) %) %) €))
Glass - - - - -
Carbon--standard
modulus 66.6 3324 83.76 20.46 104.22
Carbon--intermediate
modulus 76.9 2407 121.31 14.82 136.13
Carbon--high modulus  85.5 1584 199.58 9.75 209.33

(b) Also included in Table 16.D5b is the total volume of material required for the tubular shaft for
each carbon fiber type; Equation (16.25) was utilized for these computations. Since Vf = 0.40, 40%
this volume is fiber and the other 60% is epoxy matrix. In the manner of Design Example 16.1, the
masses and costs of fiber and matrix materials were determined, as well as the total composite cost.
These data are also included in Table 16.D5b. Here it may be noted that the standard-carbon fiber

yields the least expensive composite, followed by the intermediate- and high-modulus materials.
16.D6 This problem is to be solved using the E-Z Solve software.

16.D7 Inasmuch as there are a number of different sports implements that employ composite materials,
no attempt will be made to provide a complete answer for this question. However, a list of this type
of sporting equipment would include skis and ski poles, fishing rods, vaulting poles, golf clubs,
hockey sticks, baseball and softball bats, surfboards and boats, oars and paddles, bicycle

components (frames, wheels, handlebars), canoes, and tennis and racquetball rackets.
16.D8 The primary reasons that the automotive industry has replaced metallic automobile components

with polymer and composite materials are: polymers/composites 1) have lower densities, and afford

higher fuel efficiencies; 2) may be produced at lower costs but with comparable mechanical
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characteristics; 3) are in many environments more corrosion resistant; 4) reduce noise, and 5) are
thermally insulating and thus reduce the transference of heat.

These replacements are many and varied. Several are as follows:

Bumper fascia are molded from an elastomer-modified polypropylene.

Overhead consoles are made of polyphenylene oxide and recycled polycarbonate.

Rocker arm covers are injection molded of a glass- and mineral-reinforced nylon 6,6
composite.

Torque converter reactors, water outlets, pulleys, and brake pistons, are made from phenolic
thermoset composites that are reinforced with glass fibers.

Air intake manifolds are made of a glass-reinforced nylon 6,6.
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CHAPTER 17
CORROSION AND DEGRADATION OF MATERIALS
PROBLEM SOLUTIONS

17.1 (a) Oxidation is the process by which an atom gives up an electron (or electrons) to become a
cation.
Reduction is the process by which an atom acquires an extra electron (or electrons) and
becomes an anion.

(b) Oxidation occurs at the anode; reduction at the cathode.

17.2 (a) This problem asks that we write possible oxidation and reduction half-reactions for magnesium
in various solutions.
@) In HCI

Mg — Mg2+ + 2e (oxidation)

2H" + 2¢” > H, (reduction)

(i) In an HCI solution containing dissolved oxygen
2+ - I
Mg — Mg“" + 2e  (oxidation)

4H™ + O, + 4" — 2H,0 (reduction)

(iif) In an HCI solution containing dissolved oxygen and Fe2+ ions
2+ - I
Mg — Mg“" + 2e  (oxidation)
aH' + O, + 4e — 2H,0 (reduction)

2+

Fe“" + 2e — Fe (reduction)
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(b) The magnesium would probably oxidize most rapidly in the HCI solution containing dissolved
+ . . . .
oxygen and Fe2 ions because there are two reduction reactions that will consume electrons from

the oxidation of magnesium.

17.3 Iron would not corrode in water of high purity because all of the reduction reactions, Equations
(17.3) through (17.7), depend on the presence of some impurity substance such as H+ or Mn+ ions

or dissolved oxygen.

17.4 (a) The Faraday constant is just the product of the charge per electron and Avogadro's number;
that is

F=eNp = (1.602 X 10'19 C/electronX6.023 X 1023 electrons/mol)

= 96,488 C/mol

(b) At 25°C (298 K),

(8.31 J/mol -K)(298 K)
(n)(96,500 C/mol)

% In(x) = (2.303) log(x)

.0592
= 2222 10g (9

This gives units in volts since a volt is a J/C.

17.5 (a) We are asked to compute the voltage of a nonstandard Cd-Fe electrochemical cell. Since iron
is lower in the emf series (Table 17.1), we begin by assuming that iron is oxidized and cadmium is

reduced, as

Fe + cd?t - Fe?t

+ Cd
and
0.0592 [Fe2*]

2 % cd

AV = (g~ Vo) -

= [-0.403V - (-0.440 V)] -

00502 0.40
2 2 x1073
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=-0.031V

(b) Since this AV is negative, the spontaneous cell direction is just the reverse of that above, or

+

Fe?" + cd > Fe + cd?'

. . . . +
17.6 This problem calls for us to determine whether or not a voltage is generated in a Zn/Zn2
. . . . . + .
concentration cell, and, if so, its magnitude. Let us label the Zn cell having a 1.0 M Zn2 solution as
cell 1, and the other as cell 2. Furthermore, assume that oxidation occurs within cell 2, wherein

Zn%+ =102 M. Hence,

Zn, + Zn%+—> an+ +Zn,
and
2+
Ay o 20592 N
- 2 9 2+

]

0.0592 1072
= _ | = +0.0592 V
> og{ 10 } 0.059

Therefore, a voltage of 0.0592 V is generated when oxidation occurs in the cell having the Zn2+

concentration of 10 M.

. + . . .
17.7 We are asked to calculate the concentration of sz ions in a copper-lead electrochemical cell.

The electrochemical reaction that occurs within this cell is just
Pb + Cu?* - Pb%" + Cu

while AV = 0.507 V and [Cu2+] = 0.6 M. Thus, Equation (17.20) is written in the form

s . 0.0592  [Pb®*]
AV = @cU— VPb)_ > log [Cu2* ]

Solving this expression for [Pb2+] gives
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AV‘@CU - VPb)

0.0296

[Pb%*] = [Cu®* ] exp—| (2.303)

The standard potentials from Table 17.1 are V&u =+0.340 V and V|°:b = -0.126 V. Therefore,

0.507 V - (0.340 V + 0.126 V)}
0.0296

[Pb%*] = (0.6 M) exp—{(2.303)
= 25x1072 M
17.8 This problem asks for us to calculate the temperature for a zinc-lead electrochemical cell when the
potential between the Zn and Pb electrodes is +0.568 V. On the basis of their relative positions in
the standard emf series (Table 17.1), assume that Zn is oxidized and Pb is reduced. Thus, the
electrochemical reaction that occurs within this cell is just

Pb2t + zZn - Pb + zn%*

Thus, Equation (17.20) is written in the form

ve (e ). BT, 2%
AV = @Pb‘ Zn)_ oF P2t

Solving this expression for T gives

nF [AV- (VPb - VZn)
R Zn2+
o
[Pb™"]

T =

The standard potentials from Table 17.1 are Vgn =-0.763 V and Vf;b =-0.126 V. Therefore,

(2)(96,500 C/mol)| 0.568 V —(-0.126 V + 0.763 V)
8.31 J/mol-K 1072 M
n| ———
10 " M

T =

438



=348 K=75°C
17.9 We are asked to modify Equation (17.19) for the case when metals M1 and M2 are alloys. In this

case, the equation becomes

RT M7 1M, ]
AV = 6/2 Vl) Mn+][M ]

where [M 1] and [M2] are the concentrations of metals M1 and M2 in their respective alloys.

17.10 This problem asks, for several pairs of alloys that are immersed in seawater, to predict whether or
not corrosion is possible, and if it is possible, to note which alloy will corrode. In order to make these
predictions it is necessary to use the galvanic series, Table 17.2. If both of the alloys in the pair
reside within the same set of brackets in this table, then galvanic corrosion is unlikely. However, if
the two alloys do not reside within the same set of brackets, then that alloy appearing lower in the
table will experience corrosion.

(a) For the aluminum-magnesium couple, corrosion is possible, and magnesium will corrode.

(b) For the zinc-low carbon steel couple, corrosion is possible, and zinc will corrode.

(c) For the brass-monel couple, corrosion is unlikely inasmuch as both alloys appear within the
same set of brackets.

(d) For the titanium-304 stainless steel pair, the stainless steel will corrode, inasmuch as it is below
titanium in both its active and passive states.

(e) For the cast iron-316 stainless steel couple, the cast iron will corrode since it is below stainless

steel in both active and passive states.

17.11 (a) The following metals and alloys may be used to galvanically protect 304 stainless steel in the
active state: cast iron, iron, steel, aluminum alloys, cadmium, commercially pure aluminum, zinc,
magnesium, and magnesium alloys.

(b) Zinc and magnesium may be used to protect a copper-aluminum galvanic couple.
17.12 This problem is just an exercise in unit conversions. The parameter K in Equation (17.23) must

convert the units of W, p, A, and t, into the unit scheme for the CPR.

For CPR in mpy (mil/yr)
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W(mg)(1 g/1000 mg)

_ 9 |(2.54 cm 3 2 1in. 1 day 1yr
p(ch( in. j [A(m' )}(1000 milj[t(h)](m h](SGS dast

=534.6

K =

For CPR in mm/yr

W(mg)(1 g/1000 mg)
3 2
g lcm 2.7(10 mm 1 day 1yr
p(cm3J[10 mm] [A(cm )}( cm j [t(h)][ 24 h][SGS daysj

=87.6

K =

17.13 This problem calls for us to compute the time of submersion of a steel piece. In order to solve this

problem, we must first rearrange Equation (17.23), as

KW
"~ pA(CPR)

Thus,

i (534)(2.6 x 10° mg)
B 6.9 g/cm3X10 in.2)200 mpy)

t

=88x10%h = 10yr

17.14 This problem asks for us to calculate the CPR in both mpy and mm/yr for a thick steel sheet of
area 100 in.2 which experiences a weight loss of 485 g after one year. Employment of Equation
(17.23) leads to

CPR = KW
pAt

(87.6)(485 g)€03 mg/g)
B (7.9 g/cm3X100 in.2)(2.54 cm/in)2(24 h/day)@365 day/yn(l yr)

=0.952 mml/yr
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Also

(534)(485 g)(103 mg/g)
(7.9 g/cm3X100 in.2)(24 h/day)(365 day/yn(l yr)

CPR =

= 37.4 mpy
17.15 (a) We are to demonstrate that the CPR is related to the corrosion current density, i, in A/cm2
through the expression
KAI

CPR = —
np

in which K is a constant, A is the atomic weight, n is the number of electrons ionized per metal atom,
and p is the density of the metal. Possibly the best way to make this demonstration is by using a unit

dimensional analysis. The corrosion rate, r, in Equation (17.24) has the units (SI)

C/m?-s __mol
(unitless)(C/mol) = m2-s

i
r= —
nF

The units of CPR in Equation (17.23) are length/time, or in the SI scheme, m/s. In order to convert
the above expression to the units of m/s it is necessary to multiply r by the atomic weight A and

divide by the density p as

(mol/m? - s)(g/mol) _

= m/s

A
p g/m3

Thus, the CPR is proportional to r, and substituting for r from Equation (17.24) into the above
expression leads to

K'Ai

CPR = K'r =
nFp

in which K' and K " are constants which will give the appropriate units for CPR. Also, since F is also

a constant, this expression takes the form
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in which K = K'/F.
(b) Now we will calculate the value of K in order to give the CPR in mpy for i in pA/cm2 (10'6
A/cmz). It should be noted that the units of A (amperes) are C/s. Substitution of the units normally

used into the former CPR expression above leads to

CPR = K-
nFp

_ 2
- Kk (g/moal)(C/s-cm*) - om/s
(unitless)(C/ mol(g/ cm®)

Since we want the CPR in mpy and i is given in pA/cmZ, and realizing that K = K'/F leads to

‘ ( 1 J 1075 ¢ [ 1in, J 103 mil | 3.1536 x 10’ s
~ 196,500 C/mol){ uC |\ 254 cm in. yr

=0.129

17.16 We are asked to compute the CPR in mpy for the corrosion of Fe for a corrosion current density of
8 x 10™ Alcm? (80 uA/cmz). From Problem 17.15, the value of K in Equation (17.35) is 0.129, and

therefore

np

_ (0.129)(55.85 g/mol)(80 pA/cmz)
B (2)6.9 g/cm3)

= 36.5 mpy

17.17W (a) Activation polarization is the situation wherein a reaction rate is controlled by one step in a
series of steps that takes place at the slowest rate. For corrosion, activation polarization is possible
for both oxidation and reduction reactions. Concentration polarization occurs when a reaction rate is
limited by diffusion in a solution. For corrosion, concentration polarization is possible only for

reduction reactions.
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(b) Activation polarization is rate controlling when the reaction rate is low and/or the concentration of
active species in the liquid solution is high.
(c) Concentration polarization is rate controlling when the reaction rate is high and/or the

concentration of active species in the liquid solution is low.

17.18W (a) The phenomenon of dynamic equilibrium is the state wherein oxidation and reduction
reactions are occurring at the same rate such that there is no net observable reaction.
(b) The exchange current density is just the current density which is related to both the rates of
oxidation and reduction (which are equal) according to Equation (17.24) for the dynamic equilibrium

State.

17.19W Concentration polarization is not normally rate controlling for oxidation reactions because there

will always be an unlimited supply of metal atoms at the corroding electrode interface.

17.20W (a) This portion of the problem asks that we compute the rate of oxidation for Ni given that both
the oxidation and reduction reactions are controlled by activation polarization, and also given the
polarization data for both nickel oxidation and hydrogen reduction. The first thing necessary is to
establish relationships of the form of Equation (17.1W) for the potentials of both oxidation and
reduction reactions. Next we will set these expressions equal to one another, and then solve for the
value of i which is really the corrosion current density, iC. Finally, the corrosion rate may be

calculated using Equation (17.24). The two potential expressions are as follows:

For hydrogen reduction

i
Wy = V(H+/H2) + BH log i

Oy

And for Ni oxidation

* Bnilog| T

Ni

Vi = V
Ni— % (NiINi2)

Setting VH = VNi and solving for log i (log ic) leads to
ogi = |——1lv —V — By logi, + By logi
e T B~ By )L (HT/H,)  (Ni/NiZ)  TH 9o, * Pni'09l
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{012_( 010)}[ — (-0.25) - (~0.10) {)g@ x10_7)}+ (0.12) {og(lo S)E

=-6.055

Or

-6.055

i, =10 = 8.81x 107 Alcm?

And from Equation (17.24)

Ic

r= —=
nkF

8.81 x 10/ C/s-cm?

-12 2
= 4.56 x 10 llcm? -
(2)(96,500 C/mol) X molicm® - s

(b) Now it becomes necessary to compute the value of the corrosion potential, Vc' This is possible

by using either of the above equations for VH or VNi and substituting for i the value determined
above for ic‘ Thus

iC

Ve =V o + By log I—

(H'H,) o,

881 x 10~/ A/cm?
6 x 107 A/cm?

=0 + (-0.10 V) |og( ] = -0.0167V

17.21W (a) This portion of the problem asks that we compute the rate of oxidation for a divalent metal M
given that both the oxidation and reduction reactions are controlled by activation polarization, and
also given the polarization data for both M oxidation and hydrogen reduction. The first thing
necessary is to establish relationships of the form of Equation (17.1W) for the potentials of both
oxidation and reduction reactions. Next we will set these expressions equal to one another, and
then solve for the value of i which is really the corrosion current density, iC. Finally, the corrosion

rate may be calculated using Equation (17.24). The two potential expressions are as follows:

For hydrogen reduction
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[
Vy =V + log | —

H™ THYH,) Py log i
H

And for M oxidation

i
Y = Vowzey © P 100

Op

Setting VH = VM and solving for log i (log iC) leads to

C(_a ) o |
9% = [BM - BHMV(HWHZ) Voamizey~ Prlo%o, BMIOQIOM:|

- {m}[o ~ (-0.90) - (-0.15) {)g @0‘10)} (0.10) {09 (10—12)E

=-7.20
Or

i =1072 = 6.31x108 Alcm?

And from Equation (17.24)

6.31 x 10_8 Cls —cm2
(2)(96,500 C/mol)

= 3.27 X 10'13 mol/cm2 -S

(b) Now it becomes necessary to compute the value of the corrosion potential, Vc' This is possible

by using either of the above equations for VH or VM and substituting for i the value determined
above for ic' Thus

|
V. =V + By log | =
o (H'M,) P log |3

O4
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6.31 X 10_8 A/(:m2
10710 A/cm?2

=0 + (-0.15V) Iog[ J:—0.420V

17.22W This problem asks that we make a schematic plot of corrosion rate versus solution velocity. The
reduction reaction is controlled by combined activation-concentration polarization for which the
overvoltage versus logarithm current density is shown in Figure 17.21. The oxidation of the metal is
controlled by activation polarization, such that the electrode kinetic behavior for the combined

reactions would appear schematically as shown below.

Ug > g > 03 > 02 >

Velocity vy vz v3 va vg

Log current density

Thus, the plot of corrosion rate versus solution velocity would be as

( Xe)

Corrosion Rate

Solution Velocity
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The corrosion rate initially increases with increasing solution velocity (for velocities Vii Vo and v3),

corresponding to intersections in the concentration polarization regions for the reduction reaction.
However, for the higher solution velocities (v4 and v5), the metal oxidation line intersects the
reduction reaction curve in the linear activation polarization region, and, thus, the reaction becomes

independent of solution velocity.

17.23 Passivity is the loss of chemical reactivity, under particular environmental conditions, of normally

active metals and alloys. Stainless steels and aluminum alloys often passivate.

17.24 The chromium in stainless steels causes a very thin and highly adherent surface coating to form
over the surface of the alloy, which protects it from further corrosion. For plain carbon steels, rust,

instead of this adherent coating, forms.

17.25 For each of the forms of corrosion, the conditions under which it occurs, and measures that may

be taken to prevent or control it are outlined in Section 17.7.

17.26 Two beneficial uses of galvanic corrosion are corrosion prevention by means of cathodic

protection, and the dry-cell battery.

17.27 Cold-worked metals are more susceptible to corrosion than noncold-worked metals because of the
increased dislocation density for the latter. A region in the vicinity of a dislocation that intersects the

surface is at a higher energy state, and, therefore, is more readily attacked by a corrosive solution.

17.28 For a small anode-to-cathode area ratio, the corrosion rate will be higher than for a large ratio.
The reason for this is that for some given current flow associated with the corrosion reaction, for a
small area ratio the current density at the anode will be greater than for a large ratio. The corrosion

rate is proportional to the current density according to Equation (17.24).

17.29 For a concentration cell, corrosion occurs at that region having the lower concentration. In order to
explain this phenomenon let us consider an electrochemical cell consisting of two divalent metal M

electrodes each of which is immersed in a solution containing a different concentration of its M2t

ion; let us designate the low and high concentrations of MZ* as [ME+] and [Mﬁ], respectively.

Now assuming that reduction and oxidation reactions occur in the high- and low-concentration

solutions, respectively, let us determine the cell potential in terms of the two [M2+]‘s; if this potential

447



is positive then we have correctly chosen the solutions in which the reduction and oxidation reactions
occur.

Thus, the two half-reactions in the form of Equations (17.16) are

2+ - o
My +2 —> M \%Y
2+ - o
M — M+ 2e -V
Whereas the overall cell reaction is

MEH + M > M+ M2

From Equation (17.19), this yields a cell potential of

2+
. . RT. |IM™]
AV = Vy— Vg - —=in|——
nk [MH+]
RT [IMZ]
T nF 2+
M5

Inasmuch as ME+ < MaJr then the natural logarithm of the [I\/I2+] ratio is negative, which yields a

positive value for AV. This means that the electrochemical reaction is spontaneous as written, or

+ .
2 concentration.

that oxidation occurs at the electrode having the lower M
17.30 Equation (17.23) is not equally valid for uniform corrosion and pitting. The reason for this is that,
with pitting, the corrosion attack is very localized, and a pit may penetrate the entire thickness of a
piece (leading to failure) with very little material loss and a very small corrosion penetration rate.
With uniform corrosion, the corrosion penetration rate accurately represents the extent of corrosion

damage.

17.31 (a) Inhibitors are substances that, when added to a corrosive environment in relatively low
concentrations, decrease the environment's corrosiveness.
(b) Possible mechanisms that account for the effectiveness of inhibitors are: 1) elimination of a

chemically active species in the solution; 2) attachment of inhibitor molecules to the corroding
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surface so as to interfere with either the oxidation or reduction reaction; and 3) the formation of a

very thin and protective coating on the corroding surface.

17.32 Descriptions of the two techniques used for galvanic protection are as follows:

1) A sacrificial anode is electrically coupled to the metal piece to be protected, which anode is also
situated in the corrosion environment. The sacrificial anode is a metal or alloy that is chemically
more reactive in the particular environment. It (the anode) preferentially oxidizes, and, upon giving
up electrons to the other metal, protects it from electrochemical corrosion.

2) An impressed current from an external dc power source provides excess electrons to the

metallic structure to be protected.

17.33 Tin offers galvanic protection to the steel in tin cans even though it (tin) is electrochemically less
active than steel from the galvanic series. The reason for this is that the galvanic series represents
the reactivities of metals and alloys in seawater; however, for the food solutions that are contained

within the cans, tin is the more active metal.

17.34 For this problem we are given, for three metals, their densities, oxide chemical formulas, and oxide
densities, and are asked to compute the Pilling-Bedworth ratios, and then to specify whether or not
the oxide scales that form will be protective. The general form of the equation used to calculate this

ratio is Equation (17.30) [or Equation (17.29)]. For magnesium, oxidation occurs by the reaction

1
Mg + EOZ - MgO

and therefore, from Equation (17.29)

AmgoP
. MgOFM
P-Bratio = e

MgP MgO

(40.31 g/mol)(1.74 g/cm3)

 (24.31 g/mol)(3.58 g/cm3)_

0.81

Thus, this would probably be a nonprotective oxide film since the P-B ratio is less than unity; to be

protective, this ratio should be between one and two.

The oxidation reaction for V is just
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5

and the P-B ratio is [Equation (17.30)]

B ot Av,0.Pv
-Bratio = ————
(2)A

p
V \/'205

(181.88 g/mol) (6.11 g/cm3)

 (2)(50.94 g/mol)(3.36 g/cm3)_

3.25

Hence, the film would be nonprotective since the ratio does not lie between one and two.

Now for Zn, the reaction for its oxidation is analogous to that for Mg above. Therefore,

AznoPzn
Zn pZnO

P-B ratio =

(81.39 g/mol)(7.13 g/cm3)

= = 1.58
(65.39 g/mol)(5.61 g/cm3)

Thus, the ZnO film would probably be protective since the ratio is between one and two.

17.35 Silver does not oxidize appreciably at room temperature and in air even though, according to Table
17.3, the oxide coating should be nonprotective because the oxidation of silver in air is not
thermodynamically favorable; therefore, the lack of a reaction is independent of whether or not a

protective scale forms.

17.36 For this problem we are given weight gain-time data for the oxidation of Ni at an elevated
temperature.
(a) We are first asked to determine whether the oxidation kinetics obey a parabolic, linear, or
logarithmic rate expression, which expressions are represented by Equations (17.31), (17.32), and
(17.33), respectively. One way to make this determination is by trial and error. Let us assume that

the parabolic relationship is valid; that is from Equation (17.31)

2 _
W% = Kt + K,
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which means that we may establish three simultaneous equations using the three sets of given W
and t values, then using two combinations of two pairs of equations, solve for K1 and K2; if K1 and

K2 have the same values for both solutions, then the kinetics are parabolic. If the values are not

identical then the other kinetic relationships need to be explored. Thus, the three equations are

2
(0.527) 10K, + K,
(0.857)% = 0.734 = 30K, + K,
(1526)2 = 2.329 = 100K, + K,

0.278

From the first two equations Ky = 0.0228 and K, = 0.050; these same two values are obtained

using the last two equations. Hence, the oxidation rate law is parabolic.

(b) Since a parabolic relationship is valid, this portion of the problem calls for us to determine W after
a total time of 600 min. Again, using Equation (17.31) and the values of K1 and K2

2

W2 = Kt + K,

= (0.0228)(600 min) + 0.05 = 13.37

Or W = {/13.73 = 3.70 mg/cm?.

16.37 For this problem we are given weight gain-time data for the oxidation of some metal at an elevated
temperature.
(@) We are first asked to determine whether the oxidation kinetics obey a linear, parabolic, or
logarithmic rate expression, which expressions are described by Equations (17.32), (17.31), and
(17.33), respectively. One way to make this determination is by trial and error. Let us assume that

the rate expression is parabolic, that is from Equation (17.31)

2 _
We = Kt +K,

which means that we may establish three simultaneous equations using the three sets of given W
and t values, then using two combinations of two pairs of equations, solve for K1 and Ko; if K1 and

K, have the same values for both solutions, then the rate law is parabolic. If the values are not the

same then the other kinetic relationships need to be explored. Thus, the three equations are

(6.16)% = 37.95= 100K, + K,

(8.59)% = 73.79 = 250K +K,
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2 _ —
(12.72) = 161.8 =1000K + K,

From the first two equations K = 0.238 and K, = 14.2; while from the second and third equations
K1 =0.117 and K2 =44.5. Thus, a parabolic rate expression is not obeyed by this reaction.
Let us now investigate linear kinetics in the same manner, using Equation (17.32), W = K3t.

The three equations are thus

6.16 =100 Kqg
859 = 250 K 4

12.72 =1000 K,

And the three K3 values may be computed (one for each equation) which are 6.16 x 10'2, 3.44 x

10'2, and 1.272 x 10°2. Since these K3 values are all different, a linear rate law is not a possibility,

and, by process of elimination, a logarithmic expression is obeyed.

(b) In order to determine the value of W after 5000 min, it is first necessary that we solve for the K4,
K5, and K6 constants of Equation (17.33). One way this may be accomplished is to use the E-Z

Solve equation solver, with Equation (17.33) expressed in exponential form, as

W/K
Kg + Kg = 10 4

The following is entered into the workspace of E-Z Solve
K5 *t1 + K6 = 10NW1/K4)

K5 *2 + K6 = 10N (W2/K4)
K5 *3 + K6 = 10N (W3/K4)

t1 = 100; W1=6.16
t2 = 250; W2 =8.59
t3 = 1000; W3 =12.72
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After choosing the calculator icon in the menu bar, and clicking on the "Solve" button in the window
that appears (with "1" as the guess value for all three of K4, Kg, and Kg), the following values for the

three constants are displayed in the data grid near the bottom of the window:

K, =7.305
Kg = 0.0535
Kg = 1.622

Now solving Equation (17.33) for W at a time of 5000 min
W = K, log (K5t +K6]
= 7.305 log [(0.0535)(5000 min) + 1.622]

=17.75 mg/cm2

17.38 For this problem we are given weight gain-time data for the oxidation of some metal at an elevated
temperature.
(&) We are first asked to determine whether the oxidation kinetics obey a linear, parabolic, or
logarithmic rate expression, which expressions are described by Equations (17.32), (17.31), and
(17.33), respectively. One way to make this determination is by trial and error. Let us assume that

the rate expression is linear, that is from Equation (17.32)

which means that we may establish three simultaneous equations using the three sets of given W
and t values, then solve for K3 for each; if K3 is the same for all three cases, then the rate law is

linear. If the values are not the same then the other kinetic relationships need to be explored. Thus,

the three equations are

1.54 = 10K

3
23.24 = 150K3
95.37 = 620K3

In all three instances the value of K3 is about equal to 0.154, which means the oxidation rate obeys

a linear expression.
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(b) Now we are to calculate W after a time of 1200 min; thus

W = K4t = (0.154)(1200 min) = 184.80 mg/cm?

17.39 During the swelling and dissolution of polymeric materials, the solute molecules diffuse to and
occupy positions among the polymer macromolecules, and thereby force the latter apart. Increasing
both the degrees of crosslinking and crystallinity will enhance a polymer's resistance to these types
of degradation since there will be a greater degree of intermolecular bonding between adjacent
chains; this restricts the number of solute molecules that can fit into these locations.

Crosslinking will be more effective. For linear polymers, the intermolecular bonds are
secondary ones (van der Waals and/or hydrogen), and relatively weak in comparison to the strong

covalent bonds associated with the crosslinks.

17.40 (a) Three differences between the corrosion of metals and the corrosion of ceramics are:

1) Ceramic materials are more corrosion resistant than metals in most environments.

2) Corrosion of ceramic materials is normally just a chemical dissolution process, whereas for
metals it is usually electrochemical.

3) Ceramics are more corrosion resistant at elevated temperatures.
(b) Three differences between the corrosion of metals and the degradation of polymers are:

1) Degradation of polymers is ordinarily physiochemical, whereas for metals, corrosion is
electrochemical.

2) Degradation mechanisms for polymers are more complex than the corrosion mechanisms for
metals.

3) More types of degradation are possible for polymers--e.g., dissolution, swelling, and bond

rupture (by means of radiation, heat, and chemical reactions).

Design Problems

17.D1 Possible methods that may be used to reduce corrosion of the heat exchanger by the brine are as
follows:
1) Reduce the temperature of the brine; normally, the rate of a corrosion reaction increases with
increasing temperature.
2) Change the composition of the brine; the corrosion rate is often quite dependent on the

composition of the corrosion environment.
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3) Remove as much dissolved oxygen as possible. Under some circumstances, the dissolved
oxygen may form bubbles, which can lead to erosion-corrosion damage.

4) Minimize the number of bends and/or changes in pipe contours in order to minimize erosion-
corrosion.

5) Add inhibitors.

6) Avoid connections between different metal alloys.

17.D2 This question asks that we suggest appropriate materials, and if necessary, recommend corrosion
prevention measures that should be taken for several specific applications. These are as follows:
(a) Laboratory bottles to contain relatively dilute solutions of nitric acid. Probably the best material
for this application would be polytetrafluoroethylene (PTFE). The reasons for this are: 1) it is
flexible and will not easily break if dropped; and 2) PTFE is resistant to this type of acid, as noted in
Table 17.4.
(b) Barrels to contain benzene. Polyethylene terephthalate (PET) would be suited for this
application, since it is resistant to degradation by benzene (Table 17.4), and is less expensive than
the other two materials listed in Table 17.4 (see Appendix C).
(c) Pipe to transport hot alkaline (basic) solutions. The best material for this application would
probably be a nickel alloy (Section 11.3). Polymeric materials listed in Table 17.4 would not be
suitable inasmuch as the solutions are hot.
(d) Underground tanks to store large quantities of high purity water. The outside of the tanks should
probably be some type of low-carbon steel that is cathodically protected (Sections 17.8 and 17.9).
The inside of this steel shell should be coated with an inert polymeric material;
polytetrafluoroethylene or some other fluorocarbon would probably be the material of choice (Table
17.4).
(e) Architectural trim for high-rise buildings. The most likely candidate for this application would
probably be an aluminum alloy. Aluminum and its alloys are relatively corrosion resistant in normal
atmospheres (Section 17.8), retains their lustrous appearance, and are relatively inexpensive
(Appendix C).

17.D3 (a) Advantages of delivering drugs into the body using transdermal patches (as opposed to oral
administration) are: 1) Drugs that are taken orally must pass through the digestive system and,
consequently, may cause digestive discomfort. 2) Orally delivered drugs will ultimately pass
through the liver which function is to filter out of the blood unnatural substances, including some
drugs; thus, drug concentrations in the blood are diluted. 3) It is much easier to maintain a constant

level of delivery over relatively long time periods using transdermal patches.
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(b) In order for transdermal delivery, the skin must be permeable to the drug, or delivery agents
must be available that can carry the drug through the skin.

(c) Characteristics that are required for transdermal patch materials are the following: they must be
flexible; they must adhere to the skin; they must not cause skin irritation; they must be permeable

to the drug; and they must not interact with the drug over long storage periods.

17.D4 Each student or group of students is to submit their own report on a corrosion problem

investigation that was conducted.
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CHAPTER 18
ELECTRICAL PROPERTIES
PROBLEM SOLUTIONS

18.1 This problem calls for us to compute the electrical conductivity and resistance of a silicon specimen.

(a) We use Equations (18.3) and (18.4) for the conductivity, as

(O.lA)(38 x 1073 m)

=149 (@-m)™"

-3
(12,5 V)(n) (—5'1 X ;O m

(b) The resistance, R, may be computed using Equations (18.2) and (18.4), as

-3
51 x10 " m
= > = 166.9 Q

-3
fis (Q_m)_l](n){&l x 103 m

2

18.2 For this problem, given that an aluminum wire 10 m long must experience a voltage drop of less
than 1 V when a current of 5 A passes through it, we are to compute the minimum diameter of the

wire. Combining Equations (18.3) and (18.4) and solving for the cross-sectional area A leads to

I
A=—
(o)

2
. - . d
From Table 18.1, for aluminum ¢ = 3.8 x 107 (©Q-m) 1. Furthermore, inasmuch as A = n(zj fora

cylindrical wire, then
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or

d=

Vo

= (4)(6 A)(10 m)
(mav)ps x10” @-m]

=13x10%m=13mm
18.3 This problem asks that we compute, for a plain carbon steel wire 3 mm in diameter, the maximum

length such that the resistance will not exceed 20 Q. From Table 18.1, for a plain carbon steel, ¢ =
0.6 x 107 (Q—m)'l. If d is the diameter then, combining Equations (18.2) and (18.4) leads to

d 2
| =RcA = Rcm(zj

3 \2
= (20 Q)E).6 x 107 (Q—m)_l}n) (%] =848 m

18.4 Let us demonstrate that, by appropriate substitution and algebraic manipulation, Equation (18.5)

may be made to take the form of Equation (18.1). Now, Equation (18.5) is just
J=cE
But, by definition, J is just the current density, the current per unit cross-sectional area, or J = I/A.

Also, the electric field is defined by E = V/I. And, substituting these expressions into Equation (18.5)

leads to

1
(o]
—I<

> |-

But, from Equations (18.2) and (18.4)
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and
w= w7
A \RAI
Solving for V from this expression gives V = IR, which is just Equation (18.1).

18.5 (a) In order to compute the resistance of this copper wire it is necessary to employ Equations (18.2)

and (18.4). Solving for the resistance in terms of the conductivity,

p

R=%
A

[
cA

From Table 18.1, the conductivity of copper is 6.0 x 107 (Q-m)'l, and

R = o 2 m
T oA -3 2
= 3 x107° m
[6.0 x 107 @-m) L ”)[XTJ
=47x10°3 0
(b) If V=0.05V then, from Equation (18.1)
V 0.05V
== == 3 = 106 A
R 47 x107° Q
(c) The current density is just
| 10.6 A

J=—-= = 5 =15 x 10° A/m?

J
A 2
A “(gj (3 x10~° m}

2 T 2

(d) The electric field is just
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18.6 When a current arises from a flow of electrons, the conduction is termed electronic; for ionic

conduction, the current results from the net motion of charged ions.

18.7 For an isolated atom, there exist discrete electron energy states (arranged into shells and
subshells); each state may be occupied by, at most, two electrons, which must have opposite spins.
On the other hand, an electron band structure is found for solid materials; within each band exist
closely spaced yet discrete electron states, each of which may be occupied by, at most, two
electrons, having opposite spins. The number of electron states in each band will equal the total

number of corresponding states contributed by all of the atoms in the solid.

18.8 This question asks that we explain the difference in electrical conductivity for metals,
semiconductors, and insulators in terms of their electron energy band structures.

For metallic materials, there are vacant electron energy states adjacent to the highest filled
state; thus, very little energy is required to excite large numbers of electrons into conducting states.
These electrons are those that participate in the conduction process, and, because there are so
many of them, metals are good electrical conductors.

There are no empty electron states adjacent to and above filled states for semiconductors
and insulators, but rather, an energy band gap across which electrons must be excited in order to
participate in the conduction process. Thermal excitation of electrons will occur, and the number of
electrons excited will be less than for metals, and will depend on the band gap energy. For
semiconductors, the band gap is narrower than for insulators; consequently, at a specific

temperature more electrons will be excited for semiconductors, giving rise to higher conductivities.

18.9 The electrical conductivity for a metallic glass will be less than for its crystalline counterpart. The
glass will have virtually no periodic atomic structure, and, as a result, electrons that are involved in
the conduction process will experience frequent and repeated scattering. (There is no electron

scattering in a perfect crystal lattice of atoms.)

18.10 The drift velocity of a free electron is the average electron velocity in the direction of the force
imposed by an electric field.

The mobility is the proportionality constant between the drift velocity and the electric field. It

is also a measure of the frequency of scattering events (and is inversely proportional to the

frequency of scattering).
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18.11 (a) The drift velocity of electrons in Ge may be determined using Equation (18.7). Since the room
temperature mobility of electrons is 0.38 m2N-s (Table 18.2), and the electric field is 1000 V/m (as

stipulated in the problem),
Vd = l,leE

- @.38 m2 /v -s)looo V/im) = 380 m/s

(b) The time, t, required to traverse a given length, I, of 25 mm is just

18.12 The conductivity of this semiconductor is computed using Equation (18.16). However, it first

becomes necessary to determine the electron mobility from Equation (18.7) as

\ 100 m/s
d 2
== ==——— =020 m/V-
Me =E T 500 v/ miv-s
Thus,
o = nlelg

:@ x 1018 m'3Xl.602 x 10719 ch.zo m2/v-s)

= 0.096 (Q-m)" L

18.13 (a) The number of free electrons per cubic meter for copper at room temperature may be

computed using Equation (18.8) as

_ 6.0 x 10’ (Q-m)~1
(1.602 x 10719 c)@.ooso m2/V-s)

=1.25 x10%% m3
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(b) In order to calculate the number of free electrons per copper atom, we must first determine the
number of copper atoms per cubic meter, N, From Equation (4.2)

@.023 x 1023 atoms/mol)(8.94 g/cm3X106 cm® /m3)
- 63.55 g/mol

=8.47 x 1028 m™3

The number of free electrons per copper atom is just

n 1.25 x 1029 m_3
== 5 3 - 148
N 847 x10%°m

18.14 (a) This portion of the problem asks that we calculate, for silver, the number of free electrons per
cubic meter (n) given that there are 1.3 free electrons per silver atom, that the electrical conductivity
is 6.8 x 107 (Q-m)'l, and that the density (PAg) is 10.5 g/cm3. (Note: in this discussion, the density

of silver is represented by PAg in order to avoid confusion with resistivity which is designated by p.)

Since n =1.3N, and N is defined in Equation (4.2), then

pAg Na

AAg

n=13N=13

(10.5 g/cm3X5.023 x 102° atoms/ mol)
107.87 g/mol

=13

=7.62 x 1022cm> =7.62 x 108 m™3
(b) Now we are asked to compute the electron mobility, He- Using Equation (18.8)

[¢)

He "]
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6.8 x10' (Q-m)*

-3 2
= =557 x10° m°/V-s
6.62 x 1028 m—3X1.602 x 10~19 c)

18.15 We want to solve for the parameter A in Equation (18.11) using the data in Figure 18.26. From
Equation (18.11)

However, the data plotted in Figure 18.26 is for the total resistivity, Piotal’ and includes both impurity

(pi) and thermal (pt) contributions [Equation (18.9)]. The value of P is taken as the resistivity at ci =

0 in Figure 18.26, which has a value of 1.7 x 10_8 (€©-m); this must be subtracted out. Below are
tabulated values of A determined at ¢ = 0.10, 0.20, and 0.30, including other data that were used in

the computations.

G 1- G Piotal (©-m) Pj (Q-m) A (©Q-m)
0.10 0.90 3.9x 10'8 2.2 x 10'8 244%x107"
0.20 0.80 5.3 X 10'8 3.6 x 10'8 2.25%x 107"
0.30 0.70 6.15x 100 4.45x10°° 212x107"

There appears to be a slight decrease of A with increasing c,-

18.16 (a) Perhaps the easiest way to determine the values of Po and a in Equation (18.10) for pure

copper in Figure 18.8, is to set up two simultaneous equations and use resistivity values at two

different temperatures (labeled as 1 and 2). Thus,
Pt1=Po* aly
P2 =Pot+ AT

Solving these equations for a and Po yield

_Pu ~ P
-7
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o =p _.I.rptl‘ptzT
o Ft1 1 _

T,

rptl‘ptz1

“fe T,

Let us take T, = -150°C, T,, = -50°C, which gives p,; = 0.6 X 108 (@-m), and p,, = 1.25 x 108 (-

1

m). Therefore

[@.6 X 10‘8)- (1.25 X 10'8j(Q-m)

4= “150°C — (-50°C)
=6.5x 101 (Q-m)/eC
and
. [@.6 X 10'8) - @.25 X 10‘8)](9 -m)
= (0.6x10%) - (-150
po = (06 (-150) ~150°C — (-50°C)

= 158 x 10 (Q-m)

(b) For this part of the problem, we want to calculate A from Equation (18.11)—i.e.,

In Figure 18.8, curves are plotted for three ¢ values (0.0112, 0.0216, and 0.0332). Let us find A for

each of these ci's by taking a Piotal from each curve at some temperature (say 0°C) and then

subtracting out Pi for pure copper at this same temperature (which is 1.7 x 10'8 Q-m). Below are

tabulated values of A determined from these three ci values, and other data that were used in the

computations.
G 1- G Piotal (©-m) Pj (Q-m) A (©Q-m)
0.0112 0.989 3.0x10° 1.3x10°8 1.17x 100
0.0216 0.978 42x10° 25x10°8 1.18x 100
0.0332 0.967 55x10° 38x10° 1.18x 100
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The average of these three A values is 1.18 x 10_6 (€-m).
(c) We use the results of parts (a) and (b) to estimate the electrical resistivity of copper containing

1.75 at% Ni at 100°C. The total resistivity is just

Ptotal =Pt t P

:@0 + aT) + Aci(l - Ci)

= {.58 x 108 (Q-m) + [6.5 x 101 (- m)/°C](100°C)]

-6 1
4 {E.lelO (Q-m)}0.0l?S)(l - 0.0175) |
= 4.26 x 108 (Q-m)

18.17 We are asked to determine the electrical conductivity of a Cu-Ni alloy that has a tensile strength of
275 MPa. From Figure 7.14(a), the composition of an alloy having this tensile strength is about 8
wt% Ni. For this composition, the resistivity is about 13 x 10'8 Q-m (Figure 18.9). And since the

conductivity is the reciprocal of the resistivity, Equation (18.4), we have

1
13 x108 Q-m

1 i
=== =7.7 x 10° (@-my?
P

18.18 This problem asks for us to compute the room-temperature conductivity of a two-phase Cu-Sn
alloy. It is first necessary for us to determine the volume fractions of the a and g phases, after which
the resistivity (and subsequently, the conductivity) may be calculated using Equation (18.12).
Weight fractions of the two phases are first calculated using the phase diagram information provided

in the problem.
We might represent the phase diagram near room temperature as shown below.
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[}
5 o
s
8 e
E o+
k]
Room Temperature > r t '
C Co C.
©  ® (37)
wt% Sn

Applying the lever rule to this situation

C.-C 37-11
W = =
a”Cc -Cc_ ~37-0
£ o

=0.703

W C, -C, 11-0
e C -C 37 -0
€ o

=0.297

We must now convert these mass fractions into volume fractions using the phase densities given in
the problem. (Note: in the following expressions, density is represented by p' in order to avoid

confusion with resistivity which is designated by p.) Utilization of Equations (9.6a) and (9.6b) leads

to

W
\Vj :_pﬂ._
a W W
—a,_&
Pa Pg
0.703
B 8.94 g/cm3

0.703 0.297
+
8.94 g/cm3 8.25 g/cm3

= 0.686
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Pe
V8 = W
Wo , X
pl(x p‘S
0.297
8.25 g/ cm3

0.703 0.297
+
8.94 g/cm3 8.25 g/cm3

=0.314
Now, using Equation (18.12)
P=pPy Ve * PV

- (1.88 x108 Q -m)o.ese) + (5.32 x107 O -m)o.314)

= 1.80x107 Q-m

Finally, for the conductivity [Equation (18.4)]

1

TS s x10% (@-m)t
. X -m

_1_
c=—=
P

18.19 The (a) and (b) portions of the problem ask that we make schematic plots on the same graph for
the electrical resistivity versus composition for lead-tin alloys at both room temperature and 150°C;

such a graph is shown below.

150°C

Room Temperature

Electrical Resistivity

Composition (wit% Sn)
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(c) Upon consultation of the Pb-Sn phase diagram (Figure 9.7) we note, upon extrapolation of the
two solvus lines to room temperature (e.g., 20°C), that the single phase a phase solid solution exists
between pure lead and a composition of about 2 wt% of Sn-98 wt% Pb. In addition, the composition
range over which the B phase is between approximately 99 wt% Sn-1 wt% Pb and pure tin. Within
both of these composition regions the resistivity increases in accordance with Equation (18.11);
also, in the above plot, the resistivity of pure Pb is represented (schematically) as being greater than
that for pure Sn, per the problem statement.

Furthermore, for compositions between these extremes, both a and B phases coexist, and
alloy resistivity will be a function of the resisitivities the individual phases and their volume fractions,
as described by Equation (18.12). Also, mass fractions of the a and B phases within the two-phase
region of Figure 9.7 change linearly with changing composition (according to the lever rule). There is
a reasonable disparity between the densities of Pb and Sn (11.35 g/cm3 versus 7.3 g/cm3). Thus,
according to Equation (9.6) phase volume fractions will not exactly equal mass fractions, which
means that the resistivity will not exactly vary linearly with composition. In the above plot, the curve

in this region has been depicted as being linear for the sake of convenience.

At 150°C, the curve has the same general shape, and is shifted to significantly higher
resistivities inasmuch as resistivity increases with rising temperature [Equation (18.10) and Figure
18.8]. In addition, from Figure 9.7, at 150°C the solubility of Sn in Pb increases to approximately 10
wt% Sn--i.e., the a phase field is wider and the increase of resistivity due to the solid solution effect
extends over a greater composition range, which is also noted in the figure. The resistivity-
temperature behavior is similar on the tin-rich side, where, at 150°C, the B phase field extends to
approximately 2 wt% Pb (98 wt% Sn). And, as with the room temperature case, for compositions
within the a + B two-phase region, the plot is approximately linear, extending between resistivity

values found at the maximum solubilities of the two phases.

18.20 We are asked to select which of several metals may be used for a 2 mm diameter wire to carry 10
A, and have a voltage drop of less than 0.03 V per foot (300 mm). Using Equations (18.3) and
(18.4), let us determine the minimum conductivity required, and then select from Table 18.1, those
metals that have conductivities greater than this value. The minimum conductivity is just

o ===
A 2
Vn(gj
2
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(10 A) @oo x 1073 m) , .
= > =32x10 (Q-m)

3
(0.03 V) (m) [M

2

Thus, from Table 18.1, only aluminum, gold, copper, and silver are candidates.

18.21 (a) For this part of the problem, we first read, from Figure 18.15, the number of free electrons (i.e.,
the intrinsic carrier concentration) at room temperature (298 K). These values are n;j(Ge) = 5 x

1019 m=3 and n;(Si) = 3x 1016 m=3,

Now, the number of atoms per cubic meter for Ge and Si (NGe and NSi’ respectively) may

be determined using Equation (4.2) which involves the densities (p'Ge and p'Si) and atomic weights

(AGe and ASi)' (Note: here we use p' to represent density in order to avoid confusion with

resistivity, which is designated by p.) Therefore,

_NaPge
Ge ~
AGe

@.023 x 1023 atoms/mol)(5.32 g/cmSXO6 cm’ /m3)
- 72.59 g/mol

= 44x 1028 atoms/m3

Similarly

Ng = NaPsi
|
A

@.023 x 1023 atoms/mol)(2.33 g/cm‘q’XO6 cm® /m3)
- 28.09 g/mol

= 5.00 x 1028 atoms/m3

Finally, the ratio of the number of free electrons per atom is calculated by dividing n by N. For Ge

NGe 5 X 10" electrons/m®
Nge 4.4 x10%® atoms/m3
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=1.1x 10'9 electron/atom
And, for Si

Nsi _3x 10%° electrons/m?>
Ng;  5.00 x 1028 atoms/m*

=6X 10'13 electron/atom

(b) The difference is due to the magnitudes of the band gap energies (Table 18.2). The band gap
energy at room temperature for Si (1.11 eV) is larger than for Ge (0.67 eV), and, consequently, the

probability of excitation across the band gap for a valence electron is much smaller for Si.

18.22 This problem asks that we make plots of In n; versus reciprocal temperature for both Si and Ge,

using the data presented in Figure 18.15, and then determine the band gap energy for each material

realizing that the slope of the resulting line is equal to — Eg/2k.

Below is shown such a plot for Si.

Inn; (m3)

[ ]
10 1 1 1 1 1 1 i 1 "
0.000 0.002 0.004 0.006 0.008 0.010
1 -1
— (K )
Temperature
The slope of the line drawn is equal to —6400 which equals an E, value of

g
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Eg = —2k(slope)

— —2(8.62x 107> eV/K)((—6400) =1.10 eV

The value cited in Table 18.2 is 1.11 eV.

Now for Ge, an analogous plot is shown below.

60 X 1) L 1 ) 1) L 1 ) 1
..
50 -
[ )
@ 40f ¢ g
£ .
c ™
£ 30F R
20 | s 9
1 M 1 1 1 M 1 1 1

10 ! =
0.000 0.002 0.004 0.006 0.008 0.010 0.012
1

— (7)
Temperature

The slope of this line segment is — 4085, which leads to be band gap energy value of

Eg = - 2k (slope) = ~2(8.62 x 10™° eV/K)((-4085) = 0.70 eV

This value is in good agreement with the 0.67 eV cited in Table 18.2.

18.23 The factor 2 in Equation (18.21a) takes into account the creation of two charge carriers (an
electron and a hole) for each valence-band-to-conduction-band intrinsic excitation; both charge

carriers may participate in the conduction process.
18.24 These semiconductor terms are defined in the Glossary. Examples are as follows: intrinsic--high
purity (undoped) Si, GaAs, CdS, etc.; extrinsic--P-doped Ge, B-doped Si, S-doped GaP, etc.;

compound--GaAs, InP, CdS, etc.; elemental--Ge and Si.
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18.25 Yes, compound semiconductors can exhibit intrinsic behavior. They will be intrinsic even though
they are composed of two different elements as long as the electrical behavior is not influenced by

the presence of other elements.

18.26 This problem calls for us to decide for each of several pairs of semiconductors, which will have the
smaller band gap energy and then cite reasons for the choice.

(a) Germanium will have a smaller band gap energy than diamond since Ge is lower in row IVA of
the periodic table (Figure 2.6) than is C. In moving from top to bottom of the periodic table, Eg
decreases.

(b) Indium antimonide will have a smaller band gap energy than aluminum phosphide. Both of
these are 1lI-V compounds, and the positions of both In and Sb are lower vertically in the periodic
table than Al and P.

(c) Gallium arsenide will have a smaller band gap energy than zinc selenide. All four of these
elements are in the same row of the periodic table, but Zn and Se are more widely separated
horizontally than Ga and As; as the distance of separation increases, so does the band gap.

(d) Cadmium telluride will have a smaller band gap energy than zinc selenide. Both are 1I-VI
compounds, and Cd and Te are both lower vertically in the periodic table than Zn and Se.

(e) Cadmium sulfide will have a smaller band gap energy than sodium chloride since Na and CI

are much more widely separated horizontally in the periodic table than are Cd and S.

18.27 The explanations called for in this problem are found in Section 18.11.

18.28 (a) No hole is generated by an electron excitation involving a donor impurity atom because the
excitation comes from a level within the band gap, and thus, no missing electron is created from the
normally filled valence band.

(b) No free electron is generated by an electron excitation involving an acceptor impurity atom
because the electron is excited from the valence band into the impurity level within the band gap; no

free electron is introduced into the conduction band.

18.29 Nitrogen will act as a donor in Si. Since it (N) is from group VA of the periodic table (Figure 2.6),
an N atom has one more valence electron than an Si atom.
Boron will act as an acceptor in Ge. Since it (B) is from group IlIA of the periodic table, a B
atom has one less valence electron than a Ge atom.
Zinc will act as an acceptor in GaAs. Since Zn is from group |IB of the periodic table, it will

substitute for Ga; furthermore, a Zn atom has one less valence electron than a Ga atom.
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Sulfur will act as a donor in InSbh. Since S is from group VIA of the periodic table, it will
substitute for Sb; also, an S atom has one more valence electron than an Sb atom.

Indium will act as a donor in CdS. Since In is from group IlIA of the periodic table, it will
substitute for Cd; and, an In atom has one more valence electron than a Cd atom.

Arsenic will act as an acceptor in ZnTe. Since As is from group VA of the periodic table, it

will substitute for Te; furthermore, an As atom has one less valence electron than a Te atom.

18.30 (a) For an intrinsic semiconductor the Fermi energy is located in the vicinity of the center of the

band gap.
(b) For an n-type semiconductor the Fermi energy is located in the vicinity of the donor impurity

level.
(c) Below is shown a schematic plot of Fermi energy versus temperature for an n-type

semiconductor.

Conduction Band

Energy
m

Valence Band

Temperature

At low temperatures, the material is extrinsic and the Fermi energy is located near the top of the
band gap, in the vicinity of the donor level. With increasing temperature, the material eventually

becomes intrinsic, and the Fermi energy resides near the center of the band gap.

18.31 (a) In this problem, for a Si specimen, we are given p and o, while Hh and Ho are included in

Table 18.2. In order to solve for n we must use Equation (18.13), which, after rearrangement, leads

to

c - plel Hp

n =
lef g
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103 (Q-m)™? - (1.0 x1023 m‘3X1.602 x 10719 ch.os m?2 /V-s)
(1.602 x 10719 CX).14 m2/V-s)

= 89x10%m3

(b) This material is p-type extrinsic since p (1.0 x 1023 m_3) is greater than n (8.9 x 1021 m_3).
18.32 In this problem we are asked to compute the intrinsic carrier concentration for PbS at room

temperature. Since the conductivity and both electron and hole mobilities are provided in the
problem statement, all we need do is solve for n and p (i.e., n;) using Equation (18.15). Thus,

N, = ——
" lel(ue + 1)

~ 25 (Q-m) L
(1602 x1071° C)006 + 0.02) m?/V -5

= 1.95x 1021 m3

18.33 (a) This germanium material to which has been added 1024 m_3 As atoms is n-type since As is a
donor in Ge. (Arsenic is from group VA of the periodic table--Ge is from group IVA.)
(b) Since this material is n-type extrinsic, Equation (18.16) is valid. Furthermore, each As atom will
donate a single electron, or the electron concentration is equal to the As concentration since all of

the As atoms are ionized at room temperature; thatis n = 1024 m_3, and, as given in the problem

statement, p, = 0.1 m2\V-s. Thus
o =nlel g
= (0** m)t.602 x 10™° c)01 m?V -5
= 1.6x10* @-m)?
18.34 In order to solve for the electron and hole mobilities for InP, we must write conductivity expressions

for the two materials, of the form of Equation (18.13)--i.e.,
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o =nlelue + plelny,

For the intrinsic material
25x10° (@-m)?! = (3.0 x 1013 m'3X1.602 x 1019 c)ue

+ (3x10" m® Y1602 x 107 C ),

which reduces to
0.52 =pg, + py

Whereas, for the extrinsic InP

36x10° (@-m)t = (4.5 x 1014 m'3X1.602 x 10719 c)ue

+ @ox 10" m® Y1602 x 10" C)u,
which may be simplified to

112.4 = 225u, + py

Thus, we have two independent expressions with two unknown mobilities. Solving for He and My, We

getp, = 0.50 m2/V-s and Hp = 0.02 m2\V-s.

18.35 In order to estimate the electrical conductivity of intrinsic silicon at 80°C, we must employ Equation
(18.15). However, before this is possible, it is necessary to determine values for n;, He: and Hp-

According to Figure 18.15, at 80°C (353 K), n; = 1.5 x 1018 m'3, whereas from the "<1020 m™3-
curves of Figures 18.18a and 18.18b, He =011 m2/V-s and pp, = 0.035 m2/V-s (realizing that the

mobility axes of these two plot are scaled logarithmically). Thus, the conductivity at 80°C is
G = nild @e + ”h]

= (1.5 x 1018 m‘3X1.602 x 10719 C)@.ll m2N-s + 003