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Chapter 1 
Structural Mechanics 

 
Introduction 
 

There are many different types of structures all around us. Each structure has a specific 
purpose or function. Some structures are simple, while others are complex; however there are two 
basic principles of composing structures.   
 

 They must be capable of carrying the loads that they are designed for without collapsing. 
 They must support the various parts of the external load in the correct relative position.  

 
A structure refers to a system with connected parts used to support a load. Some examples related to 
civil engineering are buildings, bridges and towers. However, these structures are very complex for 
analyze and design. At first, we will consider simple examples of structures and parts of structures 
like beams, trusses, frames etc. It is important for a structural engineer to recognize the various type 
of elements composing a structures and to be able to classify them as to there form and function. We 
will introduce some of these aspects.  
 
Structural elements: 
 
Some of most common structural elements are as follow: 
 

 Tie rods – structural members subjected to a tensile force. Due to the nature of the load, 
these elements are rather slender and are often chosen from rods, bars, angels, or channels. 

 

 
 beams – straight horizontal members are used generally to carry vertical loads. 

 

 
Beams may be designed from several of element and materials – concrete, 

metal etc. with rectangular or other cross section.  
 columns –members are generally vertical and resist axial compressive 
loads. 
Columns are elements similar to the tie rods but they carry vertical loads.  
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Type of structures 
 

1. Frame structures: trusses, three-hinged frame, frames,  
 

 trusses: they are composed of slender rods usually arrenged trintriangular fashion. 
Trusses are suitible for constructions with large span when the depth is not an important 
criterion for desing. Plane trusses are composed of members that lie in the same plane and 
are frequantly used for bridge and roof support. 

 

 
 three-hinged frame: this structure is simple determinate frame used generally for base 
element for complicated frame structures. 

 
 frames: they are often used in buildings and are composed of beams and columns which 
are with hinge or rigid  connections. These structures are usually indeterminate and the load 
causes generally bending of its members. 

 

 
 plane structures: plates, walls and etc. These structures have two significant dimensions 
and one small called thickness. The theory of elasticity is capable to analyze such structures.  
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 surface structures: shells and etc. These structures can be made from flexible or rigid 
material and has a three-dimensional shape like a cylinder hyperbolic paraboloid etc. The 
analysis of these structures is also aim of theory of elasticity. 

 

 
Loads: 
 

In statical structural analysis of frame structures we define statical (dead) load. We 
distinguish types of loads: 
 

 force load: concentrated force or moment, distributed load. 
 

 
 temperature load: load caused by fire. 
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 displacement load: load displacement is caused from displacement of some point or 
points of the structure. 

 

 
 
Idealized structures: 
 

Idealized structure is needed to the engineer to perform a practical force analysis of the 
whole frame and its member. This is the reason in this section to show different member 
connections and supports and there idealizations. If one know these models may compose idealized 
model of each real structure after all perform the analysis and design. 
 

 rigid (fixed) connections: this connection carry moment, shear and axial forces between 
different members. In addition, in this case all members including in such a connection have 
one and the same rotation and displacements – the nodal rotation and displacements. Typical 
rigid connections between members in metal and in reinforced concrete constructions and 
there idealized models are shown in the following figure: 

 

 

 
 hinged (pin) connections: this connection carry shear and axial forces but not moment 
between different members. Hinged connection allow to the jointed members to have 
different rotations but the same displacements. Typical hinged connections between 
members in metal and in reinforced concrete constructions and there idealized models are 
shown in the next figure: 
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 fixed support: this support carry moment, shear and axial forces between different 
members. This kind of support doesn’t allow any displacements of the support point. So if 
the displacement along the x axis is u, the displacement along y axis is y and the rotation is 
called ϕ then we can say that: uA = 0; vA = 0 and ϕA = 0. 

 
 hinged (pin) support: this support carry shear and axial forces but not moment between 
different members. The hinged support allows rotation of the support point but the two 
displacement are equal zero or: uA = 0; vA = 0 and ϕA ≠ 0. 
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 roller support: this support carry only shear forces between jointed members. The roller 
support allows rotation and one displacement of the support point: uA ≠ 0; vA = 0 and ϕA ≠ 
0. 
 

 
 spring supports: These supports are like the previous but with the difference that they 
are not ideally rigid but with some real stiffness. The spring has a stiffness constant c equals 
to the force caused by displacement d = 1. 

 
 structure idealization: The main idea of this idealization is to made a mathematical 
model of the real construction to be convenient for analysis and calculation. After we know 
the idealization of different joints and supports, we will take care about whole structure 
idealization. To make this we follow the middle axis of the elements of the structure. In the 
following figure are shown some real and idealized structures: 
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Principles and preconditions: 
 

 displacements: Every two dimensional deformable element has three degrees of 
freedom (two displacements and one rotation) of each its end node. With using different 
support links, we control these degrees of freedom so the elements cannot move on the 
limited direction or it moves with controlled value. These limitations are called boundary 
conditions. On the following figure are shown the degrees of freedom and some boundary 
conditions for elements: 
 

 
 deformation: deformation or strain is the change in the metric properties of a continuous 
body (element) caused by some load. A change in the metric properties means that the 
element changes its length and shape when displaced to a curve in the final position – the 
deformed shape. 
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 preconditions about displacements and deformations: we presume that the 
displacements are small according the dimensions of the element and deformations are small 
according the unit. These preconditions allow us to write equilibrium conditions for the 
initial shape of the structure and also to neglect the small displacement of the structure. 

 

 
 precondition about the material: we suppose that the connection between stress and 
strain is linear so the Hook’s law is valid. This is acceptable because of presumption of small 
deformation. 

 principal of superposition: The previous two preconditions allow us to use the principle 
of superposition. It may be stated as follow: The total displacement or internal forces at a 
point in a structure subjected to several external loadings can be determinate by adding 
together the displacements or internal forces caused by each of the external loads acting 
separately. 
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Chapter 2 
Kinematical analysis of structures 

 
Determination of degrees of freedom: 
 

We know that each body situated in one plane has three degrees of freedom – three 
independent parameters determining its movement. By using support links we limit this movement 
possibility. So if we put on three special arranged support links at a body than it will be stable – 
without any movement possibility. In this way the body is able to carry different loads and we call it 
structure. Then as a response of the load in the support links appears support reactions we can 
determine. Structure with exact number of links is called determinate structure. If this body has less 
then tree links then some movement will be possible. Such a body is called mechanism. If we put on 
more then three support links on the body than it is indeterminate structure.  

 
 In case we have no one body but several numbers, the degrees of freedom is depending of 
the body’s connection and supports. The way to calculate of the degrees of freedom in such 
complicated structure is following: 
If there are no one element closed loops: 

3 2w d k a= − − ; 
where: 
w is degree of freedom (mobility); 
d is number of bodies (elements); 
k is number of one-degree-of-freedom kinematic pin joints; 
a is number of support links. 

The numbers of k is calculated by the formulae: 1k d= − , where d is number of the 
connected at the pin joint elements. 
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We show some examples for determination of degree of freedom. 
In the following example we have closed loop but composed by two elements. 

 
If there are one-element-closed-loops: 

3w ( m k )= − −  
where: 
m is number of the closed loops (including the basic disk – ground (terra)); 
k is number of one-degree-of-freedom kinematic pin joints. 

 
In the case of the rod structures (trusses) we may use the next formulae: 
 

2w k d a′= − −  
where: 
d is number of elements; 
k’ is number of hinges; 
a is number of support links. 

 
And finally in the case of chains we have: 

2w d= −  
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where: 
d is number of elements; 

 
On previous examples we saw that the number of degrees of freedom w may be positive, 

negative or zero. So we distinguish three different cases for w: 
 

0w >  - the system is mechanism. In the case of mechanism we don’t have a structure carrying any 
load; 

0w =  - determinate structure. We have a structure and it is possible to analyze it with only 
equilibrium conditions. 

0w <  - indeterminate structure. We have a structure and it is possible to analyze it with equilibrium 
conditions and additional equations. 
 
In this first stage we will analyze only determinate structures namely structures with w = 0. 
 
Basic kinematical elements and links: 
 

It’s known that if we cut the body of the beam par example, in the cut sections there are three 
body force shown on the figure: 
 

 
It is useful for some structures to construct different type of connection between the disks like pin 
joint we has shown and some other displayed on the next figure. These types of connection are 
called releases.  
 

 
 basic kinematical elements – cantilever beam, simple beam and dyad. They are simple, 
stable determinate structure and we use them for composing complicated systems. 
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The dyad is stable only if the three joints are not lying on one and the same line. If they are then the 
dyad is unstable and we call it “singular dyad”. 
 

 
We may distinguish three types of basic kinematical links (elements) for composing structures: 
 

 kinematical links Type 1 – this link carry only axial load if there is no transverse load. 
 

 
 kinematical links Type 2 – this link carry axial and bending load and has one fixed and 
one pin support. 

 
 kinematical links Type 3 – this link carry axial and bending load and has two fixed 
support. 

 
Kinematical analysis of determinate structures: 
 

By using basic kinematical elements, links and chains we may compose different 
complicated structures. With the upper formulas we control if the composed structures are 
determinate or not. But it is possible construction to be determinate and to be mechanism at the 
same time. This phenomenon we call kinematical instability and such a system – mechanism. So the 
upper formulas give us information only for the number of the links but not for the kinematical 
stability. That is why we need a kinematical analysis. In the fowling example we show this 
phenomenon.  
 

w = – 1; indeterminate system. 

w = – 2; indeterminate system. 

w = – 3; indeterminate system. 
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Another possibility of this phenomenon is instantly unstable system. Instantly unstable 

because after some displacement the system came stable but therefore not good for design. 
 

 
The kinematical analysis consist a way of composing the complicated structure. If we use 

only stable basic elements like a cantilever beam, a simple beam or a dyad the result should be 
stable structure. 
 

 
The kinematical analysis of this structure is the next: At first we have only the earth (terra). 

After that we construct the cantilever beam (element 1). It is stable structure. Point A already exists. 
On the next step we construct the dyad 2.3. This dyad is based at point A on the cantilever beam and 
at point B on the earth. The dyad is also stable structure. Last step is composing of the simple beam 
4. It is based on the dyad at point C and on the earth at point D. This explanation of the kinematical 
analysis we write in the fowling way:  
 

1 0 2 3 0 4 0 0KA : [T ( w ) . ( w ) .DD'( w )]( w )+ = + = + = =  
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Another example - compound beam: 
 

1 0 2 0 3 0 0KA : [T ( w ) .BB'( w ) .DD'( w )]( w )+ = + = + = =  
 
The compound beam is composed by one cantilever beam and two simple beams, all of them lying 
on one line. Beam 2 is based on beam 1 and on the roller support BB’. Beam 3 is based on beam 2 
and the roller support DD’. Beam 1 is supported only on the earth so this beam we call primary 
beam and the two other we call secondary beams. 
 
Depending on kinematical analysis we classify structures on two types: 

 Type I: structures composed only by using other stable structures: cantilever beam, 
simple beam or dyad. 
 Type II: system which consist chains and links. 

Previous examples were of type I. Now we will shall some examples of structures type II: 
 

 
1 2 1 3 1 4 5 0 6 0 0KA : [T . .BB'( w ) ( w ) . ( w ) .BB'( w )]( w )+ = + + = − + = + = =  

 
This system consist chain and link. So it is not sure if the system is stable or not. It is necessary to be 
made additional verification. 
 
There are four typical ways for composing different structures: 
 

 way I: compose structures only by using cantilever beams, simple beams and dyads 
starting of the earth (base disk). 

Using this way we have structure type I and we are sure it is stable structure. 
 way II: compose structures only by using simple beams and dyads but using one of the 
disks for base element. As a result we have composed a stable close loop. After that we base 
it on the earth. The kinematical analysis in this case has two stages. The first composing the 
closed loop and the second composing earth based structure. 
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First stage: 1 2 3 0 0KA : a [ . ( w )]( w )= + = =  
Second stage:     0 4 0 0[T a.AA'( w ) .BB'( w )]( w )+ = + = =  
 

 way III: compose structures by using cantilever, simple beams, dyads and chains and 
links. In this case we use terra for a base of the structure. As a result it is not sure if the 
structure is stable or not. It is necessary to make additional analysis.  

 

 
1 0 2 3 1 5 1 4 0 0KA : [T ( w ) . .BB'( w ) ( w ) .DD'( w )]( w )+ = + = + + = − + = =  

 
 way IV: compose structures by chains and links. In this case we use some of the disks 
for a base element. The kinematical analysis is in two stages. As a result it is not sure if the 
structure is stable or not. It is necessary to make additional analysis.  

 

 
First stage: 1 2 6 7 3 2 4 1 5 1 8 9 0 0KA : a [ . . . ( w ) ( w ) ( w ) . ( w )]( w )= + = + + = − + = − + = =  
Second stage:     0 0[T a.BB'( w )]( w )+ = =  
 
Let us consider in details a way of support of a simple beam and a dyad. The simple beam is 
composed by one disk and three support links like it’s shown: 
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In case a) the direction of support links 1 and 2 intersect in common hinge Ac as a rotating point but 
support link 3 obstruct this rotation so the structure is stable. In contrary in case b) the direction of 
the three support links intersect at on and the same point – the common hinge Ac. As a result the 
rotation is possible and the structure is unstable. 
 
As we know the dyad is composed by two disks connected by a hinge (common or not) and 
supported by two fixed support (one fixed support is composed by two intersected support links). 

 
In case a) the dyad has two fixed supports at the common hinges Ac and Bc and one real hinge C 
between the disks. The three hinges Ac, Bc and Cc are not lying at one line, that is why the dyad is a 
stable one. The same situation is in case b) but the common hinges Ac and Cc are at infinity. In cases 
c) and d) the three hinges are lying at one line and that is the reason the dyad is unstable. The 
difference is that in case d) the common hinge Cc is at the infinity but as is known all horizontal 
lines intersect at the horizontal infinity and all vertical lines intersect at the vertical infinity.  
If we know enough about principles of structural composing and common hinges we may answer 
the question “Is the construction stable or not?” very easy some time as in the following cases: 
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1 2 3 
(1,3) (3,2) 

(1,2) 
(2) 

According to the second theorem somewhere 
on this line the relative pole (1,2) is lying! 

According to the first theorem somewhere on 
this line the relative pole (1,2) is lying! 

(1) 

 
At the first glance at the pictures one may say that these are very complicated structures but 

after that it should be clear that at figure a) we have three-hinged beam and at figure b) it is a simple 
beam. At figure a) the two triangles are close-loops and have a sense of one disk each of them. 
These two disks are connected with two links crossed at meddle where is the common hinge. The 
left triangle – disk is supported by two links crossed at one point. This point is actually fixed support 
for the disk. The right disk is supported directly by fixed support. At figure b) the two triangles 
compose one close-loop disk which is supported by one link (in the left) equal to roller support and 
one fixed support at the horizontal infinity composed by the two horizontal links. So at the result we 
have simple beam at figure b). As well as we know that these structures are simples we can be sure 
that they are stable if they agree with upper rules. This way for analyze structures is very convenient 
in most cases but there are some situation in which it isn’t possible to use it. That is the reason to 
perform common method for analyzing complicated structures for there determination and stability. 

 
Common method for kinematical analysis of determinate structures: 
 

Before we present the common method we should explain some kinematical theorems and 
determinations. 
 Major pole of rotation: This is the pole around which rigid body rotates. Fixed supports are 

usually major poles. 
 Relative pole of rotation: This is a point around which two rigid bodies relatively rotates. 

Middle and common hinges are usually relative poles of rotation. 
 First Theorem: If we have a mechanism of two connected bodies so they have major poles 

each of them and one relative pole. Allays these three poles (the two major and one relative) 
are lying at one line. 

 
 Second Theorem: If we have a mechanism of three connected bodies there relative poles are 

lying at one line. 

a) b) 

1 2 
(1) (2) 

(1,2) 

major pole major pole relative pole 



 - 18 - 

As it’s shown at the figure using these two theorems we may find the position of some pole 
which is not obvious at first. Additionally we may write these conditions in the following 
provisionally way: 

)2,1(
)2,1()2,3()3,1(

)2,1()2()1(
⇒





=+
=+

 

This “equation” should be red as: The major poles (1) and (2) of the disks 1 and 2 determine 
a line on which the relative pole (1,2) should lie. The relative poles (1,3) and (3,2) determine a 
line on which the relative pole (1,2) should lie. The cross point of the two lines determine the 
exact position of the relative pole (1,2). 
 
 First Additional Theorem: If one major pole appears at two points at the same time then 

the pole do not exist. When one major pole don’t exist then the corresponding body do not 
moves. 

 Second Additional Theorem: If one relative pole appears at two points at the same time 
then the pole do not exist. When one relative pole doesn’t exist then the corresponding 
bodies do not relatively moves. They move like one and the same disk (body). 

In this example the major pole (2) should lie at a line determinate by poles (1) and (1,2) but 
at the same time it is known the exact position of this pole (at the right fixed support). Hence the 
major pole (2) appears at two different positions so do not exist. As a result the disk 2 doesn’t 
moves. Owing to this the relative pole (1,2) becomes major pole (1). But this pole already exists 
so the disk 1 doesn’t moves too. 

In the other hands the relative pole (1,2) should lie at a line determine by poles (1) and (2) 
but its exact position is known by the middle hinge. As a result pole (1,2) do not exist. In 
consequence disks 1 and 2 moves like one disk. But this one disk has two major poles at the two 
fixed supports. Hence this disk hasn’t a major pole. Thus the disk doesn’t moves. 

Actually the shown system is dyad and as we know is stable. That is why poles of movement 
do not exist. But this is very good example to show haw the additional theorems works. This 
example also shows that the theorems of kinematical mechanism can be used as a source for 
verification of structural stability. Thus follows the common method for kinematical analysis.  

First we make Determination of degrees of freedom. If the structure is statically determinate 
we continue with the next step: kinematical analysis – the way of composition. If the structure is 
composed by using firs or second way of composition then it is known the structure is stable and 
more verification isn’t needed. If it is used third or fourth way then verification for stability is 
needed. If it is possible we may identify the structure as an elementary one – simple beam or 
three-hinged frame – dyad like it was shown previously. If not we continue with the common 
method of verification. 

 

1 2 

(1) 

(2) 
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 Common method for kinematical analysis.  
1) We remove the last link composed according to the kinematical analysis. The two 

ends points of the link determine a line we call it a-b. 
2) The removed link has connected two other disks. We compose the plan of the poles 

and find the relative pole to these disks. 
3) If this relative pole is lying at the line a-b then the determinate structure is instantly 

unstable one. If the relative pole isn’t lying at the line a-b then the system is stable 
and we may determine reactions and internal forces caused by some loads. 

 
Example 1: Make full kinematical analysis of the structure. 
 

 
1. Determination of degrees of freedom: w = 3d – 2k – a. 

 

 
0121244.24.34;4;4 =−=−−=⇒=== wakd  

0=w  ⇒  The system is statically determinate. 
 

2. Kinematical analysis of the structure: 
 
 
 

The system is composed by using chains and links (way IV); therefore it is second type 
structure. It is necessary to make verification for kinematical stability. 

 
3. Identification of the structure as an “Elementary system with common hinges”: 
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This system can be considered as an elementary one. It is “three-hinged frame” type, with 

two real support links, called A and B and a common medial hinge Сc. The three hinges are not lying 
at one and the same line, so the system is stable. 

It is not needed but we will show the common method of verification. 
 

4. Verification for kinematical stability by the common method. 
 

1) At first we remove the last link according to the kinematical analysis – link 4. 
 
[ ] )0()1(4)1(3.2.1 =−=++=+ wwwT  
 

2) We compose the plan of the poles. Searching for relative pole (1, 3) – the relative 
pole of disks, which were connected by the removed link: 

 

 
The serched relative pole (1, 3) is at the vertical infinity. 
The relative pole (1, 3) is not lying at the straight line a-b, so the system is stable.   
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Example 2: If the two connecting disks of the upper system are vertical, it is transferred into an 
instantly unstable system. 
 

 
 The kinematical analysis is the same as the previous one. 
 

 
 

1. Identification of the structure as an “Elementary system with common hinges”: 
 

This system can be identify once again as an elementary system with common hinges and “three 
– hinged system” type with two real and one common hinge. In this case the medial hinge Сc is on 
the vertical infinity, so three hinges are lying at one line (all parallel lines are crossed in one point to 
infinity). If the three hinges (A, B and Сc) are lying at one straight line, then the system is an 
kinematically unstable. 
 

2. Verification for kinematical stability by the common method. 
 

a. Remove the last link according to the kinematical analysis – link 4. 
 

[ ] )0()1(4)1(3.2.1 =−=++=+ wwwT  
 

b. Compose the plan of the poles searching for relative pole (1, 3) – the relative pole of 
disks, which were connected by the removed link: 
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The serched relative pole (1, 3) is at the vertical infinity again. 
In this case however, the relative pole (1, 3) is lying at the straight line a-b, so the system is 
instantly unstable. 
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Chapter 3 
Analysis of elementary structures. 

 
 

In this chapter, we will consider the procedure of analysis of elementary structures like a 
simple beam, cantilever beam, dyad (three-hinged frame) and compound beam. For this reason, first 
of all remind the definition of a force and a moment of force to some point. From the physics, it is 
known that the force is a vector, which has a sign, direction, and value and application point. The 
force is a representation of some load, which causes damages (deformations and displacements) of 
the body on which act. If the force acts at arbitrary direction, we may decompose it at the two mane 
directions – horizontal and vertical as it’s shown on a figure. The action of the decomposed force is 
the same as this of the whole one. 

 
The force components are: 
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Also for the force components we have the following dependencies: 
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The moment of the force related to the point A may be calculated by following different 

ways According to the figure: 
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The frequently used ways are the first and the last ones. In the second and the third cases is used the 
translated forces along the directrix of the force. 
 Furthermore when we talk about internal forces in a beam element then the forces and the 
moments are integral (a reduction) of the stresses acting in the center of the cross section of the 
beam. When the beam is under planar load the as an internal forces we have two forces: axial and 
transversal and one moment. Their positive positions are shown at the next figure: 
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In our next explanations, we will show it in the simple way as following: 
 

 
From the physics is known that all actions have counteractions. Therefore, if we know the 

moment and the resultant forces of the load we may say the values of the internal forces of the beam 
element, because they are equal. Actually if we know the support, reactions and loads we just needs 
to compose the three equilibrium equations for the cross sectional point and will find the values of 
the internal forces as it is shown at the next figure: 
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Along with we always may determine the internal forces at each character point of the beam. 

In addition, if we know some rules we may compose the internal force diagram. Some of these rules 
are as follow: 

1) At force load point the internal moment diagram has a kink and a shear force diagram has a 
jump; 

2) If some section of the beam hasn’t any load then the internal moment diagram is linear and 
shear force diagram is a constant; 
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3) If some section of the beam is under distributed load then the internal moment diagram is 
parabolic of second degree and shear force diagram is linear; 

 
 
Next table illustrates these and some other rules briefly: 
 
Load Moment Diagram Shear Diagram 

   

   

   
 
Now it will be illustrated procedure of analysis of some elementary structures: 
 

1. Support reactions. Before the member is “cut” or sectioned it is necessary to determine the 
member’s support reactions so that the equilibrium equations are written for the whole member. 

2. Internal force diagrams: The members should be sectioned or “cut” at specific points and 
equilibrium equations should be written for the separate part for determining internal forces and to 
compose the internal forces diagram. 
 
Example 1: Simple beam under point force load. 

1. Support reactions. 
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2. Internal force determination. The beam has two sections and one specific point at the 
middle of the beam to find the moment and shear values. 
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0 2 2 2 4v
l l F .lFM : M A . .= = = =∑  

The internal moment is positive because the lower bands are bended. The moment diagram 
should be plotted at the bended side of the member. The moment diagram is linear with a kink under 
the load point. 

About the internal shear force, we have two specific points at the middle of the beam, one 
next before the force end the second next after the load force. The reason of this is to determine the 
jump in the shear force diagram as it is illustrated in the up table. The shear force diagram is a 
constant with a jump under the load point. 
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The normal force is zero because there isn’t any horizontal load. 

 
3. Internal force diagram. 

 

 
Example 2: Cantilever beam under distributed load. 
 

 

F/2 

l/2 

M 

F/2 

F 

l/2 l/2 F/2 

F.l/4 

M 

Q 
F/2 

F/2 

F/2 
l/2 

Q 

F/2 

next before the load force: next after the load force: 

l/2 

Ql 

l/2 

Qr 
F 

q 

l 



 - 27 - 

In this case, it is not necessary to determine the support reactions because the right side of 
the body is free of supports and it is possible to cut and to separate the right-hand side part of the 
member and to determine the internal forces. The distributed load loads the cantilever beam so that 
the internal moment diagram should be parabolic function. There are needed three values for 
plotting the diagram. The first one can be the free end of the beam, the second one is at the middle 
of the beam and the last one is at the support. 

The shear force diagram is linear and it is sufficient to determine its value at two points – at 
the free end and at the supported end of the beam. 
 

 
1. Internal force diagram. 

 

 
Example 3: Three-hinged frame. 
 

 
1. Support reactions. 

 
The three-hinged frame has two support reactions at each pin support. It is possible to write only 

three equilibrium equations to the whole frame but there are four reactions. It is necessary to find 
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one more equation. The best equation in this case is a moment equation about the middle hinge. The 
reason of this is that we know the moment at the hinge point is zero. When we write this equation, 
we take one part of the frame – the right one or the left. If we take the right one we use the left part 
to verify the results. If we take the left one, we use the right for verification. This is illustrated 
bellow. 
 

Equilibrium equations for the whole frame: 
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The case of frames with pin supports on one level is easier because from the first two 

equations we can find directly the values of the vertical support reactions. 
Equilibrium equation for the middle hinge of the frame (the right-hand side): 
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Verification of the results: 
Equilibrium equation for the middle hinge of the frame (the left-hand side):  
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Equilibrium equation for the whole frame:  

 

0 0
? ?

v vV : A q.l B= − + =∑  
 

As we know the correct values of the support reactions, we may compose the internal forces 
diagrams. In the present frame, we have 5 segments (shown on the figure bellow) for which we 
should determine these diagrams. Consequently, we have at least 10 specific points for the shear 
force and 7 for the moment because we know the moment value at the hinges is zero. The major 
specific points are shown on red at the scheme bellow. 

 
Actually, we may compose the internal moment diagram using only 3 specific points and 

using this diagram we compose the shear and normal forces diagrams but if we know all 
characteristics of the internal forces which will be explained in the next chapter. 

Composing the diagram, we cut part of the frame and separate it. After that, we calculate the 
moment the shear and normal forces at the specific point. The way of separating of the frame for 
some of the specific points is shown at the figure bellow. 
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More details about diagram composing will be shown in later. Now will be demonstrated the 
difference when the pin support of the frame are at different level. The mane procedure of solution 
is the same as previous with only one different aspect, namely that we cannot find directly the 
support reactions. In this situation we have system of linear equations. 

 
One way for determining the reactions is as follow: 
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Another way is similar as next: 
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The difference is only at the fourth equation and the first one at the verifications. Every four 
equilibrium equations are useful for determination of the support reactions and at least one equation 
verifying results. Therefore, these two variants are not only the possible. Nevertheless, one should 
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be always careful with a partial equations and one should know that only 3 equations can be 
written for the whole system! The composing of the internal forces diagrams is the same. 
 
The next modification of the three-hinged frame is the tied three-hinged frame. We will illustrate its’ 
solution. 
 

 
One of the supports of this frame is roller and another is pin. As addition is added a link of 

type I with only one internal force – the normal one. That is why the three equations for the whole 
system are enough for reactions determination. Whit using the partial equation we determine the 
normal force at the link. 
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Verifications: 
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The composing of the internal forces diagrams is the same. 
 
Example 4: Compound beam: 
 

As it is known from the kinematical analysis, basic and secondary beams compose the 
compound beam. The secondary beams transfer the loads to the basics ones. That is why we first 
analyze the secondary beams and with their support reactions we load the basic beam. 
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1. Support reactions. 

 
Beam CD – simple beam: 
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Beam AB – simple beam with overhangs: 
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Beam PA – cantilever beam: 
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2. Internal force diagram. 

 
The diagram composing makes for every beam separately and after that, we join them for the 

whole compound beam. Here we show only the shape of the final diagrams because the exact values 
are not so important at this moment. 
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Chapter 4 
Shear and moment functions. 
Analysis of structures type I. 

 
As it is known from the “Strength of materials”, there is a connection between the internal 

moment and the internal shear force at a beam element. As a basis of this connection, we will discus 
some characteristics of the moment and shear diagram. As we say already if one know this 
characteristics may compose these diagrams without any problems and with a few calculations and 
as most important on can check if the composed diagrams are correct or not. 
 
Connections between distributed loads, shear and moment functions: 
 

 
The first equation states that the slope of the shear diagram at a point is equal to the intensity 

of the distributed load at the point. Likewise, the second equation states that the slope of the moment 
diagram is equal to the shear at the point. These equations can be integrated from one point to 
another between concentrated point or couples and as a result we have as follow: 

 

 
 As it is noted the first equation stats that the change in the shear between any two points on a 
beam equals the area under the distributed loading diagram between the points. Likewise, the next 

 

slope of shear 
diagram = 

intensity of 
distributed load 

 

slope of moment 
diagram = shear function 

 

change in 
shear = 

area under distributed 
loading diagram 

 

change in 
moment = 

area under 
shear function 



 - 35 - 

equation states that the change in the moment between the two points equals the area under the shear 
diagram between the points. If the area under the load and shear diagrams are easy to compute then 
these equations can be used for determining the numerical values of the shear and the moment at a 
various points along a beam except points with a concentrated force or moment. The next table 
illustrates the application of these equations for some common loadings cases. The slope at various 
points is indicated. Each of these results should be studied carefully so that one becomes fully aware 
of how shear and moment diagrams can be constructed based on knowing the variation of the slope 
from the load and the shear diagram respectively.  
 
 
Load Moment Diagram Shear Diagram 

 
  

   

 
 

 

 
  

 
  

 
As an addition helping information we will explain the usage of a method of superposition 

for composing the diagrams. We already notice above that one system loaded by more then one 
loads can by solved for every one of then separately and the result is a sum of all separate solutions. 
The next figure illustrates shortly the principle of superposition: 
In this case we have simply supported beam loaded by a point force at the middle and two moments 
at the two ends of the beam. The moment diagram from these loads is shown at the right top of the 
figure and the separates loads and diagrams are shown bellow. 
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As one can see the two moments, acting at the two ends of the beam can be considered 

together and if we know their values, it is very easy to compose the diagram. It is always a 
trapezium as it is shown bellow and the middle value of the diagram equals to the middle value of 
the trapezium. Therefore, if we know that for the above simple beam is only needed to add the 
diagram from the point load to the trapezium and the summary diagram will be computed. 
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Now we will continue with another aspect of the usage of the superposition principle. Let us 
consider a beam element type III as it is shown at the next picture. Let us consider we know all 
support reactions caused by the point load for example. Let us now compose the moment diagram in 
the beam element. 
Here all support reactions are known so the force system of the beam element produces zero force 
and moment resultant or in other words the system is in equilibrium state. The moment diagram is 
shown right to the beam element. Note that the same diagram will be produced by simple beam 
loaded by the same load system (including support reactions), because the load system is at 
equilibrium state.. In this case, the two horizontal reactions are included but they are equal and are 
not significant for the solution.  
 

 
As a result, we consider a simple beam with known moments at the ends and a point load at 

the middle as in the previous example. Therefore, for composing the summary moment diagram it is 
enough to sum the middle value of the trapezium (received by the two moments) and the middle 
value of the moment diagram in the simple beam loaded by the point load at the middle point. Note 
that nowhere we use the vertical and horizontal support reactions. Only the two ends moment as 
support reactions are used. 

The moment diagram produced by these two ends moment we call “reference diagram” and 
we us it as a benchmark. The diagram caused by the external load (the point load in this example) 
we call “additional diagram”. Superposing the reference diagram with the additional one, we receive 
the summary moment diagram. Note that the additional diagram is always at a simple beam. The 
next example illustrates this again. 

Let us consider a part of the frame loaded by the distributed load. Notice that if we separate 
this part it will be the same as a beam element type III as a previous one. Therefore, the summary 
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moment diagram can be produced as a summation of a reference and additional diagram if we know 
the two ends moment of the frame part. 

 

 
Note that in this case again the internal horizontal and vertical forces are not included in the 
solution. Therefore, it is enough to know the two ends moment of the frame part. 

This usage of the superposition principle is the most powerful and faster method for 
composing the moment diagram. That is why we will use it further. 

The next step is the composing the shear force diagram with a faster method. This is very 
easy if we use the connections between the moment and the shear force. We already explained this 
connection and now we will illustrate its usage. 

As two important rules, we will mention the next: 
 The shear force is takes from the moment diagram as its’ tangent at a point (the shear 

force is equal to the slope of a moment at a point). 
 If the moment diagram is a rising function then the shear is positive and if the 

moment is decreasing function then the shear is negative. 
In most cases, the moment function is linear so the tangent is very easy to find and the shear 

function is a constant: 

q 

M 

F 

l 

h/2 

h/2 
Ah 

Av Bv 

q 

Ql Qr 

Nl 
Ml Mr 

Nr 

Ql Qr 

Nl 
Ml Mr 

Nr 

q 

Ql Qr 

Nl Nr 

+ 

Ql Qr 

Nl Nr 

Ql Qr 

Nl Nr 

Ql Qr 

Nl Nr 

+ 

Ml Mr 
(Ml+Мr)/2 

ql2/8 

ql2/8-(Ml+Mr)/2 



 - 39 - 

 
If the moment diagram is parabolic function then we decompose it to a reference – linear and 

additional diagram and compose the shear force diagram using the same idea. The reference shear 
diagrams takes from the reference moment diagram as a tangent and the additional shear diagram is 
a diagram at a simple beam: 
 

 
The normal force diagram composes using the support reactions and shear forces at the corners 
nodes. 
 
Analysis of structures type I. 
 

As we already know haw to compose diagrams faster and easier we are ready to analyze 
fully different complicated structures. First, we should make the kinematical analysis of the 
structure. The kinematical analysis consist a way of composing the complicated structure. If we use 
only stable basic elements like a cantilever beam, a simple beam or a dyad the result should be 
stable structure. If the structure is statically determinate and stable we may analyze it in way 
opposite to its composing. After that for the decomposed structure, we calculate the support 
reactions and summaryly using decomposed structure, we produce the internal forces diagrams.  
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Example 1: 
 

 
1. Kinematical analysis: 

 
[ ] )0()1()1(.1. =−=′++=′′+ nnCCnBBAAT  

 

 
The system statically determinate and is composed with using of chains and links, so it is 

second type. Verification of instantaneously unstable is necessary. The system can be identified like 
elementary one “simple beam” type. The directions of the three support links are not crossing at one 
point therefore, the system is stable. 
 

2. Support reactions. 
 

This system is elementary one that is why it is not necessary to decompose it. We may compute 
the support reactions and internal forces diagrams directly. 

Lets equilibrium equations be written for such a points if possible for which only a single 
unknown participate. 

2 4 

3 

2 

15 

20 
10 

А’ 
А А 

А’ 

Аф 

В 
А 
А’ В В’ 

С С’ 

1 

Т 

Т 

Т Аф 



 - 41 - 

 
0 15 10 4 2 5 20 1 0 15

0 15 10 4 2 5 20 4 0 35
0 10 4 0 40

0 20 15 35 0 35 35 0

0 15 10 4 4 35 2 20 1 15 3 40 6 0 275 275 0

A

A

?

?

P

cM : . . B. . B

M : . . C. . C
V : A . A

Verifications :

H :

M : . . . . . .

= + + − = → = −∑

= + − + = → =∑
= − = → =∑

= + − = → − =∑

= − − + − + = → − =∑

 

 
For verification of support reactions we use usually at minimum one moment equation. As 

advise use such a point for wich participate maximum number of already determinate supports 
reactions. 
 

3. Internal forces diagrams. 
 

Moment diagram is organized by sections at characteristic points and the already explained 
properties of the diagram. In this system, the locations of the sections and their sequence are shown 
on the next figure. The separated sections are also shown. The shear diagram is produced using the 
moment diagram according to their connections and the normal force diagram is composed by the 
shear force diagram and supports reactions. At last we verifications are made using the corner nodes 
force equilibrium. 
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Determination of the moment and shear diagrams for the parts loaded by the distributed 

loads. 
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Example 2: 
 

 
1. Kinematical analysis: 

[ ] )0()0(3.21 ==+= nna  

[ ] )0()0(.4)0(. ==′+=′+ nnAAnBBaT  
 

This system is statically determine an composed by using the second way of kinematical 
composing. Therefore, the structure is cinematically stable and should be analyzed in order opposite 
of the composing order. That is why we will analyze first disk 4 after that the common disk a, next 
the dyad 2.3 and in the end disk 1. 
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disk a: 

 
dyad 2.3: 
 

 
disk 1: In this disk there is any unknown that is why its’ equilibrium is only for verifications: 
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3. Internal forces diagrams. 
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Example 3: 

 
1. Kinematical analysis: 

 
The separation on parts of the compound beam into basic and secondary beams is shown on the 

figure above. The system has two basic and two secondary beams. The basic beams are 1 and the 
cantilever 4. Beam 3 and beam 2 are secondary. The whole solution is shown bellow. 
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Chapter 5 
Principle of virtual work for rigid body. 

Energy methods. 
 

Beams may be analyzed using the equations of static equilibrium and the method of sections, 
as illustrated. Alternatively, the principle of virtual work may be utilized to provide a simple and 
convenient solution. In this chapter we will illustrate for analysis of simple structures. At first we 
will explain the principle of virtual work for rigid bodies. 

 
Principle of virtual work: 

 
The principle of virtual work may be defined as follows: Consider a structure in equilibrium 

under a system of applied forces is subjected to a system of displacements compatible with the 
external restraints and the geometry of the structure. The total work done by the applied forces 
during these external displacements equals the work done by the internal forces, corresponding to 
the applied forces, during the internal deformations corresponding to the external displacements.  

Or more simple: When a rigid body that is in equilibrium is subject to virtual compatible 
displacements, the total virtual work of all external forces is zero; and conversely, if the total virtual 
work of all external forces acting on a rigid body is zero then the body is in equilibrium. 

The expression “virtual work” signifies that the work done is the product of a real loading 
system and imaginary displacements or an imaginary loading system and real displacements. 

Consider a system of disks, in static equilibrium state,that is why the resutant force roar all 
disks is zero.http://en.wikipedia.org/wiki/Virtual_work - cite_note-Torby1984-0#cite_note-
Torby1984-0 

 
0R

i
i

F =∑  

i – is a number of disks. 
Summing the work produced by the force on each disk that acts through an arbitrary virtual 

displacement, iδr , of the system leads to an expression for the virtual work that must be zero since 
the resutant force is zero: 

 
0R

i i
i

δW F .δr= =∑  

 
In this equation the exprecion “the resultant force” means a total force – force and moment 

resultant. The same equation in more details: 
 

0j j j j
j j

δW F .δd M .δφ= + =∑ ∑  

here: 
j is the number of forces or moments; 
δd  is the projected displacement; 
F is the force working on the projected displacement; 
δϕ is rotation; 
M is the moment working on the rotation. 

 

http://en.wikipedia.org/wiki/Virtual_work#cite_note-Torby1984-0#cite_note-Torby1984-0
http://en.wikipedia.org/wiki/Virtual_work#cite_note-Torby1984-0#cite_note-Torby1984-0
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The original vector equation could be recovered by using virtual work equation. That work 
expression must hold for arbitrary virtual displacements. 

If arbitrary virtual displacements are assumed to be in directions that are orthogonal to the 
constraint forces, the constraint forces do no work. Such displacements are said to be consistent with 
the constraints. 

 
 

 
Usage of the principle of virtual work for determination of reactions or internal 
forces: 
 
Procedure of analysis: 

1) Remove the link, which holds the searching reaction or internal force; 
2) Impose a virtual displacement to the system; 
3) Write a virtual work equation and determine the searching reaction or internal force. 

 
When impose the virtual displacement (rotation) we use the plan of the poles (if it is necessary) and 
express all rotations and displacement as a function of the virtual one, therefore we should have only 
one unknown parameter – the virtual displacement. 
 
Example 1: Determination of the support reaction and internal forces for a simply supported beam 
loaded by point force. 

 
It is possible to use only forces or moments for writing the virtual work expression. 

F 
 
δd 

δϕ 
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R r 

δd – full virtual displacement of the 
application force point; 

r – ray of the force refer to point of 
rotation; 

α 
 – projected virtual displacement of 

the application force point; 
δϕ  –virtual rotation of the rigid body; 
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Using projected displacement: ( ) 0v v

δ.aF .δa l FaδW F.d F. B .δ Bl δ l= = − + = → = =∑  

Using the rotation ϕ: 0v v
F .a.φ FaδW M .φ B .l.φ F .a.φ B l.φ l= = − = → = =∑  

 
Similarly, as shown at next figure, the bending moment produced at point P by the applied load may 
be determinate by cutting the beam (removing the link) at P and imposing a unit virtual relative 
rotation of δϕ = 1. Evaluating internal and external work done gives:  

( )1 2

0

1

ext int ext int

ext

P P P P P P
int

P

P P

δW δW δW δW δW
δW F.δ F .a.θ

aθ a lδW M .α M .α M θ M M θ M θb b b
lF .a.θ M θ b

l abFa M M Fb l

= + = → = −
= =

= − − = − − = − + = −

=

= → =

 

 
When the direction of the force and the dispacements are at the same then the work done is positive 
when they are oposite the work done is negative. When the direction of the moment and the rotation 
are at the same then the work done is positive when they are oposite the work done is negative. 

If we want to evaluate the shere force at point P we should cut the beam (removing the link) 
at P and imposing a unit virtual relative displacement of δ = 1. 
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At the first solution we will use the virtual displacement δ = 1 as a parameter in the equation. 
The external force we will impose at the left side of the beam and will receive the right side internal 
shear force. This solution is done bellow: 

( )
1

1 2

ext int

ext

P P P P P P
int

P P

δW δW
aδW F.δ F l

a b a bδW Q δ Q δ Q Q Q Ql l l l
a aF Q Q Fl l

= −

= − = −

= − − = − − = − + = −

− = → = −

 

 
At the second solution we will use the virtual displacement θ = 1 as a parameter. The 

external force we will impose at the right side of the beam and will receive the left side internal 
shear force. In this case we use the fact that the two lines of the displaced form of the beam are 
parallel. This solution is done bellow: 
 

( )
2

1 2

ext int

ext
P P P P P P

int

P P

δW δW
δW F.δ F .b.θ
δW Q δ Q δ Q .a.θ Q b.θ Q a b θ Q lθ

bF.b.θ Q lθ Q F l

= −
= =

= − − = − − = − + = −

= → =

 

 
Example 2: Determination of the internal moment for a three-hinged frame using the plane of the 
poles. 

 
First we sould compose the plan of poles. It is shown at the next picture with the blue lines and all 
nessacery dimensions. How it mades we already discused. 
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The next step is to determine how disks rotates when impose the relative rotation at point P now it is 
point (1,2). The displaced shape of the frame is shown with the green lines at the figure bellow: 
 

 
Using showed geometry is determinate the rotation of the disk 2. 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 1

2 2

1 2 2 1

1 1 21 1 2

2 1 22 1 2
1 1 21 1 2 2 1 2 2 1 2

r α r , .α,
r α r , .α,

,, .α , .α α .α,

= → =

= → =

⇒ = → =

 

 
This formulae may be used for every two disks and can be written generally for any disks n and m as 
follow: 
 

( ) ( )
( ) ( )m n
n n,mα .αm n,m=  

here: 
( ) ( )n n,m  is the dimension of the segment between the mane pole (n) and the relative pole (m,n); 
( ) ( )m n,m  is the dimension of the segment between the mane pole (m) and the relative pole (m,n); 

mα  is the rotation of disk m; 

nα  is the rotation of disk n. 
 
Using this we determine all rotations at function of one of them as follow: 
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If we are not sure about the directions of the disk rotation, it is easily to choose a positive 
direction of rotation. For example, let choose the clockwise direction for positive, then each force, 
which rotates at such a direction related to the mane pole of rotation, will have a positive work done. 
Opposite, each force, which rotates at anticlockwise a direction related to the mane pole of rotation, 
will have a negative work done. If the moment rotate at clockwise direction will have a positive 
work done and opposite if moment rotate at anticlockwise a direction will have a negative work 
done. 
After all, we may compute the internal moment at point P for the three-hinged beam as follow: 
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Chapter 6 
Influence line for statically determinate structures. 

 
In the previous chapter, we have explained a technique for analyzing structures for dead (fixed) 

load. If the load is moving, not fixed, then the moment end shear internal forces should be analyzed 
by using influence line. Influence lines have important application for the design of structures that 
should resist different live loads. Here we will discuss how to draw the influence line for a statically 
determinate structures and its application for determination of the absolute maximum live shear and 
moment in a members. 

An Influence line represents the variation of the reaction, shear, moment, or deflection at a 
specific point in a member as a concentrated force moves over the member. Once this line is 
constructed, one can tell where the moving load should be placed on the structure so that it creates 
the greatest influence for the internal forces of the specific point. Furthermore, the magnitude of the 
associated reaction, shear, moment, or deflection at the point can then be calculated from the 
ordinates of the influence-line diagram. 

Although the procedure for constructing an influence line is rather basic and one should clearly 
be aware of the difference between constructing an influence line and constructing a shear or 
moment diagram. The influence lines present the effect of the moving load only at a specified point 
on a member, whereas shear and moment diagrams represent the effect of a fixed loads at all points 
along the member. 

 
Influence lines composition: 

 
For constructing influence lines, we should know the following important notes: 
 
 The influence lines are composed by straight lines for statically determinate structures; 
 For constructing the influence lines, we use a moving concentrated vertical force at a 

dimensionless magnitude of unity; 
 The way where the force moves we will call the “moving path”; 
 We draw the influence lines at a basic line, not at the structure axis; 
 The positive values of the influence line we draw at a bottom side of the basic line; 
 An ordinate (the value) of some point at an influence-line diagram correspond to the 

position of the unit load. 
 

We will discus the two methods of determination of a influence line: the static method and the 
cinematic one. First, we will present the static method by its variations. 
 
Static method for constructing influence lines: 
 

 Usage of an influence-lines function:  
 

An influence line can be constructed by placing the unit load at a variable position x on the 
member and then computing the value of the internal force or reaction at a specific point as a 
function of the unit load position. In this way, the functions of the different influence line straight 
segment can be computed and plotted. 
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Example 1: 
 
Composing of influence line for the support reactions: 
 
We place the unit force at a point x and compute the support reactions using equilibrium 

equations. So we have a function of the support reaction in dependence of the unit force position. 
After that, we calculate the support reactions value for some value of x variable corresponding to 
character position of the unit load. Finally using this value and knowing the influence line is straight 
one we draw the support reaction influence-line diagram. 

 

 
Composing of influence line for the shear and moment at a specific point: 
 
When composing influence line for the internal forces at a specified point we should be careful 

with choosing the variable x. Once at left of the specified point therefore at the other side. 
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When the force is at left, it is easier to write the equilibrium equation for the right side because 

of the load absence. In this case the variable x changes from 0 to a because in other case in the 
equilibrium equation we should include the unit load.  

Otherwise, when the force is at right, we write the equilibrium equation for the left side so the 
variable x changes from a to l because in other case in the equilibrium equation we should include 
the unit load. In this way, we compose the influence line for the internal moment for the specified 
point m. 

 

 
On the contrary of the moment influence line where is one and the same value at the two sides of 

the point m for the shear force influence line one can see there is a jump at m. The reason of this is 
that the load is a unit vertical force. That is why the jump should be with unit value. Indeed, we 
have: 
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1l r
P P

a b a bQ Q l l l
++ = + = =  

 
 Usage of other influence lines:  

 
The same result may be achieved if we use already determinate influence lines to construct 

another one. As an example, we will show the composition of the moment and shear influence line 
for point m at the previous simple beam. 

The main idea is as follow: Write the equilibrium equation for the searched reaction, shear, 
moment, or deflection and put a quotation marks to all variables which have influence lines. After 
that, perform all summations and multiplications of the equilibrium equation for the influence lines. 
As a result, we will have the needed influence line. Performing these operations, we should take care 
about the unit force position and if it is necessary, we should write two equilibrium equations – for 
right and left sides. 

 
 
 
 
 

 
When the unit load is at left side of the beam then we use equilibrium equation for the right side 

of the beam for to neglect the force. As a result the point m moment depends of the B reaction but 
we should use the left part of the B influence line because the unite load is there. The ordinate of the 
influence lines corresponds to the unit load position. Otherwise, when the force is at right of point m 
we perform equilibrium equation for the left side of the beam. Then the Mm depends of the A 
reaction but we should use the right part of the ”A” the unite load is there. 
 

In this manner we construct the m point shear influence line: 
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 Usage of character position for the unit load:  

 
The main idea is to move the unit point load at fixed the character points one-by-one, and using 

equilibrium equations for the reaction, shear, moment or the deflection to determine a character 
ordinates of the searching influence line. This method is useful because of the fact that the influence 
lines for the statically determine systems are combination of the straight segments. The number of 
straight lines corresponds to the number of the disks lay upon the moving path. If the specified point 
is at the moving path, then the corresponding disk divides into two separated disks. 

All character points that we must stop the force put on are the beginning of the moving path, 
upon supports, at a specified point, above hinges (joints) or other apparatuses and at the end of the 
moving path.  
 

Example 2: 
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Composing of influence line for the Mm: 

 
The influence line Mm consists two straight segments, because the specified point m is lying on the 
moving path. For this reason, it is necessary to put the force on three points at least. We fix the unit 
load at the characteristic point 1 and determine the internal force Mm. 

 
After that we move the unit load at the characteristic point 2 and again determine the internal Mm. 
When the force is infinitely next to left or right of the specified point m, the result is identically for 
the moment. 
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We fix the unit force at characteristic points 3 and 4, and determine internal force Mm. 

 
Using the obtained results we may compose the influence line and don’t forget that the obtained 

value for the moment when the unit load is at the characteristic point n is the ordinate of the 
influence line at the characteristic point n. The ordinates are connected with straight lines. we can 

3 

m 

2 2 1 1 

2 3 4 1 

F=1 
0,50 

0,25 0,9014 

2 

 

 

3 

m 

2 2 1 1 

2 3 4 1 
F=1 

 

1,8028 

1,0 

0,5 

2 

 

3 

m 

2 2 1 1 

2 3 
4 

1 

 

2,7042 

1,5 

1,25 

2 F=1 

 

 



 - 62 - 

3 

m 

2 2 1 1 

2 
3 4 1 

F=1 
0,50 

0,25 0,9014 

2 

0,75 

0,50 

3 

m 

2 2 

3 4 Qm = - 0,75 

0,9014 
0,75 

0,50 

use as verification the fact that all ordinates are lying on a straight line,. Thus, point 4 is an extra 
one, so the corresponding ordinate is used as verification. 

 
Determine influence line „Qm”: 

 
This solution is similar as this for “Мm” influence line. When the force is at the characteristic 

points 1, 3, and 4 it is possible to use the solutions made before, but we will calculate internal force 
Qm , instead of Мm. That is why the solutions are done and shown on the upper figures and the 
internal force Qm is read next to Мm. More complicate is the calculation of the sear force when the 
unit load is at the point 2, actually the specified point for which we compute the influence lines. We 
already described the mane idea of this solution in the previous example. Now we will use this idea. 

First, the unit force is next left to the section. Support reactions are the same as solution for Mm. 
Using vertical forces equilibrium equation with right cut part of the system, we determine the value 
and the sign of the internal force Qm. 

 
The next situation is when the force runs upon the section and now it is right next of the 

specified force. reactions do not change. The value of internal force Qm can be determine by cutting 
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left and right parts of the frame. Here we show both sections of the frame, which causes a clear 
results. 

 

 
It is clear that presented frame-parts have the same value of the internal force, independent of the 

chosen part of the frame and the result is sure. That is why we prefer that part of the internal force, 
which will be less for calculations. The important detail is that the received internal force value must 
be fixed as an ordinate of influence line exactly under the position of the unit force. Here we mean 
that ordinate +0,25 is next right of the specified point m. It is seen from the obtained influence line 
that is in section m has a jump equal to unit. The result is obvious because there is an external unit 
force in section m. 

 
 

 
Determination of the influence line “Nm”: 

 

3 

m 

2 2 

3 4 

Qm = + 0,25 

0,9014 
0,75 

0,50 

3 

3 

1 
F=1 

0,25 
 

2
2 
    

Left part 
 

m 
 Qm = + 0,25 

Right part 
 

0,50 
 

3 

2 

m 

2 2 1 1 

2 3 4 1 

+ 

1,25 
- 
 

0,75
 - 

 
0,25
 

0,50 

“Qm” 



 - 64 - 

1,5 
n 

Nn 

C 1 

The determination of the influence line for the normal force can be done by the analogical way with 
the above lines. In this situation, point 2 is not singularity point because the external force is vertical 
and does not cause a any jump for the normal force. The values of the normal force in any position 
of the unit load are shown next to the others at the previous solutions. 

Other method for calculating this influence line is using another one. In this case is more 
convenient to cut out the down part of the structure near support C. In that way the solution is 
independent of the place of the unit load. 
 

 
From this section, it is clear that the moment and shear force at point n are always zero 

therefore those influence lines are zero. We can compute the normal force by the supporting reaction 
C with the following expression: 
 

CNn −=  
 

Therefore, if we know influence line of the support reaction, we can find the influence line 
of the normal force as follow: 

"""" CNn −=  
For composing the support reaction influence line we use the same way as for the moment 

and the shear for the specified point m. We choose positive direction of the reaction and calculate its 
value for the different positions of the unit load. Actually, they are already computed and it is only 
necessary to draw the influence line. 
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For the normal force influence line, we have: 
 

"""" CNn −=  
 

 
 

Determination of the influence line for the support reaction “A”: 
 

The influence line of supporting reaction „А” is determine like the support reaction line„С”, 
that is why we will show only the result: 
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Kinematical method for constructing influence lines: 
(Qualitative influence lines using the Müller Breslau principle) 
 

Kinematical method is very easy and suitable technique for determining influence lines. In 
the international literature this technique is known as qualitative influence lines using the Müller 
Breslau principle. The Müller Breslau Principle (1886) states that: the ordinate value of an influence 
line for any function on any structure is proportional to the ordinates of the deflected shape that is 
obtained by removing the restraint corresponding to the function from the structure and introducing 
a corresponding unit displacement as the function makes the negative work. 

For example, to obtain the influence line for the support reaction at A for the simple beam 
shown in next figure, above, remove the support corresponding to the reaction and apply a unit 
displacement in the direction of YA. The resulting deflected shape will be proportional to the true 
influence line for this reaction. i.e., for the support reaction at A. The deflected shape due to a unit 
displacement at A is shown below. Notice that the deflected shape is linear, i.e., the beam rotates as 
a rigid body without any curvature. This is true only for statically determinate systems. 
 

 
Similarly, to construct the influence line for the support reaction B, we remove the support at 

B and apply a vertical unit displacement δY. The resulting deflected shape is the qualitative influence 
line for the support reaction. 
 

3 

2 

m 

2 2 1 1 

2 3 4 1 

С A 

“A” - 
 

+ 1,0 0,25 

0,5 1,25 

m 

B А 
а b 

l d 

1 
“А” YА = 1 



 - 67 - 

The proof of the Breslau principle can be established by using a virtual work principle. 
Recall that the work is the product of either a linear displacement and a force in the direction of that 
displacement or a rotational displacement and moment in the direction of that rotation. If the rigid 
body (beam) is in equilibrium, the sum of all forces and moments must be equal to zero. 
Consequently, if the body is given a virtual displacement the work done by all these forces and 
moments must also be equal to zero. Consider, for example, the previous simple beam and the 
influence line for support reaction “B”. The beam is subjected to a unit load placed at an arbitrary 
point along its length. If the beam is given a virtual vertical displacement δY at support B then only 
the support reaction and the unit force do virtual work. In this case, the support reaction does the 
negative work and the unit load does the positive. The support reaction A doesn’t a work because its 
point don’t moves. Since the beam is in equilibrium the virtual work sum must be zero: 
 

 
0Y Y

Y Y

F .δ' B.δ
B.δ F .δ'

− =
=

 

 
Since the load force is a unit and the virtual displacement is unit than we have: 
 

YB δ'=  
 

In other words, the value of B is equals to the vertical displacement at the position of the unit 
load, it shows of the displaced shape represents the influence line for the support reaction B. 

Similarly if we want to construct the influence line for the shear force at specified point m 
we should remove the restrain corresponding to the shear force and to subject the unit relative 
vertical displacement at such direction the work done by the shear to be negative. The deflected 
shape is shown bellow: 
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The sum of the right and the left parts of the displacement is equal to unit: 
 

1L Rv v+ =  
 
Using the geometry, we compute the two parts of the displacements: 
 

1

1

L L

R R

v ava l l
v bvb l l

= → =

= → =
 

 
As a result, we have the “Qm” influence line. 

To obtain a qualitative influence line for the bending moment at a section, remove the 
moment restraint at the section, but maintain axial and shear force resistance. The moment 
resistance is eliminated by inserting a hinge in the structure at the section location. Apply equal and 
opposite introduce a unit relative rotation between the two tangents of the deflected shape at the 
hinge. The corresponding elastic curve for the beam, under these conditions, is the influence line for 
the bending moment at the section. The resulting influence line is shown below.  

 
One can compute the value of the ordinate at the specified point using geometry. 
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Let see the influence line for the specified shape just next to the support B at left. 
The shear just to the left side of support B can be constructed using the ideas explained 

above. Simply imagine that section s in the previous example is moved just to the left of B. By doing 
this, the magnitude of the positive shear decreases until it reaches zero, while the negative shear 
increases to 1. 

 
The qualitative influence line for the bending moment at B is obtained by introducing a 

hinge at support B and applying a moment that introduces a unit relative rotation. Notice that no 
deflection occurs between supports A and B since neither of the supports were removed. Therefore, 
the only portion that will rotate is part BC as shown below. 

 
In the figure bellow are shown the influence line when the section moves next to the support 

B but at right. 

Notice that no deflection occurs between A and B, since neither of those supports were removed and 
hence the deflections at A and B must remain zero. 
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For the moment influence line there is no difference if the section is at left or at right to the support. 

Using this idea we will show some influence lines for the compound beam: 

 
When we use the kinematical way for constructing influence lines for simple structures it is 

easy to determine the displaced shape after removing the resistant link but when we use it for more 
complicated structures it is not so easy. That is why it is necessary to use the plane of poles to 
determine the displaced shape. 
For this technique we have the next work sequence: 

• remove the restrains, corresponding to the function for which we construct the 
influence line; 

• subject a unit displacement so that a negative work be done; 
• the structure changes to a mechanism with one degree of freedom and we construct 

its plan of poles; 
• determine the displaced shape of the disk on the moving path; 
• the vertical displacements give a shape of the influence line; 
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• the values we can compute using the static method. 
 
For the vertical displacements one should know following marks: 

• under the main pole there is no a vertical displacement because this point is like a common 
pin support. For this reason the influence line have a zero value at this point. 

• under the relative pole there is a kink for the vertical displacement shape because this point 
is a relative rotation point. For this reason the influence line have a kink at this point. 

when the relative pole is at the infinity the corresponding disks moves parallel. For this reason at the 
influence line the corresponding lines are parallel. 

This procedure is presented on the next example. We will determine the influence lines to 
the frame we already done using the static way. 
 
Influence line „Mm”: 
 
In section m remove the moment and put a hinge. Thus the structure is divided into two disks. Hence 
the influence line will consist two straight lines. After that we construct the plane of poles. 

)2('
)2()2,1()1(

=
=+

CC
 

Moment Mm, which is at disk 1 rotates anticlockwise direction so, disk 1 must rotates clockwise 
direction for Mm do negative work. Since disk 1 rotates clockwise direction, then disk 2 should 
rotate anticlockwise direction. According the rule, under main pole in the influence line has a zero 
under pole(1) (marked as [1] in the drawing) and will be rotated to clockwise direction. The straight 
line correspond to disk 2 – [2] has zero under pole (2) and it is connected to the straight line, 
corresponding to disk 1 under relative pole (1, 2). Notice that the projection of pole 2 is out of the 
geometry of the frame. 
 
Influence line „Qm”: 
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In section m remove the shear and put a Q-release. Thus, the structure is divided into two disks. 
Hence, the influence line will consist two straight lines. After that, we construct the plane of poles. 

)2('
)2()2,1()1(

=
=+

CC
 

It is obvious that pole (1,2) is at the horizontal infinity. For finding pole (2) is needed to connect 
pole (1) to pole (1,2) at infinity. It is practically done when draft a horizontal straight line across (1). 
The shear force Qm corresponding to disk 1, rotates the disk around pole (1) clockwise direction, 
therefore Qm will done negative work if disk 1 turns anticlockwise. As disk 1 turns anticlockwise, 
thus disk 2 turns anticlockwise too, because the relative pole (1, 2) is at infinity. Therefore, the 
influence lines consist two parallel lines according to the rules mentioned before. 
 

 
Influence line „Nm”: 
 

In section m remove the normal force and put a N-release. Thus, the structure is divided into 
two disks. Hence, the influence line will consist two straight lines. After that, we construct the plane 
of poles. 
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Pole (1,2) is at the vertical infinity. For finding pole (2) is needed to connect pole (1) to pole (1,2) at 
infinity. It is practically done when draft a verical straight line across (1). The normal force Nm 
corresponding to disk 1, rotates the disk around pole (1) anticlockwise direction, therefore Qm will 
done negative work if disk 1 turns anticlockwise. As disk 1 turns clockwise, thus disk 2 turns 
clockwise too, because the relative pole (1, 2) is at infinity. Therefore, the influence lines consist 
two parallel lines. 
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Influence line „Mn”: 
 
In section n remove the moment and put a hinge. Thus the structure is divided into two disks. Hence 
the influence line will consist two straight lines. After that we construct the plane of poles. 
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In this case pole 2 coincides to pole (1, 2), therefore pole (1) must be located at the same point, but 
pole (1) is stand in other place. As we already know when some pole is located at two points that 
means it does not exist. When a main pole does not exist its then the disk is stable (does not moves). 
The disk 1 is on the moving path and haven’t a vertical displacement, therefore corresponding 
influence line is zero. 
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Influence line „Qn”: 
 

Here we have again the same situation; the disk 1 is on the moving path and haven’t a 
vertical displacement, therefore corresponding influence line is zero. 

 
The solution of last two influence lines is clear, therefore only the final result is shown below. 
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Determine influence line „Nn”: 
 

 
Determine influence line„А”: 
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Calculating of the internal forces by using influence lines. 
 

By using the influence lines one can calculate the values of the internal forces for a specified 
point caused by some external loads. This can be done very easy using the idea of the influence lines 
and the principle of the superposition. 

As it is known each ordinates means the value of the function for which is composed the 
influence line when the unit force is up of the ordinates place. Therefore, if the force is not unit but 
F then the ordinate of the influence line (constructed using force F) will present the value of the 
function caused by force F so we may calculate the function caused by the force F. 
 

kS F .η=  
 

 
mM F.η=  

 
If there are more then one force one can use the superposition principle, then the function value will 
be as follow: 
 

k i iS F .η= ∑  
 
If the force load is directed down then one must take the sign of the ordinate from the influence line. 
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If the beam is subjected by the distributed load one can compute the function at a specified point by 
the formulae: 

k i iS q .Ω= ∑  
where the Ω i is the area of the influence line under the i-th distributed load. 
Why is used the area it is easy to understand if present the distributed load as a many forces at 
infinity small distance between each other. 
 

 
Now one can use the previous formulae for the applied force and as the ordinates are very close to 
each other so the sum of them equals to the area. For the sing of the multiplier one must take the 
sing of the area of the influence line. 

 
1 2

2 2m
η .c η .aM q. q. = − + 
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Similarly, if the beam is under the concentrate moment load then the value of the function can be 
computed as follow: 

k i iS M tgα= ∑  
 
This is easy to understanding if present the moment as a couple of forces whit the arm of unity. 
Then as we know the value of the forces is the same one can write: 
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2 1

1 1 11k i i
η ηS F .η F .η F .η F F. .tgα M .tgα− = = − + = = =∑  
 

 

 
When the moment load and the angle rotate at the same direction then the sing of the multiplier is 
positive. The direction of rotation determines as the reference line rotates to the influence line. 

 
1 2

m
η ηM M . b d
+= −
+

 

If a beam (frame) is subjected at the same time to forces, moments and a distributed loads then the 
value of the function for which the influence line is constructed on can compute as follow: 
 

∑ ∑∑ +Ω+= iiiiiik tgMqFS αη ..  
 
In the following example is presented this formula for the frame which influence lines where already 
composed.  
If one already construct the internal force diagram can use the influence lines for verification of the 
obtained result. 
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Maximum value of the function 
 
Using this idea one can determine the absolute maximum of the function for which the influence 
line is constructed from the distributed load passing through the beam (train). If the distributed load 
has a specific position at the beam then at the point for which the influence line is the function will 
have a maximum value. There are two questions: 
 

1. What is the right position of the distributed load to produce the maximum effect? 
2. What will happens if the influence line is constructed for the changing section – section at 

distance x? 
 
The answer of the first question is as follow: If the influence line has negative and positive parts we 
must place the distributed load up to the whole positive part of the influence line to produce a 
maximum positive value of the function. Similarly if we place the distributed load up to the whole 
negative part of the influence line it will produce a maximum negative value of the function. 

 

The maximum negative value of the Mm is: 1 2 1 2

2 2 2 2m
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The maximum positive value of the Mm is: 2m
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The answer of the second question is as follow: If we construct an influence line for a section 
at distance x from the support, for example, we will have influence line for a function for each 
section of the beam span. The influence line will be a function of the distance x.  
 

 
As we already know if now we have an external load we may compute the value of the 

function at section at distance x caused by the external load. However, this value will be valid for 
each section of the beam spam because the influence line is valid for each one section. Therefore, 
this value also will be a function of the position of the section – function of x. Thus if we draw this 
function we will have a diagram of the function caused of the external load. 
 

 
Using this idea one can compose an extreme diagram for the moment, for example, if the 

external load is placed at the specified place as it was described above. 
This extreme diagram is useful for the bridge beams where is very important to know the 

maximum negative and maximum positive internal forces neglecting load place. For rich this 
diagram first must be composed the influence lines for each span of the bridge (compound) beam. 
 
Next example presents this idea for a compound beam. 
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part  Functions l x = 0 x = l/2 x = l 

1 
M− ( )( )[ ] ( )( ) 2/84.2/444 1111 xxpxx −−=+−−  

4 
16 6 0 

M+ ( )( )( )[ ] ( )11 4875,0.25,324 xpx −=−  3,5 1,75 0 

2 
M− ( )( ) 22 875,0.25,32 xpx =  

4 
0 1,75 3,5 

M+ ( )( )( )[ ] ( ) 24.2444 2222 xxpxx −=−  0 2 0 

3 M− ( )( )[ ] ( )( ) 2/5,32.2/5,122 3333 xxpxx −−=+−−  2 3,5 1,25 0 

4 M+ ( )( )( )[ ] ( ) 25,1.25,15,15,1 4444 xxpxx −=−  1,5 0 0,2815 0 

5 M− ( )[ ] ( ) 2/5,1.2/5,1 5555 xxpxx +=+  2 0 1,25 3,5 

6 
M− ( )( ) ( )( )[ ] ( )66 5,1.3333,2.25,12.5,125,1 xpx −=+−  

1,5 
3,5 1,75 0 

M+ ( )( )( )[ ] ( ) 25,1.25,15,15,1 6666 xxpxx −=−  0 0,2815 0 
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part   Functions l x = 0 x = l/2 x = l 

1 
Q− ( )( )[ ] 875,0.25,342 =p  

4 
0,875 0,875 0,875 

Q+ ( )[ ] ( ) 24.24.141 11 +−=+− xpx  6 4 2 

2 
Q− ( ) ( )[ ] 5,38.2.25,3.42.4 2

222 +=+ xpxx  
4 

0,875 1,375 2,875 

Q+ ( )( ) ( )[ ] ( ) 84.2.444 2
222 xpxx −=−−  2 0,5 0 

3 Q+ ( )[ ] ( ) 75,02.25,1.121 33 +−=+− xpx  2 2,75 1,75 0,75 

4 
Q+ ( )[ ] 3.5,1.2 2

444 xpxx =  
1,5 

0 0,1875 0,75 

Q− ( )( ) ( )[ ] ( ) 35,1.2.5,15,15,1 2
222 xpxx −=−−  0,75 0,1875 0 

5 Q− ( )[ ] 75,0.25,1.1.1 55 +=+ xpx  2 0,75 1,75 2,75 

6 

Q− ( )[ ] 3.5,1.2 2
666 xpxx =  

1,5 

0 0,1875 0,75 

Q+ 
( )( ) ( ) ( ) ( )[ ]
( ) 3333,235,1

.2.5,15,3.22.5,15,15,1
2

6

66

+−=

=+−−

x

pxx
 3,0833 2,583 2,333 

 
 
Absolute maximum live moment in bridges. 
 

It is necessary to exam the situation when the motor truck pass through the bridge, then at 
the construction appears some maximum internal forces. There are different position of this vehicle 
at which the internal forces are very high values. The influence lines are useful for examine the 
internal forces in dependence of the position of the vehicle. For this examining is used a standart 

vehicle as shown at the next figure: 
 
The absolute maximum of the internal force searches trying different position of the four forces 
carrying the following points: 

• one of the forces should be up to the maximum value of the influence line; 
• if it is possible the all four should be at the positive (or negative) part of the influence line; 
• if it is not possible then try only one of the forces be at the part with the opposite sing with 

very low ordinate value. 

F F F F 

B А 
а b 

l 

abl 
“Mm” 

F F F F 
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Chapter 7 
Deflections using energy methods. 

 
It is very useful to determine the deflections and displacements in a frame or beam by 

using the energy methods in the structural mechanic. For doing this on can understand the 
meaning of the deflection, virtual work and the energy theorems. In this chapter we will explain 
the principles of virtual work and how to determine displacements end deflections using these 
principles. 
 
External work and strain energy: 
 

Before developing any energy method we will explain the external work and the strain 
energy (the internal work) done by a force and a moment. 

 
The external work done by a force: 

 
When a force F undergoes a displacement dx in the same direction as the force, the work done is: 

( )extdW F x dx= . If the total displacement is x, the work becomes: 
 

( )extdW F x dx=       7. 1 

 
Consider now the effect caused by an axial force applied to the end of a bar. As the magnitude of 
the force increase from zero to some value F  the final elongation of the bar becomes ∆. As in 
the statical analysis, the material has a linear elastic response (The Hook’s low is valid), then the 
force value at some moment will be as follow: 

FF( x ) xΔ=        7. 2 

 

The work done by this force, we will be defined as: 
 

∆=

∆=
∆

=
∆

=
∆

=

∆
==

∆∆∆

∆

∫∫

∫

.
2
1

.
2
1

2
.....

.)(;)(

0

2

00

0

FW

FxFdxxFdxxFW

xFxFdxxFW

ext

ext

ext

   7. 3 

 
If there are several external forces, the work done will be: 
 

F 

l 
∆ 

Force 

 

∆ 
x 

F(x) 

x 

 

 

Figure 7 - 1 
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∑
=

∆=
n

i
iiext FW

1
.

2
1       7. 4 

Where iF  is the final value of the i-th force and i∆  is the corresponding displacement. 
 
Deformation caused by the internal normal (axial) force: 
 
The normal force causes the normal deformations at a differentially small part of the beam. This 
deformation is defined as follows: 
From the geometry, we have connection between the elongation, deformation and the length of 
the differentially small element. From the definition of the stresses, we have connection between 
the normal stress and the normal force. From the Hooke’s law we have connection between the 
normal stress and the deformation. As we use all these connections together we will obtain for 
the elongation the following expression: 

 
 

ds
EA
Nd

ds
dEE

A
N

=→== λλε ..     7. 5 

 
Deformation caused by the internal moment: 
 

 
 
The strain in arc ds located at a position z from the neutral axis x is: 
 

ds
dssd −′

=ε       7. 6 

However from the geometry θρ ddxds .==  and ( ) θρ dzsd .−=′  so:
 

σ 

N 
A 

 

ds dλ 

N N 

 

σ 

ε 
E 

 

ds 

M M 

 

z 

neutral axis 

ds 

x x 

ds’ 

ρ 

dθ 
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z 

Figure 7 - 2 

Figure 7 - 3 



 - 87 - 

( )
ρθρ

θρθρε z
d

ddz
−=

−−
=

.
.      7. 7 

Or: 

z
ε

ρ
−=

1       7. 8 

Where: 
ρ
1  is the curvature. 

Using Hooke’s law and stress definition for bending, we obtain: 
 

EI
zM

I
zM

E
..; −=⇒−== εσσε    7. 9 

And finally: 

EI
M

== κ
ρ
1       7. 10 

Where: EI is the flexural rigidity; I is the moment of inertia computed about the neutral axis. 
 

ds
EI
Md

ddx

=

=

θ

θρ.

      7. 11 

Deformation caused by the shear force: 
 

 

 

( )
QA

Q
A
Q

E
G

G
dsdv ==

+
=== κτντγγ .;12;;.   7. 12 

κ - coefficient depending on the cross section area. 
 

𝒅𝒗 = 𝑸
𝑮.𝑨𝑸

𝒅𝒔       7. 13 

Strain energy of the body: 
 

If the material is linear elastic and isotropic then the strain energy caused the axial force 
will be expressed as follows: 

𝑾𝒊𝒏𝒕
𝑵 = −𝟏

𝟐
𝑵.𝒅𝝀 = −𝟏

𝟐
𝑵𝟐

𝑬𝑨
𝒅𝒔     7. 14 

ds 

dv γ 

γ 

γ τ τ 

Q Q 

Figure 7 - 4 
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Similarly for the strain energy caused by the internal moment: 
 

𝑾𝒊𝒏𝒕
𝑴 = −𝟏

𝟐
𝑴.𝒅𝜽 = −𝟏

𝟐
𝑴𝟐

𝑬𝑰
𝒅𝒔     7. 15 

And for the shear force: 
𝑾𝒊𝒏𝒕

𝑸 = −𝟏
𝟐
𝑸.𝒅𝒗 = −𝟏

𝟐
𝑸𝟐

𝑮𝑨𝑸
𝒅𝒔     7. 16 

 
The internal work (the strain energy) for the differentially small element is: 
 

𝑾𝒊𝒏𝒕 = −𝟏
𝟐
�𝑴

𝟐

𝑬𝑰
+ 𝑵𝟐

𝑬𝑨
+ 𝑸𝟐

𝑮𝑨𝑸
�𝒅𝒔     7. 17 

And for the whole element is: 
 

𝑾𝒊𝒏𝒕 = −𝟏
𝟐
�∑∫𝑴𝟐

𝑬𝑰
𝒅𝒔 + ∑∫𝑵𝟐

𝑬𝑨
𝒅𝒔 + ∑∫ 𝑸𝟐

𝑮𝑨𝑸
𝒅𝒔�    7. 18 

 
Work expression for element under external load: 
 

If the body is in equilibrium then the internal and external work will be equal whit 
reversed sing or: 
 

𝑾𝒊𝒏𝒕 + 𝑾𝒆𝒙𝒕 = 𝟎     7. 19 

Or 
𝟏
𝟐
∑𝑭𝒊.𝚫𝒊 −

𝟏
𝟐
�∑∫𝑴𝟐

𝑬𝑰
𝒅𝒔 + ∑∫𝑵𝟐

𝑬𝑨
𝒅𝒔 + ∑∫ 𝑸𝟐

𝑮𝑨𝑸
𝒅𝒔� = 𝟎  7. 20 

And finally: 
∑𝑭𝒊.𝚫𝒊 = �∑∫𝑴𝟐

𝑬𝑰
𝒅𝒔 + ∑∫𝑵𝟐

𝑬𝑨
𝒅𝒔 + ∑∫ 𝑸𝟐

𝑮𝑨𝑸
𝒅𝒔�   7. 21 

 
Deformation caused by temperature load; 
 
The temperature induce deflections on element and these deflections induce internal forces –
moments and axial forces. 

 
When the element is subjected on the temperature load et one of its sides the temperature 

is higher than the other. This difference cause internal forces in the element. Temperature 
distribution along the element is given on Figure 7 -5. If x-x is the natural axis, it divide the 
temperature distribution at two parts. The first is a constant temperature distribution and the 

x      x 
(natural axis) 

t1 

t2 

t c t c 

t c-t2 

h 

t1-t c 

Figure 7 - 5 
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second is temperature difference whit a zero value at the natural axis (Figure 7 - 5). The constant 
temperature distributions cause an elongation of the element and as a consequence an internal 
normal force. The temperature difference cause a deflection of the element and as a a 
consequence an internal moment.  
 
Elongation and internal force  
 

 
 

𝒅𝝀 = 𝜺𝒕.𝒅𝒔      7. 22 

From the physics is known that: 
𝜺𝒕 = 𝜶𝒕. 𝒕𝒄      7. 23 

 
Where, αt is the coefficient of the thermal extension and tc is the temperature at the cross 
section: 
 

𝑡𝑐 = 𝑡1+𝑡2
2

 - for rectangular cross section. 
It follows: 

𝒅𝝀 = 𝜶𝒕. 𝒕𝒄.𝒅𝒔     7. 24 

 
Deflection from the temperature differences: 
 

 
The extensions of the upper and down bars are as follow: 

z 

dϕ 

x 

 

dϕ 

dϕt ρ 

x 

(ρ+z)dϕt 

dsup 

dsd 

dsd 

h 

x      x 
(natural axis) 

t c 

h 

dλ ds 

Figure 7 - 6 
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𝒅𝒔𝒖𝒑 = 𝜶𝒕(𝒕𝒄 − 𝒕𝟐)𝒅𝒔     7. 25 

𝒅𝒔𝒅 = 𝜶𝒕(𝒕𝟏 − 𝒕𝒄)𝒅𝒔      7. 26 

The angle of the deflection is: 
 

𝒅𝝋𝒕 = 𝒅𝒔𝒅−𝒅𝒔𝒖𝒑

𝒉
= 𝜶𝒕(𝒕𝟏−𝒕𝒄)−𝜶𝒕(𝒕𝒄−𝒕𝟐)

𝒉
𝒅𝒔    7. 27 

 
𝒅𝝋𝒕 = 𝜶𝒕(𝒕𝟏−𝒕𝟐)

𝒉
𝒅𝒔 = 𝜶𝒕𝚫𝒕

𝒉
𝒅𝒔     7. 28 

 
Internal work at an element caused by the internal forces from the temperature load: 
 

𝑾𝒊𝒏𝒕
𝒕 = −𝟏

𝟐
𝑵.𝝀𝒕 −

𝟏
𝟐
𝑴.𝒅𝝋𝒕     7. 29 

𝑾𝒊𝒏𝒕
𝒕 = −𝟏

𝟐
�𝑵.𝜶𝒕. 𝒕𝒄 + 𝑴.𝜶𝒕

𝚫𝒕
𝒉
�    7. 30 

 
For more than one element; 
 

𝑾𝒊𝒏𝒕
𝒕 = −𝟏

𝟐
�∑∫𝑴.𝜶𝒕.𝚫𝒕

𝒉
𝒅𝒔 + ∑∫𝑵.𝜶𝒕. 𝒕𝒄 𝒅𝒔�   7. 31 

 
Internal work of the support reaction at a spring supports: 
 

If the system has a springs supports then there have a displacements and the support 
reactions done internal work. 

 
Were k is the rigidity of the spring; 
∆ (ϕ) is the displacement at the spring support. 

 
If S is generally the support reaction (moment or force) and ∆ is the displacement (linear 

or rotational) at the support we can write: 
 

𝑺 = 𝐤.𝚫      7. 32 

Or 
𝚫 = 𝑺

𝒌
       7. 33 

And the work done by a reaction will be: 
 

𝑾𝒊𝒏𝒕
𝒔𝒑 = −𝟏

𝟐
𝐒.𝚫 = −𝟏

𝟐
𝑺𝟐

𝒌
     7. 34 

∆ 

R = k. ∆ 

ϕ 

M = k. ϕ 
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If there are n spring supports, the work be: 
 

𝑾𝒊𝒏𝒕
𝒔𝒑 = −𝟏

𝟐
∑ 𝐒.𝚫𝒏
𝟏 = −𝟏

𝟐
∑ 𝑺𝟐

𝒌
𝒏
𝟏     7. 35 

 
If there is a system including n elements under external and temperature loads and spring 

supports then if the system is at equilibrium then the work expression will be: 
 
∑𝑭.𝚫 = ∑∫𝑴𝟐

𝑬𝑰
𝒅𝒔 + ∑∫𝑵𝟐

𝑬𝑨
𝒅𝒔 + ∑∫ 𝑸𝟐

𝑮𝑨𝑸
𝒅𝒔 + ∑∫𝑴.𝜶𝒕.𝚫𝒕

𝒉
𝒅𝒔 + ∑∫𝑵.𝜶𝒕. 𝒕𝒄 𝒅𝒔 + ∑ 𝑺𝟐

𝒌
𝒏
𝟏  7. 36 

 
Principle of virtual work: 

 
As we already mention the principle of virtual work may be defined as follows: Consider 

a structure in equilibrium with a system of applied forces is subjected to a system of virtual 
displacements compatible with the external restraints and the geometry of the structure. The total 
work done by the applied forces during these external displacements equals the work done by the 
internal forces, corresponding to the applied forces, during the internal deformations 
corresponding to the external displacements.  

The expression “virtual work” signifies that the work done is the product of a real loading 
system and imaginary displacements or an imaginary loading system and real displacements. 
 

𝜹𝑾𝒆𝒙𝒕 + 𝜹𝑾𝒊𝒏𝒕 = 𝟎     7. 37 

 
If we impose a virtual displacement at a deformable system there will appear a virtual deflections 
of the body as follow: 
 

EI
M

=κ
 

ds
EA
Nd =λ   𝒅𝒗���� = 𝑸�

𝑮.𝑨𝑸
𝒅𝒔    7. 38 

𝒅𝝀���� = 𝜶𝒕. 𝒕𝒄.𝒅𝒔 𝒅𝝋𝒕����� = 𝜶𝒕𝚫𝒕
𝒉
𝒅𝒔  𝚫� = 𝑺�

𝒌
   7. 39 

 
The work done by the real internal forces with the virtual deflections will be: 
 

𝜹𝑾𝒊𝒏𝒕 = 𝟏
𝟐
�∑∫𝑴�𝑴

𝑬𝑰
𝒅𝒔 + ∑∫𝑵�𝑵

𝑬𝑨
𝒅𝒔 + ∑∫ 𝑸�𝑸

𝑮𝑨𝑸
𝒅𝒔 + ∑∫𝑴.𝜶𝒕.𝚫𝒕

𝒉
𝒅𝒔 + ∑∫𝑵.𝜶𝒕. 𝒕𝒄 𝒅𝒔 + ∑ 𝑺�𝑺

𝒌
𝒏
𝟏 �

 7. 40 

 
The work done by the real external forces with the virtual displacements will be: 
 

𝜹𝑾𝒆𝒙𝒕 = −𝟏
𝟐
∑𝑭.𝚫�      7. 41 

 
So, principle of the virtual work gives following expression: 
 
∑𝑭.𝚫� = ∑∫𝑴�𝑴

𝑬𝑰
𝒅𝒔 + ∑∫𝑵�𝑵

𝑬𝑨
𝒅𝒔 + ∑∫ 𝑸�𝑸

𝑮𝑨𝑸
𝒅𝒔 + ∑∫𝑴� .𝜶𝒕.𝚫𝒕

𝒉
𝒅𝒔 + ∑∫𝑵� .𝜶𝒕. 𝒕𝒄 𝒅𝒔 + ∑ 𝑺�𝑺

𝒌
𝒏
𝟏    7. 42 
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This expression gives as a possibility to obtain the value of displacement at some point of 
the structure. If a unit force is imposed at the point and toke this system of forces and 
displacement as a virtual then the right side of the expression 7.42 will be equal to the 
displacement at the point we are trying to find. 
 

 

𝐹�.Δ𝑣 = Δ𝑣 = ��
𝑀�𝑀𝑓

𝐸𝐼
𝑑𝑠 + ��

𝑁�𝑁𝑓
𝐸𝐴

𝑑𝑠 + ��
𝑄�𝑄𝑓
𝐺𝐴𝑄

𝑑𝑠 

 
Energy theorems: 
 
Betti’s theorem, (discovered by Enrico Betti in 1872), 
 

States that for a linear elastic structure subject to two sets of forces {Pi} i = 1,...,m and 
{Qj}, j =1,2,...,n, the work done by the set P through the displacements produced by the set Q is 
equal to the work done by the set Q through the displacements produced by the set P. 
 
Example: 

 
If stage 1 is real and stage 2 is virtual then we have: 
 

𝑊𝑒𝑥𝑡 = 𝐹1.∆12= 𝑊𝑖𝑛𝑡 

𝐹1∆12= ��
𝑀1𝑀2

𝐸𝐼
𝑑𝑠 

 
If stage 2 is real and stage 1 is virtual then we have: 
 

𝑊𝑒𝑥𝑡 = 𝐹2.∆21= 𝑊𝑖𝑛𝑡 

𝐹2∆21= ��
𝑀2𝑀1

𝐸𝐼
𝑑𝑠 

It follows that: 
𝐹1∆12= 𝐹2∆21 – Betti’s theorem 

F1 𝐹� = 1 

∆v = ? 

F2 Mf M 

∆11 ∆21 

F1 

Stage 1 

1 2 

∆12 ∆22 

F2 

Stage 2 

1 2 

http://en.wikipedia.org/wiki/Enrico_Betti
http://en.wikipedia.org/wiki/Mechanical_work
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Maxwell’s theorem of reciprocal displacements: 
 

States that a displacement at point I on a structure produced by a unit force at point k is 
equal to the displacement at point k when the unit force is acting at point i. 
This theorem follows from the Betti’s theorem if the forces F1 and F2 have a unit value. 
 

 
1.∆12= 1.∆21 

or 
∆12= ∆21 

 
Theorem of the reciprocal reactions: 
 
 States that the reaction at point i produced by unit displacement at point k is equal of the 
reaction at point k caused by unit displacement at point i. 
This theorem follows from the Betti’s theorem if the displacements Zi and Zk have a unit value. 
 

𝑟𝑖𝑘𝑍𝑖 = 𝑟𝑘𝑖𝑍𝑘 
𝑟𝑖𝑘. 1 = 𝑟𝑘𝑖. 1 

or 
𝑟𝑖𝑘 = 𝑟𝑘𝑖 

 
Theorem of the reciprocal reactions and displacements: 
 
 States that the reaction at point i produced by unit displacement at point k is equal to the 
displacement at point k caused by unit force at point I with inversed sing. 
This theorem follows from the Betti’s theorem if the displacements Zi and Fk have a unit value. 
 

 
𝛿𝑘𝑖𝐹𝑘 = −𝑟𝑖𝑘𝑍𝑖 
𝛿𝑘𝑖. 1 = −𝑟𝑖𝑘. 1 

or 
𝛿𝑘𝑖 = −𝑟𝑖𝑘 

∆11 ∆21 

F1 = 1 
Stage 1 

1 2 

∆12 ∆22 

F2 = 1 
Stage 2 

1 2 

Zi = 1 

rik 

Stage 1 

k 
i 

Stage 2 

Zк = 1 
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i 

rki 

Zi = 1 
Fk = 1 

Stage 1 

k 
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δкi 
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i 

rik 
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𝐹� = 1 

M 

 

𝐹� = 1 

M 

 
𝑀� = 1 

M 

𝐹� = 1 

M  

𝐹� = 1 

 

𝑀� = 1 

M 

𝑀� = 1 

Chapter 8 
 

Displacements at statically determinate structures. 
 

A principle of virtual work can be used for determining of the displacement of some 
point in the statically determinate frame or beam. It was shown at a previous chapter how the 
deflections are determinate and how the virtual work is used for calculating displacement of 
specific point. 
 

According to principle of the virtual work for a system subjected to an external force and 
temperature load and including springs supports the displacement at a specific point calculates 
using the next expression: 
 
∆= ∑∫𝑴�𝑴

𝑬𝑰
𝒅𝒔 + ∑∫𝑵�𝑵

𝑬𝑨
𝒅𝒔 + ∑∫ 𝑸�𝑸

𝑮𝑨𝑸
𝒅𝒔 + ∑∫𝑴� .𝜶𝒕.𝚫𝒕

𝒉
𝒅𝒔 + ∑∫𝑵� .𝜶𝒕. 𝒕𝒄 𝒅𝒔 + ∑ 𝑺�𝑺

𝒌
𝒏
𝟏   

 
Where 𝑀� ,𝑄� ,𝑁�, and 𝑆̅ are internal and spring forces caused by a virtual unit load at the specific 
point for which we are calculating the displacement.  

This virtual load correspond to the displacement. It is shown at the next table: 
 
N Description Displacement Virtual load 
1 If the displacement is 

linear vertical then the 
unit load is a vertical 
force. 

 

 

2 If the displacement is 
linear horizontal then the 
unit load is a horizontal 
force. 

 

 

3 If the displacement is 
rotation then the unit 
load is a moment. 

 

 

4 If the displacement is 
linear relative then the 
unit load is a couple of 
forces 

 

 

5 If the displacement is 
relative rotation then the 
unit load is a couple of 
moments. 

 

 

 
Before to show some examples for calculating displacements is needed to make some 

comments about how to calculate the integrals at a formula 8.1. This formula means that we 
should find an integral of multiplication of two functions. The first is the function of the diagram 
from the external load and the second is the function of the diagram from the virtual load. The 
first function can be arbitrary – from constant to a parabolic by third degree. The second 
according to the virtual load is at maximum linear function. From this reason, these integrals are 

F1 

∆v = ? 
F2 Mf 

F1 ∆h = ? 

F2 Mf 

F1 

ϕ = ? 

F2 Mf 

F1 

∆ = v2 –v1 =? F2 Mf 

v2 v1 

F1 ϕ1 

F2 Mf 

ϕ2 

∆ϕ =ϕ2 –ϕ1 =? 

ϕ1 
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not so difficult for numerical calculation and it is done for all cases at a table. Such a table is 
shown below: 

𝐼 = � 𝑓1(𝑥)𝑓1(𝑥)𝑑𝑥
𝑙

0
 

 
Where 𝑓1(𝑥) is the function from the virtual load and 𝑓2(𝑥) is the function from the 

external load. The integrals are calculated for different elements or parts of elements where the 
functions are steady. The integral calculates from the beginning of the element (or part of the 
element) to its end. 
 
Calculation of displacements at statically determinate structures from 
external load. 
 

If there is a frame without springs supports and loaded with an external force load then 
the displacement calculates as follows: 
 

∆= ��
𝑴�𝑴𝒇

𝑬𝑰
𝒅𝒔 + ��

𝑵�𝑵𝒇

𝑬𝑨
𝒅𝒔 + ��

𝑸�𝑸𝒇

𝑮𝑨𝑸
𝒅𝒔 

 
Usually major influence of the displacement values has the internal moment and the 

influence of the normal and shear forces is negligible. That is why (when we make hand 
calculations) we usually ignore the second and the third part of the integral. Sometimes we 
include the integral of the normal forces if the structure has bars working of tension and 
compression but in this case it isn’t so obligate. Only when the structure is a truss then of course 
the only way to calculate the displacement is to use integral of the normal forces. The other two 
integrals are zero. 

Now we will show an example of calculation of displacement at a frame under force load 
using only the integral of the moments and calculating integrals using tables. 
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Calculation of vertical displacement of point m done from the external load: 
 

 
Data: beams(0.25/0.315): column(0.25/0.25): 
F  = 20 kN Ib = 0.000651 m4 Icol = 0.0003255 m4 
M = 15 kNm Ab= 0.0788 m2 Acol= 0.0625 m2 
q  =  10 kN/m’   
E = 2.4.107 kN/m2 Iгр = 2.Iкол αt = 1.10-5 
 

• Step 1: Analysis of the structure from the external load – composition of the Mf diagram: 
 
The result is: 
 

 
• Step 2: Analysis of the structure from the virtual load – composition of the 𝑀�  diagram. 

 
The virtual load is a vertical force at point m: 
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And the diagram is: 

 
• Step 3: Calculation of the displacement. 
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3 
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m 
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P 
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One should be careful because the moment of inertia of the beams and columns are different. We 
will write first all columns parts and after that beams parts. 
 

∆𝑣,𝑚= ��
𝑴�𝑴𝒇

𝑬𝑰
𝒅𝒔 

 
The different parts of the calculation can be illustrated by following way: 
 

 
And the calculation is: 
 

( )

( )

( )

cmm

EI

mv

mvc

45,131345,0

2.95.42.95.4)42.(90.275.2
6
1

15624
1

1.35.8,0
3
11.35.8,0)3550)(8,06,1(50.6,1

6
1

3.45.4,2
3
1803,1.95.2)9555)(21(55.1

6
1803,1.40.1

3
1

7812
1

,

,

==∆





 +++++

+
++++++


 ++++++=∆

 

 
Calculation of vertical displacement of point m done from the temperature load: 

 

If the same system is subjected to a temperature load as it is shown at the figure then 
there will appears displacements. It is very important to know that: 

At a statically determinate systems subjected to a temperature load will 
appears only displacements without any internal forces (without any moments, 
shear and axial forces). 
That is why we cannot draw a moment diagram at a determinate structure from a temperature 
load but we can calculate the displacement at some point at the structure. 

x 

+ 

+ x x 

+ x ) x 

x + + 
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∆𝑣,𝑚=
1
𝐸𝐼𝑐
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𝐸𝐼𝑏
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To calculate this displacement we need to analyze the structure from the virtual unit force 
(or moment) and to know the initial data for the temperature and the material of the structure –
the coefficient of the thermal expansion.  

In this case, the columns and the beams of the structures are rectangular cross-sections so 
the natural axis is at the haft of the high. The constant temperature and temperature different ire: 

𝑡𝑐 =
𝑡1 + 𝑡2

2
= 15℃ 

and 
∆𝑡 = 𝑡1 − 𝑡2 = 20℃ 

The displacement at the point calculates using the next expression: 
 

∆𝒕= ��
𝑴� .𝜶𝒕.𝚫𝒕

𝒉
𝒅𝒔 + ��𝑵� .𝜶𝒕. 𝒕𝒄 𝒅𝒔 

In this case in not needed to use the tables of the numerical calculation of the integrals because 
the temperature difference, the constant temperature, the high of the elements and the coefficient 
of the thermal expansion are constants and we can write: 
 

∆𝒕= �
𝜶𝒕.𝚫𝒕
𝒉

�𝑴� 𝒅𝒔 + �𝜶𝒕. 𝒕𝒄 �𝑵� 𝒅𝒔 

It follows that the integrals are equal to the area of the diagrams. 
It is important to know following facts: 

1. This formula uses only for the elements which are subjected to a temperature load. 
Because for the other elements ∆𝑡 and 𝑡𝑐 are zero and as one can see at the upper 
expression the integrals become zero. 

2. When the moment diagram from the virtual load is from the same side of the elements 
where the higher temperature is then the sing of the integral is positive (plus). In the other 
case is negative (minus). That is because we draw the moment diagram from the 
extended bars of the element and such a moment forms the same deflection as the higher 
temperature. 

3. When the normal force from the virtual load is positive then the integral is also positive 
and if the normal force is negative the integral is also negative. This is because the 
positive normal force cause an elongation of the element the same as the positive 
constant temperature. 

Now we can show the procedure of the calculation: 
 

• Step 1: Analysis of the structure from the virtual load – composition of the 𝑀�  and 𝑁� 
diagrams. 

 

A 

C  

2 4 

3 

2 

B  

m 

2 

P 

𝑀�  

 
𝑁� 

 

1,202 



 - 100 - 

• Step 2: Calculation of the displacement. 
 

∆𝑚,𝑡= �
𝛼𝑡.Δ𝑡
ℎ

�𝑀� 𝑑𝑠 + �𝛼𝑡. 𝑡𝑐 �𝑁� 𝑑𝑠 = 

=
1.10−5. 20

0,25
.
2.3,605

2
+

1.10−5. 20
0,315

�
(2 + 4). 2

2
+ 4.2� + 1.10−5. 15. (−1,202.3,605) 

 
∆𝑚,𝑡= 2,884. 10−3 + 8,8889. 10−3 − 0,65. 10−3 = 11,123. 10−3𝑚 = 1,1123𝑐𝑚 

 
 

Calculation of vertical displacement of point m done from the support settlement: 
 

 
If the same system is subjected to a support-settlement load as it is shown at the figure 

then there will appears displacements. It is very important to know that: 
At a statically determinate systems subjected to a support-settlement load 

will appears only displacements without any internal forces (without any moments, 
shear and axial forces). 
That is why we cannot draw a moment diagram at a determinate structure from a support-
settlement load but we can calculate the displacement at some point at the structure. 

To calculate this displacement we need to analyze the structure from the virtual unit force 
(or moment) and to know the initial data for the support-settlement. The displacement at the 
point calculates analogically of the displacement at a system including springs supports. In this 
case again the internal work is equal to the multiplication of the support reaction by the 
displacement of the support using the next expression: 
 

𝚫𝒄 = �R. c
𝒏

𝟏

 

 
Where R is the support reaction and c is the displacement at the support. When the support 
reaction and the displacements are at one and the same direction then the multiplication (the 
work) is positive in the other case is negative. 
 
Now we can show the procedure of the calculation: 
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• Step 1: Analysis of the structure from the virtual load – we need only the support 
reactions. 

 
• Step 2: Calculation of the displacement. 

 

𝚫𝒎,𝒄 = �R. c
𝒏

𝟏

= −1,0.0,05 + 0,8.0,05 = 0,09𝑚 = 9𝑐𝑚 

 
The same result we can rich using geometrical solution. This makes composing the displaced 
shape of the structure. Such a solution we will illustrate in the next chapter. 
 
Calculation of vertical displacement of point m done from the external load for structures 

including springs: 
 

Important to know: When one determinate system includes a spring support it is not a 
mechanism. It is a normal determinate structure but whit a displacement at a support. This 
support displacement is limited because the spring has stiffness. The support reaction at a spring 
can be obtained in the same way as a ideally rigid support. The difference is only at the 
displacements. So, the support reactions and the diagrams are as at the structure whit ideally 
rigid supports. 

On the next figure are shown the moment diagrams from the external an virtual load of 
the structure including spring support: 
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The vertical displacement one can obtain using the following expression: 
 

∆𝑣= ��
𝑀�𝑀
𝐸𝐼

𝑑𝑠 + �
𝑆̅𝑆
𝑘

𝑛

1

 

 

∆𝑣=
1

7812
�

1
6

3. (45 + 4.11,25 + 0). 3 + 3.45.4� +
45.3

10000
 

 
∆𝑣= 0.01728 + 0,0135 = 0.03078𝑚 = 3,078𝑐𝑚 

 
Calculation of relative rotation of point m done from the external load: 

 
Important to know: When we need to find a relative displacement (or rotation) there is 

only one difference from the situation whit a single displacement (or rotation). This difference is 
only of the virtual load. As it was mentioned before, in this case the virtual load is a couple 
(forces or moments). On the next example is shown the solution for the relative rotation at a 
middle hinge of the three-hinged frame from the external load: 
 

 
The relative rotation displacement can be obtained using the following expression: 
 

∆𝑣= ��
𝑀�𝑀
𝐸𝐼

𝑑𝑠 
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1

7812
�
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Chapter 9 
 

Method of forces (Force method) for analysis of statically indeterminate 
structures. 

 
On the beginning of this course we saw that the number of degrees of freedom way be 

calculated using the next formula: 
3 2w d k a= − − ; 

where: 
w is degree of freedom (mobility); 
d is number of bodies (elements); 
k is number of one-degree-of-freedom kinematic pin joints; 
a is number of support links. 
 
As a result w may be positive, negative or zero. Therefore, we distinguish three different cases 
for w: 
 

0w >  - the system is mechanism. In the case of mechanism, we don’t have a structure carrying 
any load; 

0w =  - determinate structure. We have a structure and it is possible to analyze it with only 
equilibrium conditions. 

0w <  - indeterminate structure. We have a structure and it is possible to analyze it with 
equilibrium conditions and additional equations. 
 
In this first stage we will analyze indeterminate structures namely structures with 0w < . 
 

When we have, indeterminate structures we need additional equations for find the 
unknown reactions. On the next figure, we show two times indeterminate structure. 
 

 
𝑤 = 3.1 − 0 − 5 = −2 

 
If we have two times indeterminate structure, we need 2 additional equations to find 

reactions because for such a structure we may write only 3 equilibrium equations but we have 5 
support reactions. In the force method (or flexibility method), the additional equations are the 
compatibility equations. Now we will explain the main idea of this method. 

For example let take the same system but as a determinate structure. If we know the 
values of the two unknowns, the two systems will be equivalents for all internal forces. 
 

q 
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So, if we can compose the moment diagram for this structure it will be the same as for the 
indeterminate. 
But let try to imagine what will be the deformed shape in the two cases. 

 
The deformed shapes are different because in the indeterminate structure, there is a fixed 

support at point P but in the determinate structure, it is not. The result is that in the determinate 
structure at point P there are displacements but in the indeterminate, they are zero. The 
equivalence of the internal forces of the two systems is not enough. Therefore, if we want 
equivalence of the systems we need to find the displacement at point P of the determinate system 
and to put them to be zero. 
 

That will be the additional equations – the equations of the displacement consistency 
or compatibility equations. 
 
The question is: How to find this displacements as we don’t know the extra forces X1 and X2? 
To answer of this question we will use the principle of superposition: 
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Or  
𝑀𝑓 = 𝑀𝑓0 + 𝑀𝑋1 + 𝑀𝑋2 

According to the principle of superposition, the determinate structure subjected to an 
external load and extra forces loads can be separated by three situations: the first is the system 
subjected to the external load; the second is the system subjected by X1 and the last one is the 
system subjected by X2. On the other side as we know already if the force with value X1 subjects 
the system one may compose the internal moment diagram MX1. However, one may compose the 
diagram from the unit force and to multiply it by the value X1 and the result will be the same. 
 

 
Or: 

 

q 

X1 
P 

 

X2 
P 
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𝑀𝑋1 = 𝑀1 × 𝑋1 
Same situation we have from the X2 force. 

 
Or: 

𝑀𝑋2 = 𝑀2 × 𝑋2 
 
We may use the last two results at the previous one to write the next: 
 

𝑀𝑓 = 𝑀𝑓0 + 𝑀1 × 𝑋1 + 𝑀2 × 𝑋2 
Where: 
𝑀𝑓 – is internal moment diagram obtained by the external load at the statically indeterminate 
system; 
𝑀𝑓0– is internal moment diagram obtained by the external load at the statically determinate 
system; 
𝑀1– is internal moment diagram obtained by the unit value of the X1 force at the statically 
determinate system; 
𝑀2– is internal moment diagram obtained by the unit value of the X2 force at the statically 
determinate system; 
X1 and X2 are the unknown extra forces. 
 
Important to know: This idea is valid and may be used for everything – displacements, 
deformations, support reactions and shear and axial forces. All internal forces, displacement and 
support reactions at the indeterminate system may be determinate using determinate system. We 
call this determinate system – primary system! 
 
This is important to know because we will use it for the displacement at the point P (in presented 
case) to find the displacements at the point and to put them zero value. As the primary system is 
determinate, we can obtain the displacements at a point P from every load – external, X1 = 1 and 
X2 = 1. 
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∆1 – is the displacements at X1 application point ( point P) at X1 direction from all loads – 
external load and unknown values of X1 and X2 in the primary system.  
∆2 – is the displacements at X2 application point ( point P) at X2 direction from all loads – 
external load and unknown values of X1 and X2 in the primary system.  
And they are equals to: 

 
∆1f – is the displacements at X1 application point (point P) at X1 direction from external load 
only in the primary system.  
∆2f – is the displacements at X2 application point (point P) at X2 direction from external load 
only in the primary system.  

 
δ11 – is the displacements at X1 application point (point P) at X1 direction from X1 = 1 only in 
the primary system.  
δ21 – is the displacements at X2 application point (point P) at X2 direction from X1 = 1 only in 
the primary system.  
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 - 108 - 

δ12 – is the displacements at X1 application point (point P) at X1 direction from X2 = 1 only in 
the primary system.  
δ21 – is the displacements at X2 application point (point P) at X2 direction from X2 = 1 only in 
the primary system.  
 
Or: 

∆1= ∆1𝑓 + 𝛿11.𝑋1 + 𝛿12.𝑋2 
∆2= ∆2𝑓 + 𝛿21.𝑋1 + 𝛿22.𝑋2 

 
But according the displacement consistency we must have: 
 

∆1= 0 
∆2= 0 

Therefore we have: 

�
𝛿11.𝑋1 + 𝛿12.𝑋2 + ∆1𝑓= 0
𝛿21.𝑋1 + 𝛿22.𝑋2 + ∆2𝑓= 0 

 
Finally, we have two additional equations and we may obtain the values of the two unknowns – 
the extra forces X2; X2. 

Next step to solve is haw to obtain all these displacements. This is already solved 
problem at the previous chapter. To find the displacement at some point we need to analyze the 
system from a virtual unit load. 
 

1. Displacement from the external load: 
 
To find the ∆1f displacement we need a virtual vertical unit force: 

 

 
The result from this virtual vertical force is the same as this from the unit value of the X1 so we 
may use the diagram from X1 = 1 that we already have instead of the 𝑀�  diagram. 
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And the displacement is: 

∆1𝑓= ��
𝑴�𝑀𝑓𝑜

𝑬𝑰
𝒅𝒔 = ��

𝑀1𝑀𝑓𝑜

𝑬𝑰
𝒅𝒔 

 
To find the ∆2f displacement we need a virtual horizontal unit force: 

 
The result from this horizontal force is the same as this from the unit value of the X2 so we may 
use the diagram from X2 = 1 that we already have instead of the 𝑀�  diagram. 
And the displacement is: 

∆2𝑓= ��
𝑴�𝑀𝑓𝑜

𝑬𝑰
𝒅𝒔 = ��

𝑀2𝑀𝑓𝑜

𝑬𝑰
𝒅𝒔 

 
2. Displacement from the unit values of the extra-forces X1 = 1 and X2 = 1: 

 
To find the δ11 displacement we need a virtual vertical unit force and for δ21 displacement we 
need a virtual horizontal unit force: 
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P 

  
 

 

   

P 

  
  

  

  

P 

  
 

 

   

P 

  
  

  

  

 
The result from these virtual forces is the same as this from the unit value of the X1 and X2 so we 
may use M1 and M2 diagrams instead of 𝑀�  diagram. 
And the displacements are: 

𝛿11 = ��
𝑴�𝑀1

𝑬𝑰
𝒅𝒔 = ��

𝑀1𝑀1

𝑬𝑰
𝒅𝒔 = ��

𝑀1
2

𝑬𝑰
𝒅𝒔 

𝛿21 = ��
𝑴�𝑀1

𝑬𝑰
𝒅𝒔 = ��

𝑀2𝑀1

𝑬𝑰
𝒅𝒔 

 
To find the δ21 displacement we need a virtual vertical unit force and for δ22 displacement we 
need a virtual horizontal unit force: 

 

 
The result from these virtual forces is the same as this from the unit value of the X1 and X2 so we 
may use M1 and M2 diagrams instead of 𝑀�  diagram. 
And the displacements are: 

𝛿21 = ��
𝑴�𝑀2

𝑬𝑰
𝒅𝒔 = ��
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𝛿22 = ��
𝑴�𝑀2

𝑬𝑰
𝒅𝒔 = ��

𝑀2𝑀2

𝑬𝑰
𝒅𝒔 = ��

𝑀2
2

𝑬𝑰
𝒅𝒔 

 
Important to know:  

1. As it is obvious from the expressions δ12 = δ21 and it is not necessary no calculate two of 
them. 

2. When we analyze indeterminate systems, it is not necessary to compose 𝑀�  diagrams 
because we already know that they are same as M1 and M2. 

3. The presented idea is valid not only for two-times indeterminate structures but for n-
times indeterminate also. The procedure is the same. The compatibility equations for n-
times indeterminate structure are: 

 

�
�

𝛿11.𝑋1 + 𝛿12.𝑋2 + 𝛿13.𝑋3 + ⋯+ 𝛿1𝑛.𝑋𝑛 + ∆1𝑓= 0
𝛿21.𝑋1 + 𝛿22.𝑋2 + 𝛿23.𝑋3 + ⋯+ 𝛿2𝑛.𝑋𝑛 + ∆2𝑓= 0
𝛿31.𝑋1 + 𝛿32.𝑋2 + 𝛿33.𝑋3 + ⋯+ 𝛿3𝑛.𝑋𝑛 + ∆3𝑓= 0
… … … … … … … … … … … … … … … … … … … … … … …
𝛿𝑛1.𝑋1 + 𝛿𝑛2.𝑋2 + 𝛿𝑛3.𝑋3 + ⋯+ 𝛿𝑛𝑛.𝑋𝑛 + ∆𝑛𝑓= 0
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Choice of a primary system. 
 
The choice of a primary system is very important because for only one indeterminate system 
there are many different variants of a primary system. One should choose easier, most 
appropriate and correct primary system. 
 
How to compose a primary system: We compose a primary system removing links from the 
indeterminate structure. We remove so many links as is the number of the degree of freedom w. 
We may remove as external links and internal. When we already have some primary system we 
must do the kinematical analysis of it to prove that it is stable primary system. 
 
Example1: For presented indeterminate structure, compose different primary systems. 
 

 
First, we should calculate how many times tis structure is indeterminate: 
 

𝑤 = 3.𝑑 − 2.𝑘 − 𝑎 = 3.1 − 2.0 − 6 = −3 
 
We need to remove three links. First, we will remove only external links. 
 

 
Variant 1 of the primary system is a simple beam. It is a stable structure. 
At the next variant we will remove not only external links but internal. 

 
Variant 2 of the primary system is a simple beam. It is a stable structure. 
Important to know: When internal links have been removed the unknowns are always couple! 
 

original system 

Variant 1 

X3 

X1 X2 

Variant 2 

X1 X2 

X3 
X3 
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At a Variant 3 we will remove only internal links. 
 

 
𝐾𝐴: [1 + 4 + 2.3](𝑤 = 0) 

Variant 3 of the primary system is a structure type I and is a stable structure. 

 
𝐾𝐴: [1.2](𝑤 = 0) 

Variant 3 of the primary system is a three-hinged frame and is a stable structure. 
It is possible to compose many other variant of a primary structures but it is not necessary.  
Important to know: The primary system should be type I (if it is possible). When it is type I we 
are sure the system is stable. 
 
Example2: For presented indeterminate structure, compose different primary systems. 

 
First, we should calculate how many times tis structure is indeterminate: 
 

𝑤 = 3.𝑑 − 2.𝑘 − 𝑎 = 3.3 − 2.3 − 5 = −2 
 
We need to remove two links. 

original system 

Variant 2 
X1 X2 

X3 X3 

X1 
X2 

 1 

 2  3 

 4 

Variant 2 

X3 X3 

X1 
X2 

 2  1 
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𝐾𝐴: [4 + 2.1.𝐴𝐴′(𝑤 = +1) + 3(𝑤 = −1)](𝑤 = 0) 

Variant 1 of the primary system is a fixed beam and a tied three-hinged frame. It is a stable 
structure. 

 
𝐾𝐴: [1 + 2.𝐴𝐴′](𝑤 = 0) 

Variant 2 of the primary system is a fixed beam and a simple beam. It is a stable structure. 

 
𝐾𝐴: [1 + 2.3](𝑤 = 0) 

Variant 3 of the primary system is a fixed beam and a three-hinged frame. It is a stable structure. 
 

Variant 1 

X2 

X2 X2 

 1 

2 

4 

3 

A 
A’ 

Variant 2 

X1 

X2 

X1 

 2 
1 

A 
A’ 

Variant 3 

X1 X1 

 3 
1 

X2 X2 

 2 
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𝐾𝐴: [1 + 2.3](𝑤 = 0) 

Variant 4 of the primary system is a fixed beam and a simple beam. It is a stable structure. 
 
How to compose a primary system: The primary system should be easier because we analyze it 
many times from many lad cases. When the primary system is simple, we obtain moment 
diagrams easy and fast. Diagrams are simples and one can compose them without mistakes. 
When diagrams are easy the next calculations (multiplications of the diagrams) are also easy. 
For the example1 Variant 1 is simple and suitable and can be used properly. Variant 4 is also 
appropriate because is symmetrical. 
Important to know: When the original structure is symmetrical is recommended the primary 
system to be symmetrical too. 
For the example2 Variant 2 is simpler and appropriate because it is. Variant 4 is a simple beam 
too but it is difficult to think off such a primary system. 
 
Example3: 

 
Tis system is composed by 1 disk supported as a simple beam but the disk is closed. This 

is a closed-loop system. The degrees of freedom calculate as follows: 
 

3w ( m k )= − −  
 
m is number of the closed loops (including the basic disk – ground) 
k is number of one-degree-of-freedom kinematic pin joints. 
For the present example is: 

𝑤 = −(3.2− 3) = −3 
 
It is easy to see this result if cut the close-loop. This system is supported as a simple beam and 
one can calculates the support reactions. But for to calculate internal forces diagrams we need to 
cut at two places so we cannot compose the diagram without obtain first the extra-forces. When 
we cut it three internal forces appears and so the system is three times indeterminate. Such 
systems are inner indeterminate. 

Variant 4 

X1 X1 

 3 
1 

X2 

X2 
 2 

original system 
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Actually cutting the loop, we compose the primary system. 
 

 

 
Since the original structure is symmetrical as we already mentioned the primary system 

should be symmetrical too. That is why Variant 2 is appropriate for this example. 
Example 2 also includes close-loop and composing primary system we cut it without mention it. 
 
Example4: 

 
𝑤 = 3.𝑑 − 2.𝑘 − 𝑎 = 3.1 − 2.0 − 5 = −2 

 
 
 

X1 

X2 

X2 

X3 

X1 

X3 

Variant 1 

X1 
X2 

X2 X3 

X1 

X3 

Variant 2 

R = k. ∆ 

∆ 

original system 

∆ 
Variant 1 
 

X1 
X1 

X2 
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When the system include a spring support is better to cut the spring to compose the primary 
system. 
For tis example the easier end the proper variant is Variant2. 
 
Example5: 
 

 
𝑤 = −(3.2− 1) = −3 

 
This system is a complicated one. It has 7 extra-forces and also has a closed-loop. It is not only 
inner indeterminate but external too. 
 

 
 
 

∆ 
Variant 2 
 

X2 
X1 
X1 

∆ 
Variant 3 
 

X1 
X1 

X2 

X2 

original system 

Variant 1 
 

X6 

X5 

X1 

X2 

X1 
X2 

X3 

X4 

X3 

X7 
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At the Variant 1we removed 4 external links and cut off the closed-loop. As a result, the primary 
system is a fixed beam. At the Variant 2we do the same but in this case primary system is a 
three-hinged frame. Variant 3 is very complicate. In this case, we didn’t cut the close loop and 
only include a lot of hinges. As a result, we have a structure type I so it is stable structure but is it 
the appropriate variant? 
Important to know: When we put a hinge in the primary system we should be careful about the 
number of the one-degree-of-freedom kinematic pin joints k. This number tell as haw many 
internal moments we should put in the primary system. 
At a Variant3 the left hinge is with k = 3 so there are three internal moments we removed and we 
should put them as unknown in the primary system. The other two hinges are with k = 1 that is 
why we put only one unknown internal moment. 
After all this analysis what is the better primary system? The preferable primary system is 
Variant2 because it is partly symmetrical but Variant1 is also proper if one prefer it. 
 
Full example of analysis of statically indeterminate frame: 
 
Analysis of statically indeterminate frame loaded by external load: 
 
Data: 
 

F = 20 kN  beams (0.25/0.315): columns (0.25/0.25): 
M = 15 kNm   Ib = 0.000651 m4   Icol = 0.0003255 m4 
q = 10 kN/m’        Ab= 0.0788 m2   Acol  = 0.0625 m2 
       Ib = 2.Icol.   E = 2.4.107 kN/m2 

        t1 = 0o    αt = 0,00001 
     t2 = 25    ch = cv = 0,05 m 

        ϕ = 0,05 rad 
 

Variant 3 
 

X6 
X1 

X1 

X2 
X2 

X3 
X3 

X5 

X5 

X4 X4 

X7 

Variant 2 
 

X7 

X1 

X2 

X1 
X2 

X3 X3 

X5 

X6 

X4 X4 
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1. Degree of indeterminacy:  

 
n = 3d – 2k – a; d = 1; k = 0; a = 3+2 = 5 

n = 3.1 – 5 = -2 ⇒ The system is two times statically indeterminate  
 

2. Chose of primary system: 
 

The primary system is composed by removing 2 links. The primary system should be 
statically determinate, a stable. 
 

 

 
The primary system will be analyzed several times from different loads. That is why the 
primarily structure should be simpler for to obtain diagrams easy. In this case will be used 
Variant 1. 
 

2 3 1 

2 

2 

F q 

M 

Variant 1 Variant 2 

Х2 

Х1 

Х2 
Х2 

Х1 

Variant 3 Variant 4 

Х1 

Х2 

Х1 

Х2 

Х2 
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1. Unit diagrams: 
 

 
The М1 diagram is a diagram in determinate primary system from the unit value of the unknown 
force Х1. 

 
The M2 diagram is a diagram in the determinate primary system from the unit value of the 
unknown moment X2. 
 

2. Flexibility coefficients: 
 
δij – the displacement of the application point of the unknown Хi upon its direction, caused by 
unknown Хj = 1. Values of δij calculate using Maxwell-Moor’s integrals. 

( )
( ) ( )

7812; 15624
2 21 1 1 1 12 2 2 2 2 41 4 .4 2,5 .2,2361 4 4 2,5 2,5 .3 53,913.1011 7812 3 3 15624 6

1 1 1 11 2 0,75. 2.2,5 4 .3 2,5. 2.0,75 1 .2,2361 5,1412 15624 6 7812 6

col bEI EI

M
ds

EI

M M
ds

EI

δ

δ

= =

    − = = + + + + + =∑  ∫         

   = = + + + =∑ ∫    
   

( )

4167.10

42 1 5,14167.1021 12
2

1 1 1 1 22 2 2 42 0,75 .3 0,75 0,75 1 1 .2,2361 2,5666.1022 15624 3 7812 6

M M
ds

EI

M
ds

EI

δ δ

δ

−

−= = =∑ ∫

    − = = + + + + =∑ ∫         

 

 

Х1 = 1 

0,5 

0,5 

1 

4 2,5 

2 
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2 3 1 

М1 

Х2 = 1 

0,25 

0,25 

0,75 

2 

2 

2 3 1 

М2 
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3. Verification of the flexibility coefficients caused by the unit value of the unknowns: 
 

∑ ∫=∑ ds
EI

sM
ij

2?
δ  

 
For this verification is needed to compose a summary moment diagram Ms. It is composed by 
adding the values of the unit diagrams at each specific points. 
 

21 MMsM +=  
 

 

( )

( )

∑ ∫=∑⇒−=−+−+−=∑

−=











 +++++

∑ ∫ +











 +++=

ds
EI

sM
ijij

ds
EI

sM

2
410.763,66410.5666,2410.142,5.2410.913,53

410.763,662361,2.225,3225,3121
6
14.24

3
1

7812
1

3.225,3225,3424
6
1

15624
1

2

δδ

 

During coefficients summering we should remember that δ12 =δ21 and it should be included the 
two coefficients. 
 

4. Diagram of the primary system from external load: 

 

3,25 

Мs 

1 

4 

0,25 

0,25 1,0 

2,5 

52,5 
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40 
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5. Flexibility coefficients from the external load: 
 

( )[ ]

( ) ( ) 410.983,112361,2.175,0.25,26
1

7812
13.5,17.25,2.75,06

1
15624

12
2

410.782,3043.5,2.5,25,24.5,17.24.556
1

15624
1

2361,2.5,2.5,23
14.15.42

1
7812

11
1

−−=+−++−∑ ∫ ==∆

−−=+++−+

+−−∑ ∫ ==∆




































ds
EI

o
fMM

f

ds
EI

o
fMM

f

 
6. Verification of the coefficients from the external load: 

( )[ ]

∑ ∫=∑∆⇒−=−−−−=∑∆

−−=+++−+

++−−∑ ∫ =

∑ ∫=∑∆



















ds
EI

o
fMsM

ifif

ds
EI

o
fMsM

ds
EI

o
fMsM

if

765,316410.983,11410.782,304

410.765,3163.5,2.25,325,34.5,17.24.556
1

15624
1

2361,2).125,3.2(5,26
14.4.152

1
7812

1

?

 

 
7. Compatibility equations: 

 

229,820983,1125666,21142,5
438,610782,3042142,51913,53

−=→=−+
=→=−+

XXX
XXX

 

 
8. Final diagrams: 

 
It is composed by using next connection at each specific point: 2.21.1 XMXMo

fMfM ++=  

 
 

2,776 

47,224 

2 

2 

2 3 1 

 

8,229 
0,3376 

15 

40 29,248 

7,423 

10,752 

6,438 

8,229 



 - 123 - 

α 

2,776 

6,438 
Q = 7,0 

Qv = 3,1305 

Qh = 6,261 

N = 0,39634 

Nh = 0,17725 

Nv = 0,3545 

α 

α 

α 

 

27,22 20 

6,438 
N

R
 = 6,438 

N
D
 = 47,22 

 

 

2,776 

47,224 

2 

2 

2 3 1 

7,0 20 

2,776 

6,438 

8,229 

27,22 

6,438 

9. Compatibility verification: 

( ) ( )( )[ ]

( )[ ]

error

ds
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fMsM
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












%0087,00410.153,28410.1505,28

0
?410.9485,5410.153,28410.202,223.423,7.25,325,343376,0.24.248,296

1
15624

1

2361,2.1.229,8229,8423,7125,3423,7.25,36
14.15752,10.2.46

1
7812

1

0
?

 

 
If the consistency condition is satisfied, we can continue with composing the shear and 

axial force diagrams. The shear force diagram is composed by using connection between the 
moment and the shear. The normal force diagram is composed using joints equilibrium. 
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2,776 

47,224 
2 3 1 

0,39634 

6,438 

6,438 

8,229 

47,224 

 
 
Analysis of statically indeterminate frame loaded by temperature load: 
 

The analysis of indeterminate frames from the temperature load is the same as this from 
the external load whit only one difference. The final diagram made using the following 
expression: 

tXMtXMtM 2.21.1 ++=  

The reason of this result is that at a determinate structure (the primary system) there is no 
diagram from the temperature load. Therefore, to compose the final diagrams we need only to 
calculate new values of the unknowns. To calculate them is necessary to determine the 
displacement of the unknown’s application points caused by the temperature load – ∆1𝑡, ∆2𝑡. 
Then the compatibility equations will be: 
 

�𝛿11.𝑋1𝑡 + 𝛿12.𝑋2𝑡 + ∆1𝑡= 0
𝛿21.𝑋1𝑡 + 𝛿22.𝑋2𝑡 + ∆2𝑡= 0 

 
The displacements ∆1𝑡 and ∆2𝑡 are displacements at a determinate system so the way of there 
calculation is already explained and it is: 
 

∆𝒊𝒕= �
𝜶𝒕.𝚫𝒕
𝒉

�𝑀𝑖 𝒅𝒔 + �𝜶𝒕. 𝒕𝒄 �𝑁𝑖 𝒅𝒔 

 
For the present example, the solution from the temperature load is as follows: 

 

2 3 1 

2 

2 

t1 t2 

t2 = 25o 
t1 = 0o 
α = 0,00001 
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This solution needs to compose the normal forces diagram from the unit loads. 

 

For the rectangular cross-section, tc is the middle temperature: °=∆°=+=
+

= 25;5,122
250

2
21 t

tt
сt  

Calculation of the coefficients: 

( ) 410.631,1633.14.5,05,1232
5,24

315,0
254.42

1
25,0

25.00001,01
−=++++=∆ 








t  

410.6786,74.25,0.5,122
375,0315,0

25.00001,02
−=−=∆ 








t  

Verification of the coefficients: ∑ ∫ ∑ ∫+∆=∑∆ dssNсtdssMh
t

it .αα  

Composing the summary diagram Ns 
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( ) 410.31,1713.14.25,05,123
2

25,34
315,0
254.4

2
1

25,0
25510.1.

410.31,171

−=

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Compatibility equations for temperature load: 
 

 818,3206786,725666,21142,5
3992,310631,1632142,51913,53

=→=++
−=→=++

tXtXtX
tXtXtX

 

Final diagrams from the temperature loads: tXMtXMtM 2.21.1 +=  

 
 

 

 
Compatibility verification: 
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tds
EI

tMM
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1 ∆=∑  
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t
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Analysis of statically indeterminate frame loaded by support settlement load: 
 

The analysis of indeterminate frames from the support settlement load is the same as this 
from the external load whit only one difference. The final diagram made using the following 
expression: 

cXMcXMM c 2.21.1 ++=  

The reason of this result is that at a determinate structure (the primary system) there is no 
diagram from the support settlement. Therefore, to compose the final diagrams we need only to 
calculate new values of the unknowns. To calculate them is necessary to determine the 
displacement of the unknown’s application points caused by the support settlement – ∆1𝑐, ∆2𝑐. 
Then the compatibility equations will be: 
 

�𝛿11.𝑋1𝑐 + 𝛿12.𝑋2𝑐 + ∆1𝑐= 0
𝛿21.𝑋1𝑐 + 𝛿22.𝑋2𝑐 + ∆2𝑐= 0 

 
The displacements ∆1𝑐 and ∆2𝑐 are displacements at a determinate system so the way of their 
calculation is already explained and it is: 
 

𝚫𝒊𝒄 = �R𝑖 . 𝑐
𝒏

𝟏

 

 
For the present example, the solution from the temperature load is as follows: 
 

 
Determination of the flexibility coefficients: 
To obtain these coefficients we need reactions at the unit diagrams and use the formula: 
 

∑−=∆ iciRic .  
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 cv = 0,05 m 
ϕ = 0,05 rad 
EIc= 7812 kNm2 
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The sum of the right side of the equation represents the work of the support reactions at the unit 
diagrams through the support settlements. 
 

( )
( ) 410.6251.05,025,0.05,02

410.25005,0.05,01
−=−−−=∆

−−=+−=∆

c

c  

 

Verification of the coefficients: ∑−=∑∆ icisRic .,
!

; 

 
Rs,i – support reaction of the summary moment diagrams – MS . 
 

( )
410.375410.250410.625

410.3751.05,025,0.05,0.,
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−=−−=∑−
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Compatibility equations for the support settlements analysis: 
 

51,3122062525666,21142,5
44,34102502142,51913,53

−=→=++
=→=−+

XXX
XXX

 

 
Final diagrams from support settlements: 
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73,45 34,44 
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Compatibility verification: 
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Symmetrical indeterminate frames. 
 

If one indeterminate system is symmetrical is better to use this property when analyze such a 
system. In this section, we will show this property of the system and how to use it. 

One system is symmetrical if it has the following properties: 
1. the geometry is symmetrical; 
2. the supports are symmetrical; 
3. the cross-sections (A and I) are symmetrical; 
4. the physical data (E-module) is symmetrical. 

The external load can be symmetrical, antisymmetrical or common. 
First of all we will show when one force or moment is symmetrical and when it is 

antisymmetrical. 
 

• symmetrical forces ( moments): 

 
1. Two vertical forces are symmetrical when the application points of the forces are at one 

and the same distance from the axe of symmetry and the forces at the two sides of the 
symmetrical axe have one and the same direction. 

2. Two horizontal forces are symmetrical when the application points of the forces are at 
one and the same distance from the axe of symmetry and the forces at the two sides of the 
symmetrical axe have inverse directions. 

3. Two moments are symmetrical when the application points of the moments are at one 
and the same distance from the axe of symmetry and the moments at the two sides of the 
symmetrical axe have inverse directions. 

4. One vertical force is symmetrical when the application point is on the axe of symmetry 
and it doesn’t matter of its direction. 
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1. Two vertical forces are antisymmetrical when the application points of the forces are at 
one and the same distance from the axe of symmetry and the forces at the two sides of the 
symmetrical axe have inverse direction. 

2. Two horizontal forces are antisymmetrical when the application points of the forces are at 
one and the same distance from the axe of symmetry and the forces at the two sides of the 
symmetrical axe have one and the same directions. 

3. Two moments are antisymmetrical when the application points of the moments are at one 
and the same distance from the axe of symmetry and the moments at the two sides of the 
symmetrical axe have one and the same directions. 

4. One horizontal force is antisymmetrical when the application point is on the axe of 
symmetry and it doesn’t matter of it’s direction. 

5. One moment is antisymmetrical when the application point is on the axe of symmetry 
and it doesn’t matter of it’s direction. 

 
Important to know: Internal normal force and internal moment on the axe of symmetry are 
symmetrical forces. Internal shear force on the axe of symmetry is antisymmetrical force. 
 
Now will show how to transfer two common forces to a symmetrical and antisymmetrical: 
 

 
Each force can be transfer at two parts one symmetrical and one antisymmetrical. In this 

way the two forces A and B are transferred to a two couples – symmetrical and antisymmetrical. 
After that if one take a sum of the symmetrical couples of the two forces will obtain one 
symmetrical force (couple) X1. If one take a sum of the antisymmetrical couples of the two 
forces will obtain one antisymmetrical force (couple) X2.  

A 

d d 
B 

A/2 
d d 

A/2 

A/2 
d d 

A/2 

B/2 
d d 

B/2 

B/2 
d d 

B/2 

X1 

d d 
X1 

X2 

d d 
X2 

X1 = A/2 + B/2 

X1 = A/2 - B/2 
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And inversely if one have directly values of the two couples a symmetrical couple X1 and 
antisymetrical couple X2 one can obtain the values of the common forces A and B as follows: 
 

A = X1/2 + X2/2 and B=X1/2  X2/2. 
This idea is common not only for forces but for moments and displacements olso. 

Actually in the structural analysis we use the last way of the decomposition. For the force 
method we use directly symmetrical and antisymmetrical couples X1 and X2 as unknowns and in 
the end if it is necessary we obtain the real forces A and B. 

To be possible to use a symmetry in the force method not only indeterminate system 
should be symmetrical but the primary system must be too and to use couple of unknowns. Now 
will show some examples of a symmetrical indeterminate system and different symmetrical 
primary systems: 

 
This structure is symmetrical because the geometry, supports, cross-sections and the physical 
data are symmetrical. So, the primary system should be symmetrical. 
 

 

 

original system 

I1 I1 

I2 

E = const. 

Variant 2 

X1 X2 

X3 X3 

X1 
X2 

 4 

X1 

X1 

X2 

X2 

Variant 1 

X3 X3 

X1 

X2 X2 

X1 
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At the first variant the two supports moments are presented by couples of symmetrical 

antisymmetrical unknowns. X1 is the symmetrical couple, X2 is the antisymmetrical couple. X3 is 
the internal moment for the frame, that is why it is a couple and because it is at the axe of 
symmetry, it is a symmetrical unknown. X1 and X3 are symmetrical and X2 is antisymmetrical. 

At a variant 2 all unknowns are internal moments but X3 is on the axe of symmetry and it 
is a symmetrical moment. It is not necessary to transfer it to couples. Therefore, the X1 and X2 
are symmetrical and antisymmetrical couples and they present the transferred couples of the 
internal moments in the left and in the right columns.  
At the last variant, the frame is cut at the axe of symmetry so we directly have symmetrical and 
antisymmetrical unknowns. X1 and X3 are symmetrical and X2 is antisymmetrical. 
 
Important to know: The most important effect of using symmetry is at the multiplication of the 
diagrams for calculation of the displacements. When the unknown is symmetrical, the internal 
moment diagram is also symmetrical. When the unknown is antisymmetrical, the internal 
moment diagram is also antisymmetrical. When symmetrical and antisymetrical diagrams are 
multiplied the result is zero. Follows  the displacement is zero. 
 
Full example of analysis of a symmetrical frame using this property from the 
external force load. 
 

 
On tis example in addition to symmetry we will use not only moments but normal forces 

to calculate displacements. The reason of this is that as part of the frame there is a rod. We are 
not obligate to use normal forces but it is better to do it. For the present example, there is not 
essential difference in the analysis with and without taking into account normal forces but we 
will show the analysis including normal forces. 
 

1. Primary system: 
 

Variant 3 

X1 
X2 

X2 X3 

X1 

X3 

F 

q 

I I I 

2I 2I 
4 1,5 

3 4 3 

F = 40 kN 

q = 16 kN/m’ 

Ib = 0,5Icol 

Ab = 1,5Аcol 

Ac = Ab 

Ic/Ac = 0,01 
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X1 X1 

3 

3 

3 

3 
1,5 

1,5 

М1 

3 

X1 X1 

1 
N1 

1 

 
 

 
At the two variants, X1 and X3 are symmetrical and X2 is antisymmetrical. Variant 1 will 

be chosen. 
 

2. Unit diagrams: 
 

 

 

X1 X1 X2 X2 

X3 X3 

Variant 1 

X3 X3 

X1 X1 

X2 X2 

Variant 2 
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X2 X2 

3 3 

3 3 
1,5 1,5 

М2 

X2 X2 

1 
N2 

1 

М3 

4 4 

X3 = 1 X3 = 1 

N3 

1 

 

 

 

 
The diagrams M1, N1, M3, N3 are symmetrical. The diagrams M2 and N3 are antisymmetrical. 
 

3. Diagrams from the external load at a primary system: 
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60 128 

60 

32 

40  

 

 
4. Calculation of the displacements: 

 
𝐸𝐼 = 2,4. 107. 3,255. 104 = 7812 

2𝐸𝐼 = 2.2,4. 107. 6,512. 104 = 15625 
𝐸𝐴 = 2,4. 107. 0,0625 = 1500000 

1,5𝐸𝐴 = 1,5.2,4. 107. 0,0625 = 2250000 
 

363
22

2
2
3

33

33232
23

3633
222

1
2

1
22

3131
13

2121
12

3633
222

1
2

1
11

10.7337,210.6667,210.731,2
1500000

4.1
15625

2.4.4
3
1

10.072,30
15625

2.4.3.4
2
1

10.916,610.556,310.608,410.304,2
2250000

2.4.1
15625

2.4.3
7812

2.3.3
3
1

0

0

10.916,610.556,310.608,410.304,2
2250000

2.4.1
15625

2.4.3
7812

2.3.3
3
1

−−−

−

−−−−

−−−−

=+=+=+′=

=+=+′=

=++=++=+′=

=+′=

=+′=

=++=++=+′=

∑ ∫ ∑

∑∫ ∑

∑∫ ∑

∑∫ ∑

∑∫ ∑

∑∫ ∑

ds
EA
N

sd
EI

M

ds
EA

NN
sd

EI
MM

ds
EA
N

sd
EI

M

ds
EA

NN
sd

EI
MM

ds
EA

NN
sd

EI
MM

ds
EA
N

sd
EI

M

δ

δ

δ

δ

δ

δ

 

( )

( )

35333

22
2

35333

11
1

10.32,9310.1111,710.77,3210.08,4610.4,14
2250000

4.40.1
15625

4.128.3
3
1

15625
4.60.3

7812
5,1.5,13.2.60

6
1

10.78,2710.1111,710.77,3210.08,4610.4,14
2250000

4.40.1
15625

4.128.3
3
1

15625
4.60.3

7812
5,1.5,13.2.60

6
1

−−−−−

−−−−−

−−=−−−−=−

−−−
+

−=′+′=∆

−=−+−−=−

−+−
+

−=+′=∆

∑∫ ∑

∑∫ ∑

sd
EA

NN
sd

EI
MM

ds
EA
NN

sd
EI
MM

o
f

o
f

F

o
f

o
f

F
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Мs 

10 4 

6 

6 

3 

2 
Ns 

1 

 

60 128 

60 

32 

33313
3 10.49,6310.77,3210.72,300

15625
4.128.4

4
1

15625
4.60.4

2
1 −−− −=−−=+−−=+′=∆ ∑∫ ∑ ds

EA
NN

sd
EI
MM o

f
o
f

F

 
5. Verification of the coefficients: 

 

ds
EA
N

sd
EI
M ss

ij ∑∑∫∑ +′=
22

δ  

 

 

 

( )[ ]

333333

366333
22

2
222

222

10.709,2210.7337,210.072,310.072,310.916,610.916,6

10.71,2210.667,210.111,710.365,110.73,1610.608,4
1500000

4.1
2250000

4.2
15625

4.4
3
1

15625
4.101066

6
1

7812
3.6

3
1

−−−−−−

−−−−−−

=++++=

=++++=++

++++++=+′

∑

∑∫ ∑

ij

ss ds
EA
N

sd
EI
M

δ  
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40  

 

56,86 

15,67 

28,66 

35,413 

7,071 

7,105 

10,447 

29,553 

Qf 

2,357 

16,018 

47,98 

16,1 

 
( ) ( ) ( )

3333

35333

10.59,18410.49,6310.32,9310.78,27

10.52,18410.111,710.768,3210.88,12210.801,28
2250000

4.40.2
15625

4.32.2128.4
6
1

15625
4.106.60

2
1

7812
5,1.36.2.60

6
1

−−−−

−−−−−

=−−−−=∆

−=−−−−=−

−
+

−
+

−
+

−=′+′

∑

∑∫ ∑

ij

o
fs

o
fs sd

EA
NN

sd
EI
MM

 

 
6. Compatibility equations: 

 

3

3
3

3
2

3

3
3

3
2

3

3
1

3

10:
010.49,63.10.7337,210.072,3

010.32,9310.072,310.916,6
010.78,2710.916,6

−

−−−

−−−

−−

=−+
=−+

=−

XX
XX

X
 

096,16
344,6
017,4

049,637337,2072,3
032,93072,3916,6

078,27916,6

3

2

1

32

32

1

=→
=→
=→

=−+
=−+

=−

X
X
X

XX
XX

X
 

 
7. Final diagrams: 
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Nf 

29,553 
2,357 

16,018 

 
8. Compatibility verification: 

 

( )( )[ ]

( )( )[ ]

( )

010.125,1510.43,15
010.27,410.05,110.28,710.38,1210.74,710.01,3

0
1500000

4.018,16.1
2250000

4.553,29.2
15625

4.105,7.286,56.4
6
1

15625
4.66,28.666,28413,35610413,35.10

6
1
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6
1
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5,1.67,15.3

3
1

0
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?
543333

?

?

=−

=+−−+−

=+−+−+

+−−+++

+−−+++=′+′

=′+′

−−

−−−−−−

∑∫ ∑

∑∫ ∑

sd
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NN
sd

EI
MM

sd
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NN
sd

EI
MM

fsfs

fsfs

 
Indeterminate frames containing springs. 
 

As we already mentioned when an indeterminate frame includes spring best way to 
compose a primary system is to cut the spring. Therefore, the solution has the same idea. Here is 
presented full example of the analysis of system containing spring support: 
 

 
When we take such a primary system the unknown is the spring reaction. When we load 

the system by X1 don’t forget to load the spring whit the same load and to include its influence at 
the displacements. 
 

3 

F = 4 F = 5 

2 1,5 
c = EI 

I I 

E = 2.10
6
 

I = 0,000675 m4 c = EI = 1350 d = 1/EI = 7,407.10-4 
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It is suitable to cut the spring because in this situation there is no reaction in the spring 

from the external load. Only from the unknown X1 (the unknown at the spring) it appears the 
spring influence. In the concrete case at 𝛿11. 
 

𝛿11 = ��
𝑀1
2

𝑬𝑰
𝒅𝒔 + �

𝑺𝟏𝟐

𝒄

𝒏

𝟏

 

03160,0
1350

6667,4215.5.
3
1 22

11 ==+=
EIEI

δ  

∆1𝑓= ��
𝑀1𝑀𝑓𝑜

𝑬𝑰
𝒅𝒔 + �

𝑆1. 𝑆𝑓0

𝒄

𝒏

𝟏

 

1350
083,3740]5,75,17.2.[2.2.

6
1]5,17.2)5,175,44)(25(5,44.5.[3.

6
1

1350
1

1 −=+





 +−++++
−

=∆ f  

2771,01 −=∆ f  

𝑋1 = −
∆1𝑓
𝛿11

=
0,2771

0,03160
= 8,76757 

 
𝑀𝑓 = 𝑀𝑓0 + 𝑀𝑋1 
 

 

7,5 

0,03514 

0,66215 

0,23243 
8,76757 

Mf 

0,
66

21
5 

M1 

2 

X = 1 

5 

Mo
f 

44,5 

7,5 
17,5 

3 

F = 4 F = 5 

2 1,5 
c = EI 

I I 

X = 1 



 - 141 - 

Chapter 10 
 

Displacements at statically indeterminate structures. 
 

The displacement at statically indeterminate structures calculates in the same way as in 
the determinate systems. 
 

According to principle of the virtual work for a system subjected to an external force and 
temperature load and including springs supports the displacement at a specific point calculates 
using the next expression: 
 

∆𝒇𝒏= ��
𝑴�𝑛𝑴𝒇

𝒏

𝑬𝑰
𝒅𝒔 + ��

𝑵�𝑛𝑵𝒇
𝒏

𝑬𝑨
𝒅𝒔 + ��

𝑸�𝑛𝑸𝒇
𝒏

𝑮𝑨𝑸
𝒅𝒔 + ��

𝑴�𝑛.𝜶𝒕.𝚫𝒕
𝒉

𝒅𝒔

+ ��𝑵�𝑛.𝜶𝒕. 𝒕𝒄 𝒅𝒔 + �
𝑺�𝑛𝑺𝒇𝒏

𝒌

𝒏

𝟏

 

 
Where 𝑀�𝑛,𝑄�𝑛,𝑁�𝑛, and 𝑆̅𝑛 are internal and spring forces caused by a virtual unit load in 

the indeterminate frame at a specific point for which we are calculating the displacement. 
𝑀𝑓
𝑛,𝑄𝑓𝑛,𝑁𝑓𝑛, and𝑆𝑓𝑛 are internal and spring forces caused by external load in the indeterminate 

frame. 
In the previous chapter, it was shown haw to analyze indeterminate frames. e necessary 

to compose primary system and to analyze it many times from a different loads. I it is needed to 
compute a displacement at some point in indeterminate system we need to analyze the system 
ones again but from some virtual load. Moreover, diagrams in indeterminate structures are 
complicate and it is possible to make a lot of mistake of their multiplication. Conclusion is that 
calculation of displacement in indeterminate frame is a complicated problem. 

However, it is possible one of the solutions to be in determinate system. Now will be 
shown this idea and how to use it. To be easier let take only external load internal moments 
integral in the expression of the displacements. The main idea for all other parts is the same and 
it is not needed to use it now. So, we have: 
 

∆𝒇𝒏= ��
𝑴�𝑛𝑴𝒇

𝒏

𝑬𝑰
𝒅𝒔 

 
Now let think that indeterminate frame is analyzed using force method. Let also make 
assumption that the frame is two times indeterminate. If the frame is more times indeterminate 
the expressions are the same but longer. The external load internal moments diagram we can 
compose using following expression: 
 

𝑀𝑓
𝑛 = 𝑀𝑓

𝑜 + 𝑀1.𝑋1 + +𝑀2.𝑋2 
 
Let substitute this expression in the expression for the displacement: 
 

∆𝒇𝒏= ��
1
𝑬𝑰

�𝑀𝑓
𝑜 + 𝑀1.𝑋1 + +𝑀2.𝑋2�𝑴� 𝑛𝒅𝒔

= ��
1
𝑬𝑰

𝑀𝑓
𝑜𝑴� 𝑛𝒅𝒔 + ��

1
𝑬𝑰

(𝑀1.𝑋1 + +𝑀2.𝑋2)𝑴�𝑛𝒅𝒔

= ��
1
𝑬𝑰

𝑀𝑓
𝑜𝑴� 𝑛𝒅𝒔 + ��

1
𝑬𝑰

𝑀1.𝑋1𝑴� 𝑛𝒅𝒔 + ��
1
𝑬𝑰

𝑀2.𝑋2𝑴� 𝑛𝒅𝒔

= ��
𝑀𝑓
𝑜𝑴� 𝑛

𝑬𝑰
𝒅𝒔 + �𝑋1�

𝑀1.𝑴�𝑛

𝑬𝑰
𝒅𝒔 + �𝑋2�

𝑀2.𝑴�𝑛

𝑬𝑰
𝒅𝒔 
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The question is what are the last two integrals? 
 

�𝑋1�
𝑀1.𝑴�𝑛

𝑬𝑰
𝒅𝒔   ;    �𝑋2�

𝑀2.𝑴� 𝑛

𝑬𝑰
𝒅𝒔. 

 
𝑴�𝑛 is the moment diagram in the indeterminate frame from a virtual load. 
𝑀1 and 𝑀2 are the moment diagrams unspecified primary system from a unit load. 
The integrals present the displacements of the X1 and X2 application points from a virtual load. 
 

 
If the indeterminate frame is on equilibrium than the displacements of 

the X 1  and X 2  application points should be zero! 
 
The conclusion is that: 
 

�𝑋1�
𝑀1.𝑴�𝑛

𝑬𝑰
𝒅𝒔 = 0; 

�𝑋2�
𝑀2.𝑴�𝑛

𝑬𝑰
𝒅𝒔 = 0. 

 
Finally the result about the displacement in indeterminate frame is: 
 

∆𝒇𝒏= ��
𝑀𝑓
𝑜𝑴� 𝑛

𝑬𝑰
𝒅𝒔 

 
The diagram from the external load can be determinate in arbitrary determinate frame. 

On the same way we can prof that the other one diagram can be composed in arbitrary 
determinate frame, or: 
 

∆𝒇𝒏= ��
𝑀𝑓
𝑛𝑴� 𝑜

𝑬𝑰
𝒅𝒔 

 
As conclusion, we may say: The displacement of some point in indeterminate system can 

be calculated using internal forces diagram from external and virtual load in indeterminate 
structure. Using internal forces diagram from external load in indeterminate structure and virtual 
load in determinate system. Using internal forces diagram from virtual load in indeterminate 
structure and internal forces diagram from external load in determinate system. 
 

∆𝒇𝒏= ��
𝑴�𝑛𝑴𝒇

𝒏

𝑬𝑰
𝒅𝒔 = ��

𝑀𝑓
𝑜𝑴� 𝑛

𝑬𝑰
𝒅𝒔 = ��

𝑀𝑓
𝑛𝑴� 𝑜

𝑬𝑰
𝒅𝒔 

 

𝐹� 

X1 

v ≠ 0 

h ≠ 0 
X2 

v = 0 

h = 0 

 𝑀�𝑛 𝑀1  𝑀2 
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Example: 
 
Calculation of displacement in indeterminate frame from external load: 
 

 
The internal moment diagram from the external load in indeterminate structure and the 

internal moment diagram the virtual load in indeterminate structure are: 
 

 
The calculated displacement using two indeterminate frames is: 
 

∆𝒇𝒏= ��
𝑴�𝑛𝑴𝒇

𝒏

𝑬𝑰
𝒅𝒔

=
1

20000
�
1
6

(13,2.0,1 + (13,2 − 26,39)(0,1 − 0,2) + 26,39.0,2). 3

+
1
2

0,2(26,39 − 3,61). 1,5 − 3,61.0,2.1,5

+
1
6

(−3,61.0,2 + 2.17,7. (−0,2 + 0,9) + 21,8.0,9). 2 +
1
6

0,9(21,8 + 2.15,9). 2�

=
1

20000
(3,9585 + 3,417 − 1,083 + 14,5593 + 16,8) =

36,93
20000

 
 

∆𝒇𝒏= ��
𝑴�𝑛𝑴𝒇

𝒏

𝑬𝑰
𝒅𝒔 = 1,847. 10−3𝑚 = 0,185𝑐𝑚. 

 
The moment diagram from the external load in determinate structure and the moment 

diagram the virtual load in indeterminate structure are: 
The determinate frame is arbitrary and is better to be such system to compose diagrams easier. 

∆v,m=? 

q 

F 
3 

3 

2 2 

EI = 20000 
q = 10 
F = 20 

3 

3 

2 2 
13,2 

26,39 

3,61 

21,8 

  𝑀𝑓
𝑛 

17,7 
15,9 

3,61 

 

3 

3 

2 2 

0,9 

0,2 

0,2 

0,1 

𝐹� 

  𝑀�𝑛 
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The calculated displacement in this case is: 
 

∆𝒇𝒏= ��
𝑀𝑓
𝑜𝑴� 𝑛

𝑬𝑰
𝒅𝒔

=
1

20000
�
1
6

(−0,1.90 + (90 + 30)(−0,1 + 0,2) + 30.0,2). 3 +
1
2

30.0,2.1,5

+
1
6

(−0,2.0 + 2.15(−0,2 + 0,9) + 0,9.20). 2 +
1
6

0,9(20 + 2.15). 2�

=
1

20000
(4,5 + 4,5 + 13 + 15) =

37
20000

 

∆𝒇𝒏= ��
𝑀𝑓
𝑜𝑴� 𝑛

𝑬𝑰
𝒅𝒔 = 1,85. 10−3𝑚 = 0,185𝑐𝑚. 

 
The moment diagram from the external load in indeterminate structure and the moment 

diagram the virtual load in determinate structure are: 
The determinate frame is arbitrary and is better to be such system to compose diagrams easier. 
 

 
Presented determinate frame is not easier because in this case the multiplication of the 

diagrams is not so easy but we will use it to show that it is no difference if use different 
determinate systems. Better determinate system is the previous one because the diagram will be 
only on the simple beam and when multiply will have only two parts for multiplication. 
 
 
 

3 

3 

2 2 
F.l = 90 

q.l2/8 = 20 

  𝑀𝑓
𝑜 

 

3 

3 

2 2 

0,9 

0,2 
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0,1 
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  𝑀�𝑛 
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30 

15 15 

3 

3 

2 2 
13,2 

26,39 

3,61 

21,8 

  𝑀𝑓
𝑛 

17,7 
15,9 

3,61 

 

3 

3 

2 2 

2,0 
𝐹� 

  𝑀�𝑜 
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The calculated displacement in this case is: 
 

∆𝒇𝒏= ��
𝑀𝑓
𝑛𝑴� 𝑜

𝑬𝑰
𝒅𝒔

=
1

20000
�−

1
6

2(3,61 + 2.17,7). 2 − 2.3,61.1,5 +
1
2

2(26,39 − 3,61). 1,5

+
1
2

2(26,39 − 13,2). 3� =
1

20000
(−26 − 10,83 + 34,17 + 39,57) =

36,91
20000

 

∆𝒇𝒏= ��
𝑀𝑓
𝑛𝑴� 𝑜

𝑬𝑰
𝒅𝒔 = 1,8455. 10−3𝑚 = 0,185𝑐𝑚. 

 
Calculation of displacement in indeterminate frame from temperature load: 
 

 
If we don’t have solution of the indeterminate frame from the temperature load it is better 

to perform analysis of the frame from the virtual load. In this case the diagrams should be 
composed for the indeterminate frame. To calculate displacement from temperature load we need 
not only internal moment diagram but normal forces too. The diagrams for the virtual load in 
indeterminate frame are as follows: 

 

∆𝒕𝒏= ��
𝑴�𝑛.𝜶𝒕.𝚫𝒕

𝒉
𝒅𝒔 + ��𝑵�𝑛.𝜶𝒕. 𝒕𝒄 𝒅𝒔 

 

∆𝒕𝒏=
1,2. 10−5. 20

0,25
�−0,2.3 +

0,1 − 0,2
2

3� − 1,2. 10−5. 10.0,55.6 = −7,2. 10−4 − 3,96. 10−4 

 
∆𝒕𝒏= 1,116. 10−3𝑚 = 0,112𝑐𝑚. 

∆v,m=? 
3 

3 

2 2 

20° 
EI = 20000 
EA = 3840000 
αt = 1,2.10-5 
hc = 0,25 
hb = 0,25 

0° 

 

3 

3 

2 2 

 

2 2 

0,555 

0,55 

𝐹� 

  𝑁�𝑛 

  
  

2 2 

0,9 

0,2 

0,2 

0,1 

  𝑀�𝑛 

𝐹� 
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Other way to calculate this displacement is to use the diagram at indeterminate frame 
from temperature load. In this case the solution from the virtual load can be at determinate 
structure and the displacement is: 
 

∆𝒕𝒏= ��
𝑀𝑡
𝑛𝑴� 𝑜

𝑬𝑰
𝒅𝒔 + ��

𝑴�0.𝜶𝒕.𝚫𝒕
𝒉

𝒅𝒔 + ��𝑵�0.𝜶𝒕. 𝒕𝒄 𝒅𝒔 

 

 

∆tn=
1

20000
�−

1
6

1(14,87 + 2.7,44). 2 −
1
3

1.7,44.2� − 0,5.6.10.1,2. 10−5

= −
14,877
20000

± 3,6. 10−4 = −7,4385. . 10−4 + 3,6. 10−4 
∆tn= −1,104. 10−3𝑚 = 0,1104𝑐𝑚 

 
Calculation of displacement in indeterminate frame from support settlement load: 

 

 

3 

3 

2 2 

14,87 

14,87 

21,36 

  

2 2 

1,0 

𝐹� 

  𝑀�0   𝑀𝑡
𝑛 

7,44 

 

3 

3 

2 2 

  

2 2 

𝐹� 

  𝑁�0 

 

0,5 

∆v,m=? 

3 

3 

2 2 

EI = 20000 
ϕ = 0,002 
dv = 0,05 

dv 

ϕ 
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If we don’t have solution of the indeterminate frame from the support settlement load it is 
better to perform analysis of the frame from the virtual load. In this case the diagrams should be 
composed for the indeterminate frame. To calculate displacement from support settlement load 
we need not only internal moment diagram but reactions too. The diagrams for the virtual load in 
indeterminate frame are as follows: 

 
∆𝒄𝒏= −�𝑹�𝑛.𝑑 

where d is the support settlement. 
∆𝒄𝒏= −�𝑹�𝑛.𝑑 = −(−0,1.0,002 − 0,05.0,45) = 0,0227𝑚 = 2,27𝑐𝑚 

 
Other way to calculate this displacement is to use the diagram at indeterminate frame 

from support settlement load. In this case the solution from the virtual load can be at determinate 
structure and the displacement is: 
 

∆𝒕𝒏= ��
𝑀𝑐
𝑛𝑴� 𝑜

𝑬𝑰
𝒅𝒔 −�𝑹�0.𝑑 

 

∆𝒄𝒏= ��
𝑀𝑐
𝑛𝑴� 𝑜

𝑬𝑰
𝒅𝒔 −�𝑹�0.𝑑

=
1

20000
�−

1
6

1(22,62.2 + 45,25). 2 −
1
3

1.22,62.2� − 0,5. (−0.05)

=
−30,163 − 15,08

20000
+ 0,025 = −2,262. 10−3 + 0,025 

∆𝒄𝒏= 0,0227𝑚 = 2,27𝑐𝑚 

 

3 

3 

2 2 

  

2 2 

0,9 

0,2 

0,2 

0,1 

  𝑀�𝑛 

𝐹� 

ϕ 

dv 
0,45 

0,1 

 

3 

3 

2 2 

45,25 

17,38 

  

2 2 

1,0 

𝐹� 

  𝑀�0   𝑀𝑐
𝑛 

22,62 

0,5 

45,25 
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Chapter 11 
 

Analysis of simple indeterminate structures using force method. 
 

In this chapter, we will present the analysis of so-called kinematical links Type II and 
Type III. We already have presented them at Chapter 2 as basic elements for composition of 
complicate structures. Actually, they are indeterminate structure so they need additional analysis. 
As we already familiar to the force method, we may use it on this analysis. 
 
Analysis of kinematical link Type II 
 

As a external load we will take different situation of a support settlements. Firstly will be 
a rotation at the fixed support with a unit value. 

 
As a primary system, we will choose a fixed beam. 

Unit diagrams and displacements: 

 

𝛿11 = ��
𝑀1
2

𝐸𝐸
𝑑𝑠 =

𝑙3

3𝐸𝐸
 

𝛿12 = ��
𝑀1𝑀2

𝐸𝐸
𝑑𝑠 = 𝛿22 = ��

𝑀2
2

𝐸𝐸
𝑑𝑠 = 0 

∆1𝑓= −�𝑅1.𝜑 = −1. 𝑙 = −𝑙 

∆2𝑓= −�𝑅2.𝜑 = 0 

𝑋1 = −
∆1𝑓
𝛿11

=
𝑙
𝑙3

3𝐸𝐸

=
3𝐸𝐸
𝑙2

 

𝑋2 = 0 

Two times indeterminate system. 

EI 

X1 
X2 

EI 
ϕ = 1 

l 

X1 = 1 
X2 = 1 

l 

EI 

l 

  𝑀1 

𝑀2 = 0   

1,0 
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Therefore, we have a solution of the link type II from unit rotation of the fixed support. 

Let do the same but from vertical unit displacement of the fixed support. 
 

 
The primary system, unit diagrams and the displacement from the unit forces are the same. Only 
the displacement from the external load will changes and it is: 
 
∆1𝑓= −�𝑅1.𝑑𝑑 = −1.1 = −1 

∆2𝑓= −�𝑅2. 𝑑𝑑 = 0 

𝑋1 = −
∆1𝑓
𝛿11

=
1
𝑙3

3𝐸𝐸

=
3𝐸𝐸
𝑙3

 

𝑋2 = 0 

If the vertical displacement is on the pin support the result will be the same but with a reverse 
sing. 

 
Let do the same but from horizontal unit displacement of the fixed support. 
 

 
In this case we need only normal forces. The primary system is the same but the displacements 
are different: 

EI 
ϕ = 1 

l 
3𝐸𝐸
𝑙2

 
3𝐸𝐸
𝑙2

 

  𝑀𝜑 
3𝐸𝐸
𝑙2

 

EI 
dv = 1 l 

EI 
dv = 1 

l 

3𝐸𝐸
𝑙3

 
3𝐸𝐸
𝑙3

 

  𝑀𝑑𝑑 

3𝐸𝐸
𝑙2

 

3𝐸𝐸
𝑙2

 

EI 
dv = 1 

l 
3𝐸𝐸
𝑙3

 
3𝐸𝐸
𝑙3

 

  𝑀𝑑𝑑 

3𝐸𝐸
𝑙2

 

EI dh = 1 

l 
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𝛿11 = 𝛿12 = 0 

𝛿22 = ��
𝑁12

𝐸𝐴
𝑑𝑠 =

1. 𝑙
𝐸𝐴

 

∆1𝑓= −�𝑅1.𝑑ℎ = 0 

∆2𝑓= −�𝑅2. 𝑑ℎ = −1 

𝑋2 = −
∆2𝑓
𝛿22

=
1
𝑙
𝐸𝐴

=
𝐸𝐴
𝑙

 

The same result will be if the horizontal displacement is at the other support. 
 
Analysis of kinematical link Type III 
 

 
As a external load we will take different situation of a support settlements. Firstly will be a 
rotation at the left fixed support with a unit value. 

 
As a primary system, we will choose a fixed beam. 

Unit diagrams and displacements: 

X1 = 1 
X2 = 1 

l 
EA 

  𝑁2 

𝑁1 = 0   1,0 

  

1,0 
1,0 

EA 
  𝑁𝑑ℎ 

  

EA/l 

EA/l 
EA/l 

Three times indeterminate. 

X1 
X2 

X3 

EI 
ϕ = 1 

l 
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𝛿11 = ��
𝑀1
2

𝐸𝐸
𝑑𝑠 =

𝑙3

3𝐸𝐸
 

𝛿12 = ��
𝑀1𝑀2

𝐸𝐸
𝑑𝑠 = 𝛿23 = ��

𝑀2𝑀3

𝐸𝐸
𝑑𝑠 = 𝛿22 = ��

𝑀2
2

𝐸𝐸
𝑑𝑠 = 0 

𝛿13 = ��
𝑀1𝑀3

𝐸𝐸
𝑑𝑠 =

1. 𝑙2

2𝐸𝐸
 

𝛿33 = ��
𝑀3
2

𝐸𝐸
𝑑𝑠 =

𝑙
𝐸𝐸

 

∆1𝑓= −�𝑅1.𝜑 = −1. 𝑙 = −𝑙 

∆2𝑓= −�𝑅2.𝜑 = 0 

∆3𝑓= −�𝑅3.𝜑 = −1.1 = −1 

�
𝛿11𝑋1 + 𝛿21𝑋2 + 𝛿13𝑋3 + ∆1𝑓= 0
𝛿21𝑋1 + 𝛿22𝑋2 + 𝛿23𝑋3 + ∆2𝑓= 0
𝛿31𝑋1 + 𝛿32𝑋2 + 𝛿33𝑋3 + ∆3𝑓= 0

 

 

��

𝑙3

3𝐸𝐸
𝑋1 +

𝑙2

2𝐸𝐸
𝑋3 − 𝑙 = 0

𝑙2

2𝐸𝐸
𝑋1 +

𝑙
𝐸𝐸
𝑋3 − 1 = 0

 

 

𝐷 =
𝑙3

3𝐸𝐸
𝑙
𝐸𝐸

−
𝑙2

2𝐸𝐸
𝑙2

2𝐸𝐸
=

4. 𝑙4

12𝐸𝐸
−

3. 𝑙4

12𝐸𝐸
=

𝑙4

12𝐸𝐸2
 

 

12𝐸𝐸2

𝑙4
⎣
⎢
⎢
⎡ 𝑙
𝐸𝐸

−
𝑙2

2𝐸𝐸

−
𝑙2

2𝐸𝐸
𝑙3

3𝐸𝐸 ⎦
⎥
⎥
⎤
�𝑋1𝑋3

� = �𝑙1� 

 

𝑋1 =
12𝐸𝐸2

𝑙4
�
𝑙
𝐸𝐸
𝑙 −

𝑙2

2𝐸𝐸
1� =

12𝐸𝐸2

𝑙4
�

2𝑙2

2𝐸𝐸
−

𝑙2

2𝐸𝐸
� =

12𝐸𝐸2

𝑙4
𝑙2

2𝐸𝐸
=

6𝐸𝐸
𝑙2

 

𝑋3 =
12𝐸𝐸2

𝑙4
�−

𝑙2

2𝐸𝐸
𝑙 +

𝑙3

3𝐸𝐸
1� =

12𝐸𝐸2

𝑙4
�−

3𝑙3

6𝐸𝐸
+

2𝑙3

6𝐸𝐸
� = −

12𝐸𝐸2

𝑙4
𝑙3

6𝐸𝐸
=

2𝐸𝐸
𝑙

 

𝑋2 = 0 

X1 = 1 
X2 = 1 

l 

EI 

l 

  𝑀1 

𝑀2 = 0   

1,0 

  𝑀3 

X3 = 1 
1,0 
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If the rotation is on the other support, the result will be the same but mirror. 
 

 
Therefore, we have a solution of the link type III from unit rotation of the fixed supports. 

Let do the same but from vertical unit displacement of the left fixed support. 
 

 
The primary system, unit diagrams and the displacement from the unit forces are the same. Only 
the displacement from the external load will changes and it is: 
 
∆1𝑓= −�𝑅1.𝑑𝑑 = −1.1 = −1 

∆2𝑓= −�𝑅2. 𝑑𝑑 = 0 

∆2𝑓= −�𝑅3. 𝑑𝑑 = 0 

�
𝛿11𝑋1 + 𝛿21𝑋2 + 𝛿13𝑋3 + ∆1𝑓= 0
𝛿21𝑋1 + 𝛿22𝑋2 + 𝛿23𝑋3 + ∆2𝑓= 0
𝛿31𝑋1 + 𝛿32𝑋2 + 𝛿33𝑋3 + ∆3𝑓= 0

 

 

��

𝑙3

3𝐸𝐸
𝑋1 +

𝑙2

2𝐸𝐸
𝑋3 − 1 = 0

𝑙2

2𝐸𝐸
𝑋1 +

𝑙
𝐸𝐸
𝑋3 + 0 = 0

 

 

𝐷 =
𝑙4

12𝐸𝐸2
 

 

12𝐸𝐸2

𝑙4
⎣
⎢
⎢
⎡ 𝑙
𝐸𝐸

−
𝑙2

2𝐸𝐸

−
𝑙2

2𝐸𝐸
𝑙3

3𝐸𝐸 ⎦
⎥
⎥
⎤
�𝑋1𝑋3

� = �10� 

 

𝑋1 =
12𝐸𝐸2

𝑙4
�
𝑙
𝐸𝐸

1 −
𝑙2

2𝐸𝐸
. 0� =

12𝐸𝐸2

𝑙4
𝑙
𝐸𝐸

=
12𝐸𝐸
𝑙3

 

𝑋3 =
12𝐸𝐸2

𝑙4
�−

𝑙2

2𝐸𝐸
1 +

𝑙3

3𝐸𝐸
. 0� = −

12𝐸𝐸2

𝑙4
𝑙2

2𝐸𝐸
=

6𝐸𝐸
𝑙2

 

EI ϕ = 1 

l 

2𝐸𝐸
𝑙

 

6𝐸𝐸
𝑙2

 

4𝐸𝐸
𝑙

 
  𝑀𝜑 

6𝐸𝐸
𝑙2

 

EI 
l 

ϕ = 1 

4𝐸𝐸
𝑙

 

6𝐸𝐸
𝑙2

 

2𝐸𝐸
𝑙

 
  𝑀𝜑 

6𝐸𝐸
𝑙2

 

EI 
dv = 1 l 
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𝑋2 = 0 

 
If the vertical displacement is on the other support, the result will be the same but mirror. 
 

 
Let do the same but from horizontal unit displacement of the left fixed support. 
 

 
In this case we need only normal forces. The primary system is the same but the displacements 
are different: 

 

𝛿22 = ��
𝑁12

𝐸𝐴
𝑑𝑠 =

1. 𝑙
𝐸𝐴

 

𝛿11 = 𝛿33 = 𝛿13 = 𝛿12 = 𝛿23 = 0 
∆1𝑓= ∆3𝑓= −�𝑅1.𝑑ℎ = 0 

∆2𝑓= −�𝑅2. 𝑑ℎ = −1 

𝑋2 = −
∆2𝑓
𝛿22

=
1
𝑙
𝐸𝐴

=
𝐸𝐴
𝑙

 

The same result will be if the horizontal displacement is at the other support. 

EI 
l 

6𝐸𝐸
𝑙2

 
  𝑀𝑑𝑑 

6𝐸𝐸
𝑙2

 

12𝐸𝐸
𝑙3

 
12𝐸𝐸
𝑙3

 
dv = 1 

EI 
l 

6𝐸𝐸
𝑙2

 
  𝑀𝑑𝑑 

12𝐸𝐸
𝑙3

 

6𝐸𝐸
𝑙2

 

12𝐸𝐸
𝑙3

 

dv = 1 

EI dh = 1 

l 

X1 = 1 
X2 = 1 

l 
EA 

  𝑁2 

𝑁1 = 0   1,0 

  

1,0 
1,0 

  X3 = 1 
1,0 𝑁3 = 0   

EA 
  𝑁𝑑ℎ 

  

EA/l 

EA/l 
EA/l 
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In this way, we already have obtained results about links type II and III from all possible 
support settlements. Such solutions we may obtain from different external load too. All these 
results are made once for all and are arranged at a table can be used directly. Such a table is 
shown below: 

 

 
In these tables is used label i for the linear stiffness and it is: 

𝑖 =
𝐸𝐸
𝑙
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Chapter 12 
 

Displacement method for analysis of statically indeterminate structures. 
 

The displacement method is one other method for analyzing indeterminate structures. 
Some time it is suitable not to search extra-forces but node displacements. 

The displacement method is used to calculate the response of statically indeterminate 
structures to loads and/or imposed deformations. The method is based on calculating unknown 
rotations and displacements at the joints of frames based on conditions of equilibrium at the 
joints. 

The force method is a method for calculating the response of statically indeterminate 
structures by which the unknowns are force quantities (the redundant forces X1, X2, ..., Xn) and 
the equations used to solve for the unknowns are based on geometrical conditions (compatibility 
conditions at the location of each extra-force).  

It is possible to consider an analogous method for calculating the response of statically 
indeterminate structures in which the unknowns are displacement quantities and the equations 
used to solve for the unknowns are based on statical conditions (equilibrium conditions). This 
method will be referred to as the classical displacement method. 

 
The procedure of enveloping the theory. 

 
The procedure of enveloping the theory is logically same as in the force method. We use 

again the principle of superposition and multiplication of unit diagrams by extra values. The 
main difference as we have mentioned is that now we will think about displacement not for 
forces and we will add links not to remove them. 

Let consider the next example and its deformation: 

 
𝑤 = 3.1 − 0 − 5 = −2 

The present structure is two times indeterminate according force method. What about its 
joint displacements: 

 

q 

q 
ϕ2 ϕ1 

u u u 
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The two joints of the frame are rotated and the beam is displaced horizontally. Main 
question is: Is it possible to determine these joint displacement and rotations? If it is possible we 
will be able to determine full deformation of the frame.  

What will happens if we add some links to stop the joints displacements and rotations. 
We should add two rotational links and one linear horizontal. 

 
In this case the nodes of the frame are fully fixed end the separate parts of the frame have 

only local and independent deformations but no displacements. Of this reason the local 
deformation is fully determinate (it is known by Strength of materials). In addition, we have 
displacement-controlled system so, we can give a unit values of the joint displacement and 
rotations. We will give them unit value because we don’t know the real one (ϕ1 = Z1 = 1; ϕ2 = 
Z2 = 1; u = Z3 = 1). Actually, what we search for? As we add links on the frame, they stop the 
displacements but as a result, it appears additional reactions on them. 

Furthermore, we should add some information about rotational link. Let consider the consistency 
of the fixed support. 

 

 

q 

 

 

 

q 

 

 

R2 R1 

R3 

M 

H 

V 
u = 0 
v = 0 
ϕ = 0 

Fixed support: 

u = 0 H 

V 

v = 0 

M 
ϕ = 0 

horizontal linear link: 

vertical linear link: 

rotational link: 
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The fixed support includes two linear links and one rotational link. One should remember that 
the rotational link can exist separately (independently) as the linear links. 

As a result when we put on the frame one rotational link we stop only the rotation of the 
joint and add only a moment as a reaction. 

Return on the indeterminate frame and the displacement method. In the original frame 
there is no any link on the nodes and consequently any joint reactions. Logically if the two 
frames should be equivalent these new reactions should be zero. And this is the equilibrium 
equation from which we will find the values of the joint displacements and reactions. 
 

𝑅1 = 0; 𝑅2 = 0; 𝑅3 = 0 
 

𝑅1 = 𝑅1𝑓 + 𝑟11.𝑍1 + 𝑟12.𝑍2 + 𝑟13.𝑍3 = 0 
𝑅2 = 𝑅2𝑓 + 𝑟21.𝑍1 + 𝑟22.𝑍2 + 𝑟23.𝑍3 = 0 
𝑅3 = 𝑅3𝑓 + 𝑟31.𝑍1 + 𝑟32.𝑍2 + 𝑟33.𝑍3 = 0 

where: 
𝑟𝑖𝑗.𝑍𝑗  is the reaction on link i from the real value of the rotation (displacement) ϕ j (u). 
𝑟𝑖𝑗 is is the reaction on link i from the unit value of the rotation(displacement) ϕj (u) = Zj = 1. 
𝑅𝑖𝑓 is the reaction on link i from the external load. 
 

From the obtained equilibrium equations we will calculate the real values of the nodes 
rotations and displacements: 

�
𝑟11.𝑍1 + 𝑟12.𝑍2 + 𝑟13.𝑍3 + 𝑅1𝑓 = 0
𝑟21.𝑍1 + 𝑟22.𝑍2 + 𝑟23.𝑍3 + 𝑅2𝑓 = 0
𝑟31.𝑍1 + 𝑟32.𝑍2 + 𝑟33.𝑍3 + 𝑅3𝑓 = 0

 

 
The question is how to compose internal moment diagrams from the unit displacements 

of the displacement and how to calculate the additional reactions at the additional links. Let see 
the situation Z1 = 1 – the rotation of the left node of the frame. 

 
Composing of unit diagrams. 

 
When we have added rotational and linear links then the nodes of the frames are fully fixed – 
there is no displacements and rotations. If we impose rotation of the left joint only connected to 
it members of the frame will deform. The other will be undeforming. 

 
In addition, the two deformed members are independent to each other. In other words, the 

hall frame is separated to independent members. In this way, the problem to analyze frame from 
the rotation at the left node transforms to a problem to analyze the different members. This 
problem we already analyzed in previous chapter. 
 
 

 

Z1 = 1 
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So the internal moment diagram we will compose as composing diagrams from the 

different parts. It is enough only to think carefully how to rotate the diagrams. 
 

 
The best way to draw the diagrams correctly is to look at the deformed shapes of the different 
parts and to draw the diagrams on the tensile side of the member.  
The internal moment diagrams from the unit rotation of the right node of the frame will be: 
 

 
The internal moment diagrams from the unit displacement will be: 
 

EI ϕ = 1 
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The internal moment diagrams from the external load will be: 

 
The reactions rij and Rif we may find very easy using joint equilibrium. It follows: 
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+
4𝐸𝐸
𝑙

 

2𝐸𝐸
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𝑟21 = −
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r21 

r31 3𝐸𝐸
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 𝑟31 = −
3𝐸𝐸
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𝑙
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4𝐸𝐸
𝑙
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3𝐸𝐸
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𝑙

 



 - 160 - 

It is important to understand that even parametric values of the moments are equal the 
numerical values are different because the cross sections, length and E-modulus can be different. 
 

 

 
Coefficient verifications: 
 
Again we have symmetry for the coefficients rij = rji and positive matrix rii > 0. This can be used 
as verification. Other way to check the coefficient is as follows: 

𝑟𝑖𝑗 = ��
𝑀1𝑀2

𝑬𝑰
𝒅𝒔 

𝑅𝑖𝑓 = −��
𝑀𝑖𝑀𝑓

𝑜

𝑬𝑰
𝒅𝒔 

where 𝑀𝑓
𝑜
 is the internal moment diagram from the external load at arbitrary statically 

determinate structure. This expressions are based on a principle of virtual work. 
The final diagrams compose using next expression: 

 
𝑀𝑓 = 𝑀𝑓0 + 𝑀1.𝑍1 + 𝑀2.𝑍2 + 𝑀3.𝑍3 

As we already have the internal moment diagram we can obtain the shear and normal forces 
diagrams. And in the end to find reactions and as final check is the equilibrium of the system. 

Presented idea is valid not only for two-times indeterminate structures but for n-times 
indeterminate also. The procedure is same. The equilibrium equations for n-times indeterminate 
structure are: 

�
�

𝑟11.𝑍1 + 𝑟12.𝑍2 + 𝑟13.𝑍3 + ⋯+ 𝑟1𝑛.𝑍𝑛 + 𝑅1𝑓 = 0
𝑟21.𝑍1 + 𝑟22.𝑍2 + 𝑟23.𝑍3 + ⋯+ 𝑟2𝑛.𝑍𝑛 + 𝑅2𝑓 = 0
𝑟31.𝑍1 + 𝑟32.𝑍2 + 𝑟33.𝑍3 + ⋯+ 𝑟3𝑛.𝑍𝑛 + 𝑅3𝑓 = 0
… … … … … … … … … … … … … … … … … … … … … … …
𝑟𝑛1.𝑍1 + 𝑟𝑛2.𝑍2 + 𝑟𝑛3.𝑍3 + ⋯+ 𝑟𝑛𝑛.𝑍𝑛 + 𝑅𝑛𝑓 = 0

 

r13 

3𝐸𝐸
𝑙2

 

M3 𝑟13 = −
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Primary system and full example. 
 

As a main difference from the force method is that in the displacement, method is only 
one possible and correct primary system. The primary system in the displacement method 
develops on two stages. First is adding rotational links and second is adding linear links. Here 
will be explained the two stages of composing primary system. 
 
Stage I: Rotational links. 
 
We place rotational links at every rigid joint of the frame! What is a rigid connection have been 
explained at the first chapter. Here we will remember only the idealized schemes of them. 

Other places where we place rotational links are the partial hinges and partial supports. 

Final places where we place rotational links are the rotational springs. 

Example: 

 
Stage II: Linear links. 
 

The second stage of composing primary system is to determine the number and places of 
the linear links. For this reason we compose the hinged-joint system placing at each joint of the 
structure a hinge. We do the kineatical analysis of the hinged-joint system. It should be 

  

original system. rotational links. 

Rigid connections. Rigid joints of frames. 

Partial hinges, partial supports. 

rotational springs. 
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composed by dyads. If it is not we add linear links to make it composed by dyads (composed by 
not singular dyads). Adding this links actually we determine their places and numbers. 
 
Example: 
 

 
𝐾𝐴: [𝐺 + 1.2.3(𝑤 = +1) + 4.5.6(𝑤 = +1) + 8.𝐴𝐴′ + 9.𝐵𝐵′ + 7.𝐶𝐶′](𝑤 = +2) 

 
In the present pin-joint system there are 2 chains. To remove their degrees of freedom we 

should add two linear links. The first chain is 1.2.3 and has a horizontal degree of freedom so, 
we will add a horizontal linear link. Situation with the second chain is same so, as a result for 
this system we will have two horizontal links. 

Including the rotational and linear links to the original system we obtain the primary 
system on the displacement method. The number of these links is the number of the kinematical 
indeterminacy of the system. 

 
The present example is 7 times cinematically indeterminate system. 
 
System including determinate parts. 
 

When in the original system includes determinate parts it is better to cut them off because 
it decrease the degree of the kinematical indeterminacy. Also, it is good to know that some time 
the linear links are vertical not only horizontal. 
Example: 

 

  

original system. pin-joint system. 
1 

2 

3 

6 4 

7 
5 8 9 A 

A’ B’ 

B 

C C’ 

    

 

primary system. 

 

original system. 

 primary system without taking 
into account determinate parts. 

 
original system. 
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This system includes two determinate parts. First one is the cantilever part up of the 
frame and the second one is the simple beam on right of the frame. When we taking into account 
this parts the system is 6 times cinematically indeterminate. When we cut them off the system is 
2 times cinematically indeterminate. 

 
 
On the next figure is shown the pin-jont system of the two situations and their kinematical 
analysis. 
 

 
For the pin-joint system including determinate parts: 

𝐾𝐴: [𝐺 + 1.2.3.𝐵𝐵′(𝑤 = +2) + 4(𝑤 = +1) + 5.𝐴𝐴′ + 6(𝑤 = +1)](𝑤 = +4) 
 
For the pin-joint system excluding determinate parts: 

𝐾𝐴: [𝐺 + 1.2.3.𝐵𝐵′(𝑤 = +2)](𝑤 = +2) 
 
System including linear springs. 
 

When in the original system includes linear springs it is necessary to place a linear link at 
the spring because there is a displacement even the system don’t need linear links according the 
pin-joint system analysis. 
 

 

 

primary system with taking into 
account determinate parts. 

 
original system. 

 pin-joint system including 
determinate parts. 

  

pin-joint system excluding 
determinate parts. 

 1  3 

 2 
 4 

 5  6  1  3 

 2 

A 
A’ 

B’ B 

B’ B 

  

primary system including 
linear spring. 

  

original system including 
linear spring. 

  

pin-joint system including 
linear spring. 

 1  3 

 2 A A’ 
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Kinematical analysis of the pin-joint system including linear spring: 
𝐾𝐴: [𝐺 + 3.𝐴𝐴′ + 1.2](𝑤 = 0) 

 
Full example of analysis of cinematically indeterminate frame: 
 
Analysis of cinematically indeterminate frame loaded by external load: 
 
Main Data: 
 

F  = 20 kN    beams (0.25/0.315):   columns (0.25/0.25): 
M = 15 kNm      Ib = 0.000651 m4   Icol = 0.0003255 m4 
q  =  10 kN/m’    Ab= 0.0788 m2   Acol= 0.0625 m2 
           Ib = 2.Icol.   E = 2.4.107 kN/m2 

 

 
Kinematical indeterminacy: 

 

 
Each construction has a deformations caused by some arbitrarily load. In this case we know the 
joint slope (rotation) ϕ  and displacement δ, so the deformation of the system will be completely 
determined because the law of the deflection of the elements is known. That is why the system is 
2 times kinematical indeterminate. 
 

1. Choice of primary system according displacement method: 
 

It is very important to remember that in the force method are possible several correct primary 
systems, but in displacement the correct primary system is only one.  

The primary system will be composed in two stages. 

4 1 

3 

F 

q 

M 
2 

. 
ϕ 

δ δ 
F 
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First stage: To place rotational links. We place rotational links at the rigid joint. We use them to 
control the joint rotation (slope). 
 

 
The unknown parameter in this case the rotation (slope) of the joint and it’s label is Z1. 

The cantilever part of the system is statically determinate part and may be removed. 
 

 
The second stage: The second stage of composing primary system is to determine the number 
and places of the linear links. For this reason we compose the hinged-joint system placing hinges 
at each joint of the structure. 

 
After that we make a kinematical analysis of the hinged-joint system. It should be composed by 
dyads. If it is not we add linear links to make it composed by dyads (composed by not singular 
dyads).  
As we determine the number and positions of the linear links we obtain the primary system: 
 

Z1 

Z1 

determinate 
part(piece) 

Z2 

KA: [G+1.A +2.3](w=0) KA: [G+1.2.3(w=+1)](w=+1) 

 1 

 2 

 3  1 

 2 

 3 

A 
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The original system is two times cinematically indeterminate. We analyze the primary system 
from unit values of the unknowns – displacements and rotations of points. 
 
 
 
 
 

2. Unite diagrams: 
 
For to make calculations easier we will make some reductions. As we know the value of is: 
 

𝑖 =
𝐸𝐼
𝑙

 
If we divide this equation by EIcolumn (or EIbeam) the linear stiffness will become: 
 

1
𝐸𝐼𝑐

𝑖𝑖 =
𝐸𝐼𝑖
𝑙𝑖

1
𝐸𝐼𝑐

=
1

𝑙𝑖
𝐼𝑐
𝐼𝑖

;       𝑙𝑖′ = 𝑙𝑖
𝐼𝑐
𝐼𝑖

;        
1
𝐸𝐼𝑐

𝑖𝑖 =
1
𝑙𝑖′

 

where 𝐸𝐼𝑐 is the stiffness of the column(EIcolumn) or of the beam (EIbeam) and 𝐸𝐼𝑖 is the stiffness 
of the i-th member of the frame. 
ii and li are the linear stiffness and the length of the i-th member of the frame. 
After this transformation all stiffness coefficients rij (reactions from the unit displacement or 
rotations) will be reduced by 1/EIc: 

1
𝐸𝐼𝑐

𝑟𝑖𝑗 

 
The coefficients from the external load are real Rif. In this way for the equilibrium equations in 
matrix form we will have: 

1
𝐸𝐼𝑐

[𝑟]{𝑍} + {𝑅} = 0 

{𝑍} = −
{𝑅}

1
𝐸𝐼𝑐

[𝑟]
= −

{𝑅}
[𝑟]

(𝐸𝐼𝑐) 

 
As a result, we obtained not real values of the unknowns but multiplied by EIc. If we 

need their real values, we should divide the obtained value by EIc. All the time we have not real 
values of the stiffness coefficients but their 1/EIc reduction values. 

This transformation is not obligate but is better for to work with suitable numbers. The 
present example is done using this idea. 
 
 

Z1 
Z2 
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Deformed shapes from the unit rotation of the joint: 

 

Deformed shape from unit horizontal displacement. First, we obtain the displaced shape of the 
hinged-joint system after that for the primary system and in the end, we obtain the diagram. 

 
 
 
 
 
 
 

l’ = 2 
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Ic = Icol. 
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3. Diagram from the external load in the primary system: 

 
In advance, we analyze the determinate part of the structure and its reactions are used as 

actions of the primary system. In this situation, the actions are in the joint with a linear and a 
rotational link, so they do not cause any internally moment forces in the elements. 

 
4. Reaction in the links: 

 
The reactive forces are introduced by the same sing as the unknowns. After that the signs 
become positive or negative because of equilibrium equation. 
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Rif – is the reactions of the additional links from the external load. 
 

4. Solution of the system of the equations: 
 

003,830125,3356022,054167,0
692,2402554167,08333,2

221

121

=→=−+−
=→=−−

ZZZ
ZZZ

 

 
5. Final diagrams: 

 
The final diagram is composed for each characteristic point and it is calculated by the next 
expression: 2211 .. ZMZMMM o

ff ++=  
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6. Equilibrium verification: 
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Analysis from temperature load, support settlement. 
 

The analysis of the structures from the temperature load has two stages. We should 
remember from Chapter 8 the influence of the angular and axial deformations. Angular 
deformation cause only internal moments and axial deformations cause only normal forces. In 
the case of cinematically indeterminate structures under temperature load, we can distinguish 
two stages of deformations. As it is known the temperature load divides to a load from 
temperature difference and load from constant load. 
Finally the using displacement method we divide the analysis of a primary system to a two parts 
and it follows the internal moment diagram in the primary system has two parts. 
 

tcttt
o
t MMM ,, += ∆  

 
Internal moment diagrams from temperature difference. 
 

The nodes of the primary system have no possibility to move or rotate so the temperature 
difference will cause only deformations of the elements. 

 
As a result, there is diagram only at the loaded elements. The moment values for every 

member is obtained using force method as the solutions from the unit displacements. The result 
is: 
 

 
Internal moment diagrams from constant temperature. 
 

The constant temperature cause only linear elongation. There is no deflections so it 
cannot be a reason of appearing moment diagram but it is a reason of nodal displacement. 
Element elongation is: 
 

∆𝑙 = 𝛼𝑡. 𝑡𝑡 . 𝑙 

𝑡𝑡 =
𝑡2 + 𝑡1

2
 

 
As we know the elongations of the elements we may compose the deformed shape of the 

system but first we will compose the displaced shape of the pin-joint system. When compose the 

 

primary system 
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∆t = t2- t1 
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displaced pin-joint system we should be careful for the linear links. They stops the displacements 
at some direction and the displacements is possible only at one directions. 
 

 
After we have the displacement pin-joint system we know the new places of the frame 

nodes and we may compose the deformed shape of the primary system. 
 

 
One can see that the elongation by itself don’t cause internal moments but the 

displacements of the joints at the primary system cause the deflections of the elements. Actually 
these deflections cause internal moments in the primary system. For the present example the 
elongation of the left column causes deflections at the beam and the elongation of the beam 
causes deflections at the right column. As a result internal moments diagram will appears at the 
beam element and at the right column. The values of the moments are as moments from unit 
displacement of one of the joints. The difference is that the displacement is not unit but equal to 
∆lbeam (or ∆lcolumn). The result is: 
 

 
As we already have the two parts of the internal moments we can compose full moment diagram 
in the primary system from the temperature load. 
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4 1 

3 

t1 

t2 

2 

t2 = 25o 
t1 = 0o 
α = 

 

For the present example this diagram is as follows: 
 

 
Once we have this diagram we may calculate the reactions on the added links from the 

exteran temperature load Rit and to compose the equilibrium equations to calculate unknowns 
Zit. 

Next is presented a numerical example. 
 
Example: 

 
The diagram from temperature load in the primary system is composed in two stages. 

First stage – In this stage is composed the moment diagram in each member separately from the 
temperature difference t∆ . 

 25;5,12
2
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2

;07812,07812 12
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+
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==→= ttttttEIEI срcc α  

 
1. Diagram in the primary system: 

 

Second stage: Diagram from the constant temperature. 
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1,2355 

19,21 

7,812 

The elements elongations are: 

906,34.5,12.07812,0.

9295,23.5,12.07812,0.

22

11

===∆

===∆

ltEIl
ltEIl

срc

срc

α

α
 

 
The displaced pin-jointed system is: 

 
 
Diagram caused by the displaced frame nodes is: 

Follows full diagram from the temperature load at the primary system: 
𝑀𝑡
0 = 𝑀𝑡,∆𝑡

0 + 𝑀𝑡,𝑡𝑡
0  

 
2. Computing reactions at the added links: 
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0,316
 

1,62
 

 

0,666
 

0,4615
 

0,2408
 

 
0,4062
 

 
Verification: 


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3. Equilibrium equations. 
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1. Final diagram. 

 
𝑀𝑡 = 𝑀𝑡 + 𝑀1.𝑍1 + 𝑀2.𝑍2 
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Analysis from the support settlement. 
 

This analysis is not so different from the standard one. The support settlement cause of 
the primary system node displacements which cause element displacements. This deflections 
cause internal moments at the deflected elements. The idea is the same as the idea of the 
diagrams from the constant temperature load. Actually, we should be careful with the displaced 
pin-joint system (if it is necessary) and as a result the deflected primary system. The last one will 
show as which elements have displaced nodes and with what value so we will be able to 
compose the internal moment diagram. Of course one shouldn’t forgot that the displacements 
causing moments diagrams in the elements are not equal to unit but are equal to the support 
settlements. 

Here will be present only the numerical example: 
 

 
1. Deformed primary system: 

 
The present example is calculated with a reductions of the unit reactions that is why moment 
diagram at the primary system from the support settlement is multiplied by EIc. 
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2. Computing reactions at the added links: 

 

 
Verification: 
 

∑∑ += iscic cREJR .  
 
To do this verification it is need to determine the support reactions in the summary diagram from 
unit values of the unknowns. 
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0,3163 

1,625 

 

0,6667 

0,3163 
0,40625 

0,2408 0,2222 
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0,02103 
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2 
137,6
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137,6

 
34,21006,504,260 −=+−=∑ icR  

 
The corresponding reactions of this diagram are multiplied to the values of the support 
settlements: 
 

( ) ( )[ ] 338,21005,0.3163,005,0.2222,07812. −=−+−=∑ iic cREJ  

338,21034,210.
!
−=−→+= ∑∑ iicic cREJR  

 
3. Equillibrium equations: 

 

606,0006,5056022,054167,0
79,9104,26054167,08333,2
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4. Final diagrams from  the support settlements: 

 
o
ct MZMZMM ++= 2211 ..  

 

 
Finale verifications , normal and shear diagrams are not shown here but they are all right. 
 
Analysis of structures including elements with infinite high system. 
 

One should know that this elements are actually rigid body elements. As a result they 
cannot deform. They only rotates or moves without deformations – without changing their 
shapes. 
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This fact must be taken into account when composing the primary system. Also when 
such an element rotates it rotate and the flexible elements. In the end of the normal elements will 
appears not only displacements but rotation too. 

Also, it is important to understand that the flexible elements are rigidity connected at the 
rigid element but the rigid element is connected at the flexible element with a joint connection! 
 
This will be shown at the next example. 
 
Example: 

F = 200, M = 10, q = 40, EI = 50 000 kNm2 

 
If we see the pin-joint system of the present example, we will need two linear links. But 

as the system has a rigid element so the two linear displacements are dependent one to the other. 
Actually, they are dependent to the rotation of the rigid element so this structure has only one 
independent displacement parameter – the rotation of the rigid body. That is why this system is 
one time cinematically indeterminate system. If we know this rotation we will know the 
displacements of the other nodes of the system. 

Next stage is to compose the displaced shape of the primary system from the unit rotation 
of the rigid body. 

When rigid body rotates to a unit angle the point at a distance 5 metre will have 5 metre 
displacement also the rigid connection between the rigid body and the flexible one cause 
additional rotation at the flexible element. 

As a result the displaced shape of the primary system is shown bellow: 
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To compose the moment diagram for some elements we should be careful if at the 

element has only displacement or displacement plus rotation. At the present example the right 
beam element has displacement and rotation and the other flexible elements deflect only because 
of the rotation of the rigid body. The diagram of the right beam element is composed by two 
parts and is presented on next figure. 

 
At the connections between rigid body and flexible elements the moment diagram 

composes after equilibrium of the joint. 
In this why the unit moment diagram is presented on next figure: 

 

 
The diagram from the external load is composed in the standard way only taking into 

account the connections between rigid and flexible body. 
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Next solution continues standard. 
 
Analysis of symmetrical structures. 
 

The idea of the symmetrical system is the same as this in the force method. We use again 
the couple of unknowns but in the displacement method, the unknowns are nodes displacements. 
That is why we will show example directly. 
 
Example: 
 

 
The primary system and the coupled unknowns are shown bellow: 
 

 
As one can see there are one symmetrical and two antisymmetrical unknowns. First 

unknown is a couple and symmetrical, second is again couple but antisymmetrical and the last 
one is not couple (it is only one force) and is antisymmetrical. When compose diagrams from the 
coupled unknowns one should be careful because at some members there are rotations at the two 
ends of the element. To compose the diagram in this case one should use the principle of the 
superposition shown below. In middle beam element there is double rotation from the unit value 
of the first unknown so, the diagram will be composed in two parts using superposition. 
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From unit value of the second unknown there is again doubled rotation in the middle beam 
element but in this case at different direction. The diagram composes in same way, only the 
result is different. 
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From the unit value of the last unknown there is no such effects. The unit diagram composes 
simply. The result is shown bellow. 

 
Moment diagram from the external load is nonsymmetrical and is composed standartly. 

 
Next stage of the solution is to calculate reactions at the additional links from the previous loads. 
In the case of couples unknowns the reactions are also coupled – left and right part. The full 
reaction which we should use in the equilibrium equation is sum of the two parts. This 
summation is shown bellow only for the first unit diagram. For the other diagrams the results 
obtain analogically. 
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As one can see the antisymmetrical reactions from the symmetrical load are zero and 
analogically the symmetrical reactions from the antisymmetrical load are zero. The internal 
moment diagram from the external load is non-symmetrical but the reactions are again coupled. 
Their calculation is shown bellow. 

 
As we have all coefficients the solution continuous as standard one. 
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Analysis of structures including springs. 
 

The analysis of structures including springs is generally standard with only deferens we 
have mentioned one should add a linear link at the spring if the spring is linear and rotational 
link if the spring is rotational. We do this to control the displacement (rotation) of the spring. At 
the next example is shown a structure with a linear spring. Analysis of a structure including 
rotational spring is analogical. 
 
Example: 

 

 
As it is shown it is not necessary the linear link to be in the same direction as the spring. 
The deformation and the diagram from the unit value of the first unknown is standard. The 
spring cannot deform because of the linear link. 
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The deformation from the unit values of the second unknown is shown on the next figure: 
 

 
As we do unit vertical displacement (Z2 = 1) at the spring appears displacement equal to 

0,707 because of the angle 45°. This displacement at the spring evoke reaction at the spring 
equal to the displacement multiplied by the stiffness of the spring. In our case we have divided 
this reaction by EI because we produce solution using reduced values of the reaction (we have 
shown already). And the moment diagram is: 
 

 
It is important to understand that the reaction at the spring is always zero only in the case of unit 
displacement of the linear link is different of zero. Reactions at the added links are: 
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The internal moment diagram and reactions from the external load are: 
 

 
As we have all coefficients the solution continuous as standard one. 
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