Chapter 11

Laboratory Experiments
with Standard ICs and FPGAs

11.1T INTRODUCTION TO EXPERIMENTS

This chapter presents 18 laboratory experiments in digital circuits and logic design. The ex-
periments give the student using this book hands-on experience. The digital circuits can be
constructed by using standard integrated circuits (ICs) mounted on breadboards that are easi-
ly assembled in the laboratory. The experiments are ordered according to the material pre-
sented in the book. The last section consists of a number of supplements with suggestions for
using the Verilog HDL to simulate and verify the functionality of the digital circuits presented
in the experiments. If an FPGA prototyping board is available, the experiments can be imple-
mented in an FPGA as an alternative to standard ICs.

A logie breadboard cuitahle for parforming the experimente muct have the following
equipment:

1. Light-emitting diode (LED) indicator lamps.
2. Toggle switches to provide logic-1 and logic-0 signals.
3. Pulsers with push buttons and debounce circuits to generate single pulses.

4. A clock-pulse generator with at least two frequencies: a low frequency of about 1 pulse
per second to observe slow changes in digital signals and a higher frequency for ob-
serving waveforms in an oscilloscope.

5. A power supply of 5 V.
6. Socket strips for mounting the ICs.
7. Solid hookup wires and a pair of wire strippers for cutting the wires.

Digital logic trainers that include the required equipment are available from several manu-
facturers, A digital logic trainer contains LED lamps, toggle switches, pulsers, a variable clock,

51

512

Chapter 11 Laboratory Experiments

a power supply. and IC socket strips. Some experiments may require additional switches, lamps,
or IC socket strips. Extended breadboards with more solderless sockets and plug-in switches
and lamps may be needed.

Additional equipment required is a dual-trace oscilloscope (for Experiments 1, 2, 8, and
15), a logic probe to be used for debugging, and a number of ICs. The ICs required for the ex-
periments are of the TTL or CMOS series 7400.

The integrated circuits to be used in the experiments can be classified as small-scale inte-
gration (SSI) or medium-scale integration (MSI) circuits. SSI circuits contain individual gates
or flip-flops, and MSI circuits perform specific digital functions. The eight SSI gate ICs needed
for the experiments—two-input NAND, NOR, AND, OR, and XOR gates, inverters. and three-
input and four-input NAND gates—are shown in Fig. 11.1. The pin assignments for the gates
are indicated in the diagram. The pins are numbered from 1 to 14. Pin number 14 is marked
Vee, and pin number 7 is marked GND (ground). These are the supply terminals, which must
be connected to a power supply of 5 V for proper operation of the circuit. Each IC is recog-
nized by its identification number; for example, the two-input NAND gates are found inside
the IC whose number is 7400.

Detailed descriptions of the MSI circuits can be found in data books published by the man-
ufacturers. The best way to acquire experience with a commercial MSI circuit is to study its
description in a data book that provides complete information on the internal, external, and
electrical characteristics of integrated circuits. Various semiconductor companies publish data
books for the 7400 series. The MSI circuits that are needed for the experiments are introduced
and explained when they are used for the first time. The operation of the circuit is explained
by referring to similar circuits in previous chapters. The information given in this chapter about
the MSI circuits should be sufficient for performing the experiments adequately. Nevertheless,
reference to a data book will always be preferable, as it gives more detailed description of the
circuits.

We will now demonstrate the method of presentation of MSI circuits adopted here. To il-
lustrate, we introduce the ripple counter IC, type 7493. This IC is used in Experiment 1 and in
subsequent experiments to generate a sequence of binary numbers for verifying the operation
of combinational circuits.

The information about the 7493 IC that is found in a data book is shown in Figs. 11.2(a) and
(b). Part (a) shows a diagram of the internal logic circuit and its connection to external pins. All
inputs and outputs are given symbolic letters and assigned to pin numbers. Part (b) shows the
physical layout of the IC, together with its 14-pin assignment to signal names. Some of the pins
are not used by the circuit and are marked as NC (no connection). The IC is inserted into a socket,
and wires are connected to the various pins through the socket terminals. When drawing schemat-
ic diagrams in this chapter, we will show the IC in block diagram form, as in Fig. 11.2(c). The
IC number (here, 7493) is written inside the block. All input terminals are placed on the left of
the block and all output terminals on the right. The letter symbols of the signals, such as A, R/,
and QA, are written inside the block, and the corresponding pin numbers, such as 14, 2, and 12,
are written along the external lines. V¢ and GND are the power terminals connected to pins 5
and 10. The size of the block may vary to accommodate all input and output terminals. Inputs
or outputs may sometimes be placed on the top or the bottom of the block for convenience.

The operation of the circuit is similar to the ripple counter shown in Fig. 6.8(a) with an asyn-
chronous clear to each flip-flop. When input R1 or R2 or both are equal to logic 0 (ground), all
asynchronous clears are equal to 1 and are disabled. To clear all four flip-flops to 0, the output

Section 11.1 Introduction to Experiments 513

7400 7402

7410 7420

2-input OR GND 2-inpnl XOR GND
7432 7486

FIGURE 11.1
Digital gates in IC packages with identification numbers and pin assignments

514 Chapter 11 Laboratory Experiments

InputA 14

InputB 1

RI i
R2
(a) Internal circuit diagram

FIGURE 11.2
IC type 7493 ripple counter

A NC QA QD GND QB QC
14 13 12 11 10 9 8

7493

1213145167
B R R NC Vec NC NC

(b) Physical layout (NC: no connection)

// /4 I
SRR /’/,
R27 /

(c) Schematic diagram

of the NAND gate must be equal to 0. This is accomplished by having both inputs R/ and R2
at logic 1 (about 5 V). Note that the J and K inputs show no connections. It is characteristic of
TTL circuits that an input terminal with no external connections has the effect of producing a
signal equivalent to logic 1. Note also that output QA is not connected to input B internally.

Section 11.1 Introduction to Experiments 515

The 7493 IC can operate as a three-bit counter using input B and flip-flops OB, QC, and @D.
It can operate as a four-bit counter using input A if output QA is connected to input B, There-
fore, to operate the circuit as a four-bit counter, it is necessary to have an external connection
between pin 12 and pin 1. The reset inputs, R/ and R2, at pins 2 and 3, respectively, must be
grounded. Pins 5 and 10 must be connected to a 5-V power supply. The input pulses must be
applied to input A at pin 14, and the four flip-flop outputs of the counter are taken from QA,
OB, QC, and QD at pins 12, 9, 8, and 11, respectively, with QA being the least significant bit.

Figure 11.2(c) demonstrates the way that all MSI circuits will be symbolized graphically in
this chapter. Only a block diagram similar to the one shown in this figure will be given for
each IC. The letter symbols for the inputs and outputs in the IC block diagram will be accord-
ing to the symbols used in the data book. The operation of the circuit will be explained with
reference to logic diagrams from previous chapters. The operation of the circuit will be spec-
ified by means of a truth table or a function table.

Other possible graphic symbols for the ICs are presented in Chapter 12. These are standard
graphic symbols approved by the Institute of Electrical and Electronics Engineers and are given
in IEEE Standard 91-1984. The standard graphic symbeols for SSI gates have rectangular shapes,
as shown in Fig. 12.1. The standard graphic symbol for the 7493 IC is shown in Fig. 12.13. This
symbol can be substituted in place of the one shown in Fig. 11.2(c). The standard graphic sym-
bols of the other ICs that are needed to run the experiments are presented in Chapter 12. They
can be used to draw schematic diagrams of the logic circuits if the standard symbols are preferred.

Table 11.1 lists the ICs that are needed for the experiments, together with the numbers of
the figures in which they are presented in this chapter. In addition, the table lists the numbers
of the figures in Chapter 12 in which the equivalent standard graphic symbols are drawn.

Table 11.1
Integrated Circuits Required for the Experiments

Graphic Symbol

IC Number Description In Chapter 11 In Chapter 12
Various gates Fig. 11.1 Fig. 12.1
7447 BCD-to-seven-segment decoder Fig. 11.8 —
7474 Dual D-type flip-flops Fig, 11.13 Fig. 12.9(b)
7476 Dual JK-type flip-flops Fig. 11.12 Fig. 12.9(a)
7483 Four-bit binary adder Fig. 11.10 Fig. 12.2
7493 Four-bit ripple counter Fig. 11.2 Fig. 12.13
74151 8 X 1 multiplexer Fig. 11.9 Fig. 12.7(a)
74155 3 X 8 decoder Fig. 11.7 Fig. 12.6
74157 Quadruple 2 X 1 multiplexers Fig. 11.17 Fig. 12.7(b)
74161 Four-bit synchronous counter Fig. 11.15 Fig. 12.14
74189 16 X 4 random-access memory Fig. 11.18 Fig. 12.15
74194 Bidirectional shift register Fig. 11.19 Fig. 12.12
74195 Four-bit shift register Fig. 11.16 Fig. 12.11
7730 Seven-segment LED display Fig. 11.8 —

72555 Timer (same as 555) Fig. 11.21 —

516

11.2

Chapter 11 Laboratory Experiments

The next 18 sections present 18 hardware experiments requiring the use of digital integrated
circuits. Section 11.20 outlines HDL simulation experiments requiring a Verilog HDL compiler
and simulator,

EXPERIMENT 1: BINARY AND DECIMAL
NUMBERS

This experiment demonstrates the count sequence of binary numbers and the binary-coded
decimal (BCD) representation. It serves as an introduction to the breadboard used in the lab-
oratory and acquaints the student with the cathode-ray oscilloscope. Reference material from
the text that may be useful to know while performing the experiment can be found in Section
1.2, on binary numbers, and Section 1.7, on BCD numbers.

Binary Count

IC type 7493 consists of four flip-flops, as shown in Fig. 11.2. They can be connected to count
in binary or in BCD. Connect the IC to operate as a four-bit binary counter by wiring the ex-
ternal terminals, as shown in Fig. 11.3. This is done by connecting a wire from pin 12 (output
QA) to pin 1 (input B). Input A at pin 14 is connected to a pulser that provides single pulses.
The two reset inputs, R/ and R2, are connected to ground. The four outputs go to four indica-
tor lamps, with the low-order bit of the counter from QA connected to the rightmost indicator
lamp. Do not forget to supply 5 V and ground to the IC. All connections should be made with
the power supply in the off position.

Turn the power on and observe the four indicator lamps. The four-bit number in the output
is incremented by 1 for every pulse generated in the push-button pulser. The count goes to binary

14 12
Push-b /i R @
] 8
2 e
Ao 11
34 7 ®
/ Indicator
lamps

FIGURE 11.3
Binary counter

Section 11.2 Experiment 1: Binary and Decimal Numbers 517

15 and then back to 0. Disconnect the input of the counter at pin 14 from the pulser, and con-
nect it to a clock generator that produces a train of pulses at a low frequency of about 1 pulse
per second. This will provide an automatic binary count. Note that the binary counter will be used
in subsequent experiments to provide the input binary signals for testing combinational circuits.

Oscilloscope Display

Increase the frequency of the clock to 10 kHz or higher and connect its output to an oscilloscope.
Observe the clock output on the oscilloscope and sketch its waveform. Using a dual-trace oscil-
loscope, connect the output of QA to one channel and the output of the clock to the second chan-
nel. Note that the output of QA is complemented every time the clock pulse goes through a negative
transition from 1 to 0. Note also that the clock frequency at the output of the first flip-flop is one-
half that of the input clock frequency. Each flip-flop in turn divides its incoming frequency by 2.
The four-bit counter divides the incoming frequency by 16 at cutput @D. Obtain a timing diagram
showing the relationship of the clock to the four outputs of the counter. Make sure that you include
at least 16 clock cycles. The way to proceed with a dual-trace oscilloscope is as follows: First,
observe the clock pulses and QA, and record their timing waveforms. Then repeat by observing
and recording the waveforms of QA together with OB, followed by the waveforms of OB with
QC and then QC with @D. Your final result should be a diagram showing the relationship of the
clock to the four outputs in one composite diagram having at least 16 clock cycles.

BCD Count

The BCD representation uses the binary numbers from 0000 to 1001 to represent the coded dec-
imal digits from 0 to 9, IC type 7493 can be operated as a BCD counter by making the exter-
nal connections shown in Fig. 11.4. Outputs OB and QD are connected to the two reset inputs,

Input M :
pulses :
1
7493
2
RI
3 4
GND
10

FIGURE 11.4
BCD counter

518

Chapter 11 Laboratory Experiments

R1 and R2. When both RI and R2 are equal to 1, all four cells in the counter clear to 0 irre-
spective of the input pulse. The counter starts from 0, and every input pulse increments it by
1 until it reaches the count of 1001. The next pulse changes the ouput to 1010, making QB and
0D equal to 1. This momentary output cannot be sustained, because the four cells immediately
clear to 0, with the result that the output goes to 0000. Thus, the pulse after the count of 1001
changes the output to 0000, producing a BCD count.

Connect the IC to operate as a BCD counter. Connect the input to a pulser and the four out-
puts to indicator lamps. Verify that the count goes from 0000 to 1001.

Disconnect the input from the pulser and connect it to a clock generator. Observe the clock
waveform and the four outputs on the oscilloscope. Obtain an accurate timing diagram show-
ing the relationship between the clock and the four outputs. Make sure to include at least 10
clock cycles in the oscilloscope display and in the composite timing diagram.

Output Pattern

When the count pulses into the BCD counter are continuous, the counter keeps repeating the
sequence from 0000 to 1001 and back to 0000. This means that each bit in the four outputs
produces a fixed pattern of 1’s and 0’s that is repeated every 10 pulses. These patterns can be
predicted from a list of the binary numbers from 0000 to 1001. The list will show that output
QA, being the least significant bit, produces a pattern of alternate 1's and 0's. Qutput QD,
being the most significant bit, produces a pattern of eight 0’s followed by two 1's. Obtain the
pattern for the other two outputs and then check all four patterns on the oscilloscope. This is
done with a dual-trace oscilloscope by displaying the clock pulses in one channel and one of
the output waveforms in the other channel. The pattern of 1’s and 0’s for the corresponding
output is obtained by observing the output levels at the vertical positions where the pulses
change from 1 to 0.

Other Counts

IC type 7493 can be connected to count from 0 to a variety of final counts. This is done by con-
necting one or two outputs to the reset inputs, R/ and R2. Thus, if R/ is connected to QA in-
stead of to OB in Fig. 11.4, the resulting count will be from 0000 to 1000, which is 1 less than
1001 (QD = 1 and QA = 1).

Utilizing your knowledge of how RI and R2 affect the final count, connect the 7493 IC to
count from 0000 to the following final counts:

(a) 0101
(b) 0111
(c) 1011
Connect each circuit and verify its count sequence by applying pulses from the pulser and

observing the output count in the indicator lamps. If the initial count starts with a value greater
than the final count, keep applying input pulses until the output clears to 0.

Section 11.3 Experiment 2: Digital Logic Gates 519

11.3 EXPERIMENT 2: DIGITAL LOGIC GATES

In this experiment, you will investigate the logic behavior of various IC gates:
7400 quadruple two-input NAND gates
7402 quadruple two-input NOR gates
7404 hex inverters
7408 quadruple two-input AND gates
7432 quadruple two-input OR gates
7486 quadruple two-input XOR gates

The pin assignments to the various gates are shown in Fig. 11.1. “Quadruple” means that
there are four gates within the package. The digital logic gates and their characteristics are dis-
cussed in Section 2.8. A NAND implementation is discussed in Section 3.7.

Truth Tables

Use one gate from each IC listed and obtain the truth table of the gate. The truth table is ob-
tained by connecting the inputs of the gate to switches and the output to an indicator lamp.
Compare your results with the truth tables listed in Fig. 2.5.

Waveforms

For each gate listed, obtain the input—output waveform of the gate. The waveforms are to be
observed in the oscilloscope. Use the two low-order outputs of a binary counter (Fig. 11.3) to
provide the inputs to the gate. As an example, the circuit and waveforms for the NAND gate
are illustrated in Fig. 11.5. The oscilloscope display will repeat this waveform, but you should
record only the nonrepetitive portion.

Propagation Delay

Connect the six inverters inside the 7404 IC in cascade. The output will be the same as the
input, except that it will be delayed by the time it takes the signal to propagate through all six
inverters. Apply clock pulses to the input of the first inverter. Using the oscilloscope, determine

Input 1 0 1
pulses —
0 | 1
1 1 0

FIGURE 11.5
Waveforms for NAND gate

520 Chapter 11 Laboratory Experiments

the delay from the input to the output of the sixth inverter during the upswing of the pulse and
again during the downswing. This is done with a dual-trace oscilloscope by applying the input
clock pulses to one of the channels and the output of the sixth inverter to the second channel.
Set the time-base knob to the lowest time-per-division setting. The rise or fall time of the two
pulses should appear on the screen. Divide the total delay by 6 to obtain an average propaga-
tion delay per inverter.

Universal NAND Gate

Using a single 7400 1C, connect a circuit that produces

(a) an inverter.

(b) a two-input AND.

(c) atwo-input OR.

(d) a two-input NOR.

(e) atwo-input XOR. (See Fig. 3.32.)

In each case, verify your circuit by checking its truth table.

NAND Circuit

Using a single 7400 IC, construct a circuit with NAND gates that implements the Boolean
function

F=AB+ CD

. Draw the circuit diagram.

. Obtain the truth table for F as a function of the four inputs.

. Connect the circuit and verify the truth table.

. Record the patterns of 1’s and 0’s for F as inputs A, B, C, and D go from binary 0 to
binary 15.

5. Connect the four outputs of the binary counter shown in Fig. 11.3 to the four inputs of the

NAND circuit. Connect the input clock pulses from the counter to one channel of a dual-

trace oscilloscope and output F to the other channel. Observe and record the 1's and 0’s

pattern of F after each clock pulse, and compare it with the pattern recorded in step 4.

B W -

11.4 EXPERIMENT 3: SIMPLIFICATION
OF BOOLEAN FUNCTIONS

This experiment demonstrates the relationship between a Boolean function and the corresponding
logic diagram. The Boolean functions are simplified by using the map method, as discussed in
Chapter 3. The logic diagrams are to be drawn with NAND gates, as explained in Section 3.7.

Section 11.4 Experiment 3: Simplification of Boolean Functions 521

The gate ICs to be used for the logic diagrams must be those from Fig. 11.1 which contain
the following NAND gates:

7400 two-input NAND

7404 inverter (one-input NAND)
7410 three-input NAND

7420 four-input NAND

If an input to a NAND gate is not used, it should not be left open, but instead should be con-
nected to another input that is used. For example, if the circuit needs an inverter and there is
an extra two-input gate available in a 7400 IC, then both inputs of the gate are to be connected
together to form a single input for an inverter.

Logic Diagram

This part of the experiment starts with a given logic diagram from which we proceed to
apply simplification procedures to reduce the number of gates and, possibly, the number of
ICs. The logic diagram shown in Fig. 11.6 requires two ICs—a 7400 and a 7410. Note that
the inverters for inputs x, y, and z are obtained from the remaining three gates in the 7400
IC. If the inverters were taken from a 7404 IC, the circuit would have required three ICs. Note

FIGURE 11.6
Logic diagram for Experiment 3

522 Chapter 11 Laboratory Experiments

also that, in drawing SSI circuits, the gates are not enclosed in blocks as is done with MSI
circuits,

Assign pin numbers to all inputs and outputs of the gates, and connect the circuit with the
x,y, and z inputs going to three switches and the output F to an indicator lamp. Test the circuit
by obtaining its truth table.

Obtain the Boolean function of the circuit and simplify it, using the map method. Construct
the simplified circuit without disconnecting the original circuit. Test both circuits by applying
identical inputs to each and observing the separate outputs. Show that, for each of the eight
possible input combinations, the two circuits have identical outputs. This will prove that the
simplified circuit behaves exactly like the original circuit.

Boolean Functions

Consider two Boolean functions in sum-of-minterms form:

Fy(A, B,C,D) = (0,1,4,5,8,9, 10, 12, 13)
F(A, B,C, D) = (3,5,7,8, 10, 11, 13, 15)

Simplify these functions by means of maps. Obtain a composite logic diagram with four inputs,
A, B, C, and D, and two outputs, F} and F>. Implement the two functions together, using a min-
imum number of NAND ICs. Do not duplicate the same gate if the corresponding term is
needed for both functions. Use any extra gates in existing ICs for inverters when possible.
Connect the circuit and check its operation. The truth table for F| and F; obtained from the cir-
cuit should conform with the minterms listed.

Complement

Plot the following Boolean function in a map:
F=AD+ BD + B'C + AB'D

Combine the 1's in the map to obtain the simplified function for F in sum-of-products
form. Then combine the 0’s in the map to obtain the simplified function for F', also in
sum-of-products form. Implement both F and F' with NAND gates, and connect the two
circuits to the same input switches, but to separate output indicator lamps. Obtain the truth
table of each circuit in the laboratory and show that they are the complements of each
other.

11.5 EXPERIMENT 4: COMBINATIONAL CIRCUITS

In this experiment, you will design, construct, and test four combinational logic circuits. The
first two circuits are to be constructed with NAND gates, the third with XOR gates, and the
fourth with a decoder and NAND gates. Reference to a parity generator can be found in Section
3.9. Implementation with a decoder is discussed in Section 4.9.

Section 11.5 Experiment 4: Combinational Circuits 523

Design Example

Design a combinational circuit with four inputs—A, B, C, and D—and one output, F F is to
be equal to 1 when A = 1, provided that B = 0, or when B = 1, provided that either C or D
is also equal to 1. Otherwise, the output is to be equal to 0.

1. Obtain the truth table of the circuit,
2. Simplify the output function.

3. Draw the logic diagram of the circuit, using NAND gates with a minimum number of
ICs.

4. Construct the circuit and test it for proper operation by verifying the given conditions.

Majority Logic

A majority logic is a digital circuit whose output is equal to 1 if the majority of the inputs are
1’s. The output is 0 otherwise. Design and test a three-input majority circuit using NAND gates
with a minimum number of ICs.

Parity Generator

Design, construct, and test a circuit that generates an even parity bit from four message bits.
Use XOR gates. Adding one more XOR gate, expand the circuit so that it generates an odd par-
ity bit also.

Decoder Implementation

A combinational circuit has three inputs—ux, y, and z—and three outputs—Fj, F>, and F3. The
simplified Boolean functions for the circuit are

Fp=xz + x'y'?
B=x'y+xy'7
FR=xy+ x'y'z

Implement and test the combinational circuit, using a 74155 decoder IC and external NAND
gates.

The block diagram of the decoder and its truth table are shown in Fig. 11.7. The 74155 can
be connected as a dual 2 X 4 decoder or as a single 3 X 8 decoder. When a 3 X 8 decoder is
desired, inputs C/ and C2, as well as inputs GI and G2, must be connected together, as shown
in the block diagram. The function of the circuit is similar to that illustrated in Fig. 4.18. G is
the enable input and must be equal to O for proper operation. The eight outputs are labeled
with symbols given in the data book. The 74155 uses NAND gates, with the result that the se-
lected output goes to 0 while all other outputs remain at 1. The implementation with the de-
coder is as shown in Fig. 4.21, except that the OR gates must be replaced with external NAND
gates when the 74155 is used.

524 Chapter 11 Laboratory Experiments

Truth table
Inputs Outputs
G (] B A 2Yn 2yl 2¥2 2¥3 1Y 1¥l 1¥2 13
1 X X X 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 1 1 0 1 1 1 1 1 1
0 0 1 0 1 1 0 1 1 1 1 1
0 0 1 1 1 | 1 0 1 1 1 1
0 1 0 0 1 1 1 1 0 1 1 1
0 1 0 1 1 1 1 1 1 0 1 1
0 1 1 0 1 1 1 1 1 1 0 1
0 il 1 1 1 1 1 1 1 1 1 0
FIGURE 11.7

IC type 74155 connected as a 3 X 8 decoder

11.6 EXPERIMENT 5: CODE CONVERTERS

The conversion from one binary code to another is common in digital systems. In this experi-
ment, you will design and construct three combinational-circuit converters. Code conversion
is discussed in Section 4.4.

Gray Code to Binary

Design a combinational circuit with four inputs and four outputs that converts a four-bit Gray
code number (Table 1.6) into the equivalent four-bit binary number. Implement the circuit with
exclusive-OR gates. (This can be done with one 7486 IC.) Connect the circuit to four switches
and four indicator lamps, and check for proper operation.

Section 11.6 Experiment 5: Code Converters 525

9’s Complementer

Design a combinational circuit with four input lines that represent a decimal digit in BCD and
four output lines that generate the 9's complement of the input digit. Provide a fifth output that
detects an error in the input BCD number. This output should be equal to logic 1 when the four
inputs have one of the unused combinations of the BCD code. Use any of the gates listed in
Fig. 11.1, but minimize the total number of ICs used.

Seven-Segment Display

A seven-segment indicator is used to display any one of the decimal digits 0 through 9. Usually, the
decimal digit is available in BCD. A BCD-to-seven-segment decoder accepts a decimal digit in
BCD and generates the corresponding seven-segment code, as is shown pictorially in Problem 4.9.

Figure 11.8 shows the connections necessary between the decoder and the display. The 7447
IC is a BCD-to-seven-segment decoder/driver that has four inputs for the BCD digit. Input D
is the most significant and input A the least significant. The four-bit BCD digit is converted to
a seven-segment code with outputs a through g. The outputs of the 7447 are applied to the in-
puts of the 7730 (or equivalent) seven-segment display. This IC contains the seven light-emit-
ting diode (LED) segments on top of the package. The input at pin 14 is the common anode
(CA) for all the LEDs. A 47-(} resistor to V¢ is needed in order to supply the proper current
to the selected LED segments. Other equivalent seven-segment display ICs may have additional
anode terminals and may require different resistor values.

Construct the circuit shown in Fig. 11.8. Apply the four-bit BCD digits through four switches,
and observe the decimal display from 0 to 9. Inputs 1010 through 1111 have no meaning in BCD.

VCC=5V

470

FIGURE 11.8
BCD-to-seven-segment decoder (7447) and seven-segment display (7730)

526 Chapter 11 Laboratory Experiments

Depending on the decoder, these values may cause either a blank or a meaningless pattern to be
displayed. Observe and record the output patterns of the six unused input combinations.

11.7 EXPERIMENT 6: DESIGN
WITH MULTIPLEXERS

In this experiment, you will design a combinational circuit and implement it with multiplexers,
as explained in Section 4.11. The multiplexer to be used is IC type 74151, shown in Fig. 11.9.
The internal construction of the 74151 is similar to the diagram shown in Fig. 4.25. except that

Strobe

Output ¥

Data |

Inputs W=Y

Select inputs
Function table
Strobe Select Output
S C B A Y
1 X X X 0
0 0 0 0 DO
0 0 0 1 DI
0 0 1 0 D2
0 0 1 1 D3
0 1 0 0 D4
0 1 0 1 D35
0 1 1 0 Dé6
0 1 1 1 D7

FIGURE 11.9
IC type 74151 38 X 1 multiplexer

Section 11.8 Experiment 7: Adders and Subtractors 527

there are eight inputs instead of four. The eight inputs are designated D0 through D7. The three
selection lines—C, B, and A—select the particular input to be multiplexed and applied to the out-
put. A strobe control S acts as an enable signal. The function table specifies the value of output
Y as a function of the selection lines. Output W is the complement of Y. For proper operation,
the strobe input § must be connected to ground,

Design Specifications

A small corporation has 10 shares of stock, and each share entitles its owner to one vote at a
stockholder’s meeting. The 10 shares of stock are owned by four people as follows:

Mr. W: 1 share
Mr. X: 2 shares
Mr. Y: 3 shares
Mrs. Z: 4 shares

Each of these persons has a switch to close when voting yes and to open when voting no for
his or her shares.

It is necessary to design a circuit that displays the total number of shares that vote yes
for each measure. Use a seven-segment display and a decoder, as shown in Fig. 11.8, to
display the required number. If all shares vote no for a measure, the display should be blank.
(Note that binary input 15 into the 7447 blanks out all seven segments.) If 10 shares vote
yes for a measure, the display should show 0. Otherwise, the display shows a decimal num-
ber equal to the number of shares that vote yes. Use four 74151 multiplexers to design the
combinational circuit that converts the inputs from the stock owners’ switches into the BCD
digit for the 7447, Do not use 5 V for logic 1. Use the output of an inverter whose input is
grounded.

11.8 EXPERIMENT 7: ADDERS AND SUBTRACTORS

In this experiment, you will construct and test various adder and subtractor circuits. The sub-
tractor circuit is then used to compare the relative magnitudes of two numbers. Adders are dis-
cussed in Section 4.3, Subtraction with 2’s complement is explained in Section 1.6. A four-bit
parallel adder—subtractor is shown in Fig. 4.13, and the comparison of two numbers is ex-
plained in Section 4.8.

Half Adder

Full Adder

Design, construct, and test a half-adder circuit using one XOR gate and two NAND gates.

Design, construct, and test a full-adder circuit using two ICs, 7486 and 7400.

528 Chapter 11 Laboratory Experiments

FIGURE 11.10
IC type 7483 four-bit binary adder

Parallel Adder

IC type 7483 is a four-bit binary parallel adder. The pin assignment is shown in Fig. 11.10. The
2 four-bit input binary numbers are A1 through A4 and B/ through B4. The four-bit sum is ob-
tained from S7 through §4. CO is the input carry and C4 the output carry.

Test the four-bit binary adder 7483 by connecting the power supply and ground termi-
nals. Then connect the four A inputs to a fixed binary number, such as 1001, and the B in-
puts and the input carry to five toggle switches. The five outputs are applied to indicator
lamps. Perform the addition of a few binary numbers and check that the output sum and out-
put carry give the proper values. Show that when the input carry is equal to 1, it adds 1 to the
output sum.

Adder-Subtractor

Two binary numbers can be subtracted by taking the 2’s complement of the subtrahend and
adding it to the minuend. The 2’s complement can be obtained by taking the 1's complement
and adding 1. To perform A — B, we complement the four bits of B, add them to the four bits
of A, and add 1 through the input carry. This is done as shown in Fig. 11.11. The four XOR gates
complement the bits of B when the mode select M = 1 (because x @ 1 = x’) and leave the bits
of Bunchanged when M = 0 (because x & 0 = x). Thus, when the mode select M is equal to
1, the input carry C0 is equal to 1 and the sum output is A plus the 2’s complement of B. When
M is equal to 0, the input carry is equal to 0 and the sum generates A + B.

Section 11.8 Experiment 7: Adders and Subtractors 529

Output carry
Data input |
A
| Data output
§
Data input | b
B —_— —

13 |12

Mode select M

M = 0 for add
M = 1 for subtract

FIGURE 11.11
Four-bit adder-subtractor

Connect the adder—subtractor circuit and test it for proper operation. Connect the four A inputs
to a fixed binary number 1001 and the B inputs to switches. Perform the following operations and
record the values of the output sum and the output carry C4:

9+ 5 9—35

9+ 9 9-—9

9 415 Y —18
Show that during addition, the output carry is equal to 1 when the sum exceeds 15. Also, show
that when A = B, the subtraction operation gives the correct answer, A — B, and the output
carry C4 is equal to 1, but when A << B, the subtraction gives the 2’s complement of B — A
and the output carry is equal to 0.

Magnitude Comparator

The comparison of two numbers is an operation that determines whether one number is greater
than, equal to, or less than the other number. Two numbers, A and B, can be compared by first
subtracting A — B as is done in Fig. 11.11. If the output in § is equal to zero, then A = B. The
output carry from C4 determines the relative magnitudes of the numbers: WhenC4 = 1, A = B;
whenC4 = 0,A < B;andwhenC4 = land S # 0, A > B.

530 Chapter 11 Laboratory Experiments

11.9

It is necessary to supplement the subtractor circuit of Fig. 11.11 to provide the comparison
logic. This is done with a combinational circuit that has five inputs—S1/ through §4 and C4—
and three outputs, designated by x, y, and z, so that

x=1 ifA=B (S = 0000)
y=1 ifA<B (C4=0)
z=1 ifA> B (C4 = 1and S # 0000)

The combinational circuit can be implemented with the 7404 and 7408 ICs.
Construct the comparator circuit and test its operation. Use at least two sets of numbers for
A and B to check each of the outputs x, y, and z.

EXPERIMENT 8: FLIP-FLOPS

SR Latch

D Latch

In this experiment, you will construct, test, and investigate the operation of various latches and
flip-flops. The internal construction of latches and flip-flops can be found in Sections 5.3 and 5.4.

Construct an SR latch with two cross-coupled NAND gates. Connect the two inputs to switches
and the two outputs to indicator lamps. Set the two switches to logic 1, and then momentarily
turn each switch separately to the logic-0 position and back to 1. Obtain the function table of
the circuit.

Construct a D latch with four NAND gates (only one 7400 IC) and verify its function table.

Master-Slave Flip-Flop

Connect a master—slave D flip-flop using two D latches and an inverter. Connect the D input
to a switch and the clock input to a pulser. Connect the output of the master latch to one indi-
cator lamp and the output of the slave latch to another indicator lamp. Set the value of the input
to the complement value of the output. Press the push button in the pulser and then release it
to produce a single pulse. Observe that the master changes when the pulse goes positive and
the slave follows the change when the pulse goes negative. Press the push button again a few
times while observing the two indicator lamps. Explain the transfer sequence from input to
master and from master to slave.

Disconnect the clock input from the pulser and connect it to a clock generator. Connect the
complement output of the flip-flop to the D input. This causes the flip-flop to be complemented
with each clock pulse. Using a dual-trace oscilloscope, observe the waveforms of the clock and
the master and slave outputs. Verify that the delay between the master and the slave outputs is
equal to the positive half of the clock cycle. Obtain a timing diagram showing the relationship
between the clock waveform and the master and slave outputs.

Section 11.9 Experiment 8: Flip-Flops 531

Edge-Triggered Flip-Flop

Construct a D-type positive-edge-triggered flip-flop using six NAND gates. Connect the clock
input to a pulser, the D input to a toggle switch, and the output @ to an indicator lamp. Set the
value of D to the complement of 0. Show that the flip-flop output changes only in response to a
positive transition of the clock pulse. Verify that the output does not change when the clock input
is logic 1, when the clock goes through a negative transition, or when the clock input is logic 0.
Continue changing the D input to correspond to the complement of the O output at all times.

Disconnect the input from the pulser and connect it to the clock generator. Connect the com-
plement output @’ to the D input. This causes the output to be complemented with each posi-
tive transition of the clock pulse. Using a dual-trace oscilloscope, observe and record the timing
relationship between the input clock and the output Q. Show that the output changes in re-
sponse to a positive edge transition.

IC Flip-Flops

IC type 7476 consists of two JK master—slave flip-flops with preset and clear. The pin assign-
ment for each flip-flop is shown in Fig. 11.12. The function table specifies the circuit’s opera-
tion. The first three entries in the table specify the operation of the asynchronous preset and

4 PR)15
1
1 VC'C = piIl 5
& 77K ” GND = pin 13
1
— R
CLR

Function table
Inputs Outputs
Preset Clear Clock J K Q o
0 1 X X X 1 0
1 0 X X X 0 1
0 0 X X X 1 1
1 1 g | 0 0 No change
1 1 1 0 1 0 1
1 1 ¥ == 1 0 1 0
1 1 L 1 1 Toggle

FIGURE 11.12
IC type 7476 dual JK master-slave flip-flops

532 Chapter 11 Laboratory Experiments

11.10

l4

2 R s
3V Vee=pin 14
oK " GND = pin7
CLR 1/ il
T 1 13
Function table
Inputs Outputs
Preset Clear Clock D | Q Q'
0 1 X X|1 0
1 0 X X 1
0 0 X X1 1
1 1 + 0 1
1 1 T 1.4 X 0
1 1 0 X | No change

FIGURE 11.13
IC type 7474 dual D positive-edge-triggered flip-flops

clear inputs. These inputs behave like a NAND SR latch and are independent of the clock or the
Jand K inputs. (The X's indicate don't-care conditions.) The last four entries in the function table
specify the operation of the clock with both the preset and clear inputs maintained at logic 1. The
clock value is shown as a single pulse. The positive transition of the pulse changes the master
flip-flop, and the negative transition changes the slave flip-flop as well as the output of the cir-
cuit. With / = K = (), the output does not change. The flip-flop toggles, or is complemented,
when J = K = 1. Investigate the operation of one 7476 flip-flop and verify its function table.

IC type 7474 consists of two D positive-edge-triggered flip-flops with preset and clear. The
pin assignment is shown in Fig. 11.13. The function table specifies the preset and clear oper-
ations and the clock’s operation. The clock is shown with an upward arrow to indicate that it
is a positive-edge-triggered flip-flop. Investigate the operation of one of the flip-flops and ver-
ify its function table.

EXPERIMENT 9: SEQUENTIAL CIRCUITS

In this experiment, you will design, construct, and test three synchronous sequential circuits.
Use IC type 7476 (Fig. 11.12) or 7474 (Fig. 11.13). Choose any type of gate that will minimize
the total number of ICs. The design of synchronous sequential circuits is covered in Section 5.7.

Section 11.10 Experiment 9: Sequential Circuits 533

FIGURE 11.14
State diagram for Experiment 9

Up-Down Counter with Enable

Design, construct, and test a two-bit counter that counts up or down. An enable input E deter-
mines whether the counter is on or off. If E = 0, the counter is disabled and remains at its
present count even though clock pulses are applied to the flip-flops. If E = 1, the counter is
enabled and a second input, x, determines the direction of the count. If x = 1, the circuit counts
upward with the sequence 00, 01, 10, 11, and the count repeats. If x = 0, the circuit counts
downward with the sequence 11, 10, 01, 00, and the count repeats. Do not use E to disable the
clock. Design the sequential circuit with E and x as inputs,

State Diagram

Design, construct, and test a sequential circuit whose state diagram is shown in Fig. 11.14.
Designate the two flip-flops as A and B, the input as x, and the output as y.

Connect the output of the least significant flip-flop B to the input x, and predict the sequence
of states and output that will occur with the application of clock pulses. Verify the state tran-
sition and output by testing the circuit.

Design of Counter

Design, construct, and test a counter that goes through the following sequence of binary states:
0,1,2,3,6,7, 10, 11, 12, 13, 14, 15, and back to O to repeat. Note that binary states 4, 5, 8,
and 9 are not used. The counter must be self-starting; that is, if the circuit starts from any one
of the four invalid states, the count pulses must transfer the circuit to one of the valid states to
continue the count correctly.

Check the circuit’s operation for the required count sequence. Verify that the counter is
self-starting. This is done by initializing the circuit to each unused state by means of the pre-
set and clear inputs and then applying pulses to see whether the counter reaches one of the
valid states.

534

11.11

Chapter 11 Laboratory Experiments

EXPERIMENT 10: COUNTERS

In this experiment, you will construct and test various ripple and synchronous counter circuits.
Ripple counters are discussed in Section 6.3 and synchronous counters are covered in Section 6.4.

Ripple Counter

Construct a four-bit binary ripple counter using two 7476 ICs (Fig. 11.12). Connect all asyn-
chronous clear and preset inputs to logic 1. Connect the count-pulse input to a pulser and check
the counter for proper operation.

Modify the counter so that it will count downward instead of upward. Check that each input
pulse decrements the counter by 1.

Synchronous Counter

Construct a synchronous four-bit binary counter and check its operation. Use two 7476 ICs and
one 7408 IC.

Decimal Counter

Design a synchronous BCD counter that counts from 0000 to 1001. Use two 7476 ICs and one
7408 IC. Test the counter for the proper sequence. Determine whether the counter is self-
starting. This is done by initializing the counter to each of the six unused states by means of
the preset and clear inputs. The application of pulses will transfer the counter to one of the valid
states if the counter is self-starting.

Binary Counter with Parallel Load

IC type 74161 is a four-bit synchronous binary counter with parallel load and asynchronous
clear. The internal logic is similar to that of the circuit shown in Fig. 6.14. The pin assignments
to the inputs and outputs are shown in Fig. 11.15. When the load signal is enabled, the four data
inputs are transferred into four internal flip-flops, QA through @D, with QD being the most sig-
nificant bit. There are two count-enable inputs called P and 7. Both must be equal to 1 for the
counter to operate. The function table is similar to Table 6.6, with one exception: The load
input in the 74161 is enabled when equal to 0. To load the input data, the clear input must be
equal to 1 and the load input must be equal to 0. The two count inputs have don’t-care condi-
tions and may be equal to either 1 or 0. The internal flip-flops trigger on the positive transition
of the clock pulse. The circuit functions as a counter when the load input is equal to 1 and both
count inputs P and T are equal to 1. If either P or T goes to 0, the output does not change. The
carry-out output is equal to 1 when all four data outputs are equal to 1. Perform an experiment
to verify the operation of the 74161 IC according to the function table.

Show how the 74161 IC, together with a two-input NAND gate, can be made to operate
as a synchronous BCD counter that counts from 0000 to 1001. Do not use the clear input.
Use the NAND gate to detect the count of 1001, which then causes all 0’s to be loaded into
the counter.

Section 11.12 Experiment 11: Shift Registers

16
e R
3 Vil 14
4
Data g B |, Data
inputs 5 | 12 outputs
8 3 ik |
Load LR
7
L Carry out
Count i
Clock 21
Clear L CLR_ T
e NF
8
Function table
Clear Clock Load Count Function
0 X X X Clear outputs to 0
1 T 0 X Load input data
1 T 1 1 Count to next binary value
1 T 1 0 No change in output

FIGURE 11.15

IC type 74161 binary counter with parallel load

11.12 EXPERIMENT 11: SHIFT REGISTERS

535

In this experiment, you will investigate the operation of shift registers. The IC to be used is the
74195 shift register with parallel load. Shift registers are explained in Section 6.2.

IC Shift Register

IC type 74195 is a four-bit shift register with parallel load and asynchronous clear. The pin as-
signments to the inputs and outputs are shown in Fig. 11.16. The single control line labeled
SH/LD (shift/load) determines the synchronous operation of the register. When SH/LD = 0,
the control input is in the load mode and the four data inputs are transferred into the four in-
ternal flip-flops, QA through QD. When SH/LD = 1, the control input is in the shift mode and
the information in the register is shifted right from QA toward @D. The serial input into QA
during the shift is determined from the J and X inputs. The two inputs behave like the J and
the complement of X of a JK flip-flop. When both J and K are equal to 0, flip-flop QA is

536

Chapter 11 Laboratory Experiments

T
Clear g:;;;,%&//
Clock 7 //}Vj’(’j{; ;
YR 7 15
Shift/load 7)A
0 14
Serial 7 Data
inputs 13 outputs
7 12
11
Data / Complement of QD
inputs
Function table
Shift/ _ Serial
Clear load Clock J K input Function
0 X X X X X Asynchronous clear
1 X 0 X X X No change in output
1 0 T X X X Load input data
1 1 i 0 0 0 Shift from QA toward QD. QA =0
1 1) 1 1 1 Shift from QA toward QD, QA = 1
FIGURE 11.16

IC type 74195 shift register with parallel load

cleared to 0 after the shift. If both inputs are equal to 1, QA is set to | after the shift. The other
two conditions for the J and K inputs provide a complement or no change in the output of flip-

flop QA after the shift.

The function table for the 74195 shows the mode of operation of the register. When the clear
input goes to 0, the four flip-flops clear to 0 asynchronously—that is, without the need of a clock.
Synchronous operations are affected by a positive transition of the clock. To load the input data,
SH/LD must be equal to 0 and a positive clock-pulse transition must occur. To shift right, SH/LD

must be equal to 1. The / and K inputs must be connected together to form the serial input.

Perform an experiment that will verify the operation of the 74195 IC. Show that it performs
all the operations listed in the function table. Include in your function table the two conditions

for JK = 01 and 10.

Section 11.12 Experiment 11: Shift Registers 537

Ring Counter

A ring counter is a circular shift register with the signal from the serial output @D going into
the serial input. Connect the J and K input together to form the serial input. Use the load con-
dition to preset the ring counter to an initial value of 1000. Rotate the single bit with the shift
condition and check the state of the register after each clock pulse.

A switch-tail ring counter uses the complement output of QD for the serial input. Preset the
switch-tail ring counter to 0000 and predict the sequence of states that will result from shift-
ing. Verify your prediction by observing the state sequence after each shift.

Feedback Shift Register

A feedback shift register is a shift register whose serial input is connected to some function of
selected register outputs. Connect a feedback shift register whose serial input is the exclusive-
OR of outputs QC and QD. Predict the sequence of states of the register, starting from state 1000,
Verify your prediction by observing the state sequence after each clock pulse.

Bidirectional Shift Register

The 74195 IC can shift only right from QA toward @D. It is possible to convert the register to
a bidirectional shift register by using the load mode to obtain a shift-left operation (from QD
toward QA). This is accomplished by connecting the output of each flip-flop to the input of the
flip-flop on its left and using the load mode of the SH/LD input as a shift-left control. Input D
becomes the serial input for the shift-left operation.

Connect the 74195 as a bidirectional shift register (without parallel load). Connect the se-
rial input for shift right to a toggle switch. Construct the shift left as a ring counter by connecting
the serial output QA to the serial input D. Clear the register and then check its operation by shift-
ing a single 1 from the serial input switch. Shift right three more times and insert 0’s from the
serial input switch. Then rotate left with the shift-left (load) control. The single 1 should remain
visible while shifting.

Bidirectional Shift Register with Parallel Load

The 74195 IC can be converted to a bidirectional shift register with parallel load in conjunc-
tion with a multiplexer circuit. We will use IC type 74157 for this purpose. The 74157 is a
quadruple two-to-one-line multiplexer whose internal logic is shown in Fig. 4.26. The pin as-
signments to the inputs and outputs of the 74157 are shown in Fig. 11.17. Note that the enable
input is called a strobe in the 74157.

Construct a bidirectional shift register with parallel load using the 74195 register and the
74157 multiplexer. The circuit should be able to perform the following operations:

1. Asynchronous clear
. Shift right

. Shift left

. Parallel load

. Synchronous clear

oA W

538 Chapter 11 Laboratory Experiments

:! 'ﬁ" 'l‘
Data) f%’ﬁf}%
inputs 1 11 'ﬁ} 1)

Data
¥ /
nputs 1 10 ff

17
13 |

)

-0

{249
7
J)

.
{:

| B4 -',/',,,' ;”4/
i
Select 1 /A?%?: i ///’

16

T

,/17}/;//{' z’}//

4 /{}fy / Ifﬁle

/ ,!/ “h
/

)

Data
outputs

8

Function table

Strobe Select

Data outputs ¥

AllO's
Select data inputs A
Select data inputs B

FIGURE 11.17

IC type 74157 quadruple 2 X 1 multiplexers

Derive a table for the five operations as a function of the clear, clock, and SH/LD inputs of the
74195 and the strobe and select inputs of the 74157. Connect the circuit and verify your func-
to provide an initial value to the register, and con-
both shifts in order not to lose the binary information

tion table. Use the parallel-load condition
nect the serial outputs to the serial inputs of
while shifting.

11.13 EXPERIMENT 12: SERIAL

ADDITION

In this experiment, you will construct and test a serial adder—subtractor circuit. Serial addition
of two binary numbers can be done by means of shift registers and a full adder, as explained

in Section 6.2.

Section 11.14 Experiment 13: Memory Unit 539

Serial Adder

Starting from the diagram of Fig. 6.6, design and construct a four-bit serial adder using the
following ICs: 74195 (two), 7408, 7486, and 7476. Provide a facility for register B to accept
parallel data from four toggle switches, and connect its serial input to ground so that 0's are
shifted into register B during the addition. Provide a toggle switch to clear the registers and the
flip-flop. Another switch will be needed to specify whether register B is to accept parallel data
or is to be shifted during the addition.

Testing the Adder

To test your serial adder, perform the binary addition 5 + 6 + 15 = 26. This is done by first
clearing the registers and the carry flip-flop. Parallel load the binary value 0101 into register
B. Apply four pulses to add B to A serially, and check that the result in A is 0101. (Note that
clock pulses for the 7476 must be as shown in Fig. 11.12.) Parallel load 0110 into B and add
it to A serially. Check that A has the proper sum. Parallel load 1111 into B and add to A. Check
that the value in A is 1010 and that the carry flip-flop is set.

Clear the registers and flip-flop and try a few other numbers to verify that your serial adder
is functioning properly.

Serial Adder-Subtractor

If we follow the procedure used in Section 6.2 for the design of a serial subtractor (that sub-
tracts A — B), we will find that the output difference is the same as the output sum, but that
the input to the J and K of the borrow flip-flop needs the complement of QD (available in the
74195). Using the other two XOR gates from the 7486, convert the serial adder to a serial
adder—subtractor with a mode control M. When M = 0, the circuit adds A + B. When M = 1,
the circuit subtracts A — B and the flip-flop holds the borrow instead of the carry.

Test the adder part of the circuit by repeating the operations recommended to ensure that the
modification did not change the operation. Test the serial subtractor part by performing the
subtraction 15 — 4 — 5 — 13 = —7. Binary 15 can be transferred to register A by first clear-
ing it to 0 and adding 15 from B. Check the intermediate results during the subtraction. Note
that —7 will appear as the 2’s complement of 7 with a borrow of 1 in the flip-flop.

11.14 EXPERIMENT 13: MEMORY UNIT

IC RAM

In this experiment, you will investigate the behavior of a random-access memory (RAM) unit
and its storage capability. The RAM will be used to simulate a read-only memory (ROM). The
ROM simulator will then be used to implement combinational circuits, as explained in Section
7.5. The memory unit is discussed in Sections 7.2 and 7.3.

IC type 74189 is a 16 X 4 random-access memory. The internal logic is similar to the circuit
shown in Fig. 7.6 for a4 X 4 RAM. The pin assignments to the inputs and outputs are shown in
Fig. 11.18. The four address inputs select 1 of 16 words in the memeory. The least significant bit

540 Chapter 11 Laboratory Experiments

?;/{///,{r@’%/ﬁ V Z’//'Z'/

4 Ve

Data
inputs

Address
inputs

Chip select

Write enable

Function table

cs WE Operation Data outputs

Write High impedance
Read Complement of selected word
Disable High impedance

Lol =N =]
P 1

FIGURE 11.18
IC type 74189 16 X 4 RAM

of the address is A and the most significant is A3. The chip select (CS) input must be equal to 0 to
enable the memory. If CS is equal to 1, the memory is disabled and all four outputs are in a high-
impedance state. The write enable (WE) input determines the type of operation, as indicated in the
function table. The write operation is performed when WE = 0. This operation is a transfer of the
binary number from the data inputs into the selected word in memory. The read operation is per-
formed when WE = 1. This operation transfers the complemented value stored in the selected word
into the output data lines. The memory has three-state outputs to facilitate memory expansion.

Testing the RAM

Since the outputs of the 74189 produce the complemented values, we need to insert four in-
verters to change the outputs to their normal value. The RAM can be tested after making the

Section 11.15 Experiment 14: Lamp Handball 541

following connections: Connect the address inputs to a binary counter using the 7493 IC
(shown in Fig. 11.3). Connect the four data inputs to toggle switches and the data outputs to
four 7404 inverters. Provide four indicator lamps for the address and four more for the out-
puts of the inverters. Connect input CS to ground and WE to a toggle switch (or a pulser that
provides a negative pulse). Store a few words into the memory, and then read them to verify
that the write and read operations are functioning properly. You must be careful when using
the WE switch. Always leave the WE input in the read mode, unless you want to write into
memory. The proper way to write is first to set the address in the counter and the inputs in the
four toggle switches. Then, store the word in memory, flip the WE switch to the write posi-
tion and return it to the read position. Be careful not to change the address or the inputs when
WE is in the write mode.

ROM Simulator

A ROM simulator is obtained from a RAM operated in the read mode only. The pattern of 1’s
and 0’s is first entered into the simulating RAM by placing the unit momentarily in the write
mode. Simulation is achieved by placing the unit in the read mode and taking the address lines
as inputs to the ROM. The ROM can then be used to implement any combinational circuit.

Implement a combinational circuit using the ROM simulator that converts a four-bit binary
number to its equivalent Gray code as defined in Table 1.6. This is done as follows: Obtain the
truth table of the code converter. Store the truth table into the 74189 memory by setting the
address inputs to the binary value and the data inputs to the corresponding Gray code value.
After all 16 entries of the table are written into memory, the ROM simulator is set by perma-
nently connecting the WE line to logic 1. Check the code converter by applying the inputs to
the address lines and verifying the correct outputs in the data output lines.

Memory Expansion

Expand the memory unit to a 32 X 4 RAM using two 74189 ICs. Use the CS inputs to select
between the two ICs. Note that since the data outputs are three-stated, you can tie pairs of ter-
minals together to obtain a logic OR operation between the two ICs. Test your circuit by using
it as a ROM simulator that adds a three-bit number to a two-bit number to produce a four-bit
sum. For example, if the input of the ROM is 10110, then the output is calculated to be
101 + 10 = 0111. (The first three bits of the input represent 5, the last two bits represent 2,
and the output sum is binary 7.) Use the counter to provide four bits of the address and a switch
for the fifth bit of the address.

11.15 EXPERIMENT 14: LAMP HANDBALL

In this experiment, you will construct an electronic game of handball, using a single light to
simulate the moving ball. The experiment demonstrates the application of a bidirectional shift
register with parallel load. It also shows the operation of the asynchronous inputs of flip-flops.
We will first introduce an IC that is needed for the experiment and then present the logic dia-
gram of the simulated lamp handball game.

Chapter 11 Laboratory Experiments

IC Type 74194

This is a four-bit bidirectional shift register with parallel load. The internal logic is similar to
that shown in Fig. 6.7. The pin assignments to the inputs and outputs are shown in Fig. 11.19.
The two mode-control inputs determine the type of operation, as specified in the function table.

Logic Diagram

The logic diagram of the electronic lamp handball game is shown in Fig. 11.20. It consists of
two 74194 ICs, a dual D flip-flop 7474 IC, and three gate ICs: the 7400, 7404, and 7408. The
ball is simulated by a moving light that is shifted left or right through the bidirectional shift
register. The rate at which the light moves is determined by the frequency of the clock. The

Serial input
for shift right

I A
Z/{i /,’ T on
W 7
B //./f
Parallel data 1 Y / / Data
inputs / j Y ; outputs
Mode control 7
inputs
Clock i
iy
Clear — !};‘sz,-'f "
Serial input
for shift left
Function table
Mode
Clear Clock 51 50 Function
0 X X X Clear outputs to 0
1 il 0 0 No change in output
1 T 0 1 Shift right in the direction from
QAto QD. SIRto QA
1 T 1 0 Shift left in the direction from
QD to QA. SIL to QD
1 5 1 1 Parallel-load input data

FIGURE 11.19
IC type 74194 bidirectional shift register with parallel load

Section 11.15 Experiment 14: Lamp Handball

&

®%%®

7RA 0B Rcob

® ® Indicator lamps

543

CLK =

Reset

*” o

L

FIGURE 11.20
Lamp handball logic diagram

544

Chapter 11 Laboratory Experiments

circuit is first initialized with the reser switch. The start switch starts the game by placing the
ball (an indicator lamp) at the extreme right. The player must press the pulser push button to
start the ball moving to the left. The single light shifts to the left until it reaches the leftmost
position (the wall), at which time the ball returns to the player by reversing the direction of shift
of the moving light. When the light is again at the rightmost position, the player must press the
pulser again to reverse the direction of shift. If the player presses the pulser too soon or too late,
the ball disappears and the light goes off. The game can be restarted by turning the start switch
on and then off. The start switch must be open (logic 1) during the game.

Circuit Analysis

Prior to connecting the circuit, analyze the logic diagram to ensure that you understand how
the circuit operates. In particular, try to answer the following questions:

1. What is the function of the reset switch?

2. How does the light in the rightmost position come on when the start switch is grounded?
Why is it necessary to place the start switch in the logic-1 position before the game
starts?

3. What happens to the two mode-control inputs, S/ and S0, once the ball is set in motion?

4. What happens to the mode-control inputs and to the ball if the pulser is pressed while the
ball is moving to the left? What happens if the ball is moving to the right, but has not yet
reached the rightmost position?

5. If the ball has returned to the rightmost position, but the pulser has not yet been pressed,
what is the state of the mode-control inputs if the pulser is pressed? What happens if it
is not pressed?

Playing the Game

Wire the circuit of Fig. 11.20. Test the circuit for proper operation by playing the game. Note
that the pulser must provide a positive-edge transition and that both the reset and start switches
must be open (i.e., must be in the logic-1 state) during the game. Start with a low clock rate,
and increase the clock frequency to make the handball game more challenging.

Counting the Number of Losses

Design a circuit that keeps score of the number of times the player loses while playing the
game. Use a BCD-to-seven-segment decoder and a seven-segment display, as in Fig. 11.8,
to display the count from O through 9. Counting is done with either the 7493 as a ripple
decimal counter or the 74161 and a NAND gate as a synchronous decimal counter. The dis-
play should show 0 when the circuit is reset. Every time the ball disappears and the light
goes off, the display should increase by 1. If the light stays on during the play, the number
in the display should not change. The final design should be an automatic scoring circuit,
with the decimal display incremented automatically each time the player loses when the
light disappears.

Section 11.16 Experiment 15: Clock-Pulse Generator 545

Lamp Ping-Pong™

11.16

Modify the circuit of Fig. 11.20 so as to obtain a lamp Ping-Pong game. Two players can par-
ticipate in this game, with each player having his or her own pulser. The player with the right
pulser returns the ball when it is in the extreme right position, and the player with the left pulser
returns the ball when it is in the extreme left position. The only modification required for the
Ping-Pong game is a second pulser and a change of a few wires.

With a second start circuit, the game can be made to start by either one of the two players
(i.e., either one serves). This addition is optional.

EXPERIMENT 15: CLOCK-PULSE GENERATOR

IC Timer

In this experiment, you will use an IC timer unit and connect it to produce clock pulses at a given
frequency. The circuit requires the connection of two external resistors and two external ca-
pacitors. The cathode-ray oscilloscope is used to observe the waveforms and measure the fre-
quency of the pulses.

IC type 72555 (or 555) is a precision timer circuit whose internal logic is shown in Fig, 11.21.
(The resistors, R4 and Rp, and the two capacitors are not part of the IC.) The circuit consists
of two voltage comparators, a flip-flop, and an internal transistor. The voltage division from
Vee = 5V through the three internal resistors to ground produces % and % of Ve (3.3 V and
1.7 V, respectively) into the fixed inputs of the comparators. When the threshold input at pin
6 goes above 3.3 V, the upper comparator resets the flip-flop and the output goes low to about
0 V. When the trigger input at pin 2 goes below 1.7 V, the lower comparator sets the flip-flop
and the output goes high to about 5 V. When the output is low, Q' is high and the base—-emit-
ter junction of the transistor is forward biased. When the output is high, Q' is low and the tran-
sistor is cut off. (See Section 10.3.) The timer circuit is capable of producing accurate time
delays controlled by an external RC circuit. In this experiment, the IC timer will be operated
in the astable mode to produce clock pulses.

Circuit Operation

Figure 11.21 shows the external connections for astable operation of the circuit. Capacitor C
charges through resistors R4 and Rp when the transistor is cut off and discharges through Rg
when the transistor is forward biased and conducting. When the charging voltage across ca-
pacitor C reaches 3.3 V, the threshold input at pin 6 causes the flip-flop to reset and the tran-
sistor turns on, When the discharging voltage reaches 1.7 V, the trigger input at pin 2 causes
the flip-flop to set and the transistor turns off. Thus, the output continually alternates between
two voltage levels at the output of the flip-flop. The output remains high for a duration equal
to the charge time. This duration is determined from the equation

fH' = 0693(RA + RB)C

546 Chapter 11 Laboratory Experiments

5V
_‘I‘IO.OI nf
Vee|g8 |5~ Reset | 4
g 2
6
Threshold
s 3
Output
; 2
Trigger ¢- _ ~_17 Discharge
72555 Timer
3
GND| 1
TC

FIGURE 11.21
IC type 72555 timer connected as a clock-pulse generator

The output remains low for a duration equal to the discharge time. This duration is determined

from the equation
t; = 0.693RzC

Clock-Pulse Generator
Starting with a capacitor C of 0.001 uF, calculate values for R4 and Rp to produce clock pulses,
as shown in Fig. 11.22. The pulse width is 1 us in the low level and repeats at a frequency rate

of 100 kHz (every 10 us). Connect the circuit and check the output in the oscilloscope.
Observe the output across the capacitor C, and record its two levels to verify that they are

between the trigger and threshold values.

Section 11.17 Experiment 16: Parallel Adder and Accumulator 547

.

U
‘>| |<— 1us
= 10 pS

FIGURE 11.22
Output waveform for clock generator

Observe the waveform in the collector of the transistor at pin 7 and record all pertinent in-
formation. Explain the waveform by analyzing the circuit’s action,

Connect a variable resistor (potentiometer) in series with R 4 to produce a variable-frequency
pulse generator. The low-level duration remains at 1 us. The frequency should range from 20
to 100 kHz.

Change the low-level pulses to high-level pulses with a 7404 inverter. This will produce pos-
itive pulses of 1 ws with a variable-frequency range.

11.17 EXPERIMENT 16: PARALLEL ADDER
AND ACCUMULATOR

In this experiment, you will construct a four-bit parallel adder whose sum can be loaded into
a register. The numbers to be added will be stored in a random-access memory. A set of binary
numbers will be selected from memory and their sum will be accumulated in the register.

Block Diagram

Use the RAM circuit from the memory experiment of Section 11.14, a four-bit parallel adder,
a four-bit shift register with parallel load, a carry flip-flop, and a multiplexer to construct the
circuit. The block diagram and the ICs to be used are shown in Fig. 11.23. Information can be
written into RAM from data in four switches or from the four-bit data available in the outputs
of the register. The selection is done by means of a multiplexer. The data in RAM can be added
to the contents of the register and the sum transferred back to the register.

Control of Register
Provide toggle switches to control the 74194 register and the 7476 carry flip-flop as follows:

(a) ALOAD condition transfers the sum to the register and the output carry to the flip-flop
upon the application of a clock pulse.

(b) A SHIFT condition shifts the register right with the carry from the carry flip-flop trans-
ferred into the leftmost position of the register upon the application of a clock pulse. The
value in the carry flip-flop should not change during the shift.

(c) A NO-CHANGE condition leaves the contents of the register and flip-flop unchanged
even when clock pulses are applied.

548 Chapter 11 Laboratory Experiments

Count
(pulser)

Select
(switch)

4 switches

FIGURE 11.23
Block diagram of a parallel adder for Experiment 16

Carry Circuit

To conform with the preceding specifications, it is necessary to provide a circuit between the
output carry from the adder and the J and K inputs of the 7476 flip-flop so that the output carry
is transferred into the flip-flop (whether it is equal to 0 or 1) only when the LOAD condition
is activated and a pulse is applied to the clock input of the flip-flop. The carry flip-flop should
not change if the LOAD condition is disabled or the SHIFT condition is enabled.

Detailed Circuit

Draw a detailed diagram showing all the wiring between the ICs. Connect the circuit, and pro-
vide indicator lamps for the outputs of the register and carry flip-flop and for the address and
output data of the RAM.

Checking the Circuit

Store the numbers 0110, 1110, 1101, 0101, and 0011 in RAM and then add them to the regis-
ter one at a time. Start with a cleared register and flip-flop. Predict the values in the output of
the register and carry after each addition in the following sum, and verify your results:

0110 + 1110 + 1101 + 0101 + 0011

Section 11.18 Experiment 17: Binary Multiplier 549

Circuit Operation

Clear the register and the carry flip-flop to zero, and store the following four-bit numbers in
RAM in the indicated addresses:

Address Content

0 0110
3 1110
6 1101
9 0101
12 0011

Now perform the following four operations:

1. Add the contents of address O to the contents of the register, using the LOAD
condition.

2. Store the sum from the register into RAM at address 1.
3. Shift right the contents of the register and carry with the SHIFT condition.
4. Store the shifted contents of the register at address 2 of RAM.,

Check that the contents of the first three locations in RAM are as follows:

Address Contents

0 0110
1 0110
2 0011

Repeat the foregoing four operations for each of the other four binary numbers stored in
RAM. Use addresses 4, 7, 10, and 13 to store the sum from the register in step 2. Use addresses
5,8, 11, and 14 to store the shifted value from the register in step 4. Predict what the contents
of RAM at addresses 0 through 14 would be, and check to verify your results,

11.18 EXPERIMENT 17: BINARY MULTIPLIER

In this experiment, you will design and construct a circuit that multiplies 2 four-bit un-
signed numbers to produce an eight-bit product. An algorithm for multiplying two binary
numbers is presented in Section 8.7. The algorithm implemented in this experiment differs
from the one described in Figures 8.14 and 8.15, by treating only a four-bit datapath and by
incrementing, instead of decrementing, a bit counter.

Block Diagram

The ASMD chart and block diagram of the binary multiplier with those ICs recommended to
be used are shown in Fig. 11.24(a) and (b). The multiplicand, B, is available from four switches
instead of a register. The multiplier, Q, is obtained from another set of four switches. The prod-
uct is displayed with eight indicator lamps. Counter P is initialized to 0 and then incremented
after each partial product is formed. When the counter reaches the count of four, output Done
becomes 1 and the multiplication operation terminates.

550 Chapter 11 Laboratory Experiments

reset

A<=0

Cc<=0

B <= Multiplicand
Q <= Multiplier

(CAQI<=({CAQI>>1

(a) ASMD chart

FIGURE 11.24
ASMD chart, block diagram of the datapath, control state diagram, and register
operations of the binary multiplier circuit

Control of Registers

The ASMD chart for the binary multiplier in Figure 11.24(a) shows that the three registers and
the carry flip-flop of the datapath unit are controlled with signals Load_regs, Incr_P, Add_regs,
and Shift_regs. The external input signals of the control unit are clock, reset_b (active-low), and
Start; another input to the control unit is the internal status signal, Done, which is formed by
the datapath unit to indicate that the counter has reached a count of four, corresponding to the
number of bits in the multiplier. Load_regs clears the product register (A) and the carry flip-flop
(C), loads the multiplicand into register B, loads the multiplier into register O, and clears the
bit counter. Jncr_P increments the bit counter concurrently with the accumulation of a partial
product. Add_regs adds the multiplicand to A, if the least significant bit of the shifted multiplier

Section 11.18 Experiment 17: Binary Multiplier 551

Multiplicand B
(4 switches) Done = 1 on count of 4

T

= (74161)
Cnut Par allei addﬁ
S A7483)
S Multiplier O
(4 switches)
) YYYY
oA o Repisera
(7474) | e ranen

T T
T

(b) Datapath block program

Done =1

Done =0
(c) Control state diagram

State Transition Register Operations Control signal
From To
S_idle Initial state reached by reset action
S_idle S_add A<=0,C<=0,P<=0 Load_regs
S_add S_shift P<=P+1 Incr_pP

if (Qf0)then (A <=A + B,C<=C,y) | Add_regs
S_shift shift right {[CAQ}, C<=0 Shifi_regs

(d) Register operations

FIGURE 11.24
(Continued)

(Q/0}) is 1. Flip-flop C accommodates a carry that results from the addition. The concatenated

register CAQ is updated by storing the result of shifting its contents one bit to the right.
Shift_regs shifts CAQ one bit to the right, which also clears flip-flop C.

552

Chapter 11 Laboratory Experiments

The state diagram for the control unit is shown in Fig. 11.24(c). Note that it does not show
the register operations of the datapath unit or the output signals that control them. That infor-
mation is apparent in Figure 11.24(d). Note that Incr_P and Shift_regs are generated uncondi-
tionally in states S_add and S_shift, respectively. Load_regs is generated under the condition
that Start is asserted conditionally while the state is in S_idle; Add_regs is asserted condition-
ally in S_add if Q[0] =1

Multiplication Example

Before connecting the circuit, make sure that you understand the operation of the multiplier.
To do this, construct a table similar to Table 8.5, but with B = 1111 for the multiplicand and
Q = 1011 for the multiplier. Along with each comment listed on the left side of the table.
specify the state.

Datapath Design

Draw a detailed diagram of the datapath part of the multiplier, showing all IC pin connections.
Generate the four control signals with switches, and use them to provide the required control
operations for the various registers. Connect the circuit and check that each component is func-
tioning properly. With the control signals at 0, set the multiplicand switches to 1111 and the mul-
tiplier switches to 1011, Assert the control signals manually by means of the control switches,
as specified by the state diagram of Fig. 11.24(c). Apply a single pulse while in each control
state, and observe the outputs of registers A and Q and the values in C and P. Compare these
outputs with the numbers in your numerical example to verify that the circuit is functioning
properly. Note that IC type 74161 has master-slave flip-flops. To operate it manually, it is nec-
essary that the single clock pulse be a negative pulse.

Design of Control

Design the control circuit specified by the state diagram. You can use any method of control
implementation discussed in Section 8.8.

Choose the method that minimizes the number of ICs. Verify the operation of the control
circuit prior to its connection to the datapath unit.

Checking the Multiplier

Connect the outputs of the control circuit to the datapath unit. and verify the total circuit op-
eration by repeating the steps of multiplying 1111 by 1011. The single clock pulses should
now sequence the control states as well. (Remove the manual switches.) The start signal (Srar?)
can be generated with a switch that is on while the control is in state S_idle.

Generate the start signal (Start) with a pulser or any other short pulse, and operate the mul-
tiplier with continuous clock pulses from a clock generator. Pressing the pulser for Start should
initiate the multiplication operation, and upon its completion, the product should be displayed
in the A and Q registers. Note that the multiplication will be repeated as long as signal Srart is
enabled. Make sure that Start goes back to 0. Then set the switches to two other four-bit numbers

Section 11.20 Verilog HDL Simulation Experiments 553

and press Start again. The new product should appear at the outputs. Repeat the multiplication
of a few numbers to verify the operation of the circuit.

11.19 EXPERIMENT 18: ASYNCHRONOUS
SEQUENTIAL CIRCUITS

In this experiment, you will analyze and design asynchronous sequential circuits. These types
of circuits are presented in Chapter 9.

Analysis Example

The analysis of asynchronous sequential circuits with SR latches is outlined in Section 9.3.
Analyze the circuit of Fig. P9.9 (shown with Problem 9.9) by deriving the transition table and
output map of the circuit. From the transition table and output map, determine (a) what hap-
pens to output Q when input x| is a 1 irrespective of the value of input x,, (b) what happens
to output @ when input x, is a 1 and x, is equal to 0, and (c) what happens to output Q when
both inputs go back to 0?

Connect the circuit and show that it operates according to the way you analyzed it.

Design Example

The circuit of a positive-edge-triggered D-type flip-flop is shown in Fig. 5.10. The circuit of
a negative-edge T-type flip-flop is shown in Fig. 9.46. Using the six-step procedure recom-
mended in Section 9.8, design, construct, and test a D-type flip-flop that triggers on both the
positive and negative transitions of the clock. The circuit has two inputs—D and C—and a
single output, Q. The value of D at the time C changes from 0 to 1 becomes the flip-flop out-
put Q. The output remains unchanged irrespective of the value of D, as long as C remains at
1. On the next clock transition, the output is again updated to the value of D when C changes
from 1 to 0. The output then remains unchanged as long as C remains at 0.

11.20 VERILOG HDL SIMULATION EXPERIMENTS
AND RAPID PROTOTYPING WITH FPGAS

Field programmable gate arrays (FPGAs) are used by industry to implement logic when the sys-
tem is complex, the time-to-market is short, the performance (e.g., speed) of an FPGA is ac-
ceptable, and the volume of potential sales does not warrant the investment in a standard
cell-based ASIC. Circuits can be rapidly prototyped into an FPGA using an HDL. Once the HDL
medel is verified, the description is synthesized and mapped into the FPGA. FPGA vendors pro-
vide software tools for synthesizing the HDL description of a circuit into an optimized gate-
level description and mapping (fitting) the resulting netlist into the resources of their FPGA.
This process avoids the detailed assembly of ICs that is required by composing a circuit on a
breadboard, and the process involves significantly less risk of failure, becanse it is and
faster to edit an HDL description than to re-wire a breadboard.

554

Chapter 11 Laboratory Experiments

Most of the hardware experiments outlined in this chapter can be supplemented by a cor-
responding software procedure using the Verilog hardware description language (HDL). A
Verilog compiler and simulator are necessary for these supplements. The supplemental ex-
periments have two levels of engagement. In the first, the circuits that are specified in the
hands-on laboratory experiments can be described, simulated, and verified using Verilog and
a simulator. In the second, if a suitable FPGA prototyping board is available (e.g., see
www.digilentinc.com), the hardware experiments can be done by synthesizing the Verilog de-
scriptions and implementing the circuits in an FPGA. Where appropriate, the identity of the in-
dividual (structural) hardware units (e.g., a 4-bit counter) can be preserved by encapsulating
them in separate Verilog modules whose internal detail is described behaviorally or by a mix-
ture of behavioral and structural models.

Prototyping a circuit with an FPGA requires synthesizing a Verilog description to produce
a bit stream that can be downloaded to configure the internal resources (e.g., CLBS of a
Xilinx FPGA) and connectivity of the FPGA. Three details require attention: (1) The pins of
the prototyping board are connected to the pins of the FPGA, and the hardware implemen-
tation of the synthesized circuit requires that its input and output signals be associated with
the pins of the prototyping board (this association is made using the synthesis tool provided by
the vendor of the FPGA (such tools are available free)), (2) FPGA prototyping boards have a
clock generator, but it will be necessary, in some cases, to implement a clock divider (in Ver-
ilog) to obtain an internal clock whose frequency is suitable for the experiment, and (3) inputs
to an FPGA-based circuit can be made using switches and pushbuttons located on the prototyping
board, but it might be necessary to implement a pulser circuit in software to control and ob-
serve the activity of a counter or a state machine (see the supplement to Experiment 1).

Supplement to Experiment 1 (Section 11.2)

The functionality of the counters specified in Experiment 1 can be described in Verilog and
synthesized for implementation in an FPGA. Note that the circuit shown in Fig. 11.3 uses a
push-button pulser or a clock to cause the count to increment in a circuit built with standard
ICs. A software pulser circuit can be developed to work with a switch on the prototyping
board of an FPGA so that the operation of the counters can be verified by visual inspection.
The software pulser has the ASM chart shown in Fig. 11.25, where the external input (Pushed)
is obtained from a mechanical switch or pushbutton. This circuit asserts Start for one cycle of the
clock and then waits for the switch to be opened (or the pushbutton to be released) to ensure that
each action of the switch or pushbutton will produce only one pulse of Starr. If the counter. or a
state machine, is in the reset state (S_idle) when the switch is closed, the pulse will launch the
activity of the counter or state machine. It will be necessary to open the switch (or release the push-
button) before Start can be reasserted. Using the software pulser will allow each value of the
count to be observed. If necessary, a simple synchronizer circuit can be used with Pushed.

Supplement to Experiment 2 (Section 11.3)

The various logic gates and their propagation delays were introduced in the hardware experi-
ment. In Section 3.10, a simple circuit with gate delays was investigated. As an introduction

Section 11.20 Verilog HDL Simulation Experiments 555

reset_b

FIGURE 11.25
Pulser circuit for FPGA implementation of Experiment 1

to the laboratory Verilog program, compile the circuit described in HDL Example 3.3 and then
run the simulator to verify the waveforms shown in Fig. 3.38.

Assign the following delays to the exclusive-OR circuit shown in Fig. 3.32(a): 10 ns for an
inverter, 20 ns for an AND gate, and 30 ns for an OR gate. The input of the circuit goes from
xy = 00to xy = 01.

(a) Determine the signals at the output of each gate from ¢ = 0 to ¢ = 50 ns.

(b) Write the HDL description of the circuit including the delays.

(c) Write a stimulus module (similar to HDL Example 3.3) and simulate the circuit to verify
the answer in part (a).

(d) Implement the circuit with an FPGA and test its operation.

Supplement to Experiment 4 (Section 11.5)

The operation of a combinational circuit is verified by checking the output and comparing it
with the truth table for the circuit. HDL Example 4.10 (Section 4.12) demonstrates the proce-
dure for obtaining the truth table of a combinational circuit by simulating it.

(a) In order to get acquainted with this procedure, compile and simulate HDL Example 4.10
and check the output truth table.

556 Chapter 11 Laboratory Experiments

(b) In Experiment 4, you designed a majority logic circuit. Write the HDL gate-level de-
scription of the majority logic circuit together with a stimulus for displaying the truth table.
Compile and simulate the circuit and check the output response.

(c) Implement the majority logic circuit units an FPGA and test its operation.

Supplement to Experiment 5 (Section 11.6)

This experiment deals with code conversion. A BCD-to-excess-3 converter was designed in
Section 4.4, Use the result of the design to check it with an HDL simulator.

(a) Write an HDL gate-level description of the circuit shown in Fig. 4.4.
(b) Write a dataflow description using the Boolean expressions listed in Fig. 4.3.
(c) Write an HDL behavioral description of a BCD-to-excess-3 converter.

(d) Write a test bench to simulate and test the BCD-to-excess-3 converter circuit in order to
verify the truth table. Check all three circuits.

(e) Implement the behavioral description with an FPGA and test the operation of the circuit.

Supplement to Experiment 7 (Section 11.8)

A four-bit adder-subtractor is developed in this experiment. An adder—subtractor circuit is also
developed in Section 4.5.

(a) Write the HDL behavioral description of the 7483 four-bit adder.

(b) Write a behavioral description of the adder—subtractor circuit shown in Fig. 11.11.

(c) Write the HDL hierarchical description of the four-bit adder-subtractor shown in Fig. 4.13
(including V). This can be done by instantiating a modified version of the four-bit adder
described in HDL Example 4.2 (Section 4.12).

(d) Write an HDL test bench to simulate and test the circuits of part (c). Check and verify
the values that cause an overflow with V = 1.

(e) Implement the circuit of part (c) with an FPGA and test its operation.

Supplement to Experiment 8 (Section 11.9)

The edge-triggered D flip-flop 7474 is shown in Fig. 11.13. The flip-flop has asynchronous pre-
set and clear inputs.

(a) Write an HDL behavioral description of the 7474 D flip-flop, using only the Q output.
(Note that when Preser = 0, Q goes to 1, and when Preset = | and Clear = 0, Q goes
to 0. Thus, Preset takes precedence over Clear.)

(b) Write an HDL behavioral description of the 7474 D flip-flop, using both outputs. Label
the second output Q_net, and note that this is not always the complement of Q. (When
Preset = Clear = 0, both Q and Q_not goto 1.)

Section 11.20 Verilog HDL Simulation Experiments 557

Supplement to Experiment 9 (Section 11.10)

In this hardware experiment, you are asked to design and test a sequential circuit whose state
diagram is given by Fig. 11.14. This is a Mealy model sequential circuit similar to the one
described in HDL Example 5.5 (Section 5.6).

(a) Write the HDL description of the state diagram of Fig. 11.14.

(b) Write the HDL structural description of the sequential circuit obtained from the design.
(This is similar to HDL Example 5.7 in Section 5.6.)

(c) Figure 11.24(c) (Section 11.18) shows a control state diagram. Write the HDL descrip-
tion of the state diagram, using the one-hot binary assignment (see Table 5.9 in Section
5.7) and four outputs—T', Ty, T, and T'3, where T asserts if the state is 4'b0001, T as-
serts if the state is 4'b0010, etc.

(d) Write a behavioral model of the datapath unit, and verify that the interconnected control
unit and datapath unit operate correctly.

(e) Implement the integrated circuit with an FPGA and test its operation.

Supplement to Experiment 10 (Section 11.11)

The synchronous counter with parallel load IC type 74161 is shown in Fig. 11.15. This circuit is
similar to the one described in HDL Example 6.3 (Section 6.6), with two exceptions: The load input
is enabled when equal to 0, and there are two inputs (P and T) that control the count, Write the HDL
description of the 74161 IC. Implement the counter with an FPGA and test its operation.

Supplement to Experiment 11 (Section 11.12)

A bidirectional shift register with parallel load is designed in this experiment by using the
74195 and 74157 IC types.

(a) Write the HDL description of the 74195 shift register. Assume that inputs J and K are con-
nected together to form the serial input.
(b) Write the HDL description of the 74157 multiplexer.

(c) Obtain the HDL description of the four-bit bidirectional shift register that has been de-
signed in this experiment. (1) Write the structural description by instantiating the two ICs
and specifying their interconnection, and (2) write the behavioral description of the cir-
cuit, using the function table that is derived in this design experiment.

(d) Implement the circuit with an FPGA and test its operation.

Supplement to Experiment 13 (Section 11.14)

This experiment investigates the operation of a random-access memory (RAM). The way a
memory is described in HDL is explained in Section 7.2 in conjunction with HDL Example 7.1.

(a) Write the HDL description of IC type 74189 RAM, shown in Fig. 11.18.

558 Chapter 11 Laboratory Experiments

(b) Test the operation of the memory by writing a stimulus program that stores binary 3 in
address 0 and binary | in address 14. Then read the stored numbers from the two addresses
to check whether the numbers were stored correctly.

(c) Implement the RAM with an FPGA and test its operation.

Supplement to Experiment 14 (Section 11.15)

(a) Write the HDL behavioral description of the 74194 bidirectional shift register with par-
allel load shown in Fig. 11.19.

(b) Implement the shift register with an FPGA and test its operation.

Supplement to Experiment 16 (Section 11.17)

A parallel adder with an accumulator register and a memory unit is shown in the block dia-
gram of Fig. 11.23. Write the structural description of the circuit specified by the block
diagram. The HDL structural description of this circuit can be obtained by instantiating the
various components. An example of a structural description of a design can be found in HDL
Example 8.4 in Section 8.6. First, it is necessary to write the behavioral description of each
component. Use counter 74161 instead of 7493, and substitute the D flip-flop 7474 instead
of the JK flip-flop 7476. The block diagram of the various components can be found from the
list in Table 11.1. Write a test bench for each model, and then write a test bench to verify the
entire design. Implement the circuit with an FPGA and test its operation.

Supplement to Experiment 17 (Section 11.18)

The block diagram of a four-bit binary multiplier is shown in Fig. 11.24. The multiplier can be
described in one of two ways: (1) by using the register transfer level statements listed in part
(b) of the figure or (2) by using the block diagram shown in part (a) of the figure. The de-
scription of the multiplier in terms of the register transfer level (RTL) format is carried out in
HDL Example 8.5 (Section 8.7).

(a) Use the integrated circuit components specified in the block diagram to write the HDL
structural description of the binary multiplier. The structural description is obtained by
using the module description of each component and then instantiating all the components
to show how they are interconnected. (See Section 8.5 for an example.) The HDL de-
scriptions of the components may be available from the solutions to previous experi-
ments. The 7483 is described with a solution to Experiment 7(a), the 7474 with
Experiment 8(a), the 74161 with Experiment 10, and the 74194 with Experiment 14.
The description of the control is available from a solution to Experiment 9(c). Be sure
to verify each structural unit before attempting to verify the multiplier.

(b) Implement the binary multiplier with an FPGA. Use the pulser described in the supple-
ment to Experiment 1.

	11 – Laboratory Experiments with Standard ICs and FPCAs.PDF
	511.tif
	512.tif
	513.tif
	514.tif
	515.tif
	516.tif
	517.tif
	518.tif
	519.tif
	520.tif
	521.tif
	522.tif
	523.tif
	524.tif
	525.tif
	526.tif
	527.tif
	528.tif
	529.tif
	530.tif
	531.tif
	532.tif
	533.tif
	534.tif
	535.tif
	536.tif
	537.tif
	538.tif
	539.tif
	540.tif
	541.tif
	542.tif
	543.tif
	544.tif
	545.tif
	546.tif
	547.tif
	548.tif
	549.tif
	550.tif
	551.tif
	552.tif
	553.tif
	554.tif
	555.tif
	556.tif
	557.tif
	558.tif

