
Chapter 9 

Asynchronous Sequential Logic 

9.1 INTRODUCTION 

A sequential circuit is specified by a time sequence of inputs, outputs, and internal states, In 
synchronous sequential circuits, the change of internal state occurs in response to the syn- 
chronized clock puIses, Asynchronous sequential circuits do not use clock pulses. The change 
of internal state occurs when them is a change in the input variables. The memory elements in 
synchronous sequential circuits are clocked flip-flops, The memory elements in asynchronous 
sequential circuits are either unclocked flip-flops or time-delay elements. The memory capa- 
bility of a time-delay device hpends on the finite amount of time it takes for the signal to 
propagate through digital gates. An asynchronous sequential circuit quite often resembles a 
combinational circuit with feedback. 
The design of asynchronous sequential circuits is more difficult than that of synchronous cir- 

cuits because of the timing problems involved in the feedback path. In a properly designed 
synchronous system, timing problems are eliminated by triggering all flip-flops with the pulse 
edge. The change from one state to the next occurs during the short lime of the pulse transi- 
tion. Since the asynchronous circuit does not use a clock, the state of the system is allowed to 
change immediately after the input changes. Care must be taken to ensure that each new state 
keeps the circuit in a stable condition even though a feedback palh exists. 

Asynchronous sequentid circuits are useful in a variety of applications. They are used when 
speed of operation is important, especially in those cases where h e  digital system must re- 
spond quickly without having to wait for a clock pulse. They are more economical to use in 
small independent systems that require only a few components, as it may not be practical to 
go to the expense of providing a circuit for generating clock pulses. Asynchronous circuits are 
useful in applications where the input signals to the system may change at any time, inde- 
pendently of an internal dock. The communication between two units, each having its own 
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independent clock, must be done with asyncbrown*r c h i t s ,  Digital designers produce 
a mixed system in whicb some part of the syPchrowus system has the chmtahtics of an asp 
chnous circuit. Icnowledge of a s ~ o u s  sequential logic behavior is heIpful in verifying 
tbat the total digital system i in th p p r  maaner. 
Figure 9.1 shows the black diagram of an asymhron~ seqwda! circuit that consists of 

a combinational circuit and delay elemen& connected to form feedback Imps. There are n 
input variables, m output variables, d k in- states. The delay elements cap be v i s d k d  
as providing short-term memory for the mpnW cimrit. In a g-type circuit, the pmpga- 
tion delay that exists in the combhtimal circuit path h input to wtput provides sufIIcitnt 
delay along the feedback 1- so that no w c  delay eleme~ts are rtctually hscned iPto the 
feedback path. The prcsent4te ltrtd next- variables in asydmmus sequential Wts 
are cummarily called seem variabks md m'mion whzbles, m d y .  The excita- 
tion variables should not be confused with the excitable table used in the of clocked se- 
quential circuits. 
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When an input variable changes in value, the y secondary variables do not change instan- 
taneously. It takes a certain amount of time for the signal to propagate from the input termi- 
nals, thruugh the combinational circuit, to the Y excitation variables, which generate new values 
for the next state. These values propagate through the delay elements md become the new 
present state for the secondary variables. Note the distinction between the y's and the Ys. In 
the steady-state condition, they are the same, but during transition they are not. For a given value 
of input variables, the system is stable if the circuit reaches a steady-state condition with yi = 
for i = 1,2, . . . , k .  Otherwise, the circuit is in a continuous transition and is said to be unsta- 
ble. It is important to realize that a transition from one stable state to another occurs only in re- 
sponse to a change in an input'variable. This is in contrast to synchronous systems, in which 
state transitions occur in response to the application of a clock pulse. 

To ensure proper operation, asynchronous sequential circuits must be allowed to attain a sta- 
ble state before the input is changed to a new value. Because of &lays in the wires and the gate 
circuits, it is impossible to have two or more input variables change at exactly the same instant 
of time without anuncertainty as to which one changes first. Therefore, simultaneous changes of 
two or more variables are usually prohibited, This restriction means that only one input variable 
can change at any one time and the time between two input changes must be longex than the time 
it takes the circuit to reach a stable state. Such operation, defined as fidndmntak mode, assumes 
that the input signals change one at a time and only when the circuit is in a stable condition. 

9.2 A N A L Y S I S  PROCEDURE 

The analysis of asynchronous sequential circuits consists of obtaining a table or a diagram that 
describes the sequence of internal states and outputs as a function of changes in the input vari- 
ables. Alogic diagram manifests the behavior of an asynchronous sequential circuit if it has one 
or more feedback loops or if it includes unclocked flip-flops. In this section, we will investi- 
gate the behavior of asynchronous sequential circuits that have feedback paths without em- 
ploying flip-flops, Unclocked flip-flops are called latches, and their use in asynchronous 
sequential circuits will be explained in the next section. 

The analysis procedure will be presented by means of three specific examples. The f i s t  ex- 
ample introduces the transition tabIe, the second defines the flow table, and the third investi- 
gates the stability of asynchronous sequential circuits. 

TramMon Tabla 
An example of an asynchronous sequential circuit with only gates is shown inFig. 9.2. The di- 
agram clearly shows two feedback loops from the OR gate outputs back to the AND gate in- 
puts. The circuit consists of one input variable x and two intend states. The intend states 
have two excitation variables, 5 and Yz, and two secondary variables, yl and n. The delay as- 
sociated with each feedback loop is obtained from the propagation delay h e e n  each y input 
and its corresponding Y output. Each logic gate in the path introduces a propagation delay of 
about 2 to 10 ns. The wires that conduct electrical signals intrduce approximately a 1-ns delay 
for each foot of wire. Thus, w additional external delay elements are necessary when the com- 
binati~nal circuit and the wires in the feedback path provide sficient delay. 



The analysis of the circuit starts with a consideration of the excitation vadables as outputs 
and the secondary variables as inputs. We then derive the Boolean expressions for the excita- 
tion variables as a function of the input and secmdaq variables. e x m o m .  readily ob 
t h e d  from the logic diagram, are 

The next step is to plot the Yr and 3 functions in a map, as shown in Fig. 9.3{a) and (b). The 
encoded binary values of the y variables are used for labeling the rows, and the input x vari- 
able is used to designate the columns, This configuration results in a slightly di€fmmt three- 
variable map from the me used in previous chaptkrs, However, it if still a valid map. and such 

(a) Map for 
Yl = q 1 +  ~ ' Y Z  

(c) Transition table 

FIGURE 9.3 
Maps and transition taMt fw the drrust of Fig. 9.2 
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a configuration is more convenient in dealing with asynchronous sequential circuits. Note that, 
unlike what was done in previous chapters, the variables belonging to the appropriate squares 
are not marked along the sides of the map. 

The transition table shown in Fig. 9.3(c) is obtained from the maps by combining the binary 
values in corresponding squares. The transition table shows the value of Y = YIYZ inside each 
square. The fist bit of Y is obtained from the value of Yl, and the second bit is obtained from 
the value of in the same square position. For a state to be stable, the secondary variables must 
match the excitation variables (it., the value of Y must be the same as that of y = ylyz). Those 
enfries in the transition table where Y = y are circled to indicate a stable condition. An uncir- 
cled entry represents an unstable state. 
Now consider the effect of a change in the input variable. The square for x = 0 and y = 00 

in the transition table shows that Y = 00. Since Y represents the next value af y, this is a sta- 
ble condition. I f x  changes from 0 to 1 while y = 00, the circuit changes the value of P to 01. 
This represents a temporary unstable condition, because Y is not equal to the present value of 
y. What happens next is that as soon as the signal propagates to make Y = 01, the feedback 
path in the circuit causes a change in y to 01. This change is  manifested in the transition table 
by a transition from the first row ( y = 00) to the second row, where y = 0 1. Now that y = Y, 
the circuit reaches a stable condition with an input of x = 1 .  In general, if a change in the 
input takes the circuit to an unstable state, the value of y will change (while that of x remains 
the same) until it reaches a stable (circled) state. Using this type of analysis for the remaining 
squares of the transition table, we find that the circuit repeats the sequence of states 00,01, 11, 
10 when the input repeatedly alternates between 0 and.1. 

Note the differ- between a synchronous and an asynchronous sequential circuit, In a syn- 
chronous system, the present state is totally specified by the flip-flop values and dms not change 
if the input changes while the clock pulse is inactive. In an asynchronous circuit, the internal 
state can change immediately after a change in the input. Because of this rapid change, it is some- 
times convenient to combine the internal state with the input value together and call it the total 
state of the circuit. The circuit whose transition table is shown in Fig. 9.3(c) bas four stable total 
state+ylfix = 000,011,110,and 101--andfourunstabletatalstates401,010,111,and 100. 

The transition table of asynchronous sequential circuits is similar to the state table used for 
synchronous circuits. If we regard the secondary variables as the present state and lhe exci- 
tation variables as the next state, we obtain the state table shown in Table 9.1. This table pro- 
vides the same information as the transition table. There is one restriction that applies to the 

Table 9.1 
State Tubk for the Circuit of Fig. 9.2 

k x t  State 
Present 
State x = O  x = l  



asynchronous case, but not the synchronous case: In the asynchronous transition table, there 
usually is at least one next-state entry that is the same as the present-state value in each row. 
Othemise, all the total states in that row will be unstable. 

The procedure for obtaining a transition table from the circuit diagram of an asynchronous 
sequentid circuit is as follows: 

1. Determine all feedback loops in the c h i t .  
2. Designate the output of each feedback loop with variable I$ and its corresponding input 

with yi for i = 1,2,. . . , k, where k is the number of feedback loops in the circuit 

3. Derive the Boolean functions of all ails as a function of the external inputs and the y's. 

4. Plot each Y function in a map, using they variables for the rows and the external inputs 
for the columns. 

5. Combine all the maps into one table showing the value of Y = &Y2. - - & inside each 
square. 

6. Circle those values of Y in each square that are equal to the value of y = ym - . + fi in the 
same row. 

Once the m i t i o n  table is available, the behavior of the circuit can be analyzed by observing 
the state transition as a function of changes in the input variables. 

Row Table 

During the design of asynchronous sequedalcircuits, it is more convenient to name the states 
by letter symbols without making specific reference to their binary values. Such a table is 
called aj7ow table and is similar to a bansition table, except that the in tmd states are sym- 
bolized with letters rather than bimy ninarys. The flow table aIso includes the output values 
of the circuit for each stable state. 

Examples of flow tables are shown in Fig. 9.4. The one in Fig. 9.4(a) has four states, des- 
ignated by the letters a, b, c, and d. It reduces to the msition table of Fig. 9.3(c) if we assign 

(a) Four states with 
one input 

@)Two stateswithtwo 
m e  d one outpnt 

fwmE 9.4 
€namples of Row tabkr 



Section 9.2 Analysis Procedure 

the following binary values to the states: a = 00, b = 01, e = 11, and d = 10. The table of 
Fig. 9.4(a) is called a primiti~e flow table because it has only one stable state in each row, 
Figure 9.4@) shows a flow table with more than one stable state in the same row. It has two 
states, a and b; two inputs, xl and xz; and one output, z. The binary value of the output vari- 
able is indicated inside the square next to the state symbol and is separated from the state sym- 
bl by a comma. From the flow table, we observe the following behavior of the circuit: If 
xl  = 0. the circuit is in state a. If xl  goes to 1 while xz is 0, the circuit goes to state b. With 
inputs ~ 1 x 2  = 1 1, the circuit may be either in state o or in state b. If it is in state a, the output 
is 0, and if it is in state b, the output is 1. State b is maintained if the inputs change from 10 to 
1 1. The circuit stays in state a if the inputs change from 0 1 to 11. Remember that in fundamental 
mode two input variables cannot change simultaneously; therefore, we do not allow a change 
of inputs from 00 to 11. 

In order to obtain the circuit described by a flow table, it is necessary to assign a distinct bi- 
nary value to each state. Such an assignment converts the flow table into a transition table from 
which we can derive the logic diagram. This is illustrated in Fig. 9.5 for the flow table of 
Fig. 9.4@). We assign binary 0 to state a and binary 1 to state b. The result is the transition table 
of Fig. 9.5(a), The output map shown in Fig. 9.5 (b) is obtained directly from the output values 
in the flow table. The excitation function Y and the output function z are simplified by means 
of the two maps. The logic diagram of the circuit is shown in Fig. 9,5(c), 

(a) Transition table 
Y = x1xJ2 + X f l  

(b) Map for output 
2 = X1X2 y 

(c) Logic diagram 

ncuw 9.5 
Derivation of a cIKuit specified by the flow iable of Ffg. 9.w) 



This example demonstrates the prmedue for obtaining the logic dbgm from a given flow 
table. Doing that, however, is not always so simple. T h e  are severaI Midties m a i a k d  with 
the b i i  state assignment and with the ourput assigned to the unstable states. These problems 
m discussed in detail next. 

A race condition is said to exist in an asynchronous sequential circuit when two or more bi- 
nary state variabIes change value in response to a change in an input variable. When unequal 
delays are encountered, a race condition may cause the state variables to change in an unpre- 
dictable mauner. For example, if the state variables must change h m  00 to 11, the difference 
in delays may cause the first variable to change sooner than the second, with the mdt that the 
state variables change in sequence h m  00 to 10 and then to 1 1. If the second variable changes 
sooner than the first, the state variables will change fmm 00 to 01 and then to 11. Thus, the order 
by which the state variables change may not be known in advance. If the M stable state that 
the cirmit reaches does not depend on the order in which the state variables change, the race 
is called a noncritical race. If it is possible to end up in two or mom different stable states. de- 
pending on the order in which tbe state variable9 change, then the race is a critical race. For 
proper qmatiw, critical races must be avoided. 

The two examples in Fig. 9.6 illusmate nonmitical races. We start with the total stable state 
ylyzx = 000 and change the input from 0 to 1. The state variables must then change from 00 
to 11, which defines a race condition. The transitions listed uader each table show three pos- 
sible ways that the state variables may change. Either they can cbange simultaneously from 00 
to 11, or they may change in sequence fi-om 00 to 01 a d  then to 11, or they may chauge in in- 
quence from 00 to 10 and then to 11. In a l l  cases, the final stable state is tbe same, so the mce 
is noncritical. In (a), the final total state is y m x  = 11 1, and in (b), it is 011. 

(a) P d b l e  kmiitim 0) Possible tmdtium 
00 - I1 00 + 11 -0l 
00 -01 -11 00 -01 
00 -10 -11 00 + 10 - 11 - 01 

FIGURE 9.6 
Exarnptes of rmncritkal races 



(a) Possible transitions: 
00 -+ 11 
00 + 01 
00 -10 
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(b) Possible transitions: 
00 -11 
00 - 01 - 11 
00 -10 

FK;m 9.7 
Examples of crWcal rims 

The transition tables of Fig. 9.7 illustrate critical races. Here again, we start with the total 
stable state y~yzx = 000 and change the input h m  0 to .I. The state variables must then change 
from 00 to 11. If they change simultaneously, the final total stable state is 11 1. h the transi- 
tion table of part [a), if, kcause of unequal propagation delay, Y2 changes to 1 before Yl does, 
then the circuit goes to the total stable state 01 1 and remains there. If, however, Yl changes 
first, the internal state becomes 10 and the circuit will remain in the stable total state 101. 
Hence, the race is critical because the circuit goes to different stabIe states, depending on the 
order in which fhe state variables change. The transition table of Fig. 9.7(b) illustrates another 
critical race, in which two possible transitions result in one final total state, but the third pos- 
sible transition goes to a different total state, 

Races may be avoided by making a proper binary assignment to the state variables. The 
state variables must be assigned binary numbers in such a way that only one state variable can 
change at any one time when a state transition occurs in the flow table. The subject of race-he 
state assignment is discussed in Section 9.6. 

Races can be avoided by directing the circuit through intermediate unstable states with a 
unique state-variable change. When a circuit goes through a unique seqne~l~e of unstable states, 
it is said to have a cycle. Fig. 9.8 ilIustrates the occurrence of cycles. Again, we start with 
ylfi = 00 and change the input from 0 to 1 .  The musition table of pmt (a) gives a unique se- 
quence that terminates in a total stable state 101. The table in (b) shows that even though the 
state variables change from 00 ta 11, the cycle provides a unique tmdtiaa from 00 to 01 and 
then to 11, Care must be taken when using a cycle that terminates with a stabb slate. If a cycle 
does not terminate with a stable state, the circuit will keep going from one unstable state to an- 
other, making the entire circuit unstable. This phenomenon is dmmksimted in Fig. 9.8(c) and 
also in the next example. 
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(a) State transition: 
00+01+11+10 

@) State transition: 
00-01-11 

(c) Unstable 
01~11+10- 

Because of the feedback connection that exists in asynchrwous sequential c h i t s ,  care must 
be taken to ensure that the circuit does not k a m e  unstable. An unstable cmdition wil l  cause 
the circuit to oscillate between unstable states. The tramdim-table method of analysis can be 
useful m detecting the occurrence of instability. 

Consider, for example, the circuit of Fig, 9.9(a). The excitation fonction is 

@) Transition table 

AGUE 9.9 
Example of an unstable chwit 
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The transition table for the c h i t  is shown in Fig. 9.9(b). Those values of Y which ate equd to 
y are circled and represent stable states. Uncircled entries indicate unmble conditions. Note 
tIutt column 11 has no stable states. This means that with input X I %  fixed at 11, the values of Y 
am3 y are never the same. If y = 0, then Y = 1, which caum a transition to the second row of 
the table, with y = 1 and Y = 0. This in turn =sea a &tion back to the ht row, with the 
mdt that the state variable altumates between 0 and 1 indefinitely, as long as the input is 11. 

The instability condition can be detected ditectly from the logic diagram. Let 
xl  = 1, x2 = 1, and y = 1. Then the output of the NAND gate is equal to 0, and the output 
OftheANDgateisequaltoO, ~ g Y q u d i l 0 , w i t h t h a r e s u l t ~ Y  # y,Mowify - 0, 
the output of the NAND gats is 1 and the output of the AND gate is 1, making Y equd to 1, 
with the result that Y # y. If it is assumed that each gate has a prapagation delay of 5 ns (in- 
cluding transmission over thc wires), we will find that Y w i l  be O for 10 ns and 1 for the next 
I0 ns. This will result in a square-wave waveform with a period of 20 ns. The frequency of os- 
cillation is the reciprocal of the pied and is equal to 50 MHz. Unless one is designing a 
squawwave generator, the instability that m y  occur in asyncbmnous sequential circuits is 
umhhble and must be avoided. 

9 . 3  CIRCUITS WITH LATCHES 

Historically, asynchronous circuits were known and used befom synchronous circuits were de- 
veloped The first practical digital circuits were constructed with relays, which rn more adapt- 
able to asynchronous operations. For this reason, the traditional method of asy nchronous circuit 
configuration has been with components that are connected to form one or more feedback 
loops. When digital circuits are constructed with electronic components, it is convenient to 
employ the SR latch (inidwed io Section 5.3) as a memmy element. The use of SR latches 
in agyncbronm sequentid circuits e w e s  an orderly pattern in the logic diagrams, with the 
m e w  elements clearly visible. In this section, we analyze the operation of the SR latch, 
using the technique introduced in the previous section. We then show a procdm for imple- 
menting asynchronous sequential circuits using SR latches. 

The SR latch is a digital circuit with two inputs S and R and two cr;o9s-coupledNOR gates or 
two cross-cwpled NAND gates. TIE crosscoupled NOR gate circuit Is showniaHg. 9.10. This 
circait and its mth table are taken from Fig. 5.3. In order to analp Ibe chdt  by tk mi- 
tion-table method, it is i%st d r a w n  in Fig, 9.1qc) to see tbe * @ fmm thC output 
ofgate 1 toheinput o f g a t e 2 . ~ ~ t Q i s ~ t o t b e ~ v s d a M t Y a n d k  
s e c o ~  variable y. The B o o k  hmim fur the mtpt it3 . .' n t e c .  

P 1 ~ g Y a s i n R g . 9 . 1 0 ( d ) , w e o ~ ~ ~ m t a b l s f a ~ ~  1- 

We can now investigate the behavior of the SR latch b u  Inp- table. The state 
withSR = 1 0 i s a s t a b l e s t a t e ~ Y  = y = l;-tbs-tRithSR = 01isasta- 
bIe state, because Y = y = 0. With SR = 10, the atpat Q = Y = 1 a d  the latch is said 
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(a) Crossmupled circuit (b) Truth table 

1 0  
0 0 
0 1 
0 0 
1 1  

(c) Ckcuit showing feedback 

1 0  
1 0 (AfterSR = 10) 
0 1 
0 1 (After SR = 01) 
0 0 

(d) M t i o n  table 

FIGWE 9.10 
SR latch with NOR gates 

to be set. Changing S to 0 leaves the circuit in the set state. W~th SR = 01, the output 
Q = Y = 0 and the latch is said to be reset. A change of R back to 0 leaves the circuit in 
the reset state. These conditions are also listed in the truth table. The circuit exhibits some 
difficulty when both S and R are equal to 1. From the truth table, we see that both Q and Q' 
are equal to 0, a condition that violates the requirement that these two outputs be the com- 
plement of each other. Moreover, from the hausition table, we note that going ftom SR = 11 
to SR = 00 produces an unpredictable result. If S goes to 0 h t ,  the output remaim at 0, 
but if R goes to 0 first, the output goes to 1. In normal uperation, we must make sure that 
1's are not applied to both the S and R inputs simultaneously. This condition can be ex- 
pressed by the Boolean function SR = 0, which states that the ANDhg of S and R must al- 
ways result in a 0. 

Coming back to the excitation function, we note that when we OR the Boolean expression 
SR' with SR, the result is the single variable S: 

SR' + SR = S(R1 + R )  = S 

From this, we infer that SR' = S when SR = 0. Therefore, the excitation function derived 
previously, namely, 

Y = SR' + R'y 
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can be expressed in FG. 9.10(d) as the reduced excitation function 

Y = S + R'y when SR = 0 

To analyze a circuit with an SR latch, we must first check that the Boolean condition SR = 0 
holds at alI times. We then use the reduced excitation function to andyz the circuit. However, 
if it is found that both S and R can be equal to 1 at the same time, then it is necessary to use 
the original excitation function, 

The analysis of the SR latch with NAND gates is carried out in Fig. 9.1 1. The NAND latch 
operates with both inputs normally at 1, unless the state of the latch has to be changed, The ap 
plication of 0 to R causes the output Q to go to 0, thus putting the latch in the reset state. After 
the R input returns to 1, a change of S to 0 causes a change to the set state, The condition to be 
avoided here is that both S and R not be 0 simultaneously. This condition is satisfied when 
S'R' = 0. The excitation function for the circuit in Fig. 9.1 1 (c) is 

Y = [S(Ry)']' = St  + Ry 
Comparing this with the excitation function of the NOR latch, we note that S has been replaced 
with S' and R' with R. Hence, the input variables for the NAND latch require the comple- 
mented values of those used in the NOR latch, For this reason, the NAND latch is sometimes 
referred to as an S'R' latch (or 3-z latch). 

{a) Cross-caupled circuit (b) Truth table 

Y = Q  

Y 

(c) Circuit  hawing feedback (d)T " table 

FIGURE 9.1 1 , r :  0 

SR latch with NAND gates 



Asynchronous sequentd circuits can be mnstructed with the use of SR latches with or with- 
out extend feedback paths. Of course, here is always a f d h c k  loop witbin & h c h  itself. 
The analysis of a circuit with l a t c h  will be demmsmted by meam of a s m c  example 
~ w b i c h i t w i l l b e ~ b l e t o ~ h ~ s t e p s n e ~ e s s a r y t o a a a I ~ o t h e r , s i m -  
iIar circuits. 

The circuit shown in Fig. 9.12 has two SR latches with outputs Yl and fi. There are two in- 
puts, XI and xz, and two external fedback loops giving rise to tk secondary variables, s.1 and 
R. Note that this circuit resembles a conventional sequential circuit with latches behaving like 
flipflops without clock pulses. The analysis of tbe circuit requires that we first obtain the 
Bookan functions for the S and R inprrts in each la& 

We then check whether the d t i o n  SR = 0 is W e d  to enmae ptoper opmian of tbe circuit: 
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FIC4JRE 9.1 3 
Transition table for the ckuit of Fig. 9.12 

The result is 0 because xlxi = xzxh = 0. 
The next step is to &rive the W i t i o n  table of the circuit. Remember that the transition table 

specifies the value of Y as a function of y and x. The excitation functions are derived from the 
relation Y = S + R' y (see Figure 9.11 (d)) and are 

We now develop a composite map far Y = qY2. They variabIes are assigned to the rows in the 
map, and the x variables are assigned to the columns, as shown in Fig, 9,13. The Boolem func- 
tions Yl and Yz, as just expressed, are used to plot the composite map for Y. The entries of Y in 
each row that have the same value as that given to y are circled and represent stable states. In- 
vestigating the transition table, we deduce that the circuit is stable. There is a critical race con- 
dition when the circuit is initially in total state ylyzxlxz = 1 10 1 (YIQ = 1 1 ) and xz changes 
from 1 to 0 (Y1Y2 = 00). If Yl changes to 0 before G, the circuit goes to total state 0 100 iqstead 
of 0000. However, with approximately equal delays in the gates and latches, this undesirable 
s ib t ion  is not likely to occur. 

The procedure for analyzing an asynchronous sequential circuit with SR latches can be sum- 
marized as follows: 

1. Label tach latch output with I;. and its external feedback path (if any) with y! for 
i = 1,2 ,..,, k, 

2. Derive the Boolean functions for the Si and Ri inputs m a& latch 
3. Check whether SR = 0 for each NOR latcb or whether S'R' = 0 far each NAND latch. 

If either of these conditions is not satisfied, t k e  is a psiWty* the circait may not 
operate properly. 

4. EvaluateY = S + R'y foreachNORlarchaY = S' + Ry&&NANDlatch. 
5. C o n s ~ a m a p , w i t h ~ e y ' s ~ ~ g h r n w s a n d t h t x ~ ~ t f i e c o h ,  
6. Plot the value of Y = Y& . . - & in the map. 
7. Circle dl stable states such that Y = y. The remhing q i Q  h the transition table. 
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The transition table of the SR latch is useful for analysis and for ddhQ the @on of the 
latch. It specifies the excitation Y when the s c c d q  variable y a d  ?he inputs S and 
R are known. During the i m p h w i o n  7, the &h table of the circuit is available 
andwewish tohndthe valuesofSdR.Farthisreason, weneedatablethat MstherequiFcd 
inputs S and R for each of tRt pussible tramitions fmm y to Y. Such a Iist is called an -&on 
table. 

The excitation table of the SR latch is shown in Frg. 9.14(b). The first two c o b  list the 
four possible wansitions from y to Y. The next two columns p i f y  h e  Tequired input values 
that will result in the specified transition, For example, in order to provide a mit ion  ftom 
y = O b Y  = 1,itisnecessarytoemthatinputS = 1 andinputR = 0.Thisisshownin 
the second row of the W t i o n  table. 

The reqwed input co~~%tiom for each of tbe fm transitions in the excitation tabk can be 
derived directly from the latch mmitiw table of Fa. 9.1Nd) a h  removing ttte e k  aw- 
ditionSR = ll.Fortxample,the~tion~lt~tbatiaorderm~gr:fromy = Om 
Y = O , S R c a n b e e i t h e r 0 0 o r O l . ~ ~ ~ S ~ b e l a n d R m a y b e ~ O o r 1 . ~  
fore, the first row in the excitation table shows S = 0 md R = X where. X i a don't-cw 
condition signifying either a 0 or a 1. 

A sequential circuit with SR latches is implenmkd through a procedure for obtaining the logic 
diagram from a given transidon table. The @UIC req- that we deteanine the Boolean 
functioasfortheSandRinpUtsofesbch~Thelogic~is~~edbybw~ 
the SR latches and the logic gates tbatjmphmt tbe S and R funaim& To ~ O I I S ~  the pro- 
cedure, we will m p t  the implementation example of Fig. 95. 'We output circuit remaim the 
same and will not be repeated again. 

The transition table from Fig. 9.5(a) is @lied  in Fig. 9.14(a). From the infomation 
given in the transition table and from the latch excitation table ~ ~ o n s  in Fig. 9.140, we 
can obtain the maps for the S and R inputs of the latch, as &own in Kg 9. lqc )  md (d). For 
example, the square in the second row and third column (yxlxz = 11 1) in Fig. 9.14() re- 
quires a transition from y = 1 to Y = 1. The excitation table specifies S = X, R = 0 for this 
change. Therefore, the comsponding square in the S map is nuked with an X and the one in 
the R map with a 0. All other s p a r e s  are filled wiih values in a similar manner. The maps am 
then used to derive the simplified Boolean functions 

S = X ~ X ~  a d  R = xi 

The logic diagram consists of an SR latcb aad the gates required to implamit the S and R 
Boolean functions. The c h i t  is as shown in Fa. 9.1 4(e) when a NOR latch is used. With a 
NAND latch, we must use the v h  for S and R: 

and 

This circuit is shown in Fig. 9.14!f). 
The geaeral proccdute for hplefnehg a circuit with SR latches from a given lmisitio31 table 

can now be summarized as follows: 



(a) Transition table 
Y = x1xr2 XLy 

(c) Map for S = xp', 

(e) Ciwit with NOR btch 

(b) Latch excitation table 

(d) Map for R = x',  

(f) Circuit with NAND latch 

FIGURE 9.14 
Derivation d a I k h  circuit from a transltlon table 

1. Given a transition table that specses tbe excitation fumiw Y = Yl& &, derive a 
pair of maps for Si and Ri for each i = 1,2,. . . , k. This is dqw by using the conditim 
specified in the latch excitation table of Fig. 9.14@). 

2. Derive the simplified Boolean functions for each Si and 4. Cam mnst be taken not to 
make Si and Ri equal to 1 in the same mintem square. 

3. Draw the logic diagram, using k latches together with h gates q u i d  to gemale the S 
and R Booban functions. For NOR latches, use the Sand R Boolean fadons obtained in 
step 2. For NAND latches, use the complemented values d b  obtained in stcp 2. 

Another useful example of latch implementation is found in Section 9.7. 
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Input binary information in a digital system can be generated mual ly  by means of mechan- 
ical switches. One position of the switch provides a voltage equivalent to logic 1, and the other 
position provides a second voltage equivalent to logic 0. Mechanical switches are also used to 
start, stop, or reset the dgital system. In testing di@ circuits in the l a h m c q ,  the input sig- 
nals will normally come from switches. A common characteristic of a mechanical switch is 
that when the arm is thrown from one position to the otber. the switch contact vibrates or 
bounces several times before coming to a 6nal rest. In a typical switch, the contact bounce 
may take several milliseconds to die out, causing the signal to oscillate b e e n  1 and 0 h- 
cause the switch contact is vibrating. 

A debounce circuit is a c h i t  which removes the series of pulses that result from a contact 
bounce and produces a single smaoth transition of the binary signal from 0 to 1 or h m  1 to 
0. One such circuit consists of a single-pole, double-throw switch connected to an SR latch, as 
shown in Fig. 9.15. The center contact is connected to ground that provides a signal equiva- 
lent to logic 0. When one of the two contacts, A or B, is not connected to ground through the 
witch, it behaves like a logic-1 signal. A resistor is sometimes connected from each contact 
to a fixed voltage to provide a firm logic-1 signal. When the switch is thrown from posihon A 
to position B and back, the outputs of the latch produce a single pulse as shown. negative for 
Q and positive for Q'. The switch is usually a push button whose contact rests in position A. 
When the push button is depressed, it goes to position 3, and when released, it returns to po- 
sition A. 
The operation of the debounce circuit is as follows: Wen the switch rests in psitiond, we 

have the condition S = 0, R = 1 and Q = 1, Q' = 0. (See Fig. 9.1 lo).) When the switch is 
moved to position B, the ground connection causes R to go to 0, while S h o m e s  a 1 h a u s e  
contactA is open. This condition in turn causes output Q to go to O and Q' to go to I. After the 
switch makes an initial contact with B, it bounces several times, but for proper operation, we 
must assume that it does not bounce back far enough to reach point A. The output of the latch 
will be unaffected by the contact bounce because Q' remaius 1 (and Q remains 0)  whether R 
is equal to 0 (contact with ground) or equal to 1 (no contact with ground). When the switch re- 
turns to position A, S becomes 0 and Q returns to 1. The output again will exhibit a smmth tran- 
sition, even if there is a contact bounce in -tion A. 
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9.4 D E S I G N  PROCEDURE 

The design of an asynchronous sequential circuit starts from the statement of the problem and 
cuhhates in a logic diagram. There are a number of design steps that must be carried out in 
order to minimize the complexity of the circuit and to produce a stable circuit without critical 
r a m .  Briefly, the design steps are as follows: A primitive flow table is obtained from the de- 
sign specifications. The flow table is then reduced to a minimum number of states. Next, the 
states are given a b i n q  assignment from which we obtain the transition table. Finally, born 
the transition table, we derive the logic diagram as a combinational circuit with feedback or as 
a circuit with SR latches. 

The design p m s s  will be demonstrated by going through a specific example. Once this ex- 
ample is mastered, it will be easier to understand the design steps that are enumerated at the 
end of this section. Some of the steps require the application of formal procedures, and these 
are discussed in greater detail in the sections that follow, 

Design Example 

It is necessary to design a gated latch circuit with two inputs G (gate) and D (data) and one out- 
put Q. Binary infomation present at the D input is ixansferred to the Q output when G is equal 
to 1. The Q output will follow the D input as long as G = 1. Wen G goes to 0, the information 
that was present at the D input at the time the transition occurred is retained at the Q output. The 
gated latch is a memory element that accepts the value of D when G = 1 md retains this value 
after G goes to 0. Once G = 0, a change in D does not change the value of the output Q. 

As defined previously, a primitive flow table is a flow table with only one stable total state in 
each row, Rememh that a total state consists of the internal state combined with the input. The 
derivation of the primitive flow table can be facilitated if we first form a table with all possi- 
ble total states in the system. This is shown in Table 9.2 for the gated latch Each row in the 
table specifies a total state, which consists of a letter designation for the internal stake and a 

Table 9.2 
Gated-Latch Total Srates 

Inputs Output 

State P C 0 Commcntr 

a 0 1 0 D = Q - G = l  
b 1 1 1 D = Q m G = l  
C 0 0 0 Afterstatcaad 
d 1 0 0 Aatrstatcc 
e 1 0 1 Afta state b or f 
f 0 0 1 Aftcrstatec ...y-g>m-:-- 
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possible input combination for D and G. The output Q is also shown for each total state. We 
start with the two total states that have G = 1, From the design specifications, we know that 
Q = O i f D G  = 01 andQ = I i f D G  = 1 1 , b e c a u s e D m u s t b e ~ W Q w h e n G  = I.We 
assign tbese conditions to states a and b, When G goes to 0, the output depends on the last 
value of D. Thus, if the transition of DG is from 01 to 00 to 10, then Q must remain 0 beEause 
D is 0 at the time of the transition from 1 to 0 in G. If the hausition of DG is from 1 I to 10 to 
00, then Q must remain I.  This information results in six different total states, as shown in ibe 
table. Note that simultaneous h t i o n s  of two hput variables, such as h 01 to 10 or from 
11 to 00, are not dowed in fundamental-mode opation. 

The primitive flow table for the gated latch is shown in Rg. 9.16. It has one row for each 
state and w e  column for each input combbation. First, we i5ll in one square in each row be- 
longing to the stable st& in that row. These entrk are de&mnhed from Table 9.2. For exam- 
ple, state a is stable and the output is 0 when the input is 01. This hhmti011 is entered into 
the flow table in the fmt row and second column. Similarly, tk other five stable states tm 
gether with their output are entered into the corm* input columns. 

Next, we note that since both inpub are not dowed to h g e  shultmmusly, we can enter 
dash marks in each row that differs in two or more variablas from the input variables associ- 
ated with the stable state. For example, the h t  row in the flow table shows a stable state with 
an input of 01. Since only one input can change at any given time. it can change to 00 crr 11, 
but not to 10. Therefore, we enter two dashes in the 10 column of row a. This will eventually 
result in a don't-care condition for the next state and output in this square. Following dx same 
pmc&re, we fill in a second quam in each row of the primitive flow table. 

Next, it is necessary to 6nd values for two mare s q m  in each row. The comments listed 
in Table 9.2 may help in deriving the necmsq infondion. For example, state c is asswbld 
with input 00 and is reached after a h g e  in input from state a or d lhefure, an witable state 

Inputs DG 
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c is shown in column 00 and rows a and din the flow table. The output is marked with a dash 
to indicate a don't-care condition. The interpretation of this situation is that if the circuit is in 
stable state a and the input changes from 01 to 00, the circuit first goes to an unstable next state 
c, which changes the present-state value from a to c, causing a transition to the third row and 
first column of the table. The unstable state values for the other squares are determined in a 
similar manner. All outputs associated with unstable states are marked with a dash to indicate 
don't-care conditions. The assignment of actual values to the outputs is discussed further, after 
the design example is completed. 

Reduction of the Primitive Flaw Tabb 

The prhtive flow table has only one stable state in each row. The table can be r e d u d  to a 
smallernumber of rows if two or more stable states are placed in the same row, The grouping of 
stable states from separate rows into one common row is called merging. Merging a number of 
stable states in the same row means that the binary state variable ultimately assigned to the merged 
row will not change when the input variable changes. This is because, in a primitive. flow table, 
the state variable changes every time the input changes, but in a reduced flow table, a c h g e  of 
input will not cause a change in the state variable if the next stable state is in the same row, 

A formal procedure for reducing a flow table is given in Section 9.5. In order to complete 
the design example in the current section without going through the formal procedure, we will 
apply the mergrng pxocess by using a simplified version of the merging rules. lho or more rows 
in the primitive flow table can be merged into one row if there are nonconflicting states and 
outputs in each of the columns. Whenever one state symbol and don't-care entries are en- 
countered in the same column, the state is listed in the merged row. Moreover, if the state is 
circled in one of the rows, it is also circled in the merged row. The output value is included with 
each stable state in the merged row. Because the merged states have the same output, the state 
cannot be distinguished on the basis of the output. 

We now apply these rules to the primitive flow table of Fig. 9.16, To see Row this is done, 
the primitive flow table is separated into two parts of three rows each, as shown in Fig. 9.17(a). 
Each part shows three stable states that can be merged because there are no conflicting entries 
in each of the four c o l m s .  The first column shows state c in all the rows and 0 or a dash for 
the output. Since a dash represents a don't-care condition, it can be associated with any state or 
output. The two dashes in the first column can be taken to be 0 output to make all three rows 
identical to a stable state c with a 0 output. The second column shows that tite d a s h  can h as- 
signed to correspond to a stable state a with a 0 output. Note that if a state is circled in one of 
the rows, it is also circled in the merged row. §hilady, the third cob can k merged into an 
unstable state b with a don't-care output, and the fourth m h  mn knrergbd into stable state 
d and a 0 output. Thus, the three rows a, c, and d can be merged inin tmz row with three stable 
states and one unstable state, as shown in the ikst row of Fig. 9.170. 'Ibe d row of the 
reduced table results from the m e n g  of rows b, e. d f of tbe pimihe 3 m  tabk In this ex- 
ample, there are two ways that the reduced table can be drawn. -* lecser symbols for the 
states can be retained to show the relationship between th d u d  aad p id ive  flow tables. 
Alternatively, because the two tables have the same OR@&, we m~ d g n  r a m m  letter sym- 
bol to all of the stable states of the merged mws. Thus, stam c anddahrqhed by state a, and 
states e and f are replaced by state b. Both alternatives are shown in Pig. 9.17@). 



(a) Stam that are eandkbtes for merging 

(b) Reduced table (two dtomativc~) 

RtUllE 9.17 
Man of the prirdtlve Rwv 

Transition Table and Logic Diagram 
In order to obtain the cirmit described by the reduced flow table, it is necessary to assign 
a distinct binary value to each state. This assignment converts the flow table into a transi- 
tion table. In the general w e ,  a binary state assignment must be made to ensure that the cir- 
cuit wiU be free of criticai races. T h  stateas~ignment problem in asynchronous sequential 
circuits and ways to solve it are discussed in Section 9.6. Fortunately, there can be no crit- 
ical races in a two-row flow table; k c f o r e ,  we can fiaish the design of the gaml latch 
@or to studying that saction. M i  0 to state a and 1 to state b in !he reduced flow table 
of Fig. 9.17@), we obtain the transition tabIe of Frg. 9.18(a). The mi t ion  table is, in ef- 
fect, a map for the excitation variable Y. The simpl5ed Boolean function for Y is hen ob- 
tained from the map as 

Y = DG + G'y 

T h w  are two don't-cm outputs in the h d  reduced flow table. If we assign values to $Le out- 
pat as &own in Fig, 9. f 8&), it is W b k  to make output Q idemid to the map of he exci- 
tation function Y. Altedvely ,  If we q l a c e  the don't-cam by 1 when y = I and DG = 01, 
themapdmstoQ = Y.Zfw~~~possiblevd~estottaedon't~raltputs,we 
can make output Q equal to y. In either case, the logic diagram of the gated latch is as shown 
in Fig. 9.19. 
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\DG 

(a) Y =  DG+G1y 

FIGURE 9.18 
T~ansition table and output map fw gated latch 

HGURE 9.19 
Gated-latch logic diagram 

The diagram can aIso be implemented by an SR latch. Using the procedure outlined in 
Section 9.3, we h a t  obtain the Boolean fimctions for S and R, as shown in Fig. 9.201a). The 
logic diagram with NAND gates (see Fi. 5.4) is shown in Fig. 9.20@). Note that the gated latch 
is a level-sensitive D-latch, intmluced in Section 5,3 and Fig. 5.6. 

Assigning Outputs to Unstable States 

The stable states in a flow table have specific output values associated with them. The un- 
stable states have unspecified output entries designated by a dash. The output values for the 
unstable states must be chosen so that no momentary fdse outputs mmr when the circuit 
switches between stable states. This means that if an output variable is not supposed to 
chmge as the result of a transition, then an unstable state that is a kamicnt state between 
two stable states must have the same output value as the stable stabs. Consider, for exam- 
ple, the flow table of Fig. 9.2 1 (a). A transition from stable state a to stable state b goes 
through the unstable state b. If the output assigned to the unstable state b is r 1, then a mo- 
mentary short pulse will appear on the output as the circuit shiffs h m  an output of 0 in state 
a to an output of 1 for the unstable b and back to 0 when the circuit reaches stable state b. 
Thus, the output corresponding to un~table state B must be specified as 0 to avoid a mo- 
mentary false output, 
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(a) S = DG R = D'G 

( a ) M ~ p f w S m d R  

M U R E  9 . a  
CirarTt wfth SR latch 

(a) Haw table 

RGm 9.21 
klgning output v&m tm rmrt.trk #rtRI 
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when the change in output wcurs, we place a don't-care entry for the output associated with un- 
stable state c. Fig. 9.21(b) shows the output assignment for the flow table, demonstramg the four 
possible combinations of changes in output that can mcur, The procedure for m a h g  the assign- 
ment to outputs associated with unstable states can be summarized as follows: 

1. Assign a 0 to an output variable associated with an unstable state which is a transient state 
between two stable states that have a 0 in the corresponding output variable, 

2. Assign a 1 to an output variable associated with an unstable state which is a transient state 
between two stable states that have a 1 in the correspondhg output variable, 

3. Assign a don't-care condition to an output variabie associated with an unstable state 
which is a transient state between two stable states that have different values (0 and 1, 
or 1 and 0) in the corresponding output variable. 

Summary of Deslgn Procedure 

The design of asynchronous sequential circuits can be carried out by using the procedure il- 
lustrated in the previous example. Some of the design skps need further elaboration and are 
explained in upcoming sections. The procedural steps are as follows: 

1. Obtain a primitive flow table from the given design specificatioas. This is the most 
difficult part of the design, because it is necessary to use intuition and experience to 
arrive at the correct interpretation of the problem specifications. 

2. Reduce the flow table by merging rows in the primitive flow table, A formal procedure 
for merging rows in the flow table is given in Section 9,5. 

3. Assign binary state variabIes to each row of the reduced flow table to obtain the transi- 
tion table. The state-assignment procedure that eliminates any possible critical races is 
given in Section 9.6. 

4, Assign output values to the dashes associated with the unstable states to obtain rhe out- 
put maps. This procedure was explained previously, 

5, Simplify the Boolean functions of the excitation and output variables and draw the logic 
diagram, as shown in Section 9.2. The logic diagram can be drawn with SR latches, as 
shown in Section 9.3 and also at the end of Section 9.7. 

9.5 REDUCTION OF STATE AND FLOW TABLES 

The procedure for reducing the number of internal stares in an sequential circuit 
resembles the procedure that is used for synchronous c W & .  An algorithm for the state re- 
duction of a completely specified state table was given in ! k t h  5.7. W will review ibis al- 
gorithm and apply it to a state-reduction method that uses an implidon table. The algorithm 
and the implication table will then be m d i f d  to cover the state mWim of incompletely spec- 
ified state tables. The modified algorithm will be used to expk  tfie procadare for reducing 
the flow table of asynchronous sequential circuits. 
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Table 9.3 
stah? TPbls b h t m w w t s  -t stuh 

Pmlmt 
N d  S a  oUtplt 

State x = 0 w = 1 x = O  x r f  

hnplicatton Table and Imflfed States 

The stat+mhction p m & m  for completely spdled sCate EabIes is based on an algoridm that 
combines two states in a state table into one, as long as they can be &own to be equivalent. 
Two states are equivalent if, for each pa&bk input, they give d y  the same output sad go 
to the same next smtes or to equivalent next stam. Table 6.6 show an example of equivalent 
states that have the same next states and outputs for each ambindm of ingu$. There are oc- 
casions when a pair of stam do not have th same next stam but, -less, go to quiva- 
lent next states. Consider. for example, the sate table shown in Table 9.3. The present states a 
and b have the same output for the same input. 'Iheir next states are e and d for x = 0 and b 
mdaforx = l.Ifwecan~~tbepairof~(c,d)meguivalent.~bhtpairaS~ 
(a, b)will dsobeequivalent,because~willhavethe~or~valentnext~.When 
this relationship exists, we say that [a, b) imply (c, d) in the sense ha t  if a and b are equiva- 
lent then c and d have to be equivalent. Similarly, b m  the last two rows of Table 9.3, we 6nd 
thatthe pairof state.s (~,d)@kS&pair~f states ( a , b ) . T h e ~ c o f q u i v ~ s t a t e s  
is that if (a, b) imply (c, d) and (c, d) imply (a, b), then both pairs of states are eqniv- that 
is, a and b are equivalent, and so are c and d. As a v, the four rows of Table 9.3 can 
be reduced to two rows by combining a and b into one state and c and d into a second state. 

Tbcheclcingofeachpairof m t c s k r p m 4 b I e o q u i ~ h a t a b l e  wiobahgeaumbea 
of states can be done systemtically by mtans of an implication table, which is a chart that 
consists of squares, one for every posslue pair of staks, that provide s m  for listing any 
pssibb implied states. By judicious w of h e  table, it is p s i b l e  to demim all  pairs of equiv- 
dent states. The state table of Table 9.4 wili be used to illusim~ this p m d m .  The in#=- 
timEabbisshominFig.9~.On~~~deaEongthtvertid~lrt~aUthe~~ 
in the state table except the fifst and m s  the bottom horhntally are Iisted all the s t a m  ex- 
cept the last. The msult is a display of all w b l e  combhatimu of two states, with a square 
p W i n t h e i n ~ m o f  amw a n d a w h r m n ~ ~ t w o ~ ~ b e a E s t a d f o r o q u i v -  
d e n c e . ~ o s t a m h a v i n g a i f f ~ ~ f o r ~ s a m t ~ t ~ n o t ~ ~  

lkro states that are not equivaknt am mzubd with a cross ( X) in the cmespding  square, 
whmas their equivalence is mmkd wich a check mark (4). Some of the s q m  have entries 
o f h p l i e d s t a t e s t h a t ~ b e h ~ f u r t b e a m ~ ~ t b e y a r e e s U ; v ~ ~  
step-by-step procedure of filling iu tbe squares is as follows: Krst, we p b  a cross h any 
quare corresponding to a pair of seates whose outputs are not equal for way inpat. In I& ease, 
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Table 9.4 
State Table to Be Reduced 

N%xt State Output 
Present 

State x = O  x = l  x = O  x = l  

FIGURE 9.22 
Implication table 

d , e J  

X X 

X X X  

x x x J  

c , d x  ' j e X  x x x 
a ,  b 

x x X d , e J d , s J  x 

state c has a different output than any other state, so a cross is placed in the two squares of row 
c and the four squares of columa c. There are nine other squares in this category in the impli- 
cation table. 

Next, we enter in the remaining squares the pairs of states that am implied by the pair of statw 
representing the squares. We do that starting h m  the top square in the left column and going 
down and then proceeding with the next column to the right. From the state table, we see that 
pair (a, b) implies (d, s), so Id, e) is recorded in the square defined by column a and row b. We 
proceed in this manner until the entire table is completed. Note that states (d, e) are equivalent 
because they go to the same next state and have the same output. Tfierefore, a check mark is 
recorded in the square defined by column d and row e, indicating that the two states are equiv- 
alent and independent of any implied pair. 



The next step is to makc successive tbrough the table to determine whether my ad- 
ditional squares should be mark4 with a cross. A square in &e table is crossed out if it con- 
tains at least one implied pair that is not equivdent. For exampk tbe square d e f ~  by a d 
f is marked with a cross next to c, d becstuse tbe pair (c, 4 dew a quare that conrains a 
cross. This @we is rcpated until no additional squares can lx crossed out. Finally, all 
the quarathathave wcfosses~~withcheckmarks.Tbe%esquansdtfinepairsof 
equivalent states. En this exampie, the equivalent states are 

We now combine pairs of mtca into larger groups of equivalent states. Tbe last three pairs 
can be combined into or set of three equivaIent statcs (d, e, g) b u s e  each one of the states in 
the group is equivalent to the other two. The final partition of the states consists of h equiv- 
alent states found from the implication table, mg&a with all the remaining stam in the state 
table that are not equivalent to my other state. Thig group consists of 

T h u q T a b I e 9 . 4 ~ a n b e ~ u c e d h s e ~ s ~ t o f o u r , o n e f o r e a c h m b u o f ~ ~ -  
ing parlition. The. reduced statc table is obtained by repking state b by a and states e and g 
by d and is shown in 'Isblc 9.5. 

Mmging of tlw Flaw Table 
There arc mcasions when the state MIe for a rnguentid c h i t  is incomplekly spciried. This 
happens when certain combinations of inputs or input sequences never occur because of ex- 
ternal or i a d  const&&. Ia such a case, the next states a d  outputs that should have oc- 
c u d  if all inputs were possible are never atrained and are r e g d  as don't-care conditions. 
Although synclmnous sequential circuits may sometimes be q m a e d  by iacampIetely spec; 
i6ed state tables, our i n m t  hme is with asynchrom sequential circuits, fbr which the prim- 
itive flow table is always incompletely s-ed. 

Incompletely speeifiod states can h combid  to reduce the number of states in thc flow 
table. Such states cannot be called equivalent, because the f d  definition of equivalence re- 
quires that 1 1  outputs and next states be m e d  for all inputs. Inmead, two hcompktely 
spbcified states that can bt combined are said to be compatibb. h states are coqaible if, 

Table 9.5 
~ u t m d ~ r a b k  

Prsrant 
m state a p r t  

State x = O  x = l  x = O  x 5 l  
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00 01 11 10 

(a) Primitive flow table 
b c d e  

@) Implication table 

FH;UIIE Pa3 
Flow and implication tables 

for each possible input, they have the same output whenever it is spex2k.d and their next states 
are compatible whenever they are specified. All don't-care conditions marked with dashes have 
no effect in the search for compatible states, as they represent unspecified conditions, 

The p e s s  that must be applied in order to find a suitable group of compatibles for the pur- 
pose of merging a flow table can be divided into three steps: 

1. Determine dI compatible pairs by using the implication table. 
2. Find the maximal compatibles with the use of a merger diagram. 
3. Find a minimal collection of compatibles that covers all the states and is closed. 

The minimal collection of compatibIes is then used to merge the rows of the flow table. We will 
now proceed to show and explain the three procedural steps, using the primitive flow table 
£ram the design example in the previous section, 

Compatible Palrs 

7he procedure for finding compatible pairs is illumakd in Rg. 9.23. 'ih Wth Qow table in (a) 
is the same a Fig, 9,16. The entries in each square the mxt s¶ate d 'Ibe d a s h  
represent the unspecfied stam or outputs. The impWm table is u d  Bo M cmqmthle states, 
just as it is used to find equivalent states in tke compket%y s@kd -lbe m l y  diffeFeme is that. 
whm~gmws,weareatli~toartjustthedashestofitany~d~ 

Two states are compatible if, in every column of the wmqnmhg rows in the flow table, 
there are identical or compatible states and if there is no conflict in the output vdues, For ex- 
ample, rows a and b in the flow table are found to be compatible, bntmws a md f will k corn- 
patible only if c and f are compatible. However, rows c and f are not compatible, because they 
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have different outputs in the first column. Tbis information is recorded in h e  implication table. 
A check mark designates a square whose pair of states are coqd i l e .  Those states which are 
not compatible are marked with a moss. Tbe r;emaining squares are Fecwded with the implied 
pairs that need fuaher investigatim 

Once the initial implication table has been filled, it is scanned again to cross out the squares 
whose implied states are not co@ble. The r e m b h g  s q m  hat amtain check marks & 
fine the compatible pairs. In the example of Fig. 9.23, the compakibk pin am 

Maximal Compatibles 

Having found all the compatible pairs, the next step i to find larger sets of states that are com- 
patible. The -mu1 compatible is a group of compahTb1es that contains all the possible com- 
b i o m  of compatible states. The maximal cmpfible can be obtained from a m q e r  diagmm, 
as shown in Fig. 9.24, The merger dhgfm is a graph in which each state is represeated by a 
dot placed along the circumference of a circle. Lines are drawn between any two corrwpon- 
ding dots that form a compatible pair All possible compalibk can be & a h d  h u  h e  merg- 
er diagram by ob&g the geometrical pattems in which states are c m u d  to each other. 
An isolated dot represents a state that is not compatible with my other state. A h e  q m e n t s  
a compatible pair. A triangle constitutes a compatible with the s-. An n-state compatible 
is repmental in the merger diagram by an n-sided polygon with all its diagwals connected. 

The merger diagram of Fi. 9.24(a) is obtained fbm lhe bit o f ~ ~ l e  pairs derived £mm 
the implication table of Fig. 9.23. There are seven b g h t  h Coanectiag the dots, we for 
each compatible pair. The lines form a geometrical pattern consisting of two Criaugles con- 
necting (a. c, d) and (b, e,fi and a line (a, b). The mttximal compatibles are 

(4 b) (a, c, d) (b, e, f) 

d 

(a) Maximal compatible: 
IU, b)  (0, c, 4 (b ,  e,n 

FlGUiiL 9.24 
Merger diagrams 
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Figure 9.24(b) shows the merger diagram of an eight-state flow table. The geometricd pat- 
terns are a rectangle with its two diagonals connected to form the four-state compatible (a, b, 
e, f), a triangle (b, c, h), a line (c, 4, and a single state g that is not compatible with any other 
state. The maximal compatibles are 

The maximal compatible set can be used to merge the flow table by assigning one row in the 
reduced table to each member of the set. However, quite often the maximal compatibles do not 
necessarily constitute the set of compatibles that is minimal, In many cases, it is possible to find 
a smaller collection of compatibles that will satisfy the condition for merging rows. 

Clod-Cwering Condition 

The condition that must be satisfied for merging rows is that the set of chosen compatibles 
must cover all the states and must be closed. The set will cover dl the states if it includes all 
the states of the original state table, The closure condition is satisfied if there are no implied 
states or if the implied states are included within the set. A closed set of compatibles that cov- 
ers all the states is called a closed covering. The closed-covering condition will be explained 
by means of two examples. 

Consider the maximal compatibles from Fig. 9.24(a). If we remove (a, b), we are left with 
a set of two compatibles: 

(a3 c, 6) (b, e,f) 

All six states from the flow table in Fig. 9.23 are included in this set. Thus, the set satisfies the 
covering condition. There are no impLied states for (a, c); (a, 4; (c, dj; (b, e); (b, a; and (e, fi, 
as is seen fiom the implication table of Fig. 9.23(b), so the closure condition is also satisfied. 
Therefore, the primitive flow table can be merged into two rows, one for each of the compat- 
ibles. The detailed construction of the reduced table for this particular example was done in the 
previous section and is shown in Fig. 9.17(b). 

The second example is from a primitive flow table (not shown) whose implication table is 
given in Fig. 9.25(a). The compatible pairs derived from the implication table are 

(a, b> (a, 4 (b, C )  (c, 4 (c, 4 (d, el 

From the merger diagram of Fig. 9.25@), we determine the maximal compatibles: 

If we choose the two compatibles 

(a, b) (c, d, ee) 
. w - -  

then the set will cover all five gtates of the origrnaf table. The clomm am&b can be checked 
by means of a closure table, as shown in Fig. 9.251~). The implid paiFs Wed for each corn- 
patible are taken directly from the implication table. 'ihe implied pair of states for {a, b) is (b, 
c). But (b, cJ is not includedin the chosen set of (a, b) (c, d, c), so this set of compatibles is not 
closed, A set of compatibles that will satisfy the c l o s e d - c o ~ ~  w t i w  is 



a b c d  
(a) Implication table 

Compatibles 

(c) Closure table 

FIGURE 9.25 
Chmslng a set of compathks 

The set is covered because it contains all five states. Note that the same state can be repeated 
more than once. The closure condition is 6 e . d  because &e implied states are (b, c)  (d,  e) 
and (a, d), whicb are included in the set. The original flow table (not shown here) can be re- 
duced from five rows to thre rows by m q i q  rows a and d, b and c, and c, d, and e. Note d s ~  
that an alternative satisfactory choice of closed-oovered wmpatibles would be (a, b) (b, c)  
(d, e). In general, here may be more than one possible way of merging rows when reducing a 
primitive flow table. 

9.6  RACE-FREE STATE ASSIGNMENT 

Once a reduced flow table has k e n  &ved for an asynchronws sequential circuit, the next step 
in the design is to assign binary variables to each stable state. This assignment results in the 
transformation of the flow table into irs equivalent transition table. The primary objective in 
choosing a proper binary state assignment is the prevention of critical races. The problem of 
critical races was discussed in MOIL 9.2 in conjunction with Fig. 9.7. 
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Critical races can be avoided by making a binary state assignment in such a way that only 
one variable changes at my given time when a state transition occurs in the flow table. To ac- 
complish this objective, it is necessary that states between which transitions occur h given ad- 
jacent assignments. l k o  binary values are said to be Macent if they differ in only one variable. 
For example, 01 0 and 0 1 1 are adjacent because they differ only in the third bit. 

In order to ensure that a transition table has no critical races, it is necessary to test each pos- 
sible transition between two stable states and verify that the binary state variables change one 
at a time. This is a tedious process, especially when there are many rows and columns in the 
table. To simplify matters, we will explain the procedure of binary state assignment by going 
through examples with only three and four rows in the flow table. These examples will demon- 
strate the general procedure that must be followed to ensure a race-free state assignment. The 
procedure can then be applied to flow tables with my number of rows and columns. 

Three-Row Flow-Table Example 

lh assignment of a single binary variable to a flow table with two rows dws not impose critical 
race problems. A flow table with three rows requires an assignment of two binary variables. The as- 
signment of binary valm to the stable states may cause critical races if it is not done properly. Cm- 
sider, for example, the reduced flow table of Fig, 9.26(a), The outputs have been omitted from the 
table for simplicity. Impecdion of row a reveals that there is a msition from state a to state b in col- 
umn 01 and from state a to state c in column f 1, This inEormation is kansferred into a hwnsition di- 
rrgraa, as shown in Fig. 9.m). The directd lines horn a to b and from a to c represent the two 
transitions just mentioned. Similarly, the transitions h the other two rows are repmmted by di- 
d lines in the diagram, which is a pictorial reprmatation of all required &tiom betwem~ows. 

To avoid critical races, we must find a binary state assignment such that only m e  b i i  vari- 
able changes during each state transition. An attempt to find such an assignment is shown in 
the transition d i a v  State a is assigned binary 00, and state c is assigned binary 1 1. This as- 
signment will cause a critical race during the transition from a to c because there are two 
changes in the binary state variables and the transition from a to c may occur directly a pass 
through b. Note that the transition from c to a also causes a race condtion, but it is noncritical 
because the transition does not pass through other states, 

(a) Flow table 

FIGURE 9.26 
Three-row flow-table example 
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(a) F b w  table (b) Transition diagram 

A race-free assignment can be obtained if we add an ex- mw to the flow table. The use of 
a fwah row does not increase the number o f b i i  state vxhblea, but it allows the famation 
of cycles between two stable states. Consider the modified flow W e  in Fig. 9.27. l l ~  &st three 
rows represent the same conditions as the original three-row table. The fourth row, labeled d, 
is assigned the binary value 10, which is adjacent to both a and c. The fmndi(311 from a to e 
must now go through d, with the result that the binary variables change from a = 00, to 
d = 10, to c = 1 1, thus avoiding a critical race. This is a c c o m p l i ~ b y  changing row a, eol- 
umn 11, to d ttnd row d, column 11, to c. Similarly, the transition h m  c b a is shown to go 
through unstable state d even though column 00 represents a nonuitid race. 

The transition table corresponding to the flow table with the indicated binary state assign- 
ment is shown in Fig. 9.28. The two dashes in row d mpresent um@ed states that can h 
considered don't-care conditions. However, care must h taken not to assign 10 to h squares, 
in order to avoid the possibility of an unwmted stable state being established in the foPrth row. 

AGm 9.m 
tnmltion table 
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(a) Flow table (b) Transition diagram 

FIGURE 929 
Four-row flow-table e m  ple 

. . . . . - . . - - - . . . 

This example demonstrates the use of an extra row in the flow table for the purpose of 
achieving a race-he assignment. The extra row is not assigned to any specific stable state., but 
instead is used to convert a critical race into a cycle that goes through adjacent &ansitions be- 
tween two stable states. Sometimes, just one extra row may not be sufficient to prevent criti- 
cal races, and it may be necessary to add two or more extra rows in the flaw table. This 
possibility is demonstrated in the next example. 

Four-Row Flow-Table Example ; 
A flow table with four rows requires a minimum of two state variables. Although a race-free 
assignment is sometimes possible with only two binary state variables, in many cases the m- 
quirement of extra rows to avoid critical races will dictate the use of three binary state variables. 
Consider, for example, the flow table and its corre,smg -sition dmgram shown inFig. 9.29. 
If there were no transitions in the diagonal direction (from b to d or from c to a), it would be 
possible to find an adjacent assignment for the remaining four transitions. With one or two di- 
agonal transitions, there is no way of assigning two binary variables that satisfy the adjacency 
requirement. Therefore, at least three binary state variables are needed. 

Figure 9.30 shows a state assignment map that is suitable for any fm-row flow table, 
States a, b, c, and d are the original states, and c, f, and g ue extra states. States placed in 
adjacent squares in the map will have adjacent assignments. State b is assignad binary 001 
and is adjacent to the other thethree original states. The tmxitioo hm a to d mmt be directed 
through the exka state e to produce a cycle so bat only oae binarg at a time. 
Similarly, the transition from c to a is directed thwngb g, ~ . ~ t m o & i o n  from d to c 
goes through f. By using the assignment given by the map, tbeBDgtm labh can be ex- 
panded to a seven-row table that is free of critical -. as ddhiF- 9.31. Note that 
although the flow table has seven mws. there are only fm staMa -. me uncircled 
states in the three extra rows a ~ e  there merely to provide a mfnsetmnith  between the 
stable states. 
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(a) Binary wignment 
d =I01 f =lll c =011 

@) Transition diagram 

This example demonstrates a psdble way of 6elechg extra rows in a flow table in order 
. 

to achieve a race-free assignment. A map similar to the one used in Fig. 930(a) 
can be helpful in most cases. Sorneths we a n  take advantage of umpaifed entries in the 
flow table. Instead of adding rows to the table, we may be able to eliminate critical races by 
directing some of the state transitions through the don'tcm entries. The actual assignmat 
is done by trial and error, until a satisfactory assignment is found that resolves all critical 
races. 
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The method for making r a c e h e  state assignments by adding extra rows in the flow table, as 
demonsmted in the previous two examples, is sometimes referred to as the shawd-tvw method. 
A second methd, called the multiple-mw methcd, is not as efficient, but is easier to apply. In mul- 
tiple-row assignment, each state in the original flow table is replaced by two or more c ~ w s  
of state variables. The stateassignment map of Fig. 9.32(a) shows a multiple-row assignment that 
can be used with any four-row flow table. There are two binary state variables for each stable state, 
each variable being the logical complement of the other. For example, the original state a is replaced 
with two equivalent states al = 000 and ap = 1 I 1. The output values, not shown here, must be 
the same in a 1 and az. Note that a 1 is adjacent to bl , cp, and $1, and a2 is adjacent to cl , b2, and 
d2, and, shnkly, each sstate is adjacent to three states with different letter designations, The k- 
hvior of the circuit is the same whether the internal state is n~ or az, and so on for ae other states. 

Figure 9.32@) shows the multiple-row assignment for the original flow table of Fig. 929(a). 
The expanded table is formed by replacing each row of the original table with two rows. For 
example, row b is replaced by rows bl and h, and stable state b is entered in columns 00 and 11 
in both rows bl and b2. After all the stable states have been entered, the unstable states are 
U e d  in by reference to the assignment specified in the map of part (a), In choosing the next 
state for a given present state, a state that is adjacent to the present state is selected from the 
map. In the original table, the next states of b are a and d for inputs 10 and 01, respectively, In 
the expanded table, the next states of bl are a1 and d2, because these are the states adjacent to 
bl. Similarly, the next states of are a2 and dl, because they are adjacent to b2. 

(a) Binary assignment 

FIGURE 9.32 
Multiple-row assignment 
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In the multiple-mw assignment, the change from one stable state to a n o k  will always 
cause a change of only one binary state variable. Each stable state has two binary assignments 
with exactly the same output. At any given time, only one of the assignments is in we. For ex- 
ample, if we start with state a1 and input 01 and then change the inpat to 11,01,00, and back 
to 01, the sequence of i n t d  states will be al, dl ,  q, and al. Although the circuit starts starts state 
a1 and terminates in state az, as faras the inputmtput relationship is cwceraed, the two stares 
a1 and a2 are equivalent to state a of the original £low table. 

9 . 7  HAZARDS 

In designing asynchronous sequential circuits, cwe must be Wen to conform with certain re- 
strictions and precautions to ensure that the circuits aperate p l y .  The circuit must be op- 
erated in fundamental mode with only one input changing at my time and must be free of 
critical races. In addition, there is one more phenomenon, called a hazard, that my cause the 
circuit to malfimction. Hazards are unwanted switching msients that may appear at the our- 
put of a circuit because different paths exhibit different propagation delays. Hazards occur in 
combinational circuits, where they may cause a temporary fak  output value. When they occur 
in asynchronous sequentid circuits, hazards may result in st W t i o n  to a wrong stable state. 
It is therefore necessary to check for possible hazards and daemhe  w h e w  they can cause 
improper v t i w s .  If so, then st- must be taken to eliminate their effect. 

Hazards in Combkrational Cirmlts 

A hazard is a condition in which a change in a single variable prcduces a momentary change 
in output when no change in output &odd occur. The circuit of Fig. 9.33(a) depicts the oc- 
currence of a hazard. Assume that all three inputs are initially equal to 1. This causes the out- 
put of gate 1 to be 1, that of gate 2 to be 0, and that of the circuit to be 1. Now cwsider a 
change in x2 from 1 to 0. Then the output of gate 1 changes to 0 and that of gate 2 changes to 
1, leaving the output at 1. However, the outpld may A '1 y go to 0 if the ppgation &lay 
through the inverter is taken into considedom The delay in the inverter may cause the out- 
put of gate I to change to 0 before the output of gate 2 changes to 1. In that case, both inputs 

X3 = 1 

(a) m R  circuit 

q = l  

(b) NAND chit 

FKkUIE 9.33 
Circuits YVffh hazards 
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of gate 3 are momentarily equal to 0, causing the output to go to 0 for the short time during 
which the input signal from xz is delayed while it is propagating through the inverter circuit. 

The circuit of Fig. 9.33(b) is a NAND implementation of the Boolean function in Fig. 9.33@), 
and it has a hazard for the same reason. Because gates 1 and 2 are NAND gates, their outputs 
are the complement of the outputs of the corresponding AND gates. When xz changes from 1 
to 0, both inputs of gate 3 may be equal to 1, causing the output to produce a momentag change 
to 0 when it should have stayed at 1. 

The two circuits shown in Fig. 9.33 implement the Boolean function in sum-of-products form: 

Y = x*xz + x5x3 

This type of implementation may cause the output to go to 0 when it should remain a 1. If, how- 
ever, the circuit is implemented instead in product-of-sums form (see Section 3 . 3 ,  namely, 

Y = (xl + x $ ) ( x z  + xg) 

then the output may momentarily go to 1 when it should remain 0. The first case is referred to 
as staiic 1-hazard and the second case as ssatic 0-hazard. A third type of hazard, known as 
dynamic k a d ,  causes the output to change three or more times when it should change from 
1 to 0 or from 0 to 1. Figure 9,34 ilIustrates the three types of hazards. When a circuit is im- 
plemented in sum-of-products form with AND-OR gates or with NAND gates, the removal of 
static 1-hazard guarantees that no static 0-hazards or dynamic hazards will occur. 

A hazard can be detected by inspection of the map of the particular circuit. To illustrate, con- 
sider the map in Fig. 9.35(a), which is a plot of the function implemented in Fig. 9.33. The 
change in xz from 1 to 0 moves the circuit from mintem 1 1 1 to mintem 10 1. The hazard exists 
because the change in input results in a different product tern covering the two minterrns. 

(a) Static 1-hazard 

WGUUE 9.34 
Types of hazards 

(b) Static 0-hazard 

(a) Y n x 1 x 2 +  x ' ~ x ~  

0 - 
(c) Dynamic hazard 

F l t W  935 
Maps Illustrating a hazard and itc removal 

f i n  
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Minterm 11 1 is c o v e d  by the p d u c t  term implemented in gate 1 of fig. 9.33, and miatem 
101 is covered by the product term implemented in gate 2. whenever b circuit must m e  from 
one product term to another, there is a possibility of a momentary interval when neither tenn 
is equal to 1, giving rise to an ufldeimble 0 output. 

The remedy for eliminating a hazard is to enclose the two mintems in question with another 
product term that overlaps both gmupings. This situation is shown in the map of fig. 9.35(b), 
where the two &terms that cause tbe hazard are combined into one product term The haz- 
ard-free circuit obtained by such a contigumtion is shown in Fig. 9.36. The e* gate in the 
circuit generates the product term ~1x3. In general, hazards in c o m b h i d  cjrcuits can be re- 
moved by covering any two minterms that m y  produce a h d  with a p d m  term common 
to both. The removal of hazards req- the addition of redundant gates to the circuit. 

Hazards in Sequentla1 Circults 

In normal cornbinationalcircuit design associated with synchortous sequential circuits, haz- 
ards are of no concern, since momentary erroneous signals are not generally troublesome. 
However, if a momentary i n m m  signal is fed back in an asynchronous sequential circuit, it 
may cause the circuit to go to the wrong stable state. This situation is illustrated in Fig. 9.37. 
If the circuit is in total stable state yxlxz = 1 1 1 and input xz changes ftom 1 to 0. the next total 
stable state should be 110. However, because of the hazard, output Y may go to 0 momentarily. 
If this false signal feeds back into gate 2 before the output of the inverter goes to 1, the o u p t  
of gate 2 will remain at 0 and the circuit will switch to the inwrrect total stable state 010. This 
maIfunction can h eliminated by adding an extra gate, as is done in Fig. 9.36. 

Implementation wlth SR Latches 

Another way to avoid static buds in uyncbmm~~ sequential circuits is to implement the cir- 
cuit with SR latches. A m m m t q  0 signal applied to the S or R inputs of a NOR latch will have 
no effect on the state of the circuit. Similarly, a momentary 1 s i g d  applied to the S and R in- 
puts of a NAND latch will have no effect on the state of the latch In Elg. 9.33(b), we observed 
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(a) Logic diagram 

(b) Transition table (c) Map for Y 

FIGURE P.3P 
Hazard In an a5ynchronous sequential dmit 

that a two-level sum-of-products expression implemented with NAND gates may have a static 
1-hazard if both inputs of gate 3 go to I, changing the output from 1 to 0 momentarily. But if 
gate 3 is part of a latch, the momentary 1 signal will have no effect on the output, because a 
third input to the gate w ~ l l  come from the complemented side of the latch that will be equal to 
0 and thus maintain the output at 1. To clarify what was just said, consider a NAND SR latch 
with the folIowing Boolean functions for S and R: 

S = A3 + C D  
R = A'C 

Since this is a NAND latch, we must apply the complemented values to the inputs: 

S = (AB + CD)' = (AB)'(CD)'  
R = (A'C)' 

This implementation is shown in Fig. 9.38(a). S is g a d  with EWO NAND @ t ~  and one 
AND gate. The Boolean function for output Q is ->& 

1 ~ I I L A .  

Q = (Q'S)' = @'(AB)'(CD)'I' 

This function is generated in Fig. 9.38(b) with two levels of N m  E m  Q i 
to 1, then Q' is equal to 0. If two of die b go . * '":pDD-Z. a NAND gate as- 
sociated with output Q will remain at 1 because Q' is m h i a h l d L  

Figure 9.38(b) shows a typical circuit thsrt - k rrPad tu m q - 4  v- 
tial circuits. The two NAND gates forming the latch wrmrl)y b m  W e r ,  if the 
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FIGURE 9.38 
Latch (mplementation 

S or R functions contain two or more product terms when expressed as a sum of pducts, then 
the corresponding NAND gate of the SR latch will have three or more inputs. Thw, tbe two 
terms in the original sum-of-products expmsim for S arc AB and CD, and w h  is implemented 
with a NAND gate whose output is applied to the input of the NAND latch. In this way, each 
state wiable requires a twu-level circuit of NAND gates. The h a  level consists of NAND gats 
that implement each product tenn in the original Boolean expression of S md R. The second 
level forms the cross-coupled connection of the SR latch with inputs that come from the out- 
put~ of each NAND gate in the first level. 

Essential Hazards 

Thus far, we have considered what are known as static and dynamic hazards. Anoher type of 
hazard that may occur in asphronous sequential circuits is called an m s d  hazard This 
typeofhazardiscausedby unequaldelaysdongtwo ormore paths Woriginatefmmthe same 
input. An excessive delay through an inverter circuit in wmparison to the &lay associated 
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with the feedback path may cause such a hazard. Essential hazards cannot be corrected by 
adding redundant gates as in static hazards. The problem that they impose can be corrected by 
adjusting the amount of delay in the affected path. To avoid essential hazards, each feedback 
loop must be handled with individual care to ensure that the delay in the feedback path is long 
enough compared with delays of other signals that originate from the input terminals, This 
problem tends to be specialized, as it depends on the particular circuit used and the size of the 
delays that are encounted in its various paths. 

9.8  D E S I G N  E X A M P L E  

We are now in a position to examine a complete design example of an asynchronous sequen- 
tial circuit. This example may serve as a reference for the design of other, similar circuits. We 
wil l  demonstrate the method of design by following the recommended procedural steps listed 
at the end of Section 9.4 and repeated next. After stating the design specifications, 

1. Derive a primitive flow table, 
2. Reduce the flow table by merging the rows. 
3. Make a race-free binary state assignment. 
4. Obtain the transition table and output map, 
5. Obtain the logic diagram, using SR latches. 

Design SpecIficatlons 
It is necessary to design a negative-edge-higgmd T £lipflop. The circuit has two inputs, T (tog- 
gle) and C (clock), and one output, Q. The output state is complemented if T = 1 and the clock 
C changes from I to 0 (negative-edge triggering). Otherwise, under any other input condition, 
the output Q remains unchanged. Although this circuit can be used as a flip-flop in clocked se- 
quential circuits, the internal design of the flip-flop (as is the case with all other flip-flops) is 
an asynchronous problem. 

Prlmltbe Flow Tabk 
The derivation of the primitive flow table can be facilitated if we h t  derive a table that 
lists d l  possible total states in the circuil. This table is shown&W.9.6. We s h f L  with 
the input condition TC = 11 and assign to it state a. Tbe citmitm,)ortrle b radtbt olrt- 
put Q is complemented from 0 to 1 when C changes fmm 1 8o T w  a 1. An- 
other change in the output occurs when the circuit gowr from - c ro mk d In d& case, 
T = 1, C changes from 1 to 0, and the output Q is -- 1 w 0,- atber 
four states in the table do not change the ompt, is initially 
0, it stays at 0, and if it is initidly at 1, it stays a 1, cvm- I-s. 
This analysis identifies six totd states. Note that of two input 
variables, such as that from 01 to 10, are no! hlu&d, mw*- for fun- 
damental-mode operation. - rx;l 
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Tabte 9.6 
~ O f T o f a l S ~  

Inputs Output 

State T C 4 Commmts 

a 1 1 0 Initial ompm is 0 
b 1 0 1 After state a 
C 1 1 1 hdtialoutpmisl 
d 1 0 0 Afterstater: 
I 0 0 0 After state d or f 
f o 1 o Aftermema 
8 0 0 1 Aftersmkborh 
h 0 1 1 ' A f t t r e g m c  

The primitive flow table is shown in Fig. 9.39. The infomation for the table can be ob- 
tained directly from the mnditims listed in Table 9.6. First, in & row, we fdl in one square 
belonging to the stable state in that row, as listed in the table. Then we enter dashes in those 
squares whose input M e r s  by two fmm tho input to the stable state. 
F h d y ,  we identify the unstable &tiof18 by IXW&I~ the i d d o n  listed under the corn- 
ments in Table 9.6. 



FIGURE P.# 
Implication table 

Merglng of the Flow Table 

The rows in the primitive flow table are merged by first obtaining all compatible pairs of states. 
This is done by means of the implication table shown in Fig. 9.40. The squares that contain 
check marks define the compatible pairs: 

( a , f )  (b,  gl (b,  h)  (c, h) (d, e) (d,fl ( e , f  1 k, h) 

The maximal compatibles are obtained from the merger diagram shown in Fig. 9.41. The 
geometrical patterns that are recognized in the diagram consist of two triangles and two straight 
lines. The maximal compatible set is 

(a,f) (b, g, h) Ec, hh) Id, e, f 1 
In this particular example, the minimal collection of campatiMesr is also the nmwbd campat- 
ible set. Note that the closed condition is satisfied because tht s e t s  all* m Q i d  dgttt 
states listed in the primitive flow table, althwgh states h aadf a o e ~ T l w ~ c m k  
dition is also satisfied, because all the compatible pairs have m irml;llr u m bt 
from the implication table. 

The reduced flow table is shown in Fig. 9.42. 'IbE CpME 
- -  -. , -@w*m 

taiTls the original state symbols, but merges h e  .. 
. - - : m o d  

fare compatible and are merged iato o m  row that h- at& 
states. Similarly, the other three comp&bIe sctp d m  rs-e b 
four rows, retaining the eight original 1- sydmh T b w  d~ 
merged flow table is shown in part (b) of & figure. m 4-m- 



to all the stable states in each merged m. Thus, the symbol f k replaced by a, g and h are re- 
placed by b, and similarly for th other two mws. The second akmafive shows clearly a four- 
s- flow table with only four Ietter SyubIs hr the states. 

State Asdgnmant and Trondtlsn Tmbk 
The next step in the design is to fiad a binary assignment fur the four stable states in 
the reduced flow table. In order to h d  a suiWle adjacent aasisnment, we draw the d t i w  
diagram, as shown in Fig. 9.43. Fbr this exmplt, it is psible  to obtain a suitable djacat as- 
signment without the n d  of extra -, bscapsie there are no dbgoml lines in tb transition 
diagram. 
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FIGURE 9.43 
Transition dlagram 

(a) Transition table (b) Output map Q = y2 

00 01 11 10 

FIG.URE PA4 
Transition table and output map 

1 1  

Substiming the binary assignment indicated in the transition diagram iato lh mimed flow 
table, we obtain the transition table shown in Fig. 9.44. The output map is oWmd h m  the 
reduced flow table. The dashes in the output d o n  are assigned tD tht m h  
established in Section 9.4. 

togk Diagram 

o o o x  

1 1 1 1  

1 

0 0 0 0  

The circuit to be designed has two wa& 
in Fig. 9.44 shows that Q is e q d  to h e  
quires two SR Iat&ea, one for d mk 
are shown in Fig. 9.45. The map am 
table by using the conditions s- 
simplified Boolean functions are listed muk ench ' 

X 
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0 X X 

x o x  

0 0 0  

0 0 0 

M) 01 11 10 

The bgic diagram of the circuit is shown in Fig, 9.46. Here we use two NAND latches with 
two or three inputs in each gale. This imphemlion is amding to the pamn established in 
Section 9.7 in conjunction with Fig. 9.38(b). The S and R input fmctiom require six NAND 
gates for heir implementation. 

The example just presented illustram th complexity involved in desig&g qmhmnous 
sequential circuits. It was to go t h ~ ~ @  10 diagram in ordm to obtain the h a l  cir- 
cuit diagram. Although most digital circuits are synchronous, th%te are occasions when one 
has to &a1 with asynchnmow behavior, Tbe basic pro@= p m t e d  in this chapter are es- 
sential to a full understanding of the internat khaviw of digital c h i t s .  

0 0 0  

X X X  

X X X O  

0 0 0 0  



FIGURE 9.46 
logic dlagrarn of negatldge-triggmed Tfllp-flop 

P R O B L E M S  

Answers to problems m a r i d  with * ~pptar at the end of the book. 
9.1 (a) Explain the difference between ~yuch ronm~~  and spchrwoas qumlial circllirs. 

{b) Define fundamental-mode operation. 
(c) Explain the difference between stable and unstable -. 
(d) What i s  the difference bttwtcn an internal state and a total spre? 

938 Derive the hasition table for the asynchronous qwtthl cirmit ~MWEI m Fig. F X L  I M m u h  h 
sequence of internal states qG for the following sapm afjmpots ~1x2: m, 10. 11,Ol. 1 1, 10,OO. 
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9.3 An asynchronous saqucntial circuit is described by the excitation function 

Y = x lx$  + (xl + x i )y  
and the output function 

z = y  

(a) Draw the logic diagram of the circuit. 
@) Derive the transition table and output map. 
(c) Obtain a twestate flow table. 
Id)* Describe in words the W v i o r  of the circuit. 

?:4 An asynchronous sequential circuit has two inmd states and one -t The two excitation 
functions and w e  output function describing the cifcuit are, reqedvely, 

Y1 = ~ 1 x 2  + xly$ + 
Y2 = xz + X ~ Y ~ Y Z  + X;YI 

z = x2 + y1 
(a) Draw the logic diagram of the c h i t .  
(b) Derive the transition table and output map. 
(c)* Obtain a flow table for the circuit. 

9.3 Convert the flow table of Fig. P9.5 into a transition table by d& tbe follming binary val- 
ues to the states: a = 110, b = 11. and c = 01. 
(a) Assign values to the extra f d  state to avoid critical rsoes. 
(b) Assign outputs to the don'tcare states to avoid momentary f a h  outputs. 
(c)* Derive the logic diagram of the Circuit. 

9.6 Investigate the tramition table of Fig. W.6, and determiae all race conditicus and w k h  they 
are critical or noncritical. Determine a h  w e r  there are any cycles. 

9.7 Andy, the SR latch with control shown in Fig. 5.5. Obtain tk muition table, a d  sbow that 
the circuit is unstable when all tbnse inputs are equal to 1. 

Modify the diagram of FG. 5.5(a) to convert it into a JK type of latch by insdng two feedback '. 
comedons from the outputs to the inputs. Show that the circuit is unstable when J = K = 1 
while the conml input C remains in &e 1 state. 



9.9 For the asynchronous sequential circuit shown in Fig. P9.9, 
(a) derive the Boolean functions for the outputs of the two SR latches Y1 and Y2. Note that the S 

input of the second latch is x i y ; .  
(b) derive the transition table and output map of the circuit. 
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9.101 Implement the circuit defined in Problem 9.3 with a NOR SR Iatch. Repeat with a NAND SR 
k h .  

9.1 1 lmplrment the circuit defind in Roblem 9.4 with NAND SR latches. 

9.1 2 Obtain a primitive flow table for a circuit with two inputs, xl  and xz, and two outputs, z1 and 22, 
that satisfy the following four conditions: 
(a) When ~ 1 x 2  = 00, the output is zlzz = 00. 
@I Whenxl = 1 andx2chang~hmOto1,theoutputiszlzz = 01. 
(c) Whcnxz = 1 mdxl  changwfmmOta 1, theoueputiszl~ = 10. 
(dl Otherwise, the output h s  not chauge. 

9.1P A ~ l i g b t i s i n s ~ a t a j u n c t i m o f a ~ d a d T b e ~ ~ ~ I l e d b y t w o s w i t c h -  
ea in the rails plaoed I mile apart on e i k  side of the jm&(m. A switch is turned cm when the train 
is over it and is mned off otherwise. The m c  light changes kom green (logic 0) to red (logic 1 ) 
when the beginning of the train is 1 mile h m  the junctiw. The light chmp  back to gcen when 
theendofthe trainis 1 m i l e a w a y f r w n ~ ~ m . A s s u m e t h a t ~ l e n g t h o f t b e t r a i n k I w s ~  
2 m h .  
(a) Obtain a primitive flow table for the circuit. 
@) Show that the flow table can be reduced to fow lows. 

9.14 It is necessary to design an asynchronous sequential circuit with two inputs, XI and xz, and one 
output, z. Initially, both inputs and output are equal to 0. When xl or x2 kames 1. t becomes 1. 
When the second input also becomes 1, the output changes to 0. The output stays at O until the 
circuit p s  back to the initial state. 
(a) Obtain a primitive flow table for the circuit, and show that it can be reduced to tbe £low tabb 

shown in Fig, P9.14, 
@) Complete the design of the circuit. 

FIGURE P9.14 

9.1 5 Assign output values to the don't- strltes in the flow tables of Fig. P9.15 in such a way as to 
avoid transient output pulses. 

i Using the implication-table method show that the state table listed in Table 5.7 carmot be re- 
duced any further. 
Reduce the number of mes in tbe state table listed in Problem 5.12. Use an implication table. 

P Merge each of the primitive f i w  table6 shown in Fig. P9.18. hwed as follows: 
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(a) find all compu'ble pairs by means of an implication table. 
(b) Fmd the maximal compatibles by ~lmeaas of a merger dia- 
(c) Find a minimal set of compatibles that covers a l l  the states aud is closed 

9.19 {a) Obtain a binary state assignment for the &ed flow table shorn in Fig. P9.19. Avoid crit- 
ical race conditions. 

(b) Obtain the logic diagram of the c h i t ,  using NAND latches and gates. 
9- Find a critical race& state assignment for the reduced flow table show ia Fig. P9.20. 



Ref ererices 

9.2.1 Consider the reduced flow table shown in Fig. P9.21. 
(a) Obtain the transition diagram, and show that three state variables are needed for a race-free 

binary state assignment. 
{b) Obtain the expanded flow table, using the multiple-row method of auignrnent as specified 

in Fig. 9.32(a). 

9.2P Find a circuit that has no smtic hazards and implements the Boolean function 

F ( A , B , C , D )  = X(O,2,6,7,8, 10, 12) 

9.23* Draw the logic diagram of the product-of-sums expression 

Y = (xl + x ~ ) ( x ~  + x 3 )  

Show that there is a static 0-hazard when x l  and x3 are equal to 5 and x2 goes from 0 to 1. Find 
a way to remove the hazard by adding one more OR gate, 

P a  The Boolean functions for the inputs of an SR latch are 

Obtain the circuit diagram, using a minimum number of NAND gates. 

9.25 Complete the design of the circuit specsed in Problem 9-13. 
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