
Chapter 9

Asynchronous Sequential Logic

9.1 INTRODUCTION

A sequential circuit is specified by a time sequence of inputs, outputs, and internal states, In
synchronous sequential circuits, the change of internal state occurs in response to the syn-
chronized clock puIses, Asynchronous sequential circuits do not use clock pulses. The change
of internal state occurs when them is a change in the input variables. The memory elements in
synchronous sequential circuits are clocked flip-flops, The memory elements in asynchronous
sequential circuits are either unclocked flip-flops or time-delay elements. The memory capa-
bility of a time-delay device hpends on the finite amount of time it takes for the signal to
propagate through digital gates. An asynchronous sequential circuit quite often resembles a
combinational circuit with feedback.
The design of asynchronous sequential circuits is more difficult than that of synchronous cir-

cuits because of the timing problems involved in the feedback path. In a properly designed
synchronous system, timing problems are eliminated by triggering all flip-flops with the pulse
edge. The change from one state to the next occurs during the short lime of the pulse transi-
tion. Since the asynchronous circuit does not use a clock, the state of the system is allowed to
change immediately after the input changes. Care must be taken to ensure that each new state
keeps the circuit in a stable condition even though a feedback palh exists.

Asynchronous sequentid circuits are useful in a variety of applications. They are used when
speed of operation is important, especially in those cases where h e digital system must re-
spond quickly without having to wait for a clock pulse. They are more economical to use in
small independent systems that require only a few components, as it may not be practical to
go to the expense of providing a circuit for generating clock pulses. Asynchronous circuits are
useful in applications where the input signals to the system may change at any time, inde-
pendently of an internal dock. The communication between two units, each having its own

Chapter 9 Asynchronous SquentIal Loglc

independent clock, must be done with asyncbrown*r c h i t s , Digital designers produce
a mixed system in whicb some part of the syPchrowus system has the chmtahtics of an asp
chnous circuit. Icnowledge of a s ~ o u s sequential logic behavior is heIpful in verifying
tbat the total digital system i in th p p r maaner.
Figure 9.1 shows the black diagram of an asymhron~ seqwda! circuit that consists of

a combinational circuit and delay elemen& connected to form feedback Imps. There are n
input variables, m output variables, d k in- states. The delay elements cap be v i s d k d
as providing short-term memory for the mpnW cimrit. In a g-type circuit, the pmpga-
tion delay that exists in the combhtimal circuit path h input to wtput provides sufIIcitnt
delay along the feedback 1- so that no w c delay eleme~ts are rtctually hscned iPto the
feedback path. The prcsent4te ltrtd next- variables in asydmmus sequential Wts
are cummarily called seem variabks md m'mion whzbles, m d y . The excita-
tion variables should not be confused with the excitable table used in the of clocked se-
quential circuits.

Sectton 9.2 Analysis Procedure 41 7

When an input variable changes in value, the y secondary variables do not change instan-
taneously. It takes a certain amount of time for the signal to propagate from the input termi-
nals, thruugh the combinational circuit, to the Y excitation variables, which generate new values
for the next state. These values propagate through the delay elements md become the new
present state for the secondary variables. Note the distinction between the y's and the Ys. In
the steady-state condition, they are the same, but during transition they are not. For a given value
of input variables, the system is stable if the circuit reaches a steady-state condition with yi =
for i = 1,2, . . . , k . Otherwise, the circuit is in a continuous transition and is said to be unsta-
ble. It is important to realize that a transition from one stable state to another occurs only in re-
sponse to a change in an input'variable. This is in contrast to synchronous systems, in which
state transitions occur in response to the application of a clock pulse.

To ensure proper operation, asynchronous sequential circuits must be allowed to attain a sta-
ble state before the input is changed to a new value. Because of &lays in the wires and the gate
circuits, it is impossible to have two or more input variables change at exactly the same instant
of time without anuncertainty as to which one changes first. Therefore, simultaneous changes of
two or more variables are usually prohibited, This restriction means that only one input variable
can change at any one time and the time between two input changes must be longex than the time
it takes the circuit to reach a stable state. Such operation, defined as fidndmntak mode, assumes
that the input signals change one at a time and only when the circuit is in a stable condition.

9.2 A N A L Y S I S PROCEDURE

The analysis of asynchronous sequential circuits consists of obtaining a table or a diagram that
describes the sequence of internal states and outputs as a function of changes in the input vari-
ables. Alogic diagram manifests the behavior of an asynchronous sequential circuit if it has one
or more feedback loops or if it includes unclocked flip-flops. In this section, we will investi-
gate the behavior of asynchronous sequential circuits that have feedback paths without em-
ploying flip-flops, Unclocked flip-flops are called latches, and their use in asynchronous
sequential circuits will be explained in the next section.

The analysis procedure will be presented by means of three specific examples. The f i s t ex-
ample introduces the transition tabIe, the second defines the flow table, and the third investi-
gates the stability of asynchronous sequential circuits.

TramMon Tabla
An example of an asynchronous sequential circuit with only gates is shown inFig. 9.2. The di-
agram clearly shows two feedback loops from the OR gate outputs back to the AND gate in-
puts. The circuit consists of one input variable x and two intend states. The intend states
have two excitation variables, 5 and Yz, and two secondary variables, yl and n. The delay as-
sociated with each feedback loop is obtained from the propagation delay h e e n each y input
and its corresponding Y output. Each logic gate in the path introduces a propagation delay of
about 2 to 10 ns. The wires that conduct electrical signals intrduce approximately a 1-ns delay
for each foot of wire. Thus, w additional external delay elements are necessary when the com-
binati~nal circuit and the wires in the feedback path provide sficient delay.

The analysis of the circuit starts with a consideration of the excitation vadables as outputs
and the secondary variables as inputs. We then derive the Boolean expressions for the excita-
tion variables as a function of the input and secmdaq variables. e x m o m . readily ob
t h e d from the logic diagram, are

The next step is to plot the Yr and 3 functions in a map, as shown in Fig. 9.3{a) and (b). The
encoded binary values of the y variables are used for labeling the rows, and the input x vari-
able is used to designate the columns, This configuration results in a slightly di€fmmt three-
variable map from the me used in previous chaptkrs, However, it if still a valid map. and such

(a) Map for
Yl = q 1 + ~ ' Y Z

(c) Transition table

FIGURE 9.3
Maps and transition taMt fw the drrust of Fig. 9.2

Section 9.2 Analysls Procedure

a configuration is more convenient in dealing with asynchronous sequential circuits. Note that,
unlike what was done in previous chapters, the variables belonging to the appropriate squares
are not marked along the sides of the map.

The transition table shown in Fig. 9.3(c) is obtained from the maps by combining the binary
values in corresponding squares. The transition table shows the value of Y = YIYZ inside each
square. The fist bit of Y is obtained from the value of Yl, and the second bit is obtained from
the value of in the same square position. For a state to be stable, the secondary variables must
match the excitation variables (it., the value of Y must be the same as that of y = ylyz). Those
enfries in the transition table where Y = y are circled to indicate a stable condition. An uncir-
cled entry represents an unstable state.
Now consider the effect of a change in the input variable. The square for x = 0 and y = 00

in the transition table shows that Y = 00. Since Y represents the next value af y, this is a sta-
ble condition. I f x changes from 0 to 1 while y = 00, the circuit changes the value of P to 01.
This represents a temporary unstable condition, because Y is not equal to the present value of
y. What happens next is that as soon as the signal propagates to make Y = 01, the feedback
path in the circuit causes a change in y to 01. This change is manifested in the transition table
by a transition from the first row (y = 00) to the second row, where y = 0 1. Now that y = Y,
the circuit reaches a stable condition with an input of x = 1 . In general, if a change in the
input takes the circuit to an unstable state, the value of y will change (while that of x remains
the same) until it reaches a stable (circled) state. Using this type of analysis for the remaining
squares of the transition table, we find that the circuit repeats the sequence of states 00,01, 11,
10 when the input repeatedly alternates between 0 and.1.

Note the differ- between a synchronous and an asynchronous sequential circuit, In a syn-
chronous system, the present state is totally specified by the flip-flop values and dms not change
if the input changes while the clock pulse is inactive. In an asynchronous circuit, the internal
state can change immediately after a change in the input. Because of this rapid change, it is some-
times convenient to combine the internal state with the input value together and call it the total
state of the circuit. The circuit whose transition table is shown in Fig. 9.3(c) bas four stable total
state+ylfix = 000,011,110,and 101--andfourunstabletatalstates401,010,111,and 100.

The transition table of asynchronous sequential circuits is similar to the state table used for
synchronous circuits. If we regard the secondary variables as the present state and lhe exci-
tation variables as the next state, we obtain the state table shown in Table 9.1. This table pro-
vides the same information as the transition table. There is one restriction that applies to the

Table 9.1
State Tubk for the Circuit of Fig. 9.2

k x t State
Present
State x = O x = l

asynchronous case, but not the synchronous case: In the asynchronous transition table, there
usually is at least one next-state entry that is the same as the present-state value in each row.
Othemise, all the total states in that row will be unstable.

The procedure for obtaining a transition table from the circuit diagram of an asynchronous
sequentid circuit is as follows:

1. Determine all feedback loops in the c h i t .
2. Designate the output of each feedback loop with variable I$ and its corresponding input

with yi for i = 1,2,. . . , k, where k is the number of feedback loops in the circuit

3. Derive the Boolean functions of all ails as a function of the external inputs and the y's.

4. Plot each Y function in a map, using they variables for the rows and the external inputs
for the columns.

5. Combine all the maps into one table showing the value of Y = &Y2. - - & inside each
square.

6. Circle those values of Y in each square that are equal to the value of y = ym - . + fi in the
same row.

Once the m i t i o n table is available, the behavior of the circuit can be analyzed by observing
the state transition as a function of changes in the input variables.

Row Table

During the design of asynchronous sequedalcircuits, it is more convenient to name the states
by letter symbols without making specific reference to their binary values. Such a table is
called aj7ow table and is similar to a bansition table, except that the in tmd states are sym-
bolized with letters rather than bimy ninarys. The flow table aIso includes the output values
of the circuit for each stable state.

Examples of flow tables are shown in Fig. 9.4. The one in Fig. 9.4(a) has four states, des-
ignated by the letters a, b, c, and d. It reduces to the msition table of Fig. 9.3(c) if we assign

(a) Four states with
one input

@)Two stateswithtwo
m e d one outpnt

fwmE 9.4
€namples of Row tabkr

Section 9.2 Analysis Procedure

the following binary values to the states: a = 00, b = 01, e = 11, and d = 10. The table of
Fig. 9.4(a) is called a primiti~e flow table because it has only one stable state in each row,
Figure 9.4@) shows a flow table with more than one stable state in the same row. It has two
states, a and b; two inputs, xl and xz; and one output, z. The binary value of the output vari-
able is indicated inside the square next to the state symbol and is separated from the state sym-
bl by a comma. From the flow table, we observe the following behavior of the circuit: If
xl = 0. the circuit is in state a. If xl goes to 1 while xz is 0, the circuit goes to state b. With
inputs ~ 1 x 2 = 1 1, the circuit may be either in state o or in state b. If it is in state a, the output
is 0, and if it is in state b, the output is 1. State b is maintained if the inputs change from 10 to
1 1. The circuit stays in state a if the inputs change from 0 1 to 11. Remember that in fundamental
mode two input variables cannot change simultaneously; therefore, we do not allow a change
of inputs from 00 to 11.

In order to obtain the circuit described by a flow table, it is necessary to assign a distinct bi-
nary value to each state. Such an assignment converts the flow table into a transition table from
which we can derive the logic diagram. This is illustrated in Fig. 9.5 for the flow table of
Fig. 9.4@). We assign binary 0 to state a and binary 1 to state b. The result is the transition table
of Fig. 9.5(a), The output map shown in Fig. 9.5 (b) is obtained directly from the output values
in the flow table. The excitation function Y and the output function z are simplified by means
of the two maps. The logic diagram of the circuit is shown in Fig. 9,5(c),

(a) Transition table
Y = x1xJ2 + X f l

(b) Map for output
2 = X1X2 y

(c) Logic diagram

ncuw 9.5
Derivation of a cIKuit specified by the flow iable of Ffg. 9.w)

This example demonstrates the prmedue for obtaining the logic dbgm from a given flow
table. Doing that, however, is not always so simple. T h e are severaI Midties m a i a k d with
the b i i state assignment and with the ourput assigned to the unstable states. These problems
m discussed in detail next.

A race condition is said to exist in an asynchronous sequential circuit when two or more bi-
nary state variabIes change value in response to a change in an input variable. When unequal
delays are encountered, a race condition may cause the state variables to change in an unpre-
dictable mauner. For example, if the state variables must change h m 00 to 11, the difference
in delays may cause the first variable to change sooner than the second, with the mdt that the
state variables change in sequence h m 00 to 10 and then to 1 1. If the second variable changes
sooner than the first, the state variables will change fmm 00 to 01 and then to 11. Thus, the order
by which the state variables change may not be known in advance. If the M stable state that
the cirmit reaches does not depend on the order in which the state variables change, the race
is called a noncritical race. If it is possible to end up in two or mom different stable states. de-
pending on the order in which tbe state variable9 change, then the race is a critical race. For
proper qmatiw, critical races must be avoided.

The two examples in Fig. 9.6 illusmate nonmitical races. We start with the total stable state
ylyzx = 000 and change the input from 0 to 1. The state variables must then change from 00
to 11, which defines a race condition. The transitions listed uader each table show three pos-
sible ways that the state variables may change. Either they can cbange simultaneously from 00
to 11, or they may change in sequence fi-om 00 to 01 a d then to 11, or they may chauge in in-
quence from 00 to 10 and then to 11. In a l l cases, the final stable state is tbe same, so the mce
is noncritical. In (a), the final total state is y m x = 11 1, and in (b), it is 011.

(a) P d b l e kmiitim 0) Possible tmdtium
00 - I1 00 + 11 -0l
00 -01 -11 00 -01
00 -10 -11 00 + 10 - 11 - 01

FIGURE 9.6
Exarnptes of rmncritkal races

(a) Possible transitions:
00 -+ 11
00 + 01
00 -10

Section 8.2 Analysis Procedure

(b) Possible transitions:
00 -11
00 - 01 - 11
00 -10

FK;m 9.7
Examples of crWcal rims

The transition tables of Fig. 9.7 illustrate critical races. Here again, we start with the total
stable state y~yzx = 000 and change the input h m 0 to .I. The state variables must then change
from 00 to 11. If they change simultaneously, the final total stable state is 11 1. h the transi-
tion table of part [a), if, kcause of unequal propagation delay, Y2 changes to 1 before Yl does,
then the circuit goes to the total stable state 01 1 and remains there. If, however, Yl changes
first, the internal state becomes 10 and the circuit will remain in the stable total state 101.
Hence, the race is critical because the circuit goes to different stabIe states, depending on the
order in which fhe state variables change. The transition table of Fig. 9.7(b) illustrates another
critical race, in which two possible transitions result in one final total state, but the third pos-
sible transition goes to a different total state,

Races may be avoided by making a proper binary assignment to the state variables. The
state variables must be assigned binary numbers in such a way that only one state variable can
change at any one time when a state transition occurs in the flow table. The subject of race-he
state assignment is discussed in Section 9.6.

Races can be avoided by directing the circuit through intermediate unstable states with a
unique state-variable change. When a circuit goes through a unique seqne~l~e of unstable states,
it is said to have a cycle. Fig. 9.8 ilIustrates the occurrence of cycles. Again, we start with
ylfi = 00 and change the input from 0 to 1 . The musition table of pmt (a) gives a unique se-
quence that terminates in a total stable state 101. The table in (b) shows that even though the
state variables change from 00 ta 11, the cycle provides a unique tmdtiaa from 00 to 01 and
then to 11, Care must be taken when using a cycle that terminates with a stabb slate. If a cycle
does not terminate with a stable state, the circuit will keep going from one unstable state to an-
other, making the entire circuit unstable. This phenomenon is dmmksimted in Fig. 9.8(c) and
also in the next example.

Chapter 9 Asynchronous S e q u d a l Lagk

(a) State transition:
00+01+11+10

@) State transition:
00-01-11

(c) Unstable
01~11+10-

Because of the feedback connection that exists in asynchrwous sequential c h i t s , care must
be taken to ensure that the circuit does not k a m e unstable. An unstable cmdition wil l cause
the circuit to oscillate between unstable states. The tramdim-table method of analysis can be
useful m detecting the occurrence of instability.

Consider, for example, the circuit of Fig, 9.9(a). The excitation fonction is

@) Transition table

AGUE 9.9
Example of an unstable chwit

S ~ t l o n 9,3 Circuits wlth latches

The transition table for the c h i t is shown in Fig. 9.9(b). Those values of Y which ate equd to
y are circled and represent stable states. Uncircled entries indicate unmble conditions. Note
tIutt column 11 has no stable states. This means that with input X I % fixed at 11, the values of Y
am3 y are never the same. If y = 0, then Y = 1, which caum a transition to the second row of
the table, with y = 1 and Y = 0. This in turn =sea a &tion back to the ht row, with the
mdt that the state variable altumates between 0 and 1 indefinitely, as long as the input is 11.

The instability condition can be detected ditectly from the logic diagram. Let
xl = 1, x2 = 1, and y = 1. Then the output of the NAND gate is equal to 0, and the output
OftheANDgateisequaltoO, ~ g Y q u d i l 0 , w i t h t h a r e s u l t ~ Y # y,Mowify - 0,
the output of the NAND gats is 1 and the output of the AND gate is 1, making Y equd to 1,
with the result that Y # y. If it is assumed that each gate has a prapagation delay of 5 ns (in-
cluding transmission over thc wires), we will find that Y w i l be O for 10 ns and 1 for the next
I0 ns. This will result in a square-wave waveform with a period of 20 ns. The frequency of os-
cillation is the reciprocal of the pied and is equal to 50 MHz. Unless one is designing a
squawwave generator, the instability that m y occur in asyncbmnous sequential circuits is
umhhble and must be avoided.

9 . 3 CIRCUITS WITH LATCHES

Historically, asynchronous circuits were known and used befom synchronous circuits were de-
veloped The first practical digital circuits were constructed with relays, which rn more adapt-
able to asynchronous operations. For this reason, the traditional method of asy nchronous circuit
configuration has been with components that are connected to form one or more feedback
loops. When digital circuits are constructed with electronic components, it is convenient to
employ the SR latch (inidwed io Section 5.3) as a memmy element. The use of SR latches
in agyncbronm sequentid circuits e w e s an orderly pattern in the logic diagrams, with the
m e w elements clearly visible. In this section, we analyze the operation of the SR latch,
using the technique introduced in the previous section. We then show a procdm for imple-
menting asynchronous sequential circuits using SR latches.

The SR latch is a digital circuit with two inputs S and R and two cr;o9s-coupledNOR gates or
two cross-cwpled NAND gates. TIE crosscoupled NOR gate circuit Is showniaHg. 9.10. This
circait and its mth table are taken from Fig. 5.3. In order to analp Ibe chdt by tk mi-
tion-table method, it is i%st d r a w n in Fig, 9.1qc) to see tbe * @ fmm thC output
ofgate 1 toheinput o f g a t e 2 . ~ ~ t Q i s ~ t o t b e ~ v s d a M t Y a n d k
s e c o ~ variable y. The B o o k hmim fur the mtpt it3 . .' n t e c .

P 1 ~ g Y a s i n R g . 9 . 1 0 (d) , w e o ~ ~ ~ m t a b l s f a ~ ~ 1-

We can now investigate the behavior of the SR latch b u Inp- table. The state
withSR = 1 0 i s a s t a b l e s t a t e ~ Y = y = l;-tbs-tRithSR = 01isasta-
bIe state, because Y = y = 0. With SR = 10, the atpat Q = Y = 1 a d the latch is said

426 Chapter9 Asynchronous fequmthl Logk

(a) Crossmupled circuit (b) Truth table

1 0
0 0
0 1
0 0
1 1

(c) Ckcuit showing feedback

1 0
1 0 (AfterSR = 10)
0 1
0 1 (After SR = 01)
0 0

(d) M t i o n table

FIGWE 9.10
SR latch with NOR gates

to be set. Changing S to 0 leaves the circuit in the set state. W~th SR = 01, the output
Q = Y = 0 and the latch is said to be reset. A change of R back to 0 leaves the circuit in
the reset state. These conditions are also listed in the truth table. The circuit exhibits some
difficulty when both S and R are equal to 1. From the truth table, we see that both Q and Q'
are equal to 0, a condition that violates the requirement that these two outputs be the com-
plement of each other. Moreover, from the hausition table, we note that going ftom SR = 11
to SR = 00 produces an unpredictable result. If S goes to 0 h t , the output remaim at 0,
but if R goes to 0 first, the output goes to 1. In normal uperation, we must make sure that
1's are not applied to both the S and R inputs simultaneously. This condition can be ex-
pressed by the Boolean function SR = 0, which states that the ANDhg of S and R must al-
ways result in a 0.

Coming back to the excitation function, we note that when we OR the Boolean expression
SR' with SR, the result is the single variable S:

SR' + SR = S(R1 + R) = S

From this, we infer that SR' = S when SR = 0. Therefore, the excitation function derived
previously, namely,

Y = SR' + R'y

Sectlon 9.3 C i ~ u l t s with Latches

can be expressed in FG. 9.10(d) as the reduced excitation function

Y = S + R'y when SR = 0

To analyze a circuit with an SR latch, we must first check that the Boolean condition SR = 0
holds at alI times. We then use the reduced excitation function to andyz the circuit. However,
if it is found that both S and R can be equal to 1 at the same time, then it is necessary to use
the original excitation function,

The analysis of the SR latch with NAND gates is carried out in Fig. 9.1 1. The NAND latch
operates with both inputs normally at 1, unless the state of the latch has to be changed, The ap
plication of 0 to R causes the output Q to go to 0, thus putting the latch in the reset state. After
the R input returns to 1, a change of S to 0 causes a change to the set state, The condition to be
avoided here is that both S and R not be 0 simultaneously. This condition is satisfied when
S'R' = 0. The excitation function for the circuit in Fig. 9.1 1 (c) is

Y = [S(Ry)']' = St + Ry
Comparing this with the excitation function of the NOR latch, we note that S has been replaced
with S' and R' with R. Hence, the input variables for the NAND latch require the comple-
mented values of those used in the NOR latch, For this reason, the NAND latch is sometimes
referred to as an S'R' latch (or 3-z latch).

{a) Cross-caupled circuit (b) Truth table

Y = Q

Y

(c) Circuit hawing feedback (d)T " table

FIGURE 9.1 1 , r : 0

SR latch with NAND gates

Asynchronous sequentd circuits can be mnstructed with the use of SR latches with or with-
out extend feedback paths. Of course, here is always a f d h c k loop witbin & h c h itself.
The analysis of a circuit with l a t c h will be demmsmted by meam of a s m c example
~ w b i c h i t w i l l b e ~ b l e t o ~ h ~ s t e p s n e ~ e s s a r y t o a a a I ~ o t h e r , s i m -
iIar circuits.

The circuit shown in Fig. 9.12 has two SR latches with outputs Yl and fi. There are two in-
puts, XI and xz, and two external fedback loops giving rise to tk secondary variables, s.1 and
R. Note that this circuit resembles a conventional sequential circuit with latches behaving like
flipflops without clock pulses. The analysis of tbe circuit requires that we first obtain the
Bookan functions for the S and R inprrts in each la&

We then check whether the d t i o n SR = 0 is W e d to enmae ptoper opmian of tbe circuit:

Section 9.3 Clmits wlth Latches

FIC4JRE 9.1 3
Transition table for the ckuit of Fig. 9.12

The result is 0 because xlxi = xzxh = 0.
The next step is to &rive the W i t i o n table of the circuit. Remember that the transition table

specifies the value of Y as a function of y and x. The excitation functions are derived from the
relation Y = S + R' y (see Figure 9.11 (d)) and are

We now develop a composite map far Y = qY2. They variabIes are assigned to the rows in the
map, and the x variables are assigned to the columns, as shown in Fig, 9,13. The Boolem func-
tions Yl and Yz, as just expressed, are used to plot the composite map for Y. The entries of Y in
each row that have the same value as that given to y are circled and represent stable states. In-
vestigating the transition table, we deduce that the circuit is stable. There is a critical race con-
dition when the circuit is initially in total state ylyzxlxz = 1 10 1 (YIQ = 1 1) and xz changes
from 1 to 0 (Y1Y2 = 00). If Yl changes to 0 before G, the circuit goes to total state 0 100 iqstead
of 0000. However, with approximately equal delays in the gates and latches, this undesirable
s ib t ion is not likely to occur.

The procedure for analyzing an asynchronous sequential circuit with SR latches can be sum-
marized as follows:

1. Label tach latch output with I;. and its external feedback path (if any) with y! for
i = 1,2 ,..,, k,

2. Derive the Boolean functions for the Si and Ri inputs m a& latch
3. Check whether SR = 0 for each NOR latcb or whether S'R' = 0 far each NAND latch.

If either of these conditions is not satisfied, t k e is a psiWty* the circait may not
operate properly.

4. EvaluateY = S + R'y foreachNORlarchaY = S' + Ry&&NANDlatch.
5. C o n s ~ a m a p , w i t h ~ e y ' s ~ ~ g h r n w s a n d t h t x ~ ~ t f i e c o h ,
6. Plot the value of Y = Y& . . - & in the map.
7. Circle dl stable states such that Y = y. The remhing q i Q h the transition table.

430 Chapter9 Asynchronous Sequential bgk

The transition table of the SR latch is useful for analysis and for ddhQ the @on of the
latch. It specifies the excitation Y when the s c c d q variable y a d ?he inputs S and
R are known. During the i m p h w i o n 7, the &h table of the circuit is available
andwewish tohndthe valuesofSdR.Farthisreason, weneedatablethat MstherequiFcd
inputs S and R for each of tRt pussible tramitions fmm y to Y. Such a Iist is called an -&on
table.

The excitation table of the SR latch is shown in Frg. 9.14(b). The first two c o b list the
four possible wansitions from y to Y. The next two columns p i f y h e Tequired input values
that will result in the specified transition, For example, in order to provide a mit ion ftom
y = O b Y = 1,itisnecessarytoemthatinputS = 1 andinputR = 0.Thisisshownin
the second row of the W t i o n table.

The reqwed input co~~%tiom for each of tbe fm transitions in the excitation tabk can be
derived directly from the latch mmitiw table of Fa. 9.1Nd) a h removing ttte e k aw-
ditionSR = ll.Fortxample,the~tion~lt~tbatiaorderm~gr:fromy = Om
Y = O , S R c a n b e e i t h e r 0 0 o r O l . ~ ~ ~ S ~ b e l a n d R m a y b e ~ O o r 1 . ~
fore, the first row in the excitation table shows S = 0 md R = X where. X i a don't-cw
condition signifying either a 0 or a 1.

A sequential circuit with SR latches is implenmkd through a procedure for obtaining the logic
diagram from a given transidon table. The @UIC req- that we deteanine the Boolean
functioasfortheSandRinpUtsofesbch~Thelogic~is~~edbybw~
the SR latches and the logic gates tbatjmphmt tbe S and R funaim& To ~ O I I S ~ the pro-
cedure, we will m p t the implementation example of Fig. 95. 'We output circuit remaim the
same and will not be repeated again.

The transition table from Fig. 9.5(a) is @lied in Fig. 9.14(a). From the infomation
given in the transition table and from the latch excitation table ~ ~ o n s in Fig. 9.140, we
can obtain the maps for the S and R inputs of the latch, as &own in Kg 9. lqc) md (d). For
example, the square in the second row and third column (yxlxz = 11 1) in Fig. 9.14() re-
quires a transition from y = 1 to Y = 1. The excitation table specifies S = X, R = 0 for this
change. Therefore, the comsponding square in the S map is nuked with an X and the one in
the R map with a 0. All other s p a r e s are filled wiih values in a similar manner. The maps am
then used to derive the simplified Boolean functions

S = X ~ X ~ a d R = xi

The logic diagram consists of an SR latcb aad the gates required to implamit the S and R
Boolean functions. The c h i t is as shown in Fa. 9.1 4(e) when a NOR latch is used. With a
NAND latch, we must use the v h for S and R:

and

This circuit is shown in Fig. 9.14!f).
The geaeral proccdute for hplefnehg a circuit with SR latches from a given lmisitio31 table

can now be summarized as follows:

(a) Transition table
Y = x1xr2 XLy

(c) Map for S = xp',

(e) Ciwit with NOR btch

(b) Latch excitation table

(d) Map for R = x',

(f) Circuit with NAND latch

FIGURE 9.14
Derivation d a I k h circuit from a transltlon table

1. Given a transition table that specses tbe excitation fumiw Y = Yl& &, derive a
pair of maps for Si and Ri for each i = 1,2,. . . , k. This is dqw by using the conditim
specified in the latch excitation table of Fig. 9.14@).

2. Derive the simplified Boolean functions for each Si and 4. Cam mnst be taken not to
make Si and Ri equal to 1 in the same mintem square.

3. Draw the logic diagram, using k latches together with h gates q u i d to gemale the S
and R Booban functions. For NOR latches, use the Sand R Boolean fadons obtained in
step 2. For NAND latches, use the complemented values d b obtained in stcp 2.

Another useful example of latch implementation is found in Section 9.7.

,, Chapter 9 Asynchronous SqumtW b g i c

Input binary information in a digital system can be generated mual ly by means of mechan-
ical switches. One position of the switch provides a voltage equivalent to logic 1, and the other
position provides a second voltage equivalent to logic 0. Mechanical switches are also used to
start, stop, or reset the dgital system. In testing di@ circuits in the l a h m c q , the input sig-
nals will normally come from switches. A common characteristic of a mechanical switch is
that when the arm is thrown from one position to the otber. the switch contact vibrates or
bounces several times before coming to a 6nal rest. In a typical switch, the contact bounce
may take several milliseconds to die out, causing the signal to oscillate b e e n 1 and 0 h-
cause the switch contact is vibrating.

A debounce circuit is a c h i t which removes the series of pulses that result from a contact
bounce and produces a single smaoth transition of the binary signal from 0 to 1 or h m 1 to
0. One such circuit consists of a single-pole, double-throw switch connected to an SR latch, as
shown in Fig. 9.15. The center contact is connected to ground that provides a signal equiva-
lent to logic 0. When one of the two contacts, A or B, is not connected to ground through the
witch, it behaves like a logic-1 signal. A resistor is sometimes connected from each contact
to a fixed voltage to provide a firm logic-1 signal. When the switch is thrown from posihon A
to position B and back, the outputs of the latch produce a single pulse as shown. negative for
Q and positive for Q'. The switch is usually a push button whose contact rests in position A.
When the push button is depressed, it goes to position 3, and when released, it returns to po-
sition A.
The operation of the debounce circuit is as follows: Wen the switch rests in psitiond, we

have the condition S = 0, R = 1 and Q = 1, Q' = 0. (See Fig. 9.1 lo).) When the switch is
moved to position B, the ground connection causes R to go to 0, while S h o m e s a 1 h a u s e
contactA is open. This condition in turn causes output Q to go to O and Q' to go to I. After the
switch makes an initial contact with B, it bounces several times, but for proper operation, we
must assume that it does not bounce back far enough to reach point A. The output of the latch
will be unaffected by the contact bounce because Q' remaius 1 (and Q remains 0) whether R
is equal to 0 (contact with ground) or equal to 1 (no contact with ground). When the switch re-
turns to position A, S becomes 0 and Q returns to 1. The output again will exhibit a smmth tran-
sition, even if there is a contact bounce in -tion A.

Section 9.4 Design Procedure 433

9.4 D E S I G N PROCEDURE

The design of an asynchronous sequential circuit starts from the statement of the problem and
cuhhates in a logic diagram. There are a number of design steps that must be carried out in
order to minimize the complexity of the circuit and to produce a stable circuit without critical
r a m . Briefly, the design steps are as follows: A primitive flow table is obtained from the de-
sign specifications. The flow table is then reduced to a minimum number of states. Next, the
states are given a b i n q assignment from which we obtain the transition table. Finally, born
the transition table, we derive the logic diagram as a combinational circuit with feedback or as
a circuit with SR latches.

The design p m s s will be demonstrated by going through a specific example. Once this ex-
ample is mastered, it will be easier to understand the design steps that are enumerated at the
end of this section. Some of the steps require the application of formal procedures, and these
are discussed in greater detail in the sections that follow,

Design Example

It is necessary to design a gated latch circuit with two inputs G (gate) and D (data) and one out-
put Q. Binary infomation present at the D input is ixansferred to the Q output when G is equal
to 1. The Q output will follow the D input as long as G = 1. Wen G goes to 0, the information
that was present at the D input at the time the transition occurred is retained at the Q output. The
gated latch is a memory element that accepts the value of D when G = 1 md retains this value
after G goes to 0. Once G = 0, a change in D does not change the value of the output Q.

As defined previously, a primitive flow table is a flow table with only one stable total state in
each row, Rememh that a total state consists of the internal state combined with the input. The
derivation of the primitive flow table can be facilitated if we first form a table with all possi-
ble total states in the system. This is shown in Table 9.2 for the gated latch Each row in the
table specifies a total state, which consists of a letter designation for the internal stake and a

Table 9.2
Gated-Latch Total Srates

Inputs Output

State P C 0 Commcntr

a 0 1 0 D = Q - G = l
b 1 1 1 D = Q m G = l
C 0 0 0 Afterstatcaad
d 1 0 0 Aatrstatcc
e 1 0 1 Afta state b or f
f 0 0 1 Aftcrstatec ...y-g>m-:--

Chapter 9 Asymhmnwrs kquentlal b g k

possible input combination for D and G. The output Q is also shown for each total state. We
start with the two total states that have G = 1, From the design specifications, we know that
Q = O i f D G = 01 andQ = I i f D G = 1 1 , b e c a u s e D m u s t b e ~ W Q w h e n G = I.We
assign tbese conditions to states a and b, When G goes to 0, the output depends on the last
value of D. Thus, if the transition of DG is from 01 to 00 to 10, then Q must remain 0 beEause
D is 0 at the time of the transition from 1 to 0 in G. If the hausition of DG is from 1 I to 10 to
00, then Q must remain I. This information results in six different total states, as shown in ibe
table. Note that simultaneous h t i o n s of two hput variables, such as h 01 to 10 or from
11 to 00, are not dowed in fundamental-mode opation.

The primitive flow table for the gated latch is shown in Rg. 9.16. It has one row for each
state and w e column for each input combbation. First, we i5ll in one square in each row be-
longing to the stable st& in that row. These entrk are de&mnhed from Table 9.2. For exam-
ple, state a is stable and the output is 0 when the input is 01. This hhmti011 is entered into
the flow table in the fmt row and second column. Similarly, tk other five stable states tm
gether with their output are entered into the corm* input columns.

Next, we note that since both inpub are not dowed to h g e shultmmusly, we can enter
dash marks in each row that differs in two or more variablas from the input variables associ-
ated with the stable state. For example, the h t row in the flow table shows a stable state with
an input of 01. Since only one input can change at any given time. it can change to 00 crr 11,
but not to 10. Therefore, we enter two dashes in the 10 column of row a. This will eventually
result in a don't-care condition for the next state and output in this square. Following dx same
pmc&re, we fill in a second quam in each row of the primitive flow table.

Next, it is necessary to 6nd values for two mare s q m in each row. The comments listed
in Table 9.2 may help in deriving the necmsq infondion. For example, state c is asswbld
with input 00 and is reached after a h g e in input from state a or d lhefure, an witable state

Inputs DG

Section 9.4 Deslgn Procedure 435

c is shown in column 00 and rows a and din the flow table. The output is marked with a dash
to indicate a don't-care condition. The interpretation of this situation is that if the circuit is in
stable state a and the input changes from 01 to 00, the circuit first goes to an unstable next state
c, which changes the present-state value from a to c, causing a transition to the third row and
first column of the table. The unstable state values for the other squares are determined in a
similar manner. All outputs associated with unstable states are marked with a dash to indicate
don't-care conditions. The assignment of actual values to the outputs is discussed further, after
the design example is completed.

Reduction of the Primitive Flaw Tabb

The prhtive flow table has only one stable state in each row. The table can be r e d u d to a
smallernumber of rows if two or more stable states are placed in the same row, The grouping of
stable states from separate rows into one common row is called merging. Merging a number of
stable states in the same row means that the binary state variable ultimately assigned to the merged
row will not change when the input variable changes. This is because, in a primitive. flow table,
the state variable changes every time the input changes, but in a reduced flow table, a c h g e of
input will not cause a change in the state variable if the next stable state is in the same row,

A formal procedure for reducing a flow table is given in Section 9.5. In order to complete
the design example in the current section without going through the formal procedure, we will
apply the mergrng pxocess by using a simplified version of the merging rules. lho or more rows
in the primitive flow table can be merged into one row if there are nonconflicting states and
outputs in each of the columns. Whenever one state symbol and don't-care entries are en-
countered in the same column, the state is listed in the merged row. Moreover, if the state is
circled in one of the rows, it is also circled in the merged row. The output value is included with
each stable state in the merged row. Because the merged states have the same output, the state
cannot be distinguished on the basis of the output.

We now apply these rules to the primitive flow table of Fig. 9.16, To see Row this is done,
the primitive flow table is separated into two parts of three rows each, as shown in Fig. 9.17(a).
Each part shows three stable states that can be merged because there are no conflicting entries
in each of the four c o l m s . The first column shows state c in all the rows and 0 or a dash for
the output. Since a dash represents a don't-care condition, it can be associated with any state or
output. The two dashes in the first column can be taken to be 0 output to make all three rows
identical to a stable state c with a 0 output. The second column shows that tite d a s h can h as-
signed to correspond to a stable state a with a 0 output. Note that if a state is circled in one of
the rows, it is also circled in the merged row. §hilady, the third cob can k merged into an
unstable state b with a don't-care output, and the fourth m h mn knrergbd into stable state
d and a 0 output. Thus, the three rows a, c, and d can be merged inin tmz row with three stable
states and one unstable state, as shown in the ikst row of Fig. 9.170. 'Ibe d row of the
reduced table results from the m e n g of rows b, e. d f of tbe pimihe 3 m tabk In this ex-
ample, there are two ways that the reduced table can be drawn. -* lecser symbols for the
states can be retained to show the relationship between th d u d aad p id ive flow tables.
Alternatively, because the two tables have the same OR@&, we m~ d g n r a m m letter sym-
bol to all of the stable states of the merged mws. Thus, stam c anddahrqhed by state a, and
states e and f are replaced by state b. Both alternatives are shown in Pig. 9.17@).

(a) Stam that are eandkbtes for merging

(b) Reduced table (two dtomativc~)

RtUllE 9.17
Man of the prirdtlve Rwv

Transition Table and Logic Diagram
In order to obtain the cirmit described by the reduced flow table, it is necessary to assign
a distinct binary value to each state. This assignment converts the flow table into a transi-
tion table. In the general w e , a binary state assignment must be made to ensure that the cir-
cuit wiU be free of criticai races. T h stateas~ignment problem in asynchronous sequential
circuits and ways to solve it are discussed in Section 9.6. Fortunately, there can be no crit-
ical races in a two-row flow table; k c f o r e , we can fiaish the design of the gaml latch
@or to studying that saction. M i 0 to state a and 1 to state b in !he reduced flow table
of Fig. 9.17@), we obtain the transition tabIe of Frg. 9.18(a). The mi t ion table is, in ef-
fect, a map for the excitation variable Y. The simpl5ed Boolean function for Y is hen ob-
tained from the map as

Y = DG + G'y

T h w are two don't-cm outputs in the h d reduced flow table. If we assign values to $Le out-
pat as &own in Fig, 9. f 8&), it is W b k to make output Q idemid to the map of he exci-
tation function Y. Altedvely , If we q l a c e the don't-cam by 1 when y = I and DG = 01,
themapdmstoQ = Y.Zfw~~~possiblevd~estottaedon't~raltputs,we
can make output Q equal to y. In either case, the logic diagram of the gated latch is as shown
in Fig. 9.19.

Section 9.4 Design Procedure 437

\DG

(a) Y = DG+G1y

FIGURE 9.18
T~ansition table and output map fw gated latch

HGURE 9.19
Gated-latch logic diagram

The diagram can aIso be implemented by an SR latch. Using the procedure outlined in
Section 9.3, we h a t obtain the Boolean fimctions for S and R, as shown in Fig. 9.201a). The
logic diagram with NAND gates (see Fi. 5.4) is shown in Fig. 9.20@). Note that the gated latch
is a level-sensitive D-latch, intmluced in Section 5,3 and Fig. 5.6.

Assigning Outputs to Unstable States

The stable states in a flow table have specific output values associated with them. The un-
stable states have unspecified output entries designated by a dash. The output values for the
unstable states must be chosen so that no momentary fdse outputs mmr when the circuit
switches between stable states. This means that if an output variable is not supposed to
chmge as the result of a transition, then an unstable state that is a kamicnt state between
two stable states must have the same output value as the stable stabs. Consider, for exam-
ple, the flow table of Fig. 9.2 1 (a). A transition from stable state a to stable state b goes
through the unstable state b. If the output assigned to the unstable state b is r 1, then a mo-
mentary short pulse will appear on the output as the circuit shiffs h m an output of 0 in state
a to an output of 1 for the unstable b and back to 0 when the circuit reaches stable state b.
Thus, the output corresponding to un~table state B must be specified as 0 to avoid a mo-
mentary false output,

Chapter 9 Asynchronous Sequential togk

(a) S = DG R = D'G

(a) M ~ p f w S m d R

M U R E 9 . a
CirarTt wfth SR latch

(a) Haw table

RGm 9.21
klgning output v&m tm rmrt.trk #rtRI

Sec#on 9.5 Reddon of State and F I w Tables 439

when the change in output wcurs, we place a don't-care entry for the output associated with un-
stable state c. Fig. 9.21(b) shows the output assignment for the flow table, demonstramg the four
possible combinations of changes in output that can mcur, The procedure for m a h g the assign-
ment to outputs associated with unstable states can be summarized as follows:

1. Assign a 0 to an output variable associated with an unstable state which is a transient state
between two stable states that have a 0 in the corresponding output variable,

2. Assign a 1 to an output variable associated with an unstable state which is a transient state
between two stable states that have a 1 in the correspondhg output variable,

3. Assign a don't-care condition to an output variabie associated with an unstable state
which is a transient state between two stable states that have different values (0 and 1,
or 1 and 0) in the corresponding output variable.

Summary of Deslgn Procedure

The design of asynchronous sequential circuits can be carried out by using the procedure il-
lustrated in the previous example. Some of the design skps need further elaboration and are
explained in upcoming sections. The procedural steps are as follows:

1. Obtain a primitive flow table from the given design specificatioas. This is the most
difficult part of the design, because it is necessary to use intuition and experience to
arrive at the correct interpretation of the problem specifications.

2. Reduce the flow table by merging rows in the primitive flow table, A formal procedure
for merging rows in the flow table is given in Section 9,5.

3. Assign binary state variabIes to each row of the reduced flow table to obtain the transi-
tion table. The state-assignment procedure that eliminates any possible critical races is
given in Section 9.6.

4, Assign output values to the dashes associated with the unstable states to obtain rhe out-
put maps. This procedure was explained previously,

5, Simplify the Boolean functions of the excitation and output variables and draw the logic
diagram, as shown in Section 9.2. The logic diagram can be drawn with SR latches, as
shown in Section 9.3 and also at the end of Section 9.7.

9.5 REDUCTION OF STATE AND FLOW TABLES

The procedure for reducing the number of internal stares in an sequential circuit
resembles the procedure that is used for synchronous c W & . An algorithm for the state re-
duction of a completely specified state table was given in ! k t h 5.7. W will review ibis al-
gorithm and apply it to a state-reduction method that uses an implidon table. The algorithm
and the implication table will then be m d i f d to cover the state mWim of incompletely spec-
ified state tables. The modified algorithm will be used to expk tfie procadare for reducing
the flow table of asynchronous sequential circuits.

Chapter 9 Asynchronous Sequentla1 Logk

Table 9.3
stah? TPbls b h t m w w t s -t stuh

Pmlmt
N d S a oUtplt

State x = 0 w = 1 x = O x r f

hnplicatton Table and Imflfed States

The stat+mhction p m & m for completely spdled sCate EabIes is based on an algoridm that
combines two states in a state table into one, as long as they can be &own to be equivalent.
Two states are equivalent if, for each pa&bk input, they give d y the same output sad go
to the same next smtes or to equivalent next stam. Table 6.6 show an example of equivalent
states that have the same next states and outputs for each ambindm of ingu$. There are oc-
casions when a pair of stam do not have th same next stam but, -less, go to quiva-
lent next states. Consider. for example, the sate table shown in Table 9.3. The present states a
and b have the same output for the same input. 'Iheir next states are e and d for x = 0 and b
mdaforx = l.Ifwecan~~tbepairof~(c,d)meguivalent.~bhtpairaS~
(a, b)will dsobeequivalent,because~willhavethe~or~valentnext~.When
this relationship exists, we say that [a, b) imply (c, d) in the sense ha t if a and b are equiva-
lent then c and d have to be equivalent. Similarly, b m the last two rows of Table 9.3, we 6nd
thatthe pairof state.s (~,d)@kS&pair~f states (a , b) . T h e ~ c o f q u i v ~ s t a t e s
is that if (a, b) imply (c, d) and (c, d) imply (a, b), then both pairs of states are eqniv- that
is, a and b are equivalent, and so are c and d. As a v, the four rows of Table 9.3 can
be reduced to two rows by combining a and b into one state and c and d into a second state.

Tbcheclcingofeachpairof m t c s k r p m 4 b I e o q u i ~ h a t a b l e wiobahgeaumbea
of states can be done systemtically by mtans of an implication table, which is a chart that
consists of squares, one for every posslue pair of staks, that provide s m for listing any
pssibb implied states. By judicious w of h e table, it is p s i b l e to demim all pairs of equiv-
dent states. The state table of Table 9.4 wili be used to illusim~ this p m d m . The in#=-
timEabbisshominFig.9~.On~~~deaEongthtvertid~lrt~aUthe~~
in the state table except the fifst and m s the bottom horhntally are Iisted all the s t a m ex-
cept the last. The msult is a display of all w b l e combhatimu of two states, with a square
p W i n t h e i n ~ m o f amw a n d a w h r m n ~ ~ t w o ~ ~ b e a E s t a d f o r o q u i v -
d e n c e . ~ o s t a m h a v i n g a i f f ~ ~ f o r ~ s a m t ~ t ~ n o t ~ ~

lkro states that are not equivaknt am mzubd with a cross (X) in the cmespding square,
whmas their equivalence is mmkd wich a check mark (4). Some of the s q m have entries
o f h p l i e d s t a t e s t h a t ~ b e h ~ f u r t b e a m ~ ~ t b e y a r e e s U ; v ~ ~
step-by-step procedure of filling iu tbe squares is as follows: Krst, we p b a cross h any
quare corresponding to a pair of seates whose outputs are not equal for way inpat. In I& ease,

Section 9.5 Reduction of State and Flaw Tables

Table 9.4
State Table to Be Reduced

N%xt State Output
Present

State x = O x = l x = O x = l

FIGURE 9.22
Implication table

d , e J

X X

X X X

x x x J

c , d x ' j e X x x x
a , b

x x X d , e J d , s J x

state c has a different output than any other state, so a cross is placed in the two squares of row
c and the four squares of columa c. There are nine other squares in this category in the impli-
cation table.

Next, we enter in the remaining squares the pairs of states that am implied by the pair of statw
representing the squares. We do that starting h m the top square in the left column and going
down and then proceeding with the next column to the right. From the state table, we see that
pair (a, b) implies (d, s), so Id, e) is recorded in the square defined by column a and row b. We
proceed in this manner until the entire table is completed. Note that states (d, e) are equivalent
because they go to the same next state and have the same output. Tfierefore, a check mark is
recorded in the square defined by column d and row e, indicating that the two states are equiv-
alent and independent of any implied pair.

The next step is to makc successive tbrough the table to determine whether my ad-
ditional squares should be mark4 with a cross. A square in &e table is crossed out if it con-
tains at least one implied pair that is not equivdent. For exampk tbe square d e f ~ by a d
f is marked with a cross next to c, d becstuse tbe pair (c, 4 dew a quare that conrains a
cross. This @we is rcpated until no additional squares can lx crossed out. Finally, all
the quarathathave wcfosses~~withcheckmarks.Tbe%esquansdtfinepairsof
equivalent states. En this exampie, the equivalent states are

We now combine pairs of mtca into larger groups of equivalent states. Tbe last three pairs
can be combined into or set of three equivaIent statcs (d, e, g) b u s e each one of the states in
the group is equivalent to the other two. The final partition of the states consists of h equiv-
alent states found from the implication table, mg&a with all the remaining stam in the state
table that are not equivalent to my other state. Thig group consists of

T h u q T a b I e 9 . 4 ~ a n b e ~ u c e d h s e ~ s ~ t o f o u r , o n e f o r e a c h m b u o f ~ ~ -
ing parlition. The. reduced statc table is obtained by repking state b by a and states e and g
by d and is shown in 'Isblc 9.5.

Mmging of tlw Flaw Table
There arc mcasions when the state MIe for a rnguentid c h i t is incomplekly spciried. This
happens when certain combinations of inputs or input sequences never occur because of ex-
ternal or i a d const&&. Ia such a case, the next states a d outputs that should have oc-
c u d if all inputs were possible are never atrained and are r e g d as don't-care conditions.
Although synclmnous sequential circuits may sometimes be q m a e d by iacampIetely spec;
i6ed state tables, our i n m t hme is with asynchrom sequential circuits, fbr which the prim-
itive flow table is always incompletely s-ed.

Incompletely speeifiod states can h combid to reduce the number of states in thc flow
table. Such states cannot be called equivalent, because the f d definition of equivalence re-
quires that 1 1 outputs and next states be m e d for all inputs. Inmead, two hcompktely
spbcified states that can bt combined are said to be compatibb. h states are coqaible if,

Table 9.5
~ u t m d ~ r a b k

Prsrant
m state a p r t

State x = O x = l x = O x 5 l

Section 9.5 Reduction of State and Flow Tables

00 01 11 10

(a) Primitive flow table
b c d e

@) Implication table

FH;UIIE Pa3
Flow and implication tables

for each possible input, they have the same output whenever it is spex2k.d and their next states
are compatible whenever they are specified. All don't-care conditions marked with dashes have
no effect in the search for compatible states, as they represent unspecified conditions,

The p e s s that must be applied in order to find a suitable group of compatibles for the pur-
pose of merging a flow table can be divided into three steps:

1. Determine dI compatible pairs by using the implication table.
2. Find the maximal compatibles with the use of a merger diagram.
3. Find a minimal collection of compatibles that covers all the states and is closed.

The minimal collection of compatibIes is then used to merge the rows of the flow table. We will
now proceed to show and explain the three procedural steps, using the primitive flow table
£ram the design example in the previous section,

Compatible Palrs

7he procedure for finding compatible pairs is illumakd in Rg. 9.23. 'ih Wth Qow table in (a)
is the same a Fig, 9,16. The entries in each square the mxt s¶ate d 'Ibe d a s h
represent the unspecfied stam or outputs. The impWm table is u d Bo M cmqmthle states,
just as it is used to find equivalent states in tke compket%y s@kd -lbe m l y diffeFeme is that.
whm~gmws,weareatli~toartjustthedashestofitany~d~

Two states are compatible if, in every column of the wmqnmhg rows in the flow table,
there are identical or compatible states and if there is no conflict in the output vdues, For ex-
ample, rows a and b in the flow table are found to be compatible, bntmws a md f will k corn-
patible only if c and f are compatible. However, rows c and f are not compatible, because they

Chapter 9 Asynchmnws hquenP%11 Logk

have different outputs in the first column. Tbis information is recorded in h e implication table.
A check mark designates a square whose pair of states are coqd i l e . Those states which are
not compatible are marked with a moss. Tbe r;emaining squares are Fecwded with the implied
pairs that need fuaher investigatim

Once the initial implication table has been filled, it is scanned again to cross out the squares
whose implied states are not co@ble. The r e m b h g s q m hat amtain check marks &
fine the compatible pairs. In the example of Fig. 9.23, the compakibk pin am

Maximal Compatibles

Having found all the compatible pairs, the next step i to find larger sets of states that are com-
patible. The -mu1 compatible is a group of compahTb1es that contains all the possible com-
b i o m of compatible states. The maximal cmpfible can be obtained from a m q e r diagmm,
as shown in Fig. 9.24, The merger dhgfm is a graph in which each state is represeated by a
dot placed along the circumference of a circle. Lines are drawn between any two corrwpon-
ding dots that form a compatible pair All possible compalibk can be & a h d h u h e merg-
er diagram by ob&g the geometrical pattems in which states are c m u d to each other.
An isolated dot represents a state that is not compatible with my other state. A h e q m e n t s
a compatible pair. A triangle constitutes a compatible with the s-. An n-state compatible
is repmental in the merger diagram by an n-sided polygon with all its diagwals connected.

The merger diagram of Fi. 9.24(a) is obtained fbm lhe bit o f ~ ~ l e pairs derived £mm
the implication table of Fig. 9.23. There are seven b g h t h Coanectiag the dots, we for
each compatible pair. The lines form a geometrical pattern consisting of two Criaugles con-
necting (a. c, d) and (b, e,fi and a line (a, b). The mttximal compatibles are

(4 b) (a, c, d) (b, e, f)

d

(a) Maximal compatible:
IU, b) (0, c, 4 (b , e,n

FlGUiiL 9.24
Merger diagrams

Section 9.5 Reduction of State and Flow Tables

Figure 9.24(b) shows the merger diagram of an eight-state flow table. The geometricd pat-
terns are a rectangle with its two diagonals connected to form the four-state compatible (a, b,
e, f), a triangle (b, c, h), a line (c, 4, and a single state g that is not compatible with any other
state. The maximal compatibles are

The maximal compatible set can be used to merge the flow table by assigning one row in the
reduced table to each member of the set. However, quite often the maximal compatibles do not
necessarily constitute the set of compatibles that is minimal, In many cases, it is possible to find
a smaller collection of compatibles that will satisfy the condition for merging rows.

Clod-Cwering Condition

The condition that must be satisfied for merging rows is that the set of chosen compatibles
must cover all the states and must be closed. The set will cover dl the states if it includes all
the states of the original state table, The closure condition is satisfied if there are no implied
states or if the implied states are included within the set. A closed set of compatibles that cov-
ers all the states is called a closed covering. The closed-covering condition will be explained
by means of two examples.

Consider the maximal compatibles from Fig. 9.24(a). If we remove (a, b), we are left with
a set of two compatibles:

(a3 c, 6) (b, e,f)

All six states from the flow table in Fig. 9.23 are included in this set. Thus, the set satisfies the
covering condition. There are no impLied states for (a, c); (a, 4; (c, dj; (b, e); (b, a; and (e, fi,
as is seen fiom the implication table of Fig. 9.23(b), so the closure condition is also satisfied.
Therefore, the primitive flow table can be merged into two rows, one for each of the compat-
ibles. The detailed construction of the reduced table for this particular example was done in the
previous section and is shown in Fig. 9.17(b).

The second example is from a primitive flow table (not shown) whose implication table is
given in Fig. 9.25(a). The compatible pairs derived from the implication table are

(a, b> (a, 4 (b, C) (c, 4 (c, 4 (d, el

From the merger diagram of Fig. 9.25@), we determine the maximal compatibles:

If we choose the two compatibles

(a, b) (c, d, ee)
. w - -

then the set will cover all five gtates of the origrnaf table. The clomm am&b can be checked
by means of a closure table, as shown in Fig. 9.251~). The implid paiFs Wed for each corn-
patible are taken directly from the implication table. 'ihe implied pair of states for {a, b) is (b,
c). But (b, cJ is not includedin the chosen set of (a, b) (c, d, c), so this set of compatibles is not
closed, A set of compatibles that will satisfy the c l o s e d - c o ~ ~ w t i w is

a b c d
(a) Implication table

Compatibles

(c) Closure table

FIGURE 9.25
Chmslng a set of compathks

The set is covered because it contains all five states. Note that the same state can be repeated
more than once. The closure condition is 6 e . d because &e implied states are (b, c) (d, e)
and (a, d), whicb are included in the set. The original flow table (not shown here) can be re-
duced from five rows to thre rows by m q i q rows a and d, b and c, and c, d, and e. Note d s ~
that an alternative satisfactory choice of closed-oovered wmpatibles would be (a, b) (b, c)
(d, e). In general, here may be more than one possible way of merging rows when reducing a
primitive flow table.

9.6 RACE-FREE STATE ASSIGNMENT

Once a reduced flow table has k e n &ved for an asynchronws sequential circuit, the next step
in the design is to assign binary variables to each stable state. This assignment results in the
transformation of the flow table into irs equivalent transition table. The primary objective in
choosing a proper binary state assignment is the prevention of critical races. The problem of
critical races was discussed in MOIL 9.2 in conjunction with Fig. 9.7.

Section 9.6 Race-Free State Assignment

Critical races can be avoided by making a binary state assignment in such a way that only
one variable changes at my given time when a state transition occurs in the flow table. To ac-
complish this objective, it is necessary that states between which transitions occur h given ad-
jacent assignments. l k o binary values are said to be Macent if they differ in only one variable.
For example, 01 0 and 0 1 1 are adjacent because they differ only in the third bit.

In order to ensure that a transition table has no critical races, it is necessary to test each pos-
sible transition between two stable states and verify that the binary state variables change one
at a time. This is a tedious process, especially when there are many rows and columns in the
table. To simplify matters, we will explain the procedure of binary state assignment by going
through examples with only three and four rows in the flow table. These examples will demon-
strate the general procedure that must be followed to ensure a race-free state assignment. The
procedure can then be applied to flow tables with my number of rows and columns.

Three-Row Flow-Table Example

lh assignment of a single binary variable to a flow table with two rows dws not impose critical
race problems. A flow table with three rows requires an assignment of two binary variables. The as-
signment of binary valm to the stable states may cause critical races if it is not done properly. Cm-
sider, for example, the reduced flow table of Fig, 9.26(a), The outputs have been omitted from the
table for simplicity. Impecdion of row a reveals that there is a msition from state a to state b in col-
umn 01 and from state a to state c in column f 1, This inEormation is kansferred into a hwnsition di-
rrgraa, as shown in Fig. 9.m). The directd lines horn a to b and from a to c represent the two
transitions just mentioned. Similarly, the transitions h the other two rows are repmmted by di-
d lines in the diagram, which is a pictorial reprmatation of all required &tiom betwem~ows.

To avoid critical races, we must find a binary state assignment such that only m e b i i vari-
able changes during each state transition. An attempt to find such an assignment is shown in
the transition d i a v State a is assigned binary 00, and state c is assigned binary 1 1. This as-
signment will cause a critical race during the transition from a to c because there are two
changes in the binary state variables and the transition from a to c may occur directly a pass
through b. Note that the transition from c to a also causes a race condtion, but it is noncritical
because the transition does not pass through other states,

(a) Flow table

FIGURE 9.26
Three-row flow-table example

448 Chapter 9 Asynchrlwi6us Sequential Logic

(a) F b w table (b) Transition diagram

A race-free assignment can be obtained if we add an ex- mw to the flow table. The use of
a fwah row does not increase the number o f b i i state vxhblea, but it allows the famation
of cycles between two stable states. Consider the modified flow W e in Fig. 9.27. l l ~ &st three
rows represent the same conditions as the original three-row table. The fourth row, labeled d,
is assigned the binary value 10, which is adjacent to both a and c. The fmndi(311 from a to e
must now go through d, with the result that the binary variables change from a = 00, to
d = 10, to c = 1 1, thus avoiding a critical race. This is a c c o m p l i ~ b y changing row a, eol-
umn 11, to d ttnd row d, column 11, to c. Similarly, the transition h m c b a is shown to go
through unstable state d even though column 00 represents a nonuitid race.

The transition table corresponding to the flow table with the indicated binary state assign-
ment is shown in Fig. 9.28. The two dashes in row d mpresent um@ed states that can h
considered don't-care conditions. However, care must h taken not to assign 10 to h squares,
in order to avoid the possibility of an unwmted stable state being established in the foPrth row.

AGm 9.m
tnmltion table

Section 9.6 Rare-Fret State Assignment 449

(a) Flow table (b) Transition diagram

FIGURE 929
Four-row flow-table e m ple

. - . . - - - . . .

This example demonstrates the use of an extra row in the flow table for the purpose of
achieving a race-he assignment. The extra row is not assigned to any specific stable state., but
instead is used to convert a critical race into a cycle that goes through adjacent &ansitions be-
tween two stable states. Sometimes, just one extra row may not be sufficient to prevent criti-
cal races, and it may be necessary to add two or more extra rows in the flaw table. This
possibility is demonstrated in the next example.

Four-Row Flow-Table Example ;
A flow table with four rows requires a minimum of two state variables. Although a race-free
assignment is sometimes possible with only two binary state variables, in many cases the m-
quirement of extra rows to avoid critical races will dictate the use of three binary state variables.
Consider, for example, the flow table and its corre,smg -sition dmgram shown inFig. 9.29.
If there were no transitions in the diagonal direction (from b to d or from c to a), it would be
possible to find an adjacent assignment for the remaining four transitions. With one or two di-
agonal transitions, there is no way of assigning two binary variables that satisfy the adjacency
requirement. Therefore, at least three binary state variables are needed.

Figure 9.30 shows a state assignment map that is suitable for any fm-row flow table,
States a, b, c, and d are the original states, and c, f, and g ue extra states. States placed in
adjacent squares in the map will have adjacent assignments. State b is assignad binary 001
and is adjacent to the other thethree original states. The tmxitioo hm a to d mmt be directed
through the exka state e to produce a cycle so bat only oae binarg at a time.
Similarly, the transition from c to a is directed thwngb g, ~ . ~ t m o & i o n from d to c
goes through f. By using the assignment given by the map, tbeBDgtm labh can be ex-
panded to a seven-row table that is free of critical -. as ddhiF- 9.31. Note that
although the flow table has seven mws. there are only fm staMa -. me uncircled
states in the three extra rows a ~ e there merely to provide a mfnsetmnith between the
stable states.

450 Chapter 9 Asynchronous Sequentid b @ c

(a) Binary wignment
d =I01 f =lll c =011

@) Transition diagram

This example demonstrates a psdble way of 6elechg extra rows in a flow table in order
.

to achieve a race-free assignment. A map similar to the one used in Fig. 930(a)
can be helpful in most cases. Sorneths we a n take advantage of umpaifed entries in the
flow table. Instead of adding rows to the table, we may be able to eliminate critical races by
directing some of the state transitions through the don'tcm entries. The actual assignmat
is done by trial and error, until a satisfactory assignment is found that resolves all critical
races.

Sactlon 9.6 Race-Free State Assignment 43-1

The method for making r a c e h e state assignments by adding extra rows in the flow table, as
demonsmted in the previous two examples, is sometimes referred to as the shawd-tvw method.
A second methd, called the multiple-mw methcd, is not as efficient, but is easier to apply. In mul-
tiple-row assignment, each state in the original flow table is replaced by two or more c ~ w s
of state variables. The stateassignment map of Fig. 9.32(a) shows a multiple-row assignment that
can be used with any four-row flow table. There are two binary state variables for each stable state,
each variable being the logical complement of the other. For example, the original state a is replaced
with two equivalent states al = 000 and ap = 1 I 1. The output values, not shown here, must be
the same in a 1 and az. Note that a 1 is adjacent to bl , cp, and $1, and a2 is adjacent to cl , b2, and
d2, and, shnkly, each sstate is adjacent to three states with different letter designations, The k-
hvior of the circuit is the same whether the internal state is n~ or az, and so on for ae other states.

Figure 9.32@) shows the multiple-row assignment for the original flow table of Fig. 929(a).
The expanded table is formed by replacing each row of the original table with two rows. For
example, row b is replaced by rows bl and h, and stable state b is entered in columns 00 and 11
in both rows bl and b2. After all the stable states have been entered, the unstable states are
U e d in by reference to the assignment specified in the map of part (a), In choosing the next
state for a given present state, a state that is adjacent to the present state is selected from the
map. In the original table, the next states of b are a and d for inputs 10 and 01, respectively, In
the expanded table, the next states of bl are a1 and d2, because these are the states adjacent to
bl. Similarly, the next states of are a2 and dl, because they are adjacent to b2.

(a) Binary assignment

FIGURE 9.32
Multiple-row assignment

452 Chapter 9 Asynchronous Squentlal Logic

In the multiple-mw assignment, the change from one stable state to a n o k will always
cause a change of only one binary state variable. Each stable state has two binary assignments
with exactly the same output. At any given time, only one of the assignments is in we. For ex-
ample, if we start with state a1 and input 01 and then change the inpat to 11,01,00, and back
to 01, the sequence of i n t d states will be al, dl , q, and al. Although the circuit starts starts state
a1 and terminates in state az, as faras the inputmtput relationship is cwceraed, the two stares
a1 and a2 are equivalent to state a of the original £low table.

9 . 7 HAZARDS

In designing asynchronous sequential circuits, cwe must be Wen to conform with certain re-
strictions and precautions to ensure that the circuits aperate p l y . The circuit must be op-
erated in fundamental mode with only one input changing at my time and must be free of
critical races. In addition, there is one more phenomenon, called a hazard, that my cause the
circuit to malfimction. Hazards are unwanted switching msients that may appear at the our-
put of a circuit because different paths exhibit different propagation delays. Hazards occur in
combinational circuits, where they may cause a temporary fak output value. When they occur
in asynchronous sequentid circuits, hazards may result in st W t i o n to a wrong stable state.
It is therefore necessary to check for possible hazards and daemhe w h e w they can cause
improper v t i w s . If so, then st- must be taken to eliminate their effect.

Hazards in Combkrational Cirmlts

A hazard is a condition in which a change in a single variable prcduces a momentary change
in output when no change in output &odd occur. The circuit of Fig. 9.33(a) depicts the oc-
currence of a hazard. Assume that all three inputs are initially equal to 1. This causes the out-
put of gate 1 to be 1, that of gate 2 to be 0, and that of the circuit to be 1. Now cwsider a
change in x2 from 1 to 0. Then the output of gate 1 changes to 0 and that of gate 2 changes to
1, leaving the output at 1. However, the outpld may A '1 y go to 0 if the ppgation &lay
through the inverter is taken into considedom The delay in the inverter may cause the out-
put of gate I to change to 0 before the output of gate 2 changes to 1. In that case, both inputs

X3 = 1

(a) m R circuit

q = l

(b) NAND chit

FKkUIE 9.33
Circuits YVffh hazards

Section 9.7 Hazards

of gate 3 are momentarily equal to 0, causing the output to go to 0 for the short time during
which the input signal from xz is delayed while it is propagating through the inverter circuit.

The circuit of Fig. 9.33(b) is a NAND implementation of the Boolean function in Fig. 9.33@),
and it has a hazard for the same reason. Because gates 1 and 2 are NAND gates, their outputs
are the complement of the outputs of the corresponding AND gates. When xz changes from 1
to 0, both inputs of gate 3 may be equal to 1, causing the output to produce a momentag change
to 0 when it should have stayed at 1.

The two circuits shown in Fig. 9.33 implement the Boolean function in sum-of-products form:

Y = x*xz + x5x3

This type of implementation may cause the output to go to 0 when it should remain a 1. If, how-
ever, the circuit is implemented instead in product-of-sums form (see Section 3 . 3 , namely,

Y = (xl + x $) (x z + xg)

then the output may momentarily go to 1 when it should remain 0. The first case is referred to
as staiic 1-hazard and the second case as ssatic 0-hazard. A third type of hazard, known as
dynamic k a d , causes the output to change three or more times when it should change from
1 to 0 or from 0 to 1. Figure 9,34 ilIustrates the three types of hazards. When a circuit is im-
plemented in sum-of-products form with AND-OR gates or with NAND gates, the removal of
static 1-hazard guarantees that no static 0-hazards or dynamic hazards will occur.

A hazard can be detected by inspection of the map of the particular circuit. To illustrate, con-
sider the map in Fig. 9.35(a), which is a plot of the function implemented in Fig. 9.33. The
change in xz from 1 to 0 moves the circuit from mintem 1 1 1 to mintem 10 1. The hazard exists
because the change in input results in a different product tern covering the two minterrns.

(a) Static 1-hazard

WGUUE 9.34
Types of hazards

(b) Static 0-hazard

(a) Y n x 1 x 2 + x ' ~ x ~

0 -
(c) Dynamic hazard

F l t W 935
Maps Illustrating a hazard and itc removal

f i n

Chapter 9 Asynchronous Sequentla1 Lqic

Minterm 11 1 is c o v e d by the p d u c t term implemented in gate 1 of fig. 9.33, and miatem
101 is covered by the product term implemented in gate 2. whenever b circuit must m e from
one product term to another, there is a possibility of a momentary interval when neither tenn
is equal to 1, giving rise to an ufldeimble 0 output.

The remedy for eliminating a hazard is to enclose the two mintems in question with another
product term that overlaps both gmupings. This situation is shown in the map of fig. 9.35(b),
where the two &terms that cause tbe hazard are combined into one product term The haz-
ard-free circuit obtained by such a contigumtion is shown in Fig. 9.36. The e* gate in the
circuit generates the product term ~1x3. In general, hazards in c o m b h i d cjrcuits can be re-
moved by covering any two minterms that m y produce a h d with a p d m term common
to both. The removal of hazards req- the addition of redundant gates to the circuit.

Hazards in Sequentla1 Circults

In normal cornbinationalcircuit design associated with synchortous sequential circuits, haz-
ards are of no concern, since momentary erroneous signals are not generally troublesome.
However, if a momentary i n m m signal is fed back in an asynchronous sequential circuit, it
may cause the circuit to go to the wrong stable state. This situation is illustrated in Fig. 9.37.
If the circuit is in total stable state yxlxz = 1 1 1 and input xz changes ftom 1 to 0. the next total
stable state should be 110. However, because of the hazard, output Y may go to 0 momentarily.
If this false signal feeds back into gate 2 before the output of the inverter goes to 1, the o u p t
of gate 2 will remain at 0 and the circuit will switch to the inwrrect total stable state 010. This
maIfunction can h eliminated by adding an extra gate, as is done in Fig. 9.36.

Implementation wlth SR Latches

Another way to avoid static buds in uyncbmm~~ sequential circuits is to implement the cir-
cuit with SR latches. A m m m t q 0 signal applied to the S or R inputs of a NOR latch will have
no effect on the state of the circuit. Similarly, a momentary 1 s i g d applied to the S and R in-
puts of a NAND latch will have no effect on the state of the latch In Elg. 9.33(b), we observed

Section 9.7 Hazards 455

(a) Logic diagram

(b) Transition table (c) Map for Y

FIGURE P.3P
Hazard In an a5ynchronous sequential dmit

that a two-level sum-of-products expression implemented with NAND gates may have a static
1-hazard if both inputs of gate 3 go to I, changing the output from 1 to 0 momentarily. But if
gate 3 is part of a latch, the momentary 1 signal will have no effect on the output, because a
third input to the gate w ~ l l come from the complemented side of the latch that will be equal to
0 and thus maintain the output at 1. To clarify what was just said, consider a NAND SR latch
with the folIowing Boolean functions for S and R:

S = A3 + C D
R = A'C

Since this is a NAND latch, we must apply the complemented values to the inputs:

S = (AB + CD)' = (AB)'(CD)'
R = (A'C)'

This implementation is shown in Fig. 9.38(a). S is g a d with EWO NAND @ t ~ and one
AND gate. The Boolean function for output Q is ->&

1 ~ I I L A .

Q = (Q'S)' = @'(AB)'(CD)'I'

This function is generated in Fig. 9.38(b) with two levels of N m E m Q i
to 1, then Q' is equal to 0. If two of die b go . * '":pDD-Z. a NAND gate as-
sociated with output Q will remain at 1 because Q' is m h i a h l d L

Figure 9.38(b) shows a typical circuit thsrt - k rrPad tu m q - 4 v-
tial circuits. The two NAND gates forming the latch wrmrl)y b m W e r , if the

458 Ctmptw 9 Asynchromus Sequential Lqic

FIGURE 9.38
Latch (mplementation

S or R functions contain two or more product terms when expressed as a sum of pducts, then
the corresponding NAND gate of the SR latch will have three or more inputs. Thw, tbe two
terms in the original sum-of-products expmsim for S arc AB and CD, and w h is implemented
with a NAND gate whose output is applied to the input of the NAND latch. In this way, each
state wiable requires a twu-level circuit of NAND gates. The h a level consists of NAND gats
that implement each product tenn in the original Boolean expression of S md R. The second
level forms the cross-coupled connection of the SR latch with inputs that come from the out-
put~ of each NAND gate in the first level.

Essential Hazards

Thus far, we have considered what are known as static and dynamic hazards. Anoher type of
hazard that may occur in asphronous sequential circuits is called an m s d hazard This
typeofhazardiscausedby unequaldelaysdongtwo ormore paths Woriginatefmmthe same
input. An excessive delay through an inverter circuit in wmparison to the &lay associated

SectionR? Deslgn Example 457

with the feedback path may cause such a hazard. Essential hazards cannot be corrected by
adding redundant gates as in static hazards. The problem that they impose can be corrected by
adjusting the amount of delay in the affected path. To avoid essential hazards, each feedback
loop must be handled with individual care to ensure that the delay in the feedback path is long
enough compared with delays of other signals that originate from the input terminals, This
problem tends to be specialized, as it depends on the particular circuit used and the size of the
delays that are encounted in its various paths.

9.8 D E S I G N E X A M P L E

We are now in a position to examine a complete design example of an asynchronous sequen-
tial circuit. This example may serve as a reference for the design of other, similar circuits. We
wil l demonstrate the method of design by following the recommended procedural steps listed
at the end of Section 9.4 and repeated next. After stating the design specifications,

1. Derive a primitive flow table,
2. Reduce the flow table by merging the rows.
3. Make a race-free binary state assignment.
4. Obtain the transition table and output map,
5. Obtain the logic diagram, using SR latches.

Design SpecIficatlons
It is necessary to design a negative-edge-higgmd T £lipflop. The circuit has two inputs, T (tog-
gle) and C (clock), and one output, Q. The output state is complemented if T = 1 and the clock
C changes from I to 0 (negative-edge triggering). Otherwise, under any other input condition,
the output Q remains unchanged. Although this circuit can be used as a flip-flop in clocked se-
quential circuits, the internal design of the flip-flop (as is the case with all other flip-flops) is
an asynchronous problem.

Prlmltbe Flow Tabk
The derivation of the primitive flow table can be facilitated if we h t derive a table that
lists d l possible total states in the circuil. This table is shown&W.9.6. We s h f L with
the input condition TC = 11 and assign to it state a. Tbe citmitm,)ortrle b radtbt olrt-
put Q is complemented from 0 to 1 when C changes fmm 1 8o T w a 1. An-
other change in the output occurs when the circuit gowr from - c ro mk d In d& case,
T = 1, C changes from 1 to 0, and the output Q is -- 1 w 0,- atber
four states in the table do not change the ompt, is initially
0, it stays at 0, and if it is initidly at 1, it stays a 1, cvm- I-s.
This analysis identifies six totd states. Note that of two input
variables, such as that from 01 to 10, are no! hlu&d, mw*- for fun-
damental-mode operation. - rx;l

458 ~ h a ~ t e r . 9 Aqnchronous Sequentid Logtc

Tabte 9.6
~ O f T o f a l S ~

Inputs Output

State T C 4 Commmts

a 1 1 0 Initial ompm is 0
b 1 0 1 After state a
C 1 1 1 hdtialoutpmisl
d 1 0 0 Afterstater:
I 0 0 0 After state d or f
f o 1 o Aftermema
8 0 0 1 Aftersmkborh
h 0 1 1 ' A f t t r e g m c

The primitive flow table is shown in Fig. 9.39. The infomation for the table can be ob-
tained directly from the mnditims listed in Table 9.6. First, in & row, we fdl in one square
belonging to the stable state in that row, as listed in the table. Then we enter dashes in those
squares whose input M e r s by two fmm tho input to the stable state.
F h d y , we identify the unstable &tiof18 by IXW&I~ the i d d o n listed under the corn-
ments in Table 9.6.

FIGURE P.#
Implication table

Merglng of the Flow Table

The rows in the primitive flow table are merged by first obtaining all compatible pairs of states.
This is done by means of the implication table shown in Fig. 9.40. The squares that contain
check marks define the compatible pairs:

(a , f) (b, gl (b, h) (c, h) (d, e) (d,fl (e , f 1 k, h)

The maximal compatibles are obtained from the merger diagram shown in Fig. 9.41. The
geometrical patterns that are recognized in the diagram consist of two triangles and two straight
lines. The maximal compatible set is

(a,f) (b, g, h) Ec, hh) Id, e, f 1
In this particular example, the minimal collection of campatiMesr is also the nmwbd campat-
ible set. Note that the closed condition is satisfied because tht s e t s all* m Q i d dgttt
states listed in the primitive flow table, althwgh states h aadf a o e ~ T l w ~ c m k
dition is also satisfied, because all the compatible pairs have m irml;llr u m bt
from the implication table.

The reduced flow table is shown in Fig. 9.42. 'IbE CpME
- - -. , -@w*m

taiTls the original state symbols, but merges h e ..
. - - : m o d

fare compatible and are merged iato o m row that h- at&
states. Similarly, the other three comp&bIe sctp d m rs-e b
four rows, retaining the eight original 1- sydmh T b w d~
merged flow table is shown in part (b) of & figure. m 4-m-

to all the stable states in each merged m. Thus, the symbol f k replaced by a, g and h are re-
placed by b, and similarly for th other two mws. The second akmafive shows clearly a four-
s- flow table with only four Ietter SyubIs hr the states.

State Asdgnmant and Trondtlsn Tmbk
The next step in the design is to fiad a binary assignment fur the four stable states in
the reduced flow table. In order to h d a suiWle adjacent aasisnment, we draw the d t i w
diagram, as shown in Fig. 9.43. Fbr this exmplt, it is psible to obtain a suitable djacat as-
signment without the n d of extra -, bscapsie there are no dbgoml lines in tb transition
diagram.

Section 8.8 Design Example 461

FIGURE 9.43
Transition dlagram

(a) Transition table (b) Output map Q = y2

00 01 11 10

FIG.URE PA4
Transition table and output map

1 1

Substiming the binary assignment indicated in the transition diagram iato lh mimed flow
table, we obtain the transition table shown in Fig. 9.44. The output map is oWmd h m the
reduced flow table. The dashes in the output d o n are assigned tD tht m h
established in Section 9.4.

togk Diagram

o o o x

1 1 1 1

1

0 0 0 0

The circuit to be designed has two wa&
in Fig. 9.44 shows that Q is e q d to h e
quires two SR Iat&ea, one for d mk
are shown in Fig. 9.45. The map am
table by using the conditions s-
simplified Boolean functions are listed muk ench '

X

Chapter 9 Arynchrotswrs Scqmndd Logk

0 X X

x o x

0 0 0

0 0 0

M) 01 11 10

The bgic diagram of the circuit is shown in Fig, 9.46. Here we use two NAND latches with
two or three inputs in each gale. This imphemlion is amding to the pamn established in
Section 9.7 in conjunction with Fig. 9.38(b). The S and R input fmctiom require six NAND
gates for heir implementation.

The example just presented illustram th complexity involved in desig&g qmhmnous
sequential circuits. It was to go t h ~ ~ @ 10 diagram in ordm to obtain the h a l cir-
cuit diagram. Although most digital circuits are synchronous, th%te are occasions when one
has to &a1 with asynchnmow behavior, Tbe basic pro@= p m t e d in this chapter are es-
sential to a full understanding of the internat khaviw of digital c h i t s .

0 0 0

X X X

X X X O

0 0 0 0

FIGURE 9.46
logic dlagrarn of negatldge-triggmed Tfllp-flop

P R O B L E M S

Answers to problems m a r i d with * ~pptar at the end of the book.
9.1 (a) Explain the difference between ~yuch ronm~~ and spchrwoas qumlial circllirs.

{b) Define fundamental-mode operation.
(c) Explain the difference between stable and unstable -.
(d) What i s the difference bttwtcn an internal state and a total spre?

938 Derive the hasition table for the asynchronous qwtthl cirmit ~MWEI m Fig. F X L I M m u h h
sequence of internal states qG for the following sapm afjmpots ~1x2: m, 10. 11,Ol. 1 1, 10,OO.

464 Chapter 9 Asynchmrlowi Sequ&ntM Logk

9.3 An asynchronous saqucntial circuit is described by the excitation function

Y = x lx$ + (xl + x i)y
and the output function

z = y

(a) Draw the logic diagram of the circuit.
@) Derive the transition table and output map.
(c) Obtain a twestate flow table.
Id)* Describe in words the W v i o r of the circuit.

?:4 An asynchronous sequential circuit has two inmd states and one -t The two excitation
functions and w e output function describing the cifcuit are, reqedvely,

Y1 = ~ 1 x 2 + xly$ +
Y2 = xz + X ~ Y ~ Y Z + X;YI

z = x2 + y1
(a) Draw the logic diagram of the c h i t .
(b) Derive the transition table and output map.
(c)* Obtain a flow table for the circuit.

9.3 Convert the flow table of Fig. P9.5 into a transition table by d& tbe follming binary val-
ues to the states: a = 110, b = 11. and c = 01.
(a) Assign values to the extra f d state to avoid critical rsoes.
(b) Assign outputs to the don'tcare states to avoid momentary f a h outputs.
(c)* Derive the logic diagram of the Circuit.

9.6 Investigate the tramition table of Fig. W.6, and determiae all race conditicus and w k h they
are critical or noncritical. Determine a h w e r there are any cycles.

9.7 Andy, the SR latch with control shown in Fig. 5.5. Obtain tk muition table, a d sbow that
the circuit is unstable when all tbnse inputs are equal to 1.

Modify the diagram of FG. 5.5(a) to convert it into a JK type of latch by insdng two feedback '.
comedons from the outputs to the inputs. Show that the circuit is unstable when J = K = 1
while the conml input C remains in &e 1 state.

9.9 For the asynchronous sequential circuit shown in Fig. P9.9,
(a) derive the Boolean functions for the outputs of the two SR latches Y1 and Y2. Note that the S

input of the second latch is x i y ; .
(b) derive the transition table and output map of the circuit.

466 Chapter 9 Asynchronous Sequential Lagk

9.101 Implement the circuit defined in Problem 9.3 with a NOR SR Iatch. Repeat with a NAND SR
k h .

9.1 1 lmplrment the circuit defind in Roblem 9.4 with NAND SR latches.

9.1 2 Obtain a primitive flow table for a circuit with two inputs, xl and xz, and two outputs, z1 and 22,
that satisfy the following four conditions:
(a) When ~ 1 x 2 = 00, the output is zlzz = 00.
@I Whenxl = 1 andx2chang~hmOto1,theoutputiszlzz = 01.
(c) Whcnxz = 1 mdxl changwfmmOta 1, theoueputiszl~ = 10.
(dl Otherwise, the output h s not chauge.

9.1P A ~ l i g b t i s i n s ~ a t a j u n c t i m o f a ~ d a d T b e ~ ~ ~ I l e d b y t w o s w i t c h -
ea in the rails plaoed I mile apart on e i k side of the jm&(m. A switch is turned cm when the train
is over it and is mned off otherwise. The m c light changes kom green (logic 0) to red (logic 1)
when the beginning of the train is 1 mile h m the junctiw. The light chmp back to gcen when
theendofthe trainis 1 m i l e a w a y f r w n ~ ~ m . A s s u m e t h a t ~ l e n g t h o f t b e t r a i n k I w s ~
2 m h .
(a) Obtain a primitive flow table for the circuit.
@) Show that the flow table can be reduced to fow lows.

9.14 It is necessary to design an asynchronous sequential circuit with two inputs, XI and xz, and one
output, z. Initially, both inputs and output are equal to 0. When xl or x2 kames 1. t becomes 1.
When the second input also becomes 1, the output changes to 0. The output stays at O until the
circuit p s back to the initial state.
(a) Obtain a primitive flow table for the circuit, and show that it can be reduced to tbe £low tabb

shown in Fig, P9.14,
@) Complete the design of the circuit.

FIGURE P9.14

9.1 5 Assign output values to the don't- strltes in the flow tables of Fig. P9.15 in such a way as to
avoid transient output pulses.

i Using the implication-table method show that the state table listed in Table 5.7 carmot be re-
duced any further.
Reduce the number of mes in tbe state table listed in Problem 5.12. Use an implication table.

P Merge each of the primitive f i w table6 shown in Fig. P9.18. hwed as follows:

Problems 467

= Chatmr 9 Asynchronous -entiad Logk

(a) find all compu'ble pairs by means of an implication table.
(b) Fmd the maximal compatibles by ~lmeaas of a merger dia-
(c) Find a minimal set of compatibles that covers a l l the states aud is closed

9.19 {a) Obtain a binary state assignment for the &ed flow table shorn in Fig. P9.19. Avoid crit-
ical race conditions.

(b) Obtain the logic diagram of the c h i t , using NAND latches and gates.
9- Find a critical race& state assignment for the reduced flow table show ia Fig. P9.20.

Ref ererices

9.2.1 Consider the reduced flow table shown in Fig. P9.21.
(a) Obtain the transition diagram, and show that three state variables are needed for a race-free

binary state assignment.
{b) Obtain the expanded flow table, using the multiple-row method of auignrnent as specified

in Fig. 9.32(a).

9.2P Find a circuit that has no smtic hazards and implements the Boolean function

F (A , B , C , D) = X(O,2,6,7,8, 10, 12)

9.23* Draw the logic diagram of the product-of-sums expression

Y = (xl + x ~) (x ~ + x 3)

Show that there is a static 0-hazard when x l and x3 are equal to 5 and x2 goes from 0 to 1. Find
a way to remove the hazard by adding one more OR gate,

P a The Boolean functions for the inputs of an SR latch are

Obtain the circuit diagram, using a minimum number of NAND gates.

9.25 Complete the design of the circuit specsed in Problem 9-13.

R E F E R E N C E

1. BREEDING, K, J. 1989. Digital Design F&cntals. F.u@eWOOd Cli& NJ: Pra&ce-Hd,
2. FRIEDM, A. D. 1986. Fundamentals of LDgic Design am? Swackirpg Thory. RmhiHc, MD:

Computer Science Press.

Chapter 9 Asynchronous Sequentla1 Logk

3. HILL, F. J., and G. R. Pmmm. 198 1. Infrodsctdwz to Switchkg b r y andZogkal Design, 3d ed
New York: John Wiley.

4. KOHAVI, 2.1978. Switching rmd-m TAwv, 2d ed. New Yark: McGiaw-Hill,
5. MCCLUSKEY, E. J. 1986. Logic Design Principles. Englewd CWs, NI: RtntiaEfalL
6. NUON, V, F?, H. T. NAGLE, J. D. Iuwm, and B. D. CARROIL. 1995. Digital Logic Cin:uitsAn&-

xis CUZd Design. Upper Saddle River, NJ: Prentice Hall.
7. UNGER, S. H. 1969. Asynchronous fhptdal Switching Ci&. New Yo* John Wilcy.

	09 – Asynchronous Sequential Logic.PDF
	415.tif
	416.tif
	417.tif
	418.tif
	419.tif
	420.tif
	421.tif
	422.tif
	423.tif
	424.tif
	425.tif
	426.tif
	427.tif
	428.tif
	429.tif
	430.tif
	431.tif
	432.tif
	433.tif
	434.tif
	435.tif
	436.tif
	437.tif
	438.tif
	439.tif
	440.tif
	441.tif
	442.tif
	443.tif
	444.tif
	445.tif
	446.tif
	447.tif
	448.tif
	449.tif
	450.tif
	451.tif
	452.tif
	453.tif
	454.tif
	455.tif
	456.tif
	457.tif
	458.tif
	459.tif
	460.tif
	461.tif
	462.tif
	463.tif
	464.tif
	465.tif
	466.tif
	467.tif
	468.tif
	469.tif
	470.tif

