Chapter 9

Asynchronous Sequential Logic

9.1

INTRODUCTION

A sequential circuit is specified by a time sequence of inputs, outputs, and internal states. In
synchronous sequential circuits, the change of internal state occurs in response to the syn-
chronized clock pulses. Asynchronous sequential circuits do not use clock pulses. The change
of internal state occurs when there is a change in the input variables. The memory elements in
synchronous sequential circuits are clocked flip-flops. The memory elements in asynchronous
sequential circuits are either unclocked flip-flops or time-delay elements. The memory capa-
bility of a time-delay device depends on the finite amount of time it takes for the signal to
propagate through digital gates. An asynchronous sequential circuit quite often resembles a
combinational circuit with feedback.

The design of asynchronous sequential circuits is more difficult than that of synchronous cir-
cuits because of the timing problems involved in the feedback path. In a properly designed
synchronous system, timing problems are eliminated by triggering all flip-flops with the pulse
edge. The change from one state fo the next occurs during the short time of the pulse transi-
tion. Since the asynchronous circuit does not use a clock, the state of the system is allowed to
change immediately after the input changes. Care must be taken to ensure that each new state
keeps the circuit in a stable condition even though a feedback path exists.

Asynchronous sequential circuits are useful in a variety of applications. They are used when
speed of operation is important, especially in those cases where the digital system must re-
spond quickly without having to wait for a clock pulse. They are more economical to use in
small independent systems that require only a few components, as it may not be practical to
20 to the expense of providing a circuit for generating clock pulses. Asynchronous circuits are
useful in applications where the input signals to the system may change at any time, inde-
pendently of an internal clock. The communication between two units, each having its own

415

416 Chapter 9 Asynchronous Sequential Logic

independent clock, must be done with asynchronous circuits. Digital designers often produce
amixed system in which some part of the synchronous system has the characteristics of an asyn-
chronous circuit. Knowledge of asynchronous sequential logic behavior is helpful in verifying
that the total digital system is operating in the proper manner.

Figure 9.1 shows the block diagram of an asynchronous sequential circuit that consists of
a combinational circuit and delay elements connected to form feedback loops. There are n
input variables, m output variables, and k internal states. The delay elements can be visualized
as providing short-term memory for the sequential circuit. In a gate-type circuit, the propaga-
tion delay that exists in the combinational circuit path from input to output provides sufficient
delay along the feedback loop so that no specific delay elements are actually inserted into the
feedback path. The present-state and next-state variables in asynchronous sequential circuits
are customarily called secondary variables and excitation variables, respectively. The excita-
tion variables should not be confused with the excitable table used in the design of clocked se-
quential circuits.

T

(e
il

T 7
S _,f/; /
5 I
= .%%2’%’_

Xy —z
S 13/ ///'/
ninput *2 \.‘_‘: %’6‘// 22 m output
variables ; ~'fj/{?fy#-;’, variables
Xn : / im
N Y
k secondary k excitation
variables _»n 7 Y, variables
(present : 2 (next state)
tat S) .
state) j s i 5 [////%'{z";' Ly
s BRI /]{x} i1 k
)
T
ity
T
'/f{’wm;
o
VR
FIGURE 9.1

Block diagram of an asynchronous sequential circuit

Section 9.2 Analysis Procedure 417

When an input variable changes in value, the y secondary variables do not change instan-
taneously. It takes a certain amount of time for the signal to propagate from the input termi-
nals, through the combinational circuit, to the Y excitation variables, which generate new values
for the next state. These values propagate through the delay elements and become the new
present state for the secondary variables. Note the distinction between the y’s and the ¥’s. In
the steady-state condition, they are the same, but during transition they are not. For a given value
of input variables, the system is stable if the circuit reaches a steady-state condition with y; = ¥;
fori = 1, 2,..., k. Otherwise, the circuit is in a continuous transition and is said to be unsta-
ble. It is important to realize that a transition from one stable state to another occurs only in re-
sponse to a change in an input'variable. This is in contrast to synchronous systems, in which
state transitions occur in response to the application of a clock pulse.

To ensure proper operation, asynchronous sequential circuits must be allowed to attain a sta-
ble state before the input is changed to a new value. Because of delays in the wires and the gate
circuits, it is impossible to have two or more input variables change at exactly the same instant
of time without an uncertainty as to which one changes first. Therefore, simultaneous changes of
two or more variables are usually prohibited. This restriction means that only one input variable
can change at any one time and the time between two input changes must be longer than the time
it takes the circuit to reach a stable state. Such operation, defined as fundamental mode, assumes
that the input signals change one at a time and only when the circuit is in a stable condition.

9.2 ANALYSIS PROCEDURE

The analysis of asynchronous sequential circuits consists of obtaining a table or a diagram that
describes the sequence of internal states and outputs as a function of changes in the input vari-
ables. A logic diagram manifests the behavior of an asynchronous sequential circuit if it has one
or more feedback loops or if it includes unclocked flip-flops. In this section, we will investi-
gate the behavior of asynchronous sequential circuits that have feedback paths without em-
ploying flip-flops. Unclocked flip-flops are called /atches, and their use in asynchronous
sequential circuits will be explained in the next section.

The analysis procedure will be presented by means of three specific examples. The first ex-
ample introduces the transition table, the second defines the flow table, and the third investi-
gates the stability of asynchronous sequential circuits.

Transition Table

An example of an asynchronous sequential circuit with only gates is shown in Fig. 9.2. The di-
agram clearly shows two feedback loops from the OR gate outputs back to the AND gate in-
puts. The circuit consists of one input variable x and two internal states. The internal states
have two excitation variables, ¥; and Y>, and two secondary variables, y; and y,. The delay as-
sociated with each feedback loop is obtained from the propagation delay between each y input
and its corresponding ¥ output. Each logic gate in the path introduces a propagation delay of
about 2 to 10 ns. The wires that conduct electrical signals introduce approximately a 1-ns delay
for each foot of wire. Thus, no additional external delay elements are necessary when the com-
binational circuit and the wires in the feedback path provide sufficient delay.

418

Chapter 9 Asynchronous Sequential Logic

¥2

FIGURE 9.2
Example of an asynchronous sequential circuit

The analysis of the circuit starts with a consideration of the excitation variables as outputs
and the secondary variables as inputs. We then derive the Boolean expressions for the excita-
tion variables as a function of the input and secondary variables. These expressions, readily ob-
tained from the logic diagram, are

h=xytxy

h=xy+x'yn
The next step is to plot the ¥; and ¥; functions in a map, as shown in Fig. 9.3(a) and (b). The
encoded binary values of the y variables are used for labeling the rows, and the input x vari-

able is used to designate the columns. This configuration results in a slightly different three-
variable map from the one used in previous chapters, However, it is still a valid map. and such

X X X
Y2 0 1 Yi¥2 0 1 Yoz 0 1

o| o | o of o | 1 0| @ | o

onf 1 [o o1 | 1 1 ol n | Q@

n| 1| 1 m|l 1 | o |l @/ 1w

| o | 1 10| o | o 10| oo | @
(a) Map for (b) Map for (c) Transition table

Y, =xy; +xy; Yo=xy' +x'y
FIGURE 9.3

Maps and transition table for the circuit of Fig. 9.2

Section 9.2 Analysis Procedure 419

a configuration is more convenient in dealing with asynchronous sequential circuits. Note that,
unlike what was done in previous chapters, the variables belonging to the appropriate squares
are not marked along the sides of the map.

The transition table shown in Fig. 9.3(c) is obtained from the maps by combining the binary
values in corresponding squares. The transition table shows the value of ¥ = Y,¥; inside each
square. The first bit of ¥ is obtained from the value of ¥}, and the second bit is obtained from
the value of 5 in the same square position. For a state to be stable, the secondary variables must
match the excitation variables (i.e., the value of ¥ must be the same as that of y = y;y,). Those
entries in the transition table where ¥ = y are circled to indicate a stable condition. An uncir-
cled entry represents an unstable state.

Now consider the effect of a change in the input variable. The square for x = 0 and y = 00
in the transition table shows that ¥ = 00. Since Y represents the next value of y, this is a sta-
ble condition. If x changes from O to 1 while y = 00, the circuit changes the value of ¥ to 01.
This represents a temporary unstable condition, because Y is not equal to the present value of
y. What happens next is that as soon as the signal propagates to make ¥ = 01, the feedback
path in the circuit causes a change in y to 01. This change is manifested in the transition table
by a transition from the first row (y = 00) to the second row, where y = 01. Now thaty = ¥,
the circuit reaches a stable condition with an input of x = 1. In general, if a change in the
input takes the circuit to an unstable state, the value of y will change (while that of x remains
the same) until it reaches a stable (circled) state. Using this type of analysis for the remaining
squares of the transition table, we find that the circuit repeats the sequence of states 00, 01, 11,
10 when the input repeatedly alternates between 0 and 1,

Note the difference between a synchronous and an asynchronous sequential circuit. In a syn-
chronous system, the present state is totally specified by the flip-flop values and does not change
if the input changes while the clock pulse is inactive. In an asynchronous circuit, the internal
state can change immediately after a change in the input. Because of this rapid change, it is some-
times convenient to combine the internal state with the input value together and call it the total
state of the circuit. The circuit whose transition table is shown in Fig. 9.3(c) has four stable total
states—yyox = 000, 011, 110, and 101—and four unstable total states—001, 010, 111, and 100.

The transition table of asynchronous sequential circuits is similar to the state table used for
synchronous circuits. If we regard the secondary variables as the present state and the exci-
tation variables as the next state, we obtain the state table shown in Table 9.1. This table pro-
vides the same information as the transition table. There is one restriction that applies to the

Table 9.1
State Table for the Circuit of Fig. 9.2
Next State
Present
State x=0 x=1
0 0 0 0 0 1
0 1 1 0 1
1 0 0 0 1 0
1 1 1 1 1 0

420

Chapter 9 Asynchronous Sequential Logic

asynchronous case, but not the synchronous case: In the asynchronous transition table, there
usually is at least one next-state entry that is the same as the present-state value in each row.
Otherwise, all the total states in that row will be unstable.

The procedure for obtaining a transition table from the circuit diagram of an asynchronous
sequential circuit is as follows:

1. Determine all feedback loops in the circuit.

2. Designate the output of each feedback loop with variable ¥; and its corresponding input
with y; fori = 1, 2,..., k, where k is the number of feedback loops in the circuit.

3. Derive the Boolean functions of all ¥’s as a function of the external inputs and the y’s.

4. Plot each Y function in a map, using the y variables for the rows and the external inputs
for the columns.

5. Combine all the maps into one table showing the value of ¥ = ¥j¥;- -V} inside each
square.

6. Circle those values of Y in each square that are equal to the value of y = yy; -+ 3, in the
same row.

Once the transition table is available, the behavior of the circuit can be analyzed by observing
the state transition as a function of changes in the input variables.

Flow Table

During the design of asynchronous sequential circuits, it is more convenient to name the states
by letter symbols without making specific reference to their binary values. Such a table is
called a flow table and is similar to a transition table, except that the internal states are sym-
bolized with letters rather than binary numbers. The flow table also includes the output values
of the circuit for each stable state.

Examples of flow tables are shown in Fig. 9.4. The one in Fig. 9.4(a) has four states, des-
ignated by the letters a, b, ¢, and d. It reduces to the transition table of Fig. 9.3(c) if we assign

X 0 1

XX

al @ | » ‘0 01 11 10

& @ d
d a @

(a) Four states with (b) Two states with two
one input inputs and one output

FIGURE 9.4
Examples of flow tables

Section 9.2 Analysis Procedure 421

the following binary values to the states: @ = 00, » = 01,¢ = 11, and 4 = 10. The table of
Fig. 9.4(a) is called a primitive flow table because it has only one stable state in each row.
Figure 9.4(b) shows a flow table with more than one stable state in the same row. It has two
states, @ and b; two inputs, x; and x,; and one output, z. The binary value of the output vari-
able is indicated inside the square next to the state symbol and is separated from the state sym-
bol by a comma. From the flow table, we observe the following behavior of the circuit: If
x; = 0, the circuit is in state a. If x| goes to | while x; is 0, the circuit goes to state b. With
inputs x;x, = 11, the circuit may be either in state a or in state b. If it is in state q, the output
is 0, and if it is in state b, the output is 1. State b is maintained if the inputs change from 10 to
11. The circuit stays in state « if the inputs change from 01 to 11. Remember that in fundamental
mode two input variables cannot change simultaneously; therefore, we do not allow a change
of inputs from 00 to 11.

In order to obtain the circuit described by a flow table, it is necessary to assign a distinct bi-
nary value to each state. Such an assignment converts the flow table into a transition table from
which we can derive the logic diagram. This is illustrated in Fig. 9.5 for the flow table of
Fig. 9.4(b). We assign binary 0 to state @ and binary 1 to state b. The result is the transition table
of Fig. 9.5(a). The output map shown in Fig. 9.5(b) is obtained directly from the output values
in the flow table. The excitation function ¥ and the output function z are simplified by means
of the two maps. The logic diagram of the circuit is shown in Fig. 9.5(c).

X1X7 XXz
v

01 10 ¥ 00 01 11 10

@IOI@]] ofo]o]o]o
O

il o] o @ il o] o] 1 |o
(a) Transition table (b) Map for output
Y= xlx’z + Xy I =Xy

)

(c) Logic diagram

FIGURE 9.5
Derivation of a circuit specified by the flow table of Fig. 9.4(b)

422 Chapter 9 Asynchronous Sequential Logic

This example demonstrates the procedure for obtaining the logic diagram from a given flow
table. Doing that, however, is not always so simple. There are several difficulties associated with
the binary state assignment and with the output assigned to the unstable states. These problems
are discussed in detail next.

Race Conditions

A race condition is said to exist in an asynchronous sequential circuit when two or more bi-
nary state variables change value in response to a change in an input variable. When unequal
delays are encountered, a race condition may cause the state variables to change in an unpre-
dictable manner. For example, if the state variables must change from 00 to 11, the difference
in delays may cause the first variable to change sooner than the second, with the result that the
state variables change in sequence from 00 to 10 and then to 11. If the second variable changes
sooner than the first, the state variables will change from 00 to 01 and then to 11. Thus, the order
by which the state variables change may not be known in advance. If the final stable state that
the circuit reaches does not depend on the order in which the state variables change, the race
is called a noncritical race. If it is possible to end up in two or more different stable states, de-
pending on the order in which the state variables change, then the race is a crifical race. For
proper operation, critical races must be avoided.

The two examples in Fig. 9.6 illustrate noncritical races. We start with the total stable state
ypux = 000 and change the input from O to 1. The state variables must then change from 00
to 11, which defines a race condition. The transitions listed under each table show three pos-
sible ways that the state variables may change. Either they can change simultaneously from 00
to 11, or they may change in sequence from 00 to 01 and then to 11, or they may change in se-
quence from 00 to 10 and then to 11. In all cases, the final stable state is the same, so the race
is noncritical. In (a), the final total state is yjy;x = 111, and in (b), it is O11.

% x
Yiy? 0 1 yiy2 0 1

01 11 01

11 @ 11 01

10 11 10 11
(a) Possible transitions: (b) Possible transitions:
00 — 11 00 — 11 — 01
00 — 01 — 11 00 —= 01
00 — 10 —=11 0 —10—11 —0

FIGURE 9.6
Examples of noncritical races

Section 9.2 Analysis Procedure 423

53 X
Yiyz 0 1 yiy2 0 1

00 11 00 @ 11
01 0 7 11
11 @ 11 @
10 @ 10 @

(a) Possible transitions: (b) Possible transitions:
00 —= 11 00 —= 11
00 — 01 00 —= 01 —= 11
00 —= 10 00 — 10

FIGURE 9.7
Examples of critical races

The transition tables of Fig. 9.7 illustrate critical races. Here again, we start with the total
stable state y;y,x = 000 and change the input from O to 1. The state variables must then change
from 00 to 11. If they change simultaneously, the final total stable state is 111. In the transi-
tion table of part (a), if, because of unequal propagation delay, ¥, changes to 1 before ¥| does,
then the circuit goes to the total stable state 011 and remains there. If, however, ¥} changes
first, the internal state becomes 10 and the circuit will remain in the stable total state 101.
Hence, the race is critical because the circuit goes to different stable states, depending on the
order in which the state variables change. The transition table of Fig. 9.7(b) illustrates another
critical race, in which two possible transitions result in one final total state, but the third pos-
sible transition goes to a different total state.

Races may be avoided by making a proper binary assignment to the state variables. The
state variables must be assigned binary numbers in such a way that only one state variable can
change at any one time when a state transition occurs in the flow table. The subject of race-free
state assignment is discussed in Section 9.6.

Races can be avoided by directing the circuit through intermediate unstable states with a
unique state-variable change. When a circuit goes through a unique sequence of unstable states,
it is said to have a cycle. Fig. 9.8 illustrates the occurrence of cycles. Again, we start with
y1¥> = 00 and change the input from 0 to 1. The transition table of part (a) gives a unique se-
quence that terminates in a total stable state 101. The table in (b) shows that even though the
state variables change from 00 to 11, the cycle provides a unique transition from 00 to 01 and
then to 11, Care must be taken when using a cycle that terminates with a stable state. If a cycle
does not terminate with a stable state, the circuit will keep going from one unstable state to an-
other, making the entire circuit unstable. This phenomenon is demonstrated in Fig. 9.8(c) and
also in the next example.

424 Chapter 9 Asynchronous Sequential Logic

N g 1 wN 1 wN g 1
Joln] @[] «@[
01 11 01 1 o1 11

11 10 11 @ 11 10
10 ‘ 10 10 01

(a) State transition: (b) State transition: (c) Unstable

00—-01—=11—-10 00—-01—-11 EOl—bll—b—ll]—
FIGURE 9.8
Examples of cycles

Stability Considerations

Because of the feedback connection that exists in asynchronous sequential circuits, care must
be taken to ensure that the circuit does not become unstable. An unstable condition will cause
the circuit to oscillate between unstable states. The transition-table method of analysis can be
useful in detecting the occurrence of instability.

Consider, for example, the circuit of Fig. 9.9(a). The excitation function is

Y = (x13)'xp = (x'1 +y')xy = xixy + x99

[— .

(a) Logic diagram

(b) Transition table

FIGURE 9.9
Example of an unstable circuit

Section 9.3 Circuits with Latches 425

The transition table for the circuit is shown in Fig. 9.9(b). Those values of ¥ which are equal to
y are circled and represent stable states. Uncircled entries indicate unstable conditions. Note
that column 11 has no stable states. This means that with input x,x, fixed at 11, the values of ¥
and y are never the same. If y = 0, then ¥ = 1, which causes a transition to the second row of
the table, with y = 1 and Y = 0. This in turn causes a transition back to the first row, with the
result that the state variable alternates between 0 and 1 indefinitely, as long as the input is 11.

The instability condition can be detected directly from the logic diagram. Let
x; = 1,x = 1,and y = 1. Then the output of the NAND gate is equal to 0, and the output
of the AND gate is equal to 0, making ¥ equal to 0, with the result that ¥ # y. Now if y = 0,
the output of the NAND gate is 1 and the output of the AND gate is 1, making ¥ equal to 1,
with the result that ¥ # y. If it is assumed that each gate has a propagation delay of 5 ns (in-
cluding transmission over the wires), we will find that ¥ will be O for 10 ns and 1 for the next
10 ns. This will result in a square-wave waveform with a period of 20 ns. The frequency of os-
cillation is the reciprocal of the period and is equal to 50 MHz. Unless one is designing a
square-wave generator, the instability that may occur in asynchronous sequential circuits is
undesirable and must be avoided.

9.3 CIRCUITS WITH LATCHES

SR Latch

Historically, asynchronous circuits were known and used before synchronous circuits were de-
veloped. The first practical digital circuits were constructed with relays, which are more adapt-
able to asynchronous operations. For this reason, the traditional method of asynchronous circuit
configuration has been with components that are connected to form one or more feedback
loops. When digital circuits are constructed with electronic components, it is convenient to
employ the SR latch (introduced in Section 5.3) as a memory element. The use of SR latches
in asynchronous sequential circuits produces an orderly pattern in the logic diagrams, with the
memory elements clearly visible. In this section, we analyze the operation of the SR latch,
using the technique introduced in the previous section. We then show a procedure for imple-
menting asynchronous sequential circuits using SR latches.

The SR latch is a digital circuit with two inputs § and R and two cross-coupled NOR gates or
two cross-coupled NAND gates. The cross-coupled NOR gate circuit is shown in Fig. 9.10. This
circuit and its truth table are taken from Fig. 5.3. In order to analyze the circuit by the transi-
tion-table method, it is first redrawn in Fig. 9.10(c) to see the feedback path from the output
of gate 1 to the input of gate 2. The output Q is equivalent to the excitation variable ¥ and the
secondary variable y. The Boolean function for the output is

Y =[(§+y) +R'=(S+yR =SSR + Ry

Plotting Y as in Fig. 9.10(d), we obtain the transition table for the circuit.

We can now investigate the behavior of the SR latch from the transition table. The state
with SR = 10 is a stable state because ¥ = y = 1; likewise, the state with SR = 01 is a sta-
ble state, because ¥ = y = (. With SR = 10, the output Q = ¥ = 1 and the latch is said

426 Chapter 9 Asynchronous Sequential Logic

ta
=
| O
Q

(After SR = 10)
(After SR =01)

—ooco~—
—OoOROoOO
[=R=N= N
oO==oOC

(a) Cross-coupled circuit (b) Truth table
SR
R ¥ 00 01 11 10
| O|®|@]
5
O 7 |®
3
Y=SR'+R'y
Y=S5+RywhenSR=10
(¢) Circuit showing feedback (d) Transition table

FIGURE 9.10
SR latch with NOR gates

to be set. Changing S to 0 leaves the circuit in the set state. With SR = 01, the output
Q =Y = 0 and the latch is said to be reset. A change of R back to 0 leaves the circuit in
the reset state. These conditions are also listed in the truth table. The circuit exhibits some
difficulty when both § and R are equal to 1. From the truth table, we see that both Q and Q'
are equal to 0, a condition that violates the requirement that these two outputs be the com-
plement of each other. Moreover, from the transition table, we note that going from SR = 11
to SR = 00 produces an unpredictable result. If S goes to O first, the output remains at 0,
but if R goes to O first, the output goes to 1. In normal operation, we must make sure that
1's are not applied to both the S and R inputs simultaneously. This condition can be ex-
pressed by the Boolean function SR = 0, which states that the ANDing of § and R must al-
ways result in a 0,

Coming back to the excitation function, we note that when we OR the Boolean expression
SR' with SR, the result is the single variable S:

SR' +SR=S(R+R)=§

From this, we infer that SR’ = S when SR = 0. Therefore, the excitation function derived
previously, namely,

Y = SR + Ry

Section 9.3 Circuits with Latches 427

can be expressed in Fig. 9.10(d) as the reduced excitation function
Y=8+ Ry whenSR =0

To analyze a circuit with an SR latch, we must first check that the Boolean condition SR = 0
holds at all times. We then use the reduced excitation function to analyze the circuit. However,
if it is found that both S and R can be equal to 1 at the same time, then it is necessary to use
the original excitation function.

The analysis of the SR latch with NAND gates is carried out in Fig. 9.11. The NAND latch
operates with both inputs normally at 1, unless the state of the latch has to be changed. The ap-
plication of 0 to R causes the output Q to go to 0, thus putting the latch in the reset state. After
the R input returns to 1, a change of S to 0 causes a change to the set state. The condition to be
avoided here is that both S and R not be 0 simultaneously. This condition is satisfied when
§'R' = 0. The excitation function for the circuit in Fig. 9.11(c) is

Y =[S(Ry)'] =S' + Ry

Comparing this with the excitation function of the NOR latch, we note that S has been replaced
with §" and R’ with R. Hence, the input variables for the NAND latch require the comple-
mented values of those used in the NOR latch. For this reason, the NAND latch is sometimes
referred to as an S'R’ latch (or S—R latch).

"}
s R Q 0O
1 0 0 1
1 1 0 1 (After SR = 10)
0 1 1 0
1 1 1 0 (After SR = 01)
R : 0 0 1 1
(a) Cross-coupled circuit (b) Truth table

o| 1 |1 [®®
OO

(c) Circuit showing feedback (d) Transition table

FIGURE 2.11
SR latch with NAND gates

0

428 Chapter 9 Asynchronous Sequential Logic

Analysis Example

Asynchronous sequential circuits can be constructed with the use of SR latches with or with-
out external feedback paths. Of course, there is always a feedback loop within the latch itself.
The analysis of a circuit with latches will be demonstrated by means of a specific example
from which it will be possible to generalize the procedural steps necessary to analyze other, sim-
ilar circuits,

The circuit shown in Fig. 9.12 has two SR latches with outputs ¥ and Y;. There are two in-
puts, x; and x,, and two external feedback loops giving rise to the secondary variables, y, and
5. Note that this circuit resembles a conventional sequential circuit with latches behaving like
flip-flops without clock pulses. The analysis of the circuit requires that we first obtain the
Boolean functions for the § and R inputs in each latch:

Si=xy2 S =xx
R = x\x3 Ry = xhw
We then check whether the condition SR = 0 is satisfied to ensure proper operation of the circuit:
SiRy = xpyxixh =0
SRy = xjxx5y = 0

. P R
X A 1
1 [>c 1%211{'?;,”;' Y,
S
R;
S,
X2
FIGURE 9.12

Example of a circuit with SR latches

Section 9.3 Circuits with Latches 429

XXy
yiyz 00 01 11 10

® o | @
01 | 1| u
| oo [@) | Q)| 10
o w |@] v

FIGURE 9.13

Transition table for the circuit of Fig. 9.12

The result is 0 because x;x] = xsx5 = 0.

The next step is to derive the transition table of the circuit. Remember that the transition table
specifies the value of ¥ as a function of y and x. The excitation functions are derived from the
relationY = § + R’y (see Figure 9.11(d)) and are

Vi =81+ Ry = xpn + (X1 + x2)y1 = x93 + xp + X0y
Hh=5+ R’z)’z = x1x2 + (xz % y’l)yz = x1x2 + xo3 + y’l)’z

We now develop a composite map for ¥ = ¥;¥5. The y variables are assigned to the rows in the
map, and the x variables are assigned to the columns, as shown in Fig. 9.13. The Boolean func-
tions ¥} and Y5, as just expressed, are used to plot the composite map for Y. The entries of ¥ in
each row that have the same value as that given to y are circled and represent stable states. In-
vestigating the transition table, we deduce that the circuit is stable. There is a critical race con-
dition when the circuit is initially in total state y;y,x,x, = 1101(¥;¥> = 11) and x, changes
from 1 to 0 (¥1¥; = 00). If ¥} changes to 0 before ¥», the circuit goes to total state 0100 instead
of 0000. However, with approximately equal delays in the gates and latches, this undesirable
situation is not likely to occur.

The procedure for analyzing an asynchronous sequential circuit with SR latches can be sum-
marized as follows:

1. Label each latch output with ¥; and its external feedback path (if any) with y, for
i = 120k

2. Derive the Boolean functions for the §; and R; inputs in each latch.

3. Check whether SR = 0 for each NOR latch or whether 'R’ = 0 for each NAND latch.
If either of these conditions is not satisfied, there is a possibility that the circuit may not
operate properly.

. Evaluate Y = § + R’y for each NOR latch or Y = §' + Ry for each NAND latch.

. Construct a map, with the y’s representing the rows and the x inputs representing the columns,

. Plot the value of ¥ = ¥;¥, - ¥, in the map.

. Circle all stable states such that ¥ = y. The resulting map is then the transition table.

~ SN tn &

430

Chapter 9 Asynchronous Sequential Logic

Latch Excitation Table

The transition table of the SR latch is useful for analysis and for defining the operation of the
latch. It specifies the excitation variable ¥ when the secondary variable y and the inputs S and
R are known. During the implementation process, the transition table of the circuit is available
and we wish to find the values of S and R. For this reason, we need a table that lists the required
inputs S and R for each of the possible transitions from y to Y. Such a list is called an excirarion
table.

The excitation table of the SR latch is shown in Fig. 9.14(b). The first two columns list the
four possible transitions from y to Y. The next two columns specify the required input values
that will result in the specified transition. For example, in order to provide a transition from
y = 0toY = 1, itis necessary to ensure that input § = 1 and input R = 0. This is shown in
the second row of the transition table,

The required input conditions for each of the four transitions in the excitation table can be
derived directly from the latch transition table of Fig. 9.10(d) after removing the unstable con-
dition SR = 11. For example, the transition table shows that in order to change from y = 010

= 0, SR can be either 00 or 01. This means that S must be 1 and R may be either O or 1. There-
fore, the first row in the excitation table shows § = 0 and R = X, where X is a don’t-care
condition signifying eitheraQora 1.

Implementation Example

A sequential circuit with SR latches is implemented through a procedure for obtaining the logic
diagram from a given transition table. The procedure requires that we determine the Boolean
functions for the S and R inputs of each latch. The logic diagram is then obtained by drawing
the SR latches and the logic gates that implement the S and R functions. To demonstrate the pro-
cedure, we will repeat the implementation example of Fig. 9.5. The output circuit remains the
same and will not be repeated again.

The transition table from Fig. 9.5(a) is duplicated in Fig. 9.14(a). From the information
given in the transition table and from the latch excitation table conditions in Fig. 9.14(b), we
can obtain the maps for the § and R inputs of the latch, as shown in Fig. 9.14(c) and (d). For
example, the square in the second row and third column (yx;x; = 111) in Fig. 9.14(a) re-
quires a transition from y = 1toY = 1. The excitation table specifies S = X, R = 0 for this
change. Therefore, the corresponding square in the § map is marked with an X and the one in
the R map with a 0. All other squares are filled with values in a similar manner. The maps are
then used to derive the simplified Boolean functions

§ = x1x3 and R = xj

The logic diagram consists of an SR latch and the gates required to implement the S and R
Boolean functions. The circuit is as shown in Fig. 9.14(e) when a NOR latch is used. With a
NAND latch, we must use the complemented values for S and R:

S = (lefz)' and R = X

This circuit is shown in Fig. 9.14(f).
The general procedure for implementing a circuit with SR latches from a given transition table
can now be summarized as follows:

X

Section 9.3 Circuits with Latches 431

XXz

oo 01 11 10 y Y| § R

/@@ @] : 0 0| o x
0 1 1 0
1 0 0 1

o]0 |OO RIS

(a) Transition table (b) Latch excitation table
Y =xux's+ apy

YN, 00 01 11 10 11 10

0] o 0 0 X 0

1 0 0 0 0
(c) Map for § = xx'; (d) Map for R = x'y

v Xg

e

X

R
(e) Circuit with NOR latch (f) Circuit with NAND latch

FIGURE 9.14
Derivation of a latch circuit from a transition table

1. Given a transition table that specifies the excitation function ¥ = 115+ ¥, derive a
pair of maps for §; and R; foreachi = 1,2,..., k. This is done by using the conditions
specified in the latch excitation table of Fig. 9.14(b).

2. Derive the simplified Boolean functions for each S; and R;. Care must be taken not to
make §; and R; equal to 1 in the same minterm square.

3. Draw the logic diagram, using k latches together with the gates required to generate the §
and R Boolean functions. For NOR latches, use the S and R Boolean functions obtained in
step 2. For NAND latches, use the complemented values of those obtained in step 2.

Another useful example of latch implementation is found in Section 9.7.

432

Chapter 9 Asynchronous Sequential Logic

Debounce Circuit

Input binary information in a digital system can be generated manually by means of mechan-
ical switches. One position of the switch provides a voltage equivalent to logic 1, and the other
position provides a second voltage equivalent to logic 0. Mechanical switches are also used to
start, stop, or reset the digital system. In testing digital circuits in the laboratory, the input sig-
nals will normally come from switches. A common characteristic of a mechanical switch is
that when the arm is thrown from one position to the other, the switch contact vibrates or
bounces several times before coming to a final rest. In a typical switch, the contact bounce
may take several milliseconds to die out, causing the signal to oscillate between 1 and 0 be-
cause the switch contact is vibrating.

A debounce circuit is a circuit which removes the series of pulses that result from a contact
bounce and produces a single smooth transition of the binary signal from 0 to 1 or from 1 to
0. One such circuit consists of a single-pole, double-throw switch connected to an SR latch, as
shown in Fig. 9.15. The center contact is connected to ground that provides a signal equiva-
lent to logic 0. When one of the two contacts, A or B, is not connected to ground through the
switch, it behaves like a logic-1 signal. A resistor is sometimes connected from each contact
to a fixed voltage to provide a firm logic-1 signal. When the switch is thrown from position A
to position B and back, the outputs of the latch produce a single pulse as shown, negative for
Q and positive for Q'. The switch is usually a push button whose contact rests in position A.
When the push button is depressed, it goes to position B, and when released, it returns to po-
sition A.

The operation of the debounce circuit is as follows: When the switch rests in position A, we
have the condition § = 0, R = land Q@ = 1, Q' = 0. (See Fig. 9.11(b).) When the switch is
moved to position B, the ground connection causes R to go to 0, while S becomes a 1 because
contact A is open. This condition in turn causes output Q to go to 0 and Q' to go to 1. After the
switch makes an initial contact with B, it bounces several times, but for proper operation, we
must assume that it does not bounce back far enough to reach point A. The output of the latch
will be unaffected by the contact bounce because Q' remains 1 (and Q remains 0) whether R
is equal to 0 (contact with ground) or equal to 1 (no contact with ground). When the switch re-
turns to position A, § becomes 0 and Q returns to 1. The output again will exhibit a smooth tran-
sition, even if there is a contact bounce in position A.

A

Ground

FIGURE 9.15
Debounce circuit

Section 9.4 Design Procedure 433

9.4 DESIGN PROCEDURE

The design of an asynchronous sequential circuit starts from the statement of the problem and
culminates in a logic diagram. There are a number of design steps that must be carried out in
order to minimize the complexity of the circuit and to produce a stable circuit without critical
races. Briefly, the design steps are as follows: A primitive flow table is obtained from the de-
sign specifications. The flow table is then reduced to a minimum number of states. Next, the
states are given a binary assignment from which we obtain the transition table. Finally, from
the transition table, we derive the logic diagram as a combinational circuit with feedback or as
a circuit with SR latches.

The design process will be demonstrated by going through a specific example. Once this ex-
ample is mastered, it will be easier to understand the design steps that are enumerated at the
end of this section. Some of the steps require the application of formal procedures, and these
are discussed in greater detail in the sections that follow,

Design Example

It is necessary to design a gated latch circuit with two inputs G (gate) and D (data) and one out-
put Q. Binary information present at the D input is transferred to the Q output when G is equal
to 1, The Q output will follow the D input as long as G = 1. When G goes to 0, the information
that was present at the D input at the time the transition occurred is retained at the Q output. The
gated latch is a memory element that accepts the value of D when G = 1 and retains this value
after G goes to 0. Once G = 0, a change in D does not change the value of the output Q.

Primitive Flow Table

As defined previously, a primitive flow table is a flow table with only one stable total state in
each row. Remember that a total state consists of the internal state combined with the input. The
derivation of the primitive flow table can be facilitated if we first form a table with all possi-
ble total states in the system. This is shown in Table 9.2 for the gated latch. Each row in the
table specifies a total state, which consists of a letter designation for the internal state and a

Table 9.2
(;qgeq- Latch Total States
inputs Output
State D G Q Comments
a 0 1 0 D = Qbecause G = 1
b 1 1 1 D = Qbecause G = 1
¢ 0 0 0 After state @ or d
d 1 0 0 After state ¢
e 1 0 1 After state b or f
F 0 0 1 After state e

434

Chapter 9 Asynchronous Sequential Logic

possible input combination for D and G. The output Q is also shown for each total state. We
start with the two total states that have G = 1. From the design specifications, we know that
Q =0if DG = 0l and Q = 1if DG = 11, because D must be equal to Q when G = 1. We
assign these conditions to states @ and b. When G goes to 0, the output depends on the last
value of D. Thus, if the transition of DG is from 01 to 00 to 10, then Q must remain 0 because
D is 0 at the time of the transition from 1 to 0 in G. If the transition of DG is from 11 to 10 to
00, then Q must remain 1. This information results in six different total states, as shown in the
table. Note that simultaneous transitions of two input variables, such as from 01 to 10 or from
11 to 00, are not allowed in fundamental-mode operation.

The primitive flow table for the gated latch is shown in Fig. 9.16. It has one row for each
state and one column for each input combination. First, we fill in one square in each row be-
longing to the stable state in that row. These entries are determined from Table 9.2. For exam-
ple, state a is stable and the output is O when the input is 01. This information is entered into
the flow table in the first row and second column. Similarly, the other five stable states to-
gether with their output are entered into the corresponding input columns.

Next, we note that since both inputs are not allowed to change simultaneously, we can enter
dash marks in each row that differs in two or more variables from the input variables associ-
ated with the stable state. For example, the first row in the flow table shows a stable state with
an input of 01. Since only one input can change at any given time, it can change to 00 or 11,
but not to 10. Therefore, we enter two dashes in the 10 column of row a. This will eventually
result in a don’t-care condition for the next state and output in this square. Following the same
procedure, we fill in a second square in each row of the primitive flow table.

Next, it is necessary to find values for two more squares in each row. The comments listed
in Table 9.2 may help in deriving the necessary information. For example, state ¢ is associated
with input 00 and is reached after a change in input from state a or d. Therefore, an unstable state

Inputs DG
00 01 1 10

a| c,— @,0 b,-|-.,-
b|-,-1a.,.- @.1 e,—

. € O0la,-|-,-|d,-

-+

=

wd c,— =T b"‘ '0
€ f;_‘ e b,- nl
f yA1la,-|-,-]e,-

FIGURE 9.16
Primitive flow table

Section 9.4 Design Procedure 435

¢ is shown in column 00 and rows a and d in the flow table, The output is marked with a dash
to indicate a don’t-care condition. The interpretation of this situation is that if the circuit is in
stable state a and the input changes from 01 to 00, the circuit first goes to an unstable next state
¢, which changes the present-state value from a to ¢, causing a transition to the third row and
first column of the table. The unstable state values for the other squares are determined in a
similar manner. All outputs associated with unstable states are marked with a dash to indicate
don’t-care conditions. The assignment of actual values to the outputs is discussed further, after
the design example is completed.

Reduction of the Primitive Flow Table

The primitive flow table has only one stable state in each row. The table can be reduced to a
smaller number of rows if two or more stable states are placed in the same row. The grouping of
stable states from separate rows into one common row is called merging. Merging a number of
stable states in the same row means that the binary state variable ultimately assigned to the merged
row will not change when the input variable changes. This is because, in a primitive flow table,
the state variable changes every time the input changes, but in a reduced flow table, a change of
input will not cause a change in the state variable if the next stable state is in the same row.

A formal procedure for reducing a flow table is given in Section 9.5. In order to complete
the design example in the current section without going through the formal procedure, we will
apply the merging process by using a simplified version of the merging rules. Two or more rows
in the primitive flow table can be merged into one row if there are nonconflicting states and
outputs in each of the columns. Whenever one state symbol and don’t-care entries are en-
countered in the same column, the state is listed in the merged row. Moreover, if the state is
circled in one of the rows, it is also circled in the merged row. The output value is included with
each stable state in the merged row. Because the merged states have the same output, the state
cannot be distinguished on the basis of the output.

We now apply these rules to the primitive flow table of Fig. 9.16. To see how this is done,
the primitive flow table is separated into two parts of three rows each, as shown in Fig. 9.17(a).
Each part shows three stable states that can be merged because there are no conflicting entries
in each of the four columns. The first column shows state ¢ in all the rows and 0 or a dash for
the output. Since a dash represents a don’t-care condition, it can be associated with any state or
output. The two dashes in the first column can be taken to be 0 output to make all three rows
identical to a stable state ¢ with a 0 output. The second column shows that the dashes can be as-
signed to correspond to a stable state a with a 0 output. Note that if a state is circled in one of
the rows, it is also circled in the merged row. Similarly, the third column can be merged into an
unstable state b with a don’t-care output, and the fourth column can be merged into stable state
d and a 0 output. Thus, the three rows a, ¢, and d can be merged into one row with three stable
states and one unstable state, as shown in the first row of Fig. 9.17(b). The second row of the
reduced table results from the merging of rows b, e, and f of the primitive flow table. In this ex-
ample, there are two ways that the reduced table can be drawn. First, the letter symbols for the
states can be retained to show the relationship between the reduced and primitive flow tables.
Alternatively, because the two tables have the same output, we can assign a common letter sym-
bol to all of the stable states of the merged rows. Thus, states ¢ and d are replaced by state a, and
states e and f are replaced by state b. Both alternatives are shown in Fig. 9.17(b).

436 Chapter 9 Asynchronous Sequential Logic

DG DG
00 01 Tl 10 00 01 11 10

alece,~- @,0 b,-|-,- bl -,-]a,- @1 e,-

@.0 i ==, = ld -
g | e o= = b,——‘@,O f @1 a,-|~-,-|e,~

States
(.}
‘."P;
1
|
N
o
I 3

States
]

(a) States that are candidates for merging

DG DG
00 01 11 10 00 01 11 10
@ , b,-|(a)
iga.c.d ©0f@.0]b,-|@:.0 §a@.0@.0‘ @0
5 =
“bhef |D1]|a.-|@1[@1] Tr|@®1]a.-|®1|®.1
(b) Reduced table (two alternatives)
FIGURE 9.17

Reduction of the primitive flow table

Transition Table and Logic Diagram

In order to obtain the circuit described by the reduced flow table, it is necessary to assign
a distinct binary value to each state. This assignment converts the flow table into a transi-
tion table. In the general case, a binary state assignment must be made to ensure that the cir-
cuit will be free of critical races. The state-assignment problem in asynchronous sequential
circuits and ways to solve it are discussed in Section 9.6. Fortunately, there can be no crit-
ical races in a two-row flow table; therefore, we can finish the design of the gated latch
prior to studying that section. Assigning 0 to state @ and 1 to state b in the reduced flow table
of Fig. 9.17(b), we obtain the transition table of Fig. 9.18(a). The transition table is, in ef-
fect, a map for the excitation variable Y. The simplified Boolean function for Y is then ob-

tained from the map as
Y=DG +G'y

There are two don’t-care outputs in the final reduced flow table. If we assign values to the out-
put as shown in Fig. 9.18(b), it is possible to make output Q identical to the map of the exci-
tation function Y. Alternatively, if we replace the don’t-care by 1 when y = 1 and DG = 01,
the map reduces to O = Y. If we assign the other possible values to the don’t-care outputs, we
can make output Q equal to y. In either case, the logic diagram of the gated latch is as shown
in Fig. 9.19.

Section 9.4 Design Procedure 437

(a)Y=DG+G'y

FIGURE 9.18
Transition table and output map for gated latch

FIGURE 2.19
Gated-latch logic diagram

The diagram can also be implemented by an SR latch. Using the procedure outlined in
Section 9.3, we first obtain the Boolean functions for S and R, as shown in Fig. 9.20(a). The
logic diagram with NAND gates (see Fig. 5.4) is shown in Fig. 9.20(b). Note that the gated latch
is a level-sensitive D-latch, introduced in Section 5.3 and Fig. 5.6.

Assigning Outputs to Unstable States

The stable states in a flow table have specific output values associated with them. The un-
stable states have unspecified output entries designated by a dash. The output values for the
unstable states must be chosen so that no momentary false outputs occur when the circuit
switches between stable states. This means that if an output variable is not supposed to
change as the result of a transition, then an unstable state that is a transient state between
two stable states must have the same output value as the stable states. Consider, for exam-
ple, the flow table of Fig. 9.21(a). A transition from stable state a to stable state b goes
through the unstable state . If the output assigned to the unstable state b is a 1, then a mo-
mentary short pulse will appear on the output as the circuit shifts from an output of 0 in state
a to an output of 1 for the unstable b and back to 0 when the circuit reaches stable state b.
Thus, the output corresponding to unstable state b must be specified as 0 to avoid a mo-
mentary false output.

438 Chapter 9 Asynchronous Sequential Logic

DG DG
00 01 11 10 00 01 11 10
y y ,
0] 0 0 0 0] X 0 X
1| X 0 X 1 0 0 0
(a) § = DG R=D'G
(a) Maps for § and R
D S
G
R
(b) Logic diagram
FIGURE 9.20
Circuit with SR latch
a ,01 b ,- 0 0
ble,-|®.0 X | o
c G-), 1.4, = 1 1
d|a-|@1 X | 1
(a) Flow table (b) Output assignment

FIGURE 9.21
Assigning output values to unstable states

If an output variable is to change value as a result of a change in state, then this variable is as-
signed a don’t-care condition. For example, the transition from stable state b to stable state ¢ in
Fig. 9.21(a) changes the output from 0 to 1. If a 0 is entered as the output value for the unstable
state c, then the change in the output variable will not take place until the end of the transition. If
a 1 is entered, the change will take place at the start of the transition. Since it makes no difference

Section 9.5 Reduction of State and Flow Tables 439

when the change in output occurs, we place a don’t-care entry for the output associated with un-
stable state c. Fig. 9.21(b) shows the output assignment for the flow table, demonstrating the four
possible combinations of changes in output that can occur. The procedure for making the assign-
ment to outputs associated with unstable states can be summarized as follows:

1.

Assign a 0 to an output variable associated with an unstable state which is a transient state
between two stable states that have a 0 in the corresponding output variable.

2. Assigna | to an output variable associated with an unstable state which is a transient state

between two stable states that have a 1 in the corresponding output variable.

3. Assign a don’t-care condition to an output variable associated with an unstable state

which is a transient state between two stable states that have different values (0 and 1,
or 1 and 0) in the corresponding output variable.

Summary of Design Procedure

The design of asynchronous sequential circuits can be carried out by using the procedure il-
lustrated in the previous example. Some of the design steps need further elaboration and are
explained in upcoming sections, The procedural steps are as follows:

1.

Obtain a primitive flow table from the given design specifications. This is the most
difficult part of the design, because it is necessary to use intuition and experience to
arrive at the correct interpretation of the problem specifications.

Reduce the flow table by merging rows in the primitive flow table. A formal procedure
for merging rows in the flow table is given in Section 9.5.

. Assign binary state variables to each row of the reduced flow table to obtain the transi-

tion table. The state-assignment procedure that eliminates any possible critical races is
given in Section 9.6.

Assign output values to the dashes associated with the unstable states to obtain the out-
put maps. This procedure was explained previously.

. Simplify the Boolean functions of the excitation and output variables and draw the logic

diagram, as shown in Section 9.2. The logic diagram can be drawn with SR latches, as
shown in Section 9.3 and also at the end of Section 9.7.

9.5 REDUCTION OF STATE AND FLOW TABLES

The procedure for reducing the number of internal states in an asynchronous sequential circuit
resembles the procedure that is used for synchronous circuits. An algorithm for the state re-
duction of a completely specified state table was given in Section 5.7. We will review this al-
gorithm and apply it to a state-reduction method that uses an implication table. The algorithm
and the implication table will then be modified to cover the state reduction of incompletely spec-
ified state tables. The modified algorithm will be used to explain the procedure for reducing
the flow table of asynchronous sequential circuits.

440

Chapter 9 Asynchronous Sequential Logic

Table 9.3
State Table to Demonstrate Equivalent States
Next State Out
Present e
State x=0 x=1 X =0 x=1
a c b 0 1
b d a 0 1
¢ a d 1 0
d b d 1 0

Implication Table and Implied States

The state-reduction procedure for completely specified state tables is based on an algorithm that
combines two states in a state table into one, as long as they can be shown to be equivalent.
Two states are equivalent if, for each possible input, they give exactly the same output and go
to the same next states or to equivalent next states. Table 6.6 shows an example of equivalent
states that have the same next states and outputs for each combination of inputs. There are oc-
casions when a pair of states do not have the same next states, but, nonetheless, go to equiva-
lent next states. Consider, for example, the state table shown in Table 9.3. The present states a
and b have the same output for the same input. Their next states are ¢ and d for x = 0 and b
and a for x = 1. If we can show that the pair of states (c, d) are equivalent, then the pair of states
(a, b) will also be equivalent, because they will have the same or equivalent next states. When
this relationship exists, we say that (a, b) imply (c, d) in the sense that if ¢ and b are equiva-
lent then ¢ and d have to be equivalent. Similarly, from the last two rows of Table 9.3, we find
that the pair of states (c, d) implies the pair of states (a, b). The characteristic of equivalent states
is that if (a, b) imply (c, d) and (c, d) imply (a, b), then both pairs of states are equivalent; that
is, a and b are equivalent, and so are ¢ and d. As a consequence, the four rows of Table 9.3 can
be reduced to two rows by combining a and b into one state and ¢ and 4 into a second state.

The checking of each pair of states for possible equivalence in a table with a large number
of states can be done systematically by means of an implication table, which is a chart that
consists of squares, one for every possible pair of states, that provide spaces for listing any
possible implied states. By judicious use of the table, it is possible to determine all pairs of equiv-
alent states. The state table of Table 9.4 will be used to illustrate this procedure. The implica-
tion table is shown in Fig. 9.22. On the left side along the vertical are listed all the states defined
in the state table except the first, and across the bottom horizontally are listed all the states ex-
cept the last. The result is a display of all possible combinations of two states, with a square
placed in the intersection of a row and a column where the two states can be tested for equiv-
alence. Two states having different outputs for the same input are not equivalent.

Two states that are not equivalent are marked with a cross (X) in the corresponding square,
whereas their equivalence is recorded with a check mark (/). Some of the squares have entries
of implied states that must be investigated further to determine whether they are equivalent. The
step-by-step procedure of filling in the squares is as follows: First, we place a cross in any
square corresponding to a pair of states whose outputs are not equal for every input. In this case,

Section 9.5 Reduction of State and Flow Tables 441

Table 9.4
State Table to Be Reduced
Next State Output
Present
State x=0x=1 x=0 x=1
a d b 0 0
b e a 0 0
¢ 8 f 0 1
d a d 1 0
e a d 1 0
f ¢ b 0 0
g a e 1 0
b |d, eV
c X X
d X X X
e X X X v
fle.dx|y §o X X X
g X X x|d,e|d, eV X

FIGURE 9.22
Implication table

state ¢ has a different output than any other state, so a cross is placed in the two squares of row
¢ and the four squares of column ¢. There are nine other squares in this category in the impli-
cation table.

Next, we enter in the remaining squares the pairs of states that are implied by the pair of states
representing the squares. We do that starting from the top square in the left column and going
down and then proceeding with the next column to the right. From the state table, we see that
pair (a, b) implies (d,), so (d, e) is recorded in the square defined by column a and row b. We
proceed in this manner until the entire table is completed. Note that states (d, e) are equivalent
because they go to the same next state and have the same output. Therefore, a check mark is
recorded in the square defined by column d and row e, indicating that the two states are equiv-
alent and independent of any implied pair.

442

Chapter 9 Asynchronous Sequential Logic

The next step is to make successive passes through the table to determine whether any ad-
ditional squares should be marked with a cross. A square in the table is crossed out if it con-
tains at least one implied pair that is not equivalent. For example, the square defined by a and
fis marked with a cross next to ¢, d because the pair (c, d) defines a square that contains a
cross. This procedure is repeated until no additional squares can be crossed out. Finally. all
the squares that have no crosses are recorded with check marks. These squares define pairs of
equivalent states. In this example, the equivalent states are

(a, b)(d, e)(d g) (e, g)

We now combine pairs of states into larger groups of equivalent states. The last three pairs
can be combined into a set of three equivalent states (d. e, g) because each one of the states in
the group is equivalent to the other two. The final partition of the states consists of the equiv-
alent states found from the implication table, together with all the remaining states in the state
table that are not equivalent to any other state. This group consists of

(a, b)(c)(d e g) (f)

Thus, Table 9.4 can be reduced from seven states to four, one for each member of the preced-
ing partition. The reduced state table is obtained by replacing state b by a and states e and g
by d and is shown in Table 9.5.

Merging of the Flow Table

There are occasions when the state table for a sequential circuit is incompletely specified. This
happens when certain combinations of inputs or input sequences never occur because of ex-
ternal or internal constraints. In such a case, the next states and outputs that should have oc-
curred if all inputs were possible are never attained and are regarded as don’t-care conditions.
Although synchronous sequential circuits may sometimes be represented by incompletely spec-
ified state tables, our interest here is with asynchronous sequential circuits, for which the prim-
itive flow table is always incompletely specified.

Incompletely specified states can be combined to reduce the number of states in the flow
table. Such states cannot be called equivalent, because the formal definition of equivalence re-
quires that all outputs and next states be specified for all inputs. Instead, two incompletely
specified states that can be combined are said to be comparible. Two states are compatible if,

Table 9.5
Reduced State Table
Next State Out
Present e
State x=0 x=1 x=0 x=1
a d a 0 0
c d f 0 1
d a d 1 0
¥ ¢ a 0 0

Section 9.5 Reduction of State and Flow Tables 443

00 01 11 10

a c,— @0 b,-|-,-
bl-,-|a.- |[@)1] e, - b J
c @0 S RO v c J|d.ex
d|c-|-.-|b,-|@0 d Jldex| v
d,ex
=== 8,- 1 : ’
e| f e |e.fx o e fx %
o _ d,ex
Fl1@O1] s, o~ e, flefx| o Xle,fx|
a b c d e
(a) Primitive flow table (b) Implication table
FIGURE 9.23

Flow and implication tables

for each possible input, they have the same output whenever it is specified and their next states
are compatible whenever they are specified. All don’t-care conditions marked with dashes have
no effect in the search for compatible states, as they represent unspecified conditions.

The process that must be applied in order to find a suitable group of compatibles for the pur-
pose of merging a flow table can be divided into three steps:

1. Determine all compatible pairs by using the implication table.
2. Find the maximal compatibles with the use of a merger diagram.
3. Find a minimal collection of compatibles that covers all the states and is closed.

The minimal collection of compatibles is then used to merge the rows of the flow table. We will
now proceed to show and explain the three procedural steps, using the primitive flow table
from the design example in the previous section.

Compatible Pairs

The procedure for finding compatible pairs is illustrated in Fig. 9.23. The primitive flow table in (a)
is the same as Fig. 9.16. The entries in each square represent the next state and output. The dashes
represent the unspecified states or outputs. The implication table is used to find compatible states,
just as it is used to find equivalent states in the completely specified case. The only difference is that,
when comparing rows, we are at liberty to adjust the dashes to fit any desired condition.

Two states are compatible if, in every column of the corresponding rows in the flow table,
there are identical or compatible states and if there is no conflict in the output values. For ex-
ample, rows a and b in the flow table are found to be compatible, but rows a and f will be com-
patible only if ¢ and f are compatible. However, rows ¢ and f are not compatible, because they

44

Chapter 9 Asynchronous Sequential Logic

have different outputs in the first column. This information is recorded in the implication table.
A check mark designates a square whose pair of states are compatible. Those states which are
not compatible are marked with a cross. The remaining squares are recorded with the implied
pairs that need further investigation.

Once the initial implication table has been filled, it is scanned again to cross out the squares
whose implied states are not compatible. The remaining squares that contain check marks de-
fine the compatible pairs. In the example of Fig. 9.23, the compatible pairs are

(a, b) (a, ¢) (a, d) (b, e) (b, f) (¢, d) (e, /)

Maximal Compatibles

Having found all the compatible pairs, the next step is to find larger sets of states that are com-
patible. The maximal compatible is a group of compatibles that contains all the possible com-
binations of compatible states. The maximal compatible can be obtained from a merger diagram,
as shown in Fig. 9.24. The merger diagram is a graph in which each state is represented by a
dot placed along the circumference of a circle. Lines are drawn between any two correspon-
ding dots that form a compatible pair. All possible compatibles can be obtained from the merg-
er diagram by observing the geometrical patterns in which states are connected to each other.
An isolated dot represents a state that is not compatible with any other state. A line represents
a compatible pair. A triangle constitutes a compatible with three states. An n-state compatible
is represented in the merger diagram by an n-sided polygon with all its diagonals connected.

The merger diagram of Fig. 9.24(a) is obtained from the list of compatible pairs derived from
the implication table of Fig. 9.23. There are seven straight lines connecting the dots, one for
each compatible pair. The lines form a geometrical pattern consisting of two triangles con-
necting (a, ¢, d) and (b, e, f) and a line (a, b). The maximal compatibles are

(a, b)(a c d(bef

a a
TR : ”
 § b
g c
e c
F d
d e
(a) Maximal compatible: (b) Maximal compatible:
(a,b) (a,c.d) (b,e,) (a,b,e.f) (b.c.h) (c,d)(g)

FIGURE 9.24
Merger diagrams

Section 9.5 Reduction of State and Flow Tables 445

Figure 9.24(b) shows the merger diagram of an eight-state flow table. The geometrical pat-
terns are a rectangle with its two diagonals connected to form the four-state compatible (a, b,
e, f), atriangle (b, ¢, h), a line (c, d), and a single state g that is not compatible with any other
state. The maximal compatibles are

(a, b, e,) (b, c, h)(c, d) (g)

The maximal compatible set can be used to merge the flow table by assigning one row in the
reduced table to each member of the set. However, quite often the maximal compatibles do not
necessarily constitute the set of compatibles that is minimal. In many cases, it is possible to find
a smaller collection of compatibles that will satisfy the condition for merging rows.

Closed-Covering Condition

The condition that must be satisfied for merging rows is that the set of chosen compatibles
must cover all the states and must be closed. The set will cover all the states if it includes all
the states of the original state table. The closure condition is satisfied if there are no implied
states or if the implied states are included within the set. A closed set of compatibles that cov-
ers all the states is called a closed covering. The closed-covering condition will be explained
by means of two examples.

Consider the maximal compatibles from Fig. 9.24(a). If we remove (g, b), we are left with
a set of two compatibles:

(a.c,d) (b,e,f)

All six states from the flow table in Fig. 9.23 are included in this set. Thus, the set satisfies the
covering condition. There are no implied states for (a, c); (a, d); (¢, d); (b, e); (b, /); and (e, f),
as is seen from the implication table of Fig. 9.23(b), so the closure condition is also satisfied.
Therefore, the primitive flow table can be merged into two rows, one for each of the compat-
ibles. The detailed construction of the reduced table for this particular example was done in the
previous section and is shown in Fig. 9.17(b).

The second example is from a primitive flow table (not shown) whose implication table is
given in Fig. 9.25(a). The compatible pairs derived from the implication table are

(a, b) (a, d) (b, ¢) (c, d) (c, €) (d, €)
From the merger diagram of Fig. 9.25(b), we determine the maximal compatibles:
(a, b) (a,d) (b, c) (c, d, e)
If we choose the two compatibles
(a,b) (c.d, e)

then the set will cover all five states of the original table. The closure condition can be checked
by means of a closure table, as shown in Fig. 9.25(c). The implied pairs listed for each com-
patible are taken directly from the implication table. The implied pair of states for (a, b) is (b,
¢). But (b, ¢) is not included in the chosen set of (a, b) (c, d, e), so this set of compatibles is not
closed. A set of compatibles that will satisfy the closed-covering condition is

(a,d) (b, c) (c,d. e)

446

Chapter 9 Asynchronous Sequential Logic

blb,ev

c X|d, eV

d|b,cv x|a,dV

e b X Vb, eV

a b ¢ d
(a) Implication table (b) Merger diagram

Compatibles (a, b) (a, d) | (b.c) (c.d,e)

Implied states (b, c) (b,c) (d, e) (a,d)
(b.c)

(c) Closure table

FIGURE 9.25
Choosing a set of compatibles

The set is covered because it contains all five states. Note that the same state can be repeated
more than once. The closure condition is satisfied because the implied states are (b. ¢) (d, e)
and (a, d), which are included in the set. The original flow table (not shown here) can be re-
duced from five rows to three rows by merging rows a and d, b and ¢, and ¢, d, and e. Note also
that an alternative satisfactory choice of closed-covered compatibles would be (a, b) (b, c)
(d, e). In general, there may be more than one possible way of merging rows when reducing a
primitive flow table.

9.6 RACE-FREE STATE ASSIGNMENT

Once a reduced flow table has been derived for an asynchronous sequential circuit, the next step
in the design is to assign binary variables to each stable state. This assignment results in the
transformation of the flow table into its equivalent transition table. The primary objective in
choosing a proper binary state assignment is the prevention of critical races. The problem of
critical races was discussed in Section 9.2 in conjunction with Fig. 9.7.

Section 9.6 Race-Free State Assignment 447

Critical races can be avoided by making a binary state assignment in such a way that only
one variable changes at any given time when a state transition occurs in the flow table. To ac-
complish this objective, it is necessary that states between which transitions occur be given ad-
jacent assignments. Two binary values are said to be adjacent if they differ in only one variable.
For example, 010 and 011 are adjacent because they differ only in the third bit.

In order to ensure that a transition table has no critical races, it is necessary to test each pos-
sible transition between two stable states and verify that the binary state variables change one
at a time. This is a tedious process, especially when there are many rows and columns in the
table. To simplify matters, we will explain the procedure of binary state assignment by going
through examples with only three and four rows in the flow table. These examples will demon-
strate the general procedure that must be followed to ensure a race-free state assignment, The
procedure can then be applied to flow tables with any number of rows and columns.

Three-Row Flow-Table Example

The assignment of a single binary variable to a flow table with two rows does not impose critical
race problems. A flow table with three rows requires an assignment of two binary variables. The as-
signment of binary values to the stable states may cause critical races if it is not done properly. Con-
sider, for example, the reduced flow table of Fig, 9.26(a). The outputs have been omitted from the
table for simplicity. Inspection of row a reveals that there is a transition from state a to state b in col-
umn 01 and from state a to state ¢ in column 11. This information is transferred into a transition di-
agram, as shown in Fig. 9.26(b). The directed lines from a to b and from a to ¢ represent the two
transitions just mentioned. Similarly, the transitions from the other two rows are represented by di-
rected lines in the diagram, which is a pictorial representation of all required transitions between rows.

To avoid critical races, we must find a binary state assignment such that only one binary vari-
able changes during each state transition. An attempt to find such an assignment is shown in
the transition diagram. State a is assigned binary 00, and state c is assigned binary 11. This as-
signment will cause a critical race during the transition from a to ¢ because there are two
changes in the binary state variables and the transition from a to ¢ may occur directly or pass
through b. Note that the transition from c to a also causes a race condition, but it is noncritical
because the transition does not pass through other states.

Xy X2
00 01 11 10

a @ b ¢ @
b a @ @ [
c a @ @@ c=11

(a) Flow table (b) Transition diagram

FIGURE 9.26
Three-row flow-table example

a=00

Yy
bl

o

=

448 Chapter 9 Asynchronous Sequential Logic

XyXa
00 01 11 10

@ e[|@ ez b =0
[O[O
4E1Cl[C)(O,

\f“ .._1L
| - -
d a = c - d =10 c=11

(a) Flow table (b) Transition diagram

FIGURE 9.27
Flow table with an extra row

A race-free assignment can be obtained if we add an extra row to the flow table. The use of
a fourth row does not increase the number of binary state variables, but it allows the formation
of cycles between two stable states. Consider the modified flow table in Fig. 9.27. The first three
rows represent the same conditions as the original three-row table. The fourth row, labeled d,
is assigned the binary value 10, which is adjacent to both a and ¢. The transition from a to ¢
must now go through d, with the result that the binary variables change from a = 00, to
d = 10,to ¢ = 11, thus avoiding a critical race. This is accomplished by changing row a, col-
umn 11, to d and row d, column 11, to ¢. Similarly, the transition from c to a is shown to go
through unstable state d even though column 00 represents a noncritical race.

The transition table corresponding to the flow table with the indicated binary state assign-
ment is shown in Fig. 9.28. The two dashes in row d represent unspecified states that can be
considered don’t-care conditions. However, care must be taken not to assign 10 to these squares,
in order to avoid the possibility of an unwanted stable state being established in the fourth row.

XX
00 01 11 10

a=00 01 10
1

c=11 10 @

d=10 00 -

FIGURE 9.28
Transition table

Section 9.6 Race-Free State Assignment 449
00 m 11 10
d a ‘b
s | @] « |G
o[« o]
C

v | & ()
@@c d c

(a) Flow table (b) Transition diagram

FIGURE 9.29
Four-row flow-table example

This example demonstrates the use of an extra row in the flow table for the purpose of
achieving a race-free assignment. The extra row is not assigned to any specific stable state, but
instead is used to convert a critical race into a cycle that goes through adjacent transitions be-
tween two stable states. Sometimes, just one extra row may not be sufficient to prevent criti-
cal races, and it may be necessary to add two or more extra rows in the flow table. This
possibility is demonstrated in the next example.

Four-Row Flow-Table Example

A flow table with four rows requires a minimum of two state variables. Although a race-free
assignment is sometimes possible with only two binary state variables, in many cases the re-
quirement of extra rows to avoid critical races will dictate the use of three binary state variables.
Consider, for example, the flow table and its corresponding transition diagram shown in Fig. 9.29.
If there were no transitions in the diagonal direction (from b to d or from ¢ to a), it would be
possible to find an adjacent assignment for the remaining four transitions. With one or two di-
agonal transitions, there is no way of assigning two binary variables that satisfy the adjacency
requirement. Therefore, at least three binary state variables are needed.

Figure 9.30 shows a state assignment map that is suitable for any four-row flow table.
States a, b, ¢, and d are the original states, and e, f, and g are extra states. States placed in
adjacent squares in the map will have adjacent assignments. State b is assigned binary 001
and is adjacent to the other three original states. The transition from a to d must be directed
through the extra state e to produce a cycle so that only one binary variable changes at a time.
Similarly, the transition from c to a is directed through g, and the transition from d to ¢
goes through f. By using the assignment given by the map, the four-row table can be ex-
panded to a seven-row table that is free of critical races, as shown in Fig. 9.31. Note that
although the flow table has seven rows, there are only four stable states. The uncircled
states in the three extra rows are there merely to provide a race-free transition between the
stable states.

450 Chapter 9 Asynchronous Sequential Logic

Y1¥2 a =000 b =001
~h
v - 00 01 11 10
of, a | & | ¢ K e =100 g=010
1

11 e d f : > >
i d =101 F=111 c=011

(a) Binary assignment (b) Transition diagram

FIGURE 9.30

Choosing extra rows for the flow table

011 =c g b @
010 =g a = -
110 - = = o -
111=f‘ c - - c
w-a| 1 |@|@] 1

100 =e = - d =

FIGURE 9.31
State assignment to modified flow table

This example demonstrates a possible way of selecting extra rows in a flow table in order
to achieve a race-free assignment. A state-assignment map similar to the one used in Fig. 9.30(a)
can be helpful in most cases. Sometimes we can take advantage of unspecified entries in the
flow table. Instead of adding rows to the table, we may be able to eliminate critical races by
directing some of the state transitions through the don’t-care entries. The actual assignment
is done by trial and error, until a satisfactory assignment is found that resolves all critical
races.

Section 9.6 Race-Free State Assignment 451

Multiple-Row Method

The method for making race-free state assignments by adding extra rows in the flow table, as
demonstrated in the previous two examples, is sometimes referred to as the shared-row method.
A second method, called the multiple-row method, is not as efficient, but is easier to apply. In mul-
tiple-row assignment, each state in the original flow table is replaced by two or more combinations
of state variables. The state-assignment map of Fig. 9.32(a) shows a multiple-row assignment that
can be used with any four-row flow table. There are two binary state variables for each stable state,
each variable being the logical complement of the other. For example, the original state is replaced
with two equivalent states @; = 000 and a, = 111. The output values, not shown here, must be
the same in @ and a;. Note that @ is adjacent to by, ¢, and d,, and a; is adjacent to ¢y, b,, and
d», and, similarly, each state is adjacent to three states with different letter designations. The be-
havior of the circuit is the same whether the internal state is a; or a;, and so on for the other states.

Figure 9.32(b) shows the multiple-row assignment for the original flow table of Fig. 9.29(a).
The expanded table is formed by replacing each row of the original table with two rows. For
example, row b is replaced by rows b; and b,, and stable state b is entered in columns 00 and 11
in both rows by and b,. After all the stable states have been entered, the unstable states are
filled in by reference to the assignment specified in the map of part (a). In choosing the next
state for a given present state, a state that is adjacent to the present state is selected from the
map. In the original table, the next states of » are a and d for inputs 10 and 01, respectively. In
the expanded table, the next states of by are a; and d,, because these are the states adjacent to
by. Similarly, the next states of b, are a; and d), because they are adjacent to b,.

00 01 11

10
w-u [0 J@ 4 [©
+|®

111 =a,

L~
3

001 = bl dz @ ay
110 = b, 4 g
011 = ¢ @ a | b @
Ya2y3
100 = b
00 o 11 10 ¥ @ | o @

b4l

ol o | b0 | & | & 00=d, | o o

Ll o dy ay by 101=dy, | & | o

(a) Binary assignment (b) Flow table

FIGURE 9.32
Multiple-row assignment

452

9.7

Chapter 9 Asynchronous Sequential Logic

In the multiple-row assignment, the change from one stable state to another will always
cause a change of only one binary state variable. Each stable state has two binary assignments
with exactly the same output. At any given time, only one of the assignments is in use. For ex-
ample, if we start with state a; and input 01 and then change the input to 11, 01, 00, and back
to 01, the sequence of internal states will be a;, d1, ;. and a,. Although the circuit starts in state
a; and terminates in state a,, as far as the input—output relationship is concerned, the two states
a) and a, are equivalent to state a of the original flow table.

HAZARDS

In designing asynchronous sequential circuits, care must be taken to conform with certain re-
strictions and precautions to ensure that the circuits operate properly. The circuit must be op-
erated in fundamental mode with only one input changing at any time and must be free of
critical races. In addition, there is one more phenomenon, called a hazard, that may cause the
circuit to malfunction. Hazards are unwanted switching transients that may appear at the out-
put of a circuit because different paths exhibit different propagation delays. Hazards occur in
combinational circuits, where they may cause a temporary false output value. When they occur
in asynchronous sequential circuits, hazards may result in a transition to a wrong stable state.
It is therefore necessary to check for possible hazards and determine whether they can cause
improper operations. If so, then steps must be taken to eliminate their effect.

Hazards in Combinational Circuits

A hazard is a condition in which a change in a single variable produces a momentary change
in output when no change in output should occur. The circuit of Fig. 9.33(a) depicts the oc-
currence of a hazard. Assume that all three inputs are initially equal to 1. This causes the out-
put of gate 1 to be 1, that of gate 2 to be 0, and that of the circuit to be 1. Now consider a
change in x, from 1 to 0. Then the output of gate 1 changes to 0 and that of gate 2 changes to
1, leaving the output at 1. However, the output may momentarily go to 0 if the propagation delay
through the inverter is taken into consideration. The delay in the inverter may cause the out-
put of gate 1 to change to O before the output of gate 2 changes to 1. In that case, both inputs

xn=1 Zy=1

X2

=1 n=1
(a) AND-OR circuit (b) NAND circuit

FIGURE 9.33
Circuits with hazards

Section 9.7 Hazards 453

of gate 3 are momentarily equal to 0, causing the output to go to 0 for the short time during
which the input signal from x, is delayed while it is propagating through the inverter circuit.

The circuit of Fig. 9.33(b) is a NAND implementation of the Boolean function in Fig. 9.33(b),
and it has a hazard for the same reason. Because gates 1 and 2 are NAND gates, their outputs
are the complement of the outputs of the corresponding AND gates. When x; changes from 1
to 0, both inputs of gate 3 may be equal to 1, causing the output to produce a momentary change
to 0 when it should have stayed at 1.

The two circuits shown in Fig. 9.33 implement the Boolean function in sum-of-products form:

Y = x1x; + x5x3

This type of implementation may cause the output to go to 0 when it should remain a 1. If, how-
ever, the circuit is implemented instead in product-of-sums form (see Section 3.5), namely,

Y = (x + x5)(x2 + x3)

then the output may momentarily go to 1 when it should remain 0. The first case is referred to
as static 1-hazard and the second case as static 0-hazard. A third type of hazard, known as
dynamic hazard, causes the output to change three or more times when it should change from
1 to 0 or from O to 1. Figure 9.34 illustrates the three types of hazards. When a circuit is im-
plemented in sum-of-products form with AND-OR gates or with NAND gates, the removal of
static 1-hazard guarantees that no static O-hazards or dynamic hazards will occur.

A hazard can be detected by inspection of the map of the particular circuit. To illustrate, con-
sider the map in Fig. 9.35(a), which is a plot of the function implemented in Fig. 9.33. The
change in x, from 1 to 0 moves the circuit from minterm 111 to minterm 101. The hazard exists
because the change in input results in a different product term covering the two minterms.

1 —|_r | J_L | —l_I_L
0 0 0
(a) Static 1-hazard (b) Static 0-hazard (c) Dynamic hazard

FIGURE 2.34
Types of hazards

XXy XaX3
00 m 11 10 00

(@)Y =xyx;+ x'3x3 B Y=x;x, + x5+ 51X

FIGURE 9.35
Maps illustrating a hazard and its removal

454

Chapter 9 Asynchronous Sequential Logic

Xy

X2

X3

FIGURE 9.36
Hazard-free circuit

Minterm 111 is covered by the product term implemented in gate 1 of Fig. 9.33, and minterm
101 is covered by the product term implemented in gate 2. Whenever the circuit must move from
one product term to another, there is a possibility of a momentary interval when neither term
is equal to 1, giving rise to an undesirable 0 output.

The remedy for eliminating a hazard is to enclose the two minterms in question with another
product term that overlaps both groupings. This situation is shown in the map of Fig. 9.35(b),
where the two minterms that cause the hazard are combined into one product term. The haz-
ard-free circuit obtained by such a configuration is shown in Fig. 9.36. The extra gate in the
circuit generates the product term x;x3. In general, hazards in combinational circuits can be re-
moved by covering any two minterms that may produce a hazard with a product term common
to both. The removal of hazards requires the addition of redundant gates to the circuit.

Hazards in Sequential Circuits

In normal combinational-circuit design associated with synchronous sequential circuits, haz-
ards are of no concern, since momentary erroneous signals are not generally troublesome.
However, if a momentary incorrect signal is fed back in an asynchronous sequential circuit, it
may cause the circuit to go to the wrong stable state. This situation is illustrated in Fig. 9.37.
If the circuit is in total stable state yx;x, = 111 and input x; changes from 1 to 0, the next total
stable state should be 110. However, because of the hazard, output ¥ may go to 0 momentarily.
If this false signal feeds back into gate 2 before the output of the inverter goes to 1, the output
of gate 2 will remain at 0 and the circuit will switch to the incorrect total stable state 010. This
malfunction can be eliminated by adding an extra gate, as is done in Fig. 9.36.

Implementation with SR Latches

Another way to avoid static hazards in asynchronous sequential circuits is to implement the cir-
cuit with SR latches. A momentary 0 signal applied to the S or R inputs of a NOR latch will have
no effect on the state of the circuit. Similarly, a momentary 1 signal applied to the S and R in-
puts of a NAND latch will have no effect on the state of the latch. In Fig. 9.33(b), we observed

Section 9.7 Hazards 455

Xy

— Y =x;x;+x"2y
X2
(a) Logic diagram
XXz XX
00 01 11 10 00 M 11 10
¥ ¥
O [0 -
| |

O | OO

(b) Transition table (c) Map for ¥

FIGURE 9.37
Hazard in an asynchronous sequential circuit

that a two-level sum-of-products expression implemented with NAND gates may have a static
1-hazard if both inputs of gate 3 go to 1, changing the output from 1 to 0 momentarily. But if
gate 3 is part of a latch, the momentary 1 signal will have no effect on the output, because a
third input to the gate will come from the complemented side of the latch that will be equal to
0 and thus maintain the output at 1. To clarify what was just said, consider a NAND SR latch
with the following Boolean functions for S and R:

S=AB+CD
R=AC

Since this is a NAND latch, we must apply the complemented values to the inputs:

S = (AB + CD)' = (AB)'(CD)’

R = (A'C)’

This implementation is shown in Fig. 9.38(a). § is generated with two NAND gates and one
AND gate. The Boolean function for output Q is

Q = (Q'S) = [Q'(AB)'(CD)'Y
This function is generated in Fig. 9.38(b) with two levels of NAND gates. If output Q is equal
to 1, then Q' is equal to 0. If two of the three inputs go momentarily to 1, the NAND gate as-
sociated with output Q will remain at 1 because Q' is maintained at 0.

Figure 9.38(b) shows a typical circuit that can be used to construct asynchronous sequen-
tial circuits. The two NAND gates forming the latch normally have two inputs. However, if the

456 Chapter 9 Asynchronous Sequential Logic

(b)

FIGURE 9.38
Latch implementation

S or R functions contain two or more product terms when expressed as a sum of products, then
the corresponding NAND gate of the SR latch will have three or more inputs. Thus, the two
terms in the original sum-of-products expression for S are AB and CD, and each is implemented
with a NAND gate whose output is applied to the input of the NAND latch. In this way, each
state variable requires a two-level circuit of NAND gates. The first level consists of NAND gates
that implement each product term in the original Boolean expression of S and R. The second
level forms the cross-coupled connection of the SR latch with inputs that come from the out-
puts of each NAND gate in the first level.

Essential Hazards

Thus far, we have considered what are known as static and dynamic hazards. Another type of
hazard that may occur in asynchronous sequential circuits is called an essential hazard. This
type of hazard is caused by unequal delays along two or more paths that originate from the same
input. An excessive delay through an inverter circuit in comparison to the delay associated

Section 9.8 Design Example 457

with the feedback path may cause such a hazard. Essential hazards cannot be corrected by
adding redundant gates as in static hazards. The problem that they impose can be corrected by
adjusting the amount of delay in the affected path. To avoid essential hazards, each feedback
loop must be handled with individual care to ensure that the delay in the feedback path is long
enough compared with delays of other signals that originate from the input terminals. This
problem tends to be specialized, as it depends on the particular circuit used and the size of the
delays that are encountered in its various paths.

9.8 DESIGN EXAMPLE

We are now in a position to examine a complete design example of an asynchronous sequen-
tial circuit. This example may serve as a reference for the design of other, similar circuits. We
will demonstrate the method of design by following the recommended procedural steps listed
at the end of Section 9.4 and repeated next. After stating the design specifications,

1. Derive a primitive flow table.

. Reduce the flow table by merging the rows.
. Make a race-free binary state assignment.

. Obtain the transition table and output map.

. Obtain the logic diagram, using SR latches.

oA W N

Design Specifications

It is necessary to design a negative-edge-triggered T flip-flop. The circuit has two inputs, T'(tog-
gle) and C (clock), and one output, Q. The output state is complemented if T = 1 and the clock
C changes from 1 to 0 (negative-edge triggering). Otherwise, under any other input condition,
the output Q remains unchanged. Although this circuit can be used as a flip-flop in clocked se-
quential circuits, the internal design of the flip-flop (as is the case with all other flip-flops) is
an asynchronous problem.

Primitive Flow Table

The derivation of the primitive flow table can be facilitated if we first derive a table that
lists all possible total states in the circuit. This table is shown in Table 9.6. We start with
the input condition T7C = 11 and assign to it state a. The circuit goes to state b and the out-
put @ is complemented from 0 to 1 when C changes from 1 to 0 while T remains a 1. An-
other change in the output occurs when the circuit goes from state ¢ to state 4. In this case,
T =1, C changes from 1 to 0, and the output Q is complemented from 1 to 0. The other
four states in the table do not change the output, because T is equal to 0. If Q is initially
0, it stays at 0, and if it is initially at 1, it stays at 1, even though the clock input changes.
This analysis identifies six total states. Note that simultaneous transitions of two input
variables, such as that from 01 to 10, are not included, as they violate the condition for fun-
damental-mode operation.

458 Chapter 9 Asynchronous Sequential Logic

Table 9.6
Specification of Total States
Inputs Output
State T C Q Comments
a 1 1 0 Initial output is 0
b 1 0 1 After state a
c 1 1 1 Initial output is 1
d 1 0 0 After state ¢
e 0 0 0 After state d or f
f 0 1 0 After state e or a
g 0 0 1 Afterstate bor h
h 0 1 1 After state g or ¢
TC
00 01 11 10
a == fi- yOl b=
b g, - C,-] 1
¢ | =,=|h= ;14 ,-
d e,— = a,- ' 0
e [(@0|F,-|-.-|d.-
P | ey O0la,-|-,-
g | 1|h.,-|-.-|b.-
h 8 ¥ = » 1 c,=- et e
FIGURE 9.39

Primitive flow table

The primitive flow table is shown in Fig. 9.39. The information for the table can be ob-
tained directly from the conditions listed in Table 9.6. First, in each row, we fill in one square
belonging to the stable state in that row, as listed in the table. Then we enter dashes in those
squares whose input differs by two variables from the input corresponding to the stable state.
Finally, we identify the unstable conditions by utilizing the information listed under the com-
ments in Table 9.6.

Section 9.8 Design Example 459

FIGURE 9.40
Implication table

Merging of the Flow Table

The rows in the primitive flow table are merged by first obtaining all compatible pairs of states.
This is done by means of the implication table shown in Fig. 9.40. The squares that contain
check marks define the compatible pairs:

(a,f) (b, 8) (b, h) (c, h) (d, e) (d.f) (e.f) (& h)

The maximal compatibles are obtained from the merger diagram shown in Fig. 9.41. The
geometrical patterns that are recognized in the diagram consist of two triangles and two straight
lines. The maximal compatible set is

(a.f) (b, g, h) (c, h) (d, e.f)

In this particular example, the minimal collection of compatibles is also the maximal compat-
ible set. Note that the closed condition is satisfied because the set includes all the original eight
states listed in the primitive flow table, although states / and f are repeated. The covering con-
dition is also satisfied, because all the compatible pairs have no implied states, as can be seen
from the implication table.

The reduced flow table is shown in Fig. 9.42. The table shown in part (a) of the figure re-
tains the original state symbols, but merges the corresponding rows. For example, states a and
f are compatible and are merged into one row that retains the original letter symbols of the
states. Similarly, the other three compatible sets of states are used to merge the flow table into
four rows, retaining the eight original letter symbols. The other alternative for drawing the
merged flow table is shown in part (b) of the figure. Here, we assign a common letter symbol

460 Chapter 9 Asynchronous Sequential Logic

FIGURE 2.41
Merger diagram

TC e
00 01 1 10 00 01 11 10

af | e~ |Do|@0|b,- a|d,-|@0|@0]|®.-
bgh [@1|@1] .- |®1 b (@ 1|®1] c.- @)
ah | g1 |1|01]4d,- clb.- [©1|E©)1]4d.-
def|@.0|D0]| a-|@.0 d|@o|@.0]a-|@o0

(a) (b)

FIGURE 9.42
Reduced flow table

to all the stable states in each merged row. Thus, the symbol f'is replaced by a, g and h are re-
placed by b, and similarly for the other two rows. The second alternative shows clearly a four-
state flow table with only four letter symbols for the states.

State Assignment and Transition Table

The next step in the design is to find a race-free binary assignment for the four stable states in
the reduced flow table. In order to find a suitable adjacent assignment, we draw the transition
diagram, as shown in Fig. 9.43. For this example, it is possible to obtain a suitable adjacent as-
signment without the need of extra states, because there are no diagonal lines in the transition
diagram.

Section 9.8 Design Example
a=00 b =01
A T A
\(‘ 4
d=10 c=11
FIGURE 2.43
Transition diagram
TG e
00 01 11 10 00 01 11 10
Nz ny:
=00 | 10 o1 ool oo | ofx
b=01 11 0 1 1 1 1
c=11] 01 @ @ 10 m| 1 1 1 X
d=10 00 0] 0 0 0 0

(a) Transition table

FIGURE 9.44
Transition table and output map

(b) Output map Q = y;

461

Substituting the binary assignment indicated in the transition diagram into the reduced flow
table, we obtain the transition table shown in Fig. 9.44. The output map is obtained from the
reduced flow table. The dashes in the output section are assigned values according to the rules

established in Section 9.4.

Logic Diagram

The circuit to be designed has two state variables, ¥; and ¥;, and one output, 0. The output map
in Fig. 9.44 shows that Q is equal to the state variable y,. The implementation of the circuit re-
quires two SR latches, one for each state variable. The maps for inputs § and E of the two latches
are shown in Fig. 9.45. The maps are obtained from the information given in the transition
table by using the conditions specified in the latch excitation table shown in Fig. 9.14(b). The
simplified Boolean functions are listed under each map.

462 Chapter 9 Asynchronous Sequential Logic

TC
00 01 1 10
2

mzrooo

ol o | o 0
nlo | x X
10 |# x| ol x

Py

(@) S; =y TC+y, T'C

TC
yya 001 11
“’f//’
00| o 0 0 ,
/
01| x % | % #f

11 X X X 0

10 0 0 0 0

(€) S =y TC

FIGURE 9.45
Maps for latch inputs

The logic diagram of the circuit is shown in Fig. 9.46. Here we use two NAND latches with
two or three inputs in each gate. This implementation is according to the pattern established in
Section 9.7 in conjunction with Fig. 9.38(b). The S and R input functions require six NAND

gates for their implementation.

The example just presented illustrates the complexity involved in designing asynchronous
sequential circuits. It was necessary to go through 10 diagrams in order to obtain the final cir-
cuit diagram. Although most digital circuits are synchronous, there are occasions when one
has to deal with asynchronous behavior. The basic properties presented in this chapter are es-

yiy2

01

11

10

yiyz

01

11

10

TC
00 01 11 10
0 X X
7 X 0 X
o] o] o
0 0 0
()R, =y, T'C' +y', TC
¥ § 08
00 01 11 10
X | x| x| o
o |l o] o] o
ol o] o | 1
X X X Ux.
(d) Ry =y, TC'

sential to a full understanding of the internal behavior of digital circuits.

Problems 463

T
C
FIGURE 9.46

Logic diagram of negative-edge-triggered T flip-flop

PROBLEMS

Answers to problems marked with * appear at the end of the book.
9.1 (a) Explain the difference between asynchronous and synchronous sequential circuits.
{b) Define fundamental-mode operation.
(c) Explain the difference between stable and unstable states.
(d) What is the difference between an internal state and a total state?
9.2* Derive the transition table for the asynchronous sequential circuit shown in Fig. P9.2. Determine the
sequence of internal states ¥; ¥» for the following sequence of inputs xx,: 00, 10, 11, 01, 11, 10, 00.

464

Chapter 9 Asynchronous Sequential Logic

w7

V"

FIGURE P9.2

9.3

9.4

9.5

9.6

9.7

2.8

An asynchronous sequential circuit is described by the excitation function
Y = xix5 + (x; + x3)y
and the output function
D
(a) Draw the logic diagram of the circuit.
(b) Derive the transition table and output map.
(¢) Obtain a two-state flow table.
(d)* Describe in words the behavior of the circuit.

An asynchronous sequential circuit has two internal states and one output. The two excitation
functions and one output function describing the circuit are, respectively,

Y1 = x1x3 + x1y3 + x3y;
Yy = x3 + xyiy2 + X0
z=x+ Yy

(a) Draw the logic diagram of the circuit.
(b) Derive the transition table and output map.
{c)* Obtain a flow table for the circuit.
Convert the flow table of Fig. P9.5 into a transition table by assigning the following binary val-
ues to the states: @ = 00, 5 = 11, and ¢ = 01.
(a) Assign values to the extra fourth state to avoid critical races.
(b) Assign outputs to the don’t-care states to avoid momentary false outputs.
(c)* Derive the logic diagram of the circuit.
Investigate the transition table of Fig. P9.6, and determine all race conditions and whether they
are critical or noncritical, Determine also whether there are any cycles.
Analyze the SR latch with control shown in Fig. 5.5. Obtain the transition table, and show that
the circuit is unstable when all three inputs are equal to 1.
Modify the diagram of Fig. 5.5(a) to convert it into a JK type of latch by inserting two feedback

connections from the outputs to the inputs. Show that the circuit is unstable when J = K = 1
while the control input C remains in the 1 state.

Problems 465

o>
=
I
o
o
[}
|

L=
=1
|
o
|
=

FIGURE P9.5
XiXa
00 01 11 10
Yi¥a
00 10 1 10
01 00 10 10
2 [[» |®®
10 11 00
FIGURE P9.6

9.9 For the asynchronous sequential circuit shown in Fig. P9.9,
(a) derive the Boolean functions for the outputs of the two SR latches ¥, and ¥>. Note that the §
input of the second latch is x{y/.
(b) derive the transition table and output map of the circuit.

B

D

FIGURE P9.9

466

Chapter 9 Asynchronous Sequential Logic

9.10* Implement the circuit defined in Problem 9.3 with a NOR SR latch. Repeat with a NAND SR

2.11
9.12

9.13*

9.14

latch.
Implement the circuit defined in Problem 9.4 with NAND SR latches.

Obtain a primitive flow table for a circuit with two inputs, x, and x,, and two outputs, z; and z»,
that satisfy the following four conditions:

(a) When x;x, = 00, the output is zyz; = 00.

(b) When x; = 1 and x; changes from 0 to 1, the output is z;z, = OI.

(c) When x; = 1 and x; changes from 0 to 1, the output is z;z; = 10.

(d) Otherwise, the output does not change.

A traffic light is installed at a junction of a railroad and a road. The light is controlled by two switch-
es in the rails placed 1 mile apart on either side of the junction. A switch is turned on when the train
is over it and is turned off otherwise. The traffic light changes from green (logic 0) to red (logic 1)
when the beginning of the train is 1 mile from the junction. The light changes back to green when
the end of the train is 1 mile away from the junction. Assume that the length of the train is less than
2 miles.

(a) Obtain a primitive flow table for the circuit.

(b) Show that the flow table can be reduced to four rows.

It is necessary to design an asynchronous sequential circuit with two inputs, x; and x5, and one

output, z. Initially, both inputs and output are equal to 0. When x, or x, becomes 1, z becomes 1.

When the second input also becomes 1, the output changes to 0. The output stays at 0 until the

circuit goes back to the initial state.

(a) Obtain a primitive flow table for the circuit, and show that it can be reduced to the flow table
shown in Fig. P9.14.

(b) Complete the design of the circuit.

FIGURE P9.14

9.15

9.16

9.17
9.18*

Assign output values to the don’t-care states in the flow tables of Fig. P9.15 in such a way as to
avoid transient output pulses.

Using the implication-table method, show that the state table listed in Table 5.7 cannot be re-
duced any further.

Reduce the number of states in the state table listed in Problem 5.12. Use an implication table.
Merge each of the primitive flow tables shown in Fig. P9.18. Proceed as follows:

Problems

00 o1 11 10
@o|b,-|b,- @0
a,~-|®0o|@ 1] c -
b.-ld,-|@Q1{E1
@o|@1]c.-| a-
(b)

00 01 11 10

@1 |- |-
Gy | =om | Fom [EBDH
©ofd.-|-,-|b,-
c,- |@0|g.,-|-.-
a,-[-,-|g.-|@1
a,-|PD1leg.-|-.-
- -|a.-|@0]| k.-
@old.,-|-.-| k.-
R (O
a,-|-.-|i.1 |®o

00 01 11 10
a|@0o|b,~|-,-|d, -
bla,-|@1[{®1] c.-
celb,-{-,=|b,- @0
d|c-|@1]c.-|@1
@
FIGURE P9.15
00 01 11 10
a|{@ofb,-|-,-]e.,-
bla,-|®o0)e,~|-.-
e l-,=|d,~[@©0]h,-
dla,-|@1l-.-1-.-
ela,-|-,-|f.-|@0
rl-.-g.-|@Do|h.-
gla,-{@0]-.-]-.-
hla,-|-,-|-.-|@&o0
(a)

FIGURE P9.18

467

468 Chapter 9 Asynchronous Sequential Logic

(a) Find all compatible pairs by means of an implication table.
(b) Find the maximal compatibles by means of a merger diagram.
(¢c) Find a minimal set of compatibles that covers all the states and is closed.
9.19 (a) Obtain a binary state assignment for the reduced flow table shown in Fig. P9.19. Avoid crit-
ical race conditions.
(b) Obtain the logic diagram of the circuit, using NAND latches and gates.

9,20* Find a critical race-free state assignment for the reduced flow table shown in Fig. P9.20.

X0
00 01 11 10

FIGURE P9.19

CINCICIE

FIGURE P9.20

References 469

9.21 Consider the reduced flow table shown in Fig. P9.21,
(a) Obtain the transition diagram, and show that three state variables are needed for a race-free
binary state assignment.
(b) Obtain the expanded flow table, using the multiple-row method of assignment as specified
in Fig. 9.32(a).

00 01 11 10

b

©
‘1 ©
©

| ©

FIGURE P92.21

9.22* Find a circuit that has no static hazards and implements the Boolean function
F(A,B,C,D) = 2(0,2,6,7,8, 10, 12)
9.23* Draw the logic diagram of the product-of-sums expression
Y = (x; + x3)(x2 + x3)

Show that there is a static 0-hazard when x| and x; are equal to 0 and x; goes from 0 to 1. Find
a way to remove the hazard by adding one more OR gate.

9.24 The Boolean functions for the inputs of an SR latch are
§ = xixdxy + XK
R = xx5 + xaxj

Obtain the circuit diagram, using a minimum number of NAND gates.
9.25 Complete the design of the circuit specified in Problem 9.13.

REFERENCES

1. BREEDING, K. J. 1989. Digital Design Fundamenrals. Englewood Cliffs, NJ: Prentice-Hall.
2, FrRIEDMAN, A, D. 1986. Fundamentals of Logic Design and Switching Theory. Rockville, MD:
Computer Science Press.

470

Chapter 9 Asynchronous Sequential Logic

3.

4.
5.
6

HiLL, F. J., and G. R. PETERSON. 1981. Introduction to Switching Theory and Logical Design, 3d ed.
New York: John Wiley.

Konavi, Z. 1978. Switching and Automata Theory, 2d ed. New York: McGraw-Hill.
McCLUskEY, E. J. 1986. Logic Design Principles. Englewood Cliffs, NJ: Prentice-Hall.
NELSON, V. P, H. T. NAGLE, J. D. IrwIN, and B. D. CARROLL. 1995. Digital Logic Circuits Analyv-
sis and Design. Upper Saddle River, NJ: Prentice Hall.

UNGER, S. H. 1969. Asynchronous Sequential Switching Circuits. New York: John Wiley.

	09 – Asynchronous Sequential Logic.PDF
	415.tif
	416.tif
	417.tif
	418.tif
	419.tif
	420.tif
	421.tif
	422.tif
	423.tif
	424.tif
	425.tif
	426.tif
	427.tif
	428.tif
	429.tif
	430.tif
	431.tif
	432.tif
	433.tif
	434.tif
	435.tif
	436.tif
	437.tif
	438.tif
	439.tif
	440.tif
	441.tif
	442.tif
	443.tif
	444.tif
	445.tif
	446.tif
	447.tif
	448.tif
	449.tif
	450.tif
	451.tif
	452.tif
	453.tif
	454.tif
	455.tif
	456.tif
	457.tif
	458.tif
	459.tif
	460.tif
	461.tif
	462.tif
	463.tif
	464.tif
	465.tif
	466.tif
	467.tif
	468.tif
	469.tif
	470.tif

