Chapter 6
Registers and Counters

6.1

REGISTERS

A clocked sequential circuit consists of a group of flip-flops and combinational gates con-
nected to form a feedback path. The flip-flops are essential because, in their absence, the
circuit reduces to a purely combinational circuit (provided that there is no feedback among
the gates). A circuit with flip-flops is considered a sequential circuit even in the absence of
combinational gates. Circuits that include flip-flops are usually classified by the function
they perform rather than by the name of the sequential circuit. Two such circuits are regis-
ters and counters.

A register is a group of flip-flops, each one of which is capable of storing one bit of
information. An n-bit register consists of a group of n flip-flops capable of storing n bits of
binary information. In addition to the flip-flops, a register may have combinational gates
that perform certain data-processing tasks. In its broadest definition, a register consists of
a group of flip-flops together with gates that affect their operation. The flip-flops hold the
binary information. and the gates determine how the information is transferred into the
register.

A counter is essentially a register that goes through a predetermined sequence of binary
states. The gates in the counter are connected in such a way as to produce the prescribed se-
quence of states. Although counters are a special type of register, it is common to differentiate
them by giving them a different name.

Various types of registers are available commercially. The simplest register is one that con-
sists of only flip-flops, without any gates. Figure 6.1 shows such a register constructed with four
D-type flip-flops to form a four-bit data storage register. The common clock input triggers all
flip-flops on the positive edge of each pulse, and the binary data available at the four inputs are
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Four-bit register
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transferred into the register. The four outputs can be sampled at any time to obtain the binary
information stored in the register. The input Clear_b goes to the active-low R (reset) input of
all four flip-flops. When this input goes to 0, all flip-flops are reset asynchronously. The Clear_b
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input is useful for clearing the register to all 0’s prior to its clocked operation. The R inputs must
be maintained at logic 1 during normal clocked operation. Note that, depending on the flip-flop,
either Clear, Clear_b, reset, or reset_b can be used to indicate the transfer of the register to an
all s state.

Register with Parallel Load

Synchronous digital systems have a master clock generator that supplies a continuous train
of clock pulses. The pulses are applied to all flip-flops and registers in the system. The
master clock acts like a drum that supplies a constant beat to all parts of the system. A sep-
arate control signal must be used to decide which register operation will execute at each
clock pulse. The transfer of new information into a register is referred to as loading or up-
dating the register. If all the bits of the register are loaded simultaneously with a common
clock pulse, we say that the loading is done in parallel. A clock edge applied to the C in-
puts of the register of Fig. 6.1 will load all four inputs in parallel. In this configuration, if
the contents of the register must be left unchanged, the inputs must be held constant or the
clock must be inhibited from the circuit. In the first case, the data bus driving the register
would be unavailable for other traffic. In the second case, the clock can be inhibited from
reaching the register by controlling the clock input signal with an enabling gate. However,
inserting gates into the clock path is ill advised because it means that logic is performed with
clock pulses, The insertion of logic gates produces uneven propagation delays between the
master clock and the inputs of flip-flops. To fully synchronize the system, we must ensure
that all clock pulses arrive at the same time anywhere in the system, so that all flip-flops
trigger simultaneously. Performing logic with clock pulses inserts variable delays and may
cause the system to go out of synchronism. For this reason, it is advisable to control the
operation of the register with the D inputs, rather than controlling the clock in the C inputs
of the flip-flops. This creates the effect of a gated clock, but without affecting the clock path
of the circuit,

A four-bit data-storage register with a load control input that is directed through gates and
into the D inputs of the flip-flops is shown in Fig. 6.2. The additional gates implement a two-
channel mux whose output drives the input to the register with either the data bus or the out-
put of the register. The load input to the register determines the action to be taken with each
clock pulse. When the load input is 1, the data at the four external inputs are transferred into
the register with the next positive edge of the clock. When the load input is 0. the outputs of
the flip-flops are connected to their respective inputs. The feedback connection from output
to input is necessary because a D flip-flop does not have a “no change” condition, With each
clock edge, the D input determines the next state of the register. To leave the output un-
changed, it is necessary to make the D input equal to the present value of the output (i.e.. the
output circulates to the input at each clock pulse). The clock pulses are applied to the C in-
puts without interruption. The load input determines whether the next pulse will accept new
information or leave the information in the register intact. The transfer of information from
the data inputs or the outputs of the register is done simultaneously with all four bits in response
to a clock edge.
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Four-bit register with parallel load

6.2 SHIFT REGISTERS

A register capable of shifting the binary information held in each cell to its neighboring cell,
in a selected direction, is called a shift register. The logical configuration of a shift register
consists of a chain of flip-flops in cascade, with the output of one flip-flop connected to the input
of the next flip-flop. All flip-flops receive common clock pulses, which activate the shift of data
from one stage to the next.

The simplest possible shift register is one that uses only flip-flops, as shown in Fig. 6.3. The
output of a given flip-flop is connected to the D input of the flip-flop at its right. This shift reg-
ister is unidirectional. Each clock pulse shifts the contents of the register one bit position to the
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Four-bit shift register

right. The configuration does not support a left shift. The serial input determines what goes into
the leftmost flip-flop during the shift. The serial output is taken from the output of the rightmost
flip-flop. Sometimes it is necessary to control the shift so that it occurs only with certain pulses,
but not with others. As with the data register discussed in the previous section, the clock’s sig-
nal can be suppressed by gating the clock signal to prevent the register from shifting. A preferred
alternative in high-speed circuits is to suppress the clock action, rather than gate the clock sig-
nal, by leaving the clock path unchanged, but recirculating the output of each register cell back
through a two-channel mux whose output is connected to the input of the cell. When the clock
action is not suppressed, the other channel of the mux provides a data path to the cell.

It will be shown later that the shift operation can be controlled through the D inputs of the flip-
flops rather than through the clock input. If, however, the shift register of Fig. 6.3 is used. the shift
can be controlled with an input by connecting the clock through an AND gate. Note that the sim-
plified schematics do not show a reset signal, but such a signal is required in practical designs.

Serial Transfer

A digital system is said to operate in serial mode when information is transterred and manip-
ulated one bit at a time. Information is transferred one bit at a time by shifting the bits out of
the source register and into the destination register. This type of transfer is in contrast to par-
allel transfer, whereby all the bits of the register are transferred at the same time.

The serial transfer of information from register A to register B is done with shift registers. as
shown in the block diagram of Fig. 6.4(a). The serial output (SO) of register A is connected to the
serial input (57) of register B. To prevent the loss of information stored in the source register, the
information in register A is made to circulate by connecting the serial output to its serial input.
The initial content of register B is shifted out through its serial output and is lost unless it is trans-
ferred to a third shift register. The shift control input determines when and how many times the reg-
isters are shifted. For illustration here, this is done with an AND gate that allows clock pulses to
pass into the CLK terminals only when the shift control is active. (This practice can be problem-
atic because it may compromise the clock path of the circuit, as discussed earlier.)

Suppose the shift registers have four bits each. Then the control unit that supervises the
transfer of data must be designed in such a way that it enables the shift registers. through the
shift control signal, for a fixed time of four clock pulses. This design is shown in the timing
diagram of Fig. 6.4(b). The shift control signal is synchronized with the clock and changes
value just after the negative edge of the clock. The next four clock pulses find the shift control
signal in the active state, so the output of the AND gate connected to the CLK inputs produces
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FIGURE 6.4
Serial transfer from register A to register B

four pulses: T, 15, T3. and T}. Each rising edge of the pulse causes a shift in both registers. The
fourth pulse changes the shift control to 0, and the shift registers are disabled.

Assume that the binary content of A before the shift is 1011 and that of B is 0010. The se-
rial transfer from A to B occurs in four steps, as shown in Table 6.1. With the first pulse, T},
the rightmost bit of A is shifted into the leftmost bit of B and is also circulated into the leftmost
position of A, At the same time, all bits of A and B are shifted one position to the right. The pre-
vious serial output from B in the rightmost position is lost, and its value changes from 0 to 1.
The next three pulses perform identical operations, shifting the bits of A into B, one at a time.
After the fourth shift, the shift control goes to 0 and registers A and B both have the value
1011. Thus, the contents of A are copied into B, so that the contents of A remain unchanged.

Table 6.1

Serial-Transfer Example

Timing Pulse  Shift Register A Shift Register B

Tnitial value Lo 1 1~ 00 13 0
After T} w11 =0 =1 =1 w0 50 =il ‘
After 15 1 1+ 1 D I 1 0 0

After Ty [ O e R 0 1 1 0

After T, ro 11 1 0o 1 1
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The difference between the serial and the parallel mode of operation should be apparent
from this example. In the parallel mode, information is available from all bits of a register and
all bits can be transferred simultaneously during one clock pulse. In the serial mode. the reg-
isters have a single serial input and a single serial output. The information is transferred one
bit at a time while the registers are shifted in the same direction.

Serial Addition

Operations in digital computers are usually done in parallel because that is a faster mode of op-
eration. Serial operations are slower because a data-path operation takes several clock cycles,
but serial operations have the advantage of requiring fewer hardware components. In VLSI
circuits, they require less silicon area on a chip. To demonstrate the serial mode of operation,
we present the design of a serial adder. The parallel counterpart was presented in Section 4.4.

The two binary numbers to be added serially are stored in two shift registers. Beginning with
the least significant pair of bits, the circuit adds one pair at a time through a single full-adder
(FA) circuit, as shown in Fig. 6.5. The carry out of the full adder is transferred to a D flip-flop,
the output of which is then used as the carry input for the next pair of significant bits. The sum
bit from the § output of the full adder could be transferred into a third shift register. By shift-
ing the sum into A while the bits of A are shifted out, it is possible to use one register for stor-
ing both the augend and the sum bits. The serial input of register B can be used to transfer a
new binary number while the addend bits are shifted out during the addition.

Shift
control
CLK
S ‘._.
~y 'FA
Serial : 7%
input
o Vi
D
c<t—
Clear —T
FIGURE 6.5

Serial adder
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The operation of the serial adder is as follows: Initially, register A holds the augend, regis-
ter B holds the addend, and the carry flip-flop is cleared to 0. The outputs (SO) of A and B pro-
vide a pair of significant bits for the full adder at x and y. Output Q of the flip-flop provides
the input carry at z. The shift control enables both registers and the carry flip-flop, so at the next
clock pulse, both registers are shifted once to the right, the sum bit from § enters the leftmost
flip-flop of A, and the output carry is transferred into flip-flop Q. The shift control enables the
registers for a number of clock pulses equal to the number of bits in the registers. For each suc-
ceeding clock pulse, a new sum bit is transferred to A, a new carry is transferred to 0, and both
registers are shifted once to the right. This process continues until the shift control is disabled.
Thus, the addition is accomplished by passing each pair of bits together with the previous carry
through a single full-adder circuit and transferring the sum, one bit at a time, into register A.

Initially, register A and the carry flip-flop are cleared to 0, and then the first number is added
from B. While B is shifted through the full adder, a second number is transferred to it through
its serial input. The second number is then added to the contents of register A while a third
number is transferred serially into register B. This can be repeated to perform the addition of
two, three, or more four-bit numbers and accumulate their sum in register A,

Comparing the serial adder with the parallel adder described in Section 4.4, we note several
differences. The parallel adder uses registers with a parallel load, whereas the serial adder uses
shift registers. The number of full-adder circuits in the parallel adder is equal to the number of
bits in the binary numbers, whereas the serial adder requires only one full-adder circuit and a
carry flip-flop. Excluding the registers, the parallel adder is a combinational circuit, whereas the
serial adder is a sequential circuit which consists of a full adder and a flip-flop that stores the out-
put carry. This design is typical in serial operations because the result of a bit-time operation may
depend not only on the present inputs, but also on previous inputs that must be stored in flip-flops.

To show that serial operations can be designed by means of sequential circuit procedure, we
will redesign the serial adder with the use of state table. First, we assume that two shift regis-
ters are available to store the binary numbers to be added serially. The serial outputs from the
registers are designated by x and y. The sequential circuit to be designed will not include the
shift registers, but they will be inserted later to show the complete circuit. The sequential cir-
cuit proper has the two inputs, x and y, that provide a pair of significant bits, an output S that
generates the sum bit, and flip-flop Q for storing the carry. The state table that specifies the se-
quential circuit is listed in Table 6.2. The present state of Q is the present value of the carry.
The present carry in ( is added together with inputs x and y to produce the sum bit in output
S. The next state of Q is equal to the output carry. Note that the state table entries are identical
to the entries in a full-adder truth table, except that the input carry is now the present state of
Q and the output carry is now the next state of Q.

If a D flip-flop is used for Q, the circuit reduces to the one shown in Fig. 6.5. If a JK flip-
flop is used for Q, it is necessary to determine the values of inputs J and K by referring to the
excitation table (Table 5.12). This is done in the last two columns of Table 6.2. The two flip-
flop input equations and the output equation can be simplified by means of maps to

Jg = xy
Kog=x'y=(x+y)
S=xdyaQ
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Table 6.2
State Table for Serial Adder

Present State Inputs Next State  Output Flip-Flop Inputs

Q x y Q 5 Jo Ko
0 0 0 0 0 0 X
0 0 1 0 1 0 X
0 1 0 1 0 X
0 1 1 1 0 1 X
1 0 0 0 1 X 1
| 0, 4 1 0 X 0
i 1 0 1 0 X 0
1 - 1 1 X 0
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Second form of serial adder

The circuit diagram is shown in Fig. 6.6. The circuit consists of three gates and a JK flip-flop.
The two shift registers are included in the diagram to show the complete serial adder. Note
that output S is a function not only of x and y, but also of the present state of Q. The next state
of O is a function of the present state of Q and of the values of x and y that come out of the se-
rial outputs of the shift registers.

Universal Shift Register

If the flip-flop outputs of a shift register are accessible, then information entered serially by shift-
ing can be taken out in parallel from the outputs of the flip-flops. If a paraliel load capability
is added to a shift register, then data entered in parallel can be taken out in serial fashion by
shifting the data stored in the register.
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Some shift registers provide the necessary input and output terminals for parallel transfer.
They may also have both shift-right and shift-left capabilities. The most general shift register
has the following capabilities:

1. A clear control to clear the register to 0.

2. A clock input to synchronize the operations.

3. A shifi-right control to enable the shift-right operation and the serial input and output lines
associated with the shift right.

4. A shift-left control to enable the shitt-lett operation and the serial input and output Hhe8
associated with the shift left.

A parallel-load control to enable a parallel transfer and the # input lines associated with
the parallel transfer.

g

a

n parallel output lines.

bl

A control state that leaves the information in the register unchanged in response to the
clock. Other shift registers may have only some of the preceding functions, with at least
one shift operation.

A register capable of shifting in one direction only is a unidirectional shift register. One
that can shift in both directions is a bidirectional shift register. If the register has both shifts and
parallel-load capabilities, it is referred to as a universal shift register.

The block diagram symbol and the circuit diagram of a four-bit universal shift register that
has all the capabilities just listed are shown in Fig. 6.7. The circuit consists of four D flip-flops
and four multiplexers. The four multiplexers have two common selection inputs s; and s;. Input
0 in each multiplexer is selected when 5155 = 00, input 1 is selected when 5159 = 01, and sim-
ilarly for the other two inputs. The selection inputs control the mode of operation of the regis-
ter according to the function entries in Table 6.3. When 5,59 = 00, the present value of the
register is applied to the D inputs of the flip-flops. This condition forms a path from the output
of each flip-flop into the input of the same flip-tlop, so that the output recirculates to the input
in this mode of operation. The next clock edge transfers into each flip-flop the binary value it held
previously, and no change of state occurs. When 5,57 = 01, terminal 1 of the multiplexer inputs
has a path to the D inputs of the flip-flops. This causes a shift-right operation, with the serial
input transferred into flip-flop A3. When 5155 = 10, a shift-left operation results, with the other
serial input going into flip-flop Ay Finally, when s15y = 11, the binary information on the par-
allel input lines is transferred into the register simultaneously during the next clock edge. Note
that data enters MSB_in for a shift-right operation and enters LSB_in for a shift-left operation,

Shift registers are often used to interface digital systems situated remotely from each other.
For example. suppose it is necessary to transmit an n-bit quantity between two points. If the
distance is far, it will be expensive to use # lines to transmit the 2 bits in parallel. It is more eco-
nomical to use a single line and transmit the information serially, one bit at a time. The trans-
mitter accepts the n-bit data in parallel into a shift register and then transmits the data serially
along the common line. The receiver accepts the data serially into a shift register. When all n
bits are received, they can be taken from the outputs of the register in parallel. Thus, the trans-
mitter performs a parallel-to-serial conversion of data and the receiver does a serial-to-parallel
conversion.
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Table 6.3
Function Table for the Register of Fig. 6.7

Mode Control

51 So Register Operation
0 0 No change

0 1 Shift right

1 0 Shift left

1 1 Parallel load

RIPPLE COUNTERS

A register that goes through a prescribed sequence of states upon the application of input pulses
is called a counter. The input pulses may be clock pulses, or they may originate from some
external source and may occur at a fixed interval of time or at random. The sequence of states
may follow the binary number sequence or any other sequence of states. A counter that follows
the binary number sequence is called a binary counter. An n-bit binary counter consists of
flip-flops and can count in binary from 0 through 2" — 1.

Counters are available in two categories: ripple counters and synchronous counters. In a
ripple counter, a flip-flop output transition serves as a source for triggering other flip-flops. In
other words, the C input of some or all flip-flops are triggered, not by the common clock pulses,
but rather by the transition that occurs in other flip-flop outputs. In a synchronous counter, the
C inputs of all flip-flops receive the common clock. Synchronous counters are presented in
the next two sections. Here, we present the binary and BCD ripple counters and explain their

operation.

Binary Ripple Counter

A binary ripple counter consists of a series connection of complementing flip-flops, with
the output of each flip-flop connected to the C input of the next higher order flip-flop. The
flip-flop holding the least significant bit receives the incoming count pulses. A comple-
menting flip-flop can be obtained from a JX flip-flop with the J and K inputs tied together
or from a T flip-flop. A third possibility is to use a D flip-flop with the complement output
connected to the D input. In this way, the D input is always the complement of the present
state, and the next clock pulse will cause the flip-flop to complement. The logic diagram of
two 4-bit binary ripple counters is shown in Fig. 6.8. The counter is constructed with com-
plementing flip-flops of the T type in part (a) and D type in part (b). The output of each flip-
flop is connected to the C input of the next flip-flop in sequence. The flip-flop holding the
least significant bit receives the incoming count pulses. The T inputs of all the flip-flops in
(a) are connected to a permanent logic 1, making each flip-flop complement if the signal in
its C input goes through a negative transition. The bubble in front of the dynamic indicator
symbol next to C indicates that the flip-flops respond to the negative-edge transition of the
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Table 6.4

Binary Count Sequence
A3 Az Ay Ao
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0

input. The negative transition occurs when the output of the previous flip-flop to which Cis
connected goes from 1 to 0.

To understand the operation of the four-bit binary ripple counter, refer to the first nine binary
numbers listed in Table 6.4. The count starts with binary 0 and increments by 1 with each count
pulse input. After the count of 15, the counter goes back to 0 to repeat the count. The least sig-
nificant bit, Ag, is complemented with each count pulse input. Every time that Ay goes from
1 to 0, it complements A;. Every time that A; goes from 1 to 0, it complements A,. Every
time that A, goes from 1 to 0, it complements A3, and so on for any other higher order bits of
a ripple counter. For example, consider the transition from count 0011 to 0100. Ag is comple-
mented with the count pulse. Since A goes from 1 to 0, it triggers A and complements it. As
aresult, A| goes from 1 to 0, which in turn complements A, changing it from 0 to 1. A; does
not trigger As;, because A, produces a positive transition and the flip-flop responds only to
negative transitions. Thus, the count from 0011 to 0100 is achieved by changing the bits one
at a time, so the count goes from 0011 to 0010, then to 0000, and finally to 0100. The flip-flops
change one at a time in succession, and the signal propagates through the counter in a ripple
fashion from one stage to the next.

A binary counter with a reverse count is called a binary countdown counter. In a count-
down counter, the binary count is decremented by 1 with every input count pulse. The count
of a four-bit countdown counter starts from binary 15 and continues to binary counts 14, 13,
12, ..., 0 and then back to 15. A list of the count sequence of a binary countdown counter shows
that the least significant bit is complemented with every count pulse. Any other bit in the
sequence is complemented if its previous least significant bit goes from O to 1. Therefore, the
diagram of a binary countdown counter looks the same as the binary ripple counter in Fig. 6.8,
provided that all flip-flops trigger on the positive edge of the clock. (The bubble in the C in-
puts must be absent.) If negative-edge-triggered flip-flops are used, then the C input of each
flip-flop must be connected to the complemented output of the previous flip-flop. Then, when
the true output goes from 0 to 1, the complement will go from 1 to 0 and complement the next
flip-flop as required.
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FIGURE 6.9
State diagram of a decimal BCD counter

BCD Ripple Counter

A decimal counter follows a sequence of 10 states and returns to 0 after the count of 9. Such a
counter must have at least four flip-flops to represent each decimal digit, since a decimal digit
is represented by a binary code with at least four bits. The sequence of states in a decimal
counter is dictated by the binary code used to represent a decimal digit. If BCD is used. the se-
quence of states is as shown in the state diagram of Fig. 6.9. A decimal counter is similar to a
binary counter, except that the state after 1001 (the code for decimal digit 9) is 0000 (the code
for decimal digit 0).

The logic diagram of a BCD ripple counter using JK flip-flops is shown in Fig. 6.10. The
four outputs are designated by the letter symbol Q, with a numeric subscript equal to the bi-
nary weight of the corresponding bit in the BCD code. Note that the output of Q is applied to
the C inputs of both 0, and Qg and the output of Q5 is applied to the C input of Q. The J and
K inputs are connected either to a permanent 1 signal or to outputs of other flip-flops.

A ripple counter is an asynchronous sequential circuit. Signals that affect the flip-flop tran-
sition depend on the way they change from 1 to 0. The operation of the counter can be ex-
plained by a list of conditions for flip-flop transitions. These conditions are derived from the
logic diagram and from knowledge of how a JK flip-flop operates. Remember that when the
C input goes from 1 to 0, the flip-flop is set if J = 1, is cleared if K = 1, is complemented if
J = K = 1, and is left unchanged if / = K = 0.

To verify that these conditions result in the sequence required by a BCD ripple counter, it
is necessary to verify that the flip-flop transitions indeed follow a sequence of states as spec-
ified by the state diagram of Fig. 6.9. Q¢ changes state after each clock pulse. 0> complements
every time Q; goes from 1 to 0, as long as Og = 0. When Qg becomes 1. O, remains at 0. 04
complements every time Q, goes from 1 to 0. Qg remains at 0 as long as O, or Qy is 0. When
both @, and Q4 become 1, Og complements when Q; goes from 1 to 0. Qg is cleared on the next
transition of Q;.

The BCD counter of Fig. 6.10 is a decade counter, since it counts from 0 to 9. To count in dec-
imal from 0 to 99, we need a two-decade counter. To count from 0 to 999, we need a three-decade
counter. Multiple decade counters can be constructed by connecting BCD counters in cascade,
one for each decade. A three-decade counter is shown in Fig. 6.11. The inputs to the second and
third decades come from Qg of the previous decade. When Qg in one decade goes from 1 100, it
triggers the count for the next higher order decade while its own decade goes from 910 0.
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Block diagram of a three-decade decimal BCD counter

SYNCHRONOUS COUNTERS

Synchronous counters are different from ripple counters in that clock pulses are applied to the
inputs of all flip-flops. A common clock triggers all flip-flops simultaneously, rather than one
at a time in succession as in a ripple counter. The decision whether a flip-flop is to be
complemented is determined from the values of the data inputs, such as 7 or J and K at the time
of the clock edge. If 7 = 0 or J = K = 0, the flip-flop does not change state. If T = 1 or
J = K = 1, the flip-flop complements.

The design procedure for synchronous counters was presented in Section 5.8, and the design
of a three-bit binary counter was carried out in conjunction with Fig. 5.31. In this section, we
present some typical synchronous counters and explain their operation.

Binary Counter

The design of a synchronous binary counter is so simple that there is no need to go through a
sequential logic design process. In a synchronous binary counter, the flip-flop in the least sig-
nificant position is complemented with every pulse. A flip-flop in any other position is com-
plemented when all the bits in the lower significant positions are equal to 1. For example, if
the present state of a four-bit counter is A3A,A;Ag = 0011, the next count is 0100. Ay is al-
ways complemented. A is complemented because the present state of A; = 1. A, is comple-
mented because the present state of AjAg = 11. However, As is not complemented. because
the present state of A,A1Ag = 011, which does not give an all-1's condition.

Synchronous binary counters have a regular pattern and can be constructed with comple-
menting flip-flops and gates. The regular pattern can be seen from the four-bit counter depicted
in Fig. 6.12. The C inputs of all flip-flops are connected to a common clock. The counter is
enabled with the count enable input. If the enable input is 0, all J and X inputs are equal to 0
and the clock does not change the state of the counter. The first stage. A, has its 7 and K equal
to 1 if the counter is enabled. The other J and K inputs are equal to 1 if all previous least sig-
nificant stages are equal to 1 and the count is enabled. The chain of AND gates generates the
required logic for the J and K inputs in each stage. The counter can be extended to any num-
ber of stages, with each stage having an additional flip-flop and an AND gate that gives an
output of 1 if all previous flip-flop outputs are 1.
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Note that the flip-flops trigger on the positive edge of the clock. The polarity of the clock
is not essential here, but it is with the ripple counter. The synchronous counter can be triggered
with either the positive or the negative clock edge. The complementing flip-flops in a binary
counter can be of either the JK type, the T type, or the D type with XOR gates. The equivalency
of the three types is indicated in Fig. 5.13.

Up-Down Binary Counter

A synchronous countdown binary counter goes through the binary states in reverse order. from
1111 down to 0000 and back to 1111 to repeat the count. It is possible to design a countdown
counter in the usual manner, but the result is predictable by inspection of the downward binary
count. The bit in the least significant position is complemented with each pulse. A bit in any
other position is complemented if all lower significant bits are equal to 0. For example, the next
state after the present state of 0100 is 0011. The least significant bit is always complemented.
The second significant bit is complemented because the first bit is 0. The third significant bit
is complemented because the first two bits are equal to 0. But the fourth bit does not change,
because not all lower significant bits are equal to 0.

A countdown binary counter can be constructed as shown in Fig. 6.12, except that the in-
puts to the AND gates must come from the complemented outputs, instead of the normal out-
puts, of the previous flip-flops. The two operations can be combined in one circuit to form a
counter capable of counting either up or down. The circuit of an up—down binary counter using
T flip-flops is shown in Fig. 6.13. It has an up control input and a down control input. When
the up input is 1, the circuit counts up, since the T inputs receive their signals from the values
of the previous normal outputs of the flip-flops. When the down input is | and the up input is
0, the circuit counts down, since the complemented outputs of the previous flip-flops are ap-
plied to the T'inputs. When the up and down inputs are both 0, the circuit does not change state
and remains in the same count. When the up and down inputs are both 1, the circuit counts up.
This set of conditions ensures that only one operation is performed at any given time. Note that
the up input has priority over the down input.

BCD Counter

A BCD counter counts in binary-coded decimal from 0000 to 1001 and back to 0000. Because
of the return to 0 after a count of 9, a BCD counter does not have a regular pattern, unlike a
straight binary count. To derive the circuit of a BCD synchronous counter, it is necessary to go
through a sequential circuit design procedure.

The state table of a BCD counter is listed in Table 6.5. The input conditions for the 7 flip-flops
are obtained from the present- and next-state conditions. Also shown in the table is an output y,
which is equal to 1 when the present state is 1001. In this way, y can enable the count of the next-
higher significant decade while the same pulse switches the present decade from 1001 to 0000.

The flip-flop input equations can be simplified by means of maps. The unused states for
minterms 10 to 15 are taken as don’t-care terms. The simplified functions are

TQ] =1
Ty = Q30
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Table 6.5
State Table for BCD Counter
Present State Next State Output Flip-Flop Inputs
QB Q Q@ @ Q Q Q Q y TQg TQs TQ; TQ,
0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0 0 1 1
0 0 1 0 0 0 1 1 0 0 0 0 1
0 0 1 1 0 1 0 0 0 0 1 1 1
0 1 0 0 o 1 0 1 0 0 0 0 1
0 | 0 1 0 1 1 0 0 0 0 1 1
0 1 1 0 0 1 1 1 0 0 0 0 1
0 1 1 1 1 0 0 0 0 1 1 | 1
| 0 0 0 1 0 0 1 0 0 0 0 1
1 0 0 | 0 0 0 0 1 1 0 0 1
Toa = 020
Togs = 030 + 04050,
y = Q0

The circuit can easily be drawn with four T flip-flops, five AND gates, and one OR gate.
Synchronous BCD counters can be cascaded to form a counter for decimal numbers of any
length. The cascading is done as in Fig. 6.11, except that output y must be connected to the count
input of the next-higher significant decade.

Binary Counter with Parallel Load

Counters employed in digital systems quite often require a parallel-load capability for trans-
ferring an initial binary number into the counter prior to the count operation. Figure 6.14 shows
the top-level block diagram symbol and the logic diagram of a four-bit register that has a par-
allel load capability and can operate as a counter. When equal to 1, the input load control dis-
ables the count operation and causes a transfer of data from the four data inputs into the four
flip-flops. If both control inputs are 0, clock pulses do not change the state of the register.

The carry output becomes a 1 if all the flip-flops are equal to | while the count input is en-
abled. This is the condition for complementing the flip-flop that holds the next significant bit.
The carry output is useful for expanding the counter to more than four bits. The speed of the
counter is increased when the carry is generated directly from the outputs of all four flip-flops,
because of the reduced delay for generating the carry. In going from state 1111 to 0000, only
one gate delay occurs, whereas four gate delays occur in the AND gate chain shown in Fig. 6.12.
Similarly, each flip-flop is associated with an AND gate that receives all previous flip-flop
outputs directly instead of connecting the AND gates in a chain.

The operation of the counter is summarized in Table 6.6. The four control inputs—Clear,
CLK, Load, and Count—determine the next state. The Clear input is asynchronous and, when
equal to 0, causes the counter to be cleared regardless of the presence of clock pulses or other
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Table 6.6
Function Table for the Counter of Fig. 6.14

Clear CLK Load Cuung Function

0 X X X Clear 10 0

1 1 X Load inputs
1 1 0 1 Count next binary state
1 1 0 0 No change

inputs. This relationship is indicated in the table by the X entries, which symbolize don’t-care
conditions for the other inputs. The Clear input must be in the 1 state for all other operations,
With the Load and Count inputs both at 0, the outputs do not change, even when clock pulses
are applied. A Load input of 1 causes a transfer from inputs Iy— /3 into the register during a pos-
itive edge of CLK. The input data are loaded into the register regardless of the value of the
Count input, because the Count input is inhibited when the Load input is enabled. The Load
input must be 0 for the Count input to control the operation of the counter.

A counter with a parallel load can be used to generate any desired count sequence. Figure 6.15
shows two ways in which a counter with a parallel load is used to generate the BCD count. In each
case, the Count control is set to 1 to enable the count through the CLK input. Also, recall that the
Load control inhibits the count and that the clear operation is independent of other control inpuls.

The AND gate in Fig. 6.15(a) detects the occurrence of state 1001. The counter is initially
cleared to 0, and then the Clear and Count inputs are set to I, so the counter is active at all times.
As long as the output of the AND gate is 0, each positive-edge clock increments the counter by 1.
When the output reaches the count of 1001, both Ay and A3 become 1, making the output of the
AND gate equal to 1. This condition activates the Load input; therefore, on the next clock edge the
register does not count, but is loaded from its four inputs. Since all four inputs are connected to logic
0, an all-0’s value is loaded into the register following the count of 1001. Thus, the circuit goes
through the count from 0000 through 1001 and back to 0000, as is required in a BCD counter.

In Fig. 6.15(b), the NAND gate detects the count of 1010, but as soon as this count occurs,
the register is cleared. The count 1010 has no chance of staying on for any appreciable time,

A"{ /’l: Al A” A] A: AI A,u

3,“, < Count = 1 e Count = 1
<— Load =0

l—CLK

< Clear = 1

LK

Inputs have no effect
(a) Using the load input (b) Using the clear input

FIGURE 6.15
Two ways to achieve a BCD counter using a counter with parallel load
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because the register goes immediately to 0. A momentary spike occurs in output Ag as the
count goes from 1010 to 1011 and immediately to 0000. The spike may be undesirable, and for
that reason, this configuration is not recommended. If the counter has a synchronous clear
input, it is possible to clear the counter with the clock after an occurrence of the 1001 count.

6.5 OTHER COUNTERS

Counters can be designed to generate any desired sequence of states. A divide-by-N counter (also
known as a modulo-N counter) is a counter that goes through a repeated sequence of N states.
The sequence may follow the binary count or may be any other arbitrary sequence. Counters
are used fo generate timing signals to control the sequence of operations in a digital system.
Counters can also be constructed by means of shift registers. In this section, we present a few
examples of nonbinary counters.

Counter with Unused States

A circuit with n flip-flops has 2" binary states. There are occasions when a sequential circuit uses
fewer than this maximum possible number of states. States that are not used in specifying the
sequential circuit are not listed in the state table. In simplifying the input equations, the unused
states may be treated as don’t-care conditions or may be assigned specific next states. Once the
circuit is designed and constructed, outside interference may cause the circuit to enter one of the
unused states. In that case, it is necessary to ensure that the circuit eventually goes into one of
the valid states so that it can resume normal operation. Otherwise, if the sequential circuit cir-
culates among unused states, there will be no way to bring it back to its intended sequence of
state transitions. If the unused states are treated as don’t-care conditions, then once the circuit
is designed, it must be investigated to determine the effect of the unused states. The next state
from an unused state can be determined from the analysis of the circuit after it is designed.

As an illustration, consider the counter specified in Table 6.7. The count has a repeated sequence
of six states, with flip-flops B and C repeating the binary count 00, 01, 10, and flip-flop A alter-
nating between 0 and 1 every three counts. The count sequence of the counter is not straight bi-
nary, and two states, 011 and 111, are not included in the count. The choice of JK flip-flops results
in the flip-flop input conditions listed in the table. Inputs Kz and K have only 1’s and X’s in their

Table 6.7
State Table for Counter
Present State Next State Flip-Flop Inputs

A B C A B C Ja Kia Jg Kg Jc K¢
0o 0 0 0 0 1 0 X 0 X 1 X
0o 0 1 0o 1 0 0 X 1 X X 1
0o 1 0 1 0 0 1 X X 1 0 X
1 0 0 1 0 1 X 0 0 X 1 X
10 1 1 1 0 X 0 1 X X 1
1 1. © 0O 0 0 X 1 X | 0 X
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Logic 1

Clock
(a) Logic diagram (b) State diagram

FIGURE 6.16
Counter with unused states

columns, so these inputs are always equal to 1. The other flip-flop input equations can be sim-
plified by using minterms 3 and 7 as don’t-care conditions. The simplified equations are
Ja=8 Ki=B8B
J, 5= C Kg=1
JC =B’ KC =1
The logic diagram of the counter is shown in Fig. 6.16(a). Since there are two unused states,
we analyze the circuit to determine their effect. If the circuit happens to be in state 011 because
of an error signal, the circuit goes to state 100 after the application of a clock pulse. This action
may be determined from an inspection of the logic diagram by noting that when B = 1. the
next clock edge complements A and clears C to 0, and when C = 1, the next clock edge com-
plements B. In a similar manner, we can evaluate the next state from present state 111 to be 000.
The state diagram including the effect of the unused states is shown in Fig. 6.16(b). If the cir-
cuit ever goes to one of the unused states because of outside interference, the next count pulse
transfers it to one of the valid states and the circuit continues to count correctly. Thus. the counter
is self-correcting. In a self-correcting counter, if the counter happens to be in one of the unused
states, it eventually reaches the normal count sequence after one or more clock pulses. An
alternative design could use additional logic to direct every unused state to a specific next state.
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Timing signals that control the sequence of operations in a digital system can be generated by a
shift register or by a counter with a decoder. A ring counter is a circular shift register with only one
flip-flop being set at any particular time; all others are cleared. The single bit is shifted from one
flip-flop to the next to produce the sequence of timing signals. Figure 6.17(a) shows a four-bit

Shift
right

[ 11

+

(a) Ring-counter (initial value = 1000)

ad LILILILTL

nl | |

T

N

T

"

{b) Sequence of four timing signals

Count
enable

—_—

FIGURE 6.17
Generation of timing signals

Iy, T I, Ty

111

(¢) Counter and decoder



268

Chapter 6 Registers and Counters

shift register connected as a ring counter. The initial value of the register is 1000 and requires
Preset/Clear flip-flops. The single bit is shifted right with every clock pulse and circulates back
from T3 to Ty, Each flip-flop is in the 1 state once every four clock cycles and produces one of
the four timing signals shown in Fig. 6.17(b). Each output becomes a 1 after the negative-edge
transition of a clock pulse and remains 1 during the next clock cycle.

For an alternative design, the timing signals can be generated by a two-bit counter that goes
through four distinct states. The decoder shown in Fig. 6.17(c) decodes the four states of the
counter and generates the required sequence of timing signals.

To generate 2" timing signals, we need either a shift register with 2" flip-flops or an n1-bit binary
counter together with an n-to-2"-line decoder. For example, 16 timing signals can be generated
with a 16-bit shift register connected as a ring counter or with a 4-bit binary counter and a 4-to-16-
line decoder. In the first case, we need 16 flip-flops. In the second, we need 4 flip-flops and 16 four-
input AND gates for the decoder. It is also possible to generate the timing signals with a combination
of a shift register and a decoder. That way, the number of flip-flops is less than that in a ring counter,
and the decoder requires only two-input gates. This combination is called a Johnson counter.

Johnson Counter

A k-bit ring counter circulates a single bit among the flip-flops to provide k distinguishable
states. The number of states can be doubled if the shift register is connected as a switch-tail ring
counter. A switch-tail ring counter is a circular shift register with the complemented output of
the last flip-flop connected to the input of the first flip-flop. Figure 6.18(a) shows such a shift

D —E
> ¢
E
b _
CLK
(a) Four-stage switch-tail ring counter
Flip-flop outputs
Sequence _— AND gate required
number A B C E for output
1 0o 0o 0 0 A'E
2 1 0 0 0 AB'
3 1 1 0 0 BC’
4 ik 1 1 0 CE'
5 1 1 1 1 AE
6 0 1 1 1 A'B
7 0o 0 1 1 B'C
8 o 0o 0o 1 CE
{b) Count sequence and required decoding
FIGURE 6.18

Construction of a Johnson counter
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register. The circular connection is made from the complemented output of the rightmost flip-
flop to the input of the leftmost flip-flop. The register shifts its contents once to the right with
every clock pulse, and at the same time, the complemented value of the E flip-flop is transferred
into the A flip-flop. Starting from a cleared state, the switch-tail ring counter goes through a
sequence of eight states, as listed in Fig. 6.18(b). In general, a k-bit switch-tail ring counter will
go through a sequence of 2k states. Starting from all 0's, each shift operation inserts 1’s from
the left until the register is filled with all 1's. In the next sequences, O’s are inserted from the
left until the register is again filled with all (’s.

A Johnson counter is a k-bit switch-tail ring counter with 2k decoding gates to provide out-
puts for 2k timing signals. The decoding gates are not shown in Fig. 6.18, but are specified in the
last column of the table. The eight AND gates listed in the table, when connected to the circuit,
will complete the construction of the Johnson counter. Since each gate is enabled during one par-
ticular state sequence, the outputs of the gates generate eight timing signals in succession.

The decoding of a k-bit switch-tail ring counter to obtain 2k timing signals follows a regu-
lar pattern. The all-0’s state is decoded by taking the complement of the two extreme flip-flop
outputs. The all-1s state is decoded by taking the normal outputs of the two extreme flip-flops.
All other states are decoded from an adjacent 1, 0 or 0, 1 pattern in the sequence. For exam-
ple, sequence 7 has an adjacent 0, 1 pattern in flip-flops B and C. The decoded output is then
obtained by taking the complement of B and the normal output of C, or B'C.

One disadvantage of the circuit in Fig. 6.18(a) is that if it finds itself in an unused state, it
will persist in moving from one invalid state to another and never find its way to a valid state.
The difficulty can be corrected by modifying the circuit to avoid this undesirable condition. One
correcting procedure is to disconnect the output from flip-flop B that goes to the D input of flip-
flop C and instead enable the input of flip-flop C by the function

Dc = (A +C)B
where D¢ is the flip-flop input equation for the D input of flip-flop C.
Johnson counters can be constructed for any number of timing sequences. The number of

flip-flops needed is one-half the number of timing signals. The number of decoding gates is
equal to the number of timing signals, and only two-input gates are needed.

6.6 HDL FOR REGISTERS AND COUNTERS

Registers and counters can be described in Verilog at either the behavioral or the structural level.
Behavioral modeling describes only the operations of the register, as prescribed by a function
table, without a preconceived structure. A structural-level description shows the circuit in terms
of a collection of components such as gates, flip-flops, and multiplexers. The various compo-
nents are instantiated to form a hierarchical description of the design similar to a representation
of a logic diagram. The examples in this section will illustrate both types of descriptions.

Shift Register

The universal shift register presented in Section 6.2 is a bidirectional shift register with a par-
allel load. The four clocked operations that are performed with the register are specified in
Table 6.6. The register also can be cleared asynchronously. Our chosen name for a behavioral



270

Chapter 6 Registers and Counters

description of the four-bit universal shift register shown in Fig. 6.7(a). the name
Shift_Register_4_beh, signifies the behavioral model of the internal detail of the top-level
block diagram symbol and distinguishes that model from a structural one. The behavioral
model is presented in HDL Example 6.1, and the structural model is given in HDL Example
6.2. The top-level block diagram symbol in Fig. 6.7(a) indicates that the four-bit universal shift
register has two selection inputs (s/, s0), two serial inputs (shift_left, shift_right). a four-bit par-
allel input (I_par), and a four-bit parallel output (A_par). The elements of vector I_par/3. 0]
correspond to the bits /3,. .., Iy in Fig. 6.7, and similarly for A_par[3: 0]. The always block
describes the five operations that can be performed with the register. The Clear input clears the
register asynchronously with an active-low signal. Clear must be high for the register to respond
to the positive edge of the clock. The four clocked operations of the register are determined from
the values of the two select inputs in the case statement. (s/ and s0 are concatenated into a
two-bit vector and are used as the expression argument of the case statement.) The shifting
operation is specified by the concatenation of the serial input and three bits of the register. For
example, the statement

A_par <= {MSB_in, A_par [3: 1]}

specifies a concatenation of the serial data input for a right shift operation (MSB_in) with bits
A_par[3: 1] of the output data bus. A reference to a contiguous range of bits within a vector
is referred to as a part select. The four-bit result of the concatenation is transferred to register
A_par [3: 0] when the clock pulse triggers the operation. This transfer produces a shift-right
operation and updates the register with new information. The shift operation overwrites the
contents of A_par{0f with the contents of A_par[]]. Note that only the functionality of the
circuit has been described, irrespective of any particular hardware. A synthesis tool would cre-
ate a netlist of ASIC cells to implement the shift register.

HDL Example 6.1

// Behavioral description of a 4-bit universal shiﬁiregisfer
/ Fig. 8.7 and Table 6.3

module Shift_Register_4_beh ( // V2001, 2005
output reg [3:0] A_par, /I Register output
input [3:0] I_par, I Parallel input
input s1, s0, /I Select inputs

MSB_in, LSB_in, Il Serial inputs
CLK, Clear /I Clock and Clear
}-

always @ (posedge CLK, negedge Clear) // V2001, 2005
if (~Clear) A_par <= 4'b0000;
else
case ({s1, s0})
2'b00: A_par <= A_par; Il No change
2'b01: A_par <= {MSB_in, A_par{3: 1]};  // Shift right
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2'b10: A_par <= {A_par[2: 0], LSB_in}; /! Shift left
2'b11: A_par <= |_pair, /! Parallel load of input
endcase
endmodule

Variables of type reg retain their value until they are assigned a new value by an assignment
statement. Consider the following alternative case statement for the shift register model:

case ({s1, s0})

1/ 2'b00: A_par <= A_par; // No change

2'b01: A_par <= {MSB_in, A_par [3: 1]}; /1 Shift right

2'b10: A_par <= {A_par [2: 0], LSB_in}; /1 Shift left

2'b11: A_par <= |_par; /f Parallel load of input
endcase

Without the case item 2'b00, the case statement would not find a match between {s/, s0}
and the case items, so register A_par would be left unchanged.

A structural model of the universal shift register can be described by referring to the logic
diagram of Fig. 6.7(b). The diagram shows that the register has four multiplexers and four D flip-
flops. A mux and flip-flop together are modeled as a stage of the shift register. The stage is a
structural model, too, with an instantiation and interconnection of a module for a mux and another
for a D flip-flop. For simplicity, the lowest-level modules of the structure are behavioral models
of the multiplexer and flip-flop. Attention must be paid to the details of connecting the stages cor-
rectly. The structural description of the register is shown in HDL Example 6.2. The top-level
module declares the inputs and outputs and then instantiates four copies of a stage of the regis-
ter. The four instantiations specify the interconnections between the four stages and provide the
detailed construction of the register as specified in the logic diagram. The behavioral description
of the flip-flop uses a single edge-sensitive cyclic behavior (an always block). The assignment
statements use the nonblocking assignment operator (<=), the model of the mux employs a
single level-sensitive behavior, and the assignments use the blocking assignment operator (=).

HDL Example 6.2
/1 Structural description of a 4-bit universal shift register (see Fig. 6.7)
module Shift_Register 4 _str ( /1 V2001, 2005

output [3: 0] A_par, /f Parallel output

input [3: 0] |_par, 1 Parallel input

input s1, s0, /I Mode select

input MSB_in, LSB_in, CLK, Clear /f Serial inputs, clock, clear

)

/! bus for mode control
assign [1:0] select={s1, s0};

I/ Instantiate the four stages
stage STO (A_par[0], A_par[1], LSB_in, |_par[0], A_par[0], select, CLK, Clear);
stage ST1 (A_par[1], A_par[2], A_par[0], |_par[1], A_par[1], select, CLK, Clear);
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stage ST2 (A_par[2], A_par[3], A_par[1], |_par[2], A_par{2], select, CLK, Clear);
stage ST3 (A_par[3], MSB_in, A_par[2], |_par[3], A_par[3], select, CLK, Clear);
endmodule

Il One stage of shift register
module stage (i0, i1, i2, i3, Q, select, CLK, Cir);

input i0, {{ circulation bit selection
i1, // data from left neighbor or serial input for shift-right
i2, /I data from right neighbor or serial input for shift-left
i3; ! data from parallel input

output Q;

input [1: 0] select; /I stage mode control bus

input CLK, Clr;  // Clock, Clear for flip-flops

wire mux_out;

/I instantiate mux and flip-flop
Mux_4_x_1 MO (mux_out, i0, i1, i2, i3, select);
D_flip_flop M1 (Q, mux_out, CLK, Cir);
endmodule

1 4x1 multiplexer I/ behavioral model
module Mux_4_x_1 (mux_out, i0, i1, i2, i3, select);
output mux_out;
input i0, i1, i2, i3;
input [1: 0] select;
reg mux_out;
always @ (select, i0, i1, i2, i3)
case (select)
2'b00: mux_out = i0;
2'b01: mux_out =i1;
2'b10: mux_out = i2;
2'b11: mux_out = i3;
endcase
endmodule

I/ Behavioral model of D flip-flop
module D_flip_flop (Q, D, CLK, Clr);

output Q;
input D, CLK, Clr;
reg Q;

always @ (posedge CLK, negedge CIr)
if (~Clr) Q <= 1'b0; else Q <= D,
endmodule
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The above examples presented two descriptions of a universal shift register to illustrate
the different styles for modeling a digital circuit. A simulation should verify that the mod-
els have the same functionality. In practice, a designer develops only the behavioral model,
which is then synthesized. The function of the synthesized circuit can be compared with the
behavioral description from which it was compiled. Eliminating the need for the designer
to develop a structural model produces a huge improvement in the efficiency of the design
process.

Synchronous Counter

HDL Example 6.3 presents Binary_Counter_4_Par_Load, a behavioral model of the syn-
chronous counter with a parallel load from Fig. 6.14. Count, Load, CLK, and Clear are inputs
that determine the operation of the counter according to the function specified in Table 6.6. The
counter has four data inputs, four data outputs, and a carry output. The internal data lines ({3,
12,11, 10) are bundled as Data_in{3: 0] in the behavioral model. Likewise, the register that holds
the bits of the count (A3, A2, Al, AD) is A_count[3: 0]. It is good practice to have identifiers
in the HDL model of a circuit correspond exactly to those in the documentation of the model.
That is not always feasible, however, if the circuit-level identifiers are those found in a hand-
book, for they are often short and cryptic and do not exploit the text that is available with an
HDL. The top-level block diagram symbol in Fig. 6.14(a) serves as an interface between the
names used in a circuit diagram and the expressive names that can be used in the HDL model.
The carry output C_out is generated by a combinational circuit and is specified with an assign
statement. C_out = 1 when the count reaches 15 and the counter is in the count state. Thus,
C_out = 1if Count = 1, Load = 0,and A = 1111; otherwise C_out = 0. The always block
specifies the operation to be performed in the register, depending on the values of Clear, Load,
and Count. A O (active-low signal) at Clear resets A to 0. Otherwise, if Clear = 1, one out of
three operations is triggered by the positive edge of the clock. The if, else if, and else statements
establish a precedence among the control signals Clear, Load, and Count corresponding to the
specification in Table 6.6. Clear overrides Load and Count; Load overrides Count. A synthe-
sis tool will produce the circuit of Fig. 6.14(b) from the behavioral model.

HDL Example 6.3

I/l Four-bit binary counter with parallel load (V2001, 2005)
/I See Figure 6.14 and Table 6.6
module Binary_Counter_4_Par_Load (

output reg [3: 0] A_count, // Data output

output C_out, {/ Output carry

input [3: 0] Data_in, // Data input

input Count, /I Active high to count
Load, /I Active high to load
CLK, [/l Positive-edge sensitive

Clear /I Active low
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assign C_out = Count & (~Load) & (A_count == 4'b1111);
always @ (posedge CLK, negedge Clear)

if (~Clear) A_count <= 4'b0000;

else if (Load) A_count <= data_in;

else if (Count) A_count <= A_count + 1'b1;

else A_count <= A_count; // redundant statement
endmodule

Ripple Counter

The structural description of a ripple counter is shown in HDL Example 6.4. The first module
instantiates four internally complementing flip-flops defined in the second module as
Comp_D_flip_flop (Q, CLK, Reset). The clock (input CLK) of the first flip-flop is connected
to the external control signal Count. (Count replaces CLK in the port list of instance F0.) The
clock input of the second flip-flop is connected to the output of the first. (A0 replaces CLK in
instance F/.) Similarly, the clock of each of the other flip-flops is connected to the output of
the previous flip-flop. In this way, the flip-flops are chained together to create a ripple counter
as shown in Fig. 6.8(b).

The second module describes a complementing flip-flop with delay. The circuit of a com-
plementing flip-flop is constructed by connecting the complement output to the D input. A
reset input is included with the flip-flop in order to be able to initialize the counter: otherwise
the simulator would assign the unknown value (x) to the output of the flip-flop and produce use-
less results. The flip-flop is assigned a delay of two time units from the time that the clock is
applied to the time that the flip-flop complements. The delay is specified by the statement
Q <= #2 ~(Q. Notice that the delay operator is placed to the right of the nonblocking assign-
ment operator. This form of delay, called intra-assignment delay, has the effect of postponing
the assignment of the complemented value of Q to Q. The effect of modeling the delay will be
apparent in the simulation results. This style of modeling might be useful in simulation, but it
is to be avoided when the model is to be synthesized. The results of synthesis depend on the
ASIC cell library that is accessed by the tool, not on any propagation delays that might appear
within the model that is to be synthesized.

HDL Example 6.4

I Ripple counter (See Fig. 6.8(b))

‘timescale 1ns / 100 ps

module Ripple_Counter_4bit (A3, A2, A1, A0, Count, Reset);
output A3, A2, A1, AD;
input Count, Reset;

/I Instantiate complementing flip-flop
Comp_D_flip_flop FO (AQ, Count, Reset);
Comp_D_flip_flop F1 (A1, AQ, Reset);
Comp_D_flip_flop F2 (A2, A1, Reset),
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Comp_D_flip_flop F3 (A3, A2, Reset);
endmodule
/I Complementing flip-flop with delay
/ Input to D flip-flop = Q'
module Comp_D_flip_flop (Q, CLK, Reset};

output Q;
input CLK, Reset;
reg &

always @ (negedge CLK, posedge Reset)

if (Reset) Q <= 1'b0;

else Q <=#2~Q; // intra-assignment delay
endmodule
/I Stimulus for testing ripple counter
module t_Ripple_Counter_4bit;

reg Count;
reg Reset;
wire A0, A1, A2, A3;

/I Instantiate ripple counter
Ripple_Counter_4bit MO (A3, A2, A1, AD, Count, Reset);

always
#5 Count = ~Count;
initial
begin
Count = 1'b0;
Reset = 1'b1;
#4 Reset = 1'b0;
end

initial #170 $finish;

endmodule

The test bench module in HDL Example 6.4 provides a stimulus for simulating and verify-
ing the functionality of the ripple counter. The always statement generates a free-running clock
with a cycle of 10 time units. The flip-flops trigger on the negative edge of the clock, which
occurs at 7 = 10, 20, 30, and every 10 time units thereafter. The waveforms obtained from this
simulation are shown in Fig. 6.19. The control signal Count goes negative every 10 ns. A0 is
complemented with each negative edge of Count, but is delayed by 2 ns. Each flip-flop is com-
plemented when its previous flip-flop goes from 1 to 0. After ¢+ = 80 ns, all four flip-flops
complement because the counter goes from 0111 to 1000. Each output is delayed by 2 ns, and
because of that, A3 goes from O to | at + = 88 ns and from 1 to 0 at 168 ns. Notice how the
propagation delays accumulate to the last bit of the counter, resulting in very slow counter ac-
tion. This limits the practical utility of the counter.
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Simulation output of HDL Example 6.4

PROBLEMS

Answers to problems marked with * appear at the end of the book. Where appropriate, a logic design
and its related HDL modeling problem are cross referenced.

Note: For each problem that requires writing and verifying a Verilog description, a test plan should
be written to identify which functional features are to be tested during the simulation and how they
will be tested. For example, a reset on the fly could be tested by asserting the reset signal while the
simulated machine is in a state other than the reset state. The test plan is to guide the development of
a test bench that will implement the plan. Simulate the model, using the test bench, and verify that
the behavior is correct. If synthesis tools and an ASIC cell library or a field-programmable gate array
(FPGA) are available, the Verilog descriptions developed for Problems 6.34-6.51 can be assigned as
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synthesis exercises. The gate-level circuit produced by the synthesis tools should be simulated and
compared with the simulation results for the presynthesis model. (Be aware that in some of the HDL
problems there may be a need to deal with the issue of unused states: see the discussion of the default
case item preceding HDL Example 4.8 in Chapter 4.)

6.1

6.2

6.3

6.4*

6.5

6.6

6.8+

6.9

Include a two-input NAND gate in the register of Fig. 6.1, and connect the gate output to the C
inputs of all the flip-flops. One input of the NAND gate receives the clock pulses from the clock
generator, and the other input of the NAND gate provides a parallel load control. Explain the
operation of the modified register. Explain why this circuit might have operational problems.

Include a synchronous clear input in the register of Fig. 6.2. The modified register will have a par-
allel-load capability and a synchronous clear capability. The register is cleared synchronously
when the clock goes through a positive transition and the clear input is equal to 1. (HDL—see
Problem 6.35(a), (b).)

What is the difference between serial and paralle] transfer? Explain how to convert serial data to
paralle]l and parallel data to serial. What type of register is needed?

The contents of a four-bit register are initially 1011. The register is shifted six times to the right,
with the serial input being 101101. What are the contents of the register after each shift?

The four-bit universal shift register shown in Fig. 6.7 is enclosed within one IC package.
(a) Draw a block diagram of the IC, showing all inputs and outputs. Include two pins for the
power supply.

(b) Draw a block diagram, using two ICs, to produce an eight-bit universal shift register.
Design a four-bit shift register with a parallel load, using D flip-flops. There are two control in-
puts: shift and load. When shift = 1, the contents of the register are shifted by one position.
New data are transferred into the register when load = 1 and shift = 0. If both control inputs
are equal to 0, the contents of the register do not change, (HDL — see Problem 6.35(c), (d).)

Draw the logic diagram of a four-bit register with four D flip-flops and four 4 X 1 multiplexers with

mode selection inputs s; and 5. The register operates according to the following function table
(HDL—see Problem 6.35(e), (f).)

5 S0 Register Operation

0 0 No change

0 1 Complement the four outputs

1 0 Clear register to 0 (synchronous with the clock)
1 1 Load parallel data

The serial adder of Fig. 6.6 uses two four-bit registers. Register A holds the binary number 0101
and register B holds 0111. The carry flip-flop is initially reset to 0. List the binary values in reg-
ister A and the carry flip-flop after each shift.

Two ways to implement a serial adder (A + B) are presented in Section 6.2. It is necessary to

modify the circuits to convert them to serial subtractors (A — B).

(a) Using the circuit of Fig. 6.5, show the changes needed to perform A + 2’s complement of
B. (HDL — see Problem 6.35(h).)

(b)* Using the circuit of Fig. 6.6, show the changes needed by modifying Table 6.2 from an adder
to a subtractor circuit. (See Problem 4.12.) (HDL — see Problem 6.35(i).)
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6.10

6.11

6.12

6.13

6.14*

6.15%

6.16*

6.17*
6.18

6.19

6.20

6.21*

Registers and Counters

Design a serial 2’s complementer with a shift register and a flip-flop. The binary number is shift-
ed out from one side and its 2's complement shifted into the other side of the shift register. (HDL
— see Problem 6.35(j).)

A binary ripple counter uses flip-flops that trigger on the positive edge of the clock. What will be
the count if

(a) the normal outputs of the flip-flops are connected to the clock and

(b) the complement outputs of the flip-flops are connected to the clock?

Draw the logic diagram of a four-bit binary ripple countdown counter, using
(a) flip-flops that trigger on the positive edge of the clock and
(b) flip-flops that trigger on the negative edge of the clock.

Show that a BCD ripple counter can be constructed from a four-bit binary ripple counter with asyn-
chronous clear and a NAND gate that detects the occurrence of count 1010. (HDL — see Prob-
lem 6.35(k).)

How many flip-flops will be complemented in a 10-bit binary ripple counter to reach the next count
after the following counts?

(a) 1001100111

(b) 0011111111

(c) 1111111111

A flip-flop has a 3-ns delay from the time the clock edge occurs to the time the output is com-
plemented. What is the maximum delay in a 10-bit binary ripple counter that uses this type of flip-
flop? What is the maximum frequency the counter can operate with reliably?

The BCD ripple counter shown in Fig. 6.10 has four flip-flops and 16 states, of which only 10
are used. Analyze the circuit, and determine the next state for each of the other six unused states.
What will happen if a noise signal sends the circuit to one of the unused states?

Design a four-bit binary synchronous counter with D flip-flops.

What operation is performed in the up—down counter of Fig. 6.13 when both the up and down in-
puts are enabled? Modify the circuit so that when both inputs are equal to I, the counter does not
change state. (HDL — see Problem 6.35(I).)

The flip-flop input equations for a BCD counter using T flip-flops are given in Section 6.4. Ob-
tain the input equations for a BCD counter that uses (a) JX flip-flops and (b)* D flip-flops. Com-
pare the three designs to determine which one is the most efficient.

Enclose the binary counter with parallel load of Fig. 6.14 in a block diagram, showing all inputs
and outputs.

(a) Show the connections of four such blocks to produce a 16-bit counter with a parallel load.
(b) Construct a binary counter that counts from 0 through binary 64.

The counter of Fig. 6.14 has two control inputs—Lead (L) and Count (C)—and a data input, /.

(a) Derive the flip-flop input equations for J and K of the first stage in terms of L. C. and 1.

(b) The logic diagram of the first stage of an integrated circuit (74161) is shown in Fig. P6.21.
Verify that this circuit is equivalent to the one in (a).

For the circuit of Fig, 6.14, give three alternatives for a mod-12 counter
(a) using an AND gate and the load input.

(b) using the output carry.

(c) using a NAND gate and the asynchronous clear input.
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Load (L)

Count (C)

Data (1)

FIGURE P6.21

6.23

6.24%

6.25

6.26*

6.27

6.28*

6.29

6.30

6.31
6.32

6.33

Design a timing circuit which provides an output signal that stays on for exactly eight clock cy-
cles. A start signal sends the output to the | state, and after eight clock cycles the signal returns
to the 0 state. (HDL — see Problem 6.45.)

Design a counter with 7 flip-flops that goes through the following binary repeated sequence: 0,
1, 3,7, 6, 4. Show that when binary states 010 and 101 are taken to be don’t-care conditions, the
counter may not operate properly. Find a way to correct the design. (HDL — see Problem 6.53.)
It is necessary to generate six repeated timing signals T; through T similar to the ones shown in
Fig. 6.17(c). Design the circuit, using (HDL — see Problem 6.46).

(a) flip-flops only.

(b) acounter and a decoder.

A digital system has a clock generator that produces pulses at a frequency of 80 MHz. Design a
circuit that provides a clock with a cycle time of 50 ns.

Design a counter with the following repeated binary sequence: 0, 1, 2, 3, 4, 5, 6. Use JK flip-flops.
(HDL — see Problem 6.51.)

Design a counter with the following repeated binary sequence: 0, 1, 2, 4, 6. Use D flip-flops.
(HDL — see Problem 6.51.)

List the eight unused states in the switch-tail ring counter of Fig. 6.18(a). Determine the next
state for each of these states. and show that if the counter finds itself in an invalid state, it does
not return to a valid state. Modify the circuit as recommended in the text, and show that the count-
er produces the same sequence of states and that the circuit reaches a valid state from any one of
the unused states.

Show that a Johnson counter with n flip-flops produces a sequence of 2# states. List the 10 states
produced with five flip-flops and the Boolean terms of each of the 10 AND gate outputs.

Write and verify the HDL behavioral and structural descriptions of the four-bit register of Fig. 6.1.

(a) Write and verify an HDL behavioral description of a four-bit register with parallel load and
asynchronous clear.

(b) Write and verify an HDL structural description of the four-bit register with parallel load
shown in Fig. 6.2, Use a2 X 1 multiplexer for the flip-flop inputs. Include an asynchronous
clear input.

(c) Check both descriptions, using a test bench.

The following program is used to simulate the binary counter with parallel load described in HDL

Example 6.3:

{f Stimulus for testing the binary counter of Example 6.3
module testcounter;
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6.34*
6.35

6.36

6.37*

6.38
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reg Count, Load, CLK, Clr,
reg (3: 0] IN;
wire CO;
wire [3: 0] A;
counter cnt (Count, Load, IN, CLK, Clr, A, CO};
always
#5 CLK = ~CLK;
initial
begin
Cir=0;
CLK=1;
Load = 0; Count = 1;
#5 Clr=1;
#30 Load = 1; IN = 4'h1100;
#20 Load = 0;
#60 Count = 0;
#20 $finish;
end
endmodule

Go over the program and predict what would be the output of the counter and the carry output from
t =0tot = 155 ns.

Write and verify the HDL behavioral description of a four-bit shift register (see Fig. 6.3).
Write and verify

(a) a structural HDL model for the register described in Problem 6.2

(b)* a behavioral HDL model for the register described in Problem 6.2

(c) a structural HDL model for the register described in Problem 6.6

(d) abehavioral HDL model for the register described in Problem 6.6

(e) a structural HDL model for the register described in Problem 6.7

(f) abehavioral HDL model for the register described in Problem 6.7

(g) abehavioral HDL model of the binary counter described in Fig. 6.8(b)

(h) abehavioral description of the serial subtractor described in Problem 6.9(a)

(i) abehavioral description of the serial subtractor described in Problem 6.9(b)

(j) abehavioral description of the serial 2's complementer described in Problem 6.10
(k) abehavioral description of the BCD ripple counter described in Problem 6.13

(1) abehavioral description of the up-down counter described in Problem 6.18

Write and verify the HDL behavioral and structural descriptions of the four-bit up—down counter
whose logic diagram is described by Fig. 6.13, Table 6.5, and Table 6.6.

Write and verify a behavioral description of the counter described in Problem 6.24.

(a) using an if ... else statement

(b) using a case statement

(¢) a finite state machine.

Write and verify the HDL behavioral description of a four-bit up—~down counter with parallel load

using the following control inputs:

(a)* The counter has three control inputs for the three operations Load, Up, and Down. The order
of precedence is Load, Up, and Down.
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6.43

6.44

6.45%

6.46

6.47

6.48

6.49

6.50

6.51
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(b) The counter has two selection inputs to specify four operations: Up, Down, Load, and no
change.
Write and verify HDL behavioral and structural descriptions of the counter of Fig. 6.16.
Write and verify an HDL description of an eight-bit ring counter similar to the one shown in
Fig. 6.17(a).
Write and verify the HDL description of a four-bit switch-tail ring (Johnson) counter (Fig. 6.18a).
The comment with the last clause of the if statement in Binary_Counter_4_Par_Load in HDL Ex-
ample 6.3 notes that the statement is redundant. Explain why this statement can be removed with-
out changing the behavior implemented by the description.
The scheme shown in Fig. 6.4 gates the clock to control the serial transfer of data from shift reg-
ister A to shift register B, Using multiplexers at the input of each cell of the shift registers, develop
a structural model of an alternative circuit that does not alter the clock path. The top level of the
design hierarchy is to instantiate the shift registers. The module describing the shift register is to
have instantiations of flip-flops and muxes. Describe the mux and flip-flop modules with behav-
ioral models. Be sure to consider reset. Develop a test bench to simulate the circuit and demon-
strate the transfer of data.
Modify the design of the serial adder shown in Fig. 6.5 by removing the gated cleck to the D flip-
flop and supplying the clock signal to it directly. Augment the D flip-flop with a mux to recircu-
late the contents of the flip-flop when shifting is suspended and to provide the carry out of the full
adder when shifting is active. The shift registers are to incorporate this feature also, rather than
use a gated clock. The top level of the design is to instantiate modules using behavioral models
for the shift registers, full adder, D flip-flop, and mux. Assume asynchronous reset. Develop a test
bench to simulate the circuit and demonstrate the transfer of data.

Write and verify a behavioral description of a finite state machine to implement the counter de-
scribed in Problem 6.24.

Problem 6.25 specifies an implementation of a circuit to generate timing signals using

(a) only flip-flops and

(b) a counter and a decoder.

As an alternative, write a behavioral description (without consideration of the actual hardware)

of a state machine whose output generates the timing signals T through Ts.

Write a behavioral description of the circuit shown in Fig. P6.47, and verify that the circuit’s out-
put is asserted if successive samples of the input have an odd number of 1's.

Write and verify a behavioral description of the counter shown in Fig. P6.48(a); repeat for the
counter in Fig. P6.48(b).

Write a test plan for verifying the functionality of the universal shift register described in HDL
Example 6.1. Using the test plan, simulate the model given in HDL Example 6.1.

Write and verify a behavioral model of the counter described in

(a) Problem 6.27

(b) Problem 6.28

Without requiring a state machine, and using a shift register and additional logic, write and ver-
ify a model of an alternative to the sequence detector described in Figure 5.27. Compare the
implementations.
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FIGURE P6.47
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Circuit for Problem 6.48




References 283

REFERENCES
1. BHASKER, J. 1997. A Verilog HDL Primer. Allentown, PA: Star Galaxy Press.
2. BHASKER, J. 1998. Verilog HDL Synthesis. Allentown, PA: Star Galaxy Press.
3. Cuerm, M. D. 1999, Modeling, Synthesis, and Rapid Prototyping with Verilog HDL. Upper Sad-
dle River, NJ: Prentice Hall.
4.  Cuwerm, M. D. 2003. Advanced Digital Design with the Verilog HDL. Upper Saddle River, NJ:
Prentice Hall.
5. Cuerri, M. D. 2004, Starter's Guide to Verilog 2001, Upper Saddle River, NJ: Prentice Hall,
6.  DIETMEYER, D. L. 1988. Logic Design of Digital Svstems, 3d ed. Boston: Allyn Bacon.
7. Guaiskl, D. D. 1997, Principles of Digital Design. Upper Saddle River, NJ: Prentice Hall.
8. Haves, J. P. 1993, Introduction to Digital Logic Design. Reading, MA: Addison-Wesley.
9. Karz, R. H. 2003. Contemporary Logic Design. Upper Saddle River, NJ: Prentice Hall.
10.  Mano, M. M., and C. R. KIME. 2003. Logic and Computer Design Fundamentals & Xilinx 6.3
Student Edition, 3rd ed, Upper Saddle River, NJ: Prentice Hall.
11.  Newson, V. P, H. T. NAGLE, J. D. [RwiN, and B. D. CARROLL. 1995. Digital Logic Circuit Analy-
sis and Design. Englewood Cliffs, NJ: Prentice Hall.
12.  PALNITKAR, 8. 1996. Verilog HDL: A Guide to Digital Design and Synthesis. Mountain View,
CA: SunSoft Press (a Prentice Hall title).
13.  RorH, C. H. 2004. Fundamentals of Logic Design, 5th ed. St. Paul, MN: Brooks/Cole.
14.  Tuomas, D. E., and P. R. Moorsy. 2002. The VeriLog Hardware Description Language, 6th ed.
Boston: Kluwer Academic Publishers.
15.  WAaKERLY, J. F. 2006. Digital Design: Principles and Practices, 4th ed. Upper Saddle River, NI:

Prentice Hall.



	06 – Registers and Counters.PDF
	242.tif
	243.tif
	244.tif
	245.tif
	246.tif
	247.tif
	248.tif
	249.tif
	250.tif
	251.tif
	252.tif
	253.tif
	254.tif
	255.tif
	256.tif
	257.tif
	258.tif
	259.tif
	260.tif
	261.tif
	262.tif
	263.tif
	264.tif
	265.tif
	266.tif
	267.tif
	268.tif
	269.tif
	270.tif
	271.tif
	272.tif
	273.tif
	274.tif
	275.tif
	276.tif
	277.tif
	278.tif
	279.tif
	280.tif
	281.tif
	282.tif
	283.tif


