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4.1 R E C l S f  ERS 

A clccked sequential circuit consists of n group of £lip-flops and combinational gates con- 
nected to form a feedback path. The flip-flops are essential because. in their absence, the 
circuit reduces to a purely combinational circuit (provided that there is no feedback among 
the gates). A circuit with flip-flops is considered a sequential circuit even in the absence of 
combinational gates. Circuits that include flip-flops are usually classified by the function 
they perform rather than by the name of the sequential circuit. Two such circuits are regis- 
ters and counters. 

A register is a group of flip-flops, each one of which is capable of ssroring one bit of 
information. An n-bit register consists of a group of n flip-flops capable of storing n bits of 
binary information. In addition to the flip-flops, a register may have combinational gates 
that perform certain data-processing tasks. In its broadest definition, a register consists of 
a group of flip-flops together with gates that affect their operation. The flip-flops hold the 
binary information, and the gates determine how the information is transferred into the 
register. 

A counter is essentially a register that goes though a preduermined sequence of binary 
states. The gates in the counter are corutectGd in such a way as to d u c e  the prescn'bed se- 
quence of states. Although counters are a special type of register, it is common to differentiate 
them by giving them a different name. 

Various types of registers are avdable commercially. The simplest register is one that con- 
sists of only flip-flops, without any gates. figure 6.1 shows such amgister constructed with four 
D-type flipflops to form a four-bit data storage register. The common clock input triggers all 
flipflops on the positive edge of each pulse, and the binary data available at the four inputs are 
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transferred into the register. The four outputs can be sampled at any time to obtain the binary 
idonnation stored in the register. The input Clear-b goes to the active-law R (reset) input of 
all four flip-flops. When this input goes to 0, all flip-flops are reset asynchronously. The Clear-b 
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input is useful for clearing the register to all 0's prior to its clocked operation, The R inputs must 
be &mined at Iogic 1 during nonnal clocked operation. Note that, b n d i n g  on the flipflop, 
either Clear, Clear-b, reset, or met-b can be used to indicate the transfer of the register to an 
all 0's statc. 

R w t t r  wtth Parallel Lond 
Synchronous digital system have a master clock generator chat supplies a continuous train 
of clock pulses. The pulses are applied to all flip-flops and registers in the system. The 
master clock acts like a drum that supplies a constant beat to all parts of the system. A sep- 
arate control signal must be used to decide which register operation will  execute at each 
clock pulse, The transfer of new information into a register is referred to as loading or up- 
dating the register. If all the bits of the register are loaded simultaneously with a common 
clock pulse, we say that the loading is done in parallel. A clock edge applied to the C in- 
puts of the register of Fig. 6. t will load all four inputs in parallel. In this co~guration, if 
the contents of the register must be left unchanged, the inputs must be held constant or the 
clock must be inhibited from the circuit. In the first case, the data bus driving the register 
would be unavailable for other traffic. In the second case, the clock can be inhibited from 
reaching the register by controlling the clock input signal with rtn enabling gate. However, 
inserting gates into the clock path is ill advised because it means that logic is performed with 
clock pulses, The insertion of logic gates produces uneven propagation delays between the 
master clock and the inputs of flip-flops. To fully synchronize the system, we must ensure 
that all clock pulses arrive at the same time anywhere in the system, so that all flip-flops 
trigger simultaneously. Performing logic with clock pulses inserts variable delays and may 
cause the system to go out of synchronism. For this reason, it is advisable to control the 
operation of the register with the D inputs, rather than controlling the clock in thc C inputs 
of the flip-flops. This creates the effect of a gated clock, but without affecting the clock path 
of the circuit, 

A four-bit data-storage register with a load control input that is directed through gates and 
into the D inputs of the flip-flops is shown in Fig. 6.2, The additional gates implement a two- 
channel mux whose output drives the input to the register with either the data bus or the out- 
put of the register. The load input to the rogister determines the action to be taken with each 
clock pulse. When the load input is 1. the data at the four external inputs are tmsfcrred into 
the register with the next positive edge of the clock, When the load input is 0, the outputs of 
the flip-flops are connected to their respective inputs. The feedback connection f m  output 
to input is necessary because a D flipflop does not have a 'a0 change" condition. With each 
clock edge. the D input determines the next state of the register. To leave the outpur un- 
changed, it is necessary to make the D input equal to the present value of the output (i.e.: the 
output circulates to the input at each clock pulse). The clmk pulses are applied to the C in- 
puts without interruption. Tha load input determines whether the next pulse will accept new 
information or leave the information in the register intact. The transfer of information h m  
the data inputs or the outputs of the register is done simultan8ously with all follr bits in rcspow 
to a clock edge. 
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FIGURL 6.2 
Four-bit reglsier with parallel load 

6 . 2  SHIFT R E G I S T E R S  

A register capable of shifting the binary information held in each cell to its neighboring cell, 
in a seIected direction, is called a shift register The logical configuration of a shift register 
consists of a chain of flip-flops in cascade, with the output of one flip-flop connected to the input 
of the next flip-flop. All flip-flops receive common clock pulses, which activate the shift of data 
kom one stage to the next. 

The simplest possible shift register is one that uses only flip-flops, as shown in Fig, 6,3. The 
output of a given fhp-flop is connected to the D input of the flip-flop at its right. This shift reg- 
ister is unidirectional. Each clock pulse shifts the contents of the register one bit position to the 
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righ~. The configuration does not support a left shift. The sertrrl input det-es what p s  inlo 
the leftmost flip-flop during the ~kift, The serial output is taken h m  the output of the ri-ost 
flip-flop. Sometimas it is necessary to control the shift so that it occurs only with certain pulses, 
but not with others. As with the data register discussed in the previous section, the clock's sig- 
nal can be suppressed by gating the clock signal to prevent the register from shrfting . A preferred 
alternative in high-speed circuits is to suppress the clock action, rather than gare the clock sig- 
nal, by leaving the clwk path unchanged, but recirculating the output of each register cell back 
through a two-channel mux whose output is cormected to the input of the cell When the clock 
action is not suppressed, the other channel of the mux provides a data path to rhe cell. 

It will be shown later that the shift operation can be comolled -ugh the D inputs of the flip- 
flops rather than through the clock input If, however, the shift regism of Fig. 6.3 is used the shift 
can be mtro11ed with an input by connecting the clock thmugh an AND gate. Note that the sim- 
plified schematics do not show a reset signal, but such a signal is requid in practical designs, 

Serial Transfer 

A digital system is said to operate in serial mode when information is transfemd and manip- 
ulated one bit at a time. Information is eansfcmd one bit at a time by sbifthg the bits out of 
the saurcc register and into the destination register. This type of transfer is in contrast to par- 
allel transfer, whereby aU the bits of the register are transferred at the same time. 

The serial transfer of infmmation from register A to register B is done with shift registers, as 
shown in the block dhgram of Fig. 6.4(a). The serial output (SO) of registerA is connected to the 
serial input (SI) of register B. To prevent the loss of infomation stored in the source regism the 
information in register A is made to circulate by connecting the serial ourput to its serial input. 
The initid content of register B is sbifted out through its swial output and is lost unless it is mu- 
f e n d  to a third shift register. The dift contml input detednes when d how many & the reg- 
isters are shifted. For illustration hae, this is done with an AND gate that allows clock pulses to 
pass into the CLK terminals only when the shifl control is active. (This pc im em be problem- 
atic because it may compromise the ~1mk path of the circuit, as discussed earlier.) 

Suppose the shift registers have four bits each. Then the control unit that supervises the 
transfer of data must be designed in mcb a way that it enables the shift registers, through the 
shift control signal, for a fixed time of four clmk pulses. This design is shown in the timing 
diagram of Fig. 6,4(b). The shift control signal is synchronized with the clock and changes 
value just after the negative edge of the clock. The next four clock pulses frnd the shat control 
signal in the active state, so the output of the AWI, gate connected to the CLX inputs pduces  
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FlCUM 6.4 
Serial transfer f r m  reglsrer A to register B 

four pulses: TI ,  T2, T3, and T4. Each rising edge of the pulse causes a shift in both registers. The 
fourth pulse changes the shift control to 0, and the shift registers are disabled. 

Assume that the binary content of A before the shift is 1011 and that of B is 0010. The se- 
rial transfer from A to B occurs in four steps, as shown in Table 6.1. With the first pulse, TI, 
the rightmost bit of A is shifted into the leftmost bit of B and is also circulated into the leftmost 
position of A. At the same time, all bits of A and B are shifted one position to the right. The pre- 
vious serial output from B in the rightmost position is lost, and its value changes from 0 to 1. 
The next three pulses perform identical operations, shifting the bits of A into B, one at a time. 
After the fourth shift, the shift control goes to 0 and registers A and 3 both have the value 
1011. Thus, the contents of A are copied into B, so that the contents of A remain unchanged. 

Table 6.1 
Serldfranskr Exampk 

Tlming Pulse Shlft Realster A Shlft Reglster B 
/ -  

/< 

Initial value 
After TI 
After Tz 1 1 1 0  1 1 0 0  
After T3 0 1. , 1.- -T 0 1 1 0  
After T4 c - 0  1 1, 1 0 1 1  
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The difference between h e  serial and the parallel mode of operation should be apparent 
from this example. In the pmllel mode, infomation is available fmm dl bits of a register and 
alI bits can be transferred simultmously during one clock pulse. In the serial mode, the reg- 
i s m  have a single serial input and a single serial output. The infomation is ~~ one 
bit at a time while the registers are shifted in the same dimchi. 

Operations in digital computers are usually done in parallel became that is a faster mode of op- 
eration. Serial operations are slower because a data-path o m o n  takes several clmk cycles, 
but serial operations have the advantage of requiring fewer h a h a r e  components. h ViSI 
circuits, they require less silicon area on a chip. To demonshate the serial mde of opt ion ,  
we present the design of a serial adder. The parallel comtqwt was presented in Section 4.4. 

T h e t w o b i n a r y n u m b e r s b b e ~ ~ y a r e s t o r e d i n t w o s h i f t ~ B c g i n n i a g w i t h  
the least significant pair of bits, the circuit adds one pair at a time through a single full-adder 
(FA) circuit. as shown in Fig. 6.5. The carry out of the full adder is musfend to a D £lipflop, 
h e  output of which is then u s d  as the carry input for the next pair of sipiiicaot bits. The sum 
bit from the S output of the full adder could be dd into a third shat register. By shift- 
ing the sum into A while the bits of A are shifted out, It is possible to use m e  register for stor- 
ing both the augend and the sum bits. The serial input of register B can be used to hmsfer a 
new binary number while the addend bits are shifted out dming ~e addition. 

Shift 
mnml 

CLK 

Stria1 
input 
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The operation of the serial adder is as follows: Initially, register A holds the augend, regis- 
ter B holds the addend, and the carry flip-flop is cleared to 0. The outputs (SO) of A and B pro- 
vide a pair of significant bits for the full adder at x and y. Output Q of the flip-flop provides 
the input carry at z. The shift control enables both registers and the carry flip-flop, so at the next 
clock pulse, both registers are shifted once to the right, the sum bit from S enters the leftrnost 
flip-flop of A, and the output carry is transferred into flip-flop Q. The shift control enables the 
registers for a number of clock pulses equal to the number of bits in the registers. For each suc- 
ceeding clock pulse, a new sum bit is transferred to A, a new carry is transferred to Q, and both 
registers are shifted once to the right, This process continues until the shift control is disabled. 
Thus, the addition is accomplished by passing each pair of bits together with the previous carry 
through a single full-adder circuit and transferring the sum, one bit at a time, into register A. 

Initially, register A and the cany flip-flop are cleared to 0, and then the first number is added 
from B. While B is shifted through the full adder, a second number is transferred to it through 
its serial input. The second number is then added to the contents of register A while a third 
number is transferred serially into register 3. This can be repeated t o  perform the addition of 
two, three, or more four-bit numbers and accumulate their sum in register A. 

Comparing the serial adder with the parallel adder described in Section 4,4, we note ~ v e r a l  
differences. The parallel adder uses registers with a parallel load, whereas the serial adder uses 
shift registers. The numbr of full-adder circuits in the parallel adder is equal to the number of 
bits in the binary numbers, whereas the serid adder requires only one full-adder circuit and a 
carry flip-flop. Excluding the registers, the parallel adder is a combinational circuit, whereas the 
serial adder is a sequential circuit which consists of a full adder and a flip-flop that stores the out- 
put carry. This design is typical in serial operations because the result of a bit-time operation may 
depend not only on the present inputs, but also on previous inputs that must be stored in flip-flops, 

To show that serial operations can be &signed by means of sequential circuit procedure, we 
will redesign the serial adder with the use of state table. First, we assume h a t  two shift regis- 
ters are available to store the binary numbers to be added serially. The serial outputs from the 
regirtera are designated by x and p The sequential circuit to be designed will not include the 
shift registers, but they will be inserted later to show the complete circuit. The sequential cir- 
cuit proper has the two inputs, x and y, that provide a pair of significant bits, an output S that 
generates the sum bit, and flip-flop Q for storing the carry. The state table that specifies the se- 
quential circuit is listed in Table 6.2. The present state of Q is the present value of the carry. 
The present carry in Q is added together with inputs x and y to produce the sum bit in output 
S. The next state of Q is equal to the ourput carry. Note that the state table entries are identical 
to the entries in a full-adder truth table, except that the input carry is now the present state of 
Q and the output carry is now the next state of Q. 

If a D £lip-flop is used for Q, the circuit reduces to the one shown in Fig. 6.5. If a JK flip- 
flop is used for Q, it is necessary to determine the values of inputs J and K by referring to the 
excitation table (Table 5.12). This is done in the last two columns of Table 6.2. The two flip- 
flop input equations and the output equation can be simplified by means of maps to 
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0 t o  0 3 0 X 
0 1 1  I 0 1 X 
I 0 0 0 1 X 1 
1 0 1 1 0 X 0 
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The circuit diagram is shown in Fig. 6.6. The circuit consists of tkee gates d a JK flip-flop. 
The two shift registers are included in the diagram to show the complete serial adder. Note 
that output S is a function not only of x and y, but also of the present state of Q. The next state 
of Q is a function of the p e n t  state of Q and of the vahes of x and y that come out of the se- 
rid outputs of the shiR registers. 

t.: 

Un-l Shift R e g l s t u  

If the flip-flop outputs of a shift register ate accessible, then information mered serially by shift- 
ing can be taken out in parallel from the outputs of the flip-flops. If a parallel load capability 
is added to a shift register, &hen data entered in pardel can be taken out in serial fashion by 
shifting the data stored in the regism. 
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Some shift regism provide the necessary input and output terminals for parallel transfer. 
They may also have both shi-right and shift-left capabilities. The most general shift register 
has the following capabilities: 

1. A c l a r  control to clear the register to 0. 
2. A clock input to s y n c h ~ ~  the operations. 
3. A slu'fr-right conlrol to enable the --right -on and tbs serial inpui and odput lines 

associated with the shift right. 

4. A shif-lefr control to enabIe the sh&-left operaQon and the srnal rnpuf and output 
associated with the shift left. 

5, A parallel-bad contioI to enable a pmllel transfer a d  the n input lines associated with 
Ihe parallel transfer. 

6. n parallel output lines. 
7. A control state that leaves the information in the register unchanged in response to the 

clock. Other shift registers may have only some of the preoeding functions, with at lemt 
one shift operation. 

A register capable of shifting in one direction only is n unidiwctionuI shift register. One 
that crtn shift in hth directions is a bidirectional shift register. If the register has botb shifts and 
parallel-load capabilities, it is referred to as a universal sh@ registex 

The block diagram ~ymbol and the circuit diagram of a four-bit universal shift register that 
has dl the capabilities just listed are shown in Fig. 6.7, The circuit consists of four D flip-flops 
and four multiplexers. The four multiplexers have two common selection inputs sl and sg. Input 
0 in each multlpltxw i s  sehtcd when also = 00. input 1 is selected whon slso = 01, md sim- 
ilarly for the other two inputs. The selection inputs control the m d e  of aperation of the regis- 
ter a c c d h g  to the function entries in Table 6.3. When slso = OO, the present value of the 
register is applied to the D inputs of the flipflops. This condition forms a path from the output 
of each flipflop into the input of the same flipflop, so tbat the output re&da& to the input 
in this mode of qm&m 'Ibe next clock edge tt-dnsfers into each flip-flop the binaq value it held 
previously, and no change of state occm. When slso = 01, t e d d  I ofthe multiplexer inputs 
has a path to the D inputs of the flip-flops. Tbis causes a shift-right operation, with the s d  
input t r a t t s f d  into flip-flop A3. When slso = 10, a shlft-left operation results, with the other 
serial input going into flip-flop Ao. Finally, when slso = 1 1, the binary information on the par- 
allel input lines is txmsfsmd into the register shultaneou8ly during the next clock edge. Note 
that data enters M S B A  for a shift-right opedon  and enters LSB* for a shift-left opedon. 

Shill registers are often wed to interface digital systems situated remotely from each other. 
For exampk suppose it is necesmy to tramnit an n-bit quantity between two points. If the 
distance is far, h will be expensive to use n lines to hmmit the n bits in parallel. It is more eco- 
nomical to use a siagle lime and transmit the infomaion serially, one bit at a time. The tiam 
mi- accep?s the n-bit data in parallel inm a sbift register and then transmits the data serially 
dong the common line. The receiver a a q t t ~  the data seriaIly into a shift register. When all n 
bits are received, they can be taken from the wtputs of the register in parallel. Thus, the trans- 
mitter perf- a parallel-to-send conversion of data and the receiver does a serial-bpardlel 
conversion. 



FIGURE 6.7 
Four-bit universal shift register 
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Function Table for the Register of Fig. 6.7 

Mode Control 

51 so Register Operation 

0 0 No change 
0 1 Shift right 
1 0  Shift left 
1 1  Parallel load 

6.3 RIPPLE COUNTERS 

Aregister that gms through a prescribed sequence of states upon fhe application of input pulses 
is called a counter, The input pulses may be clock pulses, or they may originate from some 
externd source and may occur at a fixed interval of time or at random. The sequence of states 
may follow the binary number sequence or any other sequence of states. A counter that follows 
the binary number sequence is called a binary counter. An n-bit binary counter consists of a 
flip-flops and can count in binary from 0 through 2" - 1. 

Counters are available in two categories: ripple counters and synchronous counters. In a 
ripple counter, a flip-flop output transition serves as a source for triggering other flip-flops. In 
other words, the C input of some or all flip-flops are triggered, not by the common clock pulses, 
but rather by the transition that occurs in other flip-flop outputs. In a synchronous counter, the 
C inputs of dl £lip-ff ops receive the common clock. Synchronous counters are presented in 
the next two sections. Here, we pment the binary and BCD ripple counters and explf n their 
operation. 

Blnauy Ripple Counter 

A binary ripple counter consists of a series connection of complementing flip-flops, with 
the output of each flip-flop connected to the C input of the next higher order flip-flop. The 
flip-flop holding the least significant bit receives the incoming count pulses. A compb- 
menting flip-flop can be obtained from a JK flip-flop with the J and K inputs tied together 
or from a T flip-flop. A third possibility is to use a D flip-flop with the complement output 
connected to the D input. In this way, the D input is always the complement of the present 
state, and the next clock pulse wilt cause the flip-flop to complement. The logic diagram of 
two Cbit binary ripple counters is shown in Fig, 6.8. The counter is constructed with com- 
plementing flip-flops of the T type in part (a) and D type in part (b). The output of each flip- 
flop is connected to the C input of the next flip-flop in sequence, The flip-flop holding the 
least significant bit receives the incorning count pulses. The 7 inputs of all the flip-flops in 
(a) are connected to a permanent logic 1, malung each flip-flop complement if the signal in 
its C input goes through a negative transition. The bubble in front of the dynamic indicator 
symbol next to C indicates that the fhp-flops respond to the negative-edge transition of the 
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Table 6.4 
Binary Corm t 5equme 

A3 A2 A1 A0 

0 0 0 0 
0 0 0 1 
0 0 1 0 
0 0 1 1 
0 1 0 0 
0 1 0 1 
0 1 1 0 
0 1 1 1 
1 0 0 0 

input. The negative transition occurs when the output of the previous flip-flop to which C is 
connected goes from 1 to 0. 

To understand the operation of the four-bit binary ripple counter, refer to the first nine binary 
numbers listed in Table 6.4. The count starts with binary 0 and increments by 1 with each count 
pulse input. After the count of 15, the counter goes back to 0 to repeat the count, The least sig- 
nificant bit, Ao, is complemented with each count pulse input. Every time that AO goes from 
1 to 0, it complements Al .  Every time that A l  goes from 1 to 0, it complements AZ. Every 
time that A2 goes from 1 to 0, it complements AS, and so on for any other higher order bits of 
a ripple counter. For example, consider the transition from count 001 1 to 0100. A. is comple- 
mented with the count pulse. Since A. goes h m  1 to 0, it triggers A and complements it. As 
a result, A l  goes from 1 to 0, which in turn complements A2, changing it from 0 to 1. A2 does 
not trigger A?, because A2 produces a positive transition and the flip-flop responds only to 
negative transitions, Thus, the count from 001 1 to 0100 is achieved by changing the bits one 
at a time, so the count goes from 00 11 to 0010, then to 0000, and finalIy to 0 100. The flip-flops 
change one at a time in succession, and the signal propagates through the counter in a ripple 
fashion from one stage to the next. 

A binary counter with a reverse count is called a binary countdown counter. In a count- 
down counter, the binary count is decremented by 1 with every input count pulse. The count 
of a four-bit countdown counter starts from binary 15 and continues to binary counts 14, 13, 
12, . . , . 0 and then back to 15, A list of the count sequence of a binary countdown cowter shows 
that the least significant bit is complemented with every count pulse. Any other bit in the 
sequence is complemented if its previous least significant bit goes from 0 to 1. Therefore, the 
diagram of a binary countdown counter looks the same as the binary ripple counter in Fig. 4.8, 
provided that all flip-flops trigger on the positive edge of the clock. (The bubble in the C in- 
puts must be absent.) If negative-edge-triggered flip-flops are used, then the C input of each 
flip-flop must be connected to the complemented output of the previous flip-flop. Then, when 
the true output goes h m  0 to 1, the complement will go from 1 to 0 and complement the next 
flip-flop as required. 



256 Chapter 6 Registers and Counters 

A decimal counter follows a sequence of 10 states and returns to 0 after the count of 9. Such a 
counter must have at least four flip-flops to represent each decimal digit, since a decimal digit 
is represented by a binary code with at Last four bits. The sequence of states in a decimal 
counter is dictated by the binary code used to represent a decimal digit. If BCD is used. the se- 
quence of states is as shown in the state diagram of Fig. 6.9. A decimal counter is slrmlar to a 
binary counter, except that the state after 1001 (the code for decimal digit 9)  is 0000 (the code 
for decimal digit 0). 
The logic diagram of a BCD ripple counter using JK flip-flops is shown in Fig. 6.10. The 

four outputs are designated by the letter symbol Q, with a numeric subscript qual to the bi- 
naty weight of the corresponding bit in the BCD code. Note that the output of Ql is applied to 
the C inputs of both Q2 and Qg and the output of Q2 is applied to the C input of a. The J and 
K inputs are connected either to a permanent 1 signal or to outputs of other £lip-flops. 

A ripple counter is an asynchronous sequential circuit, Signals that affect the flipflop tran- 
sition depend on the way they change h m  1 to 0, The o p t i o n  of the counter can be ex- 
plained by a list of conditions for flip-flop transitions. These conditions are derived from the 
logic diagram and from howledge of how a JK flip-fhp operates. Remember that when the 
C input goes from 1 to 0, the flip-flop is set if J = 1, is c l d  if K = 1, is complemented if 
J = K - 1, and is left unchanged if J = K = 0. 

To verify that these conditions result in the sequence required by a BCD ripple counter, it 
is necessary to verify that the flip-flop transitions indeed follow a sequence of states as spec- 
Xed by the state diagram of Fig. 6.9. Q3 changes state after each clock pulse. Q2 complements 
every time Ql goes from 1 to 0, as long as Qs = 0. When Q8 becomes 1, Q2 remains at 0. Q4 
complements every time Q2 goes from 1 to 0. Qs remains at 0 as long as Q2 or is 0. W e n  
both Q2 and become 1, Qs complements when Ql goes from 1 to 0. Q8 is c l d  on the next 
transition of Ql. 

The BCD counter of Fig. 6,10 is a decade counter, since it counts from 0 to 9. Tu count in dec- 
imal from 0 to 99, we need a twodwade counter, To count from 0 to 999, we need a thedecade 
counter. Multiple decade counters can be constructed by connecting BCD counters in cascade, 
one for each decade. A threedecade counter is shown in Fig. 6.11. The inputs to the second and 
third decades come from Q8 of the previous decade. When Q8 in me dmade goes from 1 to 0, it 
~ g g e r s  the count for the next higher order decade while its own decade goes fmm 9 to 0. 



H C W  6.10 
BCD ripple counter 
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id digit 10' digit 

RCUW 6.1 1 
Block diagram of a th- d d d  3CD rounttr 

6.4 SYNCHRONOUS COUNTERS 

lo0 digit 

Synchronous counters are different from ripple counters in that clwk pulses are applied to the 
inputs of all flip-flops. A common clack triggers al l  flipflops simultanemsly, rather than one 
at a time in succession as in a ripple counter, The decision whether a flipflop is to be 
complemented is determined from the values of the data inputs, such as Tor J and K at the t ime 
of the clmk edge. If T = 0 or J = K = 0, the flip-flop b s  not change state. If T = 1 or 
J = K = I ,  the flip-flop complements. 

The design pmcedure for synclmnous coun&rs was presented in Section 5.8, and the design 
of a three-bit binary counter was carried out in conjunction with Fig. 5.31. In this section, we 
present some typical synchronous counters and explain their operation. 

The design of a synchronous binary counter is so simple that there is no need to go through a 
sequential logic design process. In a synchronous binary counter, the flip-flup in the least sig- 
nificant position is complemented with every pulse. A flip-flop in any other position is com- 
plemented when all the bits in the lower significant positions are eqwl to 1. For example, if 
the present state of a four-bit counter is A3A2A lAo = 001 1, the next count is 0 100. A. is al- 
ways complemented, A l is comglemented because the ~t state of A. = l. A2 is cornple- 
mated because the present state of AIAo = 11. However, A3 is not complementmi because 
the present state of A2A 1Ao = 01 I,  which dms not give au all-1 's condition. 

Synchronous binary counters have a regular pattern and can be constmcted with comple- 
menting flipflops and gates. Tbe regular panem a t ~  be seen horn the four-bit wunm depicted 
in Fig. 6.12. The C inpub of all flipflops are connected to a common clmk The comkr is 
enabled with the count enable input. If the enable input is 0, aII  J and K inputs am equal to 0 
and the clwk does not change the state of the munter. The first stage. A,,, has its J and Kequal 
to 1 if the counter is enabled. The other J and K inputs are equal to 1 if dl previous least sig- 
nificant stages are equal to 1 and the count is enabled. The chain of AND gates genccates the 
required logic for the J and K inputs in each stage. The counter can be exmded to any num- 
ber of stages, with each stage having an additional flip-flop and an AND gate that gives an 
ourput of 1 if all. previous flip-flop outputs are 1. 
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Count enable 
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CLK 

RCURE 6.12 
Four-bit synchronolu binary counter 
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Note that the flip-flops trigger on the positive edge of the clmk. The polarity of the clock 
is not essential here, but it is with the ripple counter. The synchronous counter cau be niggered 
with either the positive or the negative clock edge. The complemmhg £lipflops in a binary 
counter can be of either the JK type, the Ttype, or the D type with XOR gates. The +vdmcy 
of the three types is indicated in Fig. 5.13. 

A synchronous countdown binary counter gms through the binary states in reverse order, h m  
1 11 1 down to 0000 and back to 11 1 1 to repeat the count. It is v i l e  to design a countdown 
counter in the usual manner, but the result is predictable by inqxdun of tbe downward binary 
count. The bit in the least simcant position k complemented with each pulse. A bit in any 
other psitiun is complemented if all lower s i ~ c a f l t  bits we egual to 0. For example, the next 
state after the present state of 01 00 is 001 1. The least significant bit is always complemented. 
The second siflcant bit is complemented because the first bit is 0. The third si-t bit 
is complemented because the fitst two bits are equal to 0. But the fourth bit dws not change, 
because not all lower significant bits ~IZ equal to 0. 

A countdown binary counter can be constructed as shown in Fig. 6.12, except that the in- 
puts to the AND gates must come from the complemented outputs, instead of the normal out- 
puts, of the previous flip-flop. The two oprations can be combined in one ckui t  to form a 
counter capable of counting either up or down. The circuit of an updown binary counter using 
T flip-flops is shown in Fig. 6.13. It has an up contra1 input and a down conlrol input. When 
the up input is 1, the circuit counts up, since the T inputs receive their signals from the values 
of the previous normal outputs of the lXpflops. When the down @t is 1 and the up input is 
0, the circuit counts down, since the oomplemented outputs of the previous flip-flops are ap- 
plied to the T inputs. When the up and down inputs are both 0, the circuit does not chmge state 
and remains in the same count. When the up and down inputs are both I, the circuit counts up. 
This set of conditions ensures that only m e  operation is performed at any given h e .  Note that 
the up input has priority over the down input. 

BCD Cwnter 

A BCD counter counts in binqooded decimal fram 0000 to 1001 a d  back to 0000. Because 
of the return to 0 after a count of 9, a BCD counter does not have a regular pattern, d i k e  a 
straight binary count. To derive the circuit of a BCD synchronm counter, it is necesssty to go 
though a sequential circuit design procdm. 

The state table of a BCD counter is listed in Table 6.5. The input umditiws for the Tfipflops 
are obtained from the present- d next-* con&ions. A h  shown in ~IE imble is an output y, 
which is equal to 1 when the prasent state is 1001. In this way, y can enable the count of tk. next- 
hi* significant decade while the same pulse switches the pmmt d e d e  from 1001 to 0000. 

Tbe flipflop input equations can be simpMed by means of maps. The unused states for 
minterms 10 to 15 are taken as don't- terms. The simplified functions are 
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Table 6.5 
s m  f !  hr M D  c- 

Present State Next State output fl@mlW- 

% b & Q 1  % % & &  y a t % m Z m l  

0 0 0 0  0 0 0 1  0 0 0 0 1  
0 0 0 1  0 0 1 0  0 0 0 1 1  
0 0 1 0  0 0 1 1  0 0 0 0 1  
0 0 1 1  0 1 0 0  0 0 1 1 1  
0 1 0 0  0 1 0 1  0 0 0 0 1  
0 1 0 1  0 1 1 0  0 0 0 1 1  
0 1 1 0  0 1 1 1  0 0 0 0 1  
0 1 1 1  1 0 0 0  0 1 1  1 1  
1 0 0 0  1 0 0 1  0 0 0 0 1  
1 0 0 1  0 0 0 0  1 1 0 0 1  

Y = QBQI 
The circuit can eady be drawn with four T flip-flops, five AND gates. and one OR g a ~ ~  

Synchronous BCD counten can be m d e d  to form a m u t e r  €or decinaal numbas of my 
length. The d g  is done as in Fi 6.11, except that output y must be cwnected to the oaunt 
input of the next-higher significant decade. 

Counters employed in digital systems quite often require a paralld-load capbility for tram- 
f d g  an initial binary number into the counter prior to the aunt operatiw. F w  6.14 shows 
the top-level blwk diagram symbol d the logic d i m  of a f a - b i t  register ttaat has a par- 
allel load capability and can o m  as a cmmkr. W h  equal to t, tbe input lmd cunlrol dis- 
abIeg the count operation and causes a transfer of data h the four data iaprds into k four 
flip-flops. If both control inputs are 0, clock pulses do not change the state of the register. 

The carry output becomes a 1 if dl the flip-flops are equal to I while &e count input is en- 
airled. This is the condition for complementing tbe figflop holds the next signifimt bit. 
Thecarry outputis use l l for~gthecountertomwethaafow~.Thespeedoftbe  
collnter is increased when the catry is gmmtcd M y  h m  the outputs of all four flip-flops, 
because of the reduced deIay for gemx&g the a n y .  In going from state 11 11 to 0000, only 
~gate&hyoccnrs,whereasfour~~soccurhtheANDgatechainshownhFig.6.12. 
Similarly, each flip-flop is as- with an AND gate that receives all pviws flipflop 
outputs directly instead of connachg the AND gates in a chain. 
The -tion of the counter is smmari& in Table 6.6. The fwr control i n p H c a r ,  

CLK, h a 4  and C a m + k d n e  the tux& state. The C h r  input is asynchnmous and, when 
equal to 0, causes the counter to be c l d  regadless of the of clock p k s  w other 
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Count 

Clear 
CLK 

M U R E  6.14 
Four-bit binary taunter wlth parallel load 



Table 6.6 . 
Fu-n T a k  Rsr the €atnt;ar of 6;14 

Clear CLK load Count F u n c t h  

0 X X X Cltartoo 
1 t 1 X 
I ? 0 1 Count ma binary state 
1 T o o NO change 

inputs. Tbis relationship is indicated in tbe table by the X eatria, wbich symbolize don't-care 
conditions for the other inputs. The Clear input must be in the 1 state for all other optrations. 
With the h a d  and Cusuzt inputs both & 0, the outputs do not change, even when clock pulses 
are applied, A Load input of 1 causes a m f e r  from inputs io-Z3 into the register during a pos- 
irive edge of CLX. The input data are l d  into the register regmlless of the value of the 
Counr input, because the Count input is inhibited when the toad input is enabled The Lead 
input must be 0 for he. Cum? input to control the o@on of the comer. 

A countw with a pmllel load can be used to generate any h i r e d  cwnt qumce. Figure 6.13 
shows two ways in which a counter with a parallel load is I& to generate BCD count. In each 
case,theCoruucon~lis~to1todk~count~tbeCM~~.~thatthe 
L o Q d ~ l w i n h i b i t s ~ w u n t a r a d t h a t t b e ~ ~ i s ~ t o f o t b e r ~ i a p u t s .  

The AND gate in FG. 6.15Ia) d e w  the oceufieoce of sta& 1001. The wunter is hhklly 
c I e ~ m O , a t a d ~ n t h e ~ m r d ~ i n ~ m s e t t o I , s o ~ c o u n t e r i s d v e a t a I I ~ .  
ks long as the output of the AND gate is 0, each positive-edgc clmk immnmb the counter by 1. 
Wtsentheautputreaches tkowntd100I, bothAomdAj kmme 1 , ~ t h t ~ o f t h e  
A E J D g a t e q u a l t o l . T h i s ~ ~ ~ ~ L o a d i n p p d ; t h a e f o r e , a n ~ ~ c l o c k ~ h  
1 1 : ~ h n o t c o p m t , b u t i s l o & d ~ ' a s f m ~ .  S i n c e ~ f o u r i a p l t s a r e ~ m l o g i c  
0, an dl-0's value is 1- into the regiter following the cormt of 1001. Ths, the c h i t  g m  
through the count from OW through 1001 and back rn 0000, as is required in a BCD countex 

In Fig. 6.15@), h e  NAND gate &tee& zfie count of 1010, but as soon as this count W C ~ ,  

the register is clcarsd. The count 1010 has no chance of staying on for any appreciable time, 

cow-1 

Clear = 1 

c m  

hpts have no ef6ect 
(a) Using the load input (b) Using the dear input 

CH;UICt 4.1s 
A m w a y s t o r c h i ~ a 6 C D t a r r t a r u r l n g a ~ ~ ~ M  
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because the register goes immediately to 0. A momentary spike occurs in output A. as the 
count goes h m  1010 to 101 1 and immediately to 0000. The spike may be undesirable, and for 
that reason, this configuration is not recommended. If the counter has a synchronous clear 
input, it is possible to clear the counter with the clock after an occurrence of the 1001 count. 

6.5 OTHER COUNTERS 

Counters can be d e s i i  to generate any desired saquence of states. A divideby-N comer (also 
known as a modulo-N counter) is a counter that goes through a repeated sequence of N states. 
The sequence moly follow the binary count .tor may be any other arbitrary sequence, Counters 
are used to generate timing signds to control the sequence of operations in a digital system. 
Counters can also be constTucted by means of shift registers. In this section, we present a few 
examples of nonbinq counters. 

Countar with Unused States 

Acircuit with n flip-flops has 2' binary staies. There are occasions when a sequentid c h i t  uses 
fewer than this d m u m  pmible n u m k  of states. States that are not used in specifying the 
sequential circuit are not listed in the state table. In simplifying the input equations, the unused 
states may be treated as don't-care conditions or may be assigned specific next stam. Once ?he 
circuit is designed and constructed, outside interference may cause the circuit to enter one of the 
unused states. In that case, it is necessary to ensure that the circuit eventually goes into one of 
the valid states so that it can resume normal opation. OtheMrisa, if the s e q u d  cirmit cir- 
culates among unused states, thm will be no way to bring it back to its in tend  s a q m  of 
state Wtions. If the unused staw are keated as don't-care conditions, then once th8 circuit 
is designd, it must be investigated to &ermine the effect of the unused states. The next state 
from an unused state can be detedned from the anaIysis of the circuit sifter it is designed. 

As an illustration, consider the counter spd6ed in Table 6.7. The ownt has a q m k d  sequence 
of six w, with flipflops B and C repting the b i  count 00,01,10, and flipflop A alter- 
nating between 0 and 1 every three countf. - count sequence of the counter is mrt $might bi- 
naty,andtwostata,Oll aad 111,mnotincl~inthecountThechoicedJKflipflops~ts 
in the flipflop input conditions listed in thelab1d. Inputs Kg and KC have only 1's and X's in their 

Table 6.7 
State Tabk for Counter 

Prosent State Next State HipFlop Inputs 

A B C  A B C  )A KA KB Kc 

0 0 0 0 0 1  O X Q X l X  
0 0 1  0 1 0  O X l X X l  
0 1 0  1 0 0  l X X 1 O X  
1 0 0  1 0 1  X O O X l X  
1 0 1  1 1 0  X O I X X l  
1 1 0  0 0 0  X l X I O X  



Clock 
(a) Logic diagram 

RCURE 6.16 
Counter wIth unused stater 

(b) State diagram 

columns, so these inputs are always equal to 1, The other flipflop input eqahns c m  be sim- 
plified by using mintems 3 and 7 as don't-cm conditions. The simplified @OILS are 

J A = B  K A = B  

J B = C  K B = l  

Jc = 3' Kc = 1 

The logic diagram of the counter is shown in Fig. 6.1 Ha). Siace there are two mused srates, 
we analyze the circuit to determine their effect If the &t happens to b in state 01 1 kause 
of an error signal, the circuit goes to state 100 after the appliatim of a clack puke. This action 
may be determined from an inspectiw of the logic diagram by wting that when B = 1, the 
next clock edge complements A and clears C to 0. and when C = 1, the next clock edge com- 
plements 3. In a similar mamer, we can evaluate the next s t '  from w t  state 11 1 to be 000. 

The state diagram including the effect of the unused states k shown in Fig. 6.16@). If the cir- 
cuit ever goes to one of the unused states because of outside interference, h e  next count pulse 
imnsfers it to one of the valid s m  and tbe circuit continues to cwnt d y .  Thus, tk counter 
is self-correcting. In a s e l f - c ~  counter, if the counter happens to be in one of the unused 
states, it eventually reaches the normal count sequence after one or more clock pulses. An 
alternative design could use additional logic to direct every unused stare to a specific next state. 
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Ring Counter 
Timing signals that control the sequence of operations in a digital system can be generated by a 
shift register or by a counter with a d d e r .  A ring counter is a circular shift register with only one 
flip-flop being set at any particular time; all others are cleared. The single bit is shifted h m  one 
flipflop to the next to produce the sequence of timing signals. F i  4.17(a) shows a four-bit 

Shift 
right 

- 

(a) Ring-counter (initial value = 1000) 

cLK K 

(b) Sequence of four timing signah 

Count 
enable 

(c) Counter and decader 

FSUCIL 6.1 7 
Generation of timing dgnats 
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shift register connected as a ring counter. The initial value of the register is 1OOO and quires  
PresetlClear flip-flops. The single bit is shifted right with every clock pulse and circulates back 
from T3 to To. Each flip-flop is in the 1 state once every four clock cycles and d u c e s  one of 
the four timing signals shown in Fig. &17(b). Each output becones a 1 after the negative-edge 
transition of a clock pulse and remains 1 during the next clock cycle. 

For an alternative &sign, the timing signals can be generated by a twebit counter that goes 
through four distinct states. The decoder shown in Fig. 6.17(c) decodes the four states of the 
counter and generates the required sequence of timing signals. 

To generate 2" .timing signals, we need either a shift register with 2" flipflops or an n-bit binarym 
counter together with an n-to-2"-line decoder. For example, 16 timing signals can be g e n d  
with a 16-bit shift register connected as a ring counter or with a Cbit binary counter and a 410-16- 
line decoder. In the fmt case, we r e d  16 flipflops. In the second, we need 4 flipflops and 16 four- 
input AND gates for the decoder. It is is possible to generate ik timing signals wiih a combhation 
of a shift register and a decoder. That way, the number of flipflops is h than tha~ in a ring counter, 
and the dec&r requires only twdnput gates. This combination is called a Johm comer. 

A k-bit ring counter circulates a single bit among the flip-flops to provide k distinguishable 
states. The number of states can be doubled if the shlft register is connected as a witch-tail ring 
counter. A switch-tail ring counter is a circular shift register with the complemented output of 
the last flip-flop connected to the input of the first flip-flop. Figure 6.18!a) shows such a shift 

CLK 
(a) Four-stage switch-tail ring counter 

Flip-flop outputs 
Sequence AND gate reqnired 
number A B C E  for output 

1 0 0 0 0  A'E' 
2 1 0 0 0  Ai? ' 
3 1 1 0 0  BC' 
4 1 1 1 0  CE' 
5 1 1 1 1  AE 
6 0 1 1 1  A' B 
7 0 0 1 1  B ' C 
8 0 0 0 1  C'E 

(b) Count sequence and required decoding 
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~gister. The circular connection is made h m  the complemented output of the rightmost flip 
£lop to the input of the leftmost flipflop. The register shifts its contents once to the right with 
every clock pulse, aad at the same time, the complemented value of the E flpflop is transferred 
into the A flipflop. Starling from n cleared state, the switch-tail ring counter goes through a 
sequence of eight states, as listed in Rg. 6.18@). In general, a k-bit switch-tail ring counter will 
go through a sequence of 2k states, Starting from all O's, each shift operation inserts 1's from 
the left until the register is filled with all 1's. In the next sequences, 0's are inserted from the 
Mt until the register is again filled with all 0's. 

A Johuson counter is a k-bit switch-tail ring counter with 2k ded ing  gatw to provide out- 
puts for 2k timing signals, The decoding gates are not shown in Fig. 6.18, but are specified in the 
last column of the table. The eight AND gates listed in the table, when connected to the circuit, 
will complete the construction of the Johnson counter. Since each gate is enabled during one par- 
ticular state sequence, the outputs of the gates genmte eight timing signals in succession. 

The decoding of a k-bit switch-tail ring counter to obdn 2k timing signals follows a regu- 
lar pattern The all-0's state is decoded by talring the complement of the two extreme flip-flop 
outputs. The all-1's state is decoded by taking the normal outputs ofthe two extreme flip-flops. 
All other states are decoded from an adjacent 1,O or O , 1  pattern in the sequence. For exam- 
ple, sequence 7 has an adjacent O,1  pattern in flip-flops B and C. The &mdd output is then 
obaained by takiag the complement of B and the normal output of C, or B'C. 

One disadvantage of the circuit in Fig. 6.18(a) is that if it finds itself in an unused s m ,  it 
will persist in moving from one invalid state to another and never find its way to a valid state. 
The difficulty can be cariected by r n o m n g  the circuit to avoid this undesirable condition. One 
correcting pmdure is to disconnect the output from flip-flop B that goes to the I) input of flip 
flop C and instead enable the input of flip-flop C by the function 

Dc = ( A  + C ) B  

w b  Dc is the flip-flop input equation for the D input of flip-flap C. 
Johnson counters can be construckd for my number of timing sequences. The number of 

flip-flops needed is one-half the number of timing signals. The number of decoding gates is 
equal to the number of timing signals, and only two-input gates are needed, 

6.6 HDL FOR REGISTERS AND COUNTERS 

Registers and counters can be described in V d o g  at either the bebavid or the structural level. 
Behav id  modeling describes only the operations of tbe register, as prescribed by a frmctim 
table, without a preconceived structure, A stmctud-Ievel description shows the circuit in terms 
of a collection of components such as gates, flip-flops, and multiplexers. The various compo- 
nents are instantiated ta form a hierarchical dmrription of the design similar to a representation 
wf a logic diagram. Tbe mmple..s in tbis d o n  will illustrate both types of descriptions. 

ShWt Reglster 
The universal shift register presented in S d o n  6.2 is a bidirectiond shift register with a par- 
aller load. The four clocked operations that am performed with the register are specified in 
'Pable 6.6. The register dsa can be cleared asynchronously, O u r  chosen name for a behavioral 



description of the four-bit universal shift register shown in Fig. 6.7(a), the name 
ShjFJPegisrer-4Jeh signifies the behavioral model of the interaal detail of the toplevel 
block diagram symbol and distinguishes that model from a s ~ t u r a l  one. The behavioral 
model is presented in HDL Example 6.1, and the stluctml m d  is giwn in HDL Example 
6.2. The top-level block diagram symbol in Fig. 6.71a) indicates that the &bit universal shift 
~gister has two selection inputs (sl, SO). two serial inputs (~h@~It=fr ,  shij?-right). a four-bit par- 
allel input (]jar),  and a four- bit pdJe1 output ( u r ) .  The elements of vector I1parf3: 01 
comepond to the bits 13,. . . , b in Fig. 6.7, and similarly for Aqar[3: 01. The always block 

the five operations that can be performed with the register. The Clear input clean the 
register asynchronously with an activelow signal. Cieur must be high for the mgister to wnd 
to the positive edge of the clock The four clocked opmtions ofthe ~gis&er arc &tedned horn 
the values of the two select inputs in the case statement. ($1 md sO are concatenated into a 
-bit vector and are used as the expression argument of the case statement.) The shifting 
opation is specified by the concatenation of the serial input and three bits of the register. For 
example, the statement 

specifies a concatenation of the serial data input for a right shift c p d c m  (MSB-in) with bits 
AcparC3.. I ]  ofthe output &fa brrs. A reference to a contiguous range of bits within a vector 
is r e f e d  to as a parl sehct. The fim-bit result of the concatenation is msfecred to register 
A s r  [3: 01 when the clock pdse lriggers the option.  This transfer produces a shift-right 
opration and updates the register with new information. The shift operation ovem~ites the 
contents of A-pr[O] with the conteats of Q m [ l J .  Note that only the functionality of the 
circuit has ken W r i k l ,  irrespective of any pmthhr hardware. A s y n k i s  tool would crp 
ate a netlist of ASIC cells to impkrnent the shift register. 

BDL Example 6.1 

I/ Behavlod deswfptlon of a 4-bit unlverserl shift register 
I1 Fig. 6.7 and Table 8.3 
module Sh i~g l%bf f4+beh  ( /I V2001,2005 
output reg P: 01 A m .  11 R e g i i r  output 
input (3: 01 b a r j  I/ Parallel input 
Input $1, a, // select inputs 

MSB-in. LSB-in, I/ Serial inputs 
CLK, Clmr I/ C M c  and Clear 

1; 
always @ (posdge CLK, negedgo Clear) I /  V2001,2005 
If (-Clear) A g a r  <= 4'WWO; 
else - ({sl dl) 

2'bOO: A g r  /I No change 
2'Wl: Afir C= {MSB-in. A m :  In; / I  W i  right 
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/ I  Shift left 
I1 Parallel load of input 

2'bjO: A g a r  <= {A-par[2: 01, LSB-in); 
2'bI 1: A ~ a r  c= I g a r ;  

endcase 
endmodule 

Variables of type reg retain their value until they are assigned a new value by an assignment 
statement. Consider the following alternative case statement for the shift register model: 

case ({sl , SO)) 
I1 2'bOO: A-par <= A j a r ;  I1 No change 
2'bOl: A-par *= {MSB-in, A j a r  [3: I]); 11 Shift right 
2'bIO: A-par *= {A-par [2: 01, LSB-in}; I1 Shift left 
2 'b l I  : A-par c= I-par; 11 Parallel load of input 

endcase 
Without the case item 2'b00, the case statement would not find a match between {sl, SO) 

and the case items, so register A j a r  would be left unchanged. 
A structural model of the universal shift register can be described by referring to the logic 

diagram of Fig. 6.7(b). The diagram shows that the redster has four multiplexers and four D flip 
flops. A mux and flip-flop together are modeled as a stage of the shift register. The stage is a 
strucimal model, too, with an instantiation and interconnection of a module for a mux and another 
for a D flip-flop. For simplicity, the lowest-level modules of the structure are behavioral models 
of the multiplexer and flip-flop. Attention must be paid to the details of connecting the stages cor- 
rectly. The structural description of the register is shown in HDL Example 6.2. The top-level 
module declares the inputs and outputs and then instantiates four copies of a stage of the regis- 
ter. The four instantiations specify the interconnections between the four stages and provide the 
detailed constsuction of the register as specified in the logic diagram. The behavioral description 
of the flipflop uses a single edge-sensitive cyclic behavior (an always block). The assignment 
statements use the nonblockmg assignment operator (< =), the model of the m u  employs a 
single level-sensitive behavior, and the assignments use the blocking assignment operator ( =). 

HDL Example 6.2 

I/ Structural description of a Cbit universal shift register (see Fig. 8.7) 
module Shift-Register-4-str ( I1 V2001, 2005 
output [3: 01 A-par, It Parallel output 
Input [3: 01 I j a r ,  11 Parallel input 
Input s l ,  SO, 11 Mode select 
Input MSB Jn, LSB-in, CLK, Clear I! Serial inputs, clock, clear 

) : 

/I bus for mode control 
asslgn [ l : O I  select = {sl , SO); 

I /  Instantiate the four stages 
stage ST0 (AgarIO], A-par[l], LSB-in, I_par[O], A-par[O], select, CLK, Clear); 
stage ST1 (Agarf l ] ,  A_par[2], A-par[O], I_par[l], A-par[l], select, CLK, Clear); 



stage ST2 (Ajar[21, A-parP1, A-parf11, I_par[2], A_parIq, Wect, CLK, Clear): 
stage ST3 (A>@], MSB-in, A_paqZ]. lpr [3] ,  Agar[3]. selgct. CLK, Clear); 

endmodule 

11 One stage of shifi reglster 
module stage (iO,il, i2,i3, Q,.sebct. CLK, Clr); 
input i0, I! cl.~ulation blt selection 

il, /I data kom laR neighbop or serlal Input for shii-right 
12, /I data from right neighbor or saial Input for s h i - M  
i3; I1 date from parallel input 

output Q; 4 

input 11: 01 select; /I stage made conbd bus 
Input CLK, CB; I/ Clock, Clear for Ripflop 
wire mux-out; . 

,-. ' ;. 

I/ instantiate mux and Rip-flop 
MUX-4-X-1 MO (mux-out, 10,11,12,13, select); 
D-flip-flop MI (Q. mux-out, CLK Clr); 

endrnodu le 

I1 4x1 multiplexer I1 bhavloral model 
module Mux-4-x-I (mux-out, iO,H, i2, R, select); 
output mux-out 
input iO,i4, i2, i3; 
Input [I: 01 select; 
reg mux-out; 
a h y s  @ (select, i0, i l ,  i2, i3) 

caae (select) 
2'bOO: mu#-out = 10; 
2'bOl: mux-out = i i;  
2'blO: mux-out = 12; 
2'bl l :  mux-out = 13; 

endcase 
endmodule 

I/ Behavioral model of D flip-fbp 
module D-flip-flop (Q, D, CLK, Clr); 
output Q; 
input 0, CLK, Clr; 
r%g Q; 

always Q (posedge CLK, negedge Clr) 
If (-Clr) Q s= l'bO; else Q C= D; 

endmodule 
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The above examples presented two descriptions of a universal shift register to illustrate 
the different styles for modeling a digital circuit. A simulation should verify that the mod- 
ds  have the same functionality. In practice, a designer develops only the behavioral model, 
which is then synthesized. The fnnctllon of the synthesized circuit can be compared with the 
hhavioral description from which it was compiled. Eliminating the need for the designer 
to develop a structural model produces a huge improvement in the efficiency of the design 
pmcess. 

HDL Example 6.3 presents Binary-Counter-4-Par-bad, a behavioral model of the syn- 
chronous counter with a parallel load from Fig. 6.14. Count, Load, CM, and Clear are inputs 
that determine the operation of the counter according to the function specified in Table 6.6. The 
counter has four data inputs, four data outputs, and a carry output, The internal data lines (13, 
I2,I l ,  I@ are bundled as Data-inl3: O] in the behavioral mdel. Likewise, the register that holds 
the bits of the count (A3, A2, AI, AO) is L c o m t [ 3 :  01. It is good practice to have identifiers 
in the HDL model of a circuit correspond exactly ta those in the documentation of the model. 
That is not always feasible, however, if the circuit-Itvel identifiers are those found in a hand- 
bwk, for they are often short and cryptic and do not exploit the text that is available with an 
HDL. The top-level block diagram symbol in Fig. 6.14(a) serves as an interface between the 
names used in a circuit diagram and the expressive names that can be used in the HDL model. 
The carry output C-out is generated by a combinational circuit and is specified with an assign 
statement. C-out = 1 when the count reaches 15 and the counter is in the count state. Thus, 
C-our = 1 if Count = I, Load = 0, and A = 1 1 1 1 ; otherwise C-out = 0. The always block 
specifies the operation to be performed in the register, depending on the values of Clear, b o d ,  
and Count. A 0 (active-low signal) at Clear resets A to 0. Otherwise, if Clear = 1, one out of 
three operations is triggered by the positive edge of the clmk The K else if, and else statements 
establish a precedence among the control signals Char, Load, and CouM corresponding to the 
specification in Table 6.6. Clear overrides Laad and Count; Laad overrihs Count, A synthe- 
sis tool will produce the circuit of Fig. 6.14(b) from the behavioral model. 

HDL Example 6.3 

I! Four-blt blnary counter wlth parallel load (V2001, 2005) 
/I See Figure 6.14 and Table 6.6 
module Binary-Counter-4-Par_LPad ( 
output reg [3: 01 A-count, 11 Data output 
output C-out, /I Output a n y  
input [3: 01 Data-in, 11 Data input 
Input Count, 11 Active high to oount 

Load, 11 Actlve hlgh to load 
CLK, / I  Positive-edge sensl tlvs 
Clear / I  Actlve low 



Ch* 6 kg3rtwz and Cau- 

asslgn C-out = Count & (-Load) & (A-munt == 4b111 l); 
always @ (posedge CLK, neged~e Clear) 

If (-Clear) A-wunt <= 4b0000; 
else If (Load) A-mnt <= data-in; 
else If (Count) A-cant <= A-cant * l 'bl;  
else A - a n t  c= A-ant ;  /I redundant statement 

endmodule 

The structural description of a ripple counter is shown in HDL Example 6.4. The fiTst module 
instantiates four internally complementing flipflops defined in the second module as 
Corn-Dflipflop (Q, CLK. Reset). The clock (input CLX) of the first flipflop is conuected 
to the external control signal Count. (Count replaces CLK in the port list of instance FO.) The 
clock input of the second flip-flop is connected to the output of the first. (All replaces CLglin 
instance FI.)  Similarly, the clock of each of the other flipflops is connected to the output of 
the previous flip-flop. In this way, the flip-flops are c h d  together to create a ripple counter 
as shown in Fig. 6.8(b). 
The second mcdule describes a complementing flip-flop with delay. The circuit of a com- 

plementing flip-flop is constructed by connecting the complement output to the D input. A 
reset input is included with the flip-flop in order to be able to initialize the counter. otherwise 
the simulator would assign the u h o w n  value (x> to the output of the flip-flop and W c e  use- 
less results. The flip-flop is assigned a delay of two time units from the time that the clock is 
applied to the time that the flip-flop complements. The delay is specifled by the statement 
Q < = #k2 -Q. Notice that the delay operator is placed to the right of the nonbIocking assign- 
ment operator. This form of delay, called intra-assignment delay, has the effect of postporn 
the assignment of the complemented value of Q to Q. The effect of modeling the delay wdl be 
apparent in the simulation results. This style of modeling might be useful m simulation. but it 
is to be avoided when the model is to be synthesized. The results of synthesis depend on the 
ASIC cell library that is accessed by the tool, not on any propagation delays that might appear 
within the mdel that is ta be synthesized. 

HDL Example 6.4 

/ I  Ripple counter (See Fig. 6.8(b)) 
!timescale 1 no 1 I00 ps 
module Ripple-Counter-4bit (A3, A2, A l ,  AO, Count, Reset); 

output A3, A2, A l ,  AO; 
input Count, R~set; 

Il Instantiate complementing flip-flop 
Comp-D-flip-flop FO (AO, Count, Reset); 
Comp-D-flip-flop F l  (A1, AO, Reset); 
Comp-D-fll p-Aop F2 (A2, A1 , Reset); 
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Camp-D-flip-flop F3 (A3, A2, Reset); 
endmodule 
/I Complementing flip-flop with delay 
It lnput to D flip-flop = Qt 
module Cornp-D-fflp-flop (Q, CLK, Reset); 

output Q; 
Input CLK, Reset; 
reg Q; 
always @ ( n ~ e d g e  CLK, pooedge Reset) 
If (Reset) Q c= f 'bO; 
elre Q <= #2 -Q; I1 Intn-assignment delay 

endmodule 
I1 Stimulus for testing ripple counter 
module t-Ripple-Counter-4bit; 

r%g Count; 
reg Reset; 
wire AO, Al , A2 A3; 

/I Instantiate ripple oounter 
Rippte-Counter-4Mt MO (A3, A2, At, AO, Count, Reset); 

always 
#5 Count *I -Count; 

lnltial 
bqin 
Cwnt = 1'bO; 
Reset = l 'bl; 
#4 Reset = l'M; 

end 

inltlal#170 $firtiah; 

endmodu k 

The test bench module in HDL Example 6.4 provides a stimulus for simulating and verify- 
ing the functionality of the ripple counter, The always statement generates a free-running clock 
with a cycle of 10 time units. The flip-flops trigger on the negative edge of the clock, which 
w u r s  at t = 10,20,30, and every 10 time units therafter. The waveforms obtained from this 
simulation are shown in Fig. 6.19. The control s i g d  Count goes negative every 10 ns. A0 is 
complemented with each negative edge of Count, but is delayed by 2 ns. Each flip-flop is conl- 
plemented when its previous flip-flop goes from 1 to 0. After t = 80 ns, all four flip-flops 
complement because the counter goes from 0111 to 1000. Each output is delayed by 2 ns, and 
kause  of that, A3 goes from 0 to I at t = 88 ns and fmm 1 to 0 at 168 us. Notice how the 
propagation delays accnmulab to the last bit of the counter, resulting in very slow counter a e  
tion. This limits the @cal utility of the countw. 



Reset 

Count 

t = 88ns 
(a) From 0 to 18a ns 

(b) From 70 to 98 ns 

FIGURE 6.19 
Simulation output of HDL Example 6.4 

P R O B L E M S  

Answers to problems marked with ' appear at the end of the book. Where appropriate, a logic design 
and its related HDL modeling problem are cross referenced. 
Note: For each problem that requires writing and verifying a Verilog description. a test plan should 
be written to identify which functional feams are to be tested during the simulation and bow they 
will be tested, For example, a reset on the fly could be tested by asserring the reset signal while the 
simulated machine is in a state other than the reset state. The test plan is to guide the development of 
a test bench that will implement the plan. Simulate the model, using the test hnch. and verify that 
the behavior is correct. If synthesis tools and an ASIC cell library or a field-programmable gate array 
(FPGA) am available, the Verilog descriptions developed for Problems 6.344.5 1 can be assigned as 
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synthesis exercises. The gate-level circuit produced by the synthesis tools should be simulated and 
compared with the simulation results for the presynthesis model. (Be aware that in some of the WDL 
problems there may be a need to deal with the issue of unused states; see the discussion of the default 
case item preceding HDL Example 4.8 in Chapter 4.) 

6.1 Include a two-input NAND gate In the register of Fig. 6.1, and connect the gate outpu to the C 
inputs of all the flip-flops. One input of the NAND gate receives the clock pulses h m  the clock 
generator, and the other input of the NAND gate provides a parallel load control. Explain the 
operation of the modified register. Explain why this circuit might have operational problerna. 

6.2 Include a synchronous clear input in the register of Fig. 6.2, The modified ~gistm will have apar- 
allel-bad capability and a synchronous clear capability. The register is cleared synchronously 
when tfic clwk goes through a positive transition and the clear input is qua1 to 1, (HDL-6ee 
Roblem 6.35(a), (b).) 

6.3 What is the difference between serial and parallel transfer? Explain how to convert serial data to 
parallel and parallel data to seriaL What type of register is needed? 

6e The contents of a four-bit register are initially 1011. The register is shifted six times to the right, 
with the serial input being 101101. What are the contents of the register a k r  each shift? 

6.5 The four-bit universal shift register shown in Fig. 6.7 is enclosed within one IC package. 
(a) Draw a block diagram of the IC, showing all inputs and outputs. Include two pins for thc 

power supply. 
(b) Draw a block diagram, using two ICs, to produce an eight-bit universal shift register. 

6A Design a fow-bit shift register with a parallel load, using D flip-flops. Thm are two control in- 
puts: skip and load, When shift = 1, the contents of Ihe register are shifted by one position. 
New data are transferred into the regisler when load = 1 and shift = 0. If both control inputs 
are equal to 0, the contents of the register do not change. @DL- Bee Roblem 6.35(c), (dl,) 

6.7 Draw the logic diagram of a a - b i t  regism with four D flip-flops and four 4 X 1 multiplwrag with 
mode selection inputs st and so. The register operates according m the following function table 
(JXDLsee Problem 6.35(e), (0.) 

0 1 Complement the four outputs 

1 0 Clcar registsr to 0 ( a y n c W u u  with the clock) 

1 1 hd p d l d  data 

6 B  The serial adder of Fig. 6.6 uses two four-bit registers. Register A holds the binary number 0 101 
and register 3 holds 01 11. The carry flip-flop is initially reset to 0. List the binary values in reg- 
ister A and the carry flip-flop after each shift. 

6.9 Two ways to implement a serial adder ( A  + 3) are presented in Section 6.2. It is necessary to 
mDdify the circuits to convert them to serial subtrrictors (A - B ) .  
(a) Using the circuit of Fig. 63, show the changes needed to perform A + 2's complemnt of 

3. (HDL - see Problem 6.35(h).) 
@)' Using the circuit of Fig. 6.6, show the changes needed by modifying Table 6.2 from an adder 

to a subator  circuit. (See Problem 4.12.) (HDL - see Problem 6.3S(i).) 
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Design a serial 2's complernentw with a shiftregister and a flipflq. The binary n u m k  is shift- 
ed out h r n  one side and its 2's complement shifted into the o k  side of the shift register. (HDL 
- see Problem 6.35(j).) 

6.1 1 A binary rippie counter uses flipflop that trigger on the positive edge of the clak. What will be 
the count if 
(a) the normal outputs of the flip-flops are connected to the clock and 
(b) the complement outputs of the flip-flops are connected to the clock? 

&I 2 Draw the logic diagram ~f a fm-bit binbinary ripple countdown -, using 
(a) flip-flops that trigger on tk positive edge of the clock and 
@) flip-flops that trigger on the negative edge of the clock 

&I3 Show that a BCD ripple awn& WI be constructed from a four-bit binmy ripple cwmer with asyn- 
chronous clear and a NAND gate that detects the occurrence of count 1010. (HDL- see h b -  
lem 6.35(k).) 

6,lW How many flip-flops will be cam@- in a 10-bit b i i  ripple counter to m c b  the mxt count 
after the following counts? , , " " . 
(a) 1001100111 .., 8, , ,. . 
(b) 0011111111 . -,-. 
(c) 1111111111 

. .  
, . 

&lp A flip-flop has a 3-11s delay from the time the clock edge occm to the time the output is corn 
pIemented. What is the maximum May in a 10-bit binary ripple counter that llses this type of flip- 
flop? What is the maximum frequency the counter can operate with reliably? 

The BCD ripple countem showh in Fig. 6.10 has four flip-flops and 16 states, of which only 10 
are used. Analyze the circuit. and determine the next state for each of the other six unused states. 
What will happen if a noise signal sends the circuit to one of the unused states? 

&. 1 Design a four-bit binary s y n c h o w  counter with D flip-flops. 

1 $ What operation is performed in the up4own counter of Fig. 6.13 when botb the up and down in- 
puts are enabled? Modify the circuit so that when both inputs are equal to 1. the counter does not 
change state. (I-IDL - see Problem 6.350).) 

6 1  9 The £lip-flop input equations for a BCD counter using T flip-flops are given in Section 6.4. Ob- 
tain the input equations for a BCD counter that uses (a) JK flipflops and (b)* D £lipflop. Com- 
pare the three designs to determine which one is the most eEcient. 

Enclose the binary counter with parallel load of Fig. 6.14 in a block diqmm, showing all inputs 
and outputs. 
(a) Show the connections of fom such blocks to produce a 16-bit m t e r  with a pallel load. 
(b) Construct a binary counter that counts from 0 through binary 64. 

621* The counter of Fig. 6.1 4 has two controI inputs-LoQd (L) and Count (C)--and a data input, li. 
(a) Derive the flip-flop input equations for J and K of the first stage in terms of L, C, and I. 
(b) The logic diagram of the h t  stage of an integrated chmit (74161) is s h  in Fq. P6.21. 

Verify that this circuit is equivalent to the one in (a). 

For the circuit of Fig. 6.14, give three alternatives for a mod-12 munter 
(a) using an AND gate and the load input. 
(b) using the output carry. 
(c) using a NAND gate and the asynchronous clear input. 
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Count (C) 

Data (I) 

- 

CLK 

- 

FIGURE W.21 

6.23 Design a timing circuit which provides an output signal that stays on for exactly eight clock cy- 
cles. A start signal sends the output to the 1 state, and after eight clock cycles the signal returns 
to the 0 state. (HDL - see Problem 6.45.) 

6.W Design a counter with T flip-flops that g ~ s  through the following binary repeated sequence: 0, 
1,3,7,6,4. Show that when binary states 010 and 101 are taken to be don't-care conditions, the 
counter may not operate properly. Find a way to correct the design. (HDL- see Problem 6.53.) 

6.z It is necessary to generate s i x  repeated timing signals To through T5 similar to the ones shown in 
Fig. 6.17(c). Design the circuit, using IHDL - see Problem 6-46), 
(a) flip-flops only. 
(b) a counter and a decoder. 

6.W A digital system has a clock generator that produces pulses at a frequency of 80 MHz. Design a 
circuit that provides a clock with a cycle time of 50 ns. 

6.27 Design acounter with the following repeated binary sequence: 0, 1,2,3,4,5,6. Use JK flip-flops. 
(IIDL - see h b l e m  6.51.) 

6 s  Design a counter with the following repeated binary sequence: 0, 1, 2, 4, 6. Use D flip-flops. 
(HDL - see Problem 6.5 1 ,) 

6.29 List the eight unused states in the switch-tail ring counter of Fig. 6.18(a). Determine the next 
state for each of these states, and show that if the counter finds itself in an invalid state, it does 
not return to a valid state. Modify the circuit as recommended in the text, and show that the count- 
er p d u c e s  the same sequence of states and that the circuit mches a valid state from any one of 
the unused states. 

1.30 Show that a Johnson counter with n flip-flops produces a sequence of 2a states. List the 10 states 
produced with five flip-flops and the Boolean terms of each of the 10 AND gate outputs. 

1 Write and verify the HDL behavioral and shctural descriptions of the four-bit register of Fig. 6.1. 
6.33 (a) Write and verify an HDL behavioral description of a four-bit register with parallel load and 

asynchronous clear. 
(b) Write and verify an HDL structural description of the four-bit register with parallel load 

s h o w  in Fig. 6.2. Use a 2 X 1 multiplexer for the flip-flop inputs. Include an asynchronous 
clear input. 

(c)  Check both descriptions, using a test bench. 

1.33 The following program is used to simulate the binary counter with parallel load described in HDL 
Example 6.3: 

I/ Stimulus for testing the blnary counter of Example 6.3 
module testcounter: 



reg Count, Load, CLK, Clr; ,., ' . , 

reg [3: 01 IN; , . .  
8 - 

wlre CO; 
wlre [3: 01 A; 
counter cnt (Count, toad, IN, CLK, Clr, A, CO); 
always 
#5 CLK = -CLK; b e  ..: - . 

lnltlal . .  ., 

begln .,,_. . 
Clr = 0; 
CLK = 1; . a '  , 
Load = 0; Count = I ;  --: 
#5 Clr= I; 
#30 Load = I; IN = 4'131 100; 
#20 Load = 0; 
#60 Count = 0; 

, , ,.; : #20 $tlnlsh; . . a . . - .  
end ., - 

.I I 

endmodule 

Go over the program and predict what would be the output of the counter and the carry o q t  from 

r = 0 to t = 155 ns. 
&w Write and verify the HDL behavioral description of a fow-bit sbift register (see Fig. 6.3). 
6.35 Write and v e f y  

(a) a structural BDL model for the register d&bed in Problem 6.2 
(b)* a behavioral HDL model for the register described in Problem 6.2 
(c) a struct:ural HDL model for the register described in Problem 6.6 
(d) a b e h a v i d  HDL model for the regism described in Problem 6.6 
(e) a structural EDL model for the register described in Problem 6.7 
(f) a behavioral HDL model for the register descrihl in Problem 6.7 
(g) a behavioral HDL model of the binary counter dmcribed in fig. 6.8(b) 
(h) a behavioral description of the d subiractor d e s c n i  in Problem 6.9(a) 
(i) a behavioral description of the senal subtractor described in Problem 6.9Ib) 
Ij) a behavioral demiption of the mid 2's complementer described in Problem 6.10 
(k) a behavioral description of the BCD ripple counter described in Problem 6.13 
(1) a behavioral desaiptim of the up-down counter described in Problem 6.18 
Write and verify the HDL behavioral and Btructural descriptions of the four-bit updowm counter 
whose logic diagram is dewriled by Rg. 6.13, Table 6.5, and Table 6.6. 
Write and verify a behavioral hcripiion of the countcr dewxibed in Problem 6.24. 
(a) using an if . .. eIse statement 
(b) using a case statement 
(c) a finite state machine. 

6.38 Write and verify the HDLbeharioral desniption of a four-bit updown counter with p d e l  load 
using the following conml inputs: 
(a)* The counter has ibrce conmi inputs for the three v t i o n s  Load, Up, and Down. The order 

of precedence is Load, Up, and Down. 
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(b) The counter has two selection inputs to specify four operations: Up, D m ,  Load, and no 
cbange. 

&39 Write and venfy HDL behavioral and structural descriptions of the counter of Fig. 6.16. 
B a  Write and verify an HDL description of an eight-bit ring counter similar to the one shown in 

Fig. 6.17(a). 
6.41 Write and venfy the HDL description of a four-bit switch-tail ring (Johnson) counter (Fig. 6.1 gal. 
6AP Tbe c m e n t  with the last clause of the if statement in Bimry_Co~nter-4~Par~Load in HDL Ex- 

ample 6.3 notes that the statement is redundant. Explain why this statement can be removed with- 
out changing the behavior implemented by the description, 

6.43 The scheme shown in Fig. 6.4 gates the clock to control the send transfer of data from shift reg- 
isterA to sluft register B, Using multiplexers at the input of each cell d the shift registers, develop 
a structural model of an alternative circuit that does not alter the clock path. The top level of the 
design hierarchy is to instantiate the shift registers. The module describing the shift register is to 
have instantiations of flip-flops and muxes. Describe the mux and flip-flop modules with behav- 
ioral models. Be sure to consider reset Develop a test bench to simulate the circuit and demon- 
skate the transfer of data. 

6.44 M o w  the design of the serial adder shown inFig. 6.5 by removing the gated clock to the D flip- 
flop and supplying the clmk signal to it directly. Augment the D flip-flop with a mux to recircu- 
late the contents of the flip-flop when shihng is suspended and to provide the carry out of the full 
adder when shifting is active. The shift registers are to incorporate this feature also, rather than 
use a gated clock. The top Ievd of the design is to instantiate modules using behavioral models 
for the shift registers, full adder, D flip-flop, and ma. Assume asynchronous reset, Develop a test 
bench to simulate the circuit and demonstrslte the transfer of data. 

6.49 Write and venfy a behavioral description of a finite state machine to implement the counter de- 
scribed in Problem 6.24. 

4.46 Problem 6.25 specifies an irnplementalim of a circuit to generate timing signals using 
(a) only flip-flops and 
@) a counter and a decoder. 
As an alternative, write a behavioral description (without cwsideratiw of the actual hardware) 
of a state macbine whose output generates the timing signals To h u g h  Ts. 

6.4  Write a behavioral description of the circuit shown inFig. P6.47, and verify that the circuit's out- 
put is asserted if successive samples of the input have an odd number of 1's. 

6.48 Write and verify a behavioral description af the counter shown in Fig. P6.48(a); repeat for the 
counter in Fig. P6.48(b), 

6.49 Write a test plan for verifying the functionality of the universal shi f t  register described in HDL 
Example 6.1. Using the test plan, simulate the model given in HDL Example 6.1. 

6-58 Write and verify a kbvioral  model of the counter described in 
(a) Problem 6.27 
(b) Problem 6.2 8 

651 Without requiring a state machine, and whg a shift register and additional logic, write and ver- 
ify a model of an alternative to the sequence detector described in Figure 5.27. Compare the 
implementations. 



reset + 

count p: 01 wmt p: 01 



R E F E R E N C E S  

BHASKER, J. 1997. A Verfkog HDL Primer Allentown, PA: Star Galaxy h s .  
BHASER, J. 1998. Verilog HDL Synthesis. Allentown, PA: Star Galaxy Press. 
C m ,  M. D. 1999, Modelirlg, Synfhesis, and Rapid Prototyping with Verilog HDL. Upper Sad- 
dle River, NJ: h n t i c e  Hall. 
C m ,  M. D. 2003. Advanced Digital Design with the Verdlog HDL. Upper Saddle River, NJ: 
Prentice Hall. 
m, M. D. 2004. Smrterk Guide to Verihg 2001. Upper Saddle River, NJ: Prentice Hall. 
DIETIUIEYER, D. L. 1988. logic Design of Digital Systems, 3d ed. Boston: AUyn Bacon. 
GAJSKI, D. D. 1997, Principles of Digital Desigm. Upper Saddle River, NJ: Prentice Hall. 
HAYES, J. P. 1993, Introduction to Digital Logic Design. Reading, Addison-Wesley. 
Kmz, R H 2005. Conte~nporayv Logic Design. Upper Saddle River, NJ; Preniice Hall, 
W o ,  M. M., and C. R. Kmfe. 2005. Logic an$ Computer Design Fundamentals & XiLinx 6.3 
Student Edition, 3rd ed. Upper Saddle River, NJ: Prentice Hall. 
NELSOW. V. P., H. T. NAW, J. D. hm, and B. D. CARROLL. 1995. Digital Logic Circuit Anuly- 
sis and Design. Englewood Cliffs, NJ: Pcentice Hall. 
PALNITKAR, S. 1996. Verilog HDL: A Gfiide to Digital Dssign and Synthesis. Mountain View, 
CA: SunSoft Press (a b n t i c e  Hall title), 
Ronr, C. & 2004. Fulahmntals of logic Design, 5th ed. St. Paul, MN, BrmkslCole. 
THOMAS, D. E., and P. R. Moomu, 2002. The Verilog Hardware Dcscrbtion Language, 6th ed. 
Boston: Kluwer Academic Publishers. 
WAKFRLY, J. F, 2006. Digital Design: Principks und Practices, 4th ed. Upper Saddle River, NJ: 
Prentice Hall. 


	06 – Registers and Counters.PDF
	242.tif
	243.tif
	244.tif
	245.tif
	246.tif
	247.tif
	248.tif
	249.tif
	250.tif
	251.tif
	252.tif
	253.tif
	254.tif
	255.tif
	256.tif
	257.tif
	258.tif
	259.tif
	260.tif
	261.tif
	262.tif
	263.tif
	264.tif
	265.tif
	266.tif
	267.tif
	268.tif
	269.tif
	270.tif
	271.tif
	272.tif
	273.tif
	274.tif
	275.tif
	276.tif
	277.tif
	278.tif
	279.tif
	280.tif
	281.tif
	282.tif
	283.tif


