
© Kenneth M. Anderson, 2016

Asynchronous Programming in Javascript

CSCI 5828: Foundations of Software Engineering

Lectures 18 — 10/20/2016

1

© Kenneth M. Anderson, 2016

JavaScript Resources

• ES6 For Everyone: https://es6.io/

• Eloquent JavaScript: http://eloquentjavascript.net

• You Don't Know JavaScript: https://github.com/getify/You-Dont-Know-JS

2

https://es6.io/
http://eloquentjavascript.net
https://github.com/getify/You-Dont-Know-JS

© Kenneth M. Anderson, 2016

Credit Where Credit Is Due

• Some of the material in this lecture is drawn from or inspired by

• You Don’t Know Javascript: Async & Performance

• by Kyle Simpson; Published by O’Reilly

• Note: The entire “You Don’t Know Javascript” series is fantastic!

• Async Javascript: Build More Responsive Apps with Less Code

• by Trevor Burnham; Published by Pragmatic Programmers

• Both are excellent books that cover doing things asynchronously in
Javascript

3

http://shop.oreilly.com/product/0636920033752.do
https://pragprog.com/book/tbajs/async-javascript

© Kenneth M. Anderson, 2016

Goals

• Discuss the notion of asynchronous programming in Javascript

• The gap between “now” and “later”

• The event loop

• Traditional Approach

• Callbacks

• “Callback Hell”

• New Approach

• Promises

4

© Kenneth M. Anderson, 2016

History of JavaScript (I)

• JavaScript was developed by Brendan Eich in 1995

• Developed first as Mocha and then LiveScript, it was named JavaScript
due to marketing decisions at Netscape.

• "JavaScript is prototype-based with first-class functions, making it a multi-
paradigm language, supporting object-oriented, imperative, and functional
programming styles. It has an API for working with text, arrays, dates and
regular expressions, but does not include any I/O, such as networking,
storage, or graphics facilities, relying for these upon the host environment
in which it is embedded"

• [Source: Wikipedia's JavaScript article]

• The language has since been standardized by ECMA and so, it's official name
is the catchy "ECMAScript". The latest version, E6, has been available for
some time as a "preview" but was finally released officially earlier in 2016

5

https://en.wikipedia.org/wiki/JavaScript

© Kenneth M. Anderson, 2016

History of JavaScript (II)

• Javascript has been the “language of the web” for 20 years

• past history of incompatible implementations across browsers,

• recently, however, thanks to ECMA standardization and libraries like
JQuery and Underscore, it is much easier to get consistent behavior for
web apps across browsers

• On its way to becoming a “full stack” programming language thanks to
several open source implementations (most notably Google Chrome)

• Full stack means that Javascript can be used to develop the entire stack of
technologies used for a software system

• Javascript in user interface (e.g. Angular web application), Javascript in
middleware (Node.js), Javascript in persistence layer (MongoDB)

6

© Kenneth M. Anderson, 2016

The Challenges of Javascript

• Developers often have trouble with Javascript because of a mismatch
between the mental model they impose on the language and its actual model

• It’s easy to think of it as only an imperative, object-oriented language

• You might expect to be able to do things like traditional subclassing
and perhaps multi-threaded programming

• It is actually a functional/imperative hybrid AND an event-based language
that provides object-oriented features via “prototypical inheritance”

• It is also a “hosted” language in that Javascript never runs in standalone
mode; there is always a “container” that Javascript runs “in”

• The browser (Chrome), a web server (Node.js), a database (Mongo)

• Get any of this wrong in your thinking and you’re in for a world of pain

7

© Kenneth M. Anderson, 2016

Event Based == Potential for Asynchrony

• The fact that Javascript is event-based means that there is the potential for
asynchronous programming

• Some code is executed now and some code is executed later

• Consider this complete Javascript program (to be executed by Node.js)

• console.log("I like Javascript!");

• This looks like an imperative program and it acts like one

• Run it and it will print out "I like Javascript" as expected

• But…

8
[imperative.js]

© Kenneth M. Anderson, 2016

Under the covers…

• Our simple program is actually a bit more complex; more like this:

• var f = function() {

• console.log("I like Javascript!");
• }
• global.on("program start", f);
• «sometime later»
• global.emit("program start")

• That is Node.js

• 1) takes the contents of the input file, 2) wraps it in a function, 3)

associates that function as an event handler that is associated with the
"start" or "launch" event of the program; 4) performs other initialization, 5)
emits the program start event; 6) the event gets added to the event queue;
7) the Javascript engine pulls that event off the queue and executes the
registered handler, and then (finally) 8) our program runs!

9
[imperative2.js]

© Kenneth M. Anderson, 2016

The Implication

• No code runs in Javascript unless

• an event occurred

• that event has at least one registered event handler

• that event has reached the front of the event queue

• If all of that is true, then the Javascript engine will

• pull the event off the queue

• retrieve the event handlers

• invoke them in order (which may add more events to the queue)

• loop back and process the next event

• Events can also be added to the queue by Javascript's container

• mouse move events, mouse clicks, network IO, operating system

interrupts, etc.

10

© Kenneth M. Anderson, 2016

Container

The Event Queue

11

E1 E2 E3 …Javascript
Engine

{}

{}

{}

{}

{}

{}

{}

{}

{}

{}

{}

{}

Events

Registered Event Handlers
E0

{}

{}

{}

{}

retrieve

execute

Note: Event queue shown outside of container for
illustration purposes only

© Kenneth M. Anderson, 2016

The other implication

• Javascript is single-threaded

• It can only do one thing at a time!

• Namely: execute the current event handler

• Boon with respect to “concurrency”

• If you have two event handlers that share a mutable data structure, you
don’t have to worry about race conditions

• only one event handler runs at a time

• It’s not all roses, however; the two event handlers can arbitrarily interleave
and if you care about ordering with respect to updating that shared data
structure then you still have work to do

• but, out of the box, you do not have to worry about interleaving reads/
writes to the same data structure

12

© Kenneth M. Anderson, 2016

Adding Events to the Queue

• One way for Javascript programs to add events to the event queue is via a
call to setTimeout()

• setTimeout() is a function that accepts two parameters

• an event handler (i.e. a function), and

• a delay: the delay before the handler gets added to the event queue

• This causes a timer to be created

• it executes immediately and waits for the specified delay

• it then adds a timeout event to the queue with the specified event handler

• The Javascript engine will then process that event as normal

13

© Kenneth M. Anderson, 2016

What’s the Output?

• Back to the potential for asynchrony

• In Javascript, if the code executing now, adds an event to the event queue
(with an associated handler), or registers an event handler for an event that
could happen, then some code is going to execute later

• What’s the output of this program?

for (var i = 1; i <= 3; i++) {
setTimeout(
function() {
console.log(i);

}, 0);
};

• What part of this program executes now? later?

14
[async_code.js]

© Kenneth M. Anderson, 2016

asynchronous code runs “later”

• The output is

• 4

• 4

• 4

• while you might think the code is equivalent to

• setTimeout(function(){ console.log(1); }, 0);

• setTimeout(function(){ console.log(2); }, 0);

• setTimeout(function(){ console.log(3); }, 0);

• It instead is capturing the reference to the variable i, which is then used when
the callback runs which is AFTER the three calls to setTimeout.

15

© Kenneth M. Anderson, 2016

setTimeout() created three timers; by the
time the for loop finished, the three timers
had expired and added three “timeout”
events (and their handlers) to the queueContainer

setTimeout() creates code that will run later

16

T1 T2 T3Javascript
Engine retrieve

{console.log(i)}

{console.log(i)}

{console.log(i)}

global.i = 4

© Kenneth M. Anderson, 2016

When each event handler is executed, it
uses its reference to i to print out the current
value (4)

Container

setTimeout() creates code that will run later

17

T2 T3

T1

Javascript
Engine

{console.log(i)}

{console.log(i)}

{console.log(i)}

global.i = 4 The global.i value is set to 4 by the for
loop's use of the ++ operator

execute

retrieve

© Kenneth M. Anderson, 2016

One more example

var start = new Date;
setTimeout(

function() {
var end = new Date;
console.log('Time elapsed:', end - start, ‘ms');

}, 500
);
while (new Date - start < 1000) {};

• What’s the output?

18
[two_delays.js]

© Kenneth M. Anderson, 2016

The answer

• You will typically see something like

• Time elapsed: 1000 ms

• This should make sense given what we covered above

• If you expected to see:

• Time elapsed: 500 ms

• then you are most likely applying a “multi-threaded” view to Javascript

• in other words, you might think that the timer starts counting down and
then invokes the “time out” handler concurrently or in parallel; it doesn’t.

• The timer does indeed run in parallel (it’s being handled by the container,
not the Javascript engine) but it’s action is to ADD a “timeout” event to the
event queue; that event cannot be processed until the current event is
done; in this example the current event is the entire main program!

19

© Kenneth M. Anderson, 2016

How fast is the event loop? (I)

• Not very fast; consider this code

var fireCount = 0;
var start = new Date;
var timer = setInterval(function() {
if (new Date - start > 1000) {
clearInterval(timer);
console.log(fireCount);
return;

}
fireCount++;

}, 0);

• This code uses setInterval() to create a recurring event

• however, it specifies 0 as the delay between events

• so theoretically it should “flood” the event queue for one second

• it then prints out how many events it created

20[how_fast.js]

© Kenneth M. Anderson, 2016

How fast is the event loop? (II)

• The result? On my machine: 718 events

• Why so slow?

• It creates a timer

• loop

• That timer expires

• When it does, it adds the “done” event to the queue and the callback

• The callback gets executed; while it does so, it resets the timer

• That’s a lot of overhead and that overhead slows things down

• Can it process events more quickly? Yes, but…

21[how_fast.js]

© Kenneth M. Anderson, 2016

How fast is the event loop? (III)

• Many environments provide a mechanism for specifying callbacks that should
execute before any I/O is allowed (i.e.

• This mechanism essentially cuts in line in front of the event queue

• and your application can become non-responsive if it does this a lot
because the event queue is blocked

• BUT, it is much more efficient when speed is of the essence

• how much more?

• Let’s see; for Node.js, this mechanism is called process.nextTick()

• Let’s rewrite the example on the previous slide and use nextTick() rather
than setInterval()

• Note: setInterval() is standard across all JavaScript environments;
process.nextTick() is Node.js specific

22

© Kenneth M. Anderson, 2016

How fast is the event loop? (IV)

var fireCount = 0;
var start = new Date;
var tick = function() {
 if (new Date - start > 1000) {
 console.log(fireCount);
 return;
 }
 fireCount++;
 process.nextTick(tick)
}
process.nextTick(tick)

• The result? On my machine: 3576104 (!)

• 3.57M handlers executed in one second vs 718!

23

© Kenneth M. Anderson, 2016

Callbacks

• The traditional way of handling asynchronous events in Javascript is by using
a callback

• A callback is simply a function that is registered as the event handler for

some event we know will happen in the future

• For instance, Node.js provides an API to the local file system

• it has synchronous versions of these API methods, but these are frowned
upon because

• I/O can take a lot of time and if that time happens in an event handler

the whole event queue is blocked!

• Instead, it is recommended that you use the asynchronous versions of these

file system methods

• When you ask one of these methods to do something, you register a

callback to allow it to notify you when it is done

24

© Kenneth M. Anderson, 2016

Example (I)

var fs = require("fs");
fs.readdir('.', function(err, filenames) {

if (err) throw err;
console.log("Number of Directory Entries:", filenames.length)
filenames.forEach(function (name) {

fs.stat(name, function(err, stats) {
if (err) throw err;
var result = stats.isFile() ? "file" : "directory";
console.log(name, "is a", result);

});
});

});

• Here we use two separate file system routines: readdir and stat

• It is important to learn how to read this code in terms of "now" and "later"

25
[file_info.js]

© Kenneth M. Anderson, 2016

Example (II)

var fs = require("fs");
fs.readdir('.', …)

• In the first "event handler" the code above is executed to completion

• This is what happens "now". All the rest happens "later"

• The whole main program is revealed to be a call to fs.readdir()!

• :-)

• The second argument to readdir() is a function that acts as the callback

• readdir() will go and read the file system; when it is done, it will add the
"done" event to the event queue and set the provided callback to be that
event's event handler

• when that event is the first in the queue, the Javascript engine will
execute it

26

© Kenneth M. Anderson, 2016

Example (III)

function(err, filenames) {
if (err) throw err;
console.log("Number of Directory Entries:", filenames.length)
filenames.forEach(function (name) {

fs.stat(name, …);
});

});

• Here is the callback for readdir(); it has 4 lines that execute to completion

• with the fourth line executed once per element in the current directory in

the order provided by the filenames array (lexicographic)

• Note: for Node.js, callbacks take an error object as their first parameter

and then a results object as their second parameter

• thus ({object}, null) indicates error while (null, {object}) indicates success

• This is just a convention and can be different across APIs and systems

27

1 =>
2 =>
3 =>
4 =>

© Kenneth M. Anderson, 2016

Example (IV)

function(err, stats) {
 if (err) throw err;
 var result = stats.isFile() ? "file" : "directory";
 console.log(name, "is a", result);
}

• Here is the callback for stat()

• It is invoked once per element in the dir with info (stats) about each one

• The order in which each callback executes cannot be predicted;

• it all depends on how long the call to "stat" takes;

• once that call completes, it adds the "done" event to the queue

• so the files in our output do not appear in lexicographic order;

• they appear in the order that stat completed

28

© Kenneth M. Anderson, 2016

Important Point

• There is a famous quote about Node.js

• “Everything runs in parallel except your code”

• We just saw an example of that with the previous code

• When we looped over every element in filenames (sequentially), we called
fs.stat() for each file/dir name

• All of those stat commands execute in parallel

• As they finish, they ADD events to the queue with your callback
attached

• Each of those callbacks run sequentially

• Since the I/O commands run in parallel, some finish before others
and this leads to the file’s reporting “out of order”

29

http://blog.mixu.net/2011/02/01/understanding-the-node-js-event-loop/

© Kenneth M. Anderson, 2016

Complexity (I)

• The previous example was relatively simple

• all we did was print information out to standard out

• Imagine if we wanted to collect all of the file sizes of each file and then report
on the total size

• We would need a way to figure out when we were done and then sum up
the values and report the final result

30

© Kenneth M. Anderson, 2016

Complexity (II)

• If you've never done this before, you might try:

var fs = require("fs");
var total = 0
fs.readdir('.', function(err, filenames) {

if (err) throw err;
console.log("Number of Directory Entries:", filenames.length)
filenames.forEach(function (name) {

fs.stat(name, function(err, stats) {
if (err) throw err;
total += stats.size;

});
});

});
console.log("Total size:", total);

• What's the problem with this approach?

31
[file_total.js]

© Kenneth M. Anderson, 2016

Complexity (III)

• Does this help?

var fs = require("fs");
var total = 0
fs.readdir('.', function(err, filenames) {

if (err) throw err;
console.log("Number of Directory Entries:", filenames.length)
filenames.forEach(function (name) {

fs.stat(name, function(err, stats) {
if (err) throw err;
total += stats.size;

});
});

});
console.log("Total size:", total);

32
[file_total.js]

© Kenneth M. Anderson, 2016

Complexity (IV)

• The output for one of my directories is:

• Total size: 0
• Number of Directory Entries: 20

• The code to print the total is executed before readdir() and stat() have
had a chance to do their job.

• We need to wait until they are done before we can print out the result

• unfortunately, we don't know WHEN they will be done

• So, we need to develop an approach that keeps track of our global state
asynchronously and then print out the total after all files have been processed

• There’s only one problem: complexity! (Hello, complexity, my old friend.)

• For example, here’s one approach we can try… (next slide)

33

© Kenneth M. Anderson, 2016

Complexity (V)

34

Holy Wow!

Complexity
indeed!

[file_total_fixed1.js]

© Kenneth M. Anderson, 2016

Complexity (VI)

35

• The approach:
generate one
callback per file in
the array NOT ALL
AT ONCE (which is
what we did
before) but one
after the other

• Each callback
generates the next
callback

• End when all files
have been
processed.

© Kenneth M. Anderson, 2016

It works, but…

• So, this approach works

• that is, it calculates the correct answer and it’s asynchronous

• for instance, in a web application, we could kick off this code on a
directory and be processing other events (clicks, network I/O,
animation, web requests, etc.) while it finishes

• our application stays responsive even as it processes lots of events

• but it is hugely complex

• especially, if you compare this to synchronous code that does the same
thing (see file_total_sync.js for an example)

• The complexity of callbacks has a general purpose name: callback hell

• Let’s dig deeper into what this means

36

© Kenneth M. Anderson, 2016

The Pyramid of Doom

• One aspect of callback hell comes from the way callback code can look

• fs.readdir(…, function(err, result) {
• fs.stat(…, function(err, result) {

• fs.readFile(…, function(err, result) {
• …

• });
• });

• });

• Each new callback causes another level of indentation

• And this is typically the “success path”

• It gets more complicated if you want to handle errors!

• As the You Don’t Know Javascript book says: callback hell is more than this!

37

© Kenneth M. Anderson, 2016

Thinking in Terms of Now and Later (I)

• In this code snippet, assume that any function that takes a function treats that
function like a callback: it adds it to the event queue to execute later

• In what order do the following methods execute?

doA(function() {
doB();
doC(function() {
doD();

});
doE();

});
doF();

38

© Kenneth M. Anderson, 2016

Thinking in Terms of Now and Later (II)

doA(function() {
doB();
doC(function() {
doD();

});
doE();

});
doF();

• The answer?

• doA(); doF(); doB(); doC(); doE(); doD();

• The calls to A and F happen first; then the callback to A gets executed, calling
B, C, and E. Finally, the callback to C executes and D gets called

39

© Kenneth M. Anderson, 2016 40

© Kenneth M. Anderson, 2016 41

© Kenneth M. Anderson, 2016 42

© Kenneth M. Anderson, 2016 43

© Kenneth M. Anderson, 2016

Thinking in Terms of Now and Later (III)

• This inability to easily determine the order of execution is another aspect of
callback hell

• You have to always think clearly about what executes now and what
causes events to get added to the queue to execute later

• More insidious, sometimes the SAME function will execute a callback either
synchronously or asynchronously depending on the context! For example:

function foo(callback) {
if (globalVar > 50) {
process.nextTick(callback); // asynchronous

} else {
callback(); // synchronous

}
}

44

In both cases, your callback is called; but if your callback calls
foo() then you’re in trouble, especially in the synchronous case!

© Kenneth M. Anderson, 2016

Hardcoded Workflows

• We alluded to this problem on the Pyramid of Doom slide

• What happens if something goes wrong in your workflow?

doA(function() {
doB();
doC(function() {
doD();

});
doE();

});
doF();

• Consider what would happen if doB() failed? Who gets notified? doA() is
long gone. Should we try again? Who tries again? Should we stop the
whole program? What if we should doC() but only conditionally? What
happens if doE() fails in this case? Should we perform doC() again?

45What a mess!

© Kenneth M. Anderson, 2016

Issues of Trust

• The final aspect of callback hell concerns trust

• I’m calling foo() and passing it a callback

• In that case, I’m trusting that foo() will eventually call my callback

• If foo() is my own code, then I might have high confidence that this will

happen; but what if foo() was written by a third party?

• All sorts of problems might occur

• The callback is called too early; perhaps I’m still setting things up when the
callback arrives

• The callback is called too late; e.g., a stock price warning message

• The callback is never called; my code is stuck waiting and waiting

• An error occurred in foo() but the exception is not propagated

• foo() calls the callback with the wrong parameters, etc.

46

© Kenneth M. Anderson, 2016

How do we address callback hell?

• With a higher-level abstraction called promises

• And, I promise to tell you about promises in the next lecture

• :-)

47

