

SASS

i

About the Tutorial

SASS (Syntactically Awesome Stylesheet) is a CSS pre-processor, which helps to reduce

repetition with CSS and saves time. It is more stable and powerful CSS extension language

that describes the style of document structurally. This tutorial covers the basics of SASS.

Audience

This tutorial will help both students as well as professionals, who want to make their

websites or personal blogs more attractive.

Prerequisites

Before you proceed with this tutorial, we assume that you know:

 Basic word processing using any text editor.

 How to create directories and files.

 How to navigate through different directories.

 Internet browsing using popular browsers like Internet Explorer or Firefox.

 How to develop simple Web Pages using HTML or XHTML.

If you are new to HTML and XHTML, then we would suggest you to go through our HTML

Tutorial or XHTML Tutorial first.

Copyright & Disclaimer

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

SASS

ii

Table of Contents

About the Tutorial .. i
Audience ... i
Prerequisites ... i
Copyright & Disclaimer ... i
Table of Contents .. ii

1. SASS – Overview ... 1
What is SASS? .. 1
Why to Use SASS? .. 1
Features of SASS .. 1
Advantages of SASS ... 2
Disadvantages of SASS ... 2

2. SASS – Installation .. 3
Installation of Ruby .. 3

3. SASS – Syntax .. 11
SASS Indented Syntax .. 11
Syntax Differences of SASS .. 12
Multiline Selectors ... 12
Comments ... 14
@import .. 14
Mixin Directives ... 14
Deprecated Syntax .. 14

4. Using SASS .. 16
Rack/Rails/Merb Plugin ... 16
Caching .. 17
Options .. 17
Syntax Selection .. 19
Encodings... 19

5. SASS – CSS Extensions ... 20
SASS – Nested Rules .. 20
SASS – Referencing Parent Selectors ... 23
SASS – Nested Properties .. 25
SASS – Placeholder Selectors ... 26

6. SASS – Comments ... 29
Sass – Interpolation in Multiline Comments ... 31

7. SASS – Script ... 33
SASS – Interactive Shell ... 34
SASS – Variables .. 34
SASS – Data Types ... 36
Strings .. 36
Lists .. 38
Maps .. 39
Colors ... 39
SASS – Operations ... 39
SASS – Number Operations ... 40

SASS

iii

SASS – Color Operations .. 42
SASS – String Operations ... 44
SASS – Boolean Operations ... 45
SASS – Parentheses ... 47
SASS – Functions .. 49
SASS – Interpolation .. 51
SASS – & in SassScript .. 52
SASS – Variable Defaults .. 54

8. SASS – @-Rules and Directives .. 57
Sass – Import Directives .. 57
Sass – Media Directives ... 61
Sass – Extend Directives .. 63
Sass – At-root Directives .. 66
Sass – Debug Directives ... 69
Sass – Warn Directives .. 70
Sass – Error Directives ... 71

9. SASS – Control Directives & Expressions ... 73
SASS – if() Function .. 73
SASS – @if Directive .. 75
SASS – @if Directive .. 75
SASS – @else if Directive ... 77
SASS – @for Directive .. 79
SASS – through Keyword ... 79
SASS – to Keyword ... 81
SASS – @each Directive ... 83
SASS – @each Directive ... 84
SASS – @each Multiple Assignment .. 86
SASS – @each Multiple Assignment with Maps .. 88
SASS – @while Directive .. 90

10. SASS – Mixin Directives ... 92
Sass – Defining a Mixin .. 92
Sass – Including a Mixin ... 94
Sass – Mixin Arguments ... 96
Sass – Passing Content Blocks to a Mixin .. 99

11. SASS – Function Directives .. 102
Naming Conventions ... 103

12. SASS – Output Style .. 104
:nested ... 104
:expanded .. 104
:compact .. 105
:compressed .. 105

13. Extending SASS ... 106
Defining Custom SASS Functions ... 106
Cache Stores .. 106
Custom Importers .. 106

SASS

1

What is SASS?

SASS (Syntactically Awesome Stylesheet) is a CSS pre-processor, which helps to reduce

repetition with CSS and saves time. It is more stable and powerful CSS extension language

that describes the style of a document cleanly and structurally.

It was initially designed by Hampton Catlin and developed by Natalie Weizenbaum in

2006. Later, Weizenbaum and Chris Eppstein used its initial version to extend the Sass

with SassScript.

Why to Use SASS?

 It is a pre-processing language, which provides indented syntax (its own syntax)

for CSS.

 It provides some features, which are used for creating stylesheets that allows

writing code more efficiently and is easy to maintain.

 It is a super set of CSS, which means it contains all the features of CSS and is an

open source pre-processor, coded in Ruby.

 It provides the document style in a good, structured format than flat CSS. It uses

re-usable methods, logic statements and some of the built-in functions such as

color manipulation, mathematics and parameter lists.

Features of SASS

 It is more stable, powerful, and compatible with versions of CSS.

 It is a super set of CSS and is based on JavaScript.

 It is known as syntactic sugar for CSS, which means it makes easier way for user

to read or express the things more clearly.

 It uses its own syntax and compiles to readable CSS.

 You can easily write CSS in less code within less time.

 It is an open source pre-processor, which is interpreted into CSS.

1. SASS – Overview

SASS

2

Advantages of SASS

 It allows writing clean CSS in a programming construct.

 It helps in writing CSS quickly.

 It is a superset of CSS, which helps designers and developers work more efficiently

and quickly.

 As Sass is compatible with all versions of CSS, we can use any available CSS

libraries.

 It is possible to use nested syntax and useful functions such as color manipulation,

mathematics and other values.

Disadvantages of SASS

 It takes time for a developer to learn new features present in this pre-processor.

 If many people are working on the same site, then should use the same

preprocessor. Some people use Sass and some people use CSS to edit the files

directly. Therefore, it becomes difficult to work on the site.

 There are chances of losing benefits of browser's built-in element inspector.

SASS

3

In this chapter, we will learn the step-by-step procedure to install Ruby, which is used for

executing the SASS files.

System Requirements for SASS

 Operating System : Cross-platform

 Browser Support : IE (Internet Explorer 8+), Firefox, Google Chrome, Safari,

Opera

 Programming Language: Ruby

Installation of Ruby

Step(1): Open the link https://www.ruby-lang.org/en/downloads/, you will see a screen

as shown below:

2. SASS – Installation

https://www.ruby-lang.org/en/downloads/

SASS

4

Download the Current stable version of the zip file.

Step(2): Next, run the setup to install Ruby on the System.

Step(3): Next, add Ruby bin folder to your PATH User Variable and System Variable to

work with gem command.

SASS

5

Path User Variable:

 Right Click the My Computer icon.

 Select Properties.

 Next, click the Advanced tab and click Environment Variables.

In the Environment Variables window, double click the PATH as shown in the screenshot

given below-

SASS

6

You will get an Edit User Variable box as shown. Add ruby bin folder path in the Variable

value field as C:\Ruby\bin. If path is already set for other files, then put semicolon after

that and add the Ruby folder path as shown below.

 Click the OK button.

SASS

7

System Variable:

 Click the New button.

SASS

8

Next, the New System Variable block is displayed as shown below.

 Enter RubyOpt in the Variable name field and rubygems in the Variable value

field. After writing the Variable name and value, click the OK button.

Step(4): Open the command prompt in your system and enter the following line-

gem install sass

Step(5): Next, you will see the following screen after installing SASS successfully.

SASS

9

Example

Following is a simple example of SASS.

<html>

<head>

 <title> Import example of sass</title>

 <link rel="stylesheet" type="text/css" href="style.css"/>

</head>

<body>

 <h1>Simple Example</h1>

 <h3>Welcome to TutorialsPoint</h3>

</body>

</html>

Now, we will create file as style.scss, which is quite similar to CSS and the only one

difference is that it will be saved with .scss extension. Both, .htm and .scss files should be

created inside the folder ruby. You can save your .scss file in the folder ruby\lib\sass\

(Before this process, create a folder as sass in lib directory).

h1{

 color: #AF80ED;

}

h3{

 color: #DE5E85;

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

When you run the above command, it will create the style.css file automatically. Whenever

you change the SCSS file, the style.css file will be updated automatically.

SASS

10

The style.css file will have the following code when you run the above given command:

style.css

h1 {

 color: #AF80ED;

 }

h3 {

 color: #DE5E85;

 }

Let us carry out the following steps to see how the above given code works:

 Save the above given code in hello.html file.

 Open this HTML file in a browser.

SASS

11

In this chapter, we will study about SASS Syntax. SASS supports two syntaxes

namely- SCSS and Indented syntax.

 The SCSS (Sassy CSS) is an extension of CSS syntax. This means, every valid

CSS is a valid SCSS as well. SCSS makes, much easier to maintain, large

stylesheets and can recognize vendor specific syntax. Many CSS and .SCSS files

use the extension .scss.

 Indented - This is older syntax and sometimes just called as SASS. Using this

form of syntax, CSS can be written concisely. SASS files use the extension .sass.

SASS Indented Syntax

SASS Indented syntax or just SASS is an alternative to CSS based SCSS syntax.

 It uses indentation rather than { and } to delimit blocks.

 To separate statements, it uses newlines instead of semicolons(;).

 Property declaration and selectors must be placed on its own line and statements

within { and } must be placed on new line and indented.

For instance, consider the following SCSS code:

.myclass {

 color= red;

 font-size= 0.2em;

}

The indented syntax is an older syntax, which is not recommended for use in new Sass

files. If you use this file, it will display error in the CSS file as we have used = instead

of : for setting properties and variables.

Compile the above given code using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, run the above command; it will display an error in style.css file as shown below:

Error: Invalid CSS after " color= red": expected "{", was ";"

 on line 2 of C:\ruby\lib\sass\style17.scss

1: .myclass {

2: color= red;

3: font-size= 0.2em;

4: }

3. SASS – Syntax

SASS

12

Syntax Differences of SASS

Most CSS and SCSS syntaxes work perfectly in SASS. However, there are some

differences, which are explained in the following sections:

Property Syntax

CSS properties can be declared in two ways:

 Properties can be declared similar to CSS but without semicolon(;).

 colon(:) will be prefixed to every property name.

For instance, you can write as:

.myclass

 :color red

 :font-size 0.2em

Both the above ways (properties declaration without semicolon and colon prefixed to

property name) can be used, by default. However, only one property syntax is allowed to

specify when you use the :property_syntax option.

Multiline Selectors

In Indented syntax, selectors can be placed on a newline whenever they appear

after commas.

Example

The following example describes the use of multiline selectors in the SCSS file:

<html>

<head>

 <title>Multiline Selectors</title>

 <link rel="stylesheet" type="text/css" href="style.css" />

 <link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">

 <script
src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>

 <script
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></script>

</head>

<body>

 <h2>Example using Multiline Selectors</h2>

 <p class="class1">Welcome to Tutorialspoint!!!</p>

 <p class="class2">SASS stands for Syntactically Awesome Stylesheet...</p>

</body>

http://sass-lang.com/documentation/file.SASS_REFERENCE.html#property_syntax-option

SASS

13

</html>

Next, create file style.scss. Note the .scss extension.

style.scss

.class1,

.class2{

 color:red;

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above given command, it will create style.css file automatically with the

following code:

The generated style.css is as shown below:

style.css

.class1,

.class2 {

 color: red;

}

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in multiline_selectors.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

14

Comments

Comments take up an entire line and enclose all the text nested under them. They are

line-based in indented syntax. For more information about comments, refer this link.

@import

In SASS the @import directive can be written with/without quotes. Unlike in SCSS, they

must be used with quotes.

For instance, in SCSS the @import directive can be used as:

@import "themes/blackforest";

@import "style.sass";

This can be written in SASS as:

@import themes/blackforest

@import fontstyle.sass

Mixin Directives

SASS supports shorthand for directives like @mixin and @include. Instead

of @mixin and @include you can use = and + characters, which require less typing and

makes your code simpler, and easier to read.

For instance, you can write the mixin directives as:

=myclass

 font-size: 12px;

p

 +myclass

The above given code is the same as-

@mixin myclass

 font-size: 12px;

p

 @include myclass

Deprecated Syntax

SASS supports the use of some old syntax. However, using this syntax in SASS is not

recommended. Warning will be displayed if you use this syntax and it is removed in later

versions. Some of the old syntaxes are shown in the following table.

https://www.tutorialspoint.com/sass/sass_comments.htm

SASS

15

S. No. Operator & Description

1

=

It was used instead of : when setting variables and properties to values of

SassScript.

2
||=

It was used instead of : whenever you are assigning default value of a variable.

3

!

Instead of $, ! was used as variable prefix. Functionality will not be changed

when it is used instead of $.

SASS

16

SASS is more powerful and stable that provides power to the basic language by using

extension of CSS. You can use SASS in three different ways:

 As a command line tool

 As a Ruby module

 As a plugin for Rack enable framework

If you are using SASS on windows, then you need to install Ruby first. For more

information about installing Ruby, refer the SASS Installation chapter.

The following table shows the commands, which are used for executing the SASS code:

S. No. Command & Description

1
sass input.scss output.css

It is used to run the SASS code from the command line.

2

sass --watch input.scss:output.css

It informs SASS to watch the file and update the CSS whenever SASS file

changes.

3

sass --watch app/sass:public/stylesheets

It is used to watch the entire directory, if SASS contains many files in a

directory.

Rack/Rails/Merb Plugin

Rack is a web server interface, which is used for developing web applications in Ruby. For

information about Rack, just visit this link.

You can enable the SASS in the Rails 3 version using the environment.rb file present

under the config folder. Enable the SASS for the Rails 3 using the following code:

config.gem "sass"

You can use the following line to the Gemfile for the Rails 3(and above version), as:

gem "sass"

Rails is an open-source web framework that uses web standards such as JSON, HTML,

CSS and JavaScript for displaying user interface. To work with Rails, you need to have a

basic knowledge of Ruby and object-oriented programming. Learn more about on Rails

framework here.

If you want to enable the SASS in Rack application, add the following lines to the

config.ru file, which is present in the app's root directory:

4. Using SASS

https://www.tutorialspoint.com/sass/sass_installation.htm
http://rack.github.io/
http://www.tutorialspoint.com/ruby-on-rails/index.htm

SASS

17

require 'sass/plugin/rack'

use Sass::Plugin::Rack

Merb is a web application framework, which provides speed and modularity to Rails. To

know more about Merb, just open this link.

You can enable the SASS in Merb by adding the following line to

the config/dependencies.rb file:

dependency "merb-haml"

Caching

SASS caches documents such as templates and partials, which can be reused without

parsing them unless they have changed. It makes compilation of SASS files faster and

works even better when the templates are divided into separate files, which are all

imported into one large file. If you delete cached files, they will be generated again when

you compile next time.

Options

You can set the options in the environment.rb file of Rails or config.ru file of Rack

application by using the following line:

Sass::Plugin.options[:style] = :compact

You can also set options in the init.rb file of Merb by using the following line:

Merb::Plugin.config[:sass][:style] = :compact

There are some options available with SASS and SCSS as described in the table given

below:

S. No. Option & Description

1
:style

It displays style of the output.

2
:syntax

You can use indented syntax for sass and CSS extension syntax for scss.

3

:property_syntax

It uses indented syntax to make use of properties. If it is not correct, then it

will throw an error. For instance, consider "background: #F5F5F5" in

which background is a property name and #F5F5F5 is its property value. You

must use colon after the property name.

4
:cache

It speeds up compilation of SASS files. It is set to true by default.

5
:read_cache

It read only SASS files if cache is not set and read_cache is set.

https://web.archive.org/web/20081204002911/http:/merbivore.com/

SASS

18

6

:cache_store

It can be used to store and access the cached result by setting it to an instance

of Sass::CacheStores::Base.

7

:never_update

It should never update the CSS file if the template files changes. By default it

is set to false.

8
:always_update

It should update the CSS file whenever the template files changes.

9

:always_check

It should check for the updates whenever the server starts. It will recompile

and overwrite the CSS file, if there is an update in the SASS template file.

10

:poll

It uses polling backend for Sass::Plugin::Compiler#watch (which watches the

template and updation of CSS files) by setting it to true.

11

:full_exception

It displays the error description whenever an exception occurs in SASS code

within generated CSS file. It displays a line number where an error occurred

along with source in the CSS file.

12
:template_location

It provides the path for the template directory in the application.

13
:css_location

It provides the path for the CSS stylesheets in the application.

14
:unix_newlines

It provides Unix style newlines when writing files by setting it to true.

15
:filename

It is name of the filename being displayed and used for reporting errors.

16

:line

It specifies the first line of the SASS template and displays the line numbers

for errors.

17

:load_paths

It is used to load the paths for SASS template which are included

using @import directive.

18

:filesystem_importer

It is used to import files from file system that uses Sass::Importers::Base sub

class to handle string load paths.

19

:sourcemap

It generates source maps which instructs browser to find the SASS styles. It

uses three values:

 :auto: It contains relative URIs. If there is no relative URI, then uses

"file:" URI.

SASS

19

 :file: It uses "file:" URIs, which work locally, not on remote server.

 :inline: It contains source text in the source map which is used to

create large source map files.

20

:line_numbers

It displays the line number for errors reported in the CSS file by setting it to

true.

21
:trace_selectors

It helps to trace the selectors of imports and mixins when it is set to true.

22

:debug_info

It provides debug information of SASS file using line number and file when it

is set to true.

23
:custom

It makes data available to SASS functions in the separate applications.

24
:quiet

It disables the warnings by setting it to true.

Syntax Selection

You can determine which syntax you are using in the SASS template by using the SASS

command line tool. By default, SASS uses indented syntax, which is an alternative to CSS

based SCSS syntax. You can use the SCSS command line program, which is similar to the

SASS program, but by default, it considers the syntax to be SCSS.

Encodings

SASS uses the character encoding of stylesheets by specifying the following CSS

specifications:

 First, it checks for Unicode byte, next @charset declaration and then Ruby string

encoding.

 Next, if nothing is set, then it considers charset encoding as UTF-8.

 Determine character encoding explicitly by using @charset declaration. Just use

"@charset encoding name" at the beginning of the stylesheet and SASS will assume

that this is the given character encoding.

 If output file of SASS contains non-ASCII characters, then it will use

the @charset declaration.

https://www.tutorialspoint.com/sass/sass_syntax.htm

SASS

20

In this chapter, we will study about CSS Extensions. CSS Extensions can be used to

enhance the functionality of the web pages. The following table lists down some of the

CSS extensions used in SASS:

S. No. CSS Extension & Description

1
Nested Rules

It is a way of combining multiple CSS rules within one another.

2
Referencing Parent Selectors: &

It is the process of selecting parent selector by using the & character.

3

Nested Properties

It allows nesting of properties into other properties, which leads to grouping

of another related code.

4

Placeholder Selectors

Sass supports placeholder selector using class or id selector by making use

of @extend directive.

SASS – Nested Rules

Description

Nesting is combining of different logic structures. Using SASS, we can combine multiple

CSS rules within one another. If you are using multiple selectors, then you can use one

selector inside another to create compound selectors.

Example

The following example describes the use of nested rules in the SCSS file:

<html>

<head>

 <title>Nested Rules</title>

 <link rel="stylesheet" type="text/css" href="style.css" />

 <link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">

 <script
src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>

 <script
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></scr
ipt>

5. SASS – CSS Extensions

SASS

21

</head>

<body>

 <div class="container">

 <h1>My First Heading</h1>

 <p>It is a CSS pre-processor which helps to reduce repetition with CSS and
save the time. </p>

 <p>It is more stable and powerful CSS extension language.</p>

 <div class="box">

 <h1>My Second Heading</h1>

 <p>It is initially designeld by Hampton Catlin and developed by Natalie
Weizenbaum in 2006.</p>

 </div>

 </div>

</body>

</html>

Next, create file style.scss. Note the .scss extension.

style.scss

.container{

 h1{

 font-size: 25px;

 color:#E45456;

 }

 p{

 font-size: 25px;

 color:#3C7949;

 }

 .box{

 h1{

 font-size: 25px;

 color:#E45456;

 }

 p{

 font-size: 25px;

 color:#3C7949;

 }

 }

}

SASS

22

You can tell SASS to watch the file and update the CSS whenever SASS file changes by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command, it will create style.css file automatically with the

following code:

The generated style.css is as shown below:

style.css

.container h1 {

 font-size: 25px;

 color: #E45456;

}

.container p {

 font-size: 25px;

 color: #3C7949;

}

.container .box h1 {

 font-size: 25px;

 color: #E45456;

}

.container .box p {

 font-size: 25px;

 color: #3C7949;

}

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in nested_rules.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

23

SASS – Referencing Parent Selectors

Description

You can select the parent selector by using the & character. It tells where the parent

selector should be inserted.

Example

The following example describes the use of parent selectors in the SCSS file:

<html>

<head>

 <title>Referencing Parent Selectors</title>

 <link rel="stylesheet" type="text/css" href="style.css" />

 <link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">

 <script
src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>

 <script
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></script>

</head>

<body>

 <div class="container">

 <h1>Example using Parent Selector</h1>

 www.tutorialspoint.com

 </div>

</body>

</html>

SASS

24

Next, create the file style.scss. Note the use of & character, which specifies where the

parent selector should be inserted.

style.scss

a {

 font-size: 20px;

 &:hover { background-color: yellow; }

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

a {

 font-size: 20px;

}

a:hover {

 background-color: yellow;

}

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in parent_selectors.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

 Here & will be replaced with the parent selector a. When you hover on the link, it

will display background color as yellow.

SASS

25

SASS – Nested Properties

Description

Using nested properties, you can avoid rewriting CSS multiple times. For instance,

use font as namespace, which uses some properties such as font-family, font-size, font-

weight and font-variant. In normal CSS, you need to write these properties every time

with namespace. Using SASS, you can nest the properties by writing the namespace only

once.

Example

The following example describes the use of nested properties in the SCSS file:

<html>

<head>

 <title>Nested Properties</title>

 <link rel="stylesheet" type="text/css" href="style.css" />

 <link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script

>

 <script

src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></scr

ipt>

</head>

<body>

 <div class="container">

 <h1>Example using Nested Properties</h1>

 <p class="line">SASS stands for Syntactically Awesome Stylesheet</p>

 </div>

</body>

</html>

Next, create file style.scss.

style.scss

.line {

 font: {

 family: Lucida Sans Unicode;

 size:20px;

 weight: bold;

 variant: small-caps;

 }

}

SASS

26

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

.line {

 font-family: Lucida Sans Unicode;

 font-size: 20px;

 font-weight: bold;

 font-variant: small-caps;

}

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in nested_properties.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS – Placeholder Selectors

Description

SASS supports placeholder selector using class or id selector. In normal CSS, these are

specified with "#" or ".", but in SASS they are replaced with "%". To work with placeholder

selector, they can be used with @extend directive. Without using @extend directive, you

cannot display the result in CSS.

SASS

27

Example

The following example demonstrates the use of placeholder selectors in the SCSS file:

<html>

<head>

 <title>Placeholder Selectors</title>

 <link rel="stylesheet" type="text/css" href="style.css" />

 <link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">

 <script
src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>

 <script

src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></scr

ipt>l

</head>

<body>

 <h1>First Heading</h1>

 <p class="frst_para">It is a CSS pre-processor which helps to reduce

repetition with CSS and save the time. </p>

 <h1>Second Heading</h1>

 <p class="sec_para">It was initially designed by Hampton Catlin and

developed by Natalie Weizenbaum in 2006.</p>

</body>

</html>

Next, create file style.scss.

style.scss

.frst_para {

 color: green;

}

.sec_para {

 @extend .frst_para;

 font-size:20px;

}

Here, we have used the @extend directive, which allows one selector to inherit styles of

another selector. You can tell SASS to watch the file and update the CSS whenever Sass

file changes, by using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command; it will create the style.css file automatically with the

following code:

SASS

28

style.css

.frst_para, .sec_para {

 color: green;

}

.sec_para {

 font-size: 20px;

}

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in placeholder_selectors.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

29

In this chapter, we will study about Sass Comments. Comments are non-executable

statements, which are placed in source code. Comments make source code easier to

understand. SASS supports two types of comments.

 Multiline comments - These are written using /* and */. Multiline comments are

preserved in CSS output.

 Single line comments - These are written using // followed by comments. Single

line comments are not preserved in CSS output.

Example

The following example demonstrates the use of comments in the SCSS file:

<html>

<head>

 <title>SASS comments</title>

 <link rel="stylesheet" type="text/css" href="style.css"/>

</head>

<body>

 <h1>Welcome to TutorialsPoint</h1>

 TutorialsPoint

</body>

</html>

Next, create file style.scss.

style.scss

/* This comment is

 * more than one line long

 * since it uses the CSS comment syntax,

 * it will appear in the CSS output. */

body { color: black; }

// These comments are in single line

// They will not appear in the CSS output,

// since they use the single-line comment syntax.

a { color: blue; }

6. SASS – Comments

SASS

30

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

/* This comment is

 * more than one line long

 * since it uses the CSS comment syntax,

 * it will appear in the CSS output. */

body {

 color: black; }

a {

 color: blue; }

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in sass_comments.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

To study about interpolation within multiline comments, click this link.

https://www.tutorialspoint.com/sass/sass_comments_interpolation.htm

SASS

31

Sass – Interpolation in Multiline Comments

Description

Interpolation within the multiline comments are resolved in the resulting CSS. You can

specify variables or property names within the curly braces.

Syntax

$var : "value";

/* multiline comments #{$var} */

Example

The following example demonstrates the use of interpolation in multiline comments in the

SCSS file:

<html>

<head>

 <title>SASS comments</title>

 <link rel="stylesheet" type="text/css" href="style.css"/>

</head>

<body>

 <h1>Welcome to TutorialsPoint</h1>

 <p>This is an example for Interpolation in SASS.</p>

</body>

</html>

Next, create file style.scss.

style.scss

$version: "7.8";

/* Framework version for the generated CSS is #{$version}. */

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

/* Framework version for the generated CSS is 7.8. */

SASS

32

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in sass_comments_interpolation.htm file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

33

SASS uses a small set of extensions known as SassScript, which can be included in the

SASS documents to compute variables from property values and uses properties of

variables, arithmetic, and other functions. SassScript can also be used with selectors and

property names while using mixins (Mixins allows to re-use CSS styles throughout the

stylesheet).

The following table lists some of the CSS extensions used in SASS:

S. No. CSS Extension & Description

1
Interactive Shell

It evaluates SassScript expression using command line.

2

Variables

It represents the data such as numeric values, characters or memory

addresses.

3
DataTypes

It declares data type for every data object.

4

Operations

It provides operations such as number, color, string, boolean and list

operations.

5

Parentheses

It is pair of signs which are usually marked off by round brackets () or square

brackets [].

6
Functions

It supports for the use of functions by providing some keyword arguments.

7
Interpolation

It provides SassScript variables and property names using #{ } syntax.

8

& in SassScript

It allows nesting of properties into another properties which leads to group of

another related code.

9

Variable Defaults

It allows nesting of properties into another properties which leads to group of

another related code.

7. SASS – Script

SASS

34

SASS – Interactive Shell

Description

You can work easily with SassScript by using the interactive shell. You can run the shell

with the SASS command line along with the -i option.

Syntax

$ sass -i

Using the above command, let us write some expressions as shown below:

As you can see in the above image, we have used color codes which produces another

color code by adding them and adds the three numbers to display the total value of the

given numbers.

SASS – Variables

Description

Programmers use variables to represent data, such as numeric values, characters or

memory addresses. The importance of variables is, you can reuse the stored values in the

variable throughout the stylesheet.

Syntax

$variable_name : some value;

Variables are defined with dollar sign ($) and ends with semicolon (;).

Example

The following example demonstrates the use of variable in the SCSS file:

<html>

<head>

 <title>Variables</title>

 <link rel="stylesheet" type="text/css" href="style.css" />

 <link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">

SASS

35

 <script
src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>

 <script
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></script>

</head>

<body>

 <div class="container">

 <h1>Example using Variables</h1>

 <p>Sass is an extension of CSS that adds power and elegance to the basic
language.</p>

 </div>

</body>

</html>

Next, create file style.scss.

style.scss

$txtcolor:#008000;

$fontSize: 20px;

p{

 color:$txtcolor;

 font-size:$fontSize;

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

p {

 color: #008000;

 font-size: 20px;

}

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in variables.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

36

SASS – Data Types

Data Types

Data Type is a type of information, which requires declaring data type for every data

object. The following table shows various data types supported by SassScript:

S. No. Data Type & Description Example

1
Numbers

It represents integer types.

2, 10.5

2

Strings

It is sequence of characters defined within

single or double quotes.

'Tutorialspoint',

"Tutorialspoint"

3
Colors

It is used for defining color value.

red, #008000,

rgb(25,255,204)

4
Booleans

It returns true or false boolean types.

10 > 9 specifies true

5

Nulls

It specifies null value, which is unknown

data.

if(val==null) {//statements}

6

Space and Comma

Represents the values, which are

separated by spaces or commas.

1px solid #eeeeee, 0 0 0 1px

7
Mapping

It maps from one value to another value.

FirsyKey: frstvalue,

SecondKey: secvalue

Strings

Strings are series of characters, which are represented within single or double quotes. The

strings which are defined with single quote or double quotes will be displayed as unquoted

string value by using #{ } interpolation (it is a way of using variables in selectors).

SASS

37

Example

The following example demonstrates the use of strings in the SCSS file:

<html>

<head>

 <title>Strings</title>

 <link rel="stylesheet" type="text/css" href="style.css" />

 <link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script

>

 <script

src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></scr

ipt>

</head>

<body>

 <div class="container">

 <h2>Example using Strings</h2>

 <p class="tutorialspoint">Sass is an extension of CSS that adds power and

elegance to the basic language.</p>

 </div>

</body>

</html>

Next, create file style.scss.

style.scss

$name: "tutorialspoint";

p.#{$name} {

 color: blue;

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

SASS

38

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

p.tutorialspoint {

 color: blue;

}

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in strings.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

Lists

Lists specify multiple values, which are separated using spaces or commas. Even single

value are considered as a list.

SASS uses some of the list functions such as:

 nth function: It provides specific item of the list.

 join function: It joins multiple lists into one.

 append function: It appends the item to other end of the list.

 @each directive: It provides styles for the each item in the list.

For example, consider there are two types of list; the first list contains the following values

which are separated using comma.

10px 11px, 15px 16px

If the inner list and the outer list have same separator, then you can use parentheses to

specify where both the lists will start and stop. You can specify these lists as shown below:

{10px 11px} {15px 16px}

SASS

39

Maps

Maps are combination of keys and values in which keys are used to represent the values.

Maps define values into groups and can be accessed dynamically. You can write a map

expression as:

$map: (FirsyKey: frstvalue, SecondKey: secvalue, Thirdkey: thdvalue);

It uses some of the functions such as:

 map-get: It provides values of the map.

 map-merge: It adds values to the map.

 @each directive: It specifies styles for key/value pair in the map.

Maps represent empty key/value pairs as () with no elements and uses the inspect

($value) function to display the output for the maps.

Colors

It is used for defining SassScript color value. For instance, if you are using color code

as #ffa500, then it will display as orange color in the compressed mode. SASS provides

the same output format as typed in the other output modes, which becomes an invalid

syntax when a color is interpolated into a selector. To overcome this issue, use the color

names within quotes.

SASS – Operations

SASS provides some of the operations such as number operations, color operations, string

operations, Boolean operations and list operations. We will discuss these operations one

by one as described below.

S. No. Operation & Description

1

Number Operations

It allows mathematical operations such as addition, subtraction,

multiplication and division

2
Color Operations

It allows using color components along with the arithmetic operations.

3
String Operations

It uses + operation to concatenate strings.

4

Boolean Operations

You can perform Boolean operations on SASS script by

using and, or and not operators.

5

List Operations

Lists represent series of values, which are separated using commas or space.

For information about lists, see the lists section under data types section.

https://www.tutorialspoint.com/sass/datatypes.htm

SASS

40

SASS – Number Operations

Description

SASS allows for mathematical operations such as addition, subtraction, multiplication and

division. You cannot use incompatible units such as px * px or while adding number

with px and em leads to produce invalid CSS. Therefore, SASS will display an error if you

use invalid units in CSS. SASS supports relational operators like <, >, <=, >= and equality

operators = =, !=.

Division and /

SASS allows division operation (/) on numbers as we do in normal CSS. You can use

division (/) operation in three situations.

 If the value is stored in a variable or returned by function.

 If parentheses are outside the list and value is inside, the value will be surrounded

by parentheses.

 If value is a part of arithmetic expression.

Subtraction, Negative Numbers, and -

Using SASS, you can perform some operations such as subtraction of numbers (10px -

5px), negating a number (-5), unary negation operator (-$myval) or using identifier (font-

size). In some of the cases, these are useful like:

 you can use spaces both sides of - when performing subtraction of numbers

 you can use space before the - , but not after the negative number or a unary

negation

 you can enclose the unary negation within parentheses separated by space (5px (-

$myval))

Examples are-

 It can used in identifiers such as font-size and SASS allows only valid identifiers.

 It can be used with two numbers without space i.e. 10-5 is similar to 10 - 5.

 It can be used as beginning of a negative number (-5).

 It can be used without considering space such as 5 -$myval is similar to 5 - $myval.

 It can be used as unary negation operator (-$myval).

Example

The following example demonstrates the use of number operations in the SCSS file:

<html>

<head>

 <title>Number Operations</title>

 <link rel="stylesheet" type="text/css" href="style.css" />

SASS

41

 <link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">

 <script
src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>

 <script
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></script>

</head>

<body>

 <div class="container">

 <p class="para1">SASS stands for Syntactically Awesome Stylesheet..</p>

 <h2>Hello...Welcome to Sass</h2>

 <h3>Hello...Welcome to Sass</h3>

 <p class="para2">Hello...Welcome to Sass</p>

 </div>

</body>

</html>

Next, create file style.scss.

style.scss

$size: 25px;

h2{

 font-size: $size + 5;

}

h3{

 font-size: $size / 5;

}

.para1 {

 font-size: $size * 1.5;

}

.para2 {

 font-size: $size - 10;

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

SASS

42

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

h2 {
 font-size: 30px;
}
h3 {
 font-size: 5px;
}
.para1 {
 font-size: 37.5px;
}
.para2 {
 font-size: 15px;
}

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in number_operations.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS – Color Operations

Description

SASS allows using color components along with the arithmetic operations and any color

expression returns a SassScript color value.

Example

The following example demonstrates the use of color operations in the SCSS file:

<html>

<head>

 <title>Color Operations</title>

 <link rel="stylesheet" type="text/css" href="style.css" />

SASS

43

 <link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">

 <script
src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>

 <script
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></script>

</head>

<body>

 <div class="container">

 <h3>This is Example of Sass Color Operations</h3>

 <p>SASS stands for Syntactically Awesome Stylesheet..</p>

 </div>

</body>

</html>

Next, create file style.scss.

style.scss

$color1: #333399;

$color2: #CC3399;

p{

 color: $color1 + $color2;

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

p {

 color: #ff66ff;

}

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in color_operations.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

44

SASS – String Operations

Description

You can use + operation to concatenate strings (e.g. font-size: 5px+3px).

Example

The following example demonstrates the use of string operations in the SCSS file:

<html>

<head>

 <title>String Operations</title>

 <link rel="stylesheet" type="text/css" href="style.css" />

 <link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script

>

 <script

src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></scr

ipt>

</head>

<body>

 <div class="container">

 <h3>Example using Sass Strings Operations</h3>

 <p>SASS stands for Syntactically Awesome Stylesheet..</p>

 </div>

</body>

</html>

Next, create file style.scss.

SASS

45

style.scss

The following SCSS code is used to concatenate values, which increases the font size of

the <p> tag statements.

p {

 font-size: 5px + 10px;

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

p {

 font-size: 15px;

}

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in string_operations.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS – Boolean Operations

Description

You can perform Boolean operations on Sass script by using and, or and not operators.

SASS

46

Example

The following example demonstrates the use of Boolean operations in the SCSS file:

<html>

<head>

 <title>Boolean Operations</title>

 <link rel="stylesheet" type="text/css" href="style.css" />

 <link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">

 <script
src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>

 <script

src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></scr

ipt>

</head>

<body>

 <h3>Example using Boolean Operations</h3>

 <p class="bool">SASS stands for Syntactically Awesome Stylesheet..</p>

</body>

</html>

Next, create file style.scss.

style.scss

$age:20;

.bool {

 @if ($age > 10 and $age < 25) {

 color: green;

 }

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

.bool {

 color: green;

}

SASS

47

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in boolean_operations.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS – Parentheses

Description

Parentheses are a pair of signs, which are usually marked off by round brackets () or

square brackets [], providing symbolic logic that affect the order of operations.

Example

The following example demonstrates use of parentheses in the SCSS file:

<html>

<head>

 <title>String Operations</title>

 <link rel="stylesheet" type="text/css" href="style.css" />

 <link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">

 <script
src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>

 <script

src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></scr

ipt>

</head>

<body>

 <div class="container">

 <h2>Example using Sass Parentheses</h2>

 <p>SASS stands for Syntactically Awesome Stylesheet..</p>

SASS

48

 </div>

</body>

</html>

Next, create file style.scss.

style.scss

p {

 font-size: 5px + (6px * 2);

 color:#ff0000;

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command, it will create the style.css file automatically with the

following code:

style.css

p {

 font-size: 17px;

 color: #ff0000;

}

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in parentheses_example.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

49

SASS – Functions

Description

SASS supports the use of functions by providing some keyword arguments, which are

specified using normal CSS function syntax.

Syntax

p {

 color: hsl($hue: 0, $saturation: 50%, $lightness: 50%);

}

HSL stands for hue, saturation, and lightness, which are more intuitive for creating a set

of matching colors by using saturation and lightness.

 hue: It represents the degree of color such as 120 for red, 240 for green, 290 for

pastel violet etc.

 saturation: It is a percentage value that increases the saturation of color.

 lightness: It is a percentage value which decreases the lightness of color.

Example

The following example demonstrates the use of functions in the SCSS file:

<html>

<head>

 <title>Functions Example</title>

 <link rel="stylesheet" type="text/css" href="style.css" />

 <link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">

 <script
src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>

 <script
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></script>

</head>

<body>

 <div class="container">

 <h2>Example using Functions</h2>

 <p>SASS stands for Syntactically Awesome Stylesheet..</p>

 </div>

</body>

</html>

Next, create file style.scss.

SASS

50

style.scss

Use the following SCSS code, which defines the HSL function on the SASS code.

p {

 color: hsl(290,60%,70%);

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

p {

 color: #d185e0;

}

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in functions.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

51

SASS – Interpolation

Description

It provides SassScript variables in selectors and property names using #{ } syntax. You

can specify variables or property names within the curly braces.

Syntax

#{$name}

Where $name is the name of the variable or property name.

Example

The following example demonstrates the use of interpolation in the SCSS file:

<html>

<head>

 <title>Interpolation</title>

 <link rel="stylesheet" type="text/css" href="style.css" />

 <link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">

 <script
src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>

 <script
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></script>

</head>

<body>

 <div class="container">

 <h2>Example using Interpolation</h2>

 <p>SASS stands for Syntactically Awesome Stylesheet...</p>

 </div>

</body>

</html>

Next, create file style.scss.

style.scss

p:after {

 content: "I have #{8 + 2} books on SASS!";

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

SASS

52

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

p:after {

 content: "I have 10 books on SASS!";

}

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in interpolation.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS – & in SassScript

Description

You can select the parent selector by using the & character. It tells where the parent

selector should be inserted.

Syntax

a {

 &:hover { color: green; }

}

The & character will be replaced with the parent selector a and changes the link color to

green when you hover on the link.

SASS

53

Example

The following example demonstrates the use of & in the SCSS file:

<html>

<head>

 <title>& in SassScript</title>

 <link rel="stylesheet" type="text/css" href="style.css" />

 <link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script

>

 <script

src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></scr

ipt>

</head>

<body>

 <div class="container">

 <h2>Example using & in SassScript</h2>

 www.tutorialspoint.com

 </div>

</body>

</html>

Next, create file style.scss.

style.scss

a {

 font-size: 20px;

 &:hover { background-color: yellow;}

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

SASS

54

Next, execute the above command; it will create style.css file automatically with the

following code:

style.css

a {

 font-size: 20px;

}

a:hover {

 background-color: yellow;

}

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in &_SassScript.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS – Variable Defaults

Description

You can set the default values for variables by adding !default flag to the end of the

variable value. It will not re-assign the value, if it is already assigned to the variable.

Example

The following example demonstrates use of variable defaults in the SCSS file:

<html>

<head>

 <title>Variable Defaults</title>

 <link rel="stylesheet" type="text/css" href="style.css" />

SASS

55

 <link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">

 <script
src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>

 <script
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></scr
ipt>

</head>

<body>

 <div class="container">

 <h2>Example using Variable Defaults</h2>

 <p>Sass is an extension of CSS that adds power and elegance to the basic
language..</p>

 </div>

</body>

</html>

Next, create file style.scss.

style.scss

$myval1: null;

$myval1: "Sass Developed by Natalie Weizenbaum and Chris Eppstein" !default;

p:after {

 content: $myval1;

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

p:after {

 content: "Sass Developed by Natalie Weizenbaum and Chris Eppstein";

}

SASS

56

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in var_defaults.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

57

The following table lists all the rules and directives, which you can use in SASS.

S. No. Directives & Description

1
@import

It imports the SASS or SCSS files, it directly takes the filename to import.

2
@media

It sets the style rule to different media types.

3
@extend

@extend directive is used to share rules and relationships between selectors.

4

@at-root

@at-root directive is a collection of nested rules, which is able to make style

block at root of the document.

5

@debug

@debug directive detects the errors and displays the SassScript expression

values to the standard error output stream.

6

@warn

@warn directive is used to give cautionary advice about the problem; it

displays the SassScript expression values to the standard error output

stream.

7
@error

@error directive displays the SassScript expression value as fatal error.

Sass – Import Directives

Description

Import directives, imports the SASS or SCSS files. It directly takes the filename to import.

All the files which are imported in SASS will get combined in a single CSS file. There are

few things that are compiled to a CSS when we use @import rule:

 File extension .css

 Filename begins with http://

 Filename is url()

 @import consist any media queries.

8. SASS – @-Rules and Directives

SASS

58

For example, create one SASS file with the following code:

@import "style.css";

@import "http://tutorialspoint.com/bar";

@import url(style);

@import "style" screen;

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

The above code will be compiled to the CSS file as shown below:

@import url(style.css);

@import "http://tutorialspoint.com/bar";

@import url(style);

@import "style" screen;

Following are the ways to import files using @import rule:

Partials

Partials are SASS or SCSS files, which are written using underscore at the beginning of

the name (_partials.scss). The partial file name can be imported in SASS file without using

the underscore. SASS does not compile the CSS file. By using the underscore, it makes

SASS understand that it is partial and should not generate the CSS file.

Nested @import

The @import directive can be included inside the @media rules and CSS rules. The base

level file imports the content of the other imported file. The import rule is nested at the

same place as the first @import.

For instance, create one SASS file with the following code:

.container

{

background: #ffff;

}

Import the above file to the following SASS file as shown below-

h4 {

 @import "example";

}

SASS

59

The above code will be compiled to the CSS file as shown below:

h4 .container {

 background: #ffff; }

Syntax

Given below is a syntax, used to import files, in the SCSS file:

@import 'stylesheet'

Example

The following example demonstrates the use of @import in the SCSS file:

import.htm

<html>

<head>

 <title>Import example of sass</title>

 <link rel="stylesheet" type="text/css" href="style.css"/>

</head>

<body class="container">

 <h1>Example using Import</h1>

 <h4>Import the files in SASS</h4>

 Red

 Green

</body>

</html>

Next, create file _partial.scss.

_partial.scss

ul{

 margin: 0;

 padding: 1;

}

li{

 color: #680000;

}

Next, create file style.scss.

SASS

60

style.scss

@import "partial";
.container
{
background: #ffff;
}

h1
{
color: #77C1EF;
}

h4
{
color: #B98D25;
}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

ul {

 margin: 0;

 padding: 1; }

li {

 color: #680000; }

.container {

 background: #ffff; }

h1 {

 color: #77C1EF; }

h4 {

 color: #B98D25; }

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in import.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

61

Sass – Media Directives

Description

@media directive sets the style rule to different media types. @media directive can be

nested inside the selector SASS but it is bubbled up to the top level of the stylesheet.

Example

The following example demonstrates the use of @media in the SCSS file:

media.htm

<!doctype html>

<head>

 <title>Media directive Example</title>

 <link rel="stylesheet" href="media.css" type="text/css" />

</head>

<body class="container">

 <h2>Example using media directive</h2>

</body>

</html>

Next, create file media.scss.

SASS

62

media.scss

h2{

color: #77C1EF;

}

.style{

width: 900px;

@media screen and (orientation: portrait){

width:500px;

margin-left: 120px;

}

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\media.scss:media.css

Nex,t execute the above command; it will create the media.css file automatically with the

following code:

media.css

h2 {

 color: #77C1EF;

 }

.style {

 width: 900px;

 }

 @media screen and (orientation: portrait) {

 .style {

 width: 500px;

 margin-left: 120px;

 }

 }

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in media.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

63

Sass – Extend Directives

Description

The @extend directive is used to share rules and relationships between selectors. It can

extend all another class styles in one class and can also apply its own specific styles.

Following are the types of extend:

Types & Description Syntax Compiled code

Extending Complex

Selectors

It can extend the

selector, which consist

only a single element

or class selector.

 h2{
 font-size: 40px;
 }
 .container{
 @extend h2
 }

 h2, .container {
 font-size: 40px;
 }

Multiple Extends

More than one

selector can be

extended by a single

selector.

 .style{
 font-size: 25px;
 font-style: italic;
 }

 h2{
 color: #61C8E1;
 }

 .container{
 @extend .style;
 @extend h2
 }

 .style, .container {
 font-size: 25px;
 font-style: italic;
 }
 h2, .container {
 color: #61C8E1;
 }

SASS

64

Chaining Extends

The first selector

extended by second

selector and the

second selector is

extended by third

selector therefore this

is known as chaining

extends.

 .style{
 font-size: 25px;
 font-style: italic;
 }

 h2{
 color: #61C8E1;
 @extend .style
 }

 .container{
 @extend h2
 }

 .style, h2, .container {
 font-size: 25px;
 font-style: italic;
 }
 h2, .container {
 color: #61C8E1;
 }

Selector Sequences

The nested selector

can use @extendby

themselves.

Merging Selector

Sequences

It merges two

sequences i.e. one

sequence extend

another sequence that

is present in other

sequence.

 .style{
 font-size: 25px;
 font-style: italic;
 color: #61C8E1;
 }

 h2 .container {
 @extend .style
 }

 .container .style a {
 font-weight: bold;
 }
 #id .example {
 @extend a;
 }

 .style, h2 .container {
 font-size: 25px;
 font-style: italic;
 color: #61C8E1;
 }

 .container .style a,
.container .style #id
 .example, #id .container
.style .example {
 font-weight: bold;
 }

@extend - Only

Selectors

It percent

character(%) can be

used anywhere a id or

class, it prevents its

own ruleset from

being rendered to

CSS.

 .style a%extreme {
 font-size: 25px;
 font-style: italic;
 color: #61C8E1;
 }

 .container {
 @extend %extreme;
 }

 .style a.container {
 font-size: 25px;
 font-style: italic;
 color: #61C8E1;
 }

The !optional Flag

The !optional flag is

used to allow

the @extend for not to

create any new

selector.

 h2.important {
 @extend .style
!optional;
 }

 A blank compile page gets
display.

@extend in

Directives

If @extend is used

inside

the @media then it

can extend the

selectors only that are

present within the

same directive blocks.

 @media print {
 .style {
 font-size: 25px;
 font-style: italic;
 }
 .container {
 @extend .style;
 color: #61C8E1;
 }
 }

 @media print {
 .style, .container {
 font-size: 25px;
 font-style: italic;
 }
 .container {
 color: #61C8E1;
 }
 }

SASS

65

Example

The following example demonstrates the use of @extend in the SCSS file:

extend.htm

<!doctype html>

<head>

 <title>Extend Example</title>

 <link rel="stylesheet" href="extend.css" type="text/css" />

</head>

<body class="container">

 <h2>Example using Extend</h2>

 <p class="style">Lorem Ipsum is simply dummy text of the printing and

typesetting industry.</p>

</body>

</html>

Next, create file extend.scss.

extend.scss

.style{

 font-size: 30px;

 font-style: italic;

}

h2{

 color: #787878;

 @extend .style

}

.container{

 @extend h2

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\extend.scss:extend.css

SASS

66

Next, execute the above command, it will create extend.css file automatically with the

following code:

extend.css

.style, h2, .container {

 font-size: 30px;

 font-style: italic;

 }

h2, .container {

 color: #787878;

}

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in extend.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

Sass – At-root Directives

Description

The @at-root directive is a collection of nested rules, which is able to make the style block

at root of the document.

@at-root (without: ...) and @at-root (with: ...)

@at-root selector excludes the selector by default. By using @at-root, we can move the

style outside of nested directive.

SASS

67

For instance, create one SASS file with the following code:

@media print {

 .style {

 height: 8px;

 @at-root (without: media) {

 color: #808000;;

 }

 }

The above code will be compiled to the CSS file as shown below:

@media print {

 .style {

 height: 8px;

 }

 }

.style {

 color: #808000;

}

Example

The following example demonstrates the use of @at-root in the SCSS file:

atroot.htm

<!doctype html>

<head>

 <title>At-root Example</title>

 <link rel="stylesheet" href="atroot.css" type="text/css" />

</head>

<body class="container">

 <h2>Example using at-root</h2>

 <p class="style">Lorem Ipsum is simply dummy text of the printing and

typesetting industry.</p>

</body>

</html>

Next, create file atroot.scss.

SASS

68

atroot.scss

h2{

color: #808000;

background-color: #DB7093;

@at-root {

.style{

 font-size: 20px;

 font-style: bold;

 color: #B8860B;

 }

 }

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\atroot.scss:atroot.css

Next, execute the above command; it will create the atroot.css file automatically with the

following code:

atroot.css

h2 {

 color: #808000;

 background-color: #DB7093;

}

.style {

 font-size: 20px;

 font-style: bold;

 color: #B8860B;

}

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in atroot.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

69

Sass – Debug Directives

Description

The @debug directive detects the errors and displays the SassScript expression values to

the standard error output stream.

Example

Given below is the stylesheet file saved with extension .scss, which is similar to the css

file.

debug.scss

$font-sizes: 10px + 20px;

$style: (

 color: #bdc3c7

);

.container{

 @debug $style;

 @debug $font-sizes;

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\debug.scss:debug.css

When you run the above command, it will create the debug.css file automatically.

Whenever you change the SCSS file, the debug.css file will be updated automatically.

SASS

70

Output

Let us carry out the following steps to see how the above given code works and gives you

a debug error:

 Save the above given code in debug.scss file.

 Run the above-mentioned command line in the command prompt.

Sass – Warn Directives

Description

The @warn directive is used to give cautionary advice about the problem. It displays the

SassScript expression values to the standard error output stream.

Example

Given below is the stylesheet file saved with extension .scss which is similar as css file.

warn.scss

$main-color: #bdc3c7;

@warn "Darker: " darken($main-color, 30%);

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\warn.scss:warn.css

When you run the above command, it will create the warn.css file automatically. Whenever

you change the SCSS file, the warn.css file will be updated automatically.

Output

Let us carry out the following steps to see how the above given code works and gives a

warning :

 Save the above given code in warn.scss file.

 Run the above-mentioned command line in command prompt.

SASS

71

Sass – Error Directives

Description

The @error directive displays the SassScript expression value as fatal error.

Example

Given below is the stylesheet file saved with extension .scss, which is similar to the css

file.

warn.scss

$colors: (

 blue: #c0392b,

 black: #2980b9,

);

@function style-variation($style) {

 @if map-has-key($colors, $style) {

 @return map-get($colors, $style);

 }

 @error "Invalid color: '#{$style}'.";

}

.container {

 style: style-variation(white);

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes by

using below command:

sass --watch C:\ruby\lib\sass\warn.scss:warn.css

When you run the above command, it will create error.css file automatically. Whenever

you change the SCSS file, the error.css file will be updated automatically.

SASS

72

Output

Let us carry out the following steps to see how the above given code works and gives

errors :

 Save the above given code in error.scss file.

 Run the above-mentioned command line in command prompt.

SASS

73

In this chapter, we will study about Control Directives & Expressions. Styling based on

some conditions or applying the same style many times with variations can be

accomplished by using control directives and expressions, which are supported by

SassScript. These control directives are advanced options used mainly in mixins. They

require considerable flexibility, as they are a part of Compass libraries.

The following table lists the control directives and expressions used in SASS:

S. No. Control Directives & Expressions with Description

1

if()

Based on the condition, if() function returns only one result from two

possible outcomes.

2

@if

The @if directive accepts SassScript expressions and uses the nested styles

whenever the result of the expression is anything other than false or null.

3
@for

The @for directive allows you to generate styles in a loop.

4

@each

In @each directive, a variable is defined which contains the value of each

item in a list.

5

@while

It takes SassScript expressions and untill the statement evaluates to false it

iteratively outputs nested styles.

SASS – if() Function

Description

Based on the condition, this built-in if() function returns only one result from two possible

outcomes. The result of the function can be referred to the variable that may not be defined

or to have further calculations.

Syntax

if(expression, value1, value2)

9. SASS – Control Directives & Expressions

SASS

74

Example

The following example demonstrates the use of if() function in the SCSS file:

if_function.html

<html>

<head>

 <title>Control Directives & Expressions</title>

 <link rel="stylesheet" type="text/css" href="style.css"/>

</head>

<body>

 <h2>Welcome to TutorialsPoint</h2>

</body>

</html>

Next, create file style.scss.

style.scss

h2{

 color: if(1 + 1 == 2 , green , red);

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

h2 {

 color: green; }

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in if_function.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

75

SASS – @if Directive

Description

The @if directive is used to selectively execute the code statements based on the result of

evaluating an expression. The @if statements can be followed by several @else

if statements. Let us study them from the table given below-

S. No. Types & Description

1

@if

It accepts SassScript expressions and uses the nested styles whenever the

result of the expression is anything other than false or null.

2

@else if

It is used with the @if directive, whenever the @if statement fails then

the @else if statements are tried and if they also fails then the @else is

executed.

SASS – @if Directive

Description
The @if directive accepts the SassScript expressions and uses the nested styles whenever

the result of the expression is anything other than false or null.

Syntax

@if expression { //CSS codes are written here }

Example

The following example demonstrates the use of @if directive in the SCSS file:

<html>

<head>

SASS

76

 <title>Control Directives & Expressions</title>

 <link rel="stylesheet" type="text/css" href="style.css"/>

</head>

<body>

 <div class="container">

 <h2>Example for Control Directive & Expressions</h2>

 <p>SASS stands for Syntactically Awesome Stylesheet. </p>

 </div>

</body>

</html>

Next, create file style.scss.

style.scss

p{

 @if 10 + 10 == 20 { border: 1px dotted; }

 @if 7 < 2 { border: 2px solid; }

 @if null { border: 3px double; }

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

p {

 border: 1px dotted; }

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in @if_directive.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

77

SASS – @else if Directive

Description

The @else if statements are used with the @if directive. Whenever the @if statement fails

then the @else if statements are tried and if they also fail, then the @else is executed.

Syntax

@if expression {

 // CSS codes

} @else if condition {

 // CSS codes

} @else {

 // CSS codes

}

Example

The following example demonstrates the use of @else if directive:

<html>

<head>

 <title>Control Directives & Expressions</title>

 <link rel="stylesheet" type="text/css" href="style.css"/>

</head>

<body>

 <div class="container">

 <h1>Example for Control Directive & Expressions</h1>

 <p>SASS stands for Syntactically Awesome Stylesheet.</p>

 </div>

</body>

</html>

SASS

78

Next, create file style.scss.

style.scss

$type: audi;

p {

 @if $type == benz {

 color: red;

 } @else if $type == mahindra {

 color: blue;

 } @else if $type == audi {

 color: green;

 } @else {

 color: black;

 }

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

p {

 color: green; }

Output

Open this HTML file in a browser, an output is displayed as shown below:

 Save the above given html code in if_else_directive.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

79

SASS – @for Directive

Description

The @for directive allows you to generate styles in a loop. The counter variable is used to

set the output for each iteration.

The @for directive are of two types as shown in the table given below:

S. No. Keywords & Description

1

through

The @for uses the keyword through specifies the range including both the

values of <start> and <end>.

2

to

The @for uses to keyword specifies the range from <start> value to the

value before <end> value.

SASS – through Keyword

Description

The @for directive uses the keyword through which specifies the range including both the

values of <start> and <end>

Syntax

@for $var from <start> through <end>

SASS

80

The syntax is briefly explained below-

 $var: It represents the name of the variable like $i.

 <start> and <end>: These are SassScript expressions, which will return

integers. If the <start> is greater than <end> then the counter variable is

decremented and when <start> is lesser than <end> the counter variable will be

incremented.

Example

The following example demonstrates the use of @for directive with through keyword:

<html>

<head>

 <title>Control Directives & Expressions</title>

 <link rel="stylesheet" type="text/css" href="style.css"/>

</head>

<body>

 <p class="p1">This is first line.</p>

 <p class="p2">This is second line.</p>

 <p class="p3">This is third line.</p>

 <p class="p4">This is fourth line.</p>

</body>

</html>

Next, create file style.scss.

style.scss

@for $i from 1 through 4 {

 .p#{$i} { padding-left : $i * 10px; }

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

SASS

81

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

.p1 {

 padding-left: 10px; }

.p2 {

 padding-left: 20px; }

.p3 {

 padding-left: 30px; }

.p4 {

 padding-left: 40px; }

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in @for_through.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS – to Keyword

Description

The @for directive uses the keyword to which specifies the range from <start> value to

the value before <end> value.

SASS

82

Syntax

@for $var from <start> to <end>

The syntax is briefly explained below-

 $var: It represents the name of the variable like $i.

 <start> and <end>: These are SassScript expressions, which will return

integers. If the <start> is greater than <end> then the counter variable is

decremented and when <start> is lesser than <end> the counter variable will be

incremented.

Example

The following example demonstrates the use of @for directive with to keyword:

<html>

<head>

 <title>Control Directives & Expressions</title>

 <link rel="stylesheet" type="text/css" href="style.css"/>

</head>

<body>

 <p class="p1">This is line one.</p>

 <p class="p2">This is line two.</p>

 <p class="p3">This is line three.</p>

 <p class="p4">This is line four.</p>

</body>

</html>

Next, create file style.scss.

style.scss

@for $i from 1 to 4 {

 .p#{$i} { padding-left : $i * 10px; }

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

SASS

83

Next, execute the above command; it will create style.css file automatically with the

following code:

style.css

.p1 {

 padding-left: 10px; }

.p2 {

 padding-left: 20px; }

.p3 {

 padding-left: 30px; }

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in @for_to.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS – @each Directive

Description

SASS provides @each directive with multiple assignments and maps. We will discuss them

one by one from the following table.

S. No. Directive types & Description

1
@each

This variable contains the value of each item in a list.

SASS

84

2
Multiple assignments

Multiple values can also be used with @each directive.

3

Multiple assignments with maps.

Multiple assignment works well with maps and they are considered as lists

of pairs.

SASS – @each Directive

Description

In @each, a variable is defined which contains the value of each item in a list.

Syntax

@each $var in <list or map>

The syntax is briefly explained below-

 $var: It represents the name of the variable. @each rule sets $var to each item

in the list and outputs the styles using the value of $var.

 <list or map>: These are SassScript expressions, which will return a list or a map.

Example

The following example demonstrates the use of @each directive:

<html>

<head>

 <title>Control Directives & Expressions</title>

 <link rel="stylesheet" type="text/css" href="style.css"/>

</head>

<body>

 <p class="p_red">This is line one.</p>

 <p class="p_green">This is line two.</p>

 <p class="p_yellow">This is line three.</p>

 <p class="p_blue">This is line four.</p>

</body>

</html>

Next, create file style.scss.

SASS

85

style.scss

@each $color in red, green, yellow, blue {

 .p_#{$color} {

 background-color: #{$color};

 }

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

.p_red {

 background-color: red; }

.p_green {

 background-color: green; }

.p_yellow {

 background-color: yellow; }

.p_blue {

 background-color: blue; }

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in @each.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

86

SASS – @each Multiple Assignment

Description

Multiple values can also be used with @each directive like $var1, $var2, $var3, ... in

<list>.

Syntax

@each $var1, $var2, $var3 ... in <list>

The syntax is briefly explained below-

 $var1, $var2 and $var3: These represent the name of the variables.

 <list>: It represents list of lists, each variable will hold the element of the sub-

lists.

Example

The following example demonstrates the use of @each directive with multiple values:

<html>

<head>

 <title>Control Directives & Expressions</title>

 <link rel="stylesheet" type="text/css" href="style.css"/>

</head>

<body>

 <p class="aqua">This is line one.</p>

 <p class="red">This is line two.</p>

 <p class="green">This is line three.</p>

</body>

</html>

SASS

87

Next, create file style.scss.

style.scss

@each $color, $border in (aqua, dotted),

 (red, solid),

 (green, double){

 .#{$color} {

 background-color : $color;

 border: $border;

 }

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

.aqua {

 background-color: aqua;

 border: dotted; }

.red {

 background-color: red;

 border: solid; }

.green {

 background-color: green;

 border: double; }

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in @each_multiple.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

88

SASS – @each Multiple Assignment with Maps

Description

The multiple assignment works well with maps and they are considered as lists of pairs. If

you want to use the map, then you have to change @each statement and use multiple

assignments.

Syntax

@each $var1, $var2 in <map>

The syntax is briefly explained below-

 $var1, $var2: These represents the name of the variables.

 <map>: It represents lists of pair.

Example

The following example demonstrates the use of multiple assignment with maps:

<html>

<head>

 <title>Control Directives & Expressions</title>

 <link rel="stylesheet" type="text/css" href="style.css"/>

</head>

<body>

 <h1>Welcome to Tutorialspoint</p>

 <h2>Welcome to Tutorialspoint</p>

 <h3>Welcome to Tutorialspoint</p>

</body>

</html>

SASS

89

Next, create file style.scss.

style.scss

@each $header, $color in (h1: red, h2: green, h3: blue) {

 #{$header} {

 color: $color;

 }

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

h1 {

 color: red; }

h2 {

 color: green; }

h3 {

 color: blue; }

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in @each_multiple_map.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

90

SASS – @while Directive

Description

Just as other control directives, the @while directive also takes SassScript expressions and

until the statement evaluates to false, it iteratively outputs nested styles. The key thing

to note is that counter variable needs to be incremented/decremented on each iteration.

Syntax

while(condition) {

 // CSS codes

}

Example

The following example demonstrates the use of @while directive:

<html>

<head>

 <title>Control Directives & Expressions</title>

 <link rel="stylesheet" type="text/css" href="style.css"/>

</head>

<body>

 <p class="paddding-50">This is line one with left padding 50. </p>

 <p class="paddding-40">This is line two with left padding 40.</p>

 <p class="paddding-30">This is line three with left padding 30. </p>

 <p class="paddding-20">This is line four with left padding 20. </p>

 <p class="paddding-10">This is line five with left padding 10. </p>

</body>

</html>

Next, create file style.scss.

style.scss

$i: 50;

@while $i > 0 {

 .paddding-#{$i} { padding-left: 1px * $i; }

 $i: $i - 10;

}

SASS

91

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

.paddding-50 {

 padding-left: 50px; }

.paddding-40 {

 padding-left: 40px; }

.paddding-30 {

 padding-left: 30px; }

.paddding-20 {

 padding-left: 20px; }

.paddding-10 {

 padding-left: 10px; }

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in @while.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

92

Mixins allow creating a group of styles, which are reusable throughout your stylesheet

without any need to recreation of non-semantic classes. In CSS, the mixins can store

multiple values or parameters and call function; it helps to avoid writing repetitive codes.

Mixin names can use underscores and hyphens interchangeably. Following are the

directives present in Mixins-

S. No. Directives & Description

1
Defining a Mixin

@mixin directive is used to define the mixin.

2
Including a Mixin

@include directive is used to include the mixins in the document.

3

Arguments

The SassScript values can be taken as arguments in mixins, which is given

when mixin is included and available as variable within the mixin.

4
Passing Content Blocks to a Mixin

Block of styles are passed to the mixin.

Sass – Defining a Mixin

Description

The @mixin directive is used to define the mixins. It includes optionally the variables and

argument after the name of the mixin.

Example

The following example demonstrates the use of @mixin in the SCSS file:

sample.htm

<html>

<head>

 <title> Mixin example of sass</title>

 <link rel="stylesheet" type="text/css" href="sample.css"/>

</head>

<body>

<div class="cont">

 <h1>Example using include</h1>

10. SASS – Mixin Directives

SASS

93

 <h3>Directive is used to define the Mixins, it includes variables and argument
optionally.</h3>

</div>

</body>

</html>

Next, create file sample.scss.

sample.scss

@mixin style {

.cont{

 color: #77C1EF;

 }

}

@include style;

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\sample.scss:sample.css

Next, execute the above command; it will create the sample.css file automatically with the

following code:

sample.css

.cont {

 color: #77C1EF;

 }

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in sample.htm file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

94

Sass – Including a Mixin

Description

The @include directive is used to include the mixin in the document. The name of mixin is

taken and optional arguments are passed into it. The styles defined by the mixin can be

included into the current rule.

Example

The following example demonstrates the use of including a mixin in the SCSS file:

sample.htm

<html>

<head>

 <title> Mixin example of sass</title>

 <link rel="stylesheet" type="text/css" href="sample.css"/>

</head>

<body>

<div class="cont">

 <h2>Example using include</h2>

 <h3>Different Colors</h3>

 Red

 Green

 Blue

 </div>

</body>

</html>

SASS

95

Next, create file sample.scss.

sample.scss

@mixin style {

.cont{

 background-color: #77C1EF;

 color: #ffffff;

 }
h3 {
 color: #ffffff;
 }
}

@include style;

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\sample.scss:sample.css

Next, execute the above command; it will create sample.css file automatically with the

following code:

sample.css

.cont {

 background-color: #77C1EF;

 color: #ffffff;

 }

h3 {

 color: #ffffff;

 }

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in sample.htm file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

96

Sass – Mixin Arguments

Description

The SassScript values can be taken as arguments in mixins, which are passed when mixins

are included and are available as variable within the mixin. The argument is a name of a

variable, which is separated by comma while defining a mixin. There are two types of

arguments such as:

 Keyword Arguments

 Variable Arguments

Keyword Arguments

Explicit keyword argument can be used to include in mixins. The arguments, which are

named can be passed in any order and the default values of argument can be omitted.

For instance, create one SASS file with the following code:

@mixin bordered($color, $width: 2px) {

 color: #77C1EF;

 border: $width solid black;

 width: 450px;

}

.style {

 @include bordered($color:#77C1EF, $width: 2px);

}

SASS

97

The above code will be compiled to the CSS file as shown below:

.style {

 color: #77C1EF;

 border: 2px solid black;

 width: 450px;

 }

Variable Arguments

Variable argument is used to pass any number of arguments to mixin. It contains keyword

arguments passed to the function or mixin. Keyword arguments passed to the mixin can

be accessed using keywords($args) function which return values mapped to String.

For instance, create one SASS file with the following code:

@mixin colors($background) {

 background-color: $background;

}

$values: magenta, red, orange;

.container {

 @include colors($values...);

}

The above code will be compiled to the CSS file as shown below:

.container {

 background-color: magenta;

}

Example

The following example demonstrates the use of arguments in the SCSS file:

argument.htm

<html>

<head>

 <title> Mixin example of sass</title>

 <link rel="stylesheet" type="text/css" href="argument.css"/>

</head>

<body>

 <div class="style">

 <h1>Example using arguments</h1>

SASS

98

 <p>Different Colors</p>

 Red

 Green

 Blue

 </div>

</body>

</html>

Next, create file argument.scss.

argument.scss

@mixin bordered($width: 2px) {

 background-color: #77C1EF;

 border: $width solid black;

 width: 450px;

}

.style {

 @include bordered(2px);

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\argument.scss:argument.css

Next, execute the above command; it will create the argument.css file automatically with

the following code:

style.css

.style {

 background-color: #77C1EF;

 border: 2px solid black;

 width: 450px;

 }

SASS

99

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in argument.htm file.

 Open this HTML file in a browser, an output is displayed as shown below.

Sass – Passing Content Blocks to a Mixin

Description

Block of styles is passed to the mixin for the placement inside the styles.

In @content directive location, styles gets included into the mixin.

Variable Scope and Content Blocks

The block of content is evaluated in the scope, which is passed to a mixin where block is

defined.

Example

The following example demonstrates the use of passing content blocks to mixin in the

SCSS file:

pass_content.htm

<html>

<head>

 <title>Mixin example of sass</title>

 <link rel="stylesheet" type="text/css" href="sample.css"/>

SASS

100

</head>

<body>

<div class="block">

 <h1>Example using passing content blocks</h1>

 <p>Different Colors</p>

 Red

 Green

 Blue

</div>

</body>

</html>

Next, create file sample.scss.

sample.scss

@mixin element{

 @content;

}

@include element{

 .block{

 color: green;

 }

}

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\sample.scss:sample.css

Next, execute the above command; it will create the sample.css file automatically with the

following code:

sample.css

.block {

 color: green;

}

SASS

101

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in pass_content.scss file.

 Open this HTML file in a browser, an output is displayed as shown below.

SASS

102

In this chapter, we will study about Function Directives. In SASS, you can create your

own function and use them in your script context or can be used with any value. Functions

are called by using the function name and with any parameters.

Example

The following example demonstrates the use of function directive in the SCSS file:

function_directive.htm

<html>

<head>

 <title>Nested Rules</title>

 <link rel="stylesheet" type="text/css" href="style.css" />

 <link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">

 <script
src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>

 <script
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></scr
ipt>

</head>

<body>

 <div class="container" id="set_width">

 <h2>Example for Function directives</h2>

 <p>SASS stands for Syntactically Awesome Stylesheet. </p>

 </div>

</body>

</html>

Next, create file style.scss.

style.scss

$first-width: 5px;

$second-width: 5px;

@function adjust_width($n) {

 @return $n * $first-width + ($n - 1) * $second-width;

}

#set_width { padding-left: adjust_width(10); }

11. SASS – Function Directives

SASS

103

You can tell SASS to watch the file and update the CSS whenever SASS file changes, by

using the following command:

sass --watch C:\ruby\lib\sass\style.scss:style.css

Next, execute the above command; it will create the style.css file automatically with the

following code:

style.css

#set_width {

 padding-left: 95px; }

Output

Let us carry out the following steps to see how the above given code works:

 Save the above given html code in function_directive.html file.

 Open this HTML file in a browser, an output is displayed as shown below.

In the output, you can see that the left-padding is being applied.

Just like mixin, function can also access globally defined variables and can also accept

parameters. You should call the return value for the function by using @return. We can

call the SASS-defined functions by using keyword parameters.

Call the above function as shown below.

#set_width { padding-left: adjust_width($n: 10); }

Naming Conventions

To avoid naming conflicts, function names can be prefixed so that they can be easily

differentiated. Like mixins, variable arguments are also supported by user-defined

functions. Functions and other SASS identifiers can use underscores(_) and hyphens(-)

interchangeably.

For example, if a function is defined as adjust_width, it can be used as adjust-width,

and vice versa.

SASS

104

In this chapter, we will study about SASS Output Style. The CSS file that the SASS

generates consists of default CSS style, which reflects the structure of document. The

default CSS styling is good but might not be suitable for all situations; on other hand,

SASS supports many other styles.

It supports the following different output styles:

:nested

Nested style is default styling of SASS. This way of styling is very useful when you are

dealing with large CSS files. It makes the structure of the file more readable and can be

easily understood. Every property takes its own line and indentation of each rule is based

on how deeply it is nested.

For instance, we can nest the code in SASS file as shown below:

#first {

 background-color: #00FFFF;

 color: #C0C0C0; }

 #first p {

 width: 10em; }

.highlight {

 text-decoration: underline;

 font-size: 5em;

 background-color: #FFFF00; }

:expanded

In expanded type of CSS styling each property and rule has its own line. It takes more

space compared to the Nested CSS style. The Rules section consists of properties, which

are all intended within the rules, whereas rules does not follow any indentation.

For instance, we can expand the code in the SASS file as shown below:

#first {

 background-color: #00FFFF;

 color: #C0C0C0;

}

#first p {

 width: 10em;

12. SASS – Output Style

SASS

105

}

.highlight {

 text-decoration: underline;

 font-size: 5em;

 background-color: #FFFF00;

}

:compact

Compact CSS style competitively takes less space than Expanded and Nested. It focuses

mainly on selectors rather than its properties. Each selector takes up one line and its

properties are also placed in the same line. Nested rules are positioned next to each other

without a newline and the separate groups of rules will have new lines between them.

For instance, we can compact the code in the SASS file as shown below:

#first { background-color: #00FFFF; color: #C0C0C0; }

#first p { width: 10em; }

.highlight { text-decoration: underline; font-size: 5em; background-color:

#FFFF00; }

:compressed

Compressed CSS style takes the least amount of space compared to all other styles

discussed above. It provides whitespaces only to separate selectors and newline at the

end of the file. This way of styling is confusing and is not easily readable.

For instance, we can compress the code in SASS file as shown below:

#first{background-color:#00FFFF;color:#C0C0C0}#first
p{width:10em}.highlight{text-decoration:underline;font-size:5em;background-
color:#FFFF00}

SASS

106

You can extend the functionality of SASS to provide different types of features and

customizations for users. To make use of these features, user should have knowledge of

Ruby.

Defining Custom SASS Functions

You can define your own SASS functions while using Ruby API. You can add your custom

functions by adding them to Ruby methods as shown in the following code:

module Sass::Script::Functions

 def reverse(string)

 assert_type string, :String

 Sass::Script::Value::String.new(string.value.reverse)

 end

 declare :reverse, [:string]

end

In the code you could see, the Function, declare, specifies the argument names for the

function. If it fails then it will not accept any arguments even if the function is working and

it also takes arbitrary keyword arguments. You can get Ruby values by

using value accessor and access the color objects by using rgb, red, green, or blue.

Cache Stores

SASS stores cache of parsed documents, which can be reused without parsing again. SASS

uses :cache_location to write cache files on the file system. It makes compilation of

SASS files faster and if you delete cached files, they will be generated again when you

compile next time. You can define your own cache store by setting the

:cache_store option. This will write cache files on the file system or share cache files to

ruby processes or machines. SASS uses instance of subclass

of Sass::CacheStores::Base to store and retrieve cache results.

Custom Importers

SASS uses @import to import SCSS and SASS files and passes paths to @import rule to

find an appropriate path code for specified paths. SASS importers use file system for

loading the code and added to the load using database or different file naming scheme.

Single importer can take single file loading and can be placed in :load_paths array along

with the paths of file system. While using @import, SASS looks for loaded paths, which

import the path for the importer. When the path is found, the imported file is used. A user

can inherit the importers from Sass::Importers::Base.

13. Extending SASS

