

INTRODUCING VISUAL STUDIO 2010

DAVID CHAPPELL

MAY 2010

SPONSORED BY MICROSOFT

2

CONTENTS

Tools and Modern Software Development .. 3

Understanding Visual Studio 2010 .. 3

The Components of Visual Studio 2010 ... 4

A Closer Look at Team Foundation Server... 5

Work Item Tracking ... 7

Version Control .. 8

Build Management: Team Foundation Build .. 9

Reporting and Dashboards.. 9

Using Visual Studio 2010 ... 12

Managing Requirements ... 12

Architecting a Solution .. 13

Designing Code: UML Modeling .. 14

Controlling Code: Layer Diagrams ... 14

Understanding Code: Sequence Diagrams and More ... 15

Writing Code .. 16

Supporting Software Development ... 17

Supporting Database Development .. 18

Supporting Developer Testing and Debugging .. 19

Working with Project Information .. 20

Testing Code .. 20

Gathering Test Results and Diagnostic Data ... 21

A Tool for Testers: Microsoft Test Manager 2010 ... 23

Managing Test Lab VMs: Visual Studio Lab Management 2010 .. 24

Putting the Pieces Together: A Testing Scenario ... 25

Supporting Manual Testing ... 27

Supporting Automated Testing ... 28

Managing and Tracking a Project .. 30

Maintaining Code .. 32

Adopting Visual Studio 2010 ... 34

Deciding What to Buy .. 34

Migration: Getting There From Here ... 36

Conclusion ... 36

About the Author .. 36

3

TOOLS AND MODERN SOFTWARE DEVELOPMENT

For most people, the days of the lone developer are long gone. The great majority of software today is

created by teams. Given this reality, modern software development tools are used primarily by people

working together.

One approach to designing these tools is to create a separate tool for each part of the development

process. Everyone on the team might then agree to use a particular tool for versioning source code,

another for tracking bugs, and a third for managing tests. This approach can certainly work—it’s much

better than having no tools at all. But what happens when a developer needs to determine which test

found a particular bug in code that addresses a specific requirement? Or what if a project manager wants

to get a view of the project’s overall code quality over time, looking at bug counts, test progress, code

churn, and more? Answering these kinds of questions requires integration across the team’s tool set. Even

though each tool might be great at what it does, development with a set of disconnected tools has limits.

An alternative approach is to create an integrated set of development tools explicitly designed to work

together. While a particular member of this tool set might not have every feature found in a standalone

version of that tool, the connections between the tools let the team work more effectively. Answering

questions that span tools gets easier, as does handing off work between different team members. Since

the goal is to optimize the development process as a whole, this integrated approach can make the

process of creating software significantly more effective.

Achieving this is the goal of Visual Studio 2010. This latest release of Microsoft’s flagship development

environment aims at providing a unified set of tools for a variety of development needs. The intent is to

be useful in a range of situations, from a large development team spread across three continents to a solo

developer working on her own. It’s meant to be a modern foundation for what’s become known as

Application Lifecycle Management (ALM).

Visual Studio 2010 is the successor to both Visual Studio 2008 and Visual Studio Team System 2008.

(Microsoft chose to drop the “Team System” label with this release.) The product is large, and so it’s

available in several different configurations, each with a specific set of functionality. How those

configurations look and what’s in each one is described at the end of this paper. The goal now is to

describe Visual Studio 2010 as a whole, painting the big picture of what this technology family is and how

it can be used.

UNDERSTANDING VISUAL STUDIO 2010

Modern software development is anything but simple. Accordingly, the tools that support today’s

development teams have many moving parts, and Visual Studio 2010 is no exception. One way to get a

handle on this product family is to start with a broad look at the components and how they fit together.

Once we’ve done this, we can look more closely at the piece that ties everything else together: Team

Foundation Server.

4

THE COMPONENTS OF VISUAL STUDIO 2010

Visual Studio 2010 has several distinct parts. These parts can connect with one other, with other

Microsoft technologies, and with non-Microsoft technologies. Figure 1 shows the main Visual Studio 2010

components and some of the other technologies that are most often used with them.

Figure 1: The components of Visual Studio 2010 rely on Team Foundation Server to connect with each

other and with technologies from Microsoft, other vendors, and the open source world.

The main components of Visual Studio 2010 (shown in red) are the following:

 Visual Studio Team Foundation Server (TFS) 2010: As Figure 1 suggests, TFS is at the center of the

Visual Studio story today. Every other part of the product connects to TFS, which acts as a central

hub for information throughout the development process. It provides a place to store and

manage requirements and other information, version control for source code, build

management, bug tracking, test case management, reports based on this information, and more.

TFS also provides an application programming interface (API) that lets other software access its

services.

 The Visual Studio 2010 IDE: Millions of developers use this integrated development environment

(IDE) today, either on its own or with earlier versions of TFS. The tool allows creating, compiling,

and running code, along with support for testing and other development functions.

 Visual Studio Team Explorer 2010: This tool focuses on letting its users access information in TFS,

such as reports and build status. It can run on its own, as Figure 1 shows, or inside the Visual

Studio IDE.

5

 Visual Studio Team Explorer Everywhere 2010: While some development teams work solely in a

Visual Studio world, many don’t. Plenty of organizations build applications using both .NET and

Java, for example. To help developers using Eclipse-based IDEs work effectively with Visual Studio

2010, the product includes an Eclipse plug-in that allows connecting with TFS.

 Microsoft Test Manager (MTM) 2010: Testing is a critical part of software development. While

the Visual Studio IDE includes a range of testing support, it’s focused on testing done by people

with development skills. MTM focuses more on manual testing, providing a tool for generalist

testers rather than developers.

 Visual Studio Lab Management 2010: This component allows creating and managing virtual

machines (VMs) for a test lab. While it’s certainly possible to do testing on real physical

machines, using VMs can be simpler, faster, and cheaper. Lab Management is accessed through

Microsoft Test Manager 2010, and as Figure 1 shows, it’s implemented as part of TFS.

Other Microsoft technologies (shown in green in Figure 1) are also commonly used with Visual Studio

2010. They include the following:

 Expression Studio: This product suite includes tools such as Expression Blend to help designers

create user interfaces (UIs) for Silverlight and Windows Presentation Foundation (WPF)

applications. These interface definitions can be stored in TFS, then used by the Visual Studio IDE.

 Internet Explorer (or another Web browser): Using an aspect of TFS called Team Web Access,

people can access TFS through a Web browser. This allows making TFS information accessible to

a broad range of participants in the development process, including customers.

 SharePoint: Visual Studio 2010 lets a team create a SharePoint-based team project portal for

accessing information such as documentation, team calendars, and dashboards with TFS

information. As with Team Web Access, this lets people access information about the

development process without requiring them to install any component of Visual Studio 2010

itself.

 Microsoft Excel: Many project managers (and even some developers) use Excel to keep track of

progress. To help them do this, Visual Studio 2010 lets Excel directly access TFS. The product also

provides a range of Excel workbooks and reports for project managers and others to use in the

development process.

 Microsoft Project: Along with (or instead of) Excel, many project managers use Project. This tool

can also access TFS, allowing things such as creating Gantt charts based on requirements stored

in TFS.

A CLOSER LOOK AT TEAM FOUNDATION SERVER

TFS sits at the center of Visual Studio 2010, which makes it the place to start in understanding this product

family. In a fundamental sense, TFS is a database. In fact, TFS is built on SQL Server, and it can be

clustered for high availability. Yet while TFS does store lots of information, it also provides a variety of

useful functions using that data. Figure 2 shows a summary of what TFS contains.

6

Figure 2: Team Foundation Server provides work item tracking, version control, test case management,

lab management, build management, and the ability to create reports and dashboards.

As the figure shows, TFS has several parts:

 Work item tracking: The development process uses many different kinds of information:

requirements, tasks to be done, bugs, test cases, and more. TFS holds all of this information in

work items. Each work item is actually a record in the TFS database, and like database records,

work items can be related to one another in various ways. They can also be customized, letting

organizations create work items that fit their development process.

 Version control: A fundamental challenge in software development is keeping track of changes.

TFS version control manages updates to source code and other information used in the

development process.

 Test case management: Testing is a hugely important part of the development process. The goal

of this TFS component is to help developers and testers create, use, and manage their test cases

and test results. The section on testing later in this paper takes a look at what this aspect of TFS

provides.

 Lab management: As was shown in Figure 1, Visual Studio Lab Management 2010 is

implemented as part of TFS. This component is also described in more detail in the section on

testing later in this paper. (Lab Management was called out separately in Figure 1 because it’s

purchased independently from the rest of TFS, as described later.)

7

 Build management: Creating a runnable application from source code and the other artifacts a

development team creates can be remarkably complicated. And once an application has been

built from these various parts, it’s useful to run tests to verify the quality of the build. TFS build

management provides an automated mechanism for doing these things and more.

 Reports and dashboards: Whether a team is small or large, the development process creates a

mountain of information. The reports and SharePoint dashboards that TFS provides help the

people involved in that process understand and make sense out of this mass of data.

Figure 2 also shows one more component: process templates. To understand their role, think about how

teams work today. Many different development processes are in use, each with its defenders and

detractors. Some approaches, such as waterfall processes, place people in quite distinct roles: architect,

developer, tester, project manager, and more. Others, such as Scrum and other agile processes, define

multidisciplinary teams with each team member performing a range of functions. Visual Studio 2010 isn’t

expressly designed to support Scrum or waterfall development or any other particular process. Instead,

this tool family is meant to be useful with whatever development process a team is using.

Yet the set of work items, reports, and dashboards that a team would find useful varies across different

processes. TFS addresses this reality with process templates. Each process template defines things such as

specific work item types, reports, dashboards, and Excel workbooks. Organizations are free to create

process templates that match their own processes, and others are available from third parties. To make

life simpler, however, Visual Studio 2010 itself includes two process templates. They are:

 MSF for Agile Software Development, defining work items, reports, and more for an agile

development process.

 MSF for CMMI Process Improvement, defining work items, reports, and more intended to be

used in projects that need to record more information about the development process.

And don’t be confused: Even though both template names begin with “MSF”, neither one requires

adopting the Microsoft Solutions Framework. Along with these two, Microsoft also makes available a

downloadable process template for Scrum, today’s most popular agile process.

Having a broad sense of TFS is important. But understanding what TFS actually does requires more. The

next sections take a closer look at some of its components.

Work Item Tracking

Creating software requires keeping track of lots of information. What requirements must the software

meet? What tasks are remaining for the project, what’s the status of each one, and what are their relative

priorities? What test cases have been created, and what bugs have those tests found? And perhaps most

important, how are all of these individual pieces of information related to each other?

In Visual Studio 2010, all of this and more is done with work items. The exact set of work items available

for a particular project depends on which process template is used. Both the MSF for Agile Software

Development template and the MSF for CMMI Process Improvement template contain work items for

requirements (called “user stories” in the Agile template), tasks, test cases, and bugs, for example, but

8

each also adds a few more. For instance, the CMMI template adds work items for risks, reviews, and

change requests, all things that make sense for the development style this template supports.

Whatever work items are used, TFS allows linking them together in useful ways. For example, a

requirement work item can be linked to the task work items that spell out what must be done to

implement that requirement. It might also be linked to one or more test case work items that verify the

correctness of the requirement’s implementation. Each test case work item, in turn, can be linked to one

or more bug work item that this test has uncovered. Figure 3 illustrates this idea.

Figure 3: Work items can be linked together, letting team members and other project stakeholders

trace the connections among them.

To see why this is important, think about what happens when information about the development

process is not grouped together in a single place. Without this, answering important questions such as

how well-tested the software is gets hard. There’s no simple way to work out what tests have been run

against each requirement and what bugs are outstanding for each of those tests. With a unified approach,

answering these questions is straightforward: Each requirement is connected directly to its test cases,

their bugs, and more, as Figure 3 shows. Providing this kind of traceability is a fundamental reason why

unifying software development tools makes sense.

Work items can be created, examined, and modified using various tools. A project manager might choose

Excel, while a developer accesses work items from within the Visual Studio IDE. If the team decides to

allow it, even customers can access work items from a Web browser. This allows the people who are

paying for a project to check progress, file bugs, and otherwise participate in the development process.

Version Control

When multiple developers are working on the same code base, storing that code in a version control

system makes life significantly easier. Each developer can now check out the code she needs, work on it,

then check it back in. Conflicts with changes made by other developers are handled by the version control

system. This functionality is referred to by various names, including source code control and software

configuration management. Whatever it’s called, it’s an essential part of software development today.

Visual Studio 2010 provides this with TFS version control, a shared repository for source code and other

artifacts used in the development process. For example, both a developer writing source code with the

Visual Studio IDE and a designer using Expression Blend to create a XAML user interface file can store their

work in TFS version control. TFS also supports versioning of database schema, something that helps keep

code and the data it uses in sync with each other.

9

TFS version control allows branching and merging, letting different groups work on the same code, then

later combine their changes. And to make life easier for geographically distributed teams, developers in a

remote location with a slow network link can use a local TFS proxy server. This proxy server provides a

local cache for version-controlled information that gets regularly synced with the master copy in a central

TFS server.

Like most things in TFS, the information in version control can be accessed via reports and dashboards.

For example, a project manager can use these to see what has been checked in to version control by each

developer. This is more efficient for the project manager, and it also helps reduce the time developers

need to spend writing progress reports.

Build Management: Team Foundation Build

Throughout the life of a development project, a team will use the source code, database schemas, and

other information in TFS version control to build executable versions of the application. TFS supports this

using a technology called Team Foundation Build. Even though it’s considered part of TFS, Team

Foundation Build is typically installed on a separate machine from the other TFS components. Compiling

software, a key part of many build processes, is a resource-intensive task, and so moving it off of the main

TFS machine avoids slowing down everything else that this server does.

Build processes can be quite complex, with many steps. Once a build is complete, for example, Team

Foundation Build can run build verification tests (BVTs) to check the build’s quality. It can also deploy the

newly built software to specific machines, automatically making the code available to testers. To help

define these processes, Team Foundation Build allows specifying the steps in a build as a workflow

implemented using Windows Workflow Foundation. The product includes a wizard for visually laying out

the steps in a build process, a tool that’s meant to make it easier to create and modify complex builds.

And as usual with TFS, data about build processes and their results can be accessed via reports and

dashboards.

Team Foundation Build supports several approaches: manual builds on demand, scheduled builds (such as

nightly builds), and building whenever a change is checked into TFS version control. While frequent builds

are useful—running a build for each checked-in code change is the cornerstone of continuous

integration—what happens if a change breaks the build? If Team Foundation Build can’t complete the

build, no other developer or tester on this project can get a working executable until the error is

corrected. This can be a significant problem, since one developer making a single mistake can stop all

progress. To avoid this, Visual Studio 2010 can require gated check-in for some or all of a team’s

developers. With this option, changes submitted to version control undergo their own separate build

(including BVTs) to make sure they’re okay before the changes are committed. This significantly reduces

the chance that errors in these newly checked-in changes will break the main build.

Reporting and Dashboards

The three aspects of TFS described so far—work item tracking, version control, and build management—

create lots of data. The fourth aspect, reporting and dashboards, focuses on making this data available in

useful ways. Reports can be created using either Excel or SQL Server Reporting Services, and they can

present current or historical views of a development project. Dashboards, created using SharePoint,

10

provide a direct way to monitor a project’s status in various areas. For both, having all of the project’s

information available in one place allows a broad view, correlating data from different areas.

As with work items, exactly which reports and dashboards are available depends on the process template

a team uses. For example, the Agile template provides more than 30 reports, including Stories Overview,

Builds Status, Test Plan Progress, Bugs by Priority, and Bug Trends, all of which can help team members

see where the project stands. Figure 4 shows an example of the Stories Overview report viewed in the

Visual Studio 2010 IDE.

Figure 4: The Stories Overview report summarizes an agile team’s progress in addressing the project’s

user stories.

On the left in this report is a list of the project’s user stories (i.e., its requirements). For each one, the

report shows the work remaining to complete it, a summary of test results, and the number of

outstanding bugs. Notice how this report makes use of a range of information stored in TFS, including

work items containing requirements, the bugs associated with each one, test results, and more. The pane

on the right lists other available reports. It’s possible to customize these reports or create entirely new

reports using Excel or the Report Designer in SQL Server Reporting Services.

Reports can provide historical context, which makes them quite useful in understanding a project’s status.

If 90% of the project’s tests passed today, is that good? It’s impossible to know unless you can also see

what percentage of tests passed two weeks ago or two months ago. Because TFS maintains historical data

about a development project, then makes it accessible via reports, the people in charge of a project can

11

have a broader, more accurate view of its progress. And because TFS collects much of this data

automatically, keeping track of code check-ins, builds, and more, project managers need no longer harass

team members for status reports, then cut and paste the results.

Dashboards are created with SharePoint, and so they’re accessed through the team project portal. As

usual with SharePoint, a dashboard can be customized, letting team members display information from

outside the TFS world such as important upcoming events. Both the Agile and CMMI process templates

provide predefined dashboards, including Bugs, Build, Quality, Test, and Project. The templates also

include an option called My Dashboard, which gives each team member a customized view showing just

his tasks, his bugs, and other information that’s relevant solely to him. Figure 5 shows an example of the

Project dashboard for an agile development project.

Figure 5: The Project dashboard displays the task burndown, product backlog, recent check-ins and

builds, and other information about the current iteration of a development project.

This dashboard lets its user see several important metrics for the current iteration of an agile project,

including a burndown chart showing the team’s progress, the product backlog, the status of relevant work

items, and recent code check-ins and builds. Most of the information in this dashboard is drawn from TFS.

Much of it, including the status of project work items and recent check-ins/builds, is created

automatically. Because all of these aspects of the development process are handled in a unified server,

creating accurate, timely status displays is straightforward. This is one of the primary benefits of a unified

tool set like Visual Studio 2010.

12

USING VISUAL STUDIO 2010

Team Foundation Server and the other components of Visual Studio 2010 provide a great deal of

functionality. To understand what these tools offer, it’s useful to walk through each of the activities in a

typical development process: managing requirements; architecting a solution; developing code; testing

code; and managing and tracking the project. It’s also important to think about maintenance, which often

consumes more money than a project’s original development. This section looks at each of these areas,

highlighting some of the most important aspects of this product family.

MANAGING REQUIREMENTS

Requirements are the backbone of a software development project. They drive the design and

development, they determine what tests are done, and they’re fundamental to deciding when the

software is ready to ship. Given this central role, managing requirements effectively is important.

In Visual Studio 2010, requirements are stored as work items in TFS. The product doesn’t specify how

requirements should be gathered, however. One common solution is to record requirements using

Microsoft Word or another tool. Third party products, such as TeamSpec from TeamSolutions, provide

add-ins that allow requirements gathered in Word to be automatically synchronized with requirement

work items in TFS. Another option is to use SketchFlow, a tool included with Microsoft’s Expression

Blend, to create quick sketches of user interfaces. Because these interface prototypes let people see what

an application will look like, they can help in understanding a project’s requirements.

However they’re gathered, requirements stored in TFS can be used in several different ways. A primary

goal of Visual Studio 2010 is to provide requirements traceability, connecting requirements with other

aspects of development throughout a project’s life. As mentioned earlier, requirements can be connected

with other work items such as tasks and test cases to make this possible. These connections let team

members do things like determine which requirements don’t yet have test cases, figure out who’s

responsible for the tasks necessary to meet a given requirement, or decide what tests to work on today.

To work with requirements and the work items they’re connected to, the people on a development team

have a number of options. A developer might choose to use the Visual Studio IDE to see which bugs are

associated with a specific requirement. A tester can use Microsoft Test Manager to display the tests for

that requirement. A business analyst might prefer to see requirements via Excel, letting her list the tasks

associated with each one, as Figure 6 shows.

13

Figure 6: A business analyst might use Excel to work with requirements (user stories) and associated

tasks stored in TFS.

This example shows an Excel spreadsheet containing several requirements (user stories), their associated

tasks, owners, and other information. The analyst can modify these or create new ones directly in Excel,

then store her changes back to TFS. The point is that different people want to work with requirements

through different tools, and so Visual Studio 2010 allows them to be accessed in several different ways.

The overarching goal is to allow requirements traceability throughout the development lifecycle. By

associating requirements with tasks, testing, and other parts of the process, and by making this

information accessible through a variety of tools, Visual Studio 2010 aims at making it easier for teams to

build the right software.

ARCHITECTING A SOLUTION

Before writing any code, the people responsible for building a new application usually start by thinking

about its structure. What parts should the application have? What should each one do? And how should

those parts fit together? Once code actually exists, they ask more questions. What does this class look

like? What other classes is it related to? What’s the sequence of calls from this method?

All of these questions lend themselves to visual answers. In every case, creating diagrams that show

what’s going on can be the clearest path to understanding. Accordingly, Visual Studio 2010 contains tools

for creating and working with diagrams that address all of these questions.

14

These tools and the questions they address are sometimes lumped under the heading of “architecture”.

It’s equally useful to see them as ways to visualize solutions, leading to better understanding and stronger

designs. Whatever view one takes, visual tools can be useful. This section takes a look at what Visual

Studio 2010 provides in this area.

Designing Code: UML Modeling

One common way to think and talk about an application’s behavior is by using the Unified Modeling

Language (UML). To allow this, Visual Studio 2010 provides tools for application modeling with this

popular language. These tools support five of the most common UML diagrams: Class, Sequence, Use

Case, Activity, and Component.

Once they’re created, UML elements can be linked to work items in TFS. For example, an application

architect might create a use case diagram, then link that use case with a work item containing the specific

requirement this use case applies to. As usual, the requirement work item can then be linked with test

cases, tasks, and other TFS work items. This can make it easier for the architect and other members of the

development team to navigate more intelligently through the sea of information about this application

and the process used to create it.

Controlling Code: Layer Diagrams

Grouping related responsibilities into clearly defined parts of the code makes sense. One obvious example

of this is the division between user interface, business logic, and data in a multi-tier application. But these

sharply defined boundaries aren’t useful solely for design; enforcing them also makes code more

maintainable. Knowing that a change in, say, the user interface tier won’t affect the data tier eliminates

one more risk in making that change.

To help define and enforce these boundaries, Visual Studio 2010 provides layer diagrams. An architect or

developer can create a layer diagram, then associate different parts of the application with each layer by

dragging and dropping a project or class file into it. Figure 7 shows a simple example.

15

Figure 7: A layer diagram allows grouping code into layers, then enforcing rules about how the code in

those layers interacts.

This diagram defines three layers: Presentation, Business, and Data. Each layer contains specific chunks of

code, such as namespaces, classes, and methods. Dependencies across layer boundaries are constrained,

as the figure suggests. And just to be clear: The Presentation/Business/Data split shown here is a good

example, but the creator of a layer diagram is free to define any layering structure he likes. The tool isn’t

limited to this simple three-tier model.

These diagrams aren’t just pretty pictures. A layer diagram can be used to validate the rules it contains,

making sure that code conforms to the diagram’s constraints. It’s even possible to make this validation

automatic, such as by using gated check-in to prevent checking in code that violates the layer constraints.

The goal is to help maintain the application’s original design, making maintenance easier and cheaper by

preventing the architectural drift that can occur over time.

Understanding Code: Sequence Diagrams and More

Along with the tools just described, Visual Studio 2010 contains a few more options for working with code

visually. For example, a developer can generate a UML Sequence diagram for any C# or Visual Basic (VB)

method directly from source code in the Visual Studio IDE. This diagram shows what methods are called,

what methods each of those methods calls, and so on, to a depth specified by the developer. These

diagrams can be helpful for understanding what the code is doing and for finding ways to optimize that

code.

Visual Studio 2010 also contains a Class Designer that can create a UML Class diagram directly from code,

and vice-versa. Changes to the class diagram are reflected in the code, while changes to the code are

reflected back to the diagram. The goal is to help developers more easily work with and understand an

application’s class structure.

16

Finally, Visual Studio 2010 contains the Architecture Explorer. As its name suggests, this tool lets a

developer explore an existing .NET code base visually. While it’s useful in various scenarios—imagine

getting a new team member up to speed, for example—it’s probably most useful during maintenance,

and so it’s described later in this paper.

Creating useful tools for architecture, visualization, and design isn’t easy—different people want different

things. (In fact, the graphical designers for modeling applications, systems, and deployment that were in

Visual Studio Team System 2008 Architecture Edition have been removed in Visual Studio 2010.) The tools

described here are meant to be practically useful, helping everybody on a development team create and

understand their code more easily.

WRITING CODE

Once requirements have been gathered and at least some design has been done, it’s time to start writing

code. Visual Studio was originally created more than a decade ago to support this part of the

development process, and it’s still a critical aspect of what the tool family provides.

Like every IDE, Visual Studio 2010 provides a graphical interface for developers. Figure 8 shows a simple

example.

Figure 8: The Visual Studio 2010 IDE lets developers write, compile, execute, and test code.

17

 As the figure suggests, the tool provides what a modern developer expects from an IDE, including a

straightforward mechanism for managing code and configuration files, along with the ability to show

different parts of the code in different colors. The Visual Studio 2010 IDE also supports using multiple

monitors, with different parts of the interface shown on different screens.

This same user interface can be used to write code in any of the languages provided with Visual Studio

2010, including:

 C# and Visual Basic, languages with different syntaxes but very similar functionality. Both

produce managed code, i.e., code based on the .NET Framework’s Common Language Runtime

(CLR).

 F#, a Microsoft-created language supporting functional and object-oriented programming. It also

produces managed code.

 C++, which can produce both managed and unmanaged (i.e., native) code. Many projects in

many organizations use C++, and Visual Studio 2010 contains various enhancements aimed

expressly at C++ developers.

 JScript.NET, Microsoft’s extended version of ECMA-262 (commonly known as JavaScript). This

language produces managed code, but Visual Studio 2010 also supports creating standard

JavaScript that runs in any Web browser.

Developers can also add other languages to the Visual Studio IDE. Microsoft provides IronPython and

IronRuby, for example, CLR-based versions of Python and Ruby. Other vendors offer languages as well,

such as COBOL from Micro Focus.

Whatever language a developer chooses, he creates a project to contain his work. Visual Studio 2010

provides a range of built-in project types, including projects for creating a WPF application, a Windows

Service, a Class Library, various kinds of ASP.NET applications, test projects, modeling projects, and many

more. One or more projects of different types can be combined to create a solution. For example, a

solution might contain a project for an ASP.NET application containing code, a modeling project with UML

diagrams describing that application, and a test project with tests for that application.

Supporting Software Development

Visual Studio 2010 allows developers to create applications for various versions of the .NET Framework,

an ability that Microsoft calls multi-targeting. It also provides toolkits (with their own project types and

more) for building software on various Windows-based platforms. They include the following:

 Microsoft Visual Studio 2010 SharePoint Developer Tools for customizing SharePoint sites or

creating wholly new applications built on SharePoint.

 Office Developer Tools for creating applications that use or extend Excel, Word, PowerPoint,

InfoPath, Outlook, Project, or Visio.

 Windows Azure Tools for Visual Studio, helping developers create cloud-based applications for

the Windows Azure platform.

18

Developers can also download other software that runs inside the Visual Studio 2010 IDE, such as

development tools for Windows Phone 7. Along with these toolkits, Visual Studio 2010 includes a number

of specialized designers for working with various technologies, regardless of the application type that’s

being created. Here are a few examples:

 The WPF and Silverlight Designer, a graphical tool for creating and working with XAML user

interfaces.

 The Workflow Designer for creating applications that use Windows Workflow Foundation.

 The XML Schema Designer, a graphical tool for working with XML schemas defined in XSD.

 The Object Relational (O/R) Designer, a graphical tool for creating a LINQ to SQL object model

mapping for SQL Server data.

 The HTML Designer, a graphical tool for creating and working with HTML documents.

Visual Studio 2010 supports other aspects of modern software development as well. For example, as

multi-core machines become ubiquitous, writing code that exploits this processing power becomes

essential. To help developers do this, the Visual Studio 2010 IDE provides parallel computing libraries and

debugging options for creating parallel applications.

Writing code, the most basic aspect of software development, can be hard. Writing good code is even

harder, and so Visual Studio 2010 provides a number of additional features to help developers improve

their code. Among them are these:

 Support for refactoring, which allows improving the structure, readability, and quality of code

without changing what that code does.

 Static code analysis, which examines code for compliance with the Microsoft .NET Framework

Design Guidelines or other custom-defined rules. For example, this analysis can help warn

developers when they’ve left security holes that allow SQL injection attacks and other threats.

 Dynamic code analysis, including performance profiling and code coverage. Performance profiling

lets a developer see how a running application (including parallel applications) divides its time

across its methods, track the application’s memory usage, and more. Code coverage shows what

parts of an application’s code were executed by a specific test, allowing the developer to see

what’s not being tested.

 Code metrics, a set of measurements calculated by Visual Studio 2010. They include simple things

like the number of lines of code, along with more complex metrics such as cyclomatic complexity

and a maintainability index. Since complex code is both harder to maintain and more likely to

contain errors, having an objective measure of complexity is useful.

Supporting Database Development

Software development is more than just writing application code. Working with a database is also an

important part of most projects. As always, tools can make this work easier.

19

The Visual Studio 2010 IDE allows creating database projects for working with SQL Server, much like the

projects used for Windows applications. The tool also includes project types for creating applications that

use the SQL CLR. And to help developers create databases and the code that uses them, the Visual Studio

IDE includes visual designers for tables, queries, views, and other aspects of database development.

Like any other projects, these database projects can use the source code control and build management

functions provided by TFS. For instance, a database project can help manage changes to a database’s

schema by putting it under version control. Visual Studio 2010 also provides support for tracking

dependencies between database objects, refactoring database objects, database deployment, and other

aspects of database change management.

Supporting Developer Testing and Debugging

Along with writing code, every developer does testing and debugging. It’s common today, for example, for

a developer to create unit tests for the code she writes. Each unit test runs against a specific component,

such as a method, verifying one or more assumptions about the behavior of that component. Unit tests

are commonly automated, which lets a group of unit tests be run easily whenever changes are made. (In

fact, the build verification tests run by Team Foundation Build are most often unit tests.) To support this,

Visual Studio 2010 provides a unit testing framework. It’s also possible to use other unit testing

frameworks with Visual Studio 2010, such as NUnit, although much of the integration with the rest of this

product family is lost.

As just described, many applications also rely on logic embedded in a database, such as triggers and

stored procedures. Like code running outside the database, this logic can benefit from unit tests. To help

do this, Visual Studio 2010 provides support for creating database unit tests. The product also includes

data generators to help create realistic test data for a database or to sanitize existing data by removing

sensitive or private information.

Visual Studio 2010 provides other support for testing by developers as well. For example, it’s increasingly

common to write tests before all the code those tests will exercise has been written. Doing this typically

requires generating stubs, something that Visual Studio 2010 can do automatically with an option called

Generate from Usage. A developer can ask the tool to generate a stub for a class, method, field, or other

identifier, making it easier to use a test-first development style.

An essential part of creating good code is having effective tools for debugging. The Visual Studio 2010 IDE

includes a debugger, of course, but the product also provides a technology called IntelliTrace. Using this

option, it’s possible to create a trace of an application either during testing (as described later) or by

running the application directly from the Visual Studio IDE. This trace provides a series of very detailed

snapshots of the running application that the developer can load into the debugger, then use to replay its

execution. It’s even possible to move back and forth in the running application, getting a detailed look at

exactly what’s happening throughout. The goal is to provide a clear view into the code as it runs, making it

easier to identify what’s wrong.

A developer can also get other information about his code while it’s being tested. For example, he can

determine which tests need to be run to verify changes he’s made, something known as test impact

analysis. Rather than running a complete test suite after every change, this knowledge lets the developer

run just those tests that cover the code he’s modified.

20

Working with Project Information

The information TFS holds about a project—requirements, tasks, bugs, and everything else—needs to be

accessible by every member of the development team, regardless of the tools they use. To let developers

work with this information in a natural way, Team Explorer can run inside the Visual Studio 2010 IDE.

Figure 9 shows an example of how this looks.

Figure 9: Using Team Explorer from inside the Visual Studio 2010 IDE lets developers work with

requirements, tasks, bugs, and other TFS information.

In this example, current requirements (user stories) are shown at the top, along with the tasks associated

with each one. User story 7 has been selected, and so its details are shown below: who it’s assigned to,

the state it’s in, and other information. The pane in the upper right shows other TFS data that the

developer can access under headings such as “My Bugs”, “My Tasks”, and “My Test Cases”. The goal is to

provide a useful window into the diverse information available in TFS about this development project.

TESTING CODE

Testing is an essential part of the development process. There’s lots to do and plenty of information to

keep track of. Some tests, such as unit tests, are typically created by developers. Yet much of testing is

done by dedicated testers. Testing is a discipline in its own right, and testers play a critical role in most

development teams.

21

Some testers are essentially developers who focus on testing. In many cases, the tests these developers

create are automated, making it easy to run them over and over as code changes. Yet while automated

testing is important, it’s not always the right solution. Writing test code costs money, so a test that’s run

infrequently might not be worth automating. (In fact, seeing a positive return on the investment in

creating an automated test suite might take years.) And what if the application is changing frequently?

Constantly rewriting automated tests to match volatile code might not be worthwhile.

Given these realities, manual testing—exercising an application through its user interface—will always

remain an important part of the story. Besides, really testing the user experience is hard to do with

automated tests. Manual testing is often more effective at finding the bugs that bother users the most.

Providing solid support for both automated and manual testing is a primary goal of Visual Studio 2010. In

both cases, effective test tools can make the job easier and more efficient. In Visual Studio 2010, these

tools include the following:

 Ways to gather the results of running tests, including diagnostic data to help determine the cause

of failures.

 A tool for creating and managing test plans.

 Software for creating, configuring, and deploying virtual machines for use in a test environment.

 Support for manual testing, including things such as the ability to record and automatically play

back a manual test.

 Support for automated testing, including load tests.

All of this technology can be used together, or pieces can be used on their own. Whatever approach an

organization chooses, the place to begin understanding this world is with the basics: how test results and

diagnostic data are gathered.

Gathering Test Results and Diagnostic Data

The most fundamental aspect of testing is running a test, then getting the results. This can seem

mundane, but it’s not. Determining when a test has failed might be straightforward, but what information

should the tester provide to the developer to help fix the bug this test has discovered? Just indicating that

the test failed isn’t enough—the developer might not even believe the tester, especially if the developer

can’t reproduce the bug on his own machine. What’s needed is a way for the tester to supply enough

information for the developer to understand the bug, then figure out and fix the underlying problem.

To do this, the test environment needs to provide mechanisms for gathering a range of information about

the application under test. Visual Studio 2010 does this with diagnostic data adapters (DDAs). Figure 10

shows how they fit into the test environment.

22

Figure 10: When running a test from the Visual Studio IDE or Microsoft Test Manager, a tester can rely

on one or more diagnostic data adapters to collect data about that test.

As the figure shows, a test might be run either from the Visual Studio 2010 IDE or from Microsoft Test

Manager (step 1). Here, the test is sent to a test controller which then sends it to a test agent running on

the same machine as the application under test. As Figure 10 shows, this application is monitored by one

or more DDAs while it’s being tested. The diagnostic data those DDAs produce and the test results are

returned to the tester (step 2).

 Each DDA collects a specific kind of information, and the tester can select which DDAs are used for a

particular test. Some examples of DDAs provided with Visual Studio 2010 are the following:

 Action Recording: Produces a recording containing all of the steps executed in a manual test. This

log can be played back to re-run the test or used in other ways.

 ASP.NET Profiler: Provides profiling data for ASP.NET applications, such as a count of how much

time was spent in each method.

 Event Log: Collects information written to event logs during the test. It can be configured to

collect only specific event logs and event types.

 IntelliTrace: Creates a detailed trace of the application’s execution. As described earlier, a

developer can use this trace to replay the execution of a test in the Visual Studio 2010 IDE’s

debugger, providing a window into exactly what was happening when a bug appeared.

 Test Impact: Keeps track of which methods in the application were invoked by a test case. This

DDA provides the raw material for the test impact analysis described earlier

 Code Coverage: Provides statistics about what percentage of the code was covered by one or

more tests. As its name suggests, it provides the base information used by the code coverage

option described earlier.

 System Information: Provides a description of the machine on which the test is run, including its

CPU, memory, installed patches, and more.

 Video Recorder: Records a video of a computer’s desktop on which a test is being run.

Different DDAs make sense for testing different parts of an application. For example, the Video Recording

DDA makes sense when testing an application’s user interface, while the ASP.NET Profiler (obviously) is

useful while testing ASP.NET code on a server. Other DDAs, such as IntelliTrace, Code Coverage, and Test

Impact, make sense for testing business logic in general, and System Information should probably be

23

turned on for every test. If the options supplied with Visual Studio 2010 aren’t sufficient, it’s also possible

to create custom DDAs. In fact, a variety of DDAs are available from third parties, including options for

non-Windows environments.

Whatever DDAs are used, the goal is the same: providing enough data about a bug so that a developer

can resolve the issue. Rather than having testers find bugs in the test environment, then have developers

be unable to reproduce those bugs, the detailed information collected by test agents and DDAs can be

filed with the bug report in TFS. Providing this fine-grained data significantly increases the likelihood of a

developer recreating and fixing a bug the first time it’s found by a tester.

A Tool for Testers: Microsoft Test Manager 2010

Running tests from the Visual Studio IDE is fine for development-oriented testers. For many testers,

however, a developer tool isn’t the best option. To support these people, Visual Studio 2010 includes

Microsoft Test Manager (MTM). This tool is designed explicitly for testers, especially those who don’t

need to edit code. One obvious indication of this is the MTM user interface: It’s not based on the Visual

Studio IDE. Instead, the tool provides its own interface focused explicitly on the tasks it supports. Figure

11 shows an example.

Figure 11: Microsoft Test Manager 2010 is designed expressly for testing—it's not a development tool.

MTM supports two distinct activities. One is acting as the client for Visual Studio Lab Management 2010,

described in the next section. The other, unsurprisingly, is managing and running tests. Toward this end,

MTM lets a tester define and work with test plans. A test plan consists of one or more test suites, each of

which contains some number of automated and/or manual test cases. A test plan can also specify the

24

exact configuration that should be used for the tests it contains, such as specific versions of Windows and

SQL Server. All of this information is stored in TFS using the Test Case Management functions mentioned

earlier.

Test suites can be used in various ways. For example, each of an application’s requirements (or user

stories) might have its own test suite aimed at testing just code that addresses that requirement. In Figure

11, for instance, the highlighted requirement is associated with the test suite shown on the right.

MTM also lets a tester examine the output created by running tests. These results are associated with a

specific test plan, allowing the output from all the test cases in that plan to be grouped together. And

once again, this information is stored in TFS, making it available to the development team and other

interested parties.

Managing Test Lab VMs: Visual Studio Lab Management 2010

Testing software requires machines on which to run that software. Those machines must replicate as

closely as possible the eventual production environment. Traditionally, testers have done their best to

replicate this environment with the physical machines on hand. While this approach can work, it’s often

simpler and cheaper to use virtual machines instead. VMs are easier to create and to configure into

exactly what’s required. Think about testing a multi-tier application, for example, where the user

interface, business logic, and database all run on separate machines. Realistic tests for this application

require three machines, something that’s usually easier to do with VMs.

To help organizations create and manage VM-based test labs, Visual Studio 2010 includes Visual Studio

Lab Management. This software is accessed via MTM’s Lab Manager activity, as Figure 12 shows.

Figure 12: Visual Studio Lab Management 2010 allows creating and managing a VM-based test and

development lab.

As the figure shows, Lab Management relies on System Center Virtual Machine Manager (VMM) 2008,

which is included with this part of the product. VMM allows defining templates for virtual machines, then

creating multiple Hyper-V-based VMs from a single template. Using Lab Management, a tester can create

templates for each of the hardware and software configurations an application must run in, then create

VMs from these templates as needed. A template might be pre-configured to contain the software a

particular application depends on, such as SQL Server or Internet Information Services (IIS). It might also

be configured to contain a test agent, making VMs created from it easier for a tester to use.

25

Putting the Pieces Together: A Testing Scenario

To see how all of these parts can be used together, it’s useful to walk through a scenario. Figure 13 shows

the first steps.

Figure 13: A tester can use Lab Management to create VMs for testing an application, then define a test

plan for that application with Test Case Management.

This example begins with a tester using the Lab Manager activity in MTM to request new VMs from Visual

Studio Lab Management (step 1). The templates used to create those VMs are pre-configured to contain a

test agent, which means they’re ready to be used for testing. The software being tested is a Web

application, so three separate VMs are created, one for each tier of the application. Next, the tester uses

MTM to create a test plan, storing it in TFS Test Case Management (step 2). Once the test plan is ready,

testing can begin. Figure 14 illustrates this part of the process.

26

Figure 14: Once a new build is deployed, a tester can run test cases from MTM, then access the results

and DDA-generated diagnostic data produced by those tests.

Since the goal is to test a specific build of the application, that build must first be created and deployed

(step 1). As the figure suggests, Team Foundation Build can deploy a new build to the VM-based test

environment as part of an automated build process. The tester can then use MTM to run test cases from

the test plan (step 2) against this build. Each test is sent to a test controller, which distributes it to the test

agents. These test agents run each test, using appropriate DDAs to gather diagnostic data (step 3). As

described earlier, different DDAs are probably used in each of the three VMs, since each is testing a

different part of the application. The Video Recording DDA might be used in the VM running the

application’s user interface, for example, the IntelliTrace, Code Coverage, and Test Impact DDAs might be

used in the VM running the middle -tier business logic, and just the Event Log DDA might be used in the

VM running the database. When the tests are completed, the test results and diagnostic data are sent

back to TFS via the test controller (step 4). The tester can now use MTM to access and examine this

information (step 5).

When a bug is found, the tester can submit a report directly from MTM. A description of the issue,

together with whatever diagnostic data the tester chooses, is stored in TFS for a developer to use. When

Lab Management is used, as in this example, it’s even possible for a tester to submit a bug report that

links to a snapshot of the VM in which the bug was detected. Because the bug report contains so much

supporting information, the developer responsible for the code being tested is significantly more likely to

believe that the bug is real. Just as important, that developer will have what she needs to find and fix the

underlying problem.

In this scenario, the tests run in step 2 might be either manual or automated. Both testing styles are

important, and so Visual Studio 2010 provides support for both. The next sections look at each approach,

beginning with manual testing.

27

Supporting Manual Testing

Manual testing, where someone sits at a screen exercising an application, is an inescapable part of

software quality assurance. This kind of testing might be done in an exploratory fashion, or it might

require the tester to follow a rigidly specified set of test scripts. In either case, a large part of an

application’s tests are often manual.

A primary purpose of Microsoft Test Manager is to support manual testing. Along with the user interface

shown earlier for test management, MTM also provides an interface for running manual tests. Sometimes

referred to as Test Runner, an example of this interface is shown in Figure 15.

Figure 15: Microsoft Test Manager, shown docked to the left of the application under test, provides a

user interface for running manual tests.

The UI of the application under test is shown on the right, allowing the tester to interact with it. The pane

on the left lists the steps in the manual test currently being performed. The green circles in this pane

mean that the tester has marked this step as successful. A red circle appears at step 6, however,

indicating that the tester believes this step has failed. The tester can now file a bug report directly from

Test Runner. And because manual tests use the Visual Studio 2010 testing infrastructure described earlier,

any of the diagnostic data provided by the DDAs, including IntelliTrace, can be included with this bug

report.

28

Some DDAs are especially useful with manual tests. The Action Recording DDA, for instance, creates a log

of the actions performed in a test. This action log contains everything the tester actually did, including

details such as mouse hovers. This fine-grained information lets a developer see exactly what steps the

tester went through and so can be quite useful in replicating the bug. The action log can be included as

part of a bug report, perhaps accompanied by a video of the tester’s screen.

An action log can also be used sometime later by the tester to automatically step through just part of the

test. This option, referred to as fast forward for manual testing, lets a tester (or a developer) move quickly

to a later part of the test rather than laboriously working through every step to get where she needs to

be. For example, a tester who wishes to test an application’s behavior deep into a series of screens can

rely on this facility to zip quickly through the navigation required to get there.

Supporting Automated Testing

While manual tests are important, automated testing—software that tests other software—is also useful.

Automated tests can only be created with the Visual Studio IDE—they can’t be created using MTM. They

can be run in various ways, however: from the IDE, from MTM, or by Team Foundation Build as part of the

build process.

Because there are a variety of things to be tested, Visual Studio 2010 has built-in support for several types

of automated tests. Figure 16 illustrates some of the most important options.

Figure 16: Visual Studio 2010 supports several kinds of automated tests.

The kinds of automated tests supported by Visual Studio 2010 include the following:

 Unit tests: As described earlier, a unit test verifies specific behavior in a particular component of

an application. Unit tests are typically created by the developer who writes the code being

tested.

 Database unit tests: These are unit tests aimed specifically at aspects of an application’s

database, such as a stored procedure. They’re also typically created by developers.

29

 Web performance tests: An effective way to test the functionality of a Web application is to send

HTTP requests directly to the application’s business logic. This is exactly what Web performance

tests do. Typically built by testers, these tests can be defined manually using Visual Studio 2010’s

Web Test Editor, or (more likely) created automatically by using the product’s Web Test Recorder

to record HTTP requests made from a browser.

 Coded user interface (UI) tests: Sometimes referred to as UI test automation, a coded UI test is

software that executes actions directly against an application’s user interface, then verifies that

the correct behavior occurs. Coded UI tests are typically created by a tester recording the manual

actions she takes against an application’s UI, then letting Visual Studio 2010 generate code to

replicate those actions. The product also provides support for validating a test’s result, such as

checking that a particular text box in the UI should contain a specific value.

There’s one more important category of automated testing to describe: load tests. A load test is intended

to simulate how an application performs when it has many users, and it’s typically composed of a group of

Web performance tests. Figure 17 illustrates how Visual Studio 2010 provides load testing.

Figure 17: In load testing, multiple test agents submit Web performance tests against an application's

business logic, simulating the behavior of many simultaneous users.

As the figure shows, load testing relies on a test controller and one or more test agents, each of which

runs on its own physical machine. The controller parcels out Web performance tests among the test

agents. Every test agent then submits its tests to the application. The result helps the tester understand

how this application will behave under the load created by many users.

To simulate large numbers of users, an organization can buy one or more copies of the Visual Studio Load

Test Virtual User Pack 2010. Installed on the test controller, as Figure 17 shows, each pack represents

1,000 virtual users. If a load test needs to see how an application behaves with 3,000 users, for example,

the tester needs to install three Load Test Virtual User Packs.

30

Whether it’s manual or automated, testing is a critically important part of creating applications. By

providing a common foundation for both that provides lots of information about bugs, Visual Studio 2010

aims at improving the quality of applications. Not incidentally, it also aims at improving the lives of the

people who test those applications.

MANAGING AND TRACKING A PROJECT

Whatever stage a project is in, the people involved need to know what’s going on. Perhaps a project

manager is concerned with keeping the work on schedule, or maybe the project is using Scrum, with the

ScrumMaster playing a coordinating role on a self-organizing team. Whatever the situation, the people

involved must manage and track the work. As already described, Visual Studio 2010 provides reports,

dashboards, and more aimed at doing this. It’s worth taking a closer look at two specific areas, however:

the beginning of a project and its end.

Pretty much every project (and every iteration) starts with planning. Plans are typically based on

requirements, which are stored in TFS. A project manager might use Microsoft Project to read those

requirements directly from work items. She can then use this tool to plan a schedule for the effort, as

Figure 18 shows.

Figure 18: Microsoft Project can read work items such as requirements and tasks directly from TFS, then

let a project manager construct a schedule.

31

The project manager can use familiar techniques, such as the Gantt chart shown here, to plan the

project’s schedule, with the requirements and tasks drawn directly from TFS. For project managers who

prefer Excel, Visual Studio 2010 provides other options. For example, the Agile process template includes

an Excel workbook designed expressly for planning an agile project and the iterations (sprints) within that

project. As always, the information this workbook uses is synchronized with TFS.

Projects start, and projects eventually end. Assuming a project ends successfully, the software must be

handed over to the customer. But when is it ready to ship? How can a team know when it’s time to

release their work? One obvious metric is fulfilling enough of the project’s requirements, but another is

quality, something that’s harder to judge accurately. To help with this, both the Agile and CMMI process

templates provide a Quality dashboard that presents relevant information from TFS. Figure 19 shows an

example.

Figure 19: The Quality dashboard gives a view into several quality-related metrics for a project.

This dashboard provides a window into important metrics for project quality over a specific period, such

as the previous month. Those metrics include the following:

 Test Plan Progress: Shows the team’s progress in running test cases defined in test plans created

with Microsoft Test Manager.

32

 Build Status: Shows the number of builds that succeeded or failed.

 Bug Progress: Shows the number of bugs, broken down by status: Active, Resolved, or Closed.

Shippable code quality needn’t mean zero bugs, but a continually rising count of active bugs

doesn’t bode well for quality.

 Bug Reactivations: Shows how many bugs that were previously marked as Resolved or Closed

have been reactivated. If this number is rising, the quality of the team’s bug fixes probably isn’t

very high.

 Code Coverage: Shows the percentage of code tested by build verification tests and others.

 Code Churn: Illustrates how many lines of code were added, deleted, and changed in check-ins to

TFS version control. This is another useful quality measure, since the total should be heading

down as a project nears its end.

Using this dashboard, project managers, ScrumMasters, and others—even the customer—can better

understand the team’s progress. Rather than seeing individual bits of data in isolation, they can see the

totality of a project’s state and thus make better decisions. This information can also help in determining

when the product they’re building is ready to ship. Different projects have different standards: A team

building a community Web portal probably has a lower quality bar than, say, one building an online

ordering system for a major retailer. Yet whatever the group’s risk tolerance, they need data to make a

good decision. The Quality dashboard is one example of how Visual Studio 2010 provides this information.

MAINTAINING CODE

Releasing the results of a development project doesn’t mean that there’s no work left to be done. If the

software that’s been created has any value, it will stick around for a while, and it’s bound to require

changes. Maybe the people who use it have ideas for improvement, or perhaps the business process it’s

part of needs to change in some way. Whatever the reason, applications require maintenance.

To a great degree, the tools used for development are also appropriate for maintenance. Still, there are

unique challenges that show up in this part of an application’s lifecycle. For example, the people who do

maintenance work often aren’t the original developers. A fundamental challenge for these people is to

understand the application’s code base. The conventional way to do this is by brute force: just sit down

and read the code. Yet understanding the complicated interactions and dependencies in even a

moderately sized code base can be very difficult. Besides, we are visual creatures—why not use a

graphical tool to help?

Toward this end, Visual Studio 2010 includes the Architecture Explorer. This tool gives its user a window

into the structure of existing C# and Visual Basic code. By generating dependency graphs that show how

various parts of an application work with each other, the Architecture Explorer can help developers and

architects understand what the code is doing. Figure 20 shows an example.

33

Figure 20: A dependency graph illustrates the relationships among different parts of an application's

code.

This example shows a dependency graph focused on an assembly called PetShopWeb.dll. This assembly

contains the namespace PetShop.Web, which itself contains a number of other types. The connections

between these types are shown as gray lines, with the thickness of each line representing the number of

interactions between each pair. As the dialog box in the upper left shows, the user has searched for

methods whose name contains the word “Submit”, and the Architecture Explorer is showing one match: a

method in the UserProfile type.

As the diagram suggests, the tool is interactive. A user can zoom in and out of the dependency graph,

choosing different granularities. For example, a developer new to this application can get a broad view by

starting at the assembly level, then zoom in to examine a particular assembly in detail (which is the

situation shown in Figure 20). She might then zoom further in to look at a particular class and the other

classes it depends on. Having this understanding of dependencies can help mitigate the risk of making a

change to the code, since it’s easier to trace the impact a change might have.

While it’s always possible to acquire the same knowledge by reading the source code, starting with a

visual approach is likely to speed up the process. And given the importance—and the cost—of maintaining

software, providing tools to help makes sense.

34

ADOPTING VISUAL STUDIO 2010

Visual Studio 2010 has many pieces, and different development teams will choose different

configurations. Adopting this tool set requires understanding at least the basics of how Microsoft

packages the product. It also requires thinking about how to migrate to this new world from what’s

already in place. This section looks at both of these issues.

DECIDING WHAT TO BUY

As is probably obvious by now, Visual Studio 2010 contains lots of functionality. This functionality is

divided across several different software components, as was shown back in Figure 1. Microsoft groups

these components into a variety of different products, commonly referred to as stock-keeping units

(SKUs). Figure 21 lists the primary SKUs for Visual Studio 2010, showing the components in each one.

Figure 21: Each SKU for Visual Studio 2010 includes a specific set of components.

Some comments on this diagram:

 While TFS is shown in the figure as part of three Visual Studio 2010 IDE SKUs (Professional,

Premium, and Ultimate) and Test Professional, it’s actually provided in the MSDN subscription.

It’s possible to buy the IDEs without this subscription (and thus without TFS) or to buy TFS on its

own.

 Recall that Lab Management is implemented as part of TFS and that it requires the Lab

Management client contained in Microsoft Test Manager. Because of this, the Lab Management

2010 SKU must be used together with both TFS and a SKU that includes MTM.

35

 Visual Studio 2010 has a few SKUs that aren’t shown in this figure. For example, while Visual

Studio 2010 Ultimate includes 250 virtual users for load testing, an organization that needs more

than this will need to purchase one or more SKUs for Visual Studio Load Test Virtual User Pack

2010.

 The Project dashboard shown in Figure 5 is available with Windows SharePoint Services 3.0 or its

successor, Microsoft SharePoint Foundation 2010. Other dashboards, including the Quality

dashboard shown in Figure 19, require a license to Microsoft Office SharePoint Server 2007 or its

successor, Microsoft SharePoint Server 2010.

Notice that the first three SKUs shown in the table—Visual Studio 2010 Ultimate, Visual Studio 2010

Premium, and Visual Studio 2010 Professional—all include TFS, the Visual Studio 2010 IDE, and Team

Explorer. Nonetheless, they are different products, each with its own set of functions. Figure 22 shows the

main capabilities of these three SKUs and how they’re related to one another.

Figure 22: The feature sets in Visual Studio 2010 Professional, Premium, and Ultimate nest like a

Russian doll.

As the figure shows, Visual Studio 2010 Professional is a subset of Visual Studio 2010 Premium, which is

itself a subset of Visual Studio 2010 Ultimate. In previous releases of this product, then called Visual

Studio Team System, Microsoft offered different SKUs aimed at different roles: architects, developers,

testers, and database developers. Yet many development teams don’t have a sharp separation between

these roles—everybody does at least a little of everything. Recognizing this, Microsoft chose to adopt this

nested structure for Visual Studio 2010. Which version an organization (or a single developer) buys

depends on what functionality they require.

36

MIGRATION: GETTING THERE FROM HERE

Every development team today already uses some tools. They might use the Visual Studio IDE, for

instance, another tool for version control, a third for bug tracking, and an open source unit testing

framework. If this team (or the entire organization) decides to adopt Visual Studio 2010, moving from

where they currently are to full use of this integrated tool set requires some thought.

One common approach is to adopt Visual Studio 2010 for a new project. This project uses these new tools

exclusively, letting developers become proficient with the integrated environment. Assuming all goes

well, another project can then use Visual Studio 2010, probably seeded with experienced people from the

first project.

What about existing software that’s maintained in some other version control system? One option is to

migrate that code base to TFS. Both Microsoft partners and Microsoft itself offer tools to help with this,

providing migration tools for Visual Source Safe, IBM Rational products, Perforce, Borland StarTeam, and

other technologies. Alternatively, an organization might choose to leave existing source where it is, using

Visual Studio 2010 only for new projects. One more possibility is to have the source code directory

structure on a local machine (called a TFS workspace) mirror the structure used in another version control

system. This lets the same source code be managed by both TFS version control and the other system, an

approach that can help in migration.

Moving to Visual Studio 2010 from earlier versions of Visual Studio Team System also requires a bit of

work. The 2010 release uses different formats for projects and build definitions, and so this new version

includes tools to convert existing projects and build definitions into these formats. It’s possible to access

the 2010 version of TFS from older Visual Studio clients, however, which means that an organization

needn’t upgrade everything at once.

CONCLUSION

Most modern software development is done by teams. Whatever the project, the real goal is to optimize

the team’s performance over the entire development process, from requirements to release and beyond.

An integrated tool set such as Visual Studio 2010 provides a strong foundation for doing this. Built around

the hub of Team Foundation Server, the product targets every major aspect of application lifecycle

management.

Both craftsmen and artists depend on their tools. Software developers are a little bit of both, and they’re

no less tool-dependent. While good tools alone aren’t sufficient—good people are also required—using

the right tools can make development teams significantly more effective. And when teams are functioning

well, work gets done, projects get completed, and customers are satisfied. At the end of the day, isn’t this

the goal of every development project?

ABOUT THE AUTHOR

David Chappell is Principal of Chappell & Associates (www.davidchappell.com) in San Francisco, California.

Through his speaking, writing, and consulting, he helps people around the world understand, use, and

make better decisions about new technology.

