LEARNING OF ETABS SOFTWARE

Prakash Siyani, Saumil Tank, Paresh V. Patel

A step-by-step procedure for modeling and analysis of frame structure using ETABS is explained through a simple example. Subsequently an example of seismic analysis of regular frame structure and irregular frame structure are solved manually and through ETABS.

Example

A plan of five storey reinforced concrete (RC) frame structure is considered for modeling and analysis using ETABS.

Beam sizes	$300 \times 450 \mathrm{~mm}$	Storey Height	3.2 m.
Columns sizes	$300 \times 450 \mathrm{~mm}$	Live Load	$3 \mathrm{kN} / \mathrm{m}^{2}$
Slab thickness	120 mm	Floor Finish Load	$1 \mathrm{kN} / \mathrm{m}^{2}$
Concrete grade	M25	Steel Fe415	

Fig. 1 Plan view of building
Elevation of Building
Earthquake parameters considered are:
Zone: V Importance Factor 1 Medium soil,
Response Reduction Factor: 5
Site Specific Time history and response spectrum: Passport Office Site

Step by step procedure to learn ETABS

1) Modeling using ETABS.
2) Comparison of total DL and LL.
3) Time period and Mode participation factor of building in X and Y direction.
4) Seismic force calculation as per IS: 1893(Part 1)-2002.
a) Static method
b) Dynamic method
5) Site specific response spectra
6) Site specific time history
7) Design under gravity and seismic load
8) Performance based design using pushover analysis

Step 1: Modeling using ETABS

1) Open the ETABS Program
2) Check the units of the model in the drop-down box in the lower right-hand corner of the ETABS window, click the drop-down box to set units to $\mathbf{k N} \mathbf{- m}$
3) Click the File menu > New model command

> Do you want to initialize your new model with definitions and preferences from an existing .edb file? (Press F1 Key for help.)

Note: we select No because this first model you will built
4) The next form of Building Plan Grid System and Story Data Definition will be displayed after you select NO button.

Set the grid line and spacing between two grid lines. Set the story height data using Edit Story Data command

Story Data
\square

	Label	Height	Elevation	Master Story	Similar To	Splice Point	Splice Height
6	STORY5	3.2	16.	Yes		No	0.
5	STORY4	3.2	12.8	No	STORY5	No	0.
4	STORY3	3.2	9.6	No	STORY5	No	0.
3	STORY2	3.2	6.4	No	STORY5	No	0.
2	STORY1	3.2	3.2	No	STORY5	No	0.
1	BASE		0.				

5) Define the design code using Options > Preferences > Concrete Frame Design command

Options	
Preferences...	Dimensions/Tolerances...
Golors	Output Decimals...
Windows	Steel Frame Design...
Set Calculator Memory...	Concrete Frame Design...
\checkmark Show Tips at Startup	Composite Beam Design... Shear Wall Design...
\checkmark Show Bounding Plane	frement Bar Siz
\checkmark Moment Diagrams on Tension Side	Live Load Reduction...
\checkmark Sound	
Lock Model Auto Save Model...	
Show Aerial View Window Show Floating Property Window	
Show Crosshairs	
\checkmark Enhanced Graphics...	
Reset Toolbars	

This will Display the Concrete Frame Design Preference form as shown in the figure.

Concrete Frame Design Preferences
Design Code Indian IS 456-2000 Number of Interaction Curves 24 Number of Interaction Points 11 Consider Minimum Eccentricity Yes Gamma (Steel) 1.15 Gamma (Concrete) 1.5 Pattern Live Load Factor 0.75 Utilization Factor Limit 0.95

6) Click the Define menu > Material Properties

Add New Material or Modify/Show Material used to define material properties

Material Property Data			
Material Name	M25	$\begin{array}{r} \text { Display Color } \\ \text { Color } \end{array}$	
Type of Material - Isotropic Orthotropic		$\begin{array}{r} \text { Type of Design } \\ \text { Design } \end{array}$	Concrete
Analysis Property Data Mass per unit Volume Weight per unit Volume Modulus of Elasticity Poisson's Ratio Coeff of Thermal Expansion Shear Modulus	$\boxed{2.4007}$ 23.5616 25000000. 0.2 $9.900 \mathrm{E}-06$ 10416666.7	$\left[\begin{array}{ll}\text { Design Property Data (Indian IS 456-2000) } \\ \text { Conc Cube Comp Strength, fck } & \boxed{25000 . \mid} \\ \text { Bending Reinf. Yield Stress, fy } & \boxed{415000 .} \\ \text { Shear Reinf. Yield Stress, fys } & \boxed{415000 .} \\ \text { 「 Lightweight Concrete } \\ \quad \text { Shear Strength Reduc. Factor } & \end{array}\right.$	
	OK	Cancel	

7) Define section columns and beams using Define $>$ Frame section

Define beam sizes and click Reinforcement command to provided concrete cover

Define column sizes and click Reinforcement command to provided concrete cover and used two options Reinforcement checked or designed

8) Define wall/slab/deck

To define a slab as membrane element and one way slab define using special one way load distribution

9) Generate the model

Draw beam using Create Line Command and draw column using Create Column command

\$ Select Object				
		Create Lines in Region or at Clicks (Plan, Elev, 3D)		
[-] Draw Point Objects		Create Columns in Region or at Clicks (Plan)		
Draw Line Objects	\checkmark	ate Secondary Beam	t Clicks (Plan)	
Draw Area Objects	-	eBracesinRegion		
Draw Developed Elevation Definition...		Properties of Object		x
Draw Section Cut...		Type of Line	Frame	
\times Draw Dimension Line		Property	B3006450	
\cdots Draw Reference Point		Moment Releases	Continuous	
Snap to	-	Plan Dffset Normal	0.	

Slab is created using 3 options in which $1^{\text {st }}$ draw any shape area, $2^{\text {nd }}$ draw rectangular area and $3^{\text {rd }}$ create area in between grid line

Above creating option used to generate the model as shown in below figure

10) Define various loads (Dead load, live load, Earthquake load)

Dead Load: self weight multiplier is used 1 to calculate dead load as default. Live load or any other define load
$1^{\text {st }}$ select the member where assign this load than click the assign button.

Assign point load and uniform distributed load
Select assigning point or member element than click the assign button

11) Assign support condition

Drop-down box in the lower right-hand corner of the ETABS window, Select only bottom single storey level to assign fixed support using assign > Joint/Point>Restrain (Support) command

12) In building, slab is considered as a single rigid member during earthquake analysis. For that, all slabs are selected first and apply diaphragm action for rigid or semi rigid condition.

13) Mass source is defined from Define > mass source command. As per IS: 1893-2002, 25% live load (of 3 all floor of building
 $\mathrm{kN} / \mathrm{m}^{2}$) is considered on except at roof level.
14) Run analysis from Analysis > Run Analysis command

Analyze
Set Analysis Options...
Check Model...
Run Analysis
Run Construction Sequence Analysis
Calculate Diaphragm Centers of Rigidity
Run Static Nonlinear Analysis

Step 2: Comparison of total DL and LL

Dead Load

Weight of slab $=5 \times 12 \times 20 \times 0.12 \times 24=345 \mathrm{kN}$
Weight of beam $=5 \times 0.3 \times 0.45 \times(12 \times 5+20 \times 4) \times 24=2268 \mathrm{kN}$
Weight of column $=5 \times 0.3 \times 0.45 \times(3.2-.45) \times 24=891 \mathrm{kN}$
Total weight $=6615 \mathrm{kN}$

Live Load

Live load $=4 \times 12 \times 20 \times 3+1 \times 12 \times 20 \times 1.5=3240 \mathrm{kN}$

Floor Finish Load

FF $=5 \times 12 \times 20 \times 1=1200 \mathrm{kN}$
In ETABS, dead load and other loads are shown from table as shown in figure.

ETABS-10

Step 3: Time period and Mode participation factor of building in X and Y direction.

- Static time period base on the IS 1893 is $0.075 \mathrm{H}^{0.75}=0.6 \mathrm{sec}$
- Dynamic time period as per ETABS analysis is 0.885 sec in X direction and 0.698 sec in Y direction
Time period is shown in ETABS from Display > Show Mode Shape

Mass participation factor is shown from Display > Show Table > Model Information > Building Model Information > Model Participating Ratio.

Modal Participating Mass Ratios									
Edit View									
					Modal Participating Mass Ratios				\checkmark
	Mode	Period	UX	UY	UZ	SumUX	SumUY	SumUZ	RX
-	1	0.884954	85.0817	0.0000	0.0000	85.0817	0.0000	0.0000	0.0000
	2	0.697994	0.0000	83.5026	0.0000	85.0817	83.5026	0.0000	99.4182
	3	0.649635	0.0000	0.0000	0.0000	85.0817	83.5026	0.0000	0.0000
	4	0.291666	9.7869	0.0000	0.0000	94.8686	83.5026	0.0000	0.0000
	5	0.224333	0.0000	10.4317	0.0000	94.8686	93.9343	0.0000	0.3093
	6	0.210519	0.0000	0.0000	0.0000	94.8686	93.9343	0.0000	0.0000
	7	0.173069	3.3883	0.0000	0.0000	98.2568	93.9343	0.0000	0.0000
	8	0.127575	0.0000	3.8521	0.0000	98.2568	97.7863	0.0000	0.2607
	9	0.125375	1.3785	0.0000	0.0000	99.6353	97.7863	0.0000	0.0000
	10	0.121394	0.0000	0.0000	0.0000	99.6353	97.7863	0.0000	0.0000
	11	0.103887	0.3647	0.0000	0.0000	100.0000	97.7863	0.0000	0.0000
	12	0.088617	0.0000	1.7181	0.0000	100.0000	99.5044	0.0000	0.0000

Bending moment and shear force diagram is shown from Display > Show Member Forces > Frame/Pier/Spandrel Forces command

Select any beam or column member and press right click to shown below figure

Step 4: Seismic force calculation as per IS: 1893(Part 1)-2002.
(a) Static Method

Define static load from Define > Static load command

Press modify lateral load to shown below figure and assign various value as per IS 1893.

(b) Dynamic Analysis Method

The design response spectra of IS 1893-2002 given as input in the Define menu > Response Spectrum Functions. Response spectra load cases are define in Response Spectrum cases

Define VE Material Properties...
\$ Walli'Slab/Deck Sections...
k Eb Link Properties...
Frame Nonlinear Hinge Properties...
Diaphragms...
Groups...
Section Cuts...
R Response Spectrum Functions...
皿 Time History Functions...
䛧 Static Load Cases...
A Response Spectrum Cases...
Wime History Cases...
Static Nonlinear/Pushover Cases...
Add Sequential Construction Case
${ }_{+1}^{\mathrm{L}+\mathrm{L}}$ Load Combinations...
Add Default Design Combos...
Convert Combos to Nonlinear Cases...
Special Seismic Load Effects...
a? Mass Source...

The damping value is specified which is used to generate the response spectrum curve. 5% damping factor and $9.81(\mathrm{~g})$ scale factor is assigned as shown in Figure

Step 5: Site Specific Response Spectra

Site specific response spectrum is define from Define > Response Spectrum Function > Spectrum from File.

Step 6: Site Specific Time History

Site specific time history is define from Define > Time History Function
Define

Run the analysis and various curves is shown from Display > Show Story Response Plot

Step 7：Design under Gravity and Seismic Load

Design is carried out using different combination．ETABS have facility to generate combination as per IS 456－2000．

Define
$\sqrt{\mathrm{E}}$ Material Properties．．．
$\mathrm{V}_{\mathbf{I}}$ Frame Sections．．．
\leqslant Wall＇Slab／Deck Sections．．．
k ${ }_{0}^{E}$ Link Properties．．．
Frame Nonlinear Hinge Properties．．．
Diaphragms．．．
Groups．．．
Section Cuts．．．
Response Spectrum Functions．．．整 Time History Functions．．．
QE Static Load Cases．．．
A Response Spectrum Cases．．．
峦穴 Time History Cases．．．
Static Nonlinear／＇Pushover Cases．．．
Add Sequential Construction Case
$\xrightarrow{\mathrm{P}+\mathrm{L}}$ Load Combinations．．．
Add Default Design Combos．．．
Convert Combos to Nonlinear Cases．．．
Special Seismic Load Effects．．．
a？Mass Source．．．

Select assigning combination for Design from Design＞Concrete Frame Design＞Select Design Combination

Design is carried out from Design > Concrete Frame Design > Start Concrete Design

Various results in form of percentage of steel, area of steel in column beam is shown from Design > Concrete Frame Design > Display Design Information

Select any beam member and left click to shown below figure

Flexure detailing of beam element is shown in Figure

Shear detailing of beam element is shown in Figure

Concrete Column Design Information (Indian IS 456-2000)

Pu-Mu interaction curve, Flexural detailing, shear detailing and beam/column detailing is shown in figure.

(N1) Concrete Design Information Indian IS 456-2000

File
Indian IS 456-20ge coLUHN SECTION DESIGN Type: Ductile Frame Units: KN-m (Shear Details)

Step 8: Performance based design using pushover analysis

Design is carried out as per IS 456-2000 than select all beam to assign hinge properties from Assign > Frame/Line > Frame Nonlinear Hinges command

Moment and shear (M \& V) hinges are considered for beam element and axial with biaxial moment ($\mathrm{P}-\mathrm{M}-\mathrm{M}$) hinges are considered for column element as shown in Figure

Defining static nonlinear load cases from Define > Static Nonlinear/Pushover command. For push over analysis first apply the gravity loading as PUSHDOWN shown in Figure and subsequently use lateral displacement or lateral force as PUSH 2 in sequence to derive capacity curve and demand curve as shown in Figure. Start from previous pushover case as PUSHDOWN for gravity loads is considered for lateral loading as PUSH 2.

Pushdown a gravity load cases

Static Monlinear Case Data

Push2 lateral load cases

Run the Pushover analysis from Analysis > Run Static Nonlinear Analysis command.

Review the pushover analysis results from Display > Show Static Pushover Curve command.

Frip US H O	VERCURVE											Σ
File												
Step	Displacement	Base Force	A-B	B-I0	I0-LS	LS-CP	CP-C	C-D	D-E	$>\mathrm{E}$	OTAL	
0	0.0000	0.0000	818	2	0	0	0	0	0	0	820	
1	0.0200	489.9547	750	70	0	0	0	0	0	0	820	
2	0.0381	778.1516	732	88	0	0	0	0	0	0	820	
3	0.0427	818.5428	714	106	0	0	0	0	0	0	820	
4	0.0478	845.0795	688	94	38	0	0	0	0	0	820	
5	0.0831	936.7535	686	88	46	0	0	0	0	0	820	
6	0.0862	939.7776	672	32	50	66	0	0	0	0	820	
7	0.1518	965.8489	660	42	18	100	0	0	0	0	820	
8	0.1896	974.9493	654	46	4	112	0	4	0	0	820	
9	0.2188	979.0764	654	46	4	112	0	0	4	0	820	
10	0.2188	919.7686	654	46	4	112	0	0	4	0	820	
11	0.2208	935.4454	654	46	4	108	0	4	4	0	820	
12	0.2234	944.1318	654	46	4	98	0	2	16	0	820	
13	0.1778	-173.1125	820	0	0	0	0	0	0	0	820	

Capacity spectrum, demand spectrum and performance point are shown in Figure

Show the deform shape from Display > Show Deform shape
At various stages hinge formation is shown with change the value in step box. Step 4 is shown in this Figure.

Mall 3-D View Deformed Shape (PUSH2 - Step 6)
—||n|c|c|

ETABS-28

Illustrative Example

For the illustration purpose the data is taken from SP 22 for analysis of a 15 storey RC building as shown in fig. 1(a). The live load on all the floors is $200 \mathrm{~kg} / \mathrm{m}^{2}$ and soil below the building is hard. The site lies in zone V. All the beams are of size $40 \times 50 \mathrm{~cm}$ and slabs are 15 cm thick. The sizes of columns are $60 \times 60 \mathrm{~cm}$ in all the storeys and wall alround is 12 cm thick.

Analysis of the building
(a) Calculation of dead load, live load and storey stiffness: Dead loads and live loads at each floor are computed and lumped. Stiffness in a storey is lumped assuming all the columns to be acting in parallel with each column contributing stiffness corresponding to $\mathrm{K}_{\mathrm{c}}=$ $12 \mathrm{EI} / \mathrm{L}^{3}$, where I is the moment of inertia about bending axis, L is the column height, and E the elastic modulus of the column material. The total stiffness of storey is thus $\Sigma \mathrm{K}_{\mathrm{c}}$. The lumped mass at all floor level is $52.43\left(t-s^{2} / \mathrm{m}\right)$ and at roof level is $40\left(t-s^{2} / \mathrm{m}\right)$. The values of $\mathrm{I}, \mathrm{K}_{\mathrm{c}}$ and $\Sigma \mathrm{K}_{\mathrm{c}}$ for all the floors / storeys are $1.08 \times 10^{8} \mathrm{~cm}^{4}, 9024 \mathrm{t} / \mathrm{m}$ and $180480 \mathrm{t} / \mathrm{m}$, respectively. The value of modulus of elasticity of column material considered is $1880000 \mathrm{t} / \mathrm{m}^{2}$.
(b) For undamped free vibration analysis the building is modeled as spring mass model. As the building is regular one degree of freedom can be considered at each floor level. Total degrees of freedom are 15. So mass and stiffness matrix are having size 15×15 given as in Table 1.

Table 1: Stiffness and mass matrix

Stiffness matrix [k]	Mass matrix [m]
360960-180480 0-000000000000	52.430000000000000
	052.43000000000000
$0-180480360960-1804800000000000$	0052.4300000000000
$00-180480360960-1804800000000000$	00052.430000000000
$000-180480360960-180480000000000$	000052.430000000000
$0000-180480360960-18048000000000$	0000052.43000000000
$00000-180480360960-1804800000000$	00000052.4300000000
$000000-180480360960-180480000000$	000000052.430000000
$0000000-180480360960-18048000000$	0000000052.43000000
$00000000-180480360960-1804800000$	00000000052.4300000
$000000000-180480360960-180480000$	000000000052.430000
$0000000000-180480360960-18048000$	0000000000052.43000
$00000000000-180480360960-1804800$	00000000000052.4300
$000000000000-180480360960-180480$	000000000000052.430
0000000000000	000000000000040.00

The first three natural frequencies and the corresponding mode shape are determined using solution procedure of Eigen value problem i.e. $\operatorname{Det}\left([k]-\omega^{2}[m]\right)=\{0\}$. Time periods and mode shape factors are given in table 2.
(c) The next step is to obtain seismic forces at each floor level in each individual mode as per IS 1893. These calculations are shown in Table 3.

Table 2. Periods and modes shape coefficients at various levels for first three modes

Mode No.		1	2
3			
Period in seconds	1.042	0.348	0.210
Mode shape coefficient at various floor levels			
$\phi_{1}{ }^{(r)}$	0.037	0.108	0.175
$\phi_{2}{ }^{(r)}$	0.073	0.206	0.305
$\phi_{3}{ }^{(r)}$	0.108	0.285	0.356
$\phi_{4}{ }^{(r)}$	0.143	0.336	0.315
$\phi_{5}{ }^{(r)}$	0.175	0.356	0.192
$\phi_{6}{ }^{(r)}$	0.206	0.342	0.019
$\phi_{7}{ }^{(r)}$	0.235	0.296	-0.158
$\phi_{8}{ }^{(r)}$	0.261	0.222	-0.296
$\phi_{9}{ }^{(r)}$	0.285	0.127	-0.355
$\phi_{10}{ }^{(r)}$	0.305	0.019	-0.324
$\phi_{11}{ }^{(r)}$	0.323	-0.089	-0.208
$\phi_{12}{ }^{(r)}$	0.336	-0.190	-0.039
$\phi_{13}{ }^{(r)}$	0.347	-0.273	0.140
$\phi_{14}{ }^{(r)}$	0.353	-0.330	0.283
$\phi_{15}{ }^{(r)}$	0.356	-0.355	0.353

As per clause 7.8.4.4 of IS 1893, if the building does not have closely spaced modes, the peak response quantity due to all modes considered shall be obtained as per SRSS method. In this example as shown below, the frequencies in each mode differ by more than 10%, so building is not having closely spaced modes and so, SRSS method can be used.

Mode	Time period	Natural frequency $2 \pi / \mathrm{T}$
1	1.042	6.03
2	0.348	18.06
3	0.210	29.92

The comparison of storey shear using SRSS method and CQC method is shown in table 3.
As per clause 7.8.2 of IS 1893 the design base shear $\left(\mathrm{V}_{\mathrm{B}}\right)$ shall be compared with base shear $\left(\mathrm{V}_{\mathrm{B}}\right)$ calculated using a fundamental period Ta . When V_{B} is less than V_{B}, all the response quantities (e.g. member forces, displacements, storey forces, storey shear and base reactions) shall be multiplied by $\mathrm{V}_{\mathrm{B}} / \mathrm{V}_{\mathrm{B}}$.

For this example
$\mathrm{T}_{\mathrm{a}}=0.075 \mathrm{~h}^{0.75}$ for RC frame building
$\mathrm{T}_{\mathrm{a}}=0.075(45)^{0.75}=1.3031 \mathrm{sec}$
For hard soil $\mathrm{Sa} / \mathrm{g}=1.00 / \mathrm{T}_{\mathrm{a}}=1 / 1.3031=0.7674$
$\mathrm{V}_{\mathrm{B}}=\mathrm{A}_{\mathrm{h}} \mathrm{W}$
$\mathrm{W}=514.34 \times 14+392.4=7593.16 \mathrm{t}$
$A_{h}=\left(Z_{\text {I S }}^{a}\right) /(2 R g)$
$\mathrm{Z}=0.36$ (for zone V)
I = 1.0
R $=5.0$ (considering SMRF)
$\mathrm{A}_{\mathrm{h}}=(0.36 \times 1 \times 0.7674) /(2 \times 5.0)=0.0276$
Base shear $\overline{\mathrm{V}}_{\mathrm{B}}=0.0276 \times 7593.16=209.77 \mathrm{t}$
Base shear from dynamic analysis $\mathrm{V}_{\mathrm{B}}=229.9 \mathrm{t}$
So, $V_{B}>\bar{V}_{B}$, response quantities need not required to be modified.
The storey shear distribution along the height is shown in fig. 1 (c).

Table 3: Calculation of Seismic forces

Floor No.	Weight^{2}	Mode coefficients			$\mathrm{W}_{\mathrm{i}} \phi_{\mathrm{i}}(\mathrm{t})$				$\phi_{\mathrm{i} 1}$	$\phi_{\mathrm{i} 2}$	$\phi_{\mathrm{i} 3}$
	$\mathrm{~W}_{\mathrm{i}} \phi_{\mathrm{i} 1}$	$\mathrm{~W}_{\mathrm{i}} \phi_{\mathrm{i} 2}$	$\mathrm{~W}_{\mathrm{i}} \phi_{\mathrm{i} 3}$	$\mathrm{~W}_{\mathrm{i}} \phi_{\mathrm{i} 1}{ }^{2}$	$\mathrm{~W}_{\mathrm{i}} \phi_{\mathrm{i} 2}{ }^{2}$	$\mathrm{~W}_{\mathrm{i}} \phi_{\mathrm{i} 3}{ }^{2}$					
1	514.34	0.037	0.108	0.175	19.030	55.548	90.009	0.704	5.999	15.751	
2	514.34	0.073	0.206	0.305	37.546	105.953	156.873	2.740	21.826	47.846	
3	514.34	0.108	0.285	0.356	55.548	146.586	183.104	5.999	41.777	65.185	
4	514.34	0.143	0.336	0.315	73.550	172.817	162.016	10.517	58.066	51.035	
5	514.34	0.175	0.356	0.192	90.009	183.104	98.752	15.751	65.185	18.960	
6	514.34	0.206	0.342	0.019	105.953	175.903	9.772	21.826	60.159	0.185	
7	514.34	0.235	0.296	-0.158	120.869	152.244	-81.265	28.404	45.064	12.839	
8	514.34	0.261	0.222	-0.296	134.242	114.183	-152.244	35.037	25.348	45.064	
9	514.34	0.285	0.127	-0.355	146.586	65.320	-182.590	41.777	8.295	64.819	
10	514.34	0.305	0.019	-0.324	156.873	9.772	-166.645	47.846	0.185	53.993	
11	514.34	0.323	-0.089	-0.208	166.131	-45.776	-106.982	53.660	4.074	22.252	
12	514.34	0.336	-0.190	-0.039	172.817	-97.724	-20.059	58.066	18.567	0.782	
13	514.34	0.347	-0.273	0.140	178.475	-140.414	72.007	61.930	38.333	10.081	
14	514.34	0.353	-0.330	0.283	181.561	-169.731	145.557	64.091	56.011	41.192	
15	392.40	0.356	-0.355	0.353	139.694	-139.301	138.517	49.731	49.452	48.896	
Total					1778.890	588.486	346.824	498.085	498.346	498.886	

Table 3: Calculation of Seismic forces (Continued)

	Mode 1	Mode 2	Mode 3
Mode participation factor $\mathrm{P}_{\mathrm{k}}=\Sigma \mathrm{W}_{\mathrm{i}} \phi_{\mathrm{ik}} / \Sigma \mathrm{Wi}(\mathrm{ik} 2$	3.571456	1.180878	0.695197
Modal mass Mk $=((\mathrm{Wi}(\mathrm{ik}) 2 /(\mathrm{Wi} 2$	6353.23	694.91	241.37
$\%$ of total mass $=\mathrm{Mk} /(\mathrm{Mk}$	83.67%	9.15%	3.18%
Time Period (Tk)	1.042 Sec	0.348 Sec	0.210 Sec
Sa / g	0.9596	2.5	2.5
	$\mathrm{Z}=0.36$ (zone V), I $=1.0$, $\mathrm{R}=5.0$, Hard soil		
Design horizontal spectrum value $\mathrm{Ak}=(\mathrm{Z} \mathrm{I} \mathrm{Sa)} /(2 \mathrm{R} \mathrm{g})$	0.0345456	0.09	0.09
Base Reaction	219.44	62.54	21.72

Table 3: Calculation of Seismic forces (Continued)

Floor No.	$\mathrm{Q}_{\mathrm{ik}}=\mathrm{A}_{\mathrm{k}} \phi_{\mathrm{ik}} \mathrm{P}_{\mathrm{k}} \mathrm{W}_{\mathrm{i}}$			$\mathrm{V}_{\mathrm{ik}}=\Sigma \mathrm{Q}_{\mathrm{ik}}$		Combination of storey shear			
	$\mathrm{Q}_{\mathrm{i} 1}$	$\mathrm{Q}_{\mathrm{i} 2}$	$\mathrm{Q}_{\mathrm{i} 3}$	$\mathrm{~V}_{\mathrm{i} 1}$	$\mathrm{~V}_{\mathrm{i} 2}$	$\mathrm{~V}_{\mathrm{i} 3}$	SAV	SRSS	CQC
1	2.348	5.903	5.631	219.497	62.543	21.699	303.741	229.263	229.911
2	4.6328	11.260	9.815	217.149	56.640	16.068	289.857	224.989	225.523
3	6.854	15.579	11.456	212.516	45.379	6.253	264.148	217.397	217.745
4	9.075	18.366	10.137	205.662	29.800	-5.203	240.665	207.875	208.027
5	11.106	19.460	6.178	196.586	11.433	-15.340	223.360	197.515	197.521
6	13.073	18.694	0.611	185.480	-8.026	-21.519	215.026	186.897	186.828
7	14.914	16.180	-5.084	172.406	-26.721	-22.130	221.258	175.863	175.763
8	16.564	12.135	-9.525	157.492	-42.901	-17.045	217.440	164.119	163.973
9	18.087	6.942	-11.424	140.928	-55.037	-7.520	203.486	151.481	151.230
10	19.356	1.038	-10.426	122.841	-61.979	3.903	188.724	137.646	137.233
11	20.498	-4.865	-6.693	103.484	-63.017	14.330	180.833	122.007	121.423
12	21.323	-10.386	-1.255	82.985	-58.152	21.024	162.162	103.491	102.803
13	22.022	-14.923	4.505	61.661	-47.766	22.279	131.707	81.118	80.450
14	22.402	-18.038	9.107	39.639	-32.843	17.773	90.257	54.460	53.949
15	17.236	-14.804	8.666	17.236	-14.804	8.666	40.708	24.318	24.075

Fig. 1

Above mention 15 storey example solved in ETABS is describe follow:

(1) Generate model: Material properties are assign as per Indian Code. Beam, column and slab are define as per given above dimension. 3D model of 15 story building is shown in Fig. 2.

Fig. 2 3D model of 15 storey building
(2) Static analysis load case: Loading parameters are defined as per Indian Code as shown in Fig. 3 and 4. Consider dead load and live load as a gravity load in vertical downward direction and earthquake load as lateral load in horizontal direction. Earthquake load is defined as per IS 1893-2002.

Fig. 3 Define static load case

Fig. 4 Define a seismic loading as per IS: 1893-2002
(3) Dynamic analysis: IS 1893 response spectrum curve for zone V is shown in Fig. 5. The damping value of 5% is specified to generate the response spectrum curve. The scale factor of 9.81 (i.e. g) is assigned as shown in Fig. 6.

Fig. 5 IS 1893 response Spectra Graphs

Fig. 6 Response Spectra Case Data
(4) The design acceleration time history for passport office site is given as input in Define menu > Time History Function. The time history load cases are defined from the Time History Cases option as shown in the Fig. 7. The acceleration time history of Passport office site as defined in ETABS is shown in Fig. 8.

Fig. 7 Time History Options

Fig. 8 Time History Graphs
Time history case data is defined for simplicity of analysis. Number of output time steps is 300. Linear analysis case and two direction acceleration load case are considered. The scale factor 9.81 i.e. gravitational acceleration ($\mathrm{m} / \mathrm{sec}^{2}$) and 5% damping are defined as shown in Fig. 9.

Fig. 9 Time History Case Data
(5) Mass source is defined in modeling as shown in Fig. 10. As per IS: 1893-2002, 25\% live load (of $200 \mathrm{~kg} / \mathrm{m}^{2}$) is considered on all floor of building except at roof level.
(6) In building, slab is considered as a single rigid member during earthquake analysis. ETABS has a facility to create rigid diaphragm action for slab. For that, all slabs are selected first and apply diaphragm action for rigid or semi rigid condition.

Fig. 10 define mass source

Fig. 11 Rigid diaphragm in plan

Results of Static and Dynamic analysis

Fig. 12 Time Period of different mode
Table 4 percentage of total seismic mass

Mode	Period	UX	UY	UZ
1	1.109689	83.6450	0.0000	0.0000
2	0.371229	9.1628	0.0000	0.0000
3	0.224349	3.2049	0.0000	0.0000

Table 5 Base reaction for all modes

Mode	Dir	F1	F2	F3
1	U1	2109.86	0.00	0.00
2	U1	635.94	0.00	0.00
3	U1	222.43	0.00	0.00
All	All	2221.54	0.00	0.00

Compare manual static and dynamic results with ETABS static and dynamic results

Table 6. Periods and modes shape coefficients at various levels for first three modes

	Manual analysis				ETABS Analysis			
Mode No.	1	2	3	1	2	3		
Period in seconds	1.042	0.348	0.210	1.109	0.371	0.224		
Mode shape coefficient at various floor levels								
$\phi_{1}{ }^{(r)}$	0.037	0.108	0.175	0.036	0.109	0.175		
$\phi_{2}{ }^{(r)}$	0.073	0.206	0.305	0.073	0.206	0.304		
$\phi_{3}{ }^{(r)}$	0.108	0.285	0.356	0.109	0.283	0.356		
$\phi_{4}{ }^{(r)}$	0.143	0.336	0.315	0.143	0.336	0.315		
$\phi_{5}{ }^{(r)}$	0.175	0.356	0.192	0.175	0.356	0.195		
$\phi_{6}{ }^{(r)}$	0.206	0.342	0.019	0.206	0.342	0.023		
$\phi_{7}{ }^{(r)}$	0.235	0.296	-0.158	0.234	0.297	-0.154		
$\phi_{8}{ }^{(r)}$	0.261	0.222	-0.296	0.261	0.224	-0.290		
$\phi_{9}{ }^{(r)}$	0.285	0.127	-0.355	0.283	0.129	-0.354		
$\phi_{10}{ }^{(r)}$	0.305	0.019	-0.324	0.304	0.023	-0.327		
$\phi_{11}{ }^{(r)}$	0.323	-0.089	-0.208	0.322	-0.086	-0.213		
$\phi_{12}{ }^{(r)}$	0.336	-0.190	-0.039	0.336	-0.186	-0.045		
$(13(\mathrm{r})$	0.347	-0.273	0.140	0.345	-0.270	0.134		
$(14(\mathrm{r})$	0.353	-0.330	0.283	0.351	-0.327	0.277		
$(15(\mathrm{r})$	0.356	-0.355	0.353	0.356	-0.354	0.351		

Table 7. Compare the time period, mass participation and base reaction

Mode	Time period (sec)		Percentage of Total Seismic Mass		Base reaction (kN)	
	Manual	ETABS	Manual	ETABS	Manual	ETABS
1	1.042	1.109	83.67	83.64	2194.40	2109.86
2	0.348	0.371	9.15	9.16	625.43	635.94
3	0.210	0.224	3.18	3.20	217.21	222.43

Table 8 comparison of Static Dynamic and Time history analysis

	Static Analysis				Dynamic Analysis				Passport office Site Time History Analysis	
Story No.	Story Shear (kN)		Story Force (kN)		Story Shear (kN)		Story Force (kN)		Story Shear (kN)	Story Force (kN)
	Manual	ETABS	Manual	ETABS	Manual	ETABS	Manual	ETABS	ETABS	ETABS
15	303.55	325.46	303.55	325.46	243.10	252.87	243.10	252.87	114.15	114.15
14	650.00	673.89	346.46	348.43	544.60	545.14	301.50	292.27	250.58	136.43
13	948.73	974.33	298.73	300.44	811.10	801.74	266.50	256.60	378.82	128.24
12	1203.27	1230.33	254.54	256.00	1034.90	1015.87	223.80	214.13	495.44	116.62
11	1417.16	1445.43	213.88	215.10	1220.00	1191.48	185.10	175.61	598.18	102.74
10	1593.92	1623.21	176.76	177.78	1376.40	1338.91	156.40	147.43	686.07	87.89
9	1737.10	1767.20	143.18	143.99	1514.80	1468.49	138.40	129.58	759.32	73.25
8	1850.23	1880.98	113.13	113.78	1641.10	1586.46	126.30	117.97	819.05	59.73
7	1936.84	1968.09	86.61	87.11	1758.60	1695.82	117.50	109.36	866.9	47.85
6	2000.48	2032.09	63.64	64.00	1868.90	1799.56	110.30	103.74	904.69	37.79
5	2044.67	2076.53	44.19	44.44	1975.10	1901.64	106.20	102.08	934.11	29.42
4	2072.95	2104.97	28.28	28.44	2078.70	2003.54	103.60	101.90	956.48	22.37
3	2088.86	2120.97	15.91	16.00	2173.90	2099.83	95.20	96.29	972.71	16.23
2	2095.93	2128.09	7.07	7.12	2249.80	2177.58	75.90	77.75	983.34	10.63
1	2097.70	2129.86	1.77	1.77	2292.60	2221.55	42.80	43.97	993.82	10.48
0	2097.70	2130.00	0.00	0.00	2292.60	2221.60	0.00	0.00	993.82	0

ETABS-41

TORSION ANALYSIS OF BUILDING

EXAMPLE: A four storeyed building (with load $300 \mathrm{~kg} / \mathrm{m}^{2}$) has plan as shown in Fig. 1 and is to be designed in seismic zone III. Work out the seismic shears in the various storeys of the proposed building. The foundation is on hard soil and importance factor is 1.0 (Data from SP- 22 : 1982)

As building is having height 12 m and is in zone III, earthquake forces can be calculated by seismic coefficient method using design spectrum.

(a) Lumped mass Calculation

Total weight of beams in a storey $=27 \times 7.5 \times 0.4 \times 0.5 \times 2.4=97.2 \mathrm{t}$
Total weight of columns in a storey $=18 \times 3 \times 0.4 \times 0.6 \times 2.4=31.10 \mathrm{t}$
Total weight of slab in a storey $=(22.5 \times 15+15 \times 15) \times 0.15 \times 2.4=202.5 t$
Total weight of walls $=(22.5+15+7.5+30+15+15-6 \times 0.6-8 \times 0.4) \times 0.2 \times 3 \times 2.0$
$=117.8 \mathrm{t}$
Live load in each floor $=(22.5 \times 15+15 \times 15) \times 0.3 \times 0.25=42.18 \mathrm{t}$
Lumped weight at floor 1, 2 and $3=$ Dead load + Live load
$=(97.2+31.10+202.5+117.8)+42.18=490.8 \mathrm{t}$
Lumped weight at roof floor = Dead load
$(97.2+31.10 / 2+202.5+117.8 / 2)=374.17$ t
Total weight of building $\mathrm{W}=490.8 \times 3+374.17=1846.57 \mathrm{t}$

(b) Base shear calculation:

Base shear $\mathrm{V}_{\mathrm{B}}=\mathrm{A}_{\mathrm{h}} \mathrm{W}$
$A_{h}=\left(Z_{\text {I }}^{a}\right) /(2 R g)$
Z = 0.16 (Zone III)
$\mathrm{I}=1.0$
R = 5 (considering SMRF)
$\mathrm{T}=0.075 \times \mathrm{h}^{0.75}$ $=0.075 \times 12^{0.75}=0.4836 \mathrm{sec}$
$\mathrm{S}_{\mathrm{a}} / \mathrm{g}=1 / 0.4836=2.07$
$\mathrm{A}_{\mathrm{h}}=(0.16 \times 1.0 \times 2.07) /(2 \times 5)=0.033$
$V_{B}=0.033 \times 1846.57=60.94 t$

(c) Shear force in various storeys

Calculation of storey shear distribution along height is shown in Table 1.
ETABS-42

(d) Calculation of eccentricity

Assuming mass is uniformly distributed over the area
Horizontal distance of center of mass
$\mathrm{X}_{\mathrm{m}}=(15 \times 22.5 \times 7.5+15 \times 15 \times 22.5) /(15 \times 22.5+15 \times 15)=13.5 \mathrm{~m}$
Vertical distance of center of mass
$\mathrm{Y}_{\mathrm{m}}=(15 \times 22.5 \times 11.25+15 \times 15 \times 7.5) /(15 \times 22.5+15 \times 15)=9.75 \mathrm{~m}$
As columns are of equal size their stiffness are also same. So horizontal distance of center of rigidity,
$\mathrm{X}_{\mathrm{r}}=(4 \times 7.5+4 \times 15+3 \times 22.5+3 \times 30) / 18=13.75 \mathrm{~m}$
Vertical distance of center of rigidity,
$\mathrm{Y}_{\mathrm{r}}=(5 \times 7.5+5 \times 15+3 \times 22.5) / 18=10 \mathrm{~m}$
Static eccentricity in X direction $=\mathrm{e}_{\mathrm{si}}=\mathrm{X}_{\mathrm{r}}-\mathrm{X}_{\mathrm{m}}=13.75-13.5=0.25 \mathrm{~m}$
Design eccentricity in X direction $=1.5 \times 0.25+0.05 \times 30=1.875 \mathrm{~m}$

$$
\text { Or }=0.25-1.5=-1.25 \mathrm{~m}
$$

Static eccentricity in Y direction $=\mathrm{e}_{\mathrm{si}}=\mathrm{Y}_{\mathrm{r}}-\mathrm{Y}_{\mathrm{m}}=10.00-9.75=0.25 \mathrm{~m}$
Design eccentricity in Y direction $=1.5 \times 0.25+0.05 \times 22.5=1.5 \mathrm{~m}$

$$
\text { Or }=0.25-1.125=-0.875 \mathrm{~m}
$$

The center of mass and center of rigidity and design eccentricity are shown in Fig. 2.
Total rotational stiffness $\mathrm{Ip}=\Sigma\left(\mathrm{K}_{\mathrm{x}} \mathrm{y}^{2}+\mathrm{K}_{\mathrm{y}} \mathrm{x}^{2}\right)$
$\mathrm{K}_{\mathrm{x}}=$ Stiffness of one column in X direction $=12 \mathrm{EI} / \mathrm{L}^{3}$
$=12 \times 1880000 \times\left(0.6 \times 0.4^{3} / 12\right) / 3^{3}=2673.78 \mathrm{t} / \mathrm{m}$
$\mathrm{K}_{\mathrm{y}}=$ Stiffness of one column in Y direction $=12 \mathrm{EI} / \mathrm{L}^{3}$
$=12 \times 1880000 \times\left(0.4 \times 0.6^{3} / 12\right) / 3^{3}=6016.00 \mathrm{t} / \mathrm{m}$
$K_{x} y^{2}=2673.78 \times\left(5\left(10^{2}\right)+5\left(2.5^{2}\right)+5\left(5^{2}\right)+3\left(12.5^{2}\right)\right)=3008002.5$
$K_{y} x^{2}=6016.0 \times\left(4\left(13.75^{2}\right)+4\left(6.25^{2}\right)+4\left(1.25^{2}\right)+3\left(8.75^{2}\right)+3\left(16.25^{2}\right)\right)$
$=11674799.0$
$\mathrm{I}_{\mathrm{p}}=3008002.5+11674799.0=14682802.5$

(e) Torsional due to seismic force in X direction

Torsional moment T at various floors is considering seismic force in X direction only is shown in Table 3.

Torsional shear at each column line is worked out as follows using following equation:
$\mathrm{V}_{\mathrm{x}}=\left(\mathrm{T} / \mathrm{I}_{\mathrm{p}}\right) \times \mathrm{y} \times \mathrm{K}_{\mathrm{xx}}$
$\mathrm{K}_{\mathrm{xx}}=5 \times \mathrm{K}_{\mathrm{x}}($ for column line $1,2,3)$
$=3 \times \mathrm{K}_{\mathrm{x}}$ (for column line 4)
$K_{y y}=4 \times K_{y}($ for column line A, B, C $)$
$=3 \times K_{y}$ (for column line D, E)
Additional shear due to torsional moments in columns at various floor levels are shown in Table 4.

(f) Torsional due to seismic force in \mathbf{Y} direction

Torsional moment T at various floors is considering seismic force in Y direction only is shown in Table 5.

Torsional shear at each column line is worked out as follows using following equation:
$V_{y}=\left(T / I_{p}\right) \times x \times K_{y y}$
Additional shear due to torsional moments in columns at various floor levels are shown in Table 6.

As per the codal provisions only positive values or additive shear should be considered. This shear is to be added in to shear force resisted by columns due to seismic force in respective directions.

Fig. 1 Example

Fig. 2 Position of Center of Mass, Center of Rigidity and Design Eccentricities

Fig. 3 Plan and 3D view of modeled building in ETABS

Table:1 Storey shear at various floors (manual)

Floor	$\mathrm{W}_{\mathrm{i}} \mathrm{t}$	$\mathrm{h}_{\mathrm{i}} \mathrm{m}$	$\mathrm{W}_{\mathrm{i}} \mathrm{h}_{\mathrm{i}}{ }^{2}$	$\mathrm{Q}_{\mathrm{i}} \mathrm{t}$	$\mathrm{V}_{\mathrm{i}} \mathrm{t}$
1	490.8	3	4417.20	2.32	60.94
2	490.8	6	17668.80	9.30	58.61
3	490.8	9	39754.80	20.93	49.30
4	374.17	12	53880.48	28.37	28.37
			1157212.80		

Table: 2 Storey shear (tone) from ETABS

Floor	Weight of each storey	height	Storey shear
1	487.55	3.00	59.90
2	487.55	6.00	57.66
3	487.55	9.00	48.70
4	388.13	12.00	28.54

$18507.74-13632.27=4875.5 \mathrm{kN}$ (seismic weight of first storey)

Fig. 4 Storey shear (kN) in ETABS for earthquake in X direction

Center Mass Rigidity

Edit Yiew

> Center Mass Rigigity

	Story	Diaphrac	MassX	MassY	XCM	YCM	CumMassX	CumMassY	XCCM	YCCM	XCR	YCR
	STORY4	D1	373.3691	373.3691	13.606	9.854	373.3691	373.3691	13.606	9.854	13.376	9.760
	STORY3	D1	490.6002	490.6002	13.640	9.889	863.9693	863.9693	13.626	9.874	13.410	9.776
	STORY2	D1	490.6002	490.6002	13.640	9.889	1354.5669	1354.5696	13.631	9.879	13.457	9.802
	STORY1	D1	490.6002	490.6002	13.640	9.889	1845.1698	1845.1698	13.633	9.882	13.560	9.868

Fig. 5 Centre of mass and centre of rigidity at each storey in ETABS

Table: 3 Torsional moment due to seismic force in X direction

Torsional moment in		$\mathrm{e}_{\mathrm{di}}=1.5 \mathrm{~m}$	$\mathrm{e}_{\mathrm{di}}=-0.875 \mathrm{~m}$
Storey 1	$\mathrm{~T}_{1}$	$60.94 \times 1.5=91.41$	-53.32
Storey 2	T_{2}	$58.61 \times 1.5=87.92$	-51.28
Storey 3	T_{3}	$49.30 \times 1.5=73.96$	-43.14
Storey 4	T_{4}	$28.37 \times 1.5=42.56$	-24.82

Table: 4 Additional shear due to seismic force in X direction

Column line	First storey(shear in one column)			Total shear from ETABS	Second storey (shear in one column)			Total shear from ETABS	Third storey (shear in one column)			$\begin{gathered} \hline \text { Total } \\ \text { shear } \\ \text { from } \\ \text { ETABS } \\ \hline \end{gathered}$	Fourth Storey (shear in one column)			Total shear from ETABS
	Direct	Torsional Shear V_{x}	Total		Direct	Torsional Shear V_{x}	Total		Direct	Torsional Shear V_{x}	Total		Direct	Torsional Shear V_{x}	Total	
$1 \mathrm{y}=10$	3.39	+ 0.83	4.22	16.79	3.26	0.80	4.06	16.30	2.74	+0.67	3.41	13.63	1.58	+0.39	1.97	7.86
m		(-0.49)	2.90			(-0.47)	2.79			(-0.39)	2.35			(-0.23)	1.35	
$2 \mathrm{y}=2.5$	3.39	+0.21	3.60	16.80	3.26	0.20	3.46	16.45	2.74	+0.17	2.91	13.70	1.58	+0.10	1.68	7.92
m		(-0.12)	3.27			(-0.12)	3.14			(-0.10)	2.64			(-0.06)	1.52	
$3 \mathrm{y}=5 \mathrm{~m}$	3.39	-0.42	2.97	16.80	3.26	-0.40	2.86	16.55	2.74	-0.34	2.40	13.75	1.58	-0.19	1.39	7.96
		(+0.24)	3.63			(+0.23)	3.49			(+0.20)	2.94			(+0.11)	1.69	
$\begin{gathered} \hline 4 \mathrm{y}= \\ 12.5 \mathrm{~m} \\ \hline \end{gathered}$	3.39	-0.62	2.77	9.48	3.26	-0.60	2.66	8.28	2.74	-0.51	2.23	7.36	1.58	-0.29	1.29	4.10
		(+0.36)	3.75			(+0.35)	3.61			(+0.29)	3.03			(+0.17)	1.75	
			62.18	59.87			59.81	57.58			50.28	48.43			29.00	27.85
			60.17				57.86				48.73				27.98	

Fig. 6 Shear force (kN) in column line 1 and line 2 due to earthquake force in X direction

Fig. 7 Shear force (kN) in column line 3 and line 4 due to earthquake force in X direction
ETABS-48

Table: 5 Torsional moment due to seismic force in Y direction

Torsional moment in		$\mathrm{e}_{\mathrm{di}}=1.875 \mathrm{~m}$	$\mathrm{e}_{\mathrm{di}}=-1.25 \mathrm{~m}$
Storey 1	T_{1}	$60.94 \times 1.875=114.26$	-76.18
Storey 2	T_{2}	$58.61 \times 1.875=109.90$	-73.27
Storey 3	T_{3}	$49.30 \times 1.875=92.45$	-61.64
Storey 4	T_{4}	$28.37 \times 1.875=53.20$	-35.47

Table: 6 Additional shears due to seismic force in Y direction

Fig. 8 Shear force (kN) in column line A, B and C due to earthquake force in Y direction

Fig. 9 Shear force (kN) in column line D and E due to earthquake force in Y direction

