L DEITEL
VEY DEITEL

The cover theme for the DEITEL® HOW TO PROGRAM SERIES emphasizes social consciousness issues such as
going green, clean energy, recycling, sustainability and more. Within the text, in addition to conventional program-
ming exercises, we've included our Making a Difference exercise set to raise awareness of issues such as global
warming, population growth, affordable healthcare, accessibility, privacy of electronic records and more. In this
book, you’ll use Java to program applications that relate to these issues. We hope that what you learn in
Java How to Program, 9/e will help you to make a difference.

Night at the Niagara Falls—Ontario and New York

The Niagara Falls waterfalls straddle the border between Ontario, Canada and upstate
New York in the United States. Horseshoe Falls is located on the Canadian side, and
American Falls and Bridal Veil Falls are on the U.S. side.

The Niagara Falls are an awe-inspiring, world-class tourist attraction, and a
significant source of hydroelectric power. On average, nearly four million cubic feet
of water falls over the crest line each minute. The U.S. and Canada harness the natu-
ral energy from Niagara Falls to generate clean, inexpensive electricity. The first
hydroelectric generating station on the Niagara River was built in 1881. Its electricity
powered local mills and street lights. The Niagara Redevelopment Act, passed by
the U.S. Congress in 1957, gave the New York Power Authority the right to develop

.

the U.S. Niagara River hydroelectric power plants. The Niagara Falls hydroelectric project began operating in 1961.
Up to 375,000 gallons of water per second is diverted from the river through conduits to the power plants. The
water spins turbines that power generators that convert the mechanical energy into electrical energy. Today,
the project generates 2.4 million kilowatts, which can power 24 million 100-watt light bulbs simultaneously. For
further information visit:

en.wikipedia.org/wiki/Niagra_falls
www.nypa.gov/facilities/niagara.htm
www.niagarafrontier.com/power.html

About Deitel & Associates, Inc.

Deitel & Associates, Inc., is an internationally recognized authoring and corporate training organization. The com-
pany offers instructor-led courses delivered at client sites worldwide on programming languages and other software
topics such as Java™, C#®, Visual Basic®, Visual C++®, C++, C, Objective-C®, XML®, Python®, JavaScript, object
technology, Internet and web programming, and Android and iPhone app development. The company’s clients in-
clude many of the world’s largest companies, as well as government agencies, branches of the military and academic
institutions. To learn more about Deitel Pearson Higher Education publications and Dive Into® Series corporate
training, e-mail deitel@deitel.com or visit ww.deitel.com/training/. Follow Deitel on Facebook® at
www.deitel.com/deitelfan/ and on Twitter® @deitel.

www.nypa.gov/facilities/niagara.htm
www.niagarafrontier.com/power.html
www.deitel.com/training/
www.deitel.com/deitelfan/

» | g
HOW'TO _PROGRAM

Deitel® Series Page

How To Program Series

Java™ How to Program, 9/E

Java™ How to Program, Late Objects Version, 8/E
C++ How to Program, 8/E

C How to Program, 6/E

Internet & World Wide Web How to Program, 4/E
Visual Basic® 2010 How to Program

Visual C#® 2010 How to Program, 3/E

Visual C++® 2008 How to Program, 2/E

Small Java™ How to Program, 6/E

Small C++ How to Program, 5/E

Simply Series

Simply C++: An App-Driven Tutorial Approach

Simply Java"" Programming: An App-Driven
Tutorial Approach

Simply C#: An App-Driven Tutorial Approach

Simply Visual Basic® 2008, 3/E: An App-Driven
Tutorial Approach

CourseSmart Web Books

www.deitel.com/books/CourseSmart/

C++ How to Program, 5/E, 6/E, 7/E & 8/E

Java™ How to Program, 6/E, 7/E, 8/E & 9/E

Simply C++: An App-Driven Tutorial Approach
(continued next column)

(continued)

Simply Visual Basic 2008: An App-Driven
Tutorial Approach, 3/E

Visual Basic® 2010 How to Program

Visual Basic ®2008 How to Program

Visual C#® 2010 How to Program, 4/E

Visual C#® 2008 How to Program, 3/E

Deitel® Developer Series
AJAX, Rich Internet Applications and Web
Development for Programmers

Android for Programmers: An App-Driven
Approach

C++ for Programmers

C# 2010 for Programmers, 3/E

iPhone for Programmers: An App-Driven Approach
Java™ for Programmers

JavaScript for Programmers

LiveLessons Video Learning Products
www.deitel.com/books/LivelLessons/

Java™ Fundamentals

C# Fundamentals

C++ Fundamentals

iPhone® App Development Fundamentals
JavaScript Fundamentals

Visual Basic Fundamentals

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and more,
please register for the free Deitel® Buzz Online e-mail newsletter at:

www.deitel.com/newsletter/subscribe.html

follow us on Twitter®

@deitel

and become a Deitel & Associates fan on Facebook®

www.deitel.com/deitelfan/

To communicate with the authors, send e-mail to:
deitel@deitel.com

For information on government and corporate Dive-Into® Series on-site seminars offered by Deitel &

Associates, Inc. worldwide, visit:
www.deitel.com/training/
or write to
deitel@deitel.com

For continuing updates on Prentice Hall/Deitel publications visit:

www.deitel.com
www . pearsonhighered.com/deitel/

Check out our Resource Centers for valuable web resources that will help you master Java, other impor-
tant programming languages, software and, Internet- and web-related topics:

www.deitel.com/ResourceCenters.html

www.deitel.com/books/CourseSmart/
www.deitel.com/books/LiveLessons/
www.deitel.com/newsletter/subscribe.html
www.deitel.com/deitelfan/
www.deitel.com/training/
www.deitel.com
www.pearsonhighered.com/deitel/
www.deitel.com/ResourceCenters.html

Paul Deitel

Deitel & Associates, Inc.

Harvey Deitel
Deitel & Associates, Inc.

¥@
DEITEL?

Prentice Hall
Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Vice President and Editorial Director: Marcia J. Horton
Editor-in-Chief: Michael Hirsch

Associate Editor: Carole Snyder

Vice President, Marketing: Patrice Jones

Marketing Manager: Yezan Alayan

Senior Marketing Coordinator: Kathryn Ferranti

Vice President, Production: Vince O’Brien

Managing Editor: Jeff Holcomb

Associate Managing Editor: Robert Engelhardt

Operations Specialist: Lisa McDowell

Art Director: Linda Knowle

Cover Design: Abbey S. Deitel, Harvey M. Deitel, Marta Samsel
Cover Photo Credit: © Gonzalo E. Brea/Flickr/Getty Images
Media Editor: Daniel Sandin

Media Project Manager: Wanda Rockwell

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear
on page vi.

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The authors and pub-
lisher make no warranty of any kind, expressed or implied, with regard to these programs or to the documentation
contained in this book. The authors and publisher shall not be liable in any event for incidental or consequential dam-
ages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Copyright © 2012, 2009, 2007, 2005, 2003 Pearson Education, Inc., publishing as Prentice Hall. All rights reserved.
Manufactured in the United States of America. This publication is protected by Copyright, and permission should be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use
material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, 501
Boylston Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Deitel, Paul J.
Java : how to program / P.J. Deitel, H.M. Deitel. -- 9th ed.
p. cm.
H.M. Deitel's name appears on the earlier editions.
Includes index.
ISBN 978-0-13-257566-9
1. Java (Computer program language) I. Deitel, Paul J. II. Deitel, Harvey M. III. Title.

QA76.73.138D45 2012
005.13"'3--dc22

2011000244

10987654321
ISBN-10: 0-13-257566-3
ISBN-13: 978-0-13-257566-9

Prentice Hall
is an imprint of

PEARSON

eee——

In memory of Sargent Shriver,
The first director of the Peace Corps and
foum{er of numerous social organizations:

Jor a lifetime of making a difference.

Paul and Harvey Deitel

Trademarks

DEITEL, the double-thumbs-up bug and DIVE INTO are registered trademarks of Deitel and Associates,
Inc.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Microsoft, Internet Explorer and the Windows logo are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark of The Open Group.

Apache is a trademark of The Apache Software Foundation.

CSS, XHTML and XML are registered trademarks of the World Wide Web Consortium.
Firefox is a registered trademark of the Mozilla Foundation.

Google is a trademark of Google, Inc.

Web 2.0 is a service mark of CMP Media.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

Appendices M—Q are PDF documents posted online at the book’s Companion Website

(www.pearsonhighered.com/deitel/).

Preface

Before You Begin

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14

2.1
2.2
2.3
2.4
2.5
2.6

Introduction to Computers and Java

Introduction

Computers: Hardware and Software

Data Hierarchy

Computer Organization

Machine Languages, Assembly Languages and High-Level Languages
Introduction to Object Technology

Operating Systems

Programming Languages

Java and a Typical Java Development Environment
Test-Driving a Java Application

Web 2.0: Going Social

Software Technologies

Keeping Up-to-Date with Information Technologies
Wrap-Up

Introduction to Java Applications

Introduction

Your First Program in Java: Printing a Line of Text
Modifying Your First Java Program

Displaying Text with printf

Another Application: Adding Integers

Memory Concepts

37

38
38
44
46
47
52

www.pearsonhighered.com/deitel/

viii

2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Contents

Arithmetic
Decision Making: Equality and Relational Operators
Wrap-Up

Introduction to Classes, Objects, Methods
and Strings

Introduction

Declaring a Class with a Method and Instantiating an Object of a Class
Declaring a Method with a Parameter

Instance Variables, ser Methods and ger Methods

Primitive Types vs. Reference Types

Initializing Objects with Constructors

Floating-Point Numbers and Type double

(Optional) GUI and Graphics Case Study: Using Dialog Boxes
Wrap-Up

Control Statements: Part |

Introduction

Algorithms

Pseudocode

Control Structures

if Single-Selection Statement

if...e1se Double-Selection Statement

while Repetition Statement

Formulating Algorithms: Counter-Controlled Repetition
Formulating Algorithms: Sentinel-Controlled Repetition
Formulating Algorithms: Nested Control Statements
Compound Assignment Operators

Increment and Decrement Operators

Primitive Types

(Optional) GUI and Graphics Case Study: Creating Simple Drawings
Wrap-Up

Control Statements: Part 2

Introduction

Essentials of Counter-Controlled Repetition
for Repetition Statement

Examples Using the for Statement
do...whiTle Repetition Statement

switch Multiple-Selection Statement

break and continue Statements

Logical Operators

Structured Programming Summary

53
56
60

71

72
72
76
79
84
85
88
92
95

102

103
103
104
104
107
107
112
113
118
125
130
130
134
134
138

151

152
152
154
158
162
164
172
173
179

Contents ix

5.10 (Optional) GUI and Graphics Case Study: Drawing Rectangles and Ovals 184

5.11 Wrap-Up 187
6 Methods: A Deeper Look 197
6.1 Introduction 198
6.2 Program Modules in Java 198
6.3 static Methods, static Fields and Class Math 200
6.4 Declaring Methods with Multiple Parameters 202
6.5 Notes on Declaring and Using Methods 205
6.6 Method-Call Stack and Activation Records 206
6.7 Argument Promotion and Casting 207
6.8 Java API Packages 208
6.9 Case Study: Random-Number Generation 210

6.9.1 Generalized Scaling and Shifting of Random Numbers 214

6.9.2 Random-Number Repeatability for Testing and Debugging 214
6.10 Case Study: A Game of Chance; Introducing Enumerations 215
6.11 Scope of Declarations 219
6.12 Method Overloading 222
6.13 (Optional) GUI and Graphics Case Study: Colors and Filled Shapes 224
6.14 Wrap-Up 227
7 Arrays and ArraylLists 240
7.1 Introduction 241
7.2 Arrays 242
7.3 Declaring and Creating Arrays 243
7.4 Examples Using Arrays 244
7.5 Case Study: Card Shuffling and Dealing Simulation 254
7.6 Enhanced for Statement 258
7.7 Passing Arrays to Methods 259
7.8 Case Study: Class GradeBook Using an Array to Store Grades 262
7.9 Multidimensional Arrays 268
7.10 Case Study: Class GradeBook Using a Two-Dimensional Array 271
7.11 Variable-Length Argument Lists 278
7.12 Using Command-Line Arguments 279
7.13 Class Arrays 281
7.14 Introduction to Collections and Class ArrayList 284
7.15 (Optional) GUI and Graphics Case Study: Drawing Arcs 286
7.16 Wrap-Up 289
8 Classes and Objects: A Deeper Look 311
8.1 Introduction 312
8.2 Time Class Case Study 312
8.3 Controlling Access to Members 316
8.4 Referring to the Current Object’'s Members with the this Reference 317

8.5 Time Class Case Study: Overloaded Constructors 320

8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17

9.1
9.2
9.3
9.4

9.5
9.6
9.7
9.8

9.9

10

10.1
10.2
10.3
10.4
10.5

Contents

Default and No-Argument Constructors 326
Notes on Ser and Ger Methods 326
Composition 328
Enumerations 331
Garbage Collection and Method finalize 333
static Class Members 334
static Import 338
final Instance Variables 339
Time Class Case Study: Creating Packages 340
Package Access 345
(Optional) GUI and Graphics Case Study: Using Objects with Graphics 347
Wrap-Up 351

Object-Oriented Programming: Inheritance 359

Introduction 360
Superclasses and Subclasses 361
protected Members 363
Relationship between Superclasses and Subclasses 364
9.4.1 Creating and Using a CommissionEmployee Class 364
9.4.2 Creating and Using a BasePTusCommissionEmployee Class 370
9.4.3 Creating a CommissionEmployee—BasePTusCommissionEmployee
Inheritance Hierarchy 375
9.4.4 CommissionEmployee—BasePTusCommissionEmployee Inheritance
Hierarchy Using protected Instance Variables 377
9.4.5 CommissionEmployee—BasePTusCommissionEmpTloyee Inheritance
Hierarchy Using private Instance Variables 380
Constructors in Subclasses 385
Software Engineering with Inheritance 386
Class Object 387
(Optional) GUI and Graphics Case Study: Displaying Text and
Images Using Labels 388
Wrap-Up 391

Object-Oriented Programming: Polymorphism 394

Introduction 395
Polymorphism Examples 397
Demonstrating Polymorphic Behavior 398
Abstract Classes and Methods 400
Case Study: Payroll System Using Polymorphism 403
10.5.1 Abstract Superclass Employee 404
10.5.2 Concrete Subclass SalariedEmployee 407
10.5.3 Concrete Subclass HourlyEmployee 408
10.5.4 Concrete Subclass CommissionEmpTloyee 410
10.5.5 Indirect Concrete Subclass BasePTusCommissionEmployee 412
10.5.6 Polymorphic Processing, Operator instanceof and Downcasting 413

10.6
10.7

10.8
10.9

11.1
11.2
11.3

11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12

11.13
11.14

12

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8

Contents

10.5.7 Summary of the Allowed Assignments Between Superclass and
Subclass Variables

final Methods and Classes

Case Study: Creating and Using Interfaces

10.7.1 Developing a Payable Hierarchy

10.7.2 Interface Payable

10.7.3 Class Invoice

10.7.4 Modifying Class Employee to Implement Interface Payable

10.7.5 Modifying Class SalariedEmpTloyee for Use in the Payable
Hierarchy

10.7.6 Using Interface Payable to Process Invoices and Employees
Polymorphically

10.7.7 Common Interfaces of the Java API

(Optional) GUI and Graphics Case Study: Drawing with Polymorphism

Wrap-Up

Exception Handling: A Deeper Look

Introduction

Example: Divide by Zero without Exception Handling

Example: Handling ArithmeticExceptions and
InputMismatchExceptions

When to Use Exception Handling

Java Exception Hierarchy

finally Block

Stack Unwinding and Obtaining Information from an Exception Object
Chained Exceptions

Declaring New Exception Types

Preconditions and Postconditions

Assertions

(New in Java SE 7) Multi-catch: Handling Multiple Exceptions

in One catch

(New in Java SE 7) try-with-Resources: Automatic Resource Deallocation
Wrap-Up

ATM Case Study, Part I: Object-Oriented
Design with the UML

Case Study Introduction

Examining the Requirements Document

Identifying the Classes in a Requirements Document
Identifying Class Attributes

Identifying Objects’ States and Activities

Identifying Class Operations

Indicating Collaboration Among Objects

Wrap-Up

xi

418
418
419
421
422
422
425

427

428
430
431
433

438

439
439

442
447
447
450
454
457
459
460
461

462
463
463

469

470
470
478
484
489
493
499
506

xii

13

13.1
13.2
13.3
13.4

13.5

14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10

14.11
14.12
14.13
14.14
14.15
14.16
14.17
14.18

14.19

Contents

ATM Case Study Part 2: Implementing an
Object-Oriented Design

Introduction

Starting to Program the Classes of the ATM System
Incorporating Inheritance and Polymorphism into the ATM System
ATM Case Study Implementation

13.4.1 Class ATM

13.4.2 Class Screen

13.4.3 Class Keypad

13.4.4 Class CashDispenser

13.4.5 Class DepositSlot

13.4.6 Class Account

13.4.7 Class BankDatabase

13.4.8 Class Transaction

13.4.9 Class BalanceInquiry

13.4.10 Class Withdrawal

13.4.11 Class Deposit

13.4.12 Class ATMCaseStudy

Wrap-Up

GUI Components: Part |

Introduction

Java’s New Nimbus Look-and-Feel

Simple GUI-Based Input/Output with JOptionPane
Overview of Swing Components

Displaying Text and Images in a Window

Text Fields and an Introduction to Event Handling with Nested Classes
Common GUI Event Types and Listener Interfaces
How Event Handling Works

JButton

Buttons That Maintain State

14.10.1 IJCheckBox

14.10.2 JRadioButton

JComboBox; Using an Anonymous Inner Class for Event Handling
JList

Multiple-Selection Lists

Mouse Event Handling

Adapter Classes

JPanel Subclass for Drawing with the Mouse

Key Event Handling

Introduction to Layout Managers

14.18.1 FlowLayout

14.18.2 BorderLayout

14.18.3 GridLayout

Using Panels to Manage More Complex Layouts

510

511
511
516
522
523
528
529
530
531
532
534
537
538
539
543
546
546

549

550
551
552
555
557
561
567
569
571
574
574
577
580
584
586
589
594
597
601
604
605
608
611
613

Contents

14.20 JTextArea
14.21 Wrap-Up

15

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9

16

16.1
16.2
16.3

16.4

16.5
16.6
16.7
16.8

17

17.1
17.2
17.3
17.4

Graphics and Java 2D

Introduction

Graphics Contexts and Graphics Objects
Color Control

Manipulating Fonts

Drawing Lines, Rectangles and Ovals
Drawing Arcs

Drawing Polygons and Polylines

Java 2D API

Wrap-Up

Strings, Characters and Regular Expressions

Introduction

Fundamentals of Characters and Strings

Class String

16.3.1 String Constructors

16.3.2 String Methods Tength, charAt and getChars

16.3.3 Comparing Strings

16.3.4 Locating Characters and Substrings in Strings

16.3.5 Extracting Substrings from Strings

16.3.6 Concatenating Strings

16.3.7 Miscellaneous String Methods

16.3.8 String Method value0f

Class StringBuilder

16.4.1 StringBuilder Constructors

16.4.2 StringBuilder Methods Tength, capacity, setLength and
ensureCapacity

16.4.3 StringBuilder Methods charAt, setCharAt, getChars
and reverse

16.4.4 StringBuilder append Methods

16.4.5 StringBuilder Insertion and Deletion Methods

Class Character

Tokenizing Strings

Regular Expressions, Class Pattern and Class Matcher

Wrap-Up

Files, Streams and Object Serialization

Introduction

Files and Streams

Class File

Sequential-Access Text Files

17.4.1 Creating a Sequential-Access Text File

xiii

615
618

631

632
634
635
642
647
651
654
657
664

672

673
673
674
674
675
676
681
683
684
684
686
687
688

688

690
691
693
694
699
700
708

719

720
720
722
726
726

xXiv

17.5
17.6

17.7
17.8

18

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10

19

19.1
19.2

19.3

19.4

20

20.1
20.2
20.3
20.4
20.5
20.6

Contents

17.4.2 Reading Data from a Sequential-Access Text File

17.4.3 Case Study: A Credit-Inquiry Program

17.4.4 Updating Sequential-Access Files

Object Serialization

17.5.1 Creating a Sequential-Access File Using Object Serialization
17.5.2 Reading and Deserializing Data from a Sequential-Access File
Additional java.io Classes

17.6.1 Interfaces and Classes for Byte-Based Input and Output
17.6.2 Interfaces and Classes for Character-Based Input and Output
Opening Files with JFiTeChooser

Wrap-Up

Recursion

Introduction

Recursion Concepts

Example Using Recursion: Factorials
Example Using Recursion: Fibonacci Series
Recursion and the Method-Call Stack
Recursion vs. Iteration

Towers of Hanoi

Fractals

Recursive Backtracking

Wrap-Up

Searching, Sorting and Big O

Introduction
Searching Algorithms
19.2.1 Linear Search
19.2.2 Binary Search
Sorting Algorithms
19.3.1 Selection Sort
19.3.2 Insertion Sort
19.3.3 Merge Sort
Wrap-Up

Generic Collections

Introduction

Collections Overview

Type-Wrapper Classes for Primitive Types
Autoboxing and Auto-Unboxing

Interface Collection and Class Collections
Lists

20.6.1 ArrayList and Iterator

20.6.2 LinkedList

733
736
741
742
743
749
751
751
753
754
757

765

766
767
768
771
774
776
777
779
790
790

798

799
800
800
804
809
810
814
817
824

829

830
830
831
832
832
833
834
836

20.7

20.8

20.9

20.10
20.11
20.12
20.13
20.14
20.15
20.16

2]

21.1
21.2
21.3
21.4

21.5
21.6
21.7
21.8
21.9
21.10

22

22.1
22.2
22.3
22.4
22.5
22.6
22.7
22.8

23

23.1
23.2
23.3

Contents

Collections Methods

20.7.1 Method sort

20.7.2 Method shuffle

20.7.3 Methods reverse, fi11, copy, max and min
20.7.4 Method binarySearch

20.7.5 Methods addA11, frequency and disjoint
Stack Class of Package java.util

Class PriorityQueue and Interface Queue

Sets

Maps

Properties Class

Synchronized Collections

Unmodifiable Collections

Abstract Implementations

Wrap-Up

Generic Classes and Methods

Introduction

Motivation for Generic Methods

Generic Methods: Implementation and Compile-Time Translation
Additional Compile-Time Translation Issues: Methods That Use a
Type Parameter as the Return Type

Overloading Generic Methods

Generic Classes

Raw Types

Wildcards in Methods That Accept Type Parameters

Generics and Inheritance: Notes

Wrap-Up

Custom Generic Data Structures

Introduction

Self-Referential Classes
Dynamic Memory Allocation
Linked Lists

Stacks

Queues

Trees

Wrap-Up

Applets and Java Web Start

Introduction

Sample Applets Provided with the JDK

Simple Java Applet: Drawing a String

23.3.1 Executing WelcomeApplet in the appletviewer
23.3.2 Executing an Applet in a Web Browser

Xv

841
842
845
847
849
851
853
855
856
859
863
866
866
867
867

873

874
874
877

880
883
883
891
895
899
900

904

905
905
906
907
917
921
924
930

941
942
943
947
949
951

xXVi

23.4
23.5
23.6
23.7

23.8

24

24.1
24.2
24.3
24.4
24.5
24.6
24.7
24.8

25

25.1
25.2
25.3
25.4
25.5
25.6
25.7
25.8
25.9
25.10

26

26.1
26.2
26.3
26.4

26.5
26.6
26.7
26.8
26.9
26.10
26.11

Contents

Applet Life-Cycle Methods

Initialization with Method init

Sandbox Security Model

Java Web Start and the Java Network Launch Protocol (JNLP)

23.7.1 Packaging the DrawTest Applet for Use with Java Web Start
23.7.2 JNLP Document for the DrawTest Applet

Wrap-Up

Multimedia: Applets and Applications

Introduction

Loading, Displaying and Scaling Images

Animating a Series of Images

Image Maps

Loading and Playing Audio Clips

Playing Video and Other Media with Java Media Framework
Wrap-Up

Web Resources

GUI Components: Part 2

Introduction

JSTlider

Windows: Additional Notes

Using Menus with Frames

JPopupMenu

Pluggable Look-and-Feel

JDesktopPane and JInternalFrame

JTabbedPane

Layout Managers: BoxLayout and GridBaglLayout
Wrap-Up

Multithreading

Introduction

Thread States: Life Cycle of a Thread

Creating and Executing Threads with Executor Framework
Thread Synchronization

26.4.1 Unsynchronized Data Sharing

26.4.2 Synchronized Data Sharing—Making Operations Atomic
Producer/Consumer Relationship without Synchronization
Producer/Consumer Relationship: ArrayBlockingQueue
Producer/Consumer Relationship with Synchronization
Producer/Consumer Relationship: Bounded Buffers
Producer/Consumer Relationship: The Lock and Condition Interfaces
Concurrent Collections Overview

Multithreading with GUI

951
952
954
956
956
957
961

967

968
969
975
982
985
988
992
992

1000

1001
1001
1005
1006
1014
1017
1022
1026
1028
1040

1045

1046
1048
1051
1054
1055
1059
1062
1070
1073
1079
1086
1093
1095

Contents
26.11.1 Performing Computations in a Worker Thread
26.11.2 Processing Intermediate Results with SwingWorker
26.12 Interfaces Callable and Future
26.13 Java SE 7: Fork/Join Framework
26.14 Wrap-Up
27 Networking
27.1 Introduction
27.2 Manipulating URLs
27.3 Reading a File on a Web Server
27.4 Establishing a Simple Server Using Stream Sockets
27.5 Establishing a Simple Client Using Stream Sockets
27.6 Client/Server Interaction with Stream Socket Connections
27.7 Datagrams: Connectionless Client/Server Interaction
27.8 Client/Server Tic-Tac-Toe Using a Multithreaded Server
27.9 [Web Bonus] Case Study: DeitelMessenger
27.10 Wrap-Up
28 Accessing Databases with JDBC
28.1 Introduction
28.2 Relational Databases
28.3 Relational Database Overview: The books Database
28.4 SQL
28.4.1 Basic SELECT Query
28.4.2 WHERE Clause
28.4.3 ORDER BY Clause
28.4.4 Merging Data from Multiple Tables: INNER JOIN
28.4.5 INSERT Statement
28.4.6 UPDATE Statement
28.4.7 DELETE Statement
28.5 Instructions for Installing MySQL and MySQL Connector/]
28.6 Instructions for Setting Up a MySQL User Account
28.7 Creating Database books in MySQL
28.8 Manipulating Databases with JDBC
28.8.1 Connecting to and Querying a Database
28.8.2 Querying the books Database
28.9 RowSet Interface
28.10 Java DB/Apache Derby
28.11 PreparedStatements
28.12 Stored Procedures
28.13 Transaction Processing
28.14 Wrap-Up

28.15

Web Resources

xXVii

1096
1102
1109
1109
1110

1118

1119
1120
1125
1128
1130
1130
1142
1150
1165
1165

1171

1172
1173
1174
1177
1178
1179
1181
1182
1184
1185
1186
1186
1187
1188
1189
1189
1194
1207
1209
1211
1226
1227
1227
1228

xVviii Contents

29 JavaServer™ Faces Web Apps: Part | 1235
29.1 Introduction 1236
29.2 HyperText Transfer Protocol (HTTP) Transactions 1237
29.3 Multitier Application Architecture 1240
29.4 Your First JSF Web App 1241
29.4.1 The Default index.xhtm1 Document: Introducing Facelets 1242
29.4.2 Examining the WebTimeBean Class 1244
29.4.3 Building the WebTime JSF Web App in NetBeans 1246
29.5 Model-View-Controller Architecture of JSF Apps 1250
29.6 Common JSF Components 1250
29.7 Validation Using JSF Standard Validators 1254
29.8 Session Tracking 1261
29.8.1 Cookies 1262
29.8.2 Session Tracking with @SessionScoped Beans 1263
29.9 Wrap-Up 1269
30 JavaServer™ Faces Web Apps: Part 2 1276
30.1 Introduction 1277
30.2 Accessing Databases in Web Apps 1277
30.2.1 Setting Up the Database 1279
30.2.2 @vanagedBean Class AddressBean 1282
30.2.3 index.xhtml Facelets Page 1286
30.2.4 addentry.xhtml Facelets Page 1288
303 Ajax 1290
30.4 Adding Ajax Functionality to the Validation App 1292
30.5 Wrap-Up 1295
31 Web Services 1299
31.1 Introduction 1300
31.2 Web Service Basics 1302
31.3 Simple Object Access Protocol (SOAP) 1302
31.4 Representational State Transfer (REST) 1302
31.5 JavaScript Object Notation (JSON) 1303
31.6 Publishing and Consuming SOAP-Based Web Services 1303
31.6.1 Creating a Web Application Project and Adding a Web
Service Class in NetBeans 1303
31.6.2 Defining the WelcomeSOAP Web Service in NetBeans 1304
31.6.3 Publishing the WeTcomeSOAP Web Service from NetBeans 1307
31.6.4 Testing the WelcomeSOAP Web Service with GlassFish
Application Server’s Tester Web Page 1308
31.6.5 Describing a Web Service with the Web Service Description
Language (WSDL) 1309

31.6.6 Creating a Client to Consume the WelcomeSOAP Web Service 1310
31.6.7 Consuming the WelcomeSOAP Web Service 1312

Contents xXix

31.7 Publishing and Consuming REST-Based XML Web Services 1315
31.7.1 Creating a REST-Based XML Web Service 1315
31.7.2 Consuming a REST-Based XML Web Service 1318
31.8 Publishing and Consuming REST-Based JSON Web Services 1320
31.8.1 Creating a REST-Based JSON Web Service 1320
31.8.2 Consuming a REST-Based JSON Web Service 1322
31.9 Session Tracking in a SOAP Web Service 1324
31.9.1 Creating a Blackjack Web Service 1325
31.9.2 Consuming the Blackjack Web Service 1328
31.10 Consuming a Database-Driven SOAP Web Service 1339
31.10.1 Creating the Reservation Database 1340
31.10.2 Creating a Web Application to Interact with the
Reservation Service 1343
31.11 Equation Generator: Returning User-Defined Types 1346
31.11.1 Creating the EquationGeneratorXML Web Service 1349
31.11.2 Consuming the EquationGeneratorXML Web Service 1350
31.11.3 Creating the EquationGeneratorJSON Web Service 1354
31.11.4 Consuming the EquationGenerator]SON Web Service 1354
31.12 Wrap-Up 1357
A Operator Precedence Chart 1365
B ASCII Character Set 1367
C Keywords and Reserved Words 1368
D Primitive Types 1369
E Using the Java API Documentation 1370
E.1 Introduction 1370
E.2 Navigating the Java API 1370
F Using the Debugger 1378
F.1 Introduction 1379
F.2 Breakpoints and the run, stop, cont and print Commands 1379
F.3 The print and set Commands 1383
F.4 Controlling Execution Using the step, step up and next Commands 1385
F.5 Thewatch Command 1388
F.6 The clear Command 1391
F.7 Wrap-Up 1393
G Formatted Output 1395

G.1 Introduction 1396

XX

G.2
G3
G.4
G.5
G.6
G.7
G.8
G.9
G.10
G.11
G.12
G.13
G.14

H.1
H.2
H.3
H.4
H.5
H.o0

I.1
1.2
I3
1.4

J.1
].2
1.3

K.1
K2
K.3
K.4
K.5
K.6

L.1

Contents

Streams

Formatting Output with printf

Printing Integers

Printing Floating-Point Numbers
Printing Strings and Characters

Printing Dates and Times

Other Conversion Characters

Printing with Field Widths and Precisions
Using Flags in the printf Format String
Printing with Argument Indices

Printing Literals and Escape Sequences
Formatting Output with Class Formatter
Wrap-Up

Number Systems

Introduction

Abbreviating Binary Numbers as Octal and Hexadecimal Numbers
Converting Octal and Hexadecimal Numbers to Binary Numbers

Converting from Binary, Octal or Hexadecimal to Decimal
Converting from Decimal to Binary, Octal or Hexadecimal
Negative Binary Numbers: Two’s Complement Notation

GrouplLayout

Introduction

GroupLayout Basics
Building a CoTorChooser
GroupLayout Web Resources

Java Desktop Integration Components

Introduction
Splash Screens
Desktop Class
Tray Icons

Mashups

Introduction

Popular Mashups

APIs Commonly Used in Mashups

Deitel Mashups Resource Center

Deitel RSS Resource Center

Mashup Performance and Reliability Issues

Unicode®

Introduction

1396
1396
1397
1398
1400
1401
1403
1405
1407
1411
1411
1412
1413

1418

1419
1422
1423
1423
1424
1426

1431

1431
1431
1432
1442

1443
1443
1443
1445
1447

1449
1449
1449
1450
1450
1451
1451

1452
1452

Contents xxi

L.2 Unicode Transformation Formats 1453
L.3 Characters and Glyphs 1454
L4 Advantages/Disadvantages of Unicode 1454
L.5 Using Unicode 1455
L.6 Character Ranges 1457
Appendices on the Web 1459
Index 1461

Appendices M—Q are PDF documents posted online at the book’s Companion Website

(www.pearsonhighered.com/deitel/).

M Creating Documentation with javadoc M-1
M.1 Introduction M-1
M.2 Documentation Comments M-1
M.3 Documenting Java Source Code M-1
M.4 javadoc M-8
M.5 Files Produced by javadoc M-9
N Bit Manipulation N-1
N.1 Introduction N-1
N.2 Bit Manipulation and the Bitwise Operators N-1
N.3 BitSet Class N-11
O Labeled break and continue Statements O-1
O.1 Introduction O-1
0.2 Labeled break Statement O-1
0.3 Labeled continue Statement 0-2
P UML 2: Additional Diagram Types P-1
P.1 Introduction P-1
P.2 Additional Diagram Types P-1
Q Design Patterns Q-1
Q.1 Introduction Q-1
Q.2 Creational, Structural and Behavioral Design Patterns Q-2

Q.2.1 Creational Design Patterns Q-3

Q.2.2 Structural Design Patterns Q-5

www.pearsonhighered.com/deitel/

xxii

Q.3

Q4
Q.5

Q.6

Q.7

Contents

Q.2.3 Behavioral Design Patterns

Q.2.4 Conclusion

Design Patterns in Packages java.awt and javax.swing
Q.3.1 Creational Design Patterns

Q.3.2 Structural Design Patterns

Q.3.3 Behavioral Design Patterns

Q.3.4 Conclusion

Concurrency Design Patterns

Design Patterns Used in Packages java.io and java.net
Q.5.1 Creational Design Patterns

Q.5.2 Structural Design Patterns

Q.5.3 Architectural Patterns

Q.5.4 Conclusion

Design Patterns Used in Package java.util

Q.6.1 Creational Design Patterns

Q.6.2 Behavioral Design Patterns

Wrap-Up

Q-10
Q-13
Q-14
Q-15
Q-15
Q-15
Q-16
Q-19
Q-19
Q-19
Q-19
Q-20

Live in fragments no longer, only connect.
—Edgar Morgan Foster

Welcome to Java and Java How to Program, Ninth Edition! This book presents leading-
edge computing technologies for students, instructors and software developers.

The new Chapter 1 engages students with intriguing facts and figures to get them
excited about studying computers and programming. The chapter includes a table of some
of the research made possible by computers; current technology trends and hardware dis-
cussion; the data hierarchy; a table of mobile and Internet app platforms; a new section on
social networking; an introduction to Android; a table of popular web services; a table of
business and technology publications and websites that will help you stay up to date with
the latest technology news and trends; and updated exercises.

The book is appropriate for introductory course sequences based on the ACM/IEEE
curriculum recommendations and for AP Computer Science exam preparation.

We focus on software engineering best practices. At the heart of the book is the Deitel
signature “live-code approach”—concepts are presented in the context of complete
working programs, rather than in code snippets. Each complete code example is accompa-
nied by live sample executions. All the source code is available at www. deitel.com/books/
jhtp9/ and at the book’s Companion Website www. pearsonhighered.com/deitel/.

As you read the book, if you have questions, send an e-mail to deitel@deitel.com;
we'll respond promptly. For updates on this book, visit www.deitel.com/books/jhtp9/,
follow us on Facebook (www.deitel.com/deitelfan) and Twitter (@deitel), and subscribe
to the Deite/® Buzz Online newsletter (www.deitel.com/newsletter/subscribe.html).

New and Updated Features

Here are the updates we've made for Java How to Program, 9/e:

Java Standard Edition (SE) 7

* Easy to use as a_Java SE 6 or Java SE 7 book. There are a few Java Standard Edi-
tion (SE) 7 features that affect CS 1 and CS 2 courses. We cover those features in
optional modular sections that are easy to include or omit. Here’s some of the
new functionality: Strings in switch statements, the try-with-resources state-
ment for managing AutoClosable objects, multi-catch for defining a single ex-
ception handler to replace multiple exception handlers that perform the same
task, the NIO filesystem APIs and inferring the types of generic objects from the
variable they’re assigned to by using the <> notation. We also overview the new
concurrency API features.

www.deitel.com/books/jhtp9/
www.deitel.com/books/jhtp9/
www.pearsonhighered.com/deitel/
www.deitel.com/books/jhtp9/
www.deitel.com/deitelfan
www.deitel.com/newsletter/subscribe.html

XXiv

Preface

Java SE 7 filesystem APIs. We provide an alternate online version of Chapter 17,
Files, Streams and Object Serialization, that’s reimplemented with the new file-
system APIs from Java SE 7.

Java SE 7’s AutoClosable versions of Connection, Statement and ResultSet.
With the source code for Chapter 28, Accessing Databases with JDBC, we pro-
vide a version of the chapter’s first example that’s implemented using Java SE 7’s
AutoClosable versions of Connection, Statement and ResultSet. AutoClos-
abTe objects reduce the likelihood of resource leaks when you use them with Java
SE 7’s try-with-resources statement, which automatically closes the AutoClos-
abTe objects allocated in the parentheses following the try keyword.

Pedagogic Features

Enbanced Making a Difference exercises set. We encourage you to use computers
and the Internet to research and solve significant social problems. These exercises
are meant to increase awareness and discussion of important issues the world is
facing. We hope you’ll approach them with your own values, politics and beliefs.
Check out our new Making a Difference Resource Center at www. deitel.com/
MakingADifference for additional ideas you may want to investigate further.

Page numbers for key terms in chapter summaries. For key terms that appear in
the chapter summaries, we include the page number of the key term’s defining
occurrence.

VideoNotes. The Companion Website includes extensive VideoNotes in which
co-author Paul Deitel explains in detail most of the programs in the core chapters.
Instructors have told us that their students find the VideoNotes valuable.

Object Technology

Object-oriented programming and design. We introduce the basic concepts and
terminology of object technology in Chapter 1. Students develop their first cus-
tomized classes and objects in Chapter 3. Presenting objects and classes early gets
students “thinking about objects” immediately and mastering these concepts more
thoroughly. [For courses that require a late-objects approach, consider java How
to Program, Late Objects Version, 8/e, which begins with six chapters on program-
ming fundamentals (including two on control statements) and continues with sev-
en chapters that gradually introduce object-oriented programming concepts.]

Exception handling. We integrate basic exception handling eatlier in the book
and instructors can easily pull more material forward from Chapter 11, Excep-
tion Handling: A Deeper Look.

Class Arrays and ArrayList. Chapter 7 covers class Arrays—which contains
methods for performing common array manipulations—and class ArrayList—
which implements a dynamically resizable array-like data structure. This follows
our philosophy of getting lots of practice using existing classes while learning how
to define your own classes.

OO case studies. The early classes and objects presentation features Time, Employ-
ee and GradeBook class case studies that weave their way through multiple sec-
tions and chapters, gradually introducing deeper OO concepts.

www.deitel.com/MakingADifference
www.deitel.com/MakingADifference

New and Updated Features XXV

Optional Case Study: Using the UML to Develop an Object-Oriented Design and

Java Implementation of an ATM. The UML™ (Unified Modeling Language™)
is the industry-standard graphical language for modeling object-oriented systems.
Chapters 1213 include an optional case study on object-oriented design using
the UML. We design and implement the software for a simple automated teller
machine (ATM). We analyze a typical requirements document that specifies the
system to be built. We determine the classes needed to implement that system,
the attributes the classes need to have, the behaviors the classes need to exhibit
and specify how the classes must interact with one another to meet the system re-
quirements. From the design we produce a complete Java implementation. Stu-
dents often report having a “light-bulb moment”—the case study helps them “tie
it all together” and really understand object orientation.

Reordered data structures presentation. We begin with generic class ArrayList
in Chapter 7. Because students will understand basic generics concepts early in the
book, our later data structures discussions provide a deeper treatment of generic
collections—showing how to use the built-in collections of the Java API. We
then show how to implement generic methods and classes. Finally, we show how
to build custom generic data structures.

Database and Web Development

JDBC 4. Chapter 28, Accessing Databases with JDBC, covers JDBC 4 and uses
the Java DB/Apache Derby and MySQL database management systems. The
chapter features an OO case study on developing a database-driven address book
that demonstrates prepared statements and JDBC 4’s automatic driver discovery.

Java Server Faces (JSF) 2.0. Chapters 29-30 have been updated to introduce
JavaServer Faces (JSF) 2.0 technology, which greatly simplifies building JSF web
applications. Chapter 29 includes examples on building web application GUIs,
validating forms and session tracking. Chapter 30 discusses data-driven and Ajax-
enabled JSF applications. The chapter features a database-driven multitier web
address book that allows users to add and search for contacts. This Ajax-enabled
application gives the reader a nice sense of Web 2.0 software development.

Web services. Chapter 31, Web Services, demonstrates creating and consuming
SOAP- and REST-based web services. Case studies include developing blackjack

and airline reservation web services.

Java Web Start and the Java Network Launch Protocol (JNLP). We introduce
Java Web Start and JNLP, which enable applets and applications to be launched
via a web browser. Users can install locally for later execution. Programs can also
request the user’s permission to access local system resources such as files—en-
abling you to develop more robust applets and applications that execute safely us-
ing Java’s sandbox security model, which applies to downloaded code.

Multithreading

Multithreading. We completely reworked Chapter 26, Multithreading [special
thanks to the guidance of Brian Goetz and Joseph Bowbeer—two of the co-au-
thors of Java Concurrency in Practice, Addison-Wesley, 2006].

SwingWorker class. We use class SwingWorker to create multithreaded user interfaces.

xXXVi Preface

GUI and Graphics

o Scalable GUI and graphics presentation. Instructors teaching introductory
courses have a broad choice of the amount of GUI and graphics to cover—from
none, to an optional 10-brief-sections introductory sequence woven in with the
carly chapters, to a deep treatment in Chapters 14, 15 and 25, and Appendix I.

* GroupLayout layout manager. We discuss the GroupLayout layout manager in
the context of the GUI design tool in the NetBeans IDE.

* JTable sorting and filtering capabilities. Chapter 28 uses these capabilities to re-
sort the data in a JTab7e and filter it by regular expressions.

Other Features

* Android. Because of the tremendous interest in Android-based smartphones and
tablets, we've included a three-chapter introduction to Android app development
on the Companion Website. These chapters are from our new Deitel Developer
Series book Android for Programmers: An App-Driven Approach. After you learn
Java, you'll find it straightforward to develop and run Android apps on the free
Android emulator that you can download from developer.android.com.

* Software engineering community concepts. We discuss agile software develop-
ment, refactoring, design patterns, LAMP, SaaS (Software as a Service), Paa$S
(Platform as a Service), cloud computing, open-source software and more.

Dependency Chart

The chart on the next page shows the dependencies among the chapters to help instructors
plan their syllabi. Java How to Program, 9e, is appropriate for a variety of programming
courses at various levels, most notably CS 1 and CS 2 courses and introductory course
sequences in related disciplines. The book has a clearly delineated, modular organization.
Chapters 1-11 and 14-17 form an accessible elementary programming sequence with a
solid introduction to object-oriented programming. Optional Chapters 1213 form an
accessible introduction to object-oriented design with the UML. The GUI and Graphics
Track and Chapters 14, 15, 23, 24 and 25 form a substantial GUI, graphics and multime-
dia sequence. Chapters 18-22 form a nice data-structures sequence. Chapters 26-27 form
a solid introduction to multithreading and Internet networking. Chapters 28-31 form a
rich database-intensive web application development sequence.

Teaching Approach

Java How to Program, 9le, contains hundreds of complete working examples. We stress
program clarity and concentrate on building well-engineered software.

Syntax Coloring. For readability, we syntax color all the Java code, similar to the way most
Java integrated-development environments and code editors syntax color code. Our syn-
tax-coloring conventions are as follows:

comments appear in green

keywords appear in dark blue

errors appear in red

constants and literal values appear in Tight blue
all other code appears in black

Modules and
Chapter
Dependency
Chart

[Note: Arrows pointing into a
chapter indicate that chapter’s
dependencies. Some chapters
have multiple dependencies.]

Object-Oriented
Programming

8 Classes and Objects: «—+—
A Deeper Look

9 Object-Oriented Programming:
Inheritance

— 10 Object-Oriented Programming:
Polymorphism
|

Teaching Approach

Introduction

| Introduction to Computers and
Java

}

Intro to Programming,
Classes and Objects

2 Intro to Java Applications

3 Intro to Classes and Objects

}

Control Statements,
Methods and Arrays

4 Control Statements: Part |

5 Control Statements: Part 2

6 Methods: A Deeper Look

Y

4;'— 7 Arrays and ArrayLists

(

|'I Exception Handling

Object-briented \
Design with the UML

12 (Optional) Object-Oriented
Design with the UML

13 (Optional) Implementing an

Object-Oriented Design/
/ Data Structures \

» |8 Recursion'

'

19 Searching,
Sorting and Big O

Strings and Files

16 Strings, Characters and
Regular Expressions

—— 17 Files, Streams and Object

Serialization

Multithreading
and Networking
26 Multithreading?
27 Networking?

Database-Driven

20 Generic Collections -

y

21 Generic Classes and Methods

'

22 Custom Generic

Data Structures J

I. Chapter 18 is dependent on Chapters
14 and 15 for GUI and graphics used
in one example.

Desktop and
Web Development

L—— 28 |DBC4
29 JSF Web Apps: Part |

30 JSF Web Apps: Part 2

K 31 Web Services /

"

xxvii

(Optional)
GUI & Graphics Track

3.9 Using Dialog Boxes

' |

4.14 Creating Simple Drawings

5.10 Drawing Rectangles
and Ovals

6.13 Colors and Filled Shapes
7.15 Drawing Arcs

8.16 Using Objects
with Graphics

9.8 Displaying Text and
Images Using Labels

10.8 Drawing with
Polymorphism

J

/ GUI, Graphics, \

Applets and
Multimedia

» |4 GUI Components: Part |

|5 Graphics and JavazD —

> 23 Applets and
Java Web Start?

N

w

w

> 24 Multimedia: Applets
and Applications

25 GUI Components: -
Part 2
Chapter 26 is dependent on Chapter

14 for GUI used in one example and
on Chapters 20-21 for one example.

. Chapter 27 is dependent on Chapter

23 for one example that uses an
applet. The large case study (on the
web) depends on Chapter 25 for GUI
and Chapter 26 for multithreading.

. Chapter 28 is dependent on Chapter

14 for GUI used in one example.

. More applets are covered in Chapters

24 and 27.

xxviii Preface

Code Highlighting. We place yellow rectangles around key code segments.
Using Fonts for Emphasis. We place the key terms and the index’s page reference for each

defining occurrence in bold maroon text for easier reference. We emphasize on-screen
components in the bold Helvetica font (e.g., the File menu) and emphasize Java program
text in the Lucida font (for example, int x = 5;).

Web Access. All of the source-code examples can be downloaded from:

www.deitel.com/books/jhtp9
www . pearsonhighered.com/deitel

Objectives. The opening quotes are followed by a list of chapter objectives.

Hllustrations/Figures. Abundant tables, line drawings, UML diagrams, programs and pro-
gram outputs are included.

Programming Tips. We include programming tips to help you focus on important aspects
of program development. These tips and practices represent the best we've gleaned from a
combined seven decades of programming and teaching experience.

~ Good Programming Practices
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

&7, Common Programming Errors
% v Pointing out these Common Programming Errors reduces the likelihood that you'll

= make them.

<, Error-Prevention Tips
These tips contain suggestions for exposing bugs and removing them from your programs;
4B many describe aspects of Java that prevent bugs from getting into programs in the first
place.

_ Performance Tips

- These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Portability Tips
@ The Portability Tips help you write code that will run on a variety of platforms.

The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

E Software Engineering Observations
n Look-and-Feel Observations
The Look-and-Feel Observations highlight graphical-user-interface conventions. These

W observations help you design attractive, user-friendly graphical user interfaces that con-
Jform to industry norms.

www.deitel.com/books/jhtp9
www.pearsonhighered.com/deitel

Software Used in Java How to Program, 9/e xxix

Summary Bullets. We present a section-by-section bullet-list summary of the chapter. For
ease of reference, we include the page number of each key term’s defining occurrence in
the text.

Self-Review Exercises and Answers. Extensive self-review exercises and answers are includ-

ed for self study. All of the exercises in the optional ATM case study are fully solved.

Exercises. The chapter exercises include:
* simple recall of important terminology and concepts
e What's wrong with this code?
* What does this code do?
* writing individual statements and small portions of methods and classes
e writing complete methods, classes and programs
* major projects
* in many chapters, Making a Difference exercises.

Index. We've included an extensive index. Defining occurrences of key terms are high-
lighted with a bold maroon page number.

Software Used in Java How to Program, 9/e

All the software you’ll need for this book is available free for download from the web. See
the Before You Begin section that follows this Preface for links to each download.

We wrote most of the examples in Java How to Program, 9le, using the free Java Stan-
dard Edition Development Kit (JDK) 6. For the optional Java SE 7 modules, we used the
Open]DK’s early access version of JDK 7. In Chapters 29-31, we also used the Netbeans
IDE, and in Chapter 28, we used MySQL and MySQL Connector/]. You can find addi-
tional resources and software downloads in our Java Resource Centers at:

www.deitel.com/ResourceCenters.html

Java IDE Resource Kit

Your instructor may have ordered through your college bookstore a Value Pack edition of
Java How to Program, 9/e that comes bundled with the Java IDE Resource Kit. This kit
contains CD or DVD versions of Java™ SE Development Kit 6 for Windows®, Eclipse™
IDE for Windows®, NetBeans™ IDE, jGRASP™ IDE, DrJava IDE, Blue] IDE and the
TextPad® Text Editor for Windows®. Free versions of these IDEs also can be downloaded
from the web. The Java IDE Resource Kit also includes access to a Companion Website
containing step-by-step VideoNotes and written instructions to help you get started with
each development environment. If your book did not come with the Java IDE Resource
Kit, you can purchase access to the Resource Kit’s Companion Website from www. pear-
sonhighered.com/javaidekit/. You'll still need to download the free software separately.

Discounts on Deitel Developer Series Books

If you’d like to receive information on professional Deirel Developer Series titles, including
Andyoid for Programmers: An App-Driven Approach, please register your copy of Java How

www.pearsonhighered.com/javaidekit/
www.pearsonhighered.com/javaidekit/
www.deitel.com/ResourceCenters.html

XXX Preface

to Program, 9/e at informit.com/register. You'll receive information on how to purchase
Android for Programmers at a discount.

CourseSmart Web Books

Today’s students and instructors have increasing demands on their time and money. Pear-
son has responded to that need by offering digital texts and course materials online
through CourseSmart. CourseSmart allows faculty to review course materials online, sav-
ing time and costs. It offers students a high-quality digital version of the text for less than
the cost of a print copy of the text. Students receive the same content offered in the print
textbook enhanced by search, note-taking, and printing tools. For more information, visit
www. coursesmart.com.

Instructor Supplements

The following supplements are available to qualified instructors only through Pearson
Education’s Instructor Resource Center (www.pearsonhighered.com/1rc):

o PowerPoint® slides containing all the code and figures in the text, plus bulleted
items that summarize key points.

o Test Item File of multiple-choice questions (approximately two per book section).

o Solutions Manual with solutions to the vast majority of the end-of-chapter exer-
cises.

Please do not write to us requesting access to the Pearson Instructor’s Resource Center
which contains the book’s instructor supplements, including the exercise solutions. Ac-
cess is limited strictly to college instructors teaching from the book. Instructors may ob-
tain access only through their Pearson representatives. Solutions are nor provided for
“project” exercises. Check out our Programming Projects Resource Center for lots of ad-
ditional exercise and project possibilities (www.deitel.com/ProgrammingProjects/).

If you’re not a registered faculty member, contact your Pearson representative or visit
www . pearsonhighered.com/educator/replocator/.

Acknowledgments

We'd like to thank Abbey Deitel and Barbara Deitel for long hours devoted to this project.
We're fortunate to have worked on this project with the dedicated team of publishing pro-
fessionals at Pearson. We appreciate the guidance, savvy and energy of Michael Hirsch,
Editor-in-Chief of Computer Science. Carole Snyder recruited the book’s reviewers and
managed the review process. Bob Engelhardt managed the book’s production.

Reviewers

We wish to acknowledge the efforts of our eighth and ninth edition reviewers. They scru-
tinized the text and the programs and provided countless suggestions for improving the
presentation: Lance Andersen (Oracle), Soundararajan Angusamy (Sun Microsystems),
Joseph Bowbeer (Consultant), William E. Duncan (Louisiana State University), Diana
Franklin (University of California, Santa Barbara), Edward F. Gehringer (North Carolina
State University), Huiwei Guan (Northshore Community College), Ric Heishman
(George Mason University), Dr. Heinz Kabutz (JavaSpecialists.eu), Patty Kraft (San Di-
ego State University), Lawrence Premkumar (Sun Microsystems), Tim Margush (Univer-

www.coursesmart.com
www.pearsonhighered.com/irc
www.deitel.com/ProgrammingProjects/
www.pearsonhighered.com/educator/replocator/

About the Authors xXXi

sity of Akron), Sue McFarland Metzger (Villanova University), Shyamal Mitra (The
University of Texas at Austin), Peter Pilgrim (Consultant), Manjeet Rege, Ph.D. (Roch-
ester Institute of Technology), Manfred Riem (Java Champion, Consultant, Robert Half),
Simon Ritter (Oracle), Susan Rodger (Duke University), Amr Sabry (Indiana University),
José Antonio Gonzélez Seco (Parliament of Andalusia), Sang Shin (Sun Microsystems), S.
Sivakumar (Astra Infotech Private Limited), Raghavan “Rags” Srinivas (Intuit), Monica
Sweat (Georgia Tech), Vinod Varma (Astra Infotech Private Limited) and Alexander Zuev
(Sun Microsystems).

Well, there you have it! As you read the book, we’d appreciate your comments, criti-
cisms, corrections and suggestions for improvement. Please address all correspondence to:

deitel@deitel.com

We'll respond promptly. We hope you enjoy working with Java How to Program, 9le.
Good luck!

Paul and Harvey Deitel

About the Authors

Paul J. Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. Through Deitel & Associates, Inc.,
he has delivered hundreds of Java, C++, C, C#, Visual Basic and Internet programming
courses to industry clients, including Cisco, IBM, Siemens, Sun Microsystems, Dell, Lu-
cent Technologies, Fidelity, NASA at the Kennedy Space Center, the National Severe
Storm Laboratory, White Sands Missile Range, Rogue Wave Software, Boeing, SunGard
Higher Education, Stratus, Cambridge Technology Partners, One Wave, Hyperion Soft-
ware, Adra Systems, Entergy, CableData Systems, Nortel Networks, Puma, iRobot, In-
vensys and many more. He and his co-author, Dr. Harvey M. Deitel, are the world’s best-
selling programming-language textbook authors.

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer of Deitel & Associates,
Inc., has 50 years of experience in the computer field. Dr. Deitel earned B.S. and M.S.
degrees from MIT and a Ph.D. from Boston University. He has extensive college teaching
experience, including earning tenure and serving as the Chairman of the Computer Sci-
ence Department at Boston College before founding Deitel & Associates, Inc., with his
son, Paul J. Deitel. He and Paul are the co-authors of dozens of books and LiveLessons
multimedia packages and they are writing many more. The Deitels’ texts have earned
international recognition, with translations published in Japanese, German, Russian, Chi-
nese, Spanish, Korean, French, Polish, Italian, Portuguese, Greek, Urdu and Turkish. Dr.
Deitel has delivered hundreds of professional programming seminars to major corpora-
tions, academic institutions, government organizations and the military.

Corporate Training from Deitel & Associates, Inc.

Deitel & Associates, Inc., is an internationally recognized corporate training and authoring
organization. The company provides instructor-led courses delivered at client sites world-
wide on major programming languages and platforms, such as Java™, C++, Visual C++9,
C, Visual C#®, Visual Basic®, XML®, Python®, object technology, Internet and web pro-
gramming, Android™ and iPhone® app development, and a growing list of additional
programming and software-development courses. The founders of Deitel & Associates,

Preface

XXX

Inc., are Paul J. Deitel and Dr. Harvey M. Deitel. The company’s clients include many of
the world’s largest companies, government agencies, branches of the military, and academ-
ic institutions. Through its 35-year publishing partnership with Prentice Hall/Pearson,
Deitel & Associates, Inc., publishes leading-edge programming textbooks, professional
books and LiveLessons DVD-based and web-based video courses. Deitel & Associates, Inc.,
and the authors can be reached via e-mail at:

deitel@deitel.com

To learn more about Deitel & Associates, Inc., its publications and its Dive Into® Series
Corporate Training curriculum delivered at client locations worldwide, visit:

www.deitel.com/training/
and subscribe to the free Deite/® Buzz Online e-mail newsletter at:
www.deitel.com/newsletter/subscribe.html

and follow the authors on Facebook (www.deitel.com/deitelfan) and Twitter (@deitel).

Individuals wishing to purchase Deitel books, and LiveLessons DVD and web-based
training courses can do so through www. deitel. com. Bulk orders by corporations, the gov-
ernment, the military and academic institutions should be placed directly with Pearson.
For more information, visit

www . pearsonhighered.com

www.deitel.com/deitelfan
www.deitel.com
www.deitel.com/training/
www.deitel.com/newsletter/subscribe.html
www.pearsonhighered.com

Before You
Begin

This section contains information you should review before using this book and instruc-
tions to ensure that your computer is set up properly for use with this book. We'll post
updates (if any) to the Before You Begin section on the book’s website:

www.deitel.com/books/jhtp9/

Font and Naming Conventions

We use fonts to distinguish between on-screen components (such as menu names and
menu items) and Java code or commands. Our convention is to emphasize on-screen com-
ponents in a sans-serif bold Helvetica font (for example, File menu) and to emphasize Java
code and commands in a sans-serif Lucida font (for example, System.out.printinQ)).

Software Used in the Book

All the software you'll need for this book is available free for download from the web.

Java SE Software Development Kit (JDK) 6 and 7
We wrote most of the examples in Java How to Program, 9/e, using the free Java Standard
Edition Development Kit (JDK) 6, which is available from:

www.oracle.com/technetwork/java/javase/downTloads/index.htm]l

For the optional Java SE 7 modules, we used the Open]DK’s early access version of JDK
7, which is available from:

dlc.sun.com.edgesuite.net/jdk7/binaries-/index.html

Java DB, MySQL and MySQL Connector/]

In Chapter 28, we use the Java DB and MySQL Community Edition database manage-
ment systems. Java DB is part of the JDK installation. At the time of this writing, the
JDK’s 64-bit installer was not properly installing Java DB. If you are using the 64-bit ver-
sion of Java, you may need to install Java DB separately. You can download Java DB from:

www.oracle.com/technetwork/java/javadb/downloads/index.html

At the time of this writing, the latest release of MySQL Community Edition was
5.5.8. To install MySQL Community Edition on Windows, Linux or Mac OS X, see the
installation overview for your platform at:

¢ Windows: dev.mysql.com/doc/refman/5.5/en/windows-installation.html
e Linux: dev.mysql.com/doc/refman/5.5/en/1inux-installation-rpm.html

e Mac OS X: dev.mysql.com/doc/refman/5.5/en/macosx-installation.htm]

www.deitel.com/books/jhtp9/
www.oracle.com/technetwork/java/javase/downloads/index.html
www.oracle.com/technetwork/java/javadb/downloads/index.html

XXXiv Before You Begin

Carefully follow the instructions for downloading and installing the software on your plat-
form. The downloads are available from:

dev.mysqgl.com/downloads/mysql/

You also need to install MySQL Connector/]J (the J stands for Java), which allows pro-
grams to use JDBC to interact with MySQL. MySQL Connector/J can be downloaded from

dev.mysqgl.com/downToads/connector/j/

At the time of this writing, the current generally available release of MySQL Connector/]
is 5.1.14. The documentation for Connector/] is located at

dev.mysql.com/doc/refman/5.5/en/connector-j.html
To install MySQL Connector/], carefully follow the installation instructions at:
dev.mysql.com/doc/refman/5.5/en/connector-j-installing.html

We do not recommend modifying your system’s CLASSPATH environment variable, which
is discussed in the installation instructions. Instead, we’ll show you how use MySQL Con-
nector/] by specifying it as a command-line option when you execute your applications.

Java IDE Resource Kit

Your instructor may have ordered through your college bookstore a Value Pack edition of
Java How to Program, 9/e that comes bundled with the Java IDE Resource Kit. This kit
contains CD or DVD versions of Java™ SE Development Kit 6 (JDK 6) for Windows®,
Eclipse™ IDE for Windows®, NetBeans™ IDE, jGRASP™ IDE, DrJava IDE, Blue]
IDE and the TextPad® Text Editor for Windows®. Free versions of these IDEs also can
be downloaded from the web at the following sites:

e JDK 6: www.oracle.com/technetwork/java/javase/downloads/
* Eclipse IDE: eclipse.org/downloads/
e NetBeans IDE: netbeans.org/downloads/

e jGRASP IDE: spider.eng.auburn.edu/user-cgi/grasp/
grasp.pl?;dli=download_jgrasp.html

¢ DrJava IDE: drjava.org
e Blue] IDE: www.bluej.org/download/download.htm1

e TextPad Text Editor (evaluation version): www.textpad.com/download/

Obtaining the Code Examples

The examples for Java How to Program, 9/e are available for download at
www.deitel.com/books/jhtp9/

If you're not already registered at our website, go to www.deitel.com and click the Register
link below our logo in the upper-left corner of the page. Fill in your information. There’s no
charge to register, and we do not share your information with anyone. We send you only
account-management e-mails unless you register separately for our free Deitel® Buzz Online
e-mail newsletter at www.deitel.com/newsletter/subscribe.html. After registering for

www.oracle.com/technetwork/java/javase/downloads/
www.bluej.org/download/download.html
www.textpad.com/download/
www.deitel.com
www.deitel.com/newsletter/subscribe.html
www.deitel.com/books/jhtp9/

Setting the PATH Environment Variable XXXV

the site, you'll receive a confirmation e-mail with your verification code. Click the link in the
confirmation e-mail to complete your registration. Configure your e-mail client to allow e-mails
from deitel.com to ensure that the confirmation email is not filtered as junk mail.

Next, go to www.deitel.com and sign in using the Login link below our logo in the
upper-left corner of the page. Go to www.deitel.com/books/jhtp9/. You'll find the link
to download the examples under the heading Download Code Examples and Other Pre-
mium Content for Registered Users. Write down the location where you choose to save the
ZIP file on your computer.

We assume the examples are located at C:\Examples on your computer. Extract the
contents of Examples.zip using a tool such as WinZip (www.winzip.com) or the built-in
capabilities of your operating system.

Setting the PATH Environment Variable

The PATH environment variable on your computer designates which directories the com-
puter searches when looking for applications, such as the applications that enable you to
compile and run your Java applications (called javac and java, respectively). Carefully fol-
low the installation instructions for Java on your platform to ensure that you set the PATH envi-
ronment variable correctly.

If you do not set the PATH variable correctly, when you use the JDK’s tools, you’ll
receive a message like:

'java' is not recognized as an internal or external command,

operable program or batch file.
In this case, go back to the installation instructions for setting the PATH and recheck your
steps. If you've downloaded a newer version of the JDK, you may need to change the name
of the JDK’s installation directory in the PATH variable.

Setting the CLASSPATH Environment Variable

If you attempt to run a Java program and receive a message like
Exception in thread "main" java.lang.NoClassDefFoundError: YourClass

then your system has a CLASSPATH environment variable that must be modified. To fix the
preceding error, follow the steps in setting the PATH environment variable, to locate the
CLASSPATH variable, then edit the variable’s value to include the local directory—typically
represented as a dot (.). On Windows add

at the beginning of the CLASSPATH’s value (with no spaces before or after these characters).

On other platforms, replace the semicolon with the appropriate path separator charac-
ters—often a colon (:)

Java’s Nimbus Look-and-Feel

Java comes bundled with an elegant, cross-platform look-and-feel known as Nimbus. For
programs with graphical user interfaces, we’ve configured our systems to use Nimbus as

the default look-and-feel.

www.deitel.com
www.deitel.com/books/jhtp9/
www.winzip.com

xXXXVi Before You Begin

To set Nimbus as the default for all Java applications, you must create a text file
named swing.properties in the 1ib folder of both your JDK installation folder and your
JRE installation folder. Place the following line of code in the file:

swing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

For more information on locating these installation folders visit java.sun.com/javase/
6/webnotes/install/index.html. [/Note: In addition to the standalone JRE, there’s a
JRE nested in your JDK’s installation folder. If you’re using an IDE that depends on the
JDK (e.g., NetBeans), you may also need to place the swing.properties file in the nested
jre folder’s 1ib folder.]

You’re now ready to begin your Java studies with Java How to Program, 9/e. We hope
you enjoy the book!

Introduction to Computers
and Java

Man is still the most
extraordinary computer of all.
—TJohn F. Kennedy

Good design is good business.
—Thomas J. Watson, Founder of IBM

How wonderful it is that

nobody need wait a single
moment before starting to
improve the world.

—Anne Frank

Objectives
In this chapter you'll learn:

m Exciting recent developments
in the computer field.

Computer hardware, soft-
ware and networking basics.

The data hierarchy.

The different types of
programming languages.
Basic object-technology
concepts.

The importance of the
Internet and the web.

A typical Java program-
development environment.

To test-drive a Java
application.

Some key recent software
technologies.

How computers can help you
make a difference.

/ Qutline

2 Chapter I Introduction to Computers and Java

1.1 Introduction 1.9 Java and a Typical Java Development
1.2 Computers: Hardware and Software Environment
1.3 Data Hierarchy 1.10 Test-Driving a Java Application
1.4 Computer Organization I.11 Web 2.0: Going Social
1.5 Machine Languages, Assembly 1.12 Software Technologies
Languages and High-Level Languages 1.13 Keeping Up-to-Date with
1.6 Introduction to Object Technology Information Technologies
1.7 Operating Systems 1.14 Wrap-Up

1.8 Programming Languages

Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference |
Making a Difference Resources

1.1 Introduction

Welcome to Java—the world’s most widely used computer programming language. You’re
already familiar with the powerful tasks computers perform. Using this textbook, you’ll
write instructions commanding computers to perform those kinds of tasks. Soffware (i.c.,
the instructions you write) controls hardware (i.e., computers).

You'll learn object-oriented programming—today’s key programming methodology.
You'll create and work with many soffware objects in this text.

Java is the preferred language for meeting many organizations’ enterprise program-
ming needs. Java has also become the language of choice for implementing Internet-based
applications and software for devices that communicate over a network.

In use today are more than a billion general-purpose computers and billions more
Java-enabled cell phones, smartphones and handheld devices (such as tablet computers).
According to a study by eMarketer, the number of mobile Internet users will reach approx-
imately 134 million by 2013.! Other studies have projected smartphone sales to surpass
personal computer sales in 20112 and tablet sales to account for over 20% of all personal
computer sales by 2015.3 By 2014, the smartphone applications market is expected to
exceed $40 billion,* which is creating significant opportunities for programming mobile
applications.

Java Editions: SE, EE and ME

Java has evolved so rapidly that this ninth edition of Jzva How to Program—>based on Java
Standard Edition 6 (Java SE 6) with optional modules on the new features of Java SE 7—
was published just 14 years after the first edition. Java is used in such a broad spectrum of
applications that it has two other editions. The Java Enterprise Edition (Java EE) is geared
toward developing large-scale, distributed networking applications and web-based appli-
cations. In the past, most computer applications ran on “standalone” computers (comput-

www.circleid.com/posts/mobile_internet_users_to_reach_134_million_by 2013/.
www.pcworld.com/article/171380/more_smartphones_than_desktop_pcs_by_2011.html.
www . forrester.com/ER/Press/Release/0,1769,1340,00.htm1.

Inc., December 2010/January 2011, pages 116-123.

R =

www.circleid.com/posts/mobile_internet_users_to_reach_134_million_by_2013/
www.pcworld.com/article/171380/more_smartphones_than_desktop_pcs_by_2011.html
www.forrester.com/ER/Press/Release/0,1769,1340,00.html

I.1 Introduction 3

ers that were not networked together). Today’s applications can be written with the aim
of communicating among the world’s computers via the Internet and the web. Later in
this book we discuss how to build such web-based applications with Java.

The Java Micro Edition (Java ME) is geared toward developing applications for
small, memory-constrained devices, such as BlackBerry smartphones. Google’s Android
operating system—used on numerous smartphones, tablets (small, lightweight mobile
computers with touch screens), e-readers and other devices—uses a customized version of
Java not based on Java ME.

Computing in Industry and Research

These are exciting times in the computer field. Many of the most influential and successful
businesses of the last two decades are technology companies, including Apple, IBM, Hewl-
ett Packard, Dell, Intel, Motorola, Cisco, Microsoft, Google, Amazon, Facebook, Twitter,
Groupon, Foursquare, Yahoo!, eBay and many more—these are major employers of peo-
ple who study computer science, information systems or related disciplines. At the time of
this writing, Apple was the second most valuable company in the world and #he most valu-
able technology company.> Computers are also used extensively in academic and industri-
al research. Figure 1.1 provides just a few examples of exciting ways in which computers
are used in research and industry.

Internet The Internet—a global network of computers—was made possible
by the convergence of computing and communications. It has its roots in
the 1960s, when research funding was supplied by the U.S. Depart-
ment of Defense. Originally designed to connect the main computer
systems of about a dozen universities and research organizations, the
Internet today is accessible by billions of computers and computer-
controlled devices worldwide. Computers break lengthy transmis-
sions into packets at the sending end, route the packets to their
intended receivers and ensure that those packets are received in
sequence and without error at the receiving end. According to a study
by Forrester Research, the average U.S. online consumer now spends
as much time online as watching television (forrester.com/rb/
Research/understanding_changing_needs_of _us_online_consumer/

q/1d/57861/t/2).
Human The Human Genome Project was founded to identify and analyze
Genome the 20,000+ genes in human DNA . The project used computer pro-
Project grams to analyze complex genetic data, determine the sequences of

the billions of chemical base pairs that make up human DNA and
store the information in databases which have been made available to
researchers in many fields. This research has led to tremendous inno-
vation and growth in the biotechnology industry.

Fig. 1.1 | A few uses for computers. (Part | of 3.)

5. www.zdnet.com/blog/apple/apple-becomes-worlds-second-most-valuable-company/9047.

www.zdnet.com/blog/apple/apple-becomes-worlds-second-most-valuable-company/9047

4 Chapter |

World
Community

Grid

Medical
imaging

GPS

Microsoft’s
SYNC®

AMBER™
Alert

Robots

Introduction to Computers and Java

World Community Grid (www.worldcommunitygrid.org) is a non-
profit computing grid. People worldwide donate their unused
computer processing power by installing a free secure software
program that allows the World Community Grid to harness the
excess power when the computers are idle. The computing power is
used in place of supercomputers to conduct scientific research
projects that are making a difference, including developing affordable
solar energy, providing clean water to the developing world, fighting
cancer, curing muscular dystrophy, finding influenza antiviral drugs,
growing more nutritious rice for regions fighting hunger and more.

X-ray computed tomography (CT) scans, also called CAT (comput-
erized axial tomography) scans, take X-rays of the body from hun-
dreds of different angles. Computers are used to adjust the intensity
of the X-ray, optimizing the scan for each type of tissue, then to com-
bine all of the information to create a 3D image.

Global Positioning System (GPS) devices use a network of satellites
to retrieve location-based information. Multiple satellites send time-
stamped signals to the device GPS device, which calculates the
distance to each satellite based on the time the signal left the satellite
and the time the signal was received. The location of each satellite
and the distance to each are used to determine the exact location of
the device. Based on your location, GPS devices can provide step-by-
step directions, help you easily find nearby businesses (restaurants,
gas stations, etc.) and points of interest, or help you find your friends.

Many Ford cars now feature Microsoft's SYNC technology, providing
speech-synthesis (for reading text messages to you) and speech-recog-
nition capabilities that allow you to use voice commands to browse
music, request traffic alerts and more.

The AMBER (America’s Missing: Broadcast Emergency Response)
Alert System is used to find abducted children. Law enforcement
notifies TV and radio broadcasters and state transportation officials,
who then broadcast alerts on TV, radio, computerized highway signs,
the Internet and wireless devices. AMBER Alert recently partnered
with Facebook. Facebook users can “Like” AMBER Alert pages by

location to receive alerts in their news feeds.

Robots are computerized machines that can perform tasks (including
physical tasks), respond to stimuli and more. They can be used for
day-to-day tasks (e.g., iRobot’s Roomba vacuum), entertainment
(such as robotic pets), military combat, space and deep sea
exploration, manufacturing and more. In 2004, NASA’s remote-con-
trolled Mars rover—which used Java technology—explored the sur-
face to learn about the history of water on the planet.

Fig. 1.1 | A few uses for computers. (Part 2 of 3.)

www.worldcommunitygrid.org

1.2 Computers: Hardware and Software 5

One Laptop One Laptop Per Child (OLPC) is providing low-power, inexpensive,

Per Child Internet-enabled laptops to poor children worldwide—enabling

(OLPC) learning and reducing the digital divide (one.Tlaptop.org). By pro-
viding these educational resources, OLPC is increasing the opportu-
nities for poor children to learn and make a difference in their
communities.

Game The computer game business is larger than the first-run movie busi-

programming ness. The most sophisticated video games can cost as much as $100
million to develop. Activision's Call of Duty 2: Modern Warfare,
released in November 2009, earned $310 million in just one day in
North America and the U.K. (news.cnet.com/8301-13772_3-
10396593-52.htm1?tag=mncol;txt)! Online social gaming, which
enables users worldwide to compete with one another, is growing rap-
idly. Zynga—-creator of popular online games such as Farmuville and
Mafia Wars—was founded in 2007 and already has over 215 million
monthly users. To accommodate the growth in traffic, Zynga is add-
ing nearly 1,000 servers each week (techcrunch.com/2010/09/22/
zynga-moves-1-petabyte-of-data-daily-adds-1000-servers-a-
week/)! Video game consoles are also becoming increasingly sophisti-
cated. The Wii Remote uses an accelerometer (to detect tilt and accel-
eration) and a sensor that determines where the device is pointing,
allowing the device to respond to motion. By gesturing with the Wii
Remote in hand, you can control the video game on the screen. With
Microsoft’s Kinect for Xbox 360, you—the player—become the con-
troller. Kinect uses a camera, depth sensor and sophisticated software
to follow your body movement, allowing you to control the game
(en.wikipedia.org/wiki/Kinect). Kinect games include dancing,
exercising, playing sports, training virtual animals and more.

Internet TV Internet TV set-top boxes (such as Apple TV and Google TV) give
you access to content—such as games, news, movies, television shows
and more—allowing you to access an enormous amount of content
on demand; you no longer need to rely on cable or satellite television
providers to get content.

Fig. 1.1 | A few uses for computers. (Part 3 of 3.)

1.2 Computers: Hardware and Software

A computer is a device that can perform computations and make logical decisions phe-
nomenally faster than human beings can. Many of today’s personal computers can per-
form billions of calculations in one second—more than a human can perform in a lifetime.
Supercomputers are already performing thousands of trillions (quadrillions) of instructions
per second! To put that in perspective, a quadrillion-instruction-per-second computer can
perform in one second more than 100,000 calculations for every person on the planet!
And—these “upper limits” are growing quickly!

6 Chapter I Introduction to Computers and Java

Computers process data under the control of sets of instructions called computer pro-
grams. These programs guide the computer through orderly sets of actions specified by
people called computer programmers. The programs that run on a computer are referred
to as software. In this book, you’ll learn today’s key programming methodology that’s
enhancing programmer productivity, thereby reducing software-development costs—
object-oriented programming.

A computer consists of various devices referred to as hardware (e.g., the keyboard,
screen, mouse, hard disks, memory, DVDs and processing units). Computing costs are
dropping dramatically, owing to rapid developments in hardware and software technolo-
gies. Computers that might have filled large rooms and cost millions of dollars decades ago
are now inscribed on silicon chips smaller than a fingernail, costing perhaps a few dollars
each. Ironically, silicon is one of the most abundant materials—it’s an ingredient in
common sand. Silicon-chip technology has made computing so economical that more
than a billion general-purpose computers are in use worldwide, and this is expected to
double in the next few years.

Computer chips (microprocessors) control countless devices. These embedded systems
include anti-lock brakes in cars, navigation systems, smart home appliances, home security
systems, cell phones and smartphones, robots, intelligent traffic intersections, collision
avoidance systems, video game controllers and more. The vast majority of the microproces-
sors produced each year are embedded in devices other than general-purpose computers.6

Moore’s Law

Every year, you probably expect to pay at least a little more for most products and services.
The opposite has been the case in the computer and communications fields, especially
with regard to the costs of hardware supporting these technologies. For many decades,
hardware costs have fallen rapidly. Every year or two, the capacities of computers have ap-
proximately doubled without any increase in price. This remarkable observation often is
called Moore’s Law, named for the person who identified the trend, Gordon Moore, co-
founder of Intel—a leading manufacturer of the processors in today’s computers and em-
bedded systems. Moore’s Law and related observations are especially true in relation to the
amount of memory that computers have for programs, the amount of secondary storage
(such as disk storage) they have to hold programs and data over longer periods of time, and
their processor speeds—the speeds at which computers execute their programs (i.e., do
their work). Similar growth has occurred in the communications field, in which costs have
plummeted as enormous demand for communications bandwidth (i.e., information-car-
rying capacity) has actracted intense competition. We know of no other fields in which
technology improves so quickly and costs fall so rapidly. Such phenomenal improvement
is truly fostering the Information Revolution.

1.3 Data Hierarchy

Data items processed by computers form a data hierarchy that becomes larger and more
complex in structure as we progress from bits to characters to fields, and so on. Figure 1.2
illustrates a portion of the data hierarchy. Figure 1.3 summarizes the data hierarchy’s levels.

6. www.eetimes.com/electronics-blogs/industrial-control-designline-blog/4027479/
Real-men-program-in-C?pageNumber=1.

www.eetimes.com/electronics-blogs/industrial-control-designline-blog/4027479/Real-men-program-in-C?pageNumber=1
www.eetimes.com/electronics-blogs/industrial-control-designline-blog/4027479/Real-men-program-in-C?pageNumber=1

.3 Data Hierarchy

7

Sally Black

Tom Blue
— Judy Green File
Iris Orange
Randy Red
Judy Green Record
Judy Field
00000000 01001010 Unicode character J

T

1 Bit

Fig. 1.2 | Data hierarchy.

Bits

Characters

The smallest data item in a computer can assume the value 0 or the value 1. Such
a data item is called a bit (short for “binary digit"—a digit that can assume one of
two values). It’s remarkable that the impressive functions performed by comput-
ers involve only the simplest manipulations of Os and 1s—examining a bits value,
setting a bit's value and reversing a bits value (from 1 to 0 or from 0 to 1).

It’s tedious for people to work with data in the low-level form of bits. Instead,
they prefer to work with decimal digits (0-9), letters (A—Z and a—z), and special
symbols (e.g., $, @, %, &, *, (,), — +, ", :, 2 and /). Digits, letters and special
symbols are known as characters. The computer’s character set is the set of all the
characters used to write programs and represent data items. Computers process
only 1s and Os, so a computer’s character set represents every character as a pat-
tern of 1s and Os. Java uses Unicode® characters that are composed of two bytes,
each composed of eight bits. Unicode contains characters for many of the world’s
languages. See Appendix L for more information on Unicode. See Appendix B
for more information on the ASCII (American Standard Code for Information
Interchange) character set—the popular subset of Unicode that represents
uppercase and lowercase letters, digits and some common special characters.

Fig. 1.3 | Levels of the data hierarchy. (Part | of 2.)

8 Chapter I Introduction to Computers and Java

Fields Just as characters are composed of bits, fields are composed of characters or bytes.
A field is a group of characters or bytes that conveys meaning. For example, a
field consisting of uppercase and lowercase letters can be used to represent a per-
son’s name, and a field consisting of decimal digits could represent a person’s age.

Records Several related fields can be used to compose a record (implemented as a class in
Java). In a payroll system, for example, the record for an employee might consist
of the following fields (possible types for these fields are shown in parentheses):

* Employee identification number (a whole number)

* Name (a string of characters)

* Address (a string of characters)

* Hourly pay rate (a number with a decimal point)

* Year-to-date earnings (a number with a decimal point)

* Amount of taxes withheld (a number with a decimal point)

Thus, a record is a group of related fields. In the preceding example, all the fields
belong to the same employee. A company might have many employees and a
payroll record for each one.

Files A file is a group of related records. [/Noze: More generally, a file contains arbitrary
data in arbitrary formats. In some operating systems, a file is viewed simply as a
sequence of bytes—any organization of the bytes in a file, such as organizing the
data into records, is a view created by the application programmer.] It’s not
unusual for an organization to have many files, some containing billions, or even
trillions, of characters of information.

Fig. 1.3 | Levels of the data hierarchy. (Part 2 of 2.)

1.4 Computer Organization

Regardless of differences in physical appearance, computers can be envisioned as divided
into various logical units or sections (Fig. 1.4).

Input unit This “receiving” section obtains information (data and computer programs)
from input devices and places it at the disposal of the other units for processing.
Most information is entered into computers through keyboards, touch screens
and mouse devices. Other forms of input include speaking to your computer,
scanning images and barcodes, reading from secondary storage devices (like
hard drives, DVD drives, Blu-ray Disc™ drives and USB flash drives—also
called “thumb drives” or “memory sticks”), receiving video from a webcam and
having your computer receive information from the Internet (such as when you
download videos from YouTube™ or e-books from Amazon). Newer forms of
input include reading position data from a GPS device, and motion and orien-
tation information from an accelerometer in a smartphone or game controller.

Fig. 1.4 | Logical units of a computer. (Part | of 2.)

Output unit

Memory unit

Arithmetic
and logic unit
(ALU)

Central
processing
unit (CPU)

Secondary

storage unit

1.4 Computer Organization

This “shipping” section takes information that the computer has processed
and places it on various output devices to make it available for use outside the
computer. Most information that’s output from computers today is displayed
on screens, printed on paper, played as audio or video on portable media
players (such as Apple’s popular iPods) and giant screens in sports stadiums,
transmitted over the Internet or used to control other devices, such as robots
and “intelligent” appliances.

This rapid-access, relatively low-capacity “warehouse” section retains
information that has been entered through the input unit, making it
immediately available for processing when needed. The memory unit also
retains processed information until it can be placed on output devices by the
output unit. Information in the memory unit is volatile—it’s typically lost
when the computer’s power is turned off. The memory unit is often called
cither memory or primary memory. Typical main memories on desktop and
notebook computers contain between 1 GB and 8 GB (GB stands for
gigabytes; a gigabyte is approximately one billion bytes).

This “manufacturing” section performs calculations, such as addition,
subtraction, multiplication and division. It also contains the decision
mechanisms that allow the computer, for example, to compare two items
from the memory unit to determine whether they’re equal. In today’s systems,
the ALU is usually implemented as part of the next logical unit, the CPU.

This “administrative” section coordinates and supervises the operation of the
other sections. The CPU tells the input unit when information should be read
into the memory unit, tells the ALU when information from the memory unit
should be used in calculations and tells the output unit when to send
information from the memory unit to certain output devices. Many of today’s
computers have multiple CPUs and, hence, can perform many operations
simultaneously. A multi-core processor implements multiple processors on a
single integrated-circuit chip—a dual-core processor has two CPUs and a quad-
core processor has four CPUs. Today’s desktop computers have processors that
can execute billions of instructions per second.

This is the long-term, high-capacity “warehousing” section. Programs or data
not actively being used by the other units normally are placed on secondary
storage devices (e.g., your hard drive) until they’re again needed, possibly
hours, days, months or even years later. Information on secondary storage
devices is persistent—it’s preserved even when the computer’s power is turned
off. Secondary storage information takes much longer to access than informa-
tion in primary memory, but the cost per unit of secondary storage is much
less than that of primary memory. Examples of secondary storage devices
include CD drives, DVD drives and flash drives, some of which can hold up
to 128 GB. Typical hard drives on desktop and notebook computers can hold
up to 2 TB (TB stands for terabytes; a terabyte is approximately one trillion

bytes).

Fig. 1.4 | Logical units of a computer. (Part 2 of 2.)

9

10 Chapter | Introduction to Computers and Java

1.5 Machine Languages, Assembly Languages and High-
Level Languages

Programmers write instructions in various programming languages, some directly under-
standable by computers and others requiring intermediate #ranslation steps. Hundreds of
such languages are in use today. These may be divided into three general types:

1. Machine languages
2. Assembly languages
3. High-level languages

Any computer can directly understand only its own machine language, defined by its
hardware design. Machine languages generally consist of strings of numbers (ultimately
reduced to 1s and Os) that instruct computers to perform their most elementary operations
one at a time. Machine languages are machine dependent (a particular machine language
can be used on only one type of computer). Such languages are cumbersome for humans.
For example, here’s a section of an early machine-language program that adds overtime
pay to base pay and stores the result in gross pay:

+1300042774
+1400593419
+1200274027

Programming in machine language was simply too slow and tedious for most pro-
grammers. Instead of using the strings of numbers that computers could directly under-
stand, programmers began using English-like abbreviations to represent elementary
operations. These abbreviations formed the basis of assembly languages. Translator pro-
grams called assemblers were developed to convert early assembly-language programs to
machine language at computer speeds. The following section of an assembly-language pro-
gram also adds overtime pay to base pay and stores the result in gross pay:

Toad basepay
add overpay
store grosspay

Although such code is clearer to humans, it’s incomprehensible to computers until trans-
lated to machine language.

Computer usage increased rapidly with the advent of assembly languages, but pro-
grammers still had to use many instructions to accomplish even the simplest tasks. To
speed the programming process, high-level languages were developed in which single
statements could be written to accomplish substantial tasks. Translator programs called
compilers convert high-level language programs into machine language. High-level lan-
guages allow you to write instructions that look almost like everyday English and contain
commonly used mathematical notations. A payroll program written in a high-level lan-
guage might contain a single statement such as

grossPay = basePay + overTimePay

From the programmer’s standpoint, high-level languages are preferable to machine and
assembly languages. Java is by far the most widely used high-level programming language.

1.6 Introduction to Object Technology 11

Compiling a large high-level language program into machine language can take a con-
siderable amount of computer time. Interpreter programs were developed to execute high-
level language programs directly (without the delay of compilation), although slower than
compiled programs run. We’ll say more about how interpreters work in Section 1.9, where
you'll learn that Java uses a clever performance-tuned mixture of compilation and inter-
pretation to ultimately run programs. Exercises 7.35-7.37 (in the Special Section:
Building Your Own Computer) guide you through the process of building an interpreter
program.

1.6 Introduction to Object Technology

Building software quickly, correctly and economically remains an elusive goal at a time
when demands for new and more powerful software are soaring. Objects, or more precise-
ly—as we’ll see in Chapter 3—the classes objects come from, are essentially reusable soft-
ware components. There are date objects, time objects, audio objects, video objects,
automobile objects, people objects, etc. Almost any 7oun can be reasonably represented as
a software object in terms of astributes (e.g., name, color and size) and behaviors (e.g., cal-
culating, moving and communicating). Software developers are discovering that using a
modular, object-oriented design and implementation approach can make software-devel-
opment groups much more productive than was possible with earlier popular techniques
like “structured programming”—object-oriented programs are often easier to understand,
correct and modify.

The Automobile as an Object

To help you understand objects and their contents, let’s begin with a simple analogy. Sup-
pose you want to drive a car and make it go faster by pressing its accelerator pedal. What must
happen before you can do this? Well, before you can drive a car, someone has to design it.
A car typically begins as engineering drawings, similar to the blueprints that describe the
design of a house. These drawings include the design for an accelerator pedal. The pedal
hides from the driver the complex mechanisms that actually make the car go faster, just as
the brake pedal hides the mechanisms that slow the car, and the steering wheel “hides” the
mechanisms that turn the car. This enables people with little or no knowledge of how en-
gines, braking and steering mechanisms work to drive a car easily.

Just as you cannot cook meals in the kitchen of a blueprint, you cannot drive a car’s
engineering drawings. Before you can drive a car, it must be built from the engineering
drawings that describe it. A completed car has an actual accelerator pedal to make the car
go faster, but even that’s not enough—the car won’t accelerate on its own (hopefully!), so
the driver must press the pedal to accelerate the car.

Methods and Classes

Let’s use our car example to introduce some key object-oriented programming concepts.
Performing a task in a program requires a method. The method houses the program state-
ments that actually perform its tasks. The method hides these statements from its user, just
as the accelerator pedal of a car hides from the driver the mechanisms of making the car
go faster. In Java, we create a program unit called a class to house the set of methods that

12 Chapter | Introduction to Computers and Java

perform the class’s tasks. For example, a class that represents a bank account might contain
one method to deposit money to an account, another to withdraw money from an account
and a third to znguire what the account’s current balance is. A class is similar in concept to
a car’s engineering drawings, which house the design of an accelerator pedal, steering
wheel, and so on.

Instantiation

Just as someone has to build a car from its engineering drawings before you can actually
drive a car, you must build an object of a class before a program can perform the tasks that
the class’s methods define. The process of doing this is called instantiation. An object is
then referred to as an instance of its class.

Reuse

Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and
effective systems, because existing classes and components often have gone through exten-
sive resting, debugging and performance tuning. Just as the notion of interchangeable parts
was crucial to the Industrial Revolution, reusable classes are crucial to the software revolu-
tion that has been spurred by object technology.

Software Engineering Observation 1.1

Use a building-block approach to creating your programs. Avoid reinventing the wheel—
use existing pieces wherever possible. This software reuse is a key benefit of object-oriented
programming.

Messages and Methods Calls

When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that is, to go faster. Similarly, you send messages to an object. Each message is implemented
as a method call that tells a method of the object to perform its task. For example, a pro-
gram might call a particular bank account object’s deposit method to increase the account’s
balance.

Attributes and Instance Variables

A car, besides having capabilities to accomplish tasks, also has a#tributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an
odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but zor how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank account object has
a balance attribute that represents the amount of money in the account. Each bank account
object knows the balance in the account it represents, but zo# the balances of the other
accounts in the bank. Attributes are specified by the class’s instance variables.

.7 Operating Systems 13

Encapsulation

Classes encapsulate (i.e., wrap) attributes and methods into objects—an object’s attributes
and methods are intimately related. Objects may communicate with one another, but
they’re normally not allowed to know how other objects are implemented—implementa-
tion details are hidden within the objects themselves. This information hiding, as we'll see,
is crucial to good software engineering.

Inheritance

A new class of objects can be created quickly and conveniently by inheritance—the new
class absorbs the characteristics of an existing class, possibly customizing them and adding
unique characteristics of its own. In our car analogy, an object of class “convertible” cer-
tainly 75 an object of the more general class “automobile,” but more specifically, the roof can
be raised or lowered.

Object-Oriented Analysis and Design (OOAD)

Soon you’ll be writing programs in Java. How will you create the code (i.c., the program
instructions) for your programs? Perhaps, like many programmers, you’ll simply turn on
your computer and start typing. This approach may work for small programs (like the ones
we present in the early chapters of the book), but what if you were asked to create a soft-
ware system to control thousands of automated teller machines for a major bank? Or sup-
pose you were asked to work on a team of 1,000 software developers building the next U.S.
air traffic control system? For projects so large and complex, you should not simply sit
down and start writing programs.

To create the best solutions, you should follow a detailed analysis process for deter-
mining your project’s requirements (i.e., defining whar the system is supposed to do) and
developing a design that satisfies them (i.e., deciding Aow the system should do it). Ideally,
you'd go through this process and carefully review the design (and have your design
reviewed by other software professionals) before writing any code. If this process involves
analyzing and designing your system from an object-oriented point of view, it’s called an
object-oriented analysis and design (OOAD) process. Languages like Java are object ori-
ented. Programming in such a language, called object-oriented programming (OOP),
allows you to implement an object-oriented design as a working system.

The UML (Unified Modeling Language)

Although many different OOAD processes exist, a single graphical language for commu-
nicating the results of 27y OOAD process has come into wide use. This language, known
as the Unified Modeling Language (UML), is now the most widely used graphical scheme
for modeling object-oriented systems. We present our first UML diagrams in Chapters 3
and 4, then use them in our deeper treatment of object-oriented programming through
Chapter 11. In our optional ATM Software Engineering Case Study in Chapters 12—-13 we
present a simple subset of the UMLs features as we guide you through an object-oriented
design experience.

1.7 Operating Systems

Operating systems are software systems that make using computers more convenient for us-
ers, application developers and system administrators. Operating systems provide services

14 Chapter | Introduction to Computers and Java

that allow each application to execute safely, efficiently and concurrently (i.c., in parallel) with
other applications. The software that contains the core components of the operating system
is called the kernel. Popular desktop operating systems include Linux, Windows 7 and Mac
OS X. Popular mobile operating systems used in smartphones and tablets include Google’s
Android, BlackBerry OS and Apple’s iOS (for its iPhone, iPad and iPod Touch devices).

Windows—A Proprietary Operating System

In the mid-1980s, Microsoft developed the Windows operating system, consisting of a
graphical user interface built on top of DOS—an enormously popular personal-computer
operating system of the time that users interacted with by typing commands. Windows
borrowed from many concepts (such as icons, menus and windows) popularized by early
Apple Macintosh operating systems and originally developed by Xerox PARC. Windows
7 is Microsoft’s latest operating system—its features include enhancements to the user in-
terface, faster startup times, further refinement of security features, touch-screen and
multi-touch support, and more. Windows is a proprietary operating system—it’s con-
trolled by one company exclusively. Windows is by far the world’s most widely used op-
erating system.

Linux—An Open-Source Operating System

The Linux operating system is perhaps the greatest success of the gpen-source movement.
Open-source software is a software development style that departs from the proprietary de-
velopment that dominated software’s early years. With open-source development, individ-
uals and companies contribute their efforts in developing, maintaining and evolving
software in exchange for the right to use that software for their own purposes, typically at
no charge. Open-source code is often scrutinized by a much larger audience than propri-
etary software, so errors often get removed faster. Open source also encourages more in-
novation. Sun open sourced its implementation of the Java Development Kit and many
of its related Java technologies.

Some organizations in the open-source community are the Eclipse Foundation (the
Eclipse Integrated Development Environment helps Java programmers conveniently
develop software), the Mozilla Foundation (creators of the Firefox web browser), the
Apache Software Foundation (creators of the Apache web server used to develop web-
based applications) and SourceForge (which provides the tools for managing open source
projects—it has over 260,000 of them under development). Rapid improvements to com-
puting and communications, decreasing costs and open-source software have made it
much easier and more economical to create a software-based business now than just a few
decades ago. A great example is Facebook, which was launched from a college dorm room
and built with open-source software.”

The Linux kernel is the core of the most popular open-source, freely distributed, full-
featured operating system. It’s developed by a loosely organized team of volunteers, and is
popular in servers, personal computers and embedded systems. Unlike that of proprietary
operating systems like Microsoft’s Windows and Apple’s Mac OS X, Linux source code
(the program code) is available to the public for examination and modification and is free
to download and install. As a result, users of the operating system benefit from a commu-
nity of developers actively debugging and improving the kernel, an absence of licensing

7. developers.facebook.com/opensource/.

.7 Operating Systems 15

fees and restrictions, and the ability to completely customize the operating system to meet
specific needs.

In 1991, Linus Torvalds, a 21-year-old student at the University of Helsinki, Finland,
began developing the Linux kernel as a hobby. (The name Linux is derived from “Linus”
and “UNIX"—an operating system developed by Bell Labs in 1969.) Torvalds wished to
improve upon the design of Minix, an educational operating system created by Professor
Andrew Tanenbaum of the Vrije Universiteit in Amsterdam. The Minix source code was
publicly available to allow professors to demonstrate basic operating-system implementa-
tion concepts to their students.

Torvalds released the first version of Linux in 1991. The favorable response led to the
creation of a community that has continued to develop and support Linux. Developers
downloaded, tested, and modified the Linux code, submitting bug fixes and feedback to
Torvalds, who reviewed them and applied the improvements to the code.

The 1994 release of Linux included many features commonly found in a mature oper-
ating system, making Linux a viable alternative to UNIX. Enterprise systems companies
such as IBM and Oracle became increasingly interested in Linux as it continued to stabilize
and spread to new platforms.

A variety of issues—such as Microsoft’s market power, the small number of user-
friendly Linux applications and the diversity of Linux distributions, such as Red Hat
Linux, Ubuntu Linux and many others—have prevented widespread Linux use on
desktop computers. But Linux has become extremely popular on servers and in embedded
systems, such as Google’s Android-based smartphones.

Android

Android—the fastest growing mobile and smartphone operating system—is based on the
Linux kernel and Java. Experienced Java programmers can quickly dive into Android de-
velopment. One benefit of developing Android apps is the openness of the platform. The
operating system is open source and free.

The Android operating system was developed by Android, Inc., which was acquired
by Google in 2005. In 2007, the Open Handset Alliance™—a consortium of 34 compa-
nies initially and 79 by 2010—was formed to continue developing Android. As of
December 2010, more than 300,000 Android smartphones were being activated each
day!® Android smartphones are now outselling iPhones.” The Android operating system is
used in numerous smartphones (such as the Motorola Droid, HTC EVO™ 4G, Samsung
Vibrant™ and many more), e-reader devices (such as the Barnes and Noble Nook™),
tablet computers (such as the Dell Streak, the Samsung Galaxy Tab and more), in-store
touch-screen kiosks, cars, robots and multimedia players.

Android smartphones include the functionality of a mobile phone, Internet client (for
web browsing and Internet communication), MP3 player, gaming console, digital camera
and more, wrapped into handheld devices with full-color multitouch screens—these allow
you to control the device with gestures involving one touch or multiple simultaneous
touches. You can download apps directly onto your Android device through Android
Market and other app marketplaces. As of December 2010, there were over 200,000 apps
in Google’s Android Market.

8. www.pcmag.com/article2/0,2817,2374076,00.asp.
9. mashable.com/2010/08/02/android-outselling-iphone-2/.

www.pcmag.com/article2/0,2817,2374076,00.asp

16 Chapter | Introduction to Computers and Java

Android App-Development Chapters on the Companion Website
Because of the tremendous interest in Android-based devices and apps, we’ve included on
the book’s companion website a three-chapter introduction to Android app development
from our new book, Android for Programmers: An App-Driven Approach. After you learn
Java, you'll find it straightforward to begin developing and running Android apps. You
can place your apps on the online Android Market (www.market.android.com) and if
they’re successful, you may even be able to launch a business. Just remember—Facebook,
Microsoft and Dell were all launched from dorm rooms.

1.8 Programming Languages

In this section, we provide brief comments on several popular programming languages
(Fig. 1.5). In the next section we introduce Java.

Fortran

COBOL

Pascal

Ada

Basic

Fortran (FORmula TRANislator) was developed by IBM Corporation in the
mid-1950s to be used for scientific and engineering applications that require
complex mathematical computations. It’s still widely used and its latest ver-
sions are object oriented.

COBOL (COmmon Business Oriented Language) was developed in the late
1950s by computer manufacturers, the U.S. government and industrial com-
puter users based on a language developed by Grace Hopper, a career U.S.
Navy officer and computer scientist. COBOL is still widely used for commer-
cial applications that require precise and efficient manipulation of large
amounts of data. Its latest version supports object-oriented programming.

Research in the 1960s resulted in structured programming—a disciplined
approach to writing programs that are clearer, easier to test and debug and
easier to modify than large programs produced with previous techniques.
One of the more tangible results of this research was the development of Pas-
cal by Professor Niklaus Wirth in 1971. It was designed for teaching struc-
tured programming and was popular in college courses for several decades.

Ada, based on Pascal, was developed under the sponsorship of the U.S.
Department of Defense (DOD) during the 1970s and early 1980s. The DOD
wanted a single language that would fill most of its needs. The Pascal-based
language was named after Lady Ada Lovelace, daughter of the poet Lord
Byron. She’s credited with writing the world’s first computer program in the
early 1800s (for the Analytical Engine mechanical computing device designed
by Charles Babbage). Its latest version supports object-oriented programming.

Basic was developed in the 1960s at Dartmouth College to introduce novices
to programming. Many of its latest versions are object oriented.

C was implemented in 1972 by Dennis Ritchie at Bell Laboratories. It ini-
tially became widely known as the UNIX operating system’s development
language. Today, most of the code for general-purpose operating systems is
written in C or C++.

Fig. 1.5 | Other programming languages. (Part | of 2.)

www.market.android.com

C+

Objective-C

Visual Basic

Visual C#

PHP

Python

JavaScript

Ruby on Rails

Scala

1.8 Programming Languages 17

C++, an extension of C, was developed by Bjarne Stroustrup in the early
1980s at Bell Laboratories. C++ provides a number of features that “spruce
up” the C language, but more important, it provides capabilities for object-
oriented programming.

Objective-C is an object-oriented language based on C. It was developed in
the early 1980s and later acquired by Next, which in turn was acquired by
Apple. It has become the key programming language for the Mac OS X oper-
ating system and all iOS-powered devices (such as iPods, iPhones and iPads).

Microsofts Visual Basic language was introduced in the early 1990s to sim-
plify the development of Microsoft Windows applications. Its latest versions
support object-oriented programming.

Microsoft’s three primary object-oriented programming languages are Visual
Basic, Visual C++ (based on C++) and C# (based on C++ and Java, and devel-
oped for integrating the Internet and the web into computer applications).

PHP is an object-oriented, “open-source” (see Section 1.7) “scripting” language
supported by a community of users and developers and is used by numerous
websites including Wikipedia and Facebook. PHP is platform independent—
implementations exist for all major UNIX, Linux, Mac and Windows operat-
ing systems. PHP also supports many databases, including MySQL.

Python, another object-oriented scripting language, was released publicly in
1991. Developed by Guido van Rossum of the National Research Institute
for Mathematics and Computer Science in Amsterdam (CW1I), Python draws
heavily from Modula-3—a systems programming language. Python is “exten-
sible”—it can be extended through classes and programming interfaces.

JavaScript is the most widely used scripting language. It’s primarily used to
add programmability to web pages—for example, animations and interactiv-
ity with the user. It’s provided with all major web browsers.

Ruby—-created in the mid-1990s by Yukihiro Matsumoto—is an open-
source, object-oriented programming language with a simple syntax that’s
similar to Python. Ruby on Rails combines the scripting language Ruby with
the Rails web application framework developed by 37Signals. Their book,
Getting Real (gettingreal.37signals.com/toc.php), is a must read for web
developers. Many Ruby on Rails developers have reported productivity gains
over other languages when developing database-intensive web applications.
Ruby on Rails was used to build Twitter’s user interface.

Scala (ww.scala-Tang.org/node/273)—short for “scalable language”—was
designed by Martin Odersky, a professor at Ecole Polytechnique Fédérale de
Lausanne (EPFL) in Switzerland. Released in 2003, Scala uses both the
object-oriented and functional programming paradigms and is designed to
integrate with Java. Programming in Scala can reduce the amount of code in
your applications significantly. Twitter and Foursquare use Scala.

Fig. 1.5 | Other programming languages. (Part 2 of 2.)

www.scala-lang.org/node/273

18 Chapter | Introduction to Computers and Java

1.9 Java and a Typical Java Development Environment

The microprocessor revolution’s most important contribution to date is that it made pos-
sible the development of personal computers. Microprocessors are having a profound im-
pact in intelligent consumer-electronic devices. Recognizing this, Sun Microsystems in
1991 funded an internal corporate research project led by James Gosling, which resulted
in a C++-based object-oriented programming language Sun called Java.

A key goal of Java is to be able to write programs that will run on a great variety of
computer systems and computer-control devices. This is sometimes called “write once,
run anywhere.”

The web exploded in popularity in 1993, and Sun saw the potential of using Java to
add dynamic content, such as interactivity and animations, to web pages. Java garnered the
attention of the business community because of the phenomenal interest in the web. Java
is now used to develop large-scale enterprise applications, to enhance the functionality of
web servers (the computers that provide the content we see in our web browsers), to pro-
vide applications for consumer devices (e.g., cell phones, smartphones, television set-top
boxes and more) and for many other purposes. Sun Microsystems was acquired by Oracle
in 2009. At the JavaOne 2010 conference, Oracle announced that 97% of enterprise desk-
tops, three billion handsets, and 80 million television devices run Java. There are currently
over 9 million Java developers, up from 4.5 million in 2005.1° Java is now the most widely
used software development language in the world.

Java Class Libraries

You can create each class and method you need to form your Java programs. However,
most Java programmers take advantage of the rich collections of existing classes and meth-
ods in the Java class libraries, which are also known as the Java APIs (Application Pro-
gramming Interfaces).

5 Performance Tip 1.1
Using Java API classes and methods instead of writing your own versions can improve pro-

gram performance, because theyre carefully written to perform efficiently. This also short-
ens program development time.

Portability Tip 1.1

@ Although it’s easier to write portable programs (i.e., programs that can run on many dif-
ferent types of computers) in Java than in most other programming languages, differences
between compilers, [V Ms and computers can make portability difficult to achieve. Simply
writing programs in java does not guarantee portability.

We now explain the commonly used steps in creating and executing a Java application
using a Java development environment (illustrated in Figs. 1.6-1.10). Java programs nor-
mally go through five phases—edit, compile, load, verify and execute. We discuss these
phases in the context of the Java SE Development Kit (JDK). You can download the most
up-to-date JDK and its documentation from www.oracle.com/technetwork/java/

10. jaxenter.com/how-many-java-developers-are-there-10462.htm1.

www.oracle.com/technetwork/java/javase/downloads/index.html

1.9 Java and a Typical Java Development Environment 19

javase/downloads/index.html. Read the Before You Begin section of this book to ensure that
you set up your computer properly to compile and execute Java programs. You may also want
to visit Oracle’s New to Java Center at:

www.oracle.com/technetwork/topics/newtojava/overview/index.html

[Noze: This website provides installation instructions for Windows, Linux and Mac OS X.
If you aren’t using one of these operating systems, refer to the documentation for your sys-
tem’s Java environment or ask your instructor how to accomplish these tasks based on your
computer’s operating system. If you encounter a problem with this link or any others ref-
erenced in this book, please check www.deitel.com/books/jhtp9/ for errata and please
notify us by e-mail at deitel@deitel. com.]

Phase 1: Creating a Program

Phase 1 consists of editing a file with an editor program, normally known simply as an edizor
(Fig. 1.6). You type a Java program (typically referred to as source code) using the editor,
make any necessary corrections and save the program on a secondary storage device, such
as your hard drive. A file name ending with the . java extension indicates that the file con-
tains Java source code.

<> P(rjggram ;s creatded m;nk ‘
L
Phase I: Edit Editor - > editor and stored on disk in
; Disk a file whose name ends
with . java

Fig. 1.6 | Typical Java development environment—editing phase.

Two editors widely used on Linux systems are vi and emacs. On Windows, Notepad
will suffice. Many freeware and shareware editors are also available online, including Edit-
Plus (www.editplus.com), TextPad (www.textpad.com) and jEdit (www. jedit.org).

For organizations that develop substantial information systems, integrated develop-
ment environments (IDEs) are available from many major software suppliers. IDEs pro-
vide tools that support the software development process, including editors for writing and
editing programs and debuggers for locating logic errors—errors that cause programs to
execute incorrectly. Popular IDEs include Eclipse (www.eclipse.org) and NetBeans
(www.netbeans.org).

Phase 2: Compiling a Java Program into Bytecodes
In Phase 2, you use the command javac (the Java compiler) to compile a program
(Fig. 1.7). For example, to compile a program called Welcome. java, you'd type

javac Welcome.java

in the command window of your system (i.c., the Command Prompt in Windows, the
shell prompt in Linux or the Terminal application in Mac OS X). If the program compiles,
the compiler produces a .class file called WeTcome.class that contains the compiled ver-
sion of the program.

www.deitel.com/books/jhtp9/
www.editplus.com
www.textpad.com
www.jedit.org
www.eclipse.org
www.netbeans.org
www.oracle.com/technetwork/topics/newtojava/overview/index.html
www.oracle.com/technetwork/java/javase/downloads/index.html

20 Chapter | Introduction to Computers and Java

Compiler creates bytecodes
and stores them on disk in a
Disk file whose name ends

with .class

Phase 2: Compile Compiler <—>{ :

Fig. 1.7 | Typical Java development environment—compilation phase.

The Java compiler translates Java source code into bytecodes that represent the tasks
to execute in the execution phase (Phase 5). Bytecodes are executed by the Java Virtual
Machine (JVM)—a part of the JDK and the foundation of the Java platform. A virtual
machine (VM) is a software application that simulates a computer but hides the under-
lying operating system and hardware from the programs that interact with it. If the same
VM is implemented on many computer platforms, applications that it executes can be
used on all those platforms. The JVM is one of the most widely used virtual machines.
Microsoft’s .NET uses a similar virtual-machine architecture.

Unlike machine language, which is dependent on specific computer hardware, byte-
codes are platform independent—they do not depend on a particular hardware platform.
So, Java’s bytecodes are portable—without recompiling the source code, the same byte-
codes can execute on any platform containing a JVM that understands the version of Java
in which the bytecodes were compiled. The JVM is invoked by the java command. For
example, to execute a Java application called Welcome, you'd type the command

java Welcome

in a command window to invoke the JVM, which would then initiate the steps necessary
to execute the application. This begins Phase 3.

Phase 3: Loading a Program into Memory

In Phase 3, the JVM places the program in memory to execute it—this is known as loading
(Fig. 1.8).The JVM’s class loader takes the .c1ass files containing the program’s bytecodes
and transfers them to primary memory. The class loader also loads any of the . class files
provided by Java that your program uses. The . class files can be loaded from a disk on your
system or over a network (e.g., your local college or company network, or the Internet).

Primary
Memory
Phase 3: Load Class Loader —_—
Class loader reads
.class files
containing bytecodes
from disk and puts
those bytecodes in
memory
A

Fig. 1.8 | Typical Java development environment—loading phase.

1.9 Java and a Typical Java Development Environment 21

Phase 4: Bytecode Verification

In Phase 4, as the classes are loaded, the bytecode verifier examines their bytecodes to en-
sure that they’re valid and do not violate Java’s security restrictions (Fig. 1.9). Java enforces
strong security to make sure that Java programs arriving over the network do not damage
your files or your system (as computer viruses and worms might).

Primary
Memory
Phase 4: Verify Bytecode Verifier -
Bytecode verifier
confirms that all
bytecodes are valid and
do not violate Java's
security restrictions
A

Fig. 1.9 | Typical Java development environment—verification phase.

Phase 5: Execution

In Phase 5, the JVM executes the program’s bytecodes, thus performing the actions spec-
ified by the program (Fig. 1.10). In early Java versions, the JVM was simply an interpreter
for Java bytecodes. This caused most Java programs to execute slowly, because the JVM
would interpret and execute one bytecode at a time. Some modern computer architectures
can execute several instructions in parallel. Today’s JVMs typically execute bytecodes us-
ing a combination of interpretation and so-called just-in-time (JIT) compilation. In this
process, the JVM analyzes the bytecodes as they’re interpreted, searching for hor spors—
parts of the bytecodes that execute frequently. For these parts, a just-in-time (JIT) com-
piler—known as the Java HotSpot compiler—translates the bytecodes into the underly-
ing computer’s machine language. When the JVM encounters these compiled parts again,

Primary
Memory
Phase 5: Execute Java Virtual Machine (JVM) | «—»

To execute the program, the
JVM reads bytecodes and
just-in-time (JIT) compiles
(i.e., translates) them into a
language that the computer
can understand. As the
program executes, it may store
data values in primary
memory.

Fig. 1.10 | Typical Java development environment—execution phase.

22 Chapter | Introduction to Computers and Java

the faster machine-language code executes. Thus Java programs actually go through rwo
compilation phases—one in which source code is translated into bytecodes (for portability
across JVMs on different computer platforms) and a second in which, during execution,
the bytecodes are translated into machine language for the actual computer on which the
program executes.

Problems That May Occur at Execution Time

Programs might not work on the first try. Each of the preceding phases can fail because of
various errors that we’ll discuss throughout this book. For example, an executing program
might try to divide by zero (an illegal operation for whole-number arithmetic in Java).
This would cause the Java program to display an error message. If this occurred, you'd
have to return to the edit phase, make the necessary corrections and proceed through the
remaining phases again to determine that the corrections fixed the problem(s). [Noze:
Most programs in Java input or output data. When we say that a program displays a mes-
sage, we normally mean that it displays that message on your computer’s screen. Messages
and other data may be output to other devices, such as disks and hardcopy printers, or even
to a network for transmission to other computers.]

Common Programming Error 1.1

Errors such as division by zero occur as a program runs, so they’re called runtime errors
or execution-time errors. Fatal runtime errors cause programs to terminate immediately
without having successfully performed their jobs. Nonfatal runtime errors allow pro-
grams to run to tomp/etion, oﬁen producing incorrect results.

1.10 Test-Driving a Java Application

In this section, you’ll run and interact with your first Java application. You’ll begin by run-
ning an ATM application that simulates the transactions that take place when you use an
ATM machine (e.g., withdrawing money, making deposits and checking your account
balances). You’ll learn how to build this application in the optional, object-oriented case
study included in Chapters 12—13. For the purpose of this section, we assume you’re run-
ning Microsoft Windows.!!

In the following steps, you’ll run the application and perform various transactions.
The elements and functionality you see here are typical of what you'll learn to program in
this book. [Noze: We use fonts to distinguish between features you see on a screen (e.g.,
the Gommand Prompt) and elements that are not directly related to a screen. Our conven-
tion is to emphasize screen features like titles and menus (e.g., the File menu) in a semibold
sans-serif Helvetica font and to emphasize nonscreen elements, such as file names or input
(e.g., ProgramName. java) in a sans-serif Lucida font. As you've already noticed, the
defining occurrence of each key term in the text is set in bold maroon. In the figures in
this section, we highlight in yellow the user input required by each step and point out sig-

11. Atwww.deitel.com/books/jhtp9/, we provide a Linux version of this test-drive. We also provide
links to videos that help you get started with several popular integrated development environments
(IDEs), including Java SE Development Kit 6 for Windows, Eclipse SDK for Windows, NetBeans,
jGRASP, DrJava, Blue] and TestPad Text Editor for Windows.

www.deitel.com/books/jhtp9/

.10 Test-Driving a Java Application 23

nificant parts of the application. To make these features more visible, we’ve changed the
background color of the Command Prompt windows to white and the foreground color to
black.] This is a simple text-only version. Later in the book, you'll learn the techniques to
rework this using GUI (graphical user interface) techniques.

1. Checking your setup. Read the Before You Begin section of the book to confirm
that you’ve set up Java properly on your computer and that you've copied the
book’s examples to your hard drive.

2. Locating the completed application. Open a Command Prompt window. This can
be done by selecting Start > All Programs > Accessories > Command Prompt.
Change to the ATM application directory by typing cd C:\exampTes\chOI1\ATM,
then press Enter (Fig. 1.11). The command cd is used to change directories.

Using the cd command to

change directories File location of the ATM application

B Adrinistrator: Command Prompt ol x|
Shveod Crhexampleshch014ATM :‘
shexamples'\ch01\ATM>

Fig. 1.11 | Opening a Command Prompt and changing directories.

3. Running the ATM application. Type the command java ATMCaseStudy and press
Enter (Fig. 1.12). Recall that the java command, followed by the name of the ap-
plication’s . class file (in this case, ATMCaseStudy), executes the application. Spec-
ifying the .class extension when using the java command results in an error.
[Noze: Java commands are case sensitive. It’s important to type the name of this ap-
plication with a capital A, T and M in “ATM,” a capital C in “Case” and a capital
S in “Study.” Otherwise, the application will not execute.] If you receive the error
message, “Exception in thread "main" java.lang.NoClassDefFoundError:
ATMCaseStudy," your system has a CLASSPATH problem. Please refer to the Before
You Begin section of the book for instructions to help you fix this problem.

B Administrator: Command Prompt ol x|

Sheod Cr\examples’ch014\ATM :‘
shexamples'\ch01\ATM=Java ATMCaseStudy

Fig. 1.12 | Using the java command to execute the ATM application.

4. Entering an account number. When the application first executes, it displays a
"Welcome!" greeting and prompts you for an account number. Type 12345 at the
"Please enter your account number:" prompt (Fig. 1.13) and press Enzer.

24 Chapter | Introduction to Computers and Java

ATM welcome message Enter account number prompt

B Administratof: Command Prompt - java ATMCaseStudy

hexamp les)\ch01\ATM>Java ATMCaseStudy i’

elcome! —

Please enter your account number: 12345

Fig. 1.13 | Prompting the user for an account number.

5. Entering a PIN. Once a valid account number is entered, the application displays
the prompt "Enter your PIN:". Type "54321" as your valid PIN (Personal Iden-
tification Number) and press Enter. The ATM main menu containing a list of
options will be displayed (Fig. 1.14). We'll show how you can enter a PIN pri-
vately using a JPasswordField in Chapter 14.

Enter valid PIN ATM main menu

B Administrator: Command Prompt - java ATMCaseStudy ol x|
e lcome! -]

Please enter your [account number: 12345

Enter your PIN: 54321

Main menu:
1 - View my balance
2 - Withdraw cash

3 - Deposit funds
4 - Exit

Enter a choice: ~|

Fig. 1.14 | Entering a valid PIN number and displaying the ATM application’s main menu.

6. Viewing the account balance. Select option 1, "View my balance", from the
ATM menu (Fig. 1.15). The application then displays two numbers—the
Available balance ($1000.00) and the Total balance ($1200.00). The avail-
able balance is the maximum amount of money in your account which is available
for withdrawal at a given time. In some cases, certain funds, such as recent depos-
its, are not immediately available for the user to withdraw, so the available bal-
ance may be less than the total balance, as it is here. After the account-balance
information is shown, the application’s main menu is displayed again.

7. Withdrawing money from the account. Select option 2, "Withdraw cash", from
the application menu. You're then presented (Fig. 1.16) with a list of dollar
amounts (e.g., 20, 40, 60, 100 and 200). You're also given the option to cancel the
transaction and return to the main menu. Withdraw $100 by selecting option 4.
The application displays "Please take your cash now." and returns to the
main menu. [Noze: Unfortunately, this application only simulates the behavior of
a real ATM and thus does not actually dispense money.]

.10 Test-Driving a Java Application 25

B Administrator: Command Prompt - fava ATMCaseStudy ol x|

Account-balance information

Enter a choice: 1 -]

Balance Information:
- Available balance: $1,000.00
- Total balance: $1,200.00

ain menu:

1 - View my balance

2 - Withdraw cash

3 - Deposit funds
- Exat

Enter a choice: ~|

Fig. 1.15 | ATM application displaying user account-balance information.

B Administrator: Command Prompt - java ATMCaseStudy ol x|

ATM withdrawal menu

2
3
4
5
6

Enter a choice: 2

Withdrawal Menu: —
320

Choose a withdrawal amount: 4
Please take your cash now.

Main menu:

1 - View my balance
2 - Withdraw cash

3 - Deposit funds
4 - Exit

Enter a choice: ~|

L Lo

340 by
360

3100

3200

Cancel transaction

Fig. 1.16 | Withdrawing money from the account and returning to the main menu.

8. Confirming that the account information has been updated. From the main

10.

menu, select option 1 again to view your current account balance (Fig. 1.17).
Both the available balance and the total balance have been updated to reflect your
withdrawal transaction.

Ending the transaction. To end your current ATM session, select option 4, "Exit",
from the main menu (Fig. 1.18). The ATM will exit the system and display a good-
bye message to the user. The application will then return to its original prompt, ask-
ing for the next user’s account number.

Exiting the ATM and closing the Command Prompt window. Most applications
provide an option to exit and return to the Command Prompt directory from which
the application was run. A real ATM does not provide a user with the option to turn
off the ATM. Rather, when a user has completed all desired transactions and chosen

26 Chapter | Introduction to Computers and Java

@ Adiministialur: Command Prompl - java ATMCaseStudy = ICI Iil
Enter a choice: 1 o ;'
. Confirming updated account-balance =
Balance Information: ———MM . f . . .
Z Available balance: $900.00 information after withdrawal transaction
- Total balance: $1,100.00
Main menu:

1 - View my balance
? - Withdraw cash

3 - Deposit funds
4 - Exit

Cnter a choice: -

Fig. 1.17 | Checking the new balance.

@ Administrator: Command Prompt - java ATMCaseStudy =13
Enter a choice: 4 ;l
Exiting the system... =
hank you! Goodbye! ATM goodbye message
elcome!
Please enter your account number: Account-number prompt for next user |

Fig. 1.18 | Ending an ATM transaction session.

the menu option to exit, the ATM resets itself and displays a prompt for the next
user’s account number. As Fig. 1.18 illustrates, the ATM application here behaves
similarly. Choosing the menu option to exit ends only the current user’s ATM ses-
sion, not the entire ATM application. To actually exit the ATM application, click
the close (x) button in the upper-right corner of the Command Prompt window.
Closing the window causes the running application to terminate.

1.11 Web 2.0: Going Social

The web literally exploded in the mid-to-late 1990s, but the “dot com” economic bust
brought hard times in the early 2000s. The resurgence that began in 2004 or so has been
named Web 2.0. Google is widely regarded as the signature company of Web 2.0. Some
other companies with “Web 2.0 characteristics” are YouTube (video sharing), FaceBook
(social networking), Twitter (microblogging), Groupon (social commerce), Foursquare
(mobile check-in), Salesforce (business software offered as online services), Craigslist (free
classified listings), Flickr (photo sharing), Second Life (a virtual world), Skype (Internet
telephony) and Wikipedia (a free online encyclopedia).

Google

In 1596, Stanford computer science Ph.D. candidates Larry Page and Sergey Brin began
collaborating on a new search engine. In 1997, they changed the name to Google—a play
on the mathematical term googol, a quantity represented by the number “one” followed by
100 “zeros” (or 1019%)—a staggeringly large number. Google’s ability to return extremely
accurate search results quickly helped it become the most widely used search engine and
one of the most popular websites in the world.

I.11 'Web 2.0: Going Social 27

Google continues to be an innovator in search technologies. For example, Google
Goggles is a fascinating mobile app (available on Android and iPhone) that allows you to
perform a Google search using a photo rather than entering text. You simply take pictures
of a landmarks, books (covers or barcodes), logos, art or wine bottle labels, and Google
Goggles scans the photo and returns search results. You can also take a picture of text (for
example, a restaurant menu or a sign) and Google Goggles will translate it for you.

Web Services and Mashups

We include in this book a substantial treatment of web services (Chapter 31) and intro-
duce the applications-development methodology of mashups in which you can rapidly de-
velop powerful and intriguing applications by combining (often free) complementary web
services and other forms of information feeds (Fig. 1.19). One of the first mashups was
www . housingmaps.com, which quickly combines the real estate listings provided by
www.craigslist.org with the mapping capabilities of Google Maps to offer maps that
show the locations of apartments for rent in a given area.

Google Maps Mapping services
Facebook Social networking
Foursquare Mobile check-in

LinkedIn Social networking for business
YouTube Video search

Twitter Microblogging

Groupon Social commerce

Netflix Movie rentals

eBay Internet auctions
Wikipedia Collaborative encyclopedia
PayPal Payments

Last.fm Internet radio

Amazon eCommerce
Salesforce.com

Shopping for books and more
Customer Relationship Management (CRM)

Skype Internet telephony
Microsoft Bing Search

Flickr Photo sharing
Zillow Real estate pricing
Yahoo Search Search
WeatherBug Weather

Fig. 1.19 | Some popular web services (www.programmableweb.com/apis/

directory/1?sort=mashups).

Ajax
Ajax is one of the premier Web 2.0 software technologies. Ajax helps Internet-based ap-
plications perform like desktop applications—a difficult task, given that such applications

www.housingmaps.com
www.craigslist.org
www.programmableweb.com/apis/directory/1?sort=mashups
www.programmableweb.com/apis/directory/1?sort=mashups

28 Chapter | Introduction to Computers and Java

suffer transmission delays as data is shuttled back and forth between your computer and
server computers on the Internet. Using Ajax, applications like Google Maps have
achieved excellent performance and approach the look-and-feel of desktop applications.
Although we don’t discuss “raw” Ajax programming (which is quite complex) in this text,
we do show in Chapter 30 how to build Ajax-enabled applications using JavaServer Faces
(JSF) Ajax-enabled components.

Social Applications
Over the last several years, there’s been a tremendous increase in the number of social ap-
plications on the web. Even though the computer industry is mature, these sites were still
able to become phenomenally successful in a relatively short period of time. Figure 1.20
discusses a few of the social applications that are making an impact.

Facebook

Twitter

Groupon

Facebook was launched from a Harvard dorm room in 2004 by classmates
Mark Zuckerberg, Chris Hughes, Dustin Moskovitz and Eduardo Saverin and
is already worth an estimated $70 billion. By January 2011, Facebook was the
most active site on the Internet with more than 600 million users—nearly 9%
of the Earth’s population—who spend 700 billion minutes on Facebook per
month (www.t1' me.com/time/specials/packages/article/0,28804,2036683_
2037183,00.htm1). At its current growth rate (about 5% per month), Facebook
will reach one billion users in 2012, out of the two billion Internet users! The
activity on the site makes it extremely attractive for application developers.
Each day, over 20 million applications are installed by Facebook users

(www . facebook.com/press/info.php?statistics).

Twitter was founded in 2006 by Jack Dorsey, Evan Williams and Isaac “Biz”
Stone—all from the podcast company, Odeo. Twitter has revolutionized
microblogging. Users post tweets—messages of up to 140 characters long.
Approximately 95 million tweets are posted per day (twitter.com/about). You
can follow the tweets of friends, celebrities, businesses, government representa-
tives (including the U.S. President, who has 6.3 million followers), etc., or you
can follow tweets by subject to track news, trends and more. At the time of this
writing, Lady Gaga had the most followers (over 7.7 million). Twitter has
become the point of origin for many breaking news stories worldwide.

Groupon, a social commerce site, was launched by Andrew Mason in 2008. By
January 2011, the company was valued around $15 billion, making it the fast-
est growing company ever! It’s now available in hundreds of markets world-
wide. Groupon offers one daily deal in each market for restaurants, retailers,
services, attractions and more. Deals are activated only after a minimum num-
ber of people sign up to buy the product or service. If you sign up for a deal
and it has yet to meet the minimum, you might be inclined to tell others about
the deal by email, Facebook, Twitter, etc. If the deal does not meet the mini-
mum sales, it’s cancelled. One of the most successful national Groupon deals to
date was a certificate for $50 worth of merchandise from a major apparel com-
pany for $25. Over 440,000 vouchers were sold in one day.

Fig. 1.20 | Social applications. (Part | of 2.)

www.time.com/time/specials/packages/article/0,28804,2036683_2037183,00.html
www.time.com/time/specials/packages/article/0,28804,2036683_2037183,00.html
www.facebook.com/press/info.php?statistics

.12 Software Technologies 29

Foursquare Foursquare—launched in 2009 by Dennis Crowley and Naveen Selvadurai—is
a mobile check-in application that allows you to notify your friends of your
whereabouts. You can download the app to your smartphone and link it to
your Facebook and Twitter accounts so your friends can follow you from mul-
tiple platforms. If you do not have a smartphone, you can check in by text
message. Foursquare uses GPS to determine your exact location. Businesses use
Foursquare to send offers to users in the area. Launched in March 2009, Four-
square already has over 5 million users worldwide.

Skype Skype is a software product that allows you to make mostly free voice and
video calls over the Internet using a technology called VoIP (Voice over IP; 1P
stands for “Internet Protocol”). Skype was founded in 2003 by Niklas
Zennstrdm and Dane Janus Friis. Just two years later, the company was sold to
eBay for $2.6 billion.

YouTube YouTube is a video-sharing site that was founded in 2005. Within one year, the
company was purchased by Google for $1.65 billion. YouTube now accounts
for 10% of all Internet traffic (www.webpronews.com/topnews/2010/04/16/
facebook-and-youtube-get-the-most-business-internet-traffic). Within
one week of the release of Apple’s iPhone 3GS—the first iPhone model to offer
video—mobile uploads to YouTube grew 400% (www.hypebot.com/hypebot/
2009/06/youtube-reports-1700-jump-in-mobile-video.html).

Fig. 1.20 | Social applications. (Part 2 of 2.)

1.12 Software Technologies

Figure 1.21 lists a number of buzzwords that you'll hear in the software development com-
munity. We've created Resource Centers on most of these topics, with more on the way.

Agile software Agile software development is a set of methodologies that try to get soft-

development ware implemented faster and using fewer resources than previous methodol-
ogies. Check out the Agile Alliance (www.agilealliance.org) and the Agile
Manifesto (www.agilemanifesto.org).

Refactoring Refactoring involves reworking programs to make them clearer and easier to
maintain while preserving their correctness and functionality. It's widely
employed with agile development methodologies. Many IDEs contain built-
in refactoring tools to do major portions of the reworking automatically.

Design Design patterns are proven architectures for constructing flexible and main-

patterns tainable object-oriented software. The field of design patterns tries to enu-
merate those recurring patterns, encouraging software designers to reuse
them to develop better-quality software using less time, money and effort.
We discuss Java design patterns in Appendix Q.

Fig. 1.21 | Software technologies. (Part | of 2.)

www.webpronews.com/topnews/2010/04/16/facebook-and-youtube-get-the-most-business-internet-traffic
www.webpronews.com/topnews/2010/04/16/facebook-and-youtube-get-the-most-business-internet-traffic
www.hypebot.com/hypebot/2009/06/youtube-reports-1700-jump-in-mobile-video.html
www.hypebot.com/hypebot/2009/06/youtube-reports-1700-jump-in-mobile-video.html
www.agilealliance.org
www.agilemanifesto.org

30 Chapter | Introduction to Computers and Java

LAMP

Software as a
Service (SaaS)

Platform as a
Service (PaaS)

Cloud

computing

Software
Development

Kit (SDK)

MySQL is an open-source database management system. PHP is the most
popular open-source server-side “scripting” language for developing web
applications. LAMP is an acronym for the open-source technologies that
many developers use to build web applications—it stands for Linux, Apache,
MySQL and PHP (or Petl or Python—two other scripting languages).

Software has generally been viewed as a product; most software still is
offered this way. To run an application, you buy it from a software vendor.
You then install it on your computer and run it as needed. As new versions
appear, you upgrade the software, often at considerable expense. This pro-
cess can be cumbersome for organizations with tens of thousands of systems
that must be maintained on a diverse array of computer equipment. With
Software as a Service (SaaS), the software runs on servers elsewhere on the
Internet. When that server is updated, all clients worldwide see the new
capabilities—no local installation is needed. You access the service through
a browser. Browsers are quite portable, so you can run the same applications
on a wide variety of computers from anywhere in the world. Salesforce.com,
Google, and Microsoft’s Office Live and Windows Live all offer SaaS.

Platform as a Service (PaaS) provides a computing platform for developing
and running applications as a service over the web, rather than installing the
tools on your computer. Paa$S providers include Google App Engine, Ama-
zon EC2, Bungee Labs and more.

Saa$ and Paa$ are examples of cloud computing in which software, platforms
and infrastructure (e.g., processing power and storage) are hosted on demand
over the Internet. This provides users with flexibility, scalability and cost sav-
ings. For example, consider a company’s data storage needs which can fluctu-
ate significantly over the course of a year. Rather than investing in large-scale
storage hardware—which can be costly to purchase, maintain and secure, and
would most likely not be used to capacity at all times—the company could
purchase cloud-based services (such as Amazon S3, Google Storage, Microsoft
Windows Azure™, Nirvanix™ and others) dynamically as needed.
Software Development Kits (SDKs) include the tools and documentation
developers use to program applications. For example, you'll use the Java
Development Kit (JDK) to build and run Java applications.

Fig. 1.21 | Software technologies. (Part 2 of 2.)

Figure 1.22 describes software product release categories.

Alpha

Alpha software is the earliest release of a software product that’s still under

active development. Alpha versions are often buggy, incomplete and unstable,
and are released to a relatively small number of developers for testing new fea-
tures, getting early feedback, etc.

Fig. 1.22 | Software product release terminology. (Part | of 2.)

Beta

Release
candidates

Continuous
beta

[.13 Keeping Up-to-Date with Information Technologies 31

Beta versions are released to a larger number of developers later in the devel-
opment process after most major bugs have been fixed and new features are
nearly complete. Beta software is more stable, but still subject to change.

Release candidates are generally feature complete and (supposedly) bug free, and
ready for use by the community, which provides a diverse testing environ-
ment—the software is used on different systems, with varying constraints and
for a variety of purposes. Any bugs that appear are corrected and eventually
the final product is released to the general public. Software companies often
distribute incremental updates over the Internet.

Software that’s developed using this approach generally does not have version
numbers (for example, Google search or Gmail). The software, which is
hosted in the cloud (not installed on your computer), is constantly evolving
so that users always have the latest version.

Fig. 1.22 | Software product release terminology. (Part 2 of 2.)

1.13 Keeping Up-to-Date with Information Technologies

Figure 1.23 lists key technical and business publications that will help you stay up-to-date
with the latest news and trends and technology. You can also find a growing list of Inter-
net- and web-related Resource Centers at www.deitel.com/ResourceCenters.html.

Bloomberg BusinessWeek ~ www.businessweek. com

CNET news.cnet.com

Computer World www . computerworld.com
Engadget www. engadget . com

eWeek www . eweek . com

Fast Company www . fastcompany . com/
Fortune money.cnn.com/magazines/fortune/
InfoWorld www . infoworld.com
Mashable mashable.com

PCWorld www . pcworld. com

SD Times www . sdtimes.com

Slashdot slashdot.org/

Smarter Technology www. smartertechnology.com
Technology Review technologyreview.com
Techcrunch techcrunch. com

Wired www . wired.com

Fig. 1.23 | Technical and business publications.

www.deitel.com/ResourceCenters.html
www.businessweek.com
www.computerworld.com
www.engadget.com
www.eweek.com
www.fastcompany.com/
www.infoworld.com
www.pcworld.com
www.sdtimes.com
www.smartertechnology.com
www.wired.com

32 Chapter | Introduction to Computers and Java

1.14 Wrap-Up

In this chapter we discussed computer hardware, software, programming languages and
operating systems. We overviewed a typical Java program development environment and
you test-drove a Java application. We introduced the basics of object technology. You
learned about some of the exciting recent developments in the computer field. We also dis-
cussed some key software development terminology.

In Chapter 2, you'll create your first Java applications. You'll see how programs dis-
play messages on the screen and obtain information from the user at the keyboard for pro-
cessing. You'll use Java’s primitive data types and arithmetic operators in calculations and
use Java’s equality and relational operators to write simple decision-making statements.

Self-Review Exercises

1.1 Fill in the blanks in each of the following statements:

a)
b)

<)
d)

e)
f)

The company that popularized personal computing was

The computer that made personal computing legitimate in busmess and industry was

the .

Computers process data under the control of sets of instructions called

The key logical units of the computer are the , , 9
and .

The three types of languages discussed in the chapter are 9 and

The programs that translate high-level language programs into machine language are
called .
is a smartphone operating system based on the Linux kernel and Java.
software is generally feature complete and (supposedly) bug free, and ready
for use by the community.
The Wii Remote, as well as many smartphones, use a(n) which allows the de-
vice to respond to motion.

1.2 Fill in the blanks in each of the following sentences about the Java environment:

a)
b)
)
d)

¢)

The command from the JDK executes a Java application.

The command from the JDK compiles a Java program.

A Java program file must end with the file extension.

When a Java program is compiled, the file produced by the compiler ends with the
file extension.

The file produced by the Java compiler contains that are executed by the Java

Virtual Machine.

1.3 Fill in the blanks in each of the following statements (based on Section 1.6):

a)

b)
)
d)

Objects have the property of —although objects may know how to commu-
nicate with one another across well-defined interfaces, they normally are not allowed to
know how other objects are implemented.

Java programmers concentrate on creating , which contain fields and the set of
methods that manipulate those fields and provide services to clients.

The process of analyzing and designing a system from an object-oriented point of view
is called

With , new classes of objects are derived by absorbing characteristics of existing
classes, then adding unique characteristics of their own.

Answers to Self-Review Exercises 33

e) is a graphical language that allows people who design software systems to use
an industry-standard notation to represent them.

f) The size, shape, color and weight of an object are considered of the object’s
class.

Answers to Self-Review Exercises

1.1 a) Apple. b) IBM Personal Computer. ¢) programs. d) input unit, output unit, memory
unit, central processing unit, arithmetic and logic unit, secondary storage unit. e) machine lan-
guages, assembly languages, high-level languages. f) compilers. g) Android. h) Release candidate.
i) accelerometer.

1.2 a) java.b) javac. ¢) .java. d) .class.) bytecodes.

1.3 a) information hiding. b) classes. c) object-oriented analysis and design (OOAD).
d) inheritance.) The Unified Modeling Language (UML). f) attributes.

Exercises

1.4 Fill in the blanks in each of the following statements:
a) The logical unit of the computer that receives information from outside the computer
for use by the computer is the .
b) The process of instructing the computer to solve a problem is called

¢ _______isa type of computer language that uses English-like abbreviations for ma-
chine-language instructions.

d) is a logical unit of the computer that sends information which has already
been processed by the computer to various devices so that it may be used outside the
computer.

e) and are logical units of the computer that retain information.

f) is a logical unit of the computer that performs calculations.

g) is a logical unit of the computer that makes logical decisions.

h) languages are most convenient to the programmer for writing programs
quickly and easily.

i) The only language a computer can directly understand is that computer’s

i) is a logical unit of the computer that coordinates the activities of all the other
logical units.

1.5 Fill in the blanks in each of the following statements:
a) is now used to develop large-scale enterprise applications, to enhance the

functionality of web servers, to provide applications for consumer devices and for many
other purposes.

b) initially became widely known as the development language of the Unix op-
erating system.

¢) The Web 2.0 company is the fastest growing company ever.

d) The programming language was developed by Bjarne Stroustrup in the early
1980s at Bell Laboratories.

1.6 Fill in the blanks in each of the following statements:
a) Java programs normally go through five phases—
and

b) A(n) provides many tools that support the software development process,
such as editors for writing and editing programs, debuggers for locating logic errors in
programs, and many other features.

34 Chapter | Introduction to Computers and Java

c¢) The command java invokes the , which executes Java programs.

d) A(n) is a software application that simulates a computer, but hides the under-
lying operating system and hardware from the programs that interact with it.

e) The takes the .class files containing the program’s bytecodes and transfers
them to primary memory.

f) The examines bytecodes to ensure that they’re valid.

1.7 Explain the two compilation phases of Java programs.

1.8 You're probably wearing on your wrist one of the world’s most common types of objects—
a watch. Discuss how each of the following terms and concepts applies to the notion of a watch:
object, attributes, behaviors, class, inheritance (consider, for example, an alarm clock), abstraction,
modeling, messages, encapsulation, interface and information hiding.

Making a Difference

Throughout the book we've included Making a Difference exercises in which you'll be asked to
work on problems that really matter to individuals, communities, countries and the world. For
more information about worldwide organizations working to make a difference, and for related
programming project ideas, visit our Making a Difference Resource Center at www.deitel.com/
makingadifference.

1.9 (1est Drive: Carbon Footprint Calculator) Some scientists believe that carbon emissions,
especially from the burning of fossil fuels, contribute significantly to global warming and that this
can be combatted if individuals take steps to limit their use of carbon-based fuels. Organizations and
individuals are increasingly concerned about their “carbon footprints.” Websites such as TerraPass

www. terrapass.com/carbon-footprint-calculator/

and Carbon Footprint

www . carbonfootprint.com/calculator.aspx

provide carbon footprint calculators. Test-drive these calculators to determine your carbon foot-
print. Exercises in later chapters will ask you to program your own carbon footprint calculator. To
prepare for this, research the formulas for calculating carbon footprints.

1.10 (Tést Drive: Body Mass Index Calculator) By recent estimates, two-thirds of the people in
the United States are overweight and about half of those are obese. This causes significant increases
in illnesses such as diabetes and heart disease. To determine whether a person is overweight or obese,
you can use a measure called the body mass index (BMI). The United States Department of Health
and Human Services provides a BMI calculator at waw.nh1bisupport.com/bmi/. Use it to calculate
your own BMI. An exercise in Chapter 2 will ask you to program your own BMI calculator. To pre-
pare for this, research the formulas for calculating BMI.

1.1l (Attributes of Hybrid Vehicles) In this chapter you learned the basics of classes. Now you’ll
begin “fleshing out” aspects of a class called “Hybrid Vehicle.” Hybrid vehicles are becoming increas-
ingly popular, because they often get much better mileage than purely gasoline-powered vehicles.
Browse the web and study the features of four or five of today’s popular hybrid cars, then list as many
of their hybrid-related attributes as you can. For example, common attributes include city-miles-per-
gallon and highway-miles-per-gallon. Also list the attributes of the batteries (type, weight, etc.).

1.12 (Gender Neutrality) Many people want to eliminate sexism in all forms of communication.
You've been asked to create a program that can process a paragraph of text and replace gender-spe-
cific words with gender-neutral ones. Assuming that you've been given a list of gender-specific
words and their gender-neutral replacements (e.g., replace “wife” by “spouse,” “man” by “person,”
“daughter” by “child” and so on), explain the procedure you'd use to read through a paragraph of
text and manually perform these replacements. How might your procedure generate a strange term

www.deitel.com/makingadifference
www.deitel.com/makingadifference
www.terrapass.com/carbon-footprint-calculator/
www.carbonfootprint.com/calculator.aspx
www.nhlbisupport.com/bmi/

Making a Difference Resources 35

like “woperchild,” which is actually listed in the Urban Dictionary (www.urbandictionary.com)? In
Chapter 4, you'll learn that a more formal term for “procedure” is “algorithm,” and that an algo-
rithm specifies the steps to be performed and the order in which to perform them.

1.13 (Privacy) Some online email services save all email correspondence for some period of time.
Suppose a disgruntled employee of one of these online email services were to post all of the email
correspondences for millions of people, including yours, on the Internet. Discuss the issues.

1.14 (Programmer Responsibility and Liability) As a programmer in industry, you may develop
software that could affect people’s health or even their lives. Suppose a software bug in one of your
programs were to cause a cancer patient to receive an excessive dose during radiation therapy and
that the person is either severely injured or dies. Discuss the issues.

1.15 (2010 “Flash Crash”) An example of the consequences of our excessive dependency on
computers was the so-called “flash crash” which occurred on May 6, 2010, when the U.S. stock mar-
ket fell precipitously in a matter of minutes, wiping out trillions of dollars of investments, and then
recovered within minutes. Use the Internet to investigate the causes of this crash and discuss the is-
sues it raises.

Making a Difference Resources

The Microsoft Image Cup is a global competition in which students use technology to try to solve
some of the world’s most difficult problems, such as environmental sustainability, ending hunger,
emergency response, literacy, combating HIV/AIDS and more. Visit www.imaginecup.com/about
for more information about the competition and to learn about the projects developed by previous
winners. You can also find several project ideas submitted by worldwide charitable organizations at
www. imaginecup.com/students/imagine-cup-solve-this. For additional ideas for programming
projects that can make a difference, search the web for “making a difference” and visit the following
websites:

www.un.org/millenniumgoals

The United Nations Millennium Project seeks solutions to major worldwide issues such as environ-
mental sustainability, gender equality, child and maternal health, universal education and more.
www.ibm.com/smarterplanet/

The IBM® Smarter Planet website discusses how IBM is using technology to solve issues related to
business, cloud computing, education, sustainability and more.
www.gatesfoundation.org/Pages/home.aspx

The Bill and Melinda Gates Foundation provides grants to organizations that work to alleviate hun-
ger, poverty and disease in developing countries. In the United States, the foundation focusses on
improving public education, particularly for people with few resources.

www.nethope.org/

NetHope is a collaboration of humanitarian organizations worldwide working to solve technology
problems such as connectivity, emergency response and more.

www. rainforestfoundation.org/home

The Rainforest Foundation works to preserve rainforests and to protect the rights of the indigenous
people who call the rainforests home. The site includes a list of things you can do to help.
www.undp.org/

The United Nations Development Programme (UNDP) seeks solutions to global challenges such
as crisis prevention and recovery, energy and the environment, democratic governance and more.
www.unido.org

The United Nations Industrial Development Organization (UNIDO) seeks to reduce poverty, give
developing countries the opportunity to participate in global trade, and promote energy efficiency
and sustainability.

www.urbandictionary.com
www.imaginecup.com/about
www.imaginecup.com/students/imagine-cup-solve-this
www.un.org/millenniumgoals
www.ibm.com/smarterplanet/
www.gatesfoundation.org/Pages/home.aspx
www.nethope.org/
www.rainforestfoundation.org/home
www.undp.org/
www.unido.org

36 Chapter | Introduction to Computers and Java

www.usaid.gov/

USAID promotes global democracy, health, economic growth, conflict prevention, humanitarian
aid and more.

www . toyota.com/ideas-for-good/

Toyota’s Ideas for Good website describes several Toyota technologies that are making a difference—
including their Advanced Parking Guidance System, Hybrid Synergy Drive®, Solar Powered Venti-
lation System, T.H.U.M.S. (Total Human Model for Safety) and Touch Tracer Display. You can par-
ticipate in the Ideas for Good challenge by submitting a short essay or video describing how these
technologies can be used for other good purposes.

www.usaid.gov/
www.toyota.com/ideas-for-good/

Introduction to Java
Applications

What's in a name?

That which we call a rose
By any other name would
smell as sweet.

—William Shakespeare

When faced with a decision,

I always ask, “What would be
the most fun?”

—Peggy Walker

The chief merit of language
is clearness.
—Galen

One person can make a
difference and every person
should try.

—TJohn F. Kennedy

Objectives
In this chapter you'll learn:

= To write simple Java
applications.

= To use input and output
statements.

= Java’s primitive types.
= Basic memory concepts.
= To use arithmetic operators.

m The precedence of arithmetic
operators.

m To write decision-making
statements.

m To use relational and equality
operators.

/ Qutline

38 Chapter 2 Introduction to Java Applications

2.1 Introduction 2.6 Memory Concepts
2.2 Your First Program in Java: Printing a 2.7 Arithmetic
Line of Text 2.8 Decision Making: Equality and
2.3 Modifying Your First Java Program Relational Operators
2.4 Displaying Text with printf 2.9 Wrap-Up

2.5 Another Application: Adding Integers

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

2.1 Introduction

This chapter introduces Java application programming. We begin with examples of pro-
grams that display messages on the screen. We then present a program that obtains two
numbers from a user, calculates their sum and displays the result. You'll learn how to in-
struct the computer to perform arithmetic calculations and save their results for later use.
The last example demonstrates how to make decisions. The application compares num-
bers, then displays messages that show the comparison results.

This chapter uses tools from the JDK to compile and run programs. We’ve also posted
Dive Into® videos at waw. deitel. com/books/jhtp9/ to help you get started with the pop-
ular Eclipse and NetBeans integrated development environments.

2.2 Your First Program in Java: Printing a Line of Text

A Java application is a computer program that executes when you use the java command
to launch the Java Virtual Machine (JVM). Later in this section we’ll discuss how to com-
pile and run a Java application. First we consider a simple application that displays a line of
text. Figure 2.1 shows the program followed by a box that displays its output. The program
includes line numbers. We've added these for instructional purposes—they’re 7oz part of a
Java program. This example illustrates several important Java features. We'll see that line 9
does the real work—displaying the phrase Welcome to Java Programming! on the screen.

// Fig. 2.1: Welcomel.java
// Text-printing program.

public class Welcomel
{
// main method begins execution of Java application
public static void main(String[] args)
{
System.out.println("Welcome to Java Programming!");
} // end method main
} // end class Welcomel

-0 VWO NONUE WN=

Welcome to Java Programming!

Fig. 2.1 | Text-printing program.

www.deitel.com/books/jhtp9/

2.2 Your First Program in Java: Printing a Line of Text 39

Commenting Your Programs
We insert comments to document programs and improve their readability. The Java com-
piler ignores comments, so they do 7oz cause the computer to perform any action when
the program is run.

By convention, we begin every program with a comment indicating the figure number
and file name. The comment in line 1

// Fig. 2.1: Welcomel.java

begins with //, indicating that it is an end-of-line comment—it terminates at the end of
the line on which the // appears. An end-of-line comment need not begin a line; it also
can begin in the middle of a line and continue until the end (as in lines 10 and 11). Line 2

// Text-printing program.

is a comment that describes the purpose of the program.
Java also has traditional comments, which can be spread over several lines as in

/* This is a traditional comment. It
can be split over multiple Tines */

These begin and end with delimiters, /* and */. The compiler ignores all text between the
delimiters. Java incorporated traditional comments and end-of-line comments from the C
and C++ programming languages, respectively. In this book, we use only // comments.

Java provides comments of a third type, Javadoc comments. These are delimited by
/¥* and */. The compiler ignores all text between the delimiters. Javadoc comments
enable you to embed program documentation directly in your programs. Such comments
are the preferred Java documenting format in industry. The javadoc utility program (part
of the Java SE Development Kit) reads Javadoc comments and uses them to prepare your
program’s documentation in HTML format. We demonstrate Javadoc comments and the
javadoc utility in Appendix M, Creating Documentation with javadoc.

~ Common Programming Error 2.1
%‘ Forgetting one of the delimiters of a traditional or Javadoc comment is a syntax error. A syn-

tax error occurs when the compiler encounters code that violates Java’s language rules (i.e.,
its syntax). These rules are similar to a natural language’s grammar rules specifying sentence
structure. Syntax errors are also called compiler errors, compile-time errors or compilation
errors, because the compiler detects them during the compilation phase. The compiler re-
sponds by issuing an error message and preventing your program from compiling.

~ Good Programming Practice 2.1
Some organizations require that every program begin with a comment that states the pur-
pose of the program and the author, date and time when the program was last modified.

Using Blank Lines
Line 3 is a blank line. Blank lines, space characters and tabs make programs easier to read.
Together, they’re known as white space (or whitespace). The compiler ignores white space.

14 Good Programming Practice 2.2
Use blank lines and spaces to enhance program readability.

40 Chapter 2 Introduction to Java Applications

Declaring a Class
Line 4

public class Welcomel

begins a class declaration for class Welcomel. Every Java program consists of at least one
class that you (the programmer) define. The class keyword introduces a class declaration
and is immediately followed by the class name (Welcomel). Keywords (sometimes called
reserved words) are reserved for use by Java and are always spelled with all lowercase let-
ters. The complete list of keywords is shown in Appendix C.

Class Names and Identifiers
By convention, class names begin with a capital letter and capitalize the first letter of each
word they include (e.g., SampTeClassName). A class name is an identifier—a series of char-
acters consisting of letters, digits, underscores (_) and dollar signs ($) that does not begin
with a digit and does not contain spaces. Some valid identifiers are Welcomel, $value,
_value, m_inputFieldl and button7. The name 7button is not a valid identifier because
it begins with a digit, and the name input field is not a valid identifier because it con-
tains a space. Normally, an identifier that does not begin with a capital letter is not a class
name. Java is case sensitive—uppercase and lowercase letters are distinct—so value and
Value are different (but both valid) identifiers.

In Chapters 27, every class we define begins with the public keyword. For now, we
simply require this keyword. For our application, the file name is Welcomel.java. You'll
learn more about pub1ic and non-pubTic classes in Chapter 8.

J ~ Common Programming Error 2.2
%" A public class must be placed in a file that has the same name as the class (in terms of

both spelling and capitalization) plus the . java extension; otherwise, a compilation error
occurs. For exzzmple, public class Welcome must be platm’ na ﬁle named Welcome. java.

A left brace (as in line 5), {, begins the body of every class declaration. A corre-
sponding right brace (at line 11), }, must end each class declaration. Lines 6-10 are
indented.

Error-Prevention Tip 2.1

When you type an opening left brace, {, immediately type the closing right brace, }, then
reposition the cursor between the braces and indent to begin typing the body. This practice
helps prevent errors due to missing braces. Many IDEs insert the braces for you.

~ Common Programming Error 2.3
1It’s a syntax error if braces do not occur in matching pairs.

, Good Programming Practice 2.3

Indent the entire body of each class declaration one “level” between the left brace and the
right brace that delimit the body of the class. We recommend using three spaces to form a
level of indent. This format emphasizes the class declaration’s structure and makes it easier
to read.

2.2 Your First Program in Java: Printing a Line of Text 41

s Good Programming Practice 2.4

’ Many IDEs insert indentation for you in all the right places. The Tab key may also be used
to indent code, but tab stops vary among text editors. Most IDE;s allow you to configure tabs
such that a specified number of spaces is inserted each time you press the Tab key.

Declaring a Method
Line 6

// main method begins execution of Java application
is an end-of-line comment indicating the purpose of lines 710 of the program. Line 7
public static void main(String[] args)

is the starting point of every Java application. The parentheses after the identifier main in-
dicate that it’s a program building block called a method. Java class declarations normally
contain one or more methods. For a Java application, one of the methods must be called
main and must be defined as shown in line 7; otherwise, the Java Virtual Machine (JVM)
will not execute the application. Methods perform tasks and can return information when
they complete their tasks. Keyword void indicates that this method will 707 return any in-
formation. Later, we'll see how a method can return information. For now, simply mimic
main’s first line in your Java applications. In line 7, the String[] args in parentheses is a
required part of the method main’s declaration—we discuss this in Chapter 7.

The left brace in line 8 begins the body of the method declaration. A corresponding
right brace must end it (line 10). Line 9 in the method body is indented between the braces.

Good Programming Practice 2.5

" Indent the entire body of each method declaration one “level” between the braces that de-
fine the body of the method. This makes the structure of the method stand out and makes
the method declaration easier to read.

Performing Output with System.out.printin
Line 9

System.out.printin("Welcome to Java Programming!");

instructs the computer to perform an action—namely, to print the string of characters
contained between the double quotation marks (but not the quotation marks themselves).
A string is sometimes called a character string or a string literal. White-space characters
in strings are zot ignored by the compiler. Strings cannot span multiple lines of code, but
as you'll see later, this does not restrict you from using long strings in your code.

The System.out object is known as the standard output object. It allows a Java appli-
cations to display information in the command window from which it executes. In recent
versions of Microsoft Windows, the command window is the Command Prompt. In
UNIX/Linux/Mac OS X, the command window is called a terminal window or a shell.
Many programmers call it simply the command line.

Method System.out.println displays (or prints) a line of text in the command
window. The string in the parentheses in line 9 is the argument to the method. When
System.out.printin completes its task, it positions the output cursor (the location where
the next character will be displayed) at the beginning of the next line in the command

42 Chapter 2 Introduction to Java Applications

window. This is similar to what happens when you press the Enter key while typing in a
text editor—the cursor appears at the beginning of the next line in the document.

The entire line 9, including System.out.println, the argument "Welcome to Java
Programming!" in the parentheses and the semicolon (;), is called a statement. A method
typically contains one or more statements that perform its task. Most statements end with
a semicolon. When the statement in line 9 executes, it displays Welcome to Java Program-
ming! in the command window.

Error-Prevention Tip 2.2

When learning how to program, sometimes it’s helpful to “break” a working program so
you can familiarize yourself with the compiler’s syntax-error messages. These messages do
not always state the exact problem in the code. When you encounter an error message, it
will give you an idea of what caused the error. [Try removing a semicolon or brace from
the program of Fig. 2.1, then recompile the program to see the error messages generated
by the omission.]

Error-Prevention Tip 2.3

When the compiler reports a syntax error, it may not be on the line that the error message
indicates. First, check the line for which the error was reported. If you don't find an error
on that line,, check several preceding lines.

Using End-of-Line Comments on Right Braces for Readability
We include an end-of-line comment after a closing brace that ends a method declaration
and after a closing brace that ends a class declaration. For example, line 10

} // end method main
indicates the closing brace of method main, and line 11
} // end class Welcomel

indicates the closing brace of class Welcomel. Each comment indicates the method or class
that the right brace terminates.

Compiling and Executing Your First Java Application
We're now ready to compile and execute our program. We assume you’re using the Java
Development Kit's command-line tools, not an IDE. Our Java Resource Centers at
www.deitel.com/ResourceCenters.html provide links to tutorials that help you get start-
ed with several popular Java development tools, including NetBeans™, Eclipse™ and
others. We've also posted NetBeans and Eclipse videos at www. deitel.com/books/jhtp9/
to help you get started using these popular IDEs.

To prepare to compile the program, open a command window and change to the
directory where the program is stored. Many operating systems use the command cd to
change directories. On Windows, for example,

cd c:\examples\ch02\fig02_01

changes to the fig02_01 directory. On UNIX/Linux/Max OS X, the command
cd ~/examples/ch02/fig02_01

changes to the fig02_01 directory.

www.deitel.com/ResourceCenters.html
www.deitel.com/books/jhtp9/

2.2 Your First Program in Java: Printing a Line of Text 43

To compile the program, type

javac Welcomel.java

If the program contains no syntax errors, this command creates a new file called
Welcomel.class (known as the class file for Welcomel) containing the platform-indepen-
dent Java bytecodes that represent our application. When we use the java command to
execute the application on a given platform, the JVM will translate these bytecodes into
instructions that are understood by the underlying operating system and hardware.

Error-Prevention Tip 2.4

When attempting to compile a program, if you receive a message such as “bad command or
filename,” “javac: command not found”or “'javac' is not recognized as an inter-
nal or external command, operable program or batch file,” then your]ﬂwz soﬁware
installation was not fompleted properl)/. [f you re using the DK, this indicates that the
system’s PATH environment variable was not set properly. Please carefully review the in-
stallation instructions in the Before You Begin section of this book. On some systems, after
correcting the PATH, you may need to reboot your computer or open a new command win-
dow for these settings to take effect.

Error-Prevention Tip 2.5

Each syntax-error message contains the file name and line number where the error oc-
curred. For example, Welcomel.java:6 indicates that an error occurred at line 6 in
Welcomel.java. The rest of the message provides information about the syntax error.

Error-Prevention Tip 2.6

The compiler error message “class Welcomel is public, should be declared ina file
named Welcomel.java” indicates that the file name does not match the name of the pub-
Tic class in the file or that you typed the class name incorrectly when compiling the class.

Figure 2.2 shows the program of Fig. 2.1 executing in a Microsoft® Windows® 7

Command Prompt window. To execute the program, type java Welcomel. This command
launches the JVM, which loads the .c1ass file for class Welcomel. The command omits
the .class file-name extension; otherwise, the JVM will not execute the program. The
JVM calls method main. Next, the statement at line 9 of main displays "Welcome to Java
Programming!" [Note: Many environments show command prompts with black back-
grounds and white text. We adjusted these settings in our environment to make our screen
captures more readable.]

Welcome to Java Programmingl

B Select Command Prompt == ch ===)

C:\examples\chB2\figh2_01>javac Welcomel.java - You type this
command to execute

C:\examples\chB2\figh2_01>java Welcomel the application

C:\examples\chB2\figh2_ 01> -

The program outputs to the screen
Welcome to Java Programming!

Fig. 2.2 | Executing Welcomel from the Command Prompt.

44 Chapter 2 Introduction to Java Applications

N Error-Prevention Tip 2.7
When attempting to run a_Java program, if you receive a message such as “Exception in
'& thread "main" java.lang.NoClassDefFoundError: Welcomel, ”your CLASSPATH envi-
ronment variable has not been set properly. Please carefully review the installation in-
structions in the Before You Begin section of this book. On some systems, you may need to
reboot your computer or open a new command window after configuring the CLASSPATH.

2.3 Modifying Your First Java Program

In this section, we modify the example in Fig. 2.1 to print text on one line by using mul-
tiple statements and to print text on several lines by using a single statement.

Displaying a Single Line of Text with Multiple Statements

Welcome to Java Programming! can be displayed several ways. Class Welcome2, shown in
Fig. 2.3, uses two statements (lines 9—10) to produce the output shown in Fig. 2.1. [Noze:
From this point forward, we highlight the new and key features in each code listing, as
we’ve done for lines 9-10.]

1 // Fig. 2.3: Welcome2.java

2 // Printing a line of text with multiple statements.
3

4 public class Welcome?2

5 {

6 // main method begins execution of Java application
7 public static void main(String[] args)

8 {

9 System.out.print("Welcome to ");

10 System.out.println("Java Programming!");

11 } // end method main

12 } // end class Welcome2

Welcome to Java Programming!

Fig. 2.3 | Printing a line of text with multiple statements.

The program is similar to Fig. 2.1, so we discuss only the changes here. Line 2
// Printing a line of text with multiple statements.

is an end-of-line comment stating the purpose of the program. Line 4 begins the We1come2
class declaration. Lines 9-10 of method main

System.out.print("Welcome to ");
System.out.println("Java Programming!"™);

display one line of text. The first statement uses System.out’s method print to display a
string. Each print or print1n statement resumes displaying characters from where the last
print or printin statement stopped displaying characters. Unlike printin, after display-
ing its argument, print does 7ot position the output cursor at the beginning of the next
line in the command window—the next character the program displays will appear imme-
diately afier the last character that print displays. Thus, line 10 positions the first character

2.3 Modifying Your First Java Program 45

in its argument (the letter “J”) immediately after the last character that line 9 displays (the
space character before the string’s closing double-quote character).

Displaying Multiple Lines of Text with a Single Statement

A single statement can display multiple lines by using newline characters, which indicate
to System.out’s print and printin methods when to position the output cursor at the
beginning of the next line in the command window. Like blank lines, space characters and
tab characters, newline characters are white-space characters. The program in Fig. 2.4 out-
puts four lines of text, using newline characters to determine when to begin each new line.
Most of the program is identical to those in Fig. 2.1 and Fig. 2.3.

1 // Fig. 2.4: Welcome3.java

2 // Printing multiple lines of text with a single statement.
3

4 public class Welcome3

5 {

6 // main method begins execution of Java application

7 public static void main(String[] args)

8 {

9 System.out.println("Welcome\nto\nJava\nProgramming!");
10 } // end method main

Il } // end class Welcome3

Welcome

to

Java

Programming!

Fig. 2.4 | Printing multiple lines of text with a single statement.

Line 2
// Printing multiple lines of text with a single statement.

is a comment stating the program’s purpose. Line 4 begins the Welcome3 class declaration.
Line 9

System.out.printin("Welcome\nto\nJava\nProgramming!");

displays four separate lines of text in the command window. Normally, the characters in a
string are displayed exactly as they appear in the double quotes. Note, however, that the
paired characters \ and n (repeated three times in the statement) do not appear on the
screen. The backslash (\) is an escape character. which has special meaning to Sys-
tem.out’s print and print1n methods. When a backslash appears in a string, Java com-
bines it with the next character to form an escape sequence. The escape sequence \n
represents the newline character. When a newline character appears in a string being out-
put with System.out, the newline character causes the screen’s output cursor to move to
the beginning of the next line in the command window.

Figure 2.5 lists several common escape sequences and describes how they affect the
display of characters in the command window. For the complete list of escape sequences,
visit java.sun.com/docs/books/j1s/third_edition/html/lexical.htm1#3.10.6.

46 Chapter 2 Introduction to Java Applications

Escape

sequence Description

\n Newline. Position the screen cursor at the beginning of the next line.
\t Horizontal tab. Move the screen cursor to the next tab stop.
\r Carriage return. Position the screen cursor at the beginning of the current

line—do 70t advance to the next line. Any characters output after the car-
riage return overwrite the characters previously output on that line.
\\ Backslash. Used to print a backslash character.
\" Double quote. Used to print a double-quote character. For example,
System.out.printin("\"in quotes\"");
displays "in quotes".

Fig. 2.5 | Some common escape sequences.

2.4 Displaying Text with printf
The System.out.printf method (f means “formatted”) displays formatted data.
Figure 2.6 uses this method to output the strings "Welcome to" and "Java Program-
ming!". Lines 9-10
System.out.printf("%s\n%s\n",
"Welcome to", "Java Programming!");
call method System.out.printf to display the program’s output. The method call speci-

fies three arguments. When a method requires multiple arguments, they’re placed in a
comma-separated list.

e Good Programming Practice 2.6

11 Place a space after each comma (,) in an argument list to make programs more readable.
P

1 // Fig. 2.6: Welcome4.java

2 // Displaying multiple lines with method System.out.printf.
3

4 public class Welcome4

5 {

6 // main method begins execution of Java application
7 public static void main(String[] args)

8 {

9 System.out.printf("%s\n%s\n",

10 "Welcome to", "Java Programming!");

11 } // end method main

12 } // end class Welcome4

Welcome to
Java Programming!

Fig. 2.6 | Displaying multiple lines with method System.out.printf.

2.5 Another Application: Adding Integers 47

Lines 9-10 represent only one statement. Java allows large statements to be split over
many lines. We indent line 10 to indicate that it’s a continuation of line 9.

&5 Common Programming Error 2.4
E‘;‘ - Splitting a statement in the middle of an identifier or a string is a syntax error.

Method printf’s first argument is a format string that may consist of fixed text and
format specifiers. Fixed text is output by printf just as it would be by print or printin.
Each format specifier is a placcholder for a value and specifies the type of data to output.
Format specifiers also may include optional formatting information.

Format specifiers begin with a percent sign (%) followed by a character that represents
the data type. For example, the format specifier %s is a placeholder for a string. The format
string in line 9 specifies that printf should output two strings, each followed by a newline
character. At the first format specifier’s position, printf substitutes the value of the first
argument after the formart string. At each subsequent format specifier’s position, printf
substitutes the value of the next argument. So this example substitutes "Welcome to" for
the first %s and "Java Programming!" for the second %s. The output shows that two lines
of text are displayed.

We introduce various formatting features as they’re needed in our examples.
Appendix G presents the details of formatting output with printf.

2.5 Another Application: Adding Integers

Our next application reads (or inputs) two integers (whole numbers, such as —22, 7, 0 and
1024) typed by a user at the keyboard, computes their sum and displays it. This program
must keep track of the numbers supplied by the user for the calculation later in the pro-
gram. Programs remember numbers and other data in the computer’s memory and access
that data through program elements called variables. The program of Fig. 2.7 demon-
strates these concepts. In the sample output, we use bold text to identify the user’s input
(i.e., 45 and 72).

// Fig. 2.7: Addition.java
// Addition program that displays the sum of two numbers.
import java.util.Scanner; // program uses class Scanner

{
// main method begins execution of Java application

1

2

3

4

5 public class Addition

6

7

8 public static void main(String[] args)

9 {

10 // create a Scanner to obtain input from the command window
11 Scanner input = new Scanner(System.in);

12

13 int numberl; // first number to add

14 int number2; // second number to add

15 int sum; // sum of numberl and number?2

16

Fig. 2.7 | Addition program that displays the sum of two numbers. (Part | of 2.)

48 Chapter 2 Introduction to Java Applications

17 System.out.print("Enter first integer: "); // prompt

18 numberl = input.nextInt(); // read first number from user

19

20 System.out.print("Enter second integer: "); // prompt

21 number2 = input.nextInt(); // read second number from user

22

23 sum = numberl + number2; // add numbers, then store total in sum
24

25 System.out.printf("Sum is %d\n", sum); // display sum

26 } // end method main

27 } // end class Addition

Enter first integer: 45
Enter second integer: 72
Sum is 117

Fig. 2.7 | Addition program that displays the sum of two numbers. (Part 2 of 2.)

Import Declarations
Lines 1-2

// Fig. 2.7: Addition.java
// Addition program that displays the sum of two numbers.

state the figure number, file name and purpose of the program.

A great strength of Java is its rich set of predefined classes that you can reuse rather
than “reinventing the wheel.” These classes are grouped into packages—named groups of
related classes—and are collectively referred to as the Java class library, or the Java Appli-
cation Programming Interface (Java API). Line 3

import java.util.Scanner; // program uses class Scanner

is an import declaration that helps the compiler locate a class that’s used in this program.
It indicates that this example uses Java’s predefined Scanner class (discussed shortly) from
package java.util.

" All import declarations must appear before the first class declaration in the file. Placing
an import declaration inside or after a class declaration is a syntax error.

% Common Programming Error 2.5

V. Error-Prevention Tip 2.8
t “3 Forgetting ro include an import declaration for a class used in your program typically re-
4> sults in a compilation error containing a message such as “cannot find symbol.” When
this occurs, check that you prow'dm’ the proper import declarations and that the names
in them are correct, including proper capitalization.

Declaring Class Addition
Line 5

public class Addition

2.5 Another Application: Adding Integers 49

begins the declaration of class Addition. The file name for this public class must be
Addition.java. Remember that the body of each class declaration starts with an opening
left brace (line 6) and ends with a closing right brace (line 27).

The application begins execution with the main method (lines 8-26). The left brace
(line 9) marks the beginning of method main’s body, and the corresponding right brace
(line 26) marks its end. Method main is indented one level in the body of class Addition,
and the code in the body of main is indented another level for readability.

Declaring and Creating a Scanner to Obtain User Input from the Keyboard

A variable is a location in the computer’s memory where a value can be stored for use later
in a program. All Java variables must be declared with a name and a type before they can
be used. A variable’s name enables the program to access the value of the variable in mem-
ory. A variable’s name can be any valid identifier. A variable’s type specifies what kind of
information is stored at that location in memory. Like other statements, declaration state-
ments end with a semicolon ().

Line 11

Scanner input = new Scanner(System.in);

is a variable declaration statement that specifies the name (input) and type (Scanner) of
a variable that’s used in this program. A Scanner enables a program to read data (e.g.,
numbers and strings) for use in a program. The data can come from many sources, such
as the user at the keyboard or a file on disk. Before using a Scanner, you must create it and
specify the source of the data.

The = in line 11 indicates that Scanner variable input should be initialized (i.e., pre-
pared for use in the program) in its declaration with the result of the expression to the right
of the equals sign—new Scanner(System.in). This expression uses the new keyword to
create a Scanner object that reads characters typed by the user at the keyboard. The standard
input object, System. in, enables applications to read bytes of information typed by the user.
The Scanner translates these bytes into types (like ints) that can be used in a program.

Declaring Variables to Store Integers
The variable declaration statements in lines 13—15

int numberl; // first number to add
int number2; // second number to add
int sum; // sum of numberl and number?2

declare that variables numberl, number2 and sum hold data of type int—they can hold in-
teger values (whole numbers such as 72, -1127 and 0). These variables are not yet initial-
ized. The range of values for an int is —2,147,483,648 to +2,147,483,647. [Note: Actual
int values may not contain commas.]

Other types of data include float and double, for holding real numbers, and char, for
holding character data. Real numbers contain decimal points, such as 3.4, 0.0 and -11.19.
Variables of type char represent individual characters, such as an uppercase letter (e.g., A), a
digit (e.g., 7), a special character (e.g., * or %) or an escape sequence (e.g., the newline char-
acter, \n). The types int, float, double and char are called primitive types.Primitive-type
names are keywords and must appear in all lowercase letters. Appendix D summarizes the
characteristics of the eight primitive types (boolean, byte, char, short, int, Tong, float
and double).

50 Chapter 2 Introduction to Java Applications

Several variables of the same type may be declared in a single declaration with the vari-
able names separated by commas (i.e., a comma-separated list of variable names). For
example, lines 13—15 can also be written as:

int numberl, // first number to add
number2, // second number to add
sum; // sum of numberl and number2

s Good Programming Practice 2.7
Declare each variable on a separate line. This format allows a descriptive comment to be
inserted next to each declaration.

1 Good Programming Practice 2.8

Choosing meaningful variable names helps a program to be self-documenting (i.e., one
can understand the program simply by reading it rather than by reading manuals or view-
ing an excessive number of comments).

4, Good Programming Practice 2.9

By convention, variable-name z'dentz_'ﬁers begz'n with a lowercase letter, and every word in
the name after the first word begins with a capital letter. For example, variable-name
identifier £irstNumber starts its second word, Number, with a capital N.

Prompting the User for Input
Line 17

System.out.print("Enter first integer: "); // prompt

uses System.out.print to display the message "Enter first integer: ". This message is
called a prompt because it directs the user to take a specific action. We use method print
here rather than printin so that the user’s input appears on the same line as the prompt.
Recall from Section 2.2 that identifiers starting with capital letters typically represent class
names. So, System is a class. Class System is part of package java.lang. Notice that class
System is not imported with an import declaration at the beginning of the program.

y Software Engineering Observation 2.1

By default, package java.lang is imported in every Java program; thus, classes in
java. lang are the only ones in the Java API that do not require an import declaration.

Obtaining an int as Input from the User
Line 18

numberl = input.nextInt(); // read first number from user

uses Scanner object input’s nextInt method to obtain an integer from the user at the key-
board. At this point the program waits for the user to type the number and press the Enzer
key to submit the number to the program.

Our program assumes that the user enters a valid integer value. If not, a runtime logic
error will occur and the program will terminate. Chapter 11, Exception Handling: A
Deeper Look, discusses how to make your programs more robust by enabling them to
handle such errors. This is also known as making your program faulr tolerant.

2.5 Another Application: Adding Integers 51

In line 18, we place the result of the call to method nextInt (an int value) in variable
numberl by using the assignment operator, =. The statement is read as “numberl gets the
value of input.nextInt().” Operator = is called a binary operator, because it has two
operands—numberl and the result of the method call input.nextInt(). This statement
is called an assignment statement, because it assigns a value to a variable. Everything to the
right of the assignment operator, =, is always evaluated before the assignment is performed.

4, Good Programming Practice 2.10
Placing spaces on either side of a binary operator makes the program more readable.

Prompting for and Inputting a Second int
Line 20

System.out.print("Enter second integer: "); // prompt
prompts the user to input the second integer. Line 21
number2 = input.nextInt(); // read second number from user

reads the second integer and assigns it to variable number2.

Using Variables in a Calculation
Line 23

sum = numberl + number2; // add numbers then store total in sum

is an assignment statement that calculates the sum of the variables numberl and number2 then
assigns the result to variable sum by using the assignment operator, =. The statement is read
as “sum gess the value of numberl + number2.” In general, calculations are performed in as-
signment statements. When the program encounters the addition operation, it performs the
calculation using the values stored in the variables numberl and number2. In the preceding
statement, the addition operator is a binary operator—its tfwo operands are the variables
humberl and number2. Portions of statements that contain calculations are called expres-
sions. In fact, an expression is any portion of a statement that has a va/ue associated with it.
For example, the value of the expression numberl + number? is the sum of the numbers. Sim-
ilarly, the value of the expression input.nextInt() is the integer typed by the user.

Displaying the Result of the Calculation
After the calculation has been performed, line 25

System.out.printf("Sum is %d\n", sum); // display sum

uses method System.out.printf to display the sum. The format specifier %d is a place-
holder for an int value (in this case the value of sum)—the letter d stands for “decimal in-
teger.” The remaining characters in the format string are all fixed text. So, method printf
displays "Sumis ", followed by the value of sum (in the position of the %d format specifier)
and a newline.

Calculations can also be performed inside printf statements. We could have com-
bined the statements at lines 23 and 25 into the statement

System.out.printf("Sum is %d\n", (numberl + number2));

52 Chapter 2 Introduction to Java Applications

The parentheses around the expression numberl + number2 are not required—they’re in-
cluded to emphasize that the value of the entire expression is output in the position of the
%d format specifier.

Java API Documentation

For each new Java API class we use, we indicate the package in which it’s located. This
information helps you locate descriptions of each package and class in the Java API docu-
mentation. A web-based version of this documentation can be found at

download.oracle.com/javase/6/docs/api/
You can download it from
www.oracle.com/technetwork/java/javase/downToads/index.htm]l

Appendix E shows how to use this documentation.

2.6 Memory Concepts

Variable names such as number1, number2 and sum actually correspond to locations in the
computer’s memory. Every variable has a name, a type, a size (in bytes) and a value.
In the addition program of Fig. 2.7, when the following statement (line 18) executes:

numberl = input.nextInt(); // read first number from user

the number typed by the user is placed into a memory location corresponding to the name
numberl. Suppose that the user enters 45. The computer places that integer value into lo-
cation numberl (Fig. 2.8), replacing the previous value (if any) in that location. The pre-
vious value is lost.

numberl 45

Fig. 2.8 | Memory location showing the name and value of variable number1.

When the statement (line 21)
number2 = input.nextInt(); // read second number from user

executes, suppose that the user enters 72. The computer places that integer value into lo-
cation number2. The memory now appears as shown in Fig. 2.9.

numberl 45

number?2 72

Fig. 2.9 | Memory locations after storing values for number1 and number?2.

After the program of Fig. 2.7 obtains values for numberl and number2, it adds the
values and places the total into variable sum. The statement (line 23)

www.oracle.com/technetwork/java/javase/downloads/index.html

2.7 Arithmetic 53

sum = numberl + number2; // add numbers, then store total in sum

performs the addition, then replaces any previous value in sum. After sum has been calcu-
lated, memory appears as shown in Fig. 2.10. The values of numberl and number2 appear
exactly as they did before they were used in the calculation of sum. These values were used,
but not destroyed, as the computer performed the calculation. When a value is read from
a memory location, the process is nondestructive.

numberl 45
number?2 72
sum 117

Fig. 2.10 | Memory locations after storing the sum of numberl and number?2.

2.7 Arithmetic

Most programs perform arithmetic calculations. The arithmetic operators are summa-
rized in Fig. 2.11. Note the use of various special symbols not used in algebra. The asterisk
(*) indicates multiplication, and the percent sign (%) is the remainder operator, which
we'll discuss shortly. The arithmetic operators in Fig. 2.11 are binary operators, because
cach operates on rwo operands. For example, the expression f + 7 contains the binary op-
erator + and the two operands f and 7.

Addition + f+7 f+7
Subtraction - p-c p-c
Multiplication S bm b *m
Division / x/y or ;,-C or x+y X /Yy
Remainder % 7 mod s r%s

Fig. 2.11 | Arithmetic operators.

Integer division yields an integer quotient. For example, the expression 7 / 4 evaluates
to 1, and the expression 17 / 5 evaluates to 3. Any fractional part in integer division is
simply discarded (i.e., truncated)—no rounding occurs. Java provides the remainder oper-
ator, %, which yields the remainder after division. The expression x % y yields the remainder
after x is divided by y. Thus, 7 % 4 yields 3, and 17 % 5 yields 2. This operator is most com-
monly used with integer operands but can also be used with other arithmetic types. In this
chapter’s exercises and in later chapters, we consider several interesting applications of the
remainder operator, such as determining whether one number is a multiple of another.

54 Chapter 2 Introduction to Java Applications

Arithmetic Expressions in Straight-Line Form

Arithmetic expressions in Java must be written in straight-line form to facilitate entering
programs into the computer. Thus, expressions such as “a divided by b” must be written
as a / b, so that all constants, variables and operators appear in a straight line. The follow-
ing algebraic notation is generally not acceptable to compilers:

a

b

Parentheses for Grouping Subexpressions
Parentheses are used to group terms in Java expressions in the same manner as in algebraic
expressions. For example, to multiply a times the quantity b + ¢, we write

a* (b+c)
If an expression contains nested parentheses, such as
(Ca+b) *c)

the expression in the innermost set of parentheses (a + b in this case) is evaluated first.

Rules of Operator Precedence
Java applies the operators in arithmetic expressions in a precise sequence determined by the
rules of operator precedence, which are generally the same as those followed in algebra:

1. Multiplication, division and remainder operations are applied first. If an expres-
sion contains several such operations, they’re applied from left to right. Multipli-
cation, division and remainder operators have the same level of precedence.

2. Addition and subtraction operations are applied next. If an expression contains
several such operations, the operators are applied from left to right. Addition and
subtraction operators have the same level of precedence.

These rules enable Java to apply operators in the correct order.! When we say that
operators are applied from left to right, we're referring to their associativity. Some opera-
tors associate from right to left. Figure 2.12 summarizes these rules of operator precedence.
A complete precedence chart is included in Appendix A.

4 Multiplication Evaluated first. If there are several operators of this
/ Division type, they're evaluated from left to right.

% Remainder

+ Addition Evaluated next. If there are several operators of this
= Subtraction type, they’re evaluated from left to right.

= Assignment Evaluated last.

Fig. 2.12 | Precedence of arithmetic operators.

1. We use simple examples to explain the order of evaluation of expressions. Subtle issues occur in the
more complex expressions you'll encounter later in the book. For more information on order of eval-
uation, see Chapter 15 of The Java™ Language Specification (java.sun.com/docs/books/j1s/).

2.7 Arithmetic 55

Sample Algebraic and Java Expressions

Now let’s consider several expressions in light of the rules of operator precedence. Each
example lists an algebraic expression and its Java equivalent. The following is an example
of an arithmetic mean (average) of five terms:

a+b+c+d+e

5
Java: m=Ca+b+c+d+e)/5;

Algebra: m =

The parentheses are required because division has higher precedence than addition. The
entire quantity (a+b + ¢ +d +e) is to be divided by 5. If the parentheses are erroneously
omitted, we obtain a + b + ¢ + d + e / 5, which evaluates as

a+b+f+d+§

Here’s an example of the equation of a straight line:

Algebra: y=mx+b
Java: y =m?* x + b;

No parentheses are required. The multiplication operator is applied first because multipli-
cation has a higher precedence than addition. The assignment occurs last because it has a
lower precedence than multiplication or addition.

The following example contains remainder (%), multiplication, division, addition and
subtraction operations:

Algebra: z=pr%g + whx—y
Java: z = p *r % qg+ w / xX -Y;
6 1 2 4 3 5

The circled numbers under the statement indicate the order in which Java applies the op-
erators. The *, % and / operations are evaluated first in left-to-right order (i.e., they asso-
ciate from left to right), because they have higher precedence than + and -. The + and -
operations are evaluated next. These operations are also applied from left to right. The as-
signment (=) operaton is evaluated last.

Evaluation of a Second-Degree Polynomial
To develop a better understanding of the rules of operator precedence, consider the eval-
uation of an assignment expression that includes a second-degree polynomial ax? + bx + ¢:

& s

y = a * X * X + b * x + c;

6 1 2 4 3 5

The multiplication operations are evaluated first in left-to-right order (i.e., they associate
from left to right), because they have higher precedence than addition. (Java has no arith-
metic operator for exponentiation in Java, so x? is represented as x * x. Section 5.4 shows
an alternative for performing exponentiation.) The addition operations are evaluated next
from left to right. Suppose that a, b, c and x are initialized (given values) as follows: a = 2,
b =3, c =7and x = 5. Figure 2.13 illustrates the order in which the operators are applied.

56 Chapter 2 Introduction to Java Applications

Step . y=2%*5%*54+3*54+7; (Leftmost multiplication)
2 *54s 10

|

Step 2. y =10 *5+ 3 * 5 + 7; (Leftmost multiplication)
10 * 5 is 50
Step 3. y =50+ 3 %5+ 7; (Multiplication before addition)
3 %5 1ds 15

|

Step 4. y =50 + 15 + 7; (Leftmost addition)
50 + 15 1is 65

Step 5. y = 65 + 7; (Last addition)
65 + 7 is 72
Step 6. y =72 (Last operation—place 72 in'y)

Fig. 2.13 | Order in which a second-degree polynomial is evaluated.

You can use redundant parentheses (unnecessary parentheses) to make an expression
clearer. For example, the preceding statement might be parenthesized as follows:

y=(Ca*x*x)+ (b*x) +c;

2.8 Decision Making: Equality and Relational Operators

A condition is an expression that can be true or false. This section introduces Java’s if
selection statement, which allows a program to make a decision based on a condition’s
value. For example, the condition “grade is greater than or equal to 60” determines wheth-
er a student passed a test. If the condition in an if statement is true, the body of the if
statement executes. If the condition is false, the body does not execute. We'll see an exam-
ple shortly.

Conditions in if statements can be formed by using the equality operators (== and
1=) and relational operators (>, <, >= and <=) summarized in Fig. 2.14. Both equality oper-
ators have the same level of precedence, which is /ower than that of the relational operators.
The equality operators associate from left to right. The relational operators all have the
same level of precedence and also associate from left to right.

Figure 2.15 uses six if statements to compare two integers input by the user. If the
condition in any of these i f statements is true, the statement associated with that i f state-
ment executes; otherwise, the statement is skipped. We use a Scanner to input the integers
from the user and store them in variables numberl and number2. The program compares
the numbers and displays the results of the comparisons that are true.

2.8 Decision Making: Equality and Relational Operators 57

Standard algebraic Java equality Sample
equality or relational or relational Java Meaning of
operator operator condition Java condition
Equality operators
= == X ==Yy x is equal to y
* 1= X =y X is not equal to y
Relational operators
> X >y X is greater than y
< X <y X is less than y
> >= X >=y X is greater than or equal to y
< <= X <=y X is less than or equal to y

Fig. 2.14 | Equality and relational operators.

1 // Fig. 2.15: Comparison.java

2 // Compare integers using if statements, relational operators
3 // and equality operators.

4 import java.util.Scanner; // program uses class Scanner

5

6 public class Comparison

7 {

8 // main method begins execution of Java application

9 public static void main(String[] args)

10 {

11 // create Scanner to obtain input from command line

12 Scanner input = new Scanner(System.in);

13

14 int numberl; // first number to compare

15 int number2; // second number to compare

16

17 System.out.print("Enter first integer: "); // prompt
18 numberl = input.nextInt(); // read first number from user
19
20 System.out.print("Enter second integer: "); // prompt
21 number2 = input.nextInt(); // read second number from user
22
23 if (numberl == number2)
24 System.out.printf("%d == %d\n", numberl, number2);
25
26 if (numberl != number2)
27 System.out.printf("%d != %d\n", numberl, number2);
28
29 if (numberl < number2)
30 System.out.printf("%d < %d\n", numberl, number2);
31

Fig. 2.15 | Compare integers using if statements, relational operators and equality operators.
(Part | of 2.)

58 Chapter 2 Introduction to Java Applications

32 if (numberl > number2)

33 System.out.printf("%d > %d\n", numberl, number2);
34

35 if (numberl <= number2)

36 System.out.printf("%d <= %d\n", numberl, number2);
37

38 if (numberl >= number2)

39 System.out.printf("%d >= %d\n", numberl, number2);
40 } // end method main

41 } // end class Comparison

Enter first integer: 777
Enter second integer: 777

777 == 777
777 <= 777
777 >= 777

Enter first integer: 1000
Enter second integer: 2000

1000 !'= 2000
1000 < 2000
1000 <= 2000

Enter first integer: 2000
Enter second integer: 1000

2000 !'= 1000
2000 > 1000
2000 >= 1000

Fig. 2.15 | Compare integers using i f statements, relational operators and equality operators.
(Part 2 of 2.)

The declaration of class Comparison begins at line 6
public class Comparison
The class’s main method (lines 9-40) begins the execution of the program. Line 12
Scanner input = new Scanner(System.in);

declares Scanner variable input and assigns it a Scanner that inputs data from the stan-
dard input (i.e., the keyboard).
Lines 14-15
int numberl; // first number to compare
int number2; // second number to compare
declare the int variables used to store the values input from the user.
Lines 17-18
System.out.print("Enter first integer: "); // prompt
numberl = input.nextInt(); // read first number from user

prompt the user to enter the first integer and input the value, respectively. The input value
is stored in variable number1.

2.8 Decision Making: Equality and Relational Operators 59

Lines 20-21

System.out.print("Enter second integer: "); // prompt
number2 = input.nextInt(); // read second number from user

prompt the user to enter the second integer and input the value, respectively. The input
value is stored in variable number2.

Lines 23-24

if (numberl == number2)
System.out.printf("%d == %d\n", numberl, number2);

compare the values of numberl and number2 to determine whether they’re equal. An if
statement always begins with keyword if, followed by a condition in parentheses. An if
statement expects one statement in its body, but may contain multiple statements if
they’re enclosed in a set of braces ({}). The indentation of the body statement shown here
is not required, but it improves the program’s readability by emphasizing that the state-
ment in line 24 #s part of the 1f statement that begins at line 23. Line 24 executes only if
the numbers stored in variables numberl and number2 are equal (i.e., the condition is true).
The i f statements in lines 26-27, 29-30, 32-33, 35-36 and 38-39 compare numberl and
number2 using the operators !=, <, >, <= and >=, respectively. If the condition in one or
more of the if statements is true, the corresponding body statement executes.

Confusing the equality operator, ==, with the assignment operator, =, can cause a logic er-
ror or a syntax error. The equality operator should be read as “is equal to” and the assign-
ment operator as “gets” or “gets the value of.” To avoid confusion, some people read the
equality operator as “double equals” or “equals equals.”

% Common Programming Error 2.6

_ Good Programming Practice 2.11
Placing only one statement per line in a program enhances program readability.

There’s no semicolon (;) at the end of the first line of each i f statement. Such a semi-
colon would result in a logic error at execution time. For example,

if (numberl == number2); // logic error
System.out.printf("%d == %d\n", numberl, number2);

would actually be interpreted by Java as

if (numberl == number2)
; // empty statement

System.out.printf("%d == %d\n", numberl, number2);

where the semicolon on the line by itself—called the empty statement—is the statement
to execute if the condition in the i f statement is true. When the empty statement executes,
no task is performed. The program then continues with the output statement, which al-
ways executes, regardless of whether the condition is true or false, because the output state-
ment is not part of the if statement.

Placing a semicolon immediately after the right parenthesis of the condition in an if state-
ment is normally a logic error.

% Common Programming Error 2.7

60 Chapter 2 Introduction to Java Applications

Note the use of white space in Fig. 2.15. Recall that the compiler normally ignores
white space. So, statements may be split over several lines and may be spaced according to
your preferences without affecting a program’s meaning. It’s incorrect to split identifiers
and strings. Ideally, statements should be kept small, but this is not always possible.

Error-Prevention Tip 2.9

A lengthy statement can be spread over several lines. If a single statement must be split
across lines, choose breaking points that make sense, such as after a comma in a comma-
separated list, or after an operator in a lengthy expression. If a statement is split across two
or more lines, indent all subsequent lines until the end of the statement.

Figure 2.16 shows the operators discussed so far in decreasing order of precedence. All
but the assignment operator, =, associate from left to right. The assignment operator, =, asso-
ciates from right to left, so an expression like x = y = 0 is evaluated as if it had been written
as x = (y = 0), which first assigns the value 0 to variable y, then assigns the result of that
assighment, 0, to X.

Good Programming Practice 2.12

; When WrIting expressions Containing many operarors, reﬁ‘r to the operator precm’mfe
chart (Appendix A) . Confirm that the operations in the expression are performed in the
order you expect. If, in a complex expression, you're uncertain about the order of evalua-
tion, use parentheses to force the order, exactly as you'd do in algebraic expressions.

* / % left to right multiplicative
+ = left to right additive
<= > >= left to right relational
=SS left to right equality
= right to left assignment

Fig. 2.16 | Precedence and associativity of operators discussed.

2.9 Wrap-Up

In this chapter, you learned many important features of Java, including displaying data on
the screen in a Command Prompt, inputting data from the keyboard, performing calcula-
tions and making decisions. The applications presented here introduced you to basic pro-
gramming concepts. As you'll see in Chapter 3, Java applications typically contain just a
few lines of code in method main—these statements normally create the objects that per-
form the work of the application. In Chapter 3, you’ll learn how to implement your own
classes and use objects of those classes in applications.

Summary

Section 2.2 Your First Program in Java: Printing a Line of Text
* A Java application (p. 38) executes when you use the java command to launch the JVM.

Summary 61

e Comments (p. 39) document programs and improve their readability. The compiler ignores them.

e A comment that begins with // is an end-of-line comment—it terminates at the end of the line
on which it appears.

e Traditional comments (p. 39) can be spread over several lines and are delimited by /* and */.

* Javadoc comments (p. 39), delimited by /** and */, enable you to embed program documentation
in your code. The javadoc utility program generates HTML pages based on these comments.

* A syntax error (p. 39; also called a compiler error, compile-time error or compilation error) oc-
curs when the compiler encounters code that violates Java’s language rules. It’s similar to a gram-
mar error in a natural language.

* Blank lines, space characters and tab characters are known as white space (p. 39). White space
makes programs easier to read and is ignored by the compiler.

e Keywords (p. 40) are reserved for use by Java and are always spelled with all lowercase letters.
* Keyword class (p. 40) introduces a class declaration.

¢ By convention, all class names in Java begin with a capital letter and capitalize the first letter of
each word they include (e.g., SampleClassName).

* A Java class name is an identifier—a series of characters consisting of letters, digits, underscores
(_) and dollar signs ($) that does not begin with a digit and does not contain spaces.

* Java is case sensitive (p. 40)—that is, uppercase and lowercase letters are distinct.
* The body of every class declaration (p. 40) is delimited by braces, { and }.

e Apublic (p. 40) class declaration must be saved in a file with the same name as the class followed
by the “.java” file-name extension.

* Method main (p. 41) is the starting point of every Java application and must begin with
public static void main(String[] args)
otherwise, the JVM will not execute the application.

* Methods perform tasks and return information when they complete them. Keyword void (p. 41)
indicates that a method will perform a task but return no information.

e Statements instruct the computer to perform actions.
* Astring (p. 41) in double quotes is sometimes called a character string or a string literal.
e The standard output object (System.out; p. 41) displays characters in the command window.

* Method System.out.println (p. 41) displays its argument (p. 41) in the command window fol-
lowed by a newline character to position the output cursor to the beginning of the next line.

* You compile a program with the command javac. If the program contains no syntax errors, a
class file (p. 43) containing the Java bytecodes that represent the application is created. These
bytecodes are interpreted by the JVM when you execute the program.

* To run an application, type java (p. 38) followed by the name of the class that contains main.

Section 2.3 Modifying Your First Java Program
* System.out.print (p. 44) displays its argument and positions the output cursor immediately af-
ter the last character displayed.

A backslash (\) in a string is an escape character (p. 45). Java combines it with the next character to
form an escape sequence (p. 45). The escape sequence \n (p. 45) represents the newline character.

Section 2.4 Displaying Text with printf
 System.out.printf method (p. 46; f means “formatted”) displays formatted data.

62 Chapter 2 Introduction to Java Applications

* Method printf’s first argument is a format string (p. 47) containing fixed text and/or format
specifiers. Each format specifier (p. 47) indicates the type of data to output and is a placeholder
for a corresponding argument that appears after the format string.

* Format specifiers begin with a percent sign (%) and are followed by a character that represents the
data type. The format specifier %s (p. 47) is a placcholder for a string.

Section 2.5 Another Application: Adding Integers

* An import declaration (p. 48) helps the compiler locate a class that’s used in a program.

e Java’s rich set of predefined classes are grouped into packages (p. 48)—named groups of classes.
These are referred to as the Java class library (p. 48), or the Java Application Programming In-
terface (Java API).

* A variable (p. 49) is a location in the computer’s memory where a value can be stored for use later
in a program. All variables must be declared with a name and a type before they can be used.

e A variable’s name enables the program to access the variable’s value in memory.

* A Scanner (package java.util; p. 49) enables a program to read data that the program will use.
Before a Scanner can be used, the program must create it and specify the source of the data.

* Variables should be initialized (p. 49) to prepare them for use in a program.

* The expression new Scanner (System.1in) creates a Scanner that reads from the standard input ob-
ject (System.in; p. 49)—normally the keyboard.

* Data type int (p. 49) is used to declare variables that will hold integer values. The range of values
for an int is —2,147,483,648 to +2,147,483,647.

* Types float and double (p. 49) specify real numbers with decimal points, such as 3.4 and -11.19.

* Variables of type char (p. 49) represent individual characters, such as an uppercase letter (e.g.,
A), a digit (e.g., 7), a special character (e.g., * or %) or an escape sequence (e.g., newline, \n).

e Types such as int, float, double and char are primitive types (p. 49). Primitive-type names are
keywords; thus, they must appear in all lowercase letters.

e A prompt (p. 50) directs the user to take a specific action.
e Scanner method nextInt obtains an integer for use in a program.

* The assignment operator, = (p. 51), enables the program to give a value to a variable. It’s called
a binary operator (p. 51) because it has two operands.

e Portions of statements that have values are called expressions (p. 51).

* The format specifier %d (p. 51) is a placeholder for an int value.

Section 2.6 Memory Concepts
 Variable names (p. 52) correspond to locations in the computer’s memory. Every variable has a
name, a type, a size and a value.

* A value that’s placed in a memory location replaces the location’s previous value, which is lost.

Section 2.7 Arithmetic
e The arithmetic operators (p. 53) are + (addition), - (subtraction), * (multiplication), / (division)
and % (remainder).

* Integer division (p. 53) yields an integer quotient.
 The remainder operator, % (p. 53), yields the remainder after division.
* Arithmetic expressions must be written in straight-line form (p. 54).

e Ifan expression contains nested parentheses (p. 54), the innermost set is evaluated first.

Self-Review Exercises 63

e Java applies the operators in arithmetic expressions in a precise sequence determined by the rules
of operator precedence (p. 54).

* When we say that operators are applied from left to right, we're referring to their associativity
(p. 54). Some operators associate from right to left.

¢ Redundant parentheses (p. 56) can make an expression clearer.

Section 2.8 Decision Making: Equality and Relational Operators

e The if statement (p. 56) makes a decision based on a condition’s value (true or false).

* Conditions in if statements can be formed by using the equality (== and !=) and relational (>,
<, >= and <=) operators (p. 56).

* An if statement begins with keyword i f followed by a condition in parentheses and expects one
statement in its body.

e The empty statement (p. 59) is a statement that does not perform a task.

Self-Review Exercises

2.1

2.2

23

2.4

Fill in the blanks in each of the following statements:

a) A(n) begins the body of every method, and a(n) ends the body of
every method.

b) The statement is used to make decisions.

¢) ____ begins an end-of-line comment.

d) R and are called white space.

e) are reserved for use by Java.

f) Java applications begin execution at method

g) Methods , and display information in a command window.

State whether each of the following is true or false. If false, explain why.

a) Comments cause the computer to print the text after the // on the screen when the pro-
gram executes.

b) All variables must be given a type when they’re declared.

c) Java considers the variables number and NuMbEr to be identical.

d) The remainder operator (%) can be used only with integer operands.

e) The arithmetic operators *, /, %, + and - all have the same level of precedence.

Write statements to accomplish each of the following tasks:

a) Declare variables ¢, thisIsAvariable, 76354 and number to be of type int.

b) Prompt the user to enter an integer.

c) Input an integer and assign the result to int variable value. Assume Scanner variable
input can be used to read a value from the keyboard.

d) Print "This is a Java program" on one line in the command window. Use method
System.out.println.

e) Print "This is a Java program" on two lines in the command window. The first line
should end with Java. Use method System.out.println.

f) Print "This is a Java program" on two lines in the command window. The first line
should end with Java. Use method System.out.printf and two %s format specifiers.

g) Ifthe variable number is not equal to 7, display "The variable number is not equal to 7".

Identify and correct the errors in each of the following statements:
a) if (c<7);
System.out.printin("c is less than 7");
b) if (c=7)
System.out.printin("c is equal to or greater than 7");

64 Chapter 2 Introduction to Java Applications

2.5 Write declarations, statements or comments that accomplish each of the following tasks:

a)
b)
o)
d)
e)
f)
g
h)
i)
j)

k)

State that a program will calculate the product of three integers.

Create a Scanner called input that reads values from the standard input.
Declare the variables x, y, z and result to be of type int.

Prompt the user to enter the first integer.

Read the first integer from the user and store it in the variable x.

Prompt the user to enter the second integer.

Read the second integer from the user and store it in the variable y.

Prompt the user to enter the third integer.

Read the third integer from the user and store it in the variable z.

Compute the product of the three integers contained in variables x, y and z, and assign
the result to the variable result.

Display the message "Product is" followed by the value of the variable result.

2.6 Using the statements you wrote in Exercise 2.5, write a complete program that calculates
and prints the product of three integers.

Answers to Self-Review Exercises

2.1 a)

left brace ({), right brace (3). b) if. ¢) //. d) Space characters, newlines and tabs.

¢) Keywords. f) main. g) System.out.print, System.out.println and System.out.printf.

2.2 a)

2.3 a)

b)
)
d)
e)
f)
g)

2.4 a)

False. Comments do not cause any action to be performed when the program executes.
They’re used to document programs and improve their readability.

True.

False. Java is case sensitive, so these variables are distinct.

False. The remainder operator can also be used with noninteger operands in Java.
False. The operators *, / and % are higher precedence than operators + and -.

int c, thisIsAvariable, q76354, number;
or
int c;
int thisIsAVariable;
int q76354;
int number;
System.out.print("Enter an integer: ");
value = input.nextInt();
System.out.printin("This is a Java program");
System.out.printin("This is a Java\nprogram");
System.out.printf("%s\n%s\n", "This is a Java", "program");
if (number !'= 7)
System.out.printin("The variable number is not equal to 7");

Error: Semicolon after the right parenthesis of the condition (¢ <7) in the if.

Correction: Remove the semicolon after the right parenthesis. [/Voze: As a result, the output state-
ment will execute regardless of whether the condition in the if is true.]

2.5 a)

Error: The relational operator => is incorrect. Correction: Change => to >=.

// Calculate the product of three integers
Scanner input = new Scanner(System.in);
int x, y, z, result;

or

Exercises

int x;
int y;
int z;
int result;

65

d) System.out.print("Enter first integer: ");
e) x = input.nextInt();
f) System.out.print("Enter second integer: ");
g) vy = input.nextIntQ);
h) System.out.print("Enter third integer: ");
i) z = input.nextIntQ);
j) result = x *y * z;
k) System.out.printf("Product is %d\n", result);
2.6 The solution to Self-Review Exercise 2.6 is as follows:
1 // Ex. 2.6: Product.java
2 // Calculate the product of three integers.
3 dimport java.util.Scanner; // program uses Scanner
4
5 public class Product
6 {
7 public static void main(String[] args)
8 {
9 // create Scanner to obtain input from command window
10 Scanner input = new Scanner(System.in);
11
12 int x; // first number input by user
13 int y; // second number input by user
14 int z; // third number input by user
15 int result; // product of numbers
16
17 System.out.print("Enter first integer: "); // prompt for input
18 x = input.nextInt(); // read first integer
19
20 System.out.print("Enter second integer: "); // prompt for input
21 y = input.nextInt(); // read second integer
22
23 System.out.print("Enter third integer: "); // prompt for input
24 z = input.nextInt(); // read third integer
25
26 result = x * y * z; // calculate product of numbers
27
28 System.out.printf("Product is %d\n", result);
29 } // end method main
30 1} // end class Product

Enter first integer: 10
Enter second integer: 20
Enter third integer: 30
Product is 6000

Exercises

2.7

Fill in the blanks in each of the following statements:

a)

are used to document a program and improve its readability.

b) A decision can be made in a Java program with a(n)

66

2.8

2.9

2.10

2.11

2.12

2.13

Chapter 2 Introduction to Java Applications

¢) Calculations are normally performed by statements.
d) The arithmetic operators with the same precedence as multiplication are and
e) When parentheses in an arithmetic expression are nested, the set of paren-

theses is evaluated first.
f) Alocation in the computer’s memory that may contain different values at various times
throughout the execution of a program is called a(n)

Write Java statements that accomplish each of the following tasks:

a) Display the message "Enter an integer: ", leaving the cursor on the same line.
b) Assign the product of variables b and ¢ to variable a.

¢) Use a comment to state that a program performs a sample payroll calculation.

State whether each of the following is true or false. If false, explain why.

a) Java operators are evaluated from left to right.

b) The following are all valid variable names: _under_bar_, m928134, t5, j7, her_sales$,
his_$account_total, a, b$, ¢, zand z2.

¢) Avalid Java arithmetic expression with no parentheses is evaluated from left to right.

d) The following are all invalid variable names: 3g, 87, 67h2, h22 and 2h.

Assuming that x = 2 and y = 3, what does each of the following statements display?
a) System.out.printf("x = %d\n", x);

b) System.out.printf("Value of %d + %d is %d\n", x, x, (X + X));

c) System.out.printf("x =");

d) System.out.printf("%d = %d\n", (x +y), Cy +x));

Which of the following Java statements contain variables whose values are modified?
a) p=i+3+k+7;

b) System.out.printin("variables whose values are modified");

c) System.out.printin("a = 5");

d) value = input.nextInt(Q);

Given that y = ax® + 7, which of the following are correct Java statements for this equation?

Q) y=a*x*x*x+7;

b) y=a*x*x* (x+7);
 y=Ca*x)*x*(x+7);
d) y=Ca=*x)*x*x+7;
€ y=a* (x*x*x)+7;
f) y=a*x* (x*x+7);

State the order of evaluation of the operators in each of the following Java statements, and

show the value of x after each statement is performed:

2.14

a) x=7+3%6/2-1;
b) x=2%2+2%2-2/2;
© x=(3%9*(3+(9%3/(3))));

Werite an application that displays the numbers 1 to 4 on the same line, with each pair of

adjacent numbers separated by one space. Use the following techniques:

2.15

a) Use one System.out.println statement.
b) Use four System.out.print statements.
c) Use one System.out.printf statement.

(Arithmetic) Write an application that asks the user to enter two integers, obtains them

from the user and prints their sum, product, difference and quotient (division). Use the techniques
shown in Fig. 2.7.

Exercises 67

2.16 (Comparing Integers) Write an application that asks the user to enter two integers, obtains
them from the user and displays the larger number followed by the words "is 1arger”. If the num-
bers are equal, print the message "These numbers are equal”. Use the techniques shown in Fig. 2.15.

2.17 (Arithmetic, Smallest and Largest) Write an application that inputs three integers from the
user and displays the sum, average, product, smallest and largest of the numbers. Use the techniques
shown in Fig. 2.15. [Note: The calculation of the average in this exercise should result in an integer
representation of the average. So, if the sum of the values is 7, the average should be 2, not
2.3333....]

2.18 (Displaying Shapes with Asterisks) Write an application that displays a box, an oval, an ar-
row and a diamond using asterisks (*), as follows:

PR
R

&
s
&
e

2.19 What does the following code print?

System.out.printin("*\n**\n***\n
2.20 What does the following code print?

System.out.printin(
System.out.printin(
System.out.printin(
System.out.printin("*
System.out.printin(

2.21 What does the following code print?

System.out.print("*");
System.out.print(' ‘
System.out.print('
System.out.print('
System.out.printin("**");

2.22 What does the following code print?
);

System.out.print(
System.out.printin(
System.out.printin(
System.out.print('
System.out.printin(

2.23 What does the following code print?

System.out.printf("%s\n%s\n%s\n", """, TeEx!

2.24 (Largest and Smallest Integers) Write an application that reads five integers and determines
and prints the largest and smallest integers in the group. Use only the programming techniques you
learned in this chapter.

2.25 (Odd or Even) Write an application that reads an integer and determines and prints wheth-
er it’s odd or even. [Hint: Use the remainder operator. An even number is a multiple of 2. Any mul-
tiple of 2 leaves a remainder of 0 when divided by 2.]

68 Chapter 2 Introduction to Java Applications

2.26 (Multiples) Write an application that reads two integers, determines whether the first is a
multiple of the second and prints the result. [Hin#: Use the remainder operator.]

2.27 (Checkerboard Pattern of Asterisks) Write an application that displays a checkerboard pat-
tern, as follows:

2.28 (Diameter, Circumference and Area of a Circle) Here’s a peek ahead. In this chapter, you
learned about integers and the type int. Java can also represent floating-point numbers that contain
decimal points, such as 3.14159. Write an application that inputs from the user the radius of a circle
as an integer and prints the circle’s diameter, circumference and area using the floating-point value
3.14159 for . Use the techniques shown in Fig. 2.7. [Note: You may also use the predefined con-
stant Math. PI for the value of 7. This constant is more precise than the value 3.14159. Class Math
is defined in package java.lang. Classes in that package are imported automatically, so you do not
need to import class Math to use it.] Use the following formulas (7 is the radius):
diameter = 2r

circumference = 2Ttr
area = T*

Do not store the results of each calculation in a variable. Rather, specify each calculation as the
value that will be output in a System.out.printf statement. The values produced by the circum-
ference and area calculations are floating-point numbers. Such values can be output with the for-
mat specifier %f in a System.out.printf statement. Youll learn more about floating-point
numbers in Chapter 3.

2.29 (Integer Value of a Character) Here’s another peek ahead. In this chapter, you learned about
integers and the type int. Java can also represent uppercase letters, lowercase letters and a consider-
able variety of special symbols. Every character has a corresponding integer representation. The set
of characters a computer uses together with the corresponding integer representations for those
characters is called that computer’s character set. You can indicate a character value in a program
simply by enclosing that character in single quotes, as in "A".

You can determine a character’s integer equivalent by preceding that character with (int), as in

(int) 'A’
An operator of this form is called a cast operator. (You'll learn about cast operators in Chapter 4.)
The following statement outputs a character and its integer equivalent:

System.out.printf(
"The character %c has the value %d\n", 'A', ((int) 'A'));

When the preceding statement executes, it displays the character A and the value 65 (from the Uni-
code® character set) as part of the string. The format specifier %c is a placeholder for a character (in
this case, the character 'A").

Using statements similar to the one shown earlier in this exercise, write an application that dis-
plays the integer equivalents of some uppercase letters, lowercase letters, digits and special symbols.
Display the integer equivalents of the following: A B Ca b ¢ 01 2 § * + / and the blank character.

Making a Difference 69

2.30 (Separating the Digits in an Integer) Write an application that inputs one number consist-
ing of five digits from the user, separates the number into its individual digits and prints the digits
separated from one another by three spaces each. For example, if the user types in the number 42339,
the program should print

4 2 3 3 9

Assume that the user enters the correct number of digits. What happens when you execute the
program and type a number with more than five digits? What happens when you execute the pro-
gram and type a number with fewer than five digits? [Hint: It’s possible to do this exercise with the
techniques you learned in this chapter. You'll need to use both division and remainder operations
to “pick off” each digit.]

2.31 (Table of Squares and Cubes) Using only the programming techniques you learned in this
chapter, write an application that calculates the squares and cubes of the numbers from 0 to 10 and
prints the resulting values in table format, as shown below. [Noze: This program does not require
any input from the user.]

number square cube

0 0 0

1 1 1

2 4 8

3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

2.32 (Negative, Positive and Zero Values) Write a program that inputs five numbers and deter-
mines and prints the number of negative numbers input, the number of positive numbers input and
the number of zeros input.

Making a Difference
2.33 (Body Mass Index Calculator) We introduced the body mass index (BMI) calculator in
Exercise 1.10. The formulas for calculating BMI are

weightInPoundsx 703

BMI =
heightinlnches x heightInlnches

or

BMI = weightInKilograms
heightInMeters x heightInMeters

Create a BMI calculator that reads the user’s weight in pounds and height in inches (or, if you pre-
fer, the user’s weight in kilograms and height in meters), then calculates and displays the user’s
body mass index. Also, display the following information from the Department of Health and
Human Services/National Institutes of Health so the user can evaluate his/her BMI:

BMI VALUES
Underweight: less than 18.5
Normal: between 18.5 and 24.9

Overweight: between 25 and 29.9
Obese: 30 or greater

70 Chapter 2 Introduction to Java Applications

[Note: In this chapter, you learned to use the int type to represent whole numbers. The BMI calcu-
lations when done with int values will both produce whole-number results. In Chapter 3 you’ll
learn to use the double type to represent numbers with decimal points. When the BMI calculations
are performed with doubTes, they’ll both produce numbers with decimal points—these are called
“floating-point” numbers.]

2.34 (World Population Growth Calculator) Use the web to determine the current world pop-
ulation and the annual world population growth rate. Write an application that inputs these values,
then displays the estimated world population after one, two, three, four and five years.

2.35 (Car-Pool Savings Calculator) Research several car-pooling websites. Create an application
that calculates your daily driving cost, so that you can estimate how much money could be saved by
car pooling, which also has other advantages such as reducing carbon emissions and reducing traffic
congestion. The application should input the following information and display the user’s cost per
day of driving to work:

a) Total miles driven per day.

b) Cost per gallon of gasoline.

¢) Average miles per gallon.

d) Parking fees per day.

e) Tolls per day.

Introduction to Classes,
Objects, Methods and
Strings

Nothing can have value without
being an object of utility.
—XKarl Marx

Your public servants serve you
right.
—Adlai E. Stevenson

You'll see something new.
Two things. And I call them
Thing One and Thing Two.
—Dr. Theodor Seuss Geisel

Objectives
In this chapter you'll learn:

m How to declare a class and
use it to create an object.

How to implement a class’s
behaviors as methods.

How to implement a class’s
attributes as instance
variables and properties.

How to call an object’s
methods to make them
perform their tasks.

What instance variables of a
class and local variables of a
method are.

How to use a constructor to
initialize an object’s data.

The differences between
primitive and reference types.

/ Qutline

72 Chapter 3 Introduction to Classes, Objects, Methods and Strings

3.1 Introduction 3.6 Initializing Objects with
3.2 Declaring a Class with a Method and Constructors
Instantiating an Object of a Class 3.7 Floating-Point Numbers and Type
3.3 Declaring a Method with a Parameter double
3.4 Instance Variables, set Methods and 3.8 (Optional) GUI and Graphics Case
get Methods Study: Using Dialog Boxes
3.5 Primitive Types vs. Reference Types 3.9 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

3.1 Introduction

We introduced the basic terminology and concepts of object-oriented programming in
Section 1.6. In this chapter, we present a simple framework for organizing object-oriented
applications in Java. Typically, the applications you develop in this book will consist of
two or more classes. If you become part of a development team in industry, you might
work on applications that contain hundreds, or even thousands, of classes.

First, we motivate the notion of classes with a real-world example. Then we present
five applications to demonstrate creating and using your own classes. The first four of these
begin our case study on developing a grade book class that instructors can use to maintain
student test scores. This case study is enhanced in Chapters 4, 5 and 7. The last example
introduces floating-point numbers—that is, numbers containing decimal points—in a
bank account class that maintains a customer’s balance.

3.2 Declaring a Class with a Method and Instantiating an
Object of a Class

In Sections 2.5 and 2.8, you created an object of the existing class Scanner, then used that
object to read data from the keyboard. In this section, you’ll create a new class, then use it
to create an object. We begin by delcaring classes GradeBook (Fig. 3.1) and GradeBook-
Test (Fig. 3.2). Class GradeBook (declared in the file GradeBook.java) will be used to
display a message on the screen (Fig. 3.2) welcoming the instructor to the grade book ap-
plication. Class GradeBookTest (declared in the file GradeBookTest.java) is an applica-
tion class in which the main method will create and use an object of class GradeBook. Each
class declaration that begins with keyword pub1ic must be stored in a file having the same name
as the class and ending with the .java file-name extension. Thus, classes GradeBook and
GradeBookTest must be declared in separate files, because each class is declared public.

Class GradeBook
The GradeBook class declaration (Fig. 3.1) contains a displayMessage method (lines 7—
10) that displays a message on the screen. We'll need to make an object of this class and
call its method to execute line 9 and display the message.

The class declaration begins in line 4. The keyword public is an access modifier. For
now, we'll simply declare every class public. Every class declaration contains keyword

3.2 Declaring a Class with a Method and Instantiating an Object of a Class 73

// Fig. 3.1: GradeBook.java
// Class declaration with one method.

public class GradeBook
{
// display a welcome message to the GradeBook user
public void displayMessage()
{
System.out.println("Welcome to the Grade Book!");
} // end method displayMessage
} // end class GradeBook

-0 VWO NONUBDLEWN=

Fig. 3.1 | Class declaration with one method.

class followed immediately by the class’s name. Every class’s body is enclosed in a pair of
left and right braces, as in lines 5 and 11 of class GradeBook.

In Chapter 2, each class we declared had one method named main. Class GradeBook
also has one method—displayMessage (lines 7-10). Recall that main is a special method
that’s always called automatically by the Java Virtual Machine (JVM) when you execute
an application. Most methods do not get called automatically. As you’ll soon see, you must
call method displayMessage explicitly to tell it to perform its task.

The method declaration begins with keyword public to indicate that the method is
“available to the public’—it can be called from methods of other classes. Next is the
method’s return type, which specifies the type of data the method returns to its caller after
performing its task. The return type void indicates that this method will perform a task
but will zor return (i.e., give back) any information to its calling method. You've used
methods that return information—for example, in Chapter 2 you used Scanner method
nextInt to inputan integer typed by the user at the keyboard. When nextInt readsa value
from the user, it returns that value for use in the program.

The name of the method, displayMessage, follows the return type. By convention,
method names begin with a lowercase first letter and subsequent words in the name begin
with a capital letter. The parentheses after the method name indicate that this is a method.
Empty parentheses, as in line 7, indicate that this method does not require additional
information to perform its task. Line 7 is commonly referred to as the method header.
Every method’s body is delimited by left and right braces, as in lines 8 and 10.

The body of a method contains one or more statements that perform the method’s
task. In this case, the method contains one statement (line 9) that displays the message
"Welcome to the Grade Book!" followed by a newline (because of printin) in the com-
mand window. After this statement executes, the method has completed its task.

Class GradeBookTest

Next, we'd like to use class GradeBook in an application. As you learned in Chapter 2,
method main begins the execution of every application. A class that contains method main
begins the execution of a Java application. Class GradeBook is 70z an application because
it does not contain main. Therefore, if you try to execute GradeBook by typing java Grade-
Book in the command window, an error will occur. This was not a problem in Chapter 2,
because every class you declared had a main method. To fix this problem, we must either
declare a separate class that contains amain method or place amain method in class Grade-

74 Chapter 3 Introduction to Classes, Objects, Methods and Strings

Book. To help you prepare for the larger programs you’ll encounter later in this book and
in industry, we use a separate class (GradeBookTest in this example) containing method
main to test each new class we create in this chapter. Some programmers refer to such a
class as a driver class.

The GradeBookTest class declaration (Fig. 3.2) contains the main method that will
control our application’s execution. The GradeBookTest class declaration begins in line 4
and ends in line 15. The class, like many that begin an application’s execution, contains
only a main method.

1 // Fig. 3.2: GradeBookTest.java

2 // Creating a GradeBook object and calling its displayMessage method.
3

4 pubTlic class GradeBookTest

5 {

6 // main method begins program execution

7 public static void main(String[] args)

8 {

9 // create a GradeBook object and assign it to myGradeBook
10 GradeBook myGradeBook = new GradeBook();

11

12 // call myGradeBook's displayMessage method

13 myGradeBook.dispTayMessage();

14 } // end main

I5 } // end class GradeBookTest

Welcome to the Grade Book!

Fig. 3.2 | Creating a GradeBook object and calling its displayMessage method.

Lines 7-14 declare method main. A key part of enabling the JVM to locate and call
method main to begin the application’s execution is the static keyword (line 7), which
indicates that main is a static method. A static method is special, because you can call it
without first creating an object of the class in which the method is declared. We discuss static
methods in Chapter 6, Methods: A Deeper Look.

In this application, we’d like to call class GradeBook’s displayMessage method to dis-
play the welcome message in the command window. Typically, you cannot call a method
that belongs to another class until you create an object of that class, as shown in line 10.
We begin by declaring variable myGradeBook. The variable’s type is GradeBook—the class
we declared in Fig. 3.1. Each new class you create becomes a new #ype that can be used to
declare variables and create objects. You can declare new class types as needed; this is one
reason why Java is known as an extensible language.

Variable myGradeBook is initialized (line 10) with the result of the class instance cre-
ation expression new GradeBook (). Keyword new creates a new object of the class specified
to the right of the keyword (i.e., GradeBook). The parentheses to the right of GradeBook
are required. As you’ll learn in Section 3.6, those parentheses in combination with a class
name represent a call to a constructor, which is similar to a method but is used only at the
time an object is created to initialize the object’s data. You'll see that data can be placed in
the parentheses to specify initial values for the object’s data. For now, we simply leave the
parentheses empty.

3.2 Declaring a Class with a Method and Instantiating an Object of a Class 75

Just as we can use object System.out to call its methods print, printf and printin,
we can use object myGradeBook to call its method displayMessage. Line 13 calls the
method displayMessage (lines 7-10 of Fig. 3.1) using myGradeBook followed by a dot
separator (.), the method name displayMessage and an empty set of parentheses. This
call causes the displayMessage method to perform its task. This method call differs from
those in Chapter 2 that displayed information in a command window—each of those
method calls provided arguments that specified the data to display. At the beginning of
line 13, “myGradeBook.” indicates that main should use the myGradeBook object that was
created in line 10. Line 7 of Fig. 3.1 indicates that method displayMessage has an empty
parameter list—that is, displayMessage does nor require additional information to per-
form its task. For this reason, the method call (line 13 of Fig. 3.2) specifies an empty set
of parentheses after the method name to indicate that 7o arguments are being passed to
method displayMessage. When method displayMessage completes its task, method
main continues executing at line 14. This is the end of method main, so the program ter-
minates.

Any class can contain a main method. The JVM invokes the main method o7/y in the
class used to execute the application. If an application has multiple classes that contain
main, the one that’s invoked is the one in the class named in the java command.

Compiling an Application with Multiple Classes

You must compile the classes in Fig. 3.1 and Fig. 3.2 before you can execute the applica-
tion. First, change to the directory that contains the application’s source-code files. Next,
type the command

javac GradeBook.java GradeBookTest.java

to compile both classes at once. If the directory containing the application includes only
this application’s files, you can compile a// the classes in the directory with the command

javac *.java

The asterisk (*) in *. java indicates that 4// files in the current directory that end with the
file-name extension “. java” should be compiled.

UML Class Diagram for Class GradeBook

Figure 3.3 presents a UML class diagram for class GradeBook of Fig. 3.1. In the UML,
cach class is modeled in a class diagram as a rectangle with three compartments. The top
compartment contains the name of the class centered horizontally in boldface type. The
middle compartment contains the class’s attributes, which correspond to instance variables
(discussed in Section 3.4) in Java. In Fig. 3.3, the middle compartment is empty, because
this GradeBook class does 70z have any attributes. The bottom compartment contains the

GradeBook

+ displayMessage()

Fig. 3.3 | UML class diagram indicating that class GradeBook has a public
displayMessage operation.

76 Chapter 3 Introduction to Classes, Objects, Methods and Strings

class’s operations, which correspond to methods in Java. The UML models operations by
listing the operation name preceded by an access modifier (in this case +) and followed by
a set of parentheses. Class GradeBook has one method, displayMessage, so the bottom
compartment of Fig. 3.3 lists one operation with this name. Method displayMessage
does 7ot require additional information to perform its tasks, so the parentheses following
the method name in the class diagram are empry, just as they were in the method’s decla-
ration in line 7 of Fig. 3.1. The plus sign (+) in front of the operation name indicates that
displayMessage is a public operation in the UML (i.e., a pubTic method in Java). We'll
often use UML class diagrams to summarize a class’s attributes and operations.

3.3 Declaring a Method with a Parameter

In our car analogy from Section 1.6, we discussed the fact that pressing a car’s gas pedal
sends a message to the car to perform a task—to go faster. But how fast should the car accel-
erate? As you know, the farther down you press the pedal, the faster the car accelerates. So
the message to the car actually includes the task 10 perform and additional information that
helps the car perform the task. This additional information is known as a parameter—the
value of the parameter helps the car determine how fast to accelerate. Similarly, a method
can require one or more parameters that represent additional information it needs to per-
form its task. Parameters are defined in a comma-separated parameter list, which is located
inside the parentheses that follow the method name. Each parameter must specify a #ype
and a variable name. The parameter list may contain any number of parameters, including
none at all. Empty parentheses following the method name (as in Fig. 3.1, line 7) indicate
that a method does 70z require any parameters.

Arguments to a Method

A method call supplies values—called arguments—for each of the method’s parameters.
For example, the method System.out.printin requires an argument that specifies the
darta to output in a command window. Similarly, to make a deposit into a bank account,
a deposit method specifies a parameter that represents the deposit amount. When the de-
posit method is called, an argument value representing the deposit amount is assigned to
the method’s parameter. The method then makes a deposit of that amount.

Class Declaration with a Method That Has One Parameter

We now declare class GradeBook (Fig. 3.4) with a displayMessage method that displays
the course name as part of the welcome message. (See the sample execution in Fig. 3.5.)
The new method requires a parameter that represents the course name to output.

Before discussing the new features of class GradeBook, let’s see how the new class is
used from the main method of class GradeBookTest (Fig. 3.5). Line 12 creates a Scanner
named input for reading the course name from the user. Line 15 creates the GradeBook
object myGradeBook. Line 18 prompts the user to enter a course name. Line 19 reads the
name from the user and assigns it to the nameOfCourse variable, using Scanner method
nextLine to perform the input. The user types the course name and presses Enter to
submit the course name to the program. Pressing Enter inserts a newline character at the
end of the characters typed by the user. Method nextLine reads characters typed by the
user until it encounters the newline character, then returns a String containing the char-
acters up to, but oz including, the newline. The newline character is discarded.

3.3 Declaring a Method with a Parameter 77

1 // Fig. 3.4: GradeBook.java

2 // Class declaration with one method that has a parameter.

3

4 public class GradeBook

5 {

6 // display a welcome message to the GradeBook user

7 public void displayMessage(String courseName)

8 {

9 System.out.printf("Welcome to the grade book for\n%s!\n",
10 courseName);

11 } // end method displayMessage

12 } // end class GradeBook

Fig. 3.4 | Class declaration with one method that has a parameter.

1 // Fig. 3.5: GradeBookTest.java

2 // Create GradeBook object and pass a String to

3 // its displayMessage method.

4 import java.util.Scanner; // program uses Scanner

5

6 public class GradeBookTest

7 {

8 // main method begins program execution

9 public static void main(String[] args)

10 {

11 // create Scanner to obtain input from command window
12 Scanner input = new Scanner(System.in);

13

14 // create a GradeBook object and assign it to myGradeBook
15 GradeBook myGradeBook = new GradeBook();

16

17 // prompt for and input course name

18 System.out.println("Please enter the course name:");
19 String nameOfCourse = input.nextLine(); // read a line of text
20 System.out.println(); // outputs a blank Tine
21
22 // call myGradeBook's displayMessage method
23 // and pass nameOfCourse as an argument
24 myGradeBook.displayMessage(nameOfCourse);
25 } // end main
26 } // end class GradeBookTest

Please enter the course name:
CS101 Introduction to Java Programming

Welcome to the grade book for
CS101 Introduction to Java Programming!

Fig. 3.5 | Create a GradeBook object and pass a String to its displayMessage method.

Class Scanner also provides a similar method—next—that reads individual words.
When the user presses Enzer after typing input, method next reads characters until it encoun-
ters a white-space character (such as a space, tab or newline), then returns a String containing

78 Chapter 3 Introduction to Classes, Objects, Methods and Strings

the characters up to, but 7ot including, the white-space character (which is discarded). All
information after the first white-space character is not lost—it can be read by other state-
ments that call the Scanner’s methods later in the program. Line 20 outputs a blank line.

Line 24 calls myGradeBooks’s displayMessage method. The variable nameOfCourse
in parentheses is the argument that’s passed to method displayMessage so that the method
can perform its task. The value of variable nameOfCourse in main becomes the value of
method displayMessage’s parameter courseName in line 7 of Fig. 3.4. When you execute
this application, notice that method displayMessage outputs the name you type as part
of the welcome message (Fig. 3.5).

More on Arguments and Parameters

In Fig. 3.4, displayMessage’s parameter list (line 7) declares one parameter indicating that
the method requires a String to perform its task. When the method is called, the argument
value in the call is assigned to the corresponding parameter (courseName) in the method
header. Then, the method body uses the value of the courseName parameter. Lines 9-10 of
Fig. 3.4 display parameter courseName’s value, using the %s format specifier in printf’s for-
mat string. The parameter variable’s name (courseName in Fig. 3.4, line 7) can be the same
or différent from the argument variable’s name (nameOfCourse in Fig. 3.5, line 24).

The number of arguments in a method call 7ust match the number of parameters in
the parameter list of the method’s declaration. Also, the argument types in the method call
must be “consistent with” the types of the corresponding parameters in the method’s dec-
laration. (As you’ll learn in Chapter 6, an argument’s type and its corresponding param-
eter’s type are not always required to be identical.) In our example, the method call passes
one argument of type String (nameOfCourse is declared as a String in line 19 of Fig. 3.5)
and the method declaration specifies one parameter of type String (courseName is
declared as a String in line 7 of Fig. 3.4). So in this example the type of the argument in
the method call exactly matches the type of the parameter in the method header.

Updated UML Class Diagram for Class GradeBook

The UML class diagram of Fig. 3.6 models class GradeBook of Fig. 3.4. Like Fig. 3.1, this
GradeBook class contains pubTic operation displayMessage. However, this version of dis-
playMessage has a parameter. The UML models a parameter a bit differently from Java by
listing the parameter name, followed by a colon and the parameter type in the parentheses
following the operation name. The UML has its own data types similar to those of Java
(but, as you'll see, not all the UML data types have the same names as the corresponding
Java types). The UML type String does correspond to the Java type String. GradeBook
method displayMessage (Fig. 3.4) has a String parameter named courseName, so Fig. 3.6
lists courseName : String between the parentheses following displayMessage.

GradeBook

+ displayMessage(courseName : String)

Fig. 3.6 | UML class diagram indicating that class GradeBook has a displayMessage
operation with a courseName parameter of UML type String.

3.4 Instance Variables, set Methods and get Methods 79

Notes on import Declarations

Notice the import declaration in Fig. 3.5 (line 4). This indicates to the compiler that the
program uses class Scanner. Why do we need to import class Scanner, but not classes
System, String or GradeBook? Classes System and String are in package java.lang,
which is implicitly imported into every Java program, so all programs can use that pack-
age’s classes without explicitly importing them. Most other classes you’ll use in Java pro-
grams must be imported explicitly.

There’s a special relationship between classes that are compiled in the same directory
on disk, like classes GradeBook and GradeBookTest. By default, such classes are considered
to be in the same package—known as the default package. Classes in the same package are
implicitly imported into the source-code files of other classes in the same package. Thus, an
import declaration is 70f required when one class in a package uses another in the same
package—such as when class GradeBookTest uses class GradeBook.

The import declaration in line 4 is 7ot required if we always refer to class Scanner as
java.util.Scanner, which includes the fill package name and class name. This is known
as the class’s fully qualified class name. For example, line 12 could be written as

java.util.Scanner input = new java.util.Scanner(System.in);

Software Engineering Observation 3.1

The Java compiler does not require import declarations in a Java source-code file if the
[fully qualified class name is specified every time a class name is used in the source code.
Most Java programmers prefer to use import declarations.

I T

=)

3.4 Instance Variables, set Methods and get Methods

In Chapter 2, we declared all of an application’s variables in the application’s main meth-
od. Variables declared in the body of a particular method are known as local variables and
can be used only in that method. When that method terminates, the values of its local vari-
ables are lost. Recall from Section 1.6 that an object has azzributes that are carried with it
as it’s used in a program. Such attributes exist before a method is called on an object, while
the method is executing and after the method completes execution.

A class normally consists of one or more methods that manipulate the attributes that
belong to a particular object of the class. Attributes are represented as variables in a class
declaration. Such variables are called fields and are declared inside a class declaration but
outside the bodies of the class’s method declarations. When each object of a class maintains
its own copy of an attribute, the field that represents the attribute is also known as an
instance variable—ecach object (instance) of the class has a separate instance of the variable
in memory. The example in this section demonstrates a GradeBook class that contains a
courseName instance variable to represent a particular GradeBook object’s course name.

GradeBook Class with an Instance Variable, a set Method and a get Method

In our next application (Figs. 3.7-3.8), class GradeBook (Fig. 3.7) maintains the course
name as an instance variable so that it can be used or modified at any time during an ap-
plication’s execution. The class contains three methods—setCourseName, getCourseName
and displayMessage. Method setCourseName stores a course name in a GradeBook.
Method getCourseName obtains a GradeBook’s course name. Method displayMessage,

80 Chapter 3 Introduction to Classes, Objects, Methods and Strings

which now specifies no parameters, still displays a welcome message that includes the
course name; as you'll see, the method now obtains the course name by calling a method
in the same class—getCourseName.

1 // Fig. 3.7: GradeBook.java

2 // GradeBook class that contains a courseName instance variable
3 // and methods to set and get its value.

4

5 public class GradeBook

6 {

7 private String courseName; // course name for this GradeBook
8

9 // method to set the course name

10 public void setCourseName(String name)

11 {

12 courseName = name; // store the course name

13 } // end method setCourseName

14

15 // method to retrieve the course name

16 public String getCourseName()

17 {

18 return courseName;

19 } // end method getCourseName
20
21 // display a welcome message to the GradeBook user
22 public void displayMessage()
23 {
24 // calls getCourseName to get the name of
25 // the course this GradeBook represents
26 System.out.printf("Welcome to the grade book for\n%s!\n",
27 getCourseName());
28 } // end method displayMessage

29 } // end class GradeBook

Fig. 3.7 | GradeBook class that contains a courseName instance variable and methods to set
and get its value.

A typical instructor teaches more than one course, each with its own course name.
Line 7 declares courseName as a variable of type String. Because the variable is declared
in the body of the class but outside the bodies of the class’s methods (lines 10-13, 16-19
and 22-28), line 7 is a declaration for an instance variable. Every instance (i.e., object) of
class GradeBook contains one copy of each instance variable. For example, if there are two
GradeBook objects, each object has its own copy of courseName. A benefit of making
courseName an instance variable is that all the methods of the class (in this case, Grade-
Book) can manipulate any instance variables that appear in the class (in this case, course-
Name).

Access Modifiers public and private

Most instance-variable declarations are preceded with the keyword private (as in line 7).
Like pubTic, keyword private is an access modifier. Variables or methods declared with ac-
cess modifier private are accessible only to methods of the class in which theyre declared. Thus,

3.4 Instance Variables, set Methods and get Methods 8l

variable courseName can be used only in methods setCourseName, getCourseName and
displayMessage of (every object of) class GradeBook.

Declaring instance variables with access modifier private is known as data hiding or
information hiding. When a program creates (instantiates) an object of class GradeBook,
variable courseName is encapsulated (hidden) in the object and can be accessed only by
methods of the object’s class. This prevents courseName from being modified accidentally
by a class in another part of the program. In class GradeBook, methods setCourseName and
getCourseName manipulate the instance variable courseName.

Software Engineering Observation 3.2

Precede each field and method declaration with an access modifier. Generally, instance
variables should be declared private and methods public. (It’s appropriate to declare
certain methods private, if theyll be accessed only by other methods of the class.)

Good Programming Practice 3.1

We prefer to list a class’s fields first, so that, as you read the code, you see the names and
types of the variables before they're used in the class’s methods. You can list the class’s fields
anywhere in the class ousside its method declarations, but scattering them can lead ro
hard-to-read code.

Methods setCourseName and getCourseName

Method setCourseName (lines 10—13) does not return any data when it completes its task,
so its return type is void. The method receives one parameter—name—which represents
the course name that will be passed to the method as an argument. Line 12 assigns name
to instance variable courseName.

Method getCourseName (lines 16-19) returns a particular GradeBook object’s
courseName. The method has an empty parameter list, so it does not require additional
information to perform its task. The method specifies that it returns a String—this is the
method’s return type. When a method that specifies a return type other than void is called
and completes its task, the method returns a result to its calling method. For example,
when you go to an automated teller machine (ATM) and request your account balance,
you expect the ATM to give you back a value that represents your balance. Similarly, when
a statement calls method getCourseName on a GradeBook object, the statement expects to
receive the GradeBook’s course name (in this case, a String, as specified in the method dec-
laration’s return type).

The return statement in line 18 passes the value of instance variable courseName back
to the statement that calls method getCourseName. Consider, method displayMessage’s
line 27, which calls method getCourseName. When the value is returned, the statement in
lines 26-27 uses that value to output the course name. Similarly, if you have a method
square that returns the square of its argument, you’d expect the statement

int result = square(2);

to return 4 from method square and assign 4 to the variable result. If you have a method
maximum that returns the largest of three integer arguments, you’d expect the statement

int biggest = maximum(27, 114, 51);

to return 114 from method maximum and assign 114 to variable biggest.

82 Chapter 3 Introduction to Classes, Objects, Methods and Strings

The statements in lines 12 and 18 each use courseName even though it was not declared
in any of the methods. We can use courseName in GradeBook’s methods because course-
Name is an instance variable of the class.

Method displayMessage

Method displayMessage (lines 22-28) does 7or return any data when it completes its
task, so its return type is void. The method does 7oz receive parameters, so the parameter
list is empty. Lines 26-27 output a welcome message that includes the value of instance
variable courseName, which is returned by the call to method getCourseName in line 27.
Notice that one method of a class (displayMessage in this case) can call another method
of the same class by using just the method name (getCourseName in this case).

GradeBookTest Class That Demonstrates Class GradeBook

Class GradeBookTest (Fig. 3.8) creates one object of class GradeBook and demonstrates its
methods. Line 14 creates a GradeBook object and assigns it to local variable myGradeBook of
type GradeBook. Lines 17-18 display the initial course name calling the object’s getCourse-
Name method. The first line of the output shows the name “nu11.” Unlike local variables,
which are not automatically initialized, every field has a default initial value—a value provided
by Java when you do not specify the fields initial value. Thus, fields are not required to be ex-
plicitly initialized before they’re used in a program—unless they must be initialized to values
other than their default values. The default value for a field of type String (like courseName
in this example) is nu11, which we say more about in Section 3.5.

Line 21 prompts the user to enter a course name. Local String variable theName
(declared in line 22) is initialized with the course name entered by the user, which is
returned by the call to the nextLine method of the Scanner object input. Line 23 calls
object myGradeBook’s setCourseName method and supplies theName as the method’s argu-
ment. When the method is called, the argument’s value is assigned to parameter name (line
10, Fig. 3.7) of method setCourseName (lines 10-13, Fig. 3.7). Then the parameter’s
value is assigned to instance variable courseName (line 12, Fig. 3.7). Line 24 (Fig. 3.8)
skips a line in the output, then line 27 calls object myGradeBook’s displayMessage method
to display the welcome message containing the course name.

// Fig. 3.8: GradeBookTest.java
// Creating and manipulating a GradeBook object.
import java.util.Scanner; // program uses Scanner

1
2
3
4
5 public class GradeBookTest
6
7
8
9

{

// main method begins program execution

public static void main(String[] args)

{
10 // create Scanner to obtain input from command window
11 Scanner input = new Scanner(System.in);
12
13 // create a GradeBook object and assign it to myGradeBook
14 GradeBook myGradeBook = new GradeBook();
15

Fig. 3.8 | Creating and manipulating a GradeBook object. (Part | of 2.)

3.4 Instance Variables, set Methods and get Methods 83

16 // display initial value of courseName

17 System.out.printf("Initial course name is: %s\n\n",

18 myGradeBook.getCourseName());

19

20 // prompt for and read course name

21 System.out.println("Please enter the course name:");

22 String theName = input.nextLine(); // read a line of text
23 myGradeBook.setCourseName(theName); // set the course name
24 System.out.println(); // outputs a blank Tine

25

26 // display welcome message after specifying course name
27 myGradeBook.displayMessage();

28 } // end main

29 } // end class GradeBookTest

Initial course name is: null

Please enter the course name:
CS101 Introduction to Java Programming

Welcome to the grade book for
CS101 Introduction to Java Programming!

Fig. 3.8 | Creating and manipulating a GradeBook object. (Part 2 of 2.)

set and get Methods

A class’s private fields can be manipulated only by the class’s methods. So a client of an
object—that is, any class that calls the object’s methods—calls the class’s pub1ic methods
to manipulate the private fields of an object of the class. This is why the statements in
method main (Fig. 3.8) call the setCourseName, getCourseName and displayMessage
methods on a GradeBook object. Classes often provide pub1ic methods to allow clients to
set (i.c., assign values to) or get (i.c., obtain the values of) private instance variables. The
names of these methods need not begin with sez or gez, but this naming convention is rec-
ommended and is convention for special Java software components called JavaBeans,
which can simplify programming in many Java integrated development environments
(IDEs). The method that sezs instance variable courseName in this example is called set-
CourseName, and the method that gezs its value is called getCourseName.

GradeBook UML Class Diagram with an Instance Variable and set and get Methods
Figure 3.9 contains an updated UML class diagram for the version of class GradeBook in
Fig. 3.7. This diagram models class GradeBook’s instance variable courseName as an attri-
bute in the middle compartment of the class. The UML represents instance variables as
attributes by listing the attribute name, followed by a colon and the attribute type. The
UML type of attribute courseName is String. Instance variable courseName is private in
Java, so the class diagram lists a minus sign (-) access modifier in front of the correspond-
ing attribute’s name. Class GradeBook contains three pub1ic methods, so the class diagram
lists three operations in the third compartment. Recall that the plus sign (+) before each
operation name indicates that the operation is public. Operation setCourseName has a
String parameter called name. The UML indicates the return type of an operation by plac-
ing a colon and the return type after the parentheses following the operation name. Meth-
od getCourseName of class GradeBook (Fig. 3.7) has a String return type in Java, so the

84 Chapter 3 Introduction to Classes, Objects, Methods and Strings

class diagram shows a String return type in the UML. Operations setCourseName and
displayMessage do not return values (i.e., they return void in Java), so the UML class di-
agram does not specify a return type after the parentheses of these operations.

GradeBook

— courseName : String

+ setCourseName(name : String)
+ getCourseName() : String
+ displayMessage()

Fig. 3.9 | UML class diagram indicating that class GradeBook has a private courseName
attribute of UML type String and three public operations—setCourseName (With a name
parameter of UML type String), getCourseName (which returns UML type String) and
dispTlayMessage.

3.5 Primitive Types vs. Reference Types

Java’s types are divided into primitive types and reference types. The primitive types are
boolean, byte, char, short, int, Tong, float and doubTe. All nonprimitive types are ref-
erence types, so classes, which specify the types of objects, are reference types.

A primitive-type variable can store exactly one value of its declared type at a time. For
example, an nt variable can store one whole number (such as 7) at a time. When another
value is assigned to that variable, its initial value is replaced. Primitive-type instance vari-
ables are initialized by default—variables of types byte, char, short, int, Tong, float and
double are initialized to 0, and variables of type booTean are initialized to false. You can
specify your own initial value for a primitive-type variable by assigning the variable a value
in its declaration, as in

private int numberOfStudents = 10;
Recall that local variables are 7ot initialized by default.

<, Error-Prevention Tip 3.1
t‘-’ An attempt to use an uninitialized local variable causes a compilation error.

Programs use variables of reference types (normally called references) to store the loca-
tions of objects in the computer’s memory. Such a variable is said to refer to an object in
the program. Objects that are referenced may each contain many instance variables. Line
14 of Fig. 3.8 creates an object of class GradeBook, and the variable myGradeBook contains
a reference to that GradeBook object. Reference-type instance variables are initialized by
default to the value nul1—a reserved word that represents a “reference to nothing.” This is
why the first call to getCourseName in line 18 of Fig. 3.8 returned nul1—the value of
courseName had not been set, so the default initial value nu11 was returned. The complete
list of reserved words and keywords is listed in Appendix C.

When you use an object of another class, a reference to the object is required to invoke
(i.e., call) its methods. In the application of Fig. 3.8, the statements in method main use

3.6 Initializing Objects with Constructors 85

the variable myGradeBook to send messages to the GradeBook object. These messages are
calls to methods (like setCourseName and getCourseName) that enable the program to
interact with the GradeBook object. For example, the statement in line 23 uses myGrade-
Book to send the setCourseName message to the GradeBook object. The message includes
the argument that setCourseName requires to perform its task. The GradeBook object uses
this information to set the courseName instance variable. Primitive-type variables do not
refer to objects, so such variables cannot be used to invoke methods.

Software Engineering Observation 3.3

A variable’s declared type (e.g., int, double or GradeBook) indicates whether the variable
is of a primitive or a reference type. If a variable is not of one of the eight primitive types,
then it’s of a reference type.

3.6 Initializing Objects with Constructors

As mentioned in Section 3.4, when an object of class GradeBook (Fig. 3.7) is created, its
instance variable courseName is initialized to nu11 by default. What if you want to provide
a course name when you create a GradeBook object? Each class you declare can provide a
special method called a constructor that can be used to initialize an object of a class when
the object is created. In fact, Java reguires a constructor call for every object that’s created.
Keyword new requests memory from the system to store an object, then calls the corre-
sponding class’s constructor to initialize the object. The call is indicated by the parentheses
after the class name. A constructor must have the same name as the class. For example, line
14 of Fig. 3.8 first uses new to create a GradeBook object. The empty parentheses after “new
GradeBook” indicate a call to the class’s constructor without arguments. By default, the
compiler provides a default constructor with 70 parameters in any class that does no# ex-
plicitly include a constructor. When a class has only the default constructor, its instance
variables are initialized to their default values.

When you declare a class, you can provide your own constructor to specify custom
initialization for objects of your class. For example, you might want to specify a course
name for a GradeBook object when the object is created, as in

GradeBook myGradeBook =
new GradeBook("CS101 Introduction to Java Programming");

In this case, the argument "CS101 Introduction to Java Programming" is passed to the
GradeBook object’s constructor and used to initialize the courseName. The preceding state-
ment requires that the class provide a constructor with a String parameter. Figure 3.10
contains a modified GradeBook class with such a constructor.

// Fig. 3.10: GradeBook.java
// GradeBook class with a constructor to initialize the course name.

public class GradeBook

{

private String courseName; // course name for this GradeBook

NoOUNDh WN =

Fig. 3.10 | GradeBook class with a constructor to initialize the course name. (Part | of 2.)

86 Chapter 3 Introduction to Classes, Objects, Methods and Strings

8 // constructor initializes courseName with String argument
9 public GradeBook(String name) // constructor name is class name
10 {

11 courseName = name; // initializes courseName

12 } // end constructor

13

14 // method to set the course name

15 public void setCourseName(String name)

16 {

17 courseName = name; // store the course name

18 } // end method setCourseName

19

20 // method to retrieve the course name

21 public String getCourseName()

22 {

23 return courseName;

24 } // end method getCourseName

25

26 // display a welcome message to the GradeBook user

27 public void displayMessage()

28 {

29 // this statement calls getCourseName to get the

30 // name of the course this GradeBook represents

31 System.out.printf("Welcome to the grade book for\n%s!\n",
32 getCourseName());

33 } // end method displayMessage

34 1} // end class GradeBook

Fig. 3.10 | GradeBook class with a constructor to initialize the course name. (Part 2 of 2.)

Lines 9-12 declare GradeBook’s constructor. Like a method, a constructor’s parameter
list specifies the data it requires to perform its task. When you create a new object (as we’ll
do in Fig. 3.11), this data is placed in the parentheses that follow the class name. Line 9 of
Fig. 3.10 indicates that the constructor has a String parameter called name. The name
passed to the constructor is assigned to instance variable courseName in line 11.

Figure 3.11 initializes GradeBook objects using the constructor. Lines 11-12 create
and initialize the GradeBook object gradeBookl. The GradeBook constructor is called with
the argument "CS101 Introduction to Java Programming” to initialize the course name.
The class instance creation expression in lines 11-12 returns a reference to the new object,
which is assigned to the variable gradeBookl. Lines 13—14 repeat this process, this time
passing the argument "CS102 Data Structures in Java" to initialize the course name for
gradeBook2. Lines 17-20 use each object’s getCourseName method to obtain the course
names and show that they were initialized when the objects were created. The output con-
firms that each GradeBook maintains its own copy of instance variable courseName.

An important difference between constructors and methods is that constructors
cannot return values, so they cannot specify a return type (not even void). Normally, con-
structors are declared pub1ic. If a class does not include a constructor, the class’s instance
variables are initialized to their default values. If you declare any constructors for a class, the
Java compiler will not create a default constructor for that class. Thus, we can no longer create
a GradeBook object with new GradeBook () as we did in the earlier examples.

3.6 Initializing Objects with Constructors 87

1 // Fig. 3.11: GradeBookTest.java

2 // GradeBook constructor used to specify the course name at the
3 // time each GradeBook object is created.

4

5 public class GradeBookTest

6 {

7 // main method begins program execution

8 public static void main(String[] args)

9 {

10 // create GradeBook object

11 GradeBook gradeBookl = new GradeBook(

12 "CS101 Introduction to Java Programming");

13 GradeBook gradeBook2 = new GradeBook(

14 "CS102 Data Structures in Java");

15

16 // display initial value of courseName for each GradeBook
17 System.out.printf("gradeBookl course name 1is: %s\n",

18 gradeBookl.getCourseName());

19 System.out.printf("gradeBook2 course name 1is: %s\n",
20 gradeBook2.getCourseName());

21 } // end main
22 } // end class GradeBookTest

gradeBookl course name is: CS101 Introduction to Java Programming
gradeBook2 course name is: CS102 Data Structures in Java

Fig. 3.11 | GradeBook constructor used to specify the course name at the time each
GradeBook object is created.

9 Software Engineering Observation 3.4

Unless default initialization of your class’s instance variables is acceptable, provide a
constructor to ensure that they're properly initialized with meaningful values when each
new object of your class is created.

Adding the Constructor to Class GradeBook’s UML Class Diagram

The UML class diagram of Fig. 3.12 models class GradeBook of Fig. 3.10, which has a
constructor that has a name parameter of type String. Like operations, the UML models
constructors in the third compartment of a class in a class diagram. To distinguish a

GradeBook

— courseName : String

«constructor» GradeBook(name : String)
+ setCourseName(name : String)

+ getCourseName() : String

+ displayMessage()

Fig. 3.12 | UML class diagram indicating that class GradeBook has a constructor that has a
name parameter of UML type String.

88 Chapter 3 Introduction to Classes, Objects, Methods and Strings

constructor from a class’s operations, the UML requires that the word “constructor” be
placed between guillemets (« and ») before the constructor’s name. It’s customary to list
constructors before other operations in the third compartment.

Constructors with Multiple Parameters

Sometimes you’ll want to initialize objects with multiple data items. In Exercise 3.11, we
ask you to store the course name and the instructor’s name in a GradeBook object. In this
case, the GradeBook’s constructor would be modified to receive two Strings, as in

public GradeBook(String courseName, String instructorName)
and you’d call the GradeBook constructor as follows:

GradeBook gradeBook = new GradeBook(
"CS101 Introduction to Java Programming"”, "Sue Green");

3.7 Floating-Point Numbers and Type double

We now depart temporarily from our GradeBook case study to declare an Account class
that maintains the balance of a bank account. Most account balances are not whole num-
bers (such as 0, —22 and 1024). For this reason, class Account represents the account bal-
ance as a floating-point number (i.c., a number with a decimal point, such as 7.33, 0.0975
or 1000.12345). Java provides two primitive types for storing floating-point numbers in
memory—float and double. They differ primarily in that double variables can store
numbers with larger magnitude and finer detail (i.e., more digits to the right of the decimal
point—also known as the number’s precision) than float variables.

Floating-Point Number Precision and Memory Requirements

Variables of type float represent single-precision floating-point numbers and can represent
up to seven significant digits. Variables of type double represent double-precision floating-
point numbers. These require twice as much memory as float variables and provide 15 sig-
nificant digits—approximately double the precision of f1oat variables. For the range of val-
ues required by most programs, variables of type float should suffice, but you can use
double to “play it safe.” In some applications, even double variables will be inadequate. Most
programmers represent floating-point numbers with type double. In fact, Java treats all float-
ing-point numbers you type in a program’s source code (such as 7.33 and 0.0975) as double
values by default. Such values in the source code are known as floating-point literals. See
Appendix D, Primitive Types, for the ranges of values for floats and doubTes.

Although floating-point numbers are not always 100% precise, they have numerous
applications. For example, when we speak of a “normal” body temperature of 98.6, we do
not need to be precise to a large number of digits. When we read the temperature on a
thermometer as 98.6, it may actually be 98.5999473210643. Calling this number simply
98.6 is fine for most applications involving body temperatures. Owing to the imprecise
nature of floating-point numbers, type double is preferred over type float, because
double variables can represent floating-point numbers more accurately. For this reason,
we primarily use type double throughout the book. For precise floating-point numbers,
Java provides class BigDecimal (package java.math).

Floating-point numbers also arise as a result of division. In conventional arithmetic,
when we divide 10 by 3, the result is 3.3333333..., with the sequence of 3s repeating infi-

3.7 Floating-Point Numbers and Type double 89

nitely. The computer allocates only a fixed amount of space to hold such a value, so clearly
the stored floating-point value can be only an approximation.

Account Class with an Instance Variable of Type double

Our next application (Figs. 3.13-3.14) contains a class named Account (Fig. 3.13) that
maintains the balance of a bank account. A typical bank services many accounts, each with
its own balance, so line 7 declares an instance variable named balance of type double. It’s
an instance variable because it’s declared in the body of the class but outside the class’s
method declarations (lines 10-16, 19-22 and 25-28). Every instance (i.e., object) of class
Account contains its own copy of balance.

1 // Fig. 3.13: Account.java

2 // Account class with a constructor to validate and

3 // initialize instance variable balance of type double.

4

5 public class Account

6 {

7 private double balance; // instance variable that stores the balance
8

9 // constructor

10 public Account(double initialBalance)

11 {

12 // validate that initialBalance is greater than 0.0;

13 // if it is not, balance 1is initialized to the default value 0.0
14 if (initialBalance > 0.0)

15 balance = initialBalance;

16 } // end Account constructor

17

18 // credit (add) an amount to the account

19 public void credit(double amount)
20 {
21 balance = balance + amount; // add amount to balance
22 } // end method credit
23
24 // return the account balance
25 public double getBalance()
26 {
27 return balance; // gives the value of balance to the calling method
28 } // end method getBalance

29 } // end class Account

Fig. 3.13 | Account class with a constructor to validate and initialize instance variable balance
of type doube.

The class has a constructor and two methods. It's common for someone opening an
account to deposit money immediately, so the constructor (lines 10—16) receives a param-
eter initialBalance of type double that represents the starting balance. Lines 14—15
ensure that initialBalance is greater than 0.0. If so, initialBalance’s value is assigned
to instance variable balance. Otherwise, balance remains at 0.0—its default initial value.

Method credit (lines 19-22) does 70¢ return any data when it completes its task, so
its return type is void. The method receives one parameter named amount—a double

90 Chapter 3 Introduction to Classes, Objects, Methods and Strings

value that will be added to the balance. Line 21 adds amount to the current value of bal-
ance, then assigns the result to balance (thus replacing the prior balance amount).

Method getBalance (lines 25-28) allows clients of the class (i.e., other classes that use
this class) to obtain the value of a particular Account object’s balance. The method spec-
ifies return type double and an empty parameter list.

Once again, the statements in lines 15, 21 and 27 use instance variable balance even
though it was 7oz declared in any of the methods. We can use balance in these methods
because it’s an instance variable of the class.

AccountTest Class to Use Class Account

Class AccountTest (Fig. 3.14) creates two Account objects (lines 10-11) and initializes
them with 50.00 and -7. 53, respectively. Lines 14—17 output the balance in each Account
by calling the Account’s getBalance method. When method getBalance is called for
accountl from line 15, the value of accountl’s balance is returned from line 27 of
Fig. 3.13 and displayed by the System.out.printf statement (Fig. 3.14, lines 14-15).
Similarly, when method getBalance is called for account2 from line 17, the value of the
account2’s balance is returned from line 27 of Fig. 3.13 and displayed by the Sys-
tem.out.printf statement (Fig. 3.14, lines 16-17). The balance of account2 is 0.00, be-
cause the constructor ensured that the account could 7oz begin with a negative balance.
The value is output by printf with the format specifier %.2f. The format specifier %f is
used to output values of type float or double. The .2 between % and f represents the
number of decimal places (2) that should be output to the right of the decimal point in
the floating-point number—also known as the number’s precision. Any floating-point
value output with %.2f will be rounded to the hundredths position—for example,
123.457 would be rounded to 123.46, 27.333 would be rounded to 27.33 and 123.455
would be rounded to 123.46.

1 // Fig. 3.14: AccountTest.java

2 // Inputting and outputting floating-point numbers with Account objects.
3 dimport java.util.Scanner;

4

5 public class AccountTest

6 {

7 // main method begins execution of Java application

8 public static void main(String[] args)

9 {

10 Account accountl = new Account(50.00); // create Account object
11 Account account2 = new Account(-7.53); // create Account object
12

13 // display initial balance of each object

14 System.out.printf("accountl balance: $%.2f\n",

15 accountl.getBalance());

16 System.out.printf("account2 balance: $%.2f\n\n",

17 account2.getBalance());

18

19 // create Scanner to obtain input from command window
20 Scanner input = new Scanner(System.in);
21 double depositAmount; // deposit amount read from user

Fig. 3.14 | Inputting and outputting floating-point numbers with Account objects. (Part | of 2.)

3.7 Floating-Point Numbers and Type double 91

22

23 System.out.print("Enter deposit amount for accountl: "); // prompt
24 depositAmount = input.nextDouble(); // obtain user input

25 System.out.printf("\nadding %.2f to accountl balance\n\n",
26 depositAmount);

27 accountl.credit(depositAmount); // add to accountl balance
28

29 // display balances

30 System.out.printf("accountl balance: $%.2f\n",

31 accountl.getBalance());

32 System.out.printf("account2 balance: $%.2f\n\n",

33 account2.getBalance());

34

35 System.out.print("Enter deposit amount for account2: "); // prompt
36 depositAmount = input.nextDouble(); // obtain user input

37 System.out.printf("\nadding %.2f to account2 balance\n\n",
38 depositAmount);

39 account2.credit(depositAmount); // add to account2 balance
40

41 // display balances

42 System.out.printf("accountl balance: $%.2f\n",

43 accountl.getBalance());

44 System.out.printf("account2 balance: $%.2f\n",

45 account2.getBalance());

46 } // end main

47 } // end class AccountTest

accountl balance: $50.00
account2 balance: $0.00

Enter deposit amount for accountl: 25.53
adding 25.53 to accountl balance

accountl balance: $75.53
account2 balance: $0.00

Enter deposit amount for account2: 123.45
adding 123.45 to account2 balance

accountl balance: $75.53
account2 balance: $123.45

Fig. 3.14 | Inputting and outputting floating-point numbers with Account objects. (Part 2 of 2.)

Line 21 declares local variable depositAmount to store each deposit amount entered
by the user. Unlike the instance variable balance in class Account, local variable deposit-
Amount in main is 7ot initialized to 0.0 by default. However, this variable does not need to
be initialized here, because its value will be determined by the user’s input.

Line 23 prompts the user to enter a deposit amount for accountl. Line 24 obtains the
input from the user by calling Scanner object input’s nextDouble method, which returns
a double value entered by the user. Lines 25-26 display the deposit amount. Line 27 calls

92 Chapter 3 Introduction to Classes, Objects, Methods and Strings

object accountl’s credit method and supplies depositAmount as the method’s argument.
When the method is called, the argument’s value is assigned to parameter amount (line 19
of Fig. 3.13) of method credit (lines 19-22 of Fig. 3.13); then method credit adds that
value to the balance (line 21 of Fig. 3.13). Lines 30-33 (Fig. 3.14) output the balances of
both Accounts again to show that only accountl’s balance changed.

Line 35 prompts the user to enter a deposit amount for account2. Line 36 obtains the
input from the user by calling Scanner object input’s nextDouble method. Lines 37-38
display the deposit amount. Line 39 calls object account2’s credit method and supplies
depositAmount as the method’s argument; then method credit adds that value to the bal-
ance. Finally, lines 42—45 output the balances of both Accounts again to show that only
account?2’s balance changed.

UML Class Diagram for Class Account

The UML class diagram in Fig. 3.15 models class Account of Fig. 3.13. The diagram
models the private attribute balance with UML type Double to correspond to the class’s
instance variable balance of Java type double. The diagram models class Account’s con-
structor with a parameter initialBalance of UML type Double in the third compartment
of the class. The class’s two pub1ic methods are modeled as operations in the third com-
partment as well. The diagram models operation credit with an amount parameter of
UML type Double (because the corresponding method has an amount parameter of Java
type double), and operation getBalance with a return type of Double (because the corre-
sponding Java method returns a doubTe value).

Account

- balance : Double

«constructor» Account(initialBalance : Double)
+ credit(amount : Double)
+ getBalance() : Double

Fig. 3.15 | UML class diagram indicating that class Account has a private balance
attribute of UML type Double, a constructor (with a parameter of UML type Double) and two
public operations—credit (with an amount parameter of UML type Double) and
getBalance (returns UML type Double).

3.8 (Optional) GUI and Graphics Case Study: Using
Dialog Boxes

This optional case study is designed for those who want to begin learning Java’s powerful
capabilities for creating graphical user interfaces (GUIs) and graphics early in the book,
before the main discussions of these topics in Chapter 14, GUI Components: Part 1,
Chapter 15, Graphics and Java 2D, and Chapter 25, GUI Components: Part 2.

The GUI and Graphics Case Study appears in 10 brief sections (see Fig. 3.16). Each
section introduces new concepts and provides examples with screen captures that show
sample interactions and results. In the first few sections, you’ll create your first graphical
applications. In subsequent sections, you’ll use object-oriented programming concepts to

3.8 (Optional) GUI and Graphics Case Study: Using Dialog Boxes 93

create an application that draws a variety of shapes. When we formally introduce GUIs in
Chapter 14, we use the mouse to choose exactly which shapes to draw and where to draw
them. In Chapter 15, we add capabilities of the Java 2D graphics API to draw the shapes
with different line thicknesses and fills. We hope you find this case study informative and
entertaining.

Section 3.8 Using Dialog Boxes—Basic input and output with dialog boxes

Section 4.14 Creating Simple Drawings—Displaying and drawing lines on the screen
Section 5.10 Drawing Rectangles and Ovals—Using shapes to represent data

Section 6.13 Colors and Filled Shapes—Drawing a bull’s-eye and random graphics
Section 7.15 Drawing Arcs—Drawing spirals with arcs

Section 8.16 Using Objects with Graphics—Storing shapes as objects

Section 9.8 Displaying Text and Images Using Labels—Providing status information
Section 10.8 Drawing with Polymorphism—Identifying the similarities between shapes

Exercise 14.17 Expanding the Interface—Using GUI components and event handling
Exercise 15.31 Adding Java 2D—Using the Java 2D API to enhance drawings

Fig. 3.16 | Summary of the GUI and Graphics Case Study in each chapter.

Displaying Text in a Dialog Box

The programs presented thus far display output in the command window. Many applica-
tions use windows or dialog boxes (also called dialogs) to display output. Web browsers
such as Firefox, Internet Explorer, Chrome and Safari display web pages in their own win-
dows. E-mail programs allow you to type and read messages in a window. Typically, dialog
boxes are windows in which programs display important messages to users. Class JOption-
Pane provides prebuilt dialog boxes that enable programs to display windows containing
messages—such windows are called message dialogs. Figure 3.17 displays the String
"Welcome\nto\nJava" in a message dialog.

1 // Fig. 3.17: Dialogl.java

2 // Using JOptionPane to display multiple lines in a dialog box.
3 import javax.swing.JOptionPane; // import class JOptionPane

4

5 public class Dialogl

6 {

7 public static void main(String[] args)

8 {

9 // display a dialog with a message

10 JOptionPane.showMessageDialog(null, "Welcome\nto\nJava");
11 } // end main

12 } // end class Dialogl

Fig. 3.17 | Using JOptionPane to display multiple lines in a dialog box. (Part | of 2.)

94 Chapter 3 Introduction to Classes, Objects, Methods and Strings

Message X

Welcome
to
Java

oxJ

Fig. 3.17 | Using JOptionPane to display multiple lines in a dialog box. (Part 2 of 2.)

Line 3 indicates that the program uses class JOptionPane from package javax.swing.
This package contains many classes that help you create graphical user interfaces (GUIs).
GUI components facilitate data entry by a program’s user and presentation of outputs to
the user. Line 10 calls J0ptionPane method showMessageDialog to display a dialog box
containing a message. The method requires two arguments. The first helps the Java appli-
cation determine where to position the dialog box. A dialog is typically displayed from a
GUI application with its own window. The first argument refers to that window (known
as the parent window) and causes the dialog to appear centered over the application’s
window. If the first argument is nu11, the dialog box is displayed at the center of your
screen. The second argument is the String to display in the dialog box.

Introducing static Methods

JOptionPane method showMessageDialog is a so-called static method. Such methods
often define frequently used tasks. For example, many programs display dialog boxes, and
the code to do this is the same each time. Rather than requiring you to “reinvent the
wheel” and create code to display a dialog, the designers of class JOptionPane declared a
static method that performs this task for you. A static method is called by using its class
name followed by a dot (.) and the method name, as in

ClassName . methodName(arguments)

Notice that you do 7oz create an object of class JOptionPane to use its static method
showMessageDialog.We discuss static methods in more detail in Chapter 6.

Entering Text in a Dialog

Figure 3.18 uses another predefined JOptionPane dialog called an input dialog that allows
the user to enter data into a program. The program asks for the user’s name and responds
with a message dialog containing a greeting and the name that the user entered.

Lines 10—11 use JOptionPane method showInputDialog to display an input dialog
containing a prompt and a field (known as a text field) in which the user can enter text.
Method showInputDialog’s argument is the prompt that indicates what the user should
enter. The user types characters in the text field, then clicks the OK button or presses the
Enter key to return the String to the program. Method showInputDialog (line 11) returns
a String containing the characters typed by the user. We store the String in variable name
(line 10). [Note: If you press the dialog’s Cancel button or press the Esc key, the method
returns nul1 and the program displays the word “null” as the name.]

Lines 14-15 use static String method format to return a String containing a
greeting with the user’s name. Method format works like method System.out.printf,
except that format returns the formatted String rather than displaying it in a command
window. Line 18 displays the greeting in a message dialog, just as we did in Fig. 3.17.

3.9 Wrap-Up 95

1 // Fig. 3.18: NameDialog.java

2 // Basic input with a dialog box.

3 dimport javax.swing.JOptionPane;

4

5 public class NameDialog

6 {

7 public static void main(String[] args)

8 {

9 // prompt user to enter name

10 String name =

11 JOptionPane.showInputDialog("What is your name?");
12

13 // create the message

14 String message =

15 String.format("Welcome, %s, to Java Programming!", name);
16

17 // display the message to welcome the user by name

18 JOptionPane.showMessageDialog(null, message);

19 } // end main
} // end class NameDialog

N
(-]

Input Message

What is your name?
Welcome, Paul, to Java Programming!
|Pau|| |

e 3

Fig. 3.18 | Obtaining user input from a dialog.

GUI and Graphics Case Study Exercise

3.1 Modify the addition program in Fig. 2.7 to use dialog-based input and output with the
methods of class J0ptionPane. Since method showInputDialog returns a String, you must convert
the String the user enters to an int for use in calculations. The Integer class’s static method
parselnt takes a String argument representing an integer (e.g., the result of JOptionPane. showIn-
putDialog) and returns the value as an int. Method parselInt is a static method of class Integer
(from package java.lang). If the String does not contain a valid integer, the program will terminate
with an error.

3.9 Wrap-Up

In this chapter, you learned how to declare instance variables of a class to maintain data for
each object of the class, and how to declare methods that operate on that data. You learned
how to call a method to tell it to perform its task and how to pass information to methods
as arguments. You learned the difference between a local variable of a method and an in-
stance variable of a class and that only instance variables are initialized automatically. You
also learned how to use a class’s constructor to specify the initial values for an object’s in-
stance variables. Throughout the chapter, you saw how the UML can be used to create class
diagrams that model the constructors, methods and attributes of classes. Finally, you learned
about floating-point numbers—how to store them with variables of primitive type double,

96 Chapter 3 Introduction to Classes, Objects, Methods and Strings

how to input them with a Scanner object and how to format them with printf and format
specifier %f for display purposes. In the next chapter we begin our introduction to control
statements, which specify the order in which a program’s actions are performed. You'll use
these in your methods to specify how they should perform their tasks.

Summary
Section 3.2 Declaring a Class with a Method and Instantiating an Object of a Class

Each class declaration that begins with the access modifier (p. 72) pub1ic must be stored in a file
that has exactly the same name as the class and ends with the . java file-name extension.

Every class declaration contains keyword class followed immediately by the class’s name.

A method declaration that begins with keyword public indicates that the method can be called
by other classes declared outside the class declaration.

Keyword void indicates that a method will perform a task but will not return any information.

By convention, method names begin with a lowercase first letter and all subsequent words in the
name begin with a capital first letter.

Empty parentheses following a method name indicate that the method does not require any pa-
rameters to perform its task.

Every method’s body is delimited by left and right braces ({ and }).

The method’s body contains statements that perform the method’s task. After the statements ex-
ecute, the method has completed its task.

When you attempt to execute a class, Java looks for the class’s main method to begin execution.
Typically, you cannot call a method of another class until you create an object of that class.
A class instance creation expression (p. 74) begins with keyword new and creates a new object.

To call a method of an object, follow the variable name with a dot separator (.; p. 75), the meth-
od name and a set of parentheses containing the method’s arguments.

In the UML, each class is modeled in a class diagram as a rectangle with three compartments.
The top compartment contains the class’s name centered horizontally in boldface. The middle
one contains the class’s attributes, which correspond to fields (p. 79) in Java. The bottom one
contains the class’s operations (p. 76), which correspond to methods and constructors in Java.

The UML models operations by listing the operation name followed by a set of parentheses. A
plus sign (+) in front of the operation name indicates that the operation is a public one in the
UML (i.e., a public method in Java).

Section 3.3 Declarmg a Method with a Parameter

* Methods often require parameters (p. 76) to perform their tasks. Such additional information is
provided to methods via arguments in method calls.

Scanner method nextLine (p. 76) reads characters until a newline character is encountered, then
returns the characters as a String.

Scanner method next (p. 77) reads characters until any white-space character is encountered,
then returns the characters as a String.

A method that requires data to perform its task must specify this in its declaration by placing ad-
ditional information in the method’s parameter list (p. 76).

Each parameter must specify both a type and a variable name.

Summary 97

At the time a method is called, its arguments are assigned to its parameters. Then the method
body uses the parameter variables to access the argument values.

* A method specifies multiple parameters in a comma-separated list.

e The number of arguments in the method call must match the number of parameters in the meth-
od declaration’s parameter list. Also, the argument types in the method call must be consistent
with the types of the corresponding parameters in the method’s declaration.

¢ Class String is in package java.lang, which is imported implicitly into all source-code files.

* By default, classes compiled into the same directory are in the same package. Classes in the same
package are implicitly imported into the source-code files of other classes in the same package.

* import declarations are not required if you always use fully qualified class names (p. 79).

e The UML models a parameter of an operation by listing the parameter name, followed by a colon
and the parameter type between the parentheses following the operation name.

e The UML has its own data types similar to those of Java. Not all the UML data types have the
same names as the corresponding Java types.

e The UML type String corresponds to the Java type String.

Section 3.4 Instance Variables, set Methods and get Methods

 Variables declared in a method’s body are local variables and can be used only in that method.

* A class normally consists of one or more methods that manipulate the attributes (data) that be-
long to a particular object of the class. Such variables are called fields and are declared inside a
class declaration but outside the bodies of the class’s method declarations.

* When each object of a class maintains its own copy of an attribute, the corresponding field is
known as an instance variable.

e Variables or methods declared with access modifier private are accessible only to methods of the
class in which they’re declared.

¢ Declaring instance variables with access modifier private (p. 80) is known as data hiding.

* A benefit of fields is that all the methods of the class can use the fields. Another distinction be-
tween a field and a local variable is that a field has a default initial value (p. 82) provided by Java
when you do not specify the field’s initial value, but a local variable does not.

¢ The default value for a field of type String (or any other reference type) is nu11.

* When a method that specifies a return type (p. 73) is called and completes its task, the method
returns a result to its calling method (p. 73).

* Classes often provide pub1ic methods to allow the class’s clients to sez or gez private instance vari-
ables (p. 83). The names of these methods need not begin with sez or get, but this naming conven-
tion is recommended and is required for special Java software components called JavaBeans.

e The UML represents instance variables as an attribute name, followed by a colon and the type.

e Private attributes are preceded by a minus sign (-) in the UML.

e The UML indicates an operation’s return type by placing a colon and the return type after the
parentheses following the operation name.

* UML class diagrams (p. 75) do not specify return types for operations that do not return values.

Section 3.5 Primitive Types vs. Reference Types

* Types in Java are divided into two categories—primitive types and reference types. The primitive
types are boolean, byte, char, short, int, Tong, float and double. All other types are reference
types, so classes, which specify the types of objects, are reference types.

98 Chapter 3 Introduction to Classes, Objects, Methods and Strings

A primitive-type variable can store exactly one value of its declared type at a time.

Primitive-type instance variables are initialized by default. Variables of types byte, char, short,
int, Tong, float and double are initialized to 0. Variables of type boolean are initialized to false.

Reference-type variables (called references; p. 84) store the location of an object in the comput-
er’s memory. Such variables refer to objects in the program. The object that’s referenced may
contain many instance variables and methods.

Reference-type fields are initialized by default to the value nu11.

A reference to an object (p. 84) is required to invoke an object’s instance methods. A primitive-
type variable does not refer to an object and therefore cannot be used to invoke a method.

Section 3.6 Initializing Objects with Constructors

Keyword new requests memory from the system to store an object, then calls the corresponding
class’s constructor (p. 74) to initialize the object.

A constructor can be used to initialize an object of a class when the object is created.
Constructors can specify parameters but cannot specify return types.

If a class does not define constructors, the compiler provides a default constructor (p. 85) with
no parameters, and the class’s instance variables are initialized to their default values.

The UML models constructors in the third compartment of a class diagram. To distinguish a
constructor from a class’s operations, the UML places the word “constructor” between guillemets
(« and »; p. 88) before the constructor’s name.

Section 3.7 Floating-Point Numbers and Type double

A floating-point number (p. 88) is a number with a decimal point. Java provides two primitive
types for storing floating-point numbers (p. 88) in memory—float and double. The primary
difference between these types is that doubTe variables can store numbers with larger magnitude
and finer detail (known as the number’s precision; p. 88) than float variables.

Variables of type float represent single-precision floating-point numbers and have seven signif-
icant digits. Variables of type double represent double-precision floating-point numbers. These
require twice as much memory as float variables and provide 15 significant digits—approxi-
mately double the precision of float variables.

Floating-point literals (p. 88) are of type double by default.
Scanner method nextDouble (p. 91) returns a double value.

The format specifier %f (p. 90) is used to output values of type float or double. The format spec-
ifier %. 2f specifies that two digits of precision (p. 90) should be output to the right of the decimal
point in the floating-point number.

The default value for a field of type double is 0.0, and the default value for a field of type int is 0.

Self-Review Exercises
3.1 Fill in the blanks in each of the following:

a) Each class declaration that begins with keyword must be stored in a file that
has exactly the same name as the class and ends with the . java file-name extension.

b) Keyword in a class declaration is followed immediately by the class’s name.

c) Keyword requests memory from the system to store an object, then calls the
corresponding class’s constructor to initialize the object.

d) Each parameter must specify both a(n) and a(n)

e) By default, classes that are compiled in the same directory are considered to be in the
same package, known as the

3.2

3.3
3.4

Answers to Self-Review Exercises 99

When each object of a class maintains its own copy of an attribute, the field that repre-
sents the attribute is also known as a(n)
Java provides two primitive types for storing floating-point numbers in memory:

and
Variables of type double represent floating-point numbers.
Scanner method returns a double value.
Keyword public is an access .
Return type indicates that a method will not return a value.
Scanner method reads characters until it encounters a newline character,

then returns those characters as a String.

m) Class String is in package

n)

o)
p)
3)
r)

A(n) is not required if you always refer to a class with its fully qualified class
name.

A(n) is a number with a decimal point, such as 7.33, 0.0975 or 1000.12345.
Variables of type float represent floating-point numbers.

The format specifier is used to output values of type float or doubTe.
Types in Java are divided into two categories—, types and types.

State whether each of the following is true or false. If false, explain why.

a)
b)
<)
d)

By convention, method names begin with an uppercase first letter, and all subsequent
words in the name begin with a capital first letter.

An import declaration is not required when one class in a package uses another in the
same package.

Empty parentheses following a method name in a method declaration indicate that the
method does not require any parameters to perform its task.

Variables or methods declared with access modifier private are accessible only to meth-
ods of the class in which they’re declared.

A primitive-type variable can be used to invoke a method.

Variables declared in the body of a particular method are known as instance variables
and can be used in all methods of the class.

Every method’s body is delimited by left and right braces ({ and }).

Primitive-type local variables are initialized by default.

Reference-type instance variables are initialized by default to the value nu11.

Any class that contains public static void main(String[] args) can be used to exe-
cute an application.

The number of arguments in the method call must match the number of parameters in
the method declaration’s parameter list.

Floating-point values that appear in source code are known as floating-point literals and
are type float by default.

What is the difference between a local variable and a field?

Explain the purpose of a method parameter. What is the difference between a parameter
and an argument?

Answers to Self-Review Exercises

3.1

a) public. b) class. ¢) new. d) type, name. ¢) default package.) instance variable. g) float,
double. h) double-precision. i) nextDouble. j) modifier. k) void. l) nextLine. m) java.lang.

n) import declaration. o) floating-point number. p) single-precision. q) %f. r) primitive, reference.

3.2

a)

False. By convention, method names begin with a lowercase first letter and all subse-

quent words in the name begin with a capital first letter. b) True. ¢) True. d) True. ¢) False. A prim-

100 Chapter 3 Introduction to Classes, Objects, Methods and Strings

itive-type variable cannot be used to invoke a method—a reference to an object is required to invoke
the object’s methods. f) False. Such variables are called local variables and can be used only in the
method in which they’re declared. g) True. h) False. Primitive-type instance variables are initialized
by default. Each local variable must explicitly be assigned a value. i) True. j) True. k) True. 1) False.
Such literals are of type double by default.

3.3 A local variable is declared in the body of a method and can be used only from the point at
which it’s declared through the end of the method declaration. A field is declared in a class, but not
in the body of any of the class’s methods. Also, fields are accessible to all methods of the class. (We'll
see an exception to this in Chapter 8, Classes and Objects: A Deeper Look.)

3.4 A parameter represents additional information that a method requires to perform its task.
Each parameter required by a method is specified in the method’s declaration. An argument is the
actual value for a method parameter. When a method is called, the argument values are passed to
the corresponding parameters of the method so that it can perform its task.

Exercises
3.5 (Keyword new) What's the purpose of keyword new? Explain what happens when you use it.

3.6 (Default Constructors) What is a default constructor? How are an object’s instance variables
initialized if a class has only a default constructor?

3.7 (Instance Variables) Explain the purpose of an instance variable.

3.8 (Using Classes Withour Importing Them) Most classes need to be imported before they can
be used in an application. Why is every application allowed to use classes System and String without
first importing them?

3.9 (Using a Class Without Importing It) Explain how a program could use class Scanner with-
out importing it.
3.10 (set and get Methods) Explain why a class might provide a ser method and a ger method for

an instance variable.

3.11 (Modified GradeBook Class) Modify class GradeBook (Fig. 3.10) as follows:
a) Include a String instance variable that represents the name of the course’s instructor.
b) Provide a sez method to change the instructor’s name and a ger method to retrieve it.
¢) Modify the constructor to specify two parameters—one for the course name and one
for the instructor’s name.
d) Modify method displayMessage to output the welcome message and course name, fol-
lowed by "This course is presented by: " and the instructor’s name.

Use your modified class in a test application that demonstrates the class’s new capabilities.

3.12 (Modified Account Class) Modify class Account (Fig. 3.13) to provide a method called deb-
it that withdraws money from an Account. Ensure that the debit amount does not exceed the
Account’s balance. If it does, the balance should be left unchanged and the method should print a
message indicating "Debit amount exceeded account balance.” Modify class AccountTest
(Fig. 3.14) to test method debit.

3.13 (Invoice Class) Create a class called Invoice that a hardware store might use to represent
an invoice for an item sold at the store. An Invoice should include four pieces of information as
instance variables—a part number (type String), a part description (type String), a quantity of the
item being purchased (type int) and a price per item (double). Your class should have a constructor
that initializes the four instance variables. Provide a ser and a ger method for each instance variable.
In addition, provide a method named getInvoiceAmount that calculates the invoice amount (i.e.,
multiplies the quantity by the price per item), then returns the amount as a double value. If the

Making a Difference 101

quantity is not positive, it should be set to 0. If the price per item is not positive, it should be set to
0.0. Write a test application named InvoiceTest that demonstrates class Invoice’s capabilities.

3.14 (Employee Class) Create a class called Employee that includes three instance variables—a first
name (type String), a last name (type String) and a monthly salary (double). Provide a constructor
that initializes the three instance variables. Provide a set and a get method for each instance variable. If
the monthly salary is not positive, do not set its value. Write a test application named EmployeeTest
that demonstrates class Employee’s capabilities. Create two Employee objects and display each object’s
yearly salary. Then give each Employee a 10% raise and display each EmpTloyee’s yearly salary again.

3.15 (Date Class) Create a class called Date that includes three instance variables—a month (type
int), a day (type int) and a year (type int). Provide a constructor that initializes the three instance
variables and assumes that the values provided are correct. Provide a sez and a gez method for each in-
stance variable. Provide a method displayDate that displays the month, day and year separated by for-
ward slashes (/). Write a test application named DateTest that demonstrates class Date’s capabilities.

Making a Difference

3.16 (Target-Heart-Rate Calcularor) While exercising, you can use a heart-rate monitor to see
that your heart rate stays within a safe range suggested by your trainers and doctors. According to the
American Heart Association (AHA) (www.americanheart.org/presenter.jhtml?identifier=4736),
the formula for calculating your maximum heart rate in beats per minute is 220 minus your age in
years. Your target heart rate is a range that’s 50—85% of your maximum heart rate. [Noze: These for-
mulas are estimates provided by the AHA. Maximum and target heart rates may vary based on the
health, fitness and gender of the individual. Always consult a physician or qualified health care pro-
fessional before beginning or modifying an exercise program.] Create a class called HeartRates. The
class attributes should include the person’s first name, last name and date of birth (consisting of sep-
arate attributes for the month, day and year of birth). Your class should have a constructor that re-
ceives this data as parameters. For each attribute provide ser and ger methods. The class also should
include a method that calculates and returns the person’s age (in years), a method that calculates and
returns the person’s maximum heart rate and a method that calculates and returns the person’s target
heart rate. Write a Java application that prompts for the person’s information, instantiates an object
of class HeartRates and prints the information from that object—including the person’s first name,
last name and date of birth—then calculates and prints the person’s age in (years), maximum heart
rate and target-heart-rate range.

3.17 (Computerization of Health Records) A health care issue that has been in the news lately is
the computerization of health records. This possibility is being approached cautiously because of
sensitive privacy and security concerns, among others. [We address such concerns in later exercises.]
Computerizing health records could make it easier for patients to share their health profiles and his-
tories among their various health care professionals. This could improve the quality of health care,
help avoid drug conflicts and erroneous drug prescriptions, reduce costs and, in emergencies, could
save lives. In this exercise, you’ll design a “starter” HealthProfile class for a person. The class attri-
butes should include the person’s first name, last name, gender, date of birth (consisting of separate
attributes for the month, day and year of birth), height (in inches) and weight (in pounds). Your class
should have a constructor that receives this data. For each attribute, provide sez and ger methods.
The class also should include methods that calculate and return the user’s age in years, maximum
heart rate and target-heart-rate range (see Exercise 3.16), and body mass index (BMI; see
Exercise 2.33). Write a Java application that prompts for the person’s information, instantiates an
object of class HealthProfile for that person and prints the information from that object—includ-
ing the person’s first name, last name, gender, date of birth, height and weight—then calculates and
prints the person’s age in years, BMI, maximum heart rate and target-heart-rate range. It should also
display the BMI values chart from Exercise 2.33.

www.americanheart.org/presenter.jhtml?identifier=4736

Let’s all move one place on.
—Lewis Carroll

The wheel is come full circle.
—Wiilliam Shakespeare

How many apples fell on
Newton's head before he took the
hint!

—Robert Frost

Objectives
In this chapter you'll learn:

m Basic problem-solving
techniques.

m To develop algorithms
through the process of top-
down, stepwise refinement.

m Tousetheifandif..else
selection statements to
choose among alternative
actions.

m To use the whiTe repetition
statement to execute
statements in a program
repeatedly.

m To use counter-controlled
repetition and sentinel-
controlled repetition.

m To use the compound
assignment, increment and
decrement operators.

m The portability of primitive
data types.

Control Statements: Part |

/ Qutline

4.1 Introduction 103

4.1 Introduction 4.9 Formulating Algorithms: Sentinel-
4.2 Algorithms Controlled Repetition
4.3 Pseudocode 4.10 Formulating Algorithms: Nested

4.4 Control Structures Control Statements

4.5 1if Single-Selection Statement

4.6 if..else Double-Selection
Statement 4.13 Primitive Types

4.7 while Repetition Statement 4.14 (Optional) GUI and Graphics Case
Study: Creating Simple Drawings

4.11 Compound Assignment Operators
4.12 Increment and Decrement Operators

4.8 Formulating Algorithms: Counter-
Controlled Repetition 4.15 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

4.1 Introduction

Before writing a program to solve a problem, you should have a thorough understanding of
the problem and a carefully planned approach to solving it. When writing a program, you
also should understand the available building blocks and employ proven program-construc-
tion techniques. In this chapter and in Chapter 5, Control Statements: Part 2, we discuss
these issues in our presentation of the theory and principles of structured programming.
The concepts presented here are crucial in building classes and manipulating objects.

We introduce Java’s if, if...else and while statements, three of the building blocks
that allow you to specify the logic required for methods to perform their tasks. We devote
a portion of this chapter (and Chapters 5 and 7) to further developing the GradeBook class
introduced in Chapter 3. In particular, we add a method to the GradeBook class that uses
control statements to calculate the average of a set of student grades. Another example
demonstrates additional ways to combine control statements to solve a similar problem.
We introduce Java’s compound assignment, increment and decrement operators. Finally,
we discuss the portability of Java’s primitive types.

4.2 Algorithms

Any computing problem can be solved by executing a series of actions in a specific order.
A procedure for solving a problem in terms of

1. the actions to execute and
2. the order in which these actions execute

is called an algorithm. The following example demonstrates that correctly specifying the
order in which the actions execute is important.

Consider the “rise-and-shine algorithm” followed by one executive for getting out of
bed and going to work: (1) Get out of bed; (2) take off pajamas; (3) take a shower; (4) get
dressed; (5) eat breakfast; (6) carpool to work. This routine gets the executive to work well
prepared to make critical decisions. Suppose that the same steps are performed in a slightly
different order: (1) Get out of bed; (2) take off pajamas; (3) get dressed; (4) take a shower;
(5) eat breakfast; (6) carpool to work. In this case, our executive shows up for work soaking

104 Chapter 4 Control Statements: Part |

wet. Specifying the order in which statements (actions) execute in a program is called pro-
gram control. This chapter investigates program control using Java’s control statements.

4.3 Pseudocode

Pseudocode is an informal language that helps you develop algorithms without having to
worry about the strict details of Java language syntax. The pseudocode we present is par-
ticularly useful for developing algorithms that will be converted to structured portions of
Java programs. Pseudocode is similar to everyday English—it’s convenient and user
friendly, but it’s not an actual computer programming language. You'll see an algorithm
written in pseudocode in Fig. 4.5.

Pseudocode does not execute on computers. Rather, it helps you “think out” a pro-
gram before attempting to write it in a programming language, such as Java. This chapter
provides several examples of using pseudocode to develop Java programs.

The style of pseudocode we present consists purely of characters, so you can type
pseudocode conveniently, using any text-editor program. A carefully prepared pseudocode
program can easily be converted to a corresponding Java program.

Pseudocode normally describes only statements representing the actions that occur
after you convert a program from pseudocode to Java and the program is run on a com-
puter. Such actions might include input, output or calculations. We typically do not
include variable declarations in our pseudocode, but some programmers choose to list vari-
ables and mention their purposes at the beginning of their pseudocode.

4.4 Control Structures

Normally, statements in a program are executed one after the other in the order in which
they’re written. This process is called sequential execution. Various Java statements,
which we’ll soon discuss, enable you to specify that the next statement to execute is nor
necessarily the next one in sequence. This is called transfer of control.

During the 1960s, it became clear that the indiscriminate use of transfers of control
was the root of much difficulty experienced by software development groups. The blame
was pointed at the goto statement (used in most programming languages of the time),
which allows you to specify a transfer of control to one of a wide range of destinations in
a program. The term structured programming became almost synonymous with “goto
elimination.” [Note: Java does 7ot have a goto statement; however, the word goto is
reserved by Java and should nor be used as an identifier in programs.]

The research of Bohm and Jacopini' had demonstrated that programs could be
written without any goto statements. The challenge of the era for programmers was to shift
their styles to “goto-less programming.” Not until the 1970s did most programmers start
taking structured programming seriously. The results were impressive. Software develop-
ment groups reported shorter development times, more frequent on-time delivery of sys-
tems and more frequent within-budget completion of software projects. The key to these
successes was that structured programs were clearer, easier to debug and modify, and more
likely to be bug free in the first place.

1. Bohm, C., and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two For-
mation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 336-371.

4.4 Control Structures 105

Bohm and Jacopini’s work demonstrated that all programs could be written in terms
of only three control structures—the sequence structure, the selection structure and the
repetition structure. When we introduce Java’s control structure implementations, we’ll
refer to them in the terminology of the Java Language Specification as “control statements.”

Sequence Structure in Java

The sequence structure is built into Java. Unless directed otherwise, the computer executes
Java statements one after the other in the order in which they’re written—that is, in se-
quence. The activity diagram in Fig. 4.1 illustrates a typical sequence structure in which
two calculations are performed in order. Java lets you have as many actions as you want in
a sequence structure. As we'll soon see, anywhere a single action may be placed, we may
place several actions in sequence.

i

add grade to total - - --------

v

add | to counter - ---------

Corresponding Java statement:
total = total + grade;

Corresponding Java statement:
counter = counter + 1;

Fig. 4.1 | Sequence structure activity diagram.

A UML activity diagram models the workflow (also called the activity) of a portion
of a software system. Such workflows may include a portion of an algorithm, like the
sequence structure in Fig. 4.1. Activity diagrams are composed of symbols, such as action-
state symbols (rectangles with their left and right sides replaced with outward arcs), dia-
monds and small circles. These symbols are connected by transition arrows, which rep-
resent the flow of the activity—that is, the order in which the actions should occur.

Like pseudocode, activity diagrams help you develop and represent algorithms,
although many programmers prefer pseudocode. Activity diagrams clearly show how con-
trol structures operate. We use the UML in this chapter and Chapter 5 to show control
flow in control statements. In Chapters 12-13, we use the UML in a real-world auto-
mated-teller machine case study.

Consider the sequence structure activity diagram in Fig. 4.1. It contains two action
states that represent actions to perform. Each action state contains an action expression—
for example, “add grade to total” or “add 1 to counter”—that specifies a particular action
to perform. Other actions might include calculations or input/output operations. The
arrows in the activity diagram represent transitions, which indicate the order in which the
actions represented by the action states occur. The program that implements the activities
illustrated by the diagram in Fig. 4.1 first adds grade to total, then adds 1 to counter.

The solid circle at the top of the activity diagram represents the initial state—the
beginning of the workflow before the program performs the modeled actions. The solid

106 Chapter 4 Control Statements: Part |

circle surrounded by a hollow circle that appears at the bottom of the diagram represents
the final state—the end of the workflow affer the program performs its actions.

Figure 4.1 also includes rectangles with the upper-right corners folded over. These are
UML notes (like comments in Java)—explanatory remarks that describe the purpose of
symbols in the diagram. Figure 4.1 uses UML notes to show the Java code associated with
each action state. A dotted line connects each note with the element it describes. Activity
diagrams normally do 7oz show the Java code that implements the activity. We do this here
to illustrate how the diagram relates to Java code. For more information on the UML, see
our optional case study (Chapters 12—13) or visit www.um1.org.

Selection Statements in Java

Java has three types of selection statements (discussed in this chapter and Chapter 5). The
if statement either performs (selects) an action, if a condition is true, or skips it, if the con-
dition is false. The if...else statement performs an action if a condition is true and per-
forms a different action if the condition is false. The switch statement (Chapter 5)
performs one of many different actions, depending on the value of an expression.

The 1f statement is a single-selection statement because it selects or ignores a single
action (or, as we'll soon see, a single group of actions). The if...else statement is called a
double-selection statement because it selects between two different actions (or groups of
actions). The switch statement is called a multiple-selection statement because it selects
among many different actions (or groups of actions).

Repetition Statements in Java

Java provides three repetition statements (also called looping statements) that enable pro-
grams to perform statements repeatedly as long as a condition (called the loop-continua-
tion condition) remains true. The repetition statements are the while, do...while and for
statements. (Chapter 5 presents the do...while and for statements.) The while and for
statements perform the action (or group of actions) in their bodies zero or more times—
if the loop-continuation condition is initially false, the action (or group of actions) will not
execute. The do...while statement performs the action (or group of actions) in its body
one or more times. The words 1f, else, switch, while, do and for are Java keywords. A
complete list of Java keywords appears in Appendix C.

Summary of Control Statements in Java

Java has only three kinds of control structures, which from this point forward we refer to
as control statements: the sequence statement, selection statements (three types) and rep-
etition statements (three types). Every program is formed by combining as many of these
statements as is appropriate for the algorithm the program implements. We can model
each control statement as an activity diagram. Like Fig. 4.1, each diagram contains an ini-
tial state and a final state that represent a control statement’s entry point and exit point,
respectively. Single-entry/single-exit control statements make it easy to build programs—
we simply connect the exit point of one to the entry point of the next. We call this control-
statement stacking. We'll learn that there’s only one other way in which control state-
ments may be connected—control-statement nesting—in which one control statement
appears inside another. Thus, algorithms in Java programs are constructed from only three
kinds of control statements, combined in only two ways. This is the essence of simplicity.

www.uml.org

4.5 1T Single-Selection Statement 107

4.5 1if Single-Selection Statement

Programs use selection statements to choose among alternative courses of action. For ex-
ample, suppose that the passing grade on an exam is 60. The pseudocode statement

If student’s grade is greater than or equal to 60
Print “Passed”

determines whether the condition “student’s grade is greater than or equal to 60” is true.
If so, “Passed” is printed, and the next pseudocode statement in order is “performed.” (Re-
member, pseudocode is not a real programming language.) If the condition is false, the
Print statement is ignored, and the next pseudocode statement in order is performed. The
indentation of the second line of this selection statement is optional, but recommended,
because it emphasizes the inherent structure of structured programs.

The preceding pseudocode /f statement may be written in Java as

if (studentGrade >= 60)
System.out.println("Passed");

The Java code corresponds closely to the pseudocode. This is one of the properties of
pseudocode that makes it such a useful program development tool.

Figure 4.2 illustrates the single-selection if statement. This figure contains the most
important symbol in an activity diagram—the diamond, or decision symbol, which indi-
cates that a decision is to be made. The workflow continues along a path determined by
the symbol’s associated guard conditions, which can be true or false. Each transition arrow
emerging from a decision symbol has a guard condition (specified in square brackets next
to the arrow). If a guard condition is true, the workflow enters the action state to which
the transition arrow points. In Fig. 4.2, if the grade is greater than or equal to 60, the pro-
gram prints “Passed,” then transitions to the activity’s final state. If the grade is less than
60, the program immediately transitions to the final state without displaying a message.

de >= 60
[grade >= 60] print “Passed”

[grade < 60]

Fig. 4.2 | 1f single-selection statement UML activity diagram.

The if statement is a single-entry/single-exit control statement. We'll see that the
activity diagrams for the remaining control statements also contain initial states, transition
arrows, action states that indicate actions to perform, decision symbols (with associated
guard conditions) that indicate decisions to be made, and final states.

4.6 if...else Double-Selection Statement

The if single-selection statement performs an indicated action only when the condition
is true; otherwise, the action is skipped. The if...e1se double-selection statement allows

108 Chapter 4 Control Statements: Part |

you to specify an action to perform when the condition is true and a different action when
the condition is false. For example, the pseudocode statement

If students grade is greater than or equal to 60
Print “Passed”

Else
Print “Failed”

prints “Passed” if the student’s grade is greater than or equal to 60, but prints “Failed” if
ic’s less than 60. In either case, after printing occurs, the next pseudocode statement in se-
quence is “performed.”

The preceding If... Else pseudocode statement can be written in Java as

if (grade >= 60)
System.out.println("Passed");
else
System.out.println("Failed");

The body of the else is also indented. Whatever indentation convention you choose

should be applied consistently throughout your programs.

73, Good Programming Practice 4.1
| Indent both body statements of an if...else statement. Many IDEs do this for you.

. Good Programming Practice 4.2

If there are several levels of indentation, each level should be indented the same additional
amount of space.

Figure 4.3 illustrates the flow of control in the if...eTse statement. Once again, the
symbols in the UML activity diagram (besides the initial state, transition arrows and final
state) represent action states and decisions.

rade < 60 I rade >= 60
print “Failed” le] le ! print “Passed”

| ®

Fig. 4.3 | if..else double-selection statement UML activity diagram.

Conditional Operator (?:)

Java provides the conditional operator (?:) that can be used in place of an if...else
statement. This is Java’s only ternary operator (operator that takes three operands). To-
gether, the operands and the ?: symbol form a conditional expression. The first operand
(to the left of the ?) is a boolean expression (i.c., a condition that evaluates to a boolean

4.6 1if...else Double-Selection Statement 109

value—true or false), the second operand (between the ? and :) is the value of the con-
ditional expression if the boolean expression is true and the third operand (to the right of
the :) is the value of the conditional expression if the boolean expression evaluates to
false. For example, the statement

System.out.println(studentGrade>=60 ? "Passed" : "Failed");

prints the value of printIn’s conditional-expression argument. The conditional expres-
sion in this statement evaluates to the string "Passed" if the booTlean expression student-
Grade >= 60 is true and to the string "Failed" if ic’s false. Thus, this statement with the
conditional operator performs essentially the same function as the if...else statement
shown earlier in this section. The precedence of the conditional operator is low, so the en-
tire conditional expression is normally placed in parentheses. We'll see that conditional ex-
pressions can be used in some situations where if...else statements cannot.

Nested if...else Statements

A program can test multiple cases by placing if...eTse statements inside other if...else
statements to create nested if...else statements. For example, the following pseudocode
represents a nested if...else that prints A for exam grades greater than or equal to 90, B
for grades 80 to 89, C for grades 70 to 79, D for grades 60 to 69 and F for all other grades:

If students grade is greater than or equal to 90
Print ‘A”
else
If students grade is greater than or equal to 80
Print “B”
else
If students grade is greater than or equal to 70
Print “C”
else
If students grade is greater than or equal to 60
Print “D”
else

Print “F”
This pseudocode may be written in Java as
p y

if (studentGrade >= 90)
System.out.println("A");
else
if (studentGrade >= 80)
System.out.println("B");
else
if (studentGrade >= 70)
System.out.println("C");
else
if (studentGrade >= 60)
System.out.println("D");
else
System.out.printin(C "F");

110 Chapter 4 Control Statements: Part |

If variable studentGrade is greater than or equal to 90, the first four conditions in the nest-
ed if...eTse statement will be true, but only the statement in the if part of the first
if...else statement will execute. After that statement executes, the else part of the
“outermost” if...else statement is skipped. Many programmers prefer to write the pre-
ceding nested if...else statement as

if (studentGrade >= 90)
System.out.println("A");
else if (studentGrade >= 80)
System.out.println("B");
else if (studentGrade >= 70)
System.out.println("C");
else if (studentGrade >= 60)
System.out.println("D");
else
System.out.printin("F");

The two forms are identical except for the spacing and indentation, which the compiler
ignores. The latter form avoids deep indentation of the code to the right. Such indentation
often leaves little room on a line of source code, forcing lines to be split.

Dangling-else Problem

The Java compiler always associates an eTse with the immediately preceding if unless told
to do otherwise by the placement of braces ({ and }). This behavior can lead to what is
referred to as the dangling-e1se problem. For example,

if (x> 5)
if Cy >5)
System.out.printin("x and y are > 5");
else
System.out.println("x is <= 5");

appears to indicate that if x is greater than 5, the nested i statement determines whether
y is also greater than 5. If so, the string "x and y are > 5" is output. Otherwise, it appears
that if x is not greater than 5, the e1se partof the if...e1se outputs the string "x is <= 5".
Beware! This nested if...eTse statement does not execute as it appears. The compiler ac-
tually interprets the statement as

if (x>5)
if Cy > 5)
System.out.println("x and y are > 5");
else

System.out.printin("x is <= 5");

in which the body of the first 1f is a nested if...eTse. The outer 1f statement tests wheth-
er x is greater than 5. If so, execution continues by testing whether y is also greater than 5.
If the second condition is true, the proper string—"x and y are > 5"—is displayed. How-
ever, if the second condition is false, the string "x is <= 5" is displayed, even though we
know that x is greater than 5. Equally bad, if the outer if statement’s condition is false,
the inner if...else is skipped and nothing is displayed.

To force the nested if...else statement to execute as it was originally intended, we
must write it as follows:

4.6 1if...else Double-Selection Statement 11

if (x> 5)
{
if Cy > 5)
System.out.printin("x and y are > 5");
}
else

System.out.printin("x is <= 5");

The braces indicate that the second if is in the body of the first and that the else is
associated with the first if. Exercises 4.27—4.28 investigate the dangling-eTse problem
further.

Blocks
The if statement normally expects only one statement in its body. To include several
statements in the body of an if (or the body of an else for an if...else statement), en-
close the statements in braces. Statements contained in a pair of braces form a block. A
block can be placed anywhere in a program that a single statement can be placed.

The following example includes a block in the else part of an if...else statement:

if (grade >= 60)
System.out.println("Passed");
else

{
System.out.println("Failed");
System.out.println("You must take this course again.");

3

In this case, if grade is less than 60, the program executes ot statements in the body of
the else and prints

Failed
You must take this course again.

Note the braces surrounding the two statements in the else clause. These braces are im-
portant. Without the braces, the statement

System.out.printin("You must take this course again.");

would be outside the body of the eTse part of the if...e1se statement and would execute
regardless of whether the grade was less than 60.

Syntax errors (e.g., when one brace in a block is left out of the program) are caught
by the compiler. A logic error (e.g., when both braces in a block are left out of the pro-
gram) has its effect at execution time. A fatal logic error causes a program to fail and ter-
minate prematurely. A nonfatal logic error allows a program to continue executing but
causes it to produce incorrect results.

Just as a block can be placed anywhere a single statement can be placed, it’s also pos-
sible to have an empty statement. Recall from Section 2.8 that the empty statement is rep-
resented by placing a semicolon (;) where a statement would normally be.

Common Programming Error 4.1

Placing a semicolon after the condition in an if or if...else statement leads to a logic

error in single-selection if statements and a syntax error in double-selection if...else
statements (when the if-part contains an actual body statement).

112 Chapter 4 Control Statements: Part |

4.7 wh1ile Repetition Statement

A repetition (or looping) statement allows you to specify that a program should repeat an
action while some condition remains true. The pseudocode statement

While there are more items on my shopping list
Purchase next item and cross it off my list

describes the repetition that occurs during a shopping trip. The condition “there are more
items on my shopping list” may be true or false. If it’s true, then the action “Purchase next
item and cross it off my list” is performed. This action will be performed repeatedly while
the condition remains true. The statement(s) contained in the While repetition statement
constitute its body, which may be a single statement or a block. Eventually, the condition
will become false (when the last item on the shopping list has been purchased and crossed
off). At this point, the repetition terminates, and the first statement after the repetition
statement executes.

As an example of Java’s while repetition statement, consider a program segment that
finds the first power of 3 larger than 100. Suppose that the int variable product is initial-
ized to 3. After the following while statement executes, product contains the result:

while (product <= 100)

product = 3 * product;

When this whiTe statement begins execution, the value of variable product is 3. Each it-
eration of the while statement multiplies product by 3, so product takes on the values 9,
27, 81 and 243 successively. When variable product becomes 243, the while-statement
condition—product <= 100—becomes false. This terminates the repetition, so the final
value of product is 243. At this point, program execution continues with the next state-
ment after the while statement.

Common Programming Error 4.2

Not providing in the body of a while statement an action that eventually causes the con-
dition in the while to become false normally results in a logic error called an infinite loop
(the loop never terminates).

The UML activity diagram in Fig. 4.4 illustrates the flow of control in the preceding
while statement. Once again, the symbols in the diagram (besides the initial state, transi-
tion arrows, a final state and three notes) represent an action state and a decision. This dia-
gram introduces the UML’s merge symbol. The UML represents both the merge symbol
and the decision symbol as diamonds. The merge symbol joins two flows of activity into
one. In this diagram, the merge symbol joins the transitions from the initial state and from
the action state, so they both flow into the decision that determines whether the loop
should begin (or continue) executing. The decision and merge symbols can be distin-
guished by the number of “incoming” and “outgoing” transition arrows. A decision
symbol has one transition arrow pointing to the diamond and two or more pointing out
from it to indicate possible transitions from that point. In addition, each transition arrow
pointing out of a decision symbol has a guard condition next to it. A merge symbol has
two or more transition arrows pointing to the diamond and only one pointing from the
diamond, to indicate multiple activity flows merging to continue the activity. Noze of the
transition arrows associated with a merge symbol has a guard condition.

4.8 Formulating Algorithms: Counter-Controlled Repetition 113

merge ~ _
decision ~ _
.l [product <= 100]
~ triple product value
[product > 100] N N
Corresponding Java statement:
@ product = 3 * product;

Fig. 4.4 | while repetition statement UML activity diagram.

Figure 4.4 clearly shows the repetition of the whiTe statement discussed eatlier in this
section. The transition arrow emerging from the action state points back to the merge,
from which program flow transitions back to the decision that’s tested at the beginning of
each iteration of the loop. The loop continues to execute until the guard condition
product > 100 becomes true. Then the while statement exits (reaches its final state), and
control passes to the next statement in sequence in the program.

4.8 Formulating Algorithms: Counter-Controlled
Repetition
To illustrate how algorithms are developed, we modify the GradeBook class of Chapter 3

to solve two variations of a problem that averages student grades. Consider the following
problem statement:

A class of ten students took a quiz. The grades (integers in the range 0 ro 100) for this
quiz are available to you. Determine the class average on the quiz.

The class average is equal to the sum of the grades divided by the number of students. The
algorithm for solving this problem on a computer must input each grade, keep track of the
total of all grades input, perform the averaging calculation and print the result.

Pseudocode Algorithm with Counter-Controlled Repetition

Let’s use pseudocode to list the actions to execute and specify the order in which they
should execute. We use counter-controlled repetition to input the grades one at a time.
This technique uses a variable called a counter (or control variable) to control the number
of times a set of statements will execute. Counter-controlled repetition is often called defi-
nite repetition, because the number of repetitions is known before the loop begins execut-
ing. In this example, repetition terminates when the counter exceeds 10. This section
presents a fully developed pseudocode algorithm (Fig. 4.5) and a version of class Grade-
Book (Fig. 4.6) that implements the algorithm in a Java method. We then present an ap-
plication (Fig. 4.7) that demonstrates the algorithm in action. In Section 4.9, we
demonstrate how to use pseudocode to develop such an algorithm from scratch.

114 Chapter 4 Control Statements: Part |

y Software Engineering Observation 4.1

”‘-" 8@ Lxperience has shown that the most difficult part of solving a problem on a computer is
=0 developing the algorithm for the solution. Once a correct algorithm has been specified,
producing a working Java program from the algorithm is usually straightforward.

Note the references in the algorithm of Fig. 4.5 to a total and a counter. A total is a
variable used to accumulate the sum of several values. A counter is a variable used to
count—in this case, the grade counter indicates which of the 10 grades is about to be
entered by the user. Variables used to store totals are normally initialized to zero before
being used in a program.

Set total to zero
Set grade counter to one

While grade counter is less than or equal to ten
Prompt the user to enter the next grade
Input the next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten
Print the class average

-0 VWO NN Uh WN -

Fig. 4.5 | Pseudocode algorithm that uses counter-controlled repetition to solve the class-
average problem.

Implementing Counter-Controlled Repetition in Class GradeBook
Class GradeBook (Fig. 4.6) contains a constructor (lines 11-14) that assigns a value to the
class’s instance variable courseName (declared in line 8). Lines 17-20, 23-26 and 29-34
declare methods setCourseName, getCourseName and displayMessage, respectively.
Lines 37-66 declare method determineClassAverage, which implements the class-aver-
aging algorithm described by the pseudocode in Fig. 4.5.

Line 40 declares and initializes Scanner variable input, which is used to read values
entered by the user. Lines 4245 declare local variables total, gradeCounter, grade and
average to be of type int. Variable grade stores the user input.

// Fig. 4.6: GradeBook.java

// GradeBook class that solves class-average problem using
// counter-controlled repetition.

import java.util.Scanner; // program uses class Scanner

public class GradeBook

{

ONOUHE WN =

private String courseName; // name of course this GradeBook represents

Fig. 4.6 | GradeBook class that solves class-average problem using counter-controlled
repetition. (Part | of 3.)

4.8 Formulating Algorithms: Counter-Controlled Repetition 115

9

10 // constructor initializes courseName

11 public GradeBook(String name)

12 {

13 courseName = name; // initializes courseName

14 } // end constructor

15

16 // method to set the course name

17 public void setCourseName(String name)

18 {

19 courseName = name; // store the course name

20 } // end method setCourseName

21

22 // method to retrieve the course name

23 public String getCourseName()

24 {

25 return courseName;

26 } // end method getCourseName

27

28 // display a welcome message to the GradeBook user

29 public void displayMessage()

30 {

31 // getCourseName gets the name of the course

32 System.out.printf("Welcome to the grade book for\n%s!\n\n",
33 getCourseName());

34 } // end method displayMessage

35

36 // determine class average based on 10 grades entered by user
37 public void determineClassAverage()

38 {

39 // create Scanner to obtain input from command window
40 Scanner input = new Scanner(System.in);

41

42 int total; // sum of grades entered by user

43 int gradeCounter; // number of the grade to be entered next
44 int grade; // grade value entered by user

45 int average; // average of grades

46

47 // initialization phase

48 total = 0; // initialize total

49 gradeCounter = 1; // initialize loop counter

50

51 // processing phase uses counter-controlled repetition
52 while (gradeCounter <= 10) // loop 10 times

53 {

54 System.out.print("Enter grade: "); // prompt

55 grade = input.nextInt(); // input next grade

56 total = total + grade; // add grade to total

57 gradeCounter = gradeCounter + 1; // increment counter by 1
58 } // end while

59

Fig. 4.6 | GradeBook class that solves class-average problem using counter-controlled
repetition. (Part 2 of 3.)

116 Chapter 4 Control Statements: Part |

60 // termination phase

61 average = total / 10; // integer division yields integer result
62

63 // display total and average of grades

64 System.out.printf("\nTotal of all 10 grades is %d\n", total);
65 System.out.printf("Class average is %d\n'", average);

66 } // end method determineClassAverage

67 1} // end class GradeBook

Fig. 4.6 | GradeBook class that solves class-average problem using counter-controlled
repetition. (Part 3 of 3.)

The declarations (in lines 42-45) appear in the body of method determine-
ClassAverage. Recall that variables declared in a method body are local variables and can
be used only from the line of their declaration to the closing right brace of the method
declaration. A local variable’s declaration must appear before the variable is used in that
method. A local variable cannot be accessed outside the method in which it’s declared.

In this chapter, class GradeBook simply reads and processes a set of grades. The aver-
aging calculation is performed in method determineClassAverage using local variables—
we do not preserve any information about student grades in instance variables of the class.

The assignments (in lines 48—49) initialize total to 0 and gradeCounter to 1. These
initializations occur before the variables are used in calculations. Variables grade and
average (for the user input and calculated average, respectively) need not be initialized
here—their values will be assigned as they’re input or calculated later in the method.

3 Common Programming Error 4.3
| sing the value of a local variable before it'’s initialized results in a compilation error. All
local variables must be initialized before their values are used in expressions.

s, Error-Prevention Tip 4.1
t “3 Initialize each counter and total, either in its declaration or in an assignment statement.
4> Totals are normally initialized to 0. Counters are normally initialized to 0 or 1, depend-
ing on how theyre used (we’ll show examples of when to use 0 and when to use 1).

Line 52 indicates that the while statement should continue looping (also called iter-
ating) as long as gradeCounter’s value is less than or equal to 10. While this condition
remains true, the while statement repeatedly executes the statements between the braces
that delimit its body (lines 54-57).

Line 54 displays the prompt "Enter grade: ". Line 55 reads the grade entered by the
user and assigns it to variable grade. Then line 56 adds the new grade entered by the user
to the total and assigns the result to total, which replaces its previous value.

Line 57 adds 1 to gradeCounter to indicate that the program has processed a grade
and is ready to input the next grade from the user. Incrementing gradeCounter eventually
causes it to exceed 10. Then the loop terminates, because its condition (line 52) becomes
false.

When the loop terminates, line 61 performs the averaging calculation and assigns its
result to the variable average. Line 64 uses System.out’s printf method to display the

4.8 Formulating Algorithms: Counter-Controlled Repetition 117

text "Total of a1l 10 grades is " followed by variable total’s value. Line 65 then uses
printf to display the text "Class average is " followed by variable average’s value.
After reaching line 66, method determineClassAverage returns control to the calling
method (i.e., main in GradeBookTest of Fig. 4.7).

Class GradeBookTest

Class GradeBookTest (Fig. 4.7) creates an object of class GradeBook (Fig. 4.6) and dem-
onstrates its capabilities. Lines 10-11 of Fig. 4.7 create a new GradeBook object and assign
it to variable myGradeBook. The String in line 11 is passed to the GradeBook constructor
(lines 11-14 of Fig. 4.6). Line 13 calls myGradeBook’s displayMessage method to display
a welcome message to the user. Line 14 then calls myGradeBook’s determineClassAverage
method to allow the user to enter 10 grades, for which the method then calculates and
prints the average—the method performs the algorithm shown in Fig. 4.5.

1 // Fig. 4.7: GradeBookTest.java

2 // Create GradeBook object and invoke its determineClassAverage method.
3

4 public class GradeBookTest

5 {

6 public static void main(String[] args)

7 {

8 // create GradeBook object myGradeBook and

9 // pass course name to constructor

10 GradeBook myGradeBook = new GradeBook(

11 "CS101 Introduction to Java Programming");

12

13 myGradeBook.displayMessage(); // display welcome message

14 myGradeBook.determineClassAverage(); // find average of 10 grades
15 } // end main

16 } // end class GradeBookTest

Welcome to the grade book for
CS101 Introduction to Java Programming!

Enter grade: 67
Enter grade: 78
Enter grade: 89
Enter grade: 67
Enter grade: 87
Enter grade: 98
Enter grade: 93
Enter grade: 85
Enter grade: 82
Enter grade: 100

Total of all 10 grades is 846
Class average is 84

Fig. 4.7 | GradeBookTest class creates an object of class GradeBook (Fig. 4.6) and invokes its
determineClassAverage method.

118 Chapter 4 Control Statements: Part |

Notes on Integer Division and Truncation

The averaging calculation performed by method determineClassAverage in response to
the method call at line 14 in Fig. 4.7 produces an integer result. The program’s output
indicates that the sum of the grade values in the sample execution is 846, which, when di-
vided by 10, should yield the floating-point number 84.6. However, the result of the cal-
culation total /10 (line 61 of Fig. 4.6) is the integer 84, because total and 10 are both
integers. Dividing two integers results in integer division—any fractional part of the cal-
culation is lost (i.e., truncated). In the next section we’ll see how to obtain a floating-point
result from the averaging calculation.

Common Programming Error 4.4

Assuming that integer division rounds (rather than truncates) can lead to incorrect results.
For example, 7 + 4, which yields 1.75 in conventional arithmetic, truncates to 1 in inte-
ger arithmetic, rather than rounding to 2.

e

.

4.9 Formulating Algorithms: Sentinel-Controlled
Repetition
Let’s generalize Section 4.8’s class-average problem. Consider the following problem:

Develop a class-averaging program that processes grades for an arbitrary number of
students each time its run.

In the previous class-average example, the problem statement specified the number of stu-
dents, so the number of grades (10) was known in advance. In this example, no indication
is given of how many grades the user will enter during the program’s execution. The pro-
gram must process an arbitrary number of grades. How can it determine when to stop the
input of grades? How will it know when to calculate and print the class average?

One way to solve this problem is to use a special value called a sentinel value (also
called a signal value, a dummy value or a flag value) to indicate “end of data entry.” The
user enters grades until all legitimate grades have been entered. The user then types the
sentinel value to indicate that no more grades will be entered. Sentinel-controlled repeti-
tion is often called indefinite repetition because the number of repetitions is 7ot known
before the loop begins executing.

Clearly, a sentinel value must be chosen that cannot be confused with an acceptable
input value. Grades on a quiz are nonnegative integers, so —1 is an acceptable sentinel value
for this problem. Thus, a run of the class-average program might process a stream of inputs
such as 95, 96, 75, 74, 89 and —1. The program would then compute and print the class
average for the grades 95, 96, 75, 74 and 89; since —1 is the sentinel value, it should 7oz
enter into the averaging calculation.

Developing the Pseudocode Algorithm with Top-Down, Stepwise Refinement:

The Top and First Refinement

We approach this class-average program with a technique called top-down, stepwise re-
finement, which is essential to the development of well-structured programs. We begin
with a pseudocode representation of the top—a single statement that conveys the overall
function of the program:

Determine the class average for the quiz

4.9 Formulating Algorithms: Sentinel-Controlled Repetition 119

The top is, in effect, a complete representation of a program. Unfortunately, the top rarely
conveys sufficient detail from which to write a Java program. So we now begin the refine-
ment process. We divide the top into a series of smaller tasks and list these in the order in
which they’ll be performed. This results in the following first refinement:

Initialize variables
Input, sum and count the quiz grades
Calculate and print the class average

This refinement uses only the sequence structure—the steps listed should execute in order,
one after the other.

Software Engineering Observation 4.2

Each refinement, as well as the top itself, is a complete specification of the algorithm—
only the level of detail varies.

Software Engineering Observation 4.3

Many programs can be divided logically into three phases: an initialization phase thar
initializes the variables; a processing phase that inputs data values and adjusts program
variables accordingly; and a termination phase that calculates and outputs the final
results.

Proceeding to the Second Refinement

The preceding Software Engineering Observation is often all you need for the first refine-
ment in the top-down process. To proceed to the next level of refinement—that is, the
second refinement—we commit to specific variables. In this example, we need a running
total of the numbers, a count of how many numbers have been processed, a variable to
receive the value of each grade as it’s input by the user and a variable to hold the calculated
average. The pseudocode statement

Initialize variables

can be refined as follows:

Initialize total to zero
Initialize counter to zero

Only the variables #otal and counter need to be initialized before they’re used. The variables
average and grade (for the calculated average and the user input, respectively) need not be
initialized, because their values will be replaced as they’re calculated or input.

The pseudocode statement

Input, sum and count the quiz grades

requires a repetition structure (i.e., a loop) that successively inputs each grade. We do not
know in advance how many grades are to be processed, so we’ll use sentinel-controlled rep-
etition. The user enters grades one at a time. After entering the last grade, the user enters
the sentinel value. The program tests for the sentinel value after each grade is input and
terminates the loop when the user enters the sentinel value. The second refinement of the
preceding pseudocode statement is then

120 Chapter 4 Control Statements: Part |

Prompt the user to enter the first grade
Input the first grade (possibly the sentinel)

While the user has not yet entered the sentinel
Add this grade into the running total
Add one to the grade counter
Prompt the user to enter the next grade
Input the next grade (possibly the sentinel)

In pseudocode, we do not use braces around the statements that form the body of the
While structure. We simply indent the statements under the While to show that they be-
long to the While. Again, pseudocode is only an informal program development aid.

The pseudocode statement

Calculate and print the class average

can be refined as follows:

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

else
Print “No grades were entered”

We're careful here to test for the possibility of division by zero—a logic error that, if un-
detected, would cause the program to fail or produce invalid output. The complete second
refinement of the pseudocode for the class-average problem is shown in Fig. 4.8.

2 Error-Prevention Tip 4.2
When performing division by an expression whose value could be zero, test for this and

handle it (e.g., print an error message) rather than allow the error to occur.

Initialize total to zero
Initialize counter to zero

|

2

3

4 Prompt the user to enter the first grade

5 Input the first grade (possibly the sentinel)
6
7
8

While the user has not yet entered the sentinel
Add this grade into the running total

9 Add one to the grade counter
10 Prompt the user ro enter the next grade
1 Input the next grade (possibly the sentinel)
12
13 [fthe counter is not equal to zero
14 Set the average to the total divided by the counter
15 Print the average
16 else
17 Print “No grades were entered”

Fig. 4.8 | Class-average problem pseudocode algorithm with sentinel-controlled repetition.

4.9 Formulating Algorithms: Sentinel-Controlled Repetition 121

In Fig. 4.5 and Fig. 4.8, we included blank lines and indentation in the pseudocode
to make it more readable. The blank lines separate the algorithms into their phases and set
off control statements; the indentation emphasizes the bodies of the control statements.

The pseudocode algorithm in Fig. 4.8 solves the more general class-average problem.
This algorithm was developed after two refinements. Sometimes more are needed.

, Software Engineering Observation 4.4

8 [erminate the top-down, stepwise refinement process when you ve specified the pseudocode
2 algorithm in sufficient detail for you to convert the pseudocode to Java. Normally,
implementing the Java program is then straightforward.

» Software Engineering Observation 4.5

@ Some programmers do not use program development tools like pseudocode. They feel that
=23 rheir ultimate goal is to solve the problem on a computer and that writing pseudocode
merely delays the production of final outputs. Although this may work for simple and
Jamiliar problems, it can lead to serious errors and delays in large, complex projects.

Implementing Sentinel-Controlled Repetition in Class GradeBook

Figure 4.9 shows the Java class GradeBook containing method determineClassAverage
that implements the pseudocode algorithm of Fig. 4.8. Although each grade is an integer,
the averaging calculation is likely to produce a number with a decimal point—in other
words, a real (i.e., floating-point) number. The type int cannot represent such a number,
so this class uses type double to do so.

1 // Fig. 4.9: GradeBook.java

2 // GradeBook class that solves the class-average problem using
3 // sentinel-controlled repetition.

4 import java.util.Scanner; // program uses class Scanner
5

6 public class GradeBook

7 {

8 private String courseName; // name of course this GradeBook represents
9

10 // constructor initializes courseName

11 public GradeBook(String name)

12 {

13 courseName = name; // initializes courseName

14 } // end constructor

15

16 // method to set the course name

17 public void setCourseName(String name)

18 {

19 courseName = name; // store the course name
20 } // end method setCourseName
21
22 // method to retrieve the course name
23 public String getCourseName()
24 {

Fig. 4.9 | GradeBook class that solves the class-average problem using sentinel-controlled
repetition. (Part | of 3.)

122 Chapter 4 Control Statements: Part |

25 return courseName;

26 } // end method getCourseName

27

28 // display a welcome message to the GradeBook user

29 public void displayMessage()

30 {

31 // getCourseName gets the name of the course

32 System.out.printf("Welcome to the grade book for\n%s!\n\n",
33 getCourseName());

34 } // end method displayMessage

35

36 // determine the average of an arbitrary number of grades
37 public void determineClassAverage()

38 {

39 // create Scanner to obtain input from command window
40 Scanner input = new Scanner(System.in);

41

42 int total; // sum of grades

43 int gradeCounter; // number of grades entered

44 int grade; // grade value

45 double average; // number with decimal point for average
46

47 // initialization phase

48 total = 0; // initialize total

49 gradeCounter = 0; // initialize loop counter

50

51 // processing phase

52 // prompt for input and read grade from user

53 System.out.print("Enter grade or -1 to quit: ");

54 grade = input.nextInt();

55

56 // loop until sentinel value read from user

57 while (grade != -1)

58 {

59 total = total + grade; // add grade to total

60 gradeCounter = gradeCounter + 1; // increment counter
61

62 // prompt for input and read next grade from user
63 System.out.print("Enter grade or -1 to quit: ");
64 grade = input.nextInt();

65 } // end while

66

67 // termination phase

68 // if user entered at least one grade...

69 if (gradeCounter != 0)

70 {

71 // calculate average of all grades entered

72 average = (double) total / gradeCounter;

73

74 // display total and average (with two digits of precision)
75 System.out.printf("\nTotal of the %d grades entered is %d\n",
76 gradeCounter, total);

Fig. 4.9 | GradeBook class that solves the class-average problem using sentinel-controlled
repetition. (Part 2 of 3.)

4.9 Formulating Algorithms: Sentinel-Controlled Repetition 123

77 System.out.printf("Class average is %.2f\n", average);
78 } // end if

79 else // no grades were entered, so output appropriate message
80 System.out.println("No grades were entered");

81 } // end method determineClassAverage

82 1} // end class GradeBook

Fig. 4.9 | GradeBook class that solves the class-average problem using sentinel-controlled
repetition. (Part 3 of 3.)

In this example, we see that control statements may be stacked on top of one another
(in sequence). The while statement (lines 57-65) is followed in sequence by an if...eTse
statement (lines 69—80). Much of the code in this program is identical to that in Fig. 4.6,
so we concentrate on the new concepts.

Line 45 declares doub1e variable average, which allows us to store the class average as
a floating-point number. Line 49 initializes gradeCounter to 0, because no grades have
been entered yet. Remember that this program uses sentinel-controlled repetition to input
the grades. To keep an accurate record of the number of grades entered, the program incre-
ments gradeCounter only when the user enters a valid grade.

Program Logic for Sentinel-Controlled Repetition vs. Counter-Controlled Repetition
Compare the program logic for sentinel-controlled repetition in this application with that
for counter-controlled repetition in Fig. 4.6. In counter-controlled repetition, each itera-
tion of the while statement (e.g., lines 52-58 of Fig. 4.6) reads a value from the user, for
the specified number of iterations. In sentinel-controlled repetition, the program reads the
first value (lines 53-54 of Fig. 4.9) before reaching the while. This value determines
whether the program’s flow of control should enter the body of the whiTe. If the condition
of the whiTe is false, the user entered the sentinel value, so the body of the while does not
execute (i.e., no grades were entered). If; on the other hand, the condition is true, the body
begins execution, and the loop adds the grade value to the total (line 59). Then lines 63—
64 in the loop body input the next value from the user. Next, program control reaches the
closing right brace of the loop body at line 65, so execution continues with the test of the
while’s condition (line 57). The condition uses the most recent grade input by the user
to determine whether the loop body should execute again. The value of variable grade is
always input from the user immediately before the program tests the while condition.
This allows the program to determine whether the value just input is the sentinel value
before the program processes that value (i.c., adds it to the total). If the sentinel value is
input, the loop terminates, and the program does not add —1 to the total.

74, Good Programming Practice 4.3
W | [a sentinel-controlled loop, prompts should remind the user of the sentinel.

After the loop terminates, the if...el1se statement at lines 69-80 executes. The con-
dition at line 69 determines whether any grades were input. If none were input, the else
part (lines 79-80) of the if...else statement executes and displays the message "No
grades were entered" and the method returns control to the calling method.

Notice the while statement’s block in Fig. 4.9 (lines 58—65). Without the braces, the
loop would consider its body to be only the first statement, which adds the grade to the

124 Chapter 4 Control Statements: Part |

total. The last three statements in the block would fall outside the loop body, causing the
computer to interpret the code incorrectly as follows:

while (grade != -1)
total = total + grade; // add grade to total
gradeCounter = gradeCounter + 1; // increment counter

// prompt for input and read next grade from user
System.out.print("Enter grade or -1 to quit: ");
grade = input.nextInt();

The preceding code would cause an infinite loop in the program if the user did not input
the sentinel -1 at line 54 (before the while statement).

Common Programming Error 4.5

Omitting the braces that delimit a block can lead o logic errors, such as infinite loops. To
prevent this problem, some programmers enclose the body of every control statement in
braces, even if the body contains only a single statement.

Ya

cE

Explicitly and Implicitly Converting Between Primitive Types

If at least one grade was entered, line 72 of Fig. 4.9 calculates the average of the grades.
Recall from Fig. 4.6 that integer division yields an integer result. Even though variable av-
erage is declared as a double (line 45), the calculation

average = total / gradeCounter;

loses the fractional part of the quotient before the result of the division is assigned to av-
erage. This occurs because total and gradeCounter are both integers, and integer divi-
sion yields an integer result. To perform a floating-point calculation with integer values,
we must temporarily treat these values as floating-point numbers for use in the calculation.
Java provides the unary cast operator to accomplish this task. Line 72 uses the (double)
cast operator—a unary operator—to create a temporary floating-point copy of its operand
total (which appears to the right of the operator). Using a cast operator in this manner is
called explicit conversion or type casting. The value stored in total is still an integer.

The calculation now consists of a floating-point value (the temporary double version
of total) divided by the integer gradeCounter. Java knows how to evaluate only arith-
metic expressions in which the operands’ types are identical. To ensure that the operands
are of the same type, Java performs an operation called promotion (or implicit conver-
sion) on selected operands. For example, in an expression containing values of the types
int and doubTe, the int values are promoted to double values for use in the expression.
In this example, the value of gradeCounter is promoted to type double, then the floating-
point division is performed and the result of the calculation is assigned to average. As long
as the (double) cast operator is applied to any variable in the calculation, the calculation
will yield a double result. Later in this chapter, we discuss all the primitive types. You'll
learn more about the promotion rules in Section 6.7.

Common Programming Error 4.6

A cast operator can be used to convert between primitive numeric types, such as int and
double, and between related reference types (as we discuss in Chapter 10, Object-Orient-
ed Programming: Polymorphism). Casting to the wrong type may cause compilation errors
or runtime errors.

4.10 Formulating Algorithms: Nested Control Statements 125

A cast operator is formed by placing parentheses around any type’s name. The operator
is a unary operator (i.e., an operator that takes only one operand). Java also supports unary
versions of the plus (+) and minus (-) operators, so you can write expressions like -7 or +5.
Cast operators associate from right to left and have the same precedence as other unary
operators, such as unary + and unary -. This precedence is one level higher than that of the
multiplicative operators *, / and %. (See the operator precedence chart in Appendix A.) We
indicate the cast operator with the notation (#ype) in our precedence charts, to indicate that
any type name can be used to form a cast operator.

Line 77 displays the class average. In this example, we display the class average
rounded to the nearest hundredth. The format specifier %. 2f in printf’s format control
string indicates that variable average’s value should be displayed with two digits of preci-
sion to the right of the decimal point—indicated by. 2 in the format specifier. The three
grades entered during the sample execution of class GradeBookTest (Fig. 4.10) total 257,
which yields the average 85.666666.... Method printf uses the precision in the format
specifier to round the value to the specified number of digits. In this program, the average
is rounded to the hundredths position and is displayed as 85.67.

1 // Fig. 4.10: GradeBookTest.java

2 // Create GradeBook object and invoke its determineClassAverage method.
3

4 pubTlic class GradeBookTest

5 {

6 public static void main(String[] args)

7 {

8 // create GradeBook object myGradeBook and

9 // pass course name to constructor

10 GradeBook myGradeBook = new GradeBook(

11 "CS101 Introduction to Java Programming");

12

13 myGradeBook.dispTayMessage(); // display welcome message

14 myGradeBook.determineClassAverage(); // find average of grades
15 } // end main

16 } // end class GradeBookTest

Welcome to the grade book for
CS101 Introduction to Java Programming!

Enter grade or -1 to quit: 97
Enter grade or -1 to quit: 88
Enter grade or -1 to quit: 72
Enter grade or -1 to quit: -1

Total of the 3 grades entered is 257
Class average is 85.67

Fig. 4.10 | GradeBookTest class creates an object of class GradeBook (Fig. 4.9) and invokes
its determineClassAverage method.

4.10 Formulating Algorithms: Nested Control Statements

For the next example, we once again formulate an algorithm by using pseudocode and top-
down, stepwise refinement, and write a corresponding Java program. We've seen that con-

126 Chapter 4 Control Statements: Part |

trol statements can be stacked on top of one another (in sequence). In this case study, we
examine the only other structured way control statements can be connected—namely, by
nesting one control statement within another.

Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real
estate brokers. Last year, ten of the students who completed this course took the exam.
The college wants to know how well its students did on the exam. You've been asked to
write a program to summarize the results. Youve been given a list of these 10 students.
Next to each name is written a 1 if the student passed the exam or a 2 if the student
Jailed.

Your program should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the message “Enter result” on the screen
each time the program requests another test result.

2. Count the number of test results of each type.

3. Display a summary of the test results, indicating the number of students who passed and
the number who failed.

4. If' more than eight students passed the exam, print the message “Bonus to instructor!”

After reading the problem statement carefully, we make the following observations:

1. The program must process test results for 10 students. A counter-controlled loop
can be used, because the number of test results is known in advance.

2. Each test result has a numeric value—either a 1 or a 2. Each time it reads a test
result, the program must determine whether it’sa 1 ora 2. We test for a 1 in our
algorithm. If the number is not a 1, we assume that it’s a 2. (Exercise 4.24 con-
siders the consequences of this assumption.)

3. Two counters are used to keep track of the exam results—one to count the num-
ber of students who passed the exam and one to count the number who failed.

4. After the program has processed all the results, it must decide whether more than
eight students passed the exam.

Let’s proceed with top-down, stepwise refinement. We begin with a pseudocode rep-
resentation of the top:

Analyze exam results and decide whether a bonus should be paid

Once again, the top is a complete representation of the program, but several refinements
are likely to be needed before the pseudocode can evolve naturally into a Java program.
Obur first refinement is

Initialize variables
Input the 10 exam results, and count passes and failures
Print a summary of the exam results and decide whether a bonus should be paid

Here, too, even though we have a complere representation of the entire program, further
refinement is necessary. We now commit to specific variables. Counters are needed to re-
cord the passes and failures, a counter will be used to control the looping process and a
variable is needed to store the user input. The variable in which the user input will be

4.10 Formulating Algorithms: Nested Control Statements 127

stored is 7ot initialized at the start of the algorithm, because its value is read from the user
during each iteration of the loop.
The pseudocode statement

Initialize variables

can be refined as follows:

Initialize passes to zero
Initialize failures ro zero
Initialize student counter to one

Notice that only the counters are initialized at the start of the algorithm.
The pseudocode statement

Input the 10 exam results, and count passes and failures

requires a loop that successively inputs the result of each exam. We know in advance that
there are precisely 10 exam results, so counter-controlled looping is appropriate. Inside the
loop (i.e., nested within the loop), a double-selection structure will determine whether each
exam result is a pass or a failure and will increment the appropriate counter. The refine-
ment of the preceding pseudocode statement is then

While student counter is less than or equal to 10
Prompt the user to enter the next exam result
Input the next exam result

If the student passed
Add one to passes
Else
Add one to failures

Add one to student counter

We use blank lines to isolate the If...Else control structure, which improves readability.
The pseudocode statement

Print a summary of the exam results and decide whether a bonus should be paid

can be refined as follows:

Print the number of passes
Print the number of failures

If'more than eight students passed
Print “Bonus to instructor!”

Complete Second Refinement of Pseudocode and Conversion to Class Analysis
The complete second refinement appears in Fig. 4.11. Notice that blank lines are also used
to set off the While structure for program readability. This pseudocode is now sufficiently
refined for conversion to Java.

The Java class that implements the pseudocode algorithm and two sample executions
are shown in Fig. 4.12. Lines 13-16 of main declare the variables that method process-
ExamResults of class Analysis uses to process the examination results. Several of these

128 Chapter 4 Control Statements: Part |

I Initialize passes ro zero
2 [nitialize failures ro zero
3 [nitialize student counter to one
4
5 While student counter is less than or equal to 10
6 Prompt the user to enter the next exam result
7 Input the next exam result
8
9 If the student passed
10 Add one to passes
11 Else
12 Add one to failures
13
14 Add one to student counter
15
16 Print the number of passes
17 Print the number of failures
18
19 If more than eight students passed
20 Print “Bonus to instructor!”

Fig. 4.11 | Pseudocode for examination-results problem.

declarations use Java’s ability to incorporate variable initialization into declarations
(passes is assigned 0, failures 0and studentCounter 1). Looping programs may require
initialization at the beginning of each repetition—normally performed by assignment
statements rather than in declarations.

NV, Error-Prevention Tip 4.3
t 8) Initializing local variables when they're declared helps you avoid any compilation errors
4> that might arise from attempts to use uninitialized variables. While Java does not require
that local-variable initializations be incorporated into declarations, it does require thar
local variables be initialized before their values are used in an expression.

The while statement (lines 19-33) loops 10 times. During each iteration, the loop
inputs and processes one exam result. Notice that the if...else statement (lines 26-29)
for processing each result is nested in the while statement. If the resultis 1, the if...else
statement increments passes; otherwise, it assumes the result is 2 and increments fail-
ures. Line 32 increments studentCounter before the loop condition is tested again at line
19. After 10 values have been input, the loop terminates and line 36 displays the number
of passes and failures. The if statement at lines 39—40 determines whether more than
eight students passed the exam and, if so, outputs the message "Bonus to instructor!".

1 // Fig. 4.12: Analysis.java
2 // Analysis of examination results using nested control statements.
3 dmport java.util.Scanner; // class uses class Scanner

Fig. 4.12 | Analysis of examination results using nested control statements. (Part | of 3.)

4.10 Formulating Algorithms: Nested Control Statements

129

4

5 public class Analysis

6 {

7 public static void main(String[] args)

8 {

9 // create Scanner to obtain input from command window
10 Scanner input = new Scanner(System.in);

11

12 // initializing variables in declarations

13 int passes = 0; // number of passes

14 int failures = 0; // number of failures

15 int studentCounter = 1; // student counter

16 int result; // one exam result (obtains value from user)
17

18 // process 10 students using counter-controlled loop
19 while (studentCounter <= 10)
20 {
21 // prompt user for input and obtain value from user
22 System.out.print("Enter result (1 = pass, 2 = fail): ");
23 result = input.nextInt();
24
25 // if...else is nested in the while statement
26 if (result == 1) // if result 1,
27 passes = passes + 1; // increment passes;
28 else // else result is not 1, so
29 failures = failures + 1; // increment failures
30

31 // increment studentCounter so Toop eventually terminates
32 studentCounter = studentCounter + 1;

33 } // end while

34

35 // termination phase; prepare and display results

36 System.out.printf("Passed: %d\nFailed: %d\n", passes, failures);
37

38 // determine whether more than 8 students passed

39 if (passes > 8)
40 System.out.println("Bonus to instructor!");
41 } // end main
42 } // end class Analysis

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 2

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Passed: 9

Failed: 1

Bonus to instructor!

Fig. 4.12 | Analysis of examination results using nested control statements. (Part 2 of 3.)

130 Chapter 4 Control Statements: Part |

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Passed: 6

Failed: 4

Fig. 4.12 | Analysis of examination results using nested control statements. (Part 3 of 3.)

Figure 4.12 shows the input and output from two sample excutions of the program.
During the first, the condition at line 39 of method main is true—more than eight stu-
dents passed the exam, so the program outputs a message to bonus the instructor.

This example contains only one class, with method main performing all the class’s
work. In this chapter and in Chapter 3, you’ve seen examples consisting of two classes—
one containing methods that perform useful tasks and one containing method main,
which creates an object of the other class and calls its methods. Occasionally, when it does
not make sense to try to create a reusable class to demonstrate a concept, we’ll place the
program’s statements entirely within the main method of a single class.

4.11 Compound Assignment Operators
The compound assignment operators abbreviate assignment expressions. Statements like
variable = variable operator expression;

where operator is one of the binary operators +, -, *, / or % (or others we discuss later in
the text) can be written in the form

variable operator= expression;

For example, you can abbreviate the statement
C=2cC+ 3;

with the addition compound assignment operator, +=, as
C += 3;

The += operator adds the value of the expression on its right to the value of the variable on
its left and stores the result in the variable on the left of the operator. Thus, the assignment
expression ¢ += 3 adds 3 to c. Figure 4.13 shows the arithmetic compound assignment op-
erators, sample expressions using the operators and explanations of what the operators do.

4.12 Increment and Decrement Operators

Java provides two unary operators (summarized in Fig. 4.14) for adding 1 to or subtracting
1 from the value of a numeric variable. These are the unary increment operator, ++, and
the unary decrement operator, --. A program can increment by 1 the value of a variable

4.12 Increment and Decrement Operators 131

Assignment operator Sample expression Explanation Assigns

+= c +=7 c=c+7 10to ¢
= d -=4 d=d -4 ltwod
g e *= 5 e=e*5 20 to e
/= f /=3 f=f/3 2t f
%= g %= 9 g=9%9 3tog

Fig. 4.13 | Arithmetic compound assignment operators.

called ¢ using the increment operator, ++, rather than the expression ¢ =c+1 or c += 1.
An increment or decrement operator that’s prefixed to (placed before) a variable is referred
to as the prefix increment or prefix decrement operator, respectively. An increment or
decrement operator that’s postfixed to (placed after) a variable is referred to as the postfix
increment or postfix decrement operator, respectively.

Operator Sample

Operator name expression Explanation

++ prefix ++a Increment a by 1, then use the new value
increment of a in the expression in which a resides.

++ postfix a++ Use the current value of a in the expression
increment in which a resides, then increment a by 1.

- prefix ==[5) Decrement b by 1, then use the new value
decrement of b in the expression in which b resides.

-- postfix b-- Use the current value of b in the expression
decrement in which b resides, then decrement b by 1.

Fig. 4.14 | Increment and decrement operators.

Using the prefix increment (or decrement) operator to add 1 to (or subtract 1 from)
a variable is known as preincrementing (or predecrementing). This causes the variable to
be incremented (decremented) by 1; then the new value of the variable is used in the
expression in which itappears. Using the postfix increment (or decrement) operator to add
1 to (or subtract 1 from) a variable is known as postincrementing (or postdecrementing).
This causes the current value of the variable to be used in the expression in which it
appears; then the variable’s value is incremented (decremented) by 1.

R Good Programming Practice 4.4
*"';1 Unlike binary operators, the unary increment and decrement operators should be placed
=== next to their operands, with no intervening spaces.

Figure 4.15 demonstrates the difference between the prefix increment and postfix incre-
ment versions of the ++ increment operator. The decrement operator (--) works similarly.

132 Chapter 4 Control Statements: Part |

1 // Fig. 4.15: Increment.java

2 // Prefix increment and postfix increment operators.
3

4 public class Increment

5 {

6 public static void main(String[] args)

7 {

8 int c;

9

10 // demonstrate postfix increment operator

11 c=15; // assign 5 to c

12 System.out.println(c); // prints 5

13 System.out.println(c++); // prints 5 then postincrements
14 System.out.printin(c); // prints 6

15

16 System.out.printin(); // skip a Tine

17

18 // demonstrate prefix increment operator

19 c=15; // assign 5 to c
20 System.out.println(c); // prints 5
21 System.out.printin(++c); // preincrements then prints 6
22 System.out.println(c); // prints 6
23 } // end main

24 1} // end class Increment

oo wun

Fig. 4.15 | Preincrementing and postincrementing.

Line 11 initializes the variable c to 5, and line 12 outputs ¢’s initial value. Line 13 out-
puts the value of the expression c++. This expression postincrements the variable ¢, so ’s
original value (5) is output, then c’s value is incremented (to 6). Thus, line 13 outputs c’s
initial value (5) again. Line 14 outputs ¢’s new value (6) to prove that the variable’s value

was indeed incremented in line 13.

Line 19 resets ¢’s value to 5, and line 20 outputs c’s value. Line 21 outputs the value
of the expression ++c. This expression preincrements ¢, so its value is incremented; then
the new value (6) is output. Line 22 outputs c’s value again to show that the value of ¢ is

still 6 after line 21 executes.

The arithmetic compound assignment operators and the increment and decrement
operators can be used to simplify program statements. For example, the three assignment

statements in Fig. 4.12 (lines 27, 29 and 32)

passes = passes + 1;
failures = failures + 1;
studentCounter = studentCounter + 1;

4.12 Increment and Decrement Operators 133

can be written more concisely with compound assignment operators as

passes += 1;
failures += 1;
studentCounter += 1;

with prefix increment operators as

++passes;
++failures;
++studentCounter;

or with postfix increment operators as

passes++;
failures++;
studentCounter++;

When incrementing or decrementing a variable in a statement by itself, the prefix
increment and postfix increment forms have the same effect, and the prefix decrement and
postfix decrement forms have the same effect. It’s only when a variable appears in the con-
text of a larger expression that preincrementing and postincrementing the variable have
different effects (and similarly for predecrementing and postdecrementing).

Common Programming Error 4.7

Attempting to use the increment or decrement operator on an expression other than one to
which a value can be assigned is a syntax errvor. For example, writing ++(x + 1) is a syntax
error, because (x + 1) is not a variable.

Figure 4.16 shows the precedence and associativity of the operators we’ve introduced.
They’re shown from top to bottom in decreasing order of precedence. The second column
describes the associativity of the operators at each level of precedence. The conditional
operator (?:); the unary operators increment (++), decrement (--), plus (+) and minus (-
); the cast operators and the assignment operators =, +=, -=, *=, /= and %= associate from
right to left. All the other operators in the operator precedence chart in Fig. 4.16 associate
from left to right. The third column lists the type of each group of operators.

++ -- right to left unary postfix
++ -- + - C type) right to left unary prefix
* / % left to right multiplicative
+ - left to right additive

<= > >= left to right relational
== = left to right equality

right to left conditional

= += -= *= /= %= right to left assignment

Fig. 4.16 | Precedence and associativity of the operators discussed so far.

134 Chapter 4 Control Statements: Part |

4.13 Primitive Types

The table in Appendix D lists the eight primitive types in Java. Like its predecessor lan-
guages C and C++, Java requires all variables to have a type. For this reason, Java is referred
to as a strongly typed language.

In C and C++, programmers frequently have to write separate versions of programs to
support different computer platforms, because the primitive types are not guaranteed to
be identical from computer to computer. For example, an int value on one machine
might be represented by 16 bits (2 bytes) of memory, on a second machine by 32 bits (4
bytes) of memory, and on another machine by 64 bits (8 bytes) of memory. In Java, int
values are always 32 bits (4 bytes).

Portability Tip 4.1
;@I The primitive types in Java are portable across all computer platforms that support Java.

Each type in Appendix D is listed with its size in bits (there are eight bits to a byte)
and its range of values. Because the designers of Java want to ensure portability, they use
internationally recognized standards for character formats (Unicode; for more informa-
tion, visit www.unicode.org) and floating-point numbers (IEEE 754; for more informa-
tion, visit grouper.ieee.org/groups/754/).

Recall from Section 3.4 that variables of primitive types declared outside of a method
as fields of a class are automatically assigned default values unless explicitly initialized.
Instance variables of types char, byte, short, int, Tong, float and double are all given
the value 0 by default. Instance variables of type boolean are given the value false by
default. Reference-type instance variables are initialized by default to the value nu11.

4.14 (Optional) GUI and Graphics Case Study: Creating
Simple Drawings
An appealing feature of Java is its graphics support, which enables you to visually enhance

your applications. We now introduce one of Java’s graphical capabilities—drawing lines.
It also covers the basics of creating a window to display a drawing on the computer screen.

Java’s Coordinate System
To draw in Java, you must understand Java’s coordinate system (Fig. 4.17), a scheme for
identifying points on the screen. By default, the upper-left corner of a GUI component

(0,0) —» +IX > X-axis
I
I
|
|
1A ®x,y)
y-axis

Fig. 4.17 | Java coordinate system. Units are measured in pixels.

www.unicode.org

4.14 (Optional) GUI and Graphics Case Study: Creating Simple Drawings 135

has the coordinates (0, 0). A coordinate pair is composed of an x-coordinate (the horizon-
tal coordinate) and a y-coordinate (the vertical coordinate). The x-coordinate is the hor-
izontal location moving from left to right. The y-coordinate is the vertical location moving
from top to bottom. The x-axis describes every horizontal coordinate, and the y-axis every
vertical coordinate.

Coordinates indicate where graphics should be displayed on a screen. Coordinate
units are measured in pixels. The term pixel stands for “picture element.” A pixel is a dis-
play monitor’s smallest unit of resolution.

First Drawing Application

Our first drawing application simply draws two lines. Class DrawPanel (Fig. 4.18) per-
forms the actual drawing, while class DrawPanel1Test (Fig. 4.19) creates a window to dis-
play the drawing. In class DrawPanel, the import statements in lines 3—4 allow us to use
class Graphics (from package java.awt), which provides various methods for drawing
text and shapes onto the screen, and class JPanel (from package javax.swing), which pro-
vides an area on which we can draw.

1 // Fig. 4.18: DrawPanel.java

2 // Using drawlLine to connect the corners of a panel.

3 import java.awt.Graphics;

4 import javax.swing.JPanel;

5

6 public class DrawPanel extends JPanel

7 {

8 // draws an X from the corners of the panel

9 public void paintComponent(Graphics g)

10 {

11 // call paintComponent to ensure the panel displays correctly
12 super.paintComponent(g);

13

14 int width = getWidth(); // total width

15 int height = getHeight(); // total height

16

17 // draw a Tine from the upper-left to the Tower-right
18 g.drawLine(0, 0, width, height);

19
20 // draw a 1line from the Tower-Teft to the upper-right
21 g.drawLine(0, height, width, 0);
22 } // end method paintComponent

23 } // end class DrawPanel

Fig. 4.18 | Using drawLine to connect the corners of a panel.

// Fig. 4.19: DrawPanelTest.java
// Application to display a DrawPanel.
import javax.swing.JFrame;

public class DrawPanelTest

{

NN h WN =

Fig. 4.19 | Creating JFrame to display DrawPanel. (Part | of 2.)

136 Chapter 4 Control Statements: Part |

7 public static void main(String[] args)
8 {
9 // create a panel that contains our drawing
10 DrawPanel panel = new DrawPanel();
11
12 // create a new frame to hold the panel
13 JFrame application = new JFrame();
14
15 // set the frame to exit when it is closed
16 application.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
17
18 application.add(panel); // add the panel to the frame
19 application.setSize(250, 250); // set the size of the frame
20 application.setVisible(true); // make the frame visible
21 } // end main

22 } // end class DrawPanelTest

s [P = oE

N %
N

.,
Va

Fig. 4.19 | Creating JFrame to display DrawPanel. (Part 2 of 2.)

Line 6 uses the keyword extends to indicate that class DrawPane1 is an enhanced type
of JPanel. The keyword extends represents a so-called inheritance relationship in which
our new class DrawPane1 begins with the existing members (data and methods) from class
JPanel. The class from which DrawPane1 inherits, JPanel, appears to the right of keyword
extends. In this inheritance relationship, JPanel is called the superclass and DrawPane1 is
called the subclass. This results in a DrawPanel class that has the attributes (data) and
behaviors (methods) of class JPanel as well as the new features we’re adding in our Draw-
Panel class declaration—specifically, the ability to draw two lines along the diagonals of
the panel. Inheritance is explained in detail in Chapter 9. For now, you should mimic our
DrawPanel class when creating your own graphics programs.

Method paintComponent

Every JpPanel, including our DrawPanel, has a paintComponent method (lines 9-22),
which the system automatically calls every time it needs to display the JPanel. Method
paintComponent must be declared as shown in line 9—otherwise, the system will not call
it. This method is called when a JPanel is first displayed on the screen, when it’s covered
then uncovered by a window on the screen and when the window in which it appears is
resized. Method paintComponent requires one argument, a Graphics object, that’s pro-
vided by the system when it calls paintComponent.

The first statement in every paintComponent method you create should always be

super.paintComponent(g);

4.14 (Optional) GUI and Graphics Case Study: Creating Simple Drawings 137

which ensures that the panel is properly rendered before we begin drawing on it. Next,
lines 14—15 call methods that class DrawPanel inherits from JPanel. Because DrawPanel
extends JPanel, DrawPanel can use any public methods of JPanel. Methods getWidth
and getHeight return the JPane1’s width and height, respectively. Lines 1415 store these
values in the local variables width and height. Finally, lines 18 and 21 use the Graphics
variable g to call method drawLine to draw the two lines. Method drawLine draws a line
between two points represented by its four arguments. The first two arguments are the x-
and y-coordinates for one endpoint, and the last two arguments are the coordinates for the
other endpoint. If you resize the window, the lines will scale accordingly, because the ar-
guments are based on the width and height of the panel. Resizing the window in this ap-
plication causes the system to call paintComponent to redraw the DrawPanel’s contents.

Class DrawPanelTest

To display the DrawPanel on the screen, you must place it in a window. You create a win-
dow with an object of class JFrame. In DrawPanelTest.java (Fig. 4.19), line 3 imports
class JFrame from package javax.swing. Line 10 in main creates a DrawPanel object,
which contains our drawing, and line 13 creates a new JFrame that can hold and display
our panel. Line 16 calls JFrame method setDefaultCloseOperation with the argument
JFrame.EXIT_ON_CLOSE to indicate that the application should terminate when the user
closes the window. Line 18 uses class JFrame’s add method to attach the DrawPane to the
JFrame. Line 19 sets the size of the JFrame. Method setSize takes two parameters that
represent the width and height of the JFrame, respectively. Finally, line 20 displays the
JFrame by calling its setVisible method with the argument true. When the JFrame is
displayed, the DrawPanel’s paintComponent method (lines 9-22 of Fig. 4.18) is implicitly
called, and the two lines are drawn (see the sample outputs in Fig. 4.19). Try resizing the
window to see that the lines always draw based on the window’s current width and height.

GUI and Graphics Case Study Exercises

4.1 Using loops and control statements to draw lines can lead to many interesting designs.

a) Create the design in the left screen capture of Fig. 4.20. This design draws lines from
the top-left corner, fanning them out until they cover the upper-left half of the panel.
One approach is to divide the width and height into an equal number of steps (we found
15 steps worked well). The first endpoint of a line will always be in the top-left corner
(0, 0). The second endpoint can be found by starting at the bottom-left corner and
moving up one vertical step and right one horizontal step. Draw a line between the two
endpoints. Continue moving up and to the right one step to find each successive end-
point. The figure should scale accordingly as you resize the window.

b) Modify part (a) to have lines fan out from all four corners, as shown in the right screen
capture of Fig. 4.20. Lines from opposite corners should intersect along the middle.

4.2 Figure 4.21 displays two additional designs created using while loops and drawLine.

a) Create the design in the left screen capture of Fig. 4.21. Begin by dividing each edge
into an equal number of increments (we chose 15 again). The first line starts in the top-
left corner and ends one step right on the bottom edge. For each successive line, move
down one increment on the left edge and right one increment on the bottom edge. Con-
tinue drawing lines until you reach the bottom-right corner. The figure should scale as
you resize the window so that the endpoints always touch the edges.

b) Modify your answer in part (a) to mirror the design in all four corners, as shown in the
right screen capture of Fig. 4.21.

138 Chapter 4 Control Statements: Part |

Fig. 4.20 | Lines fanning from a corner.

£ (E= Eol =y

Fig. 4.21 | Line art with loops and drawLine.

4.15 Wrap-Up

This chapter presented basic problem solving for building classes and developing methods
for these classes. We demonstrated how to construct an algorithm (i.e., an approach to
solving a problem), then how to refine the algorithm through several phases of pseudocode
development, resulting in Java code that can be executed as part of a method. The chapter
showed how to use top-down, stepwise refinement to plan out the specific actions that a
method must perform and the order in which the method must perform these actions.

Only three types of control structures—sequence, selection and repetition—are
needed to develop any problem-solving algorithm. Specifically, this chapter demonstrated
the i single-selection statement, the if...eTse double-selection statement and the while
repetition statement. These are some of the building blocks used to construct solutions to
many problems. We used control-statement stacking to total and compute the average of
a set of student grades with counter- and sentinel-controlled repetition, and we used con-
trol-statement nesting to analyze and make decisions based on a set of exam results. We
introduced Java’s compound assignment operators and its increment and decrement oper-
ators. Finally, we discussed Java’s primitive types. In Chapter 5, we continue our discus-
sion of control statements, introducing the for, do...while and switch statements.

Summary 139

Summary

Section 4.1 Introduction

* Before writing a program to solve a problem, you must have a thorough understanding of the
problem and a carefully planned approach to solving it. You must also understand the building
blocks that are available and employ proven program-construction techniques.

Section 4.2 Algorithms

e Any computing problem can be solved by executing a series of actions (p. 103) in a specific order.

e A procedure for solving a problem in terms of the actions to execute and the order in which they
execute is called an algorithm (p. 103).

e Specifying the order in which statements execute in a program is called program control (p. 104).

Section 4.3 Pseudocode
* Pseudocode (p. 104) is an informal language that helps you develop algorithms without having
to worry about the strict details of Java language syntax.

¢ Pseudocode is similar to everyday English—it’s convenient and user friendly, but it’s not an ac-
tual computer programming language.

* Pseudocode helps you “think out” a program before attempting to write it in a programming lan-
guage, such as Java.

e Carefully prepared pseudocode can easily be converted to a corresponding Java program.

Section 4.4 Control Structures
e Normally, statements in a program are executed one after the other in the order in which they’re
written. This process is called sequential execution (p. 104).

* Various Java statements enable you to specify that the next statement to execute is not necessarily
the next one in sequence. This is called transfer of control (p. 104).

* Bohm and Jacopini demonstrated that all programs could be written in terms of only three control
structures (p. 105)—the sequence structure, the selection structure and the repetition structure.

* The term “control structures” comes from the field of computer science. The Java Language Spec-
ification refers to “control structures” as “control statements” (p. 104).

* The sequence structure is built into Java. Unless directed otherwise, the computer executes Java
statements one after the other in the order in which they’re written—that is, in sequence.

* Anywhere a single action may be placed, several actions may be placed in sequence.

e Activity diagrams (p. 105) are part of the UML. An activity diagram models the workflow
(p. 105; also called the activity) of a portion of a software system.

* Activity diagrams are composed of symbols (p. 105)—such as action-state symbols, diamonds and
small circles—that are connected by transition arrows, which represent the flow of the activity.

* Action states (p. 105) contain action expressions that specify particular actions to perform.

* The arrows in an activity diagram represent transitions, which indicate the order in which the
actions represented by the action states occur.

* The solid circle located at the top of an activity diagram represents the activity’s initial state
(p. 105)—the beginning of the workflow before the program performs the modeled actions.

e The solid circle surrounded by a hollow circle that appears at the bottom of the diagram repre-
sents the final state (p. 106)—the end of the workflow after the program performs its actions.

* Rectangles with their upper-right corners folded over are UML notes (p. 106)—explanatory re-
marks that describe the purpose of symbols in the diagram.

140 Chapter 4 Control Statements: Part |

Java has three types of selection statements (p. 106).
The i f single-selection statement (p. 106) selects or ignores one or more actions.
The if...else double-selection statement selects between two actions or groups of actions.

The switch statement is called a multiple-selection statement (p. 106) because it selects among
many different actions or groups of actions.

Java provides the while, do...while and for repetition (looping) statements that enable programs
to perform statements repeatedly as long as a loop-continuation condition remains true.

The while and for statements perform the action(s) in their bodies zero or more times—if the
loop-continuation condition (p. 106) is initially false, the action(s) will not execute. The
do...while statement performs the action(s) in its body one or more times.

The words if, else, switch, while, do and for are Java keywords. Keywords cannot be used as
identifiers, such as variable names.

Every program is formed by combining as many sequence, selection and repetition statements
(p. 106) as is appropriate for the algorithm the program implements.

Single-entry/single-exit control statements (p. 106) are attached to one another by connecting
the exit point of one to the entry point of the next. This is known as control-statement stacking.

A control statement may also be nested (p. 106) inside another control statement.

Section 4.5 1f Single-Selection Statement

Programs use selection statements to choose among alternative courses of action.

The single-selection if statement’s activity diagram contains the diamond symbol, which indi-
cates that a decision is to be made. The workflow follows a path determined by the symbol’s as-
sociated guard conditions (p. 107). If a guard condition is true, the workflow enters the action
state to which the corresponding transition arrow points.

The i f statement is a single-entry/single-exit control statement.

Section 4.6 if...else Double-Selection Statement

The 1 f single-selection statement performs an indicated action only when the condition is true.

The if...else double-selection (p. 106) statement performs one action when the condition is
true and a different action when the condition is false.

The conditional operator (p. 108; ?:) is Java’s only ternary operator—it takes three operands.
Together, the operands and the ?: symbol form a conditional expression (p. 108).

A program can test multiple cases with nested if...e1se statements (p. 109).

The Java compiler associates an el1se with the immediately preceding if unless told to do other-
wise by the placement of braces.

The if statement expects one statement in its body. To include several statements in the body
of an if (or the body of an else for an if...else statement), enclose the statements in braces.
A block (p. 111) of statements can be placed anywhere that a single statement can be placed.

A logic error (p. 111) has its effect at execution time. A fatal logic error (p. 111) causes a program
to fail and terminate prematurely. A nonfatal logic error (p. 111) allows a program to continue
executing, but causes the program to produce incorrect results.

Justas a block can be placed anywhere a single statement can be placed, you can also use an empty
statement, represented by placing a semicolon (;) where a statement would normally be.

Section 4.7 while Repetition Statement

The while repetition statement (p. 112) allows you to specify that a program should repeat an
action while some condition remains true.

Summary 141

e The UML’s merge (p. 112) symbol joins two flows of activity into one.

* The decision and merge symbols can be distinguished by the number of “incoming” and “out-
going” transition arrows. A decision symbol has (p. 107) one transition arrow pointing to the di-
amond and two or more transition arrows pointing out from the diamond to indicate possible
transitions from that point. Each transition arrow pointing out of a decision symbol has a guard
condition. A merge symbol has two or more transition arrows pointing to the diamond and only
one transition arrow pointing from the diamond, to indicate multiple activity flows merging to
continue the activity. None of the transition arrows associated with a merge symbol has a guard
condition.

Section 4.8 Formulating Algorithms: Counter-Controlled Repetition
¢ Counter-controlled repetition (p. 113) uses a variable called a counter (or control variable) to
control the number of times a set of statements execute.

 Counter-controlled repetition is often called definite repetition (p. 113), because the number of
repetitions is known before the loop begins executing.

e Atotal (p. 114) is a variable used to accumulate the sum of several values. Variables used to store
totals are normally initialized to zero before being used in a program.

* Alocal variable’s declaration must appear before the variable is used in that method. A local vari-
able cannot be accessed outside the method in which it’s declared.

* Dividing two integers results in integer division (p. 118)—the calculation’s fractional part is
truncated.

Section 4.9 Formulating Algorithms: Sentinel-Controlled Repetition
* In sentinel-controlled repetition (p. 118), a special value called a sentinel value (also called a sig-
nal value, a dummy value or a flag value) is used to indicate “end of data entry.”

A sentinel value must be chosen that cannot be confused with an acceptable input value.

e Top-down, stepwise refinement (p. 118) is essential to the development of well-structured pro-
grams.

* Division by zero is a logic error.

* To perform a floating-point calculation with integer values, cast (p. 124) one of the integers to
type double.

e Java knows how to evaluate only arithmetic expressions in which the operands’ types are identi-
cal. To ensure this, Java performs an operation called promotion (p. 124) on selected operands.

* The unary cast operator (p. 124) is formed by placing parentheses around the name of a type.

Section 4.11 Compound Assignment Operators
* The compound assignment operators (p. 130) abbreviate assignment expressions. Statements of
the form

variable = variable operator expression;
where operator is one of the binary operators +, -, *, / or %, can be written in the form
variable operator= expression;

* The += operator adds the value of the expression on the right of the operator to the value of the
variable on the left of the operator and stores the result in the variable on the left of the operator.

Section 4.12 Increment and Decrement Operators
 The unary increment operator, ++, and the unary decrement operator, --, add 1 to or subtract 1
from the value of a numeric variable (p. 130).

142 Chapter 4 Control Statements: Part |

An increment or decrement operator that’s prefixed (p. 131) to a variable is the prefix increment
or prefix decrement operator, respectively. An increment or decrement operator that’s postfixed
(p. 131) to a variable is the postfix increment or postfix decrement operator, respectively.

Using the prefix increment or decrement operator to add or subtract 1 is known as preincrement-
ing or predecrementing, respectively.

Preincrementing or predecrementing a variable causes the variable to be incremented or decre-
mented by 1; then the new value of the variable is used in the expression in which it appears.

Using the postfix increment or decrement operator to add or subtract 1 is known as postincre-
menting or postdecrementing, respectively.

Postincrementing or postdecrementing the variable causes its value to be used in the expression
in which it appears; then the variable’s value is incremented or decremented by 1.

When incrementing or decrementing a variable in a statement by itself, the prefix and postfix
increment have the same effect, and the prefix and postfix decrement have the same effect.

Section 4.13 Primitive Types

e Java requires all variables to have a type. Thus, Java is referred to as a strongly typed language

(p. 134).

* Java uses Unicode characters and IEEE 754 floating-point numbers.

Self-Review Exercises

4.1

Fill in the blanks in each of the following statements:
a) All programs can be written in terms of three types of control structures: ,
and .

b) The statement is used to execute one action when a condition is true and
another when that condition is false.

¢) Repeating a set of instructions a specific number of times is called repetition.

d) When it’s not known in advance how many times a set of statements will be repeated,
a(n) value can be used to terminate the repetition.

e) The structure is built into Java; by default, statements execute in the order
they appear.

f) Instance variables of types char, byte, short, int, Tong, float and double are all given
the value by default.

g) Javaisa(n) language; it requires all variables to have a type.

h) If the increment operator is to a variable, first the variable is incremented by

1, then its new value is used in the expression.

4.2 State whether each of the following is #rue or false. If false, explain why.

a) Analgorithm is a procedure for solving a problem in terms of the actions to execute and
the order in which they execute.

b) A set of statements contained within a pair of parentheses is called a block.

¢) A selection statement specifies that an action is to be repeated while some condition re-
mains true.

d) A nested control statement appears in the body of another control statement.

e) Java provides the arithmetic compound assignment operators +=, -=, *=, /= and %= for
abbreviating assignment expressions.

f) The primitive types (boolean, char, byte, short, int, Tong, float and double) are por-
table across only Windows platforms.

g) Specifying the order in which statements execute in a program is called program control.

h) The unary cast operator (double) creates a temporary integer copy of its operand.

Answers to Self-Review Exercises 143

i) Instance variables of type boolean are given the value true by default.
j) Pseudocode helps you think out a program before attempting to write it in a program-
ming language.
4.3 Write four different Java statements that each add 1 to integer variable x.

4.4 Write Java statements to accomplish each of the following tasks:
a) Use one statement to assign the sum of x and y to z, then increment x by 1.
b) Test whether variable count is greater than 10. If it is, print "Count is greater than 10".
c) Use one statement to decrement the variable x by 1, then subtract it from variable total
and store the result in variable total.
d) Calculate the remainder after q is divided by divisor, and assign the result to q. Write
this statement in two different ways.

4.5 Write a Java statement to accomplish each of the following tasks:
a) Declare variables sum and x to be of type int.
b) Assign 1 to variable x.
¢) Assign 0 to variable sum.
d) Add variable x to variable sum, and assign the result to variable sum.
e) Print "The sum is: ", followed by the value of variable sum.

4.6 Combine the statements that you wrote in Exercise 4.5 into a Java application that calcu-
lates and prints the sum of the integers from 1 to 10. Use a while statement to loop through the
calculation and increment statements. The loop should terminate when the value of x becomes 11.

4.7 Determine the value of the variables in the statement product *= x++; after the calculation
is performed. Assume that all variables are type int and initially have the value 5.
4.8 Identify and correct the errors in each of the following sets of code:
a) while (c <=5)
{

product *= c;
++C;
b) if (gender == 1)
System.out.printin("Woman");
else;
System.out.printin("Man");
4.9 What is wrong with the following while statement?

while (z >= 0)
sum += z;

Answers to Self-Review Exercises

4.1 a) sequence, selection, repetition. b) if...else. c) counter-controlled (or definite). d) sen-
tinel, signal, flag or dummy. e) sequence. f) 0 (zero). g) strongly typed. h) prefixed.

4.2 a) True. b) False. A set of statements contained within a pair of braces ({ and }) is called a
block. ¢) False. A repetition statement specifies that an action is to be repeated while some condi-
tion remains true. d) True. e) True. f) False. The primitive types (booTlean, char, byte, short, int,
Tong, float and double) are portable across all computer platforms that support Java. g) True.
h) False. The unary cast operator (double) creates a temporary floating-point copy of its operand.
i) False. Instance variables of type boolean are given the value false by default. j) True.
4.3 X =X + 1;

X += 1;

X

X++;

144 Chapter 4 Control Statements: Part |

4.4 A) Z = X++ + Y;
b) if (count > 10)
System.out.printin("Count is greater than 10");
c) total -= --x;
d) q %= divisor;
q =g % divisor;
4.5 a) int sum;
int x;
b) x = 1;
c) sum = 0;
d) sum += x; or sum = sum + X;
e) System.out.printf("The sum is: %d\n", sum);

4.6 The program is as follows:

1 // Exercise 4.6: Calculate.java

2 // Calculate the sum of the integers from 1 to 10
3 public class Calculate

4 {

5 public static void main(String[] args)

6 {

7 int sum;

8 int x;

9

10 X = 1; // initialize x to 1 for counting
11 sum = 0; // initialize sum to 0 for totaling
12

13 while (x <= 10) // while x is Tess than or equal to 10
14 {

15 sum += x; // add x to sum

16 ++x; // increment X

17 } // end while

18

19 System.out.printf("The sum is: %d\n", sum);
20 } // end main

21 } // end class Calculate

The sum is: 55

4.7 product = 25, x = 6

4.8 a) Error: The closing right brace of the while statement’s body is missing.
Correction: Add a closing right brace after the statement ++c;.
b) Error: The semicolon after e1se results in a logic error. The second output statement
will always be executed.
Correction: Remove the semicolon after else.

4.9 The value of the variable z is never changed in the while statement. Therefore, if the loop-
continuation condition (z>=0) is true, an infinite loop is created. To prevent an infinite loop from
occurring, z must be decremented so that it eventually becomes less than 0.

Exercises

4.10 Compare and contrast the if single-selection statement and the whi e repetition statement.
How are these two statements similar? How are they different?

Exercises 145

4.11 Explain what happens when a Java program attempts to divide one integer by another.
What happens to the fractional part of the calculation? How can you avoid that outcome?

4.12 Describe the two ways in which control statements can be combined.

4.13 What type of repetition would be appropriate for calculating the sum of the first 100 posi-
tive integers? What type would be appropriate for calculating the sum of an arbitrary number of pos-
itive integers? Briefly describe how each of these tasks could be performed.

4.14 What is the difference between preincrementing and postincrementing a variable?

4.15 Identify and correct the errors in each of the following pieces of code. [Noze: There may be
more than one error in each piece of code.]
a) if (age >= 65);
System.out.printin("Age is greater than or equal to 65");
else
System.out.printin("Age is Tless than 65)";
b) int x = 1, total;
while (x <= 10)

{
total += x;
++X;

}

c) while (x <= 100)
total += x;
++X;

d) while Cy > 0)

{

System.out.printin(y);
Y

4.16 What does the following program print?

1 // Exercise 4.16: Mystery.java

2 public class Mystery

3 {

4 public static void main(String[] args)
5 {

6 int y;

7 int x = 1;

8 int total = 0;

9

10 while (x <= 10)

11 {

12 y = X * X;

13 System.out.printin(Cy);

14 total += y;

15 ++X;

16 } // end while

17

18 System.out.printf("Total is %d\n", total);
19 } // end main

20 } // end class Mystery

For Exercise 4.17 through Exercise 4.20, perform each of the following steps:
a) Read the problem statement.
b) Formulate the algorithm using pseudocode and top-down, stepwise refinement.

146 Chapter 4 Control Statements: Part |

c) Write a Java program.
d) Test, debug and execute the Java program.
e) Process three complete sets of data.

4.17 (Gas Mileage) Drivers are concerned with the mileage their automobiles get. One driver has
kept track of several trips by recording the miles driven and gallons used for each tankful. Develop
a Java application that will input the miles driven and gallons used (both as integers) for each trip.
The program should calculate and display the miles per gallon obtained for each trip and print the
combined miles per gallon obtained for all trips up to this point. All averaging calculations should
produce floating-point results. Use class Scanner and sentinel-controlled repetition to obtain the
data from the user.

4.18 (Credit Limit Calculator) Develop a Java application that determines whether any of several
department-store customers has exceeded the credit limit on a charge account. For each customer,
the following facts are available:

a) account number

b) balance at the beginning of the month

¢) total of all items charged by the customer this month

d) total of all credits applied to the customer’s account this month

e) allowed credit limit.

The program should input all these facts as integers, calculate the new balance (= beginning balance
+ charges — credits), display the new balance and determine whether the new balance exceeds the
customer’s credit limit. For those customers whose credit limit is exceeded, the program should dis-
play the message "Credit 1imit exceeded".

4.19 (Sales Commission Calculator) A large company pays its salespeople on a commission basis.
The salespeople receive $200 per week plus 9% of their gross sales for that week. For example, a
salesperson who sells $5000 worth of merchandise in a week receives $200 plus 9% of $5000, or a
total of $650. You’ve been supplied with a list of the items sold by each salesperson. The values of
these items are as follows:

Item Value

1 239.99
2 129.75
3 99.95
4 350.89

Develop a Java application that inputs one salesperson’s items sold for last week and calculates and
displays that salesperson’s earnings. There’s no limit to the number of items that can be sold.

4.20 (Salary Calculator) Develop a Java application that determines the gross pay for each of
three employees. The company pays straight time for the first 40 hours worked by each employee
and time and a half for all hours worked in excess of 40. You’re given a list of the employees, their
number of hours worked last week and their hourly rates. Your program should input this informa-
tion for each employee, then determine and display the employee’s gross pay. Use class Scanner to
input the data.

4.21 (Find the Largest Number) The process of finding the largest value is used frequently in com-
puter applications. For example, a program that determines the winner of a sales contest would input
the number of units sold by each salesperson. The salesperson who sells the most units wins the con-
test. Write a pseudocode program, then a Java application that inputs a series of 10 integers and deter-
mines and prints the largest integer. Your program should use at least the following three variables:

a) counter: A counter to count to 10 (i.e., to keep track of how many numbers have been

input and to determine when all 10 numbers have been processed).
b) number: The integer most recently input by the user.
¢) Tlargest: The largest number found so far.

Exercises 147

4.22 (Tabular Output) Write a Java application that uses looping to print the following table of

values:
N 10*N 100*N 1000*N
1 10 100 1000
2 20 200 2000
3 30 300 3000
4 40 400 4000
5 50 500 5000

4.23 (Find the Two Largest Numbers) Using an approach similar to that for Exercise 4.21, find
the fwo largest values of the 10 values entered. [Noze: You may input each number only once.]

4.24 (Validating User Input) Modify the program in Fig. 4.12 to validate its inputs. For any in-
pug, if the value entered is other than 1 or 2, keep looping until the user enters a correct value.

4.25 What does the following program print?

| // Exercise 4.25: Mystery2.java

2 public class Mystery?2

3 {

4 public static void main(String[] args)
5 {

6 int count = 1;

7

8 while (count <= 10)

9 {

10 System.out.printin(count % 2 == 1 2 "##es" o Vigggqggy
11 ++count;

12 } // end while

13 } // end main

14 } // end class Mystery2

");

4.26 What does the following program print?

1 // Exercise 4.26: Mystery3.java
2 public class Mystery3

3 {

4 public static void main(String[] args)
5 {

6 int row = 10;

7 int column;

8

9 while (row >= 1)

10 {

11 column = 1;

12

13 while (column <= 10)
14 {

15 System.out.print(row % 2 == 1 ? "<" : ">");
16 ++column;

17 } // end while

18

19 --row;

20 System.out.printin(Q);
21 } // end while

22 } // end main

23 } // end class Mystery3

148 Chapter 4 Control Statements: Part |

4.27 (Dangling-else Problem) Determine the output for each of the given sets of code when x
is 9 and y is 11 and when x is 11 and y is 9. The compiler ignores the indentation in a Java program.
Also, the Java compiler always associates an else with the immediately preceding 1 unless told to
do otherwise by the placement of braces ({}). On first glance, you may not be sure which 1f a par-
ticular e1se matches—this situation is referred to as the “dangling-else problem.” We've eliminat-
ed the indentation from the following code to make the problem more challenging. [Hinz: Apply
the indentation conventions you've learned.]
a) if (x <10)
if Cy>10)
System.out.println("*

° D8
else
System.out.printin("#####");
System.out.printin("$$$$$");
b) if (x < 10)
{
if Cy > 10)
System.out.println("*
}
else
{
System.out.printin("#####");
System.out.printin("$$$$$");
}

4.28 (Another Dangling-else Problem) Modify the given code to produce the output shown in
each part of the problem. Use proper indentation techniques. Make no changes other than inserting
braces and changing the indentation of the code. The compiler ignores indentation in a Java pro-
gram. We've eliminated the indentation from the given code to make the problem more challeng-
ing. [Note: It’s possible that no modification is necessary for some of the parts.]

if (y ==28)

if (x ==5)
System.out.printin("@@@@a@");
else

System.out.printin("#####");
System.out.printin("$$$$$");
System.out.printin("&&&&&");

a) Assuming that x = 5 and y = 8, the following output is produced:

@@eea
333
&&&&&

b) Assuming that x = 5 and y = 8, the following output is produced:
@Qe@@

¢) Assuming that x = 5 and y = 8, the following output is produced:
deded
d) Assuming that x = 5 and y = 7, the following output is produced. [Noze: The last three
output statements after the e1se are all part of a block.]

#H###H
$$$$$
&&&&&

Exercises 149

4.29 (Square of Asterisks) Write an application that prompts the user to enter the size of the side
of a square, then displays a hollow square of that size made of asterisks. Your program should work
for squares of all side lengths between 1 and 20.

4.30 (Palindromes) A palindrome is a sequence of characters that reads the same backward as for-
ward. For example, each of the following five-digit integers is a palindrome: 12321, 55555, 45554
and 11611. Write an application that reads in a five-digit integer and determines whether it’s a pal-
indrome. If the number is not five digits long, display an error message and allow the user to enter
a new value.

4.31 (Printing the Decimal Equivalent of a Binary Number) Write an application that inputs an
integer containing only Os and 1s (i.e., a binary integer) and prints its decimal equivalent. [H7nz: Use
the remainder and division operators to pick off the binary number’s digits one at a time, from right
to left. In the decimal number system, the rightmost digit has a positional value of 1 and the next
digit to the left a positional value of 10, then 100, then 1000, and so on. The decimal number 234
can be interpreted as 4 * 1 + 3 * 10 + 2 * 100. In the binary number system, the rightmost digit has
a positional value of 1, the next digit to the left a positional value of 2, then 4, then 8, and so on.
The decimal equivalent of binary 1101is 1 *1+0*2+1*4+1*8,0r1+0+4 +8or, 13]

4.32 (Checkerboard Pattern of Asterisks) Write an application that uses only the output state-
ments

System.out.print("* ");
System.out.print(" ");
System.out.printin(Q);

to display the checkerboard pattern that follows. A System.out.printin method call with no argu-
ments causes the program to output a single newline character. [Hin#: Repetition statements are
required.]

4.33 (Multiples of 2 with an Infinite Loop) Write an application that keeps displaying in the
command window the multiples of the integer 2—namely, 2, 4, 8, 16, 32, 64, and so on. Your loop
should not terminate (i.e., it should create an infinite loop). What happens when you run this pro-
gram?

4.34 (What’s Wrong with This Code?) What is wrong with the following statement? Provide the
correct statement to add one to the sum of x and y.

System.out.printIn(++(x + y));

4.35 (Sides of a Triangle) Write an application that reads three nonzero values entered by the
user and determines and prints whether they could represent the sides of a triangle.

4.36 (Sides of a Right Triangle) Write an application that reads three nonzero integers and de-
termines and prints whether they could represent the sides of a right triangle.

4.37 (Factorial) The factorial of a nonnegative integer 7 is written as 7! (pronounced “z factori-
al”) and is defined as follows:

m=n-(n—-1)-(m-2)-...-1 (for values of # greater than or equal to 1)

150 Chapter 4 Control Statements: Part |

and
nl=1 (forn=0)

For example, 5!'=5-4 -3 .2 .1, which is 120.
a) Write an application that reads a nonnegative integer and computes and prints its fac-
torial.
b) Write an application that estimates the value of the mathematical constant ¢ by using
the following formula. Allow the user to enter the number of terms to calculate.

oL L1
e = + -'1—‘ + z—‘ + 3—! + ..
¢) Write an application that computes the value of ¢* by using the following formula. Al-
low the user to enter the number of terms to calculate.

Making a Difference

4.38 (Enforcing Privacy with Cryptography) The explosive growth of Internet communications
and data storage on Internet-connected computers has greatly increased privacy concerns. The field
of cryptography is concerned with coding data to make it difficult (and hopefully—with the most
advanced schemes—impossible) for unauthorized users to read. In this exercise you’ll investigate a
simple scheme for encrypting and decrypting data. A company that wants to send data over the In-
ternet has asked you to write a program that will encrypt it so that it may be transmitted more se-
curely. All the data is transmitted as four-digit integers. Your application should read a four-digit
integer entered by the user and encrypt it as follows: Replace each digit with the result of adding 7
to the digit and getting the remainder after dividing the new value by 10. Then swap the first digit
with the third, and swap the second digit with the fourth. Then print the encrypted integer. Write
a separate application that inputs an encrypted four-digit integer and decrypts it (by reversing the
encryption scheme) to form the original number. [Optional reading project: Research “public key
cryptography” in general and the PGP (Pretty Good Privacy) specific public key scheme. You may
also want to investigate the RSA scheme, which is widely used in industrial-strength applications.]

4.39 (World Population Growth) World population has grown considerably over the centuries.
Continued growth could eventually challenge the limits of breathable air, drinkable water, arable
cropland and other limited resources. There’s evidence that growth has been slowing in recent years
and that world population could peak some time this century, then start to decline.

For this exercise, research world population growth issues online. Be sure to investigate various
viewpoints. Get estimates for the current world population and its growth rate (the percentage by
which its likely to increase this year). Write a program that calculates world population growth
each year for the next 75 years, using the simplifying assumption that the current growth rate will stay
constant. Print the results in a table. The first column should display the year from year 1 to year
75. The second column should display the anticipated world population at the end of that year.
The third column should display the numerical increase in the world population that would occur
that year. Using your results, determine the year in which the population would be double what it
is today, if this year’s growth rate were to persist.

Control Statements: Part 2

The wheel is come full circle.
—William Shakespeare

—Robert Frost

All the evolution we know of

proceeds from the vague to the
definite.

—Charles Sanders Peirce

Objectives
In this chapter you'll learn:

= The essentials of counter-
controlled repetition.

= To use the for and
do...wh1iTe repetition
statements to execute
statements in a program
repeatedly.

= To understand multiple
selection using the switch
selection statement.

m To use the break and
continue program control
statements to alter the flow
of control.

= To use the logical operators
to form complex conditional
expressions in control
statements.

/ Qutline

152 Chapter 5 Control Statements: Part 2

5.1 Introduction 5.7 break and continue Statements
5.2 Essentials of Counter-Controlled 5.8 Logical Operators

Repetition 5.9 Structured Programming Summary
5.3 for Repetition Statement 5.10 (Optional) GUI and Graphics Case
5.4 Examples Using the for Statement Study: Drawing Rectangles and Ovals
5.5 do...whiTe Repetition Statement 5.11 Wrap-Up

5.6 switch Multiple-Selection Statement

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

5.1 Introduction

This chapter continues our presentation of structured programming theory and principles
by introducing all but one of Java’s remaining control statements. We demonstrate Java’s
for, do...while and switch statements. Through a series of short examples using while
and for, we explore the essentials of counter-controlled repetition. We create a version of
class GradeBook that uses a switch statement to count the number of A, B, C, D and F
grade equivalents in a set of numeric grades entered by the user. We introduce the break
and continue program-control statements. We discuss Java’s logical operators, which en-
able you to use more complex conditional expressions in control statements. Finally, we
summarize Java’s control statements and the proven problem-solving techniques present-
ed in this chapter and Chapter 4.

5.2 Essentials of Counter-Controlled Repetition

This section uses the whiTe repetition statement introduced in Chapter 4 to formalize the
elements required to perform counter-controlled repetition, which requires

1. a control variable (or loop counter)
2. the initial value of the control variable

3. the increment (or decrement) by which the control variable is modified each
time through the loop (also known as each iteration of the loop)

4. the loop-continuation condition that determines if looping should continue.

To see these elements of counter-controlled repetition, consider the application of

Fig. 5.1, which uses a loop to display the numbers from 1 through 10.

// Fig. 5.1: WhileCounter.java
// Counter-controlled repetition with the while repetition statement.

public class WhileCounter

{

public static void main(String[] args)

{

NoOUNDh WN =

Fig. 5.1 | Counter-controlled repetition with the whiTe repetition statement. (Part | of 2.)

5.2 Essentials of Counter-Controlled Repetition 153

8 int counter = 1; // declare and initialize control variable
9

10 while (counter <= 10) // Toop-continuation condition

11 {

12 System.out.printf("%d ", counter);

13 ++counter; // increment control variable by 1

14 } // end while

15

16 System.out.println(); // output a newline

17 } // end main

18 1} // end class WhileCounter

12 3 4 5 6 7 8 9 10

Fig. 5.1 | Counter-controlled repetition with the whiTe repetition statement. (Part 2 of 2.)

In Fig. 5.1, the elements of counter-controlled repetition are defined in lines 8, 10
and 13. Line 8 declares the control variable (counter) as an int, reserves space for it in
memory and sets its initial value to 1. Variable counter also could have been declared and
initialized with the following local-variable declaration and assignment statements:

int counter; // declare counter
counter = 1; // initialize counter to 1

Line 12 displays control variable counter’s value during each iteration of the loop. Line
13 increments the control variable by 1 for each iteration of the loop. The loop-continu-
ation condition in the while (line 10) tests whether the value of the control variable is less
than or equal to 10 (the final value for which the condition is true). The program per-
forms the body of this while even when the control variable is 10. The loop terminates
when the control variable exceeds 10 (i.e., counter becomes 11).

Common Programming Error 5.1

Because floating-point values may be approximate, controlling loops with floating-point
variables may result in imprecise counter values and inaccurate termination tests.

Error-Prevention Tip 5.1
. Use integers to control counting loops.

The program in Fig. 5.1 can be made more concise by initializing counter to 0 in line
8 and preincrementing counter in the while condition as follows:

0

_r‘“

while (++counter <= 10) // loop-continuation condition
System.out.printf("%d ", counter);

This code saves a statement (and eliminates the need for braces around the loop’s body),
because the while condition performs the increment before testing the condition. (Recall
from Section 4.12 that the precedence of ++ is higher than that of <=.) Coding in such a
condensed fashion takes practice, might make code more difficult to read, debug, modify
and maintain, and typically should be avoided.

154 Chapter 5 Control Statements: Part 2

“Keep it simple” is good advice for most of the code you'll write.

E Software Engineering Observation 5.1

5.3 for Repetition Statement

Section 5.2 presented the essentials of counter-controlled repetition. The while statement
can be used to implement any counter-controlled loop. Java also provides the for repeti-
tion statement, which specifies the counter-controlled-repetition details in a single line of
code. Figure 5.2 reimplements the application of Fig. 5.1 using for-.

1 // Fig. 5.2: ForCounter.java

2 // Counter-controlled repetition with the for repetition statement.
3

4 pubTic class ForCounter

5 {

6 public static void main(String[] args)

7 {

8 // for statement header includes initialization,
9 // Tloop-continuation condition and increment

10 for (int counter = 1; counter <= 10; counter++)
11 System.out.printf("%d ", counter);

12

13 System.out.println(); // output a newline

14 } // end main

I5 } // end class ForCounter

1 2 3 4 5 6 7 8 9 10

Fig. 5.2 | Counter-controlled repetition with the for repetition statement.

When the for statement (lines 10—11) begins executing, the control variable counter
is declared and initialized to 1. (Recall from Section 5.2 that the first two elements of
counter-controlled repetition are the control variable and its initial value.) Next, the pro-
gram checks the loop-continuation condition, counter <= 10, which is between the two
required semicolons. Because the initial value of counter is 1, the condition initially is
true. Therefore, the body statement (line 11) displays control variable counter’s value,
namely 1. After executing the loop’s body, the program increments counter in the expres-
sion counter++, which appears to the right of the second semicolon. Then the loop-con-
tinuation test is performed again to determine whether the program should continue with
the next iteration of the loop. At this point, the control variable’s value is 2, so the condi-
tion is still true (the final value is not exceeded)—thus, the program performs the body
statement again (i.c., the next iteration of the loop). This process continues until the num-
bers 1 through 10 have been displayed and the counter’s value becomes 11, causing the
loop-continuation test to fail and repetition to terminate (after 10 repetitions of the loop
body). Then the program performs the first statement after the for—in this case, line 13.

Figure 5.2 uses (in line 10) the loop-continuation condition counter <= 10. If you
incorrectly specified counter < 10 as the condition, the loop would iterate only nine times.
This is a common logic error called an off-by-one error.

5.3 for Repetition Statement 155

~ Common Programming Error 5.2
Using an incorrect relational operator or an incorrect final value of a loop counter in the
loop-continuation condition of a repetition statement can cause an off-by-one error.

Error-Prevention Tip 5.2

Using the final value in the condition of a while or for statement and using the <=
relational operator helps avoid off-by-one errors. For a loop that prints the values I to 10,
the loop-continuation condition should be counter <= 10 rather than counter < 10
(which causes an off-by-one error) or counter < 11 (which is correct). Many program-
mers prefer so-called zero-based counting, in which to count 10 times, counter would be
initialized to zero and the loop-continuation test would be counter < 10.

A Closer Look at the for Statement’s Header

Figure 5.3 takes a closer look at the for statement in Fig. 5.2. The for’s first line (includ-
ing the keyword for and everything in parentheses after for)—line 10 in Fig. 5.2—is
sometimes called the for statement header. The for header “does it all”—it specifies each
item needed for counter-controlled repetition with a control variable. If there’s more than
one statement in the body of the for, braces are required to define the body of the loop.

Required Required
for Control semicolon semicolon
keyword variable separator separator

LNy

for (int counter = 1; counter <= 10; counter++)

—

Initial value of T] Increment of

control variable Loop-continuation control variable
condition

Fig. 5.3 | for statement header components.

General Format of a for Statement
The general format of the for statement is

for (initialization; loopContinuationCondition; increment)
statement

where the initialization expression names the loop’s control variable and optionally pro-
vides its initial value, loop ContinuationCondition determines whether the loop should con-
tinue executing and increment modifies the control variable’s value (possibly an increment
or decrement), so that the loop-continuation condition eventually becomes false. The two
semicolons in the for header are required. If the loop-continuation condition is initially
false, the program does nor execute the for statement’s body. Instead, execution proceeds
with the statement following the for.

Representing a for Statement with an Equivalent while Statement
In most cases, the for statement can be represented with an equivalent while statement as
follows:

156 Chapter 5 Control Statements: Part 2

initialization;
while (loopContinuationCondition)

{
Statement
anrfmfnt;
}
In Section 5.7, we show a case in which a for statement cannot be represented with an
equivalent while statement.
Typically, for statements are used for counter-controlled repetition and whiTe state-
ments for sentinel-controlled repetition. However, while and for can each be used for
either repetition type.

Scope of a for Statement’s Control Variable

If the initialization expression in the for header declares the control variable (i.e., the con-
trol variable’s type is specified before the variable name, as in Fig. 5.2), the control variable
can be used only in that for statement—it will not exist outside it. This restricted use is
known as the variable’s scope. The scope of a variable defines where it can be used in a
program. For example, a local variable can be used on/y in the method that declares it and
only from the point of declaration through the end of the method. Scope is discussed in
detail in Chapter 6, Methods: A Deeper Look.

3y Common Programming Error 5.3
When a for statement’s control variable is declared in the initialization section of the
for’s header, using the control variable after the for’s body is a compilation error.

Expressions in a for Statement’s Header Are Optional

All three expressions in a for header are optional. If the loopContinuationCondition is
omitted, Java assumes that the loop-continuation condition is always true, thus creating
an infinite loop. You might omit the initialization expression if the program initializes the
control variable before the loop. You might omit the increment expression if the program
calculates the increment with statements in the loop’s body or if no increment is needed.
The increment expression in a for acts as if it were a standalone statement at the end of
the for’s body. Therefore, the expressions

counter = counter + 1
counter += 1
++counter

counter++

are equivalent increment expressions in a for statement. Many programmers prefer coun-
ter++ because it’s concise and because a for loop evaluates its increment expression after
its body executes, so the postfix increment form seems more natural. In this case, the vari-
able being incremented does not appear in a larger expression, so preincrementing and
postincrementing actually have the same effect.

Common Programming Error 5.4
Placing a semicolon immediately to the right of the right parenthesis of a for header makes
that for’s body an empty statement. This is normally a logic error.

5.3 for Repetition Statement 157

=~ Error-Prevention Tip 5.3
t ;‘s Infinite loops occur when the loop-continuation condition in a repetition statement never
4> becomes false. To prevent this situation in a counter-controlled loop, ensure that the con-
trol variable is incremented (or decremented) during each iteration of the loop. In a sen-
tinel-controlled loop, ensure that the sentinel value is able to be input.

Placing Arithmetic Expressions in a for Statement’s Header

The initialization, loop-continuation condition and increment portions of a for statement
can contain arithmetic expressions. For example, assume that x = 2 and y = 10. If x and y
are not modified in the body of the loop, the statement

for (int j=x; J<=4*x*y; j+=y / x)
is equivalent to the statement
for (int j =2; j <=80; j +=5)
The increment of a for statement may also be negative, in which case it’s really a decrement,

and the loop counts downward.

Using a for Statement’s Control Variable in the Statements’s Body

Programs frequently display the control-variable value or use it in calculations in the loop
body, but this use is not required. The control variable is commonly used to control rep-
etition without being mentioned in the body of the for.

V. Error-Prevention Tip 5.4
Although the value of the control variable can be changed in the body of a for loop, avoid

doing so, because this practice can lead to subtle errors.

UML Activity Diagram for the for Statement
The for statement’s UML activity diagram is similar to that of the while statement
(Fig. 4.4). Figure 5.4 shows the activity diagram of the for statement in Fig. 5.2. The

. Initialize int counter = 1

control variable

[counter <= 10] Display the - Increment the

N counter value control variable
[counter > 10] R R I I
I I
Determine whether : !

@ looping should I counter++
continue :
System.out.printf(“%d 7, counter);

Fig. 5.4 | UML activity diagram for the for statement in Fig. 5.2.

158 Chapter 5 Control Statements: Part 2

diagram makes it clear that initialization occurs once before the loop-continuation test is
evaluated the first time, and that incrementing occurs each time through the loop affer the
body statement executes.

5.4 Examples Using the for Statement

The following examples show techniques for varying the control variable in a for state-
ment. In each case, we write the appropriate for header. Note the change in the relational
operator for loops that decrement the control variable.

a) Vary the control variable from 1 to 100 in increments of 1.
for Cint i = 1; i <= 100; i++)

b) Vary the control variable from 100 to 1 in decrements of 1.
for (int i = 100; i >= 1; i--)

c) Vary the control variable from 7 to 77 in increments of 7.
for Cint i =7; 1 <=77; 1 +=7)

d) Vary the control variable from 20 to 2 in decrements of 2.
for (int i = 20; i >=2; i -=2)

e) Vary the control variable over the values 2, 5, 8, 11, 14, 17, 20.
for (int i = 2; i <= 20; i += 3)

f) Vary the control variable over the values 99, 88, 77, 66, 55, 44, 33, 22, 11, 0.
for (int i =99; i >=0; i -= 11)

3 Common Programming Error 5.5

Using an incorrect relational operator in the loop-continuation condition of a loop that
counts downward (e.g., using i <=1 instead of i >= 1 in a loop counting down to 1) is
usually a logic error.

Application: Summing the Even Integers from 2 to 20

We now consider two sample applications that demonstrate simple uses of for. The ap-
plication in Fig. 5.5 uses a for statement to sum the even integers from 2 to 20 and store
the result in an int variable called total.

// Fig. 5.5: Sum.java
// Summing integers with the for statement.

public class Sum

{
public static void main(String[] args)
{

int total = 0; // initialize total

VOO ~NGONUND WN -

Fig. 5.5 | Summing integers with the for statement. (Part | of 2.)

5.4 Examples Using the for Statement 159

10 // total even integers from 2 through 20

11 for (int number = 2; number <= 20; number += 2)

12 total += number;

13

14 System.out.printf("Sum is %d\n", total); // display results
15 } // end main

16 } // end class Sum

Sum is 110

Fig. 5.5 | Summing integers with the for statement. (Part 2 of 2.)

The initialization and increment expressions can be comma-separated lists that enable
you to use multiple initialization expressions or multiple increment expressions. For
example, although this is discouraged, you could merge the body of the for statement in lines
11-12 of Fig. 5.5 into the increment portion of the for header by using a comma as follows:

for (int number = 2; number <= 20; total += number, number += 2)
; // empty statement

ey Good Programming Practice 5. 1
.\F 4
: .‘ For readability limit the size of control-statement headers to a single line if possible.

Application: Compound-Interest Calculations
Let’s use the for statement to compute compound interest. Consider the following problem:

A person invests $1000 in a savings account yielding 5% interest. Assuming thar all the

interest is left on deposit, calculate and print the amount of money in the account at the

end of each year for 10 years. Use the following formula to determine the amounts:
a=p(l+r)”

where

2 is the original amount invested (i.e., the principal)
7 is the annual interest rate (e.g., use 0.05 for 5%)

n is the number of years

a is the amount on deposit at the end of the nth year.

The solution to this problem (Fig. 5.6) involves a loop that performs the indicated
calculation for each of the 10 years the money remains on deposit. Lines 8-10 in method
main declare double variables amount, principal and rate, and initialize principal to
1000.0 and rate to 0.05. Java treats floating-point constants like 1000.0 and 0.05 as type
doubTe. Similarly, Java treats whole-number constants like 7 and -22 as type int.

// Fig. 5.6: Interest.java
// Compound-interest calculations with for.

public class Interest

{

Ndh WN -

Fig. 5.6 | Compound-interest calculations with for. (Part | of 2.)

160 Chapter 5 Control Statements: Part 2

6 public static void main(String[] args)

7 {

8 double amount; // amount on deposit at end of each year

9 double principal = 1000.0; // initial amount before interest
10 double rate = 0.05; // interest rate

11

12 // display headers

13 System.out.printf("%s%20s\n", "Year", "Amount on deposit");
14

15 // calculate amount on deposit for each of ten years

16 for (int year = 1; year <= 10; year++)

17 {

18 // calculate new amount for specified year

19 amount = principal * Math.pow(1.0 + rate, year);
20
21 // display the year and the amount
22 System.out.printf("%4d%,20.2f\n", year, amount);
23 } // end for
24 } // end main

25 1} // end class Interest

Year Amount on deposit
1,050.00
1,102.50
1,157.63
1,215.51
1,276.28
1,340.10
1,407.10
1,477.46
1,551.33
1,628.89

QUOWoONOUVIDA WNR

[y

Fig. 5.6 | Compound-interest calculations with for. (Part 2 of 2.)

Formatting Strings with Field Widths and Justification

Line 13 outputs the headers for two columns of output. The first column displays the year
and the second column the amount on deposit at the end of that year. We use the format
specifier %20s to output the String "Amount on Deposit". The integer 20 between the %
and the conversion character s indicates that the value should be displayed with a field
width of 20—that is, printf displays the value with at least 20 character positions. If the
value to be output is less than 20 character positions wide (17 characters in this example),
the value is right justified in the field by default. If the year value to be output were more
than four character positions wide, the field width would be extended to the right to
accommodate the entire value—this would push the amount field to the right, upsetting
the neat columns of our tabular output. To output values left justified, simply precede
the field width with the minus sign (-) formatting flag (e.g., %-20s).

Performing the Interest Calculations

The for statement (lines 16-23) executes its body 10 times, varying control variable year
from 1 to 10 in increments of 1. This loop terminates when year becomes 11. (Variable
year represents 7 in the problem statement.)

5.4 Examples Using the for Statement 161

Classes provide methods that perform common tasks on objects. In fact, most
methods must be called on a specific object. For example, to output text in Fig. 5.6, line
13 calls method printf on the System.out object. Many classes also provide methods that
perform common tasks and do 7ot require objects. These are called static methods. For
example, Java does not include an exponentiation operator, so the designers of Java’s Math
class defined static method pow for raising a value to a power. You can call a static
method by specifying the class name followed by a dot (.) and the method name, as in

ClassName . methodName(arguments)

In Chapter 6, you’ll learn how to implement static methods in your own classes.

We use static method pow of class Math to perform the compound-interest calcula-
tion in Fig. 5.6. Math.pow(x, y) calculates the value of x raised to the ™ power. The
method receives two double arguments and recurns a double value. Line 19 performs the
calculation a = p(1 + 7)”, where a is amount, p is principal, ris rate and 7 is year. Class
Math is defined in package java.lang, so you do 7o need to import class Math to use it.

The body of the for statement contains the calculation 1.0 + rate, which appears as
an argument to the Math.pow method. In fact, this calculation produces the same result
cach time through the loop, so repeating it every iteration of the loop is wasteful.

g Performance Tip 5.1

In loops, avoid calculations for which the result never changes—such calculations should
== pypically be placed before the loop. Many of today's sophisticated optimizing compilers will
place such calculations outside loops in the compiled code.

Formatting Floating-Point Numbers

After each calculation, line 22 outputs the year and the amount on deposit at the end of
that year. The year is output in a field width of four characters (as specified by %4d). The
amount is output as a floating-point number with the format specifier %,20.2f. The com-
ma (,) formatting flag indicates that the floating-point value should be output with a
grouping separator. The actual separator used is specific to the user’s locale (i.e., coun-
try). For example, in the United States, the number will be output using commas to sep-
arate every three digits and a decimal point to separate the fractional part of the number,
as in 1,234.45. The number 20 in the format specification indicates that the value should
be output right justified in a field width of 20 characters. The .2 specifies the formatted
number’s precision—in this case, the number is rounded to the nearest hundredth and
output with two digits to the right of the decimal point.

A Warning about Displaying Rounded Values

We declared variables amount, principal and rate to be of type double in this example.
We're dealing with fractional parts of dollars and thus need a type that allows decimal
points in its values. Unfortunately, floating-point numbers can cause trouble. Here’s a
simple explanation of what can go wrong when using double (or float) to represent dollar
amounts (assuming that dollar amounts are displayed with two digits to the right of the
decimal point): Two double dollar amounts stored in the machine could be 14.234
(which would normally be rounded to 14.23 for display purposes) and 18.673 (which
would normally be rounded to 18.67 for display purposes). When these amounts are add-
ed, they produce the internal sum 32.907, which would normally be rounded to 32.91 for
display purposes. Thus, your output could appear as

162 Chapter 5 Control Statements: Part 2

but a person adding the individual numbers as displayed would expect the sum to be
32.90. You've been warned!

NV Error-Prevention Tip 5.5
Do not use variables of type double (or float) to perform precise monetary calculations.
4> The imprecision of floating-point numbers can cause errors. In the exercises, you'll learn
how to use integers to perform precise monetary calculations. Java also provides class ja-
va.math.BigDecimal to perform precise monetary calculations. For more information,
see download.oracle.com/javase/6/docs/api/java/math//BigDecimal.htm].

5.5 do...wh1ile Repetition Statement

The do...while repetition statement is similar to the while statement. In the whiTe, the
program tests the loop-continuation condition at the beginning of the loop, before execut-
ing the loop’s bodys if the condition is false, the body never executes. The do...while state-
ment tests the loop-continuation condition affer executing the loop’s body; therefore, zhe
body always executes at least once. When a do...whiTe statement terminates, execution con-
tinues with the next statement in sequence. Figure 5.7 uses a do...while (lines 10-14) to
output the numbers 1-10.

1 // Fig. 5.7: DoWhileTest.java

2 // do...while repetition statement.

3

4 pubTlic class DowWhileTest

5 {

6 public static void main(String[] args)

7 {

8 int counter = 1; // initialize counter

9

10 do

11 {

12 System.out.printf("%d ", counter);
13 ++counter;

14 } while (counter <= 10); // end do...while
15

16 System.out.println(); // outputs a newline
17 } // end main

18 1} // end class DoWhileTest

1 2 3 4 5 6 7 8 9 10

Fig. 5.7 | do..while repetition statement.

Line 8 declares and initializes control variable counter. Upon entering the do...while
statement, line 12 outputs counter’s value and line 13 increments counter. Then the pro-

5.5 do...wh1i1e Repetition Statement 163

gram evaluates the loop-continuation test at the boztom of the loop (line 14). If the condition
is true, the loop continues from the first body statement (line 12). If the condition is false,
the loop terminates and the program continues with the next statement after the loop.

Figure 5.8 contains the UML activity diagram for the do...while statement. This dia-
gram makes it clear that the loop-continuation condition is not evaluated until affer the
loop performs the action state at least once. Compare this activity diagram with that of the
while statement (Fig. 4.4).

O
System.out.printf(“%d ”, counter); ----- Display the
counter value
P e] lncrement‘the

control variable
Determine whether _ _ _ _ _ _ _ _ __ [counter <= 10]
looping should
continue [counter > 10]

®

Fig. 5.8 | do.while repetition statement UML activity diagram.

It isn’t necessary to use braces in the do...while repetition statement if there’s only
one statement in the body. However, many programmers include the braces, to avoid con-
fusion between the while and do...while statements. For example,

while (condition)

is normally the first line of a while statement. A do...while statement with no braces
around a single-statement body appears as:

do
Statement
while (condition) ;
which can be confusing. A reader may misinterpret the last line—while(condition) ;—
as a while statement containing an empty statement (the semicolon by itself). Thus, the
do...while statement with one body statement is usually written as follows:

do
{

statement
} while (condition);

164 Chapter 5 Control Statements: Part 2

s Good Programming Practice 5.2
.1' Ahways include braces in a do. . .whi e statement. This helps eliminate ambiguity between
=5 the while statement and a do. . .whi le statement containing only one statement.

5.6 switch Multiple-Selection Statement

Chapter 4 discussed the 1f single-selection statement and the if...e1se double-selection
statement. The switch multiple-selection statement performs different actions based on
the possible values of a constant integral expression of type byte, short, int or char.

GradeBook Class with switch Statement to Count A, B, C, D and F Grades

Figure 5.9 enhances class GradeBook from Chapters 3—4. The new version we now present
not only calculates the average of a set of numeric grades entered by the user, but uses a
switch statement to determine whether each grade is the equivalent of an A, B, C, D or F
and to increment the appropriate grade counter. The class also displays a summary of the
number of students who received each grade. Refer to Fig. 5.10 for sample inputs and out-
puts of the GradeBookTest application that uses class GradeBook to process a set of grades.

1 // Fig. 5.9: GradeBook.java

2 // GradeBook class uses switch statement to count Tetter grades.
3 dimport java.util.Scanner; // program uses class Scanner
4

5 public class GradeBook

6 {

7 private String courseName; // name of course this GradeBook represents
8 // int instance variables are initialized to 0 by default
9 private int total; // sum of grades

10 private int gradeCounter; // number of grades entered
11 private int aCount; // count of A grades

12 private int bCount; // count of B grades

13 private int cCount; // count of C grades

14 private int dCount; // count of D grades

15 private int fCount; // count of F grades

16

17 // constructor initializes courseName;

18 public GradeBook(String name)

19 {
20 courseName = name; // initializes courseName
21 } // end constructor
22
23 // method to set the course name
24 public void setCourseName(String name)
25 {
26 courseName = name; // store the course name
27 } // end method setCourseName
28
29 // method to retrieve the course name

30 public String getCourseName()

31 {

Fig. 5.9 | GradeBook class uses switch statement to count letter grades. (Part | of 3.)

5.6 switch Multiple-Selection Statement

165

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

return courseName;
} // end method getCourseName

// display a welcome message to the GradeBook user
public void displayMessage()
{

// getCourseName gets the name of the course

System.out.printf("Welcome to the grade book for\n%s!\n\n",

getCourseName());
} // end method displayMessage

// input arbitrary number of grades from user
public void inputGrades()
{

Scanner input = new Scanner(System.in);
int grade; // grade entered by user

System.out.printf("%s\n%s\n %s\n %s\n",
"Enter the integer grades in the range 0-100.",
"Type the end-of-file indicator to terminate input:",
"On UNIX/Linux/Mac OS X type <Ctrl> d then press Enter",
"On Windows type <Ctrl> z then press Enter");

// Tloop until user enters the end-of-file indicator
while (input.hasNext())
{
grade = input.nextInt(); // read grade
total += grade; // add grade to total
++gradeCounter; // increment number of grades

// call method to increment appropriate counter
incrementlLetterGradeCounter(grade);
} // end while
} // end method inputGrades

// add 1 to appropriate counter for specified grade
private void incrementlLetterGradeCounter(int grade)
{
// determine which grade was entered
switch (grade / 10)
{
case 9: // grade was between 90
case 10: // and 100, inclusive
++aCount; // increment aCount
break; // necessary to exit switch

case 8: // grade was between 80 and 89
++bCount; // increment bCount
break; // exit switch

Fig. 5.9 | GradeBook class uses switch statement to count letter grades. (Part 2 of 3.)

166 Chapter 5 Control Statements: Part 2

83 case 7: // grade was between 70 and 79

84 ++cCount; // increment cCount

85 break; // exit switch

86

87 case 6: // grade was between 60 and 69

88 ++dCount; // increment dCount

89 break; // exit switch

90

91 default: // grade was less than 60

92 ++fCount; // increment fCount

93 break; // optional; will exit switch anyway

94 } // end switch

95 } // end method incrementLetterGradeCounter

96

97 // display a report based on the grades entered by the user
98 public void displayGradeReport()

99 {

100 System.out.println("\nGrade Report:");

101

102 // if user entered at Teast one grade...

103 if (gradeCounter != 0)

104 {

105 // calculate average of all grades entered

106 double average = (double) total / gradeCounter;

107

108 // output summary of results

109 System.out.printf("Total of the %d grades entered is %d\n",
110 gradeCounter, total);

111 System.out.printf("Class average is %.2f\n", average);
112 System.out.printf("%s\n%s%d\n%s%d\n%s%d\n%s%d\n%s%d\n",
113 "Number of students who received each grade:",

114 "A: ", aCount, // display number of A grades

115 "B: ", bCount, // display number of B grades

116 "C: ", cCount, // display number of C grades

117 "D: ", dCount, // display number of D grades

118 "F: ", fCount); // display number of F grades

119 } // end if

120 else // no grades were entered, so output appropriate message
121 System.out.println("No grades were entered");

122 } // end method displayGradeReport

123 } // end class GradeBook

Fig. 5.9 | GradeBook class uses switch statement to count letter grades. (Part 3 of 3.)

Like earlier versions of the class, class GradeBook (Fig. 5.9) declares instance variable
courseName (line 7) and contains methods setCourseName (lines 24—27), getCourseName
(lines 30—-33) and displayMessage (lines 36—41), which set the course name, store the
course name and display a welcome message to the user, respectively. The class also con-
tains a constructor (lines 18—21) that initializes the course name.

Class GradeBook also declares instance variables total (line 9) and gradeCounter
(line 10), which keep track of the sum of the grades entered by the user and the number
of grades entered, respectively. Lines 11-15 declare counter variables for each grade cate-
gory. Class GradeBook maintains total, gradeCounter and the five letter-grade counters

5.6 switch Multiple-Selection Statement 167

as instance variables so that they can be used or modified in any of the class’s methods.
The class’s constructor (lines 18-21) sets only the course name, because the remaining
seven instance variables are ints and are initialized to 0 by default.

Class GradeBook (Fig. 5.9) contains three additional methods—inputGrades, incre-
mentLetterGradeCounter and displayGradeReport. Method inputGrades (lines 44—606)
reads an arbitrary number of integer grades from the user using sentinel-controlled repe-
tition and updates instance variables total and gradeCounter. This method calls method
incrementLetterGradeCounter (lines 69-95) to update the appropriate letter-grade
counter for each grade entered. Method displayGradeReport (lines 98—122) outputs a
report containing the total of all grades entered, the average of the grades and the number
of students who received each letter grade. Let’s examine these methods in more detail.

Method inputGrades

Line 48 in method inputGrades declares variable grade, which will store the user’s input.
Lines 50-54 prompt the user to enter integer grades and to type the end-of-file indicator
to terminate the input. The end-of-file indicator is a system-dependent keystroke com-
bination which the user enters to indicate that there’s no more data to input. In
Chapter 17, Files, Streams and Object Serialization, we’ll see how the end-of-file indicator
is used when a program reads its input from a file.

On UNIX/Linux/Mac OS X systems, end-of-file is entered by typing the sequence

<Ctrl> d

on a line by itself. This notation means to simultaneously press both the C#/ key and the
d key. On Windows systems, end-of-file can be entered by typing

<Ctrl> z

[Note: On some systems, you must press Enter after typing the end-of-file key sequence.
Also, Windows typically displays the characters AZ on the screen when the end-of-file in-
dicator is typed, as shown in the output of Fig. 5.10.]

Portability Tip 5.1
@ The keystroke combinations for entering end-of-file are system dependent.

The while statement (lines 57—65) obtains the user input. The condition at line 57
calls Scanner method hasNext to determine whether there’s more data to input. This
method returns the boolean value true if there’s more data; otherwise, it returns false.
The returned value is then used as the value of the condition in the while statement.
Method hasNext returns false once the user types the end-of-file indicator.

Line 59 inputs a grade value from the user. Line 60 adds grade to total. Line 61
increments gradeCounter. The class’s displayGradeReport method uses these variables
to compute the average of the grades. Line 64 calls the class’s incrementLetterGrade-
Counter method (declared in lines 69-95) to increment the appropriate letter-grade
counter based on the numeric grade entered.

Method incrementLetterGradeCounter
Method incrementLetterGradeCounter contains a switch statement (lines 72—94) that
determines which counter to increment. We assume that the user enters a valid grade in

168 Chapter 5 Control Statements: Part 2

the range 0—100. A grade in the range 90-100 represents A, 80-89 represents B, 70-79
represents C, 60—69 represents D and 059 represents F. The switch statement consists
of a block that contains a sequence of case labels and an optional default case. These are
used in this example to determine which counter to increment based on the grade.

When the flow of control reaches the switch, the program evaluates the expression in
the parentheses (grade / 10) following keyword switch. This is the switch’s controlling
expression. The program compares this expression’s value (which must evaluate to an
integral value of type byte, char, short or int) with each case label. The controlling
expression in line 72 performs integer division, which truncates the fractional part of the
result. Thus, when we divide a value from 0 to 100 by 10, the result is always a value from
0 to 10. We use several of these values in our case labels. For example, if the user enters
the integer 85, the controlling expression evaluates to 8. The switch compares 8 with each
case label. If a match occurs (case 8: at line 79), the program executes that case’s state-
ments. For the integer 8, line 80 increments bCount, because a grade in the 80s is a B. The
break statement (line 81) causes program control to proceed with the first statement after
the switch—in this program, we reach the end of method incrementLetterGrade-
Counter’s body, so the method terminates and control returns to line 65 in method
inputGrades (the first line after the call to incrementLetterGradeCounter). Line 65 is the
end of a while loop’s body, so control flows to the while’s condition (line 57) to deter-
mine whether the loop should continue executing.

The cases in our switch explicitly test for the values 10, 9, 8, 7 and 6. Note the cases at
lines 7475 that test for the values 9 and 10 (both of which represent the grade A). Listing
cases consecutively in this manner with no statements between them enables the cases to per-
form the same set of statements—when the controlling expression evaluates to 9 or 10, the
statements in lines 76—77 will execute. The swi tch statement does not provide a mechanism
for testing ranges of values, so every value you need to test must be listed in a separate case
label. Fach case can have multiple statements. The swi tch statement differs from other con-
trol statements in that it does 7ot require braces around multiple statements in a case.

Without break statements, each time a match occurs in the switch, the statements
for that case and subsequent cases execute until a break statement or the end of the switch
is encountered. This is often referred to as “falling through” to the statements in subse-
quent cases. (This feature is perfect for writing a concise program that displays the itera-
tive song “The Twelve Days of Christmas” in Exercise 5.29.)

= Common Programming Error 5.6
‘r';i Forgetting a break statement when one is needed in a switch is a logic error.

If no match occurs between the controlling expression’s value and a case label, the
default case (lines 91-93) executes. We use the default case in this example to process
all controlling-expression values that are less than 6—that is, all failing grades. If no match
occurs and the switch does not contain a default case, program control simply continues
with the first statement after the switch.

GradeBookTest Class That Demonstrates Class GradeBook

Class GradeBookTest (Fig. 5.10) creates a GradeBook object (lines 10-11). Line 13 in-
vokes the object’s dispTayMessage method to output a welcome message to the user. Line
14 invokes the object’s inputGrades method to read a set of grades from the user and keep

5.6 switch Multiple-Selection Statement 169

track of the sum of all the grades entered and the number of grades. Recall that method
inputGrades also calls method incrementLetterGradeCounter to keep track of the num-
ber of students who received each letter grade. Line 15 invokes method displayGradeRe-
port of class GradeBook, which outputs a report based on the grades entered (as in the
input/output window in Fig. 5.10). Line 103 of class GradeBook (Fig. 5.9) determines
whether the user entered at least one grade—this helps us avoid dividing by zero. If so, line
106 calculates the average of the grades. Lines 109-118 then output the total of all the
grades, the class average and the number of students who received each letter grade. If no
grades were entered, line 121 outputs an appropriate message. The output in Fig. 5.10
shows a sample grade report based on 10 grades.

1 // Fig. 5.10: GradeBookTest.java

2 // Create GradeBook object, input grades and display grade report.
3

4 public class GradeBookTest

5 {

6 public static void main(String[] args)

7 {

8 // create GradeBook object myGradeBook and

9 // pass course name to constructor

10 GradeBook myGradeBook = new GradeBook(

11 "CS101 Introduction to Java Programming");

12

13 myGradeBook.displayMessage(); // display welcome message

14 myGradeBook.inputGrades(); // read grades from user

15 myGradeBook.dispTlayGradeReport(); // display report based on grades
16 } // end main

1T } // end class GradeBookTest

Welcome to the grade book for
CS101 Introduction to Java Programming!

Enter the integer grades in the range 0-100.

Type the end-of-file indicator to terminate input:
On UNIX/Linux/Mac OS X type <Ctrl> d then press Enter
On Windows type <Ctrl> z then press Enter

Grade Report:
Total of the 10 grades entered is 778
Class average is 77.80

Fig. 5.10 | Create GradeBook object, input grades and display grade report. (Part I of 2.)

170 Chapter 5 Control Statements: Part 2

umber of students who received each grade:

N
A
B:
C:
D
F

NRNR A

Fig. 5.10 | Create GradeBook object, input grades and display grade report. (Part 2 of 2.)

Class GradeBookTest (Fig. 5.10) does not directly call GradeBook method incre-
mentLetterGradeCounter (lines 69-95 of Fig. 5.9). This method is used exclusively by
method inputGrades of class GradeBook to update the appropriate letter-grade counter as
cach new grade is entered by the user. Method incrementLetterGradeCounter exists
solely to support the operations of GradeBook’s other methods, so it’s declared private.

Software Engineering Observation 5.2

Recall from Chapter 3 that methods declared with access modifier private can be called
) only by other methods of the class in which the private methods are declared. Such
methods are commonly referred to as utility methods or helper methods because they’re
typically used to support the operation of the class’s other methods.

switch Statement UML Activity Diagram

Figure 5.11 shows the UML activity diagram for the general switch statement. Most
switch statements use a break in each case to terminate the switch statement after pro-
cessing the case. Figure 5.11 emphasizes this by including break statements in the activity

[true] A X
case a -—-- case a actlons(s))% break)—

[false]

case b [true] i /)
F--- ———= case b actions(s) break

[false]

[true] .
Celse ---- case z actlons(s))% break)%

[false]

default actions(s)

Fig. 5.11 | switch multiple-selection statement UML activity diagram with break statements.

5.6 switch Multiple-Selection Statement 171

diagram. The diagram makes it clear that the break statement at the end of a case causes
control to exit the switch statement immediately.

The break statement is not required for the switch’s last case (or the optional
default case, when it appears last), because execution continues with the next statement
after the switch.

Software Engineering Observation 5.3

Provide a default case in switch statements. Including a default case focuses you on the
need to process exceptional conditions.

4 Good Programming Practice 5.3

‘| Although each case and the default case in a switch can occur in any order, place the de-
fault case last. When the default case is listed last, the break for that case is not required.

Notes on the Expression in Each case of a switch

When using the switch statement, remember that each case must contain a constant in-
tegral expression—that is, any combination of integer constants that evaluates to a con-
stant integer value (e.g., —7, 0 or 221). An integer constant is simply an integer value. In
addition, you can use character constants—specific characters in single quotes, such as
'A', '7" or '$'—which represent the integer values of characters and enum constants (in-
troduced in Section 6.10). (Appendix B shows the integer values of the characters in the
ASCII character set, which is a subset of the Unicode character set used by Java.)

The expression in each case can also be a constant variable—a variable containing a
value which does not change for the entire program. Such a variable is declared with key-
word final (discussed in Chapter 6). Java has a feature called enumerations, which we also
present in Chapter 6. Enumeration constants can also be used in case labels. In
Chapter 10, Object-Oriented Programming: Polymorphism, we present a more elegant
way to implement switch logic—we use a technique called polymorphism to create pro-
grams that are often clearer, easier to maintain and easier to extend than programs using
switch logic.

Using Strings in switch Statements (New in Java SE 7)

As of Java SE 7, you can use Strings in a switch statement’s controlling expression and
in case labels. For example, you might want to use a city’s name to obtain the correspond-
ing ZIP code. Assuming that city and zipCode are String variables, the following switch
statement performs this task for three cities:

switch(city)
{
case "Maynard":
zipCode = "01754";
break;
case "Marlborough":
zipCode = "01752";
break;
case "Framingham":
zipCode = "01701";
break;
} // end switch

172 Chapter 5 Control Statements: Part 2

5.7 break and continue Statements

In addition to selection and repetition statements, Java provides statements break and
continue (presented in this section and Appendix O) to alter the flow of control. The pre-
ceding section showed how break can be used to terminate a switch statement’s execu-
tion. This section discusses how to use break in repetition statements.

break Statement

The break statement, when executed in awhile, for, do...while or switch, causes imme-
diate exit from that statement. Execution continues with the first statement after the con-
trol statement. Common uses of the break statement are to escape early from a loop or to
skip the remainder of a switch (as in Fig. 5.9). Figure 5.12 demonstrates a break state-
ment exiting a for.

1 // Fig. 5.12: BreakTest.java

2 // break statement exiting a for statement.

3 public class BreakTest

4 {

5 public static void main(String[] args)

6 {

7 int count; // control variable also used after Toop terminates
8

9 for (count = 1; count <= 10; count++) // Toop 10 times

10 {

11 if (count == 5) // if count is 5,

12 break; // terminate Toop

13

14 System.out.printf("%d ", count);

15 } // end for

16

17 System.out.printf("\nBroke out of Toop at count = %d\n", count);
18 } // end main

19 1} // end class BreakTest

1234
Broke out of loop at count = 5

Fig. 5.12 | break statement exiting a for statement.

When the i statement nested at lines 11-12 in the for statement (lines 9—15) detects
that count is 5, the break statement at line 12 executes. This terminates the for statement,
and the program proceeds to line 17 (immediately after the for statement), which displays
a message indicating the value of the control variable when the loop terminated. The loop
fully executes its body only four times instead of 10.

continue Statement

The continue statement, when executed in a while, for or do...whiTe, skips the remain-
ing statements in the loop body and proceeds with the nexz iteration of the loop. In while
and do...whiTe statements, the program evaluates the loop-continuation test immediately
after the continue statement executes. In a for statement, the increment expression exe-
cutes, then the program evaluates the loop-continuation test.

5.8 Logical Operators 173

1 // Fig. 5.13: ContinueTest.java

2 // continue statement terminating an iteration of a for statement.
3 public class ContinueTest

4 {

5 public static void main(String[] args)

6 {

7 for (int count = 1; count <= 10; count++) // Toop 10 times
8 {

9 if (count == 5) // if count is 5,

10 continue; // skip remaining code in loop

11

12 System.out.printf("%d ", count);

13 } // end for

14

15 System.out.println("\nUsed continue to skip printing 5");
16 } // end main

17T } // end class ContinueTest

1234678910
Used continue to skip printing 5

Fig. 5.13 | continue statement terminating an iteration of a for statement.

Figure 5.13 uses continue to skip the statement at line 12 when the nested if (line
9) determines that count’s value is 5. When the continue statement executes, program
control continues with the increment of the control variable in the for statement (line 7).

In Section 5.3, we stated that whiTe could be used in most cases in place of for. This
is not true when the increment expression in the while follows a continue statement. In
this case, the increment does 7oz execute before the program evaluates the repetition-con-
tinuation condition, so the while does not execute in the same manner as the for.

Software Engineering Observation 5.4

Some programmers feel that break and continue violate structured programming. Since
the same effects are achievable with structured programming techniques, these
programmers do not use break or continue.

Software Engineering Observation 5.5

There’s a tension between achieving quality software engineering and achieving the best-
&) performing software. Sometimes one of these goals is achieved at the expense of the other.
For all but the most performance-intensive situations, apply the following rule of thumb:
First, make your code simple and correct; then make it fast and small, but only if necessary.

5.8 Logical Operators

The if, if...eTse, while, do...while and for statements each require a condition to de-
termine how to continue a program’s flow of control. So far, we've studied only simple
conditions, such as count <= 10, number != sentinelValue and total > 1000. Simple con-
ditions are expressed in terms of the relational operators >, <, >= and <= and the equality
operators == and !=, and each expression tests only one condition. To test multiple con-
ditions in the process of making a decision, we performed these tests in separate statements

174 Chapter 5 Control Statements: Part 2

or in nested if or if...eTse statements. Sometimes control statements require more com-
plex conditions to determine a program’s flow of control.

Java’s logical operators enable you to form more complex conditions by combining
simple conditions. The logical operators are && (conditional AND), || (conditional OR),
& (boolean logical AND), | (boolean logical inclusive OR), A (boolean logical exclusive
OR) and ! (logical NOT). [[Note: The &, | and A operators are also bitwise operators when
they’re applied to integral operands. We discuss the bitwise operators in Appendix N.]

Conditional AND (&&) Operator

Suppose we wish to ensure at some point in a program that two conditions are bozh true
before we choose a certain path of execution. In this case, we can use the && (conditional
AND) operator, as follows:

if (gender == FEMALE && age >= 65)
++seniorFemales;
This if statement contains two simple conditions. The condition gender == FEMALE com-
pares variable gender to the constant FEMALE to determine whether a person is female. The
condition age >= 65 might be evaluated to determine whether a person is a senior citizen.
The i f statement considers the combined condition

gender == FEMALE && age >= 65

which is true if and only if both simple conditions are true. In this case, the if statement’s
body increments seniorFemales by 1. If either or both of the simple conditions are false,
the program skips the increment. Some programmers find that the preceding combined
condition is more readable when redundant parentheses are added, as in:

(gender == FEMALE) && (age >= 65)

The table in Fig. 5.14 summarizes the & operator. The table shows all four possible
combinations of false and true values for expressionl and expression2. Such tables are
called truth tables. Java evaluates to false or true all expressions that include relational
operators, equality operators or logical operators.

false false false
false true false
true false false
true true true

Fig. 5.14 | && (conditional AND) operator truth table.

Conditional OR (| |) Operator

Now suppose we wish to ensure that either or both of two conditions are true before we
choose a certain path of execution. In this case, we use the || (conditional OR) operator,
as in the following program segment:

if ((semesterAverage >= 90) || (finalExam >= 90))
System.out.println ("Student grade is A");

5.8 Logical Operators 175

This statement also contains two simple conditions. The condition semesterAverage >=
90 evaluates to determine whether the student deserves an A in the course because of a sol-
id performance throughout the semester. The condition finalExam >= 90 evaluates to de-
termine whether the student deserves an A in the course because of an outstanding
performance on the final exam. The i f statement then considers the combined condition

(semesterAverage >= 90) || (finalExam >= 90)

and awards the student an A if either or both of the simple conditions are true. The only
time the message "Student grade is A" is noz printed is when both of the simple condi-
tions are false. Figure 5.15 is a truth table for operator conditional OR (] |). Operator &&
has a higher precedence than operator | |. Both operators associate from left to right.

false false false
false true true
true false true
true true true
Fig. 5.15 | || (conditional OR) operator truth table.

Short-Circuit Evaluation of Complex Conditions
The parts of an expression containing && or | | operators are evaluated on/y undl it’s known
whether the condition is true or false. Thus, evaluation of the expression

(gender == FEMALE) && (age >= 65)

stops immediately if gender is not equal to FEMALE (i.c., the entire expression is false) and
continues if gender s equal to FEMALE (i.c., the entire expression could still be true if the
condition age >= 65 is true). This feature of conditional AND and conditional OR ex-
pressions is called short-circuit evaluation.

Common Programming Error 5.7

In expressions using operator &, a condition—uwe Il call this the dependent condition—may
require another condition to be true for the evaluation of the dependent condition to be
meaningful. In this case, the dependent condition should be placed after the other condition,
or an error might occur. For example, in the expression (i 1=0) && (10 /i == 2), the sec-
ond condition must appear after the first condition, or a divide-by-zero error might occur.

ox

Boolean Logical AND (&) and Boolean Logical Inclusive OR (|) Operators

The boolean logical AND (&) and boolean logical inclusive OR (|) operators are iden-
tical to the & and || operators, except that the & and | operators always evaluate both of
their operands (i.e., they do nor perform short-circuit evaluation). So, the expression

(gender == 1) & (age >= 65)

evaluates age >= 65 regardless of whether gender is equal to 1. This is useful if the right
operand of the boolean logical AND or boolean logical inclusive OR operator has a re-
quired side effect—a modification of a variable’s value. For example, the expression

176 Chapter 5 Control Statements: Part 2

(birthday == true) | (++age >= 65)

guarantees that the condition ++age >= 65 will be evaluated. Thus, the variable age is in-
cremented, regardless of whether the overall expression is true or false.

Error-Prevention Tip 5.6

For clarity, avoid expressions with side effects in conditions. The side effects may seem clev-
er, but they can make it harder to understand code and can lead to subtle logic errors.

Boolean Logical Exclusive OR (1)

A simple condition containing the boolean logical exclusive OR (A) operator is true 7f°
and only if one of its operands is true and the other is false. If both are true or both are
false, the entire condition is false. Figure 5.16 is a truth table for the boolean logical
exclusive OR operator (A). This operator is guaranteed to evaluate both of its operands.

false false false
false true true
true false true
true true false

Fig. 5.16 | A (boolean logical exclusive OR) operator truth table.

Logical Negation (!) Operator

The ! (logical NOT, also called logical negation or logical complement) operator “re-
verses” the meaning of a condition. Unlike the logical operators &&, | |, &, | and A, which
are binary operators that combine two conditions, the logical negation operator is a unary
operator that has only a single condition as an operand. The operator is placed before a con-
dition to choose a path of execution if the original condition (without the logical negation
operator) is false, as in the program segment

if (! (grade == sentinelValue))
System.out.printf("The next grade is %d\n", grade);

which executes the printf call only if grade is 7o equal to sentinelvalue. The paren-
theses around the condition grade == sentinelValue are needed because the logical ne-
gation operator has a higher precedence than the equality operator.

In most cases, you can avoid using logical negation by expressing the condition dif-
ferently with an appropriate relational or equality operator. For example, the previous
statement may also be written as follows:

if (grade != sentinelValue)
System.out.printf("The next grade is %d\n", grade);

This flexibility can help you express a condition in a more convenient manner. Figure 5.17
is a truth table for the logical negation operator.

5.8 Logical Operators 177

false true
true false

Fig. 5.17 | ! (logical negation,
or logical NOT) operator truth table.

Logical Operators Example

Figure 5.18 uses logical operators to produce the truth tables discussed in this section. The
output shows the boolean expression that was evaluated and its result. We used the %b for-
mat specifier to display the word “true” or the word “false” based on a boolean expres-
sion’s value. Lines 9-13 produce the truth table for &&. Lines 16-20 produce the truth
table for | |. Lines 23-27 produce the truth table for & Lines 30-35 produce the truth ta-
ble for |. Lines 38—43 produce the truth table for A. Lines 46-47 produce the truth table

for 1.

1 // Fig. 5.18: LogicalOperators.java

2 // Logical operators.

3

4 pubTic class LogicalOperators

5 {

6 public static void main(String[] args)

7 {

8 // create truth table for && (conditional AND) operator

9 System.out.printf("%s\n%s: %b\n%s: %b\n%s: %b\n%s: %b\n\n",

10 "Conditional AND (&&R)'", "false && false", (false && false),
11 "false && true", (false && true),

12 "true && false", (true && false),

13 "true && true", (true && true));

14

15 // create truth table for || (conditional OR) operator

16 System.out.printf("%s\n%s: %b\n%s: %b\n%s: %b\n%s: %b\n\n",

17 "Conditional OR (||)", "false || false", (false || false),
18 "false || true", (false || true),

19 "true || false", (true || false),
20 "true || true", (true || true));
21
22 // create truth table for & (boolean Togical AND) operator
23 System.out.printf("%s\n%s: %b\n%s: %b\n%s: %b\n%s: %b\n\n",
24 "Boolean logical AND (&))", "false & false", (false & false),
25 "false & true", (false & true),
26 "true & false", (true & false),
27 "true & true", (true & true));
28
29 // create truth table for | (boolean logical inclusive OR) operator
30 System.out.printf("%s\n%s: %b\n%s: %b\n%s: %b\n%s: %b\n\n",
31 "Boolean logical inclusive OR (|)",

Fig. 5.18 | Logical operators. (Part | of 2.)

178 Chapter 5 Control Statements: Part 2

32 "false | false", (false | false),

33 "false | true", (false | true),

34 "true | false", (true | false),

35 "true | true", (true | true));

36

37 // create truth table for A (boolean logical exclusive OR) operator
38 System.out.printf("%s\n%s: %b\n%s: %b\n%s: %b\n%s: %b\n\n",
39 "Boolean Togical exclusive OR (A)",

40 "false A false", (false A false),

41 "false A true", (false A true),

42 "true A false", (true A false),

43 "true A true", (true A true));

44

45 // create truth table for ! (logical negation) operator

46 System.out.printf("%s\n%s: %b\n%s: %b\n", "Logical NOT (!)",
47 "l1false", (!'false), "ltrue", (ltrue));

48 } // end main

49 1} // end class LogicalOperators

Conditional AND (&&)

false && false: false
false && true: false

true && false: false

true & true: true

Conditional OR (]|)

false || false: false
false || true: true
true || false: true
true || true: true

Boolean Tlogical AND (&)
false & false: false
false & true: false
true & false: false
true & true: true

Boolean Togical inclusive OR (]|)
false | false: false

false | true: true

true | false: true

true | true: true

Boolean logical exclusive OR (A)
false A false: false

false A true: true

true A false: true

true A true: false

Logical NOT (1)
Ifalse: true
Itrue: false

Fig. 5.18 | Logical operators. (Part 2 of 2.)

5.9 Structured Programming Summary 179

Figure 5.19 shows the precedence and associativity of the Java operators introduced
so far. The operators are shown from top to bottom in decreasing order of precedence.

++ - right to left unary postfix
++ -+ - L (o right to left unary prefix
= /% left to right multiplicative
+ - left to right additive
<= > >= left to right relational
= = left to right equality
& left to right boolean logical AND
A left to right boolean logical exclusive OR
| left to right boolean logical inclusive OR
&& left to right conditional AND
N left to right conditional OR
?7: right to left conditional
= 4= -= *= [= %= right to left assignment

Fig. 5.19 | Precedence/associativity of the operators discussed so far.

5.9 Structured Programming Summary

Just as architects design buildings by employing the collective wisdom of their profession,
so should programmers design programs. Our field is much younger than architecture,
and our collective wisdom is considerably sparser. We've learned that structured program-
ming produces programs that are easier than unstructured programs to understand, test,
debug, modify and even prove correct in a mathematical sense.

Figure 5.20 uses UML activity diagrams to summarize Java’s control statements. The
initial and final states indicate the single entry point and the single exit point of each control
statement. Arbitrarily connecting individual symbols in an activity diagram can lead to
unstructured programs. Therefore, the programming profession has chosen a limited set
of control statements that can be combined in only two simple ways to build structured
programs.

For simplicity, Java includes only single-entry/single-exit control statements—there’s
only one way to enter and only one way to exit each control statement. Connecting control
statements in sequence to form structured programs is simple. The final state of one con-
trol statement is connected to the initial state of the next—that is, the control statements
are placed one after another in a program in sequence. We call this conzrol-statement
stacking. The rules for forming structured programs also allow for control statements to be
nested.

Figure 5.21 shows the rules for forming structured programs. The rules assume that
action states may be used to indicate any action. The rules also assume that we begin with
the simplest activity diagram (Fig. 5.22) consisting of only an initial state, an action state,
a final state and transition arrows.

180 Chapter 5 Control Statements: Part 2

Sequence | Selection
if statement switch statement with breaks
(single selection) (multiple selection)
[t A [t]
’)% break)—
(fl - [fl

>l D= break)=

- . éLéLé.

if...e1se statement
(double selection)

[fl [t /
) P a
@ [$%)% break H

default processing

Repetition

while statement do...whiTe statement for statement

initialization

>i _) [
@

)9 incremenD

Fig. 5.20 | Java's single-entry/single-exit sequence, selection and repetition statements.

5.9 Structured Programming Summary 181

Rules for forming structured programs

1. Begin with the simplest activity diagram (Fig. 5.22).
Any action state can be replaced by two action states in sequence.

3. Any action state can be replaced by any control statement (sequence
of action states, if, if...else, switch, while, do...while or for).

4. Rules 2 and 3 can be applied as often as you like and in any order.

Fig. 5.21 | Rules for forming structured programs.

Applying the rules in Fig. 5.21 always results in a properly structured activity diagram
with a neat, building-block appearance. For example, repeatedly applying rule 2 to the sim-
plest activity diagram results in an activity diagram containing many action states in sequence
(Fig. 5.23). Rule 2 generates a stack of control statements, so let’s call rule 2 the stacking
rule. The vertical dashed lines in Fig. 5.23 are not part of the UML—we use them to sepa-
rate the four activity diagrams that demonstrate rule 2 of Fig. 5.21 being applied.

!

action state

Fig. 5.22 | Simplest activity diagram.

apply
rule 2

-
-
-
-

| | |

[[apply |

| | rule 2 |

| | I T I

| | an |

I I action state I action state

| | |

| | |

| | |

| : 4 | : | .
| action state | action state | :
| | |
| | | \L

action state ’

Fig. 5.23 | Repeatedly applying the Rule 2 of Fig. 5.21 to the simplest activity diagram.

action state action state

action state

182 Chapter 5 Control Statements: Part 2

Rule 3 is called the nesting rule. Repeatedly applying rule 3 to the simplest activity dia-
gram results in one with neatly nested control statements. For example, in Fig. 5.24, the
action state in the simplest activity diagram is replaced with a double-selection (if...eTse)
statement. Then rule 3 is applied again to the action states in the double-selection statement,
replacing each with a double-selection statement. The dashed action-state symbol around
each double-selection statement represents the action state that was replaced. [/Noze: The
dashed arrows and dashed action-state symbols shown in Fig. 5.24 are not part of the UML.
They’re used here to illustrate that any action state can be replaced with a control statement.]

apply
rule 3
.
.
,
7 > -
7 , N
Ve / .
/ \
actionstate — — — — — — — - \\
)/ \
! 1
apply | : : L sl
iz 3 ‘ action state action state ‘ oy
\/
/\
\
/o
/ \
/
/
/
/
/
/
7/ . o / = N N
N\
// 7777777 R N
/ 7/ . .
\ \
// // \ \
! ! \ \
\ \
Vl ‘/ \ \
! | 1 1
' | actionstate actionstate || |1 action state actionstate | | |
| | |
\ | ! |
\ \ ! |
\ /)
\\ . / /
\ \ , ,
\\ ’ _ / //
A 7/
N p

Fig. 5.24 | Repeatedly applying the Rule 3 of Fig. 5.21 to the simplest activity diagram.

Rule 4 generates larger, more involved and more deeply nested statements. The dia-
grams that emerge from applying the rules in Fig. 5.21 constitute the set of all possible
structured activity diagrams and hence the set of all possible structured programs. The
beauty of the structured approach is that we use only seven simple single-entry/single-exit
control statements and assemble them in only rwo simple ways.

5.9 Structured Programming Summary 183

If the rules in Fig. 5.21 are followed, an “unstructured’ activity diagram (like the one
in Fig. 5.25) cannot be created. If you’re uncertain about whether a particular diagram is
structured, apply the rules of Fig. 5.21 in reverse to reduce it to the simplest activity dia-
gram. If you can reduce it, the original diagram is structured; otherwise, it’s not.

action state

i _

action state

!

action state - action state

Fig. 5.25 | “Unstructured” activity diagram.

Structured programming promotes simplicity. Only three forms of control are needed
to implement an algorithm:

* Sequence
e Selection
* Repetition

The sequence structure is trivial. Simply list the statements to execute in the order in
which they should execute. Selection is implemented in one of three ways:

* if statement (single selection)
e if...else statement (double selection)
* switch statement (multiple selection)

In fact, i¢’s straightforward to prove that the simple if statement is sufficient to provide
any form of selection—everything that can be done with the if...eTse statement and the
switch statement can be implemented by combining i f statements (although perhaps not
as clearly and efficiently).

Repetition is implemented in one of three ways:

* while statement
® do...while statement
e for statement

[Note: There’s a fourth repetition statement—the enhanced for statement—that we dis-
cuss in Section 7.6.] It’s straightforward to prove that the while statement is sufficient to
provide any form of repetition. Everything that can be done with do...while and for can
be done with the while statement (although perhaps not as conveniently).

Combining these results illustrates that any form of control ever needed in a Java pro-
gram can be expressed in terms of

184 Chapter 5 Control Statements: Part 2

* sequence
e if statement (selection)
* while statement (repetition)

and that these can be combined in only two ways—stacking and nesting. Indeed, structured
programming is the essence of simplicity.

5.10 (Optional) GUI and Graphics Case Study: Drawing
Rectangles and Ovals

This section demonstrates drawing rectangles and ovals, using the Graphics methods
drawRect and drawOval, respectively. These methods are demonstrated in Fig. 5.26.

1 // Fig. 5.26: Shapes.java

2 // Demonstrates drawing different shapes.

3 import java.awt.Graphics;

4 import javax.swing.JPanel;

5

6 public class Shapes extends JPanel

7 {

8 private int choice; // user's choice of which shape to draw
9

10 // constructor sets the user's choice

11 public Shapes(int userChoice)

12 {

13 choice = userChoice;

14 } // end Shapes constructor

15

16 // draws a cascade of shapes starting from the top-left corner
17 public void paintComponent(Graphics g)

18 {

19 super.paintComponent(g);
20
21 for (int i = 0; i < 10; i++)
22 {
23 // pick the shape based on the user's choice
24 switch (choice)
25 {
26 case 1: // draw rectangles
27 g.drawRect(10 + i * 10, 10 + i * 10,
28 50 + i * 10, 50 + i * 10);
29 break;
30 case 2: // draw ovals
31 g.drawOval(10 + i * 10, 10 + i * 10,
32 50 + i * 10, 50 + i * 10);
33 break;
34 } // end switch
35 } // end for
36 } // end method paintComponent

37 1} // end class Shapes

Fig. 5.26 | Drawing a cascade of shapes based on the user’s choice.

5.10 (Optional) GUI and Graphics Case Study: Drawing Rectangles and Ovals 185

Line 6 begins the class declaration for Shapes, which extends JPanel. Instance vari-
able choice, declared in line 8, determines whether paintComponent should draw rectan-
gles or ovals. The Shapes constructor at lines 11-14 initializes choice with the value
passed in parameter userChoice.

Method paintComponent (lines 17-36) performs the actual drawing. Remember, the
first statement in every paintComponent method should be a call to super.paintCompo-
nent, as in line 19. Lines 21-35 loop 10 times to draw 10 shapes. The nested switch state-
ment (lines 24-34) chooses between drawing rectangles and drawing ovals.

If choice is 1, then the program draws rectangles. Lines 27-28 call Graphics method
drawRect. Method drawRect requires four arguments. The first two represent the x- and
y-coordinates of the upper-left corner of the rectangle; the next two represent the rect-
angle’s width and height. In this example, we start at a position 10 pixels down and 10
pixels right of the top-left corner, and every iteration of the loop moves the upper-left
corner another 10 pixels down and to the right. The width and the height of the rectangle
start at 50 pixels and increase by 10 pixels in each iteration.

If choice is 2, the program draws ovals. It creates an imaginary rectangle called a
bounding rectangle and places inside it an oval that touches the midpoints of all four
sides. Method drawOval (lines 31-32) requires the same four arguments as method
drawRect. The arguments specify the position and size of the bounding rectangle for the
oval. The values passed to drawOval in this example are exactly the same as those passed
to drawRect in lines 27-28. Since the width and height of the bounding rectangle are
identical in this example, lines 27-28 draw a circle. As an exercise, try modifying the pro-
gram to draw both rectangles and ovals to see how drawOval and drawRect are related.

Class ShapesTest

Figure 5.27 is responsible for handling input from the user and creating a window to dis-
play the appropriate drawing based on the user’s response. Line 3 imports JFrame to han-
dle the display, and line 4 imports JOptionPane to handle the input.

1 // Fig. 5.27: ShapesTest.java

2 // Test application that displays class Shapes.

3 dimport javax.swing.JFrame;

4 import javax.swing.JOptionPane;

5

6 public class ShapesTest

7 {

8 public static void main(String[] args)

9 {

10 // obtain user's choice

11 String input = JOptionPane.showInputDialog(
12 "Enter 1 to draw rectangles\n" +

13 "Enter 2 to draw ovals");

14

15 int choice = Integer.parselnt(input); // convert input to int
16

17 // create the panel with the user's input
18 Shapes panel = new Shapes(choice);

Fig. 5.27 | Obtaining user input and creating a JFrame to display Shapes. (Part | of 2.)

186 Chapter 5 Control Statements: Part 2

19

20 JFrame application = new JFrame(); // creates a new JFrame
21

22 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
23 application.add(panel); // add the panel to the frame

24 application.setSize(300, 300); // set the desired size

25 application.setVisible(true); // show the frame

26 } // end main

27 1} // end class ShapesTest

Input %] ===
Enter 1 to draw rectangles
Enter 2 to draw ovals
K |
(o cance

Input

Enter 1 to draw rectangles
FEnter 2 to draw ovals

z |

@ | Cancel

Fig. 5.27 | Obtaining user input and creating a JFrame to display Shapes. (Part 2 of 2.)

Lines 11-13 prompt the user with an input dialog and store the user’s response in vari-
able input. Line 15 uses Integer method parselnt to convert the String entered by the
user to an int and stores the result in variable choice. Line 18 creates a Shapes object and
passes the user’s choice to the constructor. Lines 20—25 perform the standard operations that
create and set up a window in this case study—create a frame, set it to exit the application
when closed, add the drawing to the frame, set the frame size and make it visible.

GUI and Graphics Case Study Exercises

5.1 Draw 12 concentric circles in the center of a JPanel (Fig. 5.28). The innermost circle
should have a radius of 10 pixels, and each successive circle should have a radius 10 pixels larger than
the previous one. Begin by finding the center of the JPanel. To get the upper-left corner of a circle,
move up one radius and to the left one radius from the center. The width and height of the bound-
ing rectangle are both the same as the circle’s diameter (i.e., twice the radius).

5.11 Wrap-Up 187

Fig. 5.28 | Drawing concentric circles.

5.2 Modify Exercise 5.16 from the end-of-chapter exercises to read input using dialogs and to
display the bar chart using rectangles of varying lengths.

5.11 Wrap-Up

In this chapter, we completed our introduction to Java’s control statements, which enable
you to control the flow of execution in methods. Chapter 4 discussed Java’s if, if...else
and whiTe statements. The current chapter demonstrated the for, do...while and switch
statements. We showed that any algorithm can be developed using combinations of the
sequence structure (i.e., statements listed in the order in which they should execute), the
three types of selection statements—if, if...else and switch—and the three types of
repetition statements—uwhiTe, do...while and for. In this chapter and Chapter 4, we dis-
cussed how you can combine these building blocks to utilize proven program-construction
and problem-solving techniques. This chapter also introduced Java’s logical operators,
which enable you to use more complex conditional expressions in control statements. In
Chapter 6, we examine methods in greater depth.

Summary

Section 5.2 Essentials of Counter-Controlled Repetition

* Counter-controlled repetition (p. 152) requires a control variable, the initial value of the control
variable, the increment (or decrement) by which the control variable is modified each time
through the loop (also known as each iteration of the loop) and the loop-continuation condition
that determines whether looping should continue.

¢ You can declare a variable and initialize it in the same statement.

Section 5.3 for Repetition Statement

* The while statement can be used to implement any counter-controlled loop.

* The for statement (p. 154) specifies all the details of counter-controlled repetition in its header
* When the for statement begins executing, its control variable is declared and initialized. Next,

the program checks the loop-continuation condition. If the condition is initially true, the body
executes. After executing the loop’s body, the increment expression executes. Then the loop-con-

188 Chapter 5 Control Statements: Part 2

tinuation test is performed again to determine whether the program should continue with the
next iteration of the loop.

* The general format of the for statement is

for (initialization; loopContinuationCondition; increment)
statement
where the initialization expression names the loop’s control variable and provides its initial value,
loop ContinuationCondition determines whether the loop should continue executing and incre-
ment modifies the control variable’s value, so that the loop-continuation condition eventually be-
comes false. The two semicolons in the for header are required.

* Most for statements can be represented with equivalent while statements as follows:
initialization;
while (loopContinuationCondition)
{
statement
increment;
}
* Typically, for statements are used for counter-controlled repetition and while statements for
sentinel-controlled repetition.

e If the initialization expression in the for header declares the control variable, the control variable
can be used only in that for statement—it will not exist outside the for statement.

* The expressions in a for header are optional. If the loop ContinuationCondition is omitted, Java as-
sumes that it’s always true, thus creating an infinite loop. You might omit the initialization expres-
sion if the control variable is initialized before the loop. You might omit the increment expression
if the increment is calculated with statements in the loop’s body or if no increment is needed.

 The increment expression in a for acts as if it’s a standalone statement at the end of the for’s body.
* A for statement can count downward by using a negative increment (i.e., a decrement).

¢ If the loop-continuation condition is initially false, the program does not execute the for state-
ment’s body. Instead, execution proceeds with the statement following the for.

Section 5.4 Examples Using the for Statement
e Java treats floating-point constants like 1000.0 and 0.05 as type double. Similarly, Java treats
whole-number constants like 7 and -22 as type int.

* The format specifier %4s outputs a String in a field widch (p. 160) of 4—that is, printf displays
the value with at least 4 character positions. If the value to be output is less than 4 character po-
sitions wide, the value is right justified (p. 160) in the field by default. If the value is greater than
4 character positions wide, the field width expands to accommodate the appropriate number of
characters. To left justify (p. 160) the value, use a negative integer to specify the field width.

* Math.pow(x, 3 (p. 161) calculates the value of x raised to the y™ power. The method receives
two double arguments and returns a double value.

e The comma (,) formatting flag (p. 161) in a format specifier indicates that a floating-point value
should be output with a grouping separator (p. 161). The actual separator used is specific to the
user’s locale (i.e., country). In the United States, the number will have commas separating every
three digits and a decimal point separating the fractional part of the number, as in 1,234.45.

e The . in a format specifier indicates that the integer to its right is the number’s precision.
Section 5.5 do...while Repetition Statement

e Thedo...while statement (p. 162) is similar to the while statement. In the whiTe, the program tests
the loop-continuation condition at the beginning of the loop, before executing its body; if the con-

Summary 189

dition is false, the body never executes. The do...whiTe statement tests the loop-continuation con-
dition affer executing the loop’s body; therefore, the body always executes at least once.

Section 5.6 switch Multiple-Selection Statement

The switch statement (p. 164) performs different actions based on the possible values of a con-
stant integral expression (a constant value of type byte, short, int or char, but not Tong).

The end-of-file indicator (p. 167) is a system-dependent keystroke combination that terminates
user input. On UNIX/Linux/Mac OS X systems, end-of-file is entered by typing the sequence
<Ctrl> d on a line by itself. This notation means to simultaneously press both the C#/ key and
the 4 key. On Windows systems, enter end-of-file by typing <Ctr/> z.

Scanner method hasNext (p. 167) determines whether there’s more data to input. This method
returns the boolean value true if there’s more data; otherwise, it returns false. As long as the
end-of-file indicator has not been typed, method hasNext will return true.

The switch statement consists of a block that contains a sequence of case labels (p. 168) and an
optional default case (p. 168).

When the flow of control reaches a switch, the program evaluates the switch’s controlling ex-
pression and compares its value with each case label. If a match occurs, the program executes the
statements for that case.

Listing cases consecutively with no statements between them enables the cases to perform the
same set of statements.

Every value you wish to test in a switch must be listed in a separate case label.
Each case can have multiple statements, and these need not be placed in braces.

Without break statements, each time a match occurs in the switch, the statements for that case
and subsequent cases execute until a break statement or the end of the switch is encountered.

If no match occurs between the controlling expression’s value and a case label, the optional
default case executes. If no match occurs and the switch does not contain a default case, pro-
gram control simply continues with the first statement after the switch.

As of Java SE 7, you can use Strings in a swi tch statement’s controlling expression and case labels.

Section 5.7 break and continue Statements

The break statement (p. 168), when executed in a while, for, do...while or switch, causes im-
mediate exit from that statement.

The continue statement (p. 172), when executed in a while, for or do...while, skips the loop’s
remaining body statements and proceeds with its next iteration. In while and do...whi1e state-
ments, the program evaluates the loop-continuation test immediately. In a for statement, the in-
crement expression executes, then the program evaluates the loop-continuation test.

Section 5.8 Logical Operators

Simple conditions are expressed in terms of the relational operators >, <, >= and <= and the equal-
ity operators == and !=, and each expression tests only one condition.

Logical operators (p. 174) enable you to form more complex conditions by combining simple con-
ditions. The logical operators are & (conditional AND), || (conditional OR), & (boolean logical
AND), | (boolean logical inclusive OR), A (boolean logical exclusive OR) and ! (logical NOT).

To ensure that two conditions are both true, use the & (conditional AND) operator. If either or
both of the simple conditions are false, the entire expression is false.

To ensure that either o7 both of two conditions are true, use the || (conditional OR) operator,
which evaluates to true if either or both of its simple conditions are true.

190

Chapter 5 Control Statements: Part 2

* A condition using & or || operators (p. 174) uses short-circuit evaluation (p. 175)—they’re
evaluated only until it’s known whether the condition is true or false.

e The & and | operators (p. 175) work identically to the && and || operators, but always evaluate
both operands.

¢ A simple condition containing the boolean logical exclusive OR (A; p. 176) operator is true #f and
only if one of its operands is true and the other is false. If both operands are true or both are false,
the entire condition is false. This operator is also guaranteed to evaluate both of its operands.

e The unary ! (logical NOT; p. 176) operator “reverses” the value of a condition.

Self-Review Exercises
5.1 (Fill in the Blanks) Fill in the blanks in each of the following statements:

g

Typically, statements are used for counter-controlled repetition and
statements for sentinel-controlled repetition.

The do...while statement tests the loop-continuation condition executing

the loop’s body; therefore, the body always executes at least once.

The statement selects among multiple actions based on the possible values

of an integer variable or expression.

The statement, when executed in a repetition statement, skips the remaining

statements in the loop body and proceeds with the next iteration of the loop.

The operator can be used to ensure that two conditions are bozh true before

choosing a certain path of execution.

If the loop-continuation condition in a for header is initially , the program

does not execute the for statement’s body.

Methods that perform common tasks and do not require objects are called
methods.

5.2 (True/False Questions) State whether each of the following is #7ue or false. If false, explain why.

a)
b)
)
d)
e)

f)

g

The default case is required in the switch selection statement.

The break statement is required in the last case of a switch selection statement.

The expression ((x > y) & (a < b)) istrue ifeither x > yistrueora < b is true.
An expression containing the | | operator is true if either or both of its operands are true.
The comma (,) formatting flag in a format specifier (e.g., %,20. 2f) indicates that a value
should be output with a thousands separator.

To test for a range of values in a switch statement, use a hyphen (-) between the start
and end values of the range in a case label.

Listing cases consecutively with no statements between them enables the cases to per-
form the same set of statements.

5.3 (Write a Statement) Write a Java statement or a set of Java statements to accomplish each
of the following tasks:

a)

b)
<)

d)

Sum the odd integers between 1 and 99, using a for statement. Assume that the integer
variables sum and count have been declared.

Calculate the value of 2.5 raised to the power of 3, using the pow method.

Print the integers from 1 to 20, using a while loop and the counter variable 1. Assume
that the variable i has been declared, but not initialized. Print only five integers per line.
[Hint: Use the calculation 1 % 5. When the value of this expression is 0, print a newline
character; otherwise, print a tab character. Assume that this code is an application. Use
the System.out.print1n() method to output the newline character, and use the Sys-
tem.out.print('\t') method to output the tab character.]

Repeat part (c), using a for statement.

Answers to Self-Review Exercises 191

54 (Find the Error) Find the error in each of the following code segments, and explain how to
correct it:
a) i =1;

while (i <= 10);
++1;
}
b) for (k =0.1; k !=1.0; k += 0.1)
System.out.printin(k);
¢) switch (n)
{
case 1:
System.out.printin("The number is 1");
case 2:
System.out.printin("The number is 2");
break;
default:
System.out.printin("The number is not 1 or 2");
break;

}
d) The following code should print the values 1 to 10:
n=1;
while (n < 10)
System.out.printin(n++);

Answers to Self-Review Exercises
5.1 a) for, while. b) after. c) switch. d) continue. ¢) & (conditional AND). f) false. g) static.

5.2 a) False. The default case is optional. If no default action is needed, then there’s no need
for a default case. b) False. The break statement is used to exit the switch statement. The break
statement is not required for the last case in a switch statement. c) False. Both of the relational ex-
pressions must be true for the entire expression to be true when using the && operator. d) True.
e) True. f) False. The switch statement does not provide a mechanism for testing ranges of values,
so every value that must be tested should be listed in a separate case label. g) True.

5.3 a) sum = 0;
for (count = 1; count <= 99; count += 2)

sum += count;
b) double result = Math.pow(2.5, 3);

e) i=1;

while (i <= 20)

{
System.out.print(i);
if (1%5==0)
System.out.println(Q);
else
System.out.print('\t');
++1;
}
f) for (i=1; i <=20; i++)
{

System.out.print(i);

192 Chapter 5 Control Statements: Part 2

if (i%5==0)
System.out.println(Q);
else
System.out.print('\t');
}
5.4 a) Error: The semicolon after the while header causes an infinite loop, and there’s a miss-
ing left brace.
Correction: Replace the semicolon by a {, or remove both the ; and the }.

b) Error: Using a floating-point number to control a for statement may not work, because
floating-point numbers are represented only approximately by most computers.
Correction: Use an integer, and perform the proper calculation in order to get the values
you desire:

for (k =1; k !'= 10; k++)
System.out.printin((double) k / 10);

¢) Error: The missing code is the break statement in the statements for the first case.
Correction: Add a break statement at the end of the statements for the first case. This
omission is not necessarily an error if you want the statement of case 2: to execute every
time the case 1: statement executes.

d) Error: An improper relational operator is used in the while’s continuation condition.
Correction: Use <= rather than <, or change 10 to 11.

Exercises

5.5 Describe the four basic elements of counter-controlled repetition.

5.6 Compare and contrast the while and for repetition statements.

5.7 Discuss a situation in which it would be more appropriate to use a do...while statement
than a while statement. Explain why.

5.8 Compare and contrast the break and continue statements.

5.9 Find and correct the error(s) in each of the following segments of code:

a) For (i =100, i>=1, i++)
System.out.printin(i);
b) The following code should print whether integer value is odd or even:

switch (value % 2)

{
case O:
System.out.println("Even integer");
case 1:
System.out.println("Odd integer");
}

¢) The following code should output the odd integers from 19 to 1:

for (i =19; 1 >=1; 1 +=2)
System.out.printin(i);

d) The following code should output the even integers from 2 to 100:

counter = 2;

do

{
System.out.println(counter);
counter += 2;

} While (counter < 100);

Exercises 193

5.10 What does the following program do?

1 // Exercise 5.10: Printing.java

2 public class Printing

3 {

4 public static void main(String[] args)
5 {

6 for (int i = 1; i <= 10; i++)
7 {

8 for Cint j =1; j <= 5; j++)
9 System.out.print('@");
10

11 System.out.println(Q);

12 } // end outer for

13 } // end main

14 1} // end class Printing

5.11 (Find the Smallest Value) Write an application that finds the smallest of several integers.
Assume that the first value read specifies the number of values to input from the user.

5.12 (Calculating the Product of Odd Integers) Write an application that calculates the product
of the odd integers from 1 to 15.

5.13 (Factorials) Factorials are used frequently in probability problems. The factorial of a positive
integer 7 (written 7! and pronounced “z factorial”) is equal to the product of the positive integers from
1 to 7. Write an application that calculates the factorials of 1 through 20. Use type Tong. Display the
results in tabular format. What difficulty might prevent you from calculating the factorial of 1002

5.14 (Modified Compound-Interest Program) Modify the compound-interest application of
Fig. 5.6 to repeat its steps for interest rates of 5%, 6%, 7%, 8%, 9% and 10%. Use a for loop to
vary the interest rate.

5.15 (Triangle Printing Program) Write an application that displays the following patterns sep-
arately, one below the other. Use for loops to generate the patterns. All asterisks (*) should be print-
ed by a single statement of the form System.out.print('*'); which causes the asterisks to print
side by side. A statement of the form System.out.print1n(); can be used to move to the next line.
A statement of the form System.out.print(' '); can be used to display a space for the last two
patterns. There should be no other output statements in the program. [Hint: The last two patterns
require that each line begin with an appropriate number of blank spaces.]

(@ (b) () ()

¥*

5.16 (Bar Chart Printing Program) One interesting application of computers is to display
graphs and bar charts. Write an application that reads five numbers between 1 and 30. For each
number that’s read, your program should display the same number of adjacent asterisks. For exam-
ple, if your program reads the number 7, it should display *####+* Display the bars of asterisks affer
you read all five numbers.

194 Chapter 5 Control Statements: Part 2

5.17 (Calculating Sales) An online retailer sells five products whose retail prices are as follows:
Product 1, $2.98; product 2, $4.50; product 3, $9.98; product 4, $4.49 and product 5, $6.87.
Write an application that reads a series of pairs of numbers as follows:

a) product number

b) quantity sold

Your program should use a switch statement to determine the retail price for each product. It
should calculate and display the total retail value of all products sold. Use a sentinel-controlled
loop to determine when the program should stop looping and display the final results.

5.18 (Modified Compound-Interest Program) Modify the application in Fig. 5.6 to use only in-
tegers to calculate the compound interest. [Hinz: Treat all monetary amounts as integral numbers
of pennies. Then break the result into its dollars and cents portions by using the division and re-
mainder operations, respectively. Insert a period between the dollars and the cents portions.]

5.19 Assumethati =1, j =2, k =3 and m = 2. What does each of the following statements print?
a) System.out.printin(i == 1);
b) System.out.printin(j == 3);
c) System.out.println((i >=1) & (j <4));
d) System.out.printin((m<=99) & (k <m));
e) System.out.printinC (j >=1) || Ck=m));
f) System.out.printinC Ck +m<3j) | (3 -3>=k));
g) System.out.printin(!'C k > m));

5.20 (Calculating the Value of i) Calculate the value of T from the infinite series

Print a table that shows the value of T approximated by computing the first 200,000 terms of this
series. How many terms do you have to use before you first get a value that begins with 3.14159?

5.21 (Pythagorean Triples) A right triangle can have sides whose lengths are all integers. The set
of three integer values for the lengths of the sides of a right triangle is called a Pythagorean triple.
The lengths of the three sides must satisfy the relationship that the sum of the squares of two of the
sides is equal to the square of the hypotenuse. Write an application that displays a table of the
Pythagorean triples for sidel, side2 and the hypotenuse, all no larger than 500. Use a triple-nested
for loop that tries all possibilities. This method is an example of “brute-force” computing. You’ll
learn in more advanced computer science courses that for many interesting problems there’s no
known algorithmic approach other than using sheer brute force.

5.22 (Modified Triangle Printing Program) Modify Exercise 5.15 to combine your code from
the four separate triangles of asterisks such that all four patterns print side by side. [Hinz: Make clev-
er use of nested for loops.]

5.23 (De Morgan’s Laws) In this chapter, we discussed the logical operators &&, &, ||, |, A and !.
De Morgan’s laws can sometimes make it more convenient for us to express a logical expression.
These laws state that the expression ! (conditionl && condition2) is logically equivalent to the expres-
sion (!conditionl || !condition2). Also, the expression !(conditionl || condition2) is logically
equivalent to the expression (! conditionl && ! condition2). Use De Morgan’s laws to write equivalent
expressions for each of the following, then write an application to show that both the original ex-
pression and the new expression in each case produce the same value:

a) I(x<5)& I(y>7)

b) 1Ca=b) || 1(g!=5)

) 1I((x<=8)& (y>4))

d) 1CCi>4) || (§<=6))

Making a Difference 195

5.24 (Diamond Printing Program) Write an application that prints the following diamond
shape. You may use output statements that print a single asterisk (¥), a single space or a single new-
line character. Maximize your use of repetition (with nested for statements), and minimize the
number of output statements.

5.25 (Modified Diamond Printing Program) Modify the application you wrote in Exercise 5.24
to read an odd number in the range 1 to 19 to specify the number of rows in the diamond. Your
program should then display a diamond of the appropriate size.

5.26 A criticism of the break statement and the continue statement is that each is unstructured.
Actually, these statements can always be replaced by structured statements, although doing so can be
awkward. Describe in general how you'd remove any break statement from a loop in a program and
replace it with some structured equivalent. [Hint: The break statement exits a loop from the body of
the loop. The other way to exit is by failing the loop-continuation test. Consider using in the loop-
continuation test a second test that indicates “early exit because of a ‘break’ condition.”] Use the tech-
nique you develop here to remove the break statement from the application in Fig. 5.12.

5.27 What does the following program segment do?

for (i =1; i <= 5; i++)
{
for (j =1; j <= 3; j++)
{
for (k = 1; k <= 4; k++)
System.out.print("*');
System.out.printinQ);
} // end inner for

System.out.println(Q);
} // end outer for
5.28 Describe in general how you’d remove any continue statement from a loop in a program
and replace it with some structured equivalent. Use the technique you develop here to remove the
continue statement from the program in Fig. 5.13.

5.29 (“The Twelve Days of Christmas” Song) Write an application that uses repetition and
swi tch statements to print the song “The Twelve Days of Christmas.” One swi tch statement should
be used to print the day (“first,” “second,” and so on). A separate switch statement should be used
to print the remainder of each verse. Visit the website en.wikipedia.org/wiki/The_Twelve_Days_
of_Christmas_(song) for the lyrics of the song.

Making a Difference

5.30 (Global Warming Facts Quiz) The controversial issue of global warming has been widely
publicized by the film “An Inconvenient Truth,” featuring former Vice President Al Gore. Mr. Gore
and a U.N. network of scientists, the Intergovernmental Panel on Climate Change, shared the 2007
Nobel Peace Prize in recognition of “their efforts to build up and disseminate greater knowledge
about man-made climate change.” Research both sides of the global warming issue online (you

196 Chapter 5 Control Statements: Part 2

might want to search for phrases like “global warming skeptics”). Create a five-question multiple-
choice quiz on global warming, each question having four possible answers (numbered 1-4). Be ob-
jective and try to fairly represent both sides of the issue. Next, write an application that administers
the quiz, calculates the number of correct answers (zero through five) and returns a message to the
user. If the user correctly answers five questions, print “Excellent”; if four, print “Very good”; if
three or fewer, print “Time to brush up on your knowledge of global warming,” and include a list
of some of the websites where you found your facts.

5.31 (Tax Plan Alternatives; The “FairTax”) There are many proposals to make taxation fairer.
Check out the FairTax initiative in the United States at

www. fairtax.org/site/PageSer PageServer?pagename=calculator

Research how the proposed FairTax works. One suggestion is to eliminate income taxes and most
other taxes in favor of a 23% consumption tax on all products and services that you buy. Some Fair-
Tax opponents question the 23% figure and say that because of the way the tax is calculated, it would
be more accurate to say the rate is 30%—check this carefully. Write a program that prompts the user
to enter expenses in various expense categories they have (e.g., housing, food, clothing, transporta-
tion, education, health care, vacations), then prints the estimated FairTax that person would pay.

5.32 (Facebook User Base Growth) According to CNNMoney.com, Facebook hit 500 million
users in July of 2010 and its user base has been growing at a rate of 5% per month. Using the com-
pound-growth technique you learned in Fig. 5.6 and assuming this growth rate continues, how
many months will it take for Facebook to grow its user base to one billion users? How many months
will it take for Facebook to grow its user base to two billion users (which, at the time of this writing,
was the total number of people on the Internet)?

www.fairtax.org/site/PageSerPageServer?pagename=calculator

Methods: A Deeper Look

E pluribus unum.
(One composed of many.)
—Virgil

O! call back yesterday, bid time
return.
—William Shakespeare

Call me Ishmael.

—Herman Melville

Ansu/er me i’l one wor&l.
—William Shakespeare

There is a point ar which
methods devour themselves.

—Frantz Fanon

Objectives
In this chapter you'll learn:

= How static methods and
fields are associated with
classes rather than objects.

How the method call/return
mechanism is supported by
the method-call stack.

How packages group related
classes.

How to use random-number
generation to implement
game-playing applications.

How the visibility of
declarations is limited to
specific regions of programs.

= What method overloading is
and how to create overloaded
methods.

/ Qutline

198 Chapter 6 Methods: A Deeper Look

6.1 Introduction 6.9 Case Study: Random-Number
6.2 Program Modules in Java Generation
6.3 static Methods. static Fields 6.9.1 Generalized Scaling and Shifting of

Random Numbers

and Class Math 6.9.2 Random-Number Repeatability for

6.4 Declaring Methods with Multiple Testing and Debugging
Parameters 6.10 Case Study: A Game of Chance;
6.5 Notes on Declaring and Using Introducing Enumerations
Methods 6.11 Scope of Declarations
6.6 Method-Call Stack and Activation 6.12 Method Overloading
Records 6.13 (Optional) GUI and Graphics Case
6.7 Argument Promotion and Casting Study: Colors and Filled Shapes
6.8 Java API Packages 6.14 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

6.1 Introduction

Experience has shown that the best way to develop and maintain a large program is to con-
struct it from small, simple pieces, or modules. This technique is called divide and con-
quer. Methods, which we introduced in Chapter 3, help you modularize programs. In this
chapter, we study methods in more depth. We emphasize how to declare and use methods
to facilitate the design, implementation, operation and maintenance of large programs.

You'll see that it’s possible to call certain methods, called static methods, without
the need for an object of the class to exist. You’ll learn how to declare a method with more
than one parameter. You'll also learn how Java is able to keep track of which method is
currently executing, how local variables of methods are maintained in memory and how a
method knows where to return after it completes execution.

We'll take a brief diversion into simulation techniques with random-number genera-
tion and develop a version of the casino dice game called craps that uses most of the pro-
gramming techniques you’ve used to this point in the book. In addition, you’ll learn how
to declare values that cannot change (i.e., constants) in your programs.

Many of the classes you’ll use or create while developing applications will have more
than one method of the same name. This technique, called overloading, is used to imple-
ment methods that perform similar tasks for arguments of different types or for different
numbers of arguments.

We continue our discussion of methods in Chapter 18, Recursion. Recursion pro-
vides an intriguing way of thinking about methods and algorithms.

6.2 Program Modules in Java

You write Java programs by combining new methods and classes with predefined ones
available in the Java Application Programming Interface (also referred to as the Java API
or Java class library) and in various other class libraries. Related classes are typically
grouped into packages so that they can be imported into programs and reused. You’ll learn

6.2 Program Modules in Java 199

how to group your own classes into packages in Chapter 8. The Java API provides a rich
collection of predefined classes that contain methods for performing common mathemat-
ical calculations, string manipulations, character manipulations, input/output operations,
database operations, networking operations, file processing, error checking and many oth-
er useful tasks.

Software Engineering Observation 6.1

@@ Familiarize yourself with the rich collection of classes and methods provided by the Java
=5 AP (downTload.oracle.com/javase/6/docs/api/). Section 68presentx an overview 0f
several common packages. Appendix E explains how to navigate the API documentation.
Don'’t reinvent the wheel. When possible, reuse Java API classes and methods. This reduces
program development time and avoids introducing programming errors.

Methods (called functions or procedures in some languages) help you modularize a
program by separating its tasks into self-contained units. You've declared methods in every
program you’ve written. The statements in the method bodies are written only once, are
hidden from other methods and can be reused from several locations in a program.

One motivation for modularizing a program into methods is the divide-and-conquer
approach, which makes program development more manageable by constructing programs
from small, simple pieces. Another is software reusability—using existing methods as
building blocks to create new programs. Often, you can create programs mostly from
standardized methods rather than by building customized code. For example, in earlier pro-
grams, we did not define how to read data from the keyboard—TJava provides these capabil-
ities in the methods of class Scanner. A third motivation is to avoid repeating code. Dividing
a program into meaningful methods makes the program easier to debug and maintain.

Software Engineering Observation 6.2

To promote software reusability, every method should be limited to performing a single,
well-defined task, and the name of the method should express that task effectively.

Error-Prevention Tip 6.1
A method that performs one task is easier to test and debug than one that performs many
tasks.

Software Engineering Observation 6.3

If you cannot choose a concise name that expresses a methods task, your method might be
attempting to perform too many tasks. Break such a method into several smaller ones.

As you know, a method is invoked by a method call, and when the called method
completes its task, it returns either a result or simply control to the caller. An analogy to
this program structure is the hierarchical form of management (Fig. 6.1). A boss (the
caller) asks a worker (the called method) to perform a task and report back (return) the
results after completing the task. The boss method does not know how the worker method
performs its designated tasks. The worker may also call other worker methods, unbe-
known to the boss. This “hiding” of implementation details promotes good software engi-
neering. Figure 6.1 shows the boss method communicating with several worker methods
in a hierarchical manner. The boss method divides its responsibilities among the various
worker methods. Here, workerl acts as a “boss method” to worker4 and workers.

200 Chapter 6 Methods: A Deeper Look

boss
workerl worker2 worker3
worker4 worker5

Fig. 6.1 | Hierarchical boss-method/worker-method relationship.

6.3 static Methods, static Fields and Class Math

Although most methods execute in response to method calls on specific objects, this is not
always the case. Sometimes a method performs a task that does not depend on the contents
of any object. Such a method applies to the class in which it’s declared as a whole and is
known as a static method or a class method. It’s common for classes to contain convenient
static methods to perform common tasks. For example, recall that we used static method
pow of class Math to raise a value to a power in Fig. 5.6. To declare a method as static, place
the keyword static before the return type in the method’s declaration. For any class import-
ed into your program, you can call the class’s static methods by specifying the name of the
class in which the method is declared, followed by a dot (.) and the method name, as in

ClassName . methodName(arguments)

We use various Math class methods here to present the concept of static methods.
Class Math provides a collection of methods that enable you to perform common mathe-
matical calculations. For example, you can calculate the square root of 900.0 with the
static method call

Math.sqrt(900.0)

The preceding expression evaluates to 30.0. Method sqrt takes an argument of type dou-
ble and returns a result of type double. To output the value of the preceding method call
in the command window, you might write the statement

System.out.println(Math.sqrt(900.0));

In this statement, the value that sqrt returns becomes the argument to method printin.
There was no need to create a Math object before calling method sqrt. Also a//Math class
methods are static—therefore, each is called by preceding its name with the class name
Math and the dot (.) separator.

Software Engineering Observation 6.4
Class Math is part of the java. lang package, which is implicitly imported by the compiler,

Method arguments may be constants, variables or expressions. If ¢ =13.0,d=3.0and
f = 4.0, then the statement

6.3 static Methods, static Fields and Class Math 201

System.out.printin(Math.sqrt(c + d * £));

calculates and prints the square root 0f 13.0 + 3.0 * 4.0 = 25.0—namely, 5.0. Figure 6.2
summarizes several Math class methods. In the figure, x and y are of type doubTe.

abs(x) absolute value of x abs(23.7) is 23.7
abs(0.0) 1s0.0
abs(-23.7) is 23.7

ceil(x) rounds x to the smallest integer not ceil(9.2)is10.0
less than x ceil(-9.8) is -9.0
cos(x) trigonometric cosine of x (x in radians) cos(0.0) is 1.0
exp(x) exponential method &~ exp(1.0) is 2.71828
exp(2.0) is 7.38906
floor(x) rounds x to the largest integer not floor(9.2) is9.0
greater than x floor(-9.8) is -10.0
Tog(x) natural logarithm of x (base ¢) log(Math.E) is 1.0
Tog(Math.E * Math.E) is 2.0
max(x, y) larger value of x and y max(2.3, 12.7) is 12.7
max(-2.3, -12.7) is -2.3
min(x, y) smaller value of x and y min(2.3,12.7)is2.3
min(-2.3, -12.7) is -12.7
pow(x, ¥) x raised to the power y (i.e., x’) pow(2.0, 7.0) is 128.0
pow(9.0, 0.5) is 3.0
sin(x) trigonometric sine of x (x in radians) sin(0.0) is 0.0
sqrt(x) square root of x sqrt(900.0) is 30.0
tan(x) trigonometric tangent of x (x in radians) tan(0.0) is 0.0

Fig. 6.2 | Math class methods.

Math Class Constants PI and E

Class Math declares two fields that represent commonly used mathematical constants—
Math.PI and Math.E. Math.PI (3.141592653589793) is the ratio of a circle’s circumfer-
ence to its diameter. Math . E (2.718281828459045) is the base value for natural logarithms
(calculated with static Math method 1og). These fields are declared in class Math with the
modifiers pubTic, final and static. Making them pubTic allows you to use these fields
in your own classes. Any field declared with keyword final is constant—its value cannot
change after the field is initialized. PT and E are declared final because their values never
change. Making these fields static allows them to be accessed via the class name Math and
a dot (.) separator, just like class Math’s methods. Recall from Section 3.4 that when each
object of a class maintains its own copy of an attribute, the field that represents the attri-
bute is also known as an instance variable—each object (instance) of the class has a separate
instance of the variable in memory. There are fields for which each object of a class does
not have a separate instance of the field. That’s the case with static fields, which are also
known as class variables. When objects of a class containing static fields are created, all

202 Chapter 6 Methods: A Deeper Look

the objects of that class share one copy of the class’s static fields. Together the class vari-
ables (i.e., static variables) and instance variables represent the fields of a class. You'll
learn more about static fields in Section 8.11.

Why Is Method main Declared static?

When you execute the Java Virtual Machine (JVM) with the java command, the JVM
attempts to invoke the main method of the class you specify—when no objects of the class
have been created. Declaring main as static allows the JVM to invoke main without cre-
ating an instance of the class. When you execute your application, you specify its class
name as an argument to the command java, as in

java ClassName argumentl argument2 ...

The JVM loads the class specified by ClassIName and uses that class name to invoke method
main. In the preceding command, ClassName is a command-line argument to the JVM
that tells it which class to execute. Following the ClassName, you can also specify a list of
Strings (separated by spaces) as command-line arguments that the JVM will pass to your
application. Such arguments might be used to specify options (e.g., a file name) to run the
application. As you'll learn in Chapter 7, Arrays and ArrayLists, your application can ac-
cess those command-line arguments and use them to customize the application.

6.4 Declaring Methods with Multiple Parameters

Methods often require more than one piece of information to perform their tasks. We now
consider how to write your own methods with multiple parameters.

Figure 6.3 uses a method called maximum to determine and return the largest of three
double values. In main, lines 14—18 prompt the user to enter three double values, then
read them from the user. Line 21 calls method maximum (declared in lines 28—41) to deter-
mine the largest of the three values it receives as arguments. When method maximum
returns the result to line 21, the program assigns maximum’s return value to local variable
result. Then line 24 outputs the maximum value. At the end of this section, we’ll discuss
the use of operator + in line 24.

1 // Fig. 6.3: MaximumFinder.java

2 // Programmer-declared method maximum with three double parameters.

3 dimport java.util.Scanner;

4

5 public class MaximumFinder

6 {

7 // obtain three floating-point values and Tocate the maximum value
8 public static void main(String[] args)

9 {

10 // create Scanner for input from command window

11 Scanner input = new Scanner(System.in);

12

13 // prompt for and input three floating-point values

14 System.out.print(

15 "Enter three floating-point values separated by spaces: ");

Fig. 6.3 | Programmer-declared method maximum with three double parameters. (Part | of 2.)

6.4 Declaring Methods with Multiple Parameters 203

16 double numberl = input.nextDouble(); // read first double
17 double number2 = input.nextDouble(); // read second double
18 double number3 = input.nextDouble(); // read third double
19

20 // determine the maximum value

21 double result = maximum(numberl, number2, number3);

22

23 // display maximum value

24 System.out.printin("Maximum is: " + result);

25 } // end main

26

27 // returns the maximum of its three double parameters

28 public static double maximum(double x, double y, double z)
29 {

30 double maximumValue = x; // assume x is the largest to start
31

32 // determine whether y is greater than maximumValue

33 if (y > maximumValue)

34 maximumValue = y;

35

36 // determine whether z is greater than maximumValue

37 if (z > maximumValue)

38 maximumValue = z;

39

40 return maximumValue;

41 } // end method maximum

42 1} // end class MaximumFinder

Enter three floating-point values separated by spaces: 9.35 2.74 5.1
Maximum is: 9.35

Enter three floating-point values separated by spaces: 5.8 12.45 8.32
Maximum is: 12.45

Enter three floating-point values separated by spaces: 6.46 4.12 10.54
Maximum is: 10.54

Fig. 6.3 | Programmer-declared method maximum with three doubTe parameters. (Part 2 of 2.)

The public and static Keywords

Method maximum’s declaration begins with keyword pubTic to indicate that the method is
“available to the public”—it can be called from methods of other classes. The keyword
static enables the main method (another static method) to call maximum as shown in
line 21 without qualifying the method name with the class name MaximumFinder—static
methods in the same class can call each other directly. Any other class that uses maximum
must fully qualify the method name with the class name.

Method maximum
Consider maximum’s declaration (lines 28—41). Line 28 indicates that it returns a double
value, that the method’s name is maximum and that the method requires three double pa-

204 Chapter 6 Methods: A Deeper Look

rameters (x, y and z) to accomplish its task. Multiple parameters are specified as a comma-
separated list. When maximum is called from line 21, the parameters x, y and z are initial-
ized with the values of arguments numberl, number2 and number3, respectively. There
must be one argument in the method call for each parameter in the method declaration.
Also, each argument must be consistent with the type of the corresponding parameter. For
example, a parameter of type double can receive values like 7.35, 22 or —0.03456, but not
Strings like "hel10" nor the boolean values true or false. Section 6.7 discusses the ar-
gument types that can be provided in a method call for each parameter of a primitive type.

To determine the maximum value, we begin with the assumption that parameter x
contains the largest value, so line 30 declares local variable maximumvalue and initializes it
with the value of parameter x. Of course, it’s possible that parameter y or z contains the
actual largest value, so we must compare each of these values with maximumvalue. The if
statement at lines 33-34 determines whether y is greater than maximumvalue. If so, line 34
assigns y to maximumValue. The if statement at lines 37-38 determines whether z is
greater than maximumValue. If so, line 38 assigns z to maximumvalue. At this point the
largest of the three values resides in maximumvalue, so line 40 returns that value to line 21.
When program control returns to the point in the program where maximum was called,
maximum’s parameters X, y and z no longer exist in memory.

Software Engineering Observation 6.5
Methods can return at most one value, but the returned value could be a reference to an
object that contains many values.

Software Engineering Observation 6.6

Variables should be declared as fields only if they re required for use in more than one method
of the class or if the program should save their values between calls to the class’s methods.

Declaring method parameters of the same type as float x, y instead of float x, float
y is a syntax error—a type is required for each parameter in the parameter list.

ﬁ_ Common Programming Error 6. |

Implementing Method maximum by Reusing Method Math.max
The entire body of our maximum method could also be implemented with two calls to
Math.max, as follows:

return Math.max(x, Math.max(y, z));

The first call to Math.max specifies arguments x and Math.max(y, z). Before any method
can be called, its arguments must be evaluated to determine their values. If an argument is
a method call, the method call must be performed to determine its return value. So, in the
preceding statement, Math.max(y, z) is evaluated to determine the maximum of y and
z. Then the result is passed as the second argument to the other call to Math.max, which
returns the larger of its two arguments. This is a good example of software reuse—we find
the largest of three values by reusing Math.max, which finds the larger of two values. Note
how concise this code is compared to lines 30-38 of Fig. 6.3.

Assembling Strings with String Concatenation
Java allows you to assemble String objects into larger strings by using operators + or +=.
This is known as string concatenation. When both operands of operator + are String ob-

6.5 Notes on Declaring and Using Methods 205

jects, operator + creates a new String object in which the characters of the right operand
are placed at the end of those in the left operand—e.g., the expression "hello " + "there"
creates the String "hello there".

In line 24 of Fig. 6.3, the expression "Maximum is: " + result uses operator + with
operands of types String and double. Every primitive value and object in Java has a String
representation. When one of the + operator’s operands is a String, the other is converted
to a String, then the two are concatenated. In line 24, the doub1le value is converted to its
String representation and placed at the end of the String "Maximumis: ". If there are any
trailing zeros in a double value, these will be discarded when the number is converted to a
String—for example 9.3500 would be represented as 9.35.

Primitive values used in String concatenation are converted to Strings. A boolean
concatenated with a String is converted to the String "true" or "false". All objects
have a toString method that returns a String representation of the object. (We discuss
toString in more detail in subsequent chapters.) When an object is concatenated with a
String, the object’s toString method is implicitly called to obtain the String represen-
tation of the object. ToString can be called explicitly.

You can break large String literals into several smaller Strings and place them on
multiple lines of code for readability. In this case, the Strings can be reassembled using
concatenation. We discuss the details of Strings in Chapter 16.

Common Programming Error 6.2

It’s a syntax error to break a String literal across lines. If necessary, you can split a String
into several smaller Strings and use concatenation to form the desired String.

= Common Programming Error 6.3\

* Confusing the + operator used for string concatenation with the + operator used for addi-
tion can lead to strange results. Java evaluates the operands of an operator from left to
right. For example, if integer variable y has the value 5, the expression "y +2="+y + 2
results in the string "y + 2 =52", not "y +2=7", bemuseﬁrst the value ofy (5) is con-
catenated to the string "y + 2 = ", then the value 2 is concatenated to the new larger string
"y + 2 = 5" The expression "y + 2 = " + (y + 2) produces the desired result "y + 2 = 7".

6.5 Notes on Declaring and Using Methods
There are three ways to call a method:

1. Using a method name by itself to call another method of the same class—such as
maximum(numberl, number2, number3) in line 21 of Fig. 6.3.

2. Using a variable that contains a reference to an object, followed by a dot (.) and
the method name to call a non-static method of the referenced object—such as
the method call in line 13 of Fig. 5.10, myGradeBook.displayMessage (), which
calls a method of class GradeBook from the main method of GradeBookTest.

3. Using the class name and a dot (.) to call a static method of a class—such as
Math.sqrt(900.0) in Section 6.3.

A static method can call only other static methods of the same class directly (i.e.,
using the method name by itself) and can manipulate onfy static variables in the same
class directly. To access the class’s non-static members, a static method must use a ref-

206 Chapter 6 Methods: A Deeper Look

erence to an object of the class. Recall that static methods relate to a class as a whole,
whereas non-static methods are associated with a specific instance (object) of the class
and may manipulate the instance variables of that object. Many objects of a class, each
with its own copies of the instance variables, may exist at the same time. Suppose a static
method were to invoke a non-static method directly. How would the method know
which object’s instance variables to manipulate? What would happen if no objects of the
class existed at the time the non-static method was invoked? Thus, Java does not allow
a static method to access non-static members of the same class directly.

There are three ways to return control to the statement that calls a method. If the
method does not return a result, control returns when the program flow reaches the
method-ending right brace or when the statement

return;

is executed. If the method returns a result, the statement
return expression;

evaluates the expression, then returns the result to the caller.

Common Programming Error 6.4
" Declaring a method outside the body of a class declaration or inside the body of another

ﬁ method is a syntax error.
% Common Programming Error 6.5

* Placing a semicolon afier the right parenthesis enclosing the parameter list of a method
declaration is a syntax error.

=

J Common Programming Error 6.6
%' Redeclaring a parameter as a local variable in the method’s body is a compilation error.

~ Forgetting to return a value from a method that should return a value is a compilation
error. If a return type other than void is specified, the method must contain a return
statement that returns a value consistent with the method’s return type. Returning a value
[from a method whose return type has been declared void is a compilation error.

% Common Programming Error 6.7

6.6 Method-Call Stack and Activation Records

To understand how Java performs method calls, we first need to consider a data structure
(i.e., collection of related data items) known as a stack. You can think of a stack as analo-
gous to a pile of dishes. When a dish is placed on the pile, it's normally placed at the top
(referred to as pushing the dish onto the stack). Similarly, when a dish is removed from
the pile, it’s always removed from the top (referred to as popping the dish off the stack).
Stacks are known as last-in, first-out (LIFO) data structures—the last item pushed (in-
serted) on the stack is the first item popped (removed) from the stack.

6.7 Argument Promotion and Casting 207

When a program calls a method, the called method must know how to return to its
caller, so the return address of the calling method is pushed onto the program-execution
stack (sometimes referred to as the method-call stack). If a series of method calls occurs,
the successive return addresses are pushed onto the stack in last-in, first-out order so that
each method can return to its caller.

The program-execution stack also contains the memory for the local variables used in
each invocation of a method during a program’s execution. This data, stored as a portion
of the program-execution stack, is known as the activation record or stack frame of the
method call. When a method call is made, the activation record for that method call is
pushed onto the program-execution stack. When the method returns to its caller, the acti-
vation record for this method call is popped off the stack and those local variables are no
longer known to the program. If a local variable holding a reference to an object is the only
variable in the program with a reference to that object, then, when the activation record
containing that local variable is popped off the stack, the object can no longer be accessed
by the program and will eventually be deleted from memory by the JVM during “garbage
collection.” We discuss garbage collection in Section 8.10.

Of course, a computer’s memory is finite, so only a certain amount can be used to
store activation records on the program-execution stack. If more method calls occur than
can have their activation records stored, an error known as a stack overflow occurs.

6.7 Argument Promotion and Casting

Another important feature of method calls is argument promotion—converting an argu-
ment’s value, if possible, to the type that the method expects to receive in its corresponding
parameter. For example, a program can call Math method sqrt with an int argument even
though a double argument is expected. The statement

System.out.printin(Math.sqrt(4));

correctly evaluates Math. sqrt(4) and prints the value 2. 0. The method declaration’s param-
eter list causes Java to convert the int value 4 to the doubTe value 4.0 before passing the value
to method sqrt. Such conversions may lead to compilation errors if Java’s promotion rules
are not satisfied. These rules specify which conversions are allowed—that is, which ones can
be performed without losing data. In the sqrt example above, an int is converted to a dou-
ble without changing its value. However, converting a double to an int truncates the frac-
tional part of the double value—thus, part of the value is lost. Converting large integer types
to small integer types (e.g., Tong to int, or int to short) may also result in changed values.

The promotion rules apply to expressions containing values of two or more primitive
types and to primitive-type values passed as arguments to methods. Each value is pro-
moted to the “highest” type in the expression. Actually, the expression uses a temporary
copy of each value—the types of the original values remain unchanged. Figure 6.4 lists the
primitive types and the types to which each can be promoted. The valid promotions for a
given type are always to a type higher in the table. For example, an int can be promoted
to the higher types Tong, float and double.

Converting values to types lower in the table of Fig. 6.4 will result in different values
if the lower type cannot represent the value of the higher type (e.g., the int value 2000000
cannot be represented as a short, and any floating-point number with digits after its
decimal point cannot be represented in an integer type such as Tong, int or short). There-

208 Chapter 6 Methods: A Deeper Look

doubTe None

float double

Tong float or double

int long, float or double

char int, long, float or double

short int, Tong, float or double (but not char)

byte short, int, Tong, float or double (but not char)

boolean None (booTlean values are not considered to be numbers in Java)

Fig. 6.4 | Promotions allowed for primitive types.

fore, in cases where information may be lost due to conversion, the Java compiler requires
you to use a cast operator (introduced in Section 4.9) to explicitly force the conversion to
occur—otherwise a compilation error occurs. This enables you to “take control” from the
compiler. You essentially say, “I know this conversion might cause loss of information, but
for my purposes here, that’s fine.” Suppose method square calculates the square of an
integer and thus requires an int argument. To call square with a double argument named
doubTleValue, we would be required to write the method call as

square((int) doubleValue)

This method call explicitly casts (converts) a copy of variable doublevalue’s value to an in-
teger for use in method square. Thus, if doubleValue’s value is 4.5, the method receives
the value 4 and returns 16, not 20.25.

Common Programming Error 6.8

Converting a primitive-type value to another primitive type may change the value if the
new type is not a valid promotion. For example, converting a floating-point value to an
integer value may introduce truncation errors (loss of the fractional part) into the result.

6.8 Java API Packages

As you’ve seen, Java contains many predefined classes that are grouped into categories of
related classes called packages. Together, these are known as the Java Application Pro-
gramming Interface (Java API), or the Java class library. A great strength of Java is the Java
APT’s thousands of classes. Some key Java API packages are described in Fig. 6.5, which
represents only a small portion of the reusable components in the Java API.

The set of packages available in Java SE 6 is quite large. In addition to those summa-
rized in Fig. 6.5, Java SE 6 includes packages for complex graphics, advanced graphical
user interfaces, printing, advanced networking, security, database processing, multimedia,
accessibility (for people with disabilities), concurrent programming, cryptography, XML
processing and many other capabilities. For an overview of the packages in Java SE 6, visit

download.oracle.com/javase/6/docs/api/overview-summary.html

Many other packages are also available for download at java.sun.com.

java.

java.

java.

java.

java.i

java.

java.

java.

java.

java.

applet

awt

awt.event

awt.geom

Tlang

net

sql

util

util.

concurrent

javax.media

javax.swing

6.8 Java API Packages 209

The Java Applet Package contains a class and several interfaces required
to create Java applets—programs that execute in web browsers. Applets
are discussed in Chapter 23, Applets and Java Web Start; interfaces are
discussed in Chapter 10, Object-Oriented Programming: Polymor-
phism.)

The Java Abstract Window Toolkit Package contains the classes and
interfaces required to create and manipulate GUIs in early versions of
Java. In current versions, the Swing GUI components of the javax. swing
packages are typically used instead. (Some elements of the java.awt pack-
age are discussed in Chapter 14, GUI Components: Part 1, Chapter 15,
Graphics and Java 2D, and Chapter 25, GUI Components: Part 2.)

The Java Abstract Window Toolkit Event Package contains classes and
interfaces that enable event handling for GUI components in both the
java.awt and javax.swing packages. (See Chapter 14, GUI Compo-
nents: Part 1, and Chapter 25, GUI Components: Part 2.)

The Java 2D Shapes Package contains classes and interfaces for work-
ing with Java’s advanced two-dimensional graphics capabilities. (See
Chapter 15, Graphics and Java 2D.)

The Java Input/Output Package contains classes and interfaces that
enable programs to input and output data. (See Chapter 17, Files,
Streams and Object Serialization.)

The Java Language Package contains classes and interfaces (discussed
bookwide) that are required by many Java programs. This package is
imported by the compiler into all programs.

The Java Networking Package contains classes and interfaces that
enable programs to communicate via computer networks like the Inter-
net. (See Chapter 27, Networking.)

The JDBC Package contains classes and interfaces for working with
databases. (See Chapter 28, Accessing Databases with JDBC.)

The Java Utilities Package contains utility classes and interfaces that
enable such actions as date and time manipulations, random-number
processing (class Random) and the storing and processing of large
amounts of data. (See Chapter 20, Generic Collections.)

The Java Concurrency Package contains utility classes and interfaces
for implementing programs that can perform multiple tasks in parallel.

(See Chapter 26, Multithreading.)

The Java Media Framework Package contains classes and interfaces for
working with Java’s multimedia capabilities. (See Chapter 24, Multime-
dia: Applets and Applications.)

The Java Swing GUI Components Package contains classes and inter-
faces for Java’'s Swing GUI components that provide support for porta-
ble GUIs. (See Chapter 14, GUI Components: Part 1, and Chapter 25,
GUI Components: Part 2.)

Fig. 6.5 | Java APl packages (a subset). (Part | of 2.)

210 Chapter 6 Methods: A Deeper Look

javax.swing.event The Java Swing Event Package contains classes and interfaces that
enable event handling (e.g., responding to button clicks) for GUI com-
ponents in package javax.swing. (See Chapter 14, GUI Components:
Part 1, and Chapter 25, GUI Components: Part 2.)

javax.xml.ws The JAX-WS Package contains classes and interfaces for working with
web services in Java. (See Chapter 31, Web Services.)

Fig. 6.5 | Java APl packages (a subset). (Part 2 of 2.)

You can locate additional information about a predefined Java class’s methods in the
Java API documentation at download.oracle.com/javase/6/docs/api/. When you visit
this site, click the Index link to see an alphabetical listing of all the classes and methods in
the Java API. Locate the class name and click its link to see the online description of the
class. Click the METHOD link to see a table of the class’s methods. Each static method
will be listed with the word “static” preceding its return type.

6.9 Case Study: Random-Number Generation

We now take a brief diversion into a popular type of programming application—simula-
tion and game playing. In this and the next section, we develop a nicely structured game-
playing program with multiple methods. The program uses most of the control statements
presented thus far in the book and introduces several new programming concepts.

There’s something in the air of a casino that invigorates people—from the high rollers
at the plush mahogany-and-felt craps tables to the quarter poppers at the one-armed ban-
dits. It’s the element of chance, the possibility that luck will convert a pocketful of money
into a mountain of wealth. The element of chance can be introduced in a program via an
object of class Random (package java.uti1) or via the static method random of class Math.
Objects of class Random can produce random boolean, byte, float, double, int, Tong and
Gaussian values, whereas Math method random can produce only double values in the
range 0.0 <x < 1.0, where x is the value returned by method random. In the next several
examples, we use objects of class Random to produce random values.

A new random-number generator object can be created as follows:

Random randomNumbers = new Random();

It can then be used to generate random boolean, byte, float, double, int, Tong and

Gaussian values—we discuss only random int values here. For more information on the

Random class, see download.oracle.com/javase/6/docs/api/java/util/Random.html.
Consider the following statement:

int randomValue = randomNumbers.nextInt();

Random method nextInt generates a random int value in the range —2,147,483,648 to
+2,147,483,647, inclusive. If it truly produces values at random, then every value in the
range should have an equal chance (or probability) of being chosen each time nextInt is
called. The numbers are actually pseudorandom numbers—a sequence of values pro-

6.9 Case Study: Random-Number Generation 211

duced by a complex mathematical calculation. The calculation uses the current time of day
(which, of course, changes constantly) to seed the random-number generator such that
each execution of a program yields a different sequence of random values.

The range of values produced directly by method nextInt generally differs from the
range of values required in a particular Java application. For example, a program that sim-
ulates coin tossing might require only 0 for “heads” and 1 for “tails.” A program that sim-
ulates the rolling of a six-sided die might require random integers in the range 1-6. A
program that randomly predicts the next type of spaceship (out of four possibilities) that
will fly across the horizon in a video game might require random integers in the range 1—
4. For cases like these, class Random provides another version of method nextInt that
receives an int argument and returns a value from 0 up to, but not including, the argu-
ment’s value. For example, for coin tossing, the following statement returns 0 or 1.

int randomValue = randomNumbers.nextInt(2);

Rolling a Six-Sided Die

To demonstrate random numbers, let’s develop a program that simulates 20 rolls of a six-
sided die and displays the value of each roll. We begin by using nextInt to produce ran-
dom values in the range 0-5, as follows:

face = randomNumbers.nextInt(6);

The argument 6—called the scaling factor—represents the number of unique values that
nextInt should produce (in this case six—0, 1, 2, 3, 4 and 5). This manipulation is called
scaling the range of values produced by Random method nextInt.

A six-sided die has the numbers 1-6 on its faces, not 0—5. So we shift the range of
numbers produced by adding a shifting value—in this case 1—to our previous result, as in

face = 1 + randomNumbers.nextInt(6);

The shifting value (1) specifies the firsz value in the desired range of random integers. The
preceding statement assigns face a random integer in the range 1-6.

Figure 6.6 shows two sample outputs which confirm that the results of the preceding
calculation are integers in the range 1-6, and that each run of the program can produce a
different sequence of random numbers. Line 3 imports class Random from the java.util
package. Line 9 creates the Random object randomNumbers to produce random values. Line
16 executes 20 times in a loop to roll the die. The if statement (lines 21-22) in the loop
starts a new line of output after every five numbers.

// Fig. 6.6: RandomIntegers.java
// Shifted and scaled random integers.
import java.util.Random; // program uses class Random

public class RandomIntegers

{
public static void main(String[] args)

{

VoO~NGONUND WN -

Random randomNumbers = new Random(); // random number generator

Fig. 6.6 | Shifted and scaled random integers. (Part | of 2.)

212 Chapter 6 Methods: A Deeper Look

10 int face; // stores each random integer generated
11

12 // Toop 20 times

13 for (int counter = 1; counter <= 20; counter++)
14 {

15 // pick random integer from 1 to 6

16 face = 1 + randomNumbers.nextInt(6);

17

18 System.out.printf("%d ", face); // display generated value
19

20 // if counter is divisible by 5, start a new Tine of output
21 if (counter % 5 == 0)

22 System.out.println();

23 } // end for

24 } // end main

25 } // end class RandomIntegers

1 5 3 6 2

5 2 6 5 2

4 4 4 2 6

31 6 2 2

6 5 4 2 6

1 2 5 1 3

6 3 2 2 1

6 4 2 6 4

Fig. 6.6 | Shifted and scaled random integers. (Part 2 of 2.)

Rolling a Six-Sided Die 6,000,000 Times

To show that the numbers produced by nextInt occur with approximately equal likeli-
hood, let’s simulate 6,000,000 rolls of a die with the application in Fig. 6.7. Each integer
from 1 to 6 should appear approximately 1,000,000 times.

1 // Fig. 6.7: RollDie.java

2 // Roll a six-sided die 6,000,000 times.

3 dimport java.util.Random;

4

5 public class RollDie

6 {

7 public static void main(String[] args)

8 {

9 Random randomNumbers = new Random(); // random number generator
10

11 int frequencyl = 0; // maintains count of 1s rolled
12 int frequency2 = 0; // count of 2s rolled

13 int frequency3 = 0; // count of 3s rolled

14 int frequency4 = 0; // count of 4s rolled

15 int frequency5 = 0; // count of 5s rolled

16 int frequency6 = 0; // count of 6s rolled

17

Fig. 6.7 | Roll a six-sided die 6,000,000 times. (Part | of 2.)

6.9 Case Study: Random-Number Generation 213

18 int face; // most recently rolled value

19

20 // tally counts for 6,000,000 rolls of a die

21 for (int roll = 1; roll <= 6000000; roll++)

22 {

23 face = 1 + randomNumbers.nextInt(6); // number from 1 to 6
24

25 // determine roll value 1-6 and increment appropriate counter
26 switch (face)

27 {

28 case 1:

29 ++frequencyl; // increment the 1s counter
30 break;

31 case 2:

32 ++frequency2; // increment the 2s counter
33 break;

34 case 3:

35 ++frequency3; // increment the 3s counter
36 break;

37 case 4:

38 ++frequency4; // increment the 4s counter
39 break;

40 case 5:

41 ++frequency5; // increment the 5s counter
42 break;

43 case 6:

44 ++frequency6; // increment the 6s counter
45 break; // optional at end of switch

46 } // end switch

47 } // end for

48

49 System.out.println("Face\tFrequency"); // output headers
50 System.out.printf("I\t%d\n2\t%d\n3\t%d\n4\t%d\n5\t%d\n6\t%d\n",
51 frequencyl, frequency2, frequency3, frequency4,
52 frequency5, frequency6);

53 } // end main

54 1} // end class RollDie

Face Frequency

1 999501

2 1000412

3 998262

4 1000820

5 1002245

6 998760

Face Frequency

1 999647

2 999557

3 999571

4 1000376

5 1000701

6 1000148

Fig. 6.7 | Roll a six-sided die 6,000,000 times. (Part 2 of 2.)

214 Chapter 6 Methods: A Deeper Look

As the sample outputs show, scaling and shifting the values produced by nextInt
enables the program to simulate rolling a six-sided die. The application uses nested control
statements (the switch is nested inside the for) to determine the number of times each
side of the die appears. The for statement (lines 21-47) iterates 6,000,000 times. During
each iteration, line 23 produces a random value from 1 to 6. That value is then used as the
controlling expression (line 26) of the switch statement (lines 26-46). Based on the face
value, the switch statement increments one of the six counter variables during each itera-
tion of the loop. When we study arrays in Chapter 7, we'll show an elegant way to replace
the entire switch statement in this program with a single statement! This switch state-
ment has no default case, because we have a case for every possible die value that the
expression in line 23 could produce. Run the program, and observe the results. As you'll
see, every time you run this program, it produces different results.

6.9.1 Generalized Scaling and Shifting of Random Numbers

Previously, we simulated the rolling of a six-sided die with the statement
face = 1 + randomNumbers.nextInt(6);

This statement always assigns to variable face an integer in the range 1 <face <6. The
width of this range (i.e., the number of consecutive integers in the range) is 6, and the start-
ing number in the range is 1. In the preceding statement, the width of the range is deter-
mined by the number 6 that’s passed as an argument to Random method nextInt, and the
starting number of the range is the number 1 that’s added to randomNumberGenera-
tor.nextInt(6). We can generalize this result as

number = shiftingValue + randomNumbers.nextInt(scalingFactor) ;

where shiftingValue specifies the first number in the desired range of consecutive integers
and scalingFactor specifies how many numbers are in the range.

I¢’s also possible to choose integers at random from sets of values other than ranges of
consecutive integers. For example, to obtain a random value from the sequence 2, 5, 8, 11
and 14, you could use the statement

*

number = 2 + 3 randomNumbers.nextInt(5);

In this case, randomNumberGenerator.nextInt(5) produces values in the range 0—4. Each
value produced is multiplied by 3 to produce a number in the sequence 0, 3, 6, 9 and 12.
We add 2 to that value to shift the range of values and obtain a value from the sequence
2,5, 8, 11 and 14. We can generalize this result as

number = shiftingValue +
differenceBerweenValues * randomNumbers.nextInt(scalingFactor) ;

where shiftingValue specifies the first number in the desired range of values, difference-
BetweenValues represents the constant difference between consecutive numbers in the se-
quence and scalingFactor specifies how many numbers are in the range.

6.9.2 Random-Number Repeatability for Testing and Debugging

Class Random’s methods actually generate pseudorandom numbers based on complex
mathematical calculations—the sequence of numbers appears to be random. The calcula-
tion that produces the numbers uses the time of day as a seed value to change the se-

6.10 Case Study: A Game of Chance; Introducing Enumerations 215

quence’s starting point. Each new Random object seeds itself with a value based on the
computer system’s clock at the time the object is created, enabling each execution of a pro-
gram to produce a different sequence of random numbers.

When debugging an application, it’s often useful to repeat the exact same sequence of
pseudorandom numbers during each execution of the program. This repeatability enables
you to prove that your application is working for a specific sequence of random numbers
before you test it with different sequences of random numbers. When repeatability is
important, you can create a Random object as follows:

Random randomNumbers = new Random(seedValue);

The seedvalue argument (of type long) seeds the random-number calculation. If the
same seedValue is used every time, the Random object produces the same sequence of num-
bers. You can set a Random object’s seed at any time during program execution by calling
the object’s set method, as in

randomNumbers.set(seedValue);

Error-Prevention Tip 6.2

While developing a program, create the Random object with a specific seed value to produce
a repeatable sequence of numbers each time the program executes. If a logic error occurs,
fix the error and test the program again with the same seed value—this allows you to re-
construct the same sequence of numbers that caused the error. Once the logic errors have
been removed, create the Random object without using a seed value, causing the Random
object to generate a new sequence of random numbers each time the program executes.

6.10 Case Study: A Game of Chance; Introducing
Enumerations

A popular game of chance is a dice game known as craps, which is played in casinos and
back alleys throughout the world. The rules of the game are straightforward:

You roll two dice. Each die has six faces, which contain one, two, three, four, five and
six spots, respectively. After the dice have come to rest, the sum of the spots on the two
upward faces is calculated. If the sum is 7 or 11 on the first throw, you win. If the sum
is 2, 3 or 12 on the first throw (called “craps”), you lose (i.e., the “house” wins). If the
sum is 4, 5, 6, 8, 9 or 10 on the first throw, that sum becomes your “point.” 1o win,
you must continue rolling the dice until you “make your point” (i.e., roll that same

point value). You lose by rolling a 7 before making your point.

Figure 6.8 simulates the game of craps, using methods to implement the game’s logic. The
main method (lines 21-65) calls the ro11Dice method (lines 68-81) as necessary to roll
the dice and compute their sum. The sample outputs show winning and losing on the first
roll, and winning and losing on a subsequent roll.

1 // Fig. 6.8: Craps.java
2 // Craps class simulates the dice game craps.
3 dimport java.util.Random;

Fig. 6.8 | Craps class simulates the dice game craps. (Part | of 3.)

216 Chapter 6 Methods: A Deeper Look

4

5 public class Craps

6 {

7 // create random number generator for use in method rollDice
8 private static final Random randomNumbers = new Random();
9

10 // enumeration with constants that represent the game status
11 private enum Status { CONTINUE, WON, LOST };

12

13 // constants that represent common rolls of the dice

14 private static final int SNAKE_EYES = 2;

15 private static final int TREY = 3;

16 private static final int SEVEN = 7;

17 private static final int YO_LEVEN = 11;

18 private static final int BOX_CARS = 12;

19
20 // plays one game of craps
21 public static void main(String[] args)
22 {

23 int myPoint = 0; // point if no win or loss on first roll
24 Status gameStatus; // can contain CONTINUE, WON or LOST
25

26 int sumOfDice = rollDice(); // first roll of the dice
27

28 // determine game status and point based on first roll
29 switch (sumOfDice)

30 {

31 case SEVEN: // win with 7 on first roll

32 case YO_LEVEN: // win with 11 on first roll

33 gameStatus = Status.WON;

34 break;

35 case SNAKE_EYES: // lose with 2 on first roll

36 case TREY: // lose with 3 on first roll

37 case BOX_CARS: // lose with 12 on first roll

38 gameStatus = Status.LOST;

39 break;

40 default: // did not win or Tlose, so remember point
41 gameStatus = Status.CONTINUE; // game 1is not over
42 myPoint = sumOfDice; // remember the point

43 System.out.printf("Point is %d\n", myPoint);

44 break; // optional at end of switch

45 } // end switch

46

47 // while game is not complete

48 while (gameStatus == Status.CONTINUE) // not WON or LOST
49 {

50 sumOfDice = rol1Dice(); // roll dice again

51

52 // determine game status

53 if (sumOfDice == myPoint) // win by making point
54 gameStatus = Status.WON;

Fig. 6.8 | Craps class simulates the dice game craps. (Part 2 of 3.)

6.10 Case Study: A Game of Chance; Introducing Enumerations 217

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

else
if (sumOfDice == SEVEN) // lose by rolling 7 before point
gameStatus = Status.LOST;
} // end while

// display won or Tost message
if (gameStatus == Status.WON)
System.out.println("Player wins");
else
System.out.println("Player loses");

} // end main

// roll dice, calculate sum and display results
public static int rollDice()

{

// pick random die values
int diel = 1 + randomNumbers.nextInt(6); // first die roll
int die2 = 1 + randomNumbers.nextInt(6); // second die roll

int sum = diel + die2; // sum of die values
// display results of this roll
System.out.printf("Player rolled %d + %d = %d\n",

diel, die2, sum);

return sum; // return sum of dice

} // end method roll1Dice
82 1} // end class Craps

Player rolled 5 + 6 = 11
Player wins

PTlayer rolled 5 + 4 = 9
Point 1is 9

Player rolled 4 + 2 = 6
Player rolled 3 + 6 = 9

Player wins

Player rolled 1 + 2 = 3
Player Toses

Player rolled 2 + 6 = 8
Point is 8

Player rolled 5 + 1 = 6
Player rolled 2 + 1 = 3
Player rolled 1 + 6 = 7
PTayer Tloses

Fig. 6.8 | Craps class simulates the dice game craps. (Part 3 of 3.)

218 Chapter 6 Methods: A Deeper Look

Method rol1Dice

In the rules of the game, the player must roll two dice on the first roll and must do the
same on all subsequent rolls. We declare method ro11Dice (Fig. 6.8, lines 68-81) to roll
the dice and compute and print their sum. Method ro11Dice is declared once, but it’s
called from two places (lines 26 and 50) in main, which contains the logic for one complete
game of craps. Method ro11Dice takes no arguments, so it has an empty parameter list.
Each time it’s called, ro11Dice returns the sum of the dice, so the return type int is indi-
cated in the method header (line 68). Although lines 71 and 72 look the same (except for
the die names), they do not necessarily produce the same result. Each of these statements
produces a random value in the range 1-6. Variable randomNumbers (used in lines 71-72)
is not declared in the method. Instead it’s declared as a private static final variable of
the class and initialized in line 8. This enables us to create one Random object that’s reused
in each call to ro11Di ce. If there were a program that contained multiple instances of class
Craps, they’d all share this one Random object.

Method main’s Local Variables

The game is reasonably involved. The player may win or lose on the first roll, or may win
or lose on any subsequent roll. Method main (lines 21-65) uses local variable myPoint (line
23) to store the “point” if the player does not win or lose on the first roll, local variable
gameStatus (line 24) to keep track of the overall game status and local variable sumOfDice
(line 26) to hold the sum of the dice for the most recent roll. Variable myPoint is initialized
to 0 to ensure that the application will compile. If you do not initialize myPoint, the com-
piler issues an error, because myPoint is not assigned a value in every case of the switch
statement, and thus the program could try to use myPoint before it’s assigned a value. By
contrast, gameStatus 7s assigned a value in every case of the switch statement—thus, it’s
guaranteed to be initialized before it’s used and does not need to be initialized.

enum Type Status

Local variable gameStatus (line 24) is declared to be of a new type called Status (declared
atline 11). Type Status is a private member of class Craps, because Status will be used
only in that class. Status is a type called an enumeration, which, in its simplest form, de-
clares a set of constants represented by identifiers. An enumeration is a special kind of class
that’s introduced by the keyword enum and a type name (in this case, Status). As with
classes, braces delimit an enum declaration’s body. Inside the braces is a comma-separated
list of enumeration constants, each representing a unique value. The identifiers in an enum
must be unique. You’ll learn more about enumerations in Chapter 8.

1 Good Programming Practice 6. |
1It’s a convention to use only uppercase letters in the names of enumeration constants. This
makes them stand out and reminds you that they are not variables.

Variables of type Status can be assigned only the three constants declared in the enu-
meration (line 11) or a compilation error will occur. When the game is won, the program
sets local variable gameStatus to Status.WON (lines 33 and 54). When the game is lost, the
program sets local variable gameStatus to Status.LOST (lines 38 and 57). Otherwise, the
program sets local variable gameStatus to Status.CONTINUE (line 41) to indicate that the
game is not over and the dice must be rolled again.

6.11 Scope of Declarations 219

s Good Programming Practice 6.2
Using enumeration constants (like Status.WON, Status.LOST and Status.CONTINUE)
rather than literal values (such as 0, 1 and 2) makes programs easier to read and maintain.

Logic of the main Method

Line 26 in main calls ro11D1ce, which picks two random values from 1 to 6, displays the
values of the first die, the second die and their sum, and returns the sum. Method main
next enters the switch statement (lines 29-45), which uses the sum0fDi ce value from line
26 to determine whether the game has been won or lost, or should continue with another
roll. The values that result in a win or loss on the first roll are declared as pub1ic static
final int constants in lines 14—18. The identifier names use casino parlance for these
sums. These constants, like enum constants, are declared by convention with all capital let-
ters, to make them stand out in the program. Lines 31-34 determine whether the player
won on the first roll with SEVEN (7) or YO_LEVEN (11). Lines 35-39 determine whether the
player lost on the first roll with SNAKE_EYES (2), TREY (3), or BOX_CARS (12). After the first
roll, if the game is not over, the default case (lines 40-44) sets gameStatus to Sta-
tus.CONTINUE, saves sumOfDice in myPoint and displays the point.

If we're still trying to “make our point” (i.e., the game is continuing from a prior roll),
lines 48—58 execute. Line 50 rolls the dice again. If sum0fDice matches myPoint (line 53),
line 54 sets gameStatus to Status.WON, then the loop terminates because the game is com-
plete. If sumOfDice is SEVEN (line 56), line 57 sets gameStatus to Status.LOST, and the
loop terminates because the game is complete. When the game completes, lines 61-64 dis-
play a message indicating whether the player won or lost, and the program terminates.

The program uses the various program-control mechanisms we’ve discussed. The
Craps class uses two methods—main and rol11Dice (called twice from main)—and the
switch, while, if...eTse and nested if control statements. Note also the use of multiple
case labels in the switch statement to execute the same statements for sums of SEVEN and
YO_LEVEN (lines 31-32) and for sums of SNAKE_EYES, TREY and BOX_CARS (lines 35-37).

Why Some Constants Are Not Defined as enum Constants

You might be wondering why we declared the sums of the dice as pubTic final staticint
constants rather than as enum constants. The reason is that the program must compare the
int variable sumOfDice (line 26) to these constants to determine the outcome of each roll.
Suppose we declared enum Sum containing constants (e.g., Sum.SNAKE_EYES) representing
the five sums used in the game, then used these constants in the switch statement (lines
29-45). Doing so would prevent us from using sumOfDi ce as the switch statement’s con-
trolling expression, because Java does 7oz allow an int to be compared to an enumeration
constant. To achieve the same functionality as the current program, we would have to use
a variable currentSum of type Sum as the switch’s controlling expression. Unfortunately,
Java does not provide an easy way to convert an int value to a particular enum constant.
This could be done with a separate switch statement. Clearly this would be cumbersome
and not improve the program’s readability (thus defeating the purpose of using an enum).

6.11 Scope of Declarations

You’ve seen declarations of various Java entities, such as classes, methods, variables and pa-
rameters. Declarations introduce names that can be used to refer to such Java entities. The

220 Chapter 6 Methods: A Deeper Look

scope of a declaration is the portion of the program that can refer to the declared entity by
its name. Such an entity is said to be “in scope” for that portion of the program. This sec-
tion introduces several important scope issues.

The basic scope rules are as follows:

1. The scope of a parameter declaration is the body of the method in which the dec-
laration appears.

2. The scope of a local-variable declaration is from the point at which the declara-
tion appears to the end of that block.

3. The scope of a local-variable declaration that appears in the initialization section
of a for statement’s header is the body of the for statement and the other expres-
sions in the header.

4. A method or field’s scope is the entire body of the class. This enables non-static
methods of a class to use the fields and other methods of the class.

Any block may contain variable declarations. If a local variable or parameter in a
method has the same name as a field of the class, the field is “hidden” until the block ter-
minates execution—this is called shadowing. In Chapter 8, we discuss how to access shad-

owed fields.

Error-Prevention Tip 6.3

Use different names for fields and local variables to help prevent subtle logic errors that
occur when a method is called and a local variable of the method shadows a field in the
class.

Figure 6.9 demonstrates scoping issues with fields and local variables. Line 7 declares
and initializes the field x to 1. This field is shadowed (hidden) in any block (or method)
that declares a local variable named x. Method main (lines 11-23) declares a local variable
x (line 13) and initializes it to 5. This local variable’s value is output to show that the field
x (whose value is 1) is shadowed in main. The program declares two other methods—use-
LocalVariable (lines 26-35) and useField (lines 38—45)—that each take no arguments
and return no results. Method main calls each method twice (lines 17-20). Method use-
LocalVariable declares local variable x (line 28). When uselLocalvariable is first called
(line 17), it creates local variable x and initializes it to 25 (line 28), outputs the value of x
(lines 30-31), increments x (line 32) and outputs the value of x again (lines 33-34). When
usellLocalVariable is called a second time (line 19), it recreates local variable x and re-
initializes it to 25, so the output of each useLocalvariable call is identical.

// Fig. 6.9: Scope.java
// Scope class demonstrates field and local variable scopes.

public class Scope

// field that is accessible to all methods of this class
private static int x = 1;

O~NOSONUND WN =—-

Fig. 6.9 | Scope class demonstrates field and local variable scopes. (Part | of 2.)

6.11 Scope of Declarations 221

9 // method main creates and initializes local variable x

10 // and calls methods uselocalVariable and useField

11 public static void main(String[] args)

12 {

13 int x = 5; // method's local variable x shadows field x

14

15 System.out.printf("local x in main is %d\n", x);

16

17 uselLocalVariable(); // uselLocalVariable has Tocal x

18 useField(); // useField uses class Scope's field x

19 uselLocalVariable(); // uselocalVariable reinitializes local x
20 useField(); // class Scope's field x retains its value

21

22 System.out.printf("\nlocal x in main is %d\n", x);

23 } // end main

24

25 // create and initialize Tocal variable x during each call

26 public static void uselLocalVariable()

27 {

28 int x = 25; // initialized each time uselocalVariable is called
29

30 System.out.printf(

31 "\nTocal x on entering method uselLocalVariable is %d\n", x);
32 ++Xx; // modifies this method's local variable x

33 System.out.printf(

34 "Tocal x before exiting method uselLocalVariable is %d\n", x);
35 } // end method uselocalVariable

36

37 // modify class Scope's field x during each call

38 public static void useField()

39 {

40 System.out.printf(

41 "\nfield x on entering method useField is %d\n", x);

42 x *= 10; // modifies class Scope's field x

43 System.out.printf(

44 "field x before exiting method useField is %d\n", x);

45 } // end method useField

46 1} // end class Scope

local x in main is 5

Tocal x on entering method uselLocalVariable is 25
Tocal x before exiting method uselocalVariable is 26

field x on entering method useField is 1
field x before exiting method useField is 10

Tocal x on entering method uselLocalVariable is 25
Tocal x before exiting method uselocalVariable is 26

field x on entering method useField is 10
field x before exiting method useField is 100

local x in main is 5

Fig. 6.9 | Scope class demonstrates field and local variable scopes. (Part 2 of 2.)

222 Chapter 6 Methods: A Deeper Look

Method useField does not declare any local variables. Therefore, when it refers to x,
field x (line 7) of the class is used. When method useField is first called (line 18), it out-
puts the value (1) of field x (lines 40—41), multiplies the field x by 10 (line 42) and outputs
the value (10) of field x again (lines 43—44) before returning. The next time method use-
Field is called (line 20), the field has its modified value (10), so the method outputs 10,
then 100. Finally, in method main, the program outputs the value of local variable x again
(line 22) to show that none of the method calls modified main’s local variable x, because
the methods all referred to variables named x in other scopes.

6.12 Method Overloading

Methods of the same name can be declared in the same class, as long as they have different
sets of parameters (determined by the number, types and order of the parameters)—this
is called method overloading. When an overloaded method is called, the compiler selects
the appropriate method by examining the number, types and order of the arguments in
the call. Method overloading is commonly used to create several methods with the same
name that perform the same or similar tasks, but on different types or different numbers
of arguments. For example, Math methods abs, min and max (summarized in Section 6.3)
are overloaded with four versions each:

1. One with two double parameters.
2. One with two float parameters.
3. One with two int parameters.

4. One with two Tong parameters.

Our next example demonstrates declaring and invoking overloaded methods. We demon-
strate overloaded constructors in Chapter 8.

Declaring Overloaded Methods

Class MethodOverload (Fig. 6.10) includes two overloaded versions of method square—
one that calculates the square of an int (and returns an int) and one that calculates the
square of a double (and returns a double). Although these methods have the same name
and similar parameter lists and bodies, think of them simply as differenr methods. It may
help to think of the method names as “square of int” and “square of doubTe,” respectively.

1 // Fig. 6.10: MethodOverload.java

2 // Overloaded method declarations.

3

4 public class MethodOverload

5 {

6 // test overloaded square methods

7 public static void main(String[] args)

8 {

9 System.out.printf("Square of integer 7 is %d\n", square(7));
10 System.out.printf("Square of double 7.5 is %f\n", square(7.5));
11 } // end main

12

Fig. 6.10 | Overloaded method declarations. (Part | of 2.)

6.12 Method Overloading 223

13 // square method with int argument

14 public static int square(int intValue)

15 {

16 System.out.printf("\nCalled square with int argument: %d\n",
17 intValue);

18 return intValue * intValue;

19 } // end method square with int argument

20

21 // square method with double argument

22 public static double square(double doubleValue)

23 {

24 System.out.printf("\nCalled square with double argument: %f\n",
25 doubleValue);

26 return doubleValue * doubleValue;

27 } // end method square with double argument

28 } // end class MethodOverload

Called square with int argument: 7
Square of integer 7 is 49

Called square with double argument: 7.500000
Square of double 7.5 is 56.250000

Fig. 6.10 | Overloaded method declarations. (Part 2 of 2.)

Line 9 invokes method square with