
ID
E

O
ve

rv
ie

w
 .

Pl
ug

-in
 m

od
ul

es
 .

Pr
of

ilin
g

. M
at

is
se

 .
G

ro
up

La
yo

ut
 .

W
eb

 d
ev

el
op

m
en

t

magazine

May . 2006

Writing Quality Code
Using rules and validation tools
to avoid common bugs

NetBeans Profiler
An in-depth tutorial about the
best profiling tool on the market

Matisse in Action
Using Matisse and more to

create a complete desktop app

Extending the IDE
Build your own plug-in
modules step by step

Practical Web Apps
Develop JSP & Struts applications

using the best of the IDE

Plug-in Showcase
Enrich your NetBeans

development experience

Exploring GroupLayout
Learn details about the layout
manager that powers Matisse

Bringing

to
Light
Development
Java

magazine Number One

T
he NetBeans project has been going through an unprecedented number

of changes, broadening its scope, increasing quality and usability, and

expanding communities and user adoption. In many areas, like Swing

building or JME development, NetBeans IDE is now the tool to beat, with

levels of functionality and productivity that match or exceed any other

tool, open source or commercial.

This special first edition of NetBeans Magazine showcases a wide selection of

IDE and extension features, from desktop and web development to plug-in module

creation. Beginners will learn how to develop a complete desktop application using

Matisse and other IDE facilities. Seasoned programmers will also benefit, knowing

details about the NetBeans Profiler, which introduces breakthrough innovations in

profiling tools, and further learn about GroupLayout, the layout manager that is the

core of Matisse. Also shown is how to use IDE features and modules to detect bug

patterns, enforce code conventions, and closely follow coding rules that promote

overall quality and reduce maintenance costs.

NetBeans IDE has always followed the “it just works” principle, aggregating all the

functionality developers need from day to day. But there’s always some little niche

necessity that has to be taken care of. The extensibility features of NetBeans come

to the rescue, and the recent versions of the IDE make creating plug-in modules a

breeze. Catering for the growing community of plug-in module fans, the magazine

includes a special section describing tens of little and great extensions, which enable

NetBeans developers to program in other languages, use new APIs and frameworks,

and squeeze more functionality out of standard IDE features. And if you just can’t

stand being in the user role for long, a tutorial shows how to create a new plug-in

module from scratch.

NetBeans has gone very far and very fast – but still the community manages to

increase the rhythm, with version 5.5 at the door and the first releases of 6.0 already

available. The best part is you don’t get only to watch. You can join in, and participate

in this movement that’s bringing light to Java development.

Happy coding,

Leonardo Galvão

Publisher & Editor-in-Chief
Leonardo Galvão
leonardo@javamagazine.com.br	

Assistant Editor
Osvaldo Pinali Doederlein
opinali@gmail.com

Design and Layout
phDesign (phdesign.com.br)

	Graphic Designers
	Tarcísio Bannwart, Jaime Peters Jr,
Tersis Zonato, Lais Pancote

	 Illustrators
	 Felipe Machado & Francisco Peixoto

Contributors
Fernando Lozano
Geertjan Wielenga
Gregg Sporar
Leonardo Galvão
Osvaldo Doederlein
Tomas Pavek

Editorial Support
Robert Demmer
John Jullion-Ceccarelli

NetBeans Magazine is 	
supported by NetBeans.org

Java and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and
other countries. NetBeans Magazine is independent of Sun
Microsystems, Inc.

Although every precaution has been taken in the preparation of
this magazine, the publisher assumes no responsibility for errors
or omissions, or for damages resulting from the use of
the information herein contained.

Produced in Brazil

First Edition N �

ID
E

O
ve

rv
ie

w
 .

Pl
ug

-in
 m

od
ul

es
 .

Pr
of

ilin
g

. M
at

is
se

 .
G

ro
up

La
yo

ut
 .

W
eb

 d
ev

el
op

m
en

t

magazine

May . 2006

Writing Quality Code
Using rules and validation tools
to avoid common bugs

NetBeans Profiler
An in-depth tutorial about the
best profiling tool on the market

Matisse in Action
Using Matisse and more to

create a complete desktop app

Extending the IDE
Build your own plug-in
modules step by step

Practical Web Apps
Develop JSP & Struts applications

using the best of the IDE

Plug-in Showcase
Enrich your NetBeans

development experience

Exploring GroupLayout
Learn details about the layout
manager that powers Matisse

Bringing

tototo
Light
Development

toto
LightLight
to
Light
toJava

Contents

04

19
Plug-in Module
Showcase
Enrich your development
experience with dozens of
NetBeans extensions

22

32
Writing Quality Code
with NetBeans IDE
Exploring rules, modules and IDE
features that increase code quality
and avoid common bugs

Plug-in Module
Quick Start
Build plug-in modules step by
step, using the new extensibility
APIs in NetBeans 5

44

Web Development
with NetBeans 5
Use the best of NetBeans to
develop and debug JSPs, Servlets,
and Struts applications

A Complete App
Using NetBeans 5
Using Matisse and more to
create a complete application,
from UI to database access

58

52
Exploring the

NetBeans Profiler
An in-depth exploration

and tutorial about the best
profiling tool on the market

Get to Know
GroupLayout

Learn details about the new
layout manager that powers the

Matisse GUI builder c

A

Learn NetBeans in

Practice using the

Matisse GUI Builder

Fernando Lozano

AppUsing NetBeans 5

Complete

First Edition N �

A Complete App Using NetBeans 5

N
etBeans is not a

newcomer to the Java

arena. In fact, it is one

of the oldest Java

IDEs still available

on the market. But

the most exciting developments happened

in the latest releases, specially 4.0 and 5.0,

with the renewed commitment from Sun and

participation of an ever-growing community

of users and developers. In many respects,

such as desktop development, NetBeans

can be regarded as the most powerful and

most easy-to-use Java IDE

This article gives an overview of the

IDE while building a complete desktop

application. Instead of a hello-world kind

of app, we build a more “real-world”

application: a to-do list commonly found as

part of PIM suites. The application will use an

embedded relational database and require

customization of Swing components, so

it will be a small-scale real project except

only for the lack of help content and an

installer.

We won’t just demo the IDE features. The

project will also stick to Object-Ori-

ented best practices, showing

that you can develop GUI ap-

plications quickly and inter-

actively, without compro-

mising long-term main-

tenance and a sound

architecture. How-

ever, to keep the

tutorial short we’ll

skip some prac-

tices usually required

by corporate environments and

well supported by NetBeans, such

as test-driven development using JUnit

tests, and source-control systems like CVS.

The reader will need basic Swing and JDBC skills, beyond familiarity

with the Java language and Object-Oriented programming. We

start with the basic procedures to install and configure NetBeans,

including a quick tour of the IDE user interface. Then the sample

application is presented, followed by the steps to create it using the

IDE features.

The first part of this article will be more detailed, because the

visual design capabilities are among NetBeans’ strongest features.

As we move deeper into the application logic, the article will switch

to a higher level discussion. That way, this article aims for two

objectives:

1. Provide newbie developers with an introduction to using the

NetBeans IDE;

2. Provide more seasoned developers with useful insights about

GUI development best practices, while using the best of NetBeans

features.

The to-do application will be developed using a three-step process.

The first step prototypes the UI design, where NetBeans really shines.

The second step focuses on user interaction and event handling; it’s

actually a second prototype for the application. The third and last

step builds the persistence and validation logic. Readers familiar

with the MVC architecture will note these steps form a process that

starts with the View, then builds the Controller, and finally builds the

Model.

Installing NetBeans
Installing NetBeans, as with most Java-based applications, is easy.

Just visit netbeans.org and click on NetBeans IDE 5.0 under the

Latest Downloads category at the top-right corner of the page. You

can choose installers for your platform, including Windows, Mac OS,

Linux and Solaris.

Before installation, you’ll need a JDK 1.4.2 or higher installed and

configured for use at the command-line. NetBeans uses JDK tools

like the javac compiler, so a JRE won’t be enough. If you don’t yet

have a JDK, there are download options bundling the latest JDK with

the IDE.

I personally prefer to click on the link below Other distributions,

sources and extras after the download form, and download instead

the NetBeans IDE 5.0 Archive, choosing the .zip format. After all,

Complete

G
NetBeans
IDE home
page

ne
tb

ea
ns

.o
rg

� N NetBeans Magazine

ID
E

O
ve

rv
ie

w
 &

 M
at

is
se

NetBeans is a pure-Java application, so you can use the same archive

to install it on any platform with a suitable JDK. Just pick a directory

and unpack the archive, and NetBeans is ready to run.

Starting and customizing NetBeans
After installing/unpacking NetBeans, the folder bin below the IDE

installation folder will contain platform-specific commands to start the

IDE. Windows users will use the netbeans.exe file, while Linux users

will use the netbeans file. The IDE will open with a welcome page (see

Figure 1).

E If you have used the archive instead of the native installer, you’ll get a license
agreement dialog on the IDE’s first run. Don’t worry; the Sun Public License (SPL)
used by NetBeans is an OSI-approved open source software license.

At the top of the IDE window, you see the main menu and toolbar.

If you don’t like the big toolbar icons configured by default, righ-click

any empty spot in the toolbar and choose the Small Toolbar icons

menu entry.

A 2

A 1A
Figure 1

The NetBeans
main window
and welcome

page

The left area contains two navigational

panels. The top one is shared by the Projects,

Files and Runtime windows. The bottom

area contains the Navigator window, and

the right-center area is used for the many

editors included with NetBeans. Multiple

editors and windows can share the same

area; the IDE provides tabs for selecting the

one displayed.

Most of the time, you’ll use the Projects

window to browse and edit Java code. The

Navigator Window displays the structure of

the artifact being edited; for example for Java

code you’ll see class attributes and methods,

and for GUI design you’ll see the component

tree. The Files window is used when you

need to see the physical file structure of your

projects, and the Runtime window shows IDE

processes and other environment resources

like databases and Java EE servers.

To tweak your NetBeans environment,

the two most used tools are the Options

Window under Tools|Options on the main

menu, and the Library Manager also under

Tools. Figure 2 shows the pre-configured

libraries included with NetBeans 5.0, and

Figure 3 shows the first option I change

before starting GUI development: the idiom

for the code generated for Swing event

listeners.

Most Swing tutorials and samples from

books use anonymous inner classes (which

is the installation default for NetBeans), but

I find this idiom difficult to read and maintain.

You get giant methods containing the code

for handling many unrelated events. I prefer

instead to have each listener as a named

inner class, as shown in the figure.

The IDE provides a lot more customization

than is shown by the Options window. Just

click on the Advanced Options button and

A
Figure 2

NetBeans Library
Manager showing

default libraries
configured with

NetBeans 5.0

First Edition N �

A Complete App Using NetBeans 5

priority, so users can focus first on higher-priority

tasks;

 Tasks should have a due date, so users can

instead focus on tasks with are closer to their

deadline;

 There should be visual cues for tasks that are

either late or near their deadlines;

 Tasks can be marked as completed, but this

doesn’t mean they have to be deleted or hidden.

Most applications will have longer lists of

requirements, and implementing even these simple

example is not a trivial task. Building prototypes of

the application UI helps end-users to state their

requirements, and that's one of the reasons visual

GUI builders became so popular. But even with a

GUI builder, a quick sketch on paper can be of

great help. We plan two main windows for the Todo

application: a tasks list and a task-editing form. A

rough sketch for both is shown in Figure 5.

After building the initial user interface prototype,

it’s important to show end-users a kind of functional

prototype, which helps discuss the dynamics of

user interaction in the application and the basic

business process involved (if you are developing an Information

System). This functional prototype reacts to user input but won’t

persist data.

That’s where Object-Oriented development helps, because it’s

easy to create an initial set of objects the prototype can manipulate,

and you can go very far developing the code to show and change

A 5

A 4

A 3

you’ll be presented with an expanded

options dialog, as shown in Figure 4. This

time you get a tree structure with hundreds

of options grouped into categories. Most

developers will want to enable anti-aliased

text rendering on the editors, as shown by

the figure, because this makes the code

more readable.

Developing
the sample app

Now that you had your first

try at NetBeans 5, let’s see

the sample application we’ll

develop in the rest of this

article. Here is a short list of

requirements for it:

 Tasks should have a

A
Figure 3
 NetBeans Options
window: changing
the default code-
generation style
for event listeners

A
Figure 4
NetBeans
Advanced Options
window, enabling
text anti-aliasing
for code editors.

A
Figure 5
A sketch for the
Todo user interface

� N NetBeans Magazine

ID
E

O
ve

rv
ie

w
 &

 M
at

is
se

these objects without the need of persistent storage. Only when you

have your functional specs and their implementation well advanced,

at the end of the development process, do you need to worry about

file formats or databases.

In my experience, this two-level prototyping approach improves

productivity, and mixes well with TDD and other Extreme Programming

practices, while keeping costs and schedule under control and meeting

user demands. That leads us to developing the Todo application in

three steps:

1. Build a “static” visual prototype of the user interface, using a

visual GUI builder.

2. Build a “dynamic” prototype of the application, coding user

interface events and associated business logic, and creating

customized UI components as needed.

3. Code the persistence logic.

Designing the tasks list window
Let’s go back to NetBeans. Any work in the IDE is done inside a

project. Click on the New Project toolbar icon and select the Java

Application entry in the General Category. Use “Todo” as the project

name and choose a suitable project location (anywhere in your hard

disk). Then click Finish.

NetBeans creates the project containing a Java package named

after the project name and with a class named “Main” (in our case,

todo.Main). Java conventions dictate that you should use your company

DNS name as a prefix for all your package names, but in this example

we’ll waive that to keep things simple.

Now right-click the todo package icon and choose New JFrame

A 6

Form (or choose File|New File from the main

menu, and then select the JFrame Form

from the Java GUI Forms category). Type

“TasksWindow” as the class name. Notice

that the IDE opens the visual form editor, as

shown in Figure 6; notice also the location

of the Projects, Navigator and Properties

windows, the Palette and the editor area.

An orange frame highlights the selected

component (the JFrame content pane in the

figure). The navigator displays all visual

and non-visual components on the JFrame,

which is handy when you need to change

the properties of a component hidden by

another or too small to be selected in the

drawing area.

To the right there’s a component palette,

which shows by default the standard Swing

components (you can also add third-party

JavaBeans), as well as the properties

windows. Properties are categorized to

ease access to the ones most commonly

used, and changed properties have their

names highlighted in bold.

To change the visual editor IDE layout, you

can drag each window to another corner

of the main window or even leave some

windows floating around.

The NetBeans 5 visual editor is unlike

other visual Java editors you may have

seen. Just click right-click inside the JFrame

and select the Set Layout menu item. You’ll

see the default choice is not a traditional

Swing/AWT layout manager; it’s something

named “Free Design”. This means you are

using the Matisse visual GUI builder, one of

the highlights of NetBeans 5.

Matisse configures the JFrame to use the

GroupLayout layout manager developed in

the SwingLabs java.net project, which will

be included as a standard layout manager

A
Figure 6

Visual editor with
an empty JFrame

G
NetBeans

plug-in
catalog

ne
tb

ea
ns

.o
rg

/c
at

al
og

ue

First Edition N �

A Complete App Using NetBeans 5

in Java SE 6.0. (You can learn more about

GroupLayout in an article in this edition.)

If you choose any other layout, Matisse

will be disabled and you will have the old

NetBeans Visual Form editor. But of course

we’ll use Matisse, and you’ll see how it

brings a whole new meaning to “Swing

visual design”.

Select the Toolbar icon on the palette

and move the mouse over the drawing

area. You’ll notice that a placeholder for

the toolbar follows the mouse pointer, and

that the visual editor displays guidelines

when it’s close to the edges of the JFrame,

as shown in Figure 7.

These guidelines help you keep controls

aligned and spaced out

inside the container.

Matisse generates the

layout constraints to

maintain the positioning

of each component when

the container is resized

or when the Look and

Feel (LAF) is changed.

You design like you were

in a free-form drawing

area, but won’t loose

any of the advantages

of using a Java layout

manager.

A 7 As toolbars are usually attached to the window borders, move our

toolbar to the top left corner of the JFrame (another set of guidelines

will provide visual feedback helping component placement). Click to

attach the toolbar at the desired location, and drag the right border

so it becomes attached to the right JFrame border. Figure 8 illustrates

this process.

Repeat the process to insert a JLabel attached to the left, bottom

and right corners of the JFrame. This label will be used as a status

message area for the tasks window. Then insert a JScrollPane,

attaching it to the left and right corners of the JFrame and to the

bottom of the JToolbar and top of the JLabel. Just leave some spacing

between the JScrollPane and JFrame borders, the JToolbar and the

JLabel. The result so far should look like Figure 9.

Now try resizing the JFrame content panel (the drawing area). The

JToolbar, JLabel and JScrollPane should resize to keep the borders

attached to the JFrame’s corners and to each of the other borders.

Icons and Menus
By now you should have a pretty good idea about how to use

NetBeans 5 to rapidly design a Swing UI. After adding buttons to

the JToolbar and a JTable to the JScrollPane, the TasksWindow class will

start to resemble the sketch we saw earlier. JLabels are used as

separators between each group of JButtons inside the JToolbar (the

Swing JSeparator won’t behave as expected). Later on we’ll customize

the JTable.

NetBeans doesn’t come with a good set of icons for use by

A 9

A 8

A
Figure 7
Visual guidelines
help positioning
and sizing controls
in the visual editor

A
Figure 8
Positioning and resizing
the toolbar so it is attached
to the left, top and right
corners of the JFrame.
Notice the guidelines over
the drawing borders

A
Figure 9
Positioning the
JLabel and the
JScrollPane

10 N NetBeans Magazine

ID
E

O
ve

rv
ie

w
 &

 M
at

is
se

applications, so I borrowed some from a few other open

source projects; they are provided together with the

sources for this article (see the URL at the last page).

But instead of referring to the icons by file system paths,

which would lead to additional logic to find the icon files

on the user machine, I created an icons folder under

the project src folder (which corresponds to the Source

Packages item in the Projects window) and copied all icon

files there. The NetBeans Projects window will display

non-Java files inside the source folder, so you won’t need

to switch to the Files window just to see them.

Non-Java files inside the Source Package folder will be

added by NetBeans to the application jar file, and the

application will be able to refer to them as classpath

resources, no matter where the jar file is installed on the

user machine. As a bonus, the application code doesn’t

have to worry about platform-specific details like path

separators and drive letters.

NetBeans provides a customizer for editing a

component’s icon property. Click on the ellipsis button at

the right side of the icon property to open the customizer

shown in Figure 10. Use this customizer to configure the

icon for the component. After selecting the Classpath radio button,

the Select File button will allow you to browse the icon files and select

interactively the one to use (including icon files inside jar packages).

NetBeans also provide a customizer for JTable’s model property;

see Figure 11. We’ll use it to make the JTable appear in the visual

editor with correct column names and some sample data. This is

not the way the final

application will look

like. Typically, the

customization of

JTables will require

the development

of custom Java

classes like cell

renderers and

column models

– because JTables

are views for Java

objects, not just for

A 10

A 12

A 11

plain Strings like in other GUI toolkits.

But even if the customization done using

the NetBeans visual editor won’t be used

in the final application, it’s useful to do that

work. A prototype should display actual data

(or at least data a typical user would input,

instead of placeholder text). This will help

users understand the prototype and make

sure the UI allows for sufficient space for

displaying the actual data.

Now the prototype should look like

Figure 12. The main element still missing

is the application menu bar. To add it, select

the JMenuBar control on the palette and click

anywhere inside the drawing area (except

inside the JToolbar or its JButtons). To edit the

menu bar, you don’t use the component

palette or Matisse features. Just open the

JMenuBar context menu (right-click) and

A
Figure 11

JTable model
customizer after

adding a few
columns

A
Figure 12

TasksWindow UI
so far

A
Figure 10
NetBeans

customizer
for the icon

property Library
Manager, showing

default libraries
configured with

NetBeans 5.0

First Edition N 11

A Complete App Using NetBeans 5

“Exit”). These are configured respectively by the

mnemonic and accelerator properties.

The meaning of each menu item should be self-

explanatory, given the application requirements and the fact

we’ll use a file-based database as persistent storage for tasks.

Designing the
task details dialog

Now we’ll create the TaskDetailsDialog. Right-click the todo Java

package and select New>File/Folder. Then choose JDialog Form in

the Java GUI Forms category. We start with a JLabel attached to the

left, top and right borders of the dialog, with no spacing. It will serve

as a message area for validation errors and the like. Set its opaque

property and the background color so it looks like a band at the top

of the dialog. Also add an EmptyBorder (border property) so there’s

empty space around the text and the band’s borders.

Now add three JLabels for the description, priority and due date

fields. Attach all three to the left of the JDialog internal area (the

drawing area). Leave some spacing between the components

and the border. Resize the two shorter labels to attach their right

borders to the right border of the larger one. Figure 15 illustrates

this procedure.

Then select the three labels (with shift + click) and change the

horizontalAlignment property to RIGHT. After

that, insert a JTextField, a JSpinner and a

JFormattedTextField at the left of each label.

Note that the guidelines keep the label

and text field baseline aligned, as shown in

Figure 16.

The JSpinner does not provide any property

to set a preferred or minimum width, while

the JTextField and JFormattedTextField use

the column property for this. But you can

resize the JSpinner and Matisse will set the

component’s preferred size in pixels.

E Sizing GUI components in pixels is not
guaranteed to work well in
different platforms, or if your users change the
default Swing LAF. Use this Matisse feature with
care!

A 14

A 13

choose Add JMenu. Then you can select

the new JMenu and configure its properties.

For the Todo application, we need to add

menus with labels “File”, “Edit”, “Options”

and “Help”.

Adding menu items follows a similar

procedure. You use the context menu for the

JMenu and open the submenu Add to select

between JMenuItem, JCheckBoxMenuItem,

JRadioButtonMenuItem, JMenu and JSeparator,

as shown in Figure 13.

The added menu items won’t be shown

in the drawing area, so they can’t be

selected directly for customization. But

the Navigator window allows access to the

items, and the Properties window reacts to

selection on the Navigator the same way it

does in the drawing area. Figure 14 shows

all menus to guide you in completing the

TasksWindow.

In the last figure you may have noticed

underlined characters (like the “F” in “File”)

and keyboard accelerators (like Alt-x for

A
Figure 13
Adding items do
a JMenu inside a
JMenuBar

A
Figure 14
Complete
menus for the
TasksWindow
JFrame

12 N NetBeans Magazine

ID
E

O
ve

rv
ie

w
 &

 M
at

is
se

the missing pieces, like package and import

statements.

You can then use command Run | Run Main

Project from the main menu, the toolbar

button or press F6 to run the prototype.

After checking that it looks as intended (it

does nothing besides displaying the two

windows) you can use either the menu item

Build | Build Main Project or F11 to create

an executable jar that can be deployed on

end user machines for prototype validation.

The jar package is created in the dist

project folder. You can verify this in the

Files window. NetBeans also creates the

folder dist/lib containing any libraries

used by the application, and configures

the jar manifest to point to the project’s

main class and libraries. Figure 19

presents the dist project folder as seen in

the NetBeans Files window, and Listing 2

shows the manifest file generated for the

Todo.jar archive.

Note the library swing-layout-1.0.jar

inside the dist/lib folder. This contains

the GroupLayout used by UIs built with

Matisse.

So all you need to do is copy the

contents of the dist folder to the user

machine (you don’t need to preserve

the file name dist), and then run java -jar

Todo.jar.

End of Step 1
This prototype is almost the finished

application from the UI design perspective,

but in real projects you shouldn’t spend too

much time perfecting its looks. Remember,

the prototype is a tool to gather and validate

user requirements and lessen the risk of

missing important application functionality.

The problem is the user often cannot un-

A 18

A 17

By now you should not

have problems positioning

and aligning the remaining

components in the

TaskDetailsDialog. Figure 17

shows its final appearance as

a reference to the reader.

Good UI design makes all

buttons from a logical group

the same size, and Matisse

can enforce this good practice.

Just select all desired buttons

(actually you can select any control you want) and right-click

any of the selected buttons. Then check the Same Size | Same

Width checkbox menu item. The drawing area will indicate that

the controls were configured to always have the same size, as

shown in Figure 18.

Deploying the first prototype
To finish the prototype, the todo.Main class needs code to create the

TasksWindow and make it visible. Besides, there should be an Action

listener in any toolbar button or menu item to show the TaskDetailDialog.

The code is shown in Listing 1. The reader should be able to fill

A
Figure 17

Finished
prototype for the
TaskDetailsDialog

A
Figure 18

The IDE’s visual
hint for same-size

components

A 16

A 15A
Figure 15
Sizing the

TaskDetailsDialog
labels

A
Figure 16

The “free design”
layout aligns

different kinds of
controls by the

text baseline

First Edition N 13

A Complete App Using NetBeans 5

The Napkin Look-and-Feel can give an important

“unfinished” look to your prototype. Follow these

steps to use it in the example application:

1. Visit the Napkin home page (napkinlaf.sf.net),

click on the link next to “latest release” and down-

load the archive napkinlaf-version.zip; unpack the

zip to a folder of your choice;

2. Right-click the Todo project icon on the Net-

Beans Project window and select the Properties

menu item.

3. Select the Libraries category and click

the button Add JAR/Folder, and browse for

the archive napkinlaf.jar inside the folder

where you unpacked the Napkin download.

4. Rebuild the application so the

napkinlaf.jar archive gets copied to the

dist/lib folder and the jar manifest gets up-

dated with a reference to the new library.

5. Add the following code to the start of the main

method:

UIManager.setLookAndFeel(
 “net.sourceforge.napkinlaf.NapkinLookAndFeel”);

As an alternative, include the command-line op-

tion ‑Dswing.defaultlaf=net.sourceforge.napkinlaf.Nap-

kinLookAndFeel when starting the application.

Figure S1 shows the look of the Todo app using

the Napkin LAF.

A S1

A 19 B Listing 1. Code to finish the first prototype.

todo.Main (todo/Main.java)
(...)
 public static void main(String[] args) {
 JFrame w = new TasksWindow();
 w.pack();
 w.setVisible(true);
}

todo.view.TasksWindow (todo/view/TasksWindow.java)
(...)
private void addButtonActionPerformed (
 java.awt.event.ActionEvent evt) {
 JDialog d = new TaskDetailsDialog(this, true);
 d.pack();
 d.setVisible(true);
}

B Listing 2. jar archive manifest file

(META-INF/MANIFEST.MF) generated by NetBeans

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.6.5
Created-By: 1.5.0_05-b05 (Sun Microsystems Inc.)
Main-Class: todo.Main
Class-Path: lib/swing-layout-1.0.jar
X-COMMENT: Main-Class will be added automatically by build

Using the Napkin LAF in a NetBeans project

A
Figure S1
Sketch for the
Todo user interface

A
Figure 19
Distributable files
for deploying
the prototype to
end-users

derstand that an “almost ready” UI is not an

“almost finished” application. That makes

many developers avoid prototyping during

development.

An interesting approach to mitigate this

problem is to use a custom look-and-feel

that makes the application look unfin-

ished. The Napkin Project at SourceForge

(napkinlaf.sf.net) provides such a LAF. See

the sidebar “Using the Napkin LAF in a Net-

Beans project” for details.

G
Napkin
custom
Swing LAF
home pagena

pk
in

la
f.s

f.n
et

14 N NetBeans Magazine

ID
E

O
ve

rv
ie

w
 &

 M
at

is
se

Todo Applicaton
Architecture
The second step – building

the “dynamic prototype”

– aims to implement as

much user interaction as

possible without using

a persistent storage or

implementing complex

business logic. It’s well

known that in most GUI

applications the event-

handling code accounts

for above 60% of the total application code. Therefore

it pays off to develop the UI code incrementally. Another reason to

build this second prototype is most users have trouble imagining how

an application should behave if there’s nothing they can click and see

results in.

This can be achieved by creating “mock” objects for business logic

and data access. Such objects should have the same public interface

as the real objects (and will help validate the intended interface before

it’s implemented and changes become too expensive), but will return

hard-coded data. You can use the Java collections API so the user can

A 20

change an object and see the changes until

the application is closed.

If you think of the TasksWindow as a black

box that can display a collection of task

objects, and of the TaskDetailDialog as a

black box capable of displaying a single

task object, it’s not hard to think in terms of

mock objects.

We’ll use two well-known design patterns

in the Todo application: DAO (Data Access

Object) and the MVC (Model-View Controller).

We’ll also define a VO (Value Object) named

Task for moving information between

application tiers. Therefore the view classes

(such as the TasksWindow and TaskDetailsDialog)

will receive and return either Task objects or

collections of Task objects. The controller

classes will transfer those VOs from view

classes to model classes, and back.

Figure 20 shows a UML class diagram for

the main application classes. Methods and

attributes were omitted, but we’ll describe

the most important ones. The full sources

A
Figure 20

UML class diagram
for the main

application classes

G
NetBeans

5.5 preview,
featuring

UML CASE
features

ne
tb

ea
ns

.o
rg

/c
om

m
un

ity
/re

le
as

es
/55

/

First Edition N 15

A Complete App Using NetBeans 5

The finished application will contain more classes, some of

which can be considered “internal” to their respective packages.

Others play just an accessory role, such as exception classes.

Figure 21 shows all classes from the finished application in the

NetBeans Projects window.

Here’s the plan for building the second prototype:

1. Adjust column widths for the tasks list and display the visual

cues for late and completed tasks;

2. Handle selection events to enable and disable menu and

toolbar items;

3. Handle action events to sort and filter the tasks list;

4. Handle action events to create, edit and remove tasks.

Items 1 to 3 can be implemented and tested with a mock model

object (TaskManager) that always returns the same task collection.

Item 4 can be tested with a mock object that simply adds or removes

objects from that collection.

Customizing a JTable
In order to customize the Swing JTable so it displays a collection of

Task objects, we provide adequate column widths for each column in

the task list (which corresponds to Task attributes) and change each

row background colors according to the task status: red for late

tasks, yellow for tasks with an alert set, blue for completed tasks,

and white otherwise.

Most task list columns have a short content and can have fixed

width. Just the description column/attribute can have wider content,

so it should get whatever space is left after the fixed-width columns

are sized. To implement all these features, we need to create three

classes:

	The TasksTableModel class receives requests for data at a specific

row/column from the JTable control and returns a task attribute

value, such as the description or due date, for the task at the given

row. It also has the ability to filter the task collection to exclude

completed tasks, or to change the sorting criteria. Sometimes it

will be better to leave these sorting and filtering tasks to the model

(which can delegate them to the database) but if the dataset is

not too big, doing these operations in-memory will improve user

experience.

	The TaskColumnModel class adds columns to the JTable and

configures each column with its preferred width, label and

for the finished application are available for

download; see the link at the end of the

article.

E This UML model was drawn using ArgoUML
(argouml.org) a powerful open source software
CASE tool written in Java. Developers interested in
CASE tools can also check NetBeans 5.5 currently
in preview, which includes UML tools originally
developed as part of Sun Java Studio Enterprise.

Now we’ll create Java packages

corresponding to the MVC class roles:

todo.view, todo.controller and todo.model.

Create these packages by right-clicking

the Source Packages icon on the Projects

window, and selecting New|Java Package.

Then move the classes already created for

the first prototype to the todo.view package

by right-clicking each one and selecting

Refactor|Move Class. While nothing stops

you from using the Java code editor to

change the package statement for each

class (and even the class name), using the

Refactor menu automatically changes all

references in other classes.

A 21 A
Figure 21
All classes for the
Todo application

G
ArgoUML,
Open Source
UML CASE
tool written
in Java

ar
go

um
l.o

rg

16 N NetBeans Magazine

ID
E

O
ve

rv
ie

w
 &

 M
at

is
se

resizeability. It completely replaces at runtime the DefaultTableModel

created and configured by the NetBeans visual editor.

	TaskCellRenderer provides a Swing JLabel configured with the

correct background color for the task being shown. It also formats

the dueDate and completed attributes as strings.

Figure 22 shows the final appearance of the TasksWindow, with the

customized JTable.

Handling Internal Events
Having a display of tasks ready, it’s time to add some event-handling.

It will be useful to separate UI events into two mutually exclusive

categories:

1. Internal events, that affect just the view itself.

2. External events, which cause model methods to execute.

Among internal events, are selection changes and clicks on Cancel

buttons. These are handled by the view classes themselves, and

are not exposed as part of the view classes’ public interfaces. For

example, the selection of a task should enable the Edit task and

Remove task menu item, and the corresponding toolbar buttons.

ESwing itself was designed using the MVC architecture, but don’t be
confused: Swing “model” classes have nothing to do with application “model”

A 23

classes. Don’t make your model classes implement
Swing model interfaces, and don’t make them
subclasses of Swing classes. From the application
architecture point of view, Swing model classes
are part of the view tier if the application uses
MVC.

To code an internal event handler, either

right-click on the control that is the event

source and select the desired event from

the Events sub menu, or select the Events

category from the Properties window. Both

the context menu and the Property window

will highlight in boldface the events that

already have a handler.

You can change the implementation of

an event-handler method, but you cannot

remove the method or change its name

in the source editor. To do this, you have

to use the Properties window. Figure 23

shows some event handlers in the source

editor.

Handling External Events
The category of events we call “external”

should not be handled by view classes.

They should instead be forwarded to

controller classes, which usually implement

the workflow logic for a specific use case

or a related set of use cases.

To help with this, the application includes

the todo.view.ActionSupport class. This

class simply keeps a list of ActionListeners

and forwards ActionEvents to them. But

ActionSupport is itself an ActionListener. This

is done to avoid having lots of event-related

methods, e.g. add/removeNewTaskListener(),

add/removeEditTaskListener() and so on.

Instead, view classes generate only an

ActionEvent. The ActionSupport classes capture

ActionEvents from the view components

and forward them to the controller, which

A
Figure 23

Event handler
declarations are

guarded (i.e. non-
editable) code
sections in the

source editor

A 22

G
Swing trail
of the Java

Tutorial

ja
va

.su
n.

co
m

/d
oc

s/
bo

ok
s/

tu
to

ria
l/u

is
wi

ng

First Edition N 17

A Complete App Using NetBeans 5

persistence logic, preferably using TDD. They can work in parallel

and join at the end, putting together functional view and controller

implementations with functional model implementations.

Most of the work in this step was just coding. NetBeans provides

nice code editors and a good debugger that eases the task

providing the usual benefits: code-completion, JavaDoc integration

and refactoring support. But it can go beyond: it’s very easy to build

in NetBeans 5 new plug-in modules to package your project coding

standards, such as project templates, controller class templates

and so on.

Model classes
The TaskManager class is a DAO (Data Access Object). Being the

only DAO on the application, it contains many methods that would

otherwise be in an abstract superclass. Its implementation is very

simple, so there’s lots of room for improvement.

There’s another model class: Parameter. It uses the Java SE

Preferences API to store configuration data such as the path to the

current tasks database. A desktop application should be as plug-

and-play as possible, so the application will initialize a default tasks

database if there isn’t one available. But it’s flexible enough to allow

the user to open task databases at other locations, and remember

the last one used.

The Todo application uses HSQLDB (hsqdb.org), an embedded

Java database. This allows the application to meet the ease-of-

deployment requirements for a typical desktop application. You just

need to download HSQLDB and add the archive hsqldb.jar to the

NetBeans project libraries.

Inspecting the Database
When developing and debugging persistence code, developers

usually need a way to tap into the database. Maybe they need to

check the effect of an update, or change some table definition.

NetBeans provides direct support for browsing any JDBC-compliant

database and submit SQL commands.

Switch to the Runtime window (it is normally hidden by the Projects

and Files windows) or open it from the Window menu. Expand the

Databases and then the Drivers categories. Right-click on the Drivers

icon, and select Add Driver. Fill the dialog’s fields with the location of

your hsqldb.jar archive, as shown in Figure 24. NetBeans will often

set the database driver class name by itself.

registers itself as a view ActionListener.

However, if the same ActionListener inside

the controller class receives ActionEvents

originated from multiple sources inside a

view class, how can the controller know

which operation is being performed by the

user? The “secret” is the actionCommand

attribute from the ActionEvent, which is

initialized from the actionCommand property

from the source component. So the

implementations of the controller classes

are basically a sequence of if/else if

statements checking for the actionCommand

string.

Many developers balk at this idea, claiming

this is not an “object-oriented” way of doing

things. But nothing prevents you to create

to a generic controller framework, where

the event dispatch information comes

from an XML configuration file and/or is

handled by an IoC controller.

End of Step 2
Now that we have fully functional view and

model classes, it’s time to start replacing

the mock implementations of the model

classes by real logic using persistent

storage.

In large application projects, you could

have a team working on the UI, building

the two prototypes in sequence as we did,

and another team working on business and

G
HSQLDB, an
Open Source
embedded
100%-Java
database

hs
ql

db
.o

rg

A 24

A
Figure 24
Configuring the
HSQLDB JDBC
driver in the IDE

18 N NetBeans Magazine

ID
E

O
ve

rv
ie

w
 &

 M
at

is
se

beyond visual development by supporting

coding activities with specialized editors

for Java, Ant, XML and other languages,

besides CVS, JUnit and refactoring support

and a database console. N

Now right-click the HSQLDB driver icon, and choose the Connect

using menu item. Provide the parameters to connect to your local

Todo database, using Figure 25 as a template. The default database

location is db/todo under the {user.home} folder, which is usually

/home/user under Linux or C:\Documents And Settings\UserName

under Windows.

Then you can open the connection and browse the database

catalog for tables, indexes and other database objects. Each item

has a context menu for operations like creating new tables, altering

columns and viewing data (Figure 26). Most operations

have easy-to-use wizards.

EThe Todo application uses HSQLDB in the stand-alone mode,
which locks the database files for exclusive access. So it won’t be
possible to use the NetBeans database console while the application
is running. However it’s possible to run HSQLDB in server mode
accepting concurrent connections from multiple clients, allowing the
inspection of a live task list database. Check the HSQLDB manual for
instructions on how to start and connect to the database server.

End of Step 3 & Conclusions
The Todo application is completed. Although simple

in scope and with only a few

classes, it demonstrates many

practices that could improve

your desktop Java applica-

tion quality and development

speed.

Also shown were many

features that NetBeans

provides to increase developer

productivity. NetBeans goes

A 26A
Figure 26

Executing SQL
statements

A
Figure 25

Connecting to
the Todo task

database

A 25

C
Fernando Lozano

(fernando@lozano.eti.br)
is an independent con-
sultant with more than

10 years experience do-
ing IS development and
network integration. He

has many professional
certifications, and is also

a technical writer and
open source software

advocate, serving as
Linux.java.net commu-
nity manager, LPI Brazil

Technical Director and
GNU Project webmaster

in charge of Brazillian
Portuguese translations.

netbeans.org/community/
magazine/code/nb-completeapp.zip
G

