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Muscle cells challenged with saturated fatty acids
mount an autonomous inflammatory response
that activates macrophages
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Abstract

Obesity is associated with chronic low-grade inflammation. Within adipose tissue of mice fed a high fat diet,
resident and infiltrating macrophages assume a pro-inflammatory phenotype characterized by the production of
cytokines which in turn impact on the surrounding tissue. However, inflammation is not restricted to adipose tissue
and high fat-feeding is responsible for a significant increase in pro-inflammatory cytokine expression in muscle.
Although skeletal muscle is the major disposer of dietary glucose and a major determinant of glycemia, the origin
and consequence of muscle inflammation in the development of insulin resistance are poorly understood.

We used a cell culture approach to investigate the vectorial crosstalk between muscle cells and macrophages upon
exposure to physiological, low levels of saturated and unsaturated fatty acids. Inflammatory pathway activation and
cytokine expression were analyzed in L6 muscle cells expressing myc-tagged GLUT4 (L6GLUT4myc) exposed to

0.2 mM palmitate or palmitoleate. Conditioned media thereof, free of fatty acids, were then tested for their ability
to activate RAW264.7 macrophages.

Palmitate -but not palmitoleate- induced IL-6, TNFa and CCL2 expression in muscle cells, through activation of the
NF-kB pathway. Palmitate (0.2 mM) alone did not induce insulin resistance in muscle cells, yet conditioned media
from palmitate-challenged muscle cells selectively activated macrophages towards a pro-inflammatory phenotype.
These results demonstrate that low concentrations of palmitate activate autonomous inflammation in muscle cells

insulin resistance in vivo.

Glucose uptake

to release factors that turn macrophages pro-inflammatory. We hypothesize that saturated fat-induced, low-grade
muscle cell inflammation may trigger resident skeletal muscle macrophage polarization, possibly contributing to
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Lay abstract
Obesity is associated with chronic activation of the im-
mune system. In response to high fat diet, the fat tissue
attracts immune cells that cause low, sustained inflam-
mation responsible for making the body resistant to insu-
lin. Recent studies show that inflammation also happens
in muscle, but its origin and consequence for the deve-
lopment of type 2 diabetes are not understood.

We used cells in culture to investigate the communi-
cation between muscle and immune cells upon exposure
to low levels of a saturated fatty acid (palmitate as in
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western diet) or an unsaturated fatty acid (palmitoleate, as
in Mediterranean diet). We analyzed the effects of these
fatty acids on muscle inflammation and next collected
the solution surrounding these cells (called conditioned
media), and tested its ability to activate immune cells.

Palmitate -but not palmitoleate- induced inflammation
in muscle cells but the low dose used (0.2 mM) alone
did not make muscle cells resistant to insulin. Strikingly,
conditioned media from palmitate-challenged muscle cells
selectively made macrophages acquire a pro-inflammatory
phenotype.

These results provide direct evidence of a muscle-to-
immune cell communication in the context of fat expo-
sure and suggest that this communication might occur
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in the body. This is of importance as fighting muscle in-
flammation could be a therapeutic strategy to prevent
type 2 diabetes.

Background

One and a half billion people world-wide are overweight
[1], and this condition is a leading cause of type 2 dia-
betes [2]. High caloric diet and in particular consump-
tion of saturated fatty acids increase the likelihood of
developing obesity. These conditions beget whole-body
insulin resistance, a cornerstone of the metabolic syn-
drome, and obesity-induced insulin resistance is a major
risk factor in the development of type 2 diabetes [3]. Pal-
mitic acid (hexadecanoic acid, 16:0) is the most common
saturated fatty acid in the western diet, and a major con-
stituent of the total non-esterified fatty acids in the
blood [4,5]. In cell and animal studies, palmitate leads to
the development of insulin resistance and inflammation
[6-8], whereas unsaturated fatty acids are often beneficial
or at least less deleterious. Indeed, the monounsaturated
fatty acid palmitoleic acid ((Z)-9-hexadecenoic acid,
16:1A9), which differs from palmitate by the presence of
one double-bond, increases insulin sensitivity and sup-
presses inflammation [9,10].

Adipose tissue expansion in response to high fat diet
(HFD) is accompanied by a local, low-grade inflamma-
tion [11-13]. In vivo, inflammation may be triggered by
adipocytes and/or endothelial cells, putatively through
the release of cytokines and other paracrine factors
[14,15]. However, it is the resident macrophages and
infiltrating macrophage-like cells that assume a pro-
inflammatory phenotype, contributing to the brunt of
pro-inflammatory cytokine production (e.g., TNFa, IL-6
and IL-1P) within adipose tissue [16,17]. Whereas the
initial trigger of inflammation in the adipose tissue is
debated, high levels of palmitate and other saturated
fats promote a pro-inflammatory phenotype in macro-
phages in vitro [18,19]. In turn, inflamed immune cell
populations can adversely affect the metabolic function
of adipose tissue; and indeed, inflammation per se can
impair insulin action in adipocytes, reducing lipo-
genesis and enhancing lipolysis [15,20].

In spite of the pivotal role of macrophages in the de-
velopment of insulin resistance within adipose tissue
during HED, inflammation is not restricted to this tissue.
Indeed, HFD is responsible for a significant increase in
the expression of the pro-inflammatory cytokines TNFa,
IL-6 and IL-1p in skeletal muscle [21]. This is important
because skeletal muscle is the major disposer of dietary
insulin and a major determinant of glycemia, and whole-
body insulin resistance arises only when skeletal muscle
and/or the liver become resistant to the actions of in-
sulin [22]. In addition, resident macrophages are a con-
stitutive component of skeletal muscle, relevant for
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inflammatory responses associated with muscle injury,
dystrophies and endotoxemia [23,24]. Notably, we and
others recently detected increased gene expression of
F4/80 (macrophage marker) and CD11c¢" (pro-inflamma-
tory macrophage- or dendritic cell-like) in muscle from
high fat-fed mice [12,25]. Moreover, upon extraction and
flow cytometry, we detected a population of F4/80/CD11*
cells (inflammatory macrophages), and others have ob-
served macrophages in fat depots within muscle that
expand under HFD and obesity [13,26]. Notably, macro-
phages increase in number within skeletal muscle from
obese subjects and their number and inflammatory phe-
notype correlate positively with body mass index and
negatively with insulin sensitivity [25,27]. Compellingly,
media collected from saturated fatty acid-treated macro-
phages confer insulin resistance to muscle cells in culture
[12,14,18].

While those studies provide pieces of evidence of com-
munication from macrophages to muscle cells, they did
not examine the communication from muscle cells to
macrophages, and the reason for macrophages turning
inflammatory in the muscle (or adipose) tissue milieu is
unknown. Conceivably, muscle cells on their own gene-
rate cues that can impact on macrophages. The major
aim of this study was to test the hypothesis that low
levels of saturated fatty acids evoke inflammatory re-
sponses in muscle cells that may in turn affect the mac-
rophage phenotype. A cell culture model was used to
provide proof-of-principle of muscle to macrophage com-
munication, as it avoids the complexities expected from
a whole-body analysis. The results demonstrate that, at
low doses, palmitate activates inflammatory pathways
within muscle cells leading to the expression of inflam-
matory cytokines, and media collected from these cells
shifts macrophages towards a pro-inflammatory mode.
Conversely, the unsaturated palmitoleate did not activate
inflammatory pathways in muscle cells, and media
thereof did not confer a pro-inflammatory phenotype to
macrophages. These results provide direct evidence of a
muscle to macrophage communication in the context of
exposure to saturated fat.

Results

Skeletal muscle is composed primarily of muscle fibers,
but also encompasses blood and lymph vessels, nerves
and immune cells. As each of these cell types can poten-
tially respond to a high fat environment in vivo, we
chose a cell culture approach to investigate the specific
crosstalk between muscle cells and macrophages in the
context of fatty acid exposure. This strategy enables us
to control individual variables, to determine vectorial
communication, and to explore separately the responses
of each cell type. L6GLUT4myc cells were used as a
prototypic muscle cell system that responds to insulin
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[28] while RAW264.7 macrophages were used as they
constitute a well-characterized macrophage line [12].
Palmitate was used as a typical saturated fatty acid found
in western diets and palmitoleate was used to decipher the
contribution of acyl chain saturation in palmitate. From
healthy to obese individuals, total free fatty acid concen-
tration in serum can range from 0.2 to 0.8 mmol/L,
composed of roughly 25% palmitate and 4% palmitoleate
[5,29,30]. Consequently, palmitate can reach up to 0.2
mM in obese individuals [4], which is the concentration
we chose to use in our study. Each fatty acid was conju-
gated to low endotoxin and lipid-free BSA, and control
treatment with BSA was carried out in parallel. BSA and
fatty acid-BSA were removed from the muscle cultures
prior to further incubation to generate the respective con-
ditioned media, and non-esterified free fatty acids were
undetectable in such conditioned media (Table 1). These
fatty acid-free conditioned media are hereafter called
CM-PA (collected from muscle cells pretreated with PA);
CM-PO (from muscle cells pretreated with PO), or CM-BSA
(from muscle cells pretreated only with BSA).

Low-dose palmitate up-regulates cytokine gene
expression in muscle cells
Gene expression by muscle cells of a number of cy-
tokines was measured by qPCR. IL-6 was the most
abundantly expressed cytokine in muscle cells, relative
to a housekeeping control gene, whereas TNFa expres-
sion was barely detectable and IL-1B was undetectable
(data not shown). Treatment with palmitate -but not
palmitoleate- increased IL-6 and TNFa gene expression
by 3.8- and 4-fold, respectively, compared to the BSA
control (Figure 1A) These results suggest that TNFa and
IL-6 are bona fide muscle cell products up-regulated in
response to a palmitate challenge. Accordingly, we used
IL-6 as the prototypical cytokine produced by muscle
under a palmitate challenge. IL-6 expression was in-
duced by palmitate in a time-dependent manner mea-
sured for up to 24 h (Figure 1B).

In an attempt to characterize the molecules released
by muscle cells present in the conditioned media (CM),
we used a protein array that was able to detect several

Table 1 NEFA concentration

Initial ™M
RM 25+ 25 <10
BSA 15+ 14 <10
PA 197 + 58 <10
PO 252 = 80 <10

NEFA concentration in the initial solution and conditioned media (CM) was
measured using the enzymatic method based on Acyl-CoA oxidase as
described in methods. The measurable range of the kit is 0.01-4.0 mM. Results
are means * SD expressed in micromoles/liter from at least 4 independent
experiments (n>4).
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Figure 1 Low level palmitate treatment activates inflammatory
cytokine & chemokine gene expression in muscle cells. L6 muscle
cells were treated with 0.2 mM palmitate (PA), palmitoleate (PO) or
BSA control for (A) 24 h or (B) at the times indicated. A) mMRNA
expression was analyzed by gRT-PCR using primers for TNFa IL-6
and CCL2. B) mRNA expression was analyzed by gRT-PCR using
primers for IL-6. Results are normalized to the reference gene hprt1
and then to the BSA control and reported as fold change +SEM
(n=23), **p<0.01 vs BSA control (1-way ANOVA).

cytokines and chemokines (Additional file 1: Figure S1).
Attention was paid to expose the CM-BSA and CM-PA
arrays for precisely the same time. Notably, PDGF levels
were decreased in the CM-PA array, while there was an
overall elevation in several other cytokines, demonstra-
ting that differences observed between the two samples
are not generic. The most abundant cytokines and fac-
tors within either CM revealed by this approach were
CINC1 (CXCL1), PDGF, VEGF and TIMP1. TIMP1 is an
inhibitor of matrix metalloproteinases, which is also in-
volved cell proliferation and apoptosis. VEGF and PDGF
are growth factors involved in vasculogenesis and an-
giogenesis and CINC1 (CXCL1) promotes neutrophil
migration. None of these factors have been shown to in-
duce inflammation in macrophages.

Although small, there were discernible elevations in
IL-6 and CCL2 levels in the CM-PA compared to CM-
PO array, consistent with the detectable rises in their
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mRNA levels in the corresponding cells (Figure 1 and
Additional file 1: Figure S1). On the other hand, there was
no detectable TNF« protein (Additional file 1: Figure S1),
and this is also consistent with the very low mRNA ex-
pression detected in the cell lysates. Other proteins that
were clearly higher in CM-PA compared to CM-PO
included activin A, agrin, INFy, IL-1a and MIP3a.

Signalling pathways activated by low-dose palmitate

Obesity and type 2 diabetes are associated with activa-
tion of stress kinases, as well as activation of the cano-
nical NF-kB inflammation pathway in several tissues
[31]. IkBa degradation is necessary for NF-kB migration
to the nucleus to initiate cytokine transcription. Mitogen
Activated Protein Kinases (MAPK) and Reactive Oxygen
Species (ROS) are known activators of this pathway [32].
In L6 muscle cells, palmitate treatment significantly in-
creased ROS levels by 25% (Figure 2A), and caused
phosphorylation of Extracellular Regulated Kinase 1/2
(ERK1/2) and p38 MAPK, whereas JNK was not phos-
phorylated (Figure 2B-D and Figure 2F). In contrast to
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palmitate, palmitoleate did not significantly activate any
of these stress kinases or ROS production, although JNK
phosphorylation tended to be higher. Palmitate also
caused significant activation of the NF-kB pathway, re-
vealed by a 50% reduction in IkBa mass (Figure 2E-F)
that was time-dependent, reaching its lowest point by
24 h of treatment (Figure 2G).

To explore the involvement of the NF-kB pathway in
palmitate-induced cytokine expression, we silenced the
expression of the p65 subunit of the NF-kB complex via
siRNA oligonucleotides. In cells depleted of p65 protein
by 70%, palmitate-induced expression of IL-6 was abo-
lished, whereas a control non-related siRNA failed to di-
minish the palmitate effect (Figure 3A). Silencing p65
also prevented the palmitate-induced rise in TNFa and
CCL2 expression (Additional file 1: Figure S2). On the
other hand, although palmitate stimulated ROS produc-
tion in muscle cells, the rise in cytokine expression
caused by palmitate was not prevented by the antioxidant
N-acetyl-cysteine despite its clear ability to lower ROS
levels (Figure 3B). Hence, ROS are unlikely to be a signal
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Figure 2 Palmitate activates ROS and signalling pathways in muscle cells. L6 muscle cells were treated for 24h with 0.2 mM palmitate (PA),
palmitoleate (PO) or BSA control. A) Reactive oxygen species were analyzed using DCFDA, normalized to the protein content and expressed as
percent of the BSA control. Results are mean £SEM (n=4) analyzed using 1-way ANOVA, **p<0.01 vs BSA control. B-E) Proteins were extracted
with standard lysis buffer and analyzed by western blotting using specific antibodies to IkBa and the phosphorylated forms of ERK, JNK and

p38 MAPK. Results were normalized to the loading control actinin-1, expressed relative to the BSA control as mean +SEM (n=4) and analyzed
using 1-way ANOVA, **p<0.01, ***p<0.001 vs BSA control. F) Representative blots for B-E. G) Time-course of IkBa degradation. The changes of
IkBa were calculated to the BSA control as indicated by the dotted line set at 1.0 from the y-axis **p<0.01 vs BSA control.
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Figure 3 Palmitate-induced cytokine expression occurs through
NF-kB pathway. A) NF-kB was silenced using specific siRNA to the
p65 subunit (p65) or control non-related siRNA (NR) before
treatment of cells for 24h with 0.2 mM palmitate or BSA. B) Cells
were incubated in the presence of 0.2 mM palmitate or BSA without
or with N-acetyl-cysteine (5 mM) for 24 h. Inset: ROS production was
measured as described in Figure 2A and reported as percent of the
BSA control. All results were normalized to BSA control and reported
as fold change + SD from at least 3 independent experiments (n=3).
*p<0.05, **p<0.01, ns=non significant.

for the cytokine expression by muscle cells evoked by the
fatty acid.

Low-dose palmitate does not confer insulin resistance to
muscle cells

The above results show that physiological levels of
palmitate (0.2 mM) activated stress and inflammatory
pathways in muscle cells. Because much elevated levels
of palmitate (0.5 mM and higher) can induce insulin re-
sistance in muscle cells, in part through the generation
of oxidative stress [6,33,34], we explored if this would
similarly occur in response to low palmitate. Interestingly,
though 24 h incubation of muscle cells with 0.2 mM
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palmitate activated NF-«kB signalling and IL-6 expression
(shown above, Figures 1, 2, and 3), this did not dimi-
nish the classical insulin responses of GLUT4 transloca-
tion (Figure 4A) and in fact, increased glucose uptake
(Figure 4B). At this low palmitate exposure, insulin stimu-
lated GLUT4 translocation by 2.3-fold and glucose uptake
by 60%, comparable to the response of BSA-treated con-
trol cells. Hence, the milder lipid exposure can activate in-
flammation, but is not sufficient on its own to cause
insulin resistance in isolated muscle cells.

As conditioned media from palmitate-treated muscle
cells (CM-PA) contain several cytokines and chemokines
that might provoke insulin-resistance in muscle cells as
shown in other studies [35-37], we also assessed whether
such CM would exert an autocrine insulin resistance ef-
fect, independently of any direct metabolic effect of
palmitate. To this end, CM-PA or CM-BSA were applied
to sets of naive L6 cells for 24 h. Following incubation,
insulin stimulated GLUT4 translocation by 70% in both
conditions (Figure 4C) and glucose uptake by 80% and
60%, respectively (Figure 4D). There was no statistical
difference between the responses to CM-BSA and CM-
PA, indicating the absence of muscle-to-muscle auto-
crine transmission of insulin-resistance.

Conditioned medium from muscle cells promotes
macrophage inflammation
Given the increased gene expression of cytokines and
chemokines in palmitate-treated muscle cells and the
elevated levels in CM-PA, we explored whether this me-
dium could affect macrophage function and phenotype.
Activated macrophages are characterized by stimulation
of the MAPK signalling pathways [38], as well as actin
filament remodelling extending filopodia and lamelli-
podia that promote cell spreading [39]. RAW macro-
phages responded to CM-PA with a rise in phosphorylation
of ERK, p38 MAPK and JNK (Figure 5A). In contrast,
CM-PO only provoked ERK phosphorylation. Macro-
phages treated with either CM-PA or CM-PO assumed
an elongated shape visualized upon actin filament deco-
ration with rhodamine-phalloidin (Figure 5B-D), and
showed heightened adherence to the substratum, com-
pared to CM-BSA-treated controls (Figure 5E).

Inflammatory macrophages are typified by elevated
gene expression of the pro-inflammatory cytokine TNFa
and the enzyme iNOS, with converse diminished gene
expression of the anti-inflammatory cytokine IL-10 [40].
Macrophages exposed to CM-PA exhibited an increased
expression of TNFa and iNOS mRNA but no significant
change in IL-10 and CCL2 mRNA (Figure 6). On the
other hand, CM-PO did not affect the expression of any
of these genes.

Since the analysis of the CM (Additional file 1: Figure S1)
revealed that many changes were modest, this suggested
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Figure 4 Palmitate treatment does not induce insulin-resistance in muscle cells. A-B) The direct effect of PA was measured by treating
L6 cells with 0.2 mM palmitate (PA), palmitoleate (PO) or BSA control for 24 h, followed by 3 h serum starvation and insulin stimulation (20 min,
100 nM) in the absence of PA. C-D) The indirect effect of palmitate through a possible autocrine effect was tested by generating conditioned
media from muscle and applying it on naive untreated muscle cells. Surface GLUT4myc and glucose uptake were measured as described in
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that the active component is either not detected by this
array, that molecules other than cyto/chemokines contri-
bute, and/or that a complex mechanism involving sy-
nergistic effects of low levels of several cytokines and
chemokines may participate in conferring macrophage
polarization. Therefore, as preamble, we ascertained
whether proteins mediate this cell-cell communication.
CM were boiled (95°C, 15 minutes) or treated with pro-
teinase K (100 pg/mL, 2 h) to digest proteins, and the
enzyme itself was then heat inactivated. Both of these
strategies successfully blunted induction of TNFa
mRNA expression within macrophages provoked by
muscle CM-PA (Additional file 1: Figure S3). This
demonstrates that the factor(s) responsible for macro-
phage polarization of macrophages is (are) of protein na-
ture. These results highlight a protein-mediated, muscle-
to-macrophage communication that confers an inflam-
matory phenotype to the latter, when the former are
pre-exposed to a saturated fatty acid.

Discussion

Recent studies have detected elevated numbers of mye-
loid cell or macrophage markers in skeletal muscle during
HED and obesity [13,25-27], but how these immune cells

are influenced by the surrounding tissue and their role in
the progression of insulin resistance are unknown. Here
we present evidence that muscle cells exposed to a phy-
siological dose of the saturated fatty acid palmitate, acti-
vate their endogenous inflammatory programs and that
conditioned-medium from such challenged muscle cells
induces a pro-inflammatory phenotype in macrophages.
In contrast to palmitate, the monounsaturated fatty acid
palmitoleate had no significant effect on muscle cell au-
tonomous inflammation or on the crosstalk from muscle
cells to macrophages. Overall, these results lend support
to the hypothesis that in vivo, skeletal muscle may con-
tribute to the low-grade inflammation observed during
high fat diet through the production of cytokines affec-
ting immune cell responses. The latter could be either re-
sident or recruited macrophages, and their bi-directional
crosstalk with muscle cells might contribute to muscle in-
sulin resistance during dyslipidemia or HFD earlier than
the development of direct, lipid-induced insulin resistance.

Low-dose palmitate elicits muscle cell-autonomous
inflammation

Myoblasts treated with palmitate exhibit activation of
pathways leading to inflammation, specifically activating
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Figure 5 Muscle cell conditioned media induce macrophage spreading and adhesion. Conditioned media (CM) from myoblasts treated
with 0.2 mM palmitate was applied on RAW264.7 macrophages for 2 h. A) Proteins were extracted and analyzed by western blotting using

and analyzed using 1-way ANOVA, n23, *p< 0.05 , **p<0.01.

specific phospho antibodies to ERK, JNK and p38 as previously described. B-C) Actin labelling with rhodamine phalloidin and cell shape
quantification were performed as described in Methods. E) Circularity in images was quantified with ImageJ software. E) Measurement of
RAW264.7 cell adhesion in response to CM, as described in Methods. Results were normalized to BSA control, reported as fold change + SD

MAPK, elevating ROS and inducing IkBa degradation
(Figure 2). A similar response is observed in response to
higher palmitate concentrations [41,42]. Low levels of
palmitate also led to increased gene expression of several
pro-inflammatory cytokines (TNFa, IL-6) and chemo-
kines (CCL2), as well as greater release of several cyto-
kines from muscle such as INFy, IL-1a, IL-6, CCL2,
TIMP1 and CXCL1, demonstrating the development of
muscle cell-autonomous inflammation. This process was
evident by 8 h of incubation with palmitate, and peaked
by 16 h, evincing the activation not only of post-
translational signalling, but also of transcriptional and
metabolic events (i.e, ROS production). Interestingly,
palmitoleate did not activate any of these pathways in

the muscle cells, and did not change cytokine expres-
sion. The palmitate-induced increase in cytokine gene
expression is not as impressive as that typically elicited
by LPS, rather it is slow, sustained, and the fold-change
is comparable to that reported in muscle from obese vs.
lean mice [21].

TLR4 and TLR2 have been invoked to participate in
some response to saturated fatty acids in cell culture and
to HFD in vivo [43-45]. Indeed, TLR4 deficient mice ex-
hibit decreased NF-kB activation in adipose tissue in re-
sponse to a diet rich in palmitate [46], and inhibition or
deletion of TLR4 confers partial protection against
palmitate-induced NF-kB activation in rodent skeletal
muscle [47]. However, other pattern recognition receptors
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with 0.2 mM palmitate was applied on RAW264.7 macrophages for
6 h and gene expression in RNA of the latter was measured by
gPCR as described in Methods. Results were normalized to the BSA
control, reported as fold change + SD and analyzed using 1-way
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such as Nodl and Nod2 also funnel their signals through
NF-kB. Muscle cells express these receptors, and we
have found that agonist-induced activation of Nod2
causes IkBa degradation and TNFa expression in these
cells [48]. Future work should explore whether TLRs,
Nod1 or Nod2 participate in the inflammatory response
of muscle cells induced by palmitate. The current study
also shows that 0.2 mM palmitate increased muscle cell
ROS levels (Figure 2A), as it occurs in response to higher
palmitate concentrations [49]. Dampening such ROS levels
with N-acetyl-cysteine failed to attenuate the palmitate-
induced cytokine production, but we cannot rule out
that the remaining ROS levels might be permissive for
cytokine production under these conditions.

Muscle cell-autonomous inflammation via NF-kB does not
suffice to cause insulin resistance

The NF-kB pathway, which controls the expression of
inflammatory cytokines, is involved in the pathogenesis
of whole-body insulin resistance [50,51]. NF-kB activity
is 2.7-fold higher in muscles from obese type 2 diabetic
subjects compared to lean individuals [52] and this dif-
ference is conserved in human primary myocytes in cul-
ture derived from obese type 2 diabetic patients [50].
However, the cause for the activation is likely complex
and may result from the combined input of signals de-
rived from other cells on the muscle, along with the
elevated cytokines and fatty acids in the circulation.
Further, in muscle cell cultures, very high concentrations
of palmitate (0.5-0.8 mM) activate novel-type protein
kinase C’s in addition to the NF-«kB pathway [41,42] and
elevate the expression of IL-6, compromising insulin sig-
nalling and further causing GLUT4 down-regulation
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[41,53]. Here we present evidence that preventing muscle
cell-autonomous activation of the NF-kB pathway via
knockdown of the p65 NF-«kB subunit eliminates the
palmitate-induced upregulation of IL-6, TNFa and CCL2
expression.

Importantly, in spite of causing muscle cell-autonomous
inflammation involving NF-«kB signalling and cytokine
production, low levels of palmitate did not provoke in-
sulin resistance of GLUT4 translocation or glucose up-
take. Hence, engagement of the NF-kB pathway per se
is insufficient to alter the major insulin action in ske-
letal muscle cells. It is possible that this pathway would
be relevant if other stress signals were activated, and
notably palmitate did not cause JNK phosphorylation in
muscle cells. Activation of this kinase is a typical fea-
ture of insulin resistant muscle in the context of HFD
in vivo, and a recent study shows that muscle-specific
transgenic expression of constitutively-active JNK per se
confers insulin resistance [54]. Further, our results indicate
that any cytokines present in CM from palmitate-treated
muscle cells do not suffice to confer insulin resistance to
naive muscle cells (i.e., muscle-to-muscle communica-
tion) while the same CM was able to activate macro-
phages (discussed below).

Muscle cells confer macrophage pro-inflammatory
polarization

A core result of this study is that muscle cells pre-treated
with low-dose palmitate produce CM that makes macro-
phages assume a pro-inflammatory phenotype. Specifi-
cally, CM-PA induced activation in macrophages of
selective MAPK signalling pathways (p38 and JNK),
along with promoting cell spreading and gene expression
of the pro-inflammatory markers TNFa and iNOS. These
results render proof-of-concept that muscle cells can re-
lease factors communicating with immune cells in the
context of physiological levels of saturated fat. On the
other hand, CM from palmitoleate-treated muscle cells
did not bring about these responses, suggesting that un-
saturated fatty acids do not elicit muscle-to-macrophage
crosstalk. Boiling and proteinase K treatments of CM-PA
blunted the power of this medium to confer inflamma-
tion to macrophages, suggesting that the factor(s) re-
leased by muscle is (are) cytokine(s) or other proteins.
Cytokine array analysis did not reveal any salient in-
creases in cytokines in CM-PA compared to CM-PO,
however the array is limited and it is also possible that
levels below the detection limit of the array, or proteins
not analyzed, confer polarization. A synergistic effect of
low-doses of several different factors is also possible, and
indeed in 3T3-L1 adipocytes, LPS, tumor necrosis factor-
alpha (TNFa), or interferon-gamma (IFNy) had to be
combined to increase iNOS activity [55]. Further in-
depth analysis, beyond the scope of the present study,
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will be necessary to identify the proteins and/or synergis-
tic effects involved in the muscle-macrophage crosstalk
described.

Of note, CM-PO resembled CM-PA in its ability to ac-
tivate ERK in macrophages, and this response is con-
sistent with the morphological change of macrophages
induced by both media, characterized by cell spreading.
ERK is involved in lamellipodia protrusion [56], and
consistent with these observations, inhibiting ERK pre-
vented the heightened macrophage adhesion elicited by
either CM-PA or CM-PO (Additional file 1: Figure S4).
Interestingly, cell spreading is a feature of both pro- and
anti-inflammatory macrophages [57]. We therefore sur-
mise that macrophage adhesion and pro-inflammatory
activation in response to muscle cell CM are not obliga-
torily linked, as the two responses can be dissociated de-
pending on the pretreatment of the muscle cells. These
results illustrate that different nutrients promote a dis-
tinct muscle-to-macrophage crosstalk. Immune cells can
be activated in muscle for beneficial outcomes such as
resolving injury [58], and we hypothesize that CM-PO
might counteract inflammatory cues acting on macro-
phages; future studies should explore this possibility.

In conclusion, we report that physiological levels of
palmitate cause muscle cell-autonomous inflammation
that, while not sufficing to cause insulin resistance with-
in the muscle cells, result in production of proteins con-
ferring a pro-inflammatory phenotype to macrophages
in culture. If one may extrapolate, it is conceivable that
muscle-induced macrophage polarization is one of the
most sensitive responses to a saturated fat environment
in vivo. Given the ability of pro-inflammatory macro-
phages to confer insulin resistance to muscle, we hypo-
thesize that a feed-forward cycle of muscle-macrophage
cross talk can contribute to the development and per-
petuation of full-blown insulin resistance.

Methods

Reagents

Sodium palmitate, palmitoleate, BSA (low endotoxin),
endotoxin-free water and protease inhibitor cocktail
were from Sigma-Aldrich. Antibodies to phospho-JNK
(Thr183/Tyr185), phospho-ERK (Thr202/Tyr204), phospho-
p38 MAPK (Thr180/Tyr182), and IkBa were from Cell
Signaling Technology (Beverly, MA). Control siRNA
(siNR) and siRNA against p65 were purchased from
Qiagen (Chatsworth, CA) and MYDS88 inhibitory and
control peptides were from Invivogen (San Diego, CA).
2-Deoxy-[*H]glucose was from Perkin Elmer.

Fatty acid preparations

Solutions of 200 mM sodium palmitate or palmitoleate
were prepared in 50% ethanol by heating at 55°C and
vortexing until dissolved. These solutions were diluted

Page 9 of 12

25-times in a 10% fatty acid-free, low-endotoxin BSA so-
lution to achieve a final molar ratio of 5:1. Conjugation
was done at 40°C for 2 h. BSA-fatty acid conjugates were
further diluted 40-fold in cell culture media to reach a
final concentration of 0.2 mM palmitate or palmitoleate.
Control BSA was prepared by adding the same amount
of 50% ethanol into a 10% BSA solution. All prepara-
tions were aliquoted and frozen at -20°C.

Cell culture and transfection

Rat L6 muscle cells with stable expression of myc-tagged
glucose transporter 4 (L6GLUT4myc), and RAW?264.7
macrophages were each grown in a-MEM supplemented
with 10% fetal bovine serum (FBS), 100 units/mL peni-
cillin, 100 pg/mL streptomycin and 250 ng/mL ampho-
tericin B. siRNAs oligonucleotides were transfected into
the cells with calcium phosphate-based CellPhect Trans-
fection Kit (GE Healthcare Bio-Sciences, Piscataway, NJ).
Muscle cells were treated with 200 nM siRNA-calcium
phosphate precipitates for 12-16 h before removal and
maintained for 72 h until experiments.

RNA isolation & PCR

RNA was isolated using Trizol (Invitrogen) and cDNA
was generated by reverse transcription using the Super-
Script® VILO™ c¢DNA kit (Invitrogen) according to the
manufacturer's instructions. Fifteen ng RNA per reac-
tion were used to run the qPCR using pre-designed
Tagman probes from Invitrogen/Applied Biosystems.

2-Deoxy-[>Hlglucose uptake and cell surface GLUT4myc
L6GLUT4myc myoblasts grown in 24-well plates were
serum-deprived for 2 h and then treated with or without
insulin (100 nM, 20 min). 2-Deoxy-[*H]glucose uptake
and cell surface density of GLUT4myc [59] were mea-
sured as described previously.

Immunoblotting

After treatments, cells were scraped into lysis buffer
(20 mM Tris-HCI, 138 mMNaCl, 2.7 mM KCIl, 1 mM
MgCl, 2,5% glycerol and1% Nonidet-P40) supplemen-
ted with protease and phosphatase inhibitors (5 mM
EDTA, 1 mM NazVO, 20 mM NaF, 1 mM dithio-
threitol, protein inhibitor cocktail; Sigma-Aldrich) and
protein content measured by the Bradford assay. For
western blotting, proteins were boiled in Laemmli buf-
fer, separated by SDS-PAGE and transferred onto
PVDF membrane (Bio-Rad, Hercules, CA). Membranes
were then blotted using primary antibodies (4°C over-
night), washed and peroxidase-coupled secondary anti-
body (1:10,000) was applied for 1 h at room temperature.
Membranes were developed using enhanced chemilumin-
escence (ECL, Perkin Elmer), and films analyzed using
NIH Image] software.
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Intracellular reactive oxygen species (ROS) production
Cytoplasmic ROS level in L6GLUT4myc were assayed
using the 5-(and-6)-chloromethyl-2',7'-dichlorodihydro-
fluorescein diacetate acetyl ester (CM-H2DCFDA, Invi-
trogen). Cells grown in 12-well plates were treated with
0.2 mM palmitate, palmitoleate or BSA control for 24 h,
then incubated with 10 uM CM-H2DCEFDA at 37°C for
30 min in PBS. H,O, (100 pM) was used as positive con-
trol and it rendered a consistent 3-fold increase in ROS.
Cells were washed and solubilized in Triton-X100 1%
(v/v in distillated water) and fluorescence measured in
a plate reader at 495 nm excitation and 520 nm emis-
sion. Results were normalized to the protein content
of cell lysates.

Generation of muscle conditioned medium

L6GLUT4myc cells grown to pre-confluence were trea-
ted with 0.2 mM palmitate, palmitoleate or BSA control
in aMEM supplemented with 10% FBS, for 24 h. The
fatty acids and BSA solutions were then removed, cell
monolayers thoroughly rinsed with PBS and incubated
with fresh «MEM supplemented with 2% FBS for ano-
ther 24 h. The supernatants collected after this step rep-
resent the conditioned media (CM) and depending on
whether muscle cells were pretreated with BSA, palmi-
tate or palmitoleate, the CM are termed CM-BSA, CM-
PA or CM-PO. CM were centrifuged at 10,000 RPM for
5 min to pellet debris, aliquoted and immediately fro-
zen at -80°C. At the end of these incubations, cell
viability in the corresponding cell monolayers was
>85% (MTT test). Quantification of non-esterified
fatty acids in CM was performed using the Non-
Esterified Fatty Acid-HR kit (Wako) as per the manu-
facturer’s instructions.

Characterization and inactivation of muscle

conditioned medium

Cytokines in the CM were determined using the rat
cytokine profiler array 2 (Ray Biotech) as per the manu-
facturer’s instructions. Signal detection was done using
x-ray films and care was taken to expose the CM-BSA
and CM-PA arrays equally.

CM were either heated at 95°C for 15 or treated with
100pg/mL proteinase K (Sigma Aldrich) for 2 h, then
heat inactivated as above to avoid damage of macro-
phages by proteinase K.

Immunofluorescence staining and cell shape score

All reagents were diluted in PBS supplemented with cal-
cium and magnesium, and cells were washed with PBS
between each staining step. Cells cultured on glass co-
verslips were fixed with 3% paraformaldehyde for 30
min and incubated sequentially with 0.1% Triton-X100
for 10 min, 5% BSA for 30 min, and rhodamine-
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phalloidin for 45 min. Nuclei were counterstained with 1
pg/ml DAPI (Sigma Aldrich) for 5 min. Coverslips were
then mounted onto glass slides and stored at 4°C until
analysis. Fluorescence images were captured on a spin-
ning disk confocal microscope using a 40X air objective.
For an analysis unbiased by cell shape, fields were
selected by viewing nuclear staining (DAPI). Subsequent,
rhodamine fluorescence was captured in x, y and z axes
to detect actin within the whole cell volume. At least 300
cells were used for analysis per condition (>30 fields).

Shape quantification

For each field, extended focus images (fusion of all z
stack images) were created and image analysis was per-
formed using Image] software (http://rsb.info.nih.gov/ij).
For each field, the image was transformed in 8 bits and a
median filter (2 pixel radius) was applied to approximate
the distribution of staining intensity. Binary image masks
were then created using an automatic threshold to create
an image including all fluorescence data above back-
ground. Detection of surface area was done using of the
“Analyze Particles” option with a threshold of 100 pixels
in order to exclude all small dots of fluorescence outside
of cells. Quantitative fluorescence data (area, circularity)
were exported from Image] for further analysis and pre-
sentation. Area results given in pixel were then trans-
formed in um? according to the scale. Additionally, the
elongated vs. round phenotype was determined by ma-
nual counting of the cells and eye determination of the
shape. This quantification was done by a sample identity-
blinded experimenter to avoid subjective bias.

Adhesion assay

RAW macrophages were pre-stained with calcein-AM
(1 pg/ml) for 20 min and then centrifuged, washed and
re-suspended in each test CM from the muscle cell
cultures. After 30 min, macrophages were seeded onto
a 24-well plate and allowed to adhere for 15 min. Me-
dium was then removed, cells were washed and the
remaining adherent cells were lysed in 1% Triton-X100.
Fluorescence at excitation/emission of 495/515 nm was
proportional to the number of adhered cells.

Statistical analysis

Statistical analysis was performed using GraphPad Prism
software (GraphPad Software, San Diego, CA). Two-
groups comparison was performed using Student's paired
t-test with Welsh correction for inequality of variances
as necessary. Results of time courses were analyzed by
two-way analysis of variance followed as appropriate
by Bonferroni post-tests. One-way ANOVA was used
to test differences between groups. Data are presented
as means + SD (if n=3) or SEM (if n>4), and statistical
significance was set at P < 0.05.
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Additional file

Additional file 1: Figure S1. Cytokine composition of the CM.

CM-BSA and CM-PA were tested for their cytokine and chemokine
content using commercially available rat profiler arrays from Ray Biotech.
() Map of the cytokines detected by the membrane. Figure S2.
Palmitate-induced cytokine expression occurs through NFkB pathway. A)
NFkB was silenced using specific SiRNA to the p65 subunit (p65) or
control non-related siRNA (NR) before treatment of cells for 24h with 0.2
mM palmitate or BSA. B) TLR2 and TLR4 were inhibited using a cell-
permeant MYD88 inhibitory peptide (MYD-Inh) and results compared to
a control scramble peptide. IL-6 expression was then measured by qPCR
as previously. Inset: IL-6 expression measured in response to BSA and 10
ng/mL LPS for 24 h in presence or not of the MYD88 inhibitory peptide,
expressed relative to the BSA control. All results were reported as fold
change, relative to BSA £ SD from at least 3 independent experiments
(n=3). *P<0.05, ** P< 0.01, ns = not significant. Figure S3. Inactivation of
the CM prevents TNFa expression in macrophages. A) CM from
L6GLUT4myc cells was generated as described in methods and
inactivated using boiling (95°C, 15 min) or treatment with proteinase K
(100 pg/mL for 2 hours at 40°C followed by heat inactivation of the
enzyme at 95°C for 15 min). CM was then tested for its ability to induce
TNFa expression in RAW264.7 macrophages. Gene expression was
measured by qPCR as described in Methods. Results were reported as a
ratio over the CM-BSA control, mean + SEM from 5 independent
experiments (n=5). B) Results from the same experiments were expressed
as a ratio PA over BSA. *P<0.05 versus BSA control. Figure S4. Inhibition
of ERK prevents macrophage adhesion. RAW cells were pretreated with
20 uM PD98059 for 30 minutes. Measurement of RAW cells adhesion in
response to the CM was then performed as described in methods.
Results were reported as % of the CM-BSA control, mean + SD from 4
independent experiments (n=4). *P<0.05, ns = not significant.
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