## Why are we here?

## Why are we here?



#### Human activities take place in adapted spaces linked by communications through channels.

Town and country planning is a science that deals with the study of the urban or country "system" covering the interacting activities using adapted spaces linked by communications through channels.  <u>Transport planning</u> is an important part of overall town and country planning, <u>since</u> it deals with the transport network which is an important channel of a communications.

# DEFINITION

Transport planning is a science that seeks to study the problems that arise in providing transportation facilities in an urban, regional or national setting and to prepare a systematic basis for planning such facilities

> هو العلم الذى يبحث فى دراسة المشكلات التى تواجه عملية توفير تسهيلات ووسائل النقل فى اى مناطق حضرية أو خلوية وكذلك وضع إطار منظم لتخطيط تلك الوسائل

### **TRIP:**

It is the process of moving passengers or goods from origin to a destination within certain time for certain purpose with a certain mode



## Transportation & Traffic Engineering

Transportation engineering: "The

- application of technological and scientific principles to the planning, functional design, operation and management of facilities for any mode of transportation...."
- Traffic: "... The actual movement of vehicles or pedestrians on a facility..."

## COMPONENTS OF ANY TRANSPORT SYSTEM



#### (PASSANGERS / GOODS)

### 2-VEHICLE (SPACE & MOBILITY)

## (CAR/PLANE/TRAIN etc...)

**3- PATH** 

### Road networks/airlines/railway lines/ pipelines)

### 4- TERMINALS Airports/ Railwya stations etc....)

5- OPERATION PLANS **Time schedule**/ arrivals/departures/ intervals etc....

## Structure of Road Networks





# Geometric Design

The geometric design of highway facilities deals with the proportioning of the physical elements of highways such as vertical and horizontal curves, lane widths, cross sections and parking bays.

Its main purpose is to provide safe, efficient and economical movement of traffic



### **Design Controls and Criteria**

# Geometric design of highways deals with:

Human, Vehicle and environment (physical) characteristics

## **Human Characteristics**

**Driver personality** (physiology – knowledge – skill and habits – attitudes) **Driver Decision/action process** (sensory – perception – analysis – decision – response)

### **Vehicle Characteristics**

- a) Size and weight -
- **b) Dynamic characteristics** 
  - (Vehicle in Motion)
- It has to overcome the following resistances:
  - Air
  - Due to rolling
  - Due to grdients
  - **Due to friction**

Vehicle Dynamics

1

#### 1. Resistance

- a. Aerodynamic
- b. Rolling
- c. Grade
- 2. Tractive Effort
- 3. Acceleration
- 4. Braking Force
- 5. Stopping Sight Distance (SSD)

Main Concepts

- Resistance
- Tractive effort
- Vehicle acceleration
- Braking
- Stopping distance

$$F = ma + R_a + R_{rl} + R_g$$

 $\theta_{a}$ 

### Resistance

# Resistance is defined as the force impeding vehicle motion

- 1. What is this force?
- 2. Aerodynamic resistance
- 3. Rolling resistance
- 4. Grade resistance

$$F = ma + R_a + R_{rl} + R_g$$

## Aerodynamic Resistance $R_a$

#### Composed of:

- Turbulent air flow around vehicle body (85%)
- 2. Friction of air over vehicle body (12%)
- 3. Vehicle component resistance, from radiators and air vents (3%)



$$1 hp = 550 \frac{ft \cdot lb}{\sec}$$

$$R_{a} = 0.5 \frac{2.15\rho}{2} C_{D} A_{f} V^{2}$$

- R a = air resistance force (Ib)
  - ρ = density of air (0.002385 Ib/ft3) at sea level
- C <sub>D</sub> = aerodynamic drag coefficient (0.15 -0.5) ====( 0.4 as an average )
- A =frontal cross sectional area (ft<sup>2</sup>)
- V = VEHICLE SPEED (mph)
- g =acceleration due to gravity (ft/sec<sup>2</sup>)

## Rolling Resistance $R_{rl}$

#### Composed primarily of

- 1. Resistance from tire deformation (~90%)
- 2. Tire penetration and surface compression (~ 4%)
- Tire slippage and air circulation around wheel (~ 6%)
- 4. Wide range of factors affect total rolling resistance
- **5.** Simplifying approximation:

### R <sub>rl</sub> = rolling resistance force (Ib) W = GROSS VEHICLE WEIGHT (Ib) V = VEHICLE SPEED (mph)

$$f_{rl} = 0.01 \left( 1 + \frac{V}{147} \right)$$

$$P_{R_{rl}} = f_{rl}W$$

Grade Resistance  $R_{g}$ Composed of Gravitational force acting on the vehicle  $R_{g} = W \sin \theta_{g}$  $\theta_{g}$ For small angles,  $\sin \theta_g \approx \tan \theta_g$  $R_{o} = W \tan \theta_{o}$ R  $\tan \theta_g = G$  $\theta_{g}$  $R_{g} = WG$ 

### **Available Tractive Effort**

#### The minimum of:

- 1. Force generated by the engine,  $F_e$
- 2. Maximum value that is a function of the vehicle's weight distribution and road-tire interaction,  $F_{max}$

Available tractive effort =  $\min(F_e, F_{\max})$ 

### **Engine-Generated Tractive** Effort

#### Force

Davaar

$$F_e = \frac{M_e \mathcal{E}_0 \eta_d}{r}$$

- **F**<sub>e</sub> = Engine generated tractive effort reaching wheels (lb)
- $M_{e} = Engine torque (ft-lb)$
- $\varepsilon_0$  = Gear reduction ratio

 $\times 2\pi$ 

sec)

 $\eta_d$  = Driveline efficiency

## Vehicle Speed vs. Engine Speed

$$V = \frac{2\pi r n_e \left(1 - i\right)}{\varepsilon_0}$$

- V =velocity (ft/s)
- r = wheel radius (ft)
- $n_e$  = crankshaft rps
  - *i* = driveline slippage
- $\varepsilon_{\theta}$  = gear reduction ratio

### Maximum Tractive Effort

Front Wheel Drive Vehicle



$$F_{\max} = \frac{\mu W \frac{\left(l_f - f_{rl}h\right)}{L}}{1 - \frac{\mu h}{L}}$$

Rear Wheel Drive Vehicle



### **Vehicle Acceleration**

#### Governing Equation

$$F - \sum R = \gamma_m ma$$

### Mass Factor (accounts for inertia of vehicle's rotating parts)

$$\gamma_m = 1.04 + 0.0025\varepsilon_0^2$$



### **Braking Distance** $S = \frac{\gamma_b \left(V_1^2 - V_2^2\right)}{2g \left(\eta_b \mu + f_{rl} \pm \sin \theta_g\right)}$ Theoretical

ignoring air resistance

Practical

$$d = \frac{V_1^2 - V_2^2}{2g\left(\frac{a}{g} \pm G\right)}$$

$$\frac{\text{For grade} = 0}{d = \frac{V_1^2 - V_2^2}{2a}}$$

$$d_p = V_1 t_p$$

Perception  $d_{s} = d + d_{p}$ 

## Factors influencing highway design

- **1- Functional classification of the highway**
- 2- Expected traffic volume and vehicle mix
- **3- Design Speed**
- 4-Topography of the area in which the highway will be located
- 5- Level of service to be provided
- 6- Available Funds
- 7- safety
- 8- Social and environmental factors

### **1-Functional classification of roads**

- Road functions
- structure of road networks

### **Highway components**

- Cross-sections
- Highway plan and profile
- Interchanges
- Rural and urban intersections

### Road Functions









Structure of Road Networks



Structur of Road Networ





### Highway Components Highway plan and profile



### Concepts

- Alignment is a 3D problem broken down into two 2D problems
  - Horizontal Alignment (plan view)
  - Vertical Alignment (profile view)
- Stationing
  - Along horizontal alignment
  - 12+00 = 1,200 ft.







## 2- Design Speed and Design Traffic Concepts







#### Posted speed = speed limit

- Operating speed = free flow (spot speed)
- Running speed = length of highway section ÷ running time
- Design speed = selected speed used to determine geometric design features

## Design Speed

- Design speed is defined by the AASHTO Green Book as: ...the maximum safe speed that can be maintained over a specified section of highway when conditions are so favorable that the design features of the highway govern.
  - Design Speed should: 1) "...be consistent with the speed the driver is likely to expect." and 2) "...fit the travel desires and habits of nearly all drivers."
  - Not posted speed and not operating speed (but ALWAYS higher than both)
  - See first part of: <u>http://www.fhwa.dot.gov/environment/flex/c</u> <u>h04.htm</u> (Chapter 4 from FHWA's Flexibility in Highway Design)

### **Design Speed Considerations**

- Functional classification of the highway
- Character of the terrain
- Density and character of adjacent land uses
- Traffic volumes expected to use the highway
- Economic and environmental considerations

### Design Speed in Green Book

(suggested minimum design speed)

#### Rural Local Roads

|             | Metric                            |     |     |      | US Customary                      |      |       |     |     |      |      |      |
|-------------|-----------------------------------|-----|-----|------|-----------------------------------|------|-------|-----|-----|------|------|------|
|             | Design speed (km/h) for           |     |     |      | Design speed (mph) for            |      |       |     |     |      |      |      |
|             | specified design volume (veh/day) |     |     |      | specified design volume (veh/day) |      |       |     |     |      |      |      |
|             |                                   | 50  | 250 | 400  | 1500                              | 2000 |       | 50  | 250 | 400  | 1500 | 2000 |
| Type of     | under                             | to  | to  | to   | to                                | and  | under | to  | to  | to   | to   | and  |
| terrain     | 50                                | 250 | 400 | 1500 | 2000                              | over | 50    | 250 | 400 | 1500 | 2000 | over |
| Level       | 50                                | 50  | 60  | 80   | 80                                | 80   | 30    | 30  | 40  | 50   | 50   | 50   |
| Rolling     | 30                                | 50  | 50  | 60   | 60                                | 60   | 20    | 30  | 30  | 40   | 40   | 40   |
| Mountainous | 30                                | 30  | 30  | 50   | 50                                | 50   | 20    | 20  | 20  | 30   | 30   | 30   |

#### Exhibit 5-1. Minimum Design Speeds for Local Rural Roads

Source: A Policy on Geometric Design of Highways and Streets (The Green Book). Washington, DC. American Association of State Highway and Transportation Officials, 2001 4<sup>th</sup> Ed.

### Design Speed in Green Book (suggested minimum design speed)

#### **Rural Collectors**

|                                                                                    |                        | Metric                     |                          | US Customary                                                |        |           |  |
|------------------------------------------------------------------------------------|------------------------|----------------------------|--------------------------|-------------------------------------------------------------|--------|-----------|--|
|                                                                                    | Desigr<br>specified de | n speed (km<br>esign volum | n/h) for<br>ie (veh/day) | Design speed (mph) for<br>specified design volume (veh/day) |        |           |  |
| Type of<br>terrain                                                                 | 0 to 400               | 400 to                     | over 2000                | 0 to 400                                                    | 400 to | over 2000 |  |
| Level                                                                              | 60                     | 80                         | 100                      | 40                                                          | 50     | 60        |  |
| Rolling                                                                            | 50                     | 60                         | 80                       | 30                                                          | 40     | 50        |  |
| Mountainous                                                                        | 30                     | 50                         | 60                       | 20                                                          | 30     | 40        |  |
| Note: Where practical, design speeds higher than those shown should be considered. |                        |                            |                          |                                                             |        |           |  |

#### Exhibit 6-1. Minimum Design Speeds for Rural Collectors

Source: A Policy on Geometric Design of Highways and Streets (The Green Book). Washington, DC. American Association of State Highway and Transportation Officials, 2001 4<sup>th</sup> Ed. Design Speed in Green Book (suggested minimum design speed)

**Rural Arterials** 

- 60 120 kph (40-75 mph)
- Depends on ...
  - Terrain
  - Driver expectancy
  - Alignment (reconstruction)

### Design Speed in Green Book (suggested minimum design speed)

Urban

- Locals 20-30 mph
- Collectors 30 mph+
- Arterials 30-60 mph

| Freeways    | C                     | Design Speeds |                      |
|-------------|-----------------------|---------------|----------------------|
| Terrain     | Rural                 | Urban         |                      |
| Flat        | 70-80                 | 70            |                      |
| Rolling     | 60-70                 | 60-70         |                      |
| Mountainous | 50-60                 | 50-60         |                      |
|             | Arterial Highways     | ;             |                      |
| Terrain     | Rural                 | Urban         | Values represent the |
| Flat        | 60-70                 | 30-60         | design speeds for th |
| Rolling     | 40-60                 | 30-50         | various conditions o |
| Mountainous | 30-50                 | 30-50         | volumes associated   |
|             | Collector and Local R | oads          | with new or          |
| Terrain     | Rural                 | Urban         | reconstructed        |
| Flat        | 30-50                 | 30-40         | Ingrivay facilities  |
| Rolling     | 20-40                 | 20-40         |                      |
| Mountainous | 20-30                 | 20-30         |                      |

Source: Traffic Engineering Handbook (Fourth Edition), Institute of Transportation Engineers, Washington, DC, 1992, p. 156. Note: 1 mile/hr = 1.613 km/hr

## **Design Traffic**

## Traffic Definitions

#### Volume:

- number of vehicles, pedestrians, etc. passing a point during a specific period of time
- for vehicles, usually expressed as veh/hour (vph) or veh/hour/lane (vphpl)



#### Demand:

- number of vehicles, pedestrians, etc. that desire to travel between locations during a specific period
- Frequently higher than volume during certain peak times
- Trips are diverted or not made when there are constraints in the system
- difficult to measure actual demand because capacity constrains the demand

#### Capacity:

- maximum number of vehicles that can pass a point during a specific period
- A characteristic of the roadway or facility

### **Characteristics of Traffic Flow**

- Highly variable
  - Time of day
  - Day of week
  - Season
  - Road characteristics
  - Direction

#### Traffic Typically Peaks twice per day



**Time of Day** 

Source: www.ecn.purdue.edu/~darcy

## **Volume Studies**

- AADT: Annual average daily traffic (counted for 365 days)
- ADT: average daily traffic (counted for > 1 day and < 365)</li>
- PHV: peak hour volume
- Classification counts: fleet mix

## **Estimating AADT**

- Annual Average Daily Traffic
- Use count station information
- Extrapolate to non-count locations
- Used to adjust ADT for
  - Seasons
  - Daily variation

### AADT Data Help to:

- Estimate highway revenues
- Establish overall volume trends
- Establish annual accident rates
- Analyze benefits of road improvements

## **Design Volume**

- Usually hourly volume
- Which hour?
  - Average hourly volume inadequate design
  - Maximum peak hour not economical
  - Hourly volume used for design should not be exceeded very often or by very much
  - Usually use 30<sup>th</sup> highest hourly volume of the year
  - On rural roads 30 HHV is ~ 15% of ADT
  - Tends to be constant year to year

## **Design Hourly Volume**

DHV is a representation of peak hour traffic, usually for the future, or horizon year

K-factor represents proportion of AADT that occurs in the 30<sup>th</sup> HHV

K-factor =  $\underline{DHV}$  x 100 AADT K = 8 to 12% urban 12 to 18% rural

K = 8 to 12% urban, 12 to 18% rural

#### Design Hourly Volume (Example)

If AADT is 3500 vpd and the 30<sup>th</sup> highest hourly volume for the year is 420 vph what is the K-factor for that facility?

 $\begin{array}{r} \text{K-factor} = \underline{\text{DHV}} \times 100 \\ \text{AADT} \\ \text{K-factor} = \underline{420} \times 100 = \underline{12} \\ 3500 \end{array}$ 

Question: What's the impact of choosing different K factor for design?

If AADT is 3500 vpd, how will the design volume differ for K-factor = 8% vs. 12%?

$$DHV = \frac{K - factor \times AADT}{100}$$

$$DHV_{k=8\%} = \frac{8 \times 3500}{100} = 280 \text{ vph}$$

$$100$$

$$DHV_{k=12\%} = \frac{12 \times 3500}{100} = 420 \text{ vph} \quad (\text{diff of 140} \\ \text{veh})$$

## Traffic Demand (cont.)

- D = directional distribution = one way volume in peak direction (expressed as a percentage of two-way traffic) Rural 55 to 80%
- Can also adjust for how traffic is distributed between lanes (e.g., 3 lanes, highest/outside lane may be 40% of total directional flow)

# PHF = <u>peak-hour volume</u> 4(peak 15-min volume)

Flow is not uniform throughout an hour HCM considers operating conditions during most congested 15-minute period of the hour to determine service level for the hour as a whole

### Peak Hour Factor



#### DHV = <u>Peak-Hour Volume</u> PHF

#### <u>Example</u>

#### Peak hour volume from previous = 375 vph

$$PHF = 0.625$$

$$DHV = 375 = 600 vph$$
  
0.625

#### Note: the traffic you design for is the busiest 15 minutes during the peak hour ... another way to think of it is 150 vehicles per 15 minutes = 600 vehicles per 60 minutes

### Geometric design deals with

- **1- Cross section elements**
- 2- sight distance considerations
- **3- Horizontal alignment details**
- 4- Vertical alignment details
- **5- Intersection elements**