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Preface 

This book was originally prepared in 2012 and updated recently in 2015. The 

objective of the present book is to present a complete and up – to – date coverage of 

composite laminates properties and literature reviews through the usage of a wide 

spectrum of old and recent bibliography. 

The material presented in this book is intended to serve as an introduction and 

literature review of composite laminated plates. In chapter one, the introduction was 

presented from the points of view of fundamental definitions of fibrous composite 

laminates and micromechanical properties of fibers and matrix materials. At the end 

of the chapter the objectives of the present work were cited. 

Chapter two contains a comprehensive literature review which includes 

continuous developments in the theories of laminated plates. Also, a survey of 

numerical techniques which could be used in the analysis of laminated plates. 

Chapter three contains the conclusion of the present book. In this chapter the 

important observations and findings were explained clearly.  

The book is suitable as a review on theories of plates, numerical and / or 

analytical techniques subjected to bending, buckling and vibration of laminated 

plates. 
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CHAPTER (1) 

Introduction 

1.1 General Introduction:  

Composites were first considered as structural materials a little more than three 

quarters of a century ago. From that time to now, they have received increasing 

attention in all aspects of material science, manufacturing technology, and theoretical 

analysis. 

The term composite could mean almost anything if taken at face value, since 

all materials are composites of dissimilar subunits if examined at close enough 

details. But in modern materials engineering, the term usually refers to a matrix 

material that is reinforced with fibers. For instance, the term "FRP" which refers to 

Fiber Reinforced Plastic usually indicates a thermosetting polyester matrix containing 

glass fibers, and this particular composite has the lion's share of today commercial 

market. 

 Many composites used today are at the leading edge of materials technology, 

with performance and costs appropriate to ultra-demanding applications such as 

space crafts. But heterogeneous materials combining the best aspects of dissimilar 

constituents have been used by nature for million of years. Ancient societies, 

imitating nature, used this approach as well: The book of Exodus speaks of using 

straw to reinforce mud in brick making, without which the bricks would have almost 

no strength. Here in Sudan, people from ancient times dated back to Meroe 

civilization, and up to now used zibala (i.e. animals’ dung) mixed with mud as a 

strong building material. 

 As seen in table 1.1 below, which is cited by David Roylance [1], Stephen et 

al. [2] and Turvey et al. [3], the fibers used in modern composites have strengths and 

stiffnesses far above those of traditional structural materials. The high strengths of the 

glass fibers are due to processing that avoids the internal or external textures flaws 



 

2 

 

which normally weaken glass, and the strength and stiffness of polymeric aramid 

fiber is a consequence of the nearly perfect alignment of the molecular chains with 

the fiber axis.   

Table 1.1 Properties of composite reinforcing fibers  

Material 
E 

(GN/m2) 

b  

(GN/m2) 

b  

(%) 

  

(Mg/m3) 

/E  

(MN.m/kg) 

 /b  

(MN.m/kg) 

E-glass 72.4 2.4 2.6 2.54 28.5 0.95 

S-glass 85.5 4.5 2.0 2.49 34.3 1.8 

Aramid 124 3.6 2.3 1.45 86 2.5 

Boron 400 3.5 1.0 2.45 163 1.43 

H S 

graphite 
253 4.5 1.1 1.80 140 2.5 

H M 

graphite 
520 2.4 0.6 1.85 281 1.3 

 

Where E is Young's modulus, b  is the breaking stress, b   is the breaking strain, and 

  is the mass density. 

These materials are not generally usable as fibers alone, and typically they are 

impregnated by a matrix material that acts to transfer loads to the fibers, and also to 

protect the fibers from abrasion and environmental attack. The matrix dilutes the 

properties to some degree, but even so very high specific (weight – adjusted) 

properties are available from these materials. Polymers are much more commonly 

used, with unsaturated Styrene – hardened polyesters having the majority of low to 

medium performance applications and Epoxy or more sophisticated thermosets 

having the higher end of the market. Thermoplastic matrix composites are 
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increasingly attractive materials, with processing difficulties being perhaps their 

principal limitation. 

Recently, composite materials are increasingly used in many mechanical, civil, 

and aerospace engineering applications due to two desirable features: the first one is 

their high specific stiffness (stiffness per unit density) and high specific strength 

(strength per unit density), and the second is their properties that can be tailored 

through variation of the fiber orientation and stacking sequence which gives the 

designers a wide spectrum of flexibility. The incorporation of high strength, high 

modulus and low-density filaments in a low strength and a low modulus matrix 

material is known to result in a structural composite material with a high strength to 

weight ratio. Thus, the potential of a two-material composite for use in aerospace, 

under-water, and automotive structures has stimulated considerable research activities 

in the theoretical prediction of the behaviour of these materials. One commonly used 

composite structure consists of many layers bonded one on top of another to form a 

high-strength laminated composite plate. Each lamina is fiber reinforced along a 

single direction, with adjacent layers usually having different filament orientations. 

For these reasons, composites are continuing to replace other materials used in 

structures such as conventional materials. In fact composites are the potential 

structural materials of the future as their cost continues to decrease due to the 

continuous improvements in production techniques and the expanding rate of sales.    

1.2 Structure of composites: 

 There are many situations in engineering where no single material will be 

suitable to meet a particular design requirement. However, two materials in 

combination may possess the desired properties and provide a feasible solution to the 

materials selection problem. A composite can be defined as a material that is 

composed of two or more distinct phases, usually a reinforced material supported in a 

compatible matrix, assembled in prescribed amounts to achieve specific physical and 

chemical properties.   
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In order to classify and characterize composite materials, distinction between 

the following two types is commonly accepted; see Vernon [4], Jan Stegmann and 

Erik Lund [5], and David Roylance [1]. 

1. Fibrous composite materials:   

These materials are composed of high strength fibers embedded in a matrix.  The 

functions of the matrix are to bond the fibers together to protect them from damage, 

and to transmit the load from one fiber to another. {See fig.1.1}. 

2. Particulate composite materials:  

These materials are composed of particles encased within a tough matrix, e.g. 

powders or particles in a matrix like ceramics. 

 

  

 

 

 

 

 

 In this book the focus will be on fiber reinforced composite materials, as they 

are the basic building element of a rectangular laminated plate structure. Typically, 

such a material consists of stacks of bonded-together layers (i.e. laminas or plies) 

made from fiber reinforced material. The layers will often be oriented in different 

directions to provide specific and directed strengths and stiffnesses of the laminate. 

Thus, the strengths and stiffnesses of the laminated fiber reinforced composite 

material can be tailored to the specific design requirements of the structural element 

being built. 

 

 

Fiber 

Matrix 

                Fig. 1.1 Structure of a fibrous composite 
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 1.2.1 Mechanical properties of a fiber reinforced lamina:              

           Composite materials have many mechanical characteristics, which are 

different from those of conventional engineering materials such as metals. More 

precisely, composite materials are often both inhomogeneous and non-isotropic. 

Therefore, and due to the inherent heterogeneous nature of composite materials, they 

can be studied from a micromechanical or a macro mechanical point of view. In 

micromechanics, the behaviour of the inhomogeneous lamina is defined in terms of 

the constituent materials; whereas in macro mechanics the material is presumed 

homogeneous and the effects of the constituent materials are detected only as 

averaged apparent macroscopic properties of the composite material. This approach is 

generally accepted when modeling gross response of composite structures. The 

micromechanics approach is more convenient for the analysis of the composite 

material because it studies the volumetric percentages of the constituent materials for 

the desired lamina stiffnesses and strengths, i.e. the aim of micromechanics is to 

determine the moduli of elasticity and strength of a lamina in terms of the moduli of 

elasticity, and volumetric percentage of the fibers and the matrix. To explain further, 

both the fibers and the matrix are assumed homogeneous, isotropic and linearly 

elastic. 

         1.2.1.1 Stiffness and strength of a lamina   
The fibers may be oriented randomly within the material, but it is also possible 

to arrange for them to be oriented preferentially in the direction expected to have the 

highest stresses. Such a material is said to be anisotropic (i.e. different properties in 

different directions), and control of the anisotropy is an important means of 

optimizing the material for specific applications. At a microscopic level, the 

properties of these composites are determined by the orientation and distribution of 

the fibers, as well as by the properties of the fiber and matrix materials. 

Consider a typical region of material of unit dimensions, containing a volume 

fraction, Vf of fibers all oriented in a single direction. The matrix volume fraction is 

then, fm VV 1  . This region can be idealized by gathering all the fibers together, 
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leaving the matrix to occupy the remaining volume. If a stress l  is applied along the 

fiber direction, the fiber and matrix phases act in parallel to support the load. In these 

parallel connections the strains in each phase must be the same, so the strain 
l  in 

the fiber direction can be written as: 

                                          mfl                                                                            (1.1)  

(Where: the subscripts L, f and m denote the lamina, fibers and matrix respectively). 

The forces in each phase must add to balance the total load on the material. Since the 

forces in each phase are the phase stresses times the area (here numerically equal to 

the volume fraction), we have  

                                mlmflfmmffl VEVEVV                                       (1.2) 

The stiffness in the fiber direction is found by dividing the stress by the strain: 

                                mmff

l

l

l VEVEE 



                                                                  (1.3) 

(Where: E is the longitudinal Young's modulus)  

This relation is known as a rule of mixtures prediction of the overall modulus in 

terms of the moduli of the constituent phases and their volume fractions. 

 Rule of mixtures estimates for strength proceed along lines similar to those for 

stiffness. For instance consider a unidirectional reinforced composite that is strained 

up to the value at which the fiber begins to fracture. If the matrix is more ductile than 

the fibers, then the ultimate tensile strength of the lamina in equation (1.2) will be 

transformed to: 

                                     f

f

mf

u

f

u

l VV  1                                                                   (1.4) 

Where the superscript u denotes an ultimate value, and f

m  is the matrix stress when 

the fibers fracture as shown in fig.1.2. 

It is clear that if the fiber volume fraction is very small, the behavior of the lamina is 

controlled by the matrix.  



 

7 

 

minf VV 0

This can be expressed mathematically as follows: 

                                      f

u

m

u

l V 1                                                                                (1.5) 

If the lamina is assumed to be useful in practical applications, then there is a 

minimum fiber volume fraction that must be added to the matrix. This value is  

obtained by equating equations (1.4) and (1.5) i.e. 

 

 

 

 

 

 

 

 

 

 

                              
f

m

u

m

u

f

f

m

u

m

minV 







                                                                             (1.6) 

The variation of the strength of the lamina with the fiber volume fraction is 

illustrated in fig. 1.3. It is obvious that when                               the strength of the 

lamina is dominated by the matrix deformation which is less than the matrix strength. 

But when the fiber volume fraction exceeds a critical value (i.e. Vf > VCritical ), Then the 

lamina gains some strength due to the fiber reinforcement. 

The micromechanical approach is not responsible for the many defects which 

may arise in fibers, matrix, or lamina due to their manufacturing. These defects, if 

they exist include misalignment of fibers, cracks in matrix, non-uniform distribution 

of the fibers in the matrix, voids in fibers and matrix, delaminated regions, and initial 



Fiber 

u

f

u

m

f

m

u

f
u

m

  Matrix  



Fig .1.2 Stress-strain relationships for fiber and matrix 
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stresses in the lamina as a result of its manufacture and further treatment.  The above 

mentioned defects tend to propagate as the lamina is loaded causing an accelerated 

rate of failure. The experimental and theoretical results in this case tend to differ. 

Hence, due to the limitations necessary in the idealization of the lamina components, 

the properties estimated on the basis of micromechanics should be proved 

experimentally. The proof includes a very simple physical test in which the lamina is 

considered homogeneous and orthotropic. In this test, the ultimate strength and 

modulus of elasticity in a direction parallel to the fiber direction can be determined 

experimentally by loading the lamina longitudinally. When the test results are plotted, 

as in fig.1.4 below, the required properties may be evaluated as follows: - 

1212111 /    ;    /   ;   /    APE uu  

 

 

Similarly, the properties of the lamina in a direction perpendicular to the fiber 

direction can be evaluated in the same procedure. 

 

 

 

 

Fig. 1.3 Variation of unidirectional lamina strength with the fiber volume fraction 
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1.2.1.2 Analytical modeling of composite laminates: 

 The properties of a composite laminate depend on the geometrical arrangement 

and the properties of its constituents. The exact analysis of such structure – property 

relationship is rather complex because of many variables involved. Therefore, a few 

simplifying assumptions regarding the structural details and the state of stress within 

the composite have been introduced. 

  It has been observed, that the concept of representative volume element and 

the selection of appropriate boundary conditions are very important in the discussion 

of micromechanics. The composite stress and strain are defined as the volume 

averages of the stress and strain fields, respectively, within the representative volume 

element. By finding relations between the composite stresses and the composite 

strains in terms of the constituent properties expressions for the composite moduli 

could be derived. In addition, it has been shown that, the results of advanced methods 

can be put in a form similar to the rule of mixtures equations. 

Fig.1.4 Unidirectional lamina loaded in the fiber-direction 

2
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 Prediction of composite strengths is rather difficult because there are many 

unknown variables and also because failure critically depends on defects. However, 

the effects of constituents including fiber – matrix interface on composite strengths 

can be qualitatively explained. Certainly, failure modes can change depending on the 

material combinations.  Thus, an analytical model developed for one material 

combination cannot be expected to work for a different one. Ideally a truly analytical 

model will be applicable to material combination. However, such an analytical model 

is not available at present. Therefore, it has been chosen to provide models each of 

which is applicable only to a known failure mode. Yet, they can explain many of the 

effects of the constituents. (Refer to Ref. [2]). 

1.3 The objectives of the present study: 

 The present work involves a comprehensive and thorough study of the 

following objectives: 

1. Recognition of the fundamentals of composite laminates. 

2. Study the mechanical properties of fibers and matrix materials of a lamina.    

3. A survey of various plate theories and techniques used to predict the response of 

laminated plates under buckling and bending loads. 

4. A survey of various analytical, semi – analytical and exact methods used in the 

analysis of laminated plates subjected to buckling and bending loads. 

5. Study of the probable causes of composite materials delamination.  
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Chapter (2) 

Literature review   

2.1 Developments in the theories of laminated plates: 

 From the point of view of solid mechanics, the deformation of a plate subjected 

to transverse and / or in plane loading consists of two components: flexural 

deformation due to rotation of cross – sections, and shear deformation due to sliding 

of section or layers. The resulting deformation depends on two parameters: the 

thickness to length ratio and the ratio of elastic to shear moduli. When the thickness 

to length ratio is small, the plate is considered thin, and it deforms mainly by flexure 

or bending; whereas when the thickness to length and the modular ratios are both 

large, the plate deforms mainly through shear. Due to the high ratio of in – plane 

modulus to transverse shear modulus, the shear deformation effects are more 

pronounced in the composite laminates subjected to transverse and / or inplane loads 

than in the isotropic plates under similar loading conditions. 

 The three – dimensional theories of laminates, in which each layer is treated as 

homogeneous anisotropic medium, (see Reddy [6]) are intractable. Usually, the 

anisotropy in laminated composite structures causes complicated responses under 

different loading conditions by creating complex couplings between extensions and 

bending, and shears deformation modes. Expect for certain cases, it is inconvenient to 

fully solve a problem in three dimensions due to the complexity, size of computation, 

and the production of unnecessary data specially for composite structures. 

Many theories which account for the transverse shear and normal stresses are 

available in the literature (see, for example Mindlin [7]). These are too numerous to 

review here. Only some classical papers and those which constitute a background for 

the present thesis will be considered. These theories are classified according to Phan 

and Reddy [8] into two major classes on the basis of the assumed fields as: (1) stress 

based theories, and (2) displacement based theories. The stress – based theories are 
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derived from stress fields which are assumed to vary linearly over the thickness of the 

plate: 

   
   1.26,2,1

26

2
 i

h

z

h

M i

i

 

(Where iM  is the stress couples, h is the plate thickness, and z is the distance of the 

lamina from the plate mid – plane). 

The displacement – based theories are derived from an assumed displacement field 

as: 

.....3

3

2

2

1  uzuzuzuu   

.....3

3

2

2

1  vzvzvzvv   

                               ....3

3

2

2

1  wzwzwzww   

Where: u  , v  and w are the displacements of the middle plane of the plate. The 

governing equations are derived using principle of minimum total potential energy. 

The theory used in the present work comes under the class of displacement – based 

theories. Extensions of these theories which include the linear terms in z  in u  and 

v and only the constant term in w , to account for higher – order variations and to 

laminated plates, can be found in the work of Yang, Norris and Stavsky [9] , Whitney 

and Pagano [10] and Phan and Reddy [8]. 

 Based on different assumptions for displacement fields, different theories for 

plate analysis have been devised. These theories can be divided into three major 

categories, the individual layer theories (IL), the equivalent single layer (ESL) 

theories, and the three dimensional elasticity solution procedures. These categories 

are further divided into sub – theories by the introduction of different assumptions. 

For example the second category includes the classical laminated plate theory 

(CLPT), the first order and higher order shear deformation theories (FSDT and 

HSDT) as stated in Refs.{ [11]–[14]}. 

(2.2) 
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 In the individual layer laminate theories, each layer is considered as a separate 

plate. Since the displacement fields and equilibrium equations are written for each 

layer, adjacent layers must be matched at each interface by selecting appropriate 

interfacial conditions for displacements and stresses. In the ESL laminate theories, 

the stress or the displacement field is expressed as a linear combination of unknown 

functions and the coordinate along the thickness. If the in – plane displacements are 

expanded in terms of the thickness co – ordinate up to the nth power, the theory is 

named nth order shear deformation theory. The simplest ESL laminate theory is the 

classical laminated plate theory (CLPT). This theory is applicable to homogeneous 

thin plates (i.e. the length to thickness ratio a / h > 20). The classical laminated plate 

theory (CLPT), which is an extension of the classical plate theory (CPT) applied to 

laminated plates was the first theory formulated for the analysis of laminated plates 

by Reissner and Stavsky [15] in 1961 , in which the Kirchhoff and Love assumption 

that normal to the mid – surface before deformation remain straight and normal to the 

mid – surface after deformation is used (see fig.2.1) , but it is not adequate for the 

flexural analysis of moderately thick laminates. However, it gives reasonably 

accurate results for many engineering problems i.e. thin composite plates, as stated by 

Srinivas and Rao [16], Reissner and Stavsky [15]. This theory ignores the transverse 

shear stress components and models a laminate as an equivalent single layer. The 

classical laminated plate theory (CLPT) under – predicts deflections as proved by 

Turvey and Osman [17], [18], [19] and Reddy [6] due to the neglect of transverse 

shear strain. The errors in deflection are even higher for plates made of advanced 

filamentary composite materials like graphite – epoxy and boron – epoxy whose 

elastic modulus to shear modulus ratios are very large (i.e. of the order of 25 to 40 , 

instead of 2.6 for typical isotropic materials). However, these composites are 

susceptible to thickness effects because their effective transverse shear moduli are 

significantly smaller than the effective elastic modulus along the fiber direction. This 

effect has been confirmed by Pagano [20] who obtained analytical solutions of 

laminated plates in bending based on the three – dimensional theory of elasticity. He 
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proved that classical laminated plate theory (CLPT) becomes of less accuracy as the 

side to thickness 

 

Assumed deformation of 

normals (HSDT) (parabolic 

shear stress distribution) 

Assumed deformation of normals 

(CLPT) (Shear stress neglected) 

z,w 

x,u Undeformed 
y 

dx

dw
 

dx

dw
 

  

dx

dw
 

  

dx

dw
 

Fig. 2.1    Assumed deformation of the transverse normal  

In various displacement base plate theories. 

Assumed deformation of normals 

(FSDT) (shear stress assumed uniform) 
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Ratio decreases. In particular, the deflection of a plate predicted by CLPT is 

considerably smaller than the analytical value for side to thickness ratio less than 10. 

These high ratios of elastic modulus to shear modulus render classical laminate 

theory as inadequate for the analysis of composite plates. In the first order shear 

deformation theory (FSDT) , the transverse planes , which are originally normal and 

straight to the mid – plane of the plate , are assumed to remain straight but not 

necessarily normal after deformation , and consequently shear correction factors are 

employed in this theory to adjust the transverse shear stress , which is constant 

through thickness (see fig.2.1). Recently Reddy [6] and Phan and Reddy [8] 

presented refined plate theories that used the idea of expanding displacements in the 

powers of thickness coordinate. The main novelty of these works is to expand the in – 

plane displacements as cubic functions of the thickness coordinate, treat the 

transverse deflection as a function of the x  and y coordinates, and eliminate the 

functions 2u  , 3u , 2v  and 3v from equation (2.2) by requiring that the transverse shear 

stress be zero on the bounding planes of the plate. Numerous studies involving the 

application of the first – order theory to bending, vibration and buckling analyses can 

be found in the works of Reddy [20], and Reddy and Chao [21].  

 In order to include the curvature of the normal after deformation, a number of 

theories known as higher – order shear deformation theories (HSDT) have been 

devised in which the displacements are assumed quadratic or cubic through the 

thickness of the plate. In this aspect, a variationally consistent higher – order theory 

which not only accounts for the shear deformation but also satisfies the zero 

transverse shear stress conditions on the top and bottom faces of the plate and does 

not require correction  factors was suggested by Reddy [6]. Reddy's modifications 

consist of a more systematic derivation of displacement field and variationally 

consistent derivation of the equilibrium equations. The refined laminate plate theory 

predicts a parabolic distribution of the transverse shear stresses through the thickness, 

and requires no shear correction coefficients. 
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 In the non – linear analysis of plates considering higher – order shear 

deformation theory (HSDT), shear deformation has received considerably less 

attention compared with linear analysis. This is due to the geometric non – linearity 

which arises from finite deformations of an elastic body and which causes more 

complications in the analysis of composite plates. Therefore, fiber – reinforced 

material properties and lamination geometry have to be taken into account. In the 

case of anti – symmetric and unsymmetrical laminates, the existence of coupling 

between stretching and bending complicates the problem further. Non – linear 

solutions of laminated plates using higher – order theories have been obtained 

through several techniques, i. e. perturbation method as in Ref.[22], finite element 

method as in Ref.[23], the increment of lateral displacement method as in 

Ref.[24],and the small parameter method as in Ref.[25]. 

2.2 Numerical techniques: 

Several numerical methods could be used in this study, but the main ones are 

finite difference method (FDM), dynamic relaxation coupled with finite difference 

method (DR), and finite element method (FEM). 

In the finite difference method, the solution domain is divided into a grid of 

discrete points or nodes. The partial differential equation is then written for each node 

and its derivatives are replaced by finite divided differences. Although such point – 

wise approximation is conceptually easy to understand, it becomes difficult to apply 

for system with irregular geometry, unusual boundary conditions, and heterogeneous 

composition. 

 The DR method was first proposed in 1960th; see Rushton [26], Cassel and 

Hobbs [27], and Day [28]. In this method, the equations of equilibrium are converted 

to dynamic equations by adding damping and inertia terms. These are then expressed 

in finite difference form and the solution is obtained through iterations. The optimum 

damping coefficient and the time increment used to stabilize the solution depend on 

the stiffness matrix of the structure, the applied load, the boundary conditions and the 

size of mesh used. 
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 In the present work, a numerical method known as finite element method 

(FEM) is used. It is a numerical procedure for obtaining solutions to many of the 

problems encountered in engineering analysis. It has two primary subdivisions. The 

first utilizes discrete elements to obtain the joint displacements and member forces of 

a structural framework. The second uses the continuum elements to obtain 

approximate solutions to heat transfer, fluid mechanics, and solid mechanics problem. 

The formulation using the discrete element is referred to as matrix analysis of 

structures and yields results identical with the classical analysis of structural 

frameworks. The second approach is the true finite element method. It yields 

approximate values of the desired parameters at specific points called nodes. A 

general finite element computers program, however, is capable of solving both types 

of problems and the name" finite element method" is often used to denote both the 

discrete element and the continuum element formulations. 

 The finite element method combines several mathematical concepts to produce 

a system of linear and non – linear equations. The number of equations is usually 

very large, anywhere from 20 to 20,000 or more and requires the computational 

power of the digital computer. 

 It is impossible to document the exact origin of the finite element method 

because the basic concepts have evolved over a period of 150 or more years. The 

method as we know it today is an outgrowth of several papers published in the 1950 th 

that extended the matrix analysis of structures to continuum bodies. The space 

exploration of the 1960th provided money for basic research, which placed the 

method of a firm mathematical foundation and stimulated the development of mulit – 

purpose computer programs that implemented the method. The design of airplanes, 

unmanned drones, missiles, space capsules, and the like, provided application areas. 

 The finite element method (FEM) is a powerful numerical method, which is 

used as a computational technique for the solution of differential equations that arise 

in various fields of engineering and applied sciences. The finite element method is 

based on the concept that one can replace any continuum by an assemblage of simply 
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shaped elements, called finite elements with well defined force, displacement, and 

material relationships. While one may not be able to derive a closed – form solution 

for the continuum, one can derive approximate solutions for the element assemblage 

that replaces it. The approximate solutions or approximation functions are often 

constructed using ideas from interpolation theory, and hence they are also called 

interpolation functions. For more details refer to Refs. {[29] – [31]}. 

 In a comparison between the finite element method (FEM) and dynamic 

relaxation method (DR), Aalami [32] found that the computer time required for the 

finite element method is eight times greater than for DR analysis, whereas the storage 

capacity for FEM is ten times or more than that for DR analysis. This fact is 

supported by putcha and Reddy [23], and Turvey and Osman {[17] – [19]} who 

noted that some of the finite element formulations require large storage capacity and 

computer time. Hence due to the large computations involved in the present study, 

the finite element method (FEM) is considered more efficient than the DR method. In 

another comparison, Aalami [32] found that the difference in accuracy between one 

version of FEM and DR may reach a value of more than 15 % in favour of FEM. 

Therefore, the FEM can be considered of acceptable accuracy. The apparent 

limitation of the DR method is that it can only be applied to limited geometries, 

whereas the FEM can be applied to different intricate geometries and shapes. 

2.3 The past work of buckling analysis: 

 Composite materials are widely used in a broad spectrum of modern 

engineering application fields ranging from traditional fields such as automobiles, 

robotics, day to day appliances, building industry etc. This is due to their excellent 

high strength to weight ratio, modulus to weight ratio, and the controllability of the 

structural properties with the variation of fiber orientation, stacking scheme and the 

number of laminates. Among the various aspects of the structural performance of 

structures made of composite materials is the mechanical behaviour of rectangular 

laminated plates which has drawn much attention. In particular, consideration of the 

buckling phenomena in such plates is essential for the efficient and reliable design 
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and for the safe use of the structural element. Due to the anisotropic and coupled 

material behaviour, the analysis of composite laminated plates is generally more 

complicated than the analysis of homogeneous isotropic ones. 

The members and structures composed of laminated composite material are 

usually very thin, and hence more prone to buckling. Buckling phenomenon is 

critically dangerous to structural components because the buckling of composite 

plates usually occurs at a lower applied stress and generates large deformations. This 

led to a focus on the study of buckling behaviour in composite materials. General 

introductions to the buckling of elastic structures and of laminated plates can be 

found in e.g. Refs. {[33] – [46]}. However, these available Curves and data are 

restricted to idealized loading, namely, uniaxial or biaxial uniform compression. 

Due to the importance of buckling considerations, there is an overwhelming 

number of investigations available in which corresponding stability problems are 

considered by a wide variety of analysis methods which may be of a closed – form 

analytical nature or may be sorted into the class of semi – analytical or purely 

numerical analysis method. 

Closed – form exact solutions for the buckling problem of rectangular 

composite plates are available only for limited combinations of boundary conditions 

and laminated schemes. These include cross – ply symmetric and angle – ply anti – 

symmetric rectangular laminates with at least two opposite edges simply supported, 

and similar plates with two opposite edges clamped but free to deflect (i.e. guided 

clamp) or with one edge simply supported and the opposite edge with a guided 

clamp. Most of the exact solutions discussed in the monographs of Whitney [47] who 

developed an exact solution for critical buckling of solid rectangular orthotropic 

plates with all edges simply supported , and of Reddy {[48] – [51]} and Leissa and 

Kang [52],and that of Refs.[39] and [53]. Bao et al. [54] developed an exact solution 

for two edges simply supported and two edges clamped, and Robinson [55] who 

developed an exact solution for the critical buckling stress of an orthotropic sandwich 

plate with all edges simply supported. 
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For all other configurations, for which only approximated results are available, 

several semis – analytical and numerical techniques have been developed. The 

Rayleigh – Ritz method [53] and [56], the finite strip method (FSM) [36] and [57], 

the element free Galerkin method (EFG) [58], the differential quadrature technique 

[59], the moving least square differential quadrature method [60] and the most 

extensively used finite element method (FEM) [61] are the most common ones. 

The Kantorovich method (KM) {[62] – [64]}, which is a different and in most 

cases advantageous semi – analytical method, combines a variation approach of 

closed – form solutions and an iterative procedure. The method assumes a solution in 

the form of a sum of products of functions in one direction and functions in the other 

direction. Then, by assuming the function in one direction, the variation problem of 

the plate reduces to a set of ordinary differential equations. In the case of buckling 

analysis, the variation problem reduces to an ordinary differential eigenvalue and 

eigenfunction problem. The solution of the resulting problem is an approximate one, 

and its accuracy depends on the assumed functions in the first direction. The 

extended Kantorovich method (EKM), which was proposed by Kerr [65], is the 

starting point for an iterative procedure, where the solution obtained in one direction 

is used as the assumed functions in the second direction. After repeating this process 

several times, convergence is obtained. The single term extended Kantorovich 

method was employed for a buckling analysis of rectangular plates by several 

researches. Eienberger and Alexandrov [66] used the method for the buckling 

analysis of isotropic plates with variable thickness. Shufrin and Eisenberger [67] and 

[68] extended the solution to thick plates with constant and variable thickness using 

the first and higher order shear deformation theories. Ungbhakorn and 

Singhatanadgid [69] extended the solution to buckling of symmetrically cross – ply 

laminated rectangular plates. The multi – term formulation of the extended 

Kantorovich approach to the simplest samples of rectangular isotropic plates was 

presented by Yuan and Jin [70]. This study showed that the additional terms in the 

expansion can be used in order to improve the solution. 
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March and Smith [71] found an approximate solution for all edges clamped. 

Also, Chang et al. [72] developed approximate solution to the buckling of rectangular 

orthotropic sandwich plate with two edges simply supported and two edges clamped 

or all edges clamped using the March – Erickson method and an energy technique. 

Jiang et al. [73] developed solutions for local buckling of  rectangular orthotropic hat 

– stiffened plates with edges parallel to the stiffeners were simply supported or 

clamped and edges parallel to the stiffeners were free, and Smith [74] presented 

solutions bounding the local buckling of hat stiffened plates by considering the 

section between stiffeners as simply supported or clamped plates. 

Many authors have used finite element method to predict accurate in – plane 

stress distribution which is then used to solve the buckling problem. Zienkiewicz [75] 

and Cook [76] have clearly presented an approach for finding the buckling strength of 

plates by first solving the linear elastic problem for a reference load and then the 

eigenvalue problem for the smallest eigenvalue which then multiplied by the 

reference load gives the critical buckling load of the structure. An excellent review of 

the development of plate finite elements during the past 35 years was presented by 

Yang et al. [77]. 

Many buckling analysis of composite plates available in the literature are 

usually realized parallel with the vibration analyses, and are based on two – 

dimensional plate theories which may be classified as classical and shear deformable 

ones. Classical plate theories (CPT) do not take into account the shear deformation 

effects and over predict the critical buckling loads for thicker composite plates, and 

even for thin ones with a higher anisotropy. Most of the shear deformable plate 

theories are usually based on a displacement field assumption with five unknown 

displacement components. As three of these components corresponded to the ones in 

CPT, the additional ones are multiplied by a certain function of thickness coordinate 

and added to the displacements field of CPT in order to take into account the shear 

deformation effects. Taking these functions as linear and cubic forms leads to the so – 

called uniform or Mindlin shear deformable plate theory (USDPT) [78], and 
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parabolic shear deformable plate theories (PSDPT) [79] respectively. Different forms 

were also employed such as hyperbolic shear deformable plate theory (HSDPT) [80], 

and trigonometric or sine functions shear deformable plate theory (TSDPT) [81] by 

researchers. Since these types of shear deformation theories do not satisfy the 

continuity conditions among many layers of the composite structures, the zig – zag 

type of the plate theories introduced by Di Sciuva [82], and Cho and Parmeter [83] in 

order to consider interlaminar stress continuities. Recently, Karama et al. [84] 

proposed a new exponential function{i.e. exponential shear deformable plate theory 

(ESDPT)} in the displacement field of the composite laminated structures for the 

representation of the shear stress distribution along the thickness of the composite 

structures and compared their result for static and dynamic problem of the composite 

beams with the sine model. 

Within the classical lamination theory, Jones [85] presented a closed – form 

solution for the buckling problem of cross – ply laminated plates with simply 

supported boundary conditions. In the case of multi – layered plates subjected to 

various boundary conditions which are different from simply supported boundary 

conditions at all of their four edges, the governing equations of the buckling of the 

composite plates do not admit an exact solution, except for some special 

arrangements of laminated plates. Thus, for the solution of these types of problems, 

different analytical and / or numerical methods are employed by various researchers. 

Baharlou and Leissa [56] used the Ritz method with simple polynomials as 

displacement functions, within the classical theory, for the problem of buckling of 

cross and angle – ply laminated plates with arbitrary boundary conditions and 

different in – plane loads. Narita and Leissa [86] also applied the Ritz method with 

the displacement components assumed as the double series of trigonometric functions 

for the buckling problem of generally symmetric laminated composite rectangular 

plates with simply supported boundary conditions at all their edges. They 

investigated the critical buckling loads for five different types of loading conditions 

which are uniaxial compression (UA – C), biaxial compression (BA – C), biaxial 

compression – tension (BA – CT), and positive and negative shear loadings. 
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The higher – order shear deformation theories can yield more accurate inter – 

laminate stress distributions. The introduction of cubic variation of displacement also 

avoids the need for shear correction displacement. To achieve a reliable analysis and 

safe design, the proposals and developments of models using higher order shear 

deformation theories have been considered. Lo et al. [87] and [ 88] reviewed the 

pioneering work on the field and formulated a theory which accounts for the effects 

of transverse shear deformation, transverse strain and non – linear distribution of the 

in – plane displacements with respect to the thickness coordinate. Third – order 

theories have been proposed by Reddy {[89] – [92]}, Librescu [93], Schmidt [94], 

Murty [95], Levinson [96], Seide [97], Murthy [98] , Bhimaraddi [99], Mallikarjuna 

and Kant [100] , Kant and Pandya [101] , and Phan and Reddy [8], among others. 

Pioneering work and overviews in the field covering closed – form solutions and 

finite element models can be found in Reddy [90,102,103], Mallikarjuna and Kant 

[100], Noor and Burton [104], Bert [105], Kant and Kommineni [106], and Reddy 

and Robbins [107] among others. 

 For the buckling analysis of the cross – ply laminated plates subjected to 

simply supported boundary conditions at their opposite two edges and different 

boundary conditions at the remaining ones Khdeir [108] and Reddy and Khdeir [51] 

used a parabolic shear deformation theory and applied the state – space technique. 

Hadian and Nayfeh [109], on the basis of the same theory and for the same type of 

problem, needed to modify the technique due to ill – conditioning problems 

encountered especially for thin and moderately thick plates. The buckling analyses of 

completely simply supported cross – ply laminated plates were presented  by Fares 

and Zenkour [110], who added a non – homogeneity coefficient in the material 

stiffnesses within various plate theories , and by Matsunaga [111] who employed a 

global higher order plate theory. Gilat el al. [112] also investigated the same type of 

problem on the basic of a global – local plate theory where the displacement field is 

composed of global and local contributions, such that the requirement of the 

continuity conditions and delaminations effects can be incorporated into formulation.  
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 Many investigations have been reported for static and stability analysis of 

composite laminates using different traditional methods. Pagano [113] developed an 

exact three – dimensional (3 – D) elasticity solution for static analysis of rectangular 

bi – directional composites and sandwich plates. Noor [114] presented a solution for 

stability of multi – layered composite plates based on 3 – D elasticity theory by 

solving equations with finite difference method. Also, 3 – D elasticity solutions are 

presented by GU and Chattopadhyay [115] for the buckling of simply supported 

orthotropic composite plates. When the problem is reduced from a three – 

dimensional one (3 – D) to a two dimensional case to contemplate more efficiently 

the computational analysis of plate composite structures, the displacement based 

theories and the corresponding finite element models receive the most attention 

[116]. 

Bifurcation buckling of laminated structures has been investigated by many 

researchers without considering the flatness before buckling [117]. This point was 

first clarified for laminated composite plates for some boundary conditions and for 

some lamina configurations by Leissa [117]. Qatu and Leissa [118] applied this result 

to identify true buckling behaviour of composite plates. Elastic bifurcation of plates 

have been extensively studied and well documented in standard texts e.g. [33] and 

[119], research monographs {[120] – [122]} and journal papers {[123] – [126]}. 

It is important to recognize that, with the advent of composite media, certain 

new material imperfections can be found in composite structures in addition to the 

better – known imperfections that one finds in metallic structures. Thus, broken 

fibers, delaminated regions, cracks in the matrix material, as well as holes, foreign 

inclusions and small voids constitute material and structural imperfections that can 

exist in composite structures. Imperfections have always existed and their effect on 

the structural response of a system has been very significant in many cases. These 

imperfections can be classified into two broad categories: initial geometrical 

imperfections and material or constructional imperfections. 
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The first category includes geometrical imperfections in the structural 

configuration (such as a local out of roundness of a circular cylindrical shell, which 

makes the cylindrical shell non – circular; a small initial curvature in a flat plate or 

rod, which makes the structure non – flat, etc.), as well as imperfections in the 

loading mechanisms (such as load eccentricities; an axially loaded column is loaded 

at one end in such a manner that a bending moment exists at that end). The effect of 

these imperfections on the response of structural systems has been investigated by 

many researchers and the result of these efforts can be easily found in books [3], as 

well in published papers [127] – [144]. 

The second class of imperfections is equally important, but has not received as 

much attentions as the first class; especially as far as its effect on the buckling 

response characteristics is concerned. For metallic materials, one can find several 

studies which deal with the effect of material imperfections on the fatigue life of the 

structural component. Moreover, there exist a number of investigations that deal with 

the effect of cut – outs and holes on the stress and deformation response of thin 

plates. Another material imperfection is the rigid inclusion. The effect of rigid 

inclusions on the stress field of the medium in the neighborhood of the inclusion has 

received limited attention. The interested reader is referred to the bibliography of 

Professor Naruoka [127]. 

There exists two important classes of material and constructional – type 

imperfections, which are very important in the safe design, especially of aircraft and 

spacecraft. These classes consist of fatigue cracks or cracks in general and 

delaminations in systems that employ laminates (i.e. fiber – reinforced composites). 

There is considerable work in the area of stress concentration at crack tips and crack 

propagation. Very few investigations are cited, herein, for the sake of brevity. These 

include primarily those dealing with plates and shells and non – isotropic 

construction. Some deal with cracks in metallic plates and shells {[145] – [148]}. 

Others deal with non – isotropic construction and investigate the effects of non – 
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isotropy {[149] – [154]}. In all of these studies, there is no mention of the effect of 

the crack presence on the overall stability or instability of the system. 

Finally, delaminations are one of the most commonly found defects in 

laminated structural components. Most of the work found in the literature deals with 

flat configurations. 

Composite structures often contain delaminations. Causes of delamination are 

many and include tool drops, bird strikes, runway debris hits and manufacturing 

defects. Moreover, in some cases, especially in the vicinity of holes or close to edges 

in general, delaminations start because of the development of interlaminar stresses. 

Several analyses have been reported on the subject of edge delamination and its 

importance in the design of laminated structures. A few of these works are cited 

{[155] – [161]}. These and their cited references form a good basis for the interested 

reader. The type of delamination that comprises the basic and primary treatise is the 

one that is found to be present away from the edges (internal). This delaminating 

could be present before the laminate is loaded or it could develop after loading 

because of foreign body (birds, micrometer, and debris) impact. This is an extremely 

important problem especially for laminated structures that are subject to destabilizing 

loads (loads that can induce instability in the structure and possibly cause growth of 

the delamination; both of these phenomena contribute to failure of the laminate). The 

presence of delamination in these situations may cause local buckling and / or trigger 

global buckling and therefore induce a reduction in the overall load – bearing 

capacity of the laminated structure. The problem, because of its importance, has 

received considerable attention. 

 In the present study, the composite media are assumed free of imperfections 

i.e. initial geometrical imperfections due to initial distortion of the structure, and 

material and / or constructional imperfections such as broken fibers, delaminated 

regions, cracks in the matrix material, foreign inclusions and small voids which are 

due to inconvenient selection of fibers / matrix materials and manufacturing defects. 

Therefore, the fibers and matrix are assumed perfectly bonded. 
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Chapter (3) 

Conclusion 

A composite material can be defined as a combination of two or more 

materials that gives better properties than those of the individual components used 

alone. In contrast to metallic alloys, each material retains its separate chemical, 

physical and mechanical properties. The two constituents are reinforcement and a 

matrix. The main advantages of composite materials are their high strength and 

stiffness combined with low density when compared to classical materials. 

Micromechanical approach is found to be more suitable for the analysis of composite 

materials because it studies the volume proportions of the constituents (i.e. fibers and 

matrix) for the desired lamina stiffness and strength. 

A comprehensive literature review on different theories of laminated plates 

have been reviewed and discussed thoroughly. It has been found that there are two 

main theories of laminated plates which are known as linear and nonlinear theories. 

The two theories are depending on the magnitude of deformation resulting from 

loading the given plates. The difference between the two theories is that deformations 

are small in the linear theory, whereas they are finite or large in the nonlinear theory. 

In comparisons survey between finite element method (FEM) and different 

numerical and / or analytical methods it has been found that FEM can be considered 

of acceptable accuracy, and can also be applied to different complicated geometries 

and shapes. 

Comprehensive bibliography and literature review on buckling of composite 

laminated plates were presented and discussed thoroughly. Exact, analytical and semi 

– analytical solutions in buckling of laminates were analyzed using different factors 

which include boundary conditions, plate dimensions and lamination scheme. 

Development of plate theories from classical plate theory through first order shear 

deformation, and to higher order shear deformation theories were considered in the 

analysis of buckling. It was found that higher order shear deformation theories can 
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yield more accurate inter – laminate stresses and also avoids the need for shear 

correction displacement. 

In most of the previous studies, the composite media are assumed free of 

imperfections and therefore, they are neglected in mathematical analyses. It is found 

that the manufacturing processes of composite laminated plates are responsible of the 

many defects which may arise in fibers, matrix and lamina. These defects, if they 

exist include misalignment of fibers in the matrix, voids in fibers and matrix, 

delaminated regions, and initial stress in the lamina as a result of its manufacture and 

further treatment. These defects tend to propagate as the lamina is loaded causing an 

accelerated rate of failure. The experimental and theoretical results in this case tend 

to differ. Hence, due to the limitations necessary in the idealization of the lamina 

components, the properties estimated should be proved experimentally. 
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