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Abstract 

Finite element (FE) method is presented for the analysis of thin 

rectangular laminated composite plates under the biaxial action of in – plane 

compressive loading. The analysis uses the classical laminated plate theory 

(CLPT) which does not account for shear deformations. In this theory it is 

assumed that the laminate is in a state of plane stress, the individual lamina is 

linearly elastic, and there is perfect bonding between layers. The classical 

laminated plate theory (CLPT), which is an extension of the classical plate 

theory (CPT) assumes that normal to the mid – surface before deformation 

remains straight and normal to the mid – surface after deformation. Therefore, 

this theory is only adequate for buckling analysis of thin laminates. A Fortran 

program has been compiled. The convergence and accuracy of the FE 

solutions for biaxial buckling of thin laminated rectangular plates are 

established by comparison with various theoretical and experimental 

solutions. New numerical results are generated for in – plane compressive 

biaxial buckling which serve to quantify the effects of lamination scheme, 

aspect ratio, material anisotropy, fiber orientation of layers, reversed 

lamination scheme and boundary conditions.  

It was found that symmetric laminates are stiffer than the anti – 

symmetric one due to coupling between bending and stretching which 

decreases the buckling loads of symmetric laminates. The buckling load 

increases with increasing aspect ratio, and decreases with increase in modulus 

ratio. The buckling load will remain the same even when the lamination order 

is reversed. The buckling load increases with the mode number but at 

different rates depending on the type of end support. It is also observed that as 

the mode number increases, the plate needs additional support. 
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 ملخص البحث

 بملييياذبو ييمبشذب حيي بلمييذب   ي يييذذ(FE)فييهذاييلبذب تميياذتييامذبسييب ابعذصسييلمحذب    يي ذب  مييام ذ

مسبطيليذب   طعذب  سلمطذعليهاذح اذإنضغاطذفهذمممرين.ذيسيب اعذب بمليياذني يييذبو يمبشذب حي بلمييذ

ب ليمشذيكيم ذذب بهذتبجاااذتأثي بتذتحمهذب  ص.ذفهذالهذب  ي ييذييباذإفبي بأذص مذذ(CLPT)ب كلاسيكييذ

ياً،ذويكم ذا ا كذرببطذجيامذبينذب طت ات.ذني يييذخط،ذوتكم ذب طت يذب  ف  ةذم نيذفهذحا يذإجها ذمسبم ذ

تفبي أذص ذب  يطذذ(CPT)بو مبشذب ح بلمييذب كلاسيكييذذب بيهذايهذإمبياب ذ  ي يييذبو يمبشذب كلاسييكييذ

اذمسيب ي اذًومب اميابذًميعذم ب ي ذ تياذب بحيمهذيييذب ليمشذسيط ب  ب امياذميعذم ب ي ذذب  سب ياذب يما ه

صيا ميذف يطذ بمليياذذفهيهذتكيم ذعليه،ذبا با هذفإ ذالهذب  ي ييذتبجاااذتحمهذب  ص،ذب سط ذب اذب بحمه

ذتأ ي ذب نامجذفمرت ب  ذتأسييتذت يارحذو  ييذب نيامجذذ(Fortran)ذبو مبشذب   ي ي.ذ هلبذب غ أذتام وتيام

 بت يي.ذتامذب م ملذعلىذنبيالجذب  ارنبهذبا  اياذمنذب ململذب  ي ييذوب  ذ(FE)صسلمحذب     ذب  ما ذ

،ذ(𝑎/𝑏)يذجاياةذ لإنت اجذث الهذب  ممرذوذ يكذ لبم يمذمينذتيأثي بتذإتجياهذبو يياة،ذنسيتيذب  طيا ذعا ي

ذ،ذعكتذإتجاهذبو ياةذوب ح وطذب ط فييذ لمش.(𝐸1/𝐸2)تتاينذب  مبصذ ل ا ةذ

ذبو يمبشذب  ب اثلييذتكيم ذص صي ذصيلابيذمينذبو يمبشذب غيي ذمب اثلييذوذ يكذوُجاذفهذايلهذب اربسييذص مذ

نبيجيذ بأثي ذبلإز وبجذبيينذبلإنم ياوذوبلإسيبطا يذب يلفذي فأحياذصح يالذبلإنت ياجذ ل يمبشذب  ب اثليي.ذي يياذ

ذييياذح ياذبلإنت ياج.ذ(𝐸1/𝐸2)وي اذب ييا ةذنسيتيذب   ياي ذذ(𝑎/𝑏)ح اذبلإنت اجذب يا ةذنستيذب  طا ذ

ثابباذًحبىذفهذحا يذعكتذإتجاهذبو ياة.ذي ياذبلإنت اجذب يا ةذعا ذبون اطذب  الاتذم بلفيذإعب ا بذًعلىذ

ذنمعذبلإس ا ذب ط فه.ذيلُاحظذصيضاذًصنهذ ل اذزب ذعا ذبون اطذفإ ذب لمشذسيمباجذلإس ا بتذإضافيي.
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Preface 

The objective of this thesis is to present a complete and up to date 

treatment of uniform cross section rectangular laminated plates on buckling. 

Finite element (FE) method is used for solving governing equations of thin 

laminated composite plates and their solution using classical laminated plate 

theory (CLPT). Plates are common structural elements of most engineering 

structures, including aerospace, automotive, and civil engineering structures, 

and their study from theoretical and experimental analyses points of view are 

fundamental to the understanding of the behavior of such structures. 

The motivation that led to the writing of the present study has come from 

many years of studying classical laminated plate theory (CLPT) and its 

analysis by the finite element (FE) method, and also from the fact that there 

does not exist a publication that contains a detailed coverage of classical 

laminated plate theory and finite element method in one volume. The present 

study fulfills the need for a complete treatment of classical laminated theory 

of plates and its solution by a numerical solution. 

The material presented is intended to serve as a basis for a critical study 

of the fundamentals of elasticity and several branches of solid mechanics 

including advanced mechanics of materials, theories of plates, composite 

materials and numerical methods. Chapter one includes certain properties of 

laminated composite plates, and at the end of this chapter the most important 

objectives of the present thesis are cited, this subject may be used either as a 

required reading or as a reference subject. Developments in the theories of 

laminated plates, several numerical methods and the past work of buckling 

analysis are presented in chapter two. Mathematical formulations and 

numerical modeling of rectangular laminated plates under biaxial buckling 

loads are introduced in chapter three. The present finite element (FE) results 

are validated with similar results generated by FE and/ or other numerical and 



xiv 

 

approximate analytical solutions in chapter four. Additional verification with 

ANSYS package and experimental results has been done in this chapter. In 

chapter five, the effects of lamination scheme, aspect ratio, material 

anisotropy, fiber orientations of layers, reversed lamination scheme and 

boundary conditions are investigated. In chapter six, the most important 

results have been summarized. 

The present study is suitable as a textbook for an advanced course on 

theories of plates and finite element techniques in mechanical and civil 

engineering curricula. It can be used also as a reference by engineers and 

scientists working in industry and academic institutions. 
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CHAPTER (1) 

Introduction 

1.1 General Introduction  

Composites were first considered as structural materials a little more 

than three quarters of a century ago. From that time to now, they have 

received increasing attention in all aspects of material science, manufacturing 

technology, and theoretical analysis. 

The term composite could mean almost anything if taken at face value, 

since all materials are composites of dissimilar subunits if examined at close 

enough details. But in modern materials engineering, the term usually refers 

to a matrix material that is reinforced with fibers. For instance, the term 

"FRP" which refers to Fiber Reinforced Plastic usually indicates a 

thermosetting polyester matrix containing glass fibers, and this particular 

composite has the lion's share of today commercial market. 

 Many composites used today are at the leading edge of materials 

technology, with performance and costs appropriate to ultra-demanding 

applications such as space crafts. But heterogeneous materials combining the 

best aspects of dissimilar constituents have been used by nature for millions 

of years. Ancient societies, imitating nature, used this approach as well: The 

book of Exodus speaks of using straw to reinforce mud in brick making, 

without which the bricks would have almost no strength. Here in Sudan, 

people from ancient times dated back to Meroe civilization, and up to now 

used zibala (i.e. animals’ dung) mixed with mud as a strong building material. 

 As seen in table (1.1) below, which is cited by David Roylance [1], 

Stephen et al. [2] and Turvey et al. [3], the fibers used in modern composites 

have strengths and stiffnesses far above those of traditional structural 

materials. The high strengths of the glass fibers are due to processing that 
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avoids the internal or external textures flaws which normally weaken glass, 

and the strength and stiffness of polymeric aramid fiber is a consequence of 

the nearly perfect alignment of the molecular chains with the fiber axis.   

Table (1.1) Properties of composite reinforcing fibers  

Material 
E 

(GN/m2) 

b  

(GN/m2) 

b  

(%) 

  

(Mg/m3) 

/E  

(MN.m/kg) 

 /b  

(MN.m/kg) 

E-glass 72.4 2.4 2.6 2.54 28.5 0.95 

S-glass 85.5 4.5 2.0 2.49 34.3 1.8 

Aramid 124 3.6 2.3 1.45 86 2.5 

Boron 400 3.5 1.0 2.45 163 1.43 

H S 

graphite 
253 4.5 1.1 1.80 140 2.5 

H M 

graphite 
520 2.4 0.6 1.85 281 1.3 

 

Where E is Young's modulus, b  is the breaking stress, b   is the breaking 

strain, and   is the mass density. 

These materials are not generally usable as fibers alone, and typically 

they are impregnated by a matrix material that acts to transfer loads to the 

fibers, and also to protect the fibers from abrasion and environmental attack. 

The matrix dilutes the properties to some degree, but even so very high 

specific (weight – adjusted) properties are available from these materials. 

Polymers are much more commonly used, with unsaturated styrene – 

hardened polyesters having the majority of low to medium performance 

applications and Epoxy or more sophisticated thermosets having the higher 

end of the market. Thermoplastic matrix composites are increasingly 

attractive materials, with processing difficulties being perhaps their principal 

limitation. 
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Recently, composite materials are increasingly used in many 

mechanical, civil, and aerospace engineering applications due to two desirable 

features: the first one is their high specific stiffness (i.e. stiffness per unit 

density) and high specific strength (i.e. strength per unit density), and the 

second is their properties that can be tailored through variation of the fiber 

orientation and stacking sequence which gives the designers a wide spectrum 

of flexibility. The incorporation of high strength, high modulus and low-

density filaments in a low strength and a low modulus matrix material is 

known to result in a structural composite material with a high strength to 

weight ratio. Thus, the potential of a two-material composite for use in 

aerospace, under-water, and automotive structures has stimulated 

considerable research activities in the theoretical prediction of the behavior of 

these materials. One commonly used composite structure consists of many 

layers bonded one on top of another to form a high-strength laminated 

composite plate. Each lamina is fiber reinforced along a single direction, with 

adjacent layers usually having different filament orientations. For these 

reasons, composites are continuing to replace other materials used in 

structures such as conventional materials. In fact, composites are the potential 

structural materials of the future as their cost continues to decrease due to the 

continuous improvements in production techniques and the expanding rate of 

sales.    

1.2 Structure of Composites 

 There are many situations in engineering where no single material will 

be suitable to meet a particular design requirement. However, two materials in 

combination may possess the desired properties and provide a feasible 

solution to the materials selection problem. A composite can be defined as a 

material that is composed of two or more distinct phases, usually a reinforced 

material supported in a compatible matrix, assembled in prescribed amounts 

to achieve specific physical and chemical properties.   
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In order to classify and characterize composite materials, distinction 

between the following two types is commonly accepted; see Vernon [4], Jan 

Stegmann and Erik Lund [5], and David Roylance [1]. 

 

1. Fibrous composite materials:  Which are composed of high strength 

fibers embedded in a matrix.  The functions of the matrix are to bond the 

fibers together to protect them from damage, and to transmit the load from 

one fiber to another. {See Fig. (1.1)}. 

2. Particulate composite materials: These are composed of particles encased 

within a tough matrix, e.g. powders or particles in a matrix like ceramics. 

 

Fig. (1.1) Structure of a fibrous composite 

In this study the focus will be on fiber reinforced composite materials, as 

they are the basic building element of a rectangular laminated plate structure. 

Typically, such a material consists of stacks of bonded-together layers (i.e. 

laminas or plies) made from fiber reinforced material. The layers will often be 

oriented in different directions to provide specific and directed strengths and 

stiffnesses of the laminate. Thus, the strengths and stiffnesses of the laminated 

fiber reinforced composite material can be tailored to the specific design 

requirements of the structural element being built. 
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1.2.1 Mechanical Properties of a Fiber Reinforced Lamina 

               Composite materials have many mechanical characteristics, which 

are different from those of conventional engineering materials such as metals. 

More precisely, composite materials are often both inhomogeneous and non-

isotropic. Therefore, and due to the inherent heterogeneous nature of 

composite materials, they can be studied from a micromechanical or a macro 

mechanical point of view. In micromechanics, the behavior of the 

inhomogeneous lamina is defined in terms of the constituent materials; 

whereas in macro mechanics the material is presumed homogeneous and the 

effects of the constituent materials are detected only as averaged apparent 

macroscopic properties of the composite material. This approach is generally 

accepted when modeling gross response of composite structures. The 

micromechanics approach is more convenient for the analysis of the 

composite material because it studies the volumetric percentages of the 

constituent materials for the desired lamina stiffnesses and strengths, i.e. the 

aim of micromechanics is to determine the moduli of elasticity and strength of 

a lamina in terms of the moduli of elasticity, and volumetric percentage of the 

fibers and the matrix. To explain further, both the fibers and the matrix are 

assumed homogeneous, isotropic and linearly elastic. 

1.2.1.1 Stiffness and Strength of a Lamina 

The fibers may be oriented randomly within the material, but it is also 

possible to arrange for them to be oriented preferentially in the direction 

expected to have the highest stresses. Such a material is said to be anisotropic 

(i.e. different properties in different directions), and control of the anisotropy 

is an important means of optimizing the material for specific applications. At 

a microscopic level, the properties of these composites are determined by the 

orientation and distribution of the fibers, as well as by the properties of the 

fiber and matrix materials. 
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Consider a typical region of material of unit dimensions, containing a 

volume fraction, Vf of fibers all oriented in a single direction. The matrix 

volume fraction is then, 
fm VV 1  . This region can be idealized by gathering 

all the fibers together, leaving the matrix to occupy the remaining volume. If a 

stress l  is applied along the fiber direction, the fiber and matrix phases act in 

parallel to support the load. In these parallel connections the strains in each 

phase must be the same, so the strain 
l  in the fiber direction can be written 

as: 

mfl                                                             (1.1) 

(Where: the subscripts l, f and m denote the lamina, fibers and matrix 

respectively). 

The forces in each phase must add to balance the total load on the material. 

Since the forces in each phase are the phase stresses times the area (here 

numerically equal to the volume fraction), we have  

                                
mlmflfmmffl VEVEVV                                   (1.2) 

The stiffness in the fiber direction is found by dividing the stress by the strain: 

                                mmff

l

l

l VEVEE 



                                              (1.3) 

(Where: E is the longitudinal Young's modulus)  

This relation is known as a rule of mixtures prediction of the overall modulus 

in terms of the moduli of the constituent phases and their volume fractions. 

 Rule of mixtures estimates for strength proceed along lines similar to 

those for stiffness. For instance, consider a unidirectional reinforced 

composite that is strained up to the value at which the fiber begins to fracture. 

If the matrix is more ductile than the fibers, then the ultimate tensile strength 

of the lamina in equation (1.2) will be transformed to: 

                                     f

f

mf

u

f

u

l VV  1                                                       (1.4) 
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Where the superscript u denotes an ultimate value, and f

m  is the matrix stress 

when the fibers fracture as shown in Fig. (1.2). 

 

Fig. (1.2) Stress-strain relationships for fiber and matrix 

 

It is clear that if the fiber volume fraction is very small, the behavior of the 

lamina is controlled by the matrix.  

This can be expressed mathematically as follows: 

                                      f

u

m

u

l V 1                                                        (1.5) 

If the lamina is assumed to be useful in practical applications, then there is a 

minimum fiber volume fraction that must be added to the matrix. This value is 

obtained by equating equations (1.4) and (1.5) i.e. 

                              
f

m

u

m

u

f

f

m

u

m

minV 







                                                    (1.6) 

The variation of the strength of the lamina with the fiber volume 

fraction is illustrated in Fig. (1.3). It is obvious that when 0 < 𝑉𝑓 < 𝑉𝑚𝑖𝑛 the 

strength of the lamina is dominated by the matrix deformation which is less 

than the matrix strength. But when the fiber volume fraction exceeds a critical 
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value (i.e. Vf > VCritical ), Then the lamina gains some strength due to the fiber 

reinforcement. 

ذ

Fig. (1.3) Variation of unidirectional lamina strength with the fiber 

volume fraction 

 

 The micromechanical approach is not responsible for the many defects 

which may arise in fibers, matrix, or lamina due to their manufacturing. These 

defects, if they exist include misalignment of fibers, cracks in matrix, non-

uniform distribution of the fibers in the matrix, voids in fibers and matrix, 

delaminated regions, and initial stresses in the lamina as a result of its 

manufacture and further treatment.  The above-mentioned defects tend to 

propagate as the lamina is loaded causing an accelerated rate of failure. The 

experimental and theoretical results in this case tend to differ. Hence, due to 

the limitations necessary in the idealization of the lamina components, the 

properties estimated on the basis of micromechanics should be proved 

experimentally. The proof includes a very simple physical test in which the 

lamina is considered homogeneous and orthotropic. In this test, the ultimate 

strength and modulus of elasticity in a direction parallel to the fiber direction 

can be determined experimentally by loading the lamina longitudinally. When 
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the test results are plotted, as in Fig. (1.4) below, the required properties may 

be evaluated as follows: - 

1212111 /    ;    /   ;   /    APE uu  

 

Fig. (1.4) Unidirectional lamina loaded in the fiber-direction 

 

Similarly, the properties of the lamina in a direction perpendicular to the fiber 

direction can be evaluated in the same procedure. 

1.2.1.2 Analytical Modeling of Composite Laminates 

 

 The properties of a composite laminate depend on the geometrical 

arrangement and the properties of its constituents. The exact analysis of such 

structure – property relationship is rather complex because of many variables 

involved. Therefore, a few simplifying assumptions regarding the structural 

details and the state of stress within the composite have been introduced. 

  It has been observed, that the concept of representative volume 

element and the selection of appropriate boundary conditions are very 

important in the discussion of micromechanics. The composite stress and 

strain are defined as the volume averages of the stress and strain fields, 
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respectively, within the representative volume element. By finding relations 

between the composite stresses and the composite strains in terms of the 

constituent properties, expressions for the composite moduli could be derived. 

In addition, it has been shown that, the results of advanced methods can be 

put in a form similar to the rule of mixtures equations. 

 Prediction of composite strengths is rather difficult because there are 

many unknown variables and also because failure critically depends on 

defects. However, the effects of constituents including fiber – matrix interface 

on composite strengths can be qualitatively explained. Certainly, failure 

modes can change depending on the material combinations.  Thus, an 

analytical model developed for one material combination cannot be expected 

to work for a different one. Ideally a truly analytical model will be applicable 

to material combination. However, such an analytical model is not available 

at present. Therefore, it has been chosen to provide models each of which is 

applicable only to a known failure mode. Yet, they can explain many of the 

effects of the constituents. (Refer to Ref. [2]). 

1.3 The Objectives of The Present Study 

 The present work involves a comprehensive study of the following 

objectives, which have been achieved over a period of five years: 

1. A survey of various plate theories and techniques used to predict the 

response of laminated plates under buckling loads. 

2. The development of a theoretical model capable of predicting buckling 

loads in a thin laminated plate. 

3. The development and application of the finite element technique for the 

analysis of rectangular laminated plates subjected to a buckling load. 

4. Investigation of the accuracy of the theoretical model through a wide 

range of theoretical and experimental comparisons. 
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5. Further investigations on the influence of coupling between bending and 

extension and/or twisting on the response of laminated plates could be 

carried out. 

6. Generation of new results based on classical laminated plate theory 

(CLPT). 
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Chapter (2) 

Literature Review   

2.1 Developments in The Theories of Laminated Plates 

 From the point of view of solid mechanics, the deformation of a plate 

subjected to transverse and / or in plane loading consists of two components: 

flexural deformation due to rotation of cross – sections, and shear deformation 

due to sliding of section or layers. The resulting deformation depends on two 

parameters: the thickness to length ratio and the ratio of elastic to shear 

moduli. When the thickness to length ratio is small, the plate is considered 

thin, and it deforms mainly by flexure or bending; whereas when the 

thickness to length and the modular ratios are both large, the plate deforms 

mainly through shear. Due to the high ratio of in – plane modulus to 

transverse shear modulus, the shear deformation effects are more pronounced 

in the composite laminates subjected to transverse and / or in – plane loads 

than in the isotropic plates under similar loading conditions. 

 The three – dimensional theories of laminates, in which each layer is 

treated as homogeneous anisotropic medium, (see Reddy [6]) are intractable. 

Usually, the anisotropy in laminated composite structures causes complicated 

responses under different loading conditions by creating complex couplings 

between extensions and bending, and shears deformation modes. Expect for 

certain cases, it is inconvenient to fully solve a problem in three dimensions 

due to the complexity, size of computation, and the production of unnecessary 

data specially for composite structures. 

Many theories which account for the transverse shear and normal 

stresses are available in the literature (see, for example Mindlin [7]). These 

are too numerous to review here. Only some classical papers and those which 

constitute a background for the present thesis will be considered. These 

theories are classified according to Phan and Reddy [8] into two major classes 
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on the basis of the assumed fields as: (1) stress based theories, and (2) 

displacement based theories. The stress – based theories are derived from 

stress fields which are assumed to vary linearly over the thickness of the 

plate: 

   
   1.26,2,1

26

2
 i

h

z

h

M i

i  

(Where iM  is the stress couples, h is the plate thickness, and z is the distance 

of the lamina from the plate mid – plane). 

The displacement – based theories are derived from an assumed displacement 

field as: 
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Where: u  , v  and w are the displacements of the middle plane of the plate. 

The governing equations are derived using principle of minimum total 

potential energy. The theory used in the present work comes under the class 

of displacement – based theories. Extensions of these theories which include 

the linear terms in z  in u  and v  and only the constant term in w , to account 

for higher – order variations and to laminated plates, can be found in the work 

of Yang, Norris and Stavsky [9] , Whitney and Pagano [10] and Phan and 

Reddy [8]. 

 Based on different assumptions for displacement fields, different 

theories for plate analysis have been devised. These theories can be divided 

into three major categories, the individual layer theories (IL), the equivalent 

single layer (ESL) theories, and the three-dimensional elasticity solution 

procedures. These categories are further divided into sub – theories by the 

introduction of different assumptions. For example, the second category 

ذ(2.2)
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includes the classical laminated plate theory (CLPT), the first order and 

higher order shear deformation theories (FSDT and HSDT) as stated in Refs. 

{[11] – [14]}. 

 In the individual layer laminate theories, each layer is considered as a 

separate plate. Since the displacement fields and equilibrium equations are 

written for each layer, adjacent layers must be matched at each interface by 

selecting appropriate interfacial conditions for displacements and stresses. In 

the ESL laminate theories, the stress or the displacement field is expressed as 

a linear combination of unknown functions and the coordinate along the 

thickness. If the in – plane displacements are expanded in terms of the 

thickness co – ordinate up to the nth power, the theory is named nth order shear 

deformation theory. The simplest ESL laminate theory is the classical 

laminated plate theory (CLPT). This theory is applicable to homogeneous thin 

plates (i.e. the length to thickness ratio a / h > 20). The classical laminated 

plate theory (CLPT), which is an extension of the classical plate theory (CPT) 

applied to laminated plates was the first theory formulated for the analysis of 

laminated plates by Reissner and Stavsky [15] in 1961 , in which the 

Kirchhoff and Love assumption that normal to the mid – surface before 

deformation remain straight and normal to the mid – surface after deformation 

is used (see Fig.(2.1)) , but it is not adequate for the flexural analysis of 

moderately thick laminates. However, it gives reasonably accurate results for 

many engineering problems i.e. thin composite plates, as stated by Srinivas 

and Rao [16], Reissner and Stavsky [15]. This theory ignores the transverse 

shear stress components and models a laminate as an equivalent single layer. 

The classical laminated plate theory (CLPT) under – predicts deflections as 

proved by Turvey and Osman [17], [18], [19] and Reddy [6] due to the 

neglect of transverse shear strain. The errors in deflection are even higher for 

plates made of advanced filamentary composite materials like graphite – 

epoxy and boron – epoxy whose elastic modulus to shear modulus ratios are 

very large (i.e. of the order of 25 to 40, instead of 2.6 for typical isotropic 
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materials). However, these composites are susceptible to thickness effects 

because their effective transverse shear moduli are significantly smaller than 

the effective elastic modulus along the fiber direction. This effect has been 

confirmed by Pagano [20] who obtained analytical solutions of laminated 

plates in bending based on the three – dimensional theory of elasticity. He 

proved that classical laminated plate theory (CLPT) becomes of less accuracy 

as the side to thickness ratio decreases. In particular, the deflection of a plate 

predicted by CLPT is considerably smaller than the analytical value for side 

to thickness ratio less than 10. These high ratios of elastic modulus to shear 

modulus render classical laminate theory as inadequate for the analysis of 

composite plates. In the first order shear deformation theory (FSDT), the 

transverse planes, which are originally normal and straight to the mid – plane 

of the plate, are assumed to remain straight but not necessarily normal after 

deformation, and consequently shear correction factors are employed in this 

theory to adjust the transverse shear stress, which is constant through 

thickness (see Fig. (2.1)). Recently Reddy [6] and Phan and Reddy [8] 

presented refined plate theories that used the idea of expanding displacements 

in the powers of thickness coordinate. The main novelty of these works is to 

expand the in – plane displacements as cubic functions of the thickness 

coordinate, treat the transverse deflection as a function of the x  and y

coordinates, and eliminate the functions 
2u  , 3u , 

2v  and 3v from equation (2.2) 

by requiring that the transverse shear stress be zero on the bounding planes of 

the plate. Numerous studies involving the application of the first – order 

theory to bending, vibration and buckling analyses can be found in the works 

of Reddy [20], and Reddy and Chao [21].  

 In order to include the curvature of the normal after deformation, a 

number of theories known as higher – order shear deformation theories 

(HSDT) have been devised in which the displacements are assumed quadratic 

or cubic through the thickness of the plate. In this aspect, a variationally  
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Fig. (2.1) Assumed deformation of the transverse normal in various 

displacement base plate theories 
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consistent higher – order theory which not only accounts for the shear 

deformation but also satisfies the zero transverse shear stress conditions on 

the top and bottom faces of the plate and does not require correction factors 

was suggested by Reddy [6]. Reddy's modifications consist of a more 

systematic derivation of displacement field and variationally consistent 

derivation of the equilibrium equations. The refined laminate plate theory 

predicts a parabolic distribution of the transverse shear stresses through the 

thickness, and requires no shear correction coefficients. 

 In the non – linear analysis of plates considering higher – order shear 

deformation theory (HSDT), shear deformation has received considerably less 

attention compared with linear analysis. This is due to the geometric non – 

linearity which arises from finite deformations of an elastic body and which 

causes more complications in the analysis of composite plates. Therefore, 

fiber – reinforced material properties and lamination geometry have to be 

taken into account. In the case of anti – symmetric and unsymmetrical 

laminates, the existence of coupling between stretching and bending 

complicates the problem further. Non – linear solutions of laminated plates 

using higher – order theories have been obtained through several techniques, 

i. e. perturbation method as in Ref. [22], finite element method as in Ref. [23], 

the increment of lateral displacement method as in Ref. [24], and the small 

parameter method as in Ref. [25]. 

           In the present work, the analysis uses the classical laminated plate 

theory (CLPT) which does not account for transverse shear deformations. In 

this theory it is assumed that the laminate is in a state of plane stress, the 

individual lamina is linearly elastic, and there is perfect bonding between 

layers. The classical laminated plate theory assumes that normal to the mid – 

surface before deformation remains straight and normal to the mid – surface 

after deformation. Therefore, this theory is adequate for buckling analysis of 

thin laminates. A Fortran program has been compiled, the convergence and 
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accuracy of the FE solutions for biaxial buckling of thin laminated rectangular 

plates are established by comparison with various theoretical and 

experimental solutions and new numerical results are generated.     

2.2 Numerical Techniques 

Several numerical methods could be used in this study, but the main 

ones are finite difference method (FDM), dynamic relaxation coupled with 

finite difference method (DR), and finite element method (FEM). 

In the finite difference method, the solution domain is divided into a 

grid of discrete points or nodes. The partial differential equation is then 

written for each node and its derivatives are replaced by finite divided 

differences. Although such point – wise approximation is conceptually easy to 

understand, it becomes difficult to apply for system with irregular geometry, 

unusual boundary conditions, and heterogeneous composition. 

 The DR method was first proposed in 1960th; see Rushton [26], Cassel 

and Hobbs [27], and Day [28]. In this method, the equations of equilibrium 

are converted to dynamic equations by adding damping and inertia terms. 

These are then expressed in finite difference form and the solution is obtained 

through iterations. The optimum damping coefficient and the time increment 

used to stabilize the solution depend on the stiffness matrix of the structure, 

the applied load, the boundary conditions and the size of mesh used. 

 In the present work, a numerical method known as finite element 

method (FEM) is used. It is a numerical procedure for obtaining solutions to 

many of the problems encountered in engineering analysis. It has two primary 

subdivisions. The first utilizes discrete elements to obtain the joint 

displacements and member forces of a structural framework. The second uses 

the continuum elements to obtain approximate solutions to heat transfer, fluid 

mechanics, and solid mechanics problem. The formulation using the discrete 

element is referred to as matrix analysis of structures and yields results 

identical with the classical analysis of structural frameworks. The second 
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approach is the true finite element method. It yields approximate values of the 

desired parameters at specific points called nodes. A general finite element 

computers program, however, is capable of solving both types of problems 

and the name" finite element method" is often used to denote both the discrete 

element and the continuum element formulations. 

 The finite element method combines several mathematical concepts to 

produce a system of linear and non – linear equations. The number of 

equations is usually very large, anywhere from 20 to 20,000 or more and 

requires the computational power of the digital computer. 

 It is impossible to document the exact origin of the finite element 

method because the basic concepts have evolved over a period of 150 or more 

years. The method as we know it today is an outgrowth of several papers 

published in the 1950th that extended the matrix analysis of structures to 

continuum bodies. The space exploration of the 1960th provided money for 

basic research, which placed the method of a firm mathematical foundation 

and stimulated the development of multi – purpose computer programs that 

implemented the method. The design of airplanes, unmanned drones, missiles, 

space capsules, and the like, provided application areas. 

 The finite element method (FEM) is a powerful numerical method, 

which is used as a computational technique for the solution of differential 

equations that arise in various fields of engineering and applied sciences. The 

finite element method is based on the concept that one can replace any 

continuum by an assemblage of simply shaped elements, called finite 

elements with well-defined force, displacement, and material relationships. 

While one may not be able to derive a closed – form solution for the 

continuum, one can derive approximate solutions for the element assemblage 

that replaces it. The approximate solutions or approximation functions are 

often constructed using ideas from interpolation theory, and hence they are 
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also called interpolation functions. For more details refer to Refs. {[29] – 

[31]}. 

 In a comparison between the finite element method (FEM) and 

dynamic relaxation method (DR), Aalami [32] found that the computer time 

required for the finite element method is eight times greater than for DR 

analysis, whereas the storage capacity for FEM is ten times or more than that 

for DR analysis. This fact is supported by Putcher and Reddy [23], and 

Turvey and Osman {[17] – [19]} who noted that some of the finite element 

formulations require large storage capacity and computer time. Hence due to 

the large computations involved in the present study, the finite element 

method (FEM) is considered more efficient than the DR method. In another 

comparison, Aalami [32] found that the difference in accuracy between one 

version of FEM and DR may reach a value of more than 15 % in favor of 

FEM. Therefore, the FEM can be considered of acceptable accuracy. The 

apparent limitation of the DR method is that it can only be applied to limited 

geometries, whereas the FEM can be applied to different intricate geometries 

and shapes. 

2.3 The Past Work of Buckling Analysis 

 Composite materials are widely used in a broad spectrum of modern 

engineering application fields ranging from traditional fields such as 

automobiles, robotics, day to day appliances, building industry etc. This is 

due to their excellent high strength to weight ratio, modulus to weight ratio, 

and the controllability of the structural properties with the variation of fiber 

orientation, stacking scheme and the number of laminates. Among the various 

aspects of the structural performance of structures made of composite 

materials is the mechanical behavior of rectangular laminated plates which 

has drawn much attention. In particular, consideration of the buckling 

phenomena in such plates is essential for the efficient and reliable design and 

for the safe use of the structural element. Due to the anisotropic and coupled 
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material behavior, the analysis of composite laminated plates is generally 

more complicated than the analysis of homogeneous isotropic ones. 

The members and structures composed of laminated composite material 

are usually very thin, and hence more prone to buckling. Buckling 

phenomenon is critically dangerous to structural components because the 

buckling of composite plates usually occurs at a lower applied stress and 

generates large deformations. This led to a focus on the study of buckling 

behavior in composite materials. General introductions to the buckling of 

elastic structures and of laminated plates can be found in e.g. Refs. {[33] – 

[46]}. However, these available curves and data are restricted to idealized 

loading, namely, uniaxial or biaxial uniform compression. 

Due to the importance of buckling considerations, there is an 

overwhelming number of investigations available in which corresponding 

stability problems are considered by a wide variety of analysis methods which 

may be of a closed – form analytical nature or may be sorted into the class of 

semi – analytical or purely numerical analysis method. 

Closed – form exact solutions for the buckling problem of rectangular 

composite plates are available only for limited combinations of boundary 

conditions and laminated schemes. These include cross – ply symmetric and 

angle – ply anti – symmetric rectangular laminates with at least two opposite 

edges simply supported, and similar plates with two opposite edges clamped 

but free to deflect (i.e. guided clamp) or with one edge simply supported and 

the opposite edge with a guided clamp. Most of the exact solutions discussed 

in the monographs of Whitney [47] who developed an exact solution for 

critical buckling of solid rectangular orthotropic plates with all edges simply 

supported, and of Reddy {[48] – [51]} and Leissa and Kang [52], and that of 

Refs. [39] and [53]. Bao et al. [54] developed an exact solution for two edges 

simply supported and two edges clamped, and Robinson [55] who developed 
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an exact solution for the critical buckling stress of an orthotropic sandwich 

plate with all edges simply supported. 

For all other configurations, for which only approximated results are 

available, several semi – analytical and numerical techniques have been 

developed. The Rayleigh – Ritz method [53] and [56], the finite strip method 

(FSM) [36] and [57], the element free Galerkin method (EFG) [58], the 

differential quadrature technique [59], the moving least square differential 

quadrature method [60] and the most extensively used finite element method 

(FEM) [61] are the most common ones. 

The Kantorovich method (KM) {[62] – [64]}, which is a different and 

in most cases advantageous semi – analytical method, combines a variation 

approach of closed – form solutions and an iterative procedure. The method 

assumes a solution in the form of a sum of products of functions in one 

direction and functions in the other direction. Then, by assuming the function 

in one direction, the variation problem of the plate reduces to a set of ordinary 

differential equations. In the case of buckling analysis, the variation problem 

reduces to an ordinary differential eigenvalue and eigenfunction problem. The 

solution of the resulting problem is an approximate one, and its accuracy 

depends on the assumed functions in the first direction. The extended 

Kantorovich method (EKM), which was proposed by Kerr [65], is the starting 

point for an iterative procedure, where the solution obtained in one direction 

is used as the assumed functions in the second direction. After repeating this 

process several times, convergence is obtained. The single term extended 

Kantorovich method was employed for a buckling analysis of rectangular 

plates by several researches. Eienberger and Alexandrov [66] used the method 

for the buckling analysis of isotropic plates with variable thickness. Shufrin 

and Eienberger [67] and [68] extended the solution to thick plates with 

constant and variable thickness using the first and higher order shear 

deformation theories. Ungbhakorn and Singhatanadgid [69] extended the 
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solution to buckling of symmetrically cross – ply laminated rectangular 

plates. The multi – term formulation of the extended Kantorovich approach to 

the simplest samples of rectangular isotropic plates was presented by Yuan 

and Jin [70]. This study showed that the additional terms in the expansion can 

be used in order to improve the solution. 

March and Smith [71] found an approximate solution for all edges 

clamped. Also, Chang et al. [72] developed approximate solution to the 

buckling of rectangular orthotropic sandwich plate with two edges simply 

supported and two edges clamped or all edges clamped using the March – 

Erickson method and an energy technique. Jiang et al. [73] developed 

solutions for local buckling of rectangular orthotropic hat – stiffened plates 

with edges parallel to the stiffeners were simply supported or clamped and 

edges parallel to the stiffeners were free, and Smith [74] presented solutions 

bounding the local buckling of hat stiffened plates by considering the section 

between stiffeners as simply supported or clamped plates. 

Many authors have used finite element method to predict accurate in – 

plane stress distribution which is then used to solve the buckling problem. 

Zienkiewicz [75] and Cook [76] have clearly presented an approach for 

finding the buckling strength of plates by first solving the linear elastic 

problem for a reference load and then the eigenvalue problem for the smallest 

eigenvalue which then multiplied by the reference load gives the critical 

buckling load of the structure. An excellent review of the development of 

plate finite elements during the past 35 years was presented by Yang et al. 

[77]. 

Many buckling analyses of composite plates available in the literature 

are usually realized parallel with the vibration analyses, and are based on two 

– dimensional plate theories which may be classified as classical and shear 

deformable ones. Classical plate theories (CPT) do not take into account the 

shear deformation effects and over predict the critical buckling loads for 
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thicker composite plates, and even for thin ones with a higher anisotropy. 

Most of the shear deformable plate theories are usually based on a 

displacement field assumption with five unknown displacement components. 

As three of these components corresponded to the ones in CPT, the additional 

ones are multiplied by a certain function of thickness coordinate and added to 

the displacements field of CPT in order to take into account the shear 

deformation effects. Taking these functions as linear and cubic forms leads to 

the so – called uniform or Mindlin shear deformable plate theory (USDPT) 

[78], and parabolic shear deformable plate theories (PSDPT) [79] 

respectively. Different forms were also employed such as hyperbolic shear 

deformable plate theory (HSDPT) [80], and trigonometric or sine functions 

shear deformable plate theory (TSDPT) [81] by researchers. Since these types 

of shear deformation theories do not satisfy the continuity conditions among 

many layers of the composite structures, the zig – zag type of the plate 

theories introduced by Di Sciuva [82], and Cho and Parmeter [83] in order to 

consider interlaminar stress continuities. Recently, Karama et al. [84] 

proposed a new exponential function {i.e. exponential shear deformable plate 

theory (ESDPT)} in the displacement field of the composite laminated 

structures for the representation of the shear stress distribution along the 

thickness of the composite structures and compared their result for static and 

dynamic problem of the composite beams with the sine model. 

Within the classical lamination theory, Jones [85] presented a closed – 

form solution for the buckling problem of cross – ply laminated plates with 

simply supported boundary conditions. In the case of multi – layered plates 

subjected to various boundary conditions which are different from simply 

supported boundary conditions at all of their four edges, the governing 

equations of the buckling of the composite plates do not admit an exact 

solution, except for some special arrangements of laminated plates. Thus, for 

the solution of these types of problems, different analytical and / or numerical 

methods are employed by various researchers. Baharlou and Leissa [56] used 
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the Ritz method with simple polynomials as displacement functions, within 

the classical theory, for the problem of buckling of cross and angle – ply 

laminated plates with arbitrary boundary conditions and different in – plane 

loads. Narita and Leissa [86] also applied the Ritz method with the 

displacement components assumed as the double series of trigonometric 

functions for the buckling problem of generally symmetric laminated 

composite rectangular plates with simply supported boundary conditions at all 

their edges. They investigated the critical buckling loads for five different 

types of loading conditions which are uniaxial compression (UA – C), biaxial 

compression (BA – C), biaxial compression – tension (BA – CT), and 

positive and negative shear loadings. 

The higher – order shear deformation theories can yield more accurate 

inter – laminate stress distributions. The introduction of cubic variation of 

displacement also avoids the need for shear correction displacement. To 

achieve a reliable analysis and safe design, the proposals and developments of 

models using higher order shear deformation theories have been considered. 

Lo et al. [87] and [ 88] reviewed the pioneering work on the field and 

formulated a theory which accounts for the effects of transverse shear 

deformation, transverse strain and non – linear distribution of the in – plane 

displacements with respect to the thickness coordinate. Third – order theories 

have been proposed by Reddy {[89] – [92]}, Librescu [93], Schmidt [94], 

Murty [95], Levinson [96], Seide [97], Murthy [98], Bhimaraddi [99], 

Mallikarjuna and Kant [100], Kant and Pandya [101], and Phan and Reddy 

[8], among others. Pioneering work and overviews in the field covering 

closed – form solutions and finite element models can be found in Reddy 

[90], [102], [103], Mallikarjuna and Kant [100], Noor and Burton [104], Bert 

[105], Kant and Kommineni [106], and Reddy and Robbins [107] among 

others. 
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 For the buckling analysis of the cross – ply laminated plates subjected 

to simply supported boundary conditions at their opposite two edges and 

different boundary conditions at the remaining ones Khdeir [108] and Reddy 

and Khdeir [51] used a parabolic shear deformation theory and applied the 

state – space technique. Hadian and Nayfeh [109], on the basis of the same 

theory and for the same type of problem, needed to modify the technique due 

to ill – conditioning problems encountered especially for thin and moderately 

thick plates. The buckling analyses of completely simply supported cross – 

ply laminated plates were presented by Fares and Zenkour [110], who added a 

non – homogeneity coefficient in the material stiffnesses within various plate 

theories, and by Matsunaga [111] who employed a global higher order plate 

theory. Gilat el al. [112] also investigated the same type of problem on the 

basic of a global – local plate theory where the displacement field is 

composed of global and local contributions, such that the requirement of the 

continuity conditions and delamination effects can be incorporated into 

formulation.  

 Many investigations have been reported for static and stability analysis 

of composite laminates using different traditional methods. Pagano [113] 

developed an exact three – dimensional (3 – D) elasticity solution for static 

analysis of rectangular bi – directional composites and sandwich plates. Noor 

[114] presented a solution for stability of multi – layered composite plates 

based on 3 – D elasticity theory by solving equations with finite difference 

method. Also, 3 – D elasticity solutions are presented by Gu and 

Chattopadhyay [115] for the buckling of simply supported orthotropic 

composite plates. When the problem is reduced from a three – dimensional 

one (3 – D) to a two-dimensional case to contemplate more efficiently the 

computational analysis of plate composite structures, the displacement based 

theories and the corresponding finite element models receive the most 

attention [116]. 
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Bifurcation buckling of laminated structures has been investigated by 

many researchers without considering the flatness before buckling [117]. This 

point was first clarified for laminated composite plates for some boundary 

conditions and for some lamina configurations by Leissa [117]. Qatu and 

Leissa [118] applied this result to identify true buckling behavior of 

composite plates. Elastic bifurcation of plates has been extensively studied 

and well documented in standard texts e.g. [33] and [119], research 

monographs {[120] – [122]} and journal papers {[123] – [126]}. 

It is important to recognize that, with the advent of composite media, 

certain new material imperfections can be found in composite structures in 

addition to the better – known imperfections that one finds in metallic 

structures. Thus, broken fibers, delaminated regions, cracks in the matrix 

material, as well as holes, foreign inclusions and small voids constitute 

material and structural imperfections that can exist in composite structures. 

Imperfections have always existed and their effect on the structural response 

of a system has been very significant in many cases. These imperfections can 

be classified into two broad categories: initial geometrical imperfections and 

material or constructional imperfections. 

The first category includes geometrical imperfections in the structural 

configuration (such as a local out of roundness of a circular cylindrical shell, 

which makes the cylindrical shell non – circular; a small initial curvature in a 

flat plate or rod, which makes the structure non – flat, etc.), as well as 

imperfections in the loading mechanisms (such as load eccentricities; an 

axially loaded column is loaded at one end in such a manner that a bending 

moment exists at that end). The effect of these imperfections on the response 

of structural systems has been investigated by many researchers and the result 

of these efforts can be easily found in books [3], as well in published papers 

[127] – [144]. 
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The second class of imperfections is equally important, but has not 

received as much attentions as the first class; especially as far as its effect on 

the buckling response characteristics is concerned. For metallic materials, one 

can find several studies which deal with the effect of material imperfections 

on the fatigue life of the structural component. Moreover, there exist a 

number of investigations that deal with the effect of cut – outs and holes on 

the stress and deformation response of thin plates. Another material 

imperfection is the rigid inclusion. The effect of rigid inclusions on the stress 

field of the medium in the neighborhood of the inclusion has received limited 

attention. The interested reader is referred to the bibliography of Professor 

Naruoka [127]. 

There exist two important classes of material and constructional – type 

imperfections, which are very important in the safe design, especially of 

aircraft and spacecraft. These classes consist of fatigue cracks or cracks in 

general and delamination in systems that employ laminates (i.e. fiber – 

reinforced composites). There is considerable work in the area of stress 

concentration at crack tips and crack propagation. Very few investigations are 

cited, herein, for the sake of brevity. These include primarily those dealing 

with plates and shells and non – isotropic construction. Some deal with cracks 

in metallic plates and shells {[145] – [148]}. Others deal with non – isotropic 

construction and investigate the effects of non – isotropy {[149] – [154]}. In 

all of these studies, there is no mention of the effect of the crack presence on 

the overall stability or instability of the system. 

Finally, delamination is one of the most commonly found defects in 

laminated structural components. Most of the work found in the literature 

deals with flat configurations. 

Composite structures often contain delamination. Causes of 

delamination are many and include tool drops, bird strikes, runway debris hits 

and manufacturing defects. Moreover, in some cases, especially in the vicinity 
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of holes or close to edges in general, delamination starts because of the 

development of interlaminar stresses. Several analyses have been reported on 

the subject of edge delamination and its importance in the design of laminated 

structures. A few of these works are cited {[155] – [161]}. These and their 

cited references form a good basis for the interested reader. The type of 

delamination that comprises the basic and primary treatise is the one that is 

found to be present away from the edges (internal). This delaminating could 

be present before the laminate is loaded or it could develop after loading 

because of foreign body (birds, micrometer, and debris) impact. This is an 

extremely important problem especially for laminated structures that are 

subject to destabilizing loads (loads that can induce instability in the structure 

and possibly cause growth of the delamination; both of these phenomena 

contribute to failure of the laminate). The presence of delamination in these 

situations may cause local buckling and / or trigger global buckling and 

therefore induce a reduction in the overall load – bearing capacity of the 

laminated structure. The problem, because of its importance, has received 

considerable attention. 

 In the present study, the composite media are assumed free of 

imperfections i.e. initial geometrical imperfections due to initial distortion of 

the structure, and material and / or constructional imperfections such as 

broken fibers, delaminated regions, cracks in the matrix material, foreign 

inclusions and small voids which are due to inconvenient selection of fibers / 

matrix materials and manufacturing defects. Therefore, the fibers and matrix 

are assumed perfectly bonded. 
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Chapter (3) 

Mathematical Formulations and Numerical Modeling 

3.1 Introduction 

The following assumptions were made in developing the mathematical 

formulations of laminated plates: 

1. All layers behave elastically; 

2. Displacements are small compared with the plate thickness; 

3. Perfect bonding exists between layers; 

4. The laminate is equivalent to a single anisotropic layer;  

5. The plate is flat and has a constant thickness;  

6. The plate buckles in a vacuum and all kinds of damping are neglected. 

Unlike homogeneous plates, where the coordinates are chosen solely 

based on the plate shape, coordinates for laminated plates should be chosen 

carefully. There are two main factors for the choice of the coordinate system. 

The first factor is the shape of the plate. Where rectangular plates will be best 

represented by the choice of rectangular (i.e. cartesian) coordinates. It will be 

relatively easy to represent the boundaries of such plates with coordinates. 

The second factor is the fiber orientation or orthotropy. If the fibers are set 

straight within each lamina, then rectangular orthotropy would result. It is 

possible to set the fibers in a radial and circular fashion, which would result in 

circular orthotropy. Indeed, the fibers can also be set in elliptical directions, 

which would result in elliptical orthotropy. 

The choice of the coordinate system is of critical importance for 

laminated plates. This is because plates with rectangular orthotropy could be 

set on rectangular, triangular, circular or other boundaries. Composite 

materials with rectangular orthotropy are the most popular, mainly because of 
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their ease in design and manufacturing. The equations that follow are 

developed for materials with rectangular orthotropy. 

Fig. (3.1) below shows the geometry of a plate with rectangular 

orthotropy drawn in the cartesian coordinates X, Y, and Z or 1, 2, and 3. The 

parameters used in such a plate are: (1) the length in the X-direction, (a); (2) 

the length in the Y – direction (i.e. breadth), (b); and (3) the length in the Z – 

direction (i.e. thickness), (h). 

 

 

Fig. 3.1 The geometry of a laminated composite plate 

 

3.2 Fundamental Equations of Elasticity 

Classical laminated plate theory (CLPT) is selected to formulate the 

problem. Consider a thin plate of length a, breadth b, and thickness h as 

shown in Fig. (3.2(a)), subjected to in – plane loads Rx, Ry and Rxy as shown 

in Fig. (3.2(b)). The in – plane displacements 𝑢 (𝑥, 𝑦, 𝑧) and 𝑣 (𝑥, 𝑦, 𝑧) can be 

expressed in terms of the out of plane displacement 𝑤 (𝑥, 𝑦) as shown below: 
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The displacements are: 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢𝑜(𝑥, 𝑦) − 𝑧
𝜕𝑤

𝜕𝑥

𝑣(𝑥, 𝑦, 𝑧) = 𝑣𝑜(𝑥, 𝑦) − 𝑧
𝜕𝑤

𝜕𝑦

𝑤(𝑥, 𝑦, 𝑧) = 𝑤𝑜(𝑥, 𝑦)              }
 
 

 
 

                                            (3.1) 

Where 𝑢𝑜, 𝑣𝑜 and 𝑤𝑜 are mid – plane displacements in the direction of the 𝑥, 

𝑦 and 𝑧 axes respectively; 𝑧 is the perpendicular distance from mid – plane to 

the layer plane. 

 

                              ( a )                                                                       ( b )   

Fig. 3.2 A plate showing dimensions and deformations 
 

 

Fig. 3.3 Geometry of an n-layered laminate 

The plate shown in Fig. (3.2(a)) is constructed of an arbitrary number of 

orthotropic layers bonded together as in Fig. (3.3) above. 
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The strains are: 

𝜖𝑥 =
𝜕𝑢𝑜
𝜕𝑥

− 𝑧
𝜕2𝑤

𝜕𝑥2
+
1

2
(
𝜕𝑤

𝜕𝑥
)
2

                     

𝜖𝑦 =
𝜕𝑣𝑜
𝜕𝑦

− 𝑧
𝜕2𝑤

𝜕𝑦2
+
1

2
(
𝜕𝑤

𝜕𝑦
)
2

                      

𝛾 =
𝜕𝑣𝑜
𝜕𝑥

+
𝜕𝑢𝑜
𝜕𝑦

− 2𝑧
𝜕2𝑤

𝜕𝑥𝜕𝑦
+ (

𝜕𝑤

𝜕𝑥
) (
𝜕𝑤

𝜕𝑦
)

 

}
  
 

  
 

                                     (3.2) 

The virtual strains: 

𝛿𝜖𝑥 =
𝜕

𝜕𝑥
𝛿𝑢𝑜 − 𝑧

𝜕2

𝜕𝑥2
𝛿𝑤 +

𝜕𝑤

𝜕𝑥

𝜕

𝜕𝑥
𝛿𝑤                                             

𝛿𝜖𝑦 =
𝜕

𝜕𝑦
𝛿𝑣𝑜 − 𝑧

𝜕2

𝜕𝑦2
𝛿𝑤 +

𝜕𝑤

𝜕𝑦

𝜕

𝜕𝑦
𝛿𝑤                                              

𝛿𝛾 =
𝜕

𝜕𝑥
𝛿𝑣𝑜 +

𝜕

𝜕𝑦
𝛿𝑢𝑜 − 2𝑧

𝜕2

𝜕𝑥𝜕𝑦
𝛿𝑤 +

𝜕𝑤

𝜕𝑥

𝜕

𝜕𝑦
𝛿𝑤 +

𝜕

𝜕𝑥
𝛿𝑤

𝜕𝑤

𝜕𝑦

 

}
  
 

  
 

          (3.3) 

The virtual strain energy: 

𝛿𝑈 = ∫ 𝛿𝜖𝑇𝜎𝑑𝑉
𝑉

                                                       (3.4) 

But, 

           𝜎 = 𝐶𝜖 

Where, 

         𝐶 = 𝐶𝑖𝑗(𝑖, 𝑗 = 1, 2, 6) 

∴  𝛿𝑈 = ∫ 𝛿𝜖𝑇  𝐶 𝛿𝜖 𝑑𝑉
𝑉

                                                          (3.5) 

If we neglect the in-plane displacements 𝑢𝑜 and 𝑣𝑜 and considering only the 

linear terms in the strain – displacement equations, we write: 

𝛿𝜖 = −𝑧

|

|

𝜕2

𝜕𝑥2

𝜕2

𝜕𝑦2

2
𝜕2

𝜕𝑥𝜕𝑦

|

|

𝛿𝑤                                                    (3.6) 



34 

 

3.3 The Numerical Method 

The finite element is used in this analysis as a numerical method to 

predict the buckling loads and shape modes of buckling of laminated 

rectangular plates. In this method of analysis, four – noded type of elements is 

chosen. These elements are the four – noded bilinear rectangular elements of 

a plate. Each element has three degrees of freedom at each node. The degrees 

of freedom are the lateral displacement (𝑤), and the rotations (𝜙) and (𝜓) 

about the (𝑋) and (𝑌) axes respectively.  

The finite element method is formulated by the energy method. The 

numerical method can be summarized in the following procedures: 

1. The choice of the element and its shape functions. 

2. Formulation of finite element model by the energy approach to develop 

both element stiffness and differential matrices. 

3. Employment of the principles of non – dimensionality to convert the 

element matrices to their non – dimensional forms. 

4. Assembly of both element stiffness and differential matrices to obtain the 

corresponding global matrices. 

5. Introduction of boundary conditions as required for the plate edges. 

6. Suitable software can be used to solve the problem (here two software 

were utilized, FORTRAN and ANSYS). 

For an 𝑛 noded element, and 3 degrees of freedom at each node. 

Now express 𝑤 in terms of the shape functions 𝑁 (given in Appendix (B)) 

and noded displacements 𝑎𝑒, equation (3.6) can be written as: 

𝛿𝜖 = −𝑧𝐵𝛿𝑎𝑒                                                              (3.7) 

Where, 

𝐵𝑇 = [
𝜕2𝑁𝑖
𝜕𝑥2

𝜕2𝑁𝑖
𝜕𝑦2

2
𝜕2𝑁𝑖
𝜕𝑥𝜕𝑦

] 

and 
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𝑁𝑖𝑎𝑖
𝑒 = [𝑤𝑖]      𝑖 = 1, 𝑛 

The stress – strain relation is: 

𝜎 = 𝐶 𝜖 

Where 𝐶 are the material properties which could be written as follows: 

𝐶 = [

𝐶11 𝐶12 𝐶16
𝐶12 𝐶22 𝐶26
𝐶16 𝐶26 𝐶66

] 

Where 𝐶𝑖𝑗 are given in Appendix (A). 

𝛿𝑈 = ∫ (𝐵𝛿𝑎𝑒)𝑇(𝐶𝑧2)𝐵𝑎𝑒𝑑𝑉
𝑉

 

Where 𝑉 denotes volume. 

𝛿𝑈 = 𝛿𝑎𝑒𝑇∫ 𝐵𝑇𝐷𝐵𝑎𝑒𝑑𝑥 𝑑𝑦
𝑉

= 𝛿𝑎𝑒𝑇  𝐾𝑒𝑎𝑒                          (3.8) 

Where 𝐷𝑖𝑗 = ∑ ∫ 𝐶𝑖𝑗𝑍
2 𝑑𝑍

𝑍𝑘
𝑍𝑘−1

𝑛
𝑘=1  is the bending stiffness, and 𝐾𝑒 is the 

element stiffness matrix which could be written as follows:  

𝐾𝑒 = ∫𝐵𝑇𝐷𝐵 𝑑𝑥𝑑𝑦                                            (3.9) 

The virtual work done by external forces can be expressed as follows: Refer 

to Fig. (3.4). 

Denoting the nonlinear part of strain by 𝛿𝜖′ 

𝛿𝑊 =∬𝛿𝜖′𝑇𝜎′𝑑𝑉 = ∫𝛿𝜖′𝑇𝑁 𝑑𝑥𝑑𝑦                            (3.10) 

Where 

      𝑁𝑇 = [𝑁𝑥 𝑁𝑦 𝑁𝑥𝑦] = [𝜎𝑥 𝜎𝑦 𝜏] 𝑑𝑍 
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𝛿𝜖′ = [

𝛿𝜖𝑥
𝛿𝜖𝑦
𝛿𝛾
] =

[
 
 
 
 
 
 
𝜕

𝜕𝑥
𝛿𝑤 0

0
𝜕

𝜕𝑦
𝛿𝑤

𝜕

𝜕𝑦
𝛿𝑤

𝜕

𝜕𝑥
𝛿𝑤
]
 
 
 
 
 
 

[
 
 
 
𝜕𝑤

𝜕𝑥
𝜕𝑤

𝜕𝑦]
 
 
 

                            (3.11) 

 
 

Fig. (3.4) External forces acting on an element 

Hence 

𝛿𝑊 =∬

[
 
 
 
𝜕𝑤

𝜕𝑥
𝜕𝑤

𝜕𝑦]
 
 
 
𝑇

[
 
 
 
 
𝜕

𝜕𝑥
𝛿𝑤 0

𝜕

𝜕𝑦
𝛿𝑤

0
𝜕

𝜕𝑦
𝛿𝑤

𝜕

𝜕𝑥
𝛿𝑤
]
 
 
 
 

[

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

] 𝑑𝑥 𝑑𝑦                    (3.12) 

This can be written as: 

𝛿𝑊 =∬

[
 
 
 
𝜕

𝜕𝑥
𝛿𝑤

𝜕

𝜕𝑦
𝛿𝑤
]
 
 
 
𝑇

[
𝑁𝑥 𝑁𝑥𝑦
𝑁𝑥𝑦 𝑁𝑦

]

[
 
 
 
𝜕𝑤

𝜕𝑥
𝜕𝑤

𝜕𝑦]
 
 
 

𝑑𝑥 𝑑𝑦                      (3.13) 

Now  𝑤 = 𝑁𝑖𝑎𝑖
𝑒 
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𝛿𝑊 = 𝛿𝑎𝑒𝑇∬

[
 
 
 
𝜕𝑁𝑖
𝜕𝑥
𝜕𝑁𝑖
𝜕𝑦 ]
 
 
 
𝑇

[
𝑁𝑥 𝑁𝑥𝑦
𝑁𝑥𝑦 𝑁𝑦

]

[
 
 
 
𝜕𝑁𝑖
𝜕𝑥
𝜕𝑁𝑖
𝜕𝑦 ]
 
 
 

𝑎𝑒  𝑑𝑥 𝑑𝑦                        (3.14) 

Substitute 𝑃𝑥 = −𝑁𝑥, 𝑃𝑦 = −𝑁𝑦 , 𝑃𝑥𝑦 = −𝑁𝑥𝑦  

𝛿𝑊 = −𝛿𝑎𝑒𝑇∬

[
 
 
 
𝜕𝑁𝑖
𝜕𝑥
𝜕𝑁𝑖
𝜕𝑦 ]
 
 
 
𝑇

[
𝑃𝑥 𝑃𝑥𝑦
𝑃𝑥𝑦 𝑃𝑦

]

[
 
 
 
𝜕𝑁𝑖
𝜕𝑥
𝜕𝑁𝑖
𝜕𝑦 ]
 
 
 

𝑎𝑒  𝑑𝑥 𝑑𝑦                        (3.15) 

Therefore, equation (3.15) could be written in the following form: 

𝛿𝑊 = −𝛿𝑎𝑒𝑇𝐾𝐷𝑎𝑒                                                   (3.16) 

Where, 

𝐾𝐷 =∬

[
 
 
 
𝜕𝑁𝑖
𝜕𝑥
𝜕𝑁𝑖
𝜕𝑦 ]
 
 
 
𝑇

[
𝑃𝑥 𝑃𝑥𝑦
𝑃𝑥𝑦 𝑃𝑦

]

[
 
 
 
𝜕𝑁𝑖
𝜕𝑥
𝜕𝑁𝑖
𝜕𝑦 ]
 
 
 

 𝑑𝑥 𝑑𝑦 

𝐾𝐷 is the differential stiffness matrix known also as geometric stiffness 

matrix, initial stress matrix, and initial load matrix.  

The total energy:  

𝛿𝑈 +  𝛿𝑊 = 0                                                        (3.17) 

Since 𝛿𝑎𝑒 is an arbitrary displacement which is not zero, then 

𝐾𝑒𝑎𝑒 − 𝐾𝐷𝑎𝑒 = 0                                                    (3.18) 

Now let us compute the elements of the stiffness and the differential matrices. 

𝐾𝑒 = ∬𝐵𝑇𝐷𝐵 𝑑𝑥 𝑑𝑦 

𝐾𝑒 =∬

[
 
 
 
 
 
 
𝜕2𝑁𝑖
𝜕𝑥2

𝜕2𝑁𝑖
𝜕𝑦2

2
𝜕2𝑁𝑖
𝜕𝑥𝜕𝑦]

 
 
 
 
 
 
𝑇

[

𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66

]

[
 
 
 
 
 
 
𝜕2𝑁𝑖
𝜕𝑥2

𝜕2𝑁𝑖
𝜕𝑦2

2
𝜕2𝑁𝑖
𝜕𝑥𝜕𝑦]

 
 
 
 
 
 

𝑑𝑥 𝑑𝑦  
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The elements of the stiffness matrix can be expressed as follows: 

𝐾𝑖𝑗
𝑒 =∬[𝐷11

𝜕2𝑁𝑖
𝜕𝑥2

𝜕2𝑁𝑗

𝜕𝑥2
+ 𝐷12 (

𝜕2𝑁𝑖
𝜕𝑦2

𝜕2𝑁𝑗

𝜕𝑥2
+
𝜕2𝑁𝑖
𝜕𝑥2

𝜕2𝑁𝑗

𝜕𝑦2
)

+ 2𝐷16 (
𝜕2𝑁𝑖
𝜕𝑥𝜕𝑦

𝜕2𝑁𝑗

𝜕𝑥2
+
𝜕2𝑁𝑖
𝜕𝑥2

𝜕2𝑁𝑗

𝜕𝑥𝜕𝑦
)+𝐷22

𝜕2𝑁𝑖
𝜕𝑦2

𝜕2𝑁𝑗

𝜕𝑦2

+ 2𝐷26 (
𝜕2𝑁𝑖
𝜕𝑥𝜕𝑦

𝜕2𝑁𝑗

𝜕𝑦2
+
𝜕2𝑁𝑖
𝜕𝑦2

𝜕2𝑁𝑗

𝜕𝑥𝜕𝑦
)+4𝐷66

𝜕2𝑁𝑖
𝜕𝑥𝜕𝑦

𝜕2𝑁𝑗

𝜕𝑥𝜕𝑦
] 𝑑𝑥 𝑑𝑦  (3.19) 

The elements of the differential stiffness matrix can be expressed as follows; 

𝐾𝑖𝑗
𝐷 =∬[𝑃𝑥

𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑗

𝜕𝑥
+ 𝑃𝑥𝑦 (

𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑗

𝜕𝑥
+
𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑗

𝜕𝑦
)+𝑃𝑦

𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑗

𝜕𝑦
] 𝑑𝑥𝑑𝑦         (3.20) 

The integrals in equations (3.19) and (3.20) are given in Appendix (C). 

The shape functions for a 4 – noded element is shown below in Fig. (3.5). 

 

Fig. 3.5 A four noded element with local and global co – ordinates 

The shape functions for the 4 – noded element expressed in global co – 

ordinates (𝑥, 𝑦) are as follows: 

𝑤 = 𝑁1𝑤1 +𝑁2𝜙1 +𝑁3𝜓1 +𝑁4𝑤2 +𝑁5𝜙2 +𝑁6𝜓2 

+𝑁7𝑤3 +𝑁8𝜙3 +𝑁9𝜓3 + 𝑁10𝑤4 +𝑁11𝜙4 +𝑁12𝜓4 
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Where, 

𝜙 =
𝜕𝑤

𝜕𝑥
 ,       𝜓 =

𝜕𝑤

𝜕𝑦
 

The shape functions in local co – ordinates are as follows: 

𝑁𝑖 = 𝑎𝑖1 + 𝑎𝑖2𝑟 + 𝑎𝑖3𝑠 + 𝑎𝑖4𝑟
2 + 𝑎𝑖5𝑟𝑠 + 𝑎𝑖6𝑠

2 + 𝑎𝑖7𝑟
3 + 𝑎𝑖8𝑟

2𝑠 + 𝑎𝑖9𝑟𝑠
2 

+𝑎𝑖10𝑠
3 + 𝑎𝑖11𝑟

3𝑠 + 𝑎𝑖12𝑟𝑠
3 

𝑁𝑗 = 𝑎𝑗1 + 𝑎𝑗2𝑟 + 𝑎𝑗3𝑠 + 𝑎𝑗4𝑟
2 + 𝑎𝑗5𝑟𝑠 + 𝑎𝑗6𝑠

2 + 𝑎𝑗7𝑟
3 + 𝑎𝑗8𝑟

2𝑠 + 𝑎𝑗9𝑟𝑠
2 

+𝑎𝑗10𝑠
3 + 𝑎𝑗11𝑟

3𝑠 + 𝑎𝑗12𝑟𝑠
3 

The values of the coefficients 𝑎𝑖𝑗  are given in the table in Appendix (B).  

𝑞1 =∬
𝜕2𝑁𝑖
𝜕𝑟2

𝜕2𝑁𝑗
𝜕𝑟2

 𝑑𝑟 𝑑𝑠 = 16 [𝑎𝑖4𝑎𝑗4 + 3𝑎𝑖7𝑎𝑗7 +
1

3
𝑎𝑖8𝑎𝑗8 + 𝑎𝑖11𝑎𝑗11] 

𝑞2 =∬
𝜕2𝑁𝑖
𝜕𝑠2

𝜕2𝑁𝑗
𝜕𝑠2

 𝑑𝑟 𝑑𝑠 = 16 [𝑎𝑖6𝑎𝑗6 +
1

3
𝑎𝑖9𝑎𝑗9 + 3𝑎𝑖10𝑎𝑗10 + 𝑎𝑖12𝑎𝑗12] 

𝑞3 =∬
𝜕2𝑁𝑖
𝜕𝑟2

𝜕2𝑁𝑗
𝜕𝑠2

 𝑑𝑟 𝑑𝑠 = 16[𝑎𝑖4𝑎𝑗6 + 𝑎𝑖7𝑎𝑗9 + 𝑎𝑖8𝑎𝑗10 + 𝑎𝑖11𝑎𝑗12] 

𝑞4 =∬
𝜕2𝑁𝑖
𝜕𝑠2

𝜕2𝑁𝑗
𝜕𝑟2

 𝑑𝑟 𝑑𝑠 = 16[𝑎𝑖6𝑎𝑗4 + 𝑎𝑖9𝑎𝑗7 + 𝑎𝑖10𝑎𝑗8 + 𝑎𝑖12𝑎𝑗11] 

𝑞5 =∬
𝜕2𝑁𝑖
𝜕𝑟2

𝜕2𝑁𝑗
𝜕𝑟𝜕𝑠

 𝑑𝑟 𝑑𝑠 = 8[𝑎𝑖4𝑎𝑗5 + 𝑎𝑖4𝑎𝑗11 + 2𝑎𝑖7𝑎𝑗8 + 𝑎𝑖4𝑎𝑗12 

+
2

3
𝑎𝑖8𝑎𝑗9] 

𝑞6 =∬
𝜕2𝑁𝑖
𝜕𝑟𝜕𝑠

𝜕2𝑁𝑗
𝜕𝑟2

 𝑑𝑟 𝑑𝑠 = 8 [𝑎𝑖5𝑎𝑗4 + 2𝑎𝑖8𝑎𝑗7 + 𝑎𝑖11𝑎𝑗4 +
2

3
𝑎𝑖9𝑎𝑗8 

+𝑎𝑖12𝑎𝑗4] 

𝑞7 =∬
𝜕2𝑁𝑖
𝜕𝑠2

𝜕2𝑁𝑗
𝜕𝑟𝜕𝑠

 𝑑𝑟 𝑑𝑠 = 8 [𝑎𝑖6𝑎𝑗5 + 𝑎𝑖6𝑎𝑗11 +
2

3
𝑎𝑖9𝑎𝑗8] 

𝑞8 =∬
𝜕2𝑁𝑖
𝜕𝑟𝜕𝑠

𝜕2𝑁𝑗
𝜕𝑠2

 𝑑𝑟 𝑑𝑠 = 8 [𝑎𝑖5𝑎𝑗6 +
2

3
𝑎𝑖8𝑎𝑗9 + 𝑎𝑖11𝑎𝑗6] 
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𝑞9 =∬
𝜕2𝑁𝑖
𝜕𝑟𝜕𝑠

𝜕2𝑁𝑗
𝜕𝑟𝜕𝑠

 𝑑𝑟 𝑑𝑠 = 4 [𝑎𝑖5𝑎𝑗5 + 𝑎𝑖5𝑎𝑗11 +
4

3
𝑎𝑖8𝑎𝑗8 + 𝑎𝑖5𝑎𝑗12 

+
4

3
𝑎𝑖9𝑎𝑗9 + 𝑎𝑖11𝑎𝑗12 + 𝑎𝑖12𝑎𝑗11 +

9

5
𝑎𝑖12𝑎𝑗12] 

𝑞10 =∬
𝜕𝑁𝑖
𝜕𝑟

𝜕𝑁𝑗
𝜕𝑟

 𝑑𝑟 𝑑𝑠 = 4 [𝑎𝑖2𝑎𝑗2 +
1

3
(3𝑎𝑖2𝑎𝑗7 + 4𝑎𝑖4𝑎𝑗4 + 3𝑎𝑖7𝑎𝑗2 

+𝑎𝑖7𝑎𝑗9 + 𝑎𝑖5𝑎𝑗5 + 𝑎𝑖9𝑎𝑗2 + 𝑎𝑖5𝑎𝑗11 + 𝑎𝑖7𝑎𝑗9 +
4

3
𝑎𝑖8𝑎𝑗8 + 𝑎𝑖9𝑎𝑗7 

𝑎𝑖11𝑎𝑗5) +
1

5
(𝑎𝑖5𝑎𝑗12 + 𝑎𝑖9𝑎𝑗9 + 𝑎𝑖12𝑎𝑗5 + 9𝑎𝑖7𝑎𝑗7 + 3𝑎𝑖11𝑎𝑗11 + 𝑎𝑖11𝑎𝑗12 

+𝑎𝑖12𝑎𝑗11) +
1

7
𝑎𝑖12𝑎𝑗12] 

𝑞11 =∬
𝜕𝑁𝑖
𝜕𝑠

𝜕𝑁𝑗
𝜕𝑠

 𝑑𝑟 𝑑𝑠 = 4 [𝑎𝑖3𝑎𝑗3 +
1

3
(𝑎𝑖3𝑎𝑗8 + 𝑎𝑖5𝑎𝑗5 + 𝑎𝑖8𝑎𝑗3 

+3𝑎𝑖3𝑎𝑗10 + 4𝑎𝑖6𝑎𝑗6 + 3𝑎𝑖10𝑎𝑗3 + 𝑎𝑖5𝑎𝑗12 + 𝑎𝑖8𝑎𝑗10 +
4

3
𝑎𝑖9𝑎𝑗9 + 𝑎𝑖10𝑎𝑗8 

+𝑎𝑖12𝑎𝑗5) +
1

5
(𝑎𝑖5𝑎𝑗11 + 𝑎𝑖8𝑎𝑗8 + 𝑎𝑖11𝑎𝑗5 + 9𝑎𝑖10𝑎𝑗10 + 𝑎𝑖11𝑎𝑗12 + 𝑎𝑖12𝑎𝑗11 

+3𝑎𝑖2𝑎𝑗12) +
1

7
𝑎𝑖11𝑎𝑗11] 

𝑞12 =∬
𝜕𝑁𝑖
𝜕𝑟

𝜕𝑁𝑗
𝜕𝑠

 𝑑𝑟 𝑑𝑠 = 4 [𝑎𝑖2𝑎𝑗3 +
1

3
(𝑎𝑖2𝑎𝑗8 + 2𝑎𝑖4𝑎𝑗5 + 3𝑎𝑖7𝑎𝑗8 

+3𝑎𝑖2𝑎𝑗10 + 2𝑎𝑖5𝑎𝑗6 + 𝑎𝑖9𝑎𝑗3 + 2𝑎𝑖4𝑎𝑗12 + 3𝑎𝑖7𝑎𝑗10 +
4

3
𝑎𝑖8𝑎𝑗9 +

1

3
𝑎𝑖9𝑎𝑗8 

+2𝑎𝑖11𝑎𝑗6)] 

𝑞13 =∬
𝜕𝑁𝑖
𝜕𝑠

𝜕𝑁𝑗
𝜕𝑟

 𝑑𝑟 𝑑𝑠 = 4 [𝑎𝑖3𝑎𝑗2 +
1

3
(3𝑎𝑖3𝑎𝑗7 + 2𝑎𝑖5𝑎𝑗4 + 𝑎𝑖8𝑎𝑗2 

+𝑎𝑖3𝑎𝑗9 + 2𝑎𝑖6𝑎𝑗5 + 3𝑎𝑖10𝑎𝑗2 + 2𝑎𝑖6𝑎𝑗11 +
1

3
𝑎𝑖8𝑎𝑗9 +

4

3
𝑎𝑖9𝑎𝑗8 + 3𝑎𝑖10𝑎𝑗7 

+2𝑎𝑖12𝑎𝑗4) +
1

5
(2𝑎𝑖6𝑎𝑗12 + 3𝑎𝑖10𝑎𝑗9 + 3𝑎𝑖8𝑎𝑗7 + 2𝑎𝑖11𝑎𝑗4)] 
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The values of the integrals are converted from local co – ordinate (𝑟, 𝑠) to 

global co – ordinates as follows: 

𝑟1 =∬
𝜕2𝑁𝑖
𝜕𝑥2

𝜕𝑁𝑗
𝜕𝑥2

 𝑑𝑥 𝑑𝑦 = (
4ℎ𝑦

ℎ𝑥
3 )𝑞1 =

4𝑛3𝑏

𝑚𝑎3
𝑞1 

𝑟2 =∬
𝜕2𝑁𝑖
𝜕𝑦2

𝜕2𝑁𝑗
𝜕𝑦2

 𝑑𝑥 𝑑𝑦 = (
4ℎ𝑥

ℎ𝑦
3 )𝑞2 =

4𝑎𝑚3

𝑛𝑏3
𝑞2 

𝑟3 =∬
𝜕2𝑁𝑖
𝜕𝑥2

𝜕2𝑁𝑗
𝜕𝑦2

 𝑑𝑥 𝑑𝑦 = (
4

ℎ𝑦ℎ𝑥
)𝑞3 =

4𝑚𝑛

𝑎𝑏
𝑞3 

𝑟4 =∬
𝜕2𝑁𝑖
𝜕𝑦2

𝜕2𝑁𝑗
𝜕𝑥2

 𝑑𝑥 𝑑𝑦 = (
4

ℎ𝑦ℎ𝑥
)𝑞4 =

4𝑚𝑛

𝑎𝑏
𝑞4 

𝑟5 =∬
𝜕2𝑁𝑖
𝜕𝑥2

𝜕2𝑁𝑗
𝜕𝑥𝜕𝑦

 𝑑𝑥 𝑑𝑦 = (
4

ℎ𝑥
2
) 𝑞5 =

4𝑛2

𝑎2
𝑞5 

𝑟6 =∬
𝜕2𝑁𝑖
𝜕𝑥𝜕𝑦

𝜕2𝑁𝑗
𝜕𝑥2

 𝑑𝑥 𝑑𝑦 = (
4

ℎ𝑥
2
) 𝑞6 =

4𝑛2

𝑎2
𝑞6 

𝑟7 =∬
𝜕2𝑁𝑖
𝜕𝑦2

𝜕2𝑁𝑗
𝜕𝑥𝜕𝑦

 𝑑𝑥 𝑑𝑦 = (
4

ℎ𝑦
2
)𝑞7 =

4𝑚2

𝑎2
𝑞7 

𝑟8 =∬
𝜕2𝑁𝑖
𝜕𝑥𝜕𝑦

𝜕2𝑁𝑗
𝜕𝑦2

 𝑑𝑥 𝑑𝑦 = (
4

ℎ𝑦
2
)𝑞8 =

4𝑚2

𝑏2
𝑞8 

𝑟9 =∬
𝜕2𝑁𝑖
𝜕𝑥𝜕𝑦

𝜕2𝑁𝑗
𝜕𝑥𝜕𝑦

 𝑑𝑥 𝑑𝑦 = (
4

ℎ𝑦ℎ𝑥
)𝑞9 =

4𝑚𝑛

𝑎𝑏
𝑞9 

𝑟10 =∬
𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑗

𝜕𝑥
 𝑑𝑥 𝑑𝑦 = (

ℎ𝑦

ℎ𝑥
)𝑞10 =

𝑏𝑛

𝑎𝑚
𝑞10 

𝑟11 =∬
𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑗
𝜕𝑦

 𝑑𝑥 𝑑𝑦 = (
ℎ𝑥
ℎ𝑦
)𝑞11 =

𝑎𝑚

𝑏𝑛
𝑞11 

𝑟12 =∬
𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑗
𝜕𝑦

 𝑑𝑥 𝑑𝑦 = 𝑞12 
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𝑟13 =∬
𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑗
𝜕𝑥

 𝑑𝑥 𝑑𝑦 = 𝑞13  

In the previous equations ℎ𝑥 =
𝑎

𝑛
 and ℎ𝑦 =

𝑏

𝑚
 where 𝑎 and 𝑏 are the lengths of 

the plate along the 𝑥 – and 𝑦 – axis respectively. 𝑛 and 𝑚 are the number of 

elements in the 𝑥 – and 𝑦 – directions respectively.  

The elements of the stiffness matrix and the differential matrix can be written 

as follows: 

𝐾𝑖𝑗 = 𝐷11𝑟1 + 𝐷12𝑟4 + 2𝐷16𝑟3 + 𝐷12𝑟3 + 𝐷22𝑟2 + 2𝐷66𝑟8 + 2𝐷16𝑟5

+ 2𝐷26𝑟7 + 4𝐷66𝑟9 

𝐾𝑖𝑗
𝐷 = 𝑃𝑥𝑟10 + 𝑃𝑥𝑦(𝑟12 + 𝑟13) + 𝑃𝑦𝑟11 

or in the non – dimensional form 

𝐾𝑖𝑗 =
4𝑛3

𝑚
(
𝑏

𝑎
) �̅�11𝑞1 + 4𝑚𝑛 (

𝑎

𝑏
) �̅�12𝑞4 + 4𝑛

2�̅�16𝑞6 + 4𝑚𝑛 (
𝑎

𝑏
) �̅�12𝑞3 

+
4𝑚3

𝑛
(
𝑎

𝑏
) �̅�22𝑞2 + 4𝑚

2 (
𝑎

𝑏
)
2

�̅�26𝑞8 + 4𝑛
2�̅�16𝑞5 + 4𝑚

2 (
𝑎

𝑏
)
2

�̅�26𝑞7 

+4𝑚𝑛 (
𝑎

𝑏
) �̅�66𝑞9 

𝐾𝑖𝑗
𝐷 = �̅�𝑥

𝑛

𝑚
(
𝑏

𝑎
)𝑞10 + �̅�𝑥𝑦(𝑞12 + 𝑞13) + �̅�𝑦

𝑚

𝑛
(
𝑎

𝑏
) 𝑞11 

where 

�̅�𝑖𝑗 = (
1

𝐸1ℎ
3
)𝐷𝑖𝑗  ,      �̅�𝑖 = (

𝑎

𝐸1ℎ
3
)𝑃𝑖 

Also 

�̅� = (
1

ℎ
)𝑤, �̅� = (

ℎ

𝑎
)𝜙, �̅� = (

ℎ

𝑎
)𝜓, �̅� = 𝑏/𝑎 

The transformed stiffnesses are as follows: 

𝐶11 = 𝐶11
′ 𝑐4 + 2𝑐2𝑠2(𝐶11

′ + 2𝐶66
′ ) + 𝐶22

′ 𝑠4 

𝐶12 = 𝑐2𝑠2(𝐶11
′ + 𝐶22

′ + 4𝐶66
′ ) + 𝐶12

′ (𝑐4 + 𝑠4) 
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𝐶16 = 𝑐𝑠[𝐶11
′ 𝑐4 + 𝐶22

′ 𝑠2 − (𝐶12
′ + 2𝐶66

′ )(𝑐2 − 𝑠2)] 

𝐶22 = 𝐶11
′ 𝑠4 + 2𝑐2𝑠2(𝐶12

′ + 2𝐶66
′ ) + 𝐶22

′ 𝑐4 

𝐶26 = 𝑐𝑠[𝐶11
′ 𝑠2 − 𝐶22

′ 𝑐2 − (𝐶12
′ + 2𝐶66

′ )(𝑐2 − 𝑠2)] 

𝐶66 = (𝐶11
′ + 𝐶22

′ − 2𝐶12
′ )𝑐2𝑠2 + 𝐶66

′ (𝑐2 − 𝑠2)2 

Where 

𝐶11
′ =

𝐸1
1 − 𝑣12𝑣21

 

𝐶12
′ =

𝑣21 𝐸1
1 − 𝑣12𝑣21

=
𝑣12 𝐸1

1 − 𝑣12𝑣21
 

𝐶22
′ =

𝐸2
1 − 𝑣12𝑣21

 

𝐶44
′ = 𝐺23 ,  𝐶55

′ = 𝐺13     and  𝐶66
′ = 𝐺12 

 

𝐸1 and 𝐸2 are the elastic moduli in the direction of the fiber and the transverse 

directions respectively, 𝑣 is the Poisson's ratio. 𝐺12, 𝐺13, and 𝐺23 are the shear 

moduli in the 𝑥 –  𝑦 plane, 𝑦 –  𝑧 plane, and 𝑥 –  𝑧 plane respectively, and the 

subscripts 1 and 2 refer to the direction of fiber and the transverse direction 

respectively.   
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Chapter (4) 

Verification of the Computer Program 

4.1 Convergence Study 

The optimum number of plate elements in the 𝑥 any 𝑦 directions (i.e. 

mesh size or discretization), to be used in order to compute the buckling loads 

with reasonable accuracy can be obtained by a convergence study. The 

suitable number of finite elements is determined by a number of factors which 

include material properties, plate dimensions, lamination scheme, boundary 

conditions and the storage capacity of the computer ram. 

It can be observed that, as the mode order increases, the number of finite 

elements required increases. Therefore, it is expected that the higher modes 

need more number of elements. 

All of the analyses described in the present thesis have been undertaken 

assuming the plate to be subjected to identical and/ or different support 

conditions on the four edges of the plate. The three sets of the of the edge 

conditions used here are designated as clamped – clamped (CC), simply – 

simply supported (SS), clamped – simply supported (CS), are shown in table 

(4.1) below. 

Table (4.1) Boundary conditions 

Boundary 

Conditions 

Plate dimensions in y – 

coordinate  

𝒙 = 𝟎 , 𝒙 = 𝒂  

Plate dimensions in x – 

coordinate 

𝒚 = 𝟎 , 𝒚 = 𝒃 

CC 𝑤 = 𝜙 = 𝜓 = 0 𝑤 = 𝜙 = 𝜓 = 0 

SS 𝑤 = 𝜓 = 0 𝑤 = 𝜙 = 0 

CS 𝑤 = 𝜙 = 𝜓 = 0 𝑤 = 𝜙 = 0 
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Table (4.2) shows the convergence study of non – dimensional buckling 

load of simply supported SS square isotropic plate with length to thickness 

ratio (a/h=20) having the following material properties: material 1:  

𝐸𝑦/𝐸𝑥 = 1.0 , 𝐺𝑥𝑦/𝐸𝑥 = 𝐺𝑦𝑧/𝐸𝑥 = 𝐺𝑥𝑧/𝐸𝑥 = 0.4 , 𝑣𝑥𝑦 = 0.25 

The discretization of elements used are: 

1.   2 × 2  = 4   elements  

2.   3 × 3  = 9   elements  

3.   4 × 4  = 16   elements  

4.   5 × 5  = 25 elements  

5.   6 × 6  = 36 elements  

6.   7 × 7  = 49 elements  

7.   8 × 8  = 64 elements  

8.   9 × 9  = 81 elements  

9.   10 × 10  = 100 elements 

It could be observed from table (4.2) that the values of the buckling parameter 

�̅� = 𝑃𝑏2/𝐸2ℎ
3  converge as the number of elements in the mesh are 

increased (i.e. as the mesh size is progressively reduced). These results 

suggest that a 6 × 6 mesh over the plate is adequate for the present work (i.e. 

less than 1.32% difference compared to the finest mesh result available). 

Therefore, a mesh size of 6 × 6 is found to be sufficient to predict the first 

seven modes of buckling load. In practice only the first three modes of 

buckling are sufficient. 
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Table (4.2) Convergence study of non – dimensional modes of buckling 

�̅� = 𝑷𝒂𝟐/𝑬𝟏𝒉
𝟑 of simply supported (SS) isotropic square plate with 

a/h=20. (material 1) 

Mesh 

Size 

Mode Sequence Number  

1 2 3 4 5 6 7 

2 × 2 30.69 76.89 83.18 83.49 94.71 94.95 101.78 

3 × 3 32.64 79.12 79.18 117.58 179.04 189.78 191.05 

4 × 4 33.60 82.38 82.44 123.22 165.70 166.35 192.53 

5 × 5 34.10 84.08 84.14 127.71 168.69 168.92 202.10 

6 × 6 34.39 85.10 85.15 130.85 170.41 170.52 208.35 

7 × 7 34.58 85.75 85.79 133.03 171.55 171.61 212.50 

8 × 8 34.70 86.19 86.23 134.57 172.34 172.39 215.79 

9 × 9 34.78 86.50 86.53 135.68 172.92 172.97 218.07 

10 × 10 34.84 86.72 86.75 136.52 173.35 173.40 219.78 

 

4.2 Validation of the Finite Element (FE) Program 

In order to check the validity, applicability and accuracy of the present 

FE method, many comparisons were performed. The comparisons include 

theoretical, ANSYS simulation and experimental results. 

4.2.1 Comparisons with Theoretical Results 

In table (4.3) the non – dimensional critical buckling load is presented in 

order to compare with References [162], [163] and [164] for an isotropic plate 

of material 1 with different aspect ratios. As the table shows, the present 

results have a good agreement with References [162], [163] and [164]. 
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Table (4.3) Comparison of the non – dimensional critical buckling load 

�̅� = 𝑷𝒂𝟐/𝑫 for an isotropic plate (material 1) 

Aspect 

Ratio a/b 

References 

Ref. [162] Ref. [163] Ref. [164] Present Study 

0.5 12.33 12.3370 12.3370 12.3 

1.0 19.74 19.7392 19.7392 19.7 
 

Table (4.4) below shows the effect of plate aspect ratio and modulus 

ratio on non – dimensional critical loads �̅� = 𝑃(𝑏2𝜋2/𝐷22) of rectangular 

laminates under biaxial compression. The following material properties were 

used: material 2: 𝐸1/𝐸2 = 5, 10, 20, 25  and  40; 𝐺12 = 𝐺13 = 𝐺23 =

0.5 𝐸2 ;  𝜈12 = 0.25 and 𝑎/ℎ = 20 . It is observed that the non – dimensional 

buckling load increases for symmetric laminates as the modular ratio 

increases. The present results were compared with Osman [165] and Reddy 

[166]. The verification process showed good agreement especially as the 

aspect ratio increases and the modulus ratio decreases.   

Table (4.4) Buckling load for (0/ 90/ 90/ 0) simply supported (SS) plate 

for different aspect and moduli ratios under biaxial compression 

(material 2) 

Aspect 

Ratio a/b 

Modular 

Ratio 

Biaxial Compression 

 𝑬𝟏/𝑬𝟐 5 10 20 25 40 

 Present 10.864 12.122 13.215 13.726 14.000 

0.5 Ref. [165] - 12.307 - 13.689 -  

 Ref. [166] 11.120 12.694 13.922 14.248 14.766 

 Present 2.790 3.130 3.430 3.510 3.645 

1.0 Ref. [165] - 3.137 - 3.502 - 

 Ref. [166] 2.825 3.174 3.481 3.562 3.702 
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 Present 1.591 1.602 1.611 1.613 1.617 

1.5 Ref. [165] - 1.605 - 1.606 - 

 Ref. [166] 1.610 1.624 1.634 1.636 1.641 

              

Table (4.5) shows the effect of plate aspect ratio, and modulus ratio on 

non – dimensional critical buckling loads �̅� = 𝑃(𝑏2/𝜋2𝐷22) of simply 

supported (SS) antisymmetric cross – ply rectangular laminates under biaxial 

compression. The properties of material 2 were used. It is observed that the 

non – dimensional buckling load decreases for antisymmetric laminates as the 

modulus ratio increases. The present results were compared with Reddy 

[166]. The validation process showed good agreement especially as the aspect 

ratio increases and the modulus ratio decreases. 

Table (4.5) Buckling load for (0/ 90/ 90/ 0) simply supported (SS) plate 

for different aspect and moduli ratios under biaxial compression 

(material 2) 

Aspect 

Ratio a/b 

Modular 

Ratio 

Biaxial Compression 

 𝑬𝟏/𝑬𝟐 5 10 20 25 40 

0.5 
Present 4.000 3.706 3.535 3.498 3.442 

Ref. [166] 3.764 3.325 3.062 3.005 2.917 

1.0 
Present 1.395 1.209 1.102 1.079 1.045 

Ref. [166] 1.322 1.095 0.962 0.933 0.889 

1.5 
Present 1.069 0.954 0.889 0.875 0.853 

Ref. [166] 1.000 0.860 0.773 0.754 0.725 

 

Table (4.6) below shows the effect of plate aspect ratio, and modulus 

ratio on non – dimensional critical buckling loads of simply supported (SS) 

antisymmetric angle – ply rectangular laminates under biaxial compression.  
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The properties of material 2 were used. It is observed from table (4.6) 

that the prediction of the buckling loads by the present study is closer to that 

of Osman [165] and Reddy [166].   

Table (4.6) Buckling load for antisymmetric angle – ply (𝟒𝟓/−𝟒𝟓)𝟒 plate 

with different moduli and aspect ratios under biaxial compression 

(material 2) 

Aspect 

Ratio a/b 

Modular 

Ratio 

Biaxial Compression 

 𝑬𝟏/𝑬𝟐 10 20 25 40 

 Present 19.376 36.056 44.400 69.440 

0.5 Ref. [165] 19.480 - 44.630 -  

 Ref. [166] 18.999 35.076 43.110 67.222 

 Present 9.028 17.186 21.265 33.512 

1.0 Ref. [165] 9.062 - 21.345 - 

 Ref. [166] 8.813 16.660 20.578 32.343 

 Present 6.144 11.596 14.322 22.013 

1.5 Ref. [165] 6.170 - 14.383 - 

 Ref. [166] 6.001 11.251 13.877 21.743 

  

In tables (4.7) and (4.8), the buckling loads for symmetrically laminated 

composite plates of layer orientation (0/ 90/ 90/ 0) have been determined for 

three different aspect ratios ranging from 0.5 to 1.5 and two modulus ratios 40 

and 5 of material 2. It is observed that the buckling load increases with 

increasing aspect ratio for biaxial compression loading. The buckling load is 

maximum for clamped – clamped (CC), and clamped – simply supported 

(CS) boundary conditions, while minimum for simply – simply supported 

(SS) boundary conditions. It is seen from tables (4.7) and (4.8) that the values 

of buckling loads by the present study is much closer to the of Osman [165].  
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Table (4.7) Buckling load for (0/ 90/ 90/ 0) plate with different boundary 

conditions and aspect ratios under biaxial compression (�̅� = 𝑷𝒂𝟐/𝑬𝟏𝒉
𝟑)  

(material 2)  𝑬𝟏/𝑬𝟐 = 𝟒𝟎; 𝑮𝟏𝟐 = 𝑮𝟏𝟑 = 𝑮𝟐𝟑 = 𝟎. 𝟓 𝑬𝟐 ; 𝐚𝐧𝐝 𝝂𝟏𝟐 = 𝟎. 𝟐𝟓 

Aspect 

Ratio a/b 

Comparisons 

of Results 

Boundary Conditions 

CC SS CS 

0.5 
Present 1.0742 0.4143 0.9679 

Ref. [165] 1.0827 0.4213 1.0022 

1.0 
Present 1.3795 0.4409 1.0723 

Ref. [165] 1.3795 0.4411 1.0741 

1.5 
Present 1.6402 0.4400 1.2543 

Ref. [165] 1.6367 0.4391 1.2466 

 

Table (4.8) Buckling load for (0/ 90/ 90/ 0) plate with different boundary 

conditions and aspect ratios (�̅� = 𝑷𝒂𝟐/𝑬𝟏𝒉
𝟑) (material 2)  𝑬𝟏/𝑬𝟐 =

𝟓; 𝑮𝟏𝟐 = 𝑮𝟏𝟑 = 𝑮𝟐𝟑 = 𝟎. 𝟓 𝑬𝟐 ; 𝐚𝐧𝐝 𝝂𝟏𝟐 = 𝟎. 𝟐𝟓 

Aspect 

Ratio a/b 

Comparisons 

of Results 

Boundary Conditions 

CC SS CS 

0.5 
Present 1.7786 0.6787 1.6325 

Ref. [165] 1.8172 0.6877 1.6838 

1.0 
Present 2.1994 0.6972 1.8225 

Ref. [165] 2.2064 0.6985 1.8328 

1.5 
Present 2.7961 0.8943 1.7643 

Ref. [165] 2.8059 0.8962 1.7618 

 

The same behavior of buckling load applies to symmetrically laminated 

composite plates (0/ 90/ 0) as shown in tables (4.9) and (4.10).   
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Table (4.9) Buckling load for (0/ 90/ 0) plate with different boundary 

conditions and aspect ratios (�̅� = 𝑷𝒂𝟐/𝑬𝟏𝒉
𝟑) (material 2)  𝑬𝟏/𝑬𝟐 =

𝟒𝟎; 𝑮𝟏𝟐 = 𝑮𝟏𝟑 = 𝑮𝟐𝟑 = 𝟎. 𝟓 𝑬𝟐; 𝐚𝐧𝐝  𝝂𝟏𝟐 = 𝟎. 𝟐𝟓 

Aspect 

Ratio a/b 

Comparisons 

of Results 

Boundary Conditions 

CC SS CS 

0.5 
Present 1.7471 0.3238 0.6870 

Ref. [165] 0.7529 0.3325 0.7201 

1.0 
Present 0.9523 0.3485 0.7925 

Ref. [165] 0.9511 0.3489 0.7932 

1.5 
Present 1.1811 0.3530 0.8190 

Ref. [165] 1.1763 0.3514 0.8099 

 

Table (4.10) Buckling load for (0/ 90/ 0) plate with different boundary 

conditions and aspect ratios (�̅� = 𝑷𝒂𝟐/𝑬𝟏𝒉
𝟑) (material 2)  𝑬𝟏/𝑬𝟐 =

𝟓; 𝑮𝟏𝟐 = 𝑮𝟏𝟑 = 𝑮𝟐𝟑 = 𝟎. 𝟓 𝑬𝟐; 𝐚𝐧𝐝 𝝂𝟏𝟐 = 𝟎. 𝟐𝟓 
 

Aspect 

Ratio a/b 

Comparisons 

of Results 

Boundary Conditions 

CC SS CS 

0.5 
Present 1.6947 0.6772 1.5842 

Ref. [165] 1.7380 0.6871 1.6337 

1.0 
Present 2.1669 0.6970 1.7009 

Ref. [165] 2.1744 0.6984 1.7113 

1.5 
Present 2.5008 0.8224 1.7658 

Ref. [165] 2.5075 0.8235 1.7622 
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4.2.2 Comparisons with the Results of ANSYS Package 

ANSYS is a general-purpose finite element modeling package for 

numerically solving a wide variety of mechanical problems. These problems 

include: static/ dynamic structural analysis (both linear and non – linear), heat 

transfer and fluid problems, as well as acoustic and electromagnetic problems. 

The problem of buckling in ANSYS is considered as static analysis. In this 

analysis, the following steps are done: 

Step (1): Preprocessor: 

Element type: 

1. On the preprocessor menu, click "Element Type". 

2. Click "Add/ Edit/ Delete". 

3. Click "Add". 

4. Choose the element type from the list on the right, then click "OK". 

Real constants: 

1. Click "Real Constants" on the Preprocessor menu. 

2. Click "Add". 

3. Click "OK" in the Element Type for Real Constant box. 

4. Enter the number of layers, and the values of layers thickness, then click 

"OK". 

Material properties: 

1. Click "Material Props" on the Preprocessor menu. 

2. Click "Material Models", then click "OK". 

3. Double – click "Structural" in the right side of the window, then "Linear", 

then "Elastic", then finally "Orthotropic". 

4. Enter values for Young's modulus, and for Poisson's ratio, then click "OK". 

5. Double – click "Density" in the right side of the window, then enter its 

magnitude and click "OK".  
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Modeling: 

1. Under the "-Modeling-" heading on the Preprocessor menu, click "Create". 

2. Under the "-Areas-" heading, click "Rectangle". 

3. Click "By Dimensions". 

4. Enter in the values of (x) and (y) coordinates. This creates a rectangle, 

centered at the origin. Then click "OK". 

 Meshing: 

1. On the Preprocessor menu, click "Mesh Tool".  

2. Under Lines in the Size Controls section, click "Set". 

3. In the pick box, click "Pick All". 

4. Enter the number of element divisions, then click "OK".  

5. In the Mesh Tool box, click "Mesh"; in the pick box that appears, click 

"Pick All". ANSYS will now mesh the model.    

Step (2): Solution: 

Defining the analysis: 

1. On the Solution menu, click "New Analysis". 

2. Choose "Static", then click "OK". 

3. On the Solution menu, click "Analysis Options". 

4. Enter the number of modes to extract and set the mode extraction method 

to "Subspace", then click "OK". Defining a fairly fine mesh, leads to easily 

get accurate results for the modes. 

5. Click "OK" in the box for subspace modal analysis options.  

Applying boundary conditions: 

1. On the Solution menu under the "-Loads-" heading, click "Apply".  

2. Click "Displacement". 

3. Click "On Lines". 

4. Click the top and bottom of the plate, then click "OK". (Both the top and 

bottom will have the same degrees of freedom constrained). 
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5. Select the type of constrains, then enter a displacement value of (0) and 

click "Apply". 

6. Select the sides of the plate to be constrained, then click "Ok".  

Solving the problem: 

1. On the Solution menu under the "-Solve-" heading, click "Current LS".  

2. Review the analysis summary information presented; in particular, make 

sure that the number of modes to extract is the number that you want. If 

everything is in order, click "OK" in the Solve Current Load Step window. 

ANSYS will now solve the problem. (For modal analysis, ANSYS may give a 

warning that the mode shapes found will be for viewing purposes only; you 

can ignore this). 

Step (3): Postprocessor: 

Viewing the mode shapes: 

1. On the General Postprocessor menu under the – Read Results – heading, 

click "First Set". 

2. Click "Plot Results". 

3. Under the "-Contour Plot-" heading, click "Nodal Solu". 

4. Choose "DOF Solution" in the box on the left, and "Translation UZ" in the 

right to see the out – of – plane displacements. The mode frequency will be 

displayed on the right side of the graphics window as "FREQ". 

5. To view the other modes, go back to the General Postprocessor menu, click 

"Next Set" under the "-Read Results-" heading, then repeat steps 2 – 4 above. 

To validate the present results with ANSYS, the present results were 

converted from its non – dimensional form to the dimensional form by using 

the formula �̅� = 𝑃𝑎2/𝐸1ℎ
3. The E – glass/ Epoxy material is selected to 

obtain the numerical results for the comparisons. The mechanical properties 

of this material (material 3) is given in table (4.11) below.  
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Table (4.11) Mechanical Properties of the E – glass/ Epoxy material 

(material 3) 

Property Value 

𝐸1 or 𝐸𝑥 38.6  𝐺𝑁/𝑚2 

𝐸2 or 𝐸𝑦 8.27  𝐺𝑁/𝑚2 

𝐺12 or 𝐺𝑥𝑦 4.14  𝐺𝑁/𝑚2 

𝐺13 or 𝐺𝑥𝑧 4.14  𝐺𝑁/𝑚2 

𝐺23 or 𝐺𝑦𝑧 3.4  𝐺𝑁/𝑚2 

𝜈12 or 𝜈𝑥𝑦 0.28 

 

Table (4.12) to (4.15) shows comparisons between the results of the 

present study and that simulated by ANSYS technique. Table (4.12) shows 

the effect of boundary conditions on dimensional buckling loads of symmetric 

angle – ply (30/ -30/ -30/ 30) of square thin laminates (𝑎/ℎ = 20) under 

biaxial compression. The properties of material 3 in table (4.11) were used. 

Small differences were shown between the results of the two techniques. The 

difference ranges between 0.6% to less than 2%. It is observed that as the 

mode serial number increases, the difference increases. The same behavior of 

buckling load of both techniques applies to symmetrically laminated 

composite plates of the order (45/ -45/ -45/ 45), (60/ -60/ -60/ 60) and (0/ 90/ 

90/ 0) shown in tables (4.13), (4.14) and (4.15). 

Table (4.12) Dimensional buckling load of symmetric angle–ply (30/ -30/ -

30/ 30) square thin laminates with different boundary conditions (a/h=20) 

(material 3) 
 

Boundary 

Conditions 
Method 

Mode Serial Number 

1 2 3 

SS Present 109.5 N 193.4 N 322.8 N 

ANSYS 109.4 N 206.5 N 315.8 N  
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CS 
Present 234.7 N 257.2 N 371.41 N 

ANSYS 233.21 N 255.6 N 378.7 N 

     

Table (4.13) Dimensional buckling load of symmetric angle–ply (45/-45/-

45/45) square thin laminates with different boundary conditions (a/h=20) 

(material 3) 
 

Boundary 

Conditions 
Method 

Mode Serial Number 

1 2 3 

SS 
Present 115.24 N 219.5 N 305.4 N 

ANSYS 116.3 N 225.5 N 312.7 N  

CS 
Present 196.33 N 282.8 N 439.53 N 

ANSYS 194.7 N 287.6 N 444.51 N 

     

Table (4.14) Dimensional buckling load of symmetric angle–ply (60/-60/-

60/60) square thin laminates with different boundary conditions (a/h=20) 

(material 3) 
 

Boundary 

Conditions 
Method 

Mode Serial Number 

1 2 3 

SS 
Present 109.39 N 193.213 N 322.19 N 

ANSYS 109.6 N 191.13 N 325.37 N  

CS 
Present 161.4 N 279.1 N 370.5 N 

ANSYS 160.6 N 280.4 N 377.7 N 

     

Table (4.15) Dimensional buckling load of symmetric cross–ply (0/ 90/ 90/ 

0) square thin laminates with different boundary conditions (a/h=20) 

(material 3) 
 

Boundary 

Conditions 
Method 

Mode Serial Number 

1 2 3 

SS 
Present 93.4 N 170.4 N 329 N 

ANSYS 94.4 N 181.4 N 315 N  
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CS 
Present 244.5 N 263.7 N 366.23 N 

ANSYS 244.4 N 265.8 N 369.6 N 

 

4.2.3 Comparisons with Experimental Results 

Many numerical and mathematical models exist which can be used to 

describe the behavior of a laminate under the action of different forces. When 

it comes to buckling, a mathematical model can be developed which is used to 

model the phenomenon of buckling. But numerical methods become 

complicated as the number of assumptions and variables increase. Also, once 

the model is formed, it takes a lot of time to solve the partial differential 

equations and then arrive to the final result. This process becomes very 

cumbersome and time consuming. In view of the above-mentioned 

limitations, experimental methods are followed. The experimental process 

needs less time and less computational work. Also, the results obtained in 

experiments are fairly close to that which is obtained theoretically.  

The composites have two components. The first is the matrix which acts 

as the skeleton of the composite and the second is the hardener which acts as 

the binder for the matrix. The reinforcement that was used for the present 

study was woven glass fibers. Glass fibers are materials which consist of 

numerous extremely fine fibers of glass. The hardener that utilized was epoxy 

which functions as a solid cement to keep fiber layers together. 

To manufacture the composites the following steps were taken: 

1. The weight of the fiber was noted down, then approximately 1/3rd mass of 

epoxy was prepared for further use. 

2. A clean plastic sheet was taken and the mold releasing spray was sprayed 

on it. After that, a generous coating of the hardener mixture was coated on the 

sheet. A woven fiber sheet was taken and placed on top of the coating. A 

second coating was done again, and a second layer of fiber was placed, and 

the process continued until the required thickness was obtained. The fiber was 

pressed with the help of rollers.  
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3. Another plastic sheet was taken and the mold releasing spray was sprayed 

on it. The plastic sheet was placed on top of the fiber with hardener coating. 

4. The plate obtained was placed under weights for a period of 24 hours. 

5. After that the plastic sheets were removed and the plates separated. 

The buckling test rig for biaxial compression was developed in Tehran 

University of Science and Technology, College of Engineering, Iran. The 

frame was built using rectangular shaped mild steel channels. The channels 

were welded to one another and then the frame was prepared. A two-ton 

hydraulic jacks were assembled into the frame to provide the necessary 

hydraulic forces for biaxial compression of the plates. The setup can be easily 

assembled and disassembled. Thus, the setup offers flexibility over the 

traditional buckling setups.  

It is proposed to undertake some study cases and obtain experimental 

results of non – dimensional buckling of rectangular laminated plates 

subjected to in – plane biaxial Compressive loads. The plates are assumed to 

be either simply supported on all edges (SS), or a combined case of clamped 

and simply supported (CS), or clamped on all edges (CC). 

The effects of various parameters like material anisotropy, fiber 

orientation, aspect ratio, and edge conditions on the buckling load of 

laminated plates are to be investigated and compared with the present finite 

element results. The plates are made of graphite – epoxy material (material 3), 

and generally square with side 𝑎 = 𝑏 = 250𝑚𝑚 and length to thickness ratio 

(𝑎/ℎ)=20. The required experiments are explained below: 

Experiment (1): Effect of Material Anisotropy (𝑬𝟏/𝑬𝟐) 

Cross – ply symmetric laminates with length to thickness ratio of (𝑎/ℎ =

20) are to be tested. The ratio of longitudinal to transverse modulus (𝐸1/𝐸2) 

is to be increased from 10 to 50. The required number of plies is 8. The plate 

is simply – supported (SS) on all edges. The experimental values of buckling 
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load were compared with the present theoretical results as shown in table 

(4.16). 

Table (4.16) Effect of material anisotropy on buckling load 𝒂/𝒉 = 𝟐𝟎 

𝑬𝟏/𝑬𝟐 Method Buckling loads 

10 
Present 0.5537 

Experimental 0.4985 

20 Present 0.4789 

Experimental 0.4310 

30 Present 0.4536 

Experimental 0.4082 

40 Present 0.4418 

Experimental 0.3976 

50 Present 0.4343 

Experimental 0.3908 

 

It is observed that the buckling load decreases with the increase in 

material anisotropy (𝐸1/𝐸2). The present theoretical results were about 10% 

higher than the experimental values which is considered to be acceptable.  

Experiment (2):  Effect of Fiber Orientation (𝜽) 

Symmetric and anti – symmetric cross – ply laminated plates (0/ 90/ 90/ 

0) and (0/ 90/ 0/ 90) with length to thickness ratio (𝑎/ℎ) are to be tested. The 

required number of plies is 8. The plate is simply supported (SS) on four 

edges. As shown in table (4.17) below, the theoretical buckling load was 

found to be 10% above the experimental value. 
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Table (4.17) Effect of fiber orientation on buckling load 𝑬𝟏/𝑬𝟐 = 𝟒𝟎, 

𝒂/𝒉 = 𝟐𝟎 

Orientation Method Buckling loads 

Symmetric 
Present 0.4418 

Experimental 0.3976 

Anti – Symmetric  
Present 0.4417 

Experimental 0.3975 
 

Experiment (3):  Effect of Aspect Ratio (𝒂/𝒃) 

The effect of aspect ratio (𝑎/𝑏) on the buckling load is studied by 

testing cross – ply symmetric (0/ 90/ 90/ 0) laminates with length to thickness 

ratio (𝑎/ℎ = 20). The aspect ratios 0.5, 1, 1.5 and 2.0 are to be tested. The 

required number of plies is 8. The plate is simply supported on four edges and 

the modulus ratio is taken to be (𝐸1/𝐸2 = 40). As shown in table (4.18) 

below, the difference between the theoretical and experimental buckling was 

found to be about 10%. 

Table (4.18) Effect of aspect ratio on buckling load 𝑬𝟏/𝑬𝟐 = 𝟒𝟎,  

𝒂/𝒉 = 𝟐𝟎 

Aspect Ratio      

(𝒂/𝒃) 
Method Buckling loads 

0.5 
Present 0.4192 

Experimental 0.3773 

1.0 
Present 0.4418 

Experimental 0.3976 

1.5 
Present 0.7187 

Experimental 0.6468 

2.0 
Present 1.2324 

Experimental 1.1092 
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Experiment (4):  Effect of Boundary Conditions 

Cross – ply symmetric laminates (0/ 90/ 90/ 0) can be used to study the 

effect of the boundary conditions on the buckling load. The length to 

thickness ratio is taken to be (𝑎/ℎ = 20). The boundary conditions used are 

SS, CS and CC. The required number of plies is 8 and the modulus ratio 

(𝐸1/𝐸2) is selected to be 40. As shown in table (4.19) below, the same 

difference between the theoretical and experimental results was observed. 

Table (4.19) Effect of boundary conditions on buckling load 𝑬𝟏/𝑬𝟐 = 𝟒𝟎, 

𝒂/𝒉 = 𝟐𝟎 

Boundary 

Conditions 
Method Buckling loads 

SS 
Present 0.4418 

Experimental 0.3976 

CS 
Present 1.2882 

Experimental 1.1594 

CC 
Present 1.3812 

Experimental 1.2431 
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Chapter (5) 

Numerical Results and Discussions 

With confidence in the finite element (FE) program proved through the 

various verification exercises undertaken, it was decided to undertake some 

study cases and generate new results for biaxial loaded laminated composite 

rectangular plates. The plates were assumed to be simply supported (SS), 

clamped (CC) and clamped – simply supported (CS) on all four edges.  

The problem of critical buckling loads of laminated composite plates is 

analyzed and solved using the energy method which is formulated by a finite 

element model. In that model, a four noded rectangular elements of a plate is 

considered. Each element has three degrees of freedom at each node. The 

degrees of freedom are the lateral displacement 𝑤, and the rotations 𝜙 and 𝜓 

about the 𝑦 and 𝑥 axes respectively. 

The effects of lamination scheme, aspect ratio, material anisotropy, fiber 

orientation of layers, reversed lamination scheme and boundary conditions on 

the non – dimensional critical buckling loads of laminated composite plates 

are investigated. 

The material chosen has the following properties: material 2: 𝐸1/𝐸2 =

5, 10, 20, 25, 40 ; 𝐺12 = 𝐺13 = 𝐺23 = 0.5𝐸2 ;  𝜈12 = 0.25 . 

5.1 Effect of Lamination Scheme 

In the present analysis the lamination scheme of plates is supposed to be 

symmetric, anti – symmetric and quasi – isotropic. 

Four lamination schemes were considered which are symmetric and anti 

– symmetric cross – ply and angle – ply laminates. Table (5.1) gives a 

comparison between the non – dimensional buckling loads for all lamination 

schemes. The results are shown graphically in Fig. (5.1). The thickness of all 

layers is assumed equal, the length to thickness ratio (𝑎/ℎ = 20), and the 

modulus ratio (𝐸1/𝐸2 = 5). It is noticed from table (5.1) and Figs. (5.1), (5.2) 
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and (5.3) that the values of the non – dimensional buckling loads for both 

symmetric and anti – symmetric lamination are slightly different, except for 

symmetric and anti – symmetric angle – ply laminates which are exactly the 

same. Because of this fact, the rest of the upcoming effects will be discussed 

for symmetric case only. The results indicate that the symmetric laminate is 

stiffer than the anti – symmetric one. This phenomenon is caused by coupling 

between bending and stretching which lowers the buckling loads of 

symmetric laminate.  

Table (5.1) The first five non – dimensional buckling loads �̅� =

𝑷𝒂𝟐/𝑬𝟏𝒉
𝟑 of symmetric cross – ply (0/ 90/ 90/ 0) and anti – symmetric 

cross – ply (0/ 90/ 0/ 90), and symmetric angle – ply (45/ -45/ -45/ 45) and 

anti – symmetric angle – ply (45/ -45/ 45/ -45) laminated plates with 

𝒂/𝒉 = 𝟐𝟎, and 𝑬𝟏/𝑬𝟐 = 𝟓, (material 2) 

Lamination  

Scheme 

Mode 

Number 

Boundary Conditions  

SS CC CS 

 1 0.6972 2.1994 1.8225 

 2 1.2522 2.5842 2.0097 

0/ 90/ 90/ 0 3 2.4284 4.1609 2.7116 

 4 2.6907 4.7431 4.3034 

 5 2.7346 5.0168 4.4536 

 1 0.6973 2.2273 1.5591 

 2 1.9947 3.9687 2.3391 

0/ 90/ 0/ 90 3 1.9958 3.9732 3.7581 

 4 2.6912 4.7871 3.8290 

 5 4.3962 7.0544 4.5402 
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 1 0.8729 1.9505 1.4756 

 2 1.6400 2.8534 2.1162 

45/-45/-45/45 3 2.3130 3.8941 3.3039 

 4 2.7100 4.3753 3.3068 

 5 3.5488 5.2694 4.4166 

 1 0.8729 2.2010 1.6554 

 2 1.6400 3.7616 2.5672 

45/-45/45/-45 3 2.3130 3.7654 3.4642 

 4 2.7100 5.6599 4.2174 

 5 3.5488 5.9540 4.8091 

 

 

Fig. (5.1) Effect of lamination scheme for simply supported laminates 
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Fig. (5.2) Effect of lamination scheme for clamped – clamped laminates  

 

Fig. (5.3) Effect of lamination scheme for clamped – simply supported 

laminates 
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Tables (5.2) and (5.3) show the buckling load of quasi – isotropic 

rectangular composite plate with 𝑎/ℎ = 20, 𝑎/𝑏 = 1 and different modulus 

ratios (𝐸1/𝐸2 = 40 and 5). The buckling load is highly influenced by its 

boundary conditions. The buckling load of the quasi – isotropic (0/+45/-

45/90) rectangular composite plate with CC type boundary condition is 1.5 

times higher than the buckling load of the composite plate with CS type 

boundary condition and more than 3 times of SS type boundary condition. 

Table (5.2) The first three non – dimensional buckling loads of quasi – 

isotropic (0/+45/-45/90) laminated plates with a/h=20, and 𝑬𝟏/𝑬𝟐 = 𝟒𝟎, 

(material 2) 

Mode  

Number 

Boundary Conditions 

SS CC CS 

1 0.4905 1.6878 1.1683 

2 1.4842 3.0187 1.7359 

3 1.4850 3.0229 2.7673 

  

Table (5.3) The first three non – dimensional buckling load of quasi – 

isotropic (0/+45/-45/90) laminated plates with a/h=20, and 𝑬𝟏/𝑬𝟐 = 𝟓, 

(material 2) 

Mode  

Number 

Boundary Conditions 

SS CC CS 

1 0.7338 2.2255 1.5717 

2 2.0202 3.9506 2.3714 

3 2.0214 3.9549 3.7214 
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5.2 Effect of Aspect Ratio 

In this study, the buckling loads for symmetrically loaded laminated 

composite plates of layer orientation 0/90/90/0 have been determined for 

seven different aspect ratios ranging from 0.5 to 2.0 and two modulus ratios 

40 and 5 as shown in tables (5.4) and (5.5) and Figs. (5.4) and (5.5). The first 

mode of buckling loads was considered. It is observed that the buckling load 

increases continuously with increasing aspect ratio but the rate of increase is 

not uniform. This may be due to the effect of bending – extensional twisting 

stiffness which increases the critical load. The buckling load is maximum for 

clamped – clamped (CC), clamped – simply supported (CS) while minimum 

for simply – simply supported (SS) boundary conditions. This means that as 

the plate becomes more restrained, its resistance to buckling increases. The 

reason is that the structural stiffness reduces due to its constrains.   

Table (5.4) The first three non – dimensional buckling loads �̅� =

𝑷𝒂𝟐/𝑬𝟏𝒉
𝟑 of symmetric cross – ply (0/ 90/ 90/ 0) laminated plates with 

𝒂/𝒉 = 𝟐𝟎, and 𝑬𝟏/𝑬𝟐 = 𝟒𝟎, (material 2) 

Aspect 

Ratio (𝒂/𝒃) 

Mode 

Number 
SS CC CS 

 1 0.4143 1.0742 0.9679 

0.5 2 0.4236 1.0941 1.0484 

 3 0.5408 1.3751 1.1257 

 1 0.4300 1.2389 1.0444 

0.75 2 0.4978 1.2691 1.2043 

 3 0.6520 1.8354 1.2921 

 1 0.4409 1.3795 1.0723 

1.0 2 0.5580 1.5286 1.3105 

 3 1.0763 2.1648 1.6946 
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 1 0.4224 1.5549 1.1349 

1.25 2 0.7795 1.7455 1.4327 

 3 1.6164 3.0019 1.8042 

 1 0.4400 1.6402 1.2543 

1.5 2 1.0787 2.2999 1.3330 

 3 1.6841 3.2702 2.4753 

 1 0.4885 1.8361 1.1494 

1.75 2 1.4473 3.0138 1.6342 

 3 1.8520 3.6574 2.7310 

 1 0.5642 2.1358 1.1054 

2.0 2 1.7525 3.7696 2.0207 

 3 1.8813 3.8703 2.8553 

 

Table (5.5) The first three non – dimensional buckling loads �̅� =

𝑷𝒂𝟐/𝑬𝟏𝒉
𝟑 of symmetric cross – ply (0/ 90/ 90/ 0) laminated plates with 

𝒂/𝒉 = 𝟐𝟎, and 𝑬𝟏/𝑬𝟐 = 𝟓, (material 2) 

Aspect 

Ratio (𝒂/𝒃) 

Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.6787 1.7786 1.6325 

0.5 2 0.6841 1.8364 1.7192 

 3 0.8672 2.2141 1.9284 

 1 0.6698 2.0107 1.7117 

0.75 2 0.8831 2.1504 1.9339 

 3 1.4912 2.7694 2.2689 

 1 0.6972 2.1994 1.8225 

1.0 2 1.2552 2.5842 2.0097 

 3 2.4284 4.1609 2.7116 
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 1 0.7726 2.3958 1.8397 

1.25 2 1.7753 3.5341 2.1821 

 3 2.6844 5.1641 3.8539 

 1 0.8943 2.7961 1.7643 

1.5 2 2.4305 4.8034 2.7358 

 3 2.6675 5.2420 4.6305 

 1 1.0588 3.3873 1.7741 

1.75 2 2.6919 5.4542 3.4532 

 3 3.2171 6.3629 4.7373 

 1 1.2630 4.1517 1.8578 

2.0 2 2.7619 5.8342 4.3179 

 3 4.1301 8.1942 4.6131 

 

 

 

Fig. (5.4) Effect of aspect ratio for different boundary conditions, 

 𝑬𝟏/𝑬𝟐 = 𝟒𝟎 
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Fig. (5.5) Effect of aspect ratio for different boundary conditions, 

 𝑬𝟏/𝑬𝟐 = 𝟓 

 

5.3 Effect of Material Anisotropy 

The buckling loads as a function of modulus ratio of symmetric cross – 

ply plates (0/ 90/ 90/ 0) are illustrated in table (5.6) and Fig. (5.6). As 

confirmed by other investigators, the buckling load decreases with increase in 

modulus ratio. Therefore, the coupling effect on buckling loads is more 

pronounced with the increasing degree of anisotropy. It is observed that the 

variation of buckling load becomes almost constant for higher values of 

elastic modulus ratio. 
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Table (5.6) The first three non – dimensional buckling loads �̅� =

𝑷𝒂𝟐/𝑬𝟏𝒉
𝟑 of symmetric cross – ply (0/ 90/ 90/ 0) square laminated plates 

for different modulus ratios with 𝒂/𝒉 = 𝟐𝟎, (material 2) 

𝑬𝟏/𝑬𝟐 
Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.6972 2.1994 1.8225 

5 2 1.2552 2.5842 2.0097 

 3 2.4284 4.1609 2.7116 

 1 0.5505 1.8548 1.3928 

10 2 0.8557 1.8951 1.8292 

 3 1.6532 2.9814 1.9089 

 1 0.5019 1.6663 1.2505 

15 2 0.7232 1.7248 1.6428 

 3 1.3966 2.6049 1.7694 

 1 0.4775 1.5515 1.1791 

20 2 0.6569 1.6524 1.5096 

 3 1.2683 2.4228 1.7394 

 1 0.4629 1.4828 1.1365 

25 2 0.6172 1.6055 1.4299 

 3 1.1916 2.3171 1.7214 

 1 0.4531 1.4366 1.1078 

30 2 0.5907 1.5723 1.3766 

 3 1.1402 2.2481 1.7094 

 1 0.4462 1.4044 1.0877 

35 2 0.5723 1.5479 1.3391 

 3 1.1043 2.2006 1.7009 
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 1 0.4409 1.3795 1.0723 

40 2 0.5580 1.5286 1.3105 

 3 1.0763 2.1648 1.6946 

  

 

Fig. (5.6) Effect of material anisotropy 

 

5.4 Effect of Fiber Orientations of Layers 

The variation of the buckling load, �̅� with fiber orientation (𝜃) of square 

laminated plate is shown in tables (5.7) and (5.8), and Figs. (5.7) and (5.8). 

Three boundary conditions SS, CC and CS are considered in this case. The 

buckling loads have been determined for two modulus ratios 40 and 5. The 

curves of simply – simply supported (SS) boundary conditions show 

maximum value of buckling load at 𝜃 = 45𝑜 . However, this trend is different 

for a plate under clamped – clamed (CC) boundary conditions which show 

minimum buckling load at 𝜃 = 45𝑜. For clamped – simply supported, it is 

observed that the buckling load decreases continuously with 𝜃, this may be 

due to the total and partial fixed rotation (𝜙 𝑎𝑛𝑑 𝜓) in the two later cases.       
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Table (5.7) The first three non – dimensional buckling loads �̅� =

𝑷𝒂𝟐/𝑬𝟏𝒉
𝟑 of laminated plates for different fiber orientations (𝜃) with 

𝒂/𝒉 = 𝟐𝟎, and 𝑬𝟏/𝑬𝟐 = 𝟒𝟎,  (material 2) 

Orientation 

Angle (𝜽) 

Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.2604 0.6134 0.5561 

0 2 0.2825 0.6398 0.5729 

 3 0.3960 0.8738 0.6745 

 1 0.2759 0.5957 0.5496 

15 2 0.3171 0.6123 0.5855 

 3 0.4771 0.8638 0.7570 

 1 0.2823 0.5636 0.5114 

30 2 0.3125 0.5834 0.5352 

 3 0.4861 0.9552 0.7902 

 1 0.2773 0.5207 0.4230 

45 2 0.3253 0.5842 0.4490 

 3 0.5135 0.9793 0.7093 

 1 0.2834 0.5574 0.3073 

60 2 0.3116 0.5788 0.3895 

 3 0.4783 0.9107 0.6362 

 1 0.2762 0.5859 0.3137 

75 2 0.3153 0.6043 0.3297 

 3 0.4161 0.8252 0.4924 

 1 0.2602 0.6061 0.3069 

90 2 0.2811 0.6260 0.3438 

 3 0.3908 0.8429 0.4801 
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Table (5.8) The first three non – dimensional buckling loads �̅� =

𝑷𝒂𝟐/𝑬𝟏𝒉
𝟑 of laminated plates for different fiber orientations (𝜃) with 

𝒂/𝒉 = 𝟐𝟎, and 𝑬𝟏/𝑬𝟐 = 𝟓,  (material 2) 

Orientation 

Angle (𝜽) 

Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.6970 2.1130 1.6496 

0 2 1.0086 2.1396 2.0991 

 3 1.7709 3.1397 2.1597 

 1 0.7108 2.0261 1.6665 

15 2 1.0908 2.1400 1.9833 

 3 1.8704 3.2340 2.2141 

 1 0.7457 1.8142 1.6326 

30 2 1.2613 2.2494 1.7099 

 3 2.0671 3.4809 2.4700 

 1 0.7665 1.7189 1.3114 

45 2 1.3477 2.3567 1.7689 

 3 2.1557 3.5899 2.7032 

 1 0.7457 1.8147 1.0893 

60 2 1.2602 2.2457 1.7913 

 3 2.0637 3.4650 2.6452 

 1 0.7110 2.0264 0.9824 

75 2 1.0898 2.1366 1.6562 

 3 1.8659 3.2178 2.7338 

 1 0.6970 2.1101 0.9573 

90 2 1.0080 2.1389 1.5827 

 3 1.7666 3.1269 2.7322 
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Fig. (5.7) Effect of fiber orientation of layers, 𝑬𝟏/𝑬𝟐 = 𝟒𝟎 

 
 

 

Fig. (5.8) Effect of fiber orientation of layers, 𝑬𝟏/𝑬𝟐 = 𝟓 
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5.5 Effect of Reversing Lamination Scheme 

In order to study the stacking sequence of laminated plates, two 

lamination schemes of cross – ply (0/ 90) and (90/ 0) and two other 

lamination of angle ply (45/ -45) and (-45/ 45) were considered. The results of 

their buckling loads of parameter (�̅� = 𝑃𝑎2/𝐸1ℎ
3) are given in tables (5.9), 

(5.10), (5.11) and (5.12). Three boundary conditions SS, CC and CS are 

considered in this case. The buckling loads have been determined for two 

modulus ratios 40 and 5. It is observed that, the buckling loads are completely 

the same for the given first three modes. 

Therefore, it can be concluded that the buckling load of laminated plates 

will remain the same even if the lamination order is reversed. The reason 

behind this is that the transformed elastic coefficients, [𝐶𝑖𝑗], are equal for both 

lamination schemes.   

Table (5.9) Non – dimensional buckling loads �̅� = 𝑷𝒂𝟐/𝑬𝟏𝒉
𝟑 of (0/ 90) 

and (90/ 0) lamination schemes of square laminated plates with 𝒂/𝒉 =

𝟐𝟎, and 𝑬𝟏/𝑬𝟐 = 𝟒𝟎,  (material 2) 

Lamination 

order 

Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.4410 1.6885 1.1512 

0/90 2 0.4494 3.0311 1.6881 

 3 1.4502 3.0349 2.5982 

 1 0.4410 1.6885 1.1512 

90/0 2 0.4494 3.0311 1.6881 

 3 1.4502 3.0349 2.5982 
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Table (5.10) Non – dimensional buckling loads �̅� = 𝑷𝒂𝟐/𝑬𝟏𝒉
𝟑 of (0/ 90) 

and (90/ 0) lamination schemes of square laminated plates with 𝒂/𝒉 =

𝟐𝟎, and 𝑬𝟏/𝑬𝟐 = 𝟓,  (material 2) 

Lamination 

order 

Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.6970 2.2275 1.5593 

0/90 2 1.9943 3.9687 2.3388 

 3 1.9954 3.9733 3.7581 

 1 0.6970 2.2274 1.5594 

90/0 2 1.9944 3.9688 2.3393 

 3 1.9957 3.9733 3.7580 

     

Table (5.11) Non – dimensional buckling loads �̅� = 𝑷𝒂𝟐/𝑬𝟏𝒉
𝟑 of (45/ -45) 

and (-45/ 45) lamination schemes of square laminated plates with 𝒂/𝒉 =

𝟐𝟎, and 𝑬𝟏/𝑬𝟐 = 𝟒𝟎,  (material 2) 

Lamination 

order 

Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.8375 1.6524 1.2806 

45/-45 2 1.7263 2.7630 1.9965 

 3 1.7285 2.7659 2.5358 

 1 0.8372 1.6527 .2805 

-45/45 2 .7262 2.7631 19963 

 3 1.7283 2.7660 2.5355 
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Table (5.12) Non – dimensional buckling loads �̅� = 𝑷𝒂𝟐/𝑬𝟏𝒉
𝟑 of (45/ -45) 

and (-45/ 45) lamination schemes of square laminated plates with 𝒂/𝒉 =

𝟐𝟎, and 𝑬𝟏/𝑬𝟐 = 𝟓,  (material 2) 

Lamination 

order 

Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.9907 2.2010 1.6553 

45/-45 2 2.1995 3.7613 2.5668 

 3 2.2015 3.7652 2.4640 

 1 0.9908 2.2010 1.6553 

-45/45 2 2.1995 3.7613 2.5671 

 3 2.2015 3.7652 3.4636 

 

5.6 Effect of Boundary Conditions 

The type of boundary support is an important factor in determining the 

buckling loads of a plate along with other factors such as aspect ratio, 

modulus ratio, … etc. 

Three sets of boundary conditions, namely simply – simply supported 

(SS), clamped – clamped (CC), and clamped – simply supported (CS) were 

considered in this study.  

The variations of buckling load, �̅� with the mode number for thin 

(𝑎/ℎ = 20) symmetrically loaded laminated cross – ply (0/90/90/0) plate with 

modulus ratio (𝐸1/𝐸2 = 5) were computed and the results are given in table 

(5.13) and Fig. (5.9).  

It is observed that, for all cases the buckling load increases with the 

mode number but at different rates depending on whether the plate is simply 

supported, clamped or clamped – simply supported. The buckling load is a 

minimum when the plate is simply supported and a maximum when the plate 

is clamped. Because of the rigidity of clamped boundary condition, the 
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buckling load is higher than in simply supported boundary condition. It is also 

observed that as the mode number increases, the plate needs additional 

support. 

Table (5.13) The first five non – dimensional buckling loads �̅� =

𝑷𝒂𝟐/𝑬𝟏𝒉
𝟑 of symmetric (0/90/90/0) square laminated plates with 𝒂/𝒉 =

𝟐𝟎, and 𝑬𝟏/𝑬𝟐 = 𝟓 

Mode 

Number 

Boundary Conditions 

SS CC CS 

1 0.6972 2.1994 1.8225 

2 1.2552 2.5842 2.0097 

3 2.4284 4.1609 2.7116 

4 2.6907 4.7431 4.3034 

5 2.7346 5.0168 4.4536 

      

 

Fig. (5.9) Effect of boundary conditions 
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Chapter (6) 

6. Concluding Remarks 

A Fortran program based on finite elements (FE) has been developed for 

buckling analysis of thin rectangular laminated plates using classical 

laminated plate theory (CLPT). The problem of buckling loads of generally 

layered composite plates has been studied. The problem is analyzed and 

solved using the energy approach, which is formulated by a finite element 

model. In this method, quadrilateral elements are applied utilizing a four 

noded model. Each element has three degrees of freedom at each node. The 

degrees of freedom are: lateral displacement (𝑤), and rotation (𝜙) and (𝜓) 

about the 𝑥 and 𝑦 axes respectively. To verify the accuracy of the present 

technique, buckling loads are evaluated and validated with other works 

available in the literature. Further comparisons were carried out and compared 

with the results obtained by the ANSYS package and the experimental result. 

The good agreement with available data demonstrates the reliability of finite 

element method used. 

The finite element model has been formulated to compute the buckling 

loads of laminated plates with rectangular cross – section and to study the 

effects of lamination scheme, aspect ratio, material anisotropy, fiber 

orientation of layers, reversed lamination scheme and boundary conditions on 

the non – dimensional critical buckling loads of laminated composite plates. 

Finally, a series of new results have been presented. These results show the 

following: 

1. The symmetric laminate is stiffer than the anti – symmetric one. This 

phenomenon is caused by coupling between bending and stretching which 

lowers the buckling loads of symmetric laminate. 

2. The buckling load is highly influenced by the end support. The buckling 

load of the quasi – isotropic (0/+45/-45/90) rectangular composite plate with 
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clamped – clamped type boundary condition is 1.5 times higher than the 

buckling load of the composite plate with clamped – simply supported (CS) 

type boundary condition, and more than 3 times of simply – simply supported 

(SS) type boundary condition. 

3. The buckling load increases continuously with increasing aspect ratio, but 

the rate of increase is not uniform. This may be due to the effect of bending – 

extensional twisting stiffness which increases the critical load.  

4. As the plate becomes more restrained, its resistance to buckling increases. 

The reason is that the structural stiffness reduces due to its constraints.  

5. The buckling load decreases with increase in modulus ratio. It is also 

observed that the variation of buckling load becomes almost constant for 

higher values of elastic modulus. This may be attributed to the coupling effect 

which increases with the increasing degree of anisotropy. 

6. The curves of simply – simply supported (SS) boundary conditions show 

maximum value of buckling load at 𝜃 = 45𝑜. However, this trend is different 

for a plate under clamped – clamped (CC) boundary conditions which show 

minimum load at 𝜃 = 45𝑜. For clamped – simply supported, it is observed 

that the buckling load decreases continuously with 𝜃. This may be due to the 

total and partial fixed rotation 𝜙 and 𝜓 in the two later cases. 

7. The buckling load of laminated plates will remain the same even if the 

lamination order is reversed. The reason behind this is that the transformed 

elastic coefficients, [𝐶𝑖𝑗], are equal for both lamination schemes.  

8. The buckling load increases with the mode number but at different rates 

depending on whether the plate is simply supported (SS), clamped (CC) or 

clamped – simply supported. The buckling load is a minimum when the plate 

is simply supported and a maximum when the plate is clamped. Because of 

the rigidity of clamped boundary condition, the buckling load is higher than in 
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simply supported boundary condition. It is also observed that as the mode 

number increases, the plate needs additional support.                       
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APPENDICES 

Appendix (A) 

Transformed Material Properties 

The transformed material properties are: 

𝐶11 = 𝐶11
′ 𝑐𝑜𝑠4𝜃 + 𝐶22

′ 𝑠𝑖𝑛4𝜃 + 2(𝐶12
′ + 2𝐶66

′ )𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃  

𝐶12 = (𝐶11
′ + 𝐶22

′ − 4𝐶66
′ )𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃 + 𝐶12

1 (𝑐𝑜𝑠4𝜃 + 𝑠𝑖𝑛4𝜃) 

𝐶22 = 𝐶11
′ 𝑠𝑖𝑛4𝜃 + 𝐶22

′ 𝑐𝑜𝑠4𝜃 + 2(𝐶12
′ + 2𝐶66

′ )𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃 

𝐶16 = (𝐶11
′ − 𝐶12

′ − 2𝐶66
′ )𝑐𝑜𝑠3𝜃𝑠𝑖𝑛𝜃 − (𝐶22

′ − 𝐶12
′ − 2𝐶66

′ )𝑠𝑖𝑛3𝜃𝑐𝑜𝑠𝜃 

𝐶26 = (𝐶11
′ − 𝐶12

′ − 2𝐶66
′ )𝑐𝑜𝑠𝜃𝑠𝑖𝑛3𝜃 − (𝐶22

′ − 𝐶12
′ − 2𝐶66

′ )𝑠𝑖𝑛𝜃𝑐𝑜𝑠3𝜃 

𝐶66 = (𝐶11
′ + 𝐶22

′ − 2𝐶12
′ − 2𝐶66

′ )𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃 + 𝐶66
′ (𝑠𝑖𝑛4𝜃 + 𝑐𝑜𝑠4𝜃) 

where    𝐶11
′ =

𝐸1
1 − 𝜈12𝜈21

 , 𝐶22
′ =

𝐸2
1 − 𝜈12𝜈21

 , 𝐶12
′ =

𝜈12 𝐸2
1 − 𝜈12𝜈21

 , 𝐶16
′

= 𝐺12 
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Appendix (B) 

Coefficients of Shape Functions 

𝑎𝑖,𝑗/8 
 

i 

𝑁𝑖 

𝑖, 1 𝑖, 2 𝑖, 3 𝑖, 4 𝑖, 5 𝑖, 6 𝑖, 7 𝑖, 8 𝑖, 9 𝑖, 10 𝑖, 11 𝑖, 12 

𝑁1 2 -3 3 0 -4 0 1 0 0 -1 1 1 

𝑁2 1 -1 1 -1 -1 0 1 -1 0 0 1 0 

𝑁3 -1 1 -1 0 1 1 0 0 -1 1 0 -1 

𝑁4 2 -3 -3 0 4 0 1 0 0 1 -1 -1 

𝑁5 1 -1 -1 -1 1 0 1 1 0 0 -1 0 

𝑁6 1 -1 -1 0 1 -1 0 0 1 1 0 -1 

𝑁7 2 3 3 0 4 0 -1 0 0 -1 -1 -1 

𝑁8 -1 -1 -1 1 -1 0 1 1 0 0 1 0 

𝑁9 -1 -1 -1 0 -1 1 0 0 1 1 0 1 

𝑁10 2 3 -3 0 -4 0 -1 0 0 1 1 1 

𝑁11 -1 -1 1 1 1 0 1 -1 0 0 -1 0 

𝑁12 1 1 -1 0 -1 -1 0 0 -1 1 0 1 
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Appendix (C) 

Transformation of Integrals from Local to Global Co –

ordinates 

 

The integrals in equations (3.19) and (3.20) are given in non - dimensional 

form as follows (limits of integration  𝑟, 𝑠 = −1 to1): 

∬
𝜕2𝑁𝑖
𝜕𝑥2

 
𝜕2𝑁𝑗
𝜕𝑥2

 𝑑𝑥 𝑑𝑦 =  
4ℎ𝑦

ℎ𝑥
3  ∬

𝜕2𝑁𝑖
𝜕𝑟2

 
𝜕2𝑁𝑗
𝜕𝑟2

 𝑑𝑟 𝑑𝑠 

=
4𝑛3

𝑚𝑅
(16𝑎𝑖,4 𝑎𝑗,4 +  48𝑎𝑖,7𝑎𝑗,7 + 16𝑎𝑖,8𝑎𝑗,8/3 + 16𝑎𝑖,11𝑎𝑗,11) 

∬
𝜕2𝑁𝑖
𝜕𝑦2

 
𝜕2𝑁𝑗
𝜕𝑦2

 𝑑𝑥 𝑑𝑦 =  
4ℎ𝑥

ℎ𝑦
3  ∬

𝜕2𝑁𝑖
𝜕𝑠2

 
𝜕2𝑁𝑗
𝜕𝑠2

 𝑑𝑟 𝑑𝑠  

=
4𝑚3𝑅3

𝑛
(16𝑎𝑖,6 𝑎𝑗,6 +  16𝑎𝑖,9𝑎𝑗,9/3 + 48𝑎𝑖,10𝑎𝑗,10 + 16𝑎𝑖,12𝑎𝑗,12) 

∬
𝜕2𝑁𝑖
𝜕𝑥2

 
𝜕2𝑁𝑗
𝜕𝑦2

 𝑑𝑥 𝑑𝑦 =  
4

ℎ𝑦ℎ𝑥
 ∬

𝜕2𝑁𝑖
𝜕𝑟2

 
𝜕2𝑁𝑗
𝜕𝑠2

 𝑑𝑟 𝑑𝑠 

= 4𝑚𝑛𝑅(16𝑎𝑖,4 𝑎𝑗,6 +  16𝑎𝑖,7𝑎𝑗,9 + 16𝑎𝑖,8𝑎𝑗,10 + 16𝑎𝑖,11𝑎𝑗,12) 

∬
𝜕2𝑁𝑖
𝜕𝑦2

 
𝜕2𝑁𝑗
𝜕𝑥2

 𝑑𝑥 𝑑𝑦 =  
4

ℎ𝑦ℎ𝑥
 ∬

𝜕2𝑁𝑖
𝜕𝑠2

 
𝜕2𝑁𝑗
𝜕𝑟2

 𝑑𝑟 𝑑𝑠 

= 4𝑚𝑛𝑅(16𝑎𝑖,6 𝑎𝑗,4 +  16𝑎𝑖,9𝑎𝑗,7 + 16𝑎𝑖,10𝑎𝑗,8 + 16𝑎𝑖,12𝑎𝑗,11) 

∬
𝜕2𝑁𝑖
𝜕𝑥𝜕𝑦

 
𝜕2𝑁𝑗
𝜕𝑥𝜕𝑦

 𝑑𝑥 𝑑𝑦 =  
4

ℎ𝑦ℎ𝑥
 ∬

𝜕2𝑁𝑖
𝜕𝑟𝜕𝑠

 
𝜕2𝑁𝑗
𝜕𝑟𝜕𝑠

 𝑑𝑟 𝑑𝑠 = 

4𝑚𝑛𝑅[4𝑎𝑖,5 𝑎𝑗,5 +  4(3𝑎𝑖,5𝑎𝑗,11 + 4𝑎𝑖,8𝑎𝑗,8)/3 

+4(3𝑎𝑖,5 𝑎𝑗,12 +  4𝑎𝑖,9𝑎𝑗,9)/3 + 4(𝑎𝑖,11 𝑎𝑗,12 + 𝑎𝑖,12𝑎𝑗,11)+ 36𝑎𝑖,12𝑎𝑗,12/5] 

∬
𝜕𝑁𝑖
𝜕𝑥

 
𝜕𝑁𝑗
𝜕𝑥

 𝑑𝑥 𝑑𝑦 =  
ℎ𝑦
ℎ𝑥
 ∬

𝜕𝑁𝑖
𝜕𝑟

 
𝜕𝑁𝑗
𝜕𝑟

 𝑑𝑟 𝑑𝑠 

=
𝑛

𝑚𝑅
[4𝑎𝑖,2 𝑎𝑗,2 +  4(3𝑎𝑖,2𝑎𝑗,7 + 4𝑎𝑖,4𝑎𝑗,4 + 3𝑎𝑖,7𝑎𝑗,2)/3 

+4(𝑎𝑖,2𝑎𝑗,9 + 𝑎𝑖,5𝑎𝑗,5 + 𝑎𝑖,9𝑎𝑗,2)/3 + 4(3𝑎𝑖,5 𝑎𝑗,11 +  3𝑎𝑖,7𝑎𝑗,9 + 4𝑎𝑖,8𝑎𝑗,8 
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+3𝑎𝑖,9𝑎𝑗,7 + 3𝑎𝑖,11𝑎𝑗,5)/9 + 4(𝑎𝑖,5𝑎𝑗,12 + 𝑎𝑖,9𝑎𝑗,9 + 𝑎𝑖,12𝑎𝑗,5)/5 

+36𝑎𝑖,7𝑎𝑗,7/5 + 12𝑎𝑖,11𝑎𝑗,11/5 + 4(𝑎𝑖,11𝑎𝑗,12 + 𝑎𝑖,12𝑎𝑗,11)/5

+ 4𝑎𝑖,12𝑎𝑗,12/7] 

∬
𝜕𝑁𝑖
𝜕𝑦

 
𝜕𝑁𝑗
𝜕𝑦

 𝑑𝑥 𝑑𝑦 =  
ℎ𝑥
ℎ𝑦
 ∬

𝜕𝑁𝑖
𝜕𝑠
 
𝜕𝑁𝑗
𝜕𝑠

 𝑑𝑟 𝑑𝑠 

=
𝑚𝑅

𝑛
[4𝑎𝑖,3 𝑎𝑗,3 +  4(𝑎𝑖,3𝑎𝑗,8 + 𝑎𝑖,5𝑎𝑗,5 + 𝑎𝑖,8𝑎𝑗,3)/3 

+4(3𝑎𝑖,3𝑎𝑗,10 + 4𝑎𝑖,6𝑎𝑗,6 + 3𝑎𝑖,10𝑎𝑗,3)/3 + 4(3𝑎𝑖,5 𝑎𝑗,11 + 𝑎𝑖,8𝑎𝑗,8

+ 𝑎𝑖,11𝑎𝑗,5)/5 

+4(3𝑎𝑖,5𝑎𝑗,12 + 3𝑎𝑖,8𝑎𝑗,10 + 4𝑎𝑖,9𝑎𝑗,9 + 3𝑎𝑖,10𝑎𝑗,8 + 3𝑎𝑖,12𝑎𝑗,5)/9 

+36𝑎𝑖,10𝑎𝑗,10/5 + 4(𝑎𝑖,11𝑎𝑗,12 + 𝑎𝑖,12𝑎𝑗,11)/5 + 12𝑎𝑖,12𝑎𝑗,12/5

+ 4𝑎𝑖,11𝑎𝑗,11/7] 

∬
𝜕𝑁𝑖
𝜕𝑥

 
𝜕𝑁𝑗
𝜕𝑦

 𝑑𝑥 𝑑𝑦 =  ∬
𝜕𝑁𝑖
𝜕𝑟

 
𝜕𝑁𝑗
𝜕𝑠

 𝑑𝑟 𝑑𝑠 

= 4𝑎𝑖,2𝑎𝑗,3 + 4(𝑎𝑖,2𝑎𝑗,8 + 2𝑎𝑖,4𝑎𝑗,5 + 3𝑎𝑖,7 𝑎𝑗,8)/3 + 4(3 𝑎𝑖,2𝑎𝑗,10

+  2𝑎𝑖,5𝑎𝑗,6 

+𝑎𝑖,9𝑎𝑗,3)/3 + 4(2𝑎𝑖,4𝑎𝑗,11 + 3𝑎𝑖,7𝑎𝑗,8)/5 + 4(6𝑎𝑖,4𝑎𝑗,12 + 9𝑎𝑖,7𝑎𝑗,10 

+4𝑎𝑖,8𝑎𝑗,9 + 𝑎𝑖,9𝑎𝑗,8 + 6𝑎𝑖,11𝑎𝑗,6)/9 + 4(3𝑎𝑖,9𝑎𝑗,10 + 2𝑎𝑖,12𝑎𝑗,6)/5 

∬
𝜕𝑁𝑖
𝜕𝑦

 
𝜕𝑁𝑗
𝜕𝑥

 𝑑𝑥 𝑑𝑦 =  ∬
𝜕𝑁𝑖
𝜕𝑠

 
𝜕𝑁𝑗
𝜕𝑟

 𝑑𝑟 𝑑𝑠 

= 4𝑎𝑖,3𝑎𝑗,2 + 4(3𝑎𝑖,3𝑎𝑗,7 + 2𝑎𝑖,5𝑎𝑗,4 + 𝑎𝑖,8 𝑎𝑗,2)/3 + 4( 𝑎𝑖,3𝑎𝑗,9 +  2𝑎𝑖,6𝑎𝑗,5 

+3𝑎𝑖,10𝑎𝑗,2)/3 + 4(6𝑎𝑖,6𝑎𝑗,11 + 𝑎𝑖,8𝑎𝑗,9 + 4𝑎𝑖,9𝑎𝑗,8 + 9𝑎𝑖,10𝑎𝑗,7

+ 6𝑎𝑖,2𝑎𝑗,4)/9 

+4(2𝑎𝑖,6𝑎𝑗,12 + 3𝑎𝑖,10𝑎𝑗,9)/5 + 4(3𝑎𝑖,8𝑎𝑗,7 + 2𝑎𝑖,11𝑎𝑗,4)/5 

∬
𝜕2𝑁𝑖
𝜕𝑥2

 
𝜕2𝑁𝑗
𝜕𝑥𝜕𝑦

 𝑑𝑥 𝑑𝑦 =  
4

ℎ𝑥
2∬

𝜕2𝑁𝑖
𝜕𝑟2

 
𝜕2𝑁𝑗
𝜕𝑟𝜕𝑠

 𝑑𝑟 𝑑𝑠 

= 4𝑛2[8𝑎𝑖,4(𝑎𝑗,5 + 𝑎𝑗,11 + 𝑎𝑗,12) + 16(𝑎𝑖,7𝑎𝑗,8 + 𝑎𝑖,8𝑎𝑗,9/3)] 

∬
𝜕2𝑁𝑖
𝜕𝑥𝜕𝑦

 
𝜕2𝑁𝑗
𝜕𝑥2

 𝑑𝑥 𝑑𝑦 =  
4

ℎ𝑥
2∬

𝜕2𝑁𝑖
𝜕𝑟𝜕𝑠

 
𝜕2𝑁𝑗
𝜕𝑟2

 𝑑𝑟 𝑑𝑠 

= 4𝑛2[8𝑎𝑗,4(𝑎𝑖,5 + 𝑎𝑖,11 + 𝑎𝑖,12) + 16𝑎𝑖,8𝑎𝑗,7 + 16𝑎𝑖,9𝑎𝑗,8/3] 
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∬
𝜕2𝑁𝑖
𝜕𝑦2

 
𝜕2𝑁𝑗
𝜕𝑥𝜕𝑦

 𝑑𝑥 𝑑𝑦 =  
4

ℎ𝑦
2∬

𝜕2𝑁𝑖
𝜕𝑠2

 
𝜕2𝑁𝑗
𝜕𝑟𝜕𝑠

 𝑑𝑟 𝑑𝑠 

= 4𝑚2𝑅2[8𝑎𝑖,6(𝑎𝑗,5 + 𝑎𝑗,11 + 𝑎𝑗,12) + 16𝑎𝑖,10𝑎𝑗,9 + 16𝑎𝑖,9𝑎𝑗,8/3] 

∬
𝜕2𝑁𝑖
𝜕𝑥𝜕𝑦

 
𝜕2𝑁𝑗
𝜕𝑦2

 𝑑𝑥 𝑑𝑦 =  
4

ℎ𝑦
2∬

𝜕2𝑁𝑖
𝜕𝑟𝜕𝑠

 
𝜕2𝑁𝑗
𝜕𝑠2

 𝑑𝑟 𝑑𝑠 

= 4𝑚2𝑅2[8𝑎𝑗,6(𝑎𝑖,5 + 𝑎𝑖,11 + 𝑎𝑖,12) + 16𝑎𝑖,9𝑎𝑗,10 + 16𝑎𝑖,8𝑎𝑗,9/3] 

In the above expressions  ℎ𝑥 =
𝑎

𝑛
, ℎ𝑦 =

𝑏

𝑚
  where 𝑎 and 𝑏 are the dimensions 

of the plate in the x – and y – directions respectively. 𝑛 and 𝑚 are the number 

of elements in the x – and y – directions respectively. Note that 𝑑𝑥 =
ℎ𝑥

2
𝑑𝑟  

and 𝑑𝑦 =
ℎ𝑦

2
𝑑𝑠 where 𝑟 and 𝑠 are the normalized coordinates, and 𝑅 = 𝑎/𝑏.     
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Appendix (D) 

The Fortran Program 

C***  This program computes the modes and buckling load. 

 

      PARAMETER (M1=500, M2=100, M3=12, M4=121, M5=7, M6=11, 

     +M7=4, M8=3) 

      REAL LAM,IM 

      INTEGER FLAG,DOF,E,EE 

      DIMENSION ESM(M1,M1),EMM(M1,M1),EMMI(M1,M1), 

REF(M1,M1), 

     +INDX(M1),E(M2,M3),VAL(M1),RE(M1),IM(M1),W(M5,M6,M6), 

     

+PHI(M5,M6,M6),THI(M5,M6,M6),VECT(M1,M5),NODE(M4,M7),EE(M4

,M8) 

 

      OPEN(UNIT=5,FILE='BUCK.DAT',STATUS='OLD') 

      OPEN(UNIT=6,FILE='BUCK.OUT',STATUS='UNKNOWN') 

 

C***  Read number of buckling loads required 

      READ(5,*)NLOAD 

 

C***  Relate local nodes to global nodes 

      CALL NODEN(NODE,NEI,NEJ,FLAG,M4,M7) 

      IF(FLAG.EQ.0) GO TO 444 
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C***  Read boundary conditions 

      CALL COMP(NEI,NEJ,E,DOF,NODE,EE,M2,M3,M4,M7,M8) 

      IF(FLAG.EQ.0) GO TO 444 

 

C***  Compute stiffnesses 

      CALL STFN(D11,D12,D22,D16,D26,D66,LAM,M4,FLAG) 

      IF(FLAG.EQ.0) GO TO 444 

 

C***  Compute element matrices and global matrices 

      CALL GLOBAL(ESM,EMM,D11,D12,D22,D16,D26,D66,NEI,NEJ, 

LAM,ASR, 

     +E,DOF,M1,M2,M3,FLAG) 

      IF(FLAG.EQ.0) GO TO 444 

 

C***  Factorize matrix into upper and lower matrices. 

      CALL LUCOM(EMM,DOF,INDX,FLAG,M1) 

      IF(FLAG.EQ.0) GO TO 444 

 

C***  Inversion of matrix 

      CALL LUSOL(EMM,DOF,INDX,EMMI,M1) 

 

C***  Multiplication of matrices 

      CALL MULT(EMMI,ESM,EMM,DOF,M1) 

       

C***  Save plate matrix as it will be destroyed later. 

      DO 12 I=1,DOF 
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      DO 12 J=1,DOF 

      REF(I,J)=EMM(I,J) 

   12 CONTINUE 

       

C***  Balancing of the plate matrix 

      CALL BAL(EMM,DOF,M1) 

 

C***  Reduction of plate matrix to Heisenberg form 

      CALL HES(EMM,DOF,M1) 

 

C***  Find eigenvalues of an upper Heisenberg matrix 

      CALL HQR(EMM,RE,IM,DOF,FLAG,M1) 

      IF(FLAG.EQ.0) GO TO 444 

       

C***  Sort eigenvalues in ascending order 

      CALL ESORT(RE,VAL,DOF,M1) 

C     CALL NATF1(RE,VAL,DOF,M1) 

 

C***  Compute eigenvectors 

      CALL SIL(REF,VECT,VAL,DOF,FLAG,M1,M5) 

      IF(FLAG.EQ.0) GO TO 444 

 

C***  Arrange eigenvalues and eigenvectors for printing 

      CALL PNATF(VECT,DOF,NEI,NEJ,EE,W,PHI,THI,M1,M4,M5,M6, 

     +M7,M8,NODE) 
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C***  Print result 

      CALL PRINT(VAL,DOF,NLOAD,W,PHI,THI,NEI,NEJ,M1,M5,M6) 

  444 STOP 

      END 

C********************************************* 

C     This subroutine does node numbering. 

      SUBROUTINE NODEN(NODE,NEI,NEJ,FLAG,M4,M7) 

      PARAMETER (M11=100) 

      INTEGER FLAG 

      DIMENSION NODE(M4,M7),NEL(M11) 

 

C     Read number of elements 

      READ(5,*)NEI,NEJ 

 

      NE=NEI*NEJ 

      FLAG=1 

      IF(NE.GT.100)THEN 

      WRITE(*,*)'Number of elements must not exceed 100' 

      FLAG=0 

      RETURN 

      ENDIF 

 

      K=1 

      DO 70 N=1,NEI 
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      IF(N.GT.1)K=K-(NEJ+1) 

      IMIN=1+NEJ*(N-1) 

      IMAX=IMIN+NEJ-1 

      DO 10 I=IMIN,IMAX 

      DO 20 J=2,4,2 

      NODE(I,J)=K 

      K=K+1 

   20 CONTINUE 

      NNEJ=N*NEJ 

      IF(I.LT.NNEJ) K=K-1 

   10 CONTINUE 

 

      DO 50 I=IMIN,IMAX 

      DO 60 J=1,3,2 

      NODE(I,J)=K 

      K=K+1 

   60 CONTINUE 

      NNEJ=N*NEJ 

      IF(I.LT.NNEJ) K=K-1 

   50 CONTINUE 

   70 CONTINUE 

      DO 80 I=1,NE 

      NEL(I)=I 

   80 CONTINUE 

      RETURN 
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      END 

c***************************** 

C***  This subroutine reads boundary conditions. 

 

      SUBROUTINE COMP(NEI,NEJ,E,DOF,NODE,EE,M2,M3,M4,M7,M8) 

      INTEGER WI1,PI1,TI1,WI2,PI2,TI2,WJ1,PJ1,TJ1,WJ2,PJ2,TJ2,E, 

     +EE,DOF,COUNT 

 

      DIMENSION E(M2,M3),EE(M4,M8),NODE(M4,M7) 

C***  Read boundary conditions 

      READ(5,*)WI1,PI1,TI1 

      READ(5,*)WI2,PI2,TI2 

      READ(5,*)WJ1,PJ1,TJ1 

      READ(5,*)WJ2,PJ2,TJ2 

 

      NE=NEI*NEJ 

       

      DO 6 I=1,NE 

      DO 6 J=1,4 

      L=NODE(I,J) 

      DO 6 K=1,3 

      EE(L,K)=1000000 

    6 CONTINUE 

       

      IM=NE+1-NEJ 
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      DO 10 I=1,IM,NEI 

      DO 10 J=1,2 

      L=NODE(I,J) 

      IF(WI1.EQ.0) EE(L,1)=0 

      IF(PI1.EQ.0) EE(L,2)=0 

      IF(TI1.EQ.0) EE(L,3)=0 

   10 CONTINUE 

 

      DO 20 I=NEJ,NE,NEI 

      DO 20 J=3,4 

      L=NODE(I,J) 

      IF(WI2.EQ.0) EE(L,1)=0 

      IF(PI2.EQ.0) EE(L,2)=0 

      IF(TI2.EQ.0) EE(L,3)=0 

   20 CONTINUE 

       

      DO 30 I=1,NEJ 

      DO 30 J=2,4,2 

      L=NODE(I,J) 

      IF(WJ1.EQ.0) EE(L,1)=0 

      IF(PJ1.EQ.0) EE(L,2)=0 

      IF(TJ1.EQ.0) EE(L,3)=0 

   30 CONTINUE 

 

      DO 40 I=IM,NE 
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      DO 40 J=1,3,2 

      L=NODE(I,J) 

      IF(WJ2.EQ.0) EE(L,1)=0 

      IF(PJ2.EQ.0) EE(L,2)=0 

      IF(TJ2.EQ.0) EE(L,3)=0 

   40 CONTINUE 

 

      COUNT=0 

      DO 220 I=1,NE 

      DO 220 J=1,4 

      L=NODE(I,J) 

      DO 220 K=1,3 

      IF(EE(L,K).EQ.1000000) THEN 

      COUNT=COUNT+1 

      EE(L,K)=COUNT 

      ENDIF 

  220 CONTINUE 

 

      DO 260 I=1,NE 

      DO 260 J=1,4 

      L=NODE(I,J) 

      DO 260 K=1,3 

      M=K+3*(J-1) 

      E(I,M)=EE(L,K) 

  260 CONTINUE 
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      DOF=COUNT 

      WRITE(*,*)'Degrees of freedom =',DOF 

      RETURN 

      END 

 

C****************************************** 

 

C***  This subroutine computes the stiffness parameters 

 

      SUBROUTINE STFN(D11,D12,D22,D16,D26,D66,LAM,M4,FLAG) 

      REAL NUXY,NUYX,LAM 

      INTEGER FLAG 

      PARAMETER(M44=20) 

      DIMENSION ZK(M44),THETA(M44) 

 

C     Read material properties 

      READ(5,*)EY,GXY,GYZ,GXZ,NUXY,LAM 

C     Read number of layers and orientations 

      READ(5,*)NL,(THETA(I),I=1,NL) 

 

      FLAG=1 

      IF(NL.GT.20)THEN 

      WRITE(*,*)'Number of layers must not exceed 20' 

      FLAG=0 

      RETURN 
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      ENDIF 

 

c      IF(LAM.GT.50)THEN 

c      WRITE(*,*)'LENGTH-TO-THICKNESS RATIO MUST NOT 

EXCEED 50' 

c      FLAG=0 

c      RETURN 

c      ENDIF 

 

      SCF=5.0/6.0 

      PI=22.0/7.0 

      NUYX=NUXY*EY 

      C11=1.0/(1.0-NUXY*NUYX) 

      C12=NUXY*EY/(1.0-NUXY*NUYX) 

      C22=EY/(1.0-NUXY*NUYX) 

      C66=GXY 

      C44=GYZ 

      C55=GXZ 

 

      D11=0.0 

      D12=0.0 

      D22=0.0 

      D16=0.0 

      D26=0.0 

      D66=0.0 
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      TH=1.0/NL 

      DO 1 I=1,NL+1 

      ZK(I)=-0.5+(I-1)*TH 

    1 CONTINUE 

       

      DO 134 I=1,NL 

      CO=COS(THETA(I)*PI/180.0) 

      SI=SIN(THETA(I)*PI/180.0) 

 

      CB11=C11*CO**4+C22*SI**4+2.0*(C12+2.0*C66)*SI**2*CO**2 

      CB12=(C11+C22-4.0*C66)*SI**2*CO**2+C12*(CO**4+SI**4) 

      CB22=C11*SI**4+C22*CO**4+2.0*(C12+2.0*C66)*SI**2*CO**2 

      CB16=(C11-C12-2.0*C66)*CO**3*SI-(C22-C12-2.0*C66)*SI**3*CO 

      CB26=(C11-C12-2.0*C66)*CO*SI**3-(C22-C12-2.0*C66)*SI*CO**3 

      CB66=(C11+C22-2.0*C12 2.0*C66)*SI**2*CO**2+C66*(SI**4+ 

CO**4) 

      CB44=C44*CO**2+C55*SI**2 

      CB45=(C44+C55)*SI*CO 

      CB55=C44*SI**2+C55*CO**2 

       

      SZ1=ZK(I+1)-ZK(I) 

      SZ2=(ZK(I+1)**2-ZK(I)**2)/2.0 

      SZ3=(ZK(I+1)**3-ZK(I)**3)/3.0 

 

      D11=CB11*SZ3+D11 

      D12=CB12*SZ3+D12 
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      D22=CB22*SZ3+D22 

      D16=CB16*SZ3+D16 

      D26=CB26*SZ3+D26 

      D66=CB66*SZ3+D66 

  134 CONTINUE 

      write(*,*)D11,D22 

      RETURN 

      END 

C************************************************* 

 

      SUBROUTINE GLOBAL(ESM,EMM,D11,D12,D22,D16,D26,D66, 

NEI,NEJ, 

     +LAM,ASR,ED,DOF,M1,M2,M3,FLAG) 

 

      PARAMETER (M11=12, M33=12) 

      REAL LAM 

      INTEGER ED,T,DOF,FLAG 

      DIMENSION ESM(M1,M1),EMM(M1,M1),ED(M2,M3),A(M11), 

B(M11),C(M11), 

     

+D(M11),E(M11),F(M11),G(M11),H(M11),P(M11),Q(M11),R(M11),S(M11

), 

     +ST(M33,M33),ZT(M33,M33) 

 

C     Read aspect ratio and edge loads 

      READ(5,*)ASR,PX,PY,PXY 
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      FLAG=1 

      IF(ASR.GT.5)THEN 

      WRITE(*,*)'ASPECT RATIO MUST NOT EXCEED 5' 

      FLAG=0 

      RETURN 

      ENDIF 

 

      NE=NEI*NEJ 

      DO 5 L=1,DOF 

      DO 5 T=1,DOF 

      ESM(L,T)=0.0 

      EMM(L,T)=0.0 

    5 CONTINUE 

 

      A(1)=1.0/4.0 

      A(2)=1.0/8.0 

      A(3)=-1.0/8.0 

      A(4)=1.0/4.0 

      A(5)=1.0/8.0 

      A(6)=1.0/8.0 

      A(7)=1.0/4.0 

      A(8)=-1.0/8.0 

      A(9)=-1.0/8.0 

      A(10)=1.0/4.0 

      A(11)=-1.0/8.0 
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      A(12)=1.0/8.0 

 

      B(1)=-3.0/8.0 

      B(2)=-1.0/8.0 

      B(3)=1.0/8.0 

      B(4)=-3.0/8.0 

      B(5)=-1.0/8.0 

      B(6)=-1.0/8.0 

      B(7)=3.0/8.0 

      B(8)=-1.0/8.0 

      B(9)=-1.0/8.0 

      B(10)=3.0/8.0 

      B(11)=-1.0/8.0 

      B(12)=1.0/8.0 

 

      C(1)=3.0/8.0 

      C(2)=1.0/8.0 

      C(3)=-1.0/8.0 

      C(4)=-3.0/8.0 

      C(5)=-1.0/8.0 

      C(6)=-1.0/8.0 

      C(7)=3.0/8.0 

      C(8)=-1.0/8.0 

      C(9)=-1.0/8.0 

      C(10)=-3.0/8.0 
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      C(11)=1.0/8.0 

      C(12)=-1.0/8.0 

 

      D(1)=0 

      D(2)=-1.0/8.0 

      D(3)=0 

      D(4)=0 

      D(5)=-1.0/8.0 

      D(6)=0 

      D(7)=0 

      D(8)=1.0/8.0 

      D(9)=0 

      D(10)=0 

      D(11)=1.0/8.0 

      D(12)=0 

 

      E(1)=-1.0/2.0 

      E(2)=-1.0/8.0 

      E(3)=1.0/8.0 

      E(4)=1.0/2.0 

      E(5)=1.0/8.0 

      E(6)=1.0/8.0 

      E(7)=1.0/2.0 

      E(8)=-1.0/8.0 

      E(9)=-1.0/8.0 
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      E(10)=-1.0/2.0 

      E(11)=1.0/8.0 

      E(12)=-1.0/8.0 

 

      F(1)=0 

      F(2)=0 

      F(3)=1.0/8.0 

      F(4)=0 

      F(5)=0 

      F(6)=-1.0/8.0 

      F(7)=0 

      F(8)=0 

      F(9)=1.0/8.0 

      F(10)=0 

      F(11)=0 

      F(12)=-1.0/8.0 

 

      G(1)=1.0/8.0 

      G(2)=1.0/8.0 

      G(3)=0 

      G(4)=1.0/8.0 

      G(5)=1.0/8.0 

      G(6)=0 

      G(7)=-1.0/8.0 

      G(8)=1.0/8.0 
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      G(9)=0 

      G(10)=-1.0/8.0 

      G(11)=1.0/8.0 

      G(12)=0 

 

      H(1)=0 

      H(2)=-1.0/8.0 

      H(3)=0 

      H(4)=0 

      H(5)=1.0/8.0 

      H(6)=0 

      H(7)=0 

      H(8)=1.0/8.0 

      H(9)=0 

      H(10)=0 

      H(11)=-1.0/8.0 

      H(12)=0 

 

      P(1)=0 

      P(2)=0 

      P(3)=-1.0/8.0 

      P(4)=0 

      P(5)=0 

      P(6)=1.0/8.0 

      P(7)=0 
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      P(8)=0 

      P(9)=1.0/8.0 

      P(10)=0 

      P(11)=0 

      P(12)=-1.0/8.0 

 

      Q(1)=-1.0/8.0 

      Q(2)=0 

      Q(3)=1.0/8.0 

      Q(4)=1.0/8.0 

      Q(5)=0 

      Q(6)=1.0/8.0 

      Q(7)=-1.0/8.0 

      Q(8)=0 

      Q(9)=1.0/8.0 

      Q(10)=1.0/8.0 

      Q(11)=0 

      Q(12)=1.0/8.0 

 

      R(1)=1.0/8.0 

      R(2)=1.0/8.0 

      R(3)=0 

      R(4)=-1.0/8.0 

      R(5)=-1.0/8.0 

      R(6)=0 
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      R(7)=-1.0/8.0 

      R(8)=1.0/8.0 

      R(9)=0 

      R(10)=1.0/8.0 

      R(11)=-1.0/8.0 

      R(12)=0 

 

      S(1)=1.0/8.0 

      S(2)=0 

      S(3)=-1.0/8.0 

      S(4)=-1.0/8.0 

      S(5)=0 

      S(6)=-1.0/8.0 

      S(7)=-1.0/8.0 

      S(8)=0 

      S(9)=1.0/8.0 

      S(10)=1.0/8.0 

      S(11)=0 

      S(12)=1.0/8.0 

       

      ASR=ASR*NEI/NEJ 

C      D11=4.0*D11*(NEI/NEJ)/ASR 

C      D12=4.0*D12*(NEJ/NEI)*ASR 

C      D16=4.0*D16 

C      D22=4.0*D22*(NEJ/NEI)**3*ASR**3 
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C      D26=4.0*D26*(NEJ/NEI)**2*ASR**2 

C      D66=4.0*D66*(NEJ/NEI)*ASR 

 

      D11=4.0*D11/ASR 

      D12=4.0*D12*ASR 

      D16=8.0*D16 

      D22=4.0*D22*ASR**3 

      D26=8.0*D26*ASR**2 

      D66=16.0*D66*ASR 

 

      DO 110 I=1,12 

      DO 110 J=1,12 

      RR=2.0*B(I)*(B(J)+G(J)+P(J)/3.0)+8.0*D(I)*D(J)/3.0+2.0*E(I)*( 

     +E(J)/3.0+R(J)/3.0+S(J)/5.0)+2.0*G(I)*(B(J)+9.0*G(J)/5.0+P(J)/3.0)+ 

     +8.0*H(I)*H(J)/9.0+2.0*P(I)*(B(J)/3.0+G(J)/3.0+P(J)/5.0)+ 

     +2.0*R(I)*(E(J)/3.0+3.0*R(J)/5.0+S(J)/5.0)+2.0*S(I)*(E(J)/5.0+ 

     +R(J)/5.0+S(J)/7.0) 

      RR=2.0*RR 

      SS=2.0*C(I)*(C(J)+Q(J)+H(J)/3.0)+8.0*F(I)*F(J)/3.0+2.0*E(I)* 

     +(E(J)/3.0+S(J)/3.0+R(J)/5.0)+2.0*Q(I)*(C(J)+9.0*Q(J)/5.0+H(J)/ 

     +3.0)+8.0*P(I)*P(J)/9.0+2.0*H(I)*(C(J)/3.0+Q(J)/3.0+H(J)/5.0)+ 

     +2.0*S(I)*(E(J)/3.0+3.0*S(J)/5.0+R(J)/5.0)+2.0*R(I)*(E(J)/5.0+ 

     +S(J)/5.0+R(J)/7.0) 

      SS=2.0*SS 

      RS=2.0*B(I)*(C(J)+H(J)/3.0+Q(J))+4.0*D(I)*(E(J)/3.0+R(J)/5.0+ 
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     +S(J)/3.0)+4.0*E(I)*F(J)/3.0+2.0*G(I)*(C(J)+3.0*H(J)/5.0+Q(J))+ 

     +8.0*H(I)*P(J)/9.0+2.0*P(I)*(C(J)/3.0+H(J)/9.0+3.0*Q(J)/5.0)+ 

     +4.0*R(I)*F(J)/3.0+4.0*S(I)*F(J)/5.0 

      RS=2.0*RS 

      SR=2.0*C(I)*(B(J)+P(J)/3.0+G(J))+4.0*F(I)*(E(J)/3.0+S(J)/5.0+ 

     +R(J)/3.0)+4.0*E(I)*D(J)/3.0+2.0*Q(I)*(B(J)+3.0*P(J)/5.0+G(J))+ 

     +8.0*P(I)*H(J)/9.0+2.0*H(I)*(B(J)/3.0+P(J)/9.0+3.0*G(J)/5.0)+ 

     +4.0*S(I)*D(J)/3.0+4.0*R(I)*D(J)/5.0 

      SR=2.0*SR 

      RRRR=8.0*D(I)*D(J)+24.0*G(I)*G(J)+8.0*H(I)*H(J)/3.0+8.0*S(I)*S(J) 

      RRRR=2.0*RRRR 

      SSSS=8.0*F(I)*F(J)+24.0*Q(I)*Q(J)+8.0*P(I)*P(J)/3.0+8.0*S(I)*S(J) 

      SSSS=2.0*SSSS 

      RRSS=8.0*D(I)*F(J)+8.0*G(I)*P(J)+8.0*H(I)*Q(J)+8.0*R(I)*S(J) 

      RRSS=2.0*RRSS 

      SSRR=8.0*F(I)*D(J)+8.0*P(I)*G(J)+8.0*Q(I)*H(J)+8.0*S(I)*R(J) 

      SSRR=2.0*SSRR 

      RSRS=2.0*E(I)*(E(J)+R(J)+S(J))+8.0*H(I)*H(J)/3.0+8.0*P(I)*P(J)/ 

     +3.0+2.0*R(I)*(E(J)+9.0*R(J)/5.0+S(J))+2.0*S(I)*(E(J)+R(J)+9.0* 

     +S(J)/5.0) 

      RSRS=2.0*RSRS 

      RRRS=4.0*D(I)*(E(J)+R(J)+S(J))+8.0*G(I)*H(J)+8.0*H(I)*P(J)/3.0 

      RRRS=2.0*RRRS 

      RSRR=4.0*D(J)*(E(I)+R(I)+S(I))+8.0*H(I)*G(J)+8.0*P(I)*H(J)/3.0 

      RSRR=2.0*RSRR 
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      SSRS=4.0*F(I)*(E(J)+R(J)+S(J))+8.0*Q(I)*P(J)+8.0*P(I)*H(J)/3.0 

      SSRS=2.0*SSRS 

      RSSS=4.0*F(J)*(E(I)+R(I)+S(I))+8.0*P(I)*Q(J)+8.0*H(I)*P(J)/3.0 

      RSSS=2.0*RSSS 

 

      

ST(I,J)=D11*RRRR+D12*SSRR+D16*RSRR+D12*RRSS+D22*SSSS+D26

*RSSS+ 

     +D16*RRRS+D26*SSRS+D66*RSRS 

      ST(I,J)=ST(I,J)*NEJ**2 

      ZT(I,J)=PX*RR/ASR+PXY*(RS+SR)+PY*ASR*SS 

  110 CONTINUE 

 

      DO 40 I=1,NE 

      DO 40 J=1,12 

      L=ED(I,J) 

      DO 40 K=1,12 

      T=ED(I,K) 

      IF(L.NE.0.AND.T.NE.0) THEN 

      ESM(L,T)=ESM(L,T)+ST(J,K) 

      EMM(L,T)=EMM(L,T)+ZT(J,K) 

      ENDIF 

   40 CONTINUE 

      RETURN 

      END 
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C************************************************************* 

C***   

      SUBROUTINE LUCOM(A,N,INDX,FLAG,M1) 

      PARAMETER (M11=500, TINY=1.0E-20) 

      INTEGER FLAG 

      DIMENSION A(M1,M1),VV(M11),INDX(M1) 

 

      FLAG=1 

      D=1.0 

      DO 12 I=1,N 

      AMAX=0 

      DO 11 J=1,N 

      IF(ABS(A(I,J)).GT.AMAX) AMAX=ABS(A(I,J)) 

   11 CONTINUE 

      IF(AMAX.EQ.0.0) THEN 

      WRITE(*,*)'Singular matrix in subroutine LUCOM' 

      FLAG=0 

      RETURN 

      ENDIF 

      VV(I)=1.0/AMAX 

   12 CONTINUE 

      DO 19 J=1,N 

      DO 14 I=1,J-1 

      SUM=A(I,J) 

      DO 13 K=1,I-1 
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      SUM=SUM-A(I,K)*A(K,J) 

   13 CONTINUE 

      A(I,J)=SUM 

   14 CONTINUE 

      AMAX=0.0 

      DO 16 I=J,N 

      SUM=A(I,J) 

      DO 15 K=1,J-1 

      SUM=SUM-A(I,K)*A(K,J) 

   15 CONTINUE 

      A(I,J)=SUM 

      DUM=VV(I)*ABS(SUM) 

      IF(DUM.GE.AMAX) THEN 

      IMAX=I 

      AMAX=DUM 

      ENDIF 

   16 CONTINUE 

      IF(J.NE.IMAX) THEN 

      DO 17 K=1,N 

      DUM=A(IMAX,K) 

      A(IMAX,K)=A(J,K) 

      A(J,K)=DUM 

   17 CONTINUE 

      D=-D 

      VV(IMAX)=VV(J) 
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      ENDIF 

      INDX(J)=IMAX 

      IF(A(J,J).EQ.0.0) A(J,J)=TINY 

      IF(J.NE.N) THEN 

      DUM=1.0/A(J,J) 

      DO 18 I=J+1,N 

      A(I,J)=A(I,J)*DUM 

   18 CONTINUE 

      ENDIF 

   19 CONTINUE 

      RETURN 

      END 

C********************************************** 

 

      SUBROUTINE LUSOL(A,N,INDX,X,M1) 

      DIMENSION A(M1,M1),INDX(M1),X(M1,M1) 

 

      DO 191 IT=1,N 

      DO 192 J=1,N 

      IF(IT.EQ.J) THEN 

      X(J,IT)=1.0 

      ELSE 

      X(J,IT)=0.0 

      ENDIF 

  192 CONTINUE 
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      II=0 

      DO 12 I=1,N 

      LL=INDX(I) 

      SUM=X(LL,IT) 

      X(LL,IT)=X(I,IT) 

      IF(II.NE.0) THEN 

      DO 11 J=II,I-1 

      SUM=SUM-A(I,J)*X(J,IT) 

   11 CONTINUE 

      ELSE IF(SUM.NE.0) THEN 

      II=I 

      ENDIF 

      X(I,IT)=SUM 

   12 CONTINUE 

      DO 14 I=N,1,-1 

      SUM=X(I,IT) 

      DO 13 J=I+1,N 

      SUM=SUM-A(I,J)*X(J,IT) 

   13 CONTINUE 

      X(I,IT)=SUM/A(I,I) 

   14 CONTINUE 

  191 CONTINUE 

      RETURN 

      END 
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C********************************************* 

C***  This subroutine computes the product of two square 

C***  matrices 

 

      SUBROUTINE MULT(A,B,C,N,M1) 

      DIMENSION A(M1,M1),B(M1,M1),C(M1,M1) 

 

      DO 15 I=1,N 

      DO 15 J=1,N 

      SUM=0.0 

      DO 10 K=1,N 

      SUM=SUM+A(I,K)*B(K,J) 

   10 CONTINUE    

      C(I,J)=SUM 

   15 CONTINUE 

      RETURN 

      END 

C******************************************* 

C***  This subroutine balances the plate matrix 

      SUBROUTINE BAL(A,N,M1) 

      INTEGER LAST 

      DIMENSION A(M1,M1) 

 

      RADX=2 
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      SQRADX=RADX**2 

 

    1 CONTINUE 

      LAST=1 

      DO 14 I=1,N 

      C=0.0 

      R=0.0 

      DO 11 J=1,N 

      IF(J.NE.I) THEN 

      C=C+ABS(A(J,I)) 

      R=R+ABS(A(I,J)) 

      ENDIF 

   11 CONTINUE 

      IF(ABS(C).GT.0.AND.ABS(R).GT.0) THEN 

      G=R/RADX 

      F=1.0 

      S=C+R 

       

    2 IF(C.LT.G) THEN 

      F=F*RADX 

      C=C*SQRADX 

      GO TO 2 

      ENDIF 

 

      G=RADX 
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    3 IF(C.GT.G) THEN 

      F=F/RADX 

      C=C/SQRADX 

      GO TO 3 

      ENDIF 

 

      IF((C+R)/F.LT.0.95*S) THEN 

      LAST=0 

      G=1.0/F 

      DO 12 J=1,N 

      A(I,J)=A(I,J)*G 

   12 CONTINUE 

      DO 13 J=1,N 

      A(J,I)=A(J,I)*F 

   13 CONTINUE 

      ENDIF 

      ENDIF 

   14 CONTINUE 

      IF(LAST.EQ.0) GO TO 1 

      RETURN 

      END 

C******************************************************* 

C     This subroutine reduces a general matrix to Heisenberg form 

      SUBROUTINE HES(A,N,M1) 

      DIMENSION A(M1,M1) 
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      DO 17 M=2,N-1 

      X=0.0 

      I=M 

      DO 11 J=M,N 

      IF(ABS(A(J,M-1)).GT.ABS(X)) THEN 

      X=A(J,M-1) 

      I=J 

      ENDIF 

   11 CONTINUE 

      IF(I.NE.M) THEN 

      DO 12 J=M-1,N 

      Y=A(I,J) 

      A(I,J)=A(M,J) 

      A(M,J)=Y 

   12 CONTINUE 

      DO 13 J=1,N 

      Y=A(J,I) 

      A(J,I)=A(J,M) 

      A(J,M)=Y 

   13 CONTINUE 

      ENDIF 

      IF(X.NE.0) THEN 

      DO 16 I=M+1,N 

      Y=A(I,M-1) 
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      IF(Y.NE.0) THEN 

      Y=Y/X 

      A(I,M-1)=Y 

      DO 14 J=M,N 

      A(I,J)=A(I,J)-Y*A(M,J) 

   14 CONTINUE 

      DO 15 J=1,N 

      A(J,M)=A(J,M)+Y*A(J,I) 

   15 CONTINUE 

      ENDIF 

   16 CONTINUE 

      ENDIF 

   17 CONTINUE 

      RETURN 

      END 

       

C***************************************** 

C     This subroutine uses the QR algorithm to find eigenvalues. 

      SUBROUTINE HQR(A,WR,WI,N,FLAG,M1) 

      INTEGER FLAG 

      DIMENSION A(M1,M1),WR(M1),WI(M1) 

 

      FLAG=1 

      ANORM=0 

      DO 10 I=1,N 
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      DO 10 J=MAX(I-1,1),N 

      ANORM=ANORM+ABS(A(I,J)) 

   10 CONTINUE 

 

      NN=N 

      T=0.0 

    1 IF(NN.GE.1) THEN 

      ITS=0 

    2 DO 13 L=NN,2,-1 

      S=ABS(A(L-1,L-1))+ABS(A(L,L)) 

      IF(S.EQ.0) S=ANORM 

      IF(ABS(A(L,L-1))+S.EQ.S) THEN 

      A(L,L-1)=0.0 

      GO TO 3 

      ENDIF 

   13 CONTINUE 

      L=1 

    3 X=A(NN,NN) 

      IF(L.EQ.NN) THEN 

      WR(NN)=X+T 

      WI(NN)=0.0 

      NN=NN-1 

      ELSE 

      Y=A(NN-1,NN-1) 

      W=A(NN,NN-1)*A(NN-1,NN) 
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      IF(L.EQ.NN-1) THEN 

      P=0.5*(Y-X) 

      Q=P**2+W 

      Z=SQRT(ABS(Q)) 

      X=X+T 

      IF(Q.GE.0.0) THEN 

      Z=P+SIGN(Z,P) 

      WR(NN)=X+Z 

      WR(NN-1)=WR(NN) 

      IF(ABS(Z).GT.0) WR(NN)=X-W/Z 

      WI(NN)=0.0 

      WI(NN-1)=0.0 

      ELSE 

      WR(NN)=X+P 

      WR(NN-1)=WR(NN) 

      WI(NN)=Z 

      WI(NN-1)=-Z 

      ENDIF 

      NN=NN-2 

      ELSE 

C      IF(ITS.EQ.30) THEN 

C      WRITE(*,*)'Iterations exceeded 30 in HQR subroutine' 

C      FLAG=0 

C      RETURN 

C      ENDIF 
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      IF(ITS.EQ.10.OR.ITS.EQ.20) THEN 

      T=T+X 

      DO 14 I=1,NN 

      A(I,I)=A(I,I)-X 

   14 CONTINUE 

      S=ABS(A(NN,NN-1))+ABS(A(NN-1,NN-2)) 

      X=0.75*S 

      Y=X 

      W=-0.4375*S**2 

      ENDIF 

      ITS=ITS+1 

      DO 15 M=NN-2,L,-1 

      Z=A(M,M) 

      R=X-Z 

      S=Y-Z 

      P=(R*S-W)/A(M+1,M)+A(M,M+1) 

      Q=A(M+1,M+1)-Z-R-S 

      R=A(M+2,M+1) 

      S=ABS(P)+ABS(Q)+ABS(R) 

      P=P/S 

      Q=Q/S 

      R=R/S 

      IF(M.EQ.L) GO TO 4 

      U=ABS(A(M,M-1))*(ABS(Q)+ABS(R)) 

      V=ABS(P)*(ABS(A(M-1,M-1))+ABS(Z)+ABS(A(M+1,M+1))) 
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      IF(U+V.EQ.V) GO TO 4 

   15 CONTINUE 

    4 DO 16 I=M+2,NN 

      A(I,I-2)=0.0 

      IF(I.NE.M+2) A(I,I-3)=0.0 

   16 CONTINUE 

      DO 19 K=M,NN-1 

      IF(K.NE.M) THEN 

      P=A(K,K-1) 

      Q=A(K+1,K-1) 

      R=0.0 

      IF(K.NE.NN-1) R=A(K+2,K-1) 

      X=ABS(P)+ABS(Q)+ABS(R) 

      IF(ABS(X).GT.0) THEN 

      P=P/X 

      Q=Q/X 

      R=R/X 

      ENDIF 

      ENDIF 

      S=SIGN(SQRT(P**2+Q**2+R**2),P) 

      IF(ABS(S).GT.0) THEN 

      IF(K.EQ.M) THEN 

      IF(L.NE.M) A(K,K-1)=-A(K,K-1) 

      ELSE 

      A(K,K-1)=-S*X 
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      ENDIF 

      P=P+S 

      X=P/S 

      Y=Q/S 

      Z=R/S 

      Q=Q/P 

      R=R/P 

      DO 17 J=K,NN 

      P=A(K,J)+Q*A(K+1,J) 

      IF(K.NE.NN-1) THEN 

      P=P+R*A(K+2,J) 

      A(K+2,J)=A(K+2,J)-P*Z 

      ENDIF 

      A(K+1,J)=A(K+1,J)-P*Y 

      A(K,J)=A(K,J)-P*X 

   17 CONTINUE 

      DO 18 I=L,MIN(NN,K+3) 

      P=X*A(I,K)+Y*A(I,K+1) 

      IF(K.NE.NN-1) THEN 

      P=P+Z*A(I,K+2) 

      A(I,K+2)=A(I,K+2)-P*R 

      ENDIF 

      A(I,K+1)=A(I,K+1)-P*Q 

      A(I,K)=A(I,K)-P 

   18 CONTINUE 
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      ENDIF 

   19 CONTINUE 

      GO TO 2 

      ENDIF 

      ENDIF 

      GO TO 1 

      ENDIF 

      RETURN 

      END 

C******************************************* 

C***  This subroutine arrange loads in descending order. 

 

      SUBROUTINE ESORT(LAMBDA,VAL,DOF,M1) 

      REAL LAMBDA 

      INTEGER DOF 

      DIMENSION LAMBDA(M1),VAL(M1) 

 

      DO 14 I=1,DOF-1 

      K=I 

      P=LAMBDA(I) 

      DO 11 J=I+1,DOF 

      IF(LAMBDA(J).LE.P)THEN 

      K=J 

      P=LAMBDA(J) 

      ENDIF 
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   11 CONTINUE 

      IF(K.NE.I)THEN 

      LAMBDA(K)=LAMBDA(I) 

      LAMBDA(I)=P 

      ENDIF 

   14 CONTINUE 

      DO 15 I=1,DOF 

      VAL(I)=LAMBDA(I) 

   15 CONTINUE 

      RETURN 

      END 

C*********************************************** 

C***  This subroutine computes the eigenvectors. 

 

      SUBROUTINE SIL(A,X,VAL,NN,FLAG,M1,M5) 

      PARAMETER (M11=500) 

      INTEGER FLAG 

      DIMENSION 

A(M1,M1),B(M11),X(M1,M5),VAL(M1),ALFA(M11,M11) 

 

      FLAG=1 

      DO 109 I=1,NN 

      DO 109 J=1,NN 

      ALFA(I,J)=A(I,J) 

  109 CONTINUE 
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C***  Solution of system equations. 

      DO 200 IT=1,M5 

      IF(IT.GT.1) THEN 

      DO 210 I=1,NN 

      DO 210 J=1,NN 

      A(I,J)=ALFA(I,J) 

  210 CONTINUE 

      ENDIF 

 

      DO 110 I=1,NN 

      X(I,IT)=0.0 

      B(I)=-A(I,NN) 

      A(I,I)=A(I,I)-VAL(IT) 

  110 CONTINUE 

 

      N=NN-1 

C***  Gaussian elimination 

      DO 170 K=1,N-1 

 

C***  Pivoting routine 

      IF(A(K,K).EQ.0.0)THEN 

      K1=0 

      DO 121 L=K+1,N 

      IF(A(L,K).NE.0.0)K1=L 

      IF(K1.EQ.L)GO TO 130 
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  121 CONTINUE 

  130 DO 140 J=1,N 

      AS=A(K,J) 

      A(K,J)=A(K1,J) 

      A(K1,J)=AS 

  140 CONTINUE 

      BS=B(K) 

      B(K)=B(K1) 

      B(K1)=BS 

      ENDIF 

 

      IF(A(K,K).EQ.0.0) THEN 

      WRITE(*,*) 'Divide by zero in subroutine SIL' 

      FLAG=0 

      RETURN 

      ENDIF 

 

      M=K 

      DO 170 I=M,N-1 

      R=A(I+1,K)/A(K,K) 

      B(I+1)=B(I+1)-R*B(K) 

      DO 170 J=M,N 

      A(I+1,J)=A(I+1,J)-R*A(K,J) 

  170 CONTINUE 
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C***  Backward substitution 

      X(N,IT)=B(N)/A(N,N) 

      DO 190 I=N-1,1,-1 

      SUM=0.0 

      DO 180 J=I+1,N 

      SUM=A(I,J)*X(J,IT)+SUM 

  180 CONTINUE 

      X(I,IT)=(B(I)-SUM)/A(I,I) 

  190 CONTINUE 

      X(NN,IT)=1.0 

  200 CONTINUE 

      RETURN 

      END 

C******************************************** 

C***  This subroutine arrange the eigenvectors. 

 

      SUBROUTINE 

PNATF(A,DOF,NEI,NEJ,EE,WD,PHID,THID,M1,M4,M5,M6, 

     +M7,M8,NODE) 

      INTEGER DOF,COUNT,EE,ELEMENT 

      PARAMETER (M11=500, M66=121, M55=7, M44=180) 

      DIMENSION 

A(M1,M5),W(M66,M55),PHI(M66,M55),THI(M66,M55),NX(M11), 

     

+EE(M4,M8),NODE(M4,M7),WD(M5,M6,M6),PHID(M5,M6,M6),THID(M

5,M6,M6), 

     +WF(M44,M55),PHIF(M44,M55),THIF(M44,M55) 
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      NE=NEI*NEJ 

      NODES=NODE(NE,3) 

      NALL=3*NODES 

 

      COUNT=0 

      DO 310 I=1,NEJ 

      DO 310 J=1,2 

      L=NODE(I,J) 

      DO 310 K=1,3 

      COUNT=COUNT+1 

      NX(COUNT)=EE(L,K) 

  310 CONTINUE 

      DO 314 J=3,4 

      L=NODE(NEJ,J) 

      DO 314 K=1,3 

      COUNT=COUNT+1 

      NX(COUNT)=EE(L,K) 

  314 CONTINUE 

 

      N=2 

      DO 315 I=NEJ+1,NE 

      J=1 

      L=NODE(I,J) 

      DO 311 K=1,3 
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      COUNT=COUNT+1 

      NX(COUNT)=EE(L,K) 

  311 CONTINUE 

      IEQ=N*NEJ 

      IF(I.EQ.IEQ) THEN 

      N=N+1 

      J=3 

      L=NODE(I,J) 

      DO 319 K=1,3 

      COUNT=COUNT+1 

      NX(COUNT)=EE(L,K) 

  319 CONTINUE 

      ENDIF 

  315 CONTINUE 

       

      DO 31 I=DOF+1,NALL 

      DO 31 J=1,M5 

      A(I,J)=0.0 

   31 CONTINUE 

 

      DO 330 K=1,M5 

      DO 330 I=1,NALL 

      IF(NX(I).EQ.0) THEN 

      DO 340 J=NALL-1,I,-1 

      A(J+1,K)=A(J,K) 
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  340 CONTINUE 

      A(I,K)=0.0 

      ENDIF 

  330 CONTINUE 

 

      DO 350 K=1,M5 

      I1=1 

      DO 350 I=1,NALL,3 

      W(I1,K)=A(I,K) 

      PHI(I1,K)=A(I+1,K) 

      THI(I1,K)=A(I+2,K) 

      I1=I1+1 

  350 CONTINUE 

       

      DO 380 K=1,M5 

      PW=0.0 

      PP=0.0 

      PT=0.0 

      DO 390 I=1,NODES 

      PW=MAX(ABS(W(I,K)),PW) 

      PP=MAX(ABS(PHI(I,K)),PP) 

      PT=MAX(ABS(THI(I,K)),PT) 

  390 CONTINUE 

 

      IF(PW.GT.0) THEN 
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      DO 402 I=1,NODES 

      W(I,K)=W(I,K)/PW 

  402 CONTINUE 

      ENDIF 

      IF(PP.GT.0) THEN 

      DO 403 I=1,NODES 

      PHI(I,K)=PHI(I,K)/PP 

  403 CONTINUE 

      ENDIF 

      IF(PT.GT.0) THEN 

      DO 404 I=1,NODES 

      THI(I,K)=THI(I,K)/PT 

  404 CONTINUE 

      ENDIF 

  380 CONTINUE 

 

      DO 515 N=1,M5 

      I1=0 

      DO 510 I=1,NEJ 

      DO 510 J=1,2 

      L=NODE(I,J) 

      I1=I1+1 

      WF(L,N)=W(I1,N) 

      PHIF(L,N)=PHI(I1,N) 

      THIF(L,N)=THI(I1,N) 
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  510 CONTINUE 

      I=NEJ 

      DO 514 J=3,4 

      L=NODE(I,J) 

      I1=I1+1 

      WF(L,N)=W(I1,N) 

      PHIF(L,N)=PHI(I1,N) 

      THIF(L,N)=THI(I1,N) 

  514 CONTINUE 

 

      M=2 

      DO 515 I=NEJ+1,NE 

      J=1 

      L=NODE(I,J) 

      I1=I1+1 

      WF(L,N)=W(I1,N) 

      PHIF(L,N)=PHI(I1,N) 

      THIF(L,N)=THI(I1,N) 

      IEQ=M*NEJ 

      IF(I.EQ.IEQ) THEN 

      M=M+1 

      J=3 

      L=NODE(I,J) 

      I1=I1+1 

      WF(L,N)=W(I1,N) 
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      PHIF(L,N)=PHI(I1,N) 

      THIF(L,N)=THI(I1,N) 

      ENDIF 

  515 CONTINUE 

 

      DO 425 K=1,M5 

      DO 425 I=1,NEI+1 

      IF(I.GT.NEI) THEN 

      I1=NEI 

      ELSE 

      I1=I 

      ENDIF 

      ELEMENT=(I1-1)*NEJ+1 

      IF(I.GT.NEI) THEN 

      LMIN=NODE(ELEMENT,1) 

      ELSE 

      LMIN=NODE(ELEMENT,2) 

      ENDIF 

      LMAX=LMIN+NEJ 

      DO 410 L=LMIN,LMAX 

      J=L-LMIN+1 

      WD(K,I,J)=WF(L,K) 

      PHID(K,I,J)=PHIF(L,K) 

      THID(K,I,J)=THIF(L,K) 

  410 CONTINUE 
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  425 CONTINUE 

      RETURN 

      END 

C******************************************* 

C***  Arrange critical loads in descending order. 

 

      SUBROUTINE PRINT(VAL,DOF,NLOAD,W,PHI,THI,NEI,NEJ, 

     +M1,M5,M6) 

      PARAMETER(M11=11) 

      INTEGER DOF 

      DIMENSION 

VAL(M1),W(M5,M6,M6),PHI(M5,M6,M6),THI(M5,M6,M6), 

     +X(M11),Y(M11) 

 

   20 FORMAT(I3,1X,7(F8.4,2X)) 

 

C***  Write results 

      IF(NLOAD.GT.DOF) NLOAD=DOF 

      DO 310 I=1,NLOAD 

      WRITE(6,20)I,VAL(I) 

  310 CONTINUE 

 

C***  Arrange the eigenvectors. 

 

      DO 100 J=1,NEJ+1 

      X(J)=(J-1.0)/NEJ 
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  100 CONTINUE 

 

      DO 101 I=1,NEI+1 

      Y(I)=(I-1.0)/NEI 

  101 CONTINUE 

 

C     Arrange the eigenvectors. 

 

   21 FORMAT(F4.2,1X,8(F7.4,2X)) 

   23 FORMAT(5X,8(F5.2,4X)) 

   22 FORMAT('Buckling load',2X,7(F7.4,2X)) 

C***  write buckling modes (eigenvectors) 

      WRITE(6,*) 

      WRITE(6,*)' * The first seven buckling modes are as follows:' 

 

      DO 1000 K=1,M5 

      WRITE(6,22) VAL(K) 

 

      WRITE(6,*) 

      WRITE(6,*)'* Out-of-plane normalized displacements W' 

      WRITE(6,23)(X(J),J=1,NEJ+1) 

      DO 322 I=1,NEI+1 

      WRITE(6,21)Y(I),(W(K,I,J),J=1,NEJ+1) 

  322 CONTINUE 
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      WRITE(6,*) 

      WRITE(6,*)'* Normalized rotations PHI' 

      WRITE(6,23)(X(J),J=1,NEJ+1) 

      DO 323 I=1,NEI+1 

      WRITE(6,21)Y(I),(PHI(K,I,J),J=1,NEJ+1) 

  323 CONTINUE 

 

      WRITE(6,*) 

      WRITE(6,*)'* Normalized rotations THI' 

      WRITE(6,23)(X(J),J=1,NEJ+1) 

      DO 3231 I=1,NEI+1 

      WRITE(6,21)Y(I),(THI(K,I,J),J=1,NEJ+1) 

 3231 CONTINUE 

      WRITE(6,*) 

      

WRITE(6,*)'*************************************************' 

      WRITE(6,*) 

 1000 CONTINUE 

      RETURN 

      END 
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