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Dynamic Relaxation (DR) method is presented for the analysis of 

geometrically linear laterally loaded, rectangular laminated plates. The 

analysis uses the Mindlin plate theory which accounts for transverse shear 

deformations. A computer program has been compiled. The convergence 

and accuracy of the DR solutions of isotropic, orthotropic, and laminated 

plates for elastic small deflection response are established by comparison 

with different exact and approximate solutions. The present Dynamic 

Relaxation (DR) method shows a good agreement with other analytical and 

numerical methods used in the verification scheme. 

It was found that: The convergence and accuracy of the DR solution is 

dependent on several factors which include boundary conditions, mesh size 

and type, fictitious densities, damping coefficients, time increment and 

applied load. Also, the DR small deflection program using uniform meshes 

can be employed in the analysis of different thicknesses for isotropic, 

orthotropic or laminated plates under uniform loads in a fairly good 

accuracy. 

 

 ملخص
 نهخحهٍم انخطً نلأنىاح انششائحٍت (DR)فً هزِ انىسقت حى أسخخذاو أسهىب الإسخشخاء انذٌُايٍكً 

ٌسخخذو انخحهٍم َظشٌت يُذنٍٍ نلأنىاح . انًسهظ ػهٍها حًم ػشضً يىصع بإَخظاو (Mindlin 

plate theory) حى ػًم بشَايج حاسىب نهحم .  انخً حخضًٍ حأثٍش حشىهاث انقض انًسخؼشض

وقذ حى انخحقق يٍ حقاسب ودقت انبشَايج بخحهٍم طٍف واسغ يٍ الانىاح . انؼذدي نهًؼادلاث انشئٍسٍت

أػطً انبشَايج َخائج جٍذة . راث الاَحشافاث انصغٍشة ويقاسَخها بحهىل يضبىطت وحقشٌبٍت يًاثهت

.يىافقت نخهك انحهىل  

(DR)وجذ فً هزِ انذساست أٌ حقاسب ودقت انحم بإسخخذاو أسهىب الاسخشخاء انذٌُايٍكً   ٌؼخًذ 

ػهى ػذة ػىايم حشًم انششوط انحذٌت ، انخقسًٍاث انشبكٍت نّهىح فً بؼذٌٍ ، انكثافاث انىهًٍت 

أٌضا ًٌكٍ أسخخذاو بشَايج الاسخشخاء . يؼايلاث الاخًاد ، انضٌادة انضيٍُت وانحًم انًسهظ

انذٌُايٍكً نلاَحشافاث انصغٍشة نلأنىاح راث انخقسًٍاث انًُخظًت فً ححهٍم ثخاَاث يخخهفت لأنىاح 

ششائحٍت يخشابهت انخىاص انًشَت ، يخباٌُت انخىاص انًشَت فً احجاهٍٍ يخؼايذٌٍ وأنىاح يشكبت 

.يفشدة أو يخؼذدة انطبقاث ححج أحًال يُخظًت بذقت يقبىنت  

KEYWORDS: dynamic relaxation; numerical technique; linear analysis; deflections and stresses; 

first order shear deformation theory.   
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NOTATIONS 

a, b     plate side lengths in x and y directions 

respectively. 

 6,2,1, jiA ji     Plate in plane stiffnesses. 

5544 , AA     Plate transverse shear stiffnesses. 

 6,2,1, jiD ji       Plate flexural stiffnesses. 


yxyx       Mid – plane direct and shear strains 


zyzx  ,       Mid – plane transverse shear strains. 

1221 ,, GEE     In – plane elastic longitudinal, 

transverse and shear modulus. 

2313 ,GG  Transverse shear modulus in the x – z 

and y – z planes respectively. 

yxyx MMM ,,      Stress couples. 

yxyx NNN ,,      Stress resultants. 

q      Dimensionless transverse pressure. 

yx QQ ,      Transverse shear resultants. 

vu,      In – plane displacements. 

w      Deflections 

w      Dimensionless deflections. 

zyx ,,      Cartesian co – ordinates. 

t        Time increment. 

,      Rotations of the normal to the plate mid – 

plane.  

yx
      Poisson’s ratio. 


 ,,,,

wvu
    In plane, out of 

plane and rotational fictitious densities. 


yxyx  ,,      Curvature and twist 

components of plate mid – plane. 

yx  ,     Dimensionless direct stresses in the x 

and y directions respectively  

zyzxyx  ,,      Dimensionless in plane and out 

of plane shear stresses. 

 

INTRODUCTION 

There are many situations in engineering 

applications where no single material will be 

suitable to meet a particular design requirement. 

However, two materials in combination may 

possess the desired properties and provide a 

feasible solution to the materials selection 

problem. A composite can be defined as a material 

that is composed of two or more distinct phases. It 

is usually a reinforced material that supported in a 

compatible matrix, assembled in prescribed 

amounts to give specific physical, mechanical and 

chemical properties. 

Many composites used today are at the leading 

edge of materials technology, with their 

performance and cost appropriate to 

overwhelming applications such as that in space 

industries. Nevertheless, heterogeneous materials 

combining the best aspect of dissimilar 

constituents have been used by nature for millions 

of years ago. Ancient societies, imitating nature, 

used this approach as well: The book of exodus 

explains the usage of straw to reinforce mud in 

brick making without which the bricks would 

have almost no strength. Here in Sudan, the 

population from ancient ages dated back to Meroe 

civilization, and up to now used zibala (i.e. animal 

dung) mixed with mud as a strong building 

material. 

Composites possess two desirable features: the 

first one is their high strength to weight ratio, and 

the second is their properties that can be tailored 

through the variation of the fiber orientation and 

the stacking sequence which give the designer a 

wide choice of a suitable composite material. The 

incorporation of high strength, high modulus and 

low density fibers in a low strength and a low 

modulus matrix material result in a structural 

composite material which owns a high strength to 

weight ratio. Thus, the potential of a composite 

structure for use in aerospace, under – water, and 

automotive applications has stimulated 

considerable research activities in the theoretical 

prediction of the behavior of these materials. 

Usually a composite structure consists of many 

layers bonded on top of one another to form a 
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high strength and rigid laminated composite plate. 

Each lamina is fiber reinforced along a single 

direction, with adjacent layers usually having 

different fiber orientations. For these reasons, 

composites are continuing to replace other 

materials used in structures such as steels, 

Aluminum alloys… etc. In fact composites are 

classified as the potential structural materials of 

the future as their cost continues to decrease due 

to the continuous improvements in production 

techniques and expanding rate of sales. 

Three – dimensional theories of laminated plates 

in which each layer is treated as homogeneous 

anisotropic medium (Reddy [12]) are intractable 

as the number of layers becomes moderately 

large. Thus, Reddy [12] concluded that a simple 

two dimensional theory of plates that accurately 

describes the global behavior of laminated plates 

seems to be a compromise between accuracy and 

ease of analysis. Numerical results obtained using 

refined finite element analysis (D.J. Vuksanovic 

[13], and [14]) and their comparison with exact 

three dimensional analysis pointed out that the 

higher order theory provides results which are 

accurate and acceptable for all ranges of thickness 

and modular ratio. 

Putcha and Reddy [15] classified the two 

dimensional analyses of laminated composite 

plates into two categories: (1) the classical 

lamination theory, and (2) shear deformation 

theories (including first and higher order theories). 

In both theories the laminates are assumed in a 

state of plane stress, the individual lamina is 

linearly elastic, and there is perfect bonding 

between layers. The classical laminated plate 

theory (CLPT), which is an extension of the 

classical plate theory (CPT) applied to laminated 

plates was the first theory formulated for the 

analysis of laminated plates by Reissner and 

Stavsky [16] in 1961, in which they utilized the 

Kirchhoff – love assumption that normal to the 

middle surface before deformation remain straight 

and normal to the middle surface after 

deformation, but it is not adequate for the flexural 

analysis of moderately thick laminates. However, 

it gives reasonably accurate results for many 

engineering problems specially those related to 

thin composite plates, as proved by Srinivas and 

Rao [5], Reissner and Stavsky [16], Hui – Shen 

Shen [17], and Ji – Fan He, and Shuang – Wang 

Zheng [18]. This theory ignores the transverse 

shear stress components and models a laminate as 

an equivalent single layer. The high values of 

modular ratios classify classical laminate theory 

as inadequate for the analysis of composite plates 

as verified by Turvey and Osman [1],[4],[19], 

Reddy [12], Pagano [20], and Taner Timarci and 

Metin Aydogdu [21]. 

The theory used in the present work comes under 

the class of displacement based theories which are 

classified according to Phan and Reddy [22]. In 

this theory, which is called first order shear 

deformation theory (FSDT), the transverse planes, 

which are originally normal and straight to the 

middle plane of the plate, are assumed to remain 

straight but not necessarily normal after 

deformation, and consequently shear correction 

factors are employed in this theory to adjust the 

transverse shear stress, which is constant through 

thickness. Numerous studies involving the 

application of the first order theory to bending and 

buckling analyses can be found in the works of 

Reddy [6], Reddy and Chao [23] Prabhu 

Madabhusi – Raman and Julio F. Davalo [24], and 

J. Wang, K.M. Liew, M.J. Tan, S. Rajendran [25]. 

 

SMALL DEFLECTION THEORY 

The equilibrium, strain, constitutive equations and 

boundary conditions are introduced below without 

derivation. 
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Equilibrium Equations 
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Strain Equations 

The small deflection strains of the mid – plane of 

the plate are as given below: 
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The Constitutive Equations 

The laminate constitutive equations can be 

represented in the following form: 
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                           (3) 

Where iN  denotes xN  , yN  and yxN and iM  

denotes xM  , yM and yxM . jiA  ,  jiB  

and jiD ,  6,2,1, ji  are respectively the 

membrane rigidities, coupling rigidities and 

flexural rigidities of the plate. 


j  Denotes

x


, 

y


 and 

y


+

x


. 44A , 45A  

and 55A  denote the stiffness coefficients, and are 

calculated as follows: 

 5,4,,
1

1

 




jidzcKKA

z

k

k

z
ji

n

k

jiji  

Where jic the stiffness of a lamina is referred to 

the plate principal axes and  iK  , jK  is the shear 

correction factors. 

 

Boundary Conditions 

All of the analyses described in this paper have 

been undertaken assuming the plates to be 

subjected to identical support conditions in the 

flexural and extensional senses along all edges. 

The three sets of edge conditions used here are 

designated as SS1, SS2 and SS3 and are shown in 

Figure (1) below: 

 
SS1 

 

 
SS2 
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SS3 

Fig. (1) Simply supported boundary   

conditions 

 

DYNAMIC RELAXATION SOLUTIONS OF THE 

PLATE EQUATIONS 

In the present work, a numerical method known as 

Dynamic Relaxation (DR) coupled with finite 

differences is used. The DR method was first 

proposed in 1960s and then passed through a 

series of studies to verify its validity by Turvey 

and Osman Refs. [1], [4] and [19] and Rushton 

[9], Cassel and Hobbs [10], and Day [11]. In this 

method, the equations of equilibrium are 

converted to dynamic equations by adding 

damping and inertia terms. These are then 

expressed in finite difference form and the 

solution is obtained through iterations.  

Numerical techniques other than the DR include 

finite element method, which is widely used in 

several studies i.e. of Damodar R. Ambur et al 

[26], Ying Qing Huang et al [27], Onsy L. 

Roufaeil et al [3]… etc. In a comparison between 

the DR and the finite element method, Aalami 

[28] found that the computer time required for 

finite element method is eight times greater than 

for DR analysis, whereas the storage capacity for 

finite element analysis is ten times or more than 

that for DR analysis. This fact is supported by 

Putcha and Reddy [15] and Osama Mohammed 

Elmardi {[29] – [41]} who they noted that some 

of the finite element formulation requires large 

storage capacity and computer time. Hence due to 

less computations and computer time involved in 

the present study, the DR method is considered 

more suitable than the finite element method. 

The plate equations are written in dimensionless 

forms. Damping and inertia terms are added to 

Eqns. (1). Then the following approximations are 

introduced for the velocity and acceleration terms:  

 
In which .,,,,  wvu Hence equations (1) 

becomes: 

 
 

In Eqns. (4) and (5) the superscripts a and b refer 

respectively to the values of velocities after and 

before the time step t , 

and
1* )2/1(    tkk . The displacements at 

the end of each time increment t  are evaluated 

using the following simple integration procedure: 

 6
t

t
b

ba









The complete equation system is represented by 

equations (5), (6), (2) and (3). The DR algorithm 

operates on these equations is as follows: 

Step 1: set initial conditions (usually all variables 

are zero). 

Step 2: compute velocities from equations (5). 
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Step 3: compute displacements from equation (6). 

Step 4: Apply displacement boundary conditions. 

Step 5: compute strains from equations (2). 

Step 6: compute stress resultants, etc. from 

equations (3). 

Step 7: Apply stress resultants … etc., boundary 

conditions. 

Step 8: check if velocities are acceptably small 

(say < 10-6). 

Step 9: If Step 8 is satisfied print out results, 

otherwise repeat steps (2 – 8). 

 

VERIFICATION OF DYNAMIC RELAXATION 

(DR) METHOD USING SMALL DEFLECTION 

THEORY  

The present DR results are compared with similar 

results generated by other DR and / or alternative 

techniques including approximate analytical and 

exact solutions so as to validate the DR program. 

In the following discussion a wide range of small 

deflections are dealt with including isotropic, 

orthotropic, and laminated plates subjected to 

static uniformly distributed loading scheme. 

Table (1) shows the variations in the central 

deflections of a moderately thick isotropic plate 

 1.0/ ah  with simply supported condition 

(SS1). These results suggest that a 55  mesh 

over one quarter of the plate is quite enough for 

the present work (i.e. less than 0.3% error 

compared to the finest mesh available). In table 

(2) the comparison of the present DR deflections 

and stresses with that generated by Turvey and 

Osman [1] and Reddy [2] is presented for a 

uniformly loaded plate of thin  01.0/.. ahei , 

moderately thick  1.0/.. ahei  , and thick 

laminates  2.0/.. ahei  using simply 

supported condition (SS1). The present DR results 

of central deflections and stresses showed good 

agreement with the other results even though the 

plate is square or rectangle. Another comparison 

analysis for small deformations of thin and 

moderately thick square simply supported 

isotropic plates (SS1) between the present DR 

method, and Roufaeil [3] two and three node strip 

method is shown in table (3). Again, these results 

provide further confirmation that a DR analysis 

based on a 55 quarter – plate mesh produces 

results of acceptable accuracy. 

In the following analyses, several orthotropic 

materials were employed; their properties are 

given in table (4). Exact FSDT solutions are 

available for plates simply supported on all four 

edges (SS2). By imposing only a small load on the 

plate, the DR program may be made to simulate 

these small deflections. In table (5), the 

computations were made for uniform loads and 

for thickness / side ratios ranging from 0.2 to 0.01 

of square simply supported in – plane free plates 

made of material I with  0.1q . In this case the 

central deflections of the present DR method are 

close to those of Turvey and Osman [4], and 

Reddy [2]. Another small deflection analysis is 

shown on table (6), and it was made for uniformly 

loaded plates with simply supported in – plane 

fixed condition (SS1) of material II and subjected 

to uniform loading  0.1q . In this analysis, the 

four sets of results are the same for the central 

deflections and stresses at the upper and lower 

surfaces of the plate and also the same for the mid 

– plane stresses. Nevertheless, the exact solution 

of Srinivas and Rao [5] is not in a good agreement 

with the others as far as stresses are concerned. 

These differences may be attributed to the exact 

solution theory adopted in Ref. [5]. 

Most of the published literature on laminated 

plates are devoted to linear analysis and in 

particular to the development of higher order 

shear deformation theories. Comparatively, there 

are few studies on the nonlinear behavior of 

laminated plates and even fewer are those which 

include shear deformations. The elastic properties 

of the material used in the analyses are given in 

table (4). The shear correction factors 

are 6/52

5

2

4  kk , unless otherwise stated. 
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In table (7) which shows a comparison between 

the present DR method and finite element results 

of Ref. [6] for a simply supported condition (SS3) 

plate. There are four antisymmetric angle ply 

laminates of material III which are subjected to a 

small uniform load  0.1q . The central 

deflections and stresses are recorded for different 

thickness ratios including thick, moderately thick, 

and thin laminates. These results are compared 

with Reddy’s finite element results [6] and are 

found in a good agreement despite the different 

theory adopted in the latter case. 

Another comparison analysis of central 

deflections between the present DR method, 

Zenkour et al [7] using third order shear 

deformation theory and Librescu and Khdeir [8] 

which are made of material IV are illustrated in 

table (8). The three results showed a good 

agreement especially as the length to thickness 

ratio increases. 

 

Table (1) DR solution convergence results for a 

simply supported (SS1) square plate subjected to 

uniform pressure 







 3.01.0/,0.1 vandahq  

Mesh size 
c

w  

22  0.04437 

33  0.04592 

44  0.04601 

55  0.04627 

66  0.04629 

77  0.04638 

88  0.04640 

 

Table (2) comparison of present DR, Turvey and 

Osman [1], and exact values of Reddy [2] small 

deflection results for uniformly loaded simply 

supported (SS1) square and rectangular plates of 

various thickness ratios 







 3.0,0.1 q  

 
S (1): present DR results 

S (2): DR results of Ref. [1] 

S (3): Exact results of Ref. [2] 

   

0,
2

1
)4(;0,

2

1
,0)3(

;
2

1
,02;

2

1
,

2

1
,

2

1
1





zyaxzbyx

hzyxhzbyax

 

 

Table (3) Dimensionless central deflection of a 

square simply supported isotropic plate (SS1) 

 833.0.0,3.0,0.1 2  kvq  

ha /  Present 

DR 

Results 

3 – node 

strip Ref. 

[31] 

2 – node 

strip 

Ref. [31] 

100 0.00403 0.00406 0.00406 

10 0.00424 0.00427 0.00426 

 

Table (4) Material properties used in the 

orthotropic and laminated plate Comparison 

analysis 
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Table (5) comparison of present DR, Turvey and 

Osman [4], and Ref [2] center deflections of a 

simply supported (SS2) square orthotropic plate 

made of material I for different thickness ratios 

when subjected to uniform loading  0.1q . 

Thickness 

ratio 

ah /  

Uniform Loading 

 DRwc  

present 

 DRwc  

Ref. [4] 

 exactwc  

Ref. [2] 

0.2 0.017914 0.017912 0.018159 

0.1 0.009444 0.009441 0.009519 

0.08 0.008393 0.008385 0.008442 

0.05 0.007245 0.007230 0.007262 

0.02 0.006617 0.006602 0.006620 

0.01 0.006512 0.006512 0.006528 

 

Table (6) comparison of present DR, Ref. [4], Ref. 

[2], and exact solutions Ref [5] for a uniformly 

loaded simply supported (SS1) orthotropic plate 

made of material II when subjected to uniform 

loading  0.1q  

ab /  ah /  S  
cw   1x   2zx  

1 

0.05 

1 

2 

3 

4 

0.0306 

0.0306 

0.0308 

0.0308 

0.3563 

0.3562 

0. 3598 

0.3608 

0.4387 

0.4410 

0.4351 

0.5437 

0.10 

1 

2 

3 

4 

0.0323 

0.0323 

0.0326 

0.0325 

0.3533 

0.3534 

0.3562 

0.3602 

0.4393 

0.4395 

0.4338 

0.5341 

0.14 

1 

2 

3 

4 

0.0344 

0.0344 

0.0347 

0.0346 

0.3498 

0.3498 

0.3516 

0.3596 

0.4367 

0.4374 

0.5328 

0.5223 

2 

0.05 

1 

2 

3 

4 

0.0629 

0.0629 

0.0636 

0.0636 

0.6569 

0.6568 

0.6550 

0.6567 

0.6506 

0.5637 

0.5600 

0.7024 

0.10 
1 

2 

0.0657 

0.0657 

0.6566 

0.6566 

0.5623 

0.5628 

3 

4 

0.0665 

0.0664 

0.6538 

0.6598 

0.5599 

0.6927 

0.14 

1 

2 

3 

4 

0.0692 

0.0692 

0.0703 

0.0701 

0.6564 

0.6564 

0.6521 

0.6637 

0.5613 

0.5613 

0.5597 

0.6829 

 

S (1): present DR results 

S (2): DR results of Ref [4] 

S (3): Finite element solution Ref [2] 

S (4): Exact solution Ref [5] 

    0,
2

1
,02;

2

1
,

2

1
,

2

1
1  zbyxhzbyax  

 

Table (7) Comparison of present DR, and Reddy 

finite element results Ref. [6] for 

  45/45/45/45   simply supported (SS3) 

square laminate made of material III and subjected 

to uniform loads and for different thickness ratios 









 0.1q  

ah /  s  310cw   1x  

0.20 
1 

2 

9.0809 

9.0000 

0.2022 

0.1951 

0.10 
1 

2 

4.3769 

4.2000 

0.2062 

0.1949 

0.05 
1 

2 

3.2007 

3.0000 

0.2081 

0.1938 

0.04 
1 

2 

3.0574 

2.9000 

0.2090 

0.1933 

0.02 
1 

2 

2.8371 

2.8000 

0.2063 

0.1912 

 

S (1): present DR results.  

S (2): Reddy [6] as read from graph.       (1) 

hzayx
2

1
,

2

1
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Table (8) Non – dimensionalized deflections in 

three layers cross – ply   0/90/0   simply 

supported (SS1) square laminates of material IV 

under uniform load  0.1q  

ha /  s  
cw  

2 

1 

2 

3 

0.0693 

0.0726 

0.0716 

5 

1 

2 

3 

0.0224 

0.0232 

0.0235 

10 

1 

2 

3 

0.0147 

0.0150 

0.0151 

20 

1 

2 

3 

0.0127 

0.0128 

0.0128 

 

S (1): present DR results linear analysis 

S (2): Librescu L and Khdeir A.A [8] 

S (3): A.M. Zenkour, and M. E. Fares [7] results. 

 

CONCLUSIONS 

A Dynamic relaxation (DR) program based  on 

finite differences has been developed for small 

deflection analysis of rectangular laminated plates 

using first order shear deformation theory (FSDT). 

The displacements are assumed linear through the 

thickness of the plate. A series of new results for 

uniformly loaded thin, moderately thick, and thick 

plates with simply supported edges have been 

presented. Finally a series of numerical 

comparisons have been undertaken to demonstrate 

the accuracy of the DR program. These 

comparisons show the following:- 

1. The convergence of the DR solution depends on 

several factors including boundary conditions, 

mesh size, fictitious densities and load. 

2. The type of mesh used (i.e. uniform or graded 

mesh) may be responsible for the considerable 

differences in the mid – side and corner stress 

resultants. 

3. For simply supported (SS1) edge conditions, all 

the comparison results confirmed that deflection 

depends on the direction of the applied load or the 

arrangement of the layers. 

4. The DR small deflection program using 

uniform finite difference meshes can be employed 

with less accuracy in the analysis of moderately 

thick and flat isotropic, orthotropic or laminated 

plates under uniform loads. 

5. Time increment is a very important factor for 

speeding convergence and controlling numerical 

computations. When the increment is too small, 

the convergence becomes tediously slow, and 

when it is too large, the solution becomes 

unstable. The proper time increment in the present 

study is taken as 0.8 for all boundary conditions. 

6. The optimum damping coefficient is that which 

produces critical motion. When the damping 

coefficients are large, the motion is over – damped 

and the convergence becomes very slow. And 

when the coefficients are small, the motion is 

under – damped and can cause numerical 

instability. Therefore, the damping coefficients 

must be selected carefully to eliminate under – 

damping and over – damping. 

7. Finer meshes reduce the discretization errors, 

but increase the round – off errors due to the large 

number of calculations involved. 
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