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ABSTRACT 

 

 Dynamic Relaxation (DR) method is presented for the geometrically 

linear and nonlinear laterally loaded, rectangular laminated plates. The analysis 

uses the Mindlin plate theory which accounts for transverse shear deformation. 

A computer program has been compiled. The convergence and accuracy of the 

DR solutions for elastic small and large deflection response are established by 

comparison with various exact and approximate solutions. New numerical 

results are generated for uniformly loaded square laminated plates which serve 

to quantify the effects of shear deformation, material anisotropy, fiber 

orientation, and coupling between bending and stretching. 

 It was found that linear analysis seriously over-predicts deflections of 

plates. The shear deflection depends greatly on a number of factors such as 

length/ thickness ratio, degree of anisotropy and number of layers. It was also 

found that coupling between bending and stretching can increase or decrease the 

bending stiffness of a laminate depending on whether it is positive or negative.  
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CHAPTER     

Introduction 

1.1 General Introduction  

Composites were first considered as structural materials a little more than 

half a century ago. And from that time to now, they have received increasing 

attention in all aspects of material science, manufacturing technology, and 

theoretical analysis. 

The term composite could mean almost anything if taken at face value, 

since all materials are composites of dissimilar subunits if examined at close 

enough details. But in modern materials engineering, the term usually refers to a 

matrix material that is reinforced with fibers. For instance, the term "FRP" 

which refers to Fiber Reinforced Plastic usually indicates a thermosetting 

polyester matrix containing glass fibers, and this particular composite has the 

lion's share of today commercial market. 

 Many composites used today are at the leading edge of materials 

technology, with performance and costs appropriate to ultra-demanding 

applications such as space craft. But heterogeneous materials combining the best 

aspects of dissimilar constituents have been used by nature for millions of years. 

Ancient societies, imitating nature, used this approach as well: The book of 

Exodus speaks of using straw to reinforce mud in brick making, without which 

the bricks would have almost no strength. Here in Sudan, people from ancient 

times dated back to Merowe civilization, and up to now used zibala mixed with 

mud as a strong building material. 

 As seen in Table 1.1 below, which is cited by David Roylance [54], the 

fibers used in modern composites have strengths and stiffnesses far above those 

of traditional structural materials. The high strengths of the glass fibers are due 

to processing that avoids the internal or surface flaws which normally weaken 



  

 

glass, and the strength and stiffness of polymeric aramid fiber is a consequence 

of the nearly perfect alignment of the molecular chains with the fiber axis.   

 

Table 1.1 Properties of composite reinforcing fibers  

Material 
E 

(GN/m
 
) 

b  

(GN/m
 
) 

b  

(%) 

  

(Mg/m
 
) 

/E  

(MN.m/kg) 

 /b  

(MN.m/kg) 

E-glass                             

S-glass                            

Aramid                         

Boron                           

H S 

graphite 
                         

H M 

graphite 
                         

 

Where E is Young's modulus, b  is the breaking stress, b   is the breaking 

strain, and   is the mass density. 

Of course, these materials are not generally usable as fibers alone, and 

typically they are impregnated by a matrix material that acts to transfer loads to 

the fibers, and also to protect the fibers from abrasion and environmental attack. 

The matrix dilutes the properties to some degree, but even so very high specific 

(weight – adjusted) properties are available from these materials. Polymers are 

much more commonly used, with unsaturated Styrene – hardened polyesters 

having the majority of low – to – medium performance applications and Epoxy 

or more sophisticated thermosets having the higher end of the market. 

Thermoplastic matrix composites are increasingly attractive materials, with 

processing difficulties being perhaps their principal limitation. 

Composites possess two desirable features: the first one is high strength to 

weight ratio, and the second is their properties that can be tailored through 



  

 

variation of the fiber orientation and stacking sequence which gives the 

designers a wide spectrum of flexibility. The incorporation of high strength, 

high modulus and low-density filaments in a low strength and a low modulus 

matrix material is known to result in a structural composite material with a high 

strength / weight ratio. Thus, the potential of a two-material composite for use in 

aerospace, under-water, and automotive structures has stimulated considerable 

research activities in the theoretical prediction of the behaviour of these 

materials. One commonly used composite structure consists of many layers 

bonded one on top of another to form a high-strength laminated composite plate. 

Each lamina is fiber- reinforced along a single direction, with adjacent layers 

usually having different filament orientations. For these reasons, composites are 

continuing to replace other materials used in structures such as those mentioned 

earlier. In fact composites are the potential structural materials of the future as 

their cost continues to decrease due to the continuous improvements in 

production techniques and the expanding rate of sales.    

1.2 Structure of composites: 

 There are many situations in engineering where no single material will be 

suitable to meet a particular design requirement. However, two materials in 

combination may possess the desired properties and provide a feasible solution 

to the materials selection problem. A composite can be defined as a material that 

is composed of two or more distinct phases, usually a reinforced material 

supported in a compatible matrix, assembled in prescribed amounts to achieve 

specific physical and chemical properties.   

In order to classify and characterize composite materials, distinction 

between the following two types is commonly accepted; see Vernon [1], Jan 

Stegmann and Erik Lund [5], and David Roylance [54]. 

   Fibrous composite materials: Which consist of high strength fibers 

embedded in a matrix.  The functions of the matrix are to bond the 



  

 

fibers together to protect them from damage, and to transmit the load 

from one fiber to another. See Fig.1.1. 

   Particulate composite materials: This composed of particles encased 

within a tough matrix, e.g. powders or particles in a matrix like 

ceramics. 

 

  

 

 

 

 

 

 In this thesis the focus will be on fiber-reinforced composite materials, as 

they are the basic building element of a rectangular laminated plate structure. 

Typically, such a material consists of stacks of bonded-together layers (i.e. 

laminas or plies) made from fiber-reinforced material. The layers will often be 

oriented in different directions to provide specific and directed strengths and 

stiffnesses of the laminate. Thus, the strengths and stiffnesses of the laminated 

fiber-reinforced composite material can be tailored to the specific design 

requirements of the structural element being built. 

   1.2.1 Mechanical properties of a fiber-reinforced lamina              

           Composite materials have many mechanical characteristics, which are 

different from those of conventional engineering materials such as metals. More 

precisely, composite materials are often both inhomogeneous and non-isotropic. 

Therefore, and due to the inherent heterogeneous nature of composite materials, 

they can be studied from a micromechanical or a macro-mechanical point of 

view. In micromechanics, the behaviour of the inhomogeneous lamina is defined 

in terms of the constituent materials; whereas in macro-mechanics the material 

Fiber 

Matrix 

                Fig. 1.1 Structure of a fibrous composite 



  

 

is presumed homogeneous and the effects of the constituent materials are 

detected only as averaged apparent macroscopic properties of the composite 

material. This approach is generally accepted when modeling gross response of 

composite structures. The micromechanics approach is more convenient for the 

analysis of the composite material because it studies the volumetric percentages 

of the constituent materials for the desired lamina stiffnesses and strengths, i.e. 

the aim of micromechanics is to determine the moduli of elasticity and strength 

of a lamina in terms of the moduli of elasticity, and volumetric percentage of the 

fibers and the matrix. To explain further, both the fibers and the matrix are 

assumed homogeneous, isotropic and linearly elastic. 

  1.2.1.1 Stiffness and strength of a lamina: 

The fibers may be oriented randomly within the material, but it is also 

possible to arrange for them to be oriented preferentially in the direction 

expected to have the highest stresses. Such a material is said to be anisotropic 

(i.e. different properties in different directions), and control of the anisotropy is 

an important means of optimizing the material for specific applications. At a 

microscopic level, the properties of these composites are determined by the 

orientation and distribution of the fibers, as well as by the properties of the fiber 

and matrix materials. 

Consider a typical region of material of unit dimensions, containing a 

volume fraction, Vf of fibers all oriented in a single direction. The matrix volume 

fraction is then, fm VV 1  . This region can be idealized by gathering all the 

fibers together, leaving the matrix to occupy the remaining volume. If a stress l  

is applied along the fiber direction, the fiber and matrix phases act in parallel to 

support the load. In these parallel connections the strains in each phase must be 

the same, so the strain 
l  in the fiber direction can be written as: 

                                          mfl                                                                                   

Where the subscripts L, f and m denote the lamina, fibers and matrix respectively. 



  

 

The forces in each phase must add to balance the total load on the material. 

Since the forces in each phase are the phase stresses times the area (here 

numerically equal to the volume fraction), we have  

                                
mlmflfmmffl VEVEVV                                             

The stiffness in the fiber direction is found by dividing the strain: 

                                mmff

l

l

l VEVEE 



                                                                        

(Where E is the longitudinal Young's modulus)  

This relation is known as a rule of mixtures prediction of the overall modulus in 

terms of the moduli of the constituent phases and their volume fractions. 

 Rule of    mixtures estimates for strength proceed along lines similar to 

those for stiffness. For instance consider a unidirectional reinforced composite 

that is strained up to the value at which the fiber begins to fracture. If the matrix 

is more ductile than the fibers, then the ultimate tensile strength of the lamina in 

Eqn. (1.2) will be transformed to: 
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mf
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u

l VV  1                                                                         

Where the superscript u denotes an ultimate value, and f

m  is the matrix stress 

when the fibers fracture as shown in fig.1.2. 
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Fig .1.2 Stress-strain relationships for fiber and matrix 



  

 

minf VV 0

It is clear that if the fiber volume fraction is very small, the behaviour of the 

lamina is controlled by the matrix.  

This can be expressed mathematically as follows: 

                                      
f
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m

u

l V 1                                                                                      

If the lamina is assumed to be useful in practical applications, then there is a 

minimum fiber volume fraction that must be added to the matrix. This value is 

obtained by equating equations (1.4) and (1.5) i.e. 
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The variation of the strength of the lamina with the fiber volume fraction 

is illustrated in Fig.1.3. It is obvious that when                               the strength of 

the lamina is dominated by the matrix deformation which is less than the matrix 

strength. But when the fiber volume fraction exceeds a critical value (i.e. Vf > 

VCritical ), Then The lamina gains some strength due to the fiber reinforcement. 

 

 

 

 

 

 

 

   

 

 The micromechanical approach is not responsible for the many defects 

which may arise in fibers, matrix, or lamina due to their manufacturing. These 

defects, if they exist include misalignment of fibers, cracks in matrix, non-

u

m

u

minV
criticalV

fV 01.
0

Fiber controlled 

Matrix controlled 

Fig. 1.3 Variation of unidirectional lamina strength with the fiber volume fraction 



  

 

uniform distribution of the fibers in the matrix, voids in fibers and matrix, 

delaminated regions, and initial stresses in the lamina as a result of it's 

manufacture and further treatment.  The above mentioned defects tend to 

propagate as the lamina is loaded causing an accelerated rate of failure. The 

experimental and theoretical results in this case tend to differ. Hence, due to the 

limitations necessary in the idealization of the lamina components, the 

properties estimated on the basis of micromechanics should be proved 

experimentally. The proof includes a very simple physical test in which the 

lamina is considered homogeneous and orthotropic. In this test, the ultimate 

strength and modulus of elasticity in a direction parallel to the fiber direction 

can be determined experimentally by loading the lamina longitudinally. When 

the test results are plotted, as in Fig.1.4 below, the required properties may be 

evaluated as follows: - 

1212111 /    ;    /   ;   /    APE uu  
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Fig.1.4 Unidirectional lamina loaded in the fiber-direction 
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Similarly, the properties of the lamina in a direction perpendicular to the fiber-

direction can be evaluated in the same procedure. 

1.3 Developments in the theories of laminated plates  

   From the point of view of solid mechanics, the deformation of a 

plate subjected to transverse loading consists of two components: flexural 

deformation due to rotation of cross-sections, and shear deformation due to 

sliding of sections or layers. The resulting deformation depends on two 

parameters: the thickness to length ratio and the ratio of elastic to shear moduli. 

When the thickness to length ratio is small, the plate is considered thin, and it 

deforms mainly by flexure or bending; whereas when the thickness to length and 

the modular ratios are both large, the plate deforms mainly through shear. Due 

to the high ratio of in-plane modulus to transverse shear modulus, the shear 

deformation effects are more pronounced in the composite laminates subjected 

to transverse loads than in the isotropic plates under similar loading conditions. 

 The three-dimensional theories of laminates in which each layer is treated 

as homogeneous anisotropic medium (see Reddy [17]) are intractable as the 

number of layers becomes moderately large. Thus, a simple two-dimensional 

theory of plates that accurately describes the global behaviour of laminated 

plates seems to be a compromise between accuracy and ease of analysis. 

 Putcha and Reddy [10] classified the two-dimensional analyses of 

laminated composite plates into two categories: (1) the classical lamination 

theory, and (2) shear deformation theories. In both theories it is assumed that the 

laminate is in a state of plane stress, the individual lamina is linearly elastic, and 

there is perfect bonding between layers. The classical laminate theory (CLPT), 

which is an extension of the classical plate theory (CPT) applied to laminated 

plates was the first theory formulated for the analysis of laminated plates by 

Reissner and Stavsky [37] in 1961, in which the Kirchhoff-Love assumption that 

normal to the mid-surface before deformation remain straight and normal to the 

mid-surface after deformation is used (see Fig. 1.5), but it is not adequate for the 

flexural analysis of moderately thick laminates. However, it gives reasonably 



   

 

accurate results for many engineering problems i.e. thin composite plates, as 

stated by Srinivas and Rao [11] and Reissner and Stavsky [37].  

 

Assumed deformation of 
normal (HSDT) (parabolic 
shear stress distribution) 

Assumed deformation of normal 
(CLPT) (Shear stress neglected ) 
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Assumed deformation of normal (FSDT) 
(shear stress assumed uniform) 

Fig. 1.5    Assumed deformation of the transverse normal in various displacement base plate theories. 



   

 

This theory ignores the transverse shear stress components and models a 

laminate as an equivalent single layer. The classical laminated plate theory 

(CLPT) under-predicts deflections as proved by Turvey and Osman [6, 7, 8] and 

Reddy [17] due to the neglect of transverse shear strain. The errors in deflections 

are even higher for plates made of advanced  filamentary composite materials 

like graphite -epoxy and boron-epoxy, whose elastic modulus to shear modulus 

ratios are  very large (i.e. of the order of    to   , instead of     for typical 

isotropic materials). However, these composites are susceptible to thickness 

effects because their effective transverse shear moduli are significantly smaller 

than the effective elastic modulus along the fiber direction. This effect has been 

confirmed by Pagano [40] who obtained analytical solutions of laminated plates 

in bending based on the three-dimensional theory of elasticity. He proved that 

classical laminated plate theory (CLPT) becomes of less accuracy as the side to 

thickness ratio decreases. In particular, the deflection of a plate predicted by 

CLPT is considerably smaller than the analytical value for side to thickness ratio 

less than 10. These high ratios of elastic modulus to shear modulus render 

classical laminate theory as inadequate for the analysis of composite plates. 

 Many theories which account for the transverse shear and normal stresses 

are available in the literature (see, for example Mindlin [43]) .These are too 

numerous to review here. Only some classical papers and those which constitute 

a background for the present thesis will be considered. These theories are 

classified according to Phan and Reddy [9] into two major classes on the basis 

of the assumed fields as :( 1) stress based theories, and (2) displacement based 

theories. The stress-based theories are derived from stress fields, which are 

assumed to vary linearly over the thickness of the plate: 
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(Where Mi   is the stress couples, h is the plate thickness, and z is the distance of 

the lamina from the plate mid-plane) 



   

 

The displacement-based theories are derived from an assumed displacement 

field as: 
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Where uo , vo and wo are the displacements of the middle plane of the plate. 

The governing equations are derived using the principle of minimum total 

potential energy. The theory used in the present work comes under the class of 

displacement-based theories. Extensions of these theories which include the 

linear terms in z in u and v and only the constant term in w, to account for higher 

-order variations and to laminated plates, can be found in the work of Yang, 

Norris and Stavsky [38], Whitney and Pagano [44] and Phan and Reddy [9]. In 

this theory which is called first-order shear deformation theory (FSDT), the 

transverse planes, which are originally normal and straight to the mid-plane of 

the plate, are assumed to remain straight but not necessarily normal after 

deformation, and consequently shear correction factor are employed in this 

theory to adjust the transverse shear stress, which is constant through thickness 

(see Fig. 1.5). Recently Reddy [17] and Phan and Reddy [9] presented refined 

plate theories that use the idea of expanding displacements in the powers of 

thickness co-ordinate. The main novelty of these works is to expand the in-plane 

displacements as cubic functions of the thickness co-ordinate, treat the 

transverse deflection as a function of the x and y co-ordinates, and eliminate the 

functions u  ,u3 ,v  and v3 from equation (1.8) by requiring that the transverse 

shear stresses be zero on the bounding planes of the plate. Numerous studies 

involving the application of the first-order theory to bending analysis can be 

found in the works of Reddy [22], and Reddy and Chao [23]. 

 In order to include the curvature of the normal after deformation, a 

number of theories known as Higher-order Shear Deformation Theories  

(HSDT) have been devised in which the displacements are assumed quadratic or 



   

 

cubic through the thickness of the plate. In this aspect, a variationally consistent 

higher-order theory which not only accounts for the transverse shear 

deformation but also satisfies the zero transverse shear stress conditions on the 

top and bottom faces of the plate and does not require shear correction factors 

was suggested by Reddy [17]. Reddy's modifications consist of a more 

systematic derivation of displacement field and variationally consistent 

derivation of the equilibrium equations. The refined laminate plate theory 

predicts a parabolic distribution of the transverse shear stresses through the 

thickness, and requires no shear correction coefficients. 

 In the non-linear analysis of plates considering higher-order theory 

(HSDT), shear deformation has received considerably less attention compared 

with linear analysis. This is due to the geometric non-linearity which arises from 

finite deformations of an elastic body and which causes more complications in 

the analysis of composite plates. Therefore fiber-reinforced material properties 

and lamination geometry have to be taken into account. In the case of anti-

symmetric and unsymmetrical laminates, the existence of coupling between 

bending and stretching complicates the problem further.  

 Non-linear solutions of laminated plates using higher-order theories have 

been obtained through several techniques, i.e. perturbation method as in Ref. 

[45], finite element method as in Ref. [10], the increment of lateral displacement 

method as in Ref. [18], and the small parameter method as in Ref. [29]. 

 In the present work, a numerical method known as Dynamic Relaxation 

(DR) coupled with finite differences is used. The DR method was first proposed 

in 1960s; see Rushton [13], Cassell and Hobbs [52], Day [53]. In this method, 

the equations of equilibrium are converted to dynamic equation by adding 

damping and inertia terms. These are then expressed in finite difference form 

and the solution is obtained through iterations. The optimum damping 

coefficient  and time increment used to stabilize the solution depend on a 



   

 

number of factors including the stiffness matrix of the structure, the applied 

load  the boundary conditions and the size of the mesh used  etc… 

 Numerical techniques other than the DR include finite element method, 

which is widely used in the literature. In a comparison between the DR and the 

finite element method, Aalami [56] found that the computer time required for 

finite element method is eight times greater than for DR analysis, whereas the 

storage capacity for finite element analysis is ten times or more than that for DR 

analysis. This fact is supported by Putcha and Reddy [10] who noted that some 

of the finite element formulations require large storage capacity and computer 

time. Hence, due to less computations and computer time involved in the present 

study, the DR method is considered more efficient than the finite element 

method. In another comparison Aalami [56] found that the difference in 

accuracy between one version of finite element and another may reach a value 

of 10% or more, whereas a comparison between one version of finite element 

method and DR showed a difference of more than 15%. Therefore, the DR 

method can be considered of acceptable accuracy. The only apparent limitation 

of DR method is that it can only be applied to limited geometries. However, this 

limitation is irrelevant to rectangular plates which are widely used in 

engineering applications. 

     The objectives  of the present study: - 

 The present work involves a comprehensive study of the following 

objectives, which have been achieved over a period of three years: 

   A survey of various plate theories and techniques used to predict the 

response of composite plates to static lateral loading. 

   The development of a theoretical model capable of predicting stresses and 

deformations in a laminated plate in which the shear deformation is 

considered for both linear and non-linear deflections. 



   

 

   The development and application of the dynamic relaxation technique for the 

analysis of rectangular laminated plates subjected to uniform lateral loading. 

   Investigation of the accuracy of the theoretical model through a wide range 

of theoretical comparisons. 

   Generation of   results based on first order shear deformation theory (FSDT) 

for the comparison between linear and non-linear analyses. 

   Study the factors affecting the deflection of a laminated plate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

CHAPTER     

Mathematical modeling of plates  

 

There are two main theories of laminated plates depending on the 

magnitude of deformation resulting from loading a plate and these are known as 

the linear and nonlinear theories of plates. The difference between the two 

theories is that the deformations are small in the linear theory, whereas they are 

finite or large in the nonlinear theory.  

2.1 Linear theory: 

 2.1.1 Assumptions  

 - The plate shown in Fig 2.1 is constructed of an arbitrary number of 

orthotropic layers bonded together as in Fig 2.2.  However, the orthotropic 

axes of material symmetry of an individual layer need not coincide with the 

axes of the plate. 

 - The displacements u, v, and w are small compared to the plate thickness. 

 - In-plane displacements u and v are linear functions of the z-coordinate. 

 - Each ply obeys Hook’s law  

 - The plate is flat and has constant thickness. 

 - There are no body forces such as gravity force. 

 - The transverse normal stress is small compared with the other stresses and is 

therefore neglected. 

 

Fig. 2.1 A plate showing dimensions and deformations 
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      Equations of equilibrium 

The stresses within a body vary from point to point. The equations 

governing the distribution of the stresses are known as the equations of 

equilibrium. Consider the static equilibrium state of an infinitesimal parallel 

piped with surfaces parallel to the co-ordinate planes. The resultants stresses 

acting on the various surfaces are shown in Fig.2.3. Equilibrium of the body 

requires the vanishing of the resultant forces and moments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.3 Stresses acting on an infinitesimal element 
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Fig. 2.2 Geometry of an n-Layered laminate
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Where the dash indicates a small increment of stress e.g.   dx
x
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The forces in the direction of x are shown in Fig.2.4. The sum of these forces 

gives the following equation.  
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By summing forces in the directions y and z, the following two equations are 

obtained: 
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In order to facilitate the analysis of a multi-layered plate as a single layer plate, 

stress resultants and stress couples are introduced and defined as follows: 
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Fig.2.4 Stresses acting in the x–direction. 

 

 



   

 

Where  zk
 
 and  zk+1 are the distances of top and bottom surfaces of the  k

th 

ply from the middle plane of the plate as shown in Fig. 2.2 . The stress resultants 

and stress couples are clearly shown in Fig. 2.5 and 2.6 respectively. 

When integrating Eqn. (2.1) term by term across each ply, and summing over 

the plate thickness, it will be converted to: 
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Fig. 2.5  Nomenclature for stress resultants



   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

In order to introduce the stress resultants given in Eqn. (2.4), summation 

can be interchanged with differentiation in the first two terms. 
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The first and second bracketed terms, according to Eqn. (2.4), are N  and N  

receptively. The last term must vanish because between all plies the inter-

laminar shear stresses cancel each other out, and the top and bottom surfaces of 

the plate are assumed shear stress free. 

The first integrated equation of equilibrium can then be written in the following 

form: 
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Fig. 2.6 Nomenclature for stress couples
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Similarly Eqn. (2.2) and (2.3) can be integrated to give: 

(2.8)                                                                                     0                

(2.7)                                                                                         0                
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The equations of moment equilibrium can be obtained by multiplying Eqn.(2.1) 

by z and integrating with respect to z over plate thickness which  yields the 

following equation: 
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When integration and summation are interchanged with differentiation and the 

stress couples given in Eqn. (2.4) are introduced, the first two terms become                           
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M 61   . The third term must be integrated by parts as follows: - 
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The first term on the right hand side of the above equation represents the 

moments of all inter-lamina stresses between plies which again must cancel each 

other out. The last term, according to Eqn. (2.5), is – Q . Hence the integrated 

moment equilibrium equation is: 
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When Eqn. (2. ) is treated similarly, it yields the following equation: 
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Hence, the equilibrium equations of the plate are the five equations, i.e. Eqns. 

(2.6) to (2.10). 



   

 

      The strain-displacement equations: 

Fig.2.7 shows a small element ABCD in the Cartesian co-ordinates x, y 

which deforms to DCBA   . The deformations can be described in terms of 

extensions of lines and distortion of angles between lines. From Fig.2.7, it is 

possible to write expressions for linear and shear strains as follows: 
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If θ is very small, then, 
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Hence  the shear strain which is the change in the right angle ∟ BAD is:  
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For a three-dimensional problem, the following strains may be added: 
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The displacements, which comply with assumption (3), are: - 
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Where u
o
 ,v

o
 ,and w

o
 are the displacements of the middle surface of the plate. 

When Eqn. (2.1 ) is differentiated and substituted in Eqns (2.11 – 2.16), the 

following strain displacement relations are obtained. 
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2.1.4 The constitutive equations: 

 The constitutive equations of an individual lamina, k, are of the form:  
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Where 
 k

i  and 
 k

j  are the stresses and strains in the lamina referred to the 

plate axes .Using Eqn. (2.18) in the form o
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Fig.2.7 Small deformation of an elastic element 
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Then Eqn.(2.19) becomes:- 
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Substitute Eqn. (2.20) in Eqn. (2.4) to give: 
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Eqn. (2.21) can be written in the form:- 
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Similarly using Eqn. (2.20) in Eqn. (2. 4) gives: -  
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Eqn. (2.23) can be written in the form: 
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 Where Aij ,Bij , and  Dij  ,(i, j=     3) are respectively the membrane 

rigidities, coupling rigidities and flexural rigidities of the plate . The rigidities  

Bij display coupling between transverse bending and in-plane stretching. The 

coupling will disappear when the reference plane is taken as the plate mid-plane 

for symmetric laminate .The rigidities are calculated as follows:- 
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Hence, the laminate constitutive equations can be represented in the form: 
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Where Aij (i,j =4,5) denote the stiffness coefficients , and are calculated as 

follows:- 
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Where Ki ,Kj are the shear correction factors. 

2.1.5 Boundary conditions: 

The proper boundary conditions are those which are sufficient to 

guarantee a unique solution of the governing equations. To achieve that goal, 

one term of each of the following five pairs must be prescribed along the 

boundary. 

                                  w  or  Q ;    or  M;   or  M; u  or N ; u  or  N ssnnsns  nn        ( .  ) 

Where the subscripts n and s indicate the normal and tangential directions 

respectively. The boundary conditions used in this thesis are given in Appendix 

C. 

2.2 Nonlinear theory: 

2.2.1 Assumptions:- 

  The assumptions made in the nonlinear theory of laminated plates are the 

same as those listed for linear analysis, section 2.1.1, except for assumption (2), 

which is concerned with the magnitude of deformations. In the nonlinear theory, 

in-plane displacements are again small compared to the thickness of the plate, 

but the out-of-plane displacement is not.  

      Equations of equilibrium: 

The derivation of the equilibrium equations for finite deformations can be 

found in Refs.[3,6,7,8]  and can be  written in the  following  form:       

(2.30)                                                                              01

11

345

426561











































































































z

u

y

u

x

u

z

z

u

y

u

x

u

yz

u

y

u

x

u

x







   

 

(2.31)                                                                                01

11

345

426561








































































































z

v

y

v

x

v

z

z

v

y

v

x

v

yz

v

y

v

x

v

x





(2.32)                                                                              01

11

345

426561











































































































z

w

y

w

x

w

z

z

w

y

w

x

w

yz

w

y

w

x

w

x





 

The equilibrium equations of a body undergoing large deformations are 

given in Eqns. (2.30) – (2.32) .Assuming the in-plane displacement gradients are 

small compared to unity and neglecting the transverse normal stress 3 , Eqns. 

      
 __

 (2.32) can be written in a simpler form as follows: 
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Integrating Eqns. (2.33) and (2.34) over the thickness of the plate as in section 

2.1.2 gives Eqns. (2.6) and (2.7) as before. When Eqn. (2.35) is integrated, it 

gives:- 
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This can be rewritten in the following form: 
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However, similar to Eqns. (2.6) and (2.7), the last two terms in Eqn. (2.37) must 

be zero, and so the above equation reduces to: 
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Multiplying Eqns. (2.33) and (2.34) by z and again integrating over the thickness 

of the plate to obtain Eqns. (2.9) and (2.10). 

Hence, the governing equations of the plate are the following five Eqns. (2.6), 

               (2.9), and (2.10). It should be noted that the shear deformation 

theory derived above reduces to classical laminated theory when the transverse 

shear strains are eliminated by setting: 
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      The strain-displacement equations: 

 The in-plane displacements u and v are small, whereas the deflection w is 

of the order of half the plate thickness or more. This assumption implies that:  
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Consequently, the expressions for finite strains can be simplified as follows:- 
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The in-plane displacements are again assumed to vary linearly through the  

thickness of the plate as described for linear analysis i.e.:-  
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When these displacements are substituted into Eqn. (2.40), the following 

relations are obtained:-  
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2.2.4 The constitutive equations: 

 These are the same as Eqns. (    ), and (    ) of sections        

2.2.5 Boundary conditions: 

  These are the same as Eqn. ( .  ) of sections        

2.3 Transformation equations  

          2.3.1 Stress-strain equations 



   

 

 For linear elastic materials, the relation between the stress and strain is as 

follows: 

                                    1,2,...,6) j(i,        jiji C                                                   (    ) 

Where the first subscript i refers to the direction of the normal to the face on 

which the stress component acts, and the second subscript j corresponds to the 

direction of the stress. 

When an orthotropic body is in a state of plane stress, the non-zero 

components of the stiffness tensors C
/
ij are: 
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Where E  and E  are Young's moduli in directions 1 and 2 respectively. 
ij  is 

Poisson's ratio of transverse strain in the j-direction when stressed in the i-

direction i.e.  
ijij /    When  i   and all other stress are zero. 

 2.3.2 Transformation of stresses and strains 

  Consider a co-ordinate system rotated anticlockwise through an angle θ  

the rotated axes are denoted by  /
,  

/
 as in Fig.2.8. Consider the equilibrium of 

the small element ABC shown. Resolving forces parallel to 1
/
 axis gives: 

       sindycosdxsindxcosdyds 1212221111                                       (    ) 

On rearranging, the expression reduces to: 
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Resolving forces parallel to 2
/
 axis gives: 

             sindxcosdycosdxsindyds 1212221112                                 (    ) 

This can then be written in the form: 
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The same procedure is applied to obtain the other transformed stresses which 

may be written in a matrix form as: 
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The strains are transformed similarly: 
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Fig.2.8 Stresses on a triangular element  



   

 

2.3.3 Transformation of the elastic moduli  

In general the principle material axes (1
/
   

/
   

/
) are not aligned with the 

geometric axes (1, 2, 3) as shown in Fig.2.9 for a unidirectional continuous fiber 

composite. It is necessary to be able to relate the stresses and strains in both co-

ordinate systems. This is achieved by multiplying Eqn. (2.50) by   1
M  i.e.: 
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Substitute Eqn. (2.44) in Eqn. (2.52) to obtain: 
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Then, substitute Eqn. (2.51) in Eqn.        
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This equation can be written as: 
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Where      ijij CNMC 
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Eqn. (2.55) gives the constitutive equation for a generally orthotropic 

lamina in which the material axes and geometric axes are not aligned. The 

constants Cij  are as follows: 
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Fig.2.9 A generally orthotropic plate 
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Where  m=cosθ      and   n=sinθ   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

CHAPTER (3) 

Numerical technique 

 
In the present work, finite differences coupled with dynamic relaxation 

(DR) Method, which is a numerical technique, is used. The DR method was first 

proposed and developed in 1960, see Refs. [13], [52], and [53]. In this method, 

the equations of equilibrium are converted to dynamic equations by adding 

damping and inertia terms. These are then expressed in finite difference form 

and the solution is obtained by an iterative procedure as explained below.  

  

3.1 DR Formulation: 

 The DR formulae begin with the dynamic equation, which can be written 

as: 

                                                   
2

2

t

u
k

t

u
f









                                                      (     

Where f is a function of the stress resultants and couples, u is referred to as a 

displacement, 
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 are the velocity and acceleration respectively, 

and k are the inertia and damping coefficients respectively, and t is time. 

If the velocities before and after a period t at an arbitrary node in the finite 

difference mesh are denoted by  
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  respectively, then using 

finite differences in time, and specifying the value of the function at 
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possible to write equation (3.1) in the following form: 
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u is the velocity at the middle of the time increment, which can be 

approximated by the mean of the velocities before and after the time increment

t , i.e. 
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Hence equation (3.2) can be expressed as: 
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Equation (3.3) can then be arranged to give the velocity after the time interval,

t : 
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The displacement at the middle of the next time increment can be determined by 

integrating the velocity, so that: 
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The formulation is completed by computing the stress resultants and 

stress couples from the known displacement field. The iterative procedure 

begins at time t=0 with all initial values of the velocities, displacements, and 

stresses equal to zero or any suitable values. In the first iteration, the velocities 

are obtained from equation (3.4), and the displacements from equation (3.5).  

After the satisfaction of the displacement boundary conditions, the stress 

resultants and stress couples are computed and the appropriate boundary 

conditions for stresses are applied. Subsequent iterations follow the same steps. 

The iterations continue until the desired accuracy is achieved. 

 

3.2 The plate equations 
 

 3.2.1 Dimensional plate equations  

 The equations concerning the analysis of plates in bending (i.e. Eqns. 

            ),             ), and (2.38) are derived in chapter 2.  

 



   

 

3.2.2 Non-dimensional plate equations  

The plate equations can be written in non-dimensionalized form as 

follows: 
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Substituting Eqn. (3.6) into Eqns.                         ),

 
     ) the non-

dimensionalized dynamic plate equations are obtained. 

In the following equations, the primes are omitted: 
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The next step is to transform the differential equations into finite difference 

equations.  



   

 

3.3 The finite difference approximation  

3.3.1 Interpolating function F (x, y) 

It can be shown by using Taylor's series that the first and second 

derivatives of a function   F(x, y) at an arbitrary node i, j shown in figure (3. ) 

can be written as follows: 
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Also   /),( yjiF   And   /),( 22 yjiF  can be obtained similarly. 

  

3.4 Finite difference form of plate equations  

3.4.1 The velocity equations  

According to equation (3.4) and from the equations of motion of the plate, 

i.e. Eqns. (3.7)
 __ 

(3.11) , the velocities are determined as follows :- 

y,j 

Fig.3.1 Finite difference mesh for an interpolating function F(x,y) with two 

independent  variables x,y  
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 and f  is denoted by u, v, w,
dx

dw  or . 

In Eqns. (3.15)
 __
         F (i,j) , F (i,j), F3(i,j), F (i,j) and  F (i,j) are the 

finite difference approximations of  the terms on the left hand side of the 

dynamic Eqns. (3.7) 
__ 

(3.11), i.e. 
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3.4.2 The displacement equations: 

       The displacements are obtained using the velocities that are explained in 

Eqns. (3.15) to (3.19) as follows: 
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Where   can be denoted by  u, v, w,
dx

dw
or  . 

 

         3.4.3 The stress resultants and couples equations: 

The finite difference approximations of the stress resultants and stress 

couples can be obtained using Eqns. (2.26) and (2.27) in chapter 2 as stated 

below 
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3.4.4 Estimation of the fictitious variables: 

 To compute the derivatives of displacements, stress resultants and stress 

couples at the boundaries of a plate, fictitious nodes are considered by extending 

the finite difference mesh beyond the boundaries as shown in Fig.3. . The 

values of the variables at the fictitious nodes are known as fictitious values. The 

fictitious values are estimated in order to eliminate the third derivative of the 

interpolating function, which is quadratic as explained in section        

 

 



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Referring to Fig.3.3, the fictitious values at the points defined by (1,j) can be 

obtained by extrapolation as follows : 

                                              ,4,33,23,1 jfjfjfjf                               ( .  ) 

 

Where f in Eqn. (3.34) can be replaced by u, v, w,   and , . 

 

3.5 The DR iterative procedure  

  In the DR technique, explained in the previous sections of this chapter, 

the static equations of the plate have been converted to dynamic equations i.e. 

Eqns. (3.7)
 __

 (3.11). Then the inertia and damping terms are added to all of 

these equations. The iterations of the DR technique can then be carried out in 

following procedures: 

1. Set all initial values of variables to zero. 

2. Compute the velocities from Eqns. (3.1 )
 __
      ). 

3. Compute the displacements from Eqn.  (3.2 ). 

i = 4 i = 3 i = 2 i =  1 

j=  1 

j =  2 

j =  3 

j =  4 

Fictitious node 

Fig.3.2 Fictitious nodes outside the plate boundaries. 



   

 

4. Apply suitable boundary conditions for the displacements. 

5. Compute the stress resultants and stress couples from Eqns. (3.2 )
 
to (3.  ). 

   Apply the appropriate boundary conditions for the stress resultants and 

stress couples. 

   Check if the convergence criterion is satisfied, if it is  not repeat the  steps    

     From 2 to 6. 

 It is obvious that this method requires five fictitious densities and a similar 

number of damping coefficients so as the solution will be converged correctly. 
 

3.6 The fictitious densities:- 

 The computation of the fictitious densities based on the Gershgorin upper 

bound of the stiffness matrix of a plate is discussed in Ref.[52] . The fictitious 

densities vary from point to point over the plate as well as for each iteration, so 

as to improve the convergence of the numerical computations. The 

corresponding expressions for the computations of the fictitious densities are 

given in Appendix (D). 

 

    Remarks on the DR technique   

 The DR program is designed for the analysis of rectangular plates 

irrespective of material, geometry, edge conditions. The functions of the 

program are as follows: read the data file; compute the stiffness of the laminate, 

the fictitious densities, the velocities and displacements and the mid-plane 

deflections and stresses; check the stability of the numerical computations, the 

convergence of the solution, and the wrong convergence; compute through-

thickness stresses in direction of plate axes; and transform through-thickness 

stresses in the lamina principal axes.  

 The convergence of the DR solution is checked, at the end of each itera-

tion, by comparing the velocities over the plate domain with a predetermined 

value which ranges between 10
- 

 for small deflection and 10
- 

 for large 

deflection. When all velocities are smaller than the predetermined value, the 



   

 

solution is deemed converged and consequently the iterative procedure is 

terminated. Sometimes DR solution converges to invalid solution. To check for 

that the profile of variable is compared with the expected profile over the 

domain. For example when the value of the function on the boundaries is zero, 

and it is expected to increase from edge to center, then the solution should 

follow a similar profile. And when the computed profile is different from that 

expected, the solution is considered incorrect and can hardly be made to 

converge to the correct answer by altering the damping coefficients and time 

increment. Therefore, the boundary conditions should be examined and 

corrected if they are improper. 

 Time increment is a very important factor for speeding convergence and 

controlling numerical computations. When the increment is too small, the 

convergence becomes tediously slow; and when it is too large, the solution 

becomes unstable. The proper time increment in the present study it is taken as 

0.8 for all boundary conditions. 

 The optimum damping coefficient is that which produces critical motion. 

When the damping coefficients are large, the motion is over damped and the 

convergence becomes very slow. And when the coefficients are small, the 

motion is under damped and can cause numerical instability. Therefore, the 

damping coefficients must be selected carefully to eliminate under damping and 

over damping.  

The errors inherent in the DR technique include the discretization error 

which is due to the replacement of a continuous function with a discrete 

function, and an additional error because the discrete equations are not solved 

exactly due to the variations of the velocities from the edge of the plate to the 

center. Finer meshes reduce the discretization error, but increase the round-off 

error due to the large number of calculations involved. The last type of error is 

relative to the rank of the interpolating function employed i.e. quadratic, cubic, 

etc…   



   

 

CHAPTER (4) 

Verification of the computer program  

 

 The present DR results are compared with similar results generated by DR 

and/or alternative techniques including approximate analytical and exact 

solutions so as to validate the DR program. In the following discussion a wide 

spectrum  of elastic comparison results of small and large deflections  are dealt 

with including isotropic, orthotropic, and laminated plates subjected to static 

uniformly distributed  loading. 

    Small deflection comparisons  

  Table A.1 (Appendix A) shows the variations in the center deflection of a 

moderately thick isotropic plate (h/a =0.1) with simply supported (SS5) 

conditions (see Appendix C) as the mesh size is progressively reduced. These 

results suggest that a 5×5 mesh over one quarter of the plate is adequate for the 

present work (i.e. less than      difference compared to the finest mesh result 

available). In Table A.2 comparisons of the DR deflections and stresses with 

Turvey and Osman [6] and Reddy [46] are presented for a uniformly loaded 

square and rectangular plates of thin (i.e. h/a=0.0 ), moderately thick (i.e. 

h/a=0. ), and thick laminates (i.e. h/a=0. ) with simply supported (SS5) 

conditions. In this analysis, the results provided are in good agreement with each 

other. Another comparison analysis for small deformation of thin and 

moderately thick Square simply supported isotropic plate (SS5) between the 

present DR, and Roufaeil [31] is shown in Table A.3. Again, these results 

provide further confirmation that a DR analysis based on a 5×5 quarter-plate 

mesh produces results of acceptable accuracy. 

In the following analyses, several orthotropic materials were employed, and 

their properties are given in Table 4.1 below. Exact FSDT solutions are 

available for plates simply supported on all four edges (SS3). 
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By imposing only a small load on the plate, the DR program may be made to 

simulate these small deflection solutions. In Table A.4, the computations were 

made for uniform loads and for thickness/side  ratio ranges between     to      of 

square simply supported in-plane free plates made of material I with ( 1q ) .In 

this case the center deflections of the present DR results are close to those of  

Turvey and Osman [7], and Reddy [46]. Another small deflection analysis 

comparison on Table A.5 was made for uniformly loaded plates with simply 

supported in-plane fixed (SS5) square and rectangular plates made of material П 

and subjected to uniform loading ( 1q ). In this instance the four sources of 

results agree on the central deflection, and the center stresses at upper and /or 

lower surface of the plate and corner mid-plane stresses. However the analytical 

solution of Srinivas and Rao [11] is not in good agreement with the others as far 

as stresses are concerned. These differences may be attributed to the different 

theory adopted in the analytical solution results of Ref. [11]. 

Most of the published literature on laminated plates are devoted to linear 

analysis and in particular to the development of higher-order shear deformation 

theories. Comparatively, there are few studies on the nonlinear behavior of 

laminated plates and even fewer are those, which include shear deformation. 

The elastic properties of the materials used in the analyses are given in Table 4.2 

below. The shear correction factors are k 
 
 =k 

 
     , unless otherwise stated.  

 2

5

2

4 kk 

Table 4.1 Material properties used in the orthotropic 

plate comparison analysis 
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 In Table A.6 which shows a comparison between the present DR, and 

finite element results Ref. [22] for a simply supported (SS4) four anti symmetric 

angle-ply plates made of material V and subjected to a small uniform load (

01.q   ), the center deflections and stresses are recorded for different thickness 

ratios including thick, moderately thick and thin laminates which are compared 

with Reddy’s finite element results [  ]  There is a good agreement between the 

two sets of results in spite of the different theory adopted in latter case. 

 Another comparison analysis of central deflections between the present 

DR and Zenkour et al [29] using third order shear deformation theory with the 

help of the small parameter method and the results of Librescu and Khdeir [57] 

are illustrated in Table A.7. The three results showed a good agreement 

especially as the thickness ratio decreases. 

4.2 Large deflection comparisons  

 Table A.8 shows deflections, stress resultants and stress couples in simply 

supported in-plane free (SS3) isotropic plate. The present results have been 

computed with 6×6 uniform meshes. These results are in a fairly good 

agreement with those of Aalami et al [12] using finite difference analysis (i.e. 

for deflections, the difference ranges between       at    =     and   % as the q

Table 4.2 Material properties used in the laminated 

plate comparison analysis 
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pressure is increased to   ). A similar comparison between the two results is 

shown in Table A.9 for simply supported (SS4) conditions. It is apparent that the 

center deflections, stress couples, and stress resultants agree very well. The mid-

side stress resultants do not show similar agreement whilst the corner stress 

resultants show considerable differences. This may be attributed to the type of 

mesh used in each analysis. 

 Table A.10 shows comparison between the present analysis and Aalami et 

al [12] for clamped (CC2) edge conditions. Again, it is clear that the center 

deflections and stress resultants and /or couples agree reasonably well, though 

for the edge stress couples it is rather less good. This latter observation may, 

possibly, be explained by the fact that in the present analysis the mesh employed 

is uniform, whereas it is graded in Ref. [12] giving finer mesh spacing at the 

plate edges. Table A.11 shows deflections, stress resultants and stress couples 

for clamped in-plane fixed (CC3) edge conditions. It can be seen that the 

agreement between the present results and Aalami and Chapman [12] is fairly 

good except for the mid-side and, more particularly, the corner stress resultants. 

A similar set of results for the clamped in-plane free (CC1) case are given in 

Table A.12. In this case the present center values for deflections, stress couples 

and the mid-side couples approach are close to those of Ref. [12], whereas the 

central and mid-side stress resultants differ considerably from those of Ref. [12]. 

 The final set of thin plate results comparisons presented here are with 

Rushton [13], who employed the DR method coupled with finite differences. 

The present results for simply supported (SS5) square plates were computed for 

two thickness ratios using an 8×8 uniform mesh and are listed in Table A.13. In 

this instant, the present results differ slightly from those found in Ref. [13]. A 

similar comparison for plates with clamped edges (CC5) is shown in Table 

A.14. In this case it is observed that the center deflection; and the stress at the 

upper and /or lower side of the plate are slightly different compared to those of 

Ref. [13] as the load applied is increased. Also, the mid- side stress at the upper 

and/ or lower side of the plate shows a considerable difference compared to Ref. 



   

 

[13] with the increase of the applied load. These significant differences may be 

attributed to the less well-converged solution of the latter.  

 Another  comparison for simply-supported (SS5) square isotropic plates 

subjected to uniformly distributed loads are shown in Tables A.15 and A.16 

respectively for large deflection analysis of thin and moderately thick plates . In 

this comparison, it is noted that, the center deflections of the present DR 

analysis, and those of Azizian and Dawe [16] who employed the finite strip 

method are fairly good (i.e. with a maximum error not exceeding 0.09%). 

 There are two large deflection comparisons for orthotropic plates were 

made with the same DR program. In the first case, the DR center deflections of a 

thin square plate made of material Ш with clamped in-plane fixed edges (CC5) 

and subjected to a uniform load were compared with DR results of Turvey and 

Osman [ ] and  Chia’s [  ]   The comparison is shown in Table A     The three 

sets of results show a good agreement for lower and intermediate loads, but they 

differ slightly as the load is increased further. These differences are due to the 

employment of the classical laminated plate theory (CLPT) in the analytical 

solution of Chia’s values  which is less accurate than FSDT  

 In the second case the present DR results are compared with DR Ref. [7], 

Reddy’s [  ]  and Zaghloul et al results [42]. For a thin uniformly loaded square 

plate made of material IV and with simply supported in-plane free (SS3) edges. 

The center deflections are presented in Table A.18 where the DR showed a good 

agreement with the other three. 

 The small and large deflection analyses confirm the accuracy and 

versatility of the DR program based on FSDT. 

 In Table A     comparisons are made with Chia’s perturbation results 

based on the Von Karman plate theory [60] for 4 and 2-layer antisymmetric 

angle-ply clamped (CC1) plates made of material V and subjected to uniform 

load for thickness/length ratio equivalent to      .For a 4-layer laminate the 

present DR center deflections are slightly higher than Chia’s results  Whereas  

the contrary applies to the 2-laminate results. These changes are partially due to 



   

 

the different plate theories used in the present analysis and Chia’s results and 

partially due to the approximation of Chia’s values as it is taken from a graph  

 Putcha and Reddy [10] presented finite element results for symmetric and 

anti-symmetric square moderately thick plates (h/a =0.1). These results are 

compared with the present DR results in Tables A.20 and A.21. Table A.20 

shows a comparison of the center deflections for a laminated plate [       o
  -  

o
 

   
o 
] with clamped (CC5) edges. It is observed that the present DR results are 

slightly higher than that of Ref. [10]. Whereas in Table A.21, comparisons are 

made between the present DR, and finite element results Ref. [10] for the center 

deflection of a 2 and 8-layer antisymmetric angles-ply laminates made of 

material I. The plates are square, clamped (CC5), thick, and uniformly loaded. 

For a 2-layer laminate the present DR results differ greatly from those of Ref. 

[10]. Whereas, for 8-layer laminate, the present results differ slightly from those 

of Ref. [10]. 

 Another analysis of thin large deflection plates was made by recomputing 

Sun and Chin’s results [  ] for [    
o 
   

o] using the DR program and material VI. 

The results were obtained for one quarter of a plate using a 5×5 rectangular 

mesh, with shear correction factors k 
 
 = k 

  
    . The analysis was made for 

different boundary conditions and the results were shown in Tables A.22, A.23, 

A.24, and A.25 as follows: the present DR deflections of the two-layer 

antisymmetric cross-ply simply supported in-plane fixed (SS5) are compared 

with DR results of Turvey and Osman [8] and with Sun and Chin’s values for a 

range of loads as shown in Table A.22. The good agreement found confirms that 

for simply supported (SS5) edge conditions, the deflection depends on the 

direction of the applied load or the arrangement of the layers. Table A.23 shows 

a comparison between the present DR, and DR Ref. [8] results, which are 

approximately identical. The difference between the center deflection of the 

laminates [ o
   

o] and [  o
  

o] at b/a =5 is       whilst it is    when b/a =1. Also 

Tables A.24 and A.25 give central deflections, which are in good agreement 

with the DR results Ref. [8]. In Table A.26 which shows a comparison between 



   

 

the present DR, Kolli and Chandrashekhara finite element method [28] large 

deformation results for simply supported (SS5) four-layer symmetric rectangular 

laminates of cross-ply [ o
    

o    o
   

o] and angle-ply [  o
 -  

o
 -  

o
   

o] orientations 

of material VШ subjected to uniform pressure ( 43211.q  ) .The center deflections 

are completely identical for cross-ply laminates and differ slightly for angle-ply 

laminates. The comparisons made between DR and alternative techniques show 

a good agreement and hence the present DR large deflection program using 

uniform finite differences meshes can be employed with confidence in the 

analysis of moderately thick and thin flat isotropic, orthotropic or laminated 

plates under uniform loads. The program can be used with the same confidence 

to generate small deflection results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

CHAPTER     

Case Studies 

           With confidence in the DR program proved through the various 

verification exercises undertaken, it was decided to undertake some study cases 

and generate new results for uniformly loaded laminated rectangular plates. The 

plates were assumed to be either simply supported or clamped on all edges. 

  The effects of transverse shear deformation, material anisotropy, 

orientation, and coupling between stretching and bending on the deflections of 

laminated plates are investigated. 

 The material chosen has the following properties: 

.3.0, / 8265.4G ,  / 653.9E , / 9.137 12

2

12

2

2

2

1  mmkNmmkNmmkNE  It is 

assumed that G   = G 3 =G 3.  

5.1 Effect of load 

 The variations of the center deflections, Cw  with load, q  for thin (h/a = 

0.0 ) and thick (h/a=0.2) isotropic plates of simply supported in-plane fixed 

(SS5) condition are given in Table A.27, and Fig. B.1. It is observed that, the 

center deflections of thin and thick plates increase with the applied load, and that 

the deflections of thick plates are greater than those of thin plates under the same 

loading conditions. The difference in linear deflection is due to shear 

deformation effects which are significant in thick plates. Whereas, the non-linear 

deflection of thin and thick plates, which are nearly coincident, implies that the 

shear deformation effect vanishes as the load is increased. 

5.2 Effect of length to thickness ratio  

 Table A.28 and Fig.B.2 contain numerical results and plots of  center 

deflection versus length to thickness ratio of anti-symmetric cross-ply 

[ o
   

o
  

o
   

o] and angle-ply [  o
 -  

o
   

o
 -  

o] square plates  under uniform lateral 

load ( 0.1q  ) for two boundary conditions (i.e. simply supported (SS1) and 

clamped (CC1)). The maximum percentage difference in deflections for a range 



   

 

of length / thickness ratio between 10 and 100, fluctuates between 35% for 

simply supported (SS1) cross-ply laminate and 73.3% for angle-ply laminate as 

the length/thickness ratio increases to a value of a/h = 40.0, and then become 

fairly constant. It is evident that shear deformation effect is significant for a/h < 

40.0. It is obvious that shear deformation reduces as the length/thickness ratio 

increases. The orientation effect is clearly noticeable when the plate is simply 

supported while it is not apparent when the plate is clamped. 

       As shown in Table A.29 and Fig.B.3, the maximum percentage difference in 

deflection ( 0.200q ) for a range of length/ thickness ratio between 10 and 100 

fluctuates between 6.36% for simply supported (SS1) cross-ply laminate and 

38.7% for clamped (CC1) angle-ply laminate. This means that the center 

deflections become independent on the length/thickness ratio as the load gets 

larger. 

5.3 Effect of number of layers  

 Fig.B.4 shows a plot of the maximum deflection of a simply supported 

(SS5) anti-symmetric cross-ply [( o
   

o)n] (n=1,2,3,4,8) square plates under 

uniformly distributed load of a moderately thick plate (h/a = 0.1). The numerical 

results are given in Table A.30. Two, four, six, eight, and sixteen-layer 

laminates are considered. The results show that as the number of layers 

increases, the plate becomes stiffer and the deflection becomes smaller. This is 

mainly due to the existence of coupling between bending and stretching which 

generally increases the stiffness of the plate as the number of layers is increased. 

When the number of layers exceeds 8, the deflection becomes independent on 

the number of layers. This is because the effect of coupling between bending 

and stretching does not change as the number of layers increases beyond 8 

layers. 

       In Table A.31 and Fig. B.5, the deflection of simply supported (SS5) angle-

ply plates [(  
o
 -  

o
)n] is given. Similar features can be noted as in the case of 

cross-ply plates [(0
o
   

o
)n] mentioned above. 



   

 

5.4 Effect of material anisotropy  

          According to Whitney and Pagano [44], the severity of shear deformation 

effects depends on the material anisotropy, E /E  of the layers. 

 The exact maximum deflections of clamped (CC5) four-layer symmetric 

cross-ply [ o
   

o
   

o
  

o] and angle-ply [  o
 -  

o
 -  

o
   

o] laminates are compared in 

Table A.32 and Fig.B.6 for various degrees of anisotropy. It is observed that, 

when the degree of anisotropy is small the deflection is large. As the degree of 

the anisotropy increases, the plate becomes stiffer. This may be attributed to the 

shear deformation effects which increase as the material anisotropy is decreased. 

When the degree of anisotropy becomes greater than 40.0, the deflection 

becomes approximately independent on the degree of anisotropy. This is due to 

the diminishing of the shear deformation effects and the dominance of bending 

effects. 

The results in Table A.33 and the plot in Fig. B.7 is for simply supported (SS5) 

laminates which follow a similar behaviour but the deflections are relatively 

smaller. The apparent difference between the non-linear deflections of both 

clamped (CC5) and simply supported (SS5) symmetric laminates, as shown in 

Figs. B.6 and B.7 may be attributed to the different boundary conditions used in 

each case which either permits edge rotation or prohibits it.   

5.5 Effect of fiber orientation  

 The variation of the maximum deflection, Cw  with fiber orientation of a 

square laminated plate is shown in Table A.34 and Fig.B.8 for 0.120q  , and h/a 

= 0. . Four simply supported boundary conditions SS2, SS3, SS4 and SS5 are 

considered in this case. The non-linear curves SS2 and SS3 conditions show 

minimum deflection at θ     o . However, this trend is different for a plate under 

SS4 and SS5 conditions in which the non-linear deflection increases with θ  This 

is due to the in-plane fixed edges in the latter case. Also, the non-linear   curves 

for clamped boundary conditions CC1, CC3, CC4 and CC5 as shown in Table 

A.35 and Fig.B.9 indicate the same trend as in the simply supported SS4 and 



   

 

SS5. These differences indicate that the type of end support is a determinant 

factor in the deflections for different orientations.  

Another set of results showing the variation of center deflections, Cw with 

Load, q  for a range of orientations is given in Tables A.36 and A.37, and Fig. 

B.10 and B.11.Table A.36 and Fig. B.10 show the variations in the center 

deflection of thick laminates (h/a=0.2) with load ranges between 0.20q  and  

0.200q  for a simply supported (SS4), 4 – layer anti-symmetric square plate of 

orientation [ o-/  ooo ]. It is noticed from Fig. B.10 that the deflection of 

thick laminates increases with the applied load as the angle of orientation is 

decreased (i.e. from   o to  o) to a point where 7060  q  and then increases as 

the angle of orientation is increased beyond that point. This results in the 

inflection of the deflection curves at a point where 7060  q . This behaviour is 

caused by coupling between bending and stretching which arises as the angle of 

orientation increases.  

Similar behaviour is exhibited by thick anti-symmetric clamped (CC3) laminates 

as shown in Table A.37 and Fig. B.11 but with a low response due to the 

different boundary conditions used in each case.   

5.6 Effect of reversing lamination order   

 The DR deflections of two-layer anti-symmetric cross-ply [ o
/  

o] simply 

supported in-plane fixed (SS5) rectangular laminates are given in Table A.38 

and plotted in Fig. B.12. The deflection of the plate with coupling stiffness 

 0ijB  is also shown for the sake of comparison. The percentage difference 

between the center deflections ]90/0[1

oow  and ]0/90[2

oow  at 0.20q   is 

       whilst when 0.200q , it is      .  It is obvious that the deflection depends 

on the direction of the applied load or the arrangement of the layers. The 

coupling stiffness  0ijB  serves as the limit between positive and negative 

coupling. For a positive coupling, the deflection increases as the magnitude of 

coupling increases.  In other words, the apparent laminate bending stiffness 

decreases as the bending – extension coupling increases. Whereas, negative 



   

 

coupling is seen to stiffen the laminate. This contradicts the common notion that 

the bending – extension coupling lowers the laminate bending stiffness.  

 In a similar analysis, the deflection of an anti-symmetric angle-ply  

]45/45[1

oow   and ]45/45[2

oow   simply supported in-plane fixed (SS5) laminates 

are shown in Table A.39 and Fig. B.13. There is no difference in deflection 

between ]45/45[ oo   and ]45/45[ oo   as in the case of ]90/0[ oo  and ]0/90[ oo . This 

comparison with laminate  0ijB  indicates that coupling between bending and 

twisting always lowers the laminate bending stiffness of angle-ply laminates.  

5.7 Effect of aspect ratio 

 Table A.40 and correspondingly Fig.B.14 show the variations in the 

maximum deflection of a two-layer anti-symmetric cross-ply and angle-ply 

 oo 45/45   simply supported in-plane fixed (SS5) rectangular laminate under 

uniform load and with different aspect ratios ( 0.200q  , and h/a =0.1). It is 

noticeable that, when the aspect ratio is small the deflection is small, and as the 

aspect ratio increases further beyond 2.0, the deflection becomes independent on 

the aspect ratio. This is due to coupling between bending and stretching which 

becomes fairly constant beyond b/a=2.0 and therefore the plate behaves as a 

beam.   

5.8 Effect of boundary conditions  

 The type of boundary support is an important factor in determining the 

deflections of a plate along with other factors such as the applied load, the 

length / thickness ratio, the fiber orientation, etc.   

 Three sets of boundary conditions ranging between extreme in-plane fixed 

to in-plane free of an isotropic plate were considered and the results are given in 

Table A.41 and shown graphically in Fig. B.15. the variations of center 

deflection,  Cw  with load, q  for thin (h/a =0.02) isotropic simply supported 

(SS1) and (SS5) and clamped (CC5) plates are given. It is observed that, for all 

cases the deflections increase with the load but at different rates depending on 

whether the plate is simply supported in-plane free or clamped. The deflection is 



   

 

a maximum when the plate is simply supported in-plane free and a minimum 

when the plate is clamped. 

5.9 Effect of lamination scheme 

 In the present analysis the lamination scheme of plates is either symmetric 

or anti-symmetric. The anti-symmetric arrangement involves coupling between 

bending and stretching which affects greatly the deflections of both cross-ply 

and angle-ply laminates.  

 The variations of center deflection, Cw  with load, q  varying between 0 

and 100 are given in Tables A.42 and A.43 and shown graphically in Figs. B.16 

and B.17. The transverse central deflection of 4- layered square laminated plates 

with simply supported (SS2) boundary condition subjected to uniformly 

distributed load is shown in Table A.42 and Fig.B.16.  The thickness of all 

layers is assumed equal. The results indicate that the anti-symmetric angle-ply 

 oooo 45/45/45/45   laminate is stiffer than the symmetric one, and that the 

symmetric cross-ply laminate is stiffer than the anti-symmetric one. This 

phenomenon is caused by coupling between bending and stretching which 

lowers the deflections of anti-symmetric angle-ply laminates, and raises the 

deflections of anti-symmetric cross-ply plates.  

 Similar behaviour is shown by angle-ply laminates for clamped (CC2) 

condition. In the case of cross-ply laminates as given in Table A.43 and shown 

in Fig. B.17 the anti-symmetric cross-ply is stiffer than the symmetric one. This 

is due to the restrained edge rotation in this case. 

 

 

 

 

 

 

 



   

 

CHAPTER      

Conclusions and Suggestions for Further Research  

6.1 Conclusions: 

          A Dynamic Relaxation (DR) program based on finite differences has been 

developed for small and large deflection analysis of rectangular laminated plates 

using first order shear deformation theory (FSDT). The plate, which is assumed 

to consist of a number of orthotropic layers, is replaced by a single anisotropic 

layer and the displacements are assumed linear through the thickness of the 

plate. A series of numerical comparisons have been undertaken to demonstrate 

the accuracy of the DR program. Finally, a series of new results for uniformly 

loaded thin, moderately thick, and thick plates with simply supported and 

clamped edges have been presented. These results show the following:   

   The linear theory seriously over-predicts the deflection of plates. 

   The deformations of a plate are dependent on bending and extension in the 

nonlinear theory, whereas they are dependent on bending alone in the linear 

theory. 

    Convergence of the DR solution depends on several factors including 

boundary conditions, mesh size, the fictitious densities, and load.  

   Deflection is greatly dependent on plate length/ thickness ratio at small loads, 

and it becomes almost independent on that when the load is large. 

   As the number of layers in a plate increases, the plate becomes increasingly 

stiffer. 

   As the degree of anisotropy increases, the plate becomes stiffer and when it is 

greater than 40.0, the deflection becomes virtually independent on the degree 

of anisotropy. 

   Deflection of plates depends on the angle of orientation of individual plies. 

An increase of angle of orientation results in a decrease in the deflection at 

small loads and an increase in deflection at large loads. 



   

 

   Coupling between bending and stretching increases the deflection of [0
o
   

o
] 

and decreases the deflection of [90
o
  

o
] plates depending on whether it is 

positive or negative. Whereas, it always decreases the deflection of [  
o
 -  

o
] 

and [-  
o
   

o
] plates.  It also lowers the deflection of anti-symmetric angle-

ply laminate [45
o
 -  

o
   

o
 -  

o
] and increases that of anti-symmetric cross-

ply laminate [0
o
   

o 
  

o
   

o
]. 

   Deflection depends on the aspect ratio of plate. When the aspect ratio 

becomes greater than 2.0, the plate behaves as a beam, and therefore the 

deflection becomes independent on the aspect ratio. 

    As the edges of a plate are more restrained, the deflection decreases. 

 

    Suggestions for Further Research: 

The topics, which require further investigations in the future, are: 

   The DR iterations suffer from instability when a plate is in-plane free and 

the load is large. Further work could be directed towards investigating the 

sources of instability. 

   Further investigations on the influence of coupling between bending and 

extension and/ or twisting on the response of laminated plates could be 

carried out. 

   Analysis of plates under concentrated load is another area of research 

which requires further study.  
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APPENDIX (A) 

Tables  

 

Table A.    DR Solution convergence results for a simply supported (SS5) 

square plate subjected to uniform pressure  0.3  and  0.1h/a  ,1  q   

 

 

 

 

 

 

 

 

 

 
 

 

Table A.  Comparison of present DR, Turvey and Osman [6], and exact values 

of Reddy [46] small deflection results for uniformly loaded simply supported 

(SS5) square and rectangular plates of various thickness ratios  0.3  ,1  q . 

 

a/b h/a S cw   11   12   26   35   44  

  

     

                       -                     

                       -                     
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                       -                     
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                       -                     

       

                       -                     

                       -                     

                       -                     

Mesh size Cw  

2 × 2         

3 × 3         

4 × 4         

5 × 5         

6 × 6         

7 × 7         

8 × 8         
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S (1): Present DR results  

S (2): DR results of Ref. [ ]. 

S (3): Exact results of Ref. [4 ]. 
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Table A.    Dimensionless central deflection of a square simply supported 

isotropic plate (SS5)  0.833k   ,0.3   0.1 2  q  
       

a/h 
Present DR

*
 

Results 

3- Node strip 

Ref.[31] 

2-node strip 

Ref.[31] 

Hinton E, Huang  H 

as stated in Ref.[31] 

                                    

                                   

 

Table A.    Comparison of present  DR , Turvey and Osman [7] , and Ref.[46] 

center deflections of a simply supported (SS3) square orthotropic plate made of 

material I for different thickness ratios when subjected to uniform loading 

 0.1q . 

Thickness ratio 

h/a 

Uniform Load 

 DRwC  

present 

 DRwC  

Ref. [7] 

 exactwC  

Ref. [46] 

                               

                             

                                

                                

                                

                                



   

 

Table A.    Comparison of present DR, Ref.[7] , Ref. [46],  and exact solutions 

Ref.[11] for a uniformly loaded simply supported (SS5) orthotropic plate made 

of material II when subjected to uniform loading  0.1q . 

 

b/a h/a S Cw   11   25  

  

     

                       

                       

                       

                       

     

                       

                       

                       

                       

     

                       

                       

                       

                       

  

     

                       

                       

                       

                       

     

                       

                       

                       

                       

     

                       

                       

                       

                       

 

S(1):  Present DR results  

S(2): DR results of Ref.[7].  

S(3): Finite element solution  Ref.[46]. 

S(4): Exact solution Ref.[11].             
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Table A.    Comparison of  present DR , and  finite element results Ref. [22] for 

[  o
 -  

o
   

o
 -  

o] simply supported (SS4) square laminate made of material V 

and subjected to  uniform loads and for different thickness ratios ( 0.1q ). 

 

h/a S Cw ×10
   11  

    
                

  9.0000        

     
  4.3769        

  4.2000        

     
  3.2007        

  3.0000        

     
                

                

     
                

                

 

S (1):  Present DR results  

S (3): Reddy [22] as read from graph.   hzay
2

1
,

2

1
1   x . 

 

Table A.  Non-dimensionalized deflections in three layer cross-ply [ o
   

o
  

o] 

simply supported (SS5) square laminates under uniform load ( 0.1q )  

 

a/h S Cw  

  

         

         

         

  

         

         

         

   

         

         

         



   

 

   

         

         

         

 

S (1): Present DR results linear analysis  

S (2): Librescu L and Khdeir A. A [57].  

S (3):A.M.Zenkour, and M.E.Fares [29] results.  

 

Table A.    Comparison of present DR, Aalami and Chapman's [12] large 

deflection results for a simply supported (SS3) square isotropic plate subjected 

to uniform pressure  0.3   ,0.02h/a    

 

q  S cw  
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S (1): Present DR results (6×6 uniform mesh over quarter of the plate) 

S (2): Ref.[12]  results (6×6  graded  mesh over quarter of the plate) 

    x = y = 
2

1
a, z = 0. 

 

 

 

 

 

 

 

 



   

 

Table A.  Comparison of present DR, Aalami and Chapman's [12] large 

deflection results for simply supported (SS4) square isotropic plate subjected to 

uniform pressure  0.3   ,0.02h/a    
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S(1): Present DR results (6×6 uniform mesh over quarter of the plate) 

S(2) : Ref.[12]  results (6×6  graded  mesh over quarter of the plate) 
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Table A.   Comparison of present DR, Aalami and Chapman's [12] large 

deflection results for simply supported (SS2) square isotropic plate subjected to 

uniform pressure  0.3   ,0.02h/a    

 

q  S cw  
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S (1): Present DR results (6×6 uniform mesh over quarter of the plate) 

S (2) : Ref.[12]  results (6×6    graded  mesh over quarter of the plate) 
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Table A.   Comparison of present DR, Aalami and Chapman's [12] large 

deflection results for Clamped (CC3) square isotropic plate subjected to uniform 

pressure  0.3   ,0.02h/a    
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S(1): Present DR results (6×6 uniform mesh over quarter of the plate) 

S(2) : Ref.[12]  results (6×6  graded  mesh over quarter of the plate) 
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Table A.12 Comparison of present DR, Aalami and Chapman's [12] large 

deflection results for Clamped (CC1) square isotropic plate subjected to uniform 

pressure  0.3   ,0.02h/a    

q  S cw  
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S(1):  Present DR results (6×6 uniform mesh over quarter of the plate) 

S(2) : Ref.[12]  results (6×6  graded  mesh over quarter of the plate) 

 

 

Table A.      Comparison of present DR, and Rushton's [13] large deflection 

results for a simply supported (SS5) square isotropic plate subjected to a 

uniform pressure  3.0 . 

 

q  S Cw   11  

    

                

                

             

     

                

                

             

     

                 

                 

             

      

                

                

             

 

S (1): Present DR results (h/a =0.02; 8 × 8 uniform mesh over quarter of the plate) 

S (2):  Present DR results (h/a =0.01; 8×8 uniform mesh over quarter of the plate)  

S (3): Ref. [13] results (thin plate 8×8 uniform mesh over quarter of the plate) 
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Table A.      Comparison of present DR, and Rushton's Ref. [14] large 

deflection results for clamped (CC5) square isotropic plate subjected to a 

uniform pressure  3.0 . 

 

q  S Cw   11   21  
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S (1):  Present DR results (h/a =0.02; 8 × 8 uniform mesh over quarter of the plate) 

S (2): Ref. [13] results (thin plate 8×8 uniform mesh over quarter of the plate) 
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Table A.      Comparison of the present DR, and Azizian and Dawe's [16] large 

deflection results for thin shear deformable simply supported (SS5) square 

isotropic plates subjected to a uniform pressure (h/a =0.0   ν =0.3). 

 

q  S Cw  

    
          

          

     
          

          

      
          

          



   

 

      
          

          

 

S (1): Present DR results (6 × 6 uniform mesh over quarter of the plate) 

S (2): Azizian and Dawe [16] results. 
 

Table A.      Comparison of the present DR, and Azizian and Dawe's [16] large 

deflection results for moderately thick shear deformable simply supported (SS5) 

square isotropic plates subjected to a uniform pressure (h/a =0.0   ν =0.3). 

 

q  S Cw  

     
          

          

    
          

          

    
          

          

    
          

          

 

S (1): Present DR results (6 × 6 uniform mesh over quarter of the plate) 

S (2): Azizian and Dawe [16] results. 

 

Table A.    Pressure versus center deflection comparison for a square clamped 

(CC 5) orthotropic plate made of material III and subjected to uniform loading 

(h/a        . 

q   DRwC  Cw (DR Ref. [8] )   58 results 'sChiawC  

                       

                         

                         

                         

                         

 

DR results (5 × 5 uniform mesh over quarter of the plate) of the present study. 

DR results Ref. [8] (5×5 uniform mesh over quarter of the plate). 



   

 

Table A.     Comparison of  present DR , finite element  results Ref. [59], and 

experimental  results Ref. [42]  for  a uniformly loaded  simply supported (SS3)  

square orthotropic plate made of material IV (h/a           

 

 

 

 

 

 

S (1): Present DR results (5 × 5 uniform non – interlacing mesh over quarter of the plate) 

S (3): Reddy's finite element results [59]. 

S (4): Zaghloul's and Kennedy's Ref. [42] experimental results as read from graph. 

 

Table A.       Comparison of present DR, and Chia's approximate analytical 

results for 4 and 2-layer anti-symmetric angle-ply clamped (CC1) plates made of 

material V and subjected to uniform pressure. 

 

q  NOL
*
 Cw  (DR) 

Cw (Chia's results [60]) 

      
         0.58 

  1.1432 1.24 

1000.0 
4 1.1273 1.10 

2 1.8500 2.00 

       4 1.6016 1.53 

2000.0 4 2.0113 1.94 
 

*
 Denote number of layers. 

Present DR results: ((h/a = 0.02) 5×5 uniform mesh over quarter of the plate). 

Chia's results: Results read from graph [60]. 
 

Table A.    Comparison of present DR, and finite element Ref. [10] center 

deflections of quasi-isotropic [ o
   

o
 -  

o
   

o] clamped (CC5) square plates made 

of material V and subjected to uniform pressure. (h/a     ). 

 

q  S Cw  

     
       

       

q   1Cw   2Cw   3Cw   4Cw  

17.9 0.5859 0.5858 0.58 0.58 

53.6 1.2710 1.2710 1.30 1.34 

71.5 1.4977 1.4977 1.56 1.59 

89.3 1.6862 1.6862 1.74 1.74 



   

 

      
        

       

      
        

       

      
       

       

      
       

       

 

S (1):  Present DR results (5 × 5 uniform mesh over quarter of the plate) 

S (2): Putcha and Reddy's finite element results Ref. [10] read from graph. 

 

Table A.   Comparison of  present DR , and finite element results Ref.[10] for 

a 2and 8-layer anti-symmetric angle-ply [  o
 -  

o
/…] clamped (CC5) square plate 

made of material I and subjected to uniform pressure .(h/a      ) . 

 

 

q
 

S  2NOLwC   8NOLwC  

     
                

                

      
                

                

      
                

                

      
                

                

      
                

                

 

S (1):  Present DR results (5 × 5 uniform mesh over quarter of the plate) 

S ( ): Ref. [  ] results read from graph. 

NOL: Number of layers.  

 



   

 

Table A.     Deflection of the center of  a two-layer anti-symmetric cross- ply 

simply supported in-plane fixed (SS5) strip under uniform pressure (b/a =5, h/a 

         

 

q  S  90/01
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S (1): Present DR results  

S (2): DR results Ref. [8]. 

S (3): Values determined from Sun and Chin's graphical results Ref. [15]. 
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Table A.   Center deflection of two-layer anti-symmetric cross-ply simply 

supported in-plane free (SS1) plate under uniform pressure and with different 

aspect ratios (h/a      ; 18q ). 

 

b/a S  90/01
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S (1):  Present DR results  

S (2): DR results Ref.[ ]. 
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Table A.   Center deflection of a two-layer anti-symmetric cross-ply clamped 

in-plane free (CC1) plate with different aspect ratios (h/a      ; 18q ) . 
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S (1): Present DR results  

S (2): DR results Ref.[ ]. 
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Table A.   Center deflection of two-layer anti-symmetric cross-ply clamped in 

-plane (CC5) rectangular plate with different aspect ratios (h/a      ). 

 

b/a S q   90/01

ow   0/902

ow   0ijo Bw                 

    

 

  

                                        

                                      

                                       

  

                                         

                                      

                                     

    

  

                                        

                             68.3     

    0.8037 0.8040 0.6073 32.3 32.3     

  

   0.1712 0.1712 0.0771 122.0 122.0     

   0.4955 0.4957 0.3084 60.7 60.7     

    0.8040 0.8044 0.7711 4.3 4.3     

    

  

          0.1720 0.0776 121.6 121.6     

   0.4974 0.4974 0.2967 67.6 67.6     

    0.8059 0.8065 0.6111 31.9 32.0     

  

   0.1720 0.1720 0.0777 120.4 120.4     

   0.4976 0.4979 0.3110 60.0 60.0     

    0.8062 0.8068 0.7771 3.7 3.7     

    

  

   0.1722 0.1722 0.0781 120.5 120.5     

   0.4994 0.4994 0.2985 67.3 67.3     

    0.8083 0.8090 0.6150 31.4 31.5     

  

   0.1723 0.1722 0.0781 120.6 120.6     

   0.4996 0.4999 0.3126 59.8 59.9     

    0.8086 0.8093 0.7802 3.6 3.7     

    

  

   0.1698 0.1698 0.0776 118.8 118.8     

   0.4997 0.4997 0.2976 67.9 67.9     

    0.8103 0.8110 0.6170 31.3 31.4     

  

   0.1699 0.1697 0.0775 119.2 119.2     

   0.4999 0.4999 0.3101 61.2 61.2     

    0.8106 0.8113 0.7711 5.1 5.1     



   

 

     

  

   0.1649 0.1649 0.0756 118.1 118.1     

   0.4947 0.4947 0.2917 69.6 69.6     

    0.8072 0.8078 0.6113 32.0 32.0     

  

   0.1650 0.1648 0.0756 118.3 118.0     

   0.4949 0.4948 0.3022 63.8 63.8     

    0.8075 0.8081 0.7492 7.8 7.9     

    

  

   0.1539 0.1539 0.0708 117.4 117.4     

   0.4778 0.4778 0.2753 73.6 73.6     

    0.7918 0.7922 0.5895 34.3 34.4     

  

   0.1539 0.1537 0.0707 117.7 117.7     

   0.4780 0.4778 0.2828 69.0 69.0     

    0.7921 0.7925 0.6993 13.3 13.3     

     

  

   0.1313 0.1313 0.0605 117.0 117.0     

   0.4330 0.4330 0.2383 81.7 81.7     

    0.7430 0.7432 0.5301 40.2 40.2     

  

   0.1314 0.1312 0.0605 117.2 116.9     

   0.4331 0.4330 0.2420 79.0 79.0     

    0.7432 0.7434 0.5992 24.0 24.1     

    

  

   0.0927 0.0927 0.0428 116.6 116.6     

   0.3347 0.3347 0.1702 96.7 96.7     

    0.6207 0.6207 0.4012 54.7 54.7     

  

   0.0928 0.0928 0.0428 116.8 116.8     

   0.3348 0.3348 0.1711 95.7 95.7     

    0.6210 0.6210 0.4261 45.7 45.7     
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Table A.   Comparison of the present DR method and M.Kolli and 

K.chandrashekhara [28] large deformation results for simply supported (SS5) 

four layer symmetric rectangular laminates of cross-ply [ o
   

o
   

o
  

o]  and angle-

ply [  o
 -  

o
 -  

o
   

o] subjected to uniform pressure . (b/a      a/h     , 3.0 ). 

q  S 
Cw  
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S (1): present DR results. 

S (2): results of Ref. [2 ]. 

 

Table A.   Variation of central deflection 
cw with load, q  of thin (h/a = 0.02) 

and thick (h/a =0.2) isotropic plates of simply supported (SS5) condition  3.0

. 

q  S cw  

h/a =0.02
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S (1): Linear  

S (2): Nonlinear  



   

 

Table A.28 A comparison of the non-dimensionalized center deflections Vs. 

side  to thickness ratio of a four layered anti-symmetric cross-ply [0
o
   

o
  

o
   

o
] 

and angle-ply [45
o
 -  
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o
 -  

o
] square laminates under uniform lateral load ( q
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Table A.29 A comparison of the non-dimensionalized center deflections vs. side 

to thickness ratio of a four layered anti-symmetric cross-ply [0
o
   

o
  

o
   

o
] and 

angle-ply [45
o
 -  

o
   

o
 -  

o
] square laminates under uniform lateral load. ( q
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Table A.30 Number of layers effect on a simply supported (SS5) anti-symmetric 

cross-ply [(0
o
   

o
)n] square plate under uniformly distributed loads. (h/a        
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Subscripted values 2, 3, 4, and 8: No. of the arrangements of a two layered laminate. 

 

 

 

Table A.31 Number of layers effect on a simply supported (SS5) anti-symmetric 

angle-ply [(45
o
 -  

o 
)n] square plate under uniformly distributed loads. (h/a   
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Subscripted values 2, 3, 4, and 8: No. of the arrangements of a two layered laminate. 

 

 

 

 

 



   

 

Table A.32 Effect of material anisotropy on the non-dimensionalized center 

deflections of a four layered symmetric cross-ply and angle-ply clamped 

laminates (CC5) under uniform lateral load ( q        h/a         
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Table A.33 Effect of material anisotropy on the non-dimensionalized center 

deflections of a four layered symmetric cross-ply and angle-ply simply 

supported laminates (SS5) under uniform lateral load ( q        h/a         
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Table A.34 Effects of fiber orientation θ on the deflection of a simply supported 

square plate ( q           h/a        

 

 

θ cw  

SS2 SS3 SS4 SS5 

                              

                              

                               

                               

                               

                               

                               

                               

                               

                               

                               

                               

                               

                               

                               

                               

                               

                               

                               
 

 

Table A.35 Effects of fiber orientation θ on the deflection of a clamped  square 

plate ( q           h/a        

 

 

θ cw  

CC1 CC2 CC3 CC4 CC5 

                                     

                                     

                                      

                                      

                                      

                                      

                                      

                                      

                                      

                                      

                                      

                                      

                                      



   

 

                                      

                                      

                                      

                                      

                                      

                                      
 

 

Table A.36 Variation of central deflection 
cw with a high pressure range q  of a 

simply supported (SS4) four-layered anti-symmetric square plate of the 

arrangement  oooo  ///  with different orientations (h/a =0.2) . 
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Table A.37 Variation of central deflection 
cw with a high pressure range q  of 

clamped (CC3) four-layered anti-symmetric square plate of the arrangement 

 oooo  ///  with different orientations (h/a =0.2). 
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Table A.38 Central deflection of a two layer anti-symmetric cross-ply simply 

supported in-plane fixed (SS5) rectangular plate under uniform pressure (b/a   

     h/a        
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S(1):100 × ( 1w - 0w )/ 0w  

S(2):100 × ( 2w - 0w )/ 0w  

S(3):100 × ( 1w - 2w )/ 2w  
 

 

Table A.39 Central deflection of a two layer anti-symmetric angle-ply simply 

supported in-plane fixed (SS5) rectangular plate under uniform pressure (b/a   
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S(1):100 × ( 1w - 0w )/ 0w  

S(2):100 × ( 2w - 0w )/ 0w  

S(3):100 × ( 1w - 2w )/ 2w  

 

Table A.40 Central deflection of a two layer anti-symmetric cross-ply and 

angle-ply  simply supported in-plane fixed (SS5) rectangular plate under 

uniform pressure and with different aspect ratios ( h/a        q =     ) 
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Table A.41 Variations of center deflection 
cw with load, q  of simply supported 

(SS ) and (SS5), and clamped (CC5) thin isotropic plates (h/a         ν        
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Table A.42 Variation of central deflection 
cw with pressure q  of a simply 

supported (SS ) four-layered anti-symmetric and symmetric cross-ply and 

angle-ply square plate (h/a        
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Table A.43 Variation of central deflection 
cw with pressure q  of clamped (CC2) 

four-layered anti-symmetric and symmetric cross-ply and angle-ply square plate 

(h/a        
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Fig. B.1 Variation of central deflection,  with load,  of thin (h/a =0.02) and thick 

(h/a =0.2) simply supported (SS5) square isotropic plate. 

Plate side to thickness ratio, a/h 

Fig. B.2 A comparison of the non-dimensionalized centre deflections versus side to 

thickness ratio of anti-symmetric cross-ply [0
o
/90

0
/0

o
 /90

o
] and angle-ply [45

o
/-45

o
/45

o
/-

45
o
] square laminates under uniform lateral load  (  =1.0 ). 

Appendix (B) 

Graphs  
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Fig. B.4 Number of layers effect on a simply supported (SS5) antisymmetric 

cross-ply [(0
o 

/ 90
o
)n] square plate under uniformly distributed loads ( h/a = 0.1). 

 

Fig. B.3 A comparison of the non-dimensionalized centre deflections versus side to 

thickness ratio of anti-symmetric cross-ply [0
o
/90

0
/0

o
 /90

o
] and angle-ply [45

o
/-

45
o
/45

o
/-45

o
] square laminates under uniform lateral load  (  =200.0 ). 

Plate side to thickness ratio, a/h 

Non-dimensionalized uniformly distributed load, 
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Fig. B.5 Number of layers effect on a simply supported (SS5) antisymmetric 

a angle-ply [(45
o 

/ -45
o
)n] square plate  under uniformly distributed loads  

(h/a = 0.1). 

 

Fig. B.6 Effect of material anisotropy on the non-dimensionalized centre 

deflections of a four layered symmetric cross-ply and angle-ply clamped 

laminates (CC5) under uniform lateral load   ( = 100.0, h/a = 0.1). 
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Fig. B.7 Effect of material anisotropy on the non-dimensionalized center 

deflections of a four layered symmetric cross-ply and angle-ply simply 

supported laminates (SS5) under uniform lateral load   ( = 100.0, h/a = 0.1). 

Fig. B.8 Effects of fiber orientation, θ on the deflection of a simply supported 

square plate ( = 120.0, h/a = 0.1). 
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Fig. B.10 Variation of central deflection,  with pressure, of simply 

supported (SS4) antisymmetric square plate of the arrangement [θ
o
/-θ

o
 /θ

o
/ -θ

o
] 

with different orientations (h/a =0.2). 

 

Fig. B.9 Effects of fiber orientation, θ on the deflection of a clamped square plate  

( =120.0, h/a = 0.1).                 
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Non-dimensionalized uniformly distributed load, 

 

Fig. B.11 Variation of central deflection,  with pressure, of clamped 

(CC3) antisymmetric square plate of the arrangement [θ
o
/-θ

o
 /θ

o
/ -θ

o
] with 

different orientations (h/a = 0.2). 

 

Non-dimensionalized uniformly distributed load,  

Fig. B.12 Central deflection of a two layer antisymmetric cross-ply    

simply supported (SS5) rectangular plate under uniform pressure (b/a = 

5.0, h/a = 0.1). 
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Fig. B.14 Central deflection of a two layer antisymmetric cross-ply and 

angle-ply simply supported (SS5) rectangular plate under uniform 

pressure and with different aspect ratios (h/a = 0.1, = 200.0). 
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Fig. B.13 Central deflection of a two layer antisymmetric angle-ply    

simply supported (SS5) rectangular plate under uniform pressure (b/a = 

5.0, h/a = 0.1). 
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 Fig. B.16 Variation of central deflection,  with pressure, of simply 

supported (SS2) 4-layered anti-symmetric and symmetric cross-ply and 

angle-ply square laminate (h/a = 0.1). 

 

N
o
n

-d
im

e
n

s
io

n
a

liz
e

d
 c

e
n

tr
a
l 
d
e

fl
e

c
ti
o

n
, 

w
c

Fig. B.15 Variations of central deflection,  with load, of thin (h/a =0.02) 

isotropic simply supported (SS1) and (SS5), and clamped (CC5) conditions  

(ν = 0.3). 
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Fig. B.17 Variation of central deflection,  with pressure, of clamped 

(CC2) 4-layered anti-symmetric and symmetric cross-ply and angle-ply 

square laminate (h/a = 0.1). 

 

Non-dimensionalized uniformly distributed load, 

 



   

 

Appendix (C)  

Boundary conditions 
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Fig.C.1 Simply supported boundary conditions  
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Fig.C.2 Clamped boundary conditions  
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Appendix (D) 

Estimation of the fictitious densities 

 

 The following fictitious densities have been derived using the procedure 

proposed by Cassel and Hobbs [52]. 

 With reference to Fig.3.2:  
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Where the over lined quantities are given by: 
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And 1l , 2l  and 3l  are as follows: 
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