Chapter 3: Vectors

1	Two vectors are given as $\mathbf{a}=\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$ and $\mathbf{b}=2 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k}$. Vector \mathbf{c} which satisfies the relation $\mathbf{a - b}+\mathbf{c}=\mathbf{3 i}$ is:
	a) $i+3 j$ c)) $-i+5 j$ b) $-\mathrm{i}+\mathrm{j}$ d) $4 \mathbf{i}+2 \mathbf{i}$
2	For any two vectors A and B , if A.B $=0$ then the angle between them is
	a) Zero c) 30 degree b) 90 degree d) 180 degree
3	For $\mathrm{A}=3 \mathrm{j}-4 \mathrm{k}$ and $\mathrm{B}=-5 \mathrm{j}+4 \mathrm{k}, \mathrm{B} \cdot \mathrm{A}$ is:
	a) $\underline{\mathbf{- 3 1}}$ c) $-15 \mathrm{i}+16 \mathrm{j}$ b) 31 d) 31 j
4	Three vectors $\mathrm{A}=\mathrm{i}-2 \mathrm{j}+\mathrm{k}, \mathrm{B}=5 \mathrm{i}+2 \mathrm{j}-6 \mathrm{k}$ and $\mathrm{C}=2 \mathrm{i}+3 \mathrm{j}$. The value of (A+B).C
	a) 18 c) 7 b) 12 d) 14
5	The sum of two vectors $\mathbf{A}+\mathbf{B}$ is $\mathbf{4 i} \mathbf{i} \mathbf{j}$, and their difference $\mathbf{A - B}$ is $\mathbf{- 2 i} \mathbf{+} \mathbf{j}$, the magnitude of vector \mathbf{A} is:
	a) 1.8 c) 4.1 b) 2.8 d) 1.4
6	the position vector for a particle in the rectangular coordinate (x, y, z) for the points $(5,-6,3)$
	a) $\mathrm{r}=5 \mathrm{i}+6 \mathrm{j}+3 \mathrm{k}$ c) $r=-6 j+3 k$ b) $\mathbf{r}=5 \mathbf{i}-6 \mathbf{j}+3 \mathrm{k}$ d) $r=-5 i-6 j+3 k$
7	In scalar product, which of the following is true ?
	a) $A \cdot B \neq B \cdot A$ b) $A \cdot B=-B \cdot A$ c) $A \cdot B=2 B \cdot A$ d) $\boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{B} \cdot \boldsymbol{A}$
8	The magnitude of $A \times B$ equal to
	a) $A B \cos \theta$ b) $\boldsymbol{A B} \boldsymbol{B} \sin \boldsymbol{\theta}$ c) $-A B \sin \theta$ d) $A B \tan \theta$
9	A vector B is given by its component $B_{x}=2.5$ and $B_{y}=7.5$. what the angle does vector B makes with the positive x -axis
	a) 25 c) 55 b) 18 d) 72

10	Let's the vector $\mathrm{A}=5 \mathrm{i}+6 \mathrm{j}-7 \mathrm{k}$ the magnitude of this vector is
	a) $\mathbf{1 0 . 5}$ c) 20 b) 18 d) -10
11	Let the vector $\mathrm{A}=3 \mathrm{i}-5 \mathrm{j}+4 \mathrm{k}$ and $\mathrm{B}=7 \mathrm{i}-8 \mathrm{j}-9 \mathrm{k} . \mathrm{S}=\mathrm{A}-\mathrm{B}$ equal
	a) $4 \mathrm{i}-3 \mathrm{j}-13 \mathrm{k}$ b) $-\mathbf{4 i}+\mathbf{3 j}+\mathbf{1 3 k}$ c) $10 i-12 \mathrm{j}-13 \mathrm{k}$ d) $-10 i+12 j-13 k$
12	The vectors \mathbf{A} and its negative vector have
	a) Same magnitude and direction b) Same magnitude and opposite direction c) Same magnitude only d) No correct answer
13	A vector has component $x=6 \mathrm{~m}$ and $\mathrm{y}=8 \mathrm{~m}$ what its magnitude and direction
	a) 10 m and 30 degrees b) 14 m and 37 degrees c) $\mathbf{1 0} \mathrm{m}$ and 53 degrees d) 14 m and 53 degrees
14	Referring to the following figure, the correct relation is:
	a) $\mathrm{A}+\mathrm{B}=\mathrm{C}$ b) $\mathrm{B}+\mathrm{C}=\mathrm{A}$ c) $\mathrm{A}+\mathrm{C}=\mathrm{B}$ d) $\mathbf{A}+\mathbf{B}+\mathbf{C}=\mathbf{0}$
15	Two vectors are given as follows: $\mathrm{A}=-2 \mathrm{i}-5 \mathrm{j}+2 \mathrm{k}, \mathrm{B}=-4 \mathrm{i}-2 \mathrm{j}-3 \mathrm{k}$. the angle between the vectors is \qquad
	a) 132 b) 114 c) $\mathbf{6 7}$
16	Two vectors are given as follows: $\mathrm{A}=-3 \mathrm{i}+6 j-5 k$ and $\mathrm{B}=-2 \vec{i}+3 \vec{j}+k$ The vector dot product $A \cdot B$ equals:
	a) -12 c) 14 b) 19 d) 30
17	Two vectors are given as follows: $\mathrm{A}=-2 \mathrm{i}-5 j+2 k$ and $\mathrm{B}=-5 \vec{i}-2 \vec{j}-3 k$ The vector dot product $A \times B$ equals:
	a) 43 c) 12 b) 18 d) $\underline{31}$

18	The magnitude of vector A is 6 m and vector $B=2 \mathrm{i}+\mathrm{j}(\mathrm{m})$. If the angle (θ) between them is 30 their scalar product (A . B) is:
	a) $16.4 \mathrm{~m}^{2}$ c) $11.6 \mathrm{~m}^{2}$ b) $2.24 \mathrm{~m}^{2}$ d) $32.8 \mathrm{~m}^{2}$
19	Two vectors $A=x \mathrm{i}+6 \mathrm{j}$ and $\mathrm{B}=2 \mathrm{i}+\mathrm{yj}$. The values of x and y satisfying the relation $\mathrm{A}+\mathrm{B}=4 \mathrm{i}+\mathrm{j}$ are:
	a) $(-1,-2)$ c) $(1,-4)$ b) $(2,-5)$ d) $(0,-3)$
20	If two vectors have same magnitude and are parallel to each other, then they are said to be
	a) Same c) negative b) Different d) equal
21	Position vector r of point $\mathrm{A}(3,4,5)$ is
	a) $\mathbf{7 . 0 7}$ c) 8.18 b) 3.21 d) 6.54
22	Scalar product of two vectors is also known as
	a) vector product c) point product b) dot product d) both a and b
23	Unit vectors are normally used to represent other vector's
	a) place c) velocity b) direction d) magnitude
24	Dot product of A.B with angle 0 would produce results equal to
	a) A c) A B b) B d) zero
25	Cross product of two same vectors is equal to
	a) Zero c) i b) 1 d) j

Solved the questions:

[1] Three vectors are given by $A=6 i, B=9 j$, and $C=(3 i+4 j)$.
(a) Find the magnitude and direction of the resultant vector.
(b) What vector must be added to these three to make the resultant vector zero?
$\mathrm{A}=6 \mathbf{i}$,
$B=9 \mathrm{j}$
$\mathbf{C =}=\mathbf{- 3 i}+4 \mathbf{j})$
The resultant vector is $\mathbf{A}+\mathbf{B}+\mathbf{C}=\mathbf{3 i}+\mathbf{1 3 j}$
The Magnitude of the resultant vector is $\mathbf{1 3 . 3 4}$ units
The direction is 77° with respect to the positive x -axis
(b) The vector must be added to these three to make the resultant vector zero is
-3i-13j
[2] A particle moves from a point in the $x y$ plane having cartesian coordinates $(-3.00,-5.00) \mathrm{m}$ to a point with coordinates $(-1.00,8.00) \mathrm{m}$.
(a) Write vector expressions for the position vectors in unitvector form for these two points.
(b) What is the displacement vector?

The vector position for the first point $(-3,-5) \mathrm{m}$ is

$$
A=-3 i-5 j
$$

The vector position for the first point $(-1,8) \mathrm{m}$ is

$$
B=-\mathbf{i}+8 j
$$

(b) The displacement vector is

B-A $=\mathbf{2 i}+\mathbf{3 j}$
[3] Two vectors are given by $\mathrm{A}=4 \mathbf{i}+3 \mathbf{j}$ and $\mathrm{B}=-\mathbf{i}+\mathbf{3 j}$.
Find (a) A.B and (b) the angle between A and B.
(a)
$A . B=A_{x} B_{x}+A_{y} B_{y}$
$A . B=-4+9=5$ units
(b)
$\cos \theta=\mathrm{A} . \mathrm{B} / \mathrm{AB}=\mathbf{1} / \mathbf{3 . 1 6}$
$\theta=71.6^{\circ}$
[4] Vector A has a magnitude of 5 units, and B has a magnitude of 9 units. The two vectors make an angle of 50° with each other. Find A.B
$\mathrm{A} . \mathrm{B}=\mathrm{A} \mathrm{B} \cos \boldsymbol{\theta}$
A.B $=5 \times 9 \cos 50^{\circ}=28.9$ unit
[5] For the three vectors $\mathrm{A}=3 \mathrm{i}+\mathrm{j}-\mathrm{k}, \mathrm{B}=-\mathrm{i}+2 \mathrm{j}+5 \mathrm{k}$, and $\mathrm{C}=2 \mathrm{j}-$ 3k, find C.(A-B)
$A-B=4 i-j-6 k$
$\mathbf{C}=\mathbf{2 j}-\mathbf{3 k}$
C. $(A-B)=0-2+16=14$ unit
[6] The scalar product of vectors A and B is 6 units. The magnitude of each vector is 4 units. Find the angle between the vectors.
$A . B=6$ units
$A=B=4$ units
$\cos \theta=6 / 16$
$\theta=67.9^{\circ}$
[7] The polar coordinates of a point are $r=5.5 \mathrm{~m}$ and $q=$ $24 \mathbf{0}^{\mathbf{o}}$. What are the cartisian coordinates of this point?

$$
\begin{aligned}
& x=r \cos q=5.5 \times \cos 240^{\circ}=-2.75 \mathrm{~m} \\
& y=r \sin q=5.5 \times \sin 240^{\circ}=-4.76 \mathrm{~m}
\end{aligned}
$$

[8] A point in the $x y$ plane has cartesian coordinates ($\mathbf{- 3 . 0 0}$, $5.00) \mathrm{m}$. What are the polar coordinates of this point?
المراد من السؤال هو التحويل من الاحداثيات الكارتيزية إلى القطبية.

$$
\begin{gathered}
r=\sqrt{9+25}=5.8 \mathrm{~m} \\
\theta=\tan ^{-1} \frac{5}{-3}=-59^{\circ}
\end{gathered}
$$

-59 with respect to the negative x -axis
$\theta=121^{\circ}$ with respect to the positive x -axis
$(-3,5) \mathrm{m}=\left(5.8 \mathrm{~m}, 121^{\circ}\right)$
[9] A point is located in polar coordinate system by the coordinates $r=2.5 \mathrm{~m}$ and $q=35^{\circ}$. Find the x and y coordinates of this point, assuming the two coordinate system have the same origin.
$\mathbf{r}=\mathbf{2 . 5}, \quad \theta=35^{\circ}$
$x=r \cos 35=2$
$y=r \sin 35=1.4$
[10] Find the magnitude and direction of the resultant of three displacements having components $(3,2) \mathrm{m},(-5,3) \mathrm{m}$ and $(6,1) \mathrm{m}$.

نحول كل نقطة من النقاط الثلاثة في اللؤوال إلى الصورة المتجهة كما يلي:

$$
\mathbf{A}=\mathbf{3 i}+2 \mathbf{j}
$$

$$
B=-5 i+3 j
$$

$$
\mathbf{C}=\mathbf{6} \mathbf{i}+\mathbf{j}
$$

نوجد المحصلة بالجمع الإتجاهي
$A+B+C=4 i$
[11] Obtain expressions for the position vectors with polar coordinates (a) $12.8 \mathrm{~m}, 150^{\circ}$; (b) $3.3 \mathrm{~cm}, 60^{\circ}$; (c) $22 \mathrm{~cm}, 215^{\circ}$.
(a) $12.8 \mathrm{~m}, 150^{\circ}$
$x=r \cos \theta=12.8 \cos 150=\mathbf{- 1 1 . 1 m}$
$y=r \sin \theta=12.8 \sin 150=-17.5 \mathrm{~m}$
$A=\mathbf{- 1 1 . 1} \mathbf{i}-17.5 j$
استخدم نفس الطريقة لباقي النقاط لإيجاد متجه الموضع

