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Chapter 10: Rotation

Concept Checks

10.1.¢ 10.2.c 10.3.210.4.f 10.5.b 10.6.c 10.7.c 10.8.b 10.9.b 10.10b

Multiple-Choice Questions

10.1.b 10.2.¢ 10.3.b 10.4.d 10.5.c 10.6.c 10.7.c 10.8.d 10.9.b 10.10.¢10.11.b 10.12.a 10.13.c 10.14. b
10.15. ¢ 10.16.b 10.17.a 10.18.b 10.19.c 10.20.b

Conceptual Questions

10.21.

10.22.

10.23.

10.24.

2

Rotational kinetic energy is given by K =->cMv
The total kinetic energy for an object rolling without slipping is given by:
+K = inZ(l +¢) withc=2/5 forasphere =

total trans

K c 2/5 2

rot_ __ _ _

K l4c 142/5 7

total

Assume negligible drag and no slipping. The object that reaches the bottom of the incline first will be the
one with the lowest moment of inertia (that is, with the least resistance to rotation). The moments of

2
inertia for the given objects are as follows: Thin ring: I, = MR?; Solid sphere: I = EMRZ; Hollow sphere:

1
I, =§MRZ; Homogeneous disk: I, =5MR2. Therefore, the order of the moments of inertia from

smallest to greatest (assuming equal mass and radius) is I, I, I, and I . Therefore, the order of finish

of the objects in the race is: First: solid sphere; Second: homogeneous disk; Third: hollow sphere; Last: thin

ss?

ring.

The net translational and rotational forces on both the solid sphere and the thin ring are, respectively,
F ., =ma=mgsind—f . and 7=f . .r=1Ix, where the angular acceleration is a=a/r. Since the

net
moment of inertia for the solid sphere is I= (Zmrz) /5, the force of static friction is given by
S =2ma /5. Substitute this expression into the net force equation to solve for the acceleration of the
solid sphere: a_ =5 g(sin@) /7. The moment of inertia for the thin ring is I =mr’. Therefore, the force

of static friction in this case is given by f,_. =ma. Substitute this expression into the net force equation to

tatic

solve for the acceleration of the thin ring: a, = g(sin@) /2. Therefore, the ratio of the acceleration is:

a, (gsin@)/2 7

a, (5gsin@)/7 10

ss

The net translational and rotational forces on the solid sphere on the incline are, respectively,
F, =ma=mgsin@—-f_ . and 7=f _.r=Ix where the angular acceleration is a=a/r. Since the

et
moment of inertia for the solid sphere is I= (2mr2)/ 5, the force of static friction is given by
S =2ma/ 5. Substituting this expression into the net force equation to solve for the acceleration gives
a= Sg(siné’)/ 7. Thus, f . =2mal5= 2mg(sin¢9)/7. The limiting friction corresponding to a
coefficient of static friction, y_, is max{ f&af]g"} = | MJdng= . cosO. For rolling without slipping to take
place, it is required that
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10.26.

Chapter 10: Rotation

2mgsin@ <

fs!&‘ti!’% max { -fstutic } =

7 7
. . cosf. Therefore, tan@ < !;S =6 <tan™ (%)

7
Thus, the maximum angle for which the sphere will roll without slipping is & = tan™ (%]

The “sharp horizontal blow” means that a force of magnitude F acts horizontally on the object along the
arrow in the figure. With this force, we have to apply Newton’s Second Law for linear motion (F = Ma )
and Newton’s Second Law for rotation (7 =Ie ). According to the problem text, the round object rolls
without slipping. In Section 10.3 we have learned that this condition implies v=R® and a=Ra . The
force exerts a torque of magnitude 7 =Fh (= magnitude of force times perpendicular distance) around the
center of mass of the round object. Using all these relationships we can write
7 =Fh=(Ma)h=M(Ror)h= MRha = Ia.
Simplifying and rearranging, we get
I

I=MRh = —=£.
MR®> R

s

h

L R

As a double-check, let’s calculate h assuming a uniform solid sphere

R(3 MR’ j
e alnCmplE
MR MR 5
So, for example, you might strike a cue ball with a horizontal cue a distance of 2R/5 above the center of the
cue ball to start it rolling without sliding.

(a) Since the path of the projectile is not a straight line about the origin (which would give an angular
momentum of zero), the angular momentum can be determined by considering that the velocity of the
projectile changes continuously along its path because of the change in the vertical component of velocity
under the gravitational pull. If @ is the angle of projection, the horizontal component of velocity,
v, cosf, , remains unchanged throughout the path and at the maximum height, the vertical component of

velocity is zero and it has only the horizontal v, cos@,. The ‘lever arm’ for angular momentum at the

maximum height is the maximum height itself, (VOZ sin* 6, )/ 2g so that the angular momentum is

(mvg cos, )(voz sin’ 90)
L= .

28
Since the angular momentum is conserved in this case, the angular momentum above is the same
throughout the path.
(b) Since the angular momentum does not change throughout the path, the rate of change is zero.
(c) The rate of change of this angular momentum is the net torque about the origin, which also equals
zero, that is:

L_dL_d(0)
Cdt dt
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10.27.

10.28.

10.29.

10.30.

10.31.

For each object we convert the initial potential energy into kinetic energy at the bottom of the ramp.

Sphere: Mgh = vaz 1+ csphm) =7’ = 2gh /(1+ csphm)
Cylinder: Mgh = ';Mv2 1+ ccylmdu) = = 2gh/(1+ cqlmdﬂ)
If the speed is to be the same in both cases, this means:
2gh1(Q+c,, ) =2gh [+, )=
+e, 1+1/2  3/2 15
h=h—2=h =h——=h—
1+c¢ 14+2/5 715 14

sphere

To open a door (that is, to rotate a door about the hinges), a force must be applied so as to produce a

torque about the hinges. Recall that torque is defined as 7 =7 x F. The magnitude of this torque is then
given by 7=rFsinf, where @ is the angle between the force applied at a point p, and the vector
connecting the point p to the axis of rotation (to the axis of the hinges in this case). Therefore, torque is
maximal when the applied force is perpendicular to the vector 7. That is, when the force is perpendicular
to the plane of the door. Similarly, torque is minimal (i.e. zero) when the applied force is parallel to 7 (i.e.
along the plane of the door).

Angular momentum is conserved, however, energy is not conserved; her muscles must provide an
additional centripetal acceleration to her hands to pull them inwards. That force times the displacement is
equal to the work that she does in pulling them in. Since she is doing work on the system, energy is not
conserved.

Consider a particle of constant mass, m, which starts at position, 7,, moving with velocity, v, and having
no forces acting on it. By Newton’s first-law-of motion; the absence of forces acting on it means that it
must continue to move in a straight line at the same speed, so'its equation of motion is given by r =7, +vt.

Its linear momentum is mv, so its angular momentum relative to the origin is given by
L=Fxmy =(F0 +17t)><rm7. The cross product is distributive over addition, so this can be rewritten as

L= (FO X my ) + (17t X my ) Clearly the vectors vt and mv are parallel, since they are both in the direction of
v, and the cross product of two parallel vectors is zero. So, the last term in the sum above comes to zero,
and the expression can be rewritten as L = r,xmy. Now 7,, mand v are all constants in this system, so it

follows that L is also constant, as required by the law of conservation of angular momentum. Therefore,
whether or not the particle has angular momentum is dependent on the 7, vector, given non-zero velocity.
If the path of the particle crosses the origin, 7, = 0 and the particle has no angular momentum relative to
the origin. In every other case, the particle will have constant, non-zero angular momentum relative to the
origin.

Work is given by W =Fdcos@ for linear motion, and by W= 6 for angular motion, where the torque,
7, is applied through a revolution of 6.

(a) Gravity points downward, therefore, W, = mg(s)sin 0.

(b) The normal force acts perpendicular to the displacement. Therefore, cos90=0=>W__  =0.
(c) The frictional force considered in this problem is that of static friction since the cylinder is rolling
without slipping. The direction of the static friction is opposite to that of the motion. Work done by the
frictional force consists of two parts; one is the contribution by translational motion and the other is the

contribution by rotational motion.
(i) Translational motion: W, .. = ( b )(s)cos(180°) =—fs

(i) Rotational motion: Wg,.... Rf 6=(f5)0= |

Therefore, the total contribution to work done by the friction is zero.

476



10.32.

10.33.

10.34.

10.35.

10.36.

10.37.

Chapter 10: Rotation

Mechanical energy is conserved for the rolling motion without slipping. Setting the top as the vertical
origin, the mechanical energy at the top is E, =K +U =0+0. The mechanical energy at the bottom is

E =K (translational +rotational) +U= [(1 + c)mv2 /2} + (—mgh), where h is the vertical height. By

/4 h /
conservation of energy, E, = E, implies v=,/2gh/(1+¢c)= %,sinﬁzﬁ:vz %sgsin@, where ¢ is
s

1/2 for the cylindrical object. Using v,* —v,” = 2as, the acceleration is
2gh/(1+c) 2gssin6’/(1+c) sin®
a= = = .
2s 2§ (1 + c)

2
For a cylinder, ¢ = 1/2. Therefore, a = 3 gsind.

Prove that the pivot point about which the torque is calculated is arbitrary. First, consider the definition of
torque, 7=7xF. Therefore, for each of the applied forces, 1:"1 and l:“2 =—l—31, their contributions to the

torque are given by 7, =7, x 131 and T, =7, x 132, where 7, and 7, are the respective distances to the pivot
point. The net torque is calculated from the algebraic sum of the torque contributions, that is,
T =T, +7, =7 xE +7,xF, =F xF —7,xF.  Since the cross product is distributive,

T, = (Fl -7, )>< E =dx E. Therefore, the net torque produced by a couple depends only on the distance

between the forces, and is independent of the actual pivot point about which the contributing torques are
calculated or the actual points where the two forces are applied.

It is actually the act of pulling in her arms that makes the figure skater increase her angular velocity. Since
angular momentum is conserved ( Ip =l , = constant) , by reducing her rotational inertia (by means of

reducing the distance between her arms and hands to the axis of rotation), the figure skater increases her
angular velocity.

By momentarily turning the handlebars to the left, the contact point of the motorcycle with the ground
moves to the left of the center of gravity of the motorcycle so that the motorcycle leans to the right. Now
the motorcycle can be turned to the right and the rider can lean to the right. The initial left turn creates a
torque that is directed upwards, which deflects the angular momentum of the front tire upward and causes
the motorcycle to lean to the right. In addition, as the motorcycle leans to the right, a forward pointing
torque is induced that tends to straighten out the front wheel, preventing over-steering and oscillations.
At low speeds, these effects are not noticeable, but at high speeds they must be considered.

The Earth-Moon system, to a good approximation, conserves its angular momentum (though the Sun also
causes tides on the Earth). Thus, if the Earth loses angular momentum, the moon must gain it. If there
were 400 days in a year in the Devonian period, the day was about 10% shorter, meaning the angular
velocity of the Earth was about 10% greater. Since the rotational inertia of the Earth is virtually unchanged,
this means that the rotational angular momentum of the Earth was then about 10% greater, and
correspondingly the orbital angular momentum of the Moon was about 10% less.

In this problem, the key is that the monkey is trying to reach the bananas by climbing the rope. Since the
monkey has the same mass as the bananas, if he didn’t try to climb the rope, both the net torque and total
angular momentum on the pulley would be zero. Take counterclockwise to be positive just for aesthetics.

(a) Consider the extra tension provided by the monkey on the rope by climbing (i.e. by pulling on the

rope). Average out the force caused by the monkeys pulling with a constant force downwards, T, on the
monkey side. Therefore, the net torque on the pulley axis is provided by this extra force, T, as

Po= [(ﬁ +T)-E,, JR =TR.

monkey
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(b) Since there is now a non-zero net torque on the pulley, there is a non-zero total angular momentum
given by
_dL

T oot == = L= [rdt.

Using the results of part (a), the above expression can be rewritten as L= JTRdt =TRt. Recall that the

extra “climbing” force was taken to be constant. In reality, the monkey’s pulling will be time dependent
and this will affect the final form of the time dependent angular momentum.

Exercises

10.38.

10.39.

THINK: Determine the energy of a solid cylinder as it rolls on a horizontal surface. The mass of the
cylinder is M = 5.00 kg and the translational velocity of the cylinder’s center of mass is v= 30.0 m/s.

SKETCH:

v=30.0m/s %

M=5.00 kg 5

RESEARCH: Since the motion occurs on a horizontal surface, consider only the total kinetic energy of the
1 1
cylinder, K, =-33Mv2 +EI . I=cMR’ and, for a solid cylinder, ¢ =1/2 as in Table 10.1. For rolling

without slipping, v&R

2
SIMPLIFY: K, < %le +%(CMR2 )(%J A %Mvz (1+c)

CALCULATE: K = %(5.00 kg)(30.0 m/s) (1+1/2)=3375]

ROUND: Both given values have three significant figures, so the result is rounded to K, =3.38-10° J.
DOUBLE-CHECK: The calculated result has Joules as units, which are units of energy. This means that
the calculated result is plausible.

THINK: The children can be treated as point particles on the edge of a circle and placed so they are all the
same distance, R, from the center. Using the conversion, 1 kg = 2.205 lbs, the three masses are
m, =27.2 kg, m,=20.4kg and m, =36.3 kg. Using the conversion 1 m = 3.281 ft, the distance is

R = 3.657 m.
SKETCH:

RESEARCH: The moment of inertia for point particles is given by I = Zmirf.

SIMPLIFY: [=(m, +m,+m,)R®

CALCULATE: [=(27.2kg+20.4 kg+36.3kg)(3.66 m)’ =1123.9 kg m”’
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ROUND: [=1.12-10" kg m*
DOUBLE-CHECK: Since the children are located on the edge of the merry-go-round, a large value for I is
expected.

THINK: Since the pen with a length of / = 24 cm rotates at a constant rate, rotational kinetic energy
remains constant so only the translational energy is converted to potential energy at a height of h = 1.2 m
from release. Use kinematics to determine the time it takes the pen to reach the top and make 1.8
revolutions, in order to determine w.

1:r.=0() h )T L

| 22—
Q)
[ { |
RESEARCH: The pen has a translational kinetic energy of K, = mv*® /2, where v, is the velocity at

release. The potential energy at the top is given by U = mgh and mgh =mv,”> /2. The rotational kinetic
energy is given by Kw=1 */2, where I=ml’/12. The initial velocity of the pen is determined from
v’ =v'-2gh and the time of flight is given by t=—(vf—vl)/ g. Angular velocity is given by
w= 271(1.8 rev)/ t.

SIMPLIFY: The final velocity is zero, so the expression reduces fo 0=v"—2gh = v, =\/E . The

expression for the time of flight also reduces to

tz_(O—Vi): &
g g

The angular velocity is given by w = Som__ 3.6m f% rad/s. The ratio is then:

\J2h!g

| li 17 1(3.6 8
Sl _2(12"’ ( )2}1_12.9671212

K,
= —
K, L. mgh 48 h
2
K . .
CALCULATE: —x _1296 »f024m\ 00
K, 48 12m

K
ROUND: To three significant figures: K—R =0.107.
T

DOUBLE-CHECK: Remember that this is not a case of rolling without slipping. Here the translational
motion is independent of the rotational motion, and so the ratio between translational and rotational
kinetic energies could have almost any value. A simple double-check is thus not easily possible.

THINK: With no friction and no slipping, each object with mass, m = 1.00 kg, conserves energy. Since
each object starts at the same height, they all have the same potential energy and hence kinetic energy after
they travel a distance I = 3.00 m at an incline of #=35.0°. Each ball has a radius of r = 0.100 m.
Whichever object has the highest velocity at the bottom should reach the bottom first, and vice versa.
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10.42.

SKETCH:

f
h
14

RESEARCH: The constant c is related to the geometry of a figure. The values of ¢ for different objects can
be found in Table 10.1. The solid sphere has ¢, =2/5, the hollow sphere has ¢, =2/3 and the ice cube has

¢, =0. Since energy is conserved, the velocity of each object at the bottom is v=,/2gh/ (1+c). The

incline shows that 4 =Isin6.

2gl€in gl2 6in gl2 6in
SIMPLIFY: v, = /T LT e T
1 2 3

CALCULATE: vlﬁ\/&gdglsingl, 2&\»/%,/ sirgl, ﬂzﬁJ sin

(a) Since the velocity is inversely proportional to ¢, the object with a smaller ¢ will have a larger velocity

than that of one with a greater ¢, and will reach the end first. Since ¢, <c,, the solid sphere reaches the
bottom first.

(b) Since ¢, <¢,, and the velocity is inversely proportional to c, the ice cube travels faster than the solid
ball at the base of the incline.

© v, = \/g\/(%n m/s”)(3.00 m)sin(35.0°) = 4.911 m/s

ROUND: Parts (a) and (b) do not need to be rounded. (¢c) v, =4.91 m/s
DOUBLE-CHECK: It is reasonable that the ice cube reaches the bottom first since it does not have to
contribute any energy to rotational motion. As expected, the velocity of the sphere is less than it would be

if it were in freefall (V = \/27gl =8 m/s).

THINK: With no friction and no slipping, the object of mass, m, and radius, r, will conserve energy.
Therefore, the potential energy of the ball at height, h, should equal the potential energy at the top of the
loop of radius, R, plus translational and rotational kinetic energy. For the ball to complete the loop, the
minimum velocity required is the one where the normal force of the loop on the ball is 0 N, so that the
centripetal force is solely the force of gravity on the ball.

SKETCH:

RESEARCH: The only force on the ball at the top of the loop is F, =mg = mv,> / R. The initial potential
energy is given by U, =mgh and the final potential energy is given by U, = mg(ZR). The kinetic energy at

the top of theloop is K = (1 +c)mvl2 /2, where the c value for a solid sphere is 2/5.
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SIMPLIFY: The conservation of energy is given by

2

1
U=U+K = mgh=2ng—i—;(1+c)mvl .

2
my
From the forces, mg =—

1(7 7 27
= v’ =gR. Therefore, mgh=2mgR+—|— |mgR=>h=R|2+— |===R.
1o ¢ & z(sj ¢ ( 10) 10

CALCULATE: Not applicable.

ROUND: Not applicable.

DOUBLE-CHECK: The height is greater than 2R, which neglecting rotational energy would be the
minimum energy needed, so the result is reasonable.

THINK: The change in energy should be solely that of the change in rotational kinetic energy. Assume
the pulsar is a uniform solid sphere with m~2-10* kg and R=12 km. Initially, the pulsar rotates at
® =607 rad/s and has a period, T which is increased by 10~ s after 1y. We calculate the power
emitted by the pulsar by taking the time derivative of the rotational kinetic energy. The power output of
the Sunis P, =4-10° W.

SKETCH:

RESEARCH: The kinetic energy is given by K =1’ /2, so

dK do
Crab — 5. _Ia)_’
dt dt

The angular velocity is given by @ =27 /T, so
do  2rdT 27z dT " dT

dt T dr (2”)2 At 2z dt

®
The moment of inertia of a sphere is
1=2mr,
5
SIMPLIFY: Combining our equations gives us
2 T 2.3 T

P, :Emszw d _ mR @’ d '

5 27 dt 5t dt
CALCULATE: First we calculate the change in the period over one year,

T 107
T _ 0" s =3.17-107",

dt (365 days)(24 hour/day)(3600 s/hour )
The power emitted by the pulsar is

2 3

k (2-10* kg)(12-10° m) (607 rad/s

Crab s =( A ) ) (3.17:10")=3.89-10" W.
dt 57

So the ratio of the power emitted by the pulsar to the power emitted by the Sun is

P. 3.89-10" W
creb — — =9.73-10".
P, 410" W

P
ROUND: —&2 —1.10°.

Sun
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DOUBLE-CHECK: Our result for the ratio of the loss in rotational energy of the Crab Pulsar is close to
the expected value of 100,000.

10.44. THINK: With no friction and no slipping, mechanical energy is conserved. This means that the potential
energy of the block of mass m = 4.00 kg will be converted into the potential energy of the spring with a
constant of k = 32.0 N/m, kinetic energy of the block and rotational energy of the pulley with a radius of R
=5.00 cm and mass M = 8.00 kg. If the block falls a distance h, then the spring is extended by a distance h
as well. Consider the lower position of the block in parts (a) and (b) to be at zero potential. In part (a), the
block falls a distance & = 1.00 m. In part (b), when the block comes to rest, the kinetic energy of the system
is zero so that the block’s potential energy is converted entirely into spring potential.

i

SKETCH: (a) (b) ;
RESEARCH: The initial energy of the system is E, =U, = mgh.

(a) The final energy is E, =—;fk(x0 —nlm)z +%I 2 +% 2,

(b) The final energy is E; =k(x—h)2 /2. The moment of inertia of the wheel is MR*/2. With no
slipping, Rw=v. Let x, =0 for the spring equilibrium.
SIMPLIFY:

2
(a) E =E, = mghzlkh2 A e V—z +Lmv?. Therefore,
2 22 R 2

1
mgh——kh® =
&3 (4

(b) E=E = mgh=%kh2 = hz_zrzg

CALCULATE:

(4.00 kg)(9.81 m/s?)(1.00 m) -~ (32.0 N/m))(1.00 m )
(@) v= : — =2.410 m/s
Z(8.00 kg)+5(4.00 kg)

2(4.00 kg)(9.81 m/s” )

(b) h=
32.0 N/m
ROUND: Three significant figures:
(a) The block has a speed of v = 2.41 m/s after it has fallen 1.00 m.
(b) The maximum extension of the spring is h = 2.45 m.

DOUBLE-CHECK: For part (a), the speed should be less than it is for free fall (v=1/2gh =44 m/s),

=2.45m

which it is. For part (b), the distance is reasonable.

10.45. THINK: With no friction and no slipping, the energy of the object of mass, m, and radius, r, is conserved.
This means that the initial potential energy at height H = 6.00 m is equal to the potential energy at height
R = 2.50 m, plus its rotational and translational energy. The object has a ¢ value of 0.400. Using
conservation of energy, the velocity of the object can be determined. Then, using kinematics, the
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maximum height the object achieves can be determined. Let the subscript i indicate the ball is at the top of
the ramp, and the subscript f indicate the ball is at the end of the ramp, at the launch point.
SKETCH:

L;II

......

RESEARCH: The initial energy of the ball is E =U, =mgH. The final energy of the ball is
E =U,+K = E, = ng—i—[(l +c)my’ /2:|, where ¢ = 0.400. The kinematics equation for the velocity is

v’>=v’+2gAy. Since the ball is at rest at the top, the equation becomes

v’ =2¢Ay = Ay =v*/2g. The maximum height achieved is Ay+R=h__ .

SIMPLIFY: E, =E, = mgH =mgR +%(1+c)mv2 = mg(H—R):%(1+c)mV2 = V= 28(111—13)
c
. =Ay+R=i+R=w+R
2g 1+c¢
(6.00 m—2.50 m)

+2.50 m =5.000 m

CALCULATE: h__ =
' 1+0.400

ROUND: h_ =5.00m
DOUBLE-CHECK: If the object did not rotate, the mass is expected to reach its original height of 6 m.
Since the object does rotate, the height it reaches should be less than the original height.

THINK: In both cases, energy should be conserved. In part (a), if the ball of mass, M, and radius, R,
continues to spin at the same rate, then there is no change in rotational kinetic energy and only the
translational energy is converted to potential energy. In part (b), there is slipping so both rotational and
translational kinetic energy are converted to potential energy. The ball has an initial velocity of 3.00 m/s
and travels a distance, d, up an incline with an angle of 8 =23.0°.

SKETCH:

M
+y

d

JM =
V /
[/

(a) The initial translational kinetic energy is given by K, =mv’ /2, the initial rotational energy is given by

= == —|

RESEARCH:
1
Ky = 51 ®” , and the final potential energy is given by U, = mgh.

(b) The initial kinetic energy is K = (1 +c)mv2 /2 and the final potential energy is U, =mgh. The height
of the ball is given by the expression h=dsiné, and ¢ = 2/5 for a solid sphere.
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SIMPLIFY:

I 5 1 5 . 1 5 1 v
(a) Ei=E > —mv" +—Io° =mgdsinf +—Io° = d=——o
2 2 2 2 gsind

vi(1+c) 7 42
2gsinfd 10 gsinf@

®) E=E = %(1+c)mv2 — mgdsin® = d=

CALCULATE:

(3.00 m/s)’
(a) d= =1.174 m
2(9.81 m/s )sin(23.0°)

7(3.00 m/s)’

(b) d= =1.644 m

10(9.81 m/s* )sin(23.0°)
ROUND:
Rounding to three significant figures:
(@) d=1.17m
(b) d=1.65m
DOUBLE-CHECK: Since the ball in part (b) does contribute rotational energy to the potential, it is
expected to go higher up the ramp and hence have a larger value for d.

THINK: The hanging block with a mass of M = 70.0 kg, will cause a tension, T, in the string that will in
turn produce a torque, 7, in the wheel with a mass, m = 30.0 kg, and a radius, R = 40.0 cm. This torque
will give the wheel an angular acceleration, a. If there is no slipping, then the angular acceleration of the
wheel is directly related to the acceleration of the block.

SKETCH:
o
"

Mg
RESEARCH: The balance of forces is given by T — Mg =—Ma. The torque produced by the tension, T, is

given by T =TR = I&, where I of the wheel is mR’* /2. With no slipping, Ra = a.
SIMPLIFY: First, determine the tension, T = T=M ( g—a). This expression can be substituted into

the torque equation to solve for a:

M(g—a)R:lmR2 L= MgR—MaR:lmRa = Mg= lm+M a = a:k.
2 R 2 2
—m+M
2
70.0 kg(9.81 m/s)
CALCULATE: a= N =8.079 m/s’
5(30.0 kg)+70.0 kg
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ROUND: 4 =8.08 m/s’
DOUBLE-CHECK: Since there is tension acting opposite gravity, the overall acceleration of the hanging
mass should be less than g.

THINK: The torque is simply the cross product of the vectors, 7= (4fc+4 5/-1-42) m and
F=(2x+3j) N.
SKETCH: Not applicable.

RESEARCH: 7=rxF
SIMPLIFY: 7=

CALCULATE:

ROUND: Not applicable.

DOUBLE-CHECK: The magnitude of the calculated torque is about 15. As required, this number is
smaller than (or at most equal to) the product of the magnitudes of the force and the position vectors,
which is about 25 in this case.

THINK: There are two forces, F, =70.0 N (applied from 0 to 2.00 seconds) and F, =24.0 N (applied
after 2.00 seconds). These forces are applied at an angle of 8 =37.0° on the surface of a disk of mass, m =
14.0 kg, and diameter of d = 30.0 cm (radius, R = 15.0 cm). After 2.00 seconds, the disk moves at a
constant angular speed, w. This means that the sum of the torques is zero, so the torque produced by
friction is equal and opposite the torque produced by the applied force. Assuming the frictional torque is
constant, the angular acceleration, «, of the disk from 0 to 2.00 seconds can be calculated and w can be
determined.

SKETCH:

RESEARCH: The torque that F, produces is 7, =RF, sinf. After t = 2.00 s, when w is constant,
ZT =0=r, —1,, where 7, is the frictional torque. For t=0to t =2, ZT =71,-7,=7,, and 7 =la.
Starting from rest,  =af. The rotational kinetic energy of the wheel after t = 2.00 s is then KwI */2,

where I =mR? /2.
SIMPLIFY:

(a) ZTer—szo = 1, =7, =RE sin8
Rsind(F, - F,) 2sin0(F, —F,)

lmR2 mR

(b) 7,,=7, -7, =REsind-REsinf=Ila = a=

B 2sin9(F1 —Fz)

w=at = t
mR

1 1
(¢) Kw—I *mRw ?**
2 4

485



Bauer/Westfall: University Physics, 2E

10.50.

10.51.

CALCULATE:
(a) 7,=(0.150 m)(24.0 N)sin(37.0°) =2.167 Nm

2sin(37.0°)(70.0 N -24.0 N)(2.00 s)
b) w= =52.73 rad/s
(14.0 kg)(0.150 m)

© K =i(14.0 kg)(0.150 m )’ (52.73 rad/s)’ =218.96]

ROUND:

(a) 7,=2.17 Nm

(b) w=52.7 rad/s

(c) K=219]

DOUBLE-CHECK: Given the initial variables, these results are reasonable.

THINK: When the rod is at an angle of 6§ =60.0° below the horizontal, the force of gravity acting at the
center of mass of the rod, with mass, m = 2.00 kg, and length, / = 1.00 m, will produce a torque, 7, and
hence an angular acceleration, «. If the rod has a uniform density, then the center of mass is at the
geometric center of the rod.

SKETCH:

RESEARCH: From geometry it can be shown that 8+ ¢ =90°. Therefore, ¢ =90°—6 =90°—-60°=30°.
The torque that the force of gravity producesis 7= mg(l / 2)sin(p = lo, where I=ml’ /3.

SIMPLIFY: mgp~— |sinl oL @ = =280
2 3 2l

3(9.81 m/sz)sin(30.0°)
2(1.00 m)

CALCULATE: o= =7.35 rad/s’

ROUND: To three significant figures: « =7.35 rad/s’

DOUBLE-CHECK: The vertical component of the tangential acceleration at the end is given by
a, wa sinf =1 sind~6 m/s’, which is less than g. This is expected since the pivot is causing the rod to
swing and the vertical displacement of the end is slowing down and a smaller acceleration is expected.

THINK: Each object has its own moment of inertia, I, and I,. Disk A with a mass, M = 2.00 kg, and a
radius, R = 25.0 cm, rotates about its center of mass while disk B with a mass, m = 0.200 kg and a radius, »
= 2.50 cm, rotates a distance, d = R—r, away from the axis. This means the parallel axis theorem must be
used to determine the overall moment of inertia of disk B, I;,. The total moment of inertia is the sum of
the two. If a torque, 7 =0.200 Nm, is applied then it will cause an angular acceleration, a. If the disk
initially rotates at w=—2m rad/s, then kinematics can be used to determine how long it takes to slow
down.
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SKETCH:

or

RESEARCH: The moment of inertia of disk A is I, = MR’*/2. The moment of inertia of disk B is
I, =mr” /2. Since disk B is displaced by d = R—r from the axis of rotation, I}, =I; +md’, by the parallel
axis theorem. Therefore, the total moment of inertia is I, =1, +1;. The torque that is applied produces
7=1_a, where a= ( f—wi)/At.

tot

SIMPLIFY:
@) I, =1, +I,=1,+I, +m(R~r)
=%MR2 +%mr2 +mR* =2mRr + mr? = [%M + m)R2 +§m1’2 —2mRr

ORI S 1 Coull) SR

IT
CALCULATE:
@) I, = C (2.00)+0. 200) (0.250) 0 200)(0.0250) ~2(0.200)(0.0250)(0.250) = 0.0726875 kg m’
0.0726875 kg m* )(—2m rad/s
(b) t= ( )C ) =2284s
0.200 N m
ROUND:
(a) I, =7.27-10" kgm’
(b) £=2.28s

DOUBLE-CHECK: Given the small masses and disk sizes, the moment of inertia should be small. Also,
given the small torque and angular velocity, two seconds to come to a stop is reasonable.

THINK: The stuntman with a mass, m = 50.0 kg, will cause a tension, T, in the rope which produces a
torque, 7, on the drum of mass, M = 100. kg and radius, R = 0.500 m. This torque will cause the drum to
have an angular acceleration, «, and if the rope does not slip, then it will be directly related to the
stuntman’s translational acceleration, a. If the stuntman starts from rest and needs to accelerate to
v= 4.00 m/s after dropping a height, h=20.0 m, then kinematics can be used to determine the
acceleration.
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SKETCH:

m

e e e e mg

RESEARCH: The sum of the forces yields T —mg = —ma. The torque produced by the tension is given by
7=TR=Ia. With no slipping, Rae=a. The velocity of the stuntman after falling a height, h, at an
acceleration of a is given by v.> =v +2ah, where v, =0. Also, if there is no slipping, v=R . The angle

the barrel makes is given by w,* = w? +2aA6.

SIMPLIFY:

(a) The tension is given by T = m(g - a). Therefore, the torque is given by 7=TR= m(g - a)R =1,
This implies:

ng2

ng—maR=IOi = mgR* =maR* + [ja = a=—"
R mR” + 1,

2 2 2
(b) v} =0+2ah = az;_h; From part (a); I, =M=mR2 (5— )
a

a
a
(c) a=—
R
2 2 2
(d) AG=—= v —, #revolutions=A—8= v -
200 2aR 2r 4maR
CALCULATE:
(a) No calculation is necessary.
2 2
4.00 m/s 9.81 m/s
(b) a _(o0oms) 0.400 m/s*, I=(50.0 kg)(0.500 m)’ (—2)—1 =294.0625 kg m’
2(20.0 m) 0.400 m/s
4 ’
(c) a= 0400 /" _ 400 rad/s?
0.500 m
(4.00 m/s)’

(d) #revolutions = - =6.366

47(0.800 rad/s*)(0.500 m )
ROUND:
Rounding to thre significant figures:
(a) Not applicable.
(b) @=0.400 m/s’ and I =294 kg m’.
(c) a=0.800 rad/s’
(d) #revolutions =6.37

DOUBLE-CHECK: Given the large height and the small final velocity, the small accelerations and the few
rotations of the drum are reasonable.
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THINK: Since the center of mass of the tire with mass, M = 23.5 kg, is at a distance, r = 1.10 m, from the
axis of rotation, the parallel axis theorem is used to determine the overall moment of inertia of the tire.
Consider both cases where the tire is a thin hollow cylinder of radius, R = 0.350 m, and a thick hollow
cylinder with radii, R =0.300 m and R, =0.400 m. The torque, 7=20.0 Nm, the athlete applies will
cause an angular acceleration, «. Kinematics can be then be used to determine the linear speed after three
rotations.

SKETCH:

RESEARCH: From the parallel axis theorem, the moment of inertia of a tire is I=1_ + Mr’. For a thin

—_—
(74

hollow cylinder, I, =MR> and for a thick hollow cylinder, I =M (R12+R22)/2.

The torque is given by 7=Ia. Then time can be determined from A& =at’/2, where A@ is three
rotations or 67 radians. Since the tire starts from rest, its final angular velocity is w=at and its
tangential velocity is v wr .

SIMPLIFY:
127 M(R? +72
@ 7=la=(MR+MA)a S et A=ty Pt = \/ﬂ - (M(r +))
M(R+1) 2 \ -

b) ver rat = 280 = |—12T

M(R2 +r? )

2 2
IZﬂLM(r’Z +RI;RZJJ

(C) tthmw = , v= [ 12T

;
4 M| 7 +—R12 TR
2
CALCULATE:

127{(23.5 kg)((0.350 m) +(1.10m)’ ))
(@) o = 00N =7.683s
. m

[ 1277(20.0 Nm)
\/ (23.5 kg)((0.350 m) +(1.10 m)z)

2 2
1271 (235 kg)[ (.10 m)" + (0.300 m) ;(0.400 m)

(©) Lippon = ooND =7.690 s

(b) v=(1.10m) =5.39766 m/s
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127[(20.0 Nm)

(23l5 kg)t(l.lo m)’ + (

v=(1.1m) / =5.393 m/s

2

0300 m) +(0.400 m) J

2

ROUND:

(@) ty., = 7.68's

(b) v=5.40m/s

(©) tyew = 769 sand v=5.39 m/s

DOUBLE-CHECK: Given the small change in the two moments of inertia between the thin and thick
cylinder, virtually identical values in time and velocity are reasonable.

THINK: Due to the symmetry of the barrel, assume the tension, T, in each rope is equal. The barrel with
mass, M = 100. kg, and radius, R = 50.0 cm, will cause a tension, T, in the ropes that in turn produces a
torque, 7, on the barrel and hence an angular acceleration, a. If the ropes do not slip, the angular
acceleration will be directly related to the linear acceleration of the barrel. Once the linear acceleration is
determined, kinematics can be used to determine the velocity of the barrel after it has fallen a distance, h =
10.0 m, assuming it starts from rest.

SKETCH:

RESEARCH: From the kinematic equations, v,” =v,” +2ah, where the initial velocity is zero. The sum of
the forces acting on the barrel is given by 2T — Mg =—Ma. The tension in the ropes also cause a torque,

7=2TR = Ia, where I = MR® /2.
SIMPLIFY: Summing the tensions in the ropes gives 2T = M(g —a). The torque this tension produces is

r=2TR=MR(g—a)=~MR| L] = MeR=2MRa = a=2s.
J 2 R 875 3¢

The velocity is given by v> =2ah = v= é h. The tension in oneropeis T=M(g—a)/2=Mg/6.
yisg Y 38 P 4 4

4 1
CALCULATE: v = \/?(9.81 m/s”)(10.0 m) =11.437 m/s, T =—(100. kg)(9-81 m/s’)=163.5 N
ROUND: Rounding to three significant figures, v =11.4 m/s and T = 164 N.
DOUBLE-CHECK: If the barrel is in free fall, it would have a velocity of 14 m/s after falling 10 m, so a

smaller velocity for this result is reasonable.

THINK: The hanging mass, m = 2.00 kg, will cause a tension, T, in the rope. This tension will then
produce a torque, 7, on the wheel with a mass, M = 40.0 kg, a radius, R = 30.0 cm and a ¢ value of 4/9.
This torque will then give the wheel an angular acceleration, . Assuming the rope does not slip, the
angular acceleration of the wheel will be directly related to the linear acceleration of the hanging mass.
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SKETCH:

~y

_,_},

m l" £

RESEARCH: With no slipping, the linear acceleration is given by a =R . The tension can be determined

by T = m( g- a), which in turn produces a torque 7 =TR = Ia, where the moment of inertia of the wheel

is 4MR /9.
SIMPLIFY: To determine the angular acceleration:
4. 05 4 2 2 -hz\lél 2 mg
TR=m(g—-a@)R=—pR’ma m MR a =— = mgR = meR a’ w ==
9 9 9 4

2.00 kg(9.81 m/s”)

CALCULATE: a= =3.3067 rad/s’

(2.00 kg +§(40.0 kg))(0.300 m)

ROUND: «=3.31rad/s’
DOUBLE-CHECK: Given the small hanging mass and the large mass of the wheel, this acceleration is
reasonable.

THINK: As the rod with mass, M = 250.0 g and length, L = 50.0 cm, tips over, the torque, 7, caused by the
force of gravity on the center of mass will change, which means the angular acceleration, &, of the rod will
change with the angle it makes with the vertical. We can use energy conservation to calculate the angular
velocity, , of the rod for any angle. The linear acceleration of any point on the rod is equal to the sum of
the tangential acceleration plus the centripetal acceleration.
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SKETCH:

a)

c)

e)

(i “'

RESEARCH: (a) In part a) of the sketch, we can see that the three forces acting on the rod are the normal
force exerted by the table, the force of friction between the rod and the surface of the table, and the force of

gravity.
(b1) To calculate the speed of the rod at 6 =45.0°, we can use energy conservation. Conservation of
mechanical energy gives us K+ U = K, +U,. The kinetic energy before the rod begins to fall is zero and

at angle @ the kinetic energy is given by the kinetic energy of rotation K :<1/ 2)[602 where @ is the
angular velocity and I :(1/3)ML2. The potential energy before is U, = mg(L/Z) and the potential
energy at angle 6 is U =mg (L / 2)cos€ as illustrated in part b) of the sketch.

(b2) To calculate the vertical acceleration of the moving end of the rod, we need to calculate the tangential
acceleration and the centripetal acceleration. The tangential acceleration can be calculated by realizing

that that the force of gravity exerts a torque on the rod given by 7= mg(L/Z)sinH assuming the pivot on
the table at the end of the rod. The angular acceleration is given by 7=Ia where I= (1/ 3)ML2. The
tangential acceleration can then be calculated from g, =La. The centripetal acceleration is given by
a,=Lw’ where @ was obtained in part bl). As shown in part f) of the sketch, the vertical component of
the tangential acceleration is g, sin€ and the vertical component of the centripetal acceleration is a_cosé.

(b3) To calculate the normal force exerted by the table on the rod, we need to calculate the vertical
component of the tangential and centripetal acceleration of the center of mass of the rod. The angular

acceleration is the same as calculated in part b2) so the tangential acceleration is a, :(L / Z)a. The

centripetal acceleration is a, :(L/ 2)0)2. The vertical components of the tangential and centripetal
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acceleration are then g, sin€ and a_cosé@ respectively. The normal force is then given by N —Mg= Ma,,
where a, is the vertical acceleration of the center of mass of the rod.
(c) When the rod falls on the table, #=90.0° and we have

3 3
== gsin90.0°==g.
4=28 S8

The centripetal acceleration is given by
a. = Lo® where

0= 3—g(l—cos90.0°):,’3—g = aC:L3—g:3g.
L L L

SIMPLIFY:
(b1) We can combine the equations in b1) to obtain

1 L L
—Io* +mg=cost & mg—.
2 g2 g2

We can rewrite the previous equation as

1(1 2 2 L 3g
—| —mlL = Z(1- = =2 (1- .
2(3m )a) mgz( cosH):>a) , ( cos@)

(b2) We can combine the equations in (b2) to get the tangential acceleration g,
L. 1 ,a 1. 1 3
mg—sind =—mL" — — g—sinf =—a, = a, =—gsind.
£ 37T T8 3T T8
We can then write the vertical component of the acceleration as
. 3 .
a, =a,sinf +a_cost = —Egsm2 0 - Lo* cos.
(b3) We can combine the equations in (b3) to get
2

L 1 a 1 2a 3
mg—sin@ =—mlL’ —— > g—sinf =—L = g, == gsiné.
£ 3 & 3 1Ty

(L/2)

We can now write the vertical component of the acceleration as
3 ., L,

a, =——gsin"@——w" cosb.
4 & 2

The normal force is

N:m(g—kav)zm[g—%gsinz¢9—§a}2 cos@].

(c) The linear acceleration at =90.0° is

2
R R e R B e

CALCULATE:
(a) Not necessary.

3(9.81 m/s’)
(bl) o= —(1 —cos45.0°) =4.1521 rad/s.
0.500 m

(b2) a, = —%(9.81 m/s’ )sin’ 45.0°—(0.500 m)(4.1521 rad/s)' c0s45.0°=—13.453 m/s’.
0.500 m
2

(b3) N=(0.2500 kg)[9.81 m/s’ —%(9.81 m/s” )sin® 45.0° — (4152157 cos 45.o°] =0.77091 N.

(c) a= %(9.81 m/s’ ): 25487 m/s’.

ROUND: Three significant figures:
(a) Not necessary
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(b) ®=4.15rad/s,a,=—13.5m/s’ and N=0.771 N.

(c) a=25.5m/s’.

DOUBLE-CHECK: When 0 0, @ =0, i.e. the rod is perfectly upright and not rotating, looking at the
equation for the normal force it can be seen that the normal force is equal to the force of gravity. The
values for the accelerations may seem surprising because they are larger than g. However, we have to
remember that the force of friction and the normal force must provide the centripetal force necessary to
keep the rod rotating around one end. Note that the assumption that the friction force can provide the
required centripetal force all the way to §=90.0° is unrealistic.

THINK: If we place the ball (blue dot) at the end of the board, it can only be caught by the cup (half
circle), if the end of the board falls with a vertical component of the acceleration «,, which is greater (or at

least equal) to g. The cup is to be placed at a distance d away from the end so that it can be vertically

under the ball and catch it when the board lands on the ground.
SKETCH:

>
.

RESEARCH: The board rotates about its lower end and has the same moment of inertia as a rod,

I=1ml’. The torque equation is 7 = I&x, where the torque is given by 7 = Frsing =mg-LL-sing . The
angular and tangential acceleration are related to each other via a, = L. The vertical component of the
tangential acceleration is then (see sketch) a, =a, cosé.

Geometrical relations: Since 6 =90°—¢, (see sketch), we find that sing =cosé. Also from the sketch, we
see that the height of the vertical support stick is H = Lsiné. In addition (dashed circular segment in the

sketch), we see that d =L — Lcos@ = L(1—cos®).
SIMPLIFY:

r=1mglsing =imglcos@ =iml’a =<mLa, = a, =3 gcosd
Inserting this result into a, =a,cos@ from above, we find a, =2 gcos’ . If, as required, a, > g, this

means 2gcos’@>g or cosf > \/g Since sin’ 6 +cos’ @ =1, this implies sin6 < \/; So, finally, from

H = Lsin@ we see H S\/;L.
CALCULATE:

(a) H,, =L =,/5(1.00 m)=0.57735 m.

(b) d=L(1-cosB)=(1.00 m)(1-,/2)=0.1835 m.

ROUND: Rounding to 3 digits leaves us with
(a) H__.=0577m,

Max

(b) d=0.184 m.
DOUBLE-CHECK: Clearly, this is a somewhat surprising result. However, it is also a standard lecture
demonstration. When you see it you can convince yourself that these calculations for sinf are correct.

THINK: If the brakes applies an inward radial force, F = 100. N, and the contact has a coefficient of
friction, p, =0.200, then this frictional force, f, will be perpendicular to F and cause a torque, 7, on the

flywheel of mass, M = 120. kg, and radius, R = 80.0 cm. The torque can be used to determine the angular
acceleration, «, of the wheel. Kinematics can then be used to determine the number of revolutions, #, the

494



10.59.

Chapter 10: Rotation

wheel will make and the time it will take for it to come to rest. The work done by torque should be the
change in rotational energy, by conservation of energy. The flywheel has an initial angular speed of 500.
rpm or 507 /3 rad/s.

SKETCH:

b S '
i
RESEARCH: Similarly to the relation between the normal force and friction, fu=F, , the friction causes
atorque, T = fR = Ia, where the moment of inertia of the wheel is I = MR” /2. Kinematics is used to
determine the number of revolutions and the time it takes to come to an end, w,’ = w> —2aA6 and

w, —w, =—at. The work done by the frictionis W=aK=-I */2.

SR FR 2 F
I 1,50

SIMPLIFY: The angular acceleration is given by o = . Therefore, the total angular

—MR?
2
Py
displacement is given by @ f2 =0,’ +20A0 = |A€| = ZL . The number of revolutions, n, is given by
o
AO @) . . . 2 2
—= The time to come to restis t =@, / . The work done is then —MR*w;” / 4.
2r dno
CALCULATE:

1 min 1revolution )| 60 sec 3

500 revolutions 27 rad 1 min 507
=—— rad/sec

_ 2(0200)(100.8) _ o (50713 rad/s)’

= ———————="523.60 revolutions
(120. kg)(0.800m) 4770.4167 rad/s

2

1
(= 0mI3radls 66, W =-=(120. kg) (0800 m)’ (SOT” rad/s] = —52638]

© 0.4167 rad/s®
ROUND: To three significant figures: n =524 revolutions, t=126's and W =-5.26-10"J.
DOUBLE-CHECK: Given the small friction, and hence the small torque, and the fast speed of the wheel,
it would take a long time to stop, so the results are reasonable.
THINK: Assuming a constant angular acceleration, &, and At =25s, regular kinematics can be used to
determine a and A#. The total work done by torque, 7, should be converted entirely into rotational
energy. I =25.0 kgm’ and w; =150. rad/s.
SKETCH:

7] (£
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RESEARCH: From kinematics, w; —w, = @At and Af = oc(At)2 /2. The torque on the wheel is 7 = Ia.
Since the torque is constant, the work done by it is Wz= A@. The kinetic energy of the turbine is

Kol */2.
SIMPLIFY:

(@) w,=aAt = a=w,/At
b) r=Ix

© A@:%(x(At)z
(d) We= A6

(e) Kw%[ fz

CALCULATE:
150. rad
(@) a= 150. radfs _ 6.00 rad/s>
25.0s

(b) 7=(25.0 kgm’)(6.00 rad/s’) =150. N'm

(c) A6 =%(6.00 rad/s’ )(25.0 s)2 =1875 rad

(d) W=(150. N m)(1875 rad)=281,250 ]

(e K =%(25.0 kg m”)(150. rad/s)” =281,250 ]

ROUND:

(a) «=6.00rad/s’

(b) T=150. Nm

(c) A@=1880rad

(d) W=281kJ

(e) K=281kJ

DOUBLE-CHECK: It is expected that the work and kinetic energy are equal. Since they were each
determined independently and they are the same value, the procedure must have been correct.

THINK: Since the two masses have an equal mass of m = 6.00 kg, their center of mass will be at the
geometric center, /2, which is also the location of the axis of rotation. Initially, [ = 1.00 m and then it
extends to 1.40 m. When the length increases, the moment of inertia also increases. Since there are no
external torques, conservation of angular momentum can be applied. The masses initially rotate at
w, =5.00 rad/s.

SKETCH:
fe—£/2 — fo— /2
C i:mi : . . e o, .
I ¢ I I AL |

RESEARCH: The angular momentum before and after are L e I, , and L,a=I; . The moments of

inertia for before and after are I, = Zm(l / 2)2 and I, = 2m(l’ / 2)2 . The conservation of angular

momentum is represented by L, =L,.
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2 ” 2
SIMPLIFY: L =1I :>rr2m(a£—) =2 = R :>wf=(—)w.
4 4 ’ 1

CALCULATE: o, = ( 1'00 o

2
5.00 rad/s =2.551 rad/s
40 m

ROUND: To three significant figures: w, =2.55 rad/s

DOUBLE-CHECK: Since the string length and hence the moment of inertia increases, a smaller
rotational speed is expected, since angular momentum is conserved.

THINK: For the moment of inertia of the Earth, treat it as a solid sphere with mass, M =5.977-10* kg,

and radius, R = 6371 km. The Chinese (7=1.30-10" people and m = 70.0 kg each) can be treated as a
point mass of total mass, nm, standing on the surface of the Earth and then also at & = 1.00 m above the
surface. Conservation of angular momentum relates the change in moment of inertia to the change in
angular frequency, and hence period, of the Earth.

SKETCH:
o

M —h—>fo

RESEARCH: The Earth’s (solid sphere) moment of inertia-is. I,-= 2MR’ /5, while the Chinese have a

moment of inertiaof I = nmR” on the surface of the Earthand I = nm(R + h)2 when standing on the

chair. The angular momentum is L @l . The period of the Earth’s rotation is 1 day or 86,400 s, and is
related to the angular velocity by w=2n/T.
SIMPLIFY:

(a) The moment of inertia of Earth is I, =2MR” /5.

(b) The moment of inertia of the Chinese people on Earth is I, =nmR>.
(c) The moment of inertia of the Chinese people on chairs is I, = nm(R + 1)2 . The change in the moment

of inertia for the Chinese peopleis AI. =1/ —1I.= nm(R2 +2R+1- RZ) =nm(2R+1).

(d) The conservation of angular momentum states, (IEwi- I(;) I= (A) <: )A = (IE +1. )zT—ﬂ = (AIC )—

i

Al
Therefore, A—TT = £ (fractional change) and AT = ;

I+, .

Al
T (total change).
+1

C

CALCULATE:

2
@ I, =§(5.977-1024 kg)(6,371,000 m)* =9.704-10” kg m’

(b) I, =(1.30-10")(70.0 kg)(6,371,000 m)’ =3.694-10* kg m’
() AL, =(1.30-10°)(70.0 kg)(2(6,371,000 m)+1.00 m)=1.1595-10" kg m’

AT 1.1595-10" kg m*
(d) —= 5 — 87 __ -=1.1949-107
T 9.704-10” kg m” +3.694-10" kgm
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ROUND:
(a) I =9.704-10" kg m’
(b) I.=3.69-10" kg m’
(c) AI.=1.16-10" kgm’
(d) AT 119107
T
DOUBLE-CHECK: Despite the large number of Chinese people, the Earth is so massive that the rotation
is hardly affected by their jump onto the surface.

THINK: The bullet with a mass, m, = 1.00-107 kg, has a linear momentum. When it strikes the rod
with length, L = 1.00 m, and mass, m, = 5.00 kg, the rod begins to rotate about its center and thus has an
angular momentum. Conservation of momentum means the bullet’s linear momentum is equal to the rod
and bullet’s angular momentum. Likewise, the bullet has a linear kinetic energy and the rod and bullet
have a rotational kinetic energy so the change in kinetic energy is the difference between these two. The

bullet can be treated as a point particle that is a distance L/4 from the axis of rotation.
SKETCH:

e

M,
RESEARCH: The momentum of the bullet is given by p.=m,v. When it hits the rod at L/4 from the
center, its linear momentum can be converted to-angular momentum by pL/4. The moment of inertia of

therod is m, L’ /12 and that of the bullet when in the rod is m(L/ 4)2 . The kinetic energy of the bullet is
all translational, K, =m,v’ /2, while the kinetic energy of the bullet and rod together is all rotational,
Kgw=1T */2.

SIMPLIFY:

(a) The initial angular momentum is L, =m,vL/4. The final angular momentum is

Liel m( o /12 B/Iﬁ()) ? . The angular velocity is then

L
L=L w M~ Lmk+imB P =» ="
4 12 16 (1 1 )
—my +—m, |L
3 4
1, 1o, [ 1 1 2 2
(b) K, =Eva and Kszzl Z RM?ZLwB . Therefore, AK =K, =K.
CALCULATE:
1.00-107 kg)(100. m/s
(a) w= 5(()0k 0010())(k ) =0.5991 rad/s
( - B g)(l.OOm)
3 4
500kg 1.00-107 k 1
(b) AKz[ Wke , 19O 32 g](mo m)’(0.599 rad/s)’ == (1.00-107 kg)(100.m/s)" =-49.925]
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ROUND:

To three significant figures,

(a) w=0.599 rad/s

(b) AK=-49.9]

DOUBLE-CHECK: Given that the rod is five hundred times heavier than the bullet and that the bullet
will lose energy from imbedding itself in the rod, a small w and a negative value for AK is reasonable.

THINK: The sphere of mass, M, spins clockwise when a horizontal impulse J is exerted at a height h
above the tabletop when R < h < 2R.
SKETCH:

RESEARCH: To calculate the linear speed after the impulse is applied, we use the fact that the impulse J
can be written as J=Ap=MAv. To get the angular velocity, we write the change in the angular

momentum of the sphere as AL = Ap(h - R). To calculate the height where the impulse must be applied,
we have to apply Newton’s Second Law for linear motion, F= Ma, and Newton’s Second Law for
rotation, 7 =Ia. The torque is given by 7=F(h—R). The object rolls without slipping so from Section

10.3 we know that v = R® and a = Rer. In addition, we can write the impulse as ] = FAf.
SIMPLIFY: a) Combining these relationships to getthelinear velocity gives us

J
=Ap=MAv=My = v=—.
J=Ap M

Combining these relationships to get the angular velocity gives us
AL=Ap(h-R)=](h—-R)

AL=IAo=Io= %MRZa)
](h—R)z%MRza)
2MR?

b) Combining these relationships to get the height h, at which the impulse must be applied for the sphere
to roll without slipping we get

F=Ma = L=MR0(
At

J
At
Dividing these two equations gives us

F(h,-R)=la = —(h,—R) =%MR205.

2 7
hy~R==R = hy==R.
5 5

CALCULATE: Not applicable.
ROUND: Not applicable.
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DOUBLE-CHECK: The linear velocity will always be positive. However, the angular velocity can be
positive or negative, depending on whether & >R or h <R. The fact that h, > R is consistent with the ball
rolling to the right after the impulse is applied.

THINK: If the man, approximated by a cylinder of mass, m = 80.0 kg, and radius, R =0.200 m, walks at
a constant velocity, v = 0.500 m/s, then his distance, d, from the center of the platform of mass,
M, =400. kg, and radius, R, =4.00 m, will change linearly with time. The platform initially rotates at

6.00 rpm or 0.2007 rad/s. Initially, the man and the platform have their center of mass on the axis of
rotation, so their moments of inertia are summed. When the man is a distance, d, from the center, the
parallel axis theorem is needed to determine his overall moment of inertia.

SKETCH:

RESEARCH: The distance, d, the man is from the center is d =vt. The moment of inertia of the platform
is I = Mpsz /2. The man has a moment of inertia of I, =mR _?/2 and by the parallel axis theorem has
a final moment of inertia of I = (mRm2 /2)+md2. Conservation of angular momentum states L =L,

where Lwl .

SIMPLIFY: The man’s moment of inertia as a function of time is I/, =(mRm2 / 2)-|-mv2t2 =1 +mv’t.
The initial angular momentum of the system is L, qa)(Ip +Im) .- The angular momentum at time ¢ is

L w(IP+I"n) ;- Therefore, (IP(&Im)I lzl( st W’ 2) .

-1
(Ip +1, )wi 2mv*t?
S0 =r—————>2>0;O)=0| I+ ————— | .
(Ip +1, +mv2t2) ’ MyR,” +mR,

1
2mR ?
When the man reaches the end, d =R, = t =R /v. Therefore, w, =w,| 1+ ————| .
P P MR’ +mR,

-1

2(80.0 kg)(4.00 m) =0.4489 rad/s

(400. kg )(4.00 m)’ +(80.0 kg )(0.200 m)’

ROUND: To three significant figures: w, =0.449 rad/s.
DOUBLE-CHECK: As time increases (i.e. the man walks from the center), the overall moment of inertia
increases, so a smaller angular velocity is expected.

CALCULATE: w, =(0.2007 rad/s)| 1+
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THINK: Initially, the system has zero angular momentum. The boy with mass, m = 25.0 kg, can be treated
as a point particle a distance, r = 2.00 m, from the center of the merry-go-round, which has a moment of
inertia, I, =200. kg m’. When the boy starts running with a velocity, v = 0.600 m/s, the merry-go-round

will begin to rotate in the opposite direction in order to conserve angular momentum.
SKETCH:

RESEARCH: The initial angular momentum is L =0. The angular velocity of the boy is w, =v/r. The

moment of inertia of the boy is mr”. The angular momentum is given by L=I . The tangential velocity

of the merry-go-round at r is v,e=r ,. The boy’s velocity relative to the merry-go-round (which is

2
rotating in the opposite direction) is v'=v +v,.

SIMPLIFY:
W

(@ Lelmro * =0a> 2=mr Lo Z:mrv
I, I,

(b) vV'aw+r

CALCULATE:

25.0 kg)(2.00 m )(0.600-m/s
@ w,= ( g)( )(2 ) =0.150 rad/s
200. kg m
(b) v"=0.600 m/s+(2.00 m)(0.150 rad/s) =0.900 m/s
ROUND:

(a) w, =0.150 rad/s
(b) v'=0.900 m/s
DOUBLE-CHECK: Since the merry-go-round must move opposite to the boy, a relative velocity greater

than the velocity compared to the ground makes sense. Also, since the boy and the merry-go-round have
comparable moments of inertia, the comparable velocities are reasonable.

THINK: In every case, the momentum (angular and linear) must be conserved. If the asteroid with mass,
m, =1.00-10” kg, and velocity, v=1.40-10° m/s, hits the Earth, which has an angular speed of
w, =7.272-107 rad/s, dead on (radially inward), then it will not contribute any of its linear momentum
to the angular momentum of the planet, meaning the change in the Earth’s rotation is solely a result of it
gaining mass. If the asteroid hits the planet tangentially, then the full amount of the asteroid’s linear

momentum is contributed to the angular momentum. If the asteroid hits in the direction of Earth’s
rotation, it will add its momentum and the Earth will spin faster and vice versa for the opposite direction.

The mass of the Earth is m, =5.977-10* kg and the radius is R, =6371 km. The Earth can be treated as
a solid sphere.
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SKETCH:
(a) (b)

RESEARCH: The moment of inertia of Earth is I =2MERE2 /5. After the asteroid has collided, the

moment of inertia of the system is then given by I, =I, +m,R,’. The angular momentum is L=l .
Conservation of angular momentum applies in each case. The momentum the asteroid contributes is
p=m,v and its linear momentum will be £pR,, depending on which way it hits.

SIMPLIFY:
2 2
@ Ip o, = R 5 2M,
a W, =0 w, =—w
E) ) &O ' ' z]\/I]:R]:Z "‘1\4-/\R]:2 ' ' ZMF +5MA ¢
5 ;
2
7MEB'{:'2 l:M V& E ]%Rh'wb' l:M Va
(b) Iw .M yR- L DW= Sy [ oo
Wi YRy w I F

%MEREZ +M,R} %MERE +M,R,

2
EMERE EM Va
(0) Ip M ¥R . 4 @, :>sz2—
gMERE +M,R,
CALCULATE:
2(5.977-10 kg)(7.272-107° rad/s
R ] )

. =7.2417-107 rad/s
2(5.977-10* kg)+5(1.00-10” kg)

%(5.977-10“ kg)(6371000 m)(7.272-10 rad/s)+(1.00-10” kg)(1.40-10" m/s)
w, = =7.333-10" rad/s
F %(5.977-10“ kg)(6371000 m)+(1.00-10” kg)(6371000 m)

3(5.977-102“ kg)(6371000 m)(7.272-10° rad/s)—(1.00-10” kg)(1.40-10° m/s)
w, == =7.1502-10 rad/s
2(5.977-10* kg)+(1.00-10* kg) |(6371000 m
[(2(57710" kg)+(1.00-10% ) 371000 m)

ROUND:
To three significant figures:

(a) w,=7.24-10" rad/s
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(b) w, =7.33-107 rad/s

(¢) w,=7.15-10" rad/s

DOUBLE-CHECK: In part (a), it is expected that w would be reduced very little, since the Earth gains a
0.4% mass on the surface and the moment of inertia is changed only slightly. In part (b), the asteroid
would make the Earth spin faster, provided the velocity was great enough. In part (c), the asteroid would
definitely make the Earth slow down its rotation.

THINK: If the disk with radius, R = 40.0 cm, is rotating at 30.0 rev/s, then the angular speed, w, is
60.07r rad/s. The length of the gyroscope is L = 60.0 cm, so that the disk is located at r = L/2 from the pivot.

SKETCH:
I
/ L/\

RESEARCH: The precessional angular speed is given by w, =rmg/lw. The moment of inertia of the disk

is I=mR* /2.
a4
SIMPLIFY: « = 12 =L—£

0.600 m(9.81 m/sz)
=0.19516 rad/s

CALCULATE: w, = -
(0.400 m)  60.0 rad/s

ROUND: w, =0.195 rad/s

DOUBLE-CHECK: The precession frequency is supposed to be much less than the frequency of the
rotating disk. In this example, the disk frequency is about one thousand times the precession frequency, so
it makes sense.

THINK: Assume the star with a mass, M =5.00-10" kg, is a solid sphere. After the star collapses, the
total mass remains the same, only the radius of the star has changed. Initially, the star has radius,
R, =9.50-10° m, and period, T, =30.0 days=2592000s, while after the collapse it has a radius,
R; =10.0 km, and a period, T;. To determine the final period, consider the conservation of angular

momentum.
SKETCH:
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RESEARCH: The moment of inertia of the star is I=2MR’/5, so initially it is I, =2MR;*/5 and

afterwards it is I, =2MR,’ /5. Angular momentum is conserved, so L =L, where L@l . The period is

related to the angular frequency by Tre=20 /  or w=2n/T.
2 MR} (2 M % R’(2)

SIMPLIFY: I, =T, = - — = =T, =—LT,

i f i

(10.0-10° m) (2,592,000 5)

CALCULATE: T, = =2.872-10" s

(9.50-10* m)’

ROUND: T, =2.87-10"s

DOUBLE-CHECK: Given the huge reduction in size, a large reduction in period, or increase in angular
velocity is expected.

THINK: The flywheel with radius, R = 3.00 m, and M =1.18-10° kg, rotates from rest to w, =1.95 rad/s
in At =10.0 min =600. s. The wheel can be treated as a solid cylinder. The angular acceleration «, can be

determined using kinematics. The angular acceleration is then used to determine the average torque, 7.
SKETCH:

RESEARCH: The energy is all rotational kinetic energy, so EwI */2. The moment of inertia of the

wheel is I = MR’ /2. From kinematics, w; —, = aAt. The torque is then given by 7 = la.
1(1 1
SIMPLIFY: The total energy is given by E = ?EE MRM}? w= " ? ?. The angular acceleration is given

by w, —0=aAt = a=w,/At. The torque needed is

M 2
r=Ila= l]\/[R2 o =M_
2 At 2At

CALCULATE: E =i(1.18-106 kg)(3.00 m)’(1.95 rad/s)’ =1.0096-10” J

1.18-10° kg )(3.00 m)’ (1.95 rad/s
T=( g)( ) ( )=17257.5Nm
2(600. )
ROUND: E=101-10"], 7=17,300 N m
DOUBLE-CHECK: The problem mentions that a huge amount of energy is needed for the experiment
and the resulting energy is huge. It is reasonable that a huge torque would also be required.

THINK: With no friction and no slipping, energy is conserved. The potential energy of the hoop of mass,
m = 2.00 kg, and radius, r = 50.0 cm, will be converted entirely into translational and rotational kinetic
energy at = 10.0 m down the incline with an angle of 8 =30.0°. For a hoop, c=1.
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SKETCH:

m

TS

h f

I

RESEARCH: The change in height of the hoop is h€Isin . The initial potential energy of the hoop is
mgh. The kinetic energy of the hoop is K, = (1 + c)mv2 /2. The c value for the hoop is 1.

SIMPLIFY: U, =K = mglsiv =(1+ ) >/2 = =W
c
2(9.81 m/s’)(10.0 m)sin(30.0°) \/7

CALCULATE: v =\/ =7.004 m/s

1+1
ROUND: To three significafyt figures: v = 7.00 m/s
DOUBLE-CHECK: This value is less than the velocity the hoop would have going a distance, h, in free fall
(v=9.9m/s), so it seems reasonable.

THINK: The oxygen atoms, m=2.66-10"° kg, can be treated as point particles a distance, d/2 (where
d=1.21-10"" m) from the axis of rotation. The angular speed of the atoms is w=4.60-10" rad/s.

SKETCH:
fe— cli2—

AREEOP

| d {

RESEARCH: Since the masses are equal point particles, the moment of inertia of the two is

I= Zm(d/z)z. The rotational kinetic energy is K @1 */2.
SIMPLIFY:

2
(a) I= Zm(d—) = lmd2
4 2

b) Kwosl mdw *°
2 4
CALCULATE:

(a) I=§(2.66-10‘26 kg)(1.21:107 m)2 =1.9473-107° kg m’

1 2 2
b) K=—(2.66-10" kg)(1.21-10™ m) (4.60-10" rad/s) =2.06-107*'
(b) K =—( g ) ( rad/s) ]
ROUND:
(@) 1=1.95-10" kgm’
(b) K=2.06-10""7

DOUBLE-CHECK: Since an oxygen molecule is so small, a very small moment of inertia and energy are
expected.

THINK: If the force, F, is tangent to the circle’s radius, then the angle between it and the radius, R = 0.40
m, is 90°. The bead with mass, M = 0.050 kg, can be treated as a point particle. The required angular

acceleration, a=6.0 rad/s’, is then found using the torque, 7.
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10.74.

SKETCH:

—
(£3

RESEARCH: The force produces a torque, 7 = FR = Ia. The moment of inertia of the bead is I = MR’.
SIMPLIFY: FR=Io=MR’a = F=MRa.

CALCULATE: F =(0.0500 kg)(0.400 m)(6.00 rad/s’ ) =0.120 N

ROUND: To three significant figures: F=0.120 N

DOUBLE-CHECK: For a small mass, a small force is reasonable.

THINK: Angular momentum will be conserved when the professor brings his arms and the two masses,

because there is no external torque.
SKETCH:

RESEARCH: Conservation of angular momentum states' I,@, = I @, , and the moment of inertia at any
pointis I = Ibody +2r’m. We assume that Ibody’1 = Ibodyyf.
SIMPLIFY: Substituting the moments of inertia into the conservation equation gives
I Looayi T 2’}27”
-0, =—"—0,.
I
CALCULATE:
The initial angular speed is @, =27 f =27(1.00 rev/min)=0.1047 rad/s.
So the final angular speed is

(2.80 kgm?) +2(1.20 m)*(5.00 kg)
~ (2.80 kg m?) +2(0.300 m)*(5.00 kg)
ROUND:
; =0.487 rad/s.
DOUBLE-CHECK: We find that the angular velocity increases from 0.105 rad/s to 0.487 rad/s. Does it
make sense that the professor speeds up by pulling in the arms? If you have ever watched a figure skating
competition, you know that the answer is yes, and that speeding up the rate of rotation by a factor of ~3 is

(0.1047 rad/s) = 0.4867135 rad/s™".

f

very reasonable.

THINK: Determine the angular acceleration, which can be obtained by first determining the total torque.
Make sure that the moments of inertia are calculated with respect to the pivot point. M, =1.00 kg,

M, =10.0 kg, M. =20.0kg and L =5.00 m.
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SKETCH:

I L |
be—Li4—|
M, ] [ M,

M.
f—r2 —— ¢ /\

For M,: I, =M, (3L/4) . For M,: I, =M, (L/4)". For therod: I =(1/12)M L + M (L/4) .
I=1,+I,+I., ZT=TA+TC—TB, T, =MAg(3L/4), T, =MBg(L/4) and 7. =MCg(L/4).

L
SIMPLIFY: » 7= gL[%MA —iMB +%MC)=gT(3MA -M,+M,)

9 1 11 r 7 T
I=LZ[—M +—MB+( + jMCJZ_(gMA+MB+§MC)’ ZTzla:(x:zT

16 * 16 12 16 16

RESEARCH: ) 7=Ia

“:&(Ej 3M, —M, + M, |_4g| 3M, - M, +M,

4\ 2 L

9MA+MB+§MC 9MA+MB+§MC

4(9.81 m/s’
5.00 m

S~

3(1.00 kg)—10.0 kg +20.0 kg

CALCULATE: «a= =1.55 rad/s>

9(1.00 kg)+10.0 kg+§20.0 kg

ROUND: Using three significant figures, a =1.55 rad/s’.  The positive sign indicates that the angular
acceleration is counter clockwise:

DOUBLE-CHECK: Note that « decreases as L increases. This makes sense because I increases faster with
L (L is squared) than does 7.

THINK: To determine the cart’s final speed, use the conservation of energy. The initial gravitational
potential energy is converted to kinetic energy. The total kinetic energy at the bottom is the sum of the
translational and rotational kinetic energies. Use m_ =8.00kg, m =2.00kg, L =1.20m,

w, =60.0 cm, r=10.0 cm, D =30.0 m and € =15.0°.

SKETCH:
l\ Top view of cart
m L}
\/ !’p

m, (=4)

I
]

w
[

RESEARCH: The initial energy is E,, =U (potential energy). The final energy is E_ =K (kinetic

energy). U=M,, gh, h=Dsin6, M, =m +4m, K=Myv'/2+1 */2, w=v/r and I=4(mwr2 /2).
SIMPLIFY:
T Y i IR T IN REET 0 L

2 2 2 2 r
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1 l(mp +4mw)gDsint9
= (mp+4mw)gDsin49= Emp+2mw—i-mW v = v=\/ n
—m_+3m
P W

I(S.OO kg +4(2.00 kg))(9.81 m/s”)(30.0 m)sin15.0°

CALCULATE: v = =11.04 m/s

%(8.00 kg)+3(2.00 kg)
ROUND: The length of the incline is given to three significant figures, so the result should be rounded to v=11.0 m/s.
DOUBLE-CHECK: This velocity is rather fast. In reality, the friction would slow the cart down. Note also

that the radii of the wheels play no role.

THINK: Determining the moment of inertia is straightforward. To determine the torque, first determine
the angular acceleration, @, and both Aw and A8 are known. Knowing « and I, the torque can be
determined. m =15.0 g, , =1.5cm/2, 1, =11.9 cm/2, w, =0, w, =4.3 rev/s and A =0.25 revs.

SKETCH:

1
RESEARCH: 7=Ia; I =Em(r12 +1), w0 = +2aA0
SIMPLIFY:

1
@ I="m(r+r})

2 _ 2
(b) a:%, T:Ioc=4zle(rlz+rzz)wf2 (wi=0)

CALCULATE:

2\ 2 Y
(a) I=%(15.0~10_3 k) [% m] +(WJ =2.697-107° kg m*

27 rad

rev

27 rad

rev

(b) AG=0.250 revs( )= 1.571rad, @; =4.30 rev/s( ): 27.02 rad/s

(27.02 rad/s)’ , S , R
o =-—————=2324radls’, 7=2.697-10" kgm (232.4 rad/s ):6.267-10 N'm
2(1.571 rad)

ROUND: Rounding to three significant figures, (a) I= 2.70-107° kg m? and (b) 7=6.27-10" Nm.
DOUBLE-CHECK: These results are reasonable for the given values.

THINK: Begin with the moment of inertia of the door about an axis passing through its center of mass,
then use the parallel axis theorem to shift the axis to the edge of the door, and then add the contribution of
the handle, which can be treated as a point particle. p=550. kg/m*, w=0.550 m, h =0.790 m, t = 0.0130
m, d=0.450 mand m, =0.150 kg.
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SKETCH:

1 w ’
RESEARCH: MP:V p:Wht 2 Icenter = EM(WZ + tz )’ Iedge = Icenter + M(?] > Ihandle = Wlhd2
I= Iedgc + Ihandlc

M M M
SIMPLIFY: [=—(w’+0*)+—w" +md" =—(4w’ +£*)+m,d’
12 4 12
CALCULATE: Substituting Mpwht  into the above equation yields:

I =%(550. kg/m®)(0.550 m)(0.790 m)(0.0130 m)(4(0.550 m)’ +(0.0130 m)2)+(0.150 kg)(0.450 m)’

=0.3437 kg m”.

ROUND: Rounding to three significant figures gives I =0.344 kg m’.
DOUBLE-CHECK: This is a reasonable result for a door of this size. Note that the height of the door
enters into only the calculation of the'door’s mass:

THINK: The moment of inertia of the machine part is the moment of inertia of the initial solid disk about
its center, minus the moment of inertia of a solid disk of the amount of mass removed about its outside
edge (which is at the center of the disk). M = mass of the disk without the hole cut out, and m = mass of
the material cut out to make a hole.

SKETCH:

Axis of Rotation

RESEARCH: I =MR’/2 (disk spinning about its center). I

center

=%m(R/2)2 +m(R/2)" (disk

edge

spinning about its edge). The area of the hole is 7R* / 4. The area of the disk without the hole is 7R*. The

area of the disk with the hole is 7R* =R’ /4=37R" / 4. The area of the hole is 1/4 the area of the disk
without the hole; therefore, because the disk has uniform density, m = M /4. The moment of inertia is

-por (2] 2]
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SIMPLIFY: Substitute m= M /4 into the above equation to get

2 2
IleRZ— MR +ﬂ r =£M1}22—iMRZ—iMR2 =£MR2.
2 8| 4 4\ 4 32 32 32 32

CALCULATE: This step is not necessary.
ROUND: This step is not necessary.
DOUBLE-CHECK: As expected, the moment of inertia decreases when the hole is cut out.

THINK: If the angular momentum and the torque are determined, the time can be determined by
recalling that torque is the time rate of change of angular momentum. To determine the angular
momentum, first determine the angular speed required to produce a centripetal acceleration equal to
Earth’s gravitational acceleration. From this, the angular momentum, L, of the space station can be
determined. Finally, the torque can be determined from the given force and the radius of the space station.
R=50.0m, M =2.40-10° kg and F =1.40-10" N.

SKETCH:

M

F
2
RESEARCH: I=MR’, Lwl , v=uR , %=g, r=FR, r=°L

At
_ . MR
SIMPLIFY: Ar=A2L@¢l —OMRw MRw wzl:i\/@:\/g, At:—MR\/E= g
r FR  FR F R R R F\R F

2.40-10° kg\/(S0.0 m)(9.81 m/s’)

1.40-10° N
ROUND: The radius of the space station is given to three significant figures, so the result should be
rounded to At =3.80-10" s.
DOUBLE-CHECK: The result is equal to about 10 hours. For such a relatively small thrust, this result is
reasonable. As expected, this time interval increases if either the thrust decreases or the mass increases.

CALCULATE: At= =3.797-10" s

THINK: There is enough information given to determine the stars’ rotational and translational kinetic
energies directly and subsequently determine their ratio. Note that the orbital period is given as 2.4 hours.
Use the values: M, =1.250M, , M, =1337M, , w, =2mrad/2.8s, w,=2mrad/0.023s, r = 20.0 km,

R =4.54-10° m, R, =4.23-10° m and w_, =27 rad/2.4 h.

SKETCH:
@, w,
QYR [ D )w
center of 2

mass

I R I R, I

Sun

RESEARCH: an=%1 4 I=%MR2, Kmb=%Mv2=%MR2 ?
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SIMPLIFY:
@) K _Ip Myl Mp/
K, Iy, Mz, Mg,

1 2
EMI]E& 1 2rlo K, o 2rlo )}

K

b 1,rot , —

O T 5Rp > K,.. 5R@ .’
Lorb 5 MIR‘[) ob orb 2,0rb orb

CALCULATE:

(o) Ko _ 1.25/(2.8)

- =6.308-107
Koo 1.337/(0.023)

2(2010°) /(2.8 s)
(b) Stot ( - ) 183) =0.00739128
K s :
o 5(4.54-10%) /(2.4 h-3600 s/h)
3\ 2
: /(0.
Ky _ 2(20-10° m) /(0.023 5) s

2
Koon  5(42310°) /(2.4 h-3600 s/h)’
ROUND: The rotation periods are given to at least three significant figures, so the results should be

rounded to:
(@) Ko /Ky =6.31:107

1,rot
(b) Kl,orb /Kl,rot =7'39'10_3’ Kz,orb /K2,r0t =126
DOUBLE-CHECK: M, has a much faster rotational speed than 'M,. The kinetic energy for M, is

dominated by the orbit, while for M, it is dominated by rotational motion.

THINK: Conservation of angular momentum can be considered to determine the angular momentum of
the merry-go-round. From this, the mass, M, of the merry-go-round can be determined. For parts (b) and
(c), use the uniform acceleration equations to answer the problem. R = 1.50 m, w =1.30 rad/s, m = 52.0 kg
and v = 6.80 m/s (speed of the student just prior to jumping on).

SKETCH:

A

RESEARCH: L

student

1 1
=Rmy, Lwl (merry-go-round), I =3MR2 +mR*>, AO =an‘2 +wt,

w, =at+w,, and 7=Ia.
SIMPLIFY:

(a) L

student

:M:iz(dimv—mﬂz): RAMY oo [y
R R

=4 = Rmv=] MR m&@) szvz}an MRow * =% 2

w

1 R (M
(b) T=Ia=(EMR2+mR2)oc, a=—=-— (0,=w, 0, =0, t; =t, t, =0), r=-2 (——i—mj
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1 1 1 1
(c) Ac9=—¢xt2+wit=— e t* +wt =——wt +wt =—wt
2 2 t 2 2

CALCULATE:

6.80 m/s
1.30 rad s™ (1.50 m

(@) M=2(52.0 kg)[ )—1]=258.7 kg

(b) 7=

(130 rad s™)(150 m)’ (3587 kg
2

+52.0kg |[=-15.15Nm
350 {

(c) AO =%(1.30 rad/s)(35.0 s) =22.75rad =22.75 rad( ! revd) =3.621rev

7 ra
ROUND: Round the results to three significant figures.

(a) M=259kg

(b) T=-152Nm

(c) A@ =3.62 revolutions

DOUBLE-CHECK: The results are all consistent with the given information.

THINK:

(a) The speed of the pendulum just after the collision can be determined by considering the conservation
of linear momentum. From the conservation of energy, the maximum height of the pendulum can be
determined, since at this point, all of the initial kinetic energy will be stored as gravitational potential
energy.

(b) From the conservation of angular momentum, the rotation speed of the pendulum just after collision
can be determined. From the conservation of energy, the maximum height of the pendulum can be
determined, since-at this point,-all of the-initial rotational kinetic energy will be stored as gravitational
potential energy. L' =0.48 m and v = 3.6 m/s.

SKETCH:
(a) ...................... (b) ___________________________
L L
M
(c) (d)

RESEARCH:

1
(a) E=constant=K+U, Kzzmvz, U =mgh

1
(b) Lwconstant=1 , I, =§MLZ, I =ML

proj
SIMPLIFY: v, is the speed of the projectile just prior to collision. v, is the speed of the pendulum at the

lower edge just after collision.
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1
(@) P=P = My, = (M +M)vP =>v,= Ev(,; At the pendulum’s maximum height,

1
K, =(M+M)gh =E(M+M)vpz.
v 2 2 2
=t Yo - cos¢9=1—£=1— Y = G=cos!|1-2
2¢g 8g L 8gL 8gL

14

b) Lol , w=v/L, L =I-L=MLy,

3 3y 3y v 3
v’ . =w Hy =— =L = 0P =y =2y
! 0 Y4 " 4L 4L L Py

vk s

L ow(I MLE) = ML

2
3 3 3,
At maximum height: lwaz =mgh = Hiye |2 =2Mgh = ~v=2gh = h =
2 2\3 4L 8 l6g
This is the height attained by the center of mass of the pendulum and projectile system. By symmetry, the

center of mass of the system is located 3L/4 from the top. So,

h 4 4 3y’ v’ v’
c0s6’=1——=1——h—1——~—”—1—L = 6’=cos_1(1— 0o

3L/4 3L 3L l6g  4glL 4gL
CALCULATE:
o (3.6 m/s)2
(a) @=cos™ | 1- =49.01°
8(9.81 m/s*)(0.48 m)
5 (3.6 m/s)2
(b) @=cos™|1- =71.82°
4(9.81m/s")(0.48 m)
ROUND: Round the results to three significant figures.
(a) =49.0°
(b) 6=71.8°

DOUBLE-CHECK: The rod swings higher. This is expected since the center of mass is higher than for the
pendulum. The projectile exerts a greater torque on the rod.

THINK: The quantity of interest can be calculated directly from the given information. m_=5.20 kg,
m, =3.40 kg, m =1.10kg, r,=0.900m, r,=0.860 m, #, =0.120 m and I=7, —7,.
SKETCH:

rim, m

513



Bauer/Westfall: University Physics, 2E

10.84.

1 1 . 1
RESEARCH: I, = 5 (rlz +r22) Lo = Emsl2 +md’, (with d=311+r,), I, =Emhrh2

SIMPLIFY: =1 +I,, +12I ., M=m +m, +12m, R=r,

CALCULATE: I = %s.zo 1<g((o.900)2 +(0.860)2) m” = 4,029 kg m”

L (340 kg)(0.120 m)’ =2.44810°* kg m’

Ihub = 5

spoke =

%(1.10 kg)(0.860 m—0.120 m)’ +(1.10 kg)(0.490 m)’ =3.143-10" kg m

I= 1+ Iy, #1210, =7.825 kgm’, M =[5.20+3.40+12(1.10) | kg =21.8 kg

spoke

2
e I _ 7.825 kgm —0.4431

MR*  (21.8 kg)(0.900 m)’
ROUND: Rounding to three significant figures, ¢ =0.443.
DOUBLE-CHECK: It is reasonable that the moment of inertia is dominated by the rim and the spokes,
and the hub is negligible.

THINK: To determine the angles in parts (a), the vertical and horizontal components of the velocity just
after impact must be determined. To determine the vertical velocity, consider the conservation of energy.
To determine the horizontal velocity, consider the linear and angular impulses experienced in either of the
following two situations. Situation I: The ball slips on the floor during the entire impact time. Kinetic
friction must be considered the entire time. Situation II: The ball stops slipping on the floor at some point
during the impact. From this point for the duration of the impact, rolling motion is attained, and the usual
equations relating-angular and rotational speeds are applicable.

SKETCH:
(7]
-'"h-“"
h i 5 ;
Lo
>

RESEARCH: Energy conservation is given by mgh=mv, /2. v, is the speed of the ball just prior to the

1
impact for the first time. Also, from energy conservation: mg&h ):—gw ?, where v, , is the vertical

2y

velocity just after the impact of the ball with the ground. Linear impulse is given by
[E(e)dt =p(t,)-p(t,)-
t
Angular impulse is given by jr(t)dt = L(tz ) - L(tl ) = I(a)0 -w, )
tl

SIMPLIFY: Just prior to impact: mgh=mv,’ /2 = v, =/2gh. Just after impact:

1
(xmgh=3mv2y2 = v,, =+2agh.
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Situation I:
n is the normal force and pn is the frictional force. The impulses are as follows:

Iyzt]n@)dtzm\f (= =v (1+f) o prt&'dt( Wl = = (&+vxf>nly= .
h I oo ;
(&%\/7)10(‘; (0= 5) = vy = (bﬁ'[)‘qs (]oﬁ-\/_gk/z_

I, Fn:]Rdt( RuE  Rym

r' NS
wz=wn—%Rum(l+\/;)vn=w0_§#m(1+\/;)@=wn_}zm_;u
J Wrda) | (lim)]

(a) tanf= [i

Vay \J20gh \/;
2v
(b) The time, ¢, it takes for the ball to fall is tagki = 31 2 = %.
& & g
The distance traveled during this timeis d =w, t = a(l + \/‘Eh)(1 2 )( ’%] =4 0&(1 + {1)(\/_) .
4
Rmv, . . .
(©) w,=w, - . The minimum w, occurs when Rw, =v, , where Rw, is the velocity of the contact
. R’mv, 1 Rm) v, mR’ y(l-i-\/;)VZgh ( mR?
point. Rw, . — =V, Wy =V | =t —— |=—= 1+ = 1+
' ' R I ) R I R U

Situation II:
After the ball stopsslipping, there-s‘a rolling motion and” w,R = v, . 'The impulses are as follows.

Iktmr_[dt( )”V= 220 Igpm'fRdt( ) w (“’o— }gl): )

= 1§ o ,)Rmv , =l Er O—V;"J:Rmv -

Solve for v, by substituting I = (2mR2 / 5) into the above equation to get:

2 v, 2 2) 2 5(2 2
EmRi{ 0—?)&%1} — -sza(RO . 2X)v: by =V 2x(1+gj=(,95-R0 = vy R;(E%RJZ; . -

[\

—w,R
(d) tan@=22x -7

vy,  AJ20gh

(e) dzwzgzi . Sah

7 8

tanf
partial
slipping

complete
slipping

i w
min (1]
(uﬂ
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CALCULATE: This step is not necessary.

ROUND: This step is not necessary.

DOUBLE-CHECK: When only partial slipping occurs, the horizontal distance traveled should and does
depend on w,.

Multi-Version Exercises

10.85. THINK: The length and mass of the propeller, as well as the frequency with which it is rotating, are given.
To find the kinetic energy of rotation, it is necessary to find the moment of inertia, which can be calculated
from the mass and radius by approximating the propeller as a rod with constant mass density.

SKETCH: The propeller is shown as it would be seen looking directly at it from in front of the plane.
(62) R

/"

=

RESEARCH: The kinetic energy of rotation is related to the moment of inertia and angular speed by the

equation K, =1I®”. The angular speed @ =27 f can be computed from the frequency of the propeller’s

rot

rotation. Approximating the propeller as a rod with constant mass density means that the formula
1
I= EmL2 for along, thin rod rotating about its center of mass can be used.

SIMPLIFY: Combine the equations for the moment of inertia and angular speed to get a single equation

1({ 1
for the kinetic energy K, =1lw’ =E(EmL2]~(27z f )2. Using algebra, this can be simplified to

K, = %(ﬂLf )2 . Since the angular speed is given in revolutions per minute, the conversion 1 minute = 60
seconds will also be needed.
CALCULATE: The propeller weighs m = 17.36 kg, it is L = 2.012 m long, and it rotates at a frequency of f

= 3280. rpm. The rotational kinetic energy is

Ko = (Lf)

. 2
1736 k8 (5012 m-3280. rpm AR
6 60sec

=345,461.2621]
ROUND: The values in the problem are all given to four significant figures, so the final answer should
have four figures. The propeller has a rotational kinetic energy of 3.455-10° ] or 345.5 kJ.
DOUBLE-CHECK: Given the large amount of force needed to lift a plane, it seems reasonable that the
energy in the propeller would be in the order of hundreds of kilojoules. Working backwards, if a propeller
weighing 17.36 kg and having length 2.012 m has rotational kinetic energy 345.5 k], then it is turning at
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1 |6K 1 -3.455:10°
f=— oL = 6:3455:10"] . This is 54.667 revolutions per second, which agrees with
7L\ m 7-2.012m 17.36 kg

the given value of 54.667-60 = 3280 rpm. This confirms that the calculations were correct.

K., =§(an)2

f — 1 6Kml

AN
1 6(422.8:10° )

= =57.8 rev/s =3470. rpm
7(2.092m)Y\ 1756 kg

K, = %(ﬂLf)z
6Krul
m= 2
(7Lf)

103
_ 6(1243:10° J) 1776k

[ﬂ'(l.SlZ m)(2160. rpm 6710 s/minﬂ

THINK: The total kinetic energy of the golf ball is the sum of the rotational kinetic energy and the
translational kinetic energy. The translational kinetic energy can be calculated from the mass of the ball
and the speed of the center of mass of the golf ball, both of which are given in the question. To find the
rotational kinetic energy, it is necessary tofind the moment of inertia of the golf ball. Though the golf ball
is not a perfect sphere, it is close enough that the moment of inertia can be computed from the mass and
diameter of the golf ball using the approximation for a sphere.

SKETCH: The golf ball has both rotational and translational motion.

v=51.85m/s

v

RESEARCH: The total kinetic energy is equal to the translational kinetic energy plus the rotational
kinetic energy K =K, +K,, . The translational kinetic energy is computed from the speed and the mass

trans rot

of the golf ball using the equation K, =Zmv’. The rotational kinetic energy is computed from the

trans

moment of inertia and the angular speed by K, =L1Io”. It is necessary to compute the moment of inertia

T2
and the angular speed. The angular speed @ =27 f depends only on the frequency. To find the moment of
inertia, first note that golf balls are roughly spherical. The moment of inertia of a sphere is given by
I=2mr’ . The question gives the diameter d which is twice the radius (d / 2 = r). Since the frequency is
given in revolutions per minute and the speed is given in meters per second, the conversion factor
1 min

60 sec

SIMPLIFY: First, find the moment of inertia of the golf ball in terms of the mass and diameter to get

will be necessary.

I=+Lmd*. Substituted for the angular speed and moment of inertia in the equation for rotational kinetic
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energy to get Kmt=%fa)2=%(%md2)(2ﬂf)z. Finally, use the equations K, =imv’ and

trans 2
K, = %(ﬁmdz )(277 f )2 to find the total kinetic energy and simplify using algebra:
K=K_, +K,,

trans
2
=1imv’ +%(%md2 )(27rf)
2
=L my’ +LIm(xdf)
CALCULATE: The mass of the golf ball is 45.90 g = 0.04590 kg, its diameter is 42.60 mm = 0.04260 m,

and its speed is 51.85 m/s. The golf ball rotates at a frequency of 2857 revolutions per minute. The total
kinetic energy is

K =1mv* +im(zdf)

2 1 min ’
=21(0.04590 kg)(51.85 m/s) +4(0.04590 kg)| 77 -0.04260 m -2857 rpm - "
sec

=62.07209955 ]
ROUND: The mass, speed, frequency, and diameter of the golf ball are all given to four significant figures,
so the translational and rotational kinetic energies should both have four significant figures, as should
their sum. The total energy of the golf ball is 62.07 J.
DOUBLE-CHECK: The golf ball’s translational kinetic energy alone is equal to
1(0.04590 kg )(51.85 m/s)2 =61.7], and it makes sense that a well-driven golf ball would have much

more energy of translation than energy of rotation.

K= Klrans +Krol =%mvz +%m(7rdf)2

1 K 1,
= —_— 5 _—
f zd (m ZVJ

1 67.67 1
= 5 ] ~=(54.15 m/s)’ | =47.79 rev/s = 2867 rpm
7(0.04260 m)Y\ " 0.04590 kg 2

K=K, +K, =tmv* +tm(zdf)

trans

y= 2(K l(ﬂdf)zj

m 5

2
= |2 _73s1) 1 +0.04260 m-2875 rpm L min/s | [=56.45m/s
0.04590 kg 5 60

THINK: The gravitational force on the block is transmitted through the rope, causing a torque on the
pulley. The torque causes an angular acceleration, and the linear acceleration is calculated from the
angular acceleration.
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Chapter 10: Rotation

SKETCH: Use the figure from the text:

1y,
mbgl

RESEARCH: The torque on the pulley is given by the tension on the rope times the radius of the pulley
7=TR. This torque will cause an angular acceleration 7 = I«, where the moment of inertia of the pulley is

givenby I= mpRz. The tension on the rope is given by T —m, g =—m,a (the minus indicates that the
block is accelerating downward). The linear acceleration of the block a is related to the angular
acceleration of the pulley « by the equation a=Rer .

SIMPLIFY: First, substitute for the tension on the pulley T =m, g —m,a in the equation for the torque 7 to

get 7=(m,g—mya)R . Then, substitute for the moment of inertia (I =m,R*) and angular acceleration
(a¢=a/R) in the equation 7 =Icr to get 7 = (mPR2 )(%) =m Ra. Combine these two expressions for the

torque to get (mb g—mba)RzmpRa. Finally, solve this expression for the linear acceleration a of the
block:
(mbg - mba)R =m,aR
m, gR—m aR+m aR =m aR+m aR
mygR= (mpR + mbR)a
mgR
m R+m R -
m,g

m, +my,
CALCULATE: The mass of the block is m, = 4.243 kg and the mass of the pulley is m, = 5.907 kg. The
acceleration due to gravity is -9.81 m/s’. So, the total (linear) acceleration of the block is

Lo Mg 981 m/s’ -4.243 kg
Cm +m, 5907 kg +4.243 kg
ROUND: The masses of the pulley and block are given to four significant figures, and the sum of their
masses has five figures. On the other hand, the gravitational constant g is given only to three significant
figures. So, the final answer should have three significant figures. The block accelerates downward at a rate
of 4.10 m/s’.
DOUBLE-CHECK: A block falling freely would accelerate (due to gravity near the surface of the Earth) at
a rate of 9.81 m/s* towards the ground. The block attached to the pulley will still accelerate downward, but
the rate of acceleration will be less (the potential energy lost when the block falls 1 meter will equal the
kinetic energy of a block in free fall, but it will equal the kinetic energy of the block falling plus the
rotational kinetic energy of the pulley in the problem). The mass of the pulley is close to, but a bit larger

a=

=-4.100869951 m/s” .
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than, the mass of the block, so the acceleration of the block attached to the pulley should be a bit less than
half of the acceleration of the block in free fall. This agrees with the final acceleration of 4.10 m/s?, which is
a bit less than half of the acceleration due to gravity.

10.92. a=—"08

mp+mh
mg g 9.81 m/s’
m, = -my, =m, | =-1|=(4.701kg)| ———-1[=5.95k
P ooa ° b(a j ( g)(4.330 m/s’ 8
1093, a=—8
m, +my,
mpzﬁ—mbzmb(g—l)
a a
o = m, _ 5.991r2n =516 kg
g 1 98lm/s
a 4.539 m/s’
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