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Abstract 

Prebaked anode quality is available through a weekly average of 
core sample laboratory measurements. Unfortunately, long delays 
between production and results (approximately 4-6 weeks) can 
lead to poor abnormal operation and faulty anode detection, and 
difficult process control. Extensive raw material and process data 
are available at Alcoa Deschambault smelter's carbon plant. 
Using projection to latent structures, a multivariate statistical 
method, it was possible to correlate raw material and process 
conditions to weekly lab results. The effect of different petroleum 
coke and coal tar pitch was analyzed and instant weekly 
prediction of anode properties was achieved. 

Introduction 

Baked anode properties are evaluated using core sample 
laboratory analysis. Usually, the number of samples taken during 
production (approximately 1%) is too small to accurately measure 
the variability of anode properties produced at the carbon plant. 
Weekly averaged data collected on a number of variables are used 
to monitor process performance and deviations. Furthermore, 
laboratory results used to monitor process performance are only 
available 4 to 6 weeks after the anodes have been produced. 
Typically, results are available after the anodes have been set in 
the pots. Detecting deterioration of anode properties and feedback 
correction of possible root-causes is slow due to these limitations. 
Critical process conditions are monitored at a much higher 
frequency at the green mill and baking furnace, but final product 
quality cannot be measured online. 

Alcoa Deschambault has an extensive database on raw material 
properties, green mill and baking furnace operating conditions. 
Industrial databases are often not exploited to their full potential 
due to the enormous quantity of information that needs to be 
analyzed to extract useful information. The goal of this analysis 
was to use Deschambault's process database to model and explain 
variability in baked anode properties. Using multivariate statistical 
techniques, it is possible to correlate variations in raw material 
properties and process operating conditions to variations in anode 
properties. Using this model, it is possible to investigate which 
combinations of parameters have the greatest influence on anode 
property variation and to predict anode properties on a weekly 
basis. This analysis is based on historical process data, with no 
special measurements other than data normally collected during 
plant operation. It will be demonstrated that traceability of the 
effects of raw material on anode quality can be achieved. 

This paper explains in detail how the analysis was performed. 
First, the dataset used for the study is described in detail. A brief 
description of the method used is presented, followed by an 

investigation of the causes of anode quality variations. Finally, the 
anode quality prediction will be discussed. 

Process and data 

The data used in this article were collected from the Alcoa 
Deschambault smelter (ADQ), located in Deschambault near 
Quebec City. The ADQ smelter operates 264 AP-30 reduction 
cells with 40 anodes each. The smelter's carbon plant produces 
more than 150 000 anodes annually in order to fulfill the potroom 
needs. The green anode plant has a capacity of 30 tons per hour 
with continuous mixers and vibrocompactors. There are two 
baking furnaces with 34 sections each. Weekly data was collected 
from: raw material lab analysis and supplier's certificate of 
analysis (COA), green mill process and baking furnace data 
historian, and core sample laboratory analysis. The time spanned 
by the dataset is from December 29, 2008 to July 26, 2010 for a 
total of 82 weeks. During this period, Deschambault used 6 
different coke suppliers and 2 pitch suppliers. The anode recipe 
usually combines 2-3 types of cokes and a single type of coal tar 
pitch. The different raw material blends used throughout the 
analysis period are presented in Table I. 

Table I: Raw material blends processed during the analysis period. 

1 
2 
3 
4 
5 
6 

A 
A 
A 
A 
D 
D 

B 
C 
C 
C 
E 
F 

D 
D 
E 
E 
-
-

1 
1 
1 
2 
2 
2 

*Coke suppliers are identified by letters A-F and pitch suppliers 
with numbers 1-2. 

Deschambault has some blending capability that was discussed in 
the paper by Gendron et al. [1]. All the data presented in this 
paper have been mean-centered and scaled to unit variance (i.e. 
auto-scaled). The variables included in the analysis are presented 
in Table II. 

Multivariate analysis 

The dataset used in this analysis contains a large number of 
variables. Industrial databases are noisy and typically contain a 
certain percentage of missing data. The variables are also 
generally highly collinear. All of these situations can cause 
problems when using classical multilinear least-squares regression 
analysis. To handle these data issues, a multivariate latent variable 
called Projection to Latent Structure (PLS) was used. 
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Table II: Variables included in the analysis divided into a regressor block X and a response block Y 
VarlD 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

X-variable 

Coke real density 
Coke Na 
Coke Ca 
Coke S 
CokeV 
Coke app dens 
Ree butts Ca 
Ree butt Na 
Ree butt S 
Ree butt V 
Ree butt Na/Ca 
Pitch SP 
Pitch TI 
Pitch QI 
Pitch Coking val 
Pitch S 

VarlD 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

X-variable 

Pitch Dist 
VC bellows P 
% Pitch 
% Coarse 
% Inter 
% Fines 
% Butts recyc 
% Green recyc 
Coarse Rt4 
Inter Rt50+RtlOO 
Fines Pt200 
Butts ree Rt3/8 
Butts ree Rt3/8+Rt4 
Aggregate Rt3/8 
Aggregate Pt200 
Green app dens 

VarlD 

33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

X-variable 

Mixer lpower 
Mixer 1 delta power 
Mixer 2 power 
Mixer 2 load 
HX paste T 
Pitch Temp 
Pitch/paste Temp delta 
% Green scrap 
Fire weight loss 
Baked weight 
Fire cycle time 
Fire start Temp 
Fire final Temp 
% Baked scrap 

VarlD 

47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

Y-variable 

% Air dust 
%AirRx 
%C02dus t 
% C 0 2 R x 
Flexu Strength 
Fracture Energy 
Thermal conduc 
Coeff Expansion 
Elee resistance 
Lc 
Young Mod 
App dens baked 
Real dens baked 

This technique, and other multivariate methods, have been 
presented in recent TMS papers [2-5] for the analysis of primary 
aluminum smelter data and in other journals for different 
applications [6]. The PLS regression method uses all the available 
X and Y variables and projects them onto a lower dimensional 
subspace called the latent variable space. These new latent 
variables (LV) are a linear combination of the original variables 
and are computed so as to maximize the covariance between the X 
and Y variables. The latent variables can be viewed as a small 
number of lurking variables driving the process, and hence the X 
and Y data, in certain correlated directions. The structure of the 
PLS model is shown below. 

X = TP1+E 
Y = TQT + F 
T = XW* 
w* = w^wy1 

(1) 
(2) 
(3) 
(4) 

VIPM = >/jL;>*,(SSYa/SSY,0,) (5) 

In the equations above, the P and Q matrices contain the loading 
vectors that best represent the X and Y spaces respectively, 
whereas W* contains the loading vectors that define the 
relationship between the X and the Y spaces. Projection residuals 
of each space are stored in E and F. The variable importance in 
projection (VIP) is an indication of the importance of a variable in 
predicting the Y space. In the equation (5), waj is the loading 
weight of the j t h variable in the ath PLS latent variable, SS Ya is the 
sum of squares of Y explained by the a* LV of the PLS model 
and SS Ytot is the sum of squares of Y explained by the model. 

Results 

PLS regression model 

A PLS regression analysis was performed on the dataset which 
contains 82 observations, 46 X-variables and 13 Y-variables. The 
model contains five latent variables (LVs). They were selected by 
a cross-validation procedure to maximize predictive ability and to 
minimize overfitting. This technique leaves a randomized group 
of observations out of the dataset. A PLS model with a latent 
variables is built on the remaining observations, and then used to 

compute the prediction error sum of squares (PRESS) of the group 
of data left out of the model. This procedure is repeated until each 
observation (i.e. row of X and Y) have been left out once. The 
overall prediction error sum of squares for a PLS model with a 
latent variables PRES S (a) is then computed. The selected number 
of LVs (a) is that one minimizing prediction errors (PRESS). A 
summary of the model is presented in Table III. It shows the 
cumulative variance of the X and the Y (R2X and R2Y) data 
blocks explained by the first 5 PCs, as well as the cumulative 
variance of Y predicted by the model (Q2) through the cross-
validation procedure. 

Table III: PLS regression model overview 
PC R2X(cum) R2Y(cum) Q2(cum) 

1 
2 
3 
4 
5 

0,225 
0,316 
0,394 
0,449 
0,501 

0,263 
0,395 
0,451 
0,498 
0,527 

0,237 
0,346 
0,372 
0,381 
0,379 

A cumulative Q value of 0,379 appears low, but this value is an 
overall value computed from all thirteen Y variables. Individually,, 
most variables have good predictions. This is shown in Table IV. 
The same comment applies to the explained R2X and R2Y, some 
variables are well explained and some are not which lowers the 
overall variance explained. Table IV lists the variance explained 
for each individual Y variables. 

The fit or variance explained (R2Y) for this model ranges from 
0,300 to 0,712. Some would consider such a fit as low, but these 
are good results considering the industrial nature and the level of 
noise in the data as well as the uncertainties related to the 
measurement of raw material properties and the residence time 
within each piece of equipment. The same comments apply to the 
variance predicted (Q2) which ranges from 0,126 to 0,610. For 
some variables, (i.e. Coeff Expansion and Young Mod) the 
prediction ability of the model is low, but it can be considered 
good for most variables. 
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Figure 1: Some raw material properties and process conditions variations. 

Table IV: Variance explained for each Y variables 
R2Y(cum) Q2(cum) Var ID Variable 

and pitch ratio) with the three different groups of similar process 
conditions identified. 

Table V: VIP 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

% Air dust 
% Air Rx 
% C02 dust 
% C02 Rx 
Flexion Strength 
Fracture Energy 
Thermal Conduc 
Coeff Expansion 
Elee Resistance 
Lc 
Young Mod 
App Baked Dens 
Real Baked Dens 

0,505 
0,583 
0,495 
0,559 
0,712 
0,501 
0,509 
0,300 
0,675 
0,613 
0,362 
0,664 
0,450 

0,341 
0,450 
0,318 
0,381 
0,610 
0,253 
0,354 
0,126 
0,520 
0,514 
0,186 
0,549 
0,341 

From the PLS regression model using 5 LVs a list of the 15 most 
important variables in the prediction (VIP) is presented in Table 
V, As a rule of thumb, as discussed in papers by Chong and Jun 
and Ericksson et al [7, 8], variables having a VIP over 1 are 
considered important. Most of the variables listed in Table V are 
raw material properties. This was expected since Deschambault 
dealt with six different coke-pitch blends (i.e. different coke/pitch 
supplier combinations) over the time spanned by this analysis. 
However, more operating conditions were expected to show a 
greater influence on the model. For example coke or dry blend 
size distribution for coarse, intermediate and fines fractions and 
their ratio in the dry blend mix all had a VIP of less than 1. This 
can be explained by their lack of variability in the dataset. Except 
for the pitch ratio in the paste, almost all other operating 
conditions in the green mill were kept constant. A design of 
experiments on the operating conditions would have enabled the 
capture of more information from the process variables. Figure 1 
shows the variation in some coke properties, pitch QI and two 
process operating conditions (vibrocompactor bellows pressure 

Rank Var ID Variable 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

42 
9 
18 
10 
19 
4 
14 
10 
45 
13 
43 
32 
15 
1 

24 

Baked weight 
Ree butt S 
VC bellows P 
Ree butt V 
% Pitch 
Coke S 
Pitch QI 
CokeV 
Fire final T 
Pitch SP 
Fire cycle t 

VIP 

1,539 
1,518 
1,458 
1,421 
1,413 
1,369 
1,345 
1,297 
1,252 
1,239 
1,216 

Green app density 1,203 
Pitch Coking val 
Coke real dens 
% Green ree 

1,178 
1,173 
1,070 

Process variability investigation 

One of the goals of this analysis was to investigate process 
variability. The plot of the first two latent variables (ti and t2), 
shown in Figure 2, provides an overview of the information 
captured by the PLS model on the joint X-Y data blocks. The first 
two LVs are shown because they explain approximately 80% of 
the modeled variability of the Y variables (i.e. 39,5% out of the 
52,7% of the 5 LVs). Some information can be contained in the 
three other latent variables (around 20%). The results presented in 
this paper focus on the first two LVs for brevity and also because 
most of the important information is carried in these two LVs. The 
82 markers within this plot correspond to the projection of each 
multivariate observation onto the plane formed by the first two 
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principal components. Weekly observations projected within a 
similar region of the t r t2 score plot show similar patterns in their 
data structure, hence similar in the latent variable space (i.e. 
similar combinations of raw material properties, recipes, process 
conditions and anode properties) whereas those falling in distinct 
regions are different. 

� Blend 1 -Blend2 * Blend 3 
� Blend 4 * Blend 5 * Blend 6 

Figure 2: Scatter plot of the first two latent variables of the PLS 
model. 

Three distinct clusters are observed in Figure 2. Group 1 
represents baked anodes produced from December 29, 2008 to 
July 13, 2009, group 2 represents anodes manufactured between 
September 14, 2009 and January 18, 2010, and group 3 between 
January 25, 2010 and July 26, 2010. The different causes leading 
to process movement in the latent variable space will be analyzed. 
One of the tools that can be used for interrogating the PLS model 
is the contribution plot, indicating which variables are associated 
with a movement in the t r t2 latent variable space. Figure 3 
represent changes from group 1 to group 2 and Figure 4 represents 
changes from group 2 to group 3. 

Figure 3: Contributors to changes from group 1 to group 2 

The first transition between groups 1 and 2 is associated with 
several different factors. The first contribution comes from the 
sulfur and vanadium content of the coke and recycled butts. This 
change started with blend number 3 due to the change from coke 
D to coke E. The transition was accentuated by the change in 
pitch supplier which can be seen by the pitch coking value, 
quinoline and toluene insolubles. The pitch ratio in the anode was 

continuously raised during that period to compensate for the 
increase in QI content and to meet green weight set-point. There 
was also a step change in the pressure applied on the anode during 
vibrocompaction and it has been kept constant since then. Green 
apparent density (GAD) went up in correlation with the pitch 
ratio. There was a major change in the baked weight. This might 
be due to the pitch supplier change. The new pitch has a much 
higher QI and coking value which will lead to more binder 
cokιfaction in the furnace, as discussed in [9, 10]. 

Variables 

Figure 4: Contributors to changes from group 2 to group 3 

Differences between group 2 and group 3 are also due to raw 
material variations. Coke real density in the new coke blend was 
lower and these affected GAD, pitch demand and baked weight. It 
should be noted that process operating conditions except from 
pitch ratio and vibrocompactor bellows pressure, were kept 
constant during the time spanned by the analysis. Thus it is not 
possible to capture the effect of most process variables since they 
were not changed during the time period considered. 

Table VI: Average Y predicted for the three different operating 
groups (auto-scaled values) 

Ypred- variable 

% Air dust 
%AirRx 
% C02 dust 
% C02 Rx 
Flexu Strength 
Fracture Energy 
Thermal conduc 
Coeff Expansion 
Elee resistance 
Lc 
Young Mod 
App dens baked 
Real dens baked 

Group 1 

0,183 
-0,666 
-0,584 
0,670 
-0,952 
-0,689 
-0,749 
0,328 
0,878 
0,700 
0,486 
-0,439 
0,725 

Group 2 

-0,623 
0,975 
0,265 
-0,289 
0,725 
0,280 
0,575 
0,056 
-1,064 
0,049 
-0,371 
1,054 
-0,406 

Group 3 

0,245 
-0,032 
0,635 
-0,735 
0,479 
0,723 
0,340 
-0,584 
-0,091 
-0,992 
-0,444 
-0,450 
-0,542 

Averaged autoscaled predicted values for each group are listed in 
Table VI. Group 1 has the best C02 reactivity. Group 2 has the 
best air reactivity; this can be linked to the lower content of sulfur 
and vanadium during that period. The real baked density was 
higher in group 1 since coke real density has been gradually 
decreasing over time. Lc in baked anode seems to be highly 
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correlated to coke real density. Baking final temperature was 
increased from group 1 to group 2, but the Lc has decreased. It is 
difficult to determine which group was better in terms of 
mechanical properties. Electrical resistance and baked apparent 
density were higher in group 2. This could be due to higher QI 
and coking value in the pitch used during that period. It is difficult 
to determine which of the 3 operational regions led to the best 
overall anode quality when looking at the quality variables one at 
a time. An important input would be to know which group had the 
best behavior in the potroom. 

Prediction of anode properties 

The second goal of this analysis is to predict anode quality 
variables. Figures 5 to 8 represent the predicted and measured 
values on time series graph for Lc, Electrical resistance, % CO2 Rx 
and % Air dust. The operational groups described earlier are 
marked on the charts. The variance explained by the model for 
each of these variables is listed in Table IV. The prediction model 
can be useful for a faster detection of large deviation in anode 
properties. Usually, complete lab results of anode core sample are 
available only 4 to 6 weeks after sampling. Being able to instantly 
estimate anode properties fabricated during the week can lead to 
earlier process deviation detection and faster problem solving. 
Therefore, such a tool would enable process engineers and 
technical staff to operate the carbon plant and baking furnace 
closer to the optimum production state, with respect to anode 
properties. However, the laboratory analysis of core samples will 
always be needed to validate model predictions. 

Figure 5: Measured and predicted values for Lc 

Figure 6: Measured and predicted values for Electrical resistance 

Weekly obs. 

Figure 7: Measured and predicted values for % C02 Rx 

Figure 8: Measured and predicted values for % Air dust 

Conclusions 

The goals of this analysis were to investigate the causes of anode 
quality variability and the possibility to predict anode quality 
using raw material and process information. Using the projection 
to latent structure regression method, correlations between process 
data and anodes quality were modeled. Most of the variability 
affecting anode quality came from raw material variations (coke 
and pitch binder) mainly due to supplier changes. Since process 
conditions were kept constant, no variability could be captured. 
Variation within the same suppliers could be explored by 
performing separate analysis on each blend. It was also 
demonstrated that it is possible to predict a number of anode 
quality variables. Variance captured by the model (obtained by 
cross validation) ranged from 0,186 to 0,610. Variables with 
higher explained variance can be predicted on a weekly basis and 
at least 4 weeks before laboratory results. This can help in 
detecting problems, investigating them and taking corrective 
action much faster than when one has to wait for laboratory 
results. 
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