

*للحصول على أوراق عمل لجميع الصفوف وجميع المواد اضغط هنا https://almanahj.com/eg

* للحصول على أوراق عمل لجميع مواد الصف الثالث الإعدادي اضغط هنا https://almanahj.com/eg/9

* للحصول على جميع أوراق الصف الثالث الإعدادي في مادة علوم ولجميع الفصول, اضغط هنا https://almanahj.com/eg/9science

* للحصول على أوراق عمل لجميع مواد الصف الثالث الإعدادي في مادة علوم الخاصة بـ الفصل الأول اضغط هنا

https://almanahj.com/eg/9science1

* لتحميل كتب جميع المواد في جميع الفصول للـ الصف الثالث الإعدادي اضغط هنا https://almanahj.com/eg/grade9

Questions

(A) Write the scientific term for each of the following:			
1- The change of object's position as time passes.	()		
2- The physical quantity that is used to describe an	d measure the		
movement of objects.	()		
3- The distance covered through a unit time.	()		
4- The change of object's position by equal distance	es at equal time intervals.		
	()		
5- The change of object's position by unequal dista	nces at equal time		
intervals.	()		
6- The total distance covered by the moving object	divided by the total time		
taken to cover this distance.	()		
7- The speed of a moving object relative to the observer.			
	()		
8- The change of an object's speed in one second.	()		
9- The change of object's speed by equal values the	rough equal time		
intervals.	()		
10- The physical quantity that has magnitude only.	()		
11- The physical quantity that has magnitude and direction.			
	()		
12- The actual length of the path that a moving obje	ect takes from the start		
point to the end point.	()		
13- The length of the shortest straight line between two positions (primar			
and final position).	()		
14- The distance covered by the object in a certain	direction.		
	1		

(B) Give reason for:

- 1- Train motion is considered from the motion in one direction.
- 2- The object's speed increases as time decreases to cover the same distance.
- 3- It is difficult to measure regular speed practically.
- 4- The moving car seems stable to an observer moves with the same speed and direction.
- 5- Length & time are scalar physical quantities.
- 6- Force & displacement are vector physical quantities.
- 7- Pilots take in consideration the velocity of the wind.

(C) What is meant by:

- 1- A train covers a distance 150 km in 2 hours.
- 2- A car moves with uniform speed 120 km/h.
- 3- The speed of a car equals zero.
- 4- The average speed of a moving car is 40 km/h.
- 5- An object moves with acceleration = 5 m/s²
- 6- A body moves with negative acceleration equal = -2 m/s².
- 7- A car moves at uniform acceleration = 10 m/s2.
- 8- The displacement of Alexandria from Cairo is 200 km. in western north direction.
- 9- Average velocity of a moving car is 60 km/h.

(D) Which of the following graphs represents the movement of an object at:

- 1- Uniform speed.
- 2- Non-uniform speed.
- 3- Uniform acceleration.
- 4- Increasing acceleration
- 5- Decreasing acceleration.
- 6- Zero acceleration.
- 7- Rest.

(E) Problems

- A racer covered a distance of 100 meter in 10 sec. in a straight line then
 he returned back walking in 80 sec. calculate the racer's speed while
 running, while returning back and during the whole trip.
- 2) Two cars move in the same direction car (A) moves at speed 30 Km/h and car (B) moves at speed 80 Km/h, while car (C) moves in the opposite direction at speed 40 Km/h calculate the relative speed of car (B) relative to an observer

1- Stand on the ground.

2- in car (A).

3- in car (C)

- A train travels from Cairo to Alexandria a distance of 250 km in 2 hours find it's Speed.
- 4) A Boeing Plane moved from Aswan to Cairo in one hour it Covers a distance of 1000km. Calculate the reading of The Speedometer by (km/h & m/s) if you know that the Plane moves with regular Speed.
- 5) Two trains move parallel to each other but in opposite direction, the speed of the first train 60 km/h and the second is 90 km/h Calculate The relative speed of the first that observed by passengers in the second train.
- 6) If a bus moves on a straight line, it's speed change from 8 m/s. to 20 m/s. within a period of 3 sec. What is the amount of acceleration?
- 7) Within 2.5 sec. the speed of a car reached 65 m/s with acceleration 2 m/s² calculate the initial speed of the car.

4

- 8) car moves at speed 60 m/s, then the driver used the break to stop the car through 20 sec. calculate the acceleration with which the car moves and mention its type?
- 9) if an object moves from rest regularly until its speed reaches 10 m/s after 2 sec. from the start of moving, therefore :
 - a) The change of speed through the two seconds =m/s
 - b) The change of speed through one second =m/s
 - c) Acceleration =m/s².
- 10) If a body starts its motion from point (a) covered 30 m. northward till point (b) within 30 sec, then 60 m. eastward till point (c) within 20 sec. then 30 m south world till point (d) within 10 sec. as shown in the figure calculate:
 - The total distance.
 - The total time.
 - The displacement.
 - The average speed & average velocity of the body.

- 11) If a body moves from the point (a) to the point (c) passing by the point (b) then returning back to (C) as shown in the figure calculate:-
- 1- The distance covered by the body.
- 2- The displacement done by the body.
- 3- The average speed.
- 4- The average velocity.

Mid-Term- First Term

(F) Complete the following figures :-

Unit (2) Light energy

<u>(</u>	Give Scientific term.	
1-	Angle of incidence = Angle of reflection.	()
2-	The light ray that falls on reflecting surface.	()
3-	The change of direction of light ray in the same m	rediams.
		()
4-	A mirror which gives virtual, erect and equal in size	ze image for an object.
		()
5-	A straight line connecting the center of curvature	of the mirror and any
	point on its surface besides the poles of the mirro	ors.
		()
6-	The distance between the pole of the mirror and i	ts focus.
		()
7-	The image formed by the convex mirror that can't	be received on the
	screen.	()
8-	The image which is formed due to the collection of	of the refracted rays and
	can be received on a screen. ()
(2	Complete:	
1-	The phenomenon of the light bouncing off in the	same medium when it
	meets the reflecting surface is called	
2-	When a light ray falls perpendicular on a reflectin	g surface, its angle of
	reflection equals	
3-	Mirrors are surfaces for light, they ma	v he or
-		,
1	Convex mirror light rays after reflect	tion
4-	Convex minor liunt ravs after reflect	uon.

Mid-Term- First Term

5- The point that is in the middle of the reflecting surface of the spherical
mirror is called
6 is any straight line that passes by the center of curvature of
the mirror and any point on its surface except pole.
7- Focal length =
8- The radius of the concave mirrors equals of its focal length.
9 image can be received on a screen, while image
can't.
10- If an object put at of the concave mirror, a real
image and equal to the object is formed.
11- To obtain a magnified erect image for your face, you should stand in
front of a concave mirror at distance
12- A convex mirror has a focal vertex of 20 cm. Then half the diameter of
its spherical surface equals
13- When an object is placed between the focus and the center of curvature,
the formed image is real and
14- The normal person can see clearly the near objects at distance less
than and far objects at a distance up to
15- 45°

(3) Give reason for:

- 1- The perpendicular incident light ray on a plane mirror reflects on itself.
- 2- The word AMBULANC is written in a converted way on the ambulance.
- 3- The spoon made of silver is a spherical mirror.
- 4- Concave mirror is used for solar ovens.
- 5- The convex mirror is called diverging mirror.
- 6- The focal length of a spherical mirror can be determined by knowing its radius.

(4) Problems:

- 1) If the measure of the angle between the incident ray and reflected ray is 140, find the angle of incidence and the angle of reflection? What is the relation between them?
- 2) A person stands infront of a plane mirror at a distance of 10 meters. What is the distance he must move so that the distance between him and his image becomes 6 meters?
- 3) Find the focal length of a concave mirror that its diameter is 20 cm.

Model Answers

A) Write the scientific term:

1- motion 2- speed

3- speed 4- uniform "regular" speed

5- Non-uniform "irregular" speed. 6- Average speed

7- relative speed 8- Acceleration

9- Uniform acceleration 10- Scalar physical quantity

11- vector physical quantity 12- Distance

13- Displacement 14- Displacement

(B) Give reason:

- 1- Because train moves in straight line forward or backward but it doesn't move upward or downward.
- 2- Because speed = $\frac{distance}{time}$, so speed is directly proportional to the distance.
- 3- Because car's speed changes according to traffics.
- 4- Because relative speed equals zero.
- 5- Because they have magnitude only & have no direction.
- 6- Because they have magnitude & direction.
- 7- Because when the plane flies against the wind direction, it consumes more fuel than when it flies in same direction of wind.

(C) What is meant by:

- 1- The speed of the train is 75 km/h.
- 2- The car covers 120 km every one hour.
- 3- The car is at rest.
- 4- The total distance covered by the car divided by the total time taken to cover this distance equals 40.
- 5- The body's speed increases by 5 m/sec. each one second.
- 6- The body's speed decreases by 2 m/s each one second.
- 7- The body's speed changes with (10 m/s) equal values through equal periods of time.
- 8- The length of shortest straight line between Alexandria & Cairo in western north direction equals 200 km.
- 9- The rate of change of displacement of the car is 60 km/h.

(D)

(E) Problems

1) V (while running) =
$$\frac{d}{t} = \frac{100}{10} = 10 \text{ m/s}$$

V (while returning) =
$$\frac{d}{t} = \frac{100}{80}$$
 = 1.25 m/s

$$\overline{V} = \frac{100 + 100}{10 + 80} = 2.2 \text{ m/s}$$

- 2) 1- relative speed = 80 km/h
 - 2- relative speed = 80 30 = 50 km/h.
 - 3- relative speed = 80 + 40 = 120 km/h.

3)
$$V = \frac{d}{t} = \frac{250}{2} = 125 \text{ km/h}.$$

4) Speed =
$$\frac{d}{t} = \frac{1000}{1} = 1000 \text{ km/h}.$$

= $1000 \times \frac{1000}{60 \times 60} = 277.7 \text{ m/s}$

5) Relative speed = 90 + 60 = 150 km/h

6) a =
$$\frac{final\ speed-initial\ speed}{t}$$
$$= \frac{20-8}{3} = 4 \text{ m/s}^2$$

7)
$$t = 2.5 \text{ sec.}$$
 $v_2 = 65 \text{ m/s}$, $a = 2 \text{ m/s}^2$
 $\Delta v = a \times t$
 $= 2.5 \times 2 = 5 \text{ m/s}$
 $\Delta v = v_2 - v_1$
 $v_1 = v_2 - \Delta v$
 $= 65 - 5 = 60 \text{ m/s}$

8)
$$V_1 = 60 \text{ m/s}$$
, $V_2 = 0$, $t = 20 \text{ sec.}$
$$a = \frac{v_2 - v_1}{t} = \frac{0 - 60}{20} = -3 \text{ m/s}^2 \quad \text{(-ve acceleration or deceleration)}$$

9)
$$V_1 = 0$$
 , $V_2 = 10 \text{ m/s}$, $t = 2 \text{ sec.}$

a)
$$\triangle V = V_2 - V_1 = 10 - 0 = 10$$
 m/s

b)
$$\Delta v = 5 \text{ m/s}$$

c) a =
$$\frac{10-0}{2}$$
 = 5 m/s²

10)

$$-\overline{V}$$
 (average speed) = $\frac{total\ distance}{total\ time} = \frac{120}{60} = 2$ m/s

- Average velocity =
$$\frac{total\ displacement}{total\ time}$$

= $\frac{60}{60}$ = 1m/s in east ward direction

2- displacement = 25 m in direction
$$\overrightarrow{AC}$$

3- Average speed =
$$\frac{total\ distance}{time}$$

= $\frac{35}{15}$ = 2.3 m/s

4- Average velocity =
$$\frac{total\ displacement}{time}$$

= $\frac{25}{15}$ = 1.6 m/s in direction \overrightarrow{AC}

(F) Complete the following figures:

Answer by yourself

Unit (2)

(1) Give the scientific term:

1- 1st law of light reflection 2- reflecting light ray

3- reflection of light 4- plane mirror

5- secondary axis of mirror 6- focal length

7- virtual image 8- real image

(2) Complete:

1- light reflection 2- zero

3- reflecting, plane and spherical 4- diverge

5- pole of the mirror 6- secondary axis of mirror

 $7-\frac{radius}{2}$ 8- twice

9- real , virtual 10- center , inverted

11- Less than focal length 12- 40 cm

13- magnified and inverted 14- 25 cm , 6 meters

15-

(3) Give reason for:

- 1- Because incidence angles = angle of reflection = zero
- 2- To be seen erect by plane mirror of the car behind it.
- 3- Because it consists of two faces the forward face concave mirror but the back is convex mirror.
- 4- Because it collects the sun rays in a focus so it can cook food faster.
- 5- Because it diverge the rays after reflection and forms virtual image.
- 6- Because the radius = 2 × focal length.

(4) Problems:

Incidence angle = reflect angle

2) 7 meter

 $r = \frac{1}{2} d$

Focal length =
$$\frac{20}{4}$$
 = 5 cm

$$r = \frac{1}{2} \times 20 = 10 \text{ cm}$$
, $F = \frac{1}{2} r = 5 \text{ cm}$

س ١: اكتب المفهوم العلمى:

- ١ تغير موضع الجسم مع الزمن .
- ٢- مثال لنوع من أنواع الحركة في إتجاه واحد.
 - ٣- العاملان المؤثران في سرعة أي جسم.
 - ٤- المسافة المقطوعة خلال وحدة الزمن.
- ٥- السرعة التي يتحرك بها الجسم فيقطع مسافات متساوية في أزمنة متساوية .
 - ٦- حاصل قسمة المسافة على الزمن .
- ٧- السرعة التي يتحرك بها الجسم فيقطع مسافات متساوية في أزمنة غير متساوية .
 - ٨- وحدة قياس السرعة .
 - ٩- وحدة قياس السرعة في حالة القطارات والطائرات.
 - ١٠- المسافة الكلية التي تحركها الجسم على الزمن الكلي .
- ١١- السرعة المنتظمة التي يتحرك بها الجسم فيقطع نفس المسافة في نفس الزمن .
 - ١٢- سرعة جسم متحرك بالنسبة لمراقب معين.
 - ١٣ ناتج قسمة تغير السرعة على تغير الزمن الذي حدث فيها التغير .
 - <u>کع</u> -۱٤
 - ١٥ مقدار سرعة الجسم يتعين بالنسبة لمراقب معين.
 - ١٦ كمية فيزيائية لها مقدار وليس لها إتجاه .
 - ١٧ وحدة قياس الكتلة .
 - ١٨ أقصر خط مستقيم بين موضعين .
 - ١٩ المسافة المقطوعة في إتجاه ثابت .
 - ٢ طول المسار الفعلى الذي يسلكه الجسم من البداية للنهاية .

- ٢١ مقدار الإزاحة على الزمن الكلى .
- ٢٢ مقدار الإزاحة في الثانية الواحدة .
- ٢٣ كميات فيزيائية يلزم لتحديدها معرفة مقدارها واتجاهها .
 - ٢٤ كميات فيزيائية مثل (الكتلة الزمن المسافة)
- ٢٥ كميات فيزيائية مثل (السرعة المتجهة الإزاحة العجلة)

0.50	20 3			
**1 .	1 . 1	.<1		Ψ
يأتى	w			ושטו
			_	

١) السرعة =
٢) تقاس السرعة بوحدة أو
٣) تنقسم الحركة إلى و
٤) وحدة قياس سرعة الطائرات والقطارات
٥) من أنواع السرعة و
٦) إذا تحرك الجسم فقطع مسافات متساوية في أزمنة متساوية فإنه يتحرك بـ
$= \frac{1}{2} = \frac{1}{2}$ السرعة المتوسطة = $\frac{1}{2} = \frac{1}{2}$
٨) معدل تغير السرعة مع الزمن هي
٩) معدل تغير المسافة مع الزمن
١٠) من أمثلة الكميات القياسية و
١١) من الكميات المتجهة و
١٢) يلزم لتعريف الكمية القياسية معرفة فقط .
١٣) يلزم لتعريف الكمية المتجهة معرفة و
١٤) السرعة المتجهة =
١٥) الإزاحة كمية والمسافة كمية
١٦) حاصل ضرب السرعة في الزمن =
١٧) وحدة قياس العجلة

(۳) مسائل

- ١) يقطع أحد المتسابقين بدراجته ٣٠٠ م خلال دقيقة واحدة و ٤٢٠ متراً خلال الدقيقه الثانية . احسب السرعة المتوسطة ؟
 - ٢) سيارة تبدأ حركتها من السكون ثم تزيد سرعتها لتصل ٦٠ كم / ساعة خلال خمس ثوانى .
 احسب العجله وبين نوعها ؟
 - (٣) قطع متسابق ٥٠ م خلال ٣٠ ثانية شمالاً ثم ١٠٠ م شرقاً خلال ٦٠ ثانية ثم ٥٠ م جنوباً خلال ١٠ ثوانى ثم عاد إلى نقطة البداية خلال ٤٠ ثانية .
 - احسب: أ) المسافة الكلية.
 - ب) السرعة المتوسطة.
 - ج) الإزاحة .

الوحدة الثانبة

س ١ : اكتب المفهوم العلمى :

	84 10 10 00 00 00 00 00 00 00 00 00 00 00
()	١) أسطح عاكسة للضوء .
()	٢) خاصية ارتداد الضوء عندما يقابل سطح عاكس .
()	٣) زاوية السقوط = زاوية الانعكاس
قام يقعوا جميعاً في مستوى	٤) الشعاع الضوئي الساقط والشعاع الضوئي المنعكس والعمود الما
()	أفقى واحد عمودى على السطح العاكس .
()	٥) المرايا التي يكون سطحها العاكس جزء من كرة .
()	٦) الشعاع الذي يرتد عن السطح العاكس.
ور الأصلى .	٧) نقطة تلاقى الأشعة المنعكسة التي سقطت متوازية وموازية للمح
()	
()	٨) نقطة تتوسط السطح العاكس للمرآة .
()	٩) البعد بين البؤرة الأصلية وقطب المرآة .
()	١٠) المستقيم الواصل بين قطب المرآة ومركز التكور .
لاف قطبها .	١١) المستقيم الواصل بين مركز التكور وأى نقطة على سطحها خا
()	
	س۲: بم تفسر:
	١) الشعاع الساقط عمودياً ينعكس على نفسه .
	٢) الصورة في المرآة المستوية تقديرية
بؤرى تتكون له صورة حقيقية .	٣) إذا وضع جسم أمام مرآة محدبة على بعد يساوى ضعف البعد ال

٤) إذا وضع جسم عند البؤرة أمام عدسة محدبة لا تتكون له صورة .

س٣: أكمل مسار الأشعة:

- ارسم خصائص الصورة لجسم موضوع على بعد بين البؤرة ومركز التكور أمام مرآة مقعرة

- ارسم خصائص الصورة لجسم موضوع أمام مرآة مقعرة على بعد أكبر من مركز التكور

س ١ : اكتب المفهوم العلمى :

١ - الحركة

٣- المسافة / الزمن

٥- سرعة منتظمة

٧- سرعة غير منتظمة

٩- كم / ساعة

١١- السرعة المتوسطة

١٣ - العجلة

١٥ - سرعة نسبية

۱۷ - کیلو جرام

١٩- الإزاحة

٢١- السرعة المتجهة

٢٣ - الكمية المتجهة

٢٥ - كميات متجهة

س ٢: أكمل ما يأتى:

١) المسافة / الزمن

٣) دورية - انتقالية

٥) منتظمة - غير منتظمة

٧) المسافة الكلية / الزمن الكلى

٩) السرعة

١١) السرعة المتجهة – العجلة

٢- حركة القطار

٤ - السرعة

٦- السرعة

٨- م / ث

١٠ - السرعة المتوسطة

١٢ - السرعة النسبية

١٤ - العجلة

١٦ - كمية قياسية

١٨ - الإزاحة

٢٠ - المسافة

٢٢ - السرعة المتجهة

۲۶ - كميات قياسية

٢) م / ث أو كم / س

٤) كم / ساعة

٦) بسرعة منتظمة

٨) العجلة

١٠) الكتلة - الشحنة - الزمن

۱۲) مقدار ها

١٥) متجهه – قياسية

۱۷) م / ٿَ

(٣) مسائل

١) يقطع أحد المتسابقين بدراجته ٣٠٠ م خلال دقيقة واحدة و ٢٠٤ متراً خلال الدقيقة الثانية .
 احسب السرعة المتوسطة ؟

" يمكن حلها بدون تحويل الزمن وتكون وحدة قياس السرعة متر / د"

أ) أثناء الدقيقة الأولى

$$\frac{-}{3} = \frac{|\lambda_{\text{number}}|}{|\lambda_{\text{number}}|} = \frac{\pi \cdot \lambda}{1 \cdot \lambda} = 0$$
 م λ ث

ب) أثناء الدقيقة الثانية

$$\frac{-}{3} = \frac{||\Delta u||^{\frac{1}{2}}}{||\Delta u||^{\frac{1}{2}}} = \frac{1}{3} \times \frac{1}{3} = \frac{1}{3} \times \frac{1}{3}$$
 م \ ث

ج) أثناء الدقيقة الثالثة

$$\frac{1}{3} = \frac{1}{1}$$
 الزمن الكلية $\frac{7}{3} = \frac{7}{3} = \frac{7}{3}$ م $\frac{7}{3}$

٢) سيارة تبدأ حركتها من السكون ثم تزيد سرعتها لتصل ٦٠ كم/ ساعة خلال خمس ثوانى .
 احسب العجله .

(٣) قطع متسابق ٥٠ م خلال ٣٠ ثانية شمالاً ثم ١٠٠ م شرقاً خلال ٦٠ ثانية ثم ٥٠ م جنوباً خلال ١٠ ثوانى ثم عاد إلى نقطة البداية خلال ٤٠ ثانية .

ج) الإزاحة = صفر

الوحدة الثانية

٢) انعكاس الضوء

٦) الشعاع المنعكس

١٠) المحور الأصلى للمرآة

٨) قطب المرآة

٤) القانون الثاني في لانعكاس الضوء

س ١: اكتب المفهوم العلمى:

- ١) المرايا
- ٣) القانون الأول النعكاس الضوء
 - ٥) المرايا الكرية
 - ٧) البؤرة الأصلية
 - ٩) البعد البؤرى
 - ١١) المحور الثانوي

س۲: بم تفسر:

- ١) لأن زاوية السقوط = زاوية الانعكاس = صفر.
 - ٢) لأنها تنتج من تلاقى امتداد الأشعة .
 - ٣) لأنها تنتج من تلاقى الأشعة .
- ٤) لأن الأشعة المنكسرة تخرج متوازية ولا تلتقي .

س ت : أكمل مسار الأشعة :

- ارسم خصائص الصورة لجسم موضوع على بعد بين البؤرة ومركز التكور أمام مرآة مقعرة

- ارسم خصائص الصورة لجسم موضوع أمام مرآة مقعرة على بعد أكبر من مركز التكور.

