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Abstract 

The aluminium smelting process involves highly complex 
mechanisms and has rich information but low observability. To 
operate such a process at maximum current and energy efficiency 
while striving for continual improvement requires a set of 
scientific and systematic approaches to problem solving and 
decision making along with constant human intervention and 
interaction based on informed and considered judgment. 
Understanding the influence of human factors on the process is 
important to the improvement of the performance of the 
operational staff and enhancement of positive impact while 
minimising negative effects on the process. This paper explains 
some aspects of the human factors and decision making involved 
in the smelting reduction operations and control process, which 
includes sensing and monitoring signals, identifying abnormalities 
and implementing appropriate responses to not only correct the 
immediate causes of the identified problems but also to reduce the 
variation and to continuously improve the process over time. 

Introduction 

Process control is commonly understood as an engineering 
discipline that deals with computer architecture and algorithms for 
controlling the output of a specific process. Digital computer 
control, which is linked to the availability of computers, was 
brought into the smelting industry in the early 1980s. The aims 
were and still are to maintain a process operating steadily under 
the designed specification conditions, achieve the desired quality 
of the product, and reduce cost through improving the efficiency 
of the process, while minimizing the human and systems error 
occurring in the process. However the potential to integrate the 
power of human reasoning and decision making with the almost 
unlimited computational capacity now available has not yet been 
explored. Furthermore, more advanced control concepts are 
needed in process control, rather than "fiddling" the parameters 
and/or compensatory actions. 

As Taylor and Chen [1] pointed out, a more robust overall control 
model is required for industries, such as aluminium smelters, to 
meet the needs of energy reduction and environmental compliance 
[1]. Figure 1 shows a simple illustration of such a control model. 
However, only a fraction of this model can be observed in the 
current control practices in smelters. Compensatory actions, such 
as manipulating the input to reach the desired outcome 
temporarily, without an understanding of the variation, often 
occur. Many important elements in the control model are still 
missing. To fully implement this control model requires a higher 
level of system and human interaction. 
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Figure 1: A simple model for the control process adapted from [1] 

The aims of the present research are to explore the impact of 
human factors and decision making on process control as well as 
the interaction between the systems and human operators. 
Ultimately, the findings will be integrated into systems, which 
will improve current process operation and control practices, 
hence reduce the cost of production, energy consumption and the 
impact on the environment. The impact of human factors and 
decision making in process control is significant and pervades 
every aspect of the operation and control. This paper will use a 
few examples from Smelters A and B (names cannot be stated for 
confidentiality reasons) to demonstrate the impact of human 
factors and some of the missing elements in the current control 
practice in the aluminium smelting industry, as well as the 
methodology for potential improvement based on the model in 
Figure 1. 

Observing process state - Measurements 

Aluminium smelting is a multivariate process and involves highly 
complex mechanisms such as mass and energy balances, 
electrochemical reactions, supply of raw materials, and 
maintenance of the composition of the electrolyte [2]. The large 
amount of information coming in from such a process, some in 
real-time and others intermittently at varying frequency, is 
challenging for a human brain to process. This information 
consists of digital events and analogue signals and signatures 
sampled from the pots by the computer system, as well as the 
discrete manual measurements and visually observed signs or 
features Figure 1. 

To control this complex process to achieve high productivity and 
efficiency requires day to day (and sometimes minute to minute) 
monitoring of the variables, and a high level of deductive problem 
solving and decision making skills using the process information 
as described above. However, in this information-rich 
environment, the absence of a strategic procedure or a system to 
manage the data, visual observations, and verbal communications, 
some of the valuable information is often diluted or even lost. 
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This is illustrated by the flow chart in Figure 2, which shows the 
common observations obtained from many modern smelters. 
Therefore, the efficiency and effectiveness of the operational 
staffs decision making or problem solving are made based on 
incomplete information and might not be optimal. Furthermore, 
implemented decisions cannot be easily tracked and followed up. 
This could have short term or long term impacts on the process 
and improvement. This indicates that the first phase in the control 
model in Figure 1 is not fully implemented in many smelters and 
it has negative impact on the process in the subsequent phases. 

I CURRENT POTROOM INFORMATION MANAGEMENT IN MANY SMELTERS | 

No systematic, standardized and consistent 
feedback to the decision misksrs 

PuniswwU System 

Figure 2: A flow chart illustrating the current information 
management situation in many smelters 

Carbon Dust and Airburn 
One example of the influence of human factors on process control 
and the consequence of making decisions based on incomplete 
information, (which is illustrated on the left of the flow chart in 
Figure 2) is the presence of excess carbon dust and airburn in 
Smelter A. When 80% of the pots in the reduction line have 
excess carbon dust and severe airburn, it is most likely that the 
carbon plant gets the blame for poor anode quality. That was the 
situation in Smelter A, until the external experts observed the 
operational and control practices in the potroom. It was diagnosed 
and identified that the carbon pieces floating between the anodes 
and cathode in the pots and the presence of carbon pieces in the 
bath material process circuit were the root causes of excess carbon 
dust and airburn. Without full information and the understanding 
of the cause and effect, the decision made to blame the anode 
quality (which is controlled by the carbon plant), and not to 
investigate the situation and take corrective actions, is in 
agreement with the illustration in Figure 2. It also shows the fact 
that the concept of the control model was also missing in the 
practice in this. 

Improved Information Management 
What has just been described is only one of the million cases 
which happen every day in smelters. It has been recognized that 
an advanced supervisory control system integrated with the robust 
control model would improve information management and 
process control by allowing the operators to observe the process 
with more meaningful information [1, 3]. Figure 3 shows the 
proposed improved information management model with the 
implementation of an advanced supervisory control system. This 

will allow the smelter information to be recorded and analysed 
systematically and consistently, and provide meaningful 
information to assist the operational staff to determine the process 
state. 
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Figure 3: A flow chart illustrating a better information 
management model with the application of an advanced 
supervisory control system 

Bath Level Control 
One example demonstrating the effectiveness of a better designed 
supervisory system which is able to provide meaningful 
information to assist the operational staff on process decision 
making is a case study conducted of bath level control in Smelter 
A [3]. Low bath level has been a serious issue for this smelter. 
The percentage of the potline having bath level below the lower 
control limit every month in the previous two years ranged from 
20% to 80%. The root cause was not found for a long time. 
Meanwhile, the impact of low bath level to the process was 
detrimental. Eventually it was identified by the external experts as 
problems with the supply of crushed bath materials. The crusher 
was broken down so often that the supply of crushed bath material 
for anode cover dressing was not reliable. Therefore, at times, 
there was no material to replenish the liquid bath. This root cause 
was simple and clear, but because of the missing links in the 
information management within the smelter, it was difficult for 
the operational staff to pinpoint. 

There are 6 sections in the potline in Smelter A and the 
performance of the 6 sections were significantly different [3]. 
Even though the crushed material was not available for the whole 
potline, one of the sections managed to control the bath level 
within the control region consistently. It was found that the leader 
of this section used a newly implemented supervisory system to 
monitor the bath level situation, while the leaders of the other 
sections resisted the use of the new system and instead continued 
using printed daily reports with only numbers and tables. The new 
system incorporated some tools such as colour management of 
data, statistical graphs and pictorial illustrations for operation 
practice standard. The system was designed to be user friendly 
and took into account human factors such as perception of risk. 
For example the user will feel pressure and high level of risk 
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when the measurements of the pots are highlighted in red (ie 
indicating it is outside the control region). By using the system, 
the section leader was aware of the bath level situation of the pots 
[3]. He asked the operators to tap the bath out of the pots which 
had high bath level and stored the bath material for anode cover 
material when the crushed bath material supply was not available. 
Furthermore, as a leader, he created a reward system to motivate 
the operators to do the daily operational and control tasks such as 
bath level control. The performance of this section demonstrates 
the impact of leadership, management and decision making skill 
on operation and process control. 

Understanding the variation - Root Cause Diagnosis 

As shown in the control model in Figure 1, understanding the 
variation links the observation of the process (ie. the stimulus, 
what you see) to controlling the outcome (ie. the response, what 
you do and achieve). Process variation is classified into three 
generic types: common cause or natural variation, special cause 
variation and structural cause variation [1]. Without the 
understanding of variation, the actions taken can often be 
compensatory or incorrect, thus the variation stays within the 
process persistently. 

The case study of bath temperature control in Smelter B is an 
example which demonstrates the importance of understanding the 
variation and identifying the root cause [4]. Figure 4 shows the 
thermal cyclic situation observed from a pot. It shows that 
chemical additions were used to adjust bath temperature without 
diagnosing the root cause. Soda ash was added when bath 
temperature was low and outside the control specification box, 
and a large amount of A1F3 was added to attempt to fix high bath 
temperature. The consequence was that the temperature cycled 
and this problem remained in the process. A statistical control tool 
(control ellipse) was then implemented to guide the operators to 
understand the variation and diagnose the root cause. The root 
cause of the continual temperature cycling was the inappropriate 
use of additions, while the root cause of some of the extreme high 
temperatures was due to alumina feeding problems [4]. This is a 
practical example of the implementation of 'understanding the 
variation' in the control model. A detailed representation of 
phases 2 and 3 of the control model is shown in Figure 5. 

m S* 

Phüm Et Understanding fise Variation 

Figure 4: Temperature and chemical (A1F3 and soda) addition 
indicate the thermal cyclic situation of a pot 

Phase $t €ontr®tUnQ the Oirfcortie 

Figure 5: A more detailed representation for Phase 2 and 3 of the 
control model, adapted from [1] 

Operators as Signal Detection Systems 
However, as discussed previously, many of the current systems do 
not even provide complete information to the operators, and 
furthermore, most of these systems also do not have the ability to 
guide or assist the operators to understand the variation and 
identify the root cause. They rely heavily on the operators to make 
judgments and detect the process problems. In this case, the 
operators take on the role of signal detection systems for 
identifying problems. Figure 6 illustrates a basic signal detection 
system [5]. The input x (ie. process information) is a stimulus, and 
the stored 'database' is the memory of the operators. The box is 
the simplified decision making process for the operators to arrive 
at some function Z which is used to formulate a response based on 
some decision making criteria. However, without guidelines or the 
provision of technical constraints, this decision making process 
model gives the operators an un-reined degree of freedom. 
Coupled with the influence of a low level of situation awareness 
(due to incomplete information), perception bias, and selective 
attention, it can often lead to poor decision making [6, 7]. The 
consequence is that process abnormalities (special causes) are not 
identified and left un-attended. Thus such abnormalities keep 
recurring. 

Stimulus 

Input 
X 

Figure 6: A basic signal detection system, redrawn from [5] 

Improved Signal Detection System 
As suggested by Taylor and Chen, with clear identification and 
classification of the three types of variation in phase 2 as given in 
Figure 5, an automatic control system incorporating a robust 
control model can be designed to assist the operators to not only 
observe the process but also to detect and diagnose the root cause 
of the process abnormalities. Figure 7 illustrates a model of 
automatic system and human operators working together on 
detecting process abnormalities. In this model, the system detects 
and classifies the process abnormalities and sends alarms to the 
operators. The operators then respond to the alarms by 
investigating the process and diagnosing the root cause. The 
overall performance is an improvement over the model in Figure 6 
[5,8,8,10,11]. 
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Figure 7: A detection model with system and human monitors, 
modified from [5] 

Every step in Figure 8 involves a large degree of human 
reasoning, thinking, decision making, and action taking as 
demonstrated in the example above. The outcomes and the 
learning from the process of problem identification, diagnosis and 
solution achieved should be stored in a system and carried on to 
be used in solving other problems. A well designed system will 
not only guide the human operators to implement the scientific 
methodology but also allow for feedback from the operators; 
hence a learning process takes place and the system can be 
continually improved. The system design should also take into 
account human perception, attention and situation awareness to 
avoid bias from individual experience or knowledge. 

Conclusions 

Controlling the outcome - Response 

Once a problem is detected by the system and confirmed by the 
operators, corrective actions are required as illustrated in phase 3 
in Figure 5. Here, human operators can take immediate stabilizing 
actions to correct the immediate causes, such as removing anode 
spikes, cleaning the bath built up on the breaker or fixing the 
malfunctioning feeders. The operators can also implement a 
scientific problem solving methodology to lower the long term 
variability of the process [12]. The process of the scientific 
problem solving process is illustrated in Figure 8. 
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•8 *» ίΐΛ A. οhs S&&2 W b» 8, 

CONTROL 
v Gwnrot prcKJtMte »*i ptam IMPROVE 

• Msks CiWRg** to Prac**s 

TEST 

Not by aaaeiv* tttorffcitstig of 

Figure 8: An illustration of the scientific problem solving 
methodology, adapted from [12] 

Referring to the case study of bath temperature control in Smelter 
B described earlier, once the root cause was identified as an 
alumina feeding related issue and low metal level situation, the 
problem was DEFINED. The MEASURE was temperature. 
Therefore a 10-day response plan was implemented for the hot 
and sick pot (HYPOTHESIS BUILDING and TEST). The 
thermocouples were recalibrated and extra temperature and metal 
level measurements were taken every shift. The cathode was 
cleaned every day during anode changing. A1F3 addition was 
maintained at a nominal rate. Along with other corrective actions, 
the temperature of the pot was brought down from 985 °C to 
976 eC at the end of the plan (IMPROVE). A second plan was 
then implemented and this brought the temperature down and 
maintained at 960°C (CONTROL). This approach removed the 
root cause by the scientific problem solving methodology 
illustrated in Figure 8. 

In conclusion, this paper demonstrates the importance of the 
control model and the influence of human factors to aluminium 
smelting process operation and control, by using actual examples 
from aluminium smelters. The examples have shown the influence 
of human factors in operation and control decision making. This 
shows that smelters urgently need an advanced system which 
incorporates scientific human reasoning functions, tools and 
guidelines to assist the operators to better observe the process, 
understand the variation, remove the root causes, and therefore 
better control the outcome. 
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