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Abstract 

The gas bubble laden layer under the anodes during the 
electrolysis of alumina plays an important role in the 
hydrodynamics and the voltage balance of the reduction cells. 
Under certain geometrical and operational conditions, very large 
gas pockets, in the order of hundred cubic centimeters can be 
formed. The particular shape of these large gas bubbles was first 
described by Fortin et al in 1984 [1]. In the present paper the 
results of a combined experimental and numerical approach are 
described. In the experiments, the shape and the kinematics of the 
Fortin bubbles were analyzed by videography and Particle Image 
Velocimetry (PIV). A finite element method (FEM) combined 
with a Volume of Fluid (VOF) method was used to reproduce the 
experimentally observed phenomena, with particular attention to 
the reduction of the numerical diffusion of the liquid-gas 
interfaces. The morphology of the large bubbles and their 
movement including the velocity field around them are described. 

Introduction 

The gas bubbles generated during the electrochemical reduction of 
aluminum occupy a part of the horizontal inter-electrode space. 
Being electrical insulators, these bubbles induce a parasite voltage 
drop and cause an increase of the energy consumption of the cell. 
The electrical resistance of the bubble-laden layer under the anode 
is influenced by the quantity of the gas (volume fraction, covering 
factor) and by the morphology of the bubble layer. The electrical 
resistance of the molten electrolyte follows the fluctuations 
provoked by the random events of bubble nucleation, coalescence 
and escape of the bubbles [2]. In the past decade, significant 
efforts were invested into the clarification of the mechanisms of 
bubble-induced overvoltage by several researchers (see a review 
in [3]). 
The electrical resistance of the bubble layer is considered by most 
of the researchers as an equivalent resistance of a heterogeneous 
medium with the electrolyte as the continuous conducting phase. 
The classical approach is that of Maxwell, who gave the first 
expression to calculate the equivalent (sometimes called 
"apparent" or "bulk") conductivity for a conducting medium with 
sparsely distributed spherical, identical isolating voids [4,5]. 
Later, Bruggemann developed a formula for spheres of non-
uniform diameters [6], but still for voids that are sufficiently far 
from each other compared to their diameters. 
Physical modeling in laboratory, as well as numerical simulations 
show [1,7] that the real situation is far from the case of sparsely 
distributed spherical bubbles. Under the anodes with dimensions 
common in today's industry, the growth by coalescence produces 
very big bubbles with shapes that are not similar to the usual 

notion of bubbles. The present paper deals with these so-called 
Fortin bubbles, studying their morphology and behavior both by 
experiments and by mathematical modeling and numerical 
simulations. 

Experiments 

Experimental setup 

Large bubbles under the anodes were studied using low-
temperature hydrodynamic models. Two different setups were 
constructed. In the first, the large bubbles were produced by 
coalescence under a porous plate that represents the anode bottom. 
Such an arrangement produces a bubble layer and bubble driven 
flow similar to that in real reduction pots, but it does not permit 
studying the hydrodynamics of the large bubbles separately from 
other effects as the continuous interactions with smaller bubbles, 
the fluctuating velocity of the bubble layer, etc. For this reason, a 
second experimental rig was developed that makes possible to 
study of the morphology and kinematics of the Fortin bubbles in 
its pure form. In the experiments presented here, water and air 
were used as fluids. The bubbles were produced one-by-one under 
the lower end of the inclined solid surface (Figure 1), by using the 
so-called inverted cup technique that permits to produce bubbles 
precisely with the desired volume of the gas. 

600 mm 

Figure 1. Schema of the experimental setup 

In order to follow the movement and shape evolution of the 
bubbles, they were recorded by high-speed video cameras. Images 
were taken from the side, using a rail mounted, moving camera, as 
well as from the bottom by the help of an inclined mirror under 
the water pool. 
Image processing was extensively used for extracting quantitative 
information about the shape and velocity of the bubbles. The 
necessary algorithms and codes were developed by using 
MATLAB®. Different edge-detecting algorithms were tested to 

581 



follow the contour of the Fortin bubbles. An illustrative example 
is shown below in Figure 2. 

Figure 2. Image before and after using the threshold filter 

Particle image velocimetry 

Besides the analysis of the morphology and movement of the 
large bubbles, the velocity field in the liquid phase was also 
studied quantitatively by using particle image velocimetry (PIV). 

Figure 3. Using PIV in a two-anode hydrodynamic model. 

The measurement is illustrated in Figure 3 for a two-anode 
arrangement, but the principle is the same for the single bubble 
setup shown in Figure 1. The flow is seeded with small tracer 
particles whose settling velocity is negligible. A pulsed laser sheet 
illuminates the selected planar section of the fluid volume and a 
camera records consecutive images of the tracer particles. Two of 
these images are used to determine the velocity vectors in the 
illuminated plane. 

Figure 4. Instantaneous velocity field around a Fortin bubble 

Both instantaneous and time-averaged velocity fields were 
determined. The example in Figure 4 shows an instantaneous 
velocity pattern around a large Fortin-bubble whose contour is 
marked by the dashed line in the image. 
Figure 5 was obtained by averaging instantaneous velocity 
distributions obtained during the passage of several bubbles. In 

the image, the magnitude of the velocity distribution is shown by 
superposing a colored contour plot of the magnitude of the 
velocities on top of the vector plot. 

Figure 5. Mean bath velocity close to the side channel at 2° of 
angle of inclination 

Morphology of bubbles 

Since the first description of the morphology of large bubbles by 
Fortin et al. [1], its shape is characterized mostly by the side view. 
It is particular that around the leading edge of the moving bubble 
a so-called "head" is formed, which has a penetration depth at 
least twice that of the static or slowly moving bubbles. This is a 
typically dynamic phenomenon - stationary bubbles never have 
this head, independently of their volumes. Another interesting 
feature of the shape of Fortin bubbles is that in the plane of the 
solid surface (see right view of Figure 6) the leading edge takes a 
nearly perfect circular form. In three dimensions, the surface of 
the Fortin bubble is complex, the typical contour, as it is shown in 
Figure 4, is a longitudinal, central section. When filming laterally, 
this central section is mostly hidden, depending on the method of 
illumination (see the left image in Figure 6). 

Figure 6. Side and bottom views of a 150 ml Fortin bubble, 4° 
inclination 

The head of the Fortin bubble follows the curvature of the leading 
edge in the plane of the solid surface; its shape reminds of a 
croissant cut in half. Analyzing many Fortin bubbles, the shape 
was approximated by a schematic geometry as shown in Figure 7. 
The cross section of the head is described by a parabola that 
follows the circular arc of the leading edge. 
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Figure 7. Analytical approximation of the geometry of a Fortin 
bubble 

Using the notation of the schema, the volume of the gas in the 
bubble can be calculated according the formula below 

v = A M 4-— ι-ί T p ð'®ð 
y bubble /xcontac_shape Π Ι Τ Λ | ρ«, Κ^ h' ion» 

where Hp(ί) = Hh{ί)-Ht 

Modeling and Numerical Simulation 

A two-phase flow model and an Eulerian algorithm are proposed 
for the numerical simulation of the hydrodynamics of large 
bubbles under an inclined plane. This numerical model is inspired 
from [8,9]. Unlike in [10,11], where the complete magneto-
hydrodynamic problem is considered, this model focuses on the 
hydrodynamics of a single large bubble only and is used to 
describe the morphology of these bubbles. 

Physical model 

Let A be the cavity (aluminum cell, more precisely the electrolytic 
bath) in which the fluid is confined, and let T > 0 be the final time 
of simulation. For any given time t, let Qt be the domain occupied 
by the liquid and let Tt be the free surface defined by 5QtV5A. The 
notations are shown in Figure 8 for a large bubble initially located 
under an inclined plane, under the effect of gravity forces. 
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Figure 8. Large bubble of gas under an inclined plane, subject to 
gravity forces. 

Compressible gas bubbles in the incompressible fluid in modeling 
represent the bubbles nucleating during aluminum reduction. A 

volume-of-fluid approach is used to track the liquid domain and 
the free surface. Let φ be the characteristic function of the liquid 
domain (φ equals one if liquid is present, zero if it is not). In order 
to describe the kinematics of the free surface, φ satisfies the 
following transport equation in the cell A: 

Cft 

where v denotes the velocity of the two-phase fluid in A. The 
incompressible Navier-Stokes equations are assumed to hold in 
the liquid domain Qt (varying in time), which implies that the 
velocity v and the pressure p of the liquid satisfy, in Qt, the 
equations of conservation of mass and momentum: 

p^-+p{y- V)v-2V · (juD(\))+Vp = f, 
or 

V v = 0, 

where p and μ are the density and viscosity of the fluid 
respectively, D(v)=0.5(Vv + VvT) denotes the symmetric tensor of 
deformations, and f represents the external forces (typically f is 
the sum of gravity forces and electromagnetic Lorentz forces). 
Here we consider only f =pg, where g is the gravitational field as 
represented in Figure 8. The bubbles of gas are composed of an 
ideal, isothermal gas: the velocity in the gas is disregarded and we 
assume that the product of the gas pressure P times the bubble 
volume is constant in each bubble of gas. The connected 
components of the gas domain (bubbles) have to be tracked at 
each time step. The force applied on the free interface Tt between 
the liquid and the gas is given by 

-pn + 2uD(v)n = -Pn + σêη, 

where σ is the (constant) surface tension coefficient between the 
liquid and gas, ê is the curvature of the interface, and n is the 
normal vector to the interface, oriented outside the liquid domain. 
Appropriate essential boundary conditions on the boundary of the 
cell dA and initial conditions on the bubble position and velocity 
are added to close the mathematical model. Note that the 
numerical method does not include any representation for the 
mechanism of the nucleation of bubbles. 

Numerical model 

We advocate a numerical method based on a splitting algorithm 
for the time discretization, and a two-grid method for the space 
discretization. The splitting algorithm allows decoupling the 
physical phenomena and solving each of them sequentially at each 
time step. It is illustrated in Figure 9. At each time step, two 
advection problems are solved first, leading to a prediction of the 
new velocity, together with the new approximation of the 
characteristic function of the liquid domain. They consist in 
solving 

ïö 
à 

â 

+ v V ^ = 0, 

+vVv = 0. 

This allows determining the new liquid domain, the new gas 
domain and the new liquid-gas interface. Then the bubbles of gas 
are tracked with an original numbering algorithm (see [8,9]) and a 
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constant pressure is computed in each bubble by applying the 
ideal gas law. The surface tension effects are taken into account 
by computing an approximation of the curvature of the interface 
together with the external normal vector, by using the so-called 
continuum surface force model. Finally, a Stokes problem is 
solved, in the liquid domain only, to compute the final velocity in 
the liquid and its pressure. The corresponding equations are: 

^ - 2 V > D ( v ) ) + V p = /7g, 

V-v = 0, 

The pressure in the gas and the surface tension effects are applied 
on the free surface as an external force, and appropriate boundary 
conditions (e.g. slip or no-slip boundary conditions) are added. 
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Figure 9. The splitting algorithm decouples the physical 
phenomena: From left to right: transport equations, tracking of 

bubbles and computation of gas pressure, computation of surface 
tension effects, and diffusion equations (Stokes problem). 

A two-grid method is used for the spatial discretization, as 
illustrated in Figure 10: a regular grid of small cells is used to 
solve the transport equations (left), while the solution of the 
Stokes problem is performed on an unstructured finite element 
mesh composed of tetrahedrons (right). The solutions are 
interpolated at each time step between the two grids with 
projections operators. In order to reduce numerical diffusion 
effects of the free interface motion and to balance accuracy and 
computational cost, the structured grid is typically five to ten 
times finer than the finite element mesh. 

A method of forward characteristics allows to obtain piecewise 
constant approximations of a prediction of the velocity and of the 
volume fraction of liquid on the structured grid of small cells. It is 
coupled with geometric reconstruction algorithms of the liquid-
gas interface to reduce numerical diffusion. Adaptive subdivision 
techniques for the finite element mesh have been proposed in [12] 
to further reduce the numerical diffusion. 

Stabilized (Galerkin least-squares-style) piecewise linear finite 
elements, based on piecewise affine finite element 
approximations of the velocity and pressure, are used for the 
approximation of the solution of the generalized Stokes problem. 
The tracking of the bubbles and the computation of their pressure 
has been described in [9]; it is achieved by solely solving Poisson 
problems with piecewise linear finite element approximations. 
The approximation of the surface tension effects has been detailed 
in [8]; it relies on variational arguments for the computation of the 
mean curvature of the interface. The complete algorithm is an 
order one algorithm in space and time. 
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Figure 10. Two grids method in the two-dimensional case: 
structured grid of small square cells (left) and unstructured finite 

element mesh of triangles (right). 

Numerical setup and morphology indicators for Fortin bubbles 

Numerical simulations are undertaken in order to compare the 
experimental results in [13,14,15,16] with those obtained by 
mathematical and numerical modeling. Such comparisons are 
achieved thanks to a set of indicators describing the shape and 
morphology of the Fortin bubble under an inclined anode. These 
indicators are namely the length of the Fortin bubble L, the 
maximal height of the Fortin head Hh, the maximal length of the 
Fortin head Lh, the mean height of the bubble Ht and the width W 
of the bubble in a plane parallel to the surface of the anode. The 
notation is detailed in Figure 7. The mean height is measured at 
the middle of the Fortin bubble. 

Several configurations for the Fortin bubble and the inclined 
anode have been considered in [16]. We consider here inclination 
angles of 1, 2, 4 and 8 degrees, and bubbles of different sizes. 
Experiments in [16] have been undertaken with bubbles of 
volumes 50, 150 and 250 ml. The geometry and dimensions of the 
computational domain of the corresponding numerical simulations 
is a subset of the one illustrated in Figure 1. The anode-cathode 
distance (ACD) is set to approximately 4 cm. The density, 
viscosity and surface tension coefficients are those of the water 
and water-air interface and respectively given by p=1000 kg/m3, 
μ=0.001 kg/(ms) and σ=0.0728 N/m. The gravity forces are 
g = -9.81 ez m/s2 (oriented vertically). 

Numerical Results 

An illustration of the Fortin bubble obtained by numerical 
simulation is given in Figure 11. A single bubble of initial volume 
250 ml evolves under an inclined plane with an angle of 8 
degrees. It illustrates a three-dimensional contour of the bubble 
(A), a cut in the middle vertical section, showing the typical 
Fortin head (B), a cut along an inclined plane parallel to the anode 
surface (C), and a representation of the mesh that is purposely 
finer in the layer under the anode where the bubble evolves. One 
can observe that small residual parts of the large bubble are left 
behind during the process, similarly to the behavior found 
experimentally. 
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(A) (B) Figure 13 illustrates the other morphological indicators, namely 
Hh, Lh and Ht for no-slip boundary conditions only. Conclusions 
are similar, as the match between simulations and experimental 
data is consistent. Sources of errors include measurement issues, 
but also discrepancies in the exact volumes of bubbles (as the 
volume of the simulated bubble is slightly larger than 250 ml), 
differences of ACD distances and water height, and questions 
related to the influence of the meshes. 

(D) 
Maximum height of the head 

Figure 11. Illustration of a Fortin bubble of volume 250 ml under 
an inclined plane of 8 degrees. (A) contour of the bubble; (B) cut 

in the middle vertical plane; (C) cut in the plane parallel to the 
inclined anode; (D) illustration of the 3D mesh used for the 

numerical simulation. 

Comparisons and discussion 

A comparison of the morphology of the Fortin bubble between the 
numerical results and the experimental ones is based on the 
indicator variables L, Hh, Lh, Ht and W. We consider first a bubble 
with initial volume 250 ml and various inclination angles for the 
anode. 
We compare the length L and width W of the bubble. Results are 
illustrated in Figure 12. Experimental results are taken from [16]. 
Numerical results are obtained by applying either slip or no-slip 
boundary conditions on the surface of the anode. When enforcing 
slip boundary conditions on the anode, the bubble can slide on its 
surface; when enforcing no-slip boundary conditions, the bubble 
sticks to the surface. 
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Figure 12. Comparison of bubble's length and width between 

experiments and simulations for a bubble's volume of 250 [ml] 
and various inclination angles. Influence of the boundary 

conditions applied on the anode. 

Although not quantified here, the measurement errors are 
relatively large for both the experiments and the simulations. We 
can observe that the length of the simulated bubble is slightly 
overestimated, while its width is underestimated, indicating that 
the numerical solution may not be completely stationary. Note 
also that the influence of the type of boundary conditions is of the 
same order as the error on the measurements. 
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Figure 13. Comparison of the maximal height of the Fortin head 
Hh, the maximal length of the Fortin head L ,̂ and the mean height 

of the bubble Ht for a bubble's volume of 250 ml and various 
inclination angles. 

In a second step, we consider an inclined angle of 8 degrees and 
various volumes for the bubble, ranging from 140 ml to 300 ml. 
Figure 14 shows comparison of the results for the quantities L, Hh, 
Lh and W. Simulations and experiments exhibit the same trends 
for the morphology of the Fortin bubble. 

These numerical results also express the physical instability of the 
Fortin bubble, which is similar to the one of a rising buoyancy 
bubble (see for instance [8,17] and references therein). 
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Figure 14. Comparison of morphology indicators between 

experiments and simulations for an inclined plane with an angle of 
8 degrees and various bubble volumes. 

Finally a comparison between the numerical results and the 
velocity data obtained with particle image velocimetry (PIV) 
techniques is briefly sketched. The quantitative interest is in the 
terminal velocity of the bubble (in the quasi-stationary state of the 
Fortin bubble). For a Fortin bubble with volume 250 ml and an 
inclination angle of 8 degrees, the terminal velocity obtained by 
PIV and reported in [16] is given by 32 cm/s. In the numerical 
simulations, the bubble velocity is computed by considering the 
displacement of the bubble in a given time interval. Simulations 
lead to a terminal velocity in the range 28-35 cm/s for volumes 
between 250 and 290 ml. Instantaneous velocities in a cut in the 
middle of the bubble are illustrated in Figure 15. Note that the 
mathematical model does not compute a velocity inside the 
bubble, and therefore the velocity in the gas phase is set to zero. 
These preliminary results allow us to conclude to the consistency 
of the velocity values between experimental and numerical 
results, and will be detailed in future works. 
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Figure 15. Instantaneous velocity field around the Fortin bubble 
obtained by numerical simulation. 

Conclusions 

Large bubbles under an inclined anode have been studied both 
experimentally and numerically. These bubbles are formed during 
the aluminum electrolysis. From the experimental point of view, 
videography and particle image velocimetry (PIV) allow to 
describe the morphology of Fortin bubbles and terminal 
velocities. From the numerical viewpoint, a volume-of-fluid 
method and finite element approximations have been used to 
reproduce experiments. Comparisons of the results have exhibited 
similar morphologies of bubbles, comparable quantified results 
and similar trends in the morphology of bubbles, when varying 
the inclination angle of the anode or the volume of the bubble. 
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