
D
Elasticity of Traffic
Matrices – Network Models∗

Here, we present the analytical foundation for the analysis of elastic traffic matrices de-
scribed in Section 13.3. Several network models of increasing complexity that describe
the behaviour of the traffic flows through a network with respect to the capacity of the
links and nodes of that network are described.

D.1 Basic Model
We model a subnetwork � of the Internet consisting of N nodes and L directed links. The
traffic through the network consists of long-lived greedy Transmission Control Protocol
(TCP) connections and is represented by TCP macroflows. A TCP macroflow represents
a number of TCP connections that have the same ingress node i and egress node j of
�. We assume that the connections of a macroflow experience on average the same loss
p̃ and delay q̃ when traversing the other networks that are not modelled in detail with
this model. The macroflows are assumed to be small compared to the other flows flowing
through the external networks; therefore, the external loss p̃ and delay q̃ are independent
of the rate of the macroflows. The macroflows are elastic traffic; their rate is described by
a TCP formula and adapts to the network conditions of �. There are a number of works
about predicting the average TCP throughput depending on the loss and delay properties
of a flow, see Section 4.1.3. As we are not interested in details such as the duration of the
connection establishment etc., we use the rather simple square-root formula (4.2) here.

An output queue is attached to each link. In the basic model, we describe the queues
as M/M/1/B queues. This is not the most realistic approach: First, because Internet traffic
is not described very well by a Poisson arrival process, see Paxson and Floyd (1995).
Second, since packet sizes are not exponentially distributed, an exponential service rate is
also not realistic, see AIX – NASA Ames Internet Exchange (2000); Claffy et al. (1998).
However, the M/M/1/B model is one of the simplest queueing models and is used in
related works like Garetto et al. (2001); Gibbens et al. (2000). We will investigate more
realistic queueing models later in this section.
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The basic network model with elastic traffic is described by the non-linear equation
system in Model D.1.

Model D.1 Basic Network Model for Elastic Traffic Matrices

Indices:

i, j = 1, ..., N Node i or j

l = 1, ..., L Link or output queue l

Parameters:

ψij Path from node i to node j and back (set of links)

tij Size of macroflow between node pair i, j [pkts]

µl Service rate of link or queue l [pkts/s]

B Buffer size [pkts]

q̃ Average external queueing and total propagation delay [s]

p̃ Average external loss probability

Variables:

rij Rate of macroflow between node pair i, j [pkts/s]

ρl Utilisation of link or queue l

pl Loss probability of link or queue l

ql Queueing delay of link or queue l [s]

rij = tij

[(
∑

l∈ψij

ql) + q̃] ·
√

2
3 ·

√
1 − [

∏
l∈ψij

(1 − pl)] · (1 − p̃)

∀ i, j |i �= j (D.1)

ρl = (
∑

(i,j) | l∈ψij

rij ) · 1

1 − pl

· 1

µl

∀ l (D.2)

pl = (1 − ρl) · ρB
l

1 − ρB+1
l

∀ l (D.3)

ql = 1 + BρB+1 − (B + 1)ρB

µl(1 − ρl)(1 − ρB
l )

∀ l (D.4)

The total loss probability of a macroflow ij can be approximated by

pij = p̃ +
∑
l∈ψij

pl (D.5)
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Table D.1 Assessment of the Approxi-
mations

Approximation Maximal Error [%]

For pij 0.0004795
For ρl 0.0009097

for small loss probabilities. Similarly, for small loss probabilities at a link l the utilisation
(D.2) can be approximated as

ρl = (
∑

(i,j) | l∈ψij

rij ) · 1

µl

(D.6)

These simplifications can reduce the computational effort to solve the resulting non-
linear equation system by up to 25%. In order to assess the systematic error of these
approximations we ran a number of experiments on the Deutsche Telekom backbone
topology (see Appendix A) with different parameters of tij , B and µl . We solve the
non-linear equation system from Model D.1 using Maplesoft (2004) and compare the
difference in ρl . The maximum errors of 25 different settings are listed in Table D.1.
They are extremely small and can be neglected.

Next we discuss the possible extensions of the basic model.

D.2 Discrete Service Times

We first investigate how the basic model from Section D.1 can be extended to account
for more realistic service times. IP packets can differ drastically in their size (40 to
1500 bytes), see AIX – NASA Ames Internet Exchange (2000); Claffy et al. (1998).
We assume a service time proportional to the packet size and use a discrete distribution
with c = 1, ..., C classes of differently sized packets to model the service time; sic is the
packet size of class c and hc the relative frequency of class c with

∑
c hc = 1. Using spl

as the line speed of link l, the probability density function of the service time distribution
is given as

pdf (x) =
∑

c

hc · δ(x − sic

spl

) (D.7)

where δ(x) is the Dirac impulse δ(x) = 1 for x = 0 and 0 otherwise. The probability
distribution function is

PDF(x) =
∑

c

hc · u(x − sic

spl

) (D.8)

where u(x) is the unit function u(x) = 1 for x ≥ 0 and 0 otherwise. In order to model
the queueing delay, we use the Pollaczek–Khinchin formula for the queueing delay of an
M/G/1 queue

ql = E(x) · (1 + 1 + C2
v

2

ρl

1 − ρl

) (D.9)
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with the expected service time1

E(x) = 1

µ
=

∫ ∞

−∞
x · pdf (x) dx =

∑
c

hc · sic

spl

(D.10)

and the square of the coefficient of variation

C2
v = V ar(x)

E(x)2
=

∫ ∞
−∞(x − E(x))2 · pdf (x) dx

E(x)2
(D.11)

For the loss probability pl we turn to the M/G/1/B queue. There is no general closed
form for the loss probability of the M/G/1/B or the queue length distribution of the M/G/1
queue. We can derive the loss probability of the M/G/1/B queue exactly if we know the
state probabilities π

(∞)
lk for queue length k of the corresponding M/G/1 queue l.

Cooper (1981); Virtamo (2003) list an iterative algorithm based on Markov chains
that can be used to numerically derive π

(∞)
lk . We do not want to use this Markov chain

algorithm; first, because it does not give us a closed form for the loss probability that
we need for our equation system and, second, because for that approach we would have
to solve several complex integrals numerically, while we are interested in an analytical
form. Therefore, we use a different method to derive the state probabilities π

(∞)
lk of the

M/G/1 queue: The Laplace transform of the service time distribution pdf (x) is

b∗
l (s) =

∑
c

hc · e
−s

sic
spl (D.12)

Kleinrock (1975); Virtamo (2003) show that the transformed state probabilities follow the
Pollaczek–Khinchin transform formula for the queue length

Ql(z) = (1 − ρl)
b∗

l (λ − λz)

b∗
l (λ − λz) − z

(1 − z) (D.13)

With the inverse Z -transformation on Ql(z), we can derive the state probabilities π
(∞)
lk

analytically. We can use the Taylor series expansion to analytically transform the some-
what complex term Ql(z) back:

π
(∞)
lk = 1

k!

dk

dzn
Ql(z) | z=0 (D.14)

The loss probability of the related M/G/1/B queue is now given as

pl = 1 − 1

ρl + π
(B)
l0

(D.15)

using the state probability π
(B)
l0 of the finite queue as in Virtamo (2003)

π
(B)
l0 = π

(∞)
l0∑B−1

j=0 π
(∞)
lj

(D.16)

This leaves us with closed-form non-linear equations for loss and delay of the M/G/1/B
queue with a discrete service time distribution.

1 We continue using µ for the inverse of the expected service time as we did with the M/M/1/B queue.
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D.3 Self-similar Traffic

Internet traffic measurements show self-similar, heavy-tailed and long-range dependent
properties as discussed in Section 5.1. The burstiness of Internet traffic on larger timescales
can significantly influence the loss probability. To take this effect into account we use
the Gaussian approximation of aggregate traffic and the following loss formula based on
Addie et al. (2002); Mannersalo and Norros (2002):

pl = C

B−λt̂

σ 2
t̂

√
2πσ 2

t̂

· e
− inf

t∈�+
(B + (µ − λ) · t)2

2 · σ 2
t (D.17)

t̂ is the optimiser from the infimum condition, t is the timescale, B is the buffer size,
λ and µ are the arrival and service rates. For a given Hurst parameter, σ 2

t is given as
σ 2

t = σ 2 · t2H .

D.4 Related Work

Some works use network models similar to our models. The performance models of
Gibbens et al. (1999, 2000); May et al. (1999) are used to analyse quality of service
(QoS) in Diffserv IP networks with two service classes. They assume a Poisson arrival
process and exponential service times (M/M/1/B ). The fixed point model of Gibbens et al.
(2000) combine the Diffserv resource models with the TCP formula. We use a similar
approach but we also investigate non-exponential service times and non-Poisson arrivals.
Also, we investigate the performance in the context of network design and capacity
expansion and do not use different service classes.

Garetto et al. (2001) present an analytical TCP model for multiple flows and verifies
it against NS2 simulations. Similar to our model, they combine a TCP and a network
model and calculate the fixed point of the two models. Their TCP model, however, is
more fine grained and complex than our TCP formula–based TCP model. This, however,
comes at the cost of losing a closed-form formulation of the whole model. The authors
investigate different network models and find that the simple M/M/1/B gives sufficiently
accurate results.

Schwefel (2001) introduces a queueing model that is based on multiple ON/OFF arrival
processes; this allows accounting for long-range dependency. It is extended to be reactive
to congestion by slowing down the rate similar to the way TCP reacts and can thus be used
for the performance analysis of TCP-generated bursty traffic. Contrary to this approach,
we combine the TCP formula with the standard queueing theory.




