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Abstract 

In the Hall-Héroult process, alumina dissolution rate is dependent 
on a number of process variables. One major variable is the 
superheat, especially in modern reduction cells which operate at 
low cell voltage. During the cell operation, routine practices and 
abnormalities give rise to energy imbalance at different parts of 
the cell, and consequently local superheat variations. This leads to 
variations in local alumina dissolution rate, and affects process 
efficiency and performance. This paper presents a method for 
monitoring local cell conditions by estimating the rate constant of 
alumina dissolution and alumina concentration using the extended 
Kaiman filter. The method employs a combined mass balance and 
cell voltage model, which estimates the effective local superheat-
dependent dissolution rate constant and local alumina 
concentration from individual anode current, cell voltage, alumina 
feed rate and anode-cathode distance. The results are verified with 
alumina concentration and superheat measured during an 
experiment conducted in an industrial cell. 

Introduction 

consumption. The estimation of localized cell condition using an 
extended Kaiman filter has also been discussed in [7-9], in which 
a dynamic model has been employed to estimate the alumina 
concentration, yet the variation of local ACD was ignored. An 
improved Kaiman filter structure has been proposed in [10] to 
estimate the localized ACD as a parameter and the local 
concentration of the dissolved alumina as a state assuming 
constant alumina dissolution rate. In this paper, the Kaiman filter 
structure presented in [10] is further developed to include the 
estimation of alumina dissolution rate. It has been shown in [11] 
that the dissolution rate depends on a number of factors. In 
smelters operating at low cell voltage, the superheat becomes the 
dominant factor for alumina dissolution, as cold alumina can 
freeze the surrounding bath and forms agglomerate with a frozen 
shell of bath [12]. The alumina dissolution rate constant is then 
mainly dependent on the superheat. Thus the proposed method is 
capable of not only monitoring the concentration of the dissolved 
alumina, but also observing the superheat-dependent dissolution 
rate constant. The results will be compared with the superheat 
measurements obtained from an experiment where an excessive 
amount of cold alumina was fed into an industrial cell. 

In the Hall-Héroult process, the dissolved alumina concentration 
is crucial and must be kept within a narrow range to avoid either 
the formation of sludge or the onset of anode effect [1]. A good 
control of dissolved alumina concentration largely depends on its 
feed regulation as well as the respective local dissolution rate. 
However, alumina dissolution rate is not easy to detect, and cell 
controllers can only regulate the overall dissolved alumina 
concentration by altering alumina feeding based on the variations 
of the pseudo-resistance curve. As the pseudo-resistance only 
reflects the combined effect of the resistance contributed by the 
overall dissolved alumina concentration and effective anode-
cathode distance (ACD) across the cell, it therefore does not 
represent the spatial variations and local cell conditions. Thus, 
control strategies based on the pseudo-resistance do not provide a 
systematic way to account for the local dynamics of alumina 
dissolution. Furthermore, as the cell dimensions increase due to 
higher demand in productivity, spatial information that can be 
inferred from the pseudo-resistance becomes more diluted. As a 
result, cell monitoring using individual anode current 
measurements has attracted increasing attention from the industry 
as it can reflect local cell conditions. A number of applications 
have been proposed, which include signal based process 
monitoring [2-4], dynamic thermal modelling [5] and fault 
detection and diagnosis [5, 6], 

Although the individual anode current is directly affected by local 
cell conditions such as the local dissolved alumina concentration 
and local ACD, it is difficult to separate one variable from 
another. As such, this paper proposes the use of Kaiman filter to 
decouple and estimate local ACD, local alumina concentration as 
well as the respective dissolution rate based on a dynamic model 
that incorporates the dynamics of alumina dissolution and 

This paper is then organized as follows. The process model is 
presented in the next section, and is followed by a description of 
the formulation of the extended Kaiman filter. The estimation 
results are compared with measured values. The paper concludes 
with discussion of the results and potential further development. 

Process Modelling 

In the Hall- Hérault process, the dissolution of alumina that enters 
the cell follows fast and slow mechanism with a specific weight 
ratio and different rate constants [13]. For instance, alumina 
powders dissolve relatively faster in contrast to the agglomerates. 
Therefore, the concentration of the three kinds of alumina that 
could co-exist in the bath is considered in this model, and is 
represented as clß c2 and c3 . A nonlinear state-space model that 
relates dissolved alumina concentration and ACD to the cell 
voltage is developed with the following structure: 
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where c 1 is the concentration of the undissolved alumina powders; 
c2 is the concentration of the undissolved alumina agglomerates; 
c3 is the concentration of the dissolved alumina; k1 is the 
dissolution rate constant for alumina powder; fc2 is the dissolution 
rate constant for alumina agglomerates; u is the overall mass of 
alumina addition to the whole cell; M is the mass of the bath; r is 
the ratio of alumina that enters the cell as alumina powder at each 
addition; Faraday(;') is the alumina consumption calculated based 
on Faraday's law and current; ν is the cell voltage and θ contains 
the parameters in the model equation including ACD, anode 
resistance, bath temperahire, bath ratio, A1F3 concentration and 
cell designing parameters. The cell voltage equation is available in 
[14]. The process model above fonns the basis of the equations 
used to develop the extended Kaiman filter. 

The extended Kaiman filter is the most widely applied nonlinear 
state estimation method [15]. It can produce statistically optimal 
estimation of underlying variables, commonly referred to as the 
states, even based on the observation of noisy measurement and 
other modelling inaccuracies as a function of time. Furthermore, 
the Kaiman filter employs a recursive algorithm so that the 
number of states can also be estimated with less number of 
measurements. 

In order to ensure the observability, the number of states in the 
process needs to be reduced. Thus, the alumina dissolution 
mechanism is simplified. The fast and slow dissolution 
mechanisms represented by two first-order rate equations are 
combined into one first-order rate equation. The undissolved 
alumina, and c2, are lumped into one parameter c u n ; fcun is the 
effective dissolution constant for the undissolved alumina, which 
is a combination of /q, fc2 andr . The discrete form of the model 
equation is then modified as shown below: 

iV+l _ Ν \t b Ν u 
cun — cun — ' "un * cun + + ω\ 

N+\ _ Ν cd 
Faraday(;') 

M 

, is 
the effective rate constant for the dissolution; cd is the 
concentration of the dissolved alumina; b is the beam movement. 
The process noise and modelling inaccuracies are represented by 
ω1,ω23ί\ά ω3 , which include the mass transfer between the 
control volumes and inaccuracies of model parameters and the 
measurement noise is represented as z. It should be noted that as 
the cell voltage is sensitive to the variations of the ACD, this 
parameter also needs to be estimated. 

Kaiman Filter Formulation 

Using a similar method described in [10], a two-stage cascaded 
extended Kaiman filter is developed to estimate the local alumina 
concentration, the respective dissolution rate constant and local 
ACD. The schematic diagram of the struchire is outlined in Figure 
1. 

In the first stage, the global average concentration of the dissolved 
and undissolved alumina, and the average rate constant for 
dissolution are estimated from the information of alumina addition 
and average ACD, line current measurements and cell voltage 
measurements. The estimation results are then used in the second 
stage of the Kaiman filter. 

In the second stage, the cell is discretized into subsystems. For 
example, if the local cell conditions near anode 1 and anode 2 are 
of interest, the cell can be divided into two subsystems. One 
subsystem contains anode 1 and anode 2, as denoted by the 
subscript, a, in Equation (3), while the other subsystem contains 
the rest of the anodes, as denoted by the subscript, b. This 
example is depicted in Figure 2. 

ACDN+ι =ACDN +b + coi 

(2) 

system a system b 

Anode 1 Anode 3 Anode... Anode N- l 

Anode 2 Anode 4 Anode .„ Anode Ν 

Figure 2 Cell discretization in (ho second stage of Kaiman filter 

••N+l=h{c%+\ACDN+\e)+z 

Alumina addition Average ACD 

Anode current 

Figure 1 Structure of the cascaded Kaiman filter 
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Thus, tlie additional output equation for tlie second stage of tlie 
Kaiman filter can be written as: 

' 4 . : · 1 • » • • k l · 

-4Cß^ e r a g e = ΙΓ·.!(•/>:• -If;.!(•/>•: 

(3) 

Ν 

where Wly W2, W3 and W4 are tlie weightings for each subsystem, 
which are dependent on tlie discretization of the cell, including 
tlie number of anodes and ACD in each subsystem. Equation (3) 
provides a constraint for the second-stage Kaiman filter, which 
states that tlie global average concentration of undissolved and 
dissolved alumina, as well as the average ACD, should be a linear 
combination of tlie estimated values of each subsystem. 
Specifically, h5 is based on tlie fact that tlie total consumption of 
undissolved alumina should be the sum of tlie consumption of 
undissolved alumina in each subsystem. From state-space 
equations (2) and (3), state estimation can be perfonned using the 
cascaded extended Kaiman filter. Further information of tlie 
procedure can be refened in [10, 15]. 

Estimation Results and Discussion 

The method described in previous sections is used to estimate tlie 
local alumina concentration and tlie respective local dissolution 
rate constant based on individual anode cunent measurements 
obtained from tlie experiment published in [16]. In tlie 
experiment, an additional amount of alumina was deliberately fed 
into the cell at 10:00 where tlie superheat and tlie alumina 
concentration were measured intermittently at the same location. 

Estimation of local alumina concentration 

The local alumina concentration is estimated from tlie two-stage 
cascaded Kaiman filter described above. Figure 3 shows the 
estimated values of alumina concentration, which are compared 
with the measurements. 

In this work, the Kaiman filter is used because it has the capability 
to provide the statistically best estimation even based on model 
parameter with uncertainly, and noisy measurements. This is 
illustrated with the results in Figure 3, where tlie estimated 
alumina concentration generally follows the trend of tlie 
concentration measurements. The capability of tlie proposed 
Kaiman filter structure is illustrated further as shown in Figure 4. 

4.46 

4 44 

> £-42 

« 4.4 

4.38 

L?B 

\ 

V 

Vr 

ήΐ 
Superfast feeding 

\ 
S 

J 

s 

7 

3.S 

3.6 

2 
Έ 

3 4 

3 2 £ 

1010:2010:3010:4010:5011:0011:1011:2011:3011:4011:5012: 
time 

8o 

Figure 4 Comparison of cell voltage and estimated alumina concentration 
after the addition of extra feed 

During the underfeeding (tlie entire period before the superfast 
feeding), the estimated local alumina concentration decreases as 
expected, and it can be seen that the concentration further 
decreases even right after tlie superfast feeding. The decrease, in 
fact, is consistent with tlie trend of the cell voltage as shown in 
Figure 4. As shown in Figure 4, tlie cell voltage reached its 
maximum at 11:24. As there was no beam movement, the 
maximum indicated that tlie overall alumina concentration of tlie 
cell has reached the lowest point at that period of time. However, 
it should be pointed out that it may not be necessary for the case 
of local alumina concentration. Hie simulation results in fact 
show that there exists a time difference between tlie maximum of 
the cell voltage and tlie minimum of tlie estimated local alumina 
concentration. Hiis suggests that the estimation method based on 
individual anode currents is able to captare tlie spatial variations 
of tlie alumina concentration, but not only just to reflect tlie 
variations in the cell voltage or tlie pseudo-resistance. 

Estimation of local dissolution rate constant 

The respective rate constant of tlie local dissolution is also 
estimated at tlie same time with the alumina concentration. Hie 
result can be found in Figure 5, which is plotted with tlie 
superheat measurements. 

* Measured concentration 
Estimated concentration 
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Figure 3 Comparison of estimated and measured alumina concentration 
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Figure 5 Comparison of superheat and estimated rate constant after 
additional feed introduced by the experiment 

As it can be seen that the rate constant is steady initially, which is 
followed by a gradual decrease to almost zero, and then stays in 
that region until the measurement stopped. Since the cell was fed 
with extra amount of alumina at 10:00, there was a significant 
amount of undissolved alumina in the bath. The decrease in the 
superheat was found during the underfeed cycle, which suggests 
that the undissolved alumina gradually consumes the available 
heat for dissolution. As the estimated local rate constant is 
consistent with the local superheat measurements, it is reasonable 
to believe that the dissolution mechanism of the alumina is heat-
transfer controlled and the rate constant for dissolution is largely 
affected by the superheat in this experiment. In addition, as shown 
in Figure 5, the superfast feeding and the subsequent overfeeding 
resulted in the further decrease in low superheat (3.3°C at 11:22), 
because their respective feed rates are higher than the theoretical 
consumption rate. This shows that the estimation method is 
capable of identifying low superheat resulting from different 
causes. Besides, based on the result, it is found that the 
relationship between the superheat and rate constant is not linear, 
i.e. higher superheat does not necessarily mean higher dissolution 
rate, but as shown in the estimation, the low superheat can be 
reflected by the slow dissolution rate. It should be noted that the 
undissolved alumina concentration, c u n , is estimated at the same 
tune as the dissolution rate constant, which can be valuable when 
the undissolved alumina concentration is of interest. 

Conclusion 

This paper proposes a method to monitor local alumina 
concentration and superheat-dependent dissolution rate constant. 
The algorithm features a two-stage cascaded Kaiman filter, which 
estimates the local cell conditions from individual anode current 
measurements, cell voltage measurements and information of 
alumina addition and average ACD. It has been shown that the 
estimated local alumina concentration matches the general trend 
of the measured values, whereas the rate constant of the alumina 
dissolution reflects local low superheat condition. The results 
suggest that the method is effective in monitoring the cell 
conditions, especially for cell operates at low superheat which is 
commonly in low voltage reduction cells. As the variables and 
parameters considered in the process model are sufficient to 
capture the local information of interests, which leads to possible 
future development for fault detection. 

The advantage of using Kaiman filter for state estimation is also 
demonstrated in this work. Accurate modelling parameters are not 
necessary as their uncertainties can be treated as noise. This 
feature is important for estimating cell conditions in the Hall-
Heroult process as process parameters such as bath temperature, 
bath ratio and A1F3 concentration are usually hard to determine. 
As they often change over time, only a rough approximation can 
be obtained. 

To improve the efficiency and to further prove the accuracy of the 
method, further experiments can be carried out for further 
development of the method: 
1. Introducing significant spatial variations and measuring 

alumina concentration and superheat at different locations. 
The measured values could then be compared with the 
estimation, and; 

2. Measuring superheat in the cell for a long period of time with 
some disturbance in the energy balance. The estimated rate 
constant can then be correlated with the measured superheat 
to establish an empirical mathematical equation. 
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