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Chapter 1: Overview

Concept Checks 

1.1. a  1.2. a) 4  b) 3  c) 5  d) 6  e) 2  1.3. a, c and e  1.4. b  1.5. e  1.6. a) 4th  b) 2nd  c) 3rd  d) 1st 

Multiple-Choice Questions 

1.1.  c  1.2. c  1.3. d  1.4. b  1.5. a  1.6. b  1.7. b  1.8. c  1.9. c  1.10. b  1.11. d  1.12. b  1.13. c  1.14. a  1.15. e  1.16. a  

Conceptual Questions 

1.17. (a) In Europe, gas consumption is in L/100 km. In the US, fuel efficiency is in miles/gallon. Let’s relate 
these two: 1 mile = 1.609 km, 1 gal = 3.785 L. 

( ) ( )   = = = =   
   

1 mile 1.609 km 1.609 1 km 1 1100 0.00425
gal 3.785 L 3.785 100 L L/100 km 235.24 L/100 km

Therefore, 1 mile/gal is the reciprocal of 235.2 L/100 km.  

(b) Gas consumption is 12.2 L
100 km

.  Using =
1 L 1

100 km 235.24 miles/gal
 from part (a), 

  = =      

112.2 L 1 L12.2 12.2
235.24 miles/gal100 km 100 km

=
1 .

19.282 miles/gal
Therefore, a car that consumes 12.2 L/100 km  of gasoline has a fuel efficiency of 19.3 miles/gal. 
(c)  If the fuel efficiency of the car is 27.4 miles per gallon, then 

=
27.4 miles 27.4

gal 235.24 L/100 km
= 1 .

8.59 L/100 km
 

Therefore, 27.4 miles/gal is equivalent to 8.59 L/100 km. 
(d)  

1.18. A vector is described by a set of components in a given coordinate system, where the components are the 
projections of the vector onto each coordinate axis. Therefore, on a two-dimensional sheet of paper there 
are two coordinates and thus, the vector is described by two components. In the real three-dimensional 
world, there are three coordinates and a vector is described by three components. A four-dimensional 
world would be described by four coordinates, and a vector would be described by four components.  

1.19. A vector contains information about the distance between two points (the magnitude of the vector). In 
contrast to a scalar, it also contains information direction. In many cases knowing a direction can be as 
important as knowing a magnitude. 
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1.20.  In order to add vectors in magnitude-direction form, each vector is expressed in terms of component 
vectors which lie along the coordinate axes. The corresponding components of each vector are added to 
obtain the components of the resultant vector. The resultant vector can then be expressed in magnitude-
direction form by computing its magnitude and direction. 

1.21.  The advantage to using scientific notation is two-fold: Scientific notation is more compact (thus saving 
space and writing), and it also gives a more intuitive way of dealing with significant figures since you can 
only write the necessary significant figures and extraneous zeroes are kept in the exponent of the base. 

1.22.  The SI system of units is the preferred system of measurement due to its ease of use and clarity. The SI 
system is a metric system generally based on multiples of 10, and consisting of a set of standard 
measurement units to describe the physical world. In science, it is paramount to communicate results in 
the clearest and most widely understood manner. Since the SI system is internationally recognized, and its 
definitions are unambiguous, it is used by scientists around the world, including those in the United 
States. 

1.23.  It is possible to add three equal-length vectors and obtain a vector sum of zero. The vector components of 
the three vectors must all add to zero. Consider the following arrangement with = =1 2 3T T T :  

 

 The horizontal components of 1T  and 2T  cancel out, so the sum +1 2T T  is a vertical vector whose 
magnitude is θ θ θ+ =cos cos 2 cosT T T . The vector sum + +1 2 3T T T  is zero if  

θ

θ

θ

− =

=

= °

2 cos 0
1cos
2
60

T T

 

 Therefore it is possible for three equal-length vectors to sum to zero. 

1.24.  Mass is not a vector quantity. It is a scalar quantity since it does not make sense to associate a direction 
with mass. 

1.25.  The volume of a sphere is given by ( )π= 34 / 3 .V r  Doubling the volume gives 

( ) ( ) ( )π π π= = =3 3/3 3 1/3 32 2 4 / 3 4 / 3 (2 ) 4 / 3 (2 ) .V r r r  Now, since the distance between the flies is the 

diameter of the sphere, = 2d r , and doubling the volume increases the radius by a factor of 1/32 , the 
distance between the flies is then increased to = =1/3 1/3 1/32(2 ) 2 (2 ) 2 .r r d  Therefore, the distance is increased 
by a factor of 1/32 .  

1.26.  The volume of a cube of side r  is = 3
c ,V r  and the volume of a sphere of radius r  is ( )π= 3

sp 4 / 3V r .  The 
ratio of the volumes is:  

ππ
= =

3
c

3sp

3 .
4 4
3

V r
V r

 

 The ratio of the volumes is independent of the value of r. 
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1.27.  The surface area of a sphere is given by π 24 r . A cube of side length s  has a surface area of 26 .s  To 
determine s  set the two surface areas equal:  

π ππ= ⇒ = =
2

2 2 4 26 4   .
6 3
rs r s r  

1.28.  The mass of Sun is ⋅ 302 10  kg,  the number of stars in the Milky Way is about ⋅ =9 11100 10 10 , the number 

of galaxies in the Universe is about ⋅ =9 11100 10 10 ,  and the mass of an H-atom is −⋅ 272 10  kg.  

(a) The total mass of the Universe is roughly equal to the number of galaxies in the Universe multiplied 
by the number of stars in a galaxy and the mass of the average star: 

+ += ⋅ = ⋅ = ⋅11 11 30 (11 11 30) 52
universe (10 )(10 )(2 10 ) 2 10  kg 2 10  kg.M  

(b) −

⋅
≈ = =

⋅

52
79universe

hydrogen 27
hydrogen

2 10  kg
10  atoms

2 10  kg
M

n
M

 

1.29.  The volume of 1 teaspoon is about −⋅ 34.93 10  L , and the volume of water in the oceans is about 
⋅ 211.35 10  L.   

−

⋅
= ⋅

⋅

21
23

3

1.35 10  L 2.74 10  tsp
4.93 10  L/tsp

 

 There are about ⋅ 232.74 10  teaspoons of water in the Earth’s oceans. 

1.30.  The average arm-span of an adult human is d = 2 m. Therefore, with arms fully extended, a person takes 

up a circular area of ( )π π π π= = =22 2 2/ 2 (1 m)  m .r d  Since there are approximately ⋅ 96.5 10  humans, the 
amount of land area required for all humans to stand without being able to touch each other is 

π⋅ = ⋅ = ⋅2 29 9 10 26.5 10  m ( ) 6.5 10  m (3.14) 2.0 10  m .  The area of the United States is about 
⋅ 63.5 10  square miles  or ⋅ 12 29.1 10  m . In the United States there is almost five hundred times the amount 

of land necessary for all of the population of Earth to stand without touching each other. 

1.31.  The diameter of a gold atom is about −⋅ 102.6 10  m.  The circumference of the neck of an adult is roughly 
0.40 m. The number of gold atoms necessary to link to make a necklace is given by:  

 
−

−

⋅
= = = ⋅

⋅

1
9

10

circumference of neck 4.0 10  m 1.5 10  atoms.
diameter of atom 2.6 10  m/atom

n  

 The Earth has a circumference at the equator of about ⋅ 74.008 10  m . The number of gold atoms necessary 
to link to make a chain that encircles the Earth is given by: 

−

⋅
= = = ⋅

⋅

7
17

10

circumference of Earth 4.008 10  m 1.5 10  atoms.
diameter of a gold atom 2.6 10  m

N  

 Since one mole of substance is equivalent to about ⋅ 236.022 10  atoms , the necklace of gold atoms has 

( ) ( ) −⋅ ⋅ = ⋅9 23 151.5 10  atoms / 6.022 10  atoms/mol 2.5 10  moles of gold.  The gold chain has 

( ) ( ) −⋅ ⋅ = ⋅17 23 71.5 10  atoms / 6.022 10  atoms/mol 2.5 10  moles of gold. 

1.32.  The average dairy cow has a mass of about ⋅ 31.0 10  kg.  Estimate the cow’s average density to be that of 

water, ρ = 31000. kg/m .   

ρ
⋅

= = =
3

3
3

1.0 10  kgmassvolume 1.0 m
1000. kg/m
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 Relate this to the volume of a sphere to obtain the radius. 

( )
π

π π

    = ⇒ = = ≈      

1/3
31/3

3
3 1.0 m4 3volume   0.62 m

3 4 4
Vr r  

 A cow can be roughly approximated by a sphere with a radius of 0.62 m. 

1.33.  The mass of a head can be estimated first approximating its volume. A rough approximation to the shape 
of a head is a cylinder. To obtain the volume from the circumference, recall that the circumference is 

π= 2C r , which gives a radius of π= / 2 .r C  The volume is then: 

V = ( )π 2r h π
π

 =  
 

2

2
C h

π
=

2

.
4
C h  

 The circumference of a head is about 55 cm = 0.55 m, and its height is about 20 cm = 0.20 m. These values 
can be used in the volume equation: 

( ) ( )
π

−= = ⋅
2

3 30.55 m
0.20 m 4.8 10  m .

4
V  

 Assuming that the density of the head is about the same as the density of water, the mass of a head can 
then be estimated as follows: 

⋅mass = density volume = ( )( )−⋅ ⋅ =3 3 3 31.0 10  kg/m 4.8 10  m 4.8 kg.  

1.34.  The average adult human head is roughly a cylinder 15 cm in diameter and 20. cm in height. Assume 
about 1/3 of the surface area of the head is covered by hair.  

( ) ( ) ( ) ( ) ( )( )π ππ π  = = + = + = + 
≈ ⋅

22 2
hair cylinder

2 2

1 1 2 22 2 7.5 cm 7.5 cm 20. cm
3 3 3 3
4.32 10  cm

A A r rh r rh  

 On average, the density of hair on the scalp is ρ = ⋅ 2 2
hair 2.3 10  hairs/cm .  Therefore, you have ρ×hair hairA  

hairs on your head.  

( )( )ρ = ⋅ ⋅ = ⋅2 2 2 2 4
hair hair 4.32 10  cm 2.3 10  hairs/cm 9.9 10  hairs.A  

 
Exercises 

1.35.  (a) Three  (b) Four   (c) One   (d) Six   (e) One   (f) Two   (g) Three 

1.36.  THINK:  The known quantities are: =1 2.0031 NF  and =2 3.12 N.F  Both 1F  and 2F  are in the same 
direction, and act on the same object. The total force acting on the object is total .F  

 SKETCH:   

 
 RESEARCH:   Forces that act in the same direction are summed, = ∑total .iF F  

 SIMPLIFY:  = = +∑total 1 2iF F F F  

 CALCULATE:  = + =total 2.0031 N 3.12 N 5.1231 NF  
 ROUND:   When adding (or subtracting), the precision of the result is limited by the least precise value 

used in the calculation. 1F  is precise to four places after the decimal and 2F  is precise to only two places 
after the decimal, so the result should be precise to two places after the decimal: =total 5.12 N.F  

 DOUBLE-CHECK:   This result is reasonable as it is greater than each of the individual forces acting on 
the object. 
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1.37.  The result should have the same number of decimal places as the number with the fewest of them. 
Therefore, the result is 2.0600 + 3.163 + 1.12 = 6.34. 

1.38.  In a product of values, the result should have as many significant figures as the value with the smallest 
number of significant figures. The value for x only has two significant figures, so w 
= −⋅ ⋅ = ⋅3 2 2(1.1 10 )(2.48 10 )(6.000) 1.6 10 .  

1.39.  Write “one ten-millionth of a centimeter” in scientific notation. One millionth is −= ⋅6 61/10 1 10 . 
Therefore, one ten-millionth is − ⋅ = = ⋅ 

6 7 71/ 10 10 1/10 1 10 cm.  

1.40.  153,000,000 = ⋅ 81.53 10  

1.41.  There are 12 inches in a foot and 5280 feet in a mile.  Therefore there are 63,360 inch/mile. 
=30.7484 miles · 63,360 inch / mile  1948218.624 inches.  Rounding to six significant figures and 

expressing the answer in scientific notation gives 1.94822·106 inches. 

1.42.  (a) kilo  (b) centi   (c) milli 

1.43.    = = = ⋅  
  

61000 m 1000 mm1 km 1 km 1,000,000 mm 1 10  mm
1 km 1 m

 

1.44.  1 hectare = 100 ares, and 1 are = 100 2m ,  so: 

1 km2 = 
( )     =      

2 2
2

2 2

1000  m 1 are 1 hectare1 km 100 hectares.
1 km 100 m 100 ares

 

1.45.  1 milliPascal 

1.46.  THINK: The known quantities are the masses of the four sugar cubes. Crushing the sugar cubes doesn’t 
change the mass. Their masses, written in standard SI units, using scientific notation are 

−= ⋅ 2
1 2.53 10  kgm , −= ⋅ 2

2 2.47 10  kgm , −= ⋅ 2
3 2.60 10  kgm  and −= ⋅ 2

4 2.58 10  kg.m   
      SKETCH:  A sketch is not needed to solve this problem. 
       RESEARCH:  

 (a) The total mass equals the sum of the individual masses: 
=

= ∑
4

total
1

.
j

jM m  

              (b) The average mass is the sum of the individual masses, divided by the total number of masses:  
+ + +

= 1 2 3 4
average .

4
m m m m

M  

       SIMPLIFY:  
 (a) = + + +total 1 2 3 4M m m m m  

 (b) = total
average 4

M
M  

       CALCULATE: 
       (a)  − − −

−

−

−= ⋅ + ⋅ + ⋅ + ⋅

= ⋅

⋅

2 2 2 2
total

2

1

2.53 10  kg 2.47 10  kg 2.60 10  kg 2.58 10  kg

10.18 10  kg

=1.018 10  kg

M  

       (b)  
−

−⋅
= = ⋅

2
2

average
10.18 10  kg

2.545 10  kg
4

M  

       ROUND:  
(a) Rounding to three significant figures, −= ⋅ 1

total 1.02 10  kg.M  

 (b) Rounding to three significant figures, −= ⋅ 2
average 2.55 10  kg.M  
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       DOUBLE-CHECK: There are four sugar cubes weighing between −⋅ 22.53 10  kg  and −⋅ 22.60 10  kg, so it is 

reasonable that their total mass is −= ⋅ 1
total 1.02 10  kgM and their average mass is −⋅ 22.55 10  kg.  

1.47.  THINK: The cylinder has height h = 20.5 cm and radius r = 11.9 cm.  
 SKETCH:   

 
 RESEARCH:  The surface area of a cylinder is π π= + 22 2 .A rh r  
 SIMPLIFY:  π= +2 ( )A r h r  
 CALCULATE:  π= + = 22 (11.9 cm)(20.5 cm 11.9 cm) 2422.545 cmA  
 ROUND:  Three significant figures: = ⋅ 3 22.42 10  cm .A  
 DOUBLE-CHECK:   The units of area are a measure of distance squared so the answer is reasonable.  

1.48.  THINK:  When you step on the bathroom scale, your mass and gravity exert a force on the scale and the 
scale displays your weight. The given quantity is your mass =1  125.4 lbs.m  Pounds can be converted to SI 
units using the conversion =1 lb  0.4536 kg.  Let your mass in kilograms be 2 .m  

 SKETCH:  A sketch is not needed to solve this problem. 

 RESEARCH:   =  
 

2 1
0.4536 kg

1 lb
m m  

 SIMPLIFY:  It is not necessary to simplify. 

 CALCULATE:    = 
 

=2
0.4536 kg

125.4 lbs 56.88144 kg
lb

m  

 ROUND:  The given quantity and conversion factor contain four significant figures, so the result must be 
rounded to 56.88 kg. 

 DOUBLE-CHECK:  The SI units of mass are kg, so the units are correct.  

1.49.  THINK:  The orbital distance from the center of the Moon  to the center of the Earth ranges from 356,000 
km to 407,000 km. Recall the conversion factor 1 mile = 1.609344 kilometer. 

  SKETCH:   

 
 RESEARCH:  Let 1d  be a distance in kilometers, and 2d  the equivalent distance in miles. The formula to 

convert from kilometers to miles is =2 1 /1.609344d d . 
 SIMPLIFY:  It is not necessary to simplify. 
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 CALCULATE:    = 
 
  = 
 

1 mile356,000 km 221208.144 miles
1.609344 km

1 mile407,000 km 252898.0752 miles
1.609344 km

 

 ROUND:  The given quantities have three significant figures, so the calculated values must be rounded to 
221,000 miles and 253,000 miles respectively.  

 DOUBLE-CHECK:  A kilometer is roughly 2/3 of a mile, and the answers are roughly 2/3 of the given 
values, so the conversions appear correct. 

1.50.  THINK:  It is a distance d = 60 feet, 6 inches from the pitcher’s mound to home plate. Recall the 
conversion factors: 1 foot = 12 inches, 1 inch = 2.54 cm, 100 cm = 1 m.  

 SKETCH:   

 
 RESEARCH:  If the distance is x in meters and y in feet, then using the conversion factor c, = .x cy  

   =    
   

12 inches 2.54 cm 1 m1 foot / foot
1 foot 1 inch 100 cm

c  

 SIMPLIFY:  = 0.3048 meters/footc  
 CALCULATE: 60 feet plus 6 inches = 60.5 feet. Then, converting 60.5 feet to meters: 

 = = 
 

0.3048 m60.5 ft 18.440 m.
1 ft

d  

 ROUND:  Rounding to three significant figures, the distance is 18.4 m. 
 DOUBLE-CHECK:  The answer is a reasonable distance for a pitcher to throw the ball.  

1.51.  THINK:  The given quantities, written in scientific notation and in units of meters, are: the starting 
position, −= ⋅ 37 10  mox  and the lengths of the flea’s successive hops, −= ⋅ 2

1 3.2 10  mx , −= ⋅ 2
2 6.5 10  mx , 

−= ⋅ 2
3 8.3 10  mx , −= ⋅ 2

4 10.0 10  mx , −= ⋅ 2
5 11.5 10  mx  and −= ⋅ 2

6 15.5 10  m.x  The flea makes six jumps in 
total. 

 SKETCH:   

 

 RESEARCH:  The total distance jumped is 
=

= ∑
6

total
1

.n
n

x x  The average distance covered in a single hop is: 

=

= ∑
6

avg
  1

1 .
6 n

n

x x  
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 SIMPLIFY: = + + + + +total 1 2 3 4 5 6x x x x x x x ,  = total
avg 6

x
x  

 CALCULATE:  − −= + + + + + ⋅ = ⋅2 2
total (3.2 m 6.5 m 8.3 m 10.0 m 11.5 m 15.5 m) 10 55.0 10  mx  

        
−

−⋅
= = ⋅

2
2

avg
55.0 10  m 9.16666 10  m

6
x  

 ROUND: Each of the hopping distances is measured to 1 mm precision. Therefore the total distance 
should also only be quoted to 1 mm precision: −= ⋅ 2

total 55.0 10  m.x  Rounding the average distance to the 
right number of significant digits, however, requires a few more words. As a general rule of thumb the 
average distance should be quoted to the same precision as the least precision of the individual distances, if 
there are only a few measurements contributing to the average. This is the case here, and so we state 

−= ⋅ 2
avg 9.17 10  m.x  However, suppose we had 10,000 measurements contributing to an average.  Surely 

we could then specify the average to a higher precision.  The rule of thumb is that we can add one 
additional significant digit for every order of magnitude of the number of independent measurements 
contributing to an average.  You see that the answer to this problem is yet another indication that 
specifying the correct number of significant figures can be complicated and sometimes outright tricky! 
DOUBLE-CHECK:  The flea made 6 hops, ranging from −⋅ 23.2 10  m  to −⋅ 215.5 10  m , so the total distance 
covered is reasonable. The average distance per hop falls in the range between −⋅ 23.2 10  m and 

−⋅ 11.55 10  m,  which is what is expected. 

1.52.  THINK:  The question says that 31 cm of water has a mass of 1 g, that = 31 mL 1 cm , and that 1 metric ton 
is 1000 kg.  

 SKETCH:   

 
 RESEARCH:  For the first part of the question, use the conversion equation:  

    =            

3

3

1 kg1 g1000 mL 1 cm1 L 1 L
1000 g1 L 1 cm1 mL

. 

 For the second part of the question, use:  
   =    

   

31000 kg 1000 g 1 cm1 metric ton 1 metric ton
1 metric ton  1 kg 1 g

. 

 For the last part, recall that the volume of a cube is = 3 .V l  
        SIMPLIFY: Re-arranging the formula for the volume of the cubical tank to solve for the length gives  

= 3
c .l V  

 CALCULATE:       = =           

3

3

1 kg1 g1000 mL 1 cm1 L 1 L 1 kg
1000 g1 L 1 cm1 mL

 

 
   = =   

   

3
31000 kg 1000 g 1 cm1 metric ton 1 metric ton 1000000 cm

1 metric ton  1 kg 1 g
 

 = =3 1,000,000 100 cml = 1 m  
        ROUND:  No rounding is necessary. 
        DOUBLE-CHECK:  In each calculation the units work out correctly, so the answers are reasonable. 
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1.53.  THINK:  The given quantity is the speed limit, which is 45 miles per hour. The question asks for the speed 
limit in millifurlongs per microfortnight. The conversions 1 furlong = 1/8 mile, and 1 fortnight = 2 weeks 
are given in the question. 

 SKETCH:  A sketch is not needed. 
 RESEARCH:   

 
     =      

     

3

6

8 furlongs 10  millifurlongs 14 days 1 fortnight1 mile 1 mile 24 hours
1 hour 1 hour 1 mile 1 furlong 1 day 1 fortnight 10  microfortnights

 

 SIMPLIFY:  =
millifurlongs1 mile 2.688

1 hour microfortnight
 

 CALCULATE: 
 

= = 
 

millifurlongs  millifurlongs45 miles 45 2.688 120.96
hour microfortnight microfortnight

 

 ROUND:  Because the given quantity contains two significant figures, the result must be rounded to 
remain consistent. A speed of 45 miles per hour is equivalent to a speed of 120 
millifurlongs/microfortnight.  

 DOUBLE-CHECK:  The conversion factor works out to be roughly 3 millifurlongs per microfortnight to 
each mile per hour, so the answer is reasonable. 

1.54.  THINK: The density of water is ρ = 31000. kg/m .  Determine if a pint of water weighs a pound. 
Remember that 1.00 kg = 2.21 lbs and 1.00 fluid ounce = 29.6 mL.   

 SKETCH:  A sketch is not needed. 
 RESEARCH:  1 pint = 16 fluid ounces, mass = density ⋅  volume 

 SIMPLIFY:  1 pint = −      = ⋅     
    

3 3
4 3

3 3

16 fl. oz 29.6 mL 1 cm 1 m1 pint 4.736 10  m
1 pint 1.00 fl. oz 1 mL (100)  cm

 

 CALCULATE:   ( ) −= ⋅ =3 4 31000. kg/m (4.736 10  m ) 0.4736 kgm  

 In pounds m is equal to 
 

= 
 

2.21 lbs0.4736 kg 1.046656 lbs
1.00 kg

. 

 ROUND:  Rounding to three significant figures, the weight is 1.05 lbs. 
 DOUBLE-CHECK:  A pint is still a common measure for beverages, such as beer. A beer is relatively light 

and mainly comprised of water, so the answer is reasonable. 

1.55.  THINK:  The radius of a planet, pr , is 8.7 times greater than the Earth’s radius, Er . Determine how many 
times bigger the surface area of the planet is compared to the Earth’s. Assume the planets are perfect 
spheres. 

  SKETCH:   

 
 RESEARCH:  The surface area of a sphere is π= 24 ,A r  so π= 2

E E4 ,A r  and π= 2
p p4A r , and = 8.7 .p Er r  

 SIMPLIFY:  ( )π= 2
p E4 8.7A r  

 CALCULATE:  π= 2
p E(75.69)4 ,A r  and π= 2

E E4A r .  By comparison, =p E75.69A A . 
 ROUND:  Rounding to two significant figures, the surface area of the planet is 76 times the surface area of 

Earth. 
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 DOUBLE-CHECK:  Since the area is proportional to the radius squared, it is expected that the surface 
area of the planet will be much larger than the surface area of the Earth, since its radius is 8.7 times Earth’s 
radius. 

1.56.  THINK:  The radius of the planet pr  is 5.8 times larger than the Earth’s radius Er . Assume the planets are 
perfect spheres. 

 SKETCH:   

 

 RESEARCH:  The volume of a sphere is given by ( )π= 34 / 3V r . The volume of the planet is 

( )π= 3
p p4 / 3V r . The volume of the Earth is ( )π= 3

E E4 / 3V r .  =P E5.8 .r r  

 SIMPLIFY:   ( )π= 3
p E4 / 3 (5.8 )V r  

 CALCULATE: ( ) ( )π π= =3 3
p E E4 / 3 (5.8 ) 195.112 4 / 3 .V r r  Recall, ( )π= 3

E E4 / 3 .V r  Comparing the 

expressions, =p E195.112V V . 

 ROUND:  To two significant figures, so = ⋅ 2
p E2.0 10V V .  

 DOUBLE-CHECK:  The volume of the planet is about 200 times the volume of the Earth. The volume of a 
sphere is proportional to the radius cubed, it is reasonable to get a much larger volume for the planet 
compared to the Earth’s volume. 

1.57. THINK:  It is necessary to take the height of both masts and the curvature of the Earth into account when 
calculating the distance at which they can see one another. If the ships are at the maximum distance at 
which the sailors can see one another, then the line between the first sailor and the second sailor will be 
tangent to the surface of the earth. 

 SKETCH:  Since it is necessary to take the curvature of the earth into account when solving this problem, 
the sketch will not be to scale. The radius of the Earth is labeled R and the center of the earth is labeled C. 
The farthest point on the horizon that can be seen by both sailors, which is also the point at which the line 
of sight between them is tangent to the Earth, is labeled A. The distance from the first sailor to point A is d1 
and the distance from the second sailor to point A is d2. 
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 RESEARCH:  Because the line of sight between the sailors is tangent to the earth, it is perpendicular to the 
radius of the earth at point A. This means that the triangle formed by the first sailor, point A, and the 
center of the earth (point C) is a right triangle. The second sailor, point A, and point C also form a right 
triangle. Examining the figure, we can use the Pythagorean Theorem to find equations relating d1 and d2 to 

R: ( )22 2
1 34R d R+ = + and ( )22 2

2 26R d R+ = + . The total distance will be the sum d1 + d2. 
  SIMPLIFY: First find expressions for the distances d1 and d2 and then use those to find the sum. The 

equation for d1 gives: 

( )
( )

22 2 2 2
1

2 2 2 2
1

2
1

34

2 34 34

2 34 34

R d R R R

d R R R

d R

+ − = + − ⇒

= + ⋅ + − ⇒

= ⋅ +

 

 Similar calculations are used to find d2: 

( )
( )

22 2 2 2
2

2 2 2 2
2

2
2

26

2 26 26

2 26 26

R d R R R

d R R R

d R

+ − = + − ⇒

= + ⋅ + − ⇒

= ⋅ +

 

 Combine to get an expression for the total distance between the ships: 
2 2

1 2 2 34 34 2 26 26d d R R+ = ⋅ + + ⋅ + . 

 CALCULATE:  The radius of the earth is given in Solved Problem 1.2 as 66.37 10  m× .  Using this gives a 
final answer of: 

( ) ( ) ( ) ( )2 26 6
1 2 2 34 m 6.37 10 34 m 34 m 2 26 m 6.37 10  m 26 m

39,012.54259 m.

d d+ = ⋅ ⋅ × + + ⋅ ⋅ × +

=
 

 ROUND: The radius of the earth used in this problem is known to three significant figures. However, the 
heights of the masts of the two ships are given to two significant figures. So, the final answer should have 
two significant figures: 43.9 10  m.×  

 DOUBLE-CHECK: The maximum distance between the ships is a distance, so the units of meters seem 
correct. The calculated maximum distance at which the two sailors can see one another is 39 km. 
Calculating 

( ) ( )26
1 2 26 m 6.37 10  m 26 m 21 kmd = ⋅ ⋅ × + =

 
and 

( ) ( )26
2 2 26 m 6.37 10  m 26 m 18 kmd = ⋅ ⋅ × + =

 
 confirms that the sailor from ship 1, sitting at the top of a slightly taller mast, can see about 3 km further 

than his companion. These distances seem reasonable: an average person looking out over the ocean sees 
about 4.7 km, and the view from 413 m atop the Willis Tower was calculated to be 72.5 km. Since the 
masts are significantly taller than a person but much shorter than the height of the Willis Tower, the final 
answer of 39 km seems reasonable.  

 An alternate way to calculate this would have been to use the secant-tangent theorem, which states that the 
square of the distance from the sailor to the horizon equals the product the height of the mast times the 

sum of the height of the mast and the diameter of the earth: ( ) ( )2
1 2 34 34d R= + ⋅ and 

( ) ( )2
2 2 26 26d R= + ⋅ . Using this formula confirms the answer: 
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( ) ( )

( )( ) ( )( )
1 2

6 6

2 34 34 2 26 26

2 6.37 10  m 34 m 34 m 2 6.37 10  m 26 m 26 m

39 km

d d R R+ = + ⋅ + + ⋅

= × + ⋅ + × + ⋅

=

 

1.58. THINK:  The altitude of the jet liner is given in feet, so it will be necessary to convert to meters before 
calculating the answer. The horizon is the furthest point that can be seen in perfect weather conditions. 
Since we don’t know where and when the plane is flying, we will approximate the Earth as a perfect sphere.  

 SKETCH:  Since the radius of the earth is important here, the sketch will not be to scale. Point A is a 
furthest point on the horizon that can be seen from the plane, and C marks the center of the Earth, and R 
indicates the radius of the Earth. Point X is on the surface of the Earth directly opposite from where the 
plane is flying. 

 
 RESEARCH:  The line of sight from the plane to the furthest point on the horizon (point A) is tangential 

to the Earth at point A. So, it must be perpendicular to the radius of the Earth at point A. This means that 
the plane, point A, and point C form a right triangle. The Pythagorean Theorem states 

that ( )22 2d R R h+ = + . To find the distance d, it is necessary to use consistent units. Since the radius of the 
Earth (R) is given in meters, it is easiest to convert the height h from feet to meters using the fact that  
1 m = 3.281 ft. 

 SIMPLIFY: First convert the height of the plane from feet to meters, multiplying h by 1 m
3.281 ft

. Then, 

solve the expression ( )22 2d R R h+ = + for d, the distance we want to find: 

( )
( )

22 2 2 2

2 2 2 2

2

2

2

d R R R h R

d R Rh h R

d Rh h

+ − = + − ⇒

= + + − ⇒

= +

 

 CALCULATE:  The radius of the Earth R = 6.37·106 m and the plane is flying 1 m35,000 ft 
3.281 ft

h = ⋅  

above the ground. Using these numbers, the distance to the horizon is 

( )
2

6 1 m 1 m2 6.37 10  m 35,000 ft 35,000 ft 368,805.4813
3.281 ft 3.281 ft

d    = × + =   
   

m. 
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 ROUND: Though it is ambiguous, the height of the jetliner above the ground is known to at least two 
significant figures. The radius of the Earth is known to three significant figures and the conversion from 
feet to meters uses four significant figures. So, the answer is known to two significant digits. This gives a 
final distance of 3.7·105 m or 370 km.  

 DOUBLE-CHECK: The answer is given in units of meters or kilometers. Since the distance to the horizon 
is a length, the units are correct. 370 km is the approximate distance between Los Angeles and Las Vegas. 
Indeed, in an airplane at cruising altitude, it is just possible to see the Los Angeles coast as you fly over Las 
Vegas, so this answer seems reasonable. It is also possible to check the answer by working backwards. The 
secant-tangent theorem states that the square of the distance d equals the product of the height of the 
plane over the Earth h and the distance from the jetliner to point X on the other side of the Earth. Use this 
to find the height of the plane in terms of the distance to the horizon and the radius of the earth: 

( )

( )

( ) ( ) ( )

2 2

2 2

2 2
2 2

2 26 6 5

2 2

0 2

2 2 4

2

6.37 10  m 6.37 10  m 3.7 10  m

10736.63 m

d h h R h Rh

h Rh d

R R d
h R R d

= + = + ⇒

= + − ⇒

− ± +
= = − ± +

= − × + × + ×

=

 

 Converting this back to feet and rounding to 2 significant figures gives confirmation that the answer was 

correct:
3.281 ft10736.63459 m 35,000 ft.

1 m
⋅ =  

1.59.  THINK:  The given quantity is 1.56 barrels of oil. Calculate how many cubic inches are in 1.56 barrels. 1 
barrel of oil = 42 gallons = (42 gal)(231 cu. in./gal) =  9702 cubic inches.  

 SKETCH:  A sketch is not needed. 
 RESEARCH:  If a volume 1V  is given in barrels then the equivalent volume 2V  in cubic inches is given by 

the formula =2 1
9702 cu. in.

1 barrel
V V  

 SIMPLIFY:   Not applicable. 

 CALCULATE:    = 
 

9702 cu. in1.56 barrels 15135.12 cu. in.
1 barrel

 

 ROUND:  The value given in the question has three significant figures, so the final answer is that 1.56 
barrels is equivalent to 1.51·104 cubic inches. 

 DOUBLE-CHECK:  Barrels are not commonly used units. However, since the proper conversion factor of 
9702 cubic inches per barrel was used, the answer is accurate.  

1.60.  THINK:  The car’s gas tank has the shape of a rectangular box with a square base whose sides measure 
= 62 cm.l  The tank has only 1.5 L remaining. The question asks for the depth, d of the gas remaining in 

the tank. The car is on level ground, so that d is constant.  
SKETCH:   
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 RESEARCH:  = 2
tankA l . The volume of gas remaining is = ×gas tank .V A d  Convert the volume 1.5 L to 

31500 cm  by using = 31 mL 1 cm .  
 SIMPLIFY:   d = gas tank/V A , but = 2

tankA l , so substitute this into the expression for d: = 2
gas /d V l . 

 CALCULATE:  = =
3

2

1500 cm 0.390218 cm
(62 cm)

d  

 ROUND:  To two significant figures =  0.39 cm.d  
 DOUBLE-CHECK:  The car’s gas tank will hold 52 L but only has 1.5 L remaining. The sides of the gas 

tank are 62 cm and because the gas tank is almost empty, there should be a small depth of gas in the 
bottom of the tank, so the answer is reasonable. 

1.61.  THINK:  The formula for the volume of a sphere is given by ( )π= 3
sphere 4 / 3V r . The formula for density is 

given by ρ = /m V . Refer to Appendix B in the text book and express the answers in SI units using 
scientific notation. 

 SKETCH:   

 

 RESEARCH:   The radius of the Sun is = ⋅ 8
S 6.96 10  m,r the mass of the Sun is = ⋅S

301.99 10  kg,m  the 

radius of the Earth is = ⋅ 6
E 6.37 10  m,r  and the mass of the Earth is = ⋅ 24

E 5.98 10  kg.m  
 SIMPLIFY:   Not applicable. 
 CALCULATE:  

 (a) π π= = ⋅ = ⋅3 8 3 27 3
S S

4 4 (6.96 10 ) 1.412265 10  m
3 3

V r  

           (b) π π= = ⋅ = ⋅3 6 3 21 3
E E

4 4 (6.37 10 ) 1.082696 10  m
3 3

V r  

  (c) ρ ⋅
= = = ⋅

⋅

30
3 3S

S 27
S

1.99 10 1.40908 10  kg/m
1.412265 10

m
V

 

  (d) ρ ⋅
= = = ⋅

⋅

24
3 3E

E 21
E

5.98 10 5.523249 10  kg/m
1.082696 10

m
V

 

 ROUND:  The given values have three significant figures, so the calculated values should be rounded as: 
            (a) = ⋅ 27 3

S 1.41 10  mV  

            (b) = ⋅ 21 3
E 1.08 10  mV  

             (c) ρ = ⋅ 3 3
S 1.41 10 kg/m  

             (d) ρ = ⋅ 3 3
E 5.52 10  kg/m  

 DOUBLE-CHECK:  The radius of the Sun is two orders of magnitude larger than the radius of the Earth. 
Because the volume of a sphere is proportional to the radius cubed, the volume of the Sun should be 

2 3(10 )  or 610  larger than the volume of the Earth, so the calculated volumes are reasonable. Because 
density depends on mass and volume, and the Sun is roughly 610  times larger and more massive than the 
Earth, it is not surprising that the density of the Sun is on the same order of magnitude as the density of 
the Earth (e.g. 610 / 610  = 1). Earth is primarily solid, but the Sun is gaseous, therefore it is reasonable that 
the Earth is denser than the Sun.  
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1.62.  THINK:  The tank is in the shape of an inverted cone with height =  2.5 mh and radius r = 0.75 m. Water 
is poured into the tank at a rate of w = 15 L/s. Calculate how long it will take to fill the tank. Recall the 
conversion = 31 L 1000 cm .  

 SKETCH:   

 

 RESEARCH:  The volume of a cone is π= 2
cone

1
3

V r h . The rate water enters the cone is w = waterV
t

 where t 

is time. When the cone is full, =cone waterV V , therefore π =21 .
3

r h wt  

 SIMPLIFY:   π
=

2

3
r ht
w

 

 CALCULATE:  π
= =

 
 
 

2

3

(75 cm) (250 cm) 98.1748 s
15000 cm3

s

t  

 ROUND:  To two significant figures, t = 98 s. 
 DOUBLE-CHECK:  The calculation resulted in the correct units, so the answer is reasonable. 

1.63.  THINK:  The rate of water flow is 15 L/s, the tank is cubical, and the top surface of the water rises by 1.5 
cm/s. Let h be the height of the water in the tank. 

 SKETCH:   

 
 RESEARCH: The change in the volume of the water, ∆ waterV , is = 315 L/s 15000 cm /s.  The change in the 

height of the water is ∆ =1.5 cm/s.h  An equation to find the side length of the tank is ∆ = ∆water
2 .V l h  

 SIMPLIFY:  
∆

=
∆

waterV
l

h
 

 CALCULATE:  
 

= = 
 

315000 cm / s 100. cm
1.5 cm/s

l  

 ROUND:  = ⋅ 21.0 10  cml  
 DOUBLE-CHECK:  The flow rate of 15 L/s is quite fast, but the level of the water is rising by only 1.5 

cm/s, so it is reasonable that the tank is relatively large. 

1.64.  THINK:  The atmosphere has an effective weight of 15 pounds per square inch. By computing the surface 
area of the Earth, it will be easy to compute the mass of the atmosphere. Then, since the atmosphere is 
assumed to have a uniform density of 31.275 kg/m ,  the mass can be converted to a volume. The volume of 
the atmosphere is the difference of two spheres, whose radii are the radius of the Earth, E ,r  and the radius 
of the Earth plus the thickness of the atmosphere, ∆ .r  The result will be a cubic equation with one real 
root which can be approximated to give the thickness of the atmosphere. 
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 SKETCH:   

 
 RESEARCH:  Recall the conversions 1 inch = 0.0254 m and 1 kg = 2.205 lbs. The radius of the Earth is 

about 6378 km.  The surface area of the Earth is π= E
2

E 4A r . The mass of the atmosphere is 

( )=A E 15 lb/sq in .m A  The volume of the atmosphere can be computed using the ratio 

ρ=A A A/ ,V m where ρA  is the density of the atmosphere. This volume is the difference of the two spheres, 

as shown in the sketch. The volume of the Earth (without its atmosphere) is ( )π= 3
E E ,4 / 3V r  and the 

volume of the Earth and atmosphere is ( ) ( )π= + ∆ 3
EA E .4 / 3V r r  A second method of computing the 

volume of the atmosphere is −=A EA E .V V V  Set the two values of AV  equal and solve for r. 
 SIMPLIFY:  The first expression for the volume of the atmosphere is 

π
ρ ρ

 
= =  

 

2
A E

A
A A

4 15 lb .
1 square inch

m r
V  

 The second expression is ( )( )π= + ∆ −3 3
A E E .( )4 / 3 r r rV  Setting these expressions equal to each other gives 

an equation to solve for ∆ .r  

 CALCULATE:    = = ⋅  
  

E
81000 m 1 in6378 km 2.511 10  in

1 km 0.0254 m
r       

   ρ − = = ⋅ 
 

3
5

A 3 3

kg kg0.0254 m1.275 2.089 10
m 1 in in

   

 Substituting into the first equation for AV  gives: 

( )π
−

⋅   = = ⋅  ⋅   

2

3
A 5

8
23

3

4 2.511 10  in 15 lb 1 kg 2.580 10  inch .
2.089 10 kg/in 1 square inch 2.205 lb

V  

 The second equation for AV becomes:  

( )( ) ( ) ( )π
= ∆ + ⋅ ∆ + ⋅ ∆= ⋅ + ∆ − ⋅

33 3 2 1
A

8 9 784 (2.5  in  in 4.1888 3.1511 10 ) 5 10 7.9232. 10 .511 10
3

rV r r r  

 Setting the two equations for AV equal results in the equation: 

( ) ( )∆ + ⋅ ∆ + ⋅ ∆ = ⋅3 2 79 31 24.1888 3.155 10 7.923 10 2.580 10r r r , 

 a cubic equation in ∆r . This equation can be solved by a number of methods. A graphical estimate is 
sufficient. It has one real root, and that is at approximately  

∆ = = =
0.0254 m325300 in 325300 in 8263 m.

1 in
r  

ROUND:  The least precise value given in the question had two significant figures, so the answer should 
be rounded to 8300 m. 
 DOUBLE-CHECK:  The result has units of distance, which is what is expected. What may not be expected 
is that our result is not as big as the height of the tallest mountain on Earth, Mt. Everest, which has a height 
of 8.8 km. We can obtain a simple approximation of our result by realizing that our calculated value for ∆r  
is small compared to the radius of Earth. This means that the surface of a sphere with radius + ∆ER r  and 
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one with radius ER  are not very different, allowing us to write an approximation to our result as 

( ) ( ) ( )( )π π∆ ≈ = ⋅ ⋅ = ⋅ =
223 3 8 5

A
2

E/ 4 2.580 10  inch / 4 2.511 10  inch 3.256 10  inch 8.3 km.r V r  

1.65.  THINK: Let 


L  be the position vector. Then =


40.0 mL and θ = °57.0 (above x-axis). 

 SKETCH:   

 
 

 RESEARCH:  From trigonometry, θ = ∆


sin /y L  and θ = ∆


cos /x L . The length of the vector 


L  is given 

by the formula = ∆ + ∆


2 2 .L x y  

 SIMPLIFY:  θ∆ =


cosx L , θ∆ =


siny L  

 CALCULATE:  ( )∆ = ° =40.0 m cos(57.0 ) 21.786 mx , ( )∆ = ° =40.0 m sin(57.0 ) 33.547 my  
 ROUND:  ∆ = 21.8 mx  and ∆ = 33.5 m.y  

  DOUBLE-CHECK:  = ∆ + ∆


2 2L x y = + ≈2 2(21.8 m) (33.5 m) 40.0 m,  to three significant figures. 

1.66.  THINK: = 6.6 cm,a  = 13.7 cm,b  and = 9.2 cmc are the given quantities. 
 SKETCH:   

 
 RESEARCH:  Law of cosines: γ= + −2 2 2 2 cosc a b ab   

 SIMPLIFY:  γ

γ

γ

γ −

= + −

= + −

+ −
=

 + −
=  

 

2 2 2

2 2 2

2 2 2

2 2 2
1

2 cos

2 cos

cos
2

cos
2

c a b ab

ab a b c

a b c
ab

a b c
ab

 

 CALCULATE:  γ −  + −
= = ° 

 

2 2 2
1 (6.6 cm) (13.7 cm) (9.2 cm)cos 35.83399

2(6.6 cm)(13.7 cm)
 

 ROUND: γ = °36  
 DOUBLE-CHECK:  The angle γ  in the figure is less than 45° , so the answer is reasonable. 

1.67.  THINK:  The lengths of the vectors are given as 


A  = 75.0, 


B  = 60.0, 


C  = 25.0 and =


90.0D . The 

question asks for the vectors to be written in terms of unit vectors. Remember, when dealing with vectors, 
the x- and y-components must be treated separately. 
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 SKETCH:  

 
 RESEARCH:  The formula for a vector in terms of unit vectors is = +



ˆ ˆx yV V x V y . Since 

θ =
oppositesin

hypotenuse
 and θ =

adjacent
cos

hypotenuse
, θ =



sin yA

A
 and θ =



cos xA

A
.   

 
θ θ
θ
θ

= ° = ° = °
= ° = °
= ° = °

30.0 ,  19.0 161.0  (with respect to the positive -axis),
52.0 232.0  (with respect to the positive -axis),
27.0 333.0  (with respect to the positive -axis).

A B

C

D

x
x
x

 

 SIMPLIFY: θ θ
 

= cos ,  = sin ,x A y AA A A A  θ θ
 

= cos ,  = sin ,x B y BB B B B  θ


= cos ,x CC C  θ


= sin ,y CC C  

θ


= cos ,x DD D  and θ


= siny DD D . 

 CALCULATE:  = ° = = ° =

= ° = − = ° =

= ° = − = ° = −

= ° = =

ˆ ˆ75.0cos30.0 64.9519 ,  75.0sin30.0 37.5
ˆ ˆ60.0cos161.0 56.73 ,  60.0sin161.0 19.534

ˆ ˆ25.0cos232.0 15.3915 ,  25.0sin232.0 19.70027
ˆ90.0cos333.0 80.19058 ,  90.0sin333

x y

x y

x y

x y

A x A y
B x B y
C x C y
D x D ° = − ˆ.0 40.859144 y

  

 ROUND:  The given values had three significant figures so the answers must be rounded to: 
 = + = − + = − − = −

  ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ65.0 37.5 ,  56.7 19.5 ,   15.4 19.7 ,  80.2 40.9A x y B x y C x y D x y .    
 DOUBLE-CHECK:  Comparing the calculated components to the figure provided shows that this answer 

is reasonable. 

1.68.  THINK: Use the components in Question 1.65 to find the sum of the vectors


A ,


B , 


C and 


D .  Also, 
calculate the magnitude and direction of − +

  

A B D . Remember, when dealing with vectors the x and y 
components must be treated separately. Treat the values given in the question as accurate to the nearest 
decimal, and hence as having two significant figures. 

 SKETCH:  Not applicable. 
 RESEARCH:  
 (a) The resultant vector is = + + +

   

V A B C D . 

  (b) The magnitude of a vector is = +


2 2( ) ( )x yV V V . The direction of the vector 


V  is 

( )θ −= 1tan /V y xV V . 

 SIMPLIFY:   
 (a) + + + = + + + + + + +

  

ˆ ˆ( ) ( )x x x x y y y yA B C D A B C D x A B C D y  

 (b) 

θ −

= − + = − + + − +

− + 
=  − + 

  

2 2

1

( ) ( )

tan

x x x y y y

y y y
V

x x x

V A B D A B D A B D

A B D
A B D
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 CALCULATE:  
 (a)  + + + = − − + + + − −

= −

  

ˆ ˆ(65.0 56.7 15.4 80.2) (37.5 19.5 19.7 40.9)
ˆ ˆ73.1 3.6

A B C D x y
x y

 

 (b) 

θ −

− + = − − + + − − =

− − 
= = − ° − − + 

  

2 2

1

(65.0 ( 56.7) 80.2) (37.5 19.7 40.9) 203.217

37.5 19.7. 40.9tan 6.5270
65.0 ( 56.7) 80.2V

A B D  

 ROUND: 
 (a) Not necessary. 

       (b) The given magnitudes have three significant figures, so − + =
  

203A B D , at − °6.53  (below the x-axis).     

 DOUBLE-CHECK:  The length of the resulting vector is less than the sum of the lengths of the 
component vectors. Since the vector points into the fourth quadrant, the angle made with the x-axis 
should be negative, as it is. 

1.69.  THINK:  The problem involves adding vectors, therefore break the vectors up into their components and 
add the components. SW is exactly °45  south of W. 



1d  = 4.47 km N, =


2 2.49 kmd  SW, 


3d  = 3.59 km E.  
SKETCH:   

 
RESEARCH:  Use 



D  = + +
  

31 2d d d  = + ˆˆx yxD D y , and recall the formula for the length of 


:D  


D  = 

+2 2
x yD D . Decompose each summand vector into components 



id  = i xd x̂  + i yd ŷ , with summand 

vectors:  =


1 1 ˆ,d d y = + = − −


o o
2 2 2 2 2ˆ ˆ ˆ ˆsin(45 ) cos(45 ) ,x yd d x d y d x d y  =



3 3 ˆ.d d x  

 SIMPLIFY:   Therefore, = + + = − ° + − °
  



1 2 3 3 2 1 2( sin(45 )) ( cos(45 ))D d d d d d d d  and  

    = − ° + − °


2 2
3 2 1 2( sin(45 )) ( cos(45 ))D d d d d . 

CALCULATE:  = − ° + − °


2 2(3.59 2.49cos(45 )) (4.47 2.49sin(45 ))D = 3.269 km 

 ROUND:  =


3.27D km 

 DOUBLE-CHECK:  Given that all vectors are of the same order of magnitude, the distance from origin to 
final position is less than 1d , as is evident from the sketch. This means that the calculated answer is 
reasonable. 

1.70.  THINK: The problem involves adding vectors, therefore break the vectors up into their components and 
add the components. NW is exactly °45  north of west.



1d = 20 paces N, =


2 30d paces NW, 


3d  = 10 paces S. 
Paces are counted to the nearest integer, so treat the number of paces as being precise.  
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 SKETCH:  

 
       RESEARCH:, Use = + + = +

  


2 31 ˆ ˆx yD d d d x DD y , and recall the formula for the length of 


:D  

= +


2 2
x yD D D . Decompose each summand vector into components 



id  = i xd x̂  + i yd ŷ , with 

summand vectors:  =


1 1 ˆ,d d y  = + = − −


o o
2 2 2 2 2ˆ ˆ ˆ ˆsin(45 ) cos(45 ) ,x yd d x d y d x d y  = −



3 3 ˆd d y  

 SIMPLIFY:  += + + = − °) + − °
  



1 2 3 2 1 3 2ˆ ˆsin(45 ( cos(45 ))D d d d d x d d d y  and  

    = − ° + − + °


2 2
2 1 3 2( sin(45 )) ( cos(45 ))D d d d d . 

 CALCULATE:  = − ° + − + °


2 2( 30sin(45 )) (20 10 30cos(45 ))D = 37.739 paces 

 ROUND:  38 paces 
 DOUBLE-CHECK:  Given that >1 3d d , the calculated answer makes sense since the distance D  should be 

greater than 2d . 

1.71.  THINK:  The problem involves adding vectors, therefore break the vectors up into their components and 
add the components. NW is °45  north of west. 



1d  = 20 paces N, 


2d  = 30 paces NW, 


3d  = 12 paces N,  


4d  = 3 paces into ground (


4d  implies 3 dimensions). Paces are counted to the nearest integer, so treat the 
number of paces as being precise. 

 SKETCH:   

 
 

 RESEARCH:  = + + +
   



1 2 3 4D d d d d ,  = + +


ˆ ˆ ˆi ix iy izd d x d y d z , = + +


2 2 2 ,x y zD D D D  =


1 1 ˆ,d d y  

= − + = − ° + °


2 2 2 2 2ˆ ˆ ˆ ˆcos(45 ) sin(45 ) ,x yd d x d y d x d y  =


3 3 ˆ,d d y  and = −


4 4 ˆ.d d z  

 SIMPLIFY:  = + + + = − ° + + + ° −
   



1 2 3 4 2 1 3 2 4ˆ ˆ ˆcos(45 ) ( sin(45 ))D d d d d d x d d d y d z  and  

    = − ° + + + ° + −


2 2 2
2 1 3 2 4( cos(45 )) ( sin(45 )) ( )D d d d d d . 
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 CALCULATE:  
 

= − + + + −  
 

 2 2ˆ ˆ ˆ30 20 12 30 3
2 2

D x y z  

 = − + + − =


2 2 2( 21.213) (53.213) ( 3) 57.36 pacesD  

 ROUND:  ( )= − + + −


ˆ ˆ ˆ15 2 32 15 2 3D x y z  and round the number of paces to the nearest integer: 

=


57 paces.D   

 DOUBLE-CHECK:   Distance should be less than the sum of the magnitudes of each vector, which is 65. 
Therefore, the calculated answer is reasonable. 

1.72.  THINK:  Consider the Sun to be the centre of a circle with the distance from the Sun to Venus, as the 
radius. Earth is located a distance = ⋅ 11

E 1.5 10  mr  from the Sun, so that the three bodies make a triangle 
and the vector from Earth to the Sun is at 0̊. The vector pointing from Earth to Venus inte rsects Venus’ 
orbit one or two times, depending on the angle Venus makes with the Earth. This angle is at a maximum 
when the vector intersects the orbit only once, while all other angles cause the vector to intersect twice. If 
the vector only intersects the circle once, then that vector is tangential to the circle and therefore is 
perpendicular to the radius vector of the orbit. This means the three bodies make a right triangle with Er  
as the hypotenuse. Simple trigonometry can then be used to solve for the angle and distance.  

 SKETCH:   

 
 RESEARCH:  θ= + =2 2 2

E V E V,  sinr r R r r  

 SIMPLIFY:  ( )θ −= − =2 2 1
E V V E,  sin /R r r r r  

 CALCULATE:  θ −  ⋅
= ⋅ − ⋅ = ⋅ = = ° ⋅ 

11
11 2 11 2 11 1

11

1.1 10(1.5 10 ) (1.1 10 ) 1.0198 10  m ,  sin 47.17
1.5 10

R  

 ROUND:  θ= ⋅ = °111.0 10  m, 47R  
 DOUBLE-CHECK:   If it had been assumed that ( )θ −= 1

V Etan /r r  when the E-to-S-to-V angle was °90 ,   
then θtan  would be about °36 .  Therefore the maximum angle should be greater than this, so the answer 
is reasonable. 

1.73.  THINK:  All angles and directions of vectors are unknown. All that is known are the distances walked, 1d  
= 550 m and 2d  = 178 m, and the distance 3d  = 432 m that the friend is now away from you. Since the 
distances are the sides of a triangle, use the cosine law to determine the internal (and then external) angles. 
Also, since <3 1d d , he must have turned back towards you partially, i.e. he turned more than °,90  but less 
than °.180  
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SKETCH:   

 
 RESEARCH:  φ α θ α= + − = + − + = °2 2 2 2 2 2

2 1 3 1 3 3 1 2 1 22 cos ,   2 cos ,   180d d d d d d d d d d  

 SIMPLIFY:  φ φ −  + −
= + − ⇒ =  

 

2 2 2
2 2 2 1 1 3 2

1 3 1 3 2
1 3

2 cos   cos
2

d d d
d d d d d

d d
 

 Likewise, α −  + −
=  

 

2 2 2
1 1 2 3

1 2

cos .
2

d d d
d d

 

 CALCULATE:  φ −
 + −

= = °  
 

2 2 2
1 (550 m) (432 m) (178 m)

cos 15.714
2(550 m)(432 m)

 

α −
 + −

= = °,  
 

2 2 2
1 (550 m) (178 m) (432 m)

cos 41.095
2(550 m)(178 m)

 θ = ° − ° = °180 41.095 138.905  

 ROUND:  Since =1 550 md  has two significant figures (which is the fewest) the answers should be 
rounded to two significant figures. This means: 16φ = ° , α = °41  and then 139θ = ° . The two possibilities 
are that the friend turned to the right or the left (a right turn is shown in the diagram).  The direction the 
friend turned doesn’t matter, he turns by the same amount regardless of which direction it was. 

 DOUBLE-CHECK:  The friend turned through an angle of 140 degrees.  The angle between the initial 
departure and the final location is 16 degrees.  These are both reasonable angles. 

1.74.  THINK: Assume that the Earth is a perfect sphere with radius, Er = 6378 km, and treat the circumference 
of Earth as the circumference of a circle. 

  SKETCH:   

 
 RESEARCH:  The circumference of a circle is given by π= 2 .C r  
 SIMPLIFY:  π= E2C r  

 CALCULATE: ( )π= =2 6378 km 40074 kmC  

 ROUND: The instructions from the question say to round to three significant figures: = ⋅ 44.01 10  km.C  
 DOUBLE-CHECK:   Assuming a hot air balloon has an average velocity of 20 km/h, then it would take 

about 80 days to travel, hence the phrase around the world in 80 days. 

1.75.  ( )( )≈ ⋅ ≈ ⋅ ⋅ ⋅ = ⋅ = ⋅6 1 6 1 7 84,308,229 4 10 ;  44 4 10 ,  4 10 4 10 16 10 2 10  

1.76.  + − + = − +


ˆ ˆ ˆ ˆ ˆ3 6 10 7 14 ,x y z C x y  = − − + − + = − + +


ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( 7 3 ) (14 6 ) 10 10 8 10C x x y y z x y z  
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1.77.  THINK:  An angle is measured counter-clockwise from the positive x-axis (0˚). = −


(34.6 m, 53.5 m).C  It 
is also possible to measure clockwise from the positive x-axis and consider the measure to be negative.  
SKETCH:   

 
 

 RESEARCH:  = +


2 2 ,x yC C C  θ
 

=  
 

tan y

x

C
C

 

 SIMPLIFY:  θ −  
=  

 
1tan y

x

C
C

 

 CALCULATE:  θ −  = + − = = = − ° 
 



2 2 1 -53.5 m(34.6 m) ( 53.5 m) 63.713 m,  tan 57.108
34.6 m

C  

 ROUND:  =


63.7 mC , θ = − °57.1  or 303˚ (equivalent angles). 
 DOUBLE-CHECK:  The magnitude is greater than each component but less than the sum of the 

components and the angle is also in the correct quadrant.  The answer is reasonable. 

1.78.  THINK:  Assume Mars is a sphere whose radius is = ⋅ 6
M 3.39 10  m.r  

 SKETCH:   

 

 RESEARCH:   π π π= = =2 342 ,  4 ,  
3

C r A r V r  

 SIMPLIFY:  π π π= = =2 3
M M M

42 ,  4 ,  
3

C r A r V r  

 CALCULATE:  π

π

π

= ⋅ = ⋅

= ⋅ = ⋅

= ⋅ = ⋅

6 7

6 2 14 2

6 3 20 3

2 (3.39 10  m) 2.12999 10  m

4 (3.39 10  m) 1.44414 10  m
4 (3.39 10  m) 1.63188 10  m
3

C

A

V

 

 ROUND:  = ⋅ 72.13 10  m,C  = ⋅ 14 21.44 10  m ,A  = ⋅ 20 31.63 10  mV    
 DOUBLE-CHECK:  The units are correct and the orders of magnitude are reasonable. 
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1.79.  THINK:  Sum the components of both vectors and find the magnitude and the angle from the positive x-
axis of the resultant vector. =



(23.0,59.0)A  and = −


(90.0, 150.0)B . 
SKETCH:   

 (a)      

 
 
(b)   

 

 RESEARCH: =


( , ),x yC C C  = +i i iC nA mB , = +


2 2 ,x yC C C  θ =tan y
C

x

C
C

 

 SIMPLIFY:    

 (a) Since = −3n  and = 9,m  = − +3 9x x xC A B  and = − +3 9 .y y yC A B  Also, ( )θ −= 1tan /C y xC C . 

  (b) Since = −5n  and = 8,m  = − +5 8x x xC A B  and = − +5 8 .y y yC A B  Also, ( )θ −= 1tan /C y xC C . 

 CALCULATE:   
 (a) = − + = = − + − = −3(23.0) 9(90.0) 741.0,   3(59.0) 9( 150) 1527.0x yC C  

 = = − −


( , ) ( 30.0 m, 50.0 m)x yA A A  

   (b) = (30.0 m,50.0 m).  

θ −

= + − =

− = = − ° 
 



2 2

1

(605.0) ( 1495.0) 1612.78

1495.0tan 67.97
605.0C

C  

  ROUND:   
 (a) = ⋅



31.70 10C  at − °64.1  or °296  
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      (b) = ⋅


31.61 10C  at − °68.0  or °292  
 DOUBLE-CHECK:  Each magnitude is greater than the components but less than the sum of the 

components and the angles place the vectors in the proper quadrants.  The calculated answers are 
reasonable. 

1.80.  THINK:  The vectors are = = − −


( , ) ( 30.0 m, 50.0 m)x yA A A  and =


( , )x yB B B  = (30.0 m,50.0 m).  Find the 
magnitude and angle with respect to the positive x-axis for each.  
SKETCH:   

 

 RESEARCH:  = +


2 2 ,x yC C C  θ =tan y
C

x

C
C

 

 SIMPLIFY:   = +


2 2 ,x yA A A  = +


2 2 ,x yB B B  θ −  
=  

 
1tan ,y

A
x

A
A

 θ −  
=  

 
1tan y

B
x

B
B

 

 CALCULATE:   

θ

θ

−

−

= − + − = = + =

− = = ° ⇒ ° + ° = ° − 
 = = ° 
 

 

2 2 2 2

1

1

( 30.0 m) ( 50.0 m) 58.3095 m,  (30.0 m) (50.0 m) 58.3095 m

50.0 mtan 59.036   180 59.036 239.036
30.0 m

50.0 mtan 59.036
30.0 m

A

B

A B    

 ROUND:  = °


58.3 m at 239A  or − °121 , and = °.


58.3 m at 59.0B  
 DOUBLE-CHECK:   Each magnitude is greater than the components of the vector but less than the sum of 

the components and the angles place the vectors in the proper quadrants. 

1.81.   THINK:  A variable is proportional to some other variable by a constant. This means the ratio of one 
variable to another is a constant. Therefore, both ratios are equal. =1 200. NF , =1 8.00 cmx  and 

=2 40.0 cm.x  
SKETCH:   
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 RESEARCH:  =1 2

1 2

F F
x x

 

 SIMPLIFY:  = 1 2
2

1

F x
F

x
 

 CALCULATE:  = =2
(200. N)(40.0 cm) 1000.0 N

8.00 cm
F  

 ROUND:  = ⋅ 3
2 1.00 10  NF    

 DOUBLE-CHECK:  The ratio of distance to force remains 1:25 for the two distances. The answers are 
reasonable. 

1.82.  THINK:  When a variable is proportional to another, it is equal to the other variable multiplied by a 
constant. Call the constant “a”. 

 SKETCH:  A sketch is not needed to solve this problem. 
 RESEARCH:  = 2d at  
 SIMPLIFY:   = 2

0 0 ,d at = 2
0 0' (3 )d a t  

 CALCULATE:  = 2
0 0' 9d at  = 09d  

 ROUND:  The distance increases by a factor of 9.    
 DOUBLE-CHECK:  Acceleration is a quadratic relationship between distance and time. It makes sense for 

the amount of time to increase by a factor larger than 3.   

1.83.  THINK: Consider the °90  turns to be precise turns at right angles. 
(a) The pilot initially flies N, then heads E, then finally heads S. Determine the vector 



D  that points from 
the origin to the final point and find its magnitude. The vectors are =



1 155.3 miles Nd , =


2 62.5 miles Ed  

and =


3 47.5 miles S.d  
(b) Now that the vector pointing to the final destination has been computed, 

( ) ( )= + − = +


2 1 3ˆ ˆ ˆ ˆ( ) 62.5 miles 107.8 miles ,D d x d d y x y  determine the angle the vector makes with the 
origin. The angle the pilot needs to travel is then 180° from this angle. 
(c) Before the pilot turns S, he is farthest from the origin. This is because when he starts heading S, he is 
negating the distance travelled N. The only vectors of interest are =



1 155.3 miles Nd  and 

=


2 62.5 miles Ed . 
SKETCH:  

 (a)  
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 (b)           (c) 

                      
 
 RESEARCH:  

 (a) = + + = +
  



1 2 3 ˆ ˆ,x yD d d d D x D y  = +


ˆ ˆ,i i x i yd d x d y  = +


2 2
x yD D D  

      (b) θ =tan ,y

x

D
D

 θ θ= ± °' 180  

       (c) = +
 



max 1 2 ,D d d  = +


ˆ ˆ,i i x i yd d x d y  = +


2 2
max x yD D D  

 SIMPLIFY:   
 (a) =



1 1 ˆ,d d y  =


2 2 ˆ,d d x  = −


3 3 ˆd d y  

         Therefore, = + −


2 1 3ˆ ˆ( )D d x d d y  and = + −


2 2
2 1 3( ) .D d d d  

    (b) θ −  
=  

 
1tan y

x

D
D

 and θ −  
= ± ° 

 
1' tan 180y

x

D
D

 

    (c) =


1 1 ,d d y   =


2 2 ,d d x    = + ⇒ = +
 

2 2
max 2 1 max 2 1  D d x d y D d d   

 CALCULATE:  

 (a) = + −

=



2 2(62.5 miles) (155.3 miles 47.5 miles)

124.608 miles

D   

 (b) θ −  = ± ° 
 

= ° ± ° = ° − °

1 107.8 miles' tan 180
62.5 miles

59.896 180 239.896  or 120.104

 

  (c) = + =


2 2
max (62.5 miles) (155.3 miles) 167.405 milesD  

 ROUND:  

 (a) =


125 milesD    

           (b) θ = ° − °' 240.  or 120.  (from positive -axis or E)x  

           (c) =


max 167 milesD     

 DOUBLE-CHECK:  
 (a) The total distance is less than the distance travelled north, which is expected since the pilot eventually 

turns around and heads south.  
               (b) The pilot is clearly NE of the origin and the angle to return must be SW. 
               (c) This distance is greater than the distance which included the pilot travelling S, as it should be. 
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1.84.  THINK:  
(a) If an observer sees the Moon fully cover the Sun, then light rays from the outer edge of the Sun are 
blocked by the outer edge of the Moon. This means a line pointing to the outer edge of the Moon also 
points to the outer edge of the Sun. This in turn means that the lines share a common angle. The radii of 
the Moon and Sun are, respectively, = ⋅ 6

M 1.74 10  mr  and = ⋅ 8
S 6.96 10  m.r  The distance from the Moon 

to the Earth is = ⋅ 8
EM 3.84 10  m.d  

           (b) In part (a), the origin of the light ray is assumed to be the centre of the Earth. In fact, the observer is on 
the surface of the Earth, =E 6378 km.r  This difference in observer position should then be related to the 

actual distance to the Moon. The observed Earth to Moon distance remains the same, = ⋅ 8
EM 3.84 10  m,d  

while the actual distance is the observed distance minus the radius of the Earth. 
 (c) Given the relative error of 1.69% between the actual and observed distance to the Moon, there should 

be the same relative error in the difference between the observed and actual distance to the Sun. 
= ⋅ 11

ES (observed) 1.54 10  m.d  
 SKETCH:   
  (a) 

 
 (b) 

 
 (c)  Not applicable. 
 RESEARCH:   

 (a)  θ
 

=  
 

oppositetan  
adjacent

 

      (b)  
−

= EM EM

EM

(observed) (actual)
relative error

(actual)
d d

d
 

      (c)  = −ES ES(actual) (1 relative error) (observed)d d  
  SIMPLIFY:    

 (a)  θ
  

= = ⇒ =  
   

S S EMM
ES

EM ES M

tan   
r r dr

d
d d r

 

    (b)  
− −

=
−

=
−

EM EM E

EM E

E

EM E

(observed) ( (observed) )
relative error

(observed)

(observed)

d d r
d r

r
d r

 

    (c)  = −
=

ES ES

ES

(actual) (1 0.0169) (observed)
0.9831 (observed)

d d
d
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 CALCULATE:  

 (a)  ⋅ ⋅
= = ⋅

⋅

8 8
11

ES 6

(6.96 10  m)(3.84 10  m) 1.536 10  m
(1.74 10  m)

d  

            (b)  =
⋅ −8

6378000 mrelative error = 0.01689
3.84 10  m 6378000

   

            (c)  = ⋅ 11
ES (actual) 0.9831(1.54 10  m)d = ⋅ 111.513 10  m  

 ROUND:  
 (a)  = ⋅ 11

ES 1.54 10  md      
           (b)  =relative error 1.69%     
 (c)  = ⋅ 11

ES (actual) 1.51 10  md     
 DOUBLE-CHECK:  
 (a)  The distance from the Earth to the Sun is about 300 times the distance from the Earth to the Moon, so 

the answer is reasonable. 
                  (b)  The radius of Earth is small compared to the distance from the Earth to the Moon, so the error 

calculated is small. 
           (c)  The relative error is small so there should be a small difference between the actual and the observed 

distance from the Earth to the Sun.  

1.85.  THINK: The problem involves adding vectors. Break the vectors into components and sum the 
components. The vectors are: =



1 1.50 km due Nd , = °


2 1.50 km 20.0  N of Wd  and =


3 1.50 km due Nd . 
Find the length of the resultant, and the angle it makes with the vertical. Let α = °20.0 .  

 SKETCH:   

 

 RESEARCH:  = + +
  



1 2 3 ,D d d d  = +


ˆ ˆ,i ix iyd d x d y  = +


2 2 ,x yD D D  θ
 

=   
 

tan x

y

D
D

 

 SIMPLIFY:   ( ) ( )α α

α α

θ −

= = − + = − + =

= − + + +

 
=   

 

  



1 1 2 2 2 2 2 3 3

2 2
2 1 3 2

1

ˆ ˆ ˆ ˆ ˆ ˆ,   cos sin ,   

( cos ) ( sin )

tan

x y

x

y

d d y d d x d y d x d y d d y

D d d d d

D
D

 

 CALCULATE:  

θ −

= − °) + + °

= + =

− = = − ° 
 



2 2

2 2

1

( 1.50cos(20.0  km) (3.00 km 1.50sin(20.0 ) km)

1.9868 km  12.3414 km 3.7852 km

1.4095 kmtan 21.862
3.5130 km

D  
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ROUND: = °


3.79 km at 21.9  W of ND  

 DOUBLE-CHECK:  The only directions travelled were N or NW, so the final direction should be in the 
NW region.  

1.86.  THINK:  If the number of molecules is proportional to the volume, then the ratio of volumes should be 
the same as the ratio of the molecules. 1 mol = ⋅ 236.02 10  molecules, volume of mol = 22.4 L and the 
volume of one breath is 0.500 L. Only 80.0% of the volume of one breath is nitrogen. 

 SKETCH:  Not applicable. 

 RESEARCH:  =Nitrogen breath0.800 ,V V  = =Nitrogen breath

mol mol

#  molecules in one breath
#  molecules in a mol

V N
V N

  

 SIMPLIFY:  = =Nitrogen mol Breath mol
breath

mol mol

( ) 0.800 ( )V N V N
N

V V
 

 CALCULATE:  ⋅
=

23

breath
0.800(0.500 L)(6.02 10  molecules)

(22.4 L)
N = ⋅ 221.07500 10  molecules    

 ROUND:  = ⋅ 22
breath 1.08 10  moleculesN     

 DOUBLE-CHECK:  Since the volume of one breath is about 50 times smaller than the volume of one 
mole of gas, the number of nitrogen molecules in one breath should be about 50 times smaller than the 
number of molecules in a mole. 

1.87.  THINK:  24.9 seconds of arc represents the angle subtended by a circle with diameter = M2r  located a 
distance EMD  from Earth.  This value must be converted to radians. The diameter of Mars is  

M2r  = 6784 km.  
 SKETCH:   

 
 

 RESEARCH: The angular size is related to the angle θ  shown in the sketch by θ θ=angular size 2 .   From the 
sketch, we can see that 

 θ = M

EM

tan .
r

D
 

 Because Mars is a long distance from the Earth, even at closet approach, we can make the 
approximation θ θ≈tan .  

 SIMPLIFY: Putting our equations together gives us θ θ= = M
angular size

EM

2
2 .

r
D

 

 CALCULATE:  We first convert the observed angular size from seconds of arc to radians 

 π −°   = ⋅  °  
41 2  radians24.9 arc seconds 1.207 10  radians.

3600 arc seconds 360
 

  The distance is then 

 
θ −= = = ⋅

⋅
7M

EM 4
angular size

2 6784 km 5.6205 10  km.
(1.207 10  radians)

r
D   

 ROUND: We specify our answer to three significant figures, = ⋅ 7
EM 5.62 10  km.D     
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DOUBLE-CHECK:  The mean distance from Earth to Mars is about ⋅ 77 10  km.  Because the distance 
calculated is for a close approach and the distance is less than the mean distance, the answer is reasonable.  

1.88.  THINK:  If the quarterback is in the exact centre of a rectangular field, then each corner should be the 
same distance from the centre. Only the angle changes for each corner. The width of the field is 53 1/3 
yards and the length is 100. yards.  Since the question states that the length is exactly 100 yards, the 
precision of the final answer will be limited by the width.  

 SKETCH:   

 

 RESEARCH:  = +


ˆ ˆ,i ix iyd d x d y  = +


2 2 ,i i x i yd d d  θ =tan i y
i

i x

d

d
 

 SIMPLIFY:   θ − −

  
         = = = = + = = =            
    

    

2 2
1 1

1 2 3 4 1
2,   tan tan

2 2
2

w
w l wd d d d d

l l
 

 CALCULATE:   

 (a) θ −     = + = = = °    
    



2 2
1

1
53 1/3 yards 100 yards 53 1/356.667 yards,  tan 28.072

2 2 100
d   

            (b) θ θ
θ θ
θ θ

= ° − = ° − ° = °
= ° + = ° + ° = °
= ° − = ° − ° = °

2 1

3 1

4 1

180 180 28.072 151.928
180 180 28.072 208.072
360 360 28.072 331.928

 

 ROUND:   
 (a)  = °



1 56.7 yards at 28.1d  

               (b) = °,  = °,  = °
  

2 3 456.7 yards at 152 56.7 yards at 208 56.7 yards at 332d d d  

 DOUBLE-CHECK:  
   

1 3 2 4 &  and  & d d d d  are 180 °  apart. This is expected when throwing at opposite 
corners of the field. The answers are reasonable. 

1.89.  THINK: Assume the Cornell Electron Storage Ring is a perfect circle with a circumference of = 768.4 m.C  
Recall the exact conversion =1 m (100 / 2.54) inches.  

 SKETCH:   

 
 RESEARCH: π= =2 ,  2C r d r  

 SIMPLIFY:  
π

 =  
 

100 in 
2.54 m

Cd  

 CALCULATE:  
( )

π
 = = 
 

768.4 m 100 in 9629.5007 inches
2.54 m

d   
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 ROUND:  = 9630. inchesd     

DOUBLE-CHECK: There are 12 inches in a foot and 5280 feet in a mile.  Therefore there are 63,360 
inch/mile.  Our answer for the Cornell ring is thus about 1/6th of a mile, which seems the right order of 
magnitude. 

1.90.  THINK:  4% of the 0.5 L for each exhalation is composed of carbon dioxide. Assume 1 mole 
( ⋅ 236.02 10 molecules) has a volume of 22.4 L.  The particular numbers are actually not that important.  
The only important thing is that they have the right order of magnitude. So it also could be 0.3 or 0.6 L 
that we exhale in each breath, which are also numbers you can find in the literature;  and some sources 
quote 5% CO2 in the air that we breathe out. 

 SKETCH:  Not applicable. 
 RESEARCH:  How many times do we breathe per day?  You can count the number of breaths you take in 

a minutes, and that number is around 15. This means that you breath around  800 to 1,000 times per hour 
and around 20,000 to 25,000 times per day. 

 =
2CO breath0.04V V ,  = =2 2CO

mol 2

#  molecules in one breath
#  molecules in a mol

breath

mol

COV
V CO

 

 SIMPLIFY:  = =2

breath

CO breath
2 2 2

mol mol

0.04
( ) ( )

mol mol

V V
CO CO CO

V V
 

 CALCULATE:  = ⋅
breath

23
2

0.04(0.5 L) (6.02 10  molecules)
22.4 L

CO = ⋅ 205.375 10  molecules  

  (a) 

( )
( )( )

=

= ⋅

= ⋅ ⋅

= ⋅

breath

2

2

2

5

4

0

2

4

#  molecules exhaled in a day

2.5 10

2.5 10 5.375 10  molecules

1.34375 10  molecules

day
CO

CO

 

 (b)  
 ⋅   = = ⋅   ⋅   

2

25
2

CO 23

365 days 44 g1.34375 10  molecules 1 mole 3.58482 10  kg/year
1 day 1 year 6.02 10  molecules 1 mole

m  

ROUND:  In this case we only estimate order of magnitudes.  And so it makes no sense to give more than 
one significant digit.  We can therefore state our answer as 

 (a) = 25
2 10  molecules

day
CO  

               (b) =
2CO 300 to 400 kg/yearm  

DOUBLE-CHECK: Does it makes sense that we breathe out around 300 to 400 kg of CO2 in a year, which 
implies that we breathe out approximately 1 kg of CO2 in a day.  Where does this materials come from?  
The oxygen comes from the air we breathe in.   So the carbon has to be part of what we eat each day.  Since 
~1/4 of the mass of a CO2 molecule resides in the carbon, this means that we have to eat at least ~1/2 of a 
pound of carbon each day.  Since carbon, hydrogen, and oxygen are the main components of our food, 
and since we eat several pounds of food per day, this seems in the right ballpark. 

1.91.  THINK: Consider the Sun to be at the centre of a circle with Mercury on its circumference. This gives 
= ⋅ 10

M 4.6 10  mr  as the radius of the circle. Earth is located a distance = ⋅ 11
E 1.5 10  mr  from the Sun so that 

the three bodies form a triangle. The vector from Earth to the Sun is at °0 . The vector from Earth to 
Mercury intersects Mercury’s orbit once when Mercury is at a maximum angular separation from the Sun 
in the sky. This tangential vector is perpendicular to the radius vector of Mercury’s orbit. The three bodies 
form a right angle triangle with Er  as the hypotenuse. Trigonometry can be used to solve for the angle and 
distance.  
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  SKETCH:  

 
 RESEARCH: = +2 2 2

E M ,r r R  θ =E Msinr r  

 SIMPLIFY:  = −2 2
E M ,R r r  θ −  

=  
 

1 M

E

sin
r
r

 

 CALCULATE: θ −  ⋅
= ⋅ − ⋅ = ⋅ = = ° ⋅ 

10
11 2 10 2 11 1

11

4.6 10(1.5 10 ) (4.6 10 ) 1.4277 10  m,  sin 17.858
1.5 10

R  

 ROUND: = ⋅ 111.4 10  m,R  θ = °18  
 DOUBLE-CHECK:  If it had been assumed that the maximum angular separation occurred when the 

Earth to Sun to Mercury angle was 90 ° , ( )θ −= 1
M Etan /r r  would be about °17 . The maximum angle 

should be greater than this and it is, so the answer is reasonable.  

1.92.  THINK:  This question asks about the distance to Proxima Centauri, which can be calculated using 
parallax. To do so, it will be necessary to know the radius of Earth’s orbit. It will also be necessary to 
convert from milliarcseconds to degrees or radians. Then, geometry should be used to find the distance.  

 SKETCH:  Because of the distances involved, the diagram will not be to scale. The earth is shown at two 
locations, ½ year apart in its revolution around the Sun. The radius of Earth’s orbit is labeled r and the 
distance to Proxima Centauri is labeled d.  
 

 
 

 RESEARCH:  The goal is to find d, the distance between the Sun and Proxima Centauri. Note that the 
Earth at either of the positions shown, the Sun, and Proxima Centauri form right triangles. The textbook 
lists the mean orbital radius of Earth as 1.496 × 108 km. The final answer needs to be in light-years, so it 
will be necessary to convert from km to light-years at some point using the fact that 1 light-year = 9.461 × 
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1012 km. Knowing the parallax and the radius of the Earth’s orbit, it is then possible to use trigonometry to 

find the distance d from the Sun to Proxima Centauri: tan r
d

θ = .  

  SIMPLIFY: Using algebra to find the distance d in terms of r and θ gives
tan

rd
θ

= . It is more difficult to 

convert from milliarcseconds to a more familiar unit of angle measure, the degree. Since there are 60 
arcseconds to the arcminute, and 60 arcminutes make one degree, the conversion will look like this: 

3 1 degree10  arcseconds 1 arcminuteangle in milliarcseconds angle in degrees.
1 milliarcsecond 60 arcseconds 60 arcminutes

−

⋅ ⋅ ⋅ =  

 CALCULATE:  It is important to perform this calculation with the computer or calculator in degree (not 
radian) mode. Using the textbook value for the radius of the earth r = 1.496 × 108 km and the given value 
for the parallax of 769 milliarcsec gives: 

8

123

tan
1 light-year1.496 10  km

9.461 10  km1 degree10  arcsec 1 arcminutetan 769 milliarcsec
1 milliarcsec 60 arcsec 60 arcminutes

4.241244841 light-years

rd
θ

−

=

×
= ⋅

  ×
⋅ ⋅ ⋅  

 
=

 

 ROUND: The parallax has three significant figures. The radius of the earth is given to four, and all of the 
conversions are exact except light-years to km, which is given to four. So the final answer should have 
three figures. This gives a total distance of 4.24 light-years.  

 DOUBLE-CHECK: A distance to the Proxima Centauri of 4.24 light-years means that it takes light about 
4¼ years to travel between the Sun and Proxima Centauri. Knowing what we do of astronomical scales, 
this makes sense.   

 
Multi-Version Exercises 

1.93.  THINK:  The lengths of the x and y components of the vectors can be read from the provided figure. 
Remember to decompose the vectors in terms of their x and y components. 

 SKETCH:   

 
 RESEARCH:  A vector can be written as = +



ˆ ˆx yV V x V y , where f ixV x x= −  and = −f iyV y y . 
 SIMPLIFY:   Not applicable. 
 CALCULATE:  = − − − + − = + = − − + − = −

 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( 1.5 ( 4)) (3.5 2) 2.5 1.5 ,   (4 ( 1.5)) (1 2.5) 5.5 1.5A x y x y B x y x y  

= − − − − − = − −


ˆ ˆ ˆ ˆ( 3 3) (4 ( 1)) 6 3C x y x y  
 ROUND:   Not applicable.  
 DOUBLE-CHECK:   Comparing the signs of the x- and y-components of the vectors 



A , 


B  and C


 to the 
provided figure, the calculated components all point in the correct directions. The answer is therefore 
reasonable. 
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1.94.  THINK:  The question asks for the length and direction of the three vectors. The x and y components of 
the vectors can be read from the provided figure. Remember when dealing with vectors, the components 
must be treated separately.  
SKETCH:   

 
 RESEARCH:  The length of a vector is given by the formula = +



2 2L x y . The direction of a vector (with 
respect to the x-axis) is given by θ =tan /y x . 

 SIMPLIFY:  θ −  =  
 

1tan
y
x

  

 CALCULATE:  θ

θ

θ

−

−

−

 = + = = = ° 
 

− = + − = = = − ° 
 

= − + − =

− = = ° = ° + ° = ° − 







2 2 1

2 2 1

2 2

1

1.5(2.5) (1.5) 2.9,  tan 30.9638
2.5

1.5(5.5) ( 1.5) 5.700877,  tan 15.2551
5.5

( 6) ( 3) 6.7082,  

3tan 26.565 180 26.565 206.565
6

A

B

C

A

B

C

   

 ROUND:  The figure can reasonably be read to two significant digits, so the rounded values are =


2.9A  

θ = °,31A  =


5.7,B  θ = − °,15B  =


6.7,C  and θ = °.210C  

 DOUBLE-CHECK:  Comparing the graphical values to the calculated values, the calculated values are 
reasonable. 

1.95.  Vectors add tip to tail, + +
 

A B C =


D .  

 

 By inspecting the image, it is clear that = −


(2, 3).D  
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1.96.  THINK: To subtract two vectors, reverse the direction of the vector being subtracted, and treat the 
operation as a sum. Denote the difference as = −

 

.E B A  
SKETCH: 

 
RESEARCH: = −

 

E B A = ( )+ −


B A  

SIMPLIFY: No simplification is necessary. 
CALCULATE: By inspection, = −



(3, 3).E  
ROUND: No rounding is necessary. 
DOUBLE-CHECK: The resultant vector 



E points from the origin to the fourth quadrant, so its x-
component should be positive and its y-component should be negative. This gives some support to the 
reasonableness of the answer. 

1.97.  THINK:  When adding vectors, you must add the components separately. 
 SKETCH:   

 
 RESEARCH:  = + +

  

D A B C  
 SIMPLIFY:   = + + + + +



ˆ ˆ( ) ( )x x x y y yD A B C x A B C y  

 CALCULATE:  = + − + − − = −


ˆ ˆ ˆ ˆ(2.5 5.5 6) (1.5 1.5 3) 2 3D x y x y  
 ROUND:  The answers are precise, so no rounding is necessary. 
 DOUBLE-CHECK:  The calculation seems consistent with the provided figure. 
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1.98.  THINK:  When subtracting vectors, you must subtract the x and y components separately. 
 SKETCH:  

 
 RESEARCH:  = − −x x x xC A BF  and = − −y y y yC A BF . The length is computed using +=



2 2
x yF FF  

with = +ˆ ˆ.x yF F x F y  

 SIMPLIFY:   − − −= + −


2 2( ) ( )x x x y y yC A B C A BF  

 CALCULATE:  ( )( ) ( )( )=

=

− − − + − − −

=

−
 2 2

6.0 2.5 5.5 3.0 (

20

1.5) (

5
14

1.

8

5)

.31

F  

 ROUND:  To two significant figures, the length of


F is 14.  

 DOUBLE-CHECK:   The size of 


F  is reasonable. 

1.99.  THINK:  The two vectors are = = −


( , ) (30.0 m, 50.0 m)x yA A A  and = = −


( ,  ) ( 30.0 m,  50.0 m)x yB B B . 
Sketch and find the magnitudes. 

  SKETCH:   

 
 

 RESEARCH:  The length of a vector = +


ˆ ˆx yC C x C y  is 2 2 .x yC C C= +


 

 SIMPLIFY:  = +


2 2 ,x yA A A  = +


2 2
x yB B B  

 CALCULATE:  = + − =


2 2(30) ( 50) 58.3095 m,A  = − + =


2 2( 30) (50) 58.3095 mB  

 ROUND:  


A = 58.3 m, 


B = 58.3 m 

 DOUBLE-CHECK:   The calculated magnitudes are larger than the lengths of the component vectors, and 
are less than the sum of the lengths of the component vectors. Also, the vectors are opposites, so they 
should have the same length. 
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1.100.  THINK: Use trigonometry to find the angles as indicated in the sketch below. =


( ,  )x yA A A  

= −(30.0 m, 50.0 m) . 
  SKETCH:   

 
 

 RESEARCH:  θ =
oppositetan
adjacent

 

 SIMPLIFY:  θ θ θ θ− −= ⇒ = = ⇒ =1 1
1 1 2 2tan ( / )  tan ( / ),      tan ( / )  tan ( / )y x y x x y x yA A A A A A A A  

 CALCULATE:  θ θ− −= − = − °, = − = − °1 1
1 2tan ( 50 / 30) 59.036      tan (30 / 50) 30.963  

 ROUND: Drop the signs of the angles and just use their size: θ = °1 59.0 , θ = °2  31.0 .  
 DOUBLE-CHECK:   The two angles add up to 90˚, which they should. The answers are reasonable. 

1.101.  THINK:  The two vectors are = = − −


( ,  ) ( 30.0 m,  50.0 m)x yA A A  and = =


( ,  ) (30.0 m,  50.0 m)x yB B B . 
Sketch and find the magnitudes. 

  SKETCH:   

 
 RESEARCH:  = +



2 2
x yC C C  

 SIMPLIFY:   = +


2 2
x yA A A , = +



2 2
x yB B B  

 CALCULATE:  = − + − = = + =
 

2 2 2 2( 30.0 m) ( 50.0 m) 58.3095 m, (30.0 m) (50.0 m) 58.3095 mA B  

 ROUND:  = =
 

58.3 m, 58.3 mA B    

 DOUBLE-CHECK:   The magnitudes are bigger than individual components, but not bigger than the sum 
of the components. Therefore, the answers are reasonable. 
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1.102.  THINK: Using trigonometry find the angles indicated in the diagram below. The vector =


( ,  )x yB B B  

= (30.0 m,50.0 m) . 
 SKETCH:   

 

 RESEARCH:  θ =
oppositetan
adjacent

 

 SIMPLIFY:   θ −  
=  

 
1 oppositetan

adjacent
, θ −  

=  
 

1
1 tan y

x

B
B

, θ −
 

=   
 

1
2 tan x

y

B
B

 

 CALCULATE:  θ θ− −   = = °,  = = °   
   

1 1
1 2

50.0 m 30.0 mtan 59.036 tan 30.963
30.0 m 50.0 m

 

 ROUND:  θ = °1 59.0 , θ = °2 31.0  
 DOUBLE-CHECK:  The angles sum to 90°, which is expected from the sketch. Therefore, the answers are 

reasonable. 

1.103.  THINK:  The two vectors are =


(23.0,59.0)A  and = −


(90.0, 150.0)B . Find the magnitude and angle with 
respect to the positive x-axis. 

 SKETCH:   

 
 

 RESEARCH:  For any vector = +


ˆ ˆx yC C x C y , the magnitude is given by the formula = +


2 2 ,x yC C C and 

the angle Cθ  made with the x-axis is such that θ =tan .y
C

x

C
C

 

 SIMPLIFY:  = +


2 2 ,x yA A A  = +


2 2 ,x yB B B  θ θ− −   
= =   

   
1 1tan ,  tany y

A B
x x

A B
A B

 

 CALCULATE:  

θ θ− −

= + = = + − =

−   = = °,  = = − °   
   

 

2 2 2 2

1 1

(23.0) (59.0) 63.3246,   (90.0) ( 150.0) 174.9286

59.0 150.0tan 68.7026 tan 59.0362
23.0 90.0A B

A B       

 ROUND: Three significant figures: = °,


63.3 at 68.7A  = − ° 


175 at 59.0B or °  301.0 .  
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 DOUBLE-CHECK:  Each magnitude is greater than the components but less than the sum of the 
components, and the angles place the vectors in the proper quadrants.   

1.104.  THINK:  Add the components of the vectors. Find the magnitude and the angle from the positive x-axis of 
the resultant vector. =



(23.0,59.0)A  and = −


(90.0, 150.0).B  
 SKETCH:   

 

 RESEARCH:  =


( , ),x yC C C  = +i i iC nA mB  with = −1n  and = +1m , = +


2 2 ,x yC C C  θ =tan y
C

x

C
C

. 

 SIMPLIFY:  = − + ,x x xC A B  = − + ,y y yC A B  θ −  
=  

 
1tan y

C
x

C
C

 

 CALCULATE:  = − + =23.0 90.0 67.0,xC  = − + − = −59.0 ( 150) 209.0,yC   

= + − =


2 2(67.0) ( 209.0) 219.477,C  and θ − − = = − ° 
 

1 209.0tan 72.225
67.0C .   

 ROUND:  = − °


219 at 72.2C  or °288   
 DOUBLE-CHECK:  The magnitude is greater than each component but less than the sum of the 

components and the angle is also in the correct quadrant.   The answer is reasonable. 

1.105.  THINK:  Add the components of the vectors (with applicable multiplication of each vector). Find the 
magnitude and the angle from the positive x-axis of the resultant vector. =



(23.0,59.0)A  and 

= −


(90.0, 150.0).B  
 SKETCH:   

 

 RESEARCH:  =


( , ),x yC C C  = +i i iC nA mB  with = −5n  and = +1,m  = +


2 2 ,x yC C C  θ =tan y
C

x

C
C

. 
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 SIMPLIFY:  = − +5x x xC A B , = − +5y y yC A B , = +


2 2 ,x yC C C  θ −  
=  

 
1tan y

C
x

C
C

 

 CALCULATE:  

θ −

= − + = − = − + − = −

= − + − =

− = = ° ⇒ ° + ° = ° − 



2 2

1

5(23.0) 90.0 25.0,   5(59.0) ( 150) 445.0

( 25.0) ( 445.0) 445.702

445.0tan 86.785   180 86.785 266.785
25.0

x y

C

C C

C

  

 ROUND:  = °


446 at 267C  or − °93.2      
 DOUBLE-CHECK:  The magnitude is greater than each component but less than the sum of the 

components and the angle is also in the correct quadrant.  The answer is reasonable. 

1.106.  THINK:  Add the components of the vectors (with applicable multiplication of each vector). Find the 
magnitude and the angle from the positive x-axis of the resultant vector. =



(23.0,59.0)A  and 

= −


(90.0, 150.0)B . 
SKETCH:   

 

 RESEARCH:  =


( , ),x yC C C  = +i i iC nA mB  with = 3n  and = −7,m  = +


2 2 ,x yC C C  θ =tan y
C

x

C
C

. 

 SIMPLIFY:  = −3 7x x xC A B ,  = −3 7y y yC A B ,  θ −  
=  

 
1tan y

C
x

C
C

 

 CALCULATE:  

θ −

= − = − = − − =

= − + =

 = = − ° ⇒ ° − ° = ° − 



2 2

1

3(23.0) 7(90.0) 561.0,   3(59.0) 7( 150) 1227.0

( 561.0) (1227.0) 1349.17

1227.0tan 65.43   180 65.43 114.57
561.0

x y

C

C C

C

 

 ROUND:  = ⋅ °


31.35 10  at 115C  

 DOUBLE-CHECK:  The magnitude is greater than each component but less than the sum of the 
components and the angle is also in the correct quadrant.   

1.107.  THINK: The scalar product of two vectors equals the length of the two vectors times the cosine of the 
angle between them. Geometrically, think of the absolute value of the scalar product as the length of the 
projection of vector 



B  onto vector 


A  times the length of vector


A , or the area of a rectangle with one side 
the length of vector 



A and the other side the length of the projection of vector 


B  onto vector 


A . 
Algebraically, use the formula • = +

 

x x y yA B A B A B  to find the scalar product from the components, 

which can be read from the graphs. 
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 SKETCH: Using the geometric interpretation, sketch the projection of vector 


B  onto vector


A and then 
draw the corresponding rectangular area, for instance for case (e): 

     
 Note, however, that this method of finding the scalar product is cumbersome and does not readily produce 

exact results. The algebraic approach is much more efficient. 
 RESEARCH:  Use the formula • = +

 

x x y yA B A B A B  to find the scalar product from the components, 

which can be read from the graphs. ( ) ( ), 6,0x yA A =  in all cases. In (a), ( ) ( ), 1,5x yB B = ; in (b), 

( ) ( ), 0,3x yB B = ; in (c), ( ) ( ), 2,2x yB B = ; in (d), ( ) ( ), 6,0x yB B = − ; in (e), ( ) ( ), 5,1x yB B = ; and in (f), 

( ) ( ), 1,4x yB B = .  

 SIMPLIFY: Using the formula • = +
 

x x y yA B A B A B , find that in part (a), 6 1 0 5A B• = ⋅ + ⋅
 

. In part (b), 

6 0 0 3A B• = ⋅ + ⋅
 

. In part (c), 6 2 0 2A B• = ⋅ + ⋅
 

. In part (d), 6 6 0 0A B• = ⋅ − + ⋅
 

. In part (e), 
6 5 0 1A B• = ⋅ + ⋅

 

. Finally, in part (f), 6 1 0 4A B• = ⋅ + ⋅
 

.  
 CALCULATE:  Performing the multiplication and addition as shown above, the scalar product in (a) is 6 

units, in (b) it is 0 units, and in part (c) the scalar product is 12 units. In parts (d), (e), and (f), the scalar 
products are −36 units, 30 units, and 6 units, respectively. The one with the largest absolute value is case 
(d), 36 36.− =   

 ROUND: Rounding is not required in this problem. 
 DOUBLE-CHECK: Double-check by looking at the rectangles with sides the length of vector



A and the 
length of the projection of vector 



B  onto vector


A . The results agree with what was calculated using the 
formula.  

1.108.  When the scalar products are evaluated as described in the preceding solution, the one with the smallest 

absolute value is case (b), where • =
 

0.A B  It is characteristic of the scalar product that it comes out zero 

for perpendicular vectors, and zero is of course the smallest possible absolute value.  
1.109.  The vector product of two non-parallel vectors 



A  and 


B  that lie in the xy-plane is a vector in the z-

direction. As given by Eq. (1.32),  the magnitude of that vector is − .x y y xA B A B  

 (a) ( )( ) ( )( )6 5 0 1 30x y y xA B A B− = − =  

 (b) ( )( ) ( )( )6 3 0 0 18x y y xA B A B− = − =  

 (c) ( )( ) ( )( )6 2 0 2 12x y y xA B A B− = − =  

 (d) ( )( ) ( )( )6 0 0 6 0x y y xA B A B− = − − =  
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 (e) ( )( ) ( )( )6 1 0 5 6x y y xA B A B− = − =  

 (f) ( )( ) ( )( )6 4 0 1 24x y y xA B A B− = − =  

 The largest absolute value of a vector product is case (a). 

1.110.  When the vector products are evaluated as described in Solution 1.109, the one with the smallest absolute 
value is case (d). It is characteristic of the vector product that it comes out zero for parallel or antiparallel 
vectors, and zero is of course the smallest possible absolute value. 

1.111.  Taking the absolute value and ranking in order from least to greatest, we find that 0 6 6 12 30 36.< = < < <  
This gives us the ordering from least to greatest of the absolute value of the scalar product in parts b, a = f, 
c, e, and d. 

1.112.  Ranking the absolute values found in Solution 1.109 in order from least to greatest, we find that 
0 6 12 18 24 30.< < < < <  This gives us the ordering from least to greatest of the absolute value of the vector 
product in parts d, e, c, b, f, and a. 

1.113.  THINK:  We are given the change in the star’s radius. So, if we can express the surface area, 
circumference, and volume in terms of the radius, we can find by what factors these change as the radius 
changes. 

 SKETCH: We can think of the star as a sphere in space with radius r.  

      
  
 RESEARCH:  We can use the formulas for volume and surface area of a sphere given in Appendix A. We 

find that the volume of the sphere on the left is π 34
3

r  and its surface area is π 24 r . Similarly, the volume of 

the sphere on the right is ( )π 34 11.4
3

r and its surface area is ( )π 24 11.4r . The circumference of a sphere is 

the same as the circumference of a great circle around it (shown in red in the sketch). Finding the radius of 
the circle will give us the radius of the sphere. Using this method, we find that the circumference of the 
sphere on the left is π2 r , while the sphere on the right has a circumference of ( )π2 11.4r . 

 SIMPLIFY: We use algebra to find the volume, surface area, and circumference of the larger sphere in 
terms of the volume, surface area, and circumference of the smaller sphere. (a) We find the surface area of 

the sphere on the right is ( ) ( )π π π= = ⋅2 2 2 2 24 11.4 4 11.4 11.4 4r r r  (b) The circumference of  

the larger sphere is ( ) ( )π π= ⋅2 11.4 11.4 2r r . (c) The volume of the larger sphere is 

( ) ( ) ( )π π π= =3 3 3 3 34 4 411.4 11.4 11.4
3 3 3

r r r . 
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 CALCULATE:  Since we don’t know the star’s original radius, we take the ratio of the new value divided 
by the old value to get the factor by which the surface area, volume, and circumference have increased. In 
part (a), we find that the ratio of the new surface area to the original surface area is 

π π
π π
⋅

= = ⋅ =
2 2 2

2 2
2 2

11.4 4 411.4 11.4 1 129.96
4 4

r r
r r

. (b) Similarly, we can divide the new circumference by the 

original one to get 
( )π π
π π
⋅

= = ⋅ =
11.4 2 211.4 11.4 1 11.4

2 2
r r

r r
. (c) The new volume divided by the original 

volume is 
( ) ( )

π π

π π
= = ⋅ =

3 34 34
3 3 33
3 34 4

3 3

11.4
11.4 11.4 1 1481.544

r r

r r
. 

 ROUND: For all of these calculations, we round to three significant figures. This gives us that (a) the 
surface area has increased by a factor of130.,  (b) the circumference has increased by a factor of 11.4, and 
(c) the volume has increased by a factor of × 31.48 10 . 

 DOUBLE-CHECK: Think about what these values represent. The circumference is a one-dimensional 
quantity, with units such as km, which is proportional to r. The surface area is a two-dimensional quantity 
with units such as km2, and is proportional to r2. The volume is a three-dimensional quantity with units 
such as km3 and is proportional to r3. So it makes sense that, when we increase the radius by a given 
amount (11.4 in this case), the circumference increases in proportion to that amount, while the surface 
area increases by that amount squared, and the volume increases by the cube of that amount.  

1.114.  The circumference is directly proportional to the radius. 
 (a) The surface area is proportional to the square of the radius and therefore to the square of the 

circumference. It will increase by a factor of 12.52 = 156. 
 (b) The radius is directly proportional to the circumference. It will increase by a factor of 12.5. 
 (c) The volume is proportional to the cube of the radius and therefore to the cube of the circumference. It 

will increase by a factor of 12.53 = 1950. 

1.115.  The volume is proportional to the cube of the radius, so if the volume increases by a factor of 872, then the 
radius increases by a factor of 3 872 9.553712362.=  

 (a) The surface area is proportional to the square of the radius. It will increase by a factor of  
9.5537123622 = 91.3. 

 (b) The circumference is directly proportional to the radius. It will increase by a factor of 9.55. 
 (c) The diameter is directly proportional to the radius. It will increase by a factor of 9.55. 

1.116.  (a) The volume is proportional to the cube of the radius, so if the volume increases by a factor of 274, then 
the radius increases by a factor of 274 16.55294536 16.6.= =  

 (b) The volume is proportional to the cube of the radius. It will increase by a factor of  
16.552945363 = 4535.507028 = 4540. 

 (c) The density is inversely proportional to the volume. It will decrease by a factor of  
4535.507028–1 = 2.20·10–4. 
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Chapter 2:  Motion in a Straight Line 
 

Concept Checks 

2.1. d  2.2. b  2.3. b  2.4. c  2.5. a) 3  b) 1  c) 4  d) 2  2.6. c  2.7. d  2.8. c  2.9. d 
 

Multiple-Choice Questions 

2.1.  e  2.2. c  2.3. c  2.4. b  2.5. e  2.6. a  2.7. d  2.8. c  2.9. a  2.10. b 2.11. b   2.12. d  2.13. c  2.14. d  2.15. a  2.16. c   
 
Conceptual Questions 

2.17. Velocity and speed are defined differently. The magnitude of average velocity and average speed are the 
same only when the direction of movement does not change. If the direction changes during movement, it 
is known that the net displacement is smaller than the net distance. Using the definition of average velocity 
and speed, it can be said that the magnitude of average velocity is less than the average speed when the 
direction changes during movement. Here, only Christine changes direction during her movement. 
Therefore, only Christine has a magnitude of average velocity which is smaller than her average speed.  

2.18. The acceleration due to gravity is always pointing downward to the center of the Earth. 

 
It can be seen that the direction of velocity is opposite to the direction of acceleration when the ball is in 
flight upward. The direction of velocity is the same as the direction of acceleration when the ball is in flight 
downward. 

2.19. The car, before the brakes are applied, has a constant velocity, 0v , and zero acceleration. After the brakes 
are applied, the acceleration is constant and in the direction opposite to the velocity. In velocity versus 
time and acceleration versus time graphs, the motion is described in the figures below. 

 

2.20. There are two cars, car 1 and car 2. The decelerations are = = −1 2 02a a a  after applying the brakes. Before 
applying the brakes, the velocities of both cars are the same, = =1 2 0v v v . When the cars have completely 

stopped, the final velocities are zero, =f 0v . = + = ⇒ = − 0
f 0 0  

v
v v at t

a
. Therefore, the ratio of time taken 

to stop is 
− −

= =
 − − 
 

0 0

0 0

/time of car 1 1Ratio = .
1time of car 2 2/
2

v a

v a
So the ratio is one half. 
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2.21. Here a and v are instantaneous acceleration and velocity. If a = 0 and ≠ 0v  at time t, then at that moment 
the object is moving at a constant velocity. In other words, the slope of a curve in a velocity versus time 
plot is zero at time t. See the plots below. 

 
2.22. The direction of motion is determined by the direction of velocity. Acceleration is defined as a change in 

velocity per change in time. The change in velocity, ∆v , can be positive or negative depending on the 
values of initial and final velocities, ∆ = −f iv v v . If the acceleration is in the opposite direction to the 
motion, it means that the magnitude of the objects velocity is decreasing. This occurs when an object is 
slowing down. 

2.23. If there is no air resistance, then the acceleration does not depend on the mass of an object. Therefore, 
both snowballs have the same acceleration. Since initial velocities are zero, and the snowballs will cover the 
same distance, both snowballs will hit the ground at the same time. They will both have the same speed. 

2.24. Acceleration is independent of the mass of an object if there is no air resistance.  

 
Snowball 1 will return to its original position after ∆t , and then it falls in the same way as snowball 2. 
Therefore snowball 2 will hit the ground first since it has a shorter path. However, both snowballs have the 
same speed when they hit the ground. 
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2.25. Make sure the scale for the displacements of the car is correct. The length of the car is 174.9 in = 4.442 m.   

 
Measuring the length of the car in the figure above with a ruler, the car in this scale is 0.80 ± 0.05 cm. 
Draw vertical lines at the center of the car as shown in the figure above. Assume line 7 is the origin (x = 0). 

 
Assume a constant acceleration = 0a a . Use the equations = +0v v at  and ( )= + + 2

0 0 1/ 2x x v t at . When 

the car has completely stopped,  = 0v  at = 0t t . 
= + ⇒ = −0 0 0 00   v at v at  

Use the final stopping position as the origin, = 0x  at = 0t t . 

= + + 2
0 0 0 0

10
2

x v t at  

 Substituting = −0 0v at  and simplifying gives 

− + = ⇒ − = ⇒ =2 2 2 0
0 0 0 0 0 2

0

21 10  0  
2 2

x
x at at x at a

t
 

Note that time 0t  is the time required to stop from a distance 0x .First measure the length of the car. The 
length of the car is 0.80 cm. The actual length of the car is 4.442 m, therefore the scale is 

=
4.442 m 5.5 m/cm
0.80 cm

. The error in measurement is (0.05 cm) 5.5 m/cm ≈ 0.275 m  (round  at  the  end). 

So the scale is 5.5 ± 0.275 m/cm. The farthest distance of the car from the origin is 2.9 ± 0.05 cm. 
Multiplying by the scale, 15.95 m, ( )( )= =0 0.333 6 s 1.998 st . The acceleration can be found using 

= 2
0 02 /a x t : = = 2

2

2(15.95 m) 7.991 m/s
(1.998 s)

a .  Because the scale has two significant digits, round the result to 

two significant digits: = 28.0 m/s .a   Since the error in the measurement is ∆ =0 0.275 m,x  the error of the 
acceleration is 

( )
( )

∆
∆ = = ≈ 20

22
0

2 0.275 m2
0.1 m/s .

1.998 s

x
a

t
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2.26. Velocity can be estimated by computing the slope of a curve in a distance versus time plot. 

 

Velocity is defined by = ∆ ∆/ .v x t  If acceleration is constant, then 
− ∆

= =
− ∆

f i

f i

v v va
t t t

. (a) Estimate the slope 

of the dashed blue line. Pick two points: it is more accurate to pick a point that coincides with horizontal 
lines of the grid.  Choosing points t = 0 s, x = 0 m and t = 6.25 s, x = 20 m: 

−
= =

−
20. m 0 m 3.2 m/s
6.25 s 0 s

v  

(b) Examine the sketch. There is a tangent to the curve at t = 7.5 s. Pick two points on the line. Choosing 
points: t = 3.4 s, x = 0 m and t = 9.8 s, x = 60 m: 

−
=

−
60. m 0 m  = 9.4 m/s
9.8 s 3.4 s

v  

 (c)  From (a), v = 3.2 m/s at t = 2.5 s and from (b), v = 9.4 m/s at t = 7.5 s. From the definition of constant 
acceleration, 

−
= = =

−
29.4 m/s 3.2 m/s 6.2 m/s 1.2 m/s .

7.5 s 2.5 s 5.0 s
a   

2.27. There are two rocks, rock 1 and rock 2. Both rocks are dropped from height h. Rock 1 has initial velocity 
= 0v and rock 2 has = 0v v  and is thrown at = 0t t . 

 

Rock 1:   = ⇒ =21 2    
2

hh gt t
g

 

Rock 2:   = − + − ⇒ − + − − =2 2
0 0 0 0 0 0

1 1( ) ( )     ( ) ( ) 0
2 2

h v t t g t t g t t v t t h  

This equation has roots 
− ± +

− =
2

0 0
0

2v v gh
t t

g
.  Choose the positive root since − >0( ) 0.t t Therefore 

− +
= +

2
0 0

0

2
.

v v gh
t t

g
   Substituting =

2ht
g

 gives: 

+  
= + − + − + 

 

22
00 0 0

0

22 2 2 or .
v ghv v vh h ht

g g g g g g g
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2.28. I want to know when the object is at half its maximum height.  The wrench is thrown upwards with an 

initial velocity = = 0( 0) .v t v , = + − 2
0 0

1 ,
2

x x v t gt  = −0 ,v v gt  and = 29.81 m/s .g  

 
 At maximum height, v = 0.  = − ⇒ = − ⇒ =0 0 max 0 max  0   .v v gt v gt v gt  Substitute =max 0 /t v g  into 

( )= + − 2
0 0 1/ 2 .x x v t gt  

       = − = − = − =       
      

2 2 2 2 2
0 0 0 0 0 0

max 0
1 1 11
2 2 2 2

v v v v v v
x v g

g g g g g g
 

Therefore, half of the maximum height is =
2
0

1 2 4
v

x
g

. Substitute this into the equation for x. 

= = − ⇒ − + =
2 2

2 20 0
1 2 0 1 2 1/2 1/2 0 1 2

1 1    0
4 2 2 4
v v

x v t gt gt v t
g g

 

This is a quadratic equation with respect to 1/2t . The solutions to this equation are: 

    ± − ±   ± −        = = = = ±    
 
 

2
2 0 2 20 0 0 00 0 0

0
1 2

1 114
2 4 122 1

1 22
2

vv v g v vv v vg v
t

g g gg
 

 
Exercises 

2.29. THINK:  What is the distance traveled, p, and the displacement d if =1 30.0 m/sv  due north for 
=1 10.0 mint  and =2 40.0 m/sv  due south for =2 20.0 mint ?  Times should be in SI units: 

( )= = ⋅1
210.0 min 60 s/min 6.00 10  s,t   ( )= = ⋅2

320.0 min 60 s/min 1.20 10  s.t  
SKETCH:   

  
 RESEARCH:  The distance is equal to the product of velocity and time. The distance traveled is 

= +1 1 2 2p v t v t  and the displacement is the distance between where you start and where you finish, 

= −1 1 2 2d v t v t . 
SIMPLIFY:  There is no need to simplify. 
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 CALCULATE:  = + = ⋅ ⋅ =

= − = ⋅ − ⋅ = −

2
1 1 2 2

1 1
2

2 2

3

3

(30. m/s)(6.00 10  s) + (40. m/s)(1.20 10  s) 66,000. m

(30. m/s)(6.00 10  s)  (40. m/s)(1.20 10  s) 30,000. m

p v t v t

d v t v t

 

 ROUND:   The total distance traveled is 66.0 km, and the displacement is 30.0 km in southern direction. 
 DOUBLE-CHECK:  The distance traveled is larger than the displacement as expected. Displacement is 

also expected to be towards the south since the second part of the trip going south is faster and has a 
longer duration. 

2.30. THINK:  I want to find the displacement and the distance traveled for a trip to the store, which is 1000. m 
away, and back. Let =1000. m.l  

 SKETCH:   

 
 

RESEARCH:   displacement (d) = final position – initial position 
  distance traveled = distance of path taken  
SIMPLIFY:    

(a) = − =
1 10
2 2

d l l  

(b) = + =
1 3
2 2

p l l l  

(c) = − =0 0 0d  
(d) = + = 2p l l l   
 CALCULATE: 

(a) = =
1 1 (1000. m) = 500.0 m
2 2

d l  

(b) = =
3 3 (1000. m) = 1500. m
2 2

p l  

(c) = 0 md  
(d) = =2 2(1000. m) = 2000. mp l   
ROUND:  No rounding is necessary. 

 DOUBLE-CHECK:  These values are reasonable: they are of the order of the distance to the store. 

2.31. THINK:  I want to find the average velocity when I  run around a rectangular 50 m by 40 m track in 100 s. 
SKETCH:   
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RESEARCH:  −final position  initial positionaverage velocity = 
time

 

SIMPLIFY:  
−

= f ix x
v

t
 

CALCULATE:  −
= =

0 m 0 m 0 m/s
100 s

v  

ROUND:  Rounding is not necessary, because the result of 0 m/s is exact. 
DOUBLE-CHECK:  Since the final and initial positions are the same point, the average velocity will be 
zero. The answer may be displeasing at first since someone ran around a track and had no average velocity. 
Note that the speed would not be zero. 

2.32. THINK:  I want to find the average velocity and the average speed of the electron that travels 
=1 2.42 md in −= ⋅1

82.91 10t s in the positive x-direction then =2 1.69 md  in −= ⋅2
83.43 10t  s in the 

opposite direction. 
SKETCH:   

 
RESEARCH:  

(a) −final position  initial positionaverage velocity = 
time

   

(b) total distance traveledspeed = 
time

 

SIMPLIFY:   

(a) 
−

=
+

1 2

1 2

d d
v

t t
 

(b) 
+

=
+

1 2

1 2

d d
s

t t
 

CALCULATE: 

(a) 1 2
8 8

1 2

2.42 m  1.69 m 11,514,195 m/s
2.91 10  s + 3.43 10  s

d d
v

t t − −

− −
= = =

+ ⋅ ⋅
 

(b) 1 2
8 8

1 2

2.42 m + 1.69 m 64,826,498 m/s
2.91 10  s + 3.43 10  s

d d
s

t t − −

+
= = =

+ ⋅ ⋅
  

ROUND: 
(a) = ⋅ 71.15 10  m/sv  
(b) = ⋅ 76.48 10  m/ss  
DOUBLE-CHECK:  The average velocity is less than the speed, which makes sense since the electron 
changes direction.  
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2.33. THINK: The provided graph must be used to answer several questions about the speed and velocity of a 
particle. Questions about velocity are equivalent to questions about the slope of the position function. 
SKETCH:   

 
RESEARCH:   The velocity is given by the slope on a distance versus time graph. A steeper slope means a 
greater speed.  

 −final position  initial positionaverage velocity = 
time

,  total distance traveledspeed = 
time

 

(a) The largest speed is where the slope is the steepest. 
(b) The average velocity is the total displacement over the time interval. 
(c) The average speed is the total distance traveled over the time interval. 
(d) The ratio of the velocities is 1 2:v v . 
(e) A velocity of zero is indicated by a slope that is horizontal. 
SIMPLIFY:   
(a) The largest speed is given by the steepest slope occurring between –1 s and +1 s. 

−
=

−
2 1

2 1

| ( ) ( ) |x t x t
s

t t
, with =2 1 st  and = −1 1 s.t  

(b) The average velocity is given by the total displacement over the time interval. 

 
−

=
−

2 1

2 1

( ) ( )x t x t
v

t t
, with =2 5 st  and = −1 5 s.t  

(c) In order to calculate the speed in the interval –5 s to 5 s, the path must first be determined. The path is 
given by starting at 1 m, going to 4 m, then turning around to move to –4 m and finishing at –1 m. So the 
total distance traveled is  

= − + − − + − − −
= + +
=

(4 m 1 m) (( 4 m) 4 m) ( 1 m ( 4 m))
3 m 8 m 3 m
14 m

p
 

This path can be used to find the speed of the particle in this time interval. 

=
−2 1

p
s

t t
, with =2 5 st  and = −1 5 s.t  

(d) The first velocity is given by 
−

=
−

3 2
1

3 2

( ) ( )x t x t
v

t t
 and the second by 

−
=

−
4 3

2
4 3

( ) ( )x t x t
v

t t
,  

(e) The velocity is zero in the regions 1 s to 2 s, − 5 s to − 4 s, and 4 s to 5 s. 
CALCULATE: 

(a)  
− −

= =
− −

| 4 m  4 m |
4.0 m/s

1 s  ( 1 s)
s  

(b)  − −
= = −

− −
1 m  1 m 0.20 m/s

5 s  ( 5 s)
v  
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(c)  = =
− −
14 m 1.4 m/s

5 s  ( 5 s)
s  

(d)  − − −
= =

−1
( 2 m)  ( 4 m) 2.0 m/s

3 s  2 s
v , − − −

= =
−2

( 1 m)  ( 2 m) 1.0 m/s
4 s  3 s

v ,  so =1 2: 2 :1v v . 

(e) There is nothing to calculate. 
ROUND:  Rounding is not necessary in this case, because we can read the values of the positions and times 
off the graph to at least 2 digit precision. 
DOUBLE-CHECK:  The values are reasonable for a range of positions between –4 m and 4 m with times 
on the order of seconds. Each calculation has the expected units. 

2.34. THINK:  I want to find the average velocity of a particle whose position is given by the equation 
= + − 2( ) 11 14 2.0x t t t  during the time interval t = 1.0 s to t = 4.0 s. 

SKETCH:   

 
RESEARCH:  The average velocity is given by the total displacement over the time interval.  

−
=

−
2 1

2 1

( ) ( )x t x t
v

t t
, with 2t  = 4.0 s and 1t  = 1.0 s. 

SIMPLIFY: 
( ) ( )+ − − + −− − − −

= = =
− − −

2 2 2 2
2 2 1 12 1 2 1 2 1

2 1 2 1 2 1

11 14 2.0 11 14 2.0( ) ( ) 14( ) 2.0( )t t t tx t x t t t t t
v

t t t t t t
 

CALCULATE:  − − −
= =

−

2 214(4.0 s 1.0 s) 2.0((4.0 s) (1.0 s) ) 4.0 m/s
4.0 s 1.0 s

v  

ROUND:  The values given are all accurate to two significant digits, so the answer is given by two 
significant digits: v = 4.0 m/s. 
DOUBLE-CHECK:  A reasonable approximation of the average velocity from =1t  to = 4t is to look at 
the instantaneous velocity at the midpoint. The instantaneous velocity is given by the derivative of the 
position, which is 

( ) ( )= + − = + − = −2(11 14 2.0 ) 0 1 14 2 2.0 14 4.0 .dv t t t t
dt

  

The value of the instantaneous velocity at = 2.5 st  is ( )− =14 4.0 2.5 4.0 m/s. The fact that the calculated 
average value matches the instantaneous velocity at the midpoint lends support to the answer. 

2.35. THINK:  I want to find the position of a particle when it reaches its maximum speed. I know the equation 
for the position as a function of time: = −2 33.0 2.0 .x t t   I will need to find the expression for the velocity 
and the acceleration to determine when the speed will be at its maximum. The maximum speed in the x-
direction will occur at a point where the acceleration is zero. 
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SKETCH:   

 
 RESEARCH:  The velocity is the derivative of the position function with respect to time. In turn, the 

acceleration is given by derivative of the velocity function with respect to time. The expressions can be 
found using the formulas: 

=( ) ( )dv t x t
dt

, =( ) ( )da t v t
dt

. 

 Find the places where the acceleration is zero. The maximum speed will be the maximum of the speeds at 
the places where the acceleration is zero. 

 SIMPLIFY:   − −= = − = ⋅ − ⋅ = −2 3 2 1 3 1 2( ) ( ) (3.0 2.0 ) 2 3.0 3 2.0 6.0 6.0d dv t x t t t t t t t
dt dt

    

    ( ) − −= = − = − ⋅ = −2 1 1 2 1( ) (6.0 6.0 ) 6.0 2 6.0 6.0 12d da t v t t t t t t
dt dt

 

 CALCULATE:   Solving for the value of t where a is zero: 
= − ⇒ = ⇒ =0 6.0 12   6.0 12   0.50 st t t  

 This time can now be used to solve for the position: 
= − =2 3(0.50) 3.0(0.50) 2.0(0.50) 0.500 mx  

 Since there is only one place where the acceleration is zero, the maximum speed in the positive x-direction 
must occur here. 

 ROUND:  Since all variables and parameters are accurate to 2 significant digits, the answer should be too:  
x = 0.50 m. 

 DOUBLE-CHECK:  The validity of the answer can be confirmed by checking the velocity at t = 0.50 s and 
times around this point. At t = 0.49 s, the velocity is 1.4994 m/s, and at t = 0.51 s the velocity is also 1.4994 
m/s. Since these are both smaller than the velocity at 0.50 s (v = 1.5 m/s), the answer is valid. 

2.36. THINK:  I want to find the time it took for the North American and European continents to reach a 
separation of 3000 mi if they are traveling at a speed of 10 mm/yr. First convert units: 

( )( )= = 4827000 m1609 m/mi3000 mid ,   ( )( )−= =310 mm/yr 10  m/mm 0.01 m/yr.v  

SKETCH: 
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RESEARCH:  The time can be found using the familiar equation: =d vt . 
SIMPLIFY:  The equation becomes = /t d v . 

CALCULATE:    = =
4827000 m 482,700,000 yr
0.01 m/yr

t  

ROUND:  The values given in the question are given to one significant digit, thus the answer also should 
only have one significant digit: = ⋅ 85 10  yrt . 

DOUBLE-CHECK:  The super continent Pangea existed about 250 million years ago or ⋅ 82.5 10  years. 
Thus, this approximation is in the ballpark. 

2.37. THINK:   
(a) I want to find the velocity at t = 10.0 s of a particle whose position is given by the function 

= + + +3 2( )x t At Bt Ct D , where A = 2.10 m/s 3 , B = 1.00 m/s 2 , C = –4.10 m/s, and D = 3.00 m.  I can 
differentiate the position function to derive the velocity function. 

 (b) I want to find the time(s) when the object is at rest.  The object is at rest when the velocity is zero. I’ll 
solve the velocity function I obtain in (a) equal to zero. 

 (c) I want to find the acceleration of the object at t = 0.50 s. I can differentiate the velocity function found 
in part (a) to derive the acceleration function, and then calculate the acceleration at t = 0.50 s. 

 (d) I want to plot the function for the acceleration found in part (c) between the time range of –10.0 s to 
10.0 s. 

 SKETCH: 
(a)                   (b) 

              
 (c)       (d)  The plot is part of CALCULATE. 

     
 RESEARCH: 

(a) The velocity is given by the time derivative of the positive function ( ) = ( )dv t x t
dt

. 

 (b) To find the time when the object is at rest, set the velocity to zero, and solve for t.  This is a quadratic 

equation of the form + + =2 0ax bx c , whose solution is − ± −
=

2 4
2

b b acx
a

. 
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 (c) The acceleration is given by the time derivative of the velocity: =( ) ( )da t v t
dt

. 

 (d) The equation for acceleration found in part (c) can be used to plot the graph of the function. 
 SIMPLIFY: 

(a) = = + + + = + +3 2 2( ) ( ) ( ) 3 2d dv t x t At Bt Ct D At Bt C
dt dt

  

(b) Set the velocity equal to zero and solve for t using the quadratic formula: 

− ± − − ± −
= =

2 22 4 4(3 )( ) 2 4 12
2(3 ) 6

B B A C B B ACt
A A

 

 (c) = = + + = +2( ) ( ) (3 2 ) 6 2d da t v t At Bt C At B
dt dt

  

(d) There is no need to simplify this equation. 
  CALCULATE: 

(a) = = + − =3 2 2( 10.0 ) 3(2.10 m/s )(10.0 s) 2(1.00 m/s )(10.0 s) 4.10 m/s 645.9 m/sv t s   

(b) 
− ± − −

=

= −

2 2 2 3

3

2(1.00 m/s ) 4(1.00 m/s ) 12(2.10 m/s )( 4.10 m/s)
6(2.1 0m/s )

0.6634553 s, 0.9809156 s

t  

(c) = = + =3 2 2( 0.50 s) 6(2.10 m/s )(0.50 s) 2(1.00 m/s ) 8.30 m/sa t  
 (d) The acceleration function, a(t) = 6At + 2B, can be used to compute the acceleration for time steps of 

2.5 s.  For example: 
= − = − + = −3 2 2( 2.5 s) 6(2.10 m/s )( 2.5 s) 2(1.00 m/s ) 29.5 m/sa t  

 The result is given in the following table. 
t [s] –10.0 –7.5 –5.0 –2.5 0.0 2.5 5.0 7.5 10.0 

a [m/s 2 ] –124.0 –92.5 –61.0 –29.5 2.0 33.5 65.0 96.5 128.0 
These values are used to plot the function. 

 
 ROUND: 

(a) The accuracy will be determined by the factor 3 23(2.10 m/s )(10.0 s) , which only has two significant 
digits. Thus the velocity at 10.0 s is 646 m/s. 

 (b) The parameters are accurate to two significant digits, thus the solutions will also have three significant 
digits:  t = 0.663 s and –0.981 s 

 (c) The accuracy is limited by the values with the smallest number of significant figures. This requires 
three significant figures. The acceleration is then a = 8.30 m/s 2 . 

 (d) No rounding is necessary. 
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 DOUBLE-CHECK: 
(a) This result is reasonable given the parameters. For example, = =2 2(10.0 s) 100. st , so the velocity 
should be in the hundreds of meters per second.   

 (b) Since the function is quadratic, there should be two solutions. The negative solution means that the 
object was at rest 0.98 seconds before the time designated t = 0 s. 

 (c) These values are consistent with the parameters. 
 (d) The function for the acceleration is linear which the graph reflects. 

2.38. THINK:  I want to determine the time when a particle will reach its maximum displacement and what the 
displacement will be at that time. The equation of the object’s displacement is given as: 

( )= − 2 2( ) 4.35 m + (25.9 m/s) 11.79 m/sx t t t  

  Differentiating x with respect to t gives the equation for the velocity. This is important since the time at 
which the velocity is zero is the moment at which the object has reached its maximum displacement. 

 SKETCH:   

 

 RESEARCH:  The velocity is the derivative: = ( )dv x t
dt

. Find the value of t that makes the velocity zero. 

Then, for part (b), substitute that value of t back into ( ).x t  

 SIMPLIFY:  = + −

= −

2 2

2

[4.35 m (25.9 m/s) (11.79 m/s ) ]

25.9 m/s 2(11.79 m/s )

dv t t
dt

t

 

  Time for the maximum displacement is found by solving for t in the equation: 
− =225.9 m/s 2(11.79 m/s ) 0t .   

CALCULATE: 

(a) = =2

25.9 m/s 1.0984 s
2(11.79 m/s )

t  

 (b) = −

= + −
=

2 2

2 2

( ) 4.35 m + (25.9 m/s) (11.79 m/s )

4.35 m (25.9 m/s)(1.10 s) (11.79 m/s )(1.10 s)
18.5741 m

x t t t   

 ROUND: 
(a)  The accuracy of this time is limited by the parameter 25.9 m/s, thus the time is t = 1.10 s.  

 (b)  The least accurate term in the expression for x(t) is accurate to the nearest tenth, so =max 18.6 mx . 
 DOUBLE-CHECK:  Consider the positions just before and after the time t = 1.10 s.  x = 18.5 m for t = 1.00 

s, and x = 18.5 m for t = 1.20 s.  These values are less than the value calculated for maxx , which confirms 
the accuracy of the result. 
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2.39. THINK:  I want to calculate the average acceleration of the bank robbers getaway car. He starts with an 
initial speed of 45 mph and reaches a speed of 22.5 mph in the opposite direction in 12.4 s. 
First convert the velocities to SI units: 

 
= = 

 
i

m/s(45 mph) 0.447 20.115 m/s
mph

v  

 
= − = − 

 
f

m/s( 22.5 mph) 0.447 10.0575 m/s
mph

v  

 SKETCH:   

 

 RESEARCH:  
change in velocity

average acceleration = 
change in time

 

SIMPLIFY:  
−

= f iv v
a

t
 

CALCULATE:  − −
= = − 2( 10.0575 m/s) (20.115 m/s) 2.433 m/s

12.4 s
a  

ROUND:  The least precise of the velocities given in the question had two significant figures. Therefore, 
the final answer should also have two significant figures. The acceleration is  = − 22.4 m/sa , or 2.4 m/s2 in 
the backward direction. 
DOUBLE-CHECK:  A top-of-the-line car can accelerate from 0 to 60 mph in 3 s. This corresponds to an 
acceleration of 8.94 m/s 2 . It is reasonable for a getaway car to be able to accelerate at a fraction of this 
value. 

2.40. THINK:  I want to find the magnitude and direction of average acceleration of a car which goes from 22.0 
m/s in the west direction to 17.0 m/s in the west direction in 10.0 s:  = = =f i17.0 m/s, 22.0 m/s, 10.0 s.v v t  
SKETCH:   

 

RESEARCH:  
−

= f iv v
a

t
 

SIMPLIFY:  There is no need to simplify the above equation. 

CALCULATE:  −
= = − 217.0 m/s 22.0 m/s 0.5000 m/s .

10.0 s
a  The negative indicates the acceleration is east. 

ROUND:  The average acceleration is = 20.500 m/sa  east.  
DOUBLE-CHECK:  An acceleration of -0.500 m/s 2  is reasonable since a high performance car can 
accelerate at about 9 m/s 2 .  
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2.41. THINK:  I want to find the magnitude of the constant acceleration of a car that goes 0.500 km in 10.0 s:   
d = 0.500 km, t = 10.0 s. 
SKETCH:   

 

RESEARCH: The position of the car under constant acceleration is given by = 21 .
2

d at  

SIMPLIFY:  Solving for acceleration gives = 2

2 .da
t

 

CALCULATE:  = = 2
2

2(0.500 km) 0.0100 km/s
(10.0 s)

a  

ROUND:  The values all have three significant figures. Thus, the average acceleration is = 20.0100 km/sa , 
which is 10.0 m/s2. 
DOUBLE-CHECK:  This acceleration is on the order of a high performance car which can accelerate from 
0 to 60 mph in 3 seconds, or 9 m/s 2 .  

2.42. THINK:   
(a) I want to find the average acceleration of a car and the distance it travels by analyzing a velocity versus 
time graph. Each segment has a linear graph. Therefore, the acceleration is constant in each segment. 
(b) The displacement is the area under the curve of a velocity versus time graph. 
SKETCH:   

 
RESEARCH:   
(a) The acceleration is given by the slope of a velocity versus time graph. 

riseslope = 
run

 

 (b) The displacement is the sum of the areas of two triangles and one rectangle. Recall the area formulas: 
×

×

base  height
area of a triangle = 

2
area of a rectangle = base  height
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  SIMPLIFY: 

 (a)  
−

=
−

2 1

2 1

I I
I

I I

v v
a

t t
, 

−
=

−
2 1

2 1

II II
II

II II

v v
a

t t
, 

−
=

−
2 1

2 1

III III
III

III III

v v
a

t t
 

(b)  = − + − + −
2 2 1 2 2 1 2 2 1I I I II II II III III III

1 1( ) ( ) ( )
2 2

x v t t v t t v t t   

CALCULATE: 

(a) − −
= = = =

− −
2 2

I II
30.0 m/s 0 m/s 30.0 m/s 30.0 m/s5.0 m/s ,   0.0 m/s ,   

6.0 s 0 s 12.0 s 6.0 s
a a  

 −
= = −

−
2

III
0.0 m/s 30.0 m/s 2.50 m/s

24.0 s 12.0 s
a   

  (b)  = − + − + − =
1 1(30.0 m/s)(6.0 s 0.0 s) (30.0 m/s)(12.0 s 6.0 s) (30.0 m/s)(24.0 s 12.0 s) 450.0 m
2 2

x  

 ROUND:   
(a) Rounding is not necessary in this case, because the values of the velocities and times can be read off the 
graph to at least two digit precision. 

 (b) The answer is limited by the value 6.0 s, giving x = 450 m. 
 DOUBLE-CHECK:  The accelerations calculated in part (a) are similar to those of cars. The distance of 

450 m is reasonable. The acceleration in I should be -2 times the acceleration in III, since the change in 
velocities are opposites, and the time in III for the change in velocity is twice the change in time that 
occurs in I. 

2.43. THINK:  I want to find the acceleration of a particle when it reaches its maximum displacement. The 
velocity of the particle is given by the equation = − 350.0 2.0 .xv t t  The maximum displacement must occur 
when the velocity is zero. The expression for the acceleration can be found by differentiating the velocity 
with respect to time.  
SKETCH:   

 

RESEARCH:  The acceleration is the derivative of the velocity: = x
da v
dt

. The maximum displacement will 

occur at a point where the velocity is zero. So, I can find the time at which the displacement is maximal by 
solving = − =350.0 2.0 0xv t t  for t. The question says to consider after = 0,t so I will reject zero and 
negative roots. Then differentiate v with respect to t to obtain a formula for the acceleration. Evaluate the 
acceleration at the time where the displacement is maximized (which is when the velocity is zero). 
SIMPLIFY:  No simplification is required. 

 CALCULATE:  Solving = − =350.0 2.0 0xv t t  for t:  = − 20 2.0 (25 )t t ,  so t = 0, ±5.0. So, take = 5.t  Now, 
differentiate v with respect t to find the expression for the acceleration.  

= −

= −

3

2

(50.0 2.0 )

50.0 6.0

da t t
dt

t
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 Substitute t = 5.0 s into the expression for acceleration:  
= − = − = −2 2 250.0 6.0 50.0 6.0(5.0 s) 100 m/sa t  

 ROUND:  The solution is limited by the accuracy of 26.0t , where t = 5.0 s, so it must be significant to two 
digits. This gives 50.0 – 150 = −100 m/s 2, which is also accurate to two significant figures.  Therefore, the 
acceleration must be accurate to two significant figures: = − ⋅ 21.0 10a  m/s2. 

 DOUBLE-CHECK:  The acceleration must be negative at this point, since the displacement would 
continue to increase if a was positive.  

2.44. THINK:   
(a) I want to know the distance between the first and third place runner when the first crosses the finish 
line, assuming they run at their average speeds throughout the race. The race is 100. m and the first place 
runner completes the race in 9.77 s while the third place runner takes 10.07 s to reach the finish line: 
=100. m,d =1 9.77 s,t  and =3 10.07 s.t  

(b) I want to know the distance between the two runners when the first crosses the finish line, assuming 
they both accelerate to a top speed of 12 m/s:  =100. m,d  =1 9.77 s,t  =3 10.07 s,t  and =12 m/s.v  
SKETCH:   
(a)         (b) 

    
RESEARCH:   

 (a) First the average speed of each runner must be calculated:  = / .s d t   From this the distance between 
the two runners can be found: ∆ = −1 2d d d , where 1d  is 100. m and 2d  is the position of the third place 
runner at 9.77 s. 

 (b) Since both runners are running at 12 m/s at the end of the race, the distance between the runners will 
be the distance the 3rd place runner runs after the first place runner crosses the line:  ∆ = ∆d v t . 

 SIMPLIFY:   

 (a) 
     

∆ = − = − = − = − = −     
     

1 1 1
1 2 1 3 1 1 1 1 1 1

3 3 3

1
d t t

d d d d s t d t d d d
t t t

 

(b) ∆ = −3 1( )d v t t    
CALCULATE:   

(a) 
   ∆ = − = − =   

  
1

1
3

9.77 s1 (100. m) 1 2.9791 m
10.07 s

t
d d

t
 

(b) ∆ = − =(12 m/s)(10.07 s 9.77 s) 3.6 md  
ROUND:   
(a) The answer is limited to 3 significant figures from 9.77 s so ∆ = 2.98 m.d  

 (b) The distance then is 3.60 m between the first and third place runners. 
 DOUBLE-CHECK:   

The two calculated distances are a small fraction (about 3%) of the race. It is reasonable for the third place 
runner to finish a small fraction of the track behind the first place finisher.  
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2.45. THINK:   
 (a) Since the motion is all in one direction, the average speed equals the distance covered divided by the 

time taken. I want to know the distance between the place where the ball was caught and midfield. I also 
want to know the time taken to cover this distance. The average speed will be the quotient of those two 
quantities. 

 (b) Same as in (a), but now I need to know the distance between midfield and the place where the run 
ended. 
(c) I do not need to calculate the acceleration over each small time interval, since all that matters is the 
velocity at the start of the run and at the end. The average acceleration is the difference between those two 
quantities, divided by the time taken.   
SKETCH:   
In this case a sketch is not needed, since the only relevant quantities are those describing the runner at the 
start and end of the run, and at midfield. 
RESEARCH:   

 The distance between two positions can be represented as f id d d∆ = − , where id  is the initial position and 

fd  is the final one. The corresponding time difference is f i .t t t∆ = −  The average speed is / .d t∆ ∆  
 (a) Midfield is the 50-yard line, so i f i1 yd, 50 yd, 0.00 s,d d t= − = =  and f 5.73 s.t =  
 (b) The end of the run is 1 yard past d = 100 yd, so i f i50 yd, 101 yd, 5.73 s,d d t= = =  and f 12.01 s.t =  

 (c) The average velocity is ( ) ( )f i f i/ /v t v v t t∆ ∆ = − − . For this calculation, i i0, 12.01 s,t t= =  and 

i f 0 m/s,v v= =  since the runner starts and finishes the run at a standstill. 
 SIMPLIFY:   

 (a), (b) f i

f i

d dd
t t t

−∆
=

∆ −
 

(c) No simplification needed   
CALCULATE:   

(a) 
( ) ( )
( ) ( )
50 yd 1 yd 3 ft 0.3048 m8.900522356 yd/s 8.138638743 m/s
5.73 s 0.00 s 1 yd 1 ft

d
t

− −  ∆  = = =  ∆ −   
 

(b) 
( ) ( )
( ) ( )
101 yd 50 yd 3 ft 0.3048 m8.121019108 yd/s 7.425859873 m/s
12.01 s 5.73 s 1 yd 1 ft

d
t

−  ∆  = = =  ∆ −   
 

 (c) 2f i

f i

0 m/s 0 m/s 0 m/s
12.01 s 0.00 s

v vv
t t t

−∆ −
= = =

∆ − −
 

ROUND:   
(a) We assume that the yard lines are exact, but the answer is limited to 3 significant figures by the time 
data. So the average speed is 8.14 m/s.  

 (b) The average speed is 7.43 m/s. 
 (c) The average velocity is 0 m/s2. 
 DOUBLE-CHECK:   

The average speeds in parts (a) and (b) are reasonable speeds (8.9 ft/s is about 18 mph), and it makes sense 
that the average speed during the second half of the run would be slightly less than during the first half, 
due to fatigue. In part (c) it is logical that average acceleration would be zero, since the net change in 
velocity is zero.  
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2.46. THINK:  Use the difference formula to find the average velocity, and then the average acceleration of the 
jet given its position at several times, and determine whether the acceleration is constant. 
SKETCH:   

 

RESEARCH:  The difference formula −
=

−
final point  initial point
final time  initial time

m .  

SIMPLIFY:  For velocity the difference formula is ( ) ( )= − −f i f i/v x x t t  and the corresponding difference 

formula for the acceleration is ( ) ( )= − −f i f i/a v v t t .  

CALCULATE:  As an example, ( ) ( )= − − =6.6 m 3.0 m / 0.60 s 0.40 s 18.0 m/sv , and the acceleration is 

( ) ( )= − − = 226.0 m/s 18.0 m/s / 0.80 s 0.60 s 40.0 m/sa . 

t [s] x [m] v [m/s] a [m/s2] 
0.00 0 0.0   

0.20 0.70 3.5 17.5 

0.40 3.0 11.5 40 

0.60 6.6 18 32.5 

0.80 11.8 26 40 

1.00 18.5 33.5 37.5 

1.20 26.6 40.5 35 

1.40 36.2 48 37.5 

1.60 47.3 55.5 37.5 

1.80 59.9 63 37.5 

2.00 73.9 70 35 
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ROUND:  The position measurements are given to the nearest tenth of a meter, and the time 
measurements are given to two significant figures.  Therefore each of the stated results for velocity and 
acceleration should be rounded to two significant figures. 

t [s] x [m] v [m/s] a [m/s2] 

0.00 0.0 0.0   

0.20 0.70 3.5 18 

0.40 3.0 12 40. 

0.60 6.6 18 33 

0.80 11.8 26 40. 

1.00 18.5 34 38 

1.20 26.6 41 35 

1.40 36.2 48 38 

1.60 47.3 56 38 

1.80 59.9 63 38 

2.00 73.9 70. 35 

 DOUBLE-CHECK:  The final speed of the jet is 70. m/s, which is equivalent to 250 km/hr, the typical 
take-off speed of a commercial jet airliner. 

2.47. THINK:  I want to find the position of a particle after it accelerates from rest at = 2
1 2.00 cm/sa for 

=1 20.0 st  then accelerates at = − 2
2 4.00 cm/sa for =2 40.0 s.t  

SKETCH:   

 
RESEARCH:  The position of a particle undergoing constant acceleration is given by the formula 

= + + 2
0 0

1
2

x x v t at . The same particle’s velocity is given by = +0v v at . The final speed at the end of the 

first segment is the initial speed for the second segment.  

SIMPLIFY:  For the first 20 s the particle’s position is = 11
2

1
1
2

x a t . This is the initial position for the second 

segment of the particle’s trip. For the second segment, the particle is no longer at rest but has a speed of 
= 1 1v a t .  

= + + = + +2 2 2
0 2 2 2 1 1 1 1 21 2 2

1 1 1
2 2 2

x x v t a t a t a t t a t  

 CALCULATE: 

= + + − = −2 2 2 2 21 1(2.00 cm/s )(20.0 s) (2.00 cm/s )(20.0 s)(40.0 s) ( 4.00 cm/s )(40.0 s) 1200 cm
2 2

x  

ROUND:  The variables are given with three significant figures. Therefore, the particle is -1.20∙103 cm 
from its original position.  

 DOUBLE-CHECK:  Note that the second phase of the trip has a greater magnitude of acceleration than 
the first part. The duration of the second phase is longer; thus the final position is expected to be negative. 
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2.48. THINK:  The car has a velocity of +6 m/s and a position of +12 m at t = 0. What is its velocity at t = 5.0 s? 
The change in the velocity is given by the area under the curve in an acceleration versus time graph. 
SKETCH:   

 
 

RESEARCH:  = +0  area,v v  
⋅base height

area of triangle = 
2

 

SIMPLIFY:  
∆ ∆

= +0 2
a t

v v  

CALCULATE:  = + =
2(4.0 m/s )(5.0 s)6 m/s 16 m/s

2
v  

ROUND:  The function can only be accurate to the first digit before the decimal point. Thus =16 m/s.v  
DOUBLE-CHECK:  16 m/s is approximately 58 km/h, which is a reasonable speed for a car. 

2.49. THINK:  I want to find the position of a car at =  3.0 sft if the velocity is given by the equation 

= +2v At Bt  with A = 2.0 m/s 3  and B = 1.0 m/s 2 . 
SKETCH:   

 
RESEARCH:  The position is given by the integral of the velocity function: += ∫

f

00 ( ) .
t

x x v t dt  

SIMPLIFY:  Since the car starts at the origin, =0 0 m.x  

( )+= = = +∫ ∫
f f 2 3 2

f f0 0

1 1( )
3 2

t t
x v t dt At d Att BtBt  

  CALCULATE:  = + =3 3 2 21 1(2.0 m/s )(3.0 s) (1.0 m/s )(3.0 s) 22.5 m
3 2

x  

 ROUND:  The parameters are given to two significant digits, and so the answer must also contain two 
significant digits: = 23 m.x   

 DOUBLE-CHECK:  This is a reasonable distance for a car to travel in 3.0 s. 

2.50. THINK:  An object starts at rest (so =0 0 m/sv ) and has an acceleration defined by ( ) ( )= −2 1/ 2a t Bt Ct , 

where B = 2.0 m/s 4  and C = –4.0 m/s 3 .  I want to find its velocity and distance traveled after 5.0 s. 
Measure the position from the starting point =0 0 m.x  
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SKETCH:   

 
RESEARCH:  
(a) The velocity is given by integrating the acceleration with respect to time: = ∫ ( ) .v a t dt  

(b) The position is given by integrating the velocity with respect to time: = ∫ ( ) .x v t dt  

SIMPLIFY: 
 = = − = − + 
 ∫ ∫ 2

0
3 21 1 1( ) ,

2 3 4
v a t dt Bt Ct dt Bt Ct v  and 

 = = − + = − + + 
 ∫ ∫ 3 4

0 0 0
2 31 1 1 1

3 4 12 12
x vdt Bt Ct v dt Bt Ct v t x  

CALCULATE: 

 = − + = − − + =3 2 4 3 3
0

21 1 1 1(2.0 m/s )(5.0 s) ( 4.0 m/s )(5.0 s) 0 m/s 108.33 m/s
3 4 3 4

v Bt Ct v  

 ( )( ) ( )= − − + + =4 4 3 31 1(2.0 m/s )(5.0 s) ( 4.0 m/s )(5.0 s) 0 m/s 5.0 s 0 m 145.83 m
12 12

x  

 ROUND:  All parameters have two significant digits. Thus the answers should also have two significant 
figures: at t = 5.0 s, =110 m/sv and x = 150 m.  

 DOUBLE-CHECK:  The distance traveled has units of meters, and the velocity has units of meters per 
second. These are appropriate units for a distance and velocity, respectively. 

2.51. THINK:  A car is accelerating as shown in the graph. At t0= 2.0 s, its position is x0 = 2.0 m.  I want to 
determine its position at t = 10.0 s. 

SKETCH:   

 
RESEARCH:  The change in position is given by the area under the curve of the velocity versus time graph 
plus the initial displacement: = +0  areax x . Note that region II is under the t-axis will give a negative area. 
Let 1A be the area of region I,  let 2A be the area of region II, and let 3A be the area of region III. 
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SIMPLIFY:  = + + +0 I II IIIx x A A A  
CALCULATE:  

= + − + − − + − =
1 1 12.0 m (12.0 m/s)(5.0 s 2.0 s) ( 4.0 m/s)(8.0 s 5.0 s) (4.0 m/s)(10.0 s 8.0 s) 18 m
2 2 2

x  

ROUND:  The answer should be given to the least accurate calculated area. These are all accurate to the 
meter, thus the position is x = 18 m. 
DOUBLE-CHECK:  The maximum velocity is 12 m/s. If this were sustained over the 8 second interval, the 
distance traveled would be ( )( )+ =2.0 m 12 m/s 8.0 s 98 m. Since there was a deceleration and then an 
acceleration, we expect that the actual distance will be much less than the value 98 m. 

2.52. THINK:  A car is accelerating as shown in the graph.  I want to determine its displacement between t = 4 s 
and t = 9 s. 
SKETCH:   

 
RESEARCH:  The change in position is given by the area under the curve of a velocity versus time graph. 
Note that it is hard to read the value of the velocity at t = 9.0 s. This difficulty can be overcome by finding 
the slope of the line for this section. Using the slope, the velocity during this time can be determined: 

Area,x∆ =  rise .
run

m =  Let 1A be the area of region I,  let 2A be the area of region II, and let 3A be the area 

of region III. 
SIMPLIFY:  ∆ = + +I II IIIx A A A  

CALCULATE:  − −
= =

−
24.0 m/s ( 4.0 m/s) 2.0 m/s

10.0 s 6.0 s
m  

 ∆ = − + − − + − = −
1 1 1(4.0 m/s)(5.0 s 4.0 s) ( 4.0 m/s)(8.0 s 5.0 s) (2.0 m/s)(9.0 s 8.0 s) 3.0 m
2 2 2

x  

 ROUND:  ∆ = −3.0 mx  
 DOUBLE-CHECK:  The car will end up with a negative displacement since the area of region II is larger 

than the combined areas of regions I and III. The overall displacement is less than if the car had traveled 
constantly at its maximum velocity of 4 m/s (when the displacement would have been 20 m). 
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2.53. THINK:  A motorcycle is accelerating at different rates as shown in the graph.  I want to determine (a) its 
speed at t = 4.00 s and t = 14.0 s, and (b) its total displacement between t = 0 and t = 14.0 s. 
SKETCH:   

 
RESEARCH:   
(a) The velocity of the motorcycle is defined by the area under the curve of the acceleration versus time 
graph. This area can be found by counting the blocks under the curve then multiply by the area of one 
block: 1 block = (2 s) 1 m/s² = 2 m/s. 
(b) The displacement can be found by separating the acceleration into three parts: The first phase has an 
acceleration of = 2

1 5 m/sa  for times between 0 to 4 seconds. The second phase has no acceleration, thus 

the motorcycle has a constant speed. The third phase has a constant acceleration of = − 2
3 4 m/sa . Recall 

the position and velocity of an object under constant acceleration is ( )= + + 2
0 0 1/ 2x x v t at  and 

= +0 ,v v at  respectively. 
SIMPLIFY:  At t = 4.00 s and 14.0 s, there are 10 blocks and 6 blocks respectively. Recall that blocks under 
the time axis are negative. In the first phase the position is given by ( )= ∆ 2

1 11/ 2 ( )x a t  where ∆t  is the 

duration of the phase. The velocity at the end of this phase is = ∆1 1v a t . The position and velocity of the 
first phase gives the initial position and velocity for the second phase. 

= + ∆ = ∆ + ∆ ∆2
0 0 2 1 1 1 1 2

1 ( )
2

x x v t a t a t t  

 Since the velocity is constant in the second phase, this value is also the initial velocity of the third phase. 

= + ∆ + ∆ = ∆ + ∆ ∆ + ∆ ∆ + ∆2 2 2
0 0 3 3 3 1 1 1 1 2 1 1 3 3 3

1 1 1( ) ( ) ( )
2 2 2

x x v t a t a t a t t a t t a t  

 CALCULATE:   
 (a) = = =( 4.00 s) 10(2.00 m/s) 20.0 m/sv t ,  = = =( 14.0 s) 6(2.00 m/s) 12.0 m/sv t  

(b) 

= − + − − + − −

+ − −

=

2 2 2 2

2 2

1 (5.0 m/s )(4.00 s 0 s) (5.0 m/s )(4.00 s 0 s)(12.0 s 4.0 s) (5.0 m/s )(4.00 s 0 s)(14.0 s 12.0 s)
2
1 ( 4.0 m/s )(14.0 s 12.0 s)
2

232 m

x

ROUND:   
(a) Rounding is not necessary in this case, because the values of the accelerations and times can be read off 
the graph to at least two digit precision. 
(b) The motorcycle has traveled 232 m in 14.0 s. 
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 DOUBLE-CHECK:  The velocity of the motorcycle at t = 14 s is less than the speed at t = 4 s, which makes 
sense since the bike decelerated in the third phase. Since the bike was traveling at a maximum speed of 20 
m/s, the most distance it could cover in 14 seconds would be 280 m. The calculated value is less than this, 
which makes sense since the bike decelerated in the third phase. 

2.54. THINK:  I want to find the time it takes the car to accelerate from rest to a speed of v = 22.2 m/s.  I know 
that =0 0 m/sv , = 22.2 m/sv , distance = 243 m, and a is constant. 
SKETCH:   

 
RESEARCH:  Recall that given constant acceleration, ( )= +01/ 2 ( )d v v t . 

SIMPLIFY:  =
+0

2dt
v v

 

CALCULATE:  = =
+

2(243 m) 21.8919 s
0.0 m/s 22.2 m/s

t  

ROUND:  Therefore, t = 21.9 s since each value used in the calculation has three significant digits. 
DOUBLE-CHECK:  The units of the solution are units of time, and the calculated time is a reasonable 
amount of time for a car to cover 243 m. 

2.55. THINK:  I want to determine (a) how long it takes for a car to decelerate from =0 31.0 m / sv to 
=12.0 m/sv over a distance of 380. m  and (b) the value of the acceleration. 

SKETCH:   

 
RESEARCH: Since the acceleration is constant, the time can be determined using the equation: 

( )∆ = +01/ 2 ( )x v v t , and the acceleration can be found using = + ∆2 2
0 2v v a x . 

SIMPLIFY: 

(a) 
∆

∆ = + ⇒ + = ∆ ⇒ =
+0 0

0

1 2( )   ( ) 2   
2

xx v v t v v t x t
v v

 

 (b) 
−

= + ∆ ⇒ ∆ = − ⇒ =
∆

2 2
2 2 2 2 0

0 02   2   
2

v v
v v a x a x v v a

x
 

 CALCULATE: 

 (a) 
∆

= = =
+ +0

2 2(380. m) 17.674 s
(31.0 m/s 12.0 m/s)

xt
v v

 

 (b) 
− −

= = = −
∆

2 2 2 2
20 (12.0 m/s) (31.0 m/s) 1.075 m/s

2 2(380. m)
v v

a
x

 

ROUND:  Each result is limited to three significant figures as the values used in the calculations each have 
three significant figures. 

 (a) t = 17.7 s 
 (b) a = –1.08 m/s² 

DOUBLE-CHECK: 
 (a) The resulting time has appropriate units and is reasonable for the car to slow down. 
 (b) The acceleration is negative, indicating that it opposes the initial velocity, causing the car to slow down. 
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2.56. THINK:  I want to find (a) the total distance covered in time t = 59.7 s, and (b) the velocity of the runner 
at t = 59.7 s.  It will be useful to know the time taken to accelerate, 1t , and the time taken to run at the 
achieved constant velocity, 2t .  Note that the mass of the runner is irrelevant.   
SKETCH:   

 
RESEARCH:  The runner accelerates from rest to some velocity, v, then continues to run at this constant 
velocity. The total distance covered, ∆x , will be the sum of the distance covered while accelerating, ∆ 1x , 
and the distance covered while at constant velocity, ∆ 2x :  ∆ = ∆ + ∆1 2 .x x x  The distance ∆ 1x  is determined 

by  = + ∆2 2
0 12 .v v a x  The distance ∆ 2x  is determined by  ∆ =2 2 .x vt  It will be necessary to know the time 

taken to run this distance ∆ 2x . This time, 2t , and the time taken to cover the distance ∆ 1x , 1t , must sum 
to the given total time of 59.7 s: = +total 1 2 .t t t  The time 1t  can be determined using the equation:  
= +0 1.v v at  

  SIMPLIFY:   

 
−

= + ∆ ⇒ ∆ =
2 2

2 2 0
0 1 12     

2
v v

v v a x x
a

,    
−

= + ⇒ = 0
0 1 1    

v v
v v at t

a
 

− ∆ = ⇒ ∆ = − ⇒ ∆ = − 
 

0
2 2 2 total 1 2 total  ( )  

v v
x vt x v t t x v t

a
  

 Finally, the total distance covered is 
− −   ∆ = ∆ + ∆ = + − = + −     

2 2 2
0 0

1 2 total total2 2
v v v v v vx x x v t v t

a a a a
. 

 CALCULATE:   

 (a) 
 ∆ = + − 
 

=

2

2 2

(6.3 m/s) 6.3 m/s(6.3 m/s) 59.7 s
2(1.25 m/s ) 1.25 m/s
360.234 m

x  

 (b) Since 
−

= =1 2

6.3 m/s 0 m/s
5.0 s

1.25 m/s
t is the time taken to reach the final velocity, the velocity of the runner 

at =total 59.7 st  is 6.3 m/s. 

 ROUND:  Since v has only two significant digits, ∆ = 360 mx , or ⋅ 23.6 10  m.  
 DOUBLE-CHECK:  This seems like a reasonable distance to cover in the total time, given most of the 

distance is covered at the constant velocity 6.3 m/s. Since the runner stops accelerating after 5.0 s, the 
velocity of the runner is still 6.3 m/s at 59.7 s.  

2.57. THINK:  I am given 0 70.4 m/sv = , 0v = , 197.4 mx∆ = , and constant acceleration.  I am asked to find 
the velocity ′v  when the jet is 44.2 m from its stopping position. This means the jet has traveled 

′∆ = − =197.4 m 44.2 m 153.2 mx on the aircraft carrier. 
 SKETCH:   
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 RESEARCH:  The initial and final velocities are known, as is the total distance traveled.  Therefore the 
equation 2 2

0 2v v a x= + ∆  can be used to find the acceleration of the jet.  Once the acceleration is known, 

the intermediate velocity ′v  can be determined using ( )2 2
0 2 .v v a x′ ′= + ∆  

 SIMPLIFY:  First find the constant acceleration using the total distance traveled, ∆ ,x  the initial velocity, 

0 ,v  and the final velocity, v: 
2 2 2

0 0     (since 0 m/s).
2 2

v v v
a v

x x
−

= = − =
∆ ∆

Next, find the requested intermediate 

velocity, ′v : 

( ) ( )
2 2

2 22 2 20 0
0 0 02   2   

2
v v

v v a x v v x v v x
x x

 
′ ′ ′ ′ ′ ′= + ∆ ⇒ = + − ∆ ⇒ = − ∆  ∆ ∆ 

  

CALCULATE:   
2

2 (70.4 m/s)(70.4 m/s) (153.2 m) 33.313 m/s
(197.4 m)

v′ = − =  

ROUND:  At 153.2 mx′∆ = , the velocity is 33.3 m/s.v′ =   
DOUBLE-CHECK:  This v′  is less than 0v , but greater than v, and therefore makes sense. 

2.58. THINK:  I want to find the acceleration of a bullet passing through a board, given that ∆ =10.0 cmx  
= 0.100 m , =0 400. m/sv , and = 200. m/sv .  I expect the acceleration to be negative, since the bullet is 
slowing down. 
SKETCH:   

 
RESEARCH:  = + ∆2 2

0 2v v a x  

SIMPLIFY:  
−

=
∆

2 2
0

2
v v

a
x

 

CALCULATE:  −
= = −

2 2
2(200. m/s) (400. m/s) 600,000. m/s

2(0.100 m)
a  

ROUND:  Since each velocity is given to three significant digits, a = − ⋅ 5 26.00 10  m/s .  
DOUBLE-CHECK:  That a is negative indicates it is in the opposite direction of the initial velocity, so the 
bullet slows down. The speed of the bullet decreases by 200 m/s in 0.1 m, so I am not surprised to get such 
a large value for the acceleration. 

2.59. THINK:  A car accelerates from rest with = 210.0 m/sa .  I want to know how far it travels in  2.00 s. 
SKETCH:   

 

RESEARCH:  ∆ = + 2
0

1
2

x v t at  

SIMPLIFY:  Since =0 0 m/sv , ∆ = 21
2

x at .  
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CALCULATE:  ∆ = =2 21 (10.0 m/s )(2.00 s) 20.0 m
2

x  

ROUND: ∆ = 20.0 mx  
DOUBLE-CHECK:  This seems like a reasonable distance to cover within 2.00 s given a = 10.0 m/s 2 . 

2.60. THINK:  A airplane accelerates from rest at = 212.1 m/sa .  I want to know its velocity at 500. m.  
SKETCH:   

 
RESEARCH:  = + ∆2 2

0 2v v a x ; v0 = 0, a = 12.1 m/s2, ∆x = 500 m 

SIMPLIFY: = + ∆

= ∆

2
0 2

2

v v a x

a x

 

CALCULATE: = =22(12.1 m/s )(500. m) 110.00 m/sv  
ROUND:  =110. m/sv  
DOUBLE-CHECK:  This take-off speed is about 400 kph, which is reasonable for a small plane.   

2.61. THINK:   
 (a) I know that =0 0 m/sv , = 5.00 m/sv , and a is constant. I want to find avgv . 
 (b) t = 4.00 s is given. I want to find ∆x .   

SKETCH:   

 
 RESEARCH: 

 (a) 
+

= 0
avg 2

v v
v   

 (b) a is unknown, so use ∆ = +0
1 ( )
2

x v v t  

SIMPLIFY:  It is not necessary to simplify the equations above. 
CALCULATE: 

 (a) 
+

= =avg
5.00 m/s 0 m/s 2.50 m/s

2
v   

 (b) ∆ = + =
1 (5.00 m/s 0 m/s)(4.00 s) 10.00 m
2

x  

ROUND: 
 (a) v is precise to three significant digits, so =avg 2.50 m/s.v  
 (b) Each v and t have three significant digits, so ∆ =10.0 m.x   

DOUBLE-CHECK: 
 (a) This avgv  is between the given 0v  and v, and therefore makes sense. 

 (b) This is a reasonable distance to cover in 4.00 s when =avg 2.50 m/s.v  
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2.62. THINK:  I have been given information on two runners. Runner 1 has an initial velocity =
01 0v  and an 

acceleration = 2
1 0.89 m/sa . Runner 2 has a constant velocity of =2 5.1 m/sv .  I want to know the distance 

traveled by runner 1 before he catches up to runner 2. Note that both runners cover the same distance, that 
is, ∆ = ∆1 2x x , in the same time, t. 
SKETCH:   

 

RESEARCH:  For runner 1, ( )∆ = +
0

2
1 1 11/ 2x v t a t . For runner 2, ∆ =2 2x v t .  

SIMPLIFY:  Since the time is not given, substitute the equation for runner 2 for the value of t: = ∆ 2 2/t x v . 
Then for runner 1: 

 ∆
∆ = + ⇒ ∆ = ⇒ ∆ =  

 
0

2

2 2 2
1 1 1 1 1 1 1

2

1 1 1        
2 2 2

x
x v t a t x a t x a

v
 

   Since ∆ = ∆1 2x x , I write: 

   ∆ ∆ ∆
∆ = ⇒ −∆ = ⇒ ∆ − =   

   

2 2
1 1 1

1 1 1 1 1 12 2
2 2 2

1 1 1    0    1 0
2 2 2

x x x
x a a x x a

v v v
 

 Observe that one solution is ∆ =1 0x . This is true when runner 2 first passes runner 1.  The other solution 

occurs when runner 1 catches up to runner 2:  
∆

− =1
1 2

2

1 1 0
2

x
a

v
. Then ∆ =

2
2

1
1

2v
x

a
. 

 CALCULATE: 
( )

( )
∆ = =

2

1 2

2 5.1 m/s
58.449 m

0.89 m/s
x   

ROUND:  ∆ =1 58 mx  
 DOUBLE-CHECK:  A runner might catch up to another runner on a race track in 58 m. 

2.63. THINK:   
(a) The girl is initially at rest, so =

01 0v , and then she waits ′ = 20 st  before accelerating at = 2
1 2.2 m/sa . 

Her friend has constant velocity =2 8.0 m/sv .  I want to know the time required for the girl to catch up 
with her friend, 1t . Note that both people travel the same distance: ∆ = ∆1 2x x . The time the girls spends 
riding her bike is 1t . The friend, however, has a ′t  head-start; the friend travels for a total time of 

′= +2 1t t t . 
 (b)  The initial conditions of the girl have changed. Now =

01 1.2 m/sv . The initial conditions of the friend 

are the same: =2 8.0 m/sv . Now there is no time delay between when the friend passes the girl and when 
the girl begins to accelerate. The time taken to catch up is that found in part a), = 20 st . I will use 
=16.2 st  for my calculations, keeping in mind that t has only two significant figures. I want to know the 

acceleration of the girl, 1a , required to catch her friend in time t. 
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 SKETCH:   
 (a) 

 
  (b)   

 
 RESEARCH:   

 (a)  The distance the girl travels is ∆ = +
0

2
1 1 1 1 1

1
2

x v t a t . The distance her friend travels is ∆ =2 2 2x v t .   

 (b)  ∆ = + ∆ =
0

2
1 1 1 2 2

1 ,   
2

x v t a t x v t  

SIMPLIFY:   

 (a)  Since =
01 0v , ∆ = 2

1 1 1
1
2

x a t .  Also, since ′= +2 1t t t , ( )′∆ = +2 2 1x v t t . Recall that ∆ = ∆1 2x x . This leads 

to ( )′= +2
1 1 2 1

1
2

a t v t t . Now solve for 1t : ′ ′= + ⇒ − − =2 2
1 1 2 2 1 1 1 2 1 2

1 1    0.
2 2

a t v t v t a t v t v t  

 The quadratic formula gives: 

( )  ′± − −  ′± + = =
 
 
 

2
2 2 1 2 2

2 2 1 2
1

1
1

14
22

12
2

v v a v t
v v a v t

t
aa

 

 (b)  As in part (a), ∆ = ∆1 2x x , and so + =
0

2
1 1 2

1
2

v t a t v t . Solving for 1a  gives: 

( )−
= − ⇒ = 0

0

2 12
1 2 1 1

21     
2

v v
a t v t v t a

t
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 CALCULATE:   

 (a) 
( ) ( ) ( )( )( )

( )

( )

2 2

1 2

2 2 2 2

2

2

8.0 m/s 8.0 m/s 2 2.2 m/s 8.0 m/s 20 s

2.2 m/s
8.0 m/s 64 m /s 704 m /s

2.2 m/s
8.0 m/s 27.7 m/s

2.2 m/s
16.2272, 8.9545 

t
± − +

=

± +
=

±
=

= −

 

  (b)  
( )−

= = 2
1

2 8.0 m/s 1.2 m/s
0.840 m/s

16.2 s
a  

ROUND:   
 (a) Time must be positive, so take the positive solution, =1 16 s.t   

 (b) = 2
1 0.84 m/sa  

 DOUBLE-CHECK:   
 (a)  The units of the result are those of time. This is a reasonable amount of time to catch up to the friend 

who is traveling at =2 8.0 m/s.v   
 (b)  This acceleration is less than that in part (a). Without the 20 s head-start, the friend does not travel as 

far, and so the acceleration of the girl should be less in part (b) than in part a), given the same time. 

2.64. THINK:  The motorcyclist is moving with a constant velocity =m 36.0 m/sv .  The police car has an initial 

velocity =
0p 0v , and acceleration = 2

p 4.0 m/sa .   
(a)  I want to find the time required for the police car to catch up to the motorcycle. Note both the police 
car and the motorcycle travel for the same amount of time: =p mt t .   

(b)  I want to find the final speed of the police car, pv . 
(c) I want to find the distance traveled by the police car at the moment when it catches up to the 
motorcycle.  Note the motorcyclist and the police car will have both traveled the same distance from the 
police car’s initial position, once the police car catches up to the motorcycle. That is, ∆ = ∆m px x . 
SKETCH:   

 
RESEARCH:   
(a)  To find pt , use ( )∆ = +

0

2
p p p p p1/ 2x v t a t  for the police car and ∆ =m m mx v t  for the motorcycle.  

(b)  To find pv , use = +
0p p p pv v a t  for the police car. 

(c)  Since Δxp = Δxm, ∆ =p m mx v t  for the police car. 
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SIMPLIFY:   
(a)  Since ∆ = ∆p mx x : 

+ =

+ = =

0

0

2
p p p p m m

2
p p p p m p m p

1
2
1                      Since ,
2

v t a t v t

v t a t v t t t
 

= =
0

2
p p m p p

1                      Since 0,
2

a t v t v  

− =

 − = 
 

2
p p m p

p p p m

1 0
2

1 0
2

a t v t

t a t v
 

 There are two solutions for pt  here:  =p 0t  or  − = 
 

p p m
1 0
2

a t v . The first solution corresponds to the 

time when the motorcycle first passes the stationary police car. The second solution gives the time when 
the police car catches up to the motorcycle.   Rearranging gives: =p m p2 /t v a . 

(b)  = + ⇒ = =
0 0p p p p p p p p    ,  since 0.v v a t v a t v  Substituting =p m p2 /t v a  into this equation gives: 

( )= =p p m p m2 / 2v a v a v . 

 (c)  No simplification is necessary. 
 CALCULATE:   

 (a)  
( )

= =p 2

2 36.0 m/s
18.0 s

4.0 m/s
t  

 (b)  ( )= =p 2 36.0 m/s 72.0 m/sv  

 (c)  ∆ = =p (36.0m/s)(18.0s) 648 mx  
ROUND:   

 (a)  pa  has only two significant figures, so =p 18 s.t   

 (b)  mv has three significant digits, so =p 72.0 m/s.v  

 (c)  pa  has only two significant digits, so ∆ =p 650 m.x  
DOUBLE-CHECK:   

 (a)  The calculated time is reasonable for the police car to catch the motorcyclist. 
 (b)  The calculated speed is fast, but it is a realistic speed for a police car to achieve while chasing a 

speeding vehicle. 
 (c)  The distance is a reasonable distance to cover in 18 s given that the average speed of the police car is 

( )( ) ( )= + = =
0avg p p p 36.0 m/s.1/ 2 1/ 2v v v v  

2.65. THINK:  Since no information is given about the direction of the second car, it is assumed that both cars 
travel in the same direction.  The first car accelerates from rest with = 2

1 2.00 m/sa .  The second car moves 
with constant velocity =2 4.00 m/sv . The cars are 30.0 m apart. Take the initial position of car 1 to be 

=
01 0x . Then the initial position of car 2 is =

02 30.0 m.x  Both cars will have the same final position:  
′= =1 2x x x . Both cars will travel for the same amount of time: ′= =1 2t t t . 

 (a)  I want to know the position of the collision, ′x .  
 (b)  I want to know the time at which the collision occurs, ′t . 
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 SKETCH:   

 

 RESEARCH:  car 1:  ∆ = +
0

2
1 1 1 1 1

1
2

x v t a t ;  car 2:  ∆ =2 2 2x v t    

 SIMPLIFY:   
 (a)  To solve for ′x , use ( ) ( )′∆ = + ⇒ − = +

0 0 0

2 2
1 1 1 1 1 1 1 1 1 1    1/ 2 1/ 2x v t a t x x v t a t .  Since =

01 0x  and =
01 0v , 

( )′ = 2
1 11/ 2x a t . Time 1t  is not known, but =1 2t t  and ∆ =2 2 2x v t , therefore, 

( )′ −= = ∆ =
021 2 2 2 2/ /x xt t x v v .  Inserting this 1t  into the first equation yields  

( )( )′ − 
′ ′ ′= = − + 

 
0

0 0

2
22 21

1 2 22
2 2

1 2
2 2

x x a
x a x x x x

v v
 

 Rearranging gives:  

( ) ( )   
′ ′ ′ ′− + + = ⇒ − + + =   

  
0 0

0 0

2 2
2 21 2 1 2 21 2

2 22 2 2
2 2 2 1

2
1 0    2 0.

2 2
a x a xa v

x x x x x x
v v v a

 

 This is a quadratic equation.  Solving for ′x : 

   
+ ± + −   

   ′ =
0 0 0

22 2
22 2

2 2 2
1 1

2 22 2 4

2

v vx x x
a a

x  

 (b)  To solve for ′t , use 
′ −

′ = = 02
2

2

x x
t t

v
, from above. 

 CALCULATE:   

 (a)  

( ) ( ) ( ) ( ) ( )
   
   + ± + −
   
   ′ =

=

22 2
2

2 2

2 4.00 m/s 2 4.00 m/s
2 30.0 m 2 30.0 m 4 30.0 m

2.00 m/s 2.00 m/s

2
14.68 m, 61.32 m

x  

 The first solution may be disregarded; with both cars moving in the same direction, the position of the 
collision cannot be between their two initial positions. That is, ′x  cannot be between =

01 0x  and 

=
02 30 m.x   

 (b)  
′ − −′ = = =02

2

61.32 m 30.0 m 7.830 s
4.00 m/s

x x
t

v
 

 ROUND:   
 (a) ′ = 61.3 mx   
 (b) ′ = 7.83 st  
 DOUBLE-CHECK:   
 (a) This collision position has units of distance, and is greater than the initial positions of both cars, as it 

should be. 
 (b) The time is reasonable since this is the time required for car 2 to travel ′∆ = − =

02 2 30 mx x x  at a speed 

of =2 4.0 m/sv . 
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2.66. THINK:  I know that =0 26.4 m/sv  and = − = − 29.81 m/sa g . I want to find totalt .  Note that once the ball 
gets back to the starting point, = −26.4 m/sv , or = − 0v v .  
SKETCH:   

 
RESEARCH:  = +0v v at  

SIMPLIFY:  
− − −

= = =
−

0 0 0 02v v v v v
t

a g g
 

CALCULATE:  = =2

2(26.4 m/s) 5.38226 s
9.81 m/s

t  

ROUND:  Since all the values given have three significant digits, t = 5.38 s.  
DOUBLE-CHECK:  This seems like a reasonable amount of time for the ball to be up in the air. 

2.67. THINK:  I know that =0 10.0 m/sv , = − = − 29.81 m/sa g , and =0 0 m.y   
 (a) I want to find the velocity v at t = 0.50 s. 
 (b) I want to find the height h of the stone at t = 0.50 s.   
 SKETCH:   

 
 RESEARCH:   
 (a) = +0v v at  

 (b) ∆ = + 2
0

1
2

y v t at  and ∆ =y h   

SIMPLIFY:  
 (a) = −0v v gt  

 (b) = + = −2 2
0 0

1 1
2 2

h v t at v t gt    

CALCULATE:   
 (a) = −

= −
=

210.0 m/s (9.81 m/s )(0.50 s)
10.0 m/s 4.905m/s
5.095 m/s

v  

 (b) = −

= −
=

2 21(10.0 m/s)(0.50 s) (9.81 m/s )(0.50 s)
2

5.0 m 1.226 m
3.774 m

h   
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ROUND:   

 (a) Subtracting two numbers is precise to the least precise decimal place of the numbers. Therefore, 
= 5.1 m/sv . 

 (b) = 3.8 mh   
DOUBLE-CHECK:   

 (a) < 0v v , and this makes sense since speed decreases as the object rises. 
 (b) This is a reasonable height for a ball to achieve in 0.50 s after it is thrown upward. 

2.68. THINK:  I know that = −0 10.0 m/sv , and = − = − 29.81 m/sa g .  I want to find v at t = 0.500 s. 
SKETCH:   

 
RESEARCH:  = +0v v at  
SIMPLIFY:  = −0v v gt  

CALCULATE:  = − − = − − = −210.0 m/s (9.81 m/s )(0.500 s) 10.0 m/s 4.905 m/s 14.905 m/sv  
ROUND:  Subtracting two numbers is precise to the least precise decimal place of the numbers. Therefore, 
= −14.9 m/s.v  

DOUBLE-CHECK:  A negative v indicates that the stone is (still) falling downward. This makes sense, 
since the stone was thrown downward. 

2.69. THINK:  Take “downward” to be along the negative y-axis. I know that = −0 10.0 m/sv , ∆ = −50.0 my , 

and = − = − 29.81 m/sa g . I want to find t, the time when the ball reaches the ground.  
SKETCH:   

 

RESEARCH:  ∆ = + 2
0

1
2

y v t at  

SIMPLIFY:  + − ∆ =2
0

1 0.
2

at v t y  This is a quadratic equation. Solving for  t: 

( )( )
( )

− ± − −∆ − ± − ∆
= =

−

2 1 2
0 0 2 0 0

1
2

4 2
2

v v a y v v g y
t

a g
 

 CALCULATE:  
− − ± − − −

=
−

= −

2 2

2

( 10.0 m/s) ( 10.0 m/s) 2(9.81 m/s )( 50.0 m)
9.81 m/s

4.3709 s,  2.3322 s

t  

The time interval has to be positive, so t = 2.3322 s. 
ROUND:  All original quantities are precise to three significant digits, therefore t = 2.33 s. 
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DOUBLE-CHECK:  A negative v indicates that the stone is (still) falling downward. This makes sense, 
since the stone was thrown downward. The velocity is even more negative after 0.500 s than it was initially, 
which is consistent with the downward acceleration. 

2.70. THINK:  I know that =0 20.0 m/sv , ( )=0 max2 / 3y h , and = − = − 29.81 m/sa g . I want to find maxh . Note 

that when = maxy h , the velocity is = 0v .  
SKETCH:   

 
RESEARCH:  = + −2 2

0 02 ( )v v a y y  

SIMPLIFY: 
( )−   = − − ⇒ − = − ⇒ = − ⇒ =   

   

2 2 2
02 2 2 2 0

0 max max 0 max max max

3 32 12   2     
3 3 2 2

v v v
v v g h h v v g h h h

g g
 

CALCULATE:  
( )
( )

= =
2

max 2

3 20.0 m/s
61.16 m

2 9.81 m/s
h  

ROUND:  =max 61.2 mh  
DOUBLE-CHECK:  maxh  is positive which is consistent with the sketch.  This seems like a reasonable 
height to achieve by throwing the ball upward. 

2.71. THINK:  I know the final height is y and the initial velocity is 0 .v  The velocity at this height is zero: 
= 0yv . Also, = −ya g . I want to know the velocity at half of the final height, 1

2 yv . Assume =0 0y .  

SKETCH:   

 
RESEARCH:  ( )= + −2 2

0 02yv v a y y  

SIMPLIFY:  The initial velocity, 0v , is ( )= − − =2
0 02 2yv v a y y gy . Then 1

2 yv , in terms of the 

maximum height y, is 

( ) ( )    = + − ⇒ = − ⇒ = − ⇒ =    
    

1 1 1 1
2 2 2 2

2 2
2 2 2

0 0
1 12   2 2   2   
2 2y y y yv v a y y v gy g y v gy gy v gy  
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 CALCULATE:  This step is not necessary. 
ROUND:  This step is not necessary. 

DOUBLE-CHECK:  The units of 1
2 yv  are:    = = =    

1
2

2

2 2

m m(m) m/s
s syv , which is a unit of velocity.  

2.72. THINK:  The acceleration of an object due to gravity on the surface of the Moon is independent of the 
mass of the object. 
SKETCH:   

 

RESEARCH: We can use 21 ,
2

y gt=  where y is the distance the objects fall, t is the time it takes for the 

objects to fall, and g is the acceleration of gravity on the Moon. 

SIMPLIFY: We can solve our equation for g: 2
2

21   .
2

y
y gt g

t
= ⇒ =  

CALCULATE:  
( )
( )

2
22

2 1.6 m2
1.6327 m/s .

1.4 s
y

g
t

= = =  

ROUND:  The values given are all accurate to two significant digits, so the answer is given two by two 
significant digits: g = 1.6 m/s2. 
DOUBLE-CHECK:  The Moon is smaller and less dense than the Earth, so it makes sense that the 
acceleration of gravity on the surface of the Moon is about 6 times less that the acceleration of gravity on 
the surface of the Earth. 

2.73. THINK:  The bowling ball is released from rest. In such a case we have already studied the relationship 
between vertical distance fallen and time in Example 2.5, “Reaction Time”, in the book. With this result in 
our arsenal, all we have to do here is to compute the time totalt  it takes the ball to fall from Bill’s apartment 
down to the ground and subtract from it the time 1t  it takes the ball to fall from Bill’s apartment down to 
John’s apartment. 

 SKETCH:   

 
  
 RESEARCH:  We will use the formula = 2 /t h g  from Example 2.5. If you look at the sketch, you see 

that = =total total 02 / 2 /t h g y g  and that = = −1 1 02 / 2( ') /t h g y y g . 
 SIMPLIFY:  Solving for the time difference gives: 

= − = − −2 total 1 0 02 / 2( ') /t t t y g y y g  
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 CALCULATE:  = − −
=

2 2
2 2(63.17 m) / (9.81 m/s ) 2(63.17 m 40.95 m) / (9.81 m/s )

1.4603 s
t  

 ROUND:  We round to =2 1.46 s.t , because g has three significant figures. 
 DOUBLE-CHECK:  The units of the solution are those of time, which is already a good minimum 
requirement for a valid solution. But we can do better! If we compute the time it takes an object to fall 
40.95 m from rest, we find from again using = 2 /t h g  that this time is 2.89 s.  In the problem here the 
bowling ball clearly already has a significant downward velocity as it passes the height of 40.95 m, and so 
we expect a time 2t  shorter than 2.89 s, which is clearly fulfilled for our solution. 

2.74. THINK:  The information known for the rock is the initial velocity, =
0r

0v  and the initial height, 

=
0r

18.35 my .  The information known for the arrow is the initial velocity, =
0a 47.4 m/sv  and the initial 

height, =
0a 0y . For both, = − = − 29.81 m/sa g . Note that both the rock and the arrow will have the same 

final position, ′,y  and both travel for the same time, ′.t  I want to find ′.t  
SKETCH:   

 
 

RESEARCH:  ∆ = + 2
0

1
2

y v t at  

SIMPLIFY: For the rock, ( ) ( ) ( )′ ′ ′− = + ⇒ = − +
0 0 0

2 2
r r r r r

1  .1/ 2
2

y y v t a t y g t y  For the arrow, 

( ) ( ) ( ) ( )′ ′ ′ ′− = + ⇒ = −
0 0 0

2 2
a a a a a  .1/ 2 1/ 2y y v t a t y v t g t  As the final positions for each are the same, we 

know  ( ) ( )′ ′ ′ ′ ′= ⇒ − + = − ⇒ = ⇒ = 0

0 0 0 0

0

2 2 r
 r a r a r a

a

1 1    .
2 2

y
y y g t y v t g t y v t t

v
 

CALCULATE:  ′ = =
18.35 m 0.38713 s
47.4 m/s

t  

ROUND:  
0av  is given to three significant figures, so ′ = 0.387 s.t  

DOUBLE-CHECK:  This is a reasonable time for an arrow of initial velocity 47.4 m/s to rise to a height 
less than 18.35 m (the height from which the rock was dropped). 
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2.75. THINK:  At ( )= max1/ 4y y , = 25 m/s.v  Also, = − = − 29.81 m/sa g  and =0 0.y  I want to find 0v . It will be 
useful to know max .y  At max ,y  ′ = 0.v  
SKETCH:   

 
RESEARCH:  ( )= + −2 2

0 02v v a y y  

SIMPLIFY:  ( )  = + − = −  
 

 ⇒ = + = + 
 

2 2 2
0 0 0 max

2 2 2
0 max max

12 2
4

1 1 2
4 2

v v a y y v g y

v v g y v gy

 

Now I must find max .y  When maxy  is achieved, the velocity ′v  is zero. Then 

( ) ( )′ = + − ⇒ = − ⇒ =
2

2 2 2 0
0 max 0 0 max max2   0 2   .

2
v

v v a y y v gy y
g

 

Inserting this into the equation above gives 
 

= + ⇒ = + ⇒ = ⇒ = ⇒ = 
 

2
2 2 2 2 2 2 2 2 20

0 0 0 0 0 0
1 1 3 4 2        .
2 2 4 4 3 3

v
v v g v v v v v v v v v

g
 

CALCULATE:  ( )= =0
2 25 m/s 28.87 m/s
3

v  

ROUND:  The value for v limits the calculation to two significant figures. So =0 29 m/s.v  
DOUBLE-CHECK:  0v  is greater than = 25 m/s,v  as it should be. 

2.76. THINK:  For the elevator, the velocity is =e 1.75 m/s,v  the acceleration is =e 0,a  and the initial height is 

=
0e 0.y  For the rock, the initial velocity is =

0r
0,v  the acceleration is = − = − 2

r 9.81 m/s ,a g  and the initial 

height is =
0r

80.0 m.y  

(a)  I need to find the time it takes the rock to intercept the elevator, ′.t  
(b)  I need to find the time it takes the rock to hit the ground at = 0,ry  ′′.t  
When the rock intercepts the elevator, both are at the same position ′,y  and have taken the same time, ′,t  
to arrive there. 
SKETCH:  

 
RESEARCH:  The elevator position is determined from ∆ =e e .y v t  For the rock, ( )∆ = +

0

2
r r r .1/ 2y v t a t  
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SIMPLIFY:  For the elevator, − = ⇒ =

0e e e e e  .y y v t y v t  For the rock, ( )− = + ⇒
0 0

2
r r r r  1/ 2y y v t a t  

( )− = −
0

2
r r .1/ 2y y gt  

(a)  Both objects take the same time to intercept each other, and both have the same position at 
interception: 

( ) ( )′ ′ ′ ′= ⇒ = − ⇒ + − =
0 0

2 2
e r e r e r

1 1    0.
2 2

y y v t y g t g t v t y  

Solving for ′.t  in the quadratic equation gives: 

( ) − ± − −  − ± + ′ = =
 
 
 

0
0

2
2e e r

e e r

14 g 2g2
.

1 g2 g
2

v v y v v y
t  

(b)  The total fall time, ′′,t  for the rock is ( ) ( )′′ ′′∆ = − = +
0 0

2
r r r .1/ 2r ry y y v t a t  The final position is 

= 0.ry  With =
0r

0,v  ( ) ( )′′ ′′− = − ⇒ =
0 0

2
r rg   2 / g .1/ 2y t t y  

CALCULATE:   

(a)  
( ) ( ) ( )( )− ± +

′ = = −

2 2

2

1.75 m/s 1.75 m/s 2 9.81 m/s 80.0 m
3.8641 s, 4.2209 s 

9.81 m/s
t  

(b)  
( )

′′ = =2

2 80.0 m
4.0386 s

9.81 m/s
t  

ROUND:  The values given have three significant figures, so the final answers will also have three 
significant figures. 
(a)  Taking the positive solution for time, ′ = 3.86 s.t  
(b)  ′′ = 4.04 st  
DOUBLE-CHECK:  The total time to fall is greater than the intercept time, as it should be. 

2.77. THINK:  It is probably a good idea to read through the solution of the “Melon Drop” problem, Solved 
Problem 2.5  in the textbook before getting started with the present problem. The present problem has the 
additional complication that the water balloon gets dropped some time before the dart get fired, whereas 
in the “Melon Drop” problem both projectiles get launched simultaneously. For the first 2 seconds, only 
our water balloon is in free fall, and we can calculate its position 

0by  and velocity 
0bv  at the end of this 

time interval. 
 a) After the initial two seconds the dart also gets launched, and then both objects (water balloon and dart) 

are in free-fall.  Their initial distance is 
0by , and their relative velocity is the difference between the initial 

velocity of the dart and 
0bv . The time until the two objects meet is then simply the ratio of the initial 

distance and the relative velocity. 
b)  For this part we simply calculate the time it takes for the balloon to free-fall the entire height h  and 
subtract our answer form part a). 
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SKETCH:  

 
RESEARCH: 
(a) The position and velocity of the balloon after the time =0 2 st  are 

= −

= −
0

0

21
b 02

b 0

y h gt
v gt

 

The time is takes then for the balloon and the dart to meet is the ratio of their initial distance to their 
initial relative velocity: 

= −
0 0 0d b d b/ ( )t y v v  

Our answer for part a) is the sum of the time 0t , during which the balloon was in free-fall alone, and the 
time 1t , = +b d 0t t t . 
(b) The total time it takes for the balloon to fall all the way to the ground is 

=total 2 /t h g  
We get our answer for part b) by subtracting the result of part a) from this total time: 

= −total d't t t  
SIMPLIFY:   
(a) If we insert the expressions for the initial distance and relative speed into = −

0 0 0d b d b/ ( )t y v v , we find 

= − = − +
0 0 0 0

21
d b d b 0 d 02/ ( ) ( ) / ( )t y v v h gt v gt . Adding 0t  then gives us our final answer: 

= + − +
0

21
b 0 0 d 02( ) / ( )t t h gt v gt  

(b) For the time between the balloon being hit by the dart and the water reaching the ground we find by 
inserting =total 2 /t h g  into = −total b't t t : 

= − b' 2 /t h g t  
CALCULATE:   

(a) 
( )( )
( )( )

= + =
+

22

2

1
2

b

80.0 m- 9.81 m/s 2.00 s
2.00 s 3.524 s

20.0 m/s 9.81 m/s 2.00 s
t  

(b) ( )′ = − =22 80.0 m / (9.81 m/s ) 3.524 s 0.515 s.t  

ROUND:   
(a) =b 3.52t s  
(b) ′ = 0.515 st  
DOUBLE-CHECK: The solution we showed in this problem is basically the double-check step in Solved 
Problem 2.5. Conversely, we can use the solution method of Solved Problem 2.5  as a double-check for 
what we have done here.  This is left as an exercise for the reader. 
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2.78. THINK:  I know the runner’s initial velocity, =0 0,v  her acceleration, = 21.23 m/s ,a  her final velocity, 
= 5.10 m/s,v  and the distance she traveled, ∆ =173 m.x I want to know the total time total .t  Note that ∆x  

is composed of a displacement ∆ 1x  which occurs while accelerating and a displacement ∆ 2x  which occurs 
at a constant velocity. That is, ∆ = ∆ ∆+1 2x x x . Mass is irrelevant. 

 SKETCH:   

 
 
RESEARCH:  The total time is the sum of the times for each displacement. Let = +total 1 2 t t t  with 1t  the 

time for displacement ∆ 1x  and 2t  the time for displacement ∆ 2x . For  1t , use += 0 1v v at . For ∆ 1x , use 

( )( )∆ = +1 0 11/ 2x v v t . For  2t , use ∆ =2 2x vt . 
SIMPLIFY:  Note that  

( )∆ = + = = =
2

1 0 1 1
1 1 1
2 2 2 2

v vx v v t vt v
a a

. 

To compute the value of totalt , first simplify expressions for 1t  and 2t :  

−
= =0

1
v v vt

a a
 and  

∆ −∆ ∆ −∆ ∆
= = = = −1

2

2
2

2
2

vxx x x x vat
v v v v a

. 

Using the last two equations totalt  can be calculated as follows: 
∆ ∆

= = + − = ++to 1tal 2 .
2 2

v x v v xt
a v a a

tt
v

 

CALCULATE:  
( )

= + =
2total

5.10 m/s 173 m 35.995 s
5.10 m/s2 1.23 m/s

t  

ROUND:  Each initial value has three significant figures, so =total 36.0 st  
DOUBLE-CHECK:  This is a reasonable amount of time required to run 173 m. 

2.79. THINK:  Let the moment the jet touches down correspond to the time = 0.t  The initial velocity is  

   = =   
   

0
142.4 mi 1 hr 1609.3 m 63.66 m/s. 

1 hr 3600 s 1 mi
v  

The jet comes to rest in a time of =f 12.4 s.t  The jet comes to a complete stop, which makes the final 
velocity zero, so =f 0.v  I want to compute the distance the jet travels after it touches down, ∆ .x  
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SKETCH:   

 

RESEARCH:  To determine the distance traveled, the following equation can be used: ( )0
1 .
2

x v v t∆ = +  

SIMPLIFY:  With v = 0, the equation becomes ( )0 / 2.x v t∆ =  

CALCULATE:  ( )( )1 63.66 m/s 12.4 s 394.7 m.
2

x∆ = =  

ROUND:  Since t has three significant digits, the result should be rounded to ∆ = 395 m.x  
DOUBLE-CHECK:  This is a reasonable distance to decelerate from 63.66 m/s in 12.4 s. 

2.80. Velocity is the slope of the position versus time graph. Therefore, v = 0 at the local maxima and minima. 
Acceleration is the slope of the velocity versus time graph. On a position versus time graph, acceleration, a 
is zero at inflection points on the curve that are not maxima or minima, i.e. a = 0 as the slope of x vs. t 
approaches a constant value over some non-zero time interval, ∆t :  

 
2.81. THINK:  The acceleration is the derivative of the velocity with respect to time, that is, the instantaneous 

change in velocity. Since the car is stopped and then accelerates to 60.0 miles per hour, we can infer that 
the acceleration is positive in the direction of the car’s motion.    

 SKETCH: Sketch the motion of the car at 0 s and time 4.20 s. Since the acceleration is unknown, use the 
variable a to represent the size of the acceleration.  
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 RESEARCH:  Since this problem involves motion with constant acceleration, use equation (2.23). (a) The 
velocity in the positive x direction at time t is equal to the velocity in the positive x direction at time 0 plus 
the acceleration in the x direction multiplied by the time, = +0x x xv v a t . (b) Having found the 

acceleration in the positive x direction, use the equation = + + 21
0 0 2x xx x v a t  to find the position x at time  

t = 4.20 s.  To make the calculations simple and straightforward, take the position of the car at time t = 0 s 
to be the zero of our coordinate system, so x0 = 0 miles.  

 SIMPLIFY: (a) Use the velocity at times t = 0 and t = 4.2, solve the equation = +0x x xv v a t  for ax to get: 

( ) ( )

= +
− + = − + + =

− =
−

=

0

0 0 0

0

0

/ /

x x x

x x x x x x

x x x

x x
x

v v a t
v v v v a t a t

v v t a t t
v v

a
t

 

 (b) Using the expression for ax and algebra to find an expression for the total distance traveled: 

 

( )

21
0 0 2

201
0 0 2

1
0 0 02

x x

x x
x

x x x

x x v t a t

v v
x v t t

t
x v t v v t

= + +

− = + +  
 

= + + −

 

 CALCULATE:  (a) Since the car starts at rest, =0 0xv mph. Also, the velocity at time t = 4.20 s is 

= 60.0xv mph in the positive x direction. Using these values gives −− −
= = = ⋅ 10 60.0 0 100 mph s

4.2 7
x x

x
v v

a
t

. 

Since time t is given in miles per hour, it is necessary to convert this to miles per second to make the units 
consistent. Convert this to a more convenient set of units, such as mi·s–2 to make future calculations easier: 

2
100 mi 1 hour 1 mi

7 hour sec 3600 sec 252 sec
⋅ ⋅ = ⋅

⋅
(b) Plug in values to find x, the location of the car at time t = 4.20 s. 

This gives: 

( )

21
0 0 2

21 1
2 2520 0 4.20

7 0.035 mi
200

x xx x v t a t= + +

= + + ⋅

= =

 

 ROUND: Since the measured values have 3 significant figures,  the answers in both parts will have 3 

significant figures. (a) For the acceleration, ≈2 2
1 mi mi0.00397

252 sec sec
 or −× 3

2
mi3.97 10

sec
. (b) Using 

scientific notation, −= × 20.035 3.50 10  mi . Note also that if we convert to SI units, we obtain (a) 6.39 m/s2 
for the acceleration and (b) 56.3 m for the distance. 

 DOUBLE-CHECK: 

 (a) Accelerating at a constant rate of −× 3
2

mi3.97 10
sec

 for 4.20 seconds from a standing start means that the 

car will be going 3
2

mi 3600 sec3.97 10 4.2 sec
hoursec

−× ⋅ ⋅  or 60.0 mph after 4.20 seconds. This agrees with the 

question statement. 
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 (b) Since the car is at position = =2 21
2

1  miles
504xx a t t at time t seconds, the derivative with respect to 

time gives the velocity as a function of time: 
( )

= = ⋅ =
21

504 1 12
504 252

d tdx t t
dt dt

 miles per second, 

or 1 mi 3600 sec 100 mi
252 sec hour 7 hour

t t⋅ =  at time t. At time t = 4.20 s, this gives a velocity of 

( ) =100 4.2 60.0
7

mph, which agrees with the setup for this problem. 

2.82. THINK:  It is known for a car that when the initial velocity is  

0

1 hkm 1000 m100.0 27.7778 m/s,
h 3600 s 1 km

v = ⋅ ⋅ =  

and the final velocity is =f 0v , the stopping distance is ∆ = 40 m.x  Determine the stopping distance, ∆ 'x  
when the initial velocity is  

0

1 hkm 1000 m' 130.0 36.1111 m/s,
h 3600 s 1 km

v = ⋅ ⋅ =  

and the final velocity is =f ' 0.v  The road conditions are the same in each case, so it can be assumed that 
the acceleration does not change. 
SKETCH:   

 
RESEARCH:  The acceleration, a can be determined from the original conditions with = + ∆2 2

0 2 .v v a x  
Substitute the value of the acceleration computed from the first set of conditions as the acceleration in the 
second conditions to determine ∆ '.x  

SIMPLIFY:  With v = 0, ( )= + ∆ ⇒ = − ∆2 2
0 00 2   / .2v a x a v x  Then, ′ ′= + ∆2 2

f 0' 2 .v v a x   With =f ' 0v , 

′ ′ ′
′∆ = − = − = ∆

 
− ∆ 

2 2 2
0 0 0

22
00

.
2

2
2

v v v
x x

a vv
x

 

CALCULATE:  
( )
( )

( )∆ = =
2

2

36.1111 m/s
' 40.00 m 67.5999 m

27.7778 m/s
x  

Note that the unit conversion from km/h to m/s was not necessary as the units of velocity cancel each 
other in the ratio. 
ROUND:  ′∆ = 67.60 mx  
DOUBLE-CHECK:  The stopping distance for the larger initial velocity is greater than the stopping 
distance for the small initial velocity, as it should be. 
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2.83. THINK:  The initial velocity is  

0

1 hkm 1000 m60.0 16.67 m/s.
h 3600 s 1 km

v = ⋅ ⋅ =  

The final velocity is v = 0. The stop time is t = 4.00 s. The deceleration is uniform. Determine (a) the 
distance traveled while stopping, ∆x  and (b) the deceleration, a. I expect a < 0. 
SKETCH:   

 
RESEARCH:   
(a) To determine the stopping distance, use ( )∆ = +0 / 2.x t v v  

(b) To determine a, use = +0 .v v at   
SIMPLIFY:   
(a) With v = 0, ∆ = 0 / 2.x v t  
(b) With v = 0, = + ⇒ = −0 00 / .v at a v t  
CALCULATE:   

(a) 
( )( )

∆ = =
16.67 m/s 4.00 s

33.34 m
2

x  

(b)  = − = − 216.67 m/s 4.167 m/s
4.00 s

a  

ROUND:   
(a) ∆ = 33.3 mx  
(b) = − 24.17 m/sa  
DOUBLE-CHECK:  The distance traveled while stopping is of an appropriate order of magnitude. A car 
can reasonably stop from 60 km/h in a distance of about 30 m. The acceleration is negative, indicating that 
the car is slowing down from its initial velocity. 

2.84. THINK:  The car’s initial velocity is =0 29.1 m/s.v  The deceleration is = − 22.4 m/s .a  Assume that the 
final velocity is v = 0, that is the car does not hit the truck. The truck is a distance d = 200.0 m when the car 
begins to decelerate. Determine (a) the final distance between the car and the truck, ∆ c dx  and (b) the time 

it takes to stop, t.  
SKETCH:   

 
RESEARCH:   
(a) The distance to the truck is the difference between the initial distance d and the stopping distance ∆x : 
∆ = −∆cd .x d x ∆x  can be determined from = + ∆2 2

0 2 .v v a x  
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(b) The stop time is determined from = +0 .v v at  
SIMPLIFY:   
(a)  With v = 0, = + ∆ ⇒ = + ∆ ⇒ ∆ = −2 2 2 2

0 0 02   0 2   / 2 .v v a x v a x x v a  Then, ( )∆ = + 2
0 / 2 .c dx d v a  

(b)  With v = 0, = − 0 / .t v a   
CALCULATE:   

(a)  
( )
( )

∆ = + = − =
−

2

2

29.1 m/s
200.0 m 200.0 m 176.4 m 23.6 m

2 2.4 m/sc dx  

(b)  
( )
( )

= − =
− 2

29.1 m/s
12.13 s

2.4 m/s
t  

ROUND:   
(a) Since the acceleration has two significant figures, ∆ = 24 mc dx  

(b)  Rounding to two significant figures, t = 12 s. 
DOUBLE-CHECK:  The stopping time and distance are realistic for a car decelerating from 29.1 m/s.  

2.85. THINK:  For train 1, it is known that =1,0 40.0 m/sv , = − 2
1 6.0 m/sa  and =1 0.v  For train 2, it is known 

that =2 0v  and =2 0.a  The distance between the trains is d = 100.0 m. Determine the distance between 
the trains after train 1 stops, ∆ .x   
SKETCH:   

 
RESEARCH:  The final distance between the trains, ∆x  is the difference between the initial distance, d 
and the stopping distance of train 1, ∆ 1x :  ∆ = −∆ 1.x d x   

SIMPLIFY:  With =1 0v , = + ∆ ⇒ = + ∆ ⇒ ∆ = −
2

1,02 2 2
1 1,0 1 1 1,0 1 1 1

1

2   0 2   .
2
v

v v a x v a x x
a

  Then,  ∆ = +
2

1,0

1

.
2
v

x d
a

 

CALCULATE:  
( )
( )

∆ = + = − = −
−

2

2

40.0 m/s
100.0 m 100.0 m 133.3 m 33.3 m

2 6.0 m/s
x  

ROUND:  Note that ∆x  is determined to be a negative value. This is due to the stopping distance being 
greater than the initial distance between the trains. This implies that train 1 actually collides with train 2. 
Then the distance between the two trains is zero.  
DOUBLE-CHECK:  It is reasonable for train 1 to collide with train 2 given the initial separation of only 
100.0 m and an initial velocity for train 1 of 40.0 m/s. 

2.86. THINK:  The initial velocity is =0 25.0 m/s.v  The acceleration is = − 21.2 m/s .a  Determine (a) the 
distance ∆x  traveled in t = 3.0 s, (b) the velocity, v after traveling this distance, (c) the stopping time, 't  
and (d) the stopping distance, ∆ '.x  Note when the car is stopped, =' 0.v  
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SKETCH:   

 
RESEARCH:   
(a)  To determine ∆x , use ( )∆ = + 2

0 / 2.x v t at  

(b)  To determine v, use = +0 .v v at  
(c)  To determine 't , use = +0 .v v at  

(c)  To determine ∆ 'x , use = + ∆2 2
0 2 .v v a x  

SIMPLIFY:   
(a)  It is not necessary to simplify. 
(b)  It is not necessary to simplify. 
(c)  With =' 0v , = + ⇒ = −0 0' ' ' / .v v at t v a  

(d)  With =' 0v , = + ∆ ⇒ ∆ = −2 2 2
0 0' 2 ' ' / 2 .v v a x x v a  

CALCULATE:   

(a)  ( )( ) ( )( )∆ = + − =22125.0 m/s 3.0 s 1.2 m/s 3.0 s 69.6 m
2

x  

(b)  ( )( )= + − =225.0 m/s 1.2 m/s 3.0 s 21.4 m/sv  

(c)  
( )
( )

= − =
− 2

25.0 m/s
' 20.83 s

1.2 m/s
t  

(d)  
( )
( )

∆ = − =
−

2

2

25.0 m/s
' 260.4 m

2 1.2 m/s
x  

ROUND:  Both the acceleration and the time have two significant figures, so the results should be rounded 
to ∆ = 70. mx , v = 21 m/s, =' 21 st  and ∆ =' 260 m.x  
DOUBLE-CHECK:  The car travels 70 m while decelerating, which is less than the 75 m it would have 
traveled in the same time if it had not been decelerating.  The velocity after decelerating is less than the 
initial velocity. The stopping distance is greater than the distance traveled in 3.0 s, and the stopping time is 
greater than the intermediate time of 3.0 s. All of these facts support the calculated values. 

2.87. THINK:  The initial velocity is  
  = =  
  

0
1 h 1609.3 m212.809 mph 95.1315 m/s.

3600 s mile
v  

The acceleration is = − 28.0 m/s .a  The final speed is v = 0. Determine the stopping distance, ∆ .x  
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SKETCH:   

 
RESEARCH:  Use = + ∆2 2

0 2 .v v a x  

SIMPLIFY:  With v = 0, = + ∆ ⇒ ∆ = −2 2
0 00 2 / 2 .v a x x v a  

CALCULATE:  
( )
( )

∆ = − =
−

2

2

95.1315 m/s
565.6 m

2 8.0 m/s
x  

ROUND:  The acceleration has two significant figures, so the result should be rounded to ∆ = 570 m.x  
DOUBLE-CHECK:  The initial velocity is large and the deceleration has a magnitude close to that of 
gravity. A stopping distance greater than half of a kilometer is reasonable. 

2.88. THINK:  The velocity can be converted to SI units as follows: 
  = =  
  

0
1 h 1609.3 m245 mph 109.5 m/s.

3600 s mile
v  

The distance is ∆ = = ⋅ 5362 km 3.62 10  m.x  Determine the time, t to travel the distance, ∆ .x  Note the 
acceleration is a = 0. 
SKETCH:   

 
RESEARCH:  For a = 0, use ∆ = .x vt  

SIMPLIFY:  ∆
=

xt
v

 

CALCULATE:  ⋅
= =

53.62 10  m 3306 s
109.5 m/s

t  

ROUND:  The distance ∆x  has three significant figures, so the result should be rounded to = 3310 s.t  
DOUBLE-CHECK:  The time in hours is  

  = 
 

1 h3310 s 0.919 h.
3600 s

 

An hour is a reasonable amount of time to fly a distance of 362 km. 
 

2.89. The position is given by = + +3 2x at bt c , where = 32.0 m/sa , = 22.0 m/sb  and c = 3.0 m. 
(a)  Determine the sled’s position between =1 4.0 st  and =2 9.0 s.t  

( ) ( )( ) ( )( )= + + = ≈3 23 24.0 s 2.0 m/s 4.0 s 2.0 m/s 4.0 s 3.0 m 163 m 160 mx  



Bauer/Westfall: University Physics, 2E 
 

  94 

( ) ( )( ) ( )( )= + + = ≈3 23 29.0 s 2.0 m/s 9.0 s 2.0 m/s 9.0 s 3.0 m 1623 m 1600 mx  

The sled is between x = 160 m and x = 1600 m. 
(b) Determine the sled’s average speed over this interval. 

−∆ −
= = = = ≈
∆ − −

2 1
avg

2 1

1623 m 163 m 1460 m 292 m/s
9.0 s 4.0 s 5.0 s

x xxV
t t t

 = 290 m/s  

2.90. THINK:  The cliff has a height of h = 100. m above the ground. The girl throws a rock straight up with a 
speed of =0 8.00 m/s.v  Determine how long it takes for the rock to hit the ground and find the speed, v of 

the rock just before it hits the ground. The acceleration due to gravity is = − = − 29.81 m/s .a g  
SKETCH:   

 
RESEARCH:  The total displacement in the vertical direction is given by ∆ = − .f iy y y  If the top of the 

cliff is taken to be the origin of the system, then = 0iy  and = − = −f 100. m.y h  Therefore, ∆ = − .y h  

(a)  ∆ = + 2
0

1
2

y v t at  

(b)  = + ∆2 2
0 2v v a y  

SIMPLIFY:   
(a) The quadratic equation can be used to solve for t from the equation − + ∆ =0

2 / 2 0 :gt v t y   

( ) ± − −  ± + = =
 
 
 

2
0 0 2

0 0

4
22

.
2

2

gv v h
v v gh

t
g g

 

(b) = +2
0 2v v gh  

CALCULATE:   

(a) 
( ) ( )( )

( )
± +

=

= −

2 2

2

8.00 m/s 8.00 m/s 2 9.81 m/s 100. m

9.81 m/s

5.40378 s or 3.77 s

t  

The negative time is impossible. 

(b) ( ) ( )( )= + =2 28.00 m/s 2 9.81 m/s 100. m 45.011 m/sv  

ROUND: 
(a)  t = 5.40 s  
(b) v = 45.0 m/s 
DOUBLE-CHECK:  The calculated time and speed for the rock are reasonable considering the height of 
the cliff. Also, the units are correct units for time and speed. 
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2.91. THINK:  The police have a double speed trap set up. A sedan passes the first speed trap at a speed of 
=1 105.9 mph.s  The sedan decelerates and after a time, t = 7.05 s it passes the second speed trap at a speed 

of =2 67.1 mph.s  Determine the sedan’s deceleration and the distance between the police cruisers. 
SKETCH:   

 
RESEARCH:   
(a) Convert the speeds to SI units as follows: 

  = =  
  

1
1 h 1609.3 m105.9 mph 47.34 m/s

3600 s mile
s  

  = =  
  

2
1 h 1609.3 m67.1 mph 29.996 m/s.

3600 s mile
s  

The sedan’s velocity, v can be written in terms of its initial velocity, 0v  the time t, and its acceleration a: 
= +0 .v v at  Substitute 1s  for 0v  and 2s  for v. 

(b) The distance between the cruisers is given by:  ( )∆ = − = + 2
2 1 0 1/ 2 .x x x v t at  

 SIMPLIFY:   

(a)  
− −

= =0 2 1v v s s
a

t t
 

(b)  Substitute 1s  for 0v  and the expression from part (a) for a:  ( )∆ = + 2
1 1/ 2x s t at  

CALCULATE:   

(a)  −
= = − 229.996 m/s 47.34 m/s 2.4602 m/s

7.05 s
a  

(b)  ( )( ) ( )( )∆ = + − =22147.34 m/s 7.05 s 2.4602 m/s 7.05 s 272.6079 m
2

x  

ROUND:  The least number of significant figures provided in the problem are three, so the results should 
be rounded to = − 22.46 m/sa  and ∆ = 273 m.x  
DOUBLE-CHECK:  The sedan did not have its brakes applied, so the values calculated are reasonable for 
the situation. The acceleration would have been larger, and the distance would have been much smaller, if 
the brakes had been used. The results also have the proper units. 

2.92. THINK:  The initial speed of a new racecar is =0 0v  (standing start). The car accelerates with a constant 
acceleration and reaches a speed of v = 258.4 mph at a distance of l = 612.5 m. Determine a relationship 
between the speed and distance.  
SKETCH:   

 
RESEARCH:  The acceleration is constant, so there are two expressions for velocity and distance: 
= +0 ,v v at  ( )= + + 2

0 0 .1/ 2x x v t at  

SIMPLIFY:  It is given that =0 0v  and =0 0x , so the above expressions simplify to = ,v at  = 21 .
2

x at  

Thus, = 2 / .t x a  Substituting this expression into = ,v at  
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= =
2 2 .xv a ax
a

 

 
CALCULATE:  (1) The speed at a distance of x = l/4 is given by: 

( )= = =/4
1 12 2 2 .

4 4 2l
lv a al al  

Note that = 2v al , therefore, =/4 / 2.lv v   

( )= =/4
1 258.4 mph 129.2 mph
2lv  

(2) Similarly, substituting x = l/2 into = 2v ax , 

( )= = =/2
1 1 258.4 mph 182.716 mph.
2 2lv v  

(3) Substituting x =3l/4 into = 2v ax , 

( )= = =3 /4
3 3 258.4 mph 223.781 mph.
4 4lv v  

ROUND:  Initially there are four significant figures, so the results should be rounded to =/4 129.2 mphlv , 
=/2 182.7 mphlv  and =3 /4 223.8 mph.lv  

DOUBLE-CHECK:  Note that < < </4 /2 3 /4l l lv v v v  as expected. 

2.93. THINK:  An expression of y as a function of t is given. Determine the speed and acceleration from this 
function, y(t). The first derivative of y(t) yields speed as a function of time, v = dy/dt,  and the second 
derivative yields acceleration as a function of time, a = dv/dt. 
SKETCH:  A sketch is not needed to solve the problem. 

RESEARCH:  From a table of common derivatives: 
( ) ( )
α β

α α β
+

= +
sin

cos ,
d t

t
dt

 and 

( ) ( )
α β

α α β
+

= − +
cos

sin .
d t

t
dt

 

SIMPLIFY:  It is not necessary to simplify. 
CALCULATE:   

(a)  ( )( )
( ) ( )

( )

= − − +

= − −

− −

3.8sin 0.46 / s 0.31  m 0.2  m/s 5.0 m

3.8 0.46 cos 0.46 / s 0.31  m/s 0.2 m/s

=1.748cos 0.46 / s 0.31  m/s 0.2 m/s

dv t t
dt

t

t

 

 

( )( )
( ) ( )

( )

= = − −

= − −

= − −

2

2

1.748cos 0.46 / s 0.31  m/s 0.2 m/s

1.748 0.46 sin 0.46 / s 0.31  m/s

0.80408sin 0.46 / s 0.31  m/s

dv da t
dt dt

t

t

 

(b)  Set a = 0:  ( )= − − 20 0.80408sin 0.46 / s 0.31  m/st  ( )⇒ − = sin 0.46 / s 0.31 0.t  It is known that 
α =sin 0  when α π= n  and n is an integer. Therefore,  

ππ +
− = ⇒ =

0.310.46 / s 0.31  s.
0.46

nt n t  
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The times between 0 and 30 s that satisfy a = 0 are: 
= +
= =
= =
= =
= =
= =

6.8295 0.6739 s
0.6739 s for 0
7.5034 s for 1
14.3329 s for 2
21.1624 s for 3
27.9919 s for 4.

t n
n
n
n
n
n

 

ROUND:  Rounding to two significant figures,  
(a)  ( )= − −1.7cos 0.46 / s 0.31  m/s 0.2 m/s,v t   ( )= − − 20.80sin 0.46 / s 0.31  m/sa t  
(b)  t = 0.67 s, 7.5 s, 14 s, 21 s and 28 s. 
DOUBLE-CHECK:  For oscillatory motion, where the position is expressed in terms of a sinuous 
function, the velocity is always out of phase with respect to the position. Out of phase means if = sinx t , 
then ( )π= = +cos sin / 2 .v t t  The acceleration is proportional to the position function. For example, if 
= sinx A t , = − sina A t . 

2.94. THINK:  An expression for position as a function of time is given as ( ) = 24 .x t t  
SKETCH:  A sketch is not needed to solve the problem. 

RESEARCH:  ( )+ = + +2 2 22a b a ab b  
SIMPLIFY:  Simplification is not necessary. 
CALCULATE:   

(a) ( ) ( )= =22.00 4 2.00  m 16.00 mx  

(b) ( ) ( ) ( )
( )

+ ∆ = + ∆ = + ∆ + ∆

= + ∆ + ∆

2 2

2

2.00 4 2.00  m 4 4.00 4.00  m

16.00 16.00 4  m

x t t t t

t t

 

(c) 
( ) ( )+ ∆ −∆

=
∆ ∆

+ ∆ + ∆ −
=

∆
= + ∆

2

2.00 2.00

16.00 16.00 4 16.00 m
s

(16.00 4 ) m/s

x t xx
t t

t t
t

t

 

Taking the limit as ∆ → 0t :  
∆ → ∆ → ∆ →

∆
= + ∆ =

∆0 0 0
lim lim16.00 lim 4 16.00 m/s.

t t t

x t
t

 

ROUND:  Rounding to three significant figures,  
(a) ( ) =2.00 16.0 mx  

(b) ( ) ( )+ ∆ = + ∆ + ∆ 22.00 16.0 16.0 4  mx t t t  

(c) 
∆ →

∆
=

∆0
lim 16.0 m/s

t

x
t

 

DOUBLE-CHECK:  The value of the position function near t = 2.00 s coincides with its value at t = 2.00 s. 
This should be the case, since the position function is continuous. The value of the velocity can also be 

found from the derivative:  ( )
∆ →

∆
= = =

∆
2

0
lim 4 8

t

x dx d t t
t dt dt

.  Substitute t = 2.00 s, 

( )
=

= =
2.00

8 2.00 16.00 m/s.
t

dx
dt

 This value agrees with what was calculated in part (c). 
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2.95. THINK:  The distance to the destination is 199 miles or 320 km. To solve the problem it is easiest to draw 
a velocity versus time graph. The distance is then given by the area under the curve. 
SKETCH:   

 
RESEARCH:  For a constant speed, the distance is given by = .x vt  
SIMPLIFY:  To simplify, divide the distance into three parts.  
Part 1: from t = 0 to = 0 / 4.t t  
Part 2: from = 0 / 4t t  to = 0 / 2.t t  
Part 3: from = 0 / 2t t  to = 0 .t t  
CALCULATE:   
(a) The distances are =1 03.0 / 4x t , =2 04.5 / 4x t  and =3 06.0 / 2.x t  The total distance is given by  

( )+ +
= + + = =0 0

1 2 3

3.0 4.5 12 19.5
 m  m

4 4
t t

x x x x   ⇒ =0
4  s.

19.5
xt  

( )⋅
= = ⋅ =

3
3

0

4 320 10
 s 65.6410 10  s 65641 s

19.5
t  ⇒ =0 18.2336 ht  

(b) The distances are: 
 = = 
 

1
656413.0  m 49.23 km,

4
x    = = 

 
2

656414.5  m 73.85 km,
4

x    = = 
 

3
656416.0  m 196.92 km.

2
x  

ROUND: Since the speeds are given to two significant figures, the results should be rounded to 
=1 49 km,x  =2 74 kmx  and = ⋅ 2

3 2.0 10  km.x  + = ≈1 2 123 km 120 km,x x  and then  

1 2 3 323 km 320 km.x x x x= + + = ≈  

 
DOUBLE-CHECK:  The sum of the distances 1x , 2x  and 3x  must be equal to the total distance of 320 km: 

+ + = + + =1 2 3 49.23 73.85 196.92 320 kmx x x  as expected. Also, note that < <1 2 3x x x  since < <1 2 3 .v v v  



Chapter 2: Motion in a Straight Line 
 

 99 

2.96. THINK:  The initial speed is =0 15.0 m/s.v  Assume there is no air resistance. The acceleration due to 

gravity is given by = 29.81 m/s .g  1t  is the time taken from the original position to the 5.00 m position on 
the way up. The time it takes from the initial position to 5.00 m on its way down is 2 .t  
SKETCH:   

 
RESEARCH:  For motion with a constant acceleration, the expressions for speed and distances are 

= +0 ,v v at   = + + 2
0 0

1 .
2

y y v t at  The acceleration due to gravity is = − .a g  

SIMPLIFY:   
(a)  At the maximum height, the velocity is v = 0. Using =0 0 :y   

= − ⇒ = 0
00   ,

v
v gt t

g
 

= = − 2
max 0

1 .
2

y y v t gt  

Substituting = 0 /t v g , 

   
= − =   

   

2 2
0 0 0

max 0
1 .
2 2

v v v
y v g

g g g
 

(b)  If the motion of the ball starts from the maximum height, there is free fall motion with =0 0.v  

= − ⇒ = −  vv gt t
g

 

= + − = −2 2
max 0 max

1 1
2 2

y y v t gt y gt  

Substituting t = v/g: 

( )= − ⇒ = −
2

max max  2 .
2
vy y v y y g
g

 

CALCULATE:  

(a)  
( )
( )

= =
2

max 2

15.0 m/s
11.468 m

2 9.81 m/s
y  

(b) ( )( )( )= − =211.468 5.00 2 9.81 m/s 11.265 m/s.v  Thus the speed at this point is 11.265 m/s. 

(c,d) Using ( )= + + 2
0 0 / 2y y v t at , ( )= − 2

0 g .1/ 2y v t t  Using =0 15.0 m/sv , = 29.81 m/sg  and y = 5.00 m, 

the quadratic equation is ( )( ) − + =2 29.81 m/s 15.0 5.00 m 0.1/ 2 t t  Solving the quadratic equation: 

( ) ( )± − ±
= = = ± =

215.0 15.0 2 9.81 5 15.0 11.265 s  s 1.529 1.1483 2.6773 s and 0.3807 s
9.81 9.81

t  

ROUND:   
(a)  Rounding to three significant figures, =max 11.5 m.y  
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(b) All the numerical values have three significant figures, so the result is rounded to =11.3 m/s.v  Note 
the speed on the way up is the same as the speed on the way down.  
(c) Rounding the values to three significant figures, =1 0.381 st . 
(d)  =2 2.68 s.t  
DOUBLE-CHECK:  The speed at =1 0.381 st  and =2 2.68 st  must be the same and it is equal to the 
speed determined in part (b). 
= −0 gv v t  

( )= − = ≈1 15.0 9.81 0.381 11.2624 m/s 11.3 m/sv  

( )= − = − ≈ −2 15.0 9.81 2.68 11.2908 m/s 11.3 m/sv  

As can be seen, =1 2v v  is equal to the result in part (b).  

2.97. THINK:  The maximum height is = =max 240 ft 73.152 m.y  The acceleration due to gravity is given by 

= 29.81 m/s .g  
SKETCH:   

 

RESEARCH:  To solve this constant acceleration problem, use = −0v v gt  and ( )= + − 2
0 0 / 2 .y y v t gt  

=0 0.y  
SIMPLIFY:   
(a)  At a maximum height, the velocity v is zero. 

− = ⇒ = 0
0 0  

v
v gt t

g
 

   
= − =   

   

2 2
0 0 0

max 0
1
2 2

v v v
y v g

g g g
 ⇒ =0 max 2gv y  

(b)  If the motion is considering as starting from the maximum height maxy , there is free fall motion with 
=0 0.v  

= − ⇒ =  vv gt t
g

 

( ) 
= − = − = − ⇒ = − 

 

2 2
2

max max max max
1 1   2
2 2 2

v vy y gt y g y v y y g
g g

 

(c)  Note that 0v  is equal to the speed in part (b), = −0 26.788 m/sv  and v is equal to the original speed but 
in the opposite direction, = −37.884 m/s.v  

−
= 0v v

t
g

 

CALCULATE:   

(a)  ( )= =0 2 9.81 73.152 37.885 m/sv  
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(b)  = max ,
2

y
y  so ( ) = − = = = 

 
max

max max2 9.81 73.152 26.788 m/s.
2

y
v y g gy  Choose the positive root 

because the problem asks for the speed, which is never negative. 

(c)  
( )

−
= =

2

37.884 m/s 26.788 m/s 1.131 s
9.81 m/s

t  

ROUND:   
(a)  Rounding to three significant figures, =0 37.9 m/s.v  
(b)  Rounding to three significant figures, = 26.8 m/s.v  
(c)  Rounding to three significant figures, t = 1.13 s. 
DOUBLE-CHECK:  It is known that = 2 .v gy  This means that the ratio of two speeds is: 

= =11 1

2 22

2
.

2

gyv y
v ygy

 

The result in part (b) is for = max / 2y y , so the ratio is  

= = =
max

1/2

0 max

1
12 0.7071.
2

yv
v y

 

Using the results in parts (a) and (b): 

= =1/2

0

26.8 m/s 0.7071
37.9 m/s

v
v

 as expected. 

2.98. THINK:  The initial velocity is =0 200. m/s.v  There is constant acceleration and the maximum distance is 
= =max 1.5 cm 0.015 m.x  

SKETCH:   

 

RESEARCH:  To solve a constant acceleration motion, use = +0 .v v at  There is a deceleration of a.  

= + 2
0

1
2

x v t at  

SIMPLIFY:  At the final position, v = 0.  

− = ⇒ = 0
0 0  

v
v at a

t
 

Substituting = 0 /a v t  into ( )= − 2
max 0 1/ 2x v t at  gives: 

= − = ⇒ =20 max
max 0 0

0

21 1   
2 2

v x
x v t t v t t

t v
 

CALCULATE:  
( ) −= = ⋅ 42 0.015 m

1.5 10  s
200. m/s

t  

ROUND:  Rounding to two significant figures yields the same result, −= ⋅ 41.5 10  st  
DOUBLE-CHECK:  It is expected the resulting time is small for the bullet to stop at a short distance. 
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2.99. THINK:  =1 13.5 m/sv  for ∆ = 30.0 s.t  =2 22.0 m/sv  after ∆ =10.0 st  (at t = 40.0 s). =3 0v  after 
∆ =10.0 st  (at t = 50.0 s).  It will be easier to determine the distance from the area under the curve of the 
velocity versus time graph. 
SKETCH:   

 
RESEARCH:  Divide and label the graph into three parts as shown above. 
SIMPLIFY:  The total distance, d is the sum of the areas under the graph, = + +1 2 3 .d A A A  

CALCULATE:  ( )( ) ( )( ) ( )( )= + + +

= + + =

1 113.5 m/s 30.0 s 13.5 m/s 22.0 m/s 10.0 s 22.0 m/s 10.0 s
2 2

405 m 177.5 m 110 m 692.5 m

d  

ROUND:  The speeds are given in three significant figures, so the result should be rounded to = 693 m.d  
DOUBLE-CHECK:  From the velocity versus time plot, the distance can be estimated by assuming the 
speed is constant for all time, t: ( )( )= =13.5 m/s 50.0 s 675 m.d  This estimate is in agreement with the 
previous result. 

2.100. THINK:  It is given that the initial velocity is =0 0.v  The time for the round trip is t = 5.0 s. 
SKETCH:   

 
RESEARCH: = −a g . Using two expressions for velocity and distance: 
(a)  = +0v v at  

(b) = + + 2
0 0

1
2

y y v t at  

SIMPLIFY:   
(a) =0 maxy y , = −v gt  

(b) = − 2
max

1
2

y y gt  

(c) The distance from the top of the window to the ground is 1.2 + 2.5 = 3.7 m.  From part (b),  

( )−
= − ⇒ = max2

max

21   .
2

y y
y y gt t

g
 

CALCULATE:  The time taken from the roof to the ground is half the time of the round trip, t = 5.0/2 = 
2.5 s. 
(a) The velocity before the ball hits the ground is ( )( )= − = −9.81 2.5 24.525 m/s.v  So the speed is 
24.525 m/s.  
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(b) y = 0 (ground), and t is the time from the roof to the ground. 

( )( )= − ⇒ = ⇒ = =22 2
max max max

21 1 10     9.81 m/s 2.5 s 30.656 m
2 2 2

y gt y gt y  

(c)  
( )

( )
−

= =
2 30.656 3.7

2.3443 s
9.81

t  

ROUND:  Rounding to two significant figures, = 25 m/sv , =max 31 my  and t = 2.3 s.  
DOUBLE-CHECK:  The speed in part (a) is consistent with an object accelerating uniformly due to 
gravity. The distance in (b) is a reasonable height for a building. For the result of part (c), the time must be 
less than 2.5 s, which it is. 

2.101. From a mathematical table: α αα=t td e e
dt

. 

(a) α= = 3
0 0

1( ) 2
4

tx t x x e  ⇒  α α
α

= ⇒ = ⇒ =3 18  3 ln8  ln8
3

te t t  

(b) αα
= = 3

0
3( )
4

tdxv t x e
dt

 

(c) α αα α
= = =

2 2
3 3

0 0
(3 ) 9( )

4 4
t tdva t x e x e

dt
 

(d) α t  must be dimensionless. Since the units of t are s, the units of α  are −1s . 

2.102. Note that ( ) −= 1.n nd t nt
dt

 

(a)  = = −3 24 3dxv At Bt
dt

 

(b)  = = −212 6dva At Bt
dt

 

 
Multi-Version Exercises 

2.103. THINK:  The initial velocity is =0 28.0 m/s.v  The acceleration is = − = − 29.81 m/s .a g  The velocity, v is 
zero at the maximum height. Determine the time, t to achieve the maximum height. 
SKETCH:   

 
RESEARCH:  To determine the velocity use = +0 .hv v at  

SIMPLIFY:  
− −

= − ⇒ = = =
−

0 0 0
0   h h

v v v v
at v v t

a g g
 

CALCULATE:  = =2

28.0 m/s 2.8542 s
9.81 m/sht  

ROUND:  The initial values have three significant figures, so the result should be rounded to = 2.85 s.ht  
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DOUBLE-CHECK:  The initial velocity of the object is about 30 m/s, and gravity will cause the velocity to 
decrease about 10 m/s per second. It should take roughly three seconds for the object to reach its 
maximum height. 

2.104. THINK:  The initial velocity is =0 28.0 m/s.v  The time is t = 1.00 s. The acceleration is = −a g  

= − 29.81 m/s .  Determine the height above the initial position, ∆ .y  
SKETCH:   

 
RESEARCH:  To determine the height use ( )∆ = + 2

0 / 2.y v t at  

SIMPLIFY:  ( )∆ = − 2
0

1
2

y v t gt  

CALCULATE:  ( )( ) ( )( )( )∆ = − =22128.0 m/s 1.00 s 9.81 m/s 1.00 s 23.095 m
2

y  

ROUND:  As all initial values have three significant figures, the result should be rounded to ∆ = 23.1 m.y  
DOUBLE-CHECK:  The displacement ∆y  is positive, indicating that the final position is higher than the 
initial position. This is consistent with the positive initial velocity. 

2.105. THINK:  The initial velocity is =0 28.0 m/s.v  The acceleration is = − = − 29.81 m/s .a g  The velocity, v is 
zero at the maximum height. Determine the maximum height, ∆y above the projection point. 
SKETCH:   

 
RESEARCH:  The maximum height can be determined from the following equation: = + ∆2 2

0 2 .v v a y  

SIMPLIFY:  With v = 0,  = − ∆ ⇒ ∆ =
2

2 0
00 2   .

2
v

v g y y
g

 

CALCULATE:  
( )
( )

∆ = =
2

2

28.0 m/s
39.96 m

2 9.81 m/s
y  

ROUND:  =0 28.0 m/sv  has three significant figures, so the result should be rounded to ∆ = 40.0 m.y  
DOUBLE-CHECK:  The height has units of meters, which are an appropriate unit of distance. The 
calculated value is a reasonable maximum height for an object launched with a velocity of 28 m/s to 
achieve. 
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2.106. THINK:  Since the rock is dropped from a fixed height and allowed to fall to the surface of Mars, this 
question involves free fall. It is necessary to impose a coordinate system. Choose y = 0 to represent the 
surface of Mars and t0 = 0 to be the time at which the rock is released. 

 SKETCH: Sketch the situation at time t0 = 0 and time t, when the rock hits the surface. 

  
 
 RESEARCH:  For objects in free fall, equations 2.25 can be used to compute velocity and position. In 

particular, the equation = + − 21
0 0 2yy y v t gt  can be used. In this case, y0 = 1.013 m. Since the object is not 

thrown but dropped with no initial velocity, vy0 = 0 m/s, and g = 3.699 m/s2 on the surface of Mars.  
 SIMPLIFY: The starting position and velocity (y0 = 1.013 m and vy0 = 0 m/s), final position (y = 0 m) and 

gravitational acceleration are known. Using the fact that vy0 = 0 m/s  and solving the equation for t gives: 

( )= + − =

= ⇒

⋅
=

⋅
=

21
0 2

2
0

2 0

0

0 0

2
2

2

y t g t
g

t y

y
t

g

y
t

g

 

 CALCULATE:  On Mars, the gravitational acceleration g = 3.699 m/s2. Since the rock is dropped from a 

height of 1.013 m, y0 = 1.013 m. Plugging these numbers into our formula gives a time  =
2.026
3.699

t s.  

 ROUND: In this case, all measured values are given to four significant figures, so our final answer has four 
significant digits.  Using the calculator to find the square root gives a time = 0.7401t s. 

 DOUBLE-CHECK: First note that the answer seems reasonable. The rock is not dropped from an extreme 
height, so it makes sense that it would take less than one second to fall to the Martian surface. To check the 
answer by working backwards, first note that the velocity of the rock at time t is given by the equation 

= − = − = −0 0y yv v gt gt gt in this problem. Plug this and the value vy0 = 0 into the equation to find the 

average velocity ( ) ( )= + = −1 1
2 20y yv v gt . Combining this with the expression for position gives:  

( )( )
= +

= + −

0

1
0 2

yy y v t

y gt t
 

 Using the fact that the rock was dropped from a height of y0 = 1.013 m and that the gravitational 
acceleration on Mars is g = 3.699 m/s2, it is possible to confirm that the height of the rock at time t = 

0.7401 s is ( )( )= + − =21
21.013 3.699 0.7401 0y , which confirms the answer. 

2.107. The time that the rock takes to fall is related to the distance it falls by 21 .
2

y gt=  
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 ( )( )22 21 1 3.699 m/s 0.8198 s 1.243 m
2 2

y gt= = =  

2.108. THINK: Since the ball is dropped from a fixed height with no initial velocity and allowed to fall freely, this 
question involves free fall. It is necessary to impose a coordinate system. Choose y = 0 to represent the 
ground. Let t0 = 0 be the time when the ball is released from height y0 = 12.37 m and t1 be the time the ball 
reaches height y1 = 2.345 m. 

 SKETCH:  Sketch the ball when it is dropped and when it is at height 2.345 m. 
 

 
 
 RESEARCH:  Equations (2.25) are used for objects in free fall. Since the ball is released with no initial 

velocity, we know that v0t = 0. We also know that on Earth, the gravitational acceleration is 9.81 m/s2. In 
this problem, it is necessary to find the time that the ball reaches 2.345 m and find the velocity at that time. 
This can be done using equations (2.25) part (i) and (iii): 

= −
= −

21
0 2(i)

(iii) y

y y gt
v gt

 

 SIMPLIFY: We use algebra to find the time t1 at which the ball will reach height v1 = 2.345 m in terms of 
the initial height y0 and gravitational acceleration g: 

( )
( )
( ) ( )

( )

= − ⇒

= − ⇒

= − ⇒

= −

21
1 0 12
21

1 0 12
2 2

1 0 1

2
1 0 1

g

g

y y g t

g t y y

t y y

t y y

 

 Combining this with the equation for velocity gives ( )= − = − −2
1 1 0 1y gv gt g y y . 

 CALCULATE:  The ball is dropped from an initial height of 12.37 m above the ground, and we want to 
know the speed when it reaches 2.345 m above the ground, so the ball is dropped from an initial height of 
12.37 m above the ground, and we want to know the speed when it reaches 2.345 m above the ground, so 

y0 = 12.37 and y1 = 2.345 m.  Use this to calculate ( )= − −2
1 9.819.81 12.37 2.345yv m/s.  

 ROUND: The heights above ground (12.37 and 2.345) have four significant figures, so the final answer 
should be rounded to four significant figures. The speed of the ball at time t1 is then 

( )− − = −2
9.819.81 12.37 2.345 14.02 m/s. The velocity of the ball when it reaches a height of 2.345 m above 

the ground is 14.02 m/s towards the ground.  
 DOUBLE-CHECK: To double check that the ball is going 14.02 m/s towards the ground, we use equation 

(2.25) (v) to work backwards and find the ball’s height when the velocity is 14.02 m/s. We know that: 
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( )
( ) ( )

= − − ⇒

= − − = − − ⇒

= − ⇒
−

+ =
−

2 2
0 0

2 2
0 0

2

0

2

0

2

0 2 2

2

2

y y

y

y

y

v v g y y

v g y y g y y

v
y y

g

v
y y

g

 

 We take the gravitational acceleration g = 9.81 m/s2 and the initial height y0 = 12.37 m, and solve for y 

when vy = –14.02 m/s. Then 
( )

( )
−

= + = + =
− −

22

0
14.02

12.37 2.352
2 2 9.81
yv

y y
g

m above the ground. Though this 

doesn’t match the question exactly, it is off by less than 4 mm, so we are very close to the given value. In 
fact, if we keep the full accuracy of our calculation without rounding, we get that the ball reaches a velocity 
of 14.0246… m/s towards the ground at a height of 2.345 m above the ground. 

2.109. Using the results noted in the double-check step of the preceding problem,  

( )
( )

2

0

22

0 2

2

14.787 m/s
13.51 m 2.37 m.

2 2 9.81 m/s

vy y
g

vy y
g

− =

= − = − =

  By the rule for subtraction, the result is significant to the hundredths place. 

2.110. Again using the results from the double-check step of the earlier problem, 

( )
( )

2

0

22

0 2

2

15.524 m/s
2.387 m 14.670 m.

2 2 9.81 m/s

vy y
g

vy y
g

− =

= + = + =

 
 Note that if the value of g is treated as exact, by the addition rule the result has five significant figures. 
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Chapter 3:  Motion in Two and Three Dimensions 
 

Concept Checks 

3.1. b  3.2. a  3.3. b,  f  3.4. d  3.5. b  3.6. a  3.7. b  3.8. b   
 
Multiple-Choice Questions 

3.1. c  3.2. d  3.3. d  3.4. d  3.5. c  3.6. d  3.7. a  3.8. c  3.9. a  3.10. c  3.11. a  3.12. d  3.13. a  3.14. b  3.15. a   
 
Conceptual Questions 

3.16. For ideal projectile motion, both xa  and ya  are constant and xa  is in fact zero since no horizontal force 

acts on the projectile. This results in xv  remaining constant since there is no horizontal acceleration. From 

the same logic, since ya  is a non-zero constant ( 29.81 m/sya = − ), yv  does not remain constant. Both x 

and y do not remain constant when the angle is between 0o and 90 ° . 

3.17. If air resistance is neglected, the ball will land back in the passenger’s hands since both the ball and the 
passenger have the same speed in the x-direction as the ball leaves the passenger’s hand. If the train is 
accelerating, the answer does change. After the ball leaves the passenger’s hand, it no longer has the same 
acceleration as the train and passenger in the x-direction and as result lands behind the passenger. 

3.18. Even though the rock was thrown, this would only add initial velocity to the rock.  After leaving the 
thrower’s grasp the only force acting on the rock is due to gravity. Therefore, according to Newton’s 
second law, the rock’s acceleration is identical to the acceleration due to gravity. 

3.19. Since the balls all start with an initial vertical velocity of zero ( 0yv = ) and acceleration due to gravity is 
constant, they all take the same amount of time to reach the ground. 

3.20. The maximum height is given by 
( )2 2

0
max

sinvθ
y

g

−
= . In order to maximize the height you want sin 1θ = , 

which occurs when 90θ = ° . 

3.21. (a) Neglecting air resistance, the package travels at horizontal speed vx. Since the package and the plane 
travel at the same horizontal velocity, they will both have traveled the same horizontal distance when the 
package hits the lake.  The distance then between the package and the plane is the altitude h. 

(b) When the package hits the lake, the horizontal component of the velocity vector remains vx. 

(c) The vertical component of the package’s velocity is  

21 22 ,    since , and 
2y

hv gt hg h gt t
g

= = = = . 

The speed s is given by 2 2 2 2 .x y xs v v v hg= + = +  

3.22. First the answer for vacuum: Here, it is possible to simply apply ideal trajectory considerations, which 
neglect air resistance. The cannonballs are launched with the same velocity at the same angle, and the 
equation for the range does not depend on mass; therefore the material of the cannon balls could not be 
distinguished based on trajectories or range. However, in the presence of air resistance one can distinguish 
between the lead and the wood ball. While the force of air friction is the same on both balls, the lead ball 
has a much greater mass and thus a much smaller acceleration due to air resistance than the wood ball. 
Thus the lead cannonball is the one which deviates less from the ideal projectile motion trajectory. 
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3.23. In order to minimize impact, speed should be minimized. The person should jump in the opposite 
direction of the vehicle’s motion. This will reduce the magnitude of xv  and thus the impact is reduced. 

3.24. (a)   

 

The velocity of the boat will be 2 2
BW Wv v v= −  by the Pythagorean Theorem.  The time is then equal to:  

2 2
BW W

2 .d Dt
v v v

= =
−

 

(b)   

 
For the first part of the trip the velocity is 1 BW Wv v v= + , while on the way back the velocity 

is 2 BW Wv v v= − , so the time of the trip is 
1 2 BW W BW W

D D D Dt
v v v v v v

= + = +
+ −

 

( )
( )( )

( )
( )( )

BW W BW W

BW W BW W BW W BW W

D v v D v v
v v v v v v v v

− +
= +

+ − + −
( ) ( )BW W BW W BW

2 2 2 2
BW W BW W

2
.

D v v D v v Dv
v v v v

− + +
= =

− −
 

3.25. 0 xx x v t= + ; 2
0 0

1 .
2y yy y v t a t= + + ya  can be found by calculating the slope of the yv  versus time graph.  

2f i

f i

10 m/s 10 m/s 2 m/s
10 s 0 sy

v v
a

t t
− − −

= = = −
− −

 

 Now, use the equations with values to get different points.  

1 m 4  m/sx t= +  and ( )2 212 m 10  m/s 2 m/s
2

y t t= + + −  

( )st  ( )mx  ( )my  

0 1 2 

1 5 11 

2 9 18 

3 13 23 

4 17 26 

5 21 27 

6 25 26 

7 29 23 

8 33 18 

9 37 11 

10 41 2 
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3.26. The projection of the object’s trajectory onto the xy-plane is uniform linear motion along the diagonal  
(x = y). The projection onto the z-axis has a motion is parabolic as a function of time. The components of 

the velocity are ( ) = 2 / 2xv t , ( ) 2 / 2yv t =  and ( ) = −3 9.8zv t t , since the velocity is the time 

derivative of position. The components of the acceleration are the time derivatives of velocity: 
= = = −0, 0, 9.8.x y za a a  This represents projectile motion in the vertical plane that bisects the xy-plane, 

with gravity acting in the –z direction. 

3.27. Differentiate the position components with respect to time to determine the velocity components. 

( ) ( ) ( ) ( )2(4.9 2 1) 9.8 2,   (3 2) 3x y

dx t dy td dv t t t t v t t
dt dt dt dt

= = + + = + = = + =  

 From these equations, differentiate again with respect to time to find the acceleration components. 

( ) ( ) ( ) ( ) ( ) ( )9.8 2 9.8,   3 0yx
x y

dv tdv t d da t t a t
dt dt dt dt

= = + = = = =  

 The acceleration vector at t = 2 s is  9.8 m 2/s  in the x-direction. 

3.28. (a) Observe the following sketch. 

 
From this sketch, it can be seen that as θ  is increased, a circle of radius 5 is drawn. 

 
(b) Differentiate ( )x t  and ( )y t  with respect to time to find the velocity components. 

( ) ( ) ( ) ( )
(5cos2 ) 10 sin2 ,   (5sin2 ) 10 cos2x y

dx t dy td dv tπt π πt v t πt π πt
dt dt dt dt

= = = − = = =  
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(c) The particle’s speed is given by: 

( ) ( ) ( ) ( )2 22 2 2 2 2 210 sin 2 10 cos 2 10 sin 2 cos 2 10 1 10x yv v vπ πt π πt π πt πt π π= + = + = + = =  

 
3.29. A diagram of the situation is shown. 

 

 When the missile reaches the z-axis, it has traveled for 0

0 0cos
x

t
v θ

= . This means it has attained a height of: 

2
2 0 0 0 0

m 0 0 2 2
0 0 0 0

sin1sin
2 cos 2 cos

v x gx
z v t at

v v
θ

θ
θ θ

= + = −  

 Inserting values, it is determined that t = 8.868 s and mz = 1434 m. Also:  

( )
2 2

0 0
0 0 2 2 2

0 0 0 0

tan   
2 cos 2cos tanr r

r r

gy gy
z y v

v z y
α

α α α
−

= − ⇒ =
−

 

 For the rocket to collide with the missile, mrz z= . This results is an imaginary number for rv  because 

0 tanr rz y θ>  and 29.81 m/sg = . This means that there is no speed that will intercept the missile at this 
distance and angle. 

3.30. The range is given by
( )2

02 cos sinvθ θ
x

g
= − . The height is given by

( )2 2
0 sin

2

vθ
y

g
= − .  Note 

that cos45 sin45 1/ 2° = ° = .  

2
0 2

0

1 12
2 2

v
v

x
g g

   
   

   = − = − ; 

2
20

0

1
2
2 4

v v
y

g g
= − = −  ⇒  

2
0

2
0

4.

4

v
gx

y v
g

 −
 
 = =
 −
 
 

 

 The ratio is not dependent on the initial velocity so the answer does not change when the speed is doubled. 
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3.31. (a)  The range is given by
( )2

02 cos sinvθ θ
x

g
= − . The height is given by

( )2 2
0 sin

2

vθ
y

g
= − . 

( )
2 2

2 10 02 sincos sin sin   4   4 tan   tan 4 75.96
2 cos

v v θθ θ θ θ θ
g gθ

−− = − ⇒ = ⇒ = ⇒ = = °  

The launch angle should be 75.96° . 

(b)  The range is given by
( )2

02 cos sinvθ θ
x

g
= − . Half this range is given by: 

2 2
0 0 0

0 0
2

cos sin cos sin ,
2
x v v

θ θ θ θ
g g

= − = −  

 since ( ) 0 01/ 2 cos sin cos sin .θ θ θ θ=  Using the trigonometric identity sin2 2sin cosx x x= : 

( )

( )

0

0

1
0

1 1
0

0

1 1sin2 sin2
4 2

sin2 2sin2
1 sin 2sin2
2
1 sin 2sin 2tan 4
2
35.13

θ θ

θ θ

θ θ

θ

θ

−

− −

=

=

=

 =  
= °

 

               For the range to be half of what it was in part (a), the angle should be 35.13 .°  

3.32. A diagram of the situation is shown below. 

 
  
 For the original velocity to be the minimum so that the puck does not hit the long side, it must reach the 

end of the table in the time it takes the puck to cross the short side. The x and y components can be 
considered separately, since the acceleration acts only in the y direction. The time it takes the rocket to push 
the puck across the width of the table is: 

 = ⇒ =2 21
2

f
f

y
y at t

a
 

 Since there is no acceleration in the x-direction, 

= ⇒ = = = =
⋅

2.00 2.00 m/s
2 / 2 1.00 / 2.00

f f
f x x

f

x x
x v t v

t y a
 

 The trajectory is a parabola. If min ,v v<  the puck will hit the opposite long side of the table. If min ,v v>  the 
puck will hit the opposite short side. 
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3.33. A diagram of the situation is shown. 

 

The projectile’s position is given by 0 0cosx vθ t=  and 2
0 0

1sin g .
2

y v t tθ= −  The possible values of x and y 

along the slope can be found by cosx R α=  and siny R α= , where R is the range along the hill. From this, 

0 0cos cosR v tα θ=  and 2
0 0

1sin sin g .
2

R v t tα θ= −  The two unknowns in these equations are t and R. First, 

solve for t: 

0 0
0 0

coscos cos   
cos

RR v t t
v

αα θ
θ

= ⇒ = . 

Putting this result into the second equation: 

( )
2 2

0 0 2 2
0 0 0 0

2 2

0 2 2
0 0

2

0 2 2
0 0

cos 1 cossin sin
cos 2 cos

1 cossin tan cos
2 cos

cos
0 tan cos sin

2 cos

R RR v g
v v

RR R g
v

g
R R

v

α αα θ
θ θ

αα θ α
θ

α
θ α α

θ

= −

= −

 
= − − 

 

 

The horizontal range should be positive, so R > 0. Then:  

( ) 2 2
0 0 0

2

2 sin tan cos cos
cos

v
R

g
α θ α θ

α
−

= . 

Using the horizontal range equation from the text (equation 3.25), 
( )2 2

0 0 0 0 0sin 2 2 cos sinv v
R

g g
θ θ θ′ = = , 

the objective is to find a comparative factor β  so that .R R β′=  

0
2

2
0 0 0 0

0

0

0

0

2 cos sin cos sin tan cos
sin cos

cot tan tan
1 cos

cot tan 1
cos

v
R

g

R

R

θ θ θ α θ α
θ α

θ α θ
α

θ α
α

−
= ⋅ ⋅

−′=

−′=

 

Set 0cot tan 1
cos
θ α

α
− 0 0cot tan tan

1 cos
θ α θ

β
α

−
= to obtain the comparative factor. 
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3.34. A diagram of the situation is shown. 

 
The first swimmer crosses at a speed 2 2

1 5.00 3.00 4.00 m/sv = − =  both ways. The total trip time for this 

swimmer is ( ) ( )12 / 2 50.0 m / 4.00 m/s 25.0 s.t d v= = =  The second swimmer travels at 

2 5 m/s 3 m/sv ′ = −  2 m/s=  and 2 5 m/s 3 m/s 8 m/sv ′′ = + =  for the first and second part of the trip, 
respectively. The total time for the trip is  

2 2

50.0 m 50.0 m 31.3 s.
2.00 m/s 8.00 m/s

d dt
v v

= + = + =
′ ′′

 

The first swimmer gets back faster. 
 

Exercises 

3.35. THINK: To calculate the magnitude of the average velocity between x = 2.0 m, y = –3.0 m and x  = 5.0 
m, y  = –9.0 m, the distance between these coordinates must be calculated, then the time interval can be 
used to determine the average velocity. 
SKETCH:  

 

RESEARCH: The equation to find the distance is ( ) ( )2 2

f i f id x x y y= − + − . The average velocity is 

given by /v d t= . 

SIMPLIFY: 
( ) ( )2 2

f i f ix x y y
v

t

− + −
=
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CALCULATE: 
( ) ( ) ( )( )22
5.0 m 2.0 m 9.0 m 3.0 m

2.7951 m/s
2.4 s

v
− + − − −

= =


 

ROUND: Rounding to two significant figures, 2.8 m/s.v =


 

DOUBLE-CHECK: This result is on the same order of magnitude as the distances and the time interval. 

3.36. THINK: The given distances must be converted to SI units; but let’s save this until after the calculations. If 
you convert and round too early, this calculation turns into total nonsense. The magnitude and direction 
of the total displacement are to be determined. 
SKETCH:  

 
RESEARCH: Break the distances into north (+y) and east (+x) components. The displacement is given by 

1 2 3d d d d= + +
   

. The magnitude is given by 2 2
x yd d d= +



 and the direction is given by 

( )1 /tan .y xd dθ −=  

SIMPLIFY: ( ) ( )1 2 3 1 3 1 3cos45 cos30 1/ 2 3 / 2x x x xd d d d d d d d= + + = °− ° = −  

( ) ( )1 2 3 1 2 3 1 2 3sin45 sin30 1/ 2 1/ 2y y y yd d d d d d d d d d= + + = °− + ° = − +  

CALCULATE: 
  
dx = 1/ 2( )10 mi( )− 3 / 2( )8 mi( )= 0.14286 mi  

  
dy = 1/ 2( )10 mi( )−12  mi+ 1/ 2( )(8 mi)= −0.92893 mi  

( ) ( )2 2
0.14286 mi 0.92893 mi 0.93985 mi 1.5122 kmd = + = =



 

− − = = − ° 
 

1 0.92893 mitan 81.257
0.14286 mi

θ  

ROUND: If you are driving, your odometer usually does not give you the distances to a greater precision 
than 1/10th of a mile. Rounding to two significant figures, the resultant displacement is 1.5 km. The 
direction is 81− ° , or 81°  below the positive side of the x-axis. 
DOUBLE-CHECK: Our sketch already tells us that the man will end up close to his house and almost 
exactly south of it, a conclusion which the sketch supports. 

3.37. THINK: Determine the third vector 3d


 for a sail boat ride that results in a displacement of 

total 6.00 kmd =


 east when the first two legs of the journey are given as 1 2.00 kmd =


 east and 

2 4.00 km southeast.d =


 
SKETCH:  
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RESEARCH:  The component representation of vectors can be used to determine the x and y components 
of each vector: = cosxd dθ  and sinyd dθ= . The other equations that can be used are: total 1 2 3 ;d d d d= + +

  

  

2 2 ;x yd d d= +


  and ( )1tan / .y xθ d d−=  

SIMPLIFY: 3 total 1 2d d d d= − −
  

 

3 total 1 2 total 1 2 total 1 2cos0 cos0 cos45 / 2x x x xd d d d d d d d d d= − − = °− ° − ° = − −  

3 1 2 1 2 2 2sin0 sin0 sin45 0 0 / 2 / 2y total y y y totd d d d d d d d d= − − = °− ° − ° = − + =  

( ) ( )2 2

3 total 1 2 2/ 2 / 2d d d d d= − − +


,    1 2

total 1 2

/ 2
tan

/ 2
d

d d d
θ −  
=   − − 

 

CALCULATE: ( ) ( )2 2

3 6.00 km 2.00 km 4.00 km / 2 4.00 km / 2 3.0615 kmd = − − + =


 

1 4.00 km / 2tan 67.500
6.00 km 2.00 km 4.00 km / 2

θ −  
= = °  − − 

 

ROUND: Rounding to three significant figures, 3 3.06 kmd =


and 67.5θ = °.  The missing part of the trip 

was 3.06 km 67.5°  North of East. 
DOUBLE-CHECK: The result is on the same order of magnitude as the other parts of the trip and by 
looking at the sketch, the angle is reasonable. 

3.38. THINK:  
(a) The net displacement vector must be found for a truck that drives 3.02 km north then drives another 
4.30 km west. 
(b) Determine the average velocity of the trip if it takes 5.00 minutes to complete. Convert the time to 
seconds: ( )5.00 min 60 s/min 300. s.t = =  
SKETCH:  

 
RESEARCH:  
(a)  The displacement is given by ( ), .r x y=



 

(b)  The magnitude of the average velocity is /v d t=


, where 2 2 .d r x y= = +


 
SIMPLIFY:  
(a)  It is not necessary to simplify. 

(b)  
2 2x ydv

t t
+

= =


 

CALCULATE:  
(a)  ( )4.30 km,  3.02 kmr = −



 

(b)  
( ) ( )2 2

4.30 3.02
0.017515 km/s

300. s
v

− +
= =



 

ROUND:  
(a)  It is not necessary to round since the data is simply restated. 
(b)  Rounding to three significant figure, 0.0175 km/s.v =
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DOUBLE-CHECK:  
(a)  The distance is reasonable for a truck to travel. 
(b)  This speed corresponds to 63 km/h or 39 mph, which is reasonable for a truck. 

3.39. THINK: The position components 2( ) 0.45 – 6.5 25x t t t= − +  and 2( ) 0.35 8.3 34y t t t= + +  can be used to 
find the magnitude and direction of the position at t = 10.0 s. The velocity and acceleration at t = 10.0 s 
must then be determined. 
SKETCH:  
(a)                                                                        (b) 

   
 
 
(c)   

  
RESEARCH:  

(a) Insert t = 10 s into the given equations, then use 2 2r x y= +


and ( )1tan / .θ y x−=  
(b) Differentiate the given components with respect to time to get functions of velocity. 
(c) Differentiate the velocity functions with respect to time to get functions of acceleration. 
SIMPLIFY:  
(a) It is not necessary to simplify. 

(b) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2

0.45 6.5 25
0.90 6.5  m/s

0.35 8.3 34
0.70 8.3  m/s

x

y

d t tdx t
v t t

dt dt
d t tdy t

v t t
dt dt

− − +
= = = − −

+ +
= = = +

 

(c) ( ) ( ) ( ) ( ) ( ) ( )2 20.90 6.5 0.70 8.3
0.90 m/s ,   0.70 m/syx

x y

dv tdv t d t d t
a t a t

dt dt dt dt
− − +

= = = − = = =  

CALCULATE:  

(a) ( ) ( ) ( ) ( ) ( )2 210.0 0.45 10.0 6.5 10.0 25 85 m,  (10.0) 0.35 10.0 8.3 10.0 34 152 mx y= − − + = − = + + =  

Now, insert these values into the magnitude and distance equations:  

( ) ( )2 2 1 15285 m 152 m 174 m,  tan 60.786
85

r θ −  = − + = = = − ° − 
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(b) ( ) ( ) ( ) ( )
2 2 1

10.0 0.90 10.0 6.5 15.5 m/s,  10.0 0.70 10.0 8.3 15.3 m/s

15.3( 15.5) (15.3) 21.8 m/s,  tan 44.6
15.5

x yv v

v θ −

= − − = − = + =

 = − + = = = − ° − 



 

(c) Since there is no time dependence, the acceleration is always ( ),x ya a a= =


 ( )2 20.90 m/s ,0.70 m/s .−   

The ( ) ( ) −  = − + = = = − ° − 

 2 22 2 2 1 0.700.90 m/s 0.70 m/s 1.140 m/s ,  tan 37.87
0.90

aθ . 

ROUND:  

(a) Both distances and the magnitude are accurate to the meter, 174 m.r =


 Round the angle to three 

significant figures, 60.8°  north of west (note: west is used because x was negative). 
(b) The equation’s parameters are accurate to a tenth of a meter. The rabbit’s velocity is then 21.8 m/s, 
44.6°  north of west. 
(c) It is not necessary to consider the significant figures since the original parameters of the function are 
used. The rabbit’s velocity is 1.14 m/s2, °37.9  north of west. 
DOUBLE-CHECK:  
(a) 174 m in 10 s seems reasonable for a rabbit, considering the world record for the 100 m dash is about 
10 s. 
(b) The velocity of a rabbit ranges from 12 m/s to 20 m/s. This rabbit would be at the top of that range. 
(c) A rabbit may accelerate at this rate but it can not sustain this acceleration for too long. 

3.40. THINK: (a) The position vector is given. The distance the car is away from the origin at t = 5.00 s is to be 
determined. 
(b)  Now, the velocity vector for the car is to be determined. 
(c)  The speed (magnitude of the velocity) is to be determined at 5 s. 
SKETCH:  
(a)   

   
(b)  See sketch above. 
(c)   
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RESEARCH:  
(a)  The time can be inserted into the position vector and the magnitude can then be found 

using 2 2d r x y= = + . 

(b)  The velocity vector is given by derivative of the position vector with respect to time, ( ) ( )
.

dr t
v t

dt
=



 

(c)  To determine the speed, use the magnitude equation 2 2 .x yv v v= +


 

SIMPLIFY:  
(a)  It is not necessary to simplify. 

(b)  ( ) ( )

( )

2 2 3

2 2 2 3

24.4 12.3 2.43 ,  74.4 1.80 0.130

12.3 m/s 4.86  m/s ,  3.60  m/s 0.390  m/s

dr t d dv t t t t t
dt dt dt

t t t

    = = − + + −     
= − + −



  

(c)  It is not necessary to simplify. 
CALCULATE:  

(a)  ( ) ( ) ( )
( )

2 2 32 2 3(5) (24.4 m) 5(12.3 m/s) 5 (2.43 m/s ),(74.4 m) 5 (1.80 m/s ) 5 (0.130 m/s )

23.65 m,  103.150 m

r = − + + −

=

   

Now, insert the components into the equation for the magnitude: 

( ) ( )2 2
23.65 m 103.150 m 105.8265 m.d r= = + =  

(b)  There are no other calculations to be done. 

(c)  ( ) ( ) ( ) ( )( ) ( )22 2 35 12.3 m/s 4.86 5  m/s ,  3.60 5  m/s 0.390 5 m/s 12.0 m/s, 8.25 m/sv = − + − =  

 ( ) ( )2 2
12.0 m/s 8.25 m/s 14.5624 m/sv = + =



 

ROUND:  
(a)  The equation is accurate to four significant figures so the distance is now 105.8 m.d =  
(b)  The significant figures remain the same for the parameters. 

(c)  Rounding to the first place after the decimal, 14.6 m/s.v =


 

DOUBLE-CHECK:  
(a)  The distance is reasonable for a car to travel. 
(b)  The derivatives were done correctly. 
(c)  The speed is reasonable for a car. 

3.41. THINK: Ignoring air resistance, the skier’s horizontal velocity will remain unchanged, while her vertical 
velocity is influenced solely by gravity. 30.0 m/sxv = , 2g 9.81 m/s=  and t = 2.00 s. 
SKETCH:  

 
RESEARCH: i fx xv v=  and f i .y yv v at= +  

SIMPLIFY: f 0yv gt gt= − = −  

CALCULATE: f 30.0 m/sxv =  and ( )( )2
f 9.81 m/s 2.00 s 19.62 m/s.yv = − = −  
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ROUND: f 30.0 m/sxv =  and f 19.6 m/s.yv =  

DOUBLE-CHECK: The order of magnitude is reasonable. 

3.42. THINK: When the arrow is horizontal it is at its maximum height. This occurs when the vertical velocity 
is zero. The time to reach maximum height is half the time it takes to fall back to the same height. 

0 1.14 m,y =  0 47.5 m/s,v =   = 35.2θ °,  and 29.81 m/s .g =   
SKETCH:  

 

RESEARCH: 2
0 0

1
2yy y v t at− = + ;  0 0 sinyv vθ=   

SIMPLIFY:  For 0 ,y y=  use :t t ′=  

( ) ( )2

0
10 sin .
2

vθ t g t′ ′= −  

Since 0,t ′ ≠  02 sin
.

vθ
t

g
′ =   Therefore, at the maximum height, 0 sin

.
2

vθtt
g

′
= =  

CALCULATE:  
( ) ( )

2

47.5 m/s sin 35.2
2.7911 s

9.81 m/s
t

°
= =  

ROUND:  To three significant figures,  2.79 s.t =  
DOUBLE-CHECK:  The arrow is horizontal when its vertical velocity is zero: 

0
0 0

sin
0 siny y

vθ
v v at vθ gt t

g
= = + = − ⇒ =  

This is the same as the result obtained above. 

3.43. THINK: Assume the ball starts on the ground so that the initial and final heights are the same. The initial 
velocity of the ball is i 27.5 m/sv = , with 56.7θ = °  and 29.81 m/s .g =  
SKETCH:  

 

RESEARCH: 2
f i i

1
2yy y v t at− = +  and i i sin .yv vθ=  

SIMPLIFY: ( ) 2 i
i i

2 sin1 10 sin   sin   
2 2

vθ
vθ t gt v θ gt t

g
= − ⇒ = ⇒ =  

CALCULATE: 
( ) ( )

2

2 27.5 m/s sin 56.7
4.6860 s

9.81 m/s
t

°
= =  

ROUND: Rounding to three significant figures, 4.69 s.t =  
DOUBLE-CHECK: Given the large angle the ball was kicked, about 5 seconds is a reasonable amount of 
time for it to remain in the air. 
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3.44. THINK: Use the horizontal distance and velocity to determine the time it takes for the ball to reach the 
net. Then, use this time to determine the vertical height of the ball. Use this vertical height to determine if 
the ball clears the net and by how much it does or does not. 
SKETCH:  

 

RESEARCH: i i cosxv vθ= ;  i i sinyv vθ= ;  ixR v t= ;  and 2
f i i

1 .
2yy y v t at− = +  

SIMPLIFY: 
cosi

Rt
vθ

=  and ( )
2

2
2 2

1sin tan .
2 2 cosf i i i

i

gR
y y vθ t gt y R θ

vθ
= + − = + − In order to compare the 

height of the net, h, subtract h from the final height, fy : 
2

f i 2 2
i

tan .
2 cos

gR
h y h y h Rθ

vθ
∆ = − = − + −  

CALCULATE:   ( ) ( ) ( ) ( )( )
( ) ( )

22

2 2

9.81 m/s 11.83 m
1.8 m 1.07 m 11.83 m tan 7.00 0.031929 m

2 18.0 m/s cos 7.00
h∆ = − + ° − =

°
 

ROUND:  Rounding the result to two significant figures, the ball clears the net by 3.2 cm. 
DOUBLE-CHECK: Given the long distance to the net and the small angle that the ball is hit at, it is 
reasonable that the ball would clear the net by such a small distance. 

3.45. THINK:  Simply find a relation between the height of the building and the distance traveled. With the use 
of this equation, determine how the height is affected when the distance is doubled. No values are needed. 
SKETCH:  

 

RESEARCH: f ix x vt− =  and 2
f i i

1 .
2yy y v t at− = +  

SIMPLIFY:   DD vt t
v

= ⇒ = ,    22 '   ' DD vt t
v

= ⇒ = ,    
2

2
2

10
2 2

gD
h gt

v
− = − = − .  

( )
2 2

2

2 2

4g 21' 0
2 2

D gD
h g t

v v
′− = − = − = −  

CALCULATE: 
( )
( )

2 2

2 2

2 /' 4
/ 2

gD vh
h gD v
= =  

ROUND: The ratio of the heights of the buildings is 4 to 1. 
DOUBLE-CHECK: Seeing as the paths of the stones are parabolic, the ratio of the heights is proportional 
to the square of the ratio of the distances, so the result makes sense. 
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3.46. THINK: Assume there is no air resistance and the horizontal velocity remains constant. Also, assume 
there is no initial vertical velocity. 3.0 mR = , i 2.0 my = , f 1.65 my =  and 29.81 m/s .g =  
SKETCH:  

 
RESEARCH:  

(a) 2
f i i

1
2yy y v t at− = +  and i 0yv = and .a g= −  

(b) i fx xv v=  and i .xR v t=  

(c) f f f
ˆ ˆ

x yv v x v y= +


;  f iy yv v at= + ;  and 2 2
f f f .x yv v v= +


 

SIMPLIFY: 

(a)  
( )f i2

f i

210   
2

y y
y y gt t

g
− −

− = − ⇒ =  

(b)  i ix
Rv v
t

= =  

(c)  ( )22
f f i f i

ˆ ˆ    yv gt v v x gty v v gt= − ⇒ = − ⇒ = + −
 

                                    

CALCULATE:  

(a)  
( )

2

2 1.65 m 2.00 m
0.26712 s

9.81 m/s
t

− −
= =  

(b)  i
3.0 m 11.231 m/s

0.26712 s
v = =  

(c)  ( ) ( )( )( )22 2
f 11.231 m/s 9.81 m/s 0.26712 s 11.532 m/sv = + − =


 

ROUND:  Rounding to two significant figures, 0.27 st = , i 11 m/sv =  and f 12 m/s.v =


 

DOUBLE-CHECK: The initial and final velocities of the dart are reasonable for a player to achieve. At 
these velocities, the flight time is also reasonable. 

3.47. THINK: Use the horizontal distance and velocity to determine the time it takes to reach the post. Use the 
time to determine the height of the ball at that point. Then compare the height of the ball to the height of 
the goal post. Vertical velocity at this point can be determined as well: i 22.4 m/s,v =  49.0 ,θ = °  

39.0 m,R =  3.05 m,h =  29.81 m/s .g =  Assume the ball is kicked off the ground, i 0 m.y =  
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SKETCH:  

 

RESEARCH: ixR v t= ;  2
f i i

1
2yy y v t at− = + ;  f iy yv v at= + ;  i i cosxv vθ= ;  and i i sin .yv vθ=  

SIMPLIFY: 

(a) 
i cos

Rt
vθ

=  and ( )
2

2
f i 2 2

i

1sin tan .
2 2 cos

gR
y vθ t gt R θ

vθ
= − = −  

In order to compare the height of the ball to the height of the goal post, subtract h from both sides of the 
equation,  

                                   
2

f 2 2
i

tan .
2 cos

gR
h y h h Rθ

vθ
∆ = − = − + −  

(b) f i
i

sin
cosy

gR
v vθ

vθ
= −  

CALCULATE:  

(a)  ( ) ( )
( )( )
( ) ( )

22

2 2

9.81 m/s 39.0 m
3.05 m 39.0 m tan 49.0 7.2693 m

2 22.4 m/s cos 49.0
h∆ = − + ° − =

°
 

(b)  ( ) ( )
( )( )
( ) ( )

2

f

9.81 m/s 39.0 m
22.4 m/s sin 49.0 9.1286 m/s

22.4 m/s cos 49.0yv = ° − = −
°

 

ROUND:  Round to the appropriate three significant figures: 
(a)  The ball clears the post by 7.27 m. 
(b)  The ball is heading downward at 9.13 m/s. 
DOUBLE-CHECK: The initial velocity certainly seems high enough to clear the goal post from about 1/3 
of the field away. It also makes sense that the vertical velocity at this point is lower than the initial velocity 
and the ball is heading down. 

3.48. THINK:  Since the time of the last portion of the flight and the horizontal displacement during that time 
are given, the x component of the initial velocity can be determined, because the horizontal velocity 
component remains constant throughout the flight. The initial velocity can then be determined, because 
we also know the initial angle of 35.0θ = ° . The vertical displacement of the projectile during the last flight 
phase is also given.  However, since we do not know the relative altitude of the beginning and end of the 
trajectory, the vertical displacement provides no useful information and is thus a distractor, which we can 
and should ignore. 
SKETCH:  A sketch is not needed in this case. 

RESEARCH:  i f i cosx xv v v θ= = ;  ix
dv
t

=
∆

 

SIMPLIFY:  i icos   
cos

d dv v
t t

θ
θ

= ⇒ =
∆ ∆

. 

CALCULATE: ( ) ( )( )i 10.0 m / cos 35.0 1.50 s 8.138497 m/sv  = ° =   

ROUND:  Rounding to three significant figures, 8.14 m/s.iv =  
DOUBLE-CHECK:  This speed is reasonable. 
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3.49. THINK: Assume the sand moves as a single object and that the sand is moving fast enough to be projected 
from the conveyor belt at the top. To solve for the distance, the quadratic equation must be used. 

14.0θ = ° , 3.00 mh = , i 7.00 m/sv =  and 29.81 m/s .g =  
SKETCH:  

 

RESEARCH: i i i;   cos ;x xv t d v vθ= =   2
f i i i i

1 ;   and sin .
2y yy y v t at v vθ− = + =  

SIMPLIFY: i i
i

  cos   
cosx
dv t d vθt d t

vθ
= ⇒ = ⇒ =  

( )
2

2 2
i 2 22 2

ii

1sin tan   0,tan2 cos2 2 cos
ggd

h vθt gt d θ d d hθvθvθ
 

− = − = − ⇒ − − = 
 

 so 

( )( )
( )

2 2 2
i

2 2
i

tan tan 2 / cos
.

/ cos

θ θ gh v θ
d

g vθ

± +
=  

CALCULATE:  

( ) ( ) ( )( ) ( ) ( )

( ) ( )

22 2 2

22 2

tan 14.0 tan 14.0 2 9.81 m/s 3.00 m / 7.00 m/s cos 14.0

9.81 m/s 7.00 m/s cos 14.0

6.6122 m or 4.2672 m

d
 ° ± ° + ° =

 ° 
= −

 

ROUND:  d = 6.61 m (the answer must be a positive value) 
DOUBLE-CHECK: If launched at 0θ = ° , the sand would travel about 6 m, so 7 m for a small angle is 
reasonable. 

3.50. THINK:  Since gravity is a vector, it can be broken up into components. This means that a portion of 
gravity accelerates the car down the incline. Once the car reaches the edge, it is under the whole force of 
gravity. 2g 9.81 m/s= , d = 29.0 m, 17.0θ = ° , h = 55.0 m. The quadratic equation can be used to solve for 
distance. 
SKETCH:  
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RESEARCH: sing gθ=


;  2 2
f i 2v v ad= + ;  ixR v t= ;  2

f i i
1 g
2yy y v t t− = + ;  i i cosxv vθ= ;  and 

i i sin .yv vθ=  

SIMPLIFY: ( )2
i i0 2 2   2 sinsinv g d d v gdθ gθ= + = ⇒ =



  

(a)  ( ) 2
i

1sin
2

h vθ t gt− = − −  

 ( )

( ) ( )

( )

2

i
i i i

2

2 2
i

2

2 i

2
2

1 since                sin cos cos cos2

tan
2 cos

0 tan                          since 2 sin
2cos 2 sin

10 tan
4 cos sin

R R Rth v gθ vθ v θ v θ

gR
h Rθ

vθ
gR

Rθ h v gdθ
θ gdθ

Rθ R h
dθ θ

     
=− = − −     

     

− = − −

= + − =

 = + − 
 

 

Therefore, using the quadratic formula, 
( )

2
2

2

tan tan
cos sin .

1/ 2 cos sin

hθ θ
dθ θR

dθ θ

− ± +
=  

(b) 
i cos 2 sin cos

R Rt
vθ gdθ θ

= =  

CALCULATE:  

(a) 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
2 2

2

tan 17 tan 17 55.0 m/ 29.0 m cos 17 sin 17

1/ 2 29.0 m cos 17 sin 17

36.8323 m or 46.3148 m

R
− ° ± ° + ° °

=
° °

= −

 

(b) 
( )( ) ( )( ) ( )2

36.8323 m 2.9862 s
2 9.81 m/s 29.0 m sin 17 cos 17

t = =
° °

 

ROUND:  
(a) The car falls 36.8 m from the base of the cliff. 
(b) The car is in the air for 2.99 seconds. 
DOUBLE-CHECK: If the car went over the cliff horizontally, it would travel about 43 m and take about 
3.3 seconds to fall. The fact that the car travels a shorter distance in a shorter period of time with a small 
initial vertical velocity makes sense. 

3.51. THINK: Though not explicitly stated, assume the launch angle is not zero. The projectile’s height as a 
function of time is given. This function can be related to a more general function and the specifics of the 
motion can be determined. 29.81 m/sg =  and i 20.0 m/sv = . 
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SKETCH:  

 

RESEARCH: 2( ) 4.90 19.32 60.0y t t t= − + + ;  ixR v t= ;  2
f i i

1
2yy y v t at− = + ;  i i sinyv v θ= ; and 

i i cos .xv v θ=  
SIMPLIFY:  

(a) 2
f i i

1sin
2

y y v t gtθ= + − , where ( ) 2  4.90 m / s ,1/ 2 g =  i sin 19.32m/s,v θ =  and i 60.0 m.y =  

(b) 119.32m/s 19.32
sin   sin

i iv v
θ θ −  
= ⇒ =  

 
 

(c) 
2

2
2 2

1 since 0 sin tan           
cos2 2 cosi i i

ii

RgR ty v t gt y R
vv

θ θ
θθ

 == + − = + −  
 

 

Therefore, ( )2
2 2 0.tan2 cos i

i

g
R R y

v θθ
 

− − = 
 

 Using the quadratic formula, 

( )

2
2 2

2 2

2tan tan
cos

.
/ cos

i

i

i

y g
v

R
g v

θ θ
θ

θ

± +
=  

CALCULATE:  
(a) 60.0 miy H= =  

(b) 1 19.32 m/ssin 75.02
20.0 m/s

θ −  = = ° 
 

 

(c) 

( ) ( )
( )( )

( ) ( )

( ) ( )

2

2

2

2
2

2

2

2 60.0 m 9.81m/s
tan 75.02 tan 75.02

20.0 m/s cos 75.02
30.9386 m or 10.5715 m

9.81m/s

20.0 m/s cos 75.02

R

° ± ° +
°

= = −

°

 

ROUND:  
(a) The building height is 60.0. m. 
(b) The launch angle is 75.0 .°  
(c) The object travels 31.0 m (the positive value must be chosen). 
DOUBLE-CHECK: Given the large launch angle, it makes sense that the object doesn’t travel too far. 
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3.52. THINK:  The x-component of the velocity will remain unchanged, while the y-component of the velocity 
will remain the same in magnitude but opposite in direction. ˆ20  m/sv y∆ = −



 and 60θ = °.  
 SKETCH:  

 
 RESEARCH:  f iv v v∆ = −

  

;  ˆ ˆ
x yv v x v y= +



;  i fx xv v= ;  i fy yv v= − ;  cosxv vθ= ;  and  sin .yv vθ=  

      SIMPLIFY:  ( ) ( ) ( ) ( )f f i i f i f i i i
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2 sinx y x y x x y y yv v x v y v x v y v v x v v y v y vθy∆ = + − + = − + − = − = −



 

 Therefore, i 2sin
vv

θ
∆

=
−

 and i i cos .
2tanx

vv vθ
θ

∆
= =

−
 

 CALCULATE: i i2 20 m/s  10 m/s.y yv v− = − ⇒ =  Therefore, f 10 m/syv = −  and 

( )i
20 m/s 5.7735 m/s.

2tan 60xv −
= =
− °

 

 ROUND:  ( )i
ˆ ˆ5.8 10  m/sv x y= +



 and ( )f
ˆ ˆ5.8 10  m/s.v x y= −



 
 DOUBLE-CHECK: Because the projectile is shot on level ground, it makes sense that the initial and final y 

velocities are equal in magnitude and opposite in direction. Since the angle is greater than 45°, it also 
makes sense that the vertical velocity is greater than the horizontal velocity.  

3.53. THINK:  At its most basic this problem is just the “Shoot the Monkey” problem (Example 3.1) again. The 
tennis ball plays the role of the monkey, and the rock that of the tranquilizer dart. 

 The time and the position in space where the collision occurs are given, so the information about the 
tennis ball is irrelevant. But note that the initial height of the golf ball (h = 54.1 m) and the height (y = 10.0 
m) and time (t = 3.00 s) at which the collision occurs are consistent, because the tennis ball drops a 
distance   

1
2 gt 2 = 0.5(9.81 m/s2 )(3 s)2 = 44.1 m  during 3.00 s, which is exactly  h− y . 

 In order to calculate the horizontal velocity component of the rock, we have to keep in mind that it has to 
travel a given distance x in a given time.  Note that the horizontal velocity component remains unchanged 
during the flight of the rock. 

 For the vertical velocity component, we know that the rock also has to travel a given distance y in the same 
time, but that it is in free-fall during that time period. 

 SKETCH:  
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 RESEARCH: For the initial velocity components we use   x − x0 = vx 0t  and   y − y0 = vy0t − 1
2 gt 2  with 

  x0 = y0 = 0 . For the final velocity components at the collision moment we use   vx = vx 0 and   vy = vy0 − gt . 
 SIMPLIFY:  We solve the first two equations for the initial velocity components and find 
   vx 0 = x / t   and     vy0 = (y + 1

2 gt 2 ) / t = y / t + 1
2 gt  

 The two equations for the final velocity components are already in the form we can use for inserting 
numbers. 

 CALCULATE:  
  
vx = vx 0 =

50.0 m
3.00 s

=16.667 m/s,    

 
  
vy0 =

10.0 m+
1
2

9.81 m/s2( ) 3.00 s( )2

3.00 s
=18.0483 m/s,

 

( ) ( ) −  = + = = = ° 
 

 2 2 1
0 0

18.0483 16.667 m/s 18.0483 m/s 24.57 m/s, tan 47.28
16.6667

vθ  

   vy =18.0483 m/s− (9.81 m/s2 )(3.00 s)= −11.3817 m/s    

( ) ( ) − − = + − = = = − ° 
 

 2 2 1 11.3817 16.667 m/s 11.3817 m/s 20.18 m/s, tan 34.33
16.6667

vθ  

 ROUND:  The initial velocity is v0 = 24.6 m/s at 47.3° above horizontal. The final velocity is v = 20.2 m/s at 
34.3° below horizontal. 
 DOUBLE-CHECK: In Example 3.1, “Shoot the Monkey”, we learned that in order to hit the monkey 
during its free-fall, one has to aim directly in a straight line at it at the beginning.  This means that the 
initial velocity vector has to point from the origin directly at the release point of the ball (x,h). This implies 
that the tangent of the initial velocity vector is given by   tanv0 ≡ vy0 /vx 0 = h / x . From the values given in 

the problem you can see that   h / x = (54.1 m)/ (50.0 m)=1.08 , and our numerical answer yields 

  vy0 /vx 0 = (18.0 m/s)/ (16.7 m/s)=1.08 . 

3.54. THINK:  Since the initial and final heights are the same, the range and maximum height equations can be 
used. Assume the only acceleration is gravity so the horizontal velocity remains unchanged. When the golf 
ball is at the maximum height, its vertical velocity is zero. 29.81 m/sg = , 31.5θ = °  and i 11.2 m/s.v =  

 SKETCH:  

 

 RESEARCH: 
( )2

i sin 2vθ
R

g
= ;

2
i

0 2
yv

H y
g

= + ;  i f i cosx xv v vθ= = ;  and i i sin .yv vθ=  

       SIMPLIFY:  

 (a) 
( )2

i sin 2vθ
R

g
=  

 (b) 
2 2 2 2

i isin sin
0

2 2
vθ v θ

H
g g

= + =  

 (c) i i
ˆ ˆ ˆ0 cosxv v x y vθx= + =



 
 (d) ˆ ˆ ˆ0a x gy gy= − = −
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 CALCULATE:  

 (a) 
( ) ( )2

2

11.2 m/s sin 63
11.393 m

9.81 m/s
R

°
= =  

 (b) 
( ) ( )

( )
2 2

2

11.2 m/s sin 31.5
1.7454 m

2 9.81 m/s
H

°
= =  

 (c) ( ) ( ) ˆ ˆ11.2 m/s cos 31.5 9.5496  m/sv x x= ° =  

 (d) 2ˆ9.81  m/sa y= −


 
 ROUND:  
 (a) 11.4 mR =  
 (b) 1.75 mH =  
 (c) ˆ9.55  m/sv x=  
 (d) 2ˆ9.81  m/sa y= −



 
 DOUBLE-CHECK: Given the initial velocity and angle, the height and range are reasonable. 

3.55. THINK:  The question does not specify a launch angle. However, for maximum distance, the launch angle 
is 45°.  Assume the initial and final heights are the same so the range equation can be used. 0.67 km,R =  

29.81 m/sg =  and 45θ = °.  
 SKETCH:  

 

 RESEARCH:  
( )2

i sin 2vθ
R

g
=  

       SIMPLIFY:  
( )i sin 2
gR

v
θ

=  

 CALCULATE: 
( )( )

( )

2

i

9.81 m/s 670 m
81.072 m/s

sin 2 45
v = =

⋅ °
 

 ROUND: Rounding to two significant figures: i 81 m/s.v =  
 DOUBLE-CHECK: This speed is equivalent to about 300 km/h, which seems reasonable for a catapult. 

3.56. THINK: In order to attain maximum height, the launch angle must be exactly 90°.  The mass of the object 
is irrelevant to the kinematic equations. i 80.3 m/sv = , 90.0θ = °  and 29.81 m/s .g =  

 SKETCH:  

 

 RESEARCH:  
2 2

i
0

sin
2

vθ
H y

g
= +  
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       SIMPLIFY:  
2 2

i sin
2

vθ
H

g
=  

  
 

 CALCULATE:  
( ) ( )

( )

2 2

2

80.3 m/s sin 90.0
328.65 m

2 9.81 m/s
H

°
= =  

 ROUND:  Rounding to three significant figures, 329 m.H =   
 DOUBLE-CHECK:  Given the initial velocity, this height is reasonable. 

3.57. THINK:  Since the initial and final heights are the same, the range equation can be used to determine 
where the runner catches the ball. The time of flight of the ball must also be determined, thus the runner 
must run the remaining distance in the same amount of time. B 25.0 m/sv = , 35.0θ = ° , d = 70.0 m and 

29.81 m/s .g =  
 SKETCH:  

 

 RESEARCH: 
2

i sin2v
R

g
θ

= ;  2
f i

1
2i yy y v t at− = + ;  i fx xv v= ;  i i cosxv v θ= ;  i i sinyv v θ= . 

       SIMPLIFY:  
2

B sin2v
R

g
θ

=   and  2 B
B

2 sin10 sin   .
2

v
v t gt t

g
θ

θ= − ⇒ =  

   

2
B

R B
BB

sin2

cos
2 sin2 sin

vd
g dgd Rv v

t vv
g

θ

θ
θθ

 
−  

−  = = = −
 
 
 

 

 CALCULATE:  
( )( )
( ) ( ) ( ) ( )

2

R

70.0 m 9.81 m/s
25.0 m/s cos 35.0 3.466 m/s

2 25.0 m/s sin 35.0
v = − ° =

°
 

ROUND:  Rounding to three significant figures, R 3.47 m/s.v =  
DOUBLE-CHECK: The maximum speed a person can run at is around 12 m/s (see Chapter 1); so the 
result obtained here is possible. 

3.58. THINK:  If the frog is to maximize its distance, it must jump at an angle of 45° . Since the initial and final 
heights are the same, the range equation can be used to determine the velocity it jumps with. This velocity 
can then be used to determine the amount of time of one jump, and then the number of jumps in an hour. 
This means the total distance traveled is the number of jumps multiplied by the distance per jump. 

jump 1.3 md = , 29.81 m/sg =  and 45θ = °.  The total jump time is ( )0.8 1 h 2880 s.=  
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 SKETCH:  

 

RESEARCH:  
2

i
jump max

v
d R

g
= =  and jump

i i i
jump

cos45 / 2 .x

d
v v v

t
= ° = =  

SIMPLIFY:  i jumpv gd=  and jump
i jump

jump

/ 2 .x

d
v gd

t
= =  Therefore,  

jump
jump

jump / 2

d
t

gd
= . 

The number of jumps, n, is equal to 2880 s / jumpt . This implies that the total distance, D, is  

 jump jump jump jump jump
jump jump

2880 s 2880 s / 2 (2880  s) / 2.D nd d d gd gd
t d

= = = =  

CALCULATE:  ( )( )2(2880  s) 9.81 m/s 1.3 m / 2 7272.5 mD = =  

 ROUND:  The frog jumps a total of 7.3 km. 
 DOUBLE-CHECK: This result is the same distance a person walking briskly at 2 m/s would cover in an 

hour, so it is reasonable that a frog could cover the same distance in the same amount of time. 

3.59. THINK: If the juggler has a ball in her left hand, he can also have one in his right hand, assuming her right 
hand is throwing the ball up. This means if the juggler has x number of balls, the minimum time between 
balls is 0.200 s. If the time between any two balls is less than 0.200 s, then the hands can’t act fast enough 
and she’ll drop the balls. The given information must be used to determine the time of flight, and thus the 
total time of one ball going around the loop. Then determine the largest integer, n, which can be 
multiplied by pass 0.200 st = which is still less than the total time. H = 90.0 cm, 75.0θ = °  and 

29.81 m/s .g =  
 SKETCH:  

 

 RESEARCH: 
2 2

i
i

sin
2

v
H y

g
θ

= +  and 2
f i i

1 .
2yy y v t at− = +  

      SIMPLIFY: 
( )2

i
i

sin
  sin 2 .

2
v

H v gH
g
θ

θ= ⇒ =  Use this when finding throw :t  

2 i
i throw throw throw

2 22 sin1 80 sin   
2

gHv Hv t gt t
g g g

θ
θ= − ⇒ = = =  
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 Therefore, ( )
pass

pass throw
pass pass throw

pass pass

8

    .

Ht
t t g

nt t t n n
t t

+
+

≤ + ⇒ ≤ ⇒ ≤   

  

 CALCULATE: 

( )
2

8 0.9 m
0.2 s

9.81 m/s 5.2835
0.2 s

n
+

≤ =  

 ROUND:  The maximum number of balls is n = 5. 
 DOUBLE-CHECK: It is reasonable for a person to juggle five balls at a time. 

3.60. THINK:  Since the plane is at an angle with the horizontal, it will tend to accelerate down the incline at 
only a fraction of gravity. Looking directly down the board, it can be considered as regular projectile 
motion with a vertical acceleration less than gravity. If the ball is to land in a hole on the opposite corner, 
the ball can’t overshoot the corner, so the ball must be at its maximum height in the trajectory to make it 
in the hole. 30.0θ = ° , 45.0φ = ° , w = 50.0 cm, 29.81 m/s .g =  
SKETCH:  

  

 RESEARCH:  sina g θ= ;  
( )2

i sin 2v
R

g
φ

= ;  and .
2
Rw =  

       SIMPLIFY:  
( )

( )

2
i

i

sin 2 2 sin
2   .

sin sin 2
v wg

w v
g

φ θ
θ φ

= ⇒ =  

 CALCULATE:  
( )( ) ( )

( )

2

i

2 0.500 m 9.81 m/s sin 30.0
2.2147 m/s

sin 90.0
v

°
= =

°
 

 ROUND:  i 2.21 m/sv =  
 DOUBLE-CHECK:  The speed is typical for a pinball game, and so we have confidence that our solution 

as the right order of magnitude. 

3.61. THINK: Ignoring air resistance, the biker’s horizontal velocity will remain unchanged. Initially the biker 
lands on flat land and afterwards he tries again with a landing ramp on the edge.  L = 400. m, 45.0θ = ° , 

1 8.00 mh = , 2 3.00 mh =  and 29.81 m/s .g =  
 SKETCH:  
 (a)   
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 (b)   

  

 RESEARCH:  i f ixv t x x= − ;  2
f i i

1
2yy y v t at− = + ;  i i cosxv v θ= ;  and i i sin .yv v θ=  

        SIMPLIFY:  

 (a) 1
1 cos

L t
vθ

=  and ( ) 2
1 1 1 1

10 sin .
2

h vθ t gt− = −  Therefore, 
2

1 2 2
1

tan
2 cos

gL
h Lθ

vθ
− = −  or 

2

12 2
1

tan .
2 cos

gL
Lθ h

vθ
= +  Solving for 1v  this gives 

( )
2

1 2
1

.
2cos tan

gL
v

θ L θ h
=

+
 

 (b) 2
2 cos

L t
vθ

=  and ( ) 2
2 1 2 2 2

1sin .
2

h h vθ t gt− = −  So, 
2

2 1 2 2
2

tan .
2 cos

gL
h h Lθ

vθ
− = −  Solving for 2v   gives 

( )
2

2 2
1 2

.
2cos tan

gL
v

θ L θ h h
=

+ −
 

 CALCULATE:  

 (a) 
( )( )

( ) ( ) ( )( )

22

1 2

9.81 m/s 400. m
62.025 m/s

2cos 45.0 400. m tan 45.0 8.00 m
v = =

° ° +
 

 (b) 
( )( )

( ) ( ) ( )( )

22

2 2

9.81 m/s 400. m
62.254 m/s

2cos 45.0 400. m tan 45.0 8.00 m 3.00 m
v = =

° ° + −
 

 ROUND:  
 (a) 1 62.0 m/sv =  
 (b) 2 62.3 m/sv =  

DOUBLE-CHECK: The initial speed is approximately 220 km/h (around 140 mph), which is achievable 
with a motorcycle. Also note that we find that the required initial speeds for parts (a) and (b) are 
essentially the same. The change of 3.00 m does not matter much compared to 400. m. 

3.62. THINK:  Determine the distance the golf ball should travel, then compare to the distance it actually 
travels. Assume the initial and final heights of the ball are the same, so the range equation can be used. 

35.5θ = ° , d = 86.8 m and 29.81 m/s .g =   

i
1.602 km 1 h 1000 m83.3 mph 37.0685 m/s

1 mile 3600 s 1 km
v = ⋅ ⋅ ⋅ =  

SKETCH:  
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 RESEARCH: 
2

i sin2vθ
R

g
=  and .d R d∆ = −  

       SIMPLIFY:  It is not necessary to simplify.  

 CALCULATE: 
( ) ( )2

2

37.0685 m/s sin 71.0
132.44 m

9.81 m/s
R

°
= =  

  132.44 m 86.8m 45.64 md∆ = − =  
 ROUND:  Rounding to three significant figures, 45.6 m. 
 DOUBLE-CHECK:  The ball lost about 1/3 of its distance to the wind. If you are a golfer or if you watch 

golf on TV, then you know that golf shots do not quite follow parabolic trajectories, and that the result 
found here is quite possible. 

3.63. THINK:  If an object is moving in a reference frame that is in motion, then to a stationary observer the 
object moves at a sum of the velocities. l = 59.1 m, w 1.77 m/sv =  and p 2.35 m/s.v =  

SKETCH:  

 
 RESEARCH: f i xx x v t− =  

       SIMPLIFY:  
w p

lt
v v

=
+

 

 CALCULATE:  
59.1 m 14.345 s

2.35 m/s 1.77 m/s
t = =

+
 

 ROUND:  Rounding to three significant figures, 14.3 s.t =  
 DOUBLE-CHECK: Given the long length of the walkway and the slow speed, a large time is reasonable. 

3.64. THINK:  If the captain wants to get directly across the river, he must angle the boat so that the component 
of the boat’s velocity that counters the river is the same in magnitude and opposite in direction. 

w 1.00 m/sv =  and B 6.10 m/s.v =  
 SKETCH:  

 
 RESEARCH:  ˆ ˆ

x yv v x v y= +


;  B wxv v− =
 

;  sinxv vθ= ;  and cos .yv vθ=  

       SIMPLIFY:  1 w
B w

B

sin   sin
v

vθ v θ
v

−  
− = ⇒ =  

 

 

 

 CALCULATE:  1 1.00 m/ssin 9.4353
6.10 m/s

θ −
 

= = °  
 

 

 ROUND:  Round to three significant figures, as the boat must travel at 9.44°  west of north. 
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 DOUBLE-CHECK:  Since the velocity of the water is small compared to the boat’s velocity, a small angle 
is expected. 

3.65. THINK:  If the captain wants to get directly across the river, he must angle the boat so that the component 
of the boat’s velocity that counters the river is the same in magnitude and opposite in direction. 315θ = °  
and B 5.57 m/s.v =  

 SKETCH:  

 
 RESEARCH:  ˆ ˆ

x yv v x v y= +


;  B wxv v− =
 

;  sinxv vθ= ;  and cos .yv vθ=  

       SIMPLIFY:  w B sinv vθ= −
 

 

 CALCULATE:  ( ) ( )w 5.57 m/s sin 315 3.9386 m/sv = ° =  

 ROUND:  Three significant figures: The river is flowing at 3.94 m/s. 
 DOUBLE-CHECK: Given the large angle that the boat makes with the river, it is reasonable that the water 

has this large velocity. 

3.66. THINK:  The components of the velocity vectors of the wind and the plane can be summed to determine a 
resultant vector of the plane’s velocity with respect to the ground. If the pilot wants to travel directly east, 
the plane must travel in a direction such that the component of plane’s velocity in the wind’s direction is 
equal in magnitude to the wind speed. p 350. km/hv =  and w 40.0 km/h.v =  

SKETCH:  

 

 RESEARCH:  ˆ ˆ
x yv v x v y= +



;  2 2
x yv v v= +



;  tan y

x

v
θ

v
 

=   
 

;  and sin .y

h

v
θ

v
 

=   
 

 

       SIMPLIFY:  2 2
R p w p w

ˆ ˆ   v v x v y v v v= + ⇒ = +


 ;  1 w
1

p

tan
v

θ
v

−
 

=   
 

;  and 1 w
2

p

sin .
v

θ
v

−
 

=   
 

 

 
 

 CALCULATE:   ( ) ( )2 2
350. km/h 40.0 km/h 352.28 km/hv = + =



 

  1
1

40.0 km/htan 6.5198
350.km/h

θ −
 

= = °  
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  1
2

40.0 km/hsin 6.5624
350. km/h

θ −  
= = ° 

 
 

 ROUND:  The plane has a velocity of 352 km/h at 6.52°  north of east.  To travel directly east, the plane 
must travel 6.56°  south of east. 

 DOUBLE-CHECK: Given the small wind speed relative to the plane’s speed, small angles are expected. 

3.67. THINK:  If the boaters want to travel directly over to the other side, they must angle the boat so that the 
component of the boat’s velocity that counters the river is equal in magnitude. The time it takes to get over 
will then be based solely on the velocity perpendicular to the river flow. The minimum time to cross the 
river is when the boat is pointed exactly at the other side. Also, as long as the boat’s velocity component is 
countering the river, any velocity in the perpendicular direction will get the boat across the river:  l = 127 
m, B 17.5 m/s,v =  and R 5.33 m/s.v =  
SKETCH:   

 

RESEARCH:  ˆ ˆ
x yv v x v y= +



;  B Ryv v= − ;  sinxv vθ= ;  cosyv vθ= ;  f i xx x v t− = ∆ ;  tan
y

xv
θ

v

 
=   
 

;  and 

cos .yv
v

θ
 

=  
 

In part (e), the minimum speed, technically an infimum,  will be when the angle θ is 

arbitrarily close to 0, and the component of the velocity directly across the stream is arbitrarily close to 0. 
 
SIMPLIFY:  

 (a) 1 R
B R B B

B

  cos   cosy y

v
v v vθ v θ

v
−  

= ⇒ = ⇒ =  
 

 

 (b) ( )B
B

sin   
sin
ll vθ t t

vθ
= ⇒ =  

 (c) min 90θ = °  

 (d) min
B minsin

lt
vθ

=  

 (e) Rv v≈ −
 

 
CALCULATE:  

 (a) 1 5.33 m/scos 72.27
17.5 m/s

θ −
 

= = °  
 

 

 (b) 
( ) ( )

127 m 7.619 s
17.5 m/s sin 72.27

t = =
°

 

 (c) 90θ = °  

 (d) min

127 m
7.257 s

17.5 m/s
t = =  
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 (e) 5.33 m/sv =   
ROUND:  

 (a) 72.3θ = °  
 (b) t = 7.62 s 
 (c) 90θ = °  
 (d) 7.26 st =  
 (e)  v = 5.33 m/s 

DOUBLE-CHECK:  Given the width of the river and the velocities, these answers are reasonable. 

3.68. THINK:  When the girl walks in the same direction as the walkway, her velocity relative to the terminal is 
the sum of her velocity relative to the walkway and the velocity of the walkway relative to the terminal.  
When she walks in the opposite direction, her velocity relative to the terminal is the difference between her 
velocity relative to the walkway and the velocity of the walkway relative to the terminal.  l = 42.5 m, 

1 15.2 st =  and 2 70.8 s.t =  
SKETCH:   

 
RESEARCH: f i xx x v t− = ∆  

SIMPLIFY:    x x
ll v t v
t

= ∆ ⇒ = ;  G w
1

lv v
t

+ = ;  and G w
2

.lv v
t

− =  

w G G G G
1 2 1 2 1 2

1 1 1 1  2   
2

l l lv v v l v v
t t t t t t

   
= − = − ⇒ + = ⇒ = +   

   
 

Therefore,  

w
1 1 2 1 2

1 1 1 1 .
2 2

l l lv
t t t t t

   
= − + = −   

   
 

CALCULATE: G
42.5 m 1 1 1.698 m/s,

2 15.2 s 70.8 s
v  

= + = 
 

 w
42.5 m 1 1 1.0979 m/s

2 15.2 s 70.8 s
v  

= − = 
 

 

 ROUND:  Rounding to three significant figures, w 1.70 m/sv =  and G 1.10 m/s.v =  
DOUBLE-CHECK:  The velocities are small, which makes sense for a walkway. 

3.69. THINK:  Since the wind and plane velocities are vectors, simply add the components of the two vectors to 
determine the resultant vector.  Southwest is 45°  South of West. p 126.2 m/sv = , w 55.5 m/sv =  and 

45θ = °.   
SKETCH:   

 
RESEARCH:  ˆ ˆ

x yv v x v y= +


;  cosxv vθ= ;  sinyv vθ= ;  and 2 2 .x yv v v= +
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 SIMPLIFY:  w w cosxv vθ=  and w w sin .yv vθ=   Therefore, ( ) ( )w p w
ˆ ˆcos sinv vθ x v v θ y= − + −



 and 

( ) ( )22

w p wcos sin .v vθ v v θ= − + −


 

CALCULATE: ( )( ) ( )( )2 2
55.5 m/scos 45.0 126.2 m/s 55.5 m/ssin 45.0 95.401 m/sv = − ° + − ° =



  

 ROUND:  Rounding to three significant figures, 95.4 m/s.v =


  

 DOUBLE-CHECK:  Given that the wind is blowing against the plane, the magnitude of the resultant 
velocity should be less than the plane’s speed.  

3.70. THINK: The horizontal velocity is constant. Determine the vertical velocity as it hits the ground and then 
determine the overall velocity. Mass is irrelevant. i 116.7 my = , 22.7θ = ° , i 36.1 m/sv =  and 

29.81 m/s .g =   
SKETCH:   

 

RESEARCH:  2 2
f i 2v v ad= + ;  cosxv vθ= ;  sinyv vθ= ;  i fx xv v= ;  and 2 2 .x yv v v= +



 

SIMPLIFY:  cosfx iv vθ=  and ( ) ( ) ( )2 22
f i f i i isin 2 sin 2 .yv vθ g y y v θ gy= − − = +  Also,  

2 2 2 2 2
f i i i i isin 2 cos 2 .v vθ gy v θ v gy= + + = +


 

CALCULATE:  ( ) ( )( )2 2
f 36.1 m/s 2 9.81 m/s 116.7 m 59.941 m/sv = + =


  

ROUND:  Rounding to three significant figures, f 59.9 m/s.v =  
DOUBLE-CHECK:  The final velocity is greater than the initial velocity, which makes sense.  

3.71. THINK:  The horizontal velocity remains unchanged at any point. i 31.1 m/sv =  and 33.4 .θ = °  
SKETCH:   

 
 

RESEARCH:  i f i cosx xv v vθ= =   
SIMPLIFY:  i cosxv vθ=   

CALCULATE:  ( ) ( )31.1 m/s cos 33.4 25.964 m/sxv = ° =  
ROUND:  Rounding to three significant figures, 26.0 m/s.xv =   
DOUBLE-CHECK:  The result is smaller than the initial velocity, which makes sense.  
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3.72. THINK:  Determine an equation that relates the height of the object being launched to how far 
horizontally it travels. 10.1 m/sxv = , d = 57.1 m and 29.81 m/s .g =  
SKETCH:   

 

RESEARCH:  f ixv t x x= − ;  2
f i i

1
2yy y v t at− = + ;  and i i sin .yv vθ=  

SIMPLIFY:    x
x

dd v t t
v

= ⇒ =  and 
2

2
2

10   .
2 2 x

gd
h gt h

v
− = − ⇒ =   

CALCULATE:  
( )( )

( )

22

2

9.81 m/s 57.1 m
156.77 m

2 10.1 m/s
h = =   

ROUND:  Rounding to three significant figures, h = 157 m. 
DOUBLE-CHECK:  Given the velocity and distance, this height is reasonable. 

3.73. THINK:  If rain is falling straight down, to someone moving it would appear as if the rain was heading 
towards said person. c 19.3 m/sv =  and R 8.9 m/s.v =   
SKETCH:   

 

RESEARCH:  tan y

x

v
θ

v
 

=   
 

 

  SIMPLIFY:  1 R

c

tan
v

θ
v

−  
=  

 
 

CALCULATE:  1 8.9 m/stan 24.756
19.3 m/s

θ −  
= = ° 

 
 

ROUND:  Rounding to two significant figures for angles gives the rain an angle of 25°  with the 
horizontal.  
DOUBLE-CHECK:  The car is moving faster than the rain so this angle is reasonable. 
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3.74. THINK:  Since both shakers leave the table with no initial vertical velocity, it should take both the same 
amount of time to hit the ground.  h = 0.85 m, p 2.5 m/sv = , s 5 m/sv =  and 29.81 m/s .g =  
SKETCH:   

 
RESEARCH:  (a) The ratio of the times is 1:1 since the times are the same.  (b) The ratio of the distances 
will be the ratio of the speeds.  
SIMPLIFY:  
(a) Not necessary. 

 (b) p s p s: :d d v v=  

 CALCULATE:  
 (a)  1:1 
 (b)  p s p s: : 2.5 m/s : 5 m/s 1:2d d v v= = =   

 ROUND: Rounding is not necessary. 
 DOUBLE-CHECK:  Since the horizontal component of the velocity is constant, and the initial horizontal 

velocity of the salt shaker is double that of the pepper shaker, it makes sense that the salt shaker travels 
twice as far as the pepper shaker. 

3.75. THINK:  Assuming the box has no parachute, at the time of drop it will have the same horizontal velocity 
as the velocity of the helicopter, H ,v



 and this will remain constant throughout the fall. The initial vertical 
velocity is zero.  The vertical component of the velocity will increase due to the acceleration of gravity.  
The final speed of the box at impact can be found from the horizontal and final vertical velocity of the box 
just before impact. h = 500. m, d = 150. m, and 29.81 m/s .g =   
SKETCH:   

 

RESEARCH:  To find the speed of the helicopter we use: 2
f i i

1
2yy y v t at− = +  and f i .xx x v t− =  To find 

the final speed of the box use fy iyv v at= +  as the vertical component, the helicopter speed as the 
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horizontal component, and 2 2
y xv v v= +

  to find the final speed of the box when it hits the ground.  

SIMPLIFY:  21 20   
2

hh gt t
g

− = − ⇒ =  and so H .
2x

gdv v d
t h

= = =   

( ) [ ]( )
2

2
22 2 and so 2 2 / 2

2y
ghv gt g gh v gh d g h d h

g h
 

= − = − = − = − + = +  
 



 

CALCULATE:  ( ) ( )
2

H
9.81 m/s150. m 14.857 m/s
2 500. m

v = =  

( )2 29.81 m/s 2(500. m) (150. m) / 2(500. m) 100.15 m/sv  = + =   

ROUND:  H 14.9 m/sv =  and 100. m/s.v =


  
DOUBLE-CHECK:  The helicopter velocity is equivalent to about 50 km/h and the speed that the box has 
when it hits the ground is equivalent to about 360 km/h.  Both are reasonable values. 

3.76. THINK:  Ignoring air resistance, the horizontal velocity remains constant. Assume the car had no initial 
vertical velocity when it went over the cliff. d = 150. m, h = 60.0 m, 29.81 m/s .g =  
SKETCH:   

 

RESEARCH: f i xx x v t− =  and 2
f i i

1 .
2yy y v t at− = +   

SIMPLIFY:    x x
dd v t v
t

= ⇒ =  and 21 20   .
2

hh gt t
g

− = − ⇒ =  Therefore, .
2x

g
v d

h
=  

CALCULATE:  ( ) ( )
29.81 m/s150. m 42.888 m/s

2 60.0 mxv = =   

ROUND:  42.9 m/sxv =  
DOUBLE-CHECK: The vertical distance is smaller than the horizontal distance, so the car must have been 
going fast.  

3.77. THINK:  The initial horizontal velocity must be used to determine the time of flight, then this time can be 
used to determine the initial vertical velocity. i 3.90 m/sxv = , d = 30.0 m, 29.81 m/s .g =   
SKETCH:   
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RESEARCH: f i xx x v t− = ;  2
f i i

1
2yy y v t at− = + ;  i i sinyv vθ= ;  and i i cos .xv vθ=   

SIMPLIFY:    x
x

dd v t t
v

= ⇒ =  and so 2
i i

1 10   .
2 2 2y y

x

gd
v t gt v gt

v
= − ⇒ = =   

Also, i i1

i i

tan   tan .y y

x x

v v
θ θ

v v
−  

= ⇒ =   
 

 

CALCULATE:  
( )( )

( )

2

i

9.81 m/s 30.0 m
37.73 m/s,

2 3.90 m/syv = =   1 37.73 m/stan 84.10
3.90 m/s

θ −  
= = ° 

 
 

ROUND: The vertical velocity is 37.7 m/s and the launch angle is 84.1 .°  
DOUBLE-CHECK:  The exam bundle has a small horizontal velocity but travels 30 m, so the vertical 
velocity and launch angle must be large to allow the bundle to remain in the air longer. 

3.78. THINK:  Determine the initial speed of the jump 0 .v  The height of the waterfall is h = 1.05 m. The time 
taken for the jump is t = 2.1 s. The initial launch angle is 0 35 .θ = °  
SKETCH:   

 
 

RESEARCH:  Assuming an ideal parabolic trajectory, the kinematic equation for the vertical direction, 

0

21
2yy v t gt∆ = −  can be used to solve for 0 .v  

SIMPLIFY:  
0

21
2yy v t gt∆ = −   and  

2

2
0 0

1
1 2sin   .
2 sin

h gt
h vθ t gt v

θ t0
0

+
= − ⇒ =   

CALCULATE:  
( )( )
( )( )

22

0

11.05 m 9.81 m/s 2.1 s 1.05 m 21.63 m2 18.83 m/s
1.2045 ssin 35 2.1 s

v
+ +

= = =
°

 

ROUND:  There are two significant figures in both the sum in the numerator and the product in the 
denominator of the equation for 0v , so 0v = 19 m/s. 
DOUBLE-CHECK:  Salmon migrate great distances (hundreds of kilometers) up rivers to spawn, and 
must overcome large obstacles to do so; this is a fast but reasonable speed for a salmon to exert on its 
journey. 

3.79. THINK:  Determine which floor of the building the water strikes (each floor is f 4.00 mh =  high). The 
horizontal distance between the firefighter and the building is 60.0 m.x∆ =  The initial angle of the water 
stream is 0 37.0 .θ = °  The initial speed is 0 40.3 m/s.v =   
SKETCH:   
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RESEARCH:  To determine which floor the water strikes, the vertical displacement of the water with 
respect to the ground must be determined. The trajectory equation can be used, assuming ideal parabolic 
motion: 

( ) ( )2

0 2 2
0 0

tan .
2 cos

g x
yθ x

vθ

∆
∆ = ∆ −  

The floor, at which the water strikes, n, is the total vertical displacement of the water divided by the height 
of each floor: 

f

.
y

n
h
∆

=  

SIMPLIFY:  ( ) ( )2

0 2 2
f f 0 0

1 tan
2 cos

g xy
nθ x

h h vθ

 ∆∆  = = ∆ −
  

  

CALCULATE:  ( )( ) ( )( )
( ) ( )

22

2 2

9.81 m/s 60 m1 tan 37 60 m 7.042
4 m 2 40.3 m/s cos 37

n
 
 = ° − =
 ° 

 

ROUND:  n = 7.042 floors above ground level (where n = 0) corresponds to ankle height on the 8th floor.  

DOUBLE-CHECK:  It is reasonable to expect the water from a high-pressure fire hose to reach the 8th 
floor of a building. Also, the answer is unitless, as it should be.   

3.80. THINK:  For a projectile, the launch angle is 0 68 .θ = °  In time t, it achieves a maximum height y = H and 
travels a horizontal distance .x d∆ =  Assume 0 0.y =  Determine / .H d  
SKETCH:   

 
RESEARCH:  Assuming ideal parabolic motion, the maximum height equation can be used, 

0

2

0 .
2

yv
H y

g
= +  

Note that at the maximum height, the horizontal distance traveled is half of the total range. That is, 

/ 2d R=  and thus, 
2

0 0sin2
.

vθ
R

g
=   

SIMPLIFY:  
( )

( )
0

2 2 2 2 2 2
0 0 0 0 0 0 0 0

02
0 0 00

0

/ 2 sin sin sin sin sin 1 tan
/ 2 2 / 2 sin2 2sin cos 2

sin2

yy v g vθ v θ θ θ θH θ
d R g Rθ θ θ vgθ

g

+
= = = = = =

 
 
 

 

CALCULATE:  1 tan68 1.2375
2

H
d
= ° =  

ROUND:  The launch has two significant figures, so / 1.2.H d =  
DOUBLE-CHECK:  The ratio shows that the maximum height is 1.2 times the horizontal distance 
achieved in the same period of time. For such a steep launch angle, it is reasonable to expect H > d. 



Bauer/Westfall: University Physics, 2E 

  144 

3.81. THINK:  The time it takes Robert to cover the distance of the walkway is R 30.0 s.t =  John’s time is 

J 13.0 s.t =  Kathy walks on the walkway at the same speed as Robert, K R .v v=  Determine the time, Kt , 
that it takes Kathy to cover the distance of the walkway. Take the distance of the walkway to be .x∆  
SKETCH:   

 
RESEARCH:  Kathy’s velocity relative to the airport reference frame, Kav , is the sum of the walkway 
velocity, wav , and her velocity relative to the walkway, Kw .v  wav  is actually John’s velocity relative to the 
airport reference frame, Jav , and Kwv  is Robert’s velocity relative to the airport, Rav . So, 

Ka wa Kwv v v= + ; wa Jav v= ; and Kw Ra .v v=  The constant velocity equation /v x t= ∆  can be used to find K .t  

SIMPLIFY:  Ka
K

xv
t
∆

= , or Ka wa Kw Ja Ra
J R

.x xv v v v v
t t
∆ ∆

= + = + = +  
K J R

x x x
t t t
∆ ∆ ∆

= +  and 
1

K
J R

1 1 .t
t t

−
 

= +  
 

 

CALCULATE:  
1

K
1 1 9.0698 s

13.0 s 30.0 s
t

−
 

= + = 
 

 

ROUND: Each time given has three significant figures, so K 9.07 s.t =   
DOUBLE-CHECK:  Kathy’s time should be the fastest.  

3.82. THINK:  The rain speed is 7.00 m/syv =  downward. The car speed is  

c
1 h 1000m60.0 km 16.67 m/s.

3600 s 1 km1 h
v    = =      

 

Relative to the car, the rain has a horizontal speed of rc 16.67 m/sv =  directed towards the car. Determine 
the angle, θ , from the vertical at which the rain appears to be falling relative to the traveling car. 
SKETCH:  In the reference frame of the car: 

 
RESEARCH:  The x and y components of the velocity of the rain, relative to the traveling car are known. 
These components make a right-triangle (shown above), such that rctan / .yθ v v=  
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SIMPLIFY:  1 rctan
y

v
θ

v
−
 

=   
 

 

CALCULATE:  1 16.67 m/stan 67.22
7.00 m/s

θ −  
= = ° 

 
  

ROUND:  67.2θ = °  from the vertical.  
DOUBLE-CHECK:  This angle is less than 90°  so it is reasonable that the rain is falling at such an angle.  

3.83. THINK:  Determine g when the range is R = 2165 m, 0 50.0 m/sv =  and 0 30.0θ = °.   
SKETCH:   

 
RESEARCH:  Since the initial and final heights are equal, the range equation can be used:  

( )2
0 0sin 2

.
vθ

R
g

=  

SIMPLIFY:  
( )2

0 0sin 2vθ
g

R
=  

CALCULATE:  
( ) ( )( )2

2
50.0 m/s sin 2 30.0

1.00003 m/s
2165 m

g
°

= =  

ROUND:  21.00 m/sg =  
DOUBLE-CHECK:  The units of the calculated g are correct. 

3.84. THINK:  The height is 0 40.0 m.y =  The horizontal distance is 7.00 m.x∆ =  Determine the minimum 
initial horizontal speed 

0
.xv  Assume the diver does not jump up, but rather out (

0
0yv = ). 

SKETCH:   

 
RESEARCH:  If 

0
0yv =  for the diver, the initial angle is also 0 0.θ =  The trajectory equation can be used, 

( ) ( )
0

2

0 0 2tan .
2 x

g x
y yθ x

v

∆
= + ∆ −
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SIMPLIFY:  Taking y = 0 (the base of the cliff),  

( )
( )

( ) ( )
0

00

2 2 2

0 02 2
0

0     .
222

x
xx

g x g x g x
y y v

yvv

∆ ∆ ∆
= − ⇒ = ⇒ =  

CALCULATE:  
( )( )

( )0

229.81 m/s 7.00 m
2.451 m/s

2 40.0 mxv = =  

ROUND:  
0

2.45 m/sxv =  

DOUBLE-CHECK:  This is a reasonable velocity for a person to achieve at the start of their dive (i.e. a 
running start). 

3.85. THINK:  The initial velocity is 0 32.0 m/sv = , the launch angle is 0 23.0θ = °  and the initial height is 

0 1.83 m.y =  Determine the travel time t for the ball before it hits the ground at y = 0. 
SKETCH:   

 
RESEARCH:  Assuming an ideal parabolic trajectory, the kinematic equation can be used for the vertical 

displacement, ( ) ( ) 2
0 0 0sin .1/ 2y y vθ t gt− = −  

SIMPLIFY:  ( ) ( )2 2
0 0 0 0 0 0

1 1sin   sin 0
2 2

y y vθ t gt gt v θ t y y− = − ⇒ − + − =  

Solve for t using the quadratic formula: 

( ) ( ) ( ) ( )( )
2

20 0 0 0 0
0 0 0 0 0

1sin sin 4 sin sin 22
12
2

vθ v θ g y y vθ v θ g y y
t

gg

 ± − −  ± + − = =
 
 
 

 

CALCULATE:  
( ) ( ) ( ) ( )( ) ( )( )( )2 2

2

2 2 2 2

2

32 m/s sin 23 32 m/s sin 23 2 9.81 m/s 1.83 m 0

9.81 m/s
12.5034 m/s 156.33 m /s 35.90 m /s

9.81 m/s
2.6879 s or 0.1388 s

t
° ± ° + −

=

± +
=

= −

 

ROUND:  Round to three significant figures. Then, t = 2.69 s (choosing the positive solution). 
DOUBLE-CHECK:  The units of the result are units of time. This seems to be a reasonable flight time for 
a thrown baseball. 

3.86. THINK:  For the rock, the initial height is 0 34.9 my = , the initial speed is 0 29.3 m/sv =  and the launch 
angle is 0 29.9θ = °.  Determine the speed of the rock, v, when it hits the ground at the bottom of the cliff, 

0.y =   
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SKETCH:   

 
 RESEARCH:  Assuming an ideal parabolic trajectory, when the rock descends to the height of the cliff 

after reaching its maximum height, it has the same vertical speed as it was launched with, only directed 
downward. That is, 

0
'y yv v= − , where 'yv  occurs on the trajectory at the vertical position 0 .y  In addition, 

0 0 0sin .yv vθ=  Since, due to gravity, the speed changes only in the vertical direction, the constant 

acceleration equation, ( )
0

2 2
02y y yv v a y y= + − , can be used to determine the vertical speed at the bottom 

of the cliff. As the horizontal speed xv  remains constant ( )0 0 0cosx xv v vθ= = , the speed at the bottom is 
2 2 .x yv v v= +   

 SIMPLIFY:  Take the initial vertical speed to be '.yv  Then  

( ) ( ) ( )2 22 2
0 0 0 0' 2g   sin 2gyy yvv y v vθ y= − − ⇒ = − +  

Also, 0 0cos .xv vθ=  Then,  

( ) ( ) ( )2 22 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0cos sin 2g cos sin 2g 2g .x yv v v vθ v θ y v θ θ y v y= + = + − + = + + = +  

CALCULATE:  ( ) ( )2 2 2 2 2 2

2 2

29.3 m/s 2 9.81 m/s 34.9 m 858.49 m /s 684.74 m /s

1543.2 m /s 39.284 m/s

v = + = +

= =

 

ROUND: The sum in the square root is precise to the ones-place and therefore has four significant figures. 
Thus, 39.28 m/s.v =  
DOUBLE-CHECK:  This velocity is greater than 0 .v  It should be, given the acceleration in the vertical 
direction due to gravity. 

3.87. THINK:  For the shot-put, the initial speed is 0 13.0 m/sv = , the launch angle is 0 43.0θ = °  and the initial 
height is 0 2.00 m.y =  Determine (a) the horizontal displacement x∆  and (b) the flight time t, after the 
shot hits the ground at y = 0.  
SKETCH:   
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RESEARCH:  Assuming ideal parabolic motion, find (a) x∆  from the trajectory equation: 

( )2

0 0 2 2
0 0

tan
2 cos

g x
y yθ x

vθ

∆
= + ∆ −  

and (b) t from the equation 0 0cos .x vθ t∆ =  
 SIMPLIFY:  

 (a) With y = 0, ( ) ( )2

002 2
0 0

0.tan
2 cos

g
x x yθ

vθ
∆ − ∆ − =  Solving this quadratic equation yields: 

( )2
0 0 02 2 2 2

0 0 2 0 0 0
0 0 2 2

0 0
2 2

0 0

tan tan 4
2 cos 2 cos

tan tan .
cos

2
2 cos

gθ θ y
vθ gy vθ

xθ θ
gvθg

vθ

 
± − −         ∆ = = ± +               

 

 

 (b) 
0 0cos

xt
vθ
∆

=  

  
 CALCULATE:  

(a) ( ) ( ) ( )( )
( ) ( )

( )

( )( )

( )( )

22 2
2

2 22

2 9.81 m/s 2 m 13.0 m/s cos 43
tan 43 tan 43

9.81 m/s13.0 m/s cos 43

0.9325 0.8696 0.4341 9.2145 m

0.9325 1.3037 9.2145 m

19.114 m or 1.928 m

x
    °    ∆ = ° ± ° +    °    

= ± +

= ±

= −

 

 (b) 
( ) ( )

19.114 m 2.0104 s
13.0 m/s cos 43

t = =
°

 

ROUND:  
(a) The sum under the square root is precise to the tenth-place, and so has three significant figures. Then, 

19.1 mx∆ =  (take the positive root). 
 (b) Since 0θ  and x∆  have three significant figures, t = 2.01 s.  
 DOUBLE-CHECK:  For near optimal launch angle (optimal being 0 45θ = ° ), a horizontal displacement of 

19.1 m is reasonable. The flight time of 2.0 s is reasonable for this horizontal displacement. 

3.88. THINK:  For the phone, the initial height is 0 71.8 my = , the launch angle is 0 0θ = °  and the initial speed 
is 0 23.7 m/s.v =  Determine (a) the horizontal distance x∆  and (b) the final speed v upon hitting the 
water at y = 0. Note: 

0
0.yv =  

SKETCH:   
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RESEARCH:  Assuming ideal parabolic motion, 

(a) x∆  can be determined from the trajectory equation, 
2

0 0 2 2
0 0

tan .
2 cos

g x
y yθ x

vθ
∆

= + ∆ −  

(b) 2 2 .x yv v v= +


xv  does not change, as there is no horizontal acceleration; 
0 0 0cos .x xv v vθ= =  Since 

the vertical kinematics are governed by free-fall under gravity, to find yv  use ( )
0

2 2
02 .y yv v g y y= − −  

SIMPLIFY:  
(a) With y = 0, the trajectory equation becomes  

2

0 02 2
0 0

tan 0.
2 cos

g x
θ x y

vθ
∆

− ∆ − =  

With 0 0θ = ° , this equation reduces to 
2

02
0

g
0.

2
x

y
v
∆

− =  Thus, 
2

0 02
.

v y
x

g
∆ =  

 (b) 0 .xv v=  Since 
0

0yv =  and y = 0, 2
02g .yv y=  Then, 2

0 02g .v v y= +


 

  
 CALCULATE:  

 (a) 
( ) ( )2

2

2 23.7 m/s 71.8 m
90.676 m

9.81 m/s
x∆ = =  

 (b) ( ) ( )( )2 2 2 2 2 223.7 m/s 2 9.81 m/s 71.8 m 561.69 m /s 1408.716 m /s 44.389 m/sv = + = + =


 

ROUND:  
 (a) All the values used in the product have three significant figures, so 90.7 m.x∆ =   
 (b) The sum under the square root is precise to the tens-place, and has three significant figures, so  

v = 44.4 m/s. 
 DOUBLE-CHECK:  The horizontal displacement is close to the height; this is reasonable for an object 

thrown from the given height. The final speed is greater than the initial speed, as it should be. 

3.89. THINK:  For the burglar, the initial speed is 0 4.20 m/sv =  and the angle is 0 0θ = °.  Determine if the 
burglar can make it to the next roof, which is a horizontal distance of 5.50 m away and a vertical distance 
of 4.00 m lower.  
SKETCH:   

 
RESEARCH:  There are two ways to approach this problem. Firstly, the vertical displacement can be 
determined when the horizontal displacement is 5.50 m.x∆ =  If the magnitude of y∆  is less than 4.0 m, 
the burglar will reach the next rooftop. Secondly, the horizontal displacement x∆  can be determined 
when the vertical displacement is 4.00 m.y∆ = −  For this solution, y∆  will be determined. The trajectory 
equation for ideal parabolic motion can be used:  

2

0 0 2 2
0 0

tan .
2 cos

g x
y y x

v
θ

θ
∆

= + ∆ −  
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  SIMPLIFY:  With 0 0θ = °,  
2

2
0

.
2
g x

y
v
∆

= −  

CALCULATE: 
( )( )

( )

22

2

9.81 m/s 5.5 m
8.4114 m

2 4.2 m/s
y = − = −  

 ROUND:  The values used in the product have three significant figures, so 8.41 m.y = −  This means that 
after the burglar reaches a horizontal displacement of 5.50 m, he has dropped 8.41 m from the first rooftop 
and cannot reach the second rooftop. 

 DOUBLE-CHECK:  The alternate method listed above also reveals that the burglar will not reach the 
second rooftop. 

3.90. THINK: The initial vertical speed of the package is 
0

7.50 m/s.yv =  Its horizontal speed is 

0
4.70 m/sx xv v= =  and the initial height is 0 80.0 m.y =  Determine (a) the fall time, t, to the ground, y = 0 

and (b) the magnitude and direction of the velocity upon impact.  
SKETCH:   

 
RESEARCH:   

(a)  To determine t, use the equation ( )
0

2
0 / 2.yy y v t gt− = −  

(b) The speed v is given by 2 2 .x yv v v= +  xv  remains constant. To determine ,yv  use the constant 

acceleration equation, 
0

2 2 2 .y yv v a y= + ∆  To determine the direction, note that tan /y xv vθ = , where θ  is 
above the horizontal.  
SIMPLIFY:   

(a) With 0,y =  
0 0

2 2

0 0  0.
2 2y y

gt gt
y v t v t y− = − ⇒ − − =  Solving the quadratic gives: 

( )
0 0

0 0

2
20

0
4 22

.
2

2

y y
y y

gv v y v v gy
t

g g

 ± − −  ± + = =
 
 
 

 

 (b)  ( )
0 0

2 2 2
0 02 2 .y y yv v g y y v gy= − − = +  Then, 2 2

0 02 ,x yv v v gy= + +  and 

0

2
01 1

2
tan tan ,

yy

x x

v gyv
v v

θ − −
 − +   = =      

 

where theta is measured with respect to the +x-axis and therefore comes out negative. 
CALCULATE:   

(a) 
( ) ( )( )2 2

2

7.50 m/s 7.50 m/s 2 9.81 m/s 80.0 m
4.875 s   or  3.346 s

9.81 m/s
t

± +
= = −  
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(b) ( ) ( ) ( )( )2 2 24.70 m/s 7.50 m/s 2 9.81 m/s 80.0 m 40.59 m/sv = + + =  

( ) ( )( )
( )

2 2

1
7.50 m/s 2 9.81 m/s 80.0 m

tan 83.35
4.70 m/s

θ −

 − + 
= = − ° 

 
 

  

ROUND:  t = 4.88 s and 83.4 .θ = − °  
DOUBLE-CHECK:  A five second fall is reasonable for such a height. The final speed is greater than the 

initial speed 
0 0

2 2
0 8.9 m/s.x yv v v= + =  The impact angle is almost − 90° , as it should be since yv  is 

much greater than xv  after the fall.  

3.91. THINK:  The height of the goose is 30.0 m.gh =  The height of the windshield is c 1.00 m.h =  The speed 

of the goose is 15.0 m/s.gv =  The speed of the car is  

c
100.0 km 1 h 1000 m 27.7778 m/s.

1 hr 3600 s 1 km
v = ⋅ ⋅ =  

The initial horizontal distance between the goose and the car is d = 104.0 m. The goose and the car move 
toward each other. Determine if (a) the egg hits the windshield and (b) the relative velocity of the egg with 
respect to the windshield, '.gv Let θ be the angle the egg makes with the horizontal when it impacts. 

 SKETCH:   

 
 RESEARCH:  
 (a) The egg must have a vertical displacement cg gy h h∆ = −  to hit the windshield. Use 

( ) ( )2
0 0

1sin
2gy v t gtθ∆ = −  to determine the fall time t. Use ( )0 0cosgx v tθ∆ =  to determine the horizontal 

displacement of the egg. In order for the egg to collide with the windshield, the car must travel 

c gx d x∆ = −∆  in time t. Use x vt∆ =  to determine the car’s travel distance cx∆ . Note that the launch 

angle of the egg is 0 0 .θ = °  
 (b) The horizontal component of the egg’s speed in the reference frame of the windshield will be 

c'gx gxv v v= +  because the car is moving toward the egg in the horizontal direction. Because the car has no 

vertical speed, the vertical speed of the egg in the reference frame of the car is unchanged, ' .gy gyv v=  To 

determine gyv , use 
0

2 2 2 .y yv v a y= + ∆  Then ( ) ( )2 2' '' .gx gyg v vv = + The angle of impact is implicitly given 

by tan .gy

gx

v
v

θ
′

=
′

 

  
 
 



Bauer/Westfall: University Physics, 2E 

  152 

 SIMPLIFY:  
 (a) Since 0 0θ = °  and 0 gv v= , 

0 0sin 0gy gv v θ= =  and 
0 0cos .gx g gv v vθ= =  Then  

( )g c2 2
c

21 1    ,
2 2g g

h h
y gt h h gt t

g

−
∆ = − ⇒ − = − ⇒ =  

 and also 
( )c2

.
g

g g g

h h
x v t v

g

−
∆ = =  In this time, the car travels 

( )c
c c c

2
.

gh h
x v t v

g

−
∆ = =   

 (b) c c'gx gx gv v v v v= + = +  and  ( )c' 2 2 .gy gy g gv v g y g h h= = ∆ = −   Then, substituting gives: 

( ) ( )2

c c' 2 .g g gv v v g h h= + + −  The angle of impact relative to the car is given by the equation:  

( )c2
arctan arctan .

g

g

gy

gx c

g h hv
v v v

θ
 − ′  = =    ′ +    

 

 CALCULATE:  

 (a)  ( ) ( )
c 2

2 30.0 m 1.00 m
27.778 m/s 67.542 m

9.81 m/s
x

−
∆ = =  

  
( )

( ) ( ) ( )c

2

2 2 30.0 m 1.00 m
104.0 m 15.0 m/s 67.527 m

9.81 m/s
g

g g

h h
d x d v

g

− −
− ∆ = − = − =  

 (b)  ( ) ( )( )

( )( )

2

2

2 2 2' 15.0 m/s 27.7778 m/s 2 9.81 m/s 30.0 m 1.00 m 2398.94 m /s 48.98 m/s

2 9.81 m/s 30.0 m 1.00 m
arctan 29.144

15.0 m/s 27.7778 m/s

gv

θ

= + + − = =

 − = = ° + 
 

  

 ROUND:  Rounding to three significant figures, cx∆ = 67.5 m and 67.5 m.gd x− ∆ =  The egg hits the 
windshield at a speed of 49.0 m/s relative to the windshield at an angle of °29.1 above the horizontal. 

 DOUBLE-CHECK:  The speed of the egg relative to the windshield is greater than the speed of the car and 
the goose. 

3.92. THINK:  The initial speed of the ice cream is i0 0.400 m/sv =  and the escalator angle is e 40.0 .θ = °  The ice 

cream launch angle is i eθ θ= −  (below the horizontal) and the initial height of the ice cream is 

i0 10.0 m.y =  The initial height of the professor’s head is p0 1.80 m,y =  the professor’s speed is 

p 0.400 m/s,v =  and the professor’s direction is p e.θ θ=  If the ice cream lands on the professor’s head then 

the kinematic equations can be used to determine the ice cream flight time t, the final vertical position of 
the ice cream i p ,y y=  and the speed of the ice cream relative to the professor’s head, ip .v  
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SKETCH:   

 
RESEARCH:  Since the professor and the ice cream have the same horizontal starting point and horizontal 
speed, the ice cream does land on your professor’s head because they always have the same horizontal 
position.  At the time t  of the collision, the final vertical positions of the ice cream and the professor are 

equal, i p .y y y= ≡  To find t  use 2
i i0 i0,

1
2yy y v t gt− = −  and p p0 p0,yy y v t− = (the professor does not 

accelerate). With t  known, determine the vertical height y  can be found.  The speed of the ice cream iyv  

can be found from ( )2 2
i i0, i02 .y yv v g y y= − −   

SIMPLIFY:  At time t, i p :y y=   

( ) ( )
( )

2
i i0 i0, p p0 p,

2
i0 i0, p0 p,

2
i0 i0 e p0 p e

2
i0 e p0 i0

1 ;   
2
1
2
1sin sin
2

1 2 sin 0,
2

y y

y y

y y v t gt y y v t

y v t gt y v t

y vθ t gt y v θ t

gt vθ t y y

= + − = +

+ − = +

+ − − = +

+ + − =

 

since i0 p .v v=  Use the quadratic formula to solve for :t  

( )2 2
i0 e i0 e i0 p02 sin 4 sin 2

.
vθ v θ g y y

t
g

− ± + −
=  

Recall that at time t, the professor’s head and the ice cream are at the same vertical height :y  

p0 p esin .y y vθ t= +  

The speed of the ice cream relative to the professor is ( ) ( )22

ip,ip,ip ,yx vvv = +  where ip, 0xv =  (they have 

the same horizontal speed), ip, i py y yv v v= +  (they move towards each other vertically), iyv  can be found 

from ( )2 2
i i0, i02 ,y yv v g y y= − −  and p p,y yv v=  (since the professor does not accelerate).  Putting this 

altogether gives:   

( ) ( )2

ip i0 e i0 p e .sin 2 sinv vθ g y y v θ= − − − +  

CALCULATE:   The time that the ice cream lands on the professor’s head is: 

( ) ( ) ( ) ( ) ( )( )2 2 2

2

2 0.400 m/s sin 40.0 4 0.400 m/s sin 40.0 2 9.81 m/s 10.0 m 1.8 m

9.81 m/s
1.2416 s  or  1.3464 s

t
− ° ± ° + −

=

= −
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The positive answer is correct. With t  known, the vertical height at which the ice cream lands on the 
professor’s head is:  

( ) ( )( )( ) .1.80 m 0.400 m/s sin40.0 1.2416 s 2.1192 my = + ° =   
The relative speed of the ice cream with respect to the professor’s head at the time of impact is: 

( ) ( ) ( )( ) ( )2 2 2
ip 0.400 m/s sin 40.0 2 9.81 m/s 2.1192 m 10.0 m 0.400 m/s sin40.0 12.694 m/s.v = ° − − + ° =  

ROUND:  1.24 s,t =  2.12 m,y =  and ip 12.7 m/s.v =  

DOUBLE-CHECK:  Considering the slow speed of the escalator and the original vertical positions, these 
values are reasonable. 

3.93. THINK:  The ball’s horizontal distance from the hoop is 7.50 m.x∆ =  The initial height is 0 2.00 m.y =  
The final height is 3.05 m.y =  The launch angle is 0 48.0θ = °.  Determine the initial speed 0 .v   
SKETCH:   

 

RESEARCH:  To find 0v , use 
( )2

0 2 2
0 0

tan .
2 cos

g x
yθ x

vθ

∆
∆ = ∆ −    

SIMPLIFY:  
( )

( ) ( )

( )

2

0 2 2
0 0

2

0 0 2 2
0 0

2
2 2

0 0
0 0

tan
2 cos

tan
2 cos

2 cos
tan

g x
x y

v

g x
x y y

v

g x
v

x y y

θ
θ

θ
θ

θ
θ

∆
∆ −∆ =

∆
∆ − − =

∆
=

∆ − +

 

 
( )

( )

2

0 2
0 0 02cos tan

g x
v

x y yθ θ
∆

=
∆ − +

 

CALCULATE:  
( )

( ) ( ) ( )( )
22

0 2

9.81 m/s 7.50 m
9.2006 m/s

2cos 48.0 7.50 m tan 48.0 3.05 m 2.00 m
v = =

° ° − +
 

ROUND:  As 0θ  has three significant figures, 0 9.20 m/s.v =  
DOUBLE-CHECK:  The result has units of velocity. This is a reasonable speed to throw a basketball. 
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3.94. THINK:  The pebble’s launch angle is 0 37θ = °.  The vertical displacement is 7.0 m.y∆ =  The horizontal 
displacement is 10.0 m.x∆ =  Determine the pebble’s initial speed 0 .v   
SKETCH:   

 

RESEARCH:  To find 0v , use 
( )2

0 2 2
0 0

tan .
2 cos

g x
yθ x

vθ

∆
∆ = ∆ −  

SIMPLIFY:  
( )2

0 2 2
0 0

tan ,
2 cos

g x
θ x y

vθ

∆
∆ −∆ =   

( )
( )

2

0 2
0 02cos tan

g x
v

θ θ x y

∆
=

∆ −∆
 

CALCULATE:  
( )

( ) ( ) ( )( )
22

0 2

9.81 m/s 10.0 m
37.89 m/s

2cos 37 10.0 m tan 37 7.0 m
v = =

° ° −
  

ROUND:  With two significant figures in 0θ , 0 38 m/s.v =  
DOUBLE-CHECK:  This speed is fast, but reasonable if, for example, Romeo is a pitcher in the Major 
leagues. 

3.95. THINK:  The bomb’s vertical displacement is 35.00 10  my∆ = − ⋅  (falling down). The initial speed is 

( )( )0 1000. km/h h/3600 s 1000 m/km 277.8 m/s.v = =  The launch angle is 0 0 .θ = °  Determine the distance 
from a target, x∆ , and the margin of error of the time t∆  if the target is d = 50.0 m wide.  
SKETCH:   

 

RESEARCH:  To find x∆ , use the trajectory equation:
( )2

0 2 2
0 0

tan .
2 cos

g x
yθ x

vθ

∆
∆ = ∆ −   

To find t∆ , consider the time it would take the bomb to travel the horizontal distance d; this is the margin 
of error in the time. The margin of error for the release time t∆  can be determined from 0 0cos .d vθ t= ∆  
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SIMPLIFY:  Note, 0tan 0θ =  and 0cos 1θ =  for 0 0.θ =  

( )2

2
02

g x
y

v

∆
∆ = −  and 

2
02v y

x
g

− ∆
∆ =  

For t∆ , use 0 0 0cos   / .d vθ t t d v= ∆ ⇒ ∆ =  

 CALCULATE: 
( ) ( )2

2

32 277.8 m/s 5.00 10  m
8869 m,

9.81 m/s
x

− − ⋅
∆ = =   50.0 m 0.1800 s

277.8 m/s
t∆ = =  

ROUND:  8.87 kmx∆ =  and 0.180 s.t∆ =  
 DOUBLE-CHECK:  Considering the altitude and the terrific speed of the airplane, these values are 

reasonable. 

3.96. THINK:  The package’s launch angle is 0 49.0θ = °  downward from the vertical. The vertical displacement 
is 600. m.y∆ = −  The flight time is t = 3.50 s. Determine the horizontal displacement .x∆  
SKETCH:   

 
RESEARCH:  Note, 

0 0 0sinxv vθ=  for the given 0θ  and 
0 0 0cos .yv vθ= −  To determine x∆ , use 

0
.xx v t∆ =  

First, determine 0v  from ( )
0

21 .
2yy v t gt∆ = −   

SIMPLIFY:  
0

2

2 2
0 0 0

0

1
21 1cos   

2 2 cosy

y gt
y v t gt vθ t gt v

θ t

 ∆ + 
 ∆ = − = − − ⇒ = −  

0

2

2
0 0 0 0

0

1
2 1sin sin tan

cos 2x

y gt
x v t vθ t θ t y gt θ

θ t

 ∆ +    ∆ = = = − = − ∆ + 
 

 

CALCULATE:  ( )( ) ( )221600. m 9.81 m/s 3.50 s tan 49.0 621.1 m
2

x  
∆ = − − + ° = 

 
 

ROUND: 621 mx∆ =  
DOUBLE-CHECK:  The units for the result are units of distance. 

3.97. THINK:  During the flight of the cannonball it moves with constant horizontal velocity component while 
at the same time undergoing free-fall in vertical direction.  
(a) Since the time to hit a given point in space is given, we can easily extract the initial velocity from using 
our kinematic equations.  
(b) If we know the initial velocity, then we can simply use our equation for the maximum height of the 
trajectory. 
(c) If we know the initial velocity, then we can calculate the velocity at any given point in time, simply by 
applying our kinematic equations one more time. 
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SKETCH:   

 
 

RESEARCH:  
(a) The horizontal velocity component is 0 /x xv v x t= = . We can get the vertical component of the initial 

velocity from 21
0 0 2yy y v t gt= + −  

 (b) To determine H, use 
2

0
0 .

2
yv

H y
g

= +  

 (c) Since we have determined the initial velocity components in part (a), we get the velocity components at 
any time from 0 0;      x x y yv v v v gt= = − . 

 SIMPLIFY:  
 (a) Since 0 0y =  we get for the initial vertical velocity component 21 1

0 02 2/y yy gt v t v y t gt+ = ⇒ = +  
 Parts (b) and (c) are already in the shape we can use to put in numbers.  
 CALCULATE:  
 (a) 0 (500. m) / (10.0 s) 50.0 m/sxv = = ;  21

0 2(100. m) / (10.0 s) (9.81 m/s )(10.0 s) 59.05 m/syv = + =  
( ) ( )2

0 50.0 m/s 59.05 m/s 77.375 m/s,v = + = ( ) ( )( )1Angle tan 59.05 m/s / 50.0 m/s 49.7441−= = °  

 (b) 
( )
( )

2

2

59.05 m/s
177.72 m

2 9.81 m/s
H = =  

 (c) 50.0 m/sxv = ;  259.05 m/s (9.81 m/s )(10.0 s) 39.05 m/syv = − = −  

( ) ( )250.0 m/s 39.05 m/s 63.442 m/s,v = + − =    ( ) ( )( )1Angle tan 39.05 m/s / 50.0 m/s 37.9898−= − = − °  

ROUND:  
(a) 0  v



 = 77.4 m/s at 49.7° above the horizontal   
(b)  H = 178 m 
(c)  v = 63.4 m/s at 38.0°  below the horizontal 

 DOUBLE-CHECK: The velocity is reasonable for a cannon. H y≥ ∆  as it must be, and 0v v< , which it 
should be with   y > y0 .  

3.98. THINK:  When the ball is at height 12.5 m,y =  its velocity is ( ) ( )ˆ ˆ ˆ ˆ5.6 4.1  m/s.x yv v x v y x y= + = +


  The 

kinematic equations can be used to determine (a) the maximum height ,H  (b) the range R  and (c) the 
magnitude and direction of the velocity when the ball hits the ground. 
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SKETCH:   

 
RESEARCH:  

(a)  The maximum height that the soccer ball rises to is given by 
2

0
0 .

2
yv

H y
g

= +  The initial vertical velocity 

0yv  can be determined from ( )2 2
0 02 .y yv v g y y= − −   

 (b)  The horizontal distance that the soccer ball travels is given by 
2

0
0sin2 .

v
Rθ

g
=   

 (c)  For ideal parabolic motion when the initial and final height of the projectile is the same, the initial and 
final speeds are the same.  The angle of impact is the same, but it is below the horizontal.  

  SIMPLIFY:  
 (a)  Since 0 0,y =   

2 2
2

0

2
2

2 2
y y

y y

v gy v
v v gy H y

g g

+
= + ⇒ = = +  

 (b)  The initial velocity 0v  is given by 2 2 2 2
0 0 2x y x yv v v v v gy= + = + +  and the launch angle 0θ  is given 

by 1
0 0 0

0

cos cos .x
x

v
v vθ θ

v
−  

= ⇒ =  
 

   

  (c)  0v v=  and 0 .θ θ= −   
  CALCULATE:  

 (a)  
( )
( )

2

2

4.1 m/s
12.5 m 13.357 m

2 9.81 m/s
H = + =  

 (b)  ( ) ( ) ( )( )2 2 2
0 5.6 m/s 4.1 m/s 2 9.81 m/s 12.5 m 17.13 m/s,v = + + =   1 o

0
5.6 m/scos 70.92

17.13 m/s
θ −  = = , 

 
   

   
( )
( ) ( )( )

2

2

17.13 m/s
sin 2 70.92 18.48 m

9.81m/s
R = ° =  

 (c)  17.13 m/s,v =   o70.92θ = −    
 ROUND:  (a) To the first decimal place, 13.4 m.H =   To two significant figures, (b) 18 mR =  and (c) 

17 m/s, 71v = ° below the horizontal.  
 DOUBLE-CHECK:  With such a steep launch angle, the range is not expected to be large. Also, H  is 

greater than 12.5 m,y =  which is expected. 
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Multi-Version Exercises 

3.99.  THINK:  The initial height, velocity, and angle of the tennis ball are known. To find the total horizontal 
distance covered before the tennis ball hits the ground it makes sense to decompose the motion into 
horizontal and vertical components. Then, find the time at which the tennis ball hits the ground (y = 0) 
and determine the horizontal position at that time. To make the problem as simple as possible, choose y = 
0 m to be the ground and x = 0 m to be the location of the trebuchet where the ball is released.  

 SKETCH: A sketch helps to see exactly how to decompose the initial velocity into horizontal and vertical 
components. 

  
 
 RESEARCH:  This problem involves ideal projectile motion. Since there is no horizontal acceleration and 

the tennis ball starts at x0 = 0, the equation (3.11) for the horizontal position at time t is 0xx v t= . Equation 

(3.13) gives the vertical position as 21
0 0 2yy y v t gt= + − . To find a final answer, is necessary to determine 

the x- and y-components of the initial velocity, given by 0 0 sinyv v θ=  and 0 0 cosxv v θ= . 
 SIMPLIFY: To find the time when the tennis ball hits the ground, it is necessary to find a non- 

negative solution to the equation 21
0 0 20 yy v t gt= + − . The quadratic formula gives a solution of 

( ) ( )( )
( )

( )2 2
1

0 0 0 0 0 02

1
2

4 2

2
y y y yv v g y v v gy

t
g g

− ± − − ± +
= =

−
. It will be necessary to take the positive square 

root here: the tennis ball cannot land before it is released. This time can then be used with the equation for 
horizontal position to get the position when the tennis ball hits the ground at 

( )2

0 0 0

0 0

2
.

y y

x x

v v gy
x v t v

g

 + + 
= =  

 
 

 Combining this with the equations for the horizontal and vertical 

components of the initial velocity ( 0 0 sinyv v θ=  and 0 0 cosxv v θ= ) gives that the tennis ball lands at 

( )
( )2

0 0 0
0

sin sin 2
cos

v v gy
x v

g

θ θ
θ
 + + =   
 

. 
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 CALCULATE:  The problem states that the initial height y0 = 1.55 m. The initial velocity 0 10.5 m/sv = at 
an angle of θ = 35° above the horizontal. The gravitational acceleration on Earth is –9.81 m/s2. Thus the 
tennis ball lands at 

( )
( )

( )
( ) ( )( )

2
0 0 0

0

2

sin sin 2
cos

10.5sin 35 10.5sin 35 2 9.81 1.55
10.5cos 35

9.81

12.43999628

v v gy
x v

g

θ θ
θ
 + + =   
 

 ° + ° + ⋅ ⋅  = °   
 
 

=

 

 ROUND: Since the measured values have 3 significant figures, the answer should also have three 
significant figures. Thus the tennis ball travels a horizontal distance of 12.4 m before it hits the ground. 

 DOUBLE-CHECK: Using equation (3.22) for the path of a projectile, it is possible to work backwards 
from the initial position (x0, y0) = (0, 1.55) and the position when the tennis ball lands (x, y)  = (12.4, 0), 
and angle θ0 = 35° to find the starting velocity, which should confirm what was given originally.  

 

( )

( )
( )

( )

( )
( )

( )

( )( ) ( )
( )

( )
( )

( )
( )

( )

2
0 0 2 2

0 0

2

2 2
0

2

2 2
0

2 2 2
0 0

2 2
0

2
0

tan
2 cos

9.810 1.55 tan35 12.4 12.4
2 cos 35

9.811.55 tan35 12.4 12.4
2 cos 35

9.81 12.4
1.55 tan35 12.4

1.55 tan35 12.4 1.55 tan35 12.42 cos 35

g
y y x x

v

v

v

v v

v

v

θ
θ

= + − ⇒

= + ° ⋅ − ⇒
°

+ ° ⋅ = ⇒
°

   ⋅
   + ° ⋅ = ⇒

+ ° ⋅ + ° ⋅   °   

( )
( )( )
( )
( )( )

2

2

2

0 2

0

9.81 12.4

2cos 35 1.55 tan35 12.4

9.81 12.4

2cos 35 1.55 tan35 12.4

10.4805539

v

v

⋅
= ⇒

° + ° ⋅

⋅
= ⇒

° + ° ⋅

=

 

 Rounded to three significant figures, this becomes v0 = 10.5, which confirms the answer. 

3.100.  The x-component of velocity does not change during flight. It is always equal to vx0. 

( ) ( )0 0 cos 10.5 m/s cos 35.0 8.601096465 m/s 8.60 m/s.x xv v vθ= = = = =  
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3.101.  The time of travel was previously found to be 
( )2

0 0 02
,

y yv v gy
t

g

+ +
=  and 0 0 sin .yv vθ=  Therefore, the 

y-component of velocity just before impact is 

( )

( ) ( )

( ) ( ) ( )( )

0

2

0 0 0

0

2 2
0 0 0 0

2
2

2

2 sin 2

10.5 m/s sin 35.0 2 9.81 m/s 1.55 m

8.165913274 m/s 8.17 m/s downward.

y y

y y

y

y

v v gt

v v gy
v g

g

v gy v gyθ

= −

 + + 
= −  

 
 

= − + = − +

 = − + 
= − =



 

3.102.  From the two preceding problems, 

( ) ( )2 22 2 8.601096465 m/s 8.165913274 m/s 11.86 m/s.x yv v v= + = + − =  

3.103.  THINK:  This question involves flying a plane through the air. The speed of the airplane with respect to 
the wind and the velocity of the wind with respect to the ground are both given, so this problem involves 
relative motion. The vector sum of the plane’s velocity with respect to the air and the velocity of the air 
with respect to the ground must point in the direction of the pilot’s destination. Since the wind is blowing 
from the west to the east and the pilot wants to go north, the plane should head to the northwest. 

 SKETCH: The sketch should shows the velocity of the plane with respect to the wind ( pav


), the velocity of 

the wind (which can be thought of as the velocity of the air with respect to the ground or agv


), and the 

velocity of the plane with respect to the ground ( pgv


). The distance the airplane is to travel will affect how 

long it takes the pilot to get to her destination, but will not effect in the pav


pgv


agv


direction she flies.  
 

      
 
 RESEARCH:  To solve this problem, it is first necessary to note that the wind, blowing from West to East, 

is moving in a direction perpendicular to the direction the pilot wants to fly. Since these two vectors form 

a right angle, it is easy to use trigonometry to find the angle θ  with the equation 
ag

pa

sin
v

v
θ =





. Since North 

is 360° and West is 270°, the final answer will be a heading of  (360 – θ )°. 
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 SIMPLIFY: To find the final answer, it is necessary to use the inverse sine function. The equation for the 
angle θ can be found using algebra and trigonometry: 

( ) ag1 1

pa

ag1

pa

ag1

pa

sin sin sin

sin

360 360 sin

v

v

v

v

v

v

θ

θ

θ

− −

−

−

 
 =
 
 
 
 = ⇒
 
 

 
 − = −
 
 













 

 CALCULATE:  To find the final answer in degrees, it is necessary first to make sure that the calculator or 
computer program is in degree mode. Note that the speed of the wind ag 45.0 km/hv =



and the speed of 

the plane with respect to the air pa 250.0 km/hv =


are given in the problem. Plugging these in and solving 

gives a heading of: 

ag1 1

pa

45.0 km/h360 sin 360 sin
250.0 km/h

349.6302402

v

v
− −
    − = ° −      

= °



  

 ROUND: Rounding to four significantfigures, the final heading is 349.6°. 
 DOUBLE-CHECK: Intuitively, this answer seems correct. The pilot wants to fly North and the wind is 

blowing from West to East, so she should head somewhere towards the Northeast. Since the speed of the 
airplane with respect to the air is much greater than the speed of the air with respect to the ground (wind 
speed), the East-West component of the airplane’s velocity with respect to the air should be less than the 
North-South component. Resolving the motion of the plane into horizontal (East-West) and vertical 
components gives that the horizontal speed of the plane with respect to the ground paxv  

is ( )km
h 250.0 cos 349.6 270⋅ ° − ° or 45.1 km/h from East to West, which is within rounding the same as the 

known wind speed. 

3.104.  As in the preceding problem, the velocity vectors form a right triangle, with the wind velocity as the east-
west leg, the plane’s ground velocity as the north-south leg, and the plane’s velocity relative to the air as the 
hypotenuse. The plane’s ground speed can therefore be found by applying the Pythagorean Theorem: 

( ) ( )2 2250.0 km/h 45.0 km/h 245.9166525 km/h 245.9 km/h.− = =  

3.105.  Using the result from the preceding problem, the time required will be 

 200.0 km 0.8132836794 h 48.78 min.
245.9166525 km/h

dt
v

= = = =  
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Chapter 4:  Force 
 
Concept Checks 
4.1. c  4.2. c  4.3. b  4.4. c  4.5. b  4.6. d 
 
Multiple-Choice Questions 
4.1. d  4.2. a  4.3. d  4.4. a  4.5. a  4.6. b and c  4.7. b  4.8. a  4.9. a  4.10. b  4.11. b  4.12. b 4.13. c and d   
4.14. a, b and d  4.15. b  4.16. a  
 
Conceptual Questions 

4.17. Determine an expression for sµ  in terms of .θ  Since the shoe just starts to slide, the maximum static 
friction has been achieved. Sketching shows the forces acting on the shoe: 
 

 
 

In the y-direction: net g 0y yF N F= − =  g g cos .yN F F θ⇒ = =  In the x-direction: net g s,max 0x xF F f= − =  

s,max g g sin .xf F F θ⇒ = =  With s,max s ,f Nµ=  ( )gs sin / .F Nθµ =  With g cosN F θ= , 

( ) ( )s sin cos/ tan .g gF Fθ θµ θ= =  

4.18.  

 
 If the lower string is pulled slowly, the upper string breaks due to the greater tension in the upper string. If 

the lower string is pulled fast enough, the lower string breaks due to the inertia of the ball. The quick jerk 
increases the tension in the lower string faster than in the upper string. 

4.19. The car and the trailer are no longer in an inertial reference frame due to their acceleration up the hill. 
However, the intertial forces of the car-trailer system do not change. That is, t cF F=  is still true. The sum 
of the internal forces of a system should always be zero. 
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4.20. It is the frictional forces against the tires that drive the car. The direction of the force of the tire against the 
road is actually opposite to the direction the car travels in. 

 
 
 
 

 
 
 
 
 
 

4.21. A force external to the two interacting bodies can cause them to accelerate. For example, when a horse 
pulls a cart, both objects exert a force on each other equal in magnitude and opposite in direction, but the 
friction force acting on the horse-cart system causes it to accelerate. 

4.22. If the textbook is initially at rest and there is no net force acting on it, then it will remain at rest. However, 
if the textbook is moving across a frictionless table at a constant velocity ( )/ 0dv dt =



, then it will remain 
in motion unless acted upon by an external force. The statement is false.  

4.23. A mass, m is sliding on a ramp that is elevated at an angle, θ  with respect to the floor. The coefficient of 
friction between the mass and ramp is .µ  

 
 

(a) The forces acting on the box are as follows: 
• The force due to gravity acting down the ramp, sin .mg θ  
• The force of friction, k kf Nµ= , where the subscript k denotes kinetic friction, acting opposite to 
the direction of motion, in this case down the ramp. 

The sum of the force components along the ramp is  sin .kF ma mg Nθ µ= = − −∑  This expression can be 
simplified by noting that cos .N mg θ=  Substituting this into the expression yields: 

( )sin cos  sin cos .k kma mg mg a gθ θµ θ µ θ= − − ⇒ = − +  
(b)  If the mass is sliding down the ramp, the force of gravity remains the same, but the friction force still 
opposes the direction of motion and therefore now points up the ramp. Thus the expression for Newton’s 
second law can now be written sin .kma mg Nθ µ= − +  The equation for the acceleration is then: 

( )sin cos .ka g θ µ θ= − −  
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4.24. The shipping crate has a weight of 340 N.w =  The force of the forklift is forklift 500 N.F =   

 
 The force due to gravity equals the weight of the crate. The mass of the crate, m is constant and so is the 

acceleration due to gravity, g. Therefore, the force due to gravity is 340 N.gF mg w= = =  

4.25. The near frictionless slope is at an incline of θ = °30.0 .  It will be useful to draw a diagram of the sliding 
block of mass, m, and label the forces on it. The diagram shows a block of mass, m, sliding down a (near) 
frictionless incline. 

 
 

 The magnitude of the net force acting on the block as it slides down the ramp is net sin .F mg θ=  The 
magnitude of the normal force is cos .N mg θ=  This means that 

net / ( sin ) / ( cos ) tan .F N mg mgθ θ θ= =  
 For an angle of 30°  this means that net / tan30 0.58.F N = ° ≈  The net force is approximately 58% of the 

normal force. 

4.26. The tow truck’s mass is .M  The mass of shipping crate is .m  The angle with respect to the vertical is .θ  
The coefficient of kinetic friction is .µ  

 
 (a)   

 
 (b) The truck pulls the crate at a constant speed, so the net force on the crate is net 0.F ma= =





 The 

components of the net force can be written as 0;   0.x yF F= =∑ ∑  The sum of the forces in the x 

direction are 0.x x kF T Nµ= − =∑   
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 Trigonometry can be used to obtain the expression for :xT  

sin   sin .x
x

T
T T

T
θ θ= ⇒ =  

 Therefore, sin 0.x kF N Tµ θ= − =∑  The sum of the forces in the y direction is 

0 0.y yF T N mg= = + − =∑  To simplify this expression, cosyT T θ=  can be used. In summary, our two 
equation for the  x and y directions yield:   

(1) cos 0T N mgθ + − =   
(2) sin 0k N Tµ θ− =   

Equation (2) can be solved in terms of N  to get sin / .kN T θ µ=  Substituting this into equation (1) yields:   

( )cos sin / 0  .
sin cos

k
k

k

mg
T mg T

µ
θ θ µ

θ µ θ
+ − = ⇒ =

+
 

 
Exercises 

4.27. THINK: The gravitational constant on the Moon is m / 6g g= , where g is the Earth’s gravitational 
constant. The weight of an apple on the Earth is w = 1.00 N.  

 SKETCH:   

 
 RESEARCH: The gravitational constant on the Earth is 29.81 m/s .g =  The weight of the apple, w is given 

by its mass times the gravitational constant, w = mg. 
 SIMPLIFY:  

(a) The weight of the apple on the Moon is m m .w mg=  Simplify this expression by substituting m / 6g g= :  

( )m / 6 .w m g=  Mass is constant so I can write expressions for the mass of the apple on Earth and on the 

Moon and then equate the expressions to solve for m.  On Earth, / .m w g=  On the Moon, 6 / .mm w g=  
Therefore, m m/  6 /   / 6.w g w g w w= ⇒ =  

  (b) The expression for the weight of an apple on Earth can be rearranged to solve for m: / .m w g=  
 CALCULATE:  

 (a) ( )m
1 1.00 N 0.166667 N
6

w = =  

(b) 
2

1.00 N 0.101931 kg
9.81 m/s

m = =  

ROUND: Rounding to three significant figures, (a) m 0.167 Nw =  and (b) m = 0.102 kg. 
 DOUBLE-CHECK: It is expected that the weight of the apple on the Moon is much less than the weight of 

the apple on the Earth. Also, a mass of about 100 g is reasonable for an apple.  

4.28. THINK: The go-cart is accelerated by having a force, 423.5 NF =  applied to it. The initial velocity is 
given as i 10.4 m/sv =  and the final velocity is f 17.9 m/s.v =  The time interval over which the change in 
velocity occurs is 5.00 s.t∆ =  Determine the mass, m of the go-cart and the driver. 
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 SKETCH:   

 
 RESEARCH:  Because the force is constant, the acceleration is constant and the increase in velocity, v is 

linear. The equation for force is ,F ma=  and the expression for the acceleration is f i

f i

.
v vva

t t t
−∆

= =
∆ −

 

SIMPLIFY:  The expression for a  can be substituted into the expression for force: 

f i

f i f i

f i

  .
v v FF m m
t t v v

t t

 −
= ⇒ = 

−  − 
 − 

 

CALCULATE:  423.5 N 282.33 kg
17.9 m/s 10.4 m/s

5.00 s 0 s

m = =
− 

 − 

 

ROUND:  Rounding to three significant figures, m = 282 kg. 
DOUBLE-CHECK: This mass is reasonable for a go-cart with a driver. The units are also correct. 

4.29. THINK:  The scale is in an elevator and the gym member has a mass of m = 183.7 lb when the elevator is 
stationary. The elevator accelerates upward with an acceleration of 22.43 m/s .a =  The mass must be 
converted to SI units: 

1 kg
183.7 lb 83.31 kg.

2.205 lb
m = ⋅ =  

 Determine the weight, w measured by the scale as the elevator accelerates upward. 
SKETCH:  It will be useful to sketch free body diagrams for the forces acting on the scale before and 
during the elevator’s acceleration. 

 
 

RESEARCH:  Before the elevator accelerates, the net force is net 0.F =  The sum of the forces at this point is 

net,i 0F N mg= = − , therefore .N mg=  Once the elevator starts to accelerate upward, there is a net force, 

net, .aF ma N mg= = −  Since the mass of the person, m, the gravitational acceleration, g, and the 
acceleration, a are known, the equation can be used to determine N, which is the normal force that the 
scale displays.  
SIMPLIFY:  While the elevator is accelerating, the net force acting on the scale can be written as 

.ma N mg= −  Rearranging to solve for N yields ( ).N m a g= +  
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CALCULATE:  ( )2 283.31 kg 2.43 m/s 9.81 m/s 1019.7144 NN = + = .  However, scales are calibrated to 

read weight based on the assumption of 29.81 m/s .a g= =  The acceleration of the elevator “tricks” the 
scale.  The gym member’s weight as displayed on the scale will be  

2 229.20 lb.
1019.7144 N 2.205 lb

9.81 m/s 1 kg
=⋅  

ROUND:  The acceleration is given with three significant figures, so the gym member’s weight is 229 lb. 
DOUBLE-CHECK: Since the acceleration of the elevator is up, a person’s apparent weight should 
increase. The weight of the person when the elevator is at rest is 183.7 pounds and the apparent weight of 
the person while the elevator is accelerating is 229 pounds, so the calculation makes sense. 

4.30. THINK:  The given quantities are the cabin mass of the elevator, 358.1 kgem =  and the combined mass of 

the people in the cabin, m = 169.2 kg. The elevator is undergoing a constant acceleration, 24.11 m/sa =  
due to be being pulled by a cable. Determine the tension, T in the cable. 
SKETCH:   

  
RESEARCH:  The sum of all the forces acting on the elevator is net e e .yF F ma m a T mg m g= = + = − −∑  

SIMPLIFY:  Combine like terms: ( ) ( ).e ea m m T g m m+ = − + Rearrange the equation to solve for T: 

( )( ).eT m m a g= + +  

CALCULATE:  ( )( )2 2169.2 kg 358.1 kg 4.11 m/s 9.81 m/s 7340.016 NT = + + =   

ROUND:  Rounding to three significant figures, 7340 N.T = The force of the tension is directed upward. 
DOUBLE-CHECK:  The units calculated for the tension are Newtons, which are units of force. Because 
the elevator is accelerating upward, it is expected that the tension in the cable should be higher than if the 
elevator was hanging at rest. The calculated tension for the cable when the elevator was accelerating is T = 
7340 N. If the elevator is not accelerating, the expected tension is approximately 5173 N, so the answer is 
reasonable. 

4.31. THINK:  The mass of the elevator cabin is 363.7 kgem =  and the total mass of the people in the elevator 
is m = 177.0 kg. The elevator is being pulled upward by a cable which has a tension of 7638 N.T =  The 
acceleration of the elevator is to be determined. 
SKETCH:   

  
RESEARCH:  Force is equal to mass times acceleration, .F ma=





 The sum of all the forces acting on the 
elevator will give the net force that acts upon the elevator, net, .y yF F= ∑  In this case, net,y eF ma m a= +  

.eT mg m g= − −  The gravitational acceleration is 29.81 m/s .g =  
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SIMPLIFY:  Group like terms, ( ) ( ).e ea m m T g m m+ = − +  Rearrange to solve for a:  

( )
( )

.e

e

T m m g
a

m m
− +

=
+

 

CALCULATE:  
( )
( )

− +
= =

+

2
27638 N 177.0 kg 363.7 kg 9.81 m/s

4.3161 m/s
177.0 kg 363.7 kg

a   

ROUND:  Rounding to three significant figures because that is the precision of g, 24.32 m/s .a =  
DOUBLE-CHECK:  The units of the result are correct. Also, the value determined for a  is approximately 
45% of the acceleration due to gravity, so the answer is reasonable. 

4.32. THINK: Two blocks are in contact, moving across a frictionless table with a constant acceleration of 
22.45 m/s .a =  The masses of the two blocks are 1 3.20 kgM =  and 2 5.70 kg.M =  Determine (a) the 

magnitude of the applied force, F, (b) the contact force between the blocks, bF  and (c) the net force acting 
on block 1, net,1.F  
SKETCH:  
(a)      (b) 

     
 

(c) 

  
RESEARCH:  

 (a) Since the blocks are on a frictionless surface, there is no force due to friction. The net force is 

1 1 2 2 .F M a M a= +  But the blocks are in contact, so 1 2 .a a a= =  The equation can now be reduced to 

( )1 2 .F M M a= +  
 (b) The force that block 1 feels due to block 2 is equal and opposite to the force that block 2 feels due to 

block 1. The contact force is 2 .bF M a=  
 (c) The net force acting on block 1 is the sum of all the forces acting on it, net,1 2 .F F M a= −  

SIMPLIFY: This step is not necessary.  
CALCULATE:  

 (a)  ( )( )23.20 kg 5.70 kg 2.45 m/s 21.805 NF = + =  

 (b)  ( )( )25.70 kg 2.45 m/s 13.965 NbF = =  

 (c)  ( )( )2
net,1 21.805 N 5.70 kg 2.45 m/s 7.84 NF = − =  

ROUND:  Three significant figures were provided in the question, so (a) 21.8 NF = , (b) 14.0 NbF =  and 
(c) net,1 7.84 N.F =  
DOUBLE-CHECK:  All three results have the correct units of Newtons, which are units of force. 

4.33. THINK:  The force that the ocean exerts on the iceberg keeps the iceberg floating.  Since the iceberg floats, 
the net force on it must be zero.  Therefore the magnitude of the force of the ocean on the iceberg must be 
equal to its weight.  
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The given quantities are the density of ice, 3917 kg/miρ =  and the density of seawater, 31024 kg/m .sρ =  

The volume of the iceberg above the sea is 3
above 4205.3 m .v =  This volume is 10.45% of the total volume of 

the iceberg. Determine the force, bF  that the seawater exerts on the iceberg. 
SKETCH:  

 
RESEARCH:  The weight of the iceberg is iceg.F m=  The mass is the product of density and Volume, 

ice ice ice .m Vρ=  We were given the volume above the surface and were told that it represents 10.45% of the 
overall volume. So the total volume of the ice is: ice above / 0.1045V V=  
SIMPLIFY:  The weight of the iceberg is ice ice ice ice above /0.1045F m g V g gVρ ρ= = =  

CALCULATE: 3 2 3 8(917 kg/m )(9.81 m/s )(4205.3 m )/0.1045 3.620087·10  NF = =  
ROUND:  There are three significant figures provided in the question, so the answer should be written as 

83.62·10  NF =  
DOUBLE-CHECK:  The units of Newtons that were calculated are correct units of force. Also, an iceberg 
is a very massive object, so it reasonable that the seawater must exert a large force to keep it floating. 

4.34. THINK: There are three massless ropes attached at one point with the following forces applied to them: 

1 150. NF =  at θ = °1 60.0 , 2 200. NF =  at 2 100.θ = °  and 3 100. NF =  at 3 190.θ = °.  Determine the 
magnitude and direction of a fourth force that is necessary to keep the system in equilibrium. 
SKETCH:  

 
RESEARCH: For the system to remain stationary, the sum of the forces in the x and y directions must be 
zero, 0xF =∑  and 0.yF =∑  The known forces must be broken into components to complete the 

calculations. 

 

1 60.0θ = °  with respect to the x-axis. 

1, 1 1cosxF F θ=  

1, 1 1sinyF F θ=  
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φ = − °10.0  with respect to the y-axis. 

2, 2 sinxF F φ= −  

2, 2 cosyF F φ=  

 

10.0α = − °  with respect to the negative x-axis. 

3, 3 cosxF F α= −  

3, 3 sinyF F α= −  

  
 The equations for the sum of the forces in the x and y directions are:  

1 1 2 3 4,0 cos sin cos ,x xF F F F Fθ φ α= = − − +∑  1 1 2 3 4,0 sin cos sin .y yF F F F Fθ φ α= = + − +∑  

 The angle is ( )1
4 4, 4,tan / .y xF Fθ −=  The magnitude of 4F  is given by 2 2

4 4, 4, .x yF F F= +  

SIMPLIFY: The equations can be rearranged to solve for the components of the fourth force: 

4, 2 3 1 1sin cos cosxF F F Fφ α θ= + −  and 4, 3 1 1 2sin sin cos .yF F F Fα θ φ= − −  

CALCULATE: ( ) ( ) ( ) ( ) ( ) ( )4, sin 10.0  N cos 10.0  N cos 60.0  N 58.2104 N200. 100. 150.xF = ° + ° − ° =  

 ( ) ( ) ( ) ( ) ( ) ( )4, 100. sin 10.0  N sin 60.0  N cos 10.0  N 309.500 N150. 200.yF = ° − ° − ° = −  

 1
4

309.500N
tan 79.3483

58.2104 N
θ −

 −
= = − °  

 
 with respect to the positive x-axis.  

 ( ) ( )2 2

4 58.2104 N 309.500N 314.9265 NF = + − =  

ROUND: The given value for θ1  has three significant figures, so the answers must be written as 

=4 315 NF  and θ = °4 79.3  below the positive x-axis. 

DOUBLE-CHECK: The direction that force 4F  is applied is consistent with the diagram and the 
magnitude of the force is reasonable. 

4.35. THINK: The given quantities are the masses of the four weights, 1 6.50 kg,m =  2 3.80 kg,m =  

3 10.70 kgm =  and 4 4.20 kg.m =  Determine the tension in the rope connected 1m  and 2 .m  
SKETCH: Focus on an arbitrary point between 1m and 2 .m  
 

  
RESEARCH: The masses are in equilibrium, so the sum of the forces in the vertical direction is equal to 
zero. Therefore the tension, T in the rope between 1m  and 2m  is equal to the force exerted by gravity due 
to masses 2m , 3m  and 4m : 2 3 4 0.T m g m g m g− − − =  

SIMPLIFY: ( )2 3 4T m m m g= + +   

CALCULATE: ( ) 23.80 kg 10.70 kg 4.20 kg 9.81 m/s 183.447 NT = + + =   
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ROUND: There are three significant figures provided in the question so the answer should be written 
183 N.T =  

DOUBLE-CHECK: Tension is a force and the result has units of force (Newtons). The value of the tension 
is also reasonable considering the masses of the objects. 

4.36. THINK: The value of the hanging mass is 1 0.50 kgM =  and the mass that is on the frictionless table is 

2 1.50 kg.M =  The masses are attached by a light string with a mass that can be neglected. Determine the 
magnitude of the acceleration, a  of 2 .M  
SKETCH:  

  
 
 
 
 
 
 
 
 
RESEARCH: Force is a vector so the components must be considered separately. Equations can be written 
for the components of the force, 2F



 acting on mass, 2m : 2, 20 ,yF N M g= = −∑  2, 2 .xF M a T= =∑  The 

two masses are connected, so they accelerate at the same rate. Consider the components of the force, 1F


 

acting on the mass, 1 :M  1, 0,xF =∑  1, 1 1 .yF M a T M g= − = −∑  The two expressions of interest are 

2 0T M a− =  and 1 1 .T M g M a− = −   
SIMPLIFY: To determine a, T  must be eliminated. Since the masses are rigidly connected by the string, 
the tension, T in the rope is constant so both equations can be solved for T, then equated to solve for a:  

2T M a=  (1),  1 1T M g M a= −  (2). Therefore,  

( ) ( )
1

2 1 1 2 1 1
2 1

    .
M g

M a M g M a a M M M g a
M M

= − ⇒ + = ⇒ =
+

 

CALCULATE: 
( )

( )

2
2

0.50 kg 9.81 m/s
2.4525 m/s

1.50 kg 0.50 kg
a = =

+
  

ROUND: The least number of significant figures provided in the question is two, so the answer should be 
written 22.5 m/s .a =



 
DOUBLE-CHECK: The answer has the correct units for acceleration. Also, the value is approximately ¼ 
of the acceleration due to gravity, so it is reasonable. 

4.37. THINK: The given quantities are the masses 1 0.500 kgM = , 2 1.50 kgM =  and 3 2.50 kg.M =  The masses 
are connected by a light string with a mass that can be neglected. The string attaching 1M  is routed over a 
frictionless pulley. 2M and 3M  rest on a frictionless table. Determine the magnitude of the acceleration of 
block 3, a, and the tension in the string between 1M  and 2 .M  
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SKETCH:  

 
 

RESEARCH: The forces acting on each of the three masses need to be considered separately. The objects 
are rigidly connected so they accelerate at the same rate, 1 2 3 .a a a a= = =  The forces on 3M  are 

3, 3 30yF N M g= = −   (1), and 3, 3 2xF M a T= =   (2).  The forces on 2M  are 2, 2 20yF N M g= = −   (3) and 

2, 2 1 2 2 1 2  xF M a T T T T M a= = − ⇒ = −   (4). The forces on 1M  are 1, 1 1 1yF M a T M g= − = −   (5) and 1, 0xF =   

(6). Substituting equation (4) into equation (2) yields 3 1 2M a T M a= −  (7).  This implies 

that ( )1 2 3 23 .T M a M a M M a= += +  
SIMPLIFY:  

 (a) 1

3 2 1

M g
a

M M M
=

+ +
 

 (b) The tension between 1M  and 2M  is 1 3 2( ) .T M M a= +  
CALCULATE:  

 (a) 
( )( )

( )

2
2

0.500 kg 9.81 m/s
1.09 m/s

2.50 kg 1.50 kg 0.500 kg
a = =

+ +
  

  (b) ( )( )2
1 2.50 kg 1.50 kg 1.09 m/s 4.36 NT = + =                         

ROUND: The number of significant figures given in the question was three. 
(a) 21.09 m/s=a  
(b) 1 4.36 NT =  
DOUBLE-CHECK: The units calculated for the acceleration and the tension are appropriate SI units. 
Also, the values determined are reasonable considering the masses involved. 

4.38. THINK: The given quantities are the masses, =1 0.400 kgM  and 2 1.20 kg.M =   The hanging mass, 1M  is 
attached by a light rope to mass, 2M  across a frictionless pulley. 2M  is initially at rest on a frictionless 
ramp that is elevated at an angle of θ = °30.0  above the horizontal. Determine the magnitude and 
direction of the acceleration of 2 .M  
SKETCH:  

 
RESEARCH: The forces acting on the masses must be considered separately. The forces acting on 2M  are 

2, 20 cospF N M g θ= = −   (1) and 2, 2 2 2 sinRF M a T M g θ= − = − +   (2).  We have to choose a direction for 

acceleration so we chose for 2M  to move up the ramp – if we are wrong then the value for the acceleration 
will be negative. If 2M  moves up the ramp then 1M  must be descending, so the forces acting on 1M  are 
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1, 1 1 1yF M a T M g= − = −   (3). Since the two masses are rigidly attached, they both accelerate at the same 

rate, 1 2 .a a a= =  Also, the tension, T, in the rope between the masses is the same in equations (2) and (3).  
SIMPLIFY: From equation (2), 2 2sinT M g M aθ= +  (4). From equation (3), 1 1T M g M a= −  (5).  

Therefore 2 2 1 1sin .M g M a M g M aθ + = −  Solving for a gives: 1 2
2

1 2

( sin )
.

g M M
a a

M M
θ

=
+

=
−

 

CALCULATE: 
( ) ( )( )

( )
− °

= = −
+

2
2

2

9.81 m/s 0.400 kg 1.20 kg sin 30.0
1.226 m/s

1.20 kg 0.400 kg
a   

Therefore, 2
2 1.226 m/s  down the ramp.a =  

ROUND: Rounding to three significant figures, the answer should be written = 2
2 1.23 m/sa  down the 

ramp.  
DOUBLE-CHECK: The calculated acceleration has the correct units. Also, it makes sense that 2a  is down 
the ramp because the force due to gravity pulling 2M  down the ramp is greater than the force exerted on 

2M  up the ramp due to the force of gravity on 1.M  In addition we find the limit of the acceleration of the 
Atwood machine in the limit of 90θ = ° (See Example 4.5) and the limit of Example 4.4, Two Blocks 
Connected by a Rope, for 0θ = °  as limiting cases of our answer.  This gives us additional confidence in 
our solution. 

4.39. THINK: The given quantities are the hanging masses 1m  and 2m and the direction of the horizontal forces 
cause by the hanging masses on the ring. The strings that attach the hanging masses to the ring can be 
considered massless and the pulleys that the strings are routed through are frictionless. Determine the 
mass, 3 ,m  and the angle, ,θ  that will result in the ring being balanced in the middle of the table.  

 SKETCH: Top-down view: 

 
RESEARCH: A sketch of the x and y components of 3T  is shown below.  

 

3, 3 3sin sinyT T m gφ φ= =   

3, 3 3cos gcosxT T mφ φ= =  

The angle counterclockwise from the positive x-axis, θ  is given by 180 .θ φ= ° +  For the ring to be 
balanced, the sum of the forces in the x and y directions must be balanced: 

2 3 2 30 sin sinyF T T m g m gφ φ= = − = −∑                                                      (1) 

1 3 1 30 cos cosxF T T m g m gφ φ= = − = −∑                                                      (2) 

SIMPLIFY: Solve equation (1) in terms of 3m  and substitute into equation (2) to solve for φ . 

3 2 2/ sin / sinm m g g mφ φ= =  substituted into (2) yields:  

2
1 3 1

cos
cos   

sin
m

m g m g m
φ

φ
φ

= ⇒ =   2 2

1 1

sin   tan
cos

m m
m m

φ φ
φ

⇒ = ⇒ =  1 2

1

 tan .
m
m

φ −  
⇒ =  
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CALCULATE: 1 0.0300 kg
tan 36.8698

0.0400 kg
φ −  

= = °, 
 

 180 36.8698 216.8698θ = ° + ° = °,  

( )3

0.030 kg
0.05000 kg

sin 36.8698
m = =

°
 

ROUND: Four significant figures are provided in the question, so the answers should be written 
216.8θ = °  and 3 0.0500 kg.m =  

DOUBLE-CHECK: By observing the sketch, it can be seen that the value of θ  is reasonable to balance the 
forces. The mass is also a reasonable value. 

4.40. THINK: Consider the combined mass, m of the monkey and the wood plate when m = 100. kg. Assume 
the rope’s mass is negligible and the system is frictionless. In part (b), the acceleration is 22.45 m/s .a =   
SKETCH:  

For monkey/plate system: 
 

 

For second monkey of mass, m2 pulling on rope, 
free body diagram for m becomes: 

 

 
 
RESEARCH:  

 (a) The minimum force the monkey needs to apply to lift off the ground is the force T required to balance 
the force of gravity due to the combined mass, m:  2 0  / 2.T mg T mg− = ⇒ =  

 (b) 2 .yF ma T mg= = −∑  There is now a net upward force due to the monkey. 

 (c) If there is a second monkey, then in part (a), T mg=  and the equation in  (b) becomes ( ).T m a g= +  
SIMPLIFY:  

 (a) It is not necessary to simplify. 

 (b) 
( )

2 2
ma mg m a g

T
+ +

= =  

 (c) It is not necessary to simplify. 
CALCULATE:  

 (a) 
( )( )2100. kg 9.81 m/s

490.5 N
2

T = =  

 (b) 
( )( )2 2100. kg 2.45 m/s 9.81 m/s

613 N
2

T
+

= =  

 (c) ( ) ( )( )2no 100. kg 9.81 m/s 981.0 NT a = =   

( ) ( )( )2 2 22.45 m/s 100. kg 2.45 m/s 9.81 m/s 1226 N T a = = + =   

ROUND:  The acceleration has three significant figures, so the answers should be written:  
(a) T = 491 N 
(b) T = 613 N 
(c) T = 981 N, 1230 N 
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DOUBLE-CHECK:  The calculated values seem reasonable for the mass of the system of interest. It is 
reasonable that a larger force must be applied to give the system an upward acceleration. If a second 
monkey pulled the rope from the ground, the tension, T would be due to the full gravitational force of 
mass, m, so it is reasonable that the answers for part (c) doubled. 

4.41. THINK: The rope has negligible mass and the pulley is frictionless. The chair and boatswain have a 
combined mass, M, of 90.0 kg. Consider two cases: (a) The magnitude of the force the boatswain must pull 
on the rope with to achieve constant velocity, cv



 and (b) the maximum force the boatswain must pull on 

the rope with to achieve an acceleration of = 2
max 2.00 m/s .a  

SKETCH:  

 
RESEARCH:  
(a) If the boatswain is moving at a constant velocity, then there is no net force on the system because 

/ 0dv dt =  for a constant v. For this case, the sum of the forces is 0 2 .F T Mg= = −∑  The force the 
boatswain must pull with is F = T. 

 (b) In the case where the boatswain is accelerating, the maximum force, maxF  can be substituted in to the 
sum of the forces equation, max max2 .F Mg Ma− =  
SIMPLIFY:  

 (a) 2 .T Mg=  Substitute the force, F the boatswain must pull on the rope into the equation: /2.F Mg=  

 (b) Rearrange to solve for maxF :  
( )max

max .
2

M g a
F

+
=  

CALCULATE:  

 (a) 
( )( )

= =
290.0 kg 9.81 m/s

441.45 N
2

F  

 (b) 
( )+

= =
2 2

max

90.0 kg 9.81 m/s 2.00 m/s
531.45 N

2
F   

ROUND:  To three significant figures, the answers are (a) = 441 NF  and (b) =max 531 N.F  
DOUBLE-CHECK:  The unit of Newtons is a correct unit of force. It is reasonable that the boatswain had 
to pull on the rope with more force to cause a net acceleration than when the system moved at constant 
speed. 

4.42. THINK: A granite block of mass, m = 3311 kg is suspended from a pulley system. The rope is wound 
around the pulley system six times.  Assume the rope is massless and the pulley is frictionless. Determine 
the force, ,F  the rope would have to be pulled with to hold m in equilibrium. 
SKETCH:  

 
RESEARCH:  The diagram suggests that only the rope attaches to the block, which means that for the 
block to be in equilibrium, 0.T mg− =  The tension in the end of the rope that is pulled on is the same as 
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the tension in the rope where it attaches to the block.   The tension in the rope of a pulley system is given 
by / 2 ,T mg n=  where n is the number of loops the rope makes around the pulley system. 
SIMPLIFY:  The force required to hold the system in equilibrium must be equal to the tension: 

.
2
mg

F T
n

= =  

CALCULATE:   
( )( )

( )( )

23311 kg 9.81 m/s
2707 N

2 6
F = =  

ROUND:  The value of g used in the calculation has three significant figures, so the answer is rounded to 
2710 N.F =  

DOUBLE-CHECK:  The units of the result are Newtons, which are a unit of force. The calculated value is 
reasonable, considering the mass of the block, although it would be very difficult for one person to hold 
this mass in equilibrium. 

4.43. THINK: Two masses, =1 100.0 gM  and =2 200.0 gM  are placed on an Atwood device. Each mass moves 
a distance, 1.00 my∆ =  in a time interval of 1.52 s.t∆ =  Determine the gravitational acceleration, pg  for 

the planet and the tension, T  in the string. The string is massless and the pulley is frictionless. 1M  and 

2M  should be converted to the SI unit of kg. 

( ) 
= = 

 
1

1 kg
0.1000 kg100.0 g

1000 g
M ,  ( ) 

= = 
 

2

1 kg
0.2000 kg200.0 g

1000 g
M  

SKETCH:  

 
RESEARCH:  
(a) The masses are initially at rest, therefore their initial speed 0 0.v =  Because the masses are rigidly 
connected, they accelerate at the same rate, .a  The net force for one mass is upward and downward for the 

other. The value of a can be determined using the kinematic equation ( )2
0 / 2.y v t at∆ = +   Because the 

masses are initially at rest, the equation reduces to ( )2 / 2y at∆ =  or 22 / .a y t= ∆  If the forces on mass 1M  

are considered, the net force equation is net 1 1 p .F M a T M g= = −  For mass 2M , the net force equation is  

net 2 2 p .F M a T M g= − = −  

 (b) Solve for pg  and substitute into the force equation to solve for T . 
SIMPLIFY:  

 (a) 1 1 pM a T M g= −   (1), 2 2 pM a T M g− = −   (2) 
Because the tensions in the ends of the rope are the same, solve equations (1) and (2) in terms of T and 
equate the expressions. 

2 p 2 1 p 1M g M a M g M a− = +  ( ) ( )1 2 p 2 1 a M M g M M⇒ + = −  1 2
p

2 1

 
M M

g a
M M

 +
⇒ =  

− 
 

Substitute for a using ( )2 / 2y at∆ =  to get 1 2
p 2

2 1

2
.

M My
g

M Mt
 +∆

=  
− 
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 (b) ( )2 p 2 p 2

2 y
T M g a M g

t
∆ 

= − = − 
 

  

CALCULATE:  

 (a) 
( )

( )
 +

= = − 
2

p 2

2 1.00 m 0.1000 kg 0.2000 kg
2.59695 m/s

0.2000 kg 0.1000 kg1.52 s
g  

 (b) 
( )

( )
 
 = − =
 
 

2
2

2 1.00 m
0.2000 kg 2.59695 m/s 0.346260 N

1.52 s
T   

ROUND:  To three significant figures, the answers should be (a) = 2
p 2.60 m/sg  and (b) T = 0.346 N. 

DOUBLE-CHECK:  The units for the calculated answers were the correct units of acceleration and force. 
The small tension calculated is reasonable, considering the small masses. 

4.44. THINK: The mass of the sign is given as 4.25 kg.m =  The sign is hung by 2 wires that each makes an 
angle of 42.4θ = °  with the ceiling. Determine the tension in each wire.  

 SKETCH:  

 
 RESEARCH: Because the sign is in equilibrium, the sum of the forces in the x- and y-directions must 

equal zero. The sum of the forces in the y-direction is 1, 2,0y y yF T T mg= = + −∑ , where 1, 1 sinyT T θ=  and 

2, 2 sin .yT T θ=  Inserting, the expression can be written 1 2sin sin .T T mgθ θ+ =  The sum of the forces in the 

x-direction can be written 1, 2,0x x xF T T= = −∑ , where 1, 1 cosxT T θ=  and 2, 2 cos .xT T θ=  Therefore, 

1 2cos cosT Tθ θ=  or 1 2 .T T=  
SIMPLIFY:  Because 1 2T T= , the tension can simply be called .T  The forces in the y-direction can then be 

simplified, ( )2 sin   / 2sin .T mg T mgθ θ= ⇒ =  

CALCULATE:  
( )( )

( )

24.25 kg 9.81 m/s
30.9153 N

2sin 42.4
T = =

°
  

ROUND:  Rounding to three significant figures, 30.9 N.T =  
DOUBLE-CHECK:  The calculated tension has Newtons as the unit, which is the correct SI unit for force. 
The calculated value is reasonable considering the given mass and angle. Note that in the limit of 0θ →  
we recover / 2T mg= , i.e. the tension in each wire is equal to half of the weight of the sign, as expected. 
For all values 0θ >  the tensions in the wires are larger than this value at 0θ → , which is also comforting.  
Finally, as 90θ → °  the tensions in the wires become infinitely large, which is also expected. 

4.45. THINK: A crate of oranges with mass m slides down a frictionless incline. The crate has an initial velocity 

i 0v =  and a final velocity f 5.832 m/sv =  after sliding a distance,  = 2.29 m.d  Determine the angle of 
inclination, θ  with respect to the horizontal. 
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SKETCH:  

 
 

RESEARCH: The net acceleration, a, of m down the ramp can be determined from the equation 
2 2

f i 2 .v v ad= +  Sum all of the forces acting on the crate down the ramp: ramp gsin .F ma m θ= =∑  

SIMPLIFY: i 0v = , therefore 2
f / 2 .a v d=  Substitute this relation into the equation for the forces acting 

down the ramp: 
2 2 2

1f f fsin   sin   sin .
2 2 2

mv v v
mg

d dg dg
θ θ θ −  

= ⇒ = ⇒ =   
 

 

CALCULATE: 
( )

( )( )
2

1
2

5.832 m/s
sin 49.20114669

2 2.29 m 9.81 m/s
θ −

 
 = = °
 
 

  

ROUND:  Rounding to three significant figures, 49.2 .θ = °  
DOUBLE-CHECK:  The inclination of the plane is reasonable.  

4.46. THINK:  The bricks have a mass = 200.0 kgM  and are attached to a crane by a cable of negligible mass 
and length, L = 3.00 m. In the initial vertical position, the bricks are a distance D = 1.50 m from the wall. 
Determine the magnitude of the horizontal force, xF , that must be applied to the bricks to position them 
directly above the wall. 
SKETCH: 

 
RESEARCH:  The given lengths can be used to solve for the angle, θ , that the bricks move through: 
tan /D Lθ =   (1). By similar reasoning, the angle in the force vector diagram is given by:  

( )tan /xF Mgθ =   (2). 
SIMPLIFY:  Because θ  is the same angle in both cases, equations (1) and (2) can be equated:  

g
  .

g
x

x

F M DD F
L M L

= ⇒ =  

CALCULATE:  
( )( )( )

= =
2200.0 kg 9.81 m/s 1.50 m

981 N
3.00 mxF   

ROUND:  To three significant figures = 981 N.xF  
DOUBLE-CHECK:  The unit of the calculated value is Newtons, which is a SI unit for force. The result is 
reasonable considering the mass of the bricks. 
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4.47. THINK:  The problem asks for the force needed to hold the block in place. This means that the net force 
on the block has to be zero in each case, net net 0x yF F= = . The only forces to consider are the force of 

gravity, which act straight downward, the normal force from the plane, which is perpendicular to the 
plane, and the third external force we are asked to apply in parts (a) and (b). We do not need to consider 
friction forces, because the problem stipulates a “frictionless ramp”. 
SKETCH: 

 
RESEARCH:  

 (a)  To find tF , the forces acting in the x direction on the block must be balanced. 
(b)  Note that now tF  and hF  are related by   Ft = Fh cosθ .   
SIMPLIFY:  

 (a) net g 0,x t xF F F= − + =  g sint xF F mg θ= =  

 (b)   Fh = Ft / cosθ = mg sinθ / cosθ = mg tanθ  
CALCULATE:  

 (a) 
  
Ft = 80.0 kg( ) 9.81 m/s2( )sin 36.9°( )= 471.2 N  

 (b) 
  
Fh = 80.0 kg( ) 9.81 m/s2( )tan 36.9°( )= 589.2 N   

ROUND:  To three significant figures,  
(a) tF = 471 N and  
(b) hF = 589 N. 
DOUBLE-CHECK:  With almost all problems involving inclined planes, such as this one, one can obtain 
great insight and perform easy checks of the algebra by considering the limiting cases of the angle θ  of the 
plane approaching 0 and 90 degrees. 
In the case of  θ → 0°  the block will simply sit on a horizontal surface, and no external force should be 
required to hold it in that position.  Our calculations are compatible with this, because  sin0° = tan0° = 0 . 
In the case of  θ → 90°  our results for parts (a) and (b) should be very different. In part (a) the force acts 
long the plane and so will be straight up in this limit, thus balancing the weight of the block all by itself.  
Therefore, as  θ → 90° , we expect our force to approach   Ft (θ → 90°) = mg .  This is satisfied in our 
solution because  sin90° = 1 . In part (b) the external force will act perpendicular to the plane in the limit of 
 θ → 90° . Thus almost no part of it will be available to balance the weight of the block, and consequently 
an infinitely big force magnitude should be required. This is also born out by our analytic result for part 
(b), because  tan90° → ∞ . 
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4.48. THINK: The mass, =1 20.0 kg.m  The ramp angle is θ = °30.0 .  The acceleration of the masses is 

1 2 0.a a= =   
SKETCH:  

 
RESEARCH: For 2m , net, 2 0.yF T m g= − =  Determine T from the sum of forces on 1.m  

SIMPLIFY: For 1m , net, g1, 0,x xF T F= − =  1 sin 0,T m g θ− =  and 1 sin .T m g θ=  Then for 2m , 

2 2 1  / sin .T m g m T g m θ= ⇒ = =  

CALCULATE:  ( ) ( )= ° =2 20.0 kg sin 30.0 10.0 kgm   

ROUND:  =2 10.0 kg.m  
DOUBLE-CHECK:  2m  is the same order of magnitude as 1.m  

4.49. THINK: The piñata’s mass is M = 8.00 kg. The distance between the poles is D = 2.00 m. The difference in 
pole heights is h = 0.500 m. The vertical distance between the shorter pole and the piñata is s = 1.00 m. 
Horizontally, the piñata is / 2D  from each pole. Determine the tension in each part of the rope, 1T  and 

2 .T  Note, net net 0.x yF F= =  

SKETCH:  

 
RESEARCH:  To find 1T  and 2T , balance the forces on the piñata in each direction. 1θ  and 2θ  can be 
determined from trigonometry.  

SIMPLIFY:  Find 1θ : 
( )1

1 1

2
tan   tan .

/ 2
h sh s

D D
θ θ −

 ++
= ⇒ =   

 
 Similarly, 1

2
2tan .s
D

θ −  
=  

 
 

net, 1 2 0x x xF T T= − =  1 1 2 2 cos cos 0T Tθ θ⇒ − =   (1) 

net, 1 2 0y y yF T T mg= + − =  1 1 2 2 sin sin 0T T mgθ θ⇒ + − =   (2) 

Solve for 1T  in terms of 2T  in (1) and substitute into (2): 

2
2 1 2 2

1

cos
sin sin 0

cos
T T mg

θ
θ θ

θ
 

+ − = 
 

 ( )2 2 1 2 cos tan sinT mgθ θ θ⇒ + =  
( )2

2 1 2

 .
cos tan sin

mg
T

θ θ θ
⇒ =

+
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CALCULATE:  
( )1

1

2 0.500 m 1.00 m
tan 56.31

2.00 m
θ −  +

= = °,  
 

 1
2

2.00 mtan 45.0
2.00 m

θ −  = = ° 
 

 

 
( )( )

( ) ( ) ( )( )
2

2

8.00 kg 9.81 m/s
44.39 N,

cos 45.0 tan 56.31 sin 45.0
T = =

° ° + °
 ( ) ( )

( )1

cos 45.0
44.39 N 56.59 N

cos 56.31
T

°
= =

°
 

ROUND:  With all the given values containing three significant figures, 1 56.6 NT =  and 2 44.4 N.T =  
DOUBLE-CHECK:  Both 1T  and 2T  are less than the weight of the piñata and are reasonable values.  

4.50. THINK: The piñata’s mass is M = 12 kg. The distance between the poles is D = 2.0 m. The difference in 
pole height is h = 0.50 m. The rope length is L = 3.0 m. The piñata is in equilibrium, so net, net, 0.x yF F= =  

Determine (a) the distance from the top of the lower pole to the ring, d and (b) the tension in the rope, T. 
SKETCH:  

 
RESEARCH:  

 (a) Trigonometry can be used to find d. Also, a relation between the angles 1θ  and 2θ  can be established 

by balancing the horizontal forces on the ring: net, 0x x
F F= =∑ . 

 (b) To find T, the horizontal and vertical forces on the ring must be balanced. The magnitude of T is the 
same on each side of the ring because it is the same rope. 
SIMPLIFY:  

 (a) First, determine how 1θ  and 2θ  relate: net, 1 2 1 2cos cos 0  cos cos .xF T T T Tθ θ θ θ= − = ⇒ =  Then, 

1 2 .θ θ θ= =   To find d, consider the sketch again: 

 

( )1cos ( )cos   cos   cos /d L d D L D D Lθ θ θ θ −+ − = ⇒ = ⇒ =  

( )sin sinL d d hθ θ− − =  sin sin 2 sin   
2sin

L hL d h d θθ θ
θ
−

⇒ − = ⇒ =  

 (b) From (a), θ 48.19= ° . To determine T, consider: net, 2 sin 0yF T Mgθ= − = .  Then, 
2sin

Mg
T

θ
= . 

CALCULATE:  

 (a) 1 2.0 mcos 48.19
3.0 m

θ −  
= = °, 

 
 

( ) ( )
( )

3.0 m sin 48.19 0.50 m 1.736 m 1.1646 m
1.49072sin 48.19

d
° −

= = =
°
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 (b) 
( )( )

( )

212 kg 9.81 m/s
78.97 N

2sin 48.19
T = =

°
 

ROUND:  
 (a) Rounding to two significant figures, d = 1.2 m.    
 (b) Rounding to two significant figures, T = 79 N.   

DOUBLE-CHECK:  As they should be, d is less than D and T is less than Mg.   

4.51. THINK:  The masses are given as 1 36.5 kgm = , 2 19.2 kgm =  and 3 12.5 kg.m =  Determine the 
acceleration of 1m , 1.a  As there are no forces in the x-direction, only the y-direction needs to be 
considered. 
SKETCH:   

  
RESEARCH:  To determine 1a , use 1net, 1 .y yF F= ∑  Determine 2T  and 3T  by summing the forces on 2m  

and 3 .m  A key idea is that 1 2 3a a a= − = − , as all the masses are connected (and ignoring any tipping of 

1m ). With 1 2 3m m m> + , it can be seen that 1m  moves downward while 2m  and 3m  move upward. 

SIMPLIFY: 2 :m 2net 2 2F T m g= −  2 2 2 2 m a T m g⇒ = −  ( )2 2 2 .T m a g⇒ = +  

3 :m  3 3 3F T m g= −  3 3 3 3 m a T m g⇒ = −  ( )3 3 3 T m a g⇒ = +  

1m : 1net 2 3 1F T T m g= + −  ( ) ( )1 1 2 2 3 3 1 m a m a g m a g m g⇒ = + + + −  

 With 1 2 3a a a= − = − , 

( ) ( )

( ) ( )
( )

( )

1 1 2 1 3 1 1

1 1 2 1 3 1 2 3 1

1 1 2 3 2 3 1

2 3 1
1

1 2 3

g

m a m a g m a g m g
m a m a m a m g m g m g

a m m m g m m m

m m m
a

m m m

= − + + − + −
+ + = + −

+ + = + −

+ −
=

+ +

 

CALCULATE:  
( )

( )
2

2
1

9.81 m/s 19.2 kg 12.5 kg 36.5 kg
0.69044 m/s

36.5 kg 19.2 kg 12.5 kg
a

+ −
= = −

+ +
  

ROUND:  There are two significant figures in the sum in the numerator, so the answer should be written, 
2

1 0.69 m/sa =  downward. 
DOUBLE-CHECK:  1a  is less than g in magnitude, which it should be for this system. 

4.52. THINK: The block’s dimensions are w = 1.165 m, d = 1.648 m and h = 1.051 m. The paperweight’s mass is 
m = 16.93 kg. Determine the paperweight’s acceleration, a, down the incline. We first need to realize that 
the paperweight will slide down the plane in the direction of the steepest slope, i.e. the direction that has 
the smallest angle with the vertical.  (This is the same as for a golf ball rolling down the side of a hill on a 
putting green.) The most difficult part of this problem is to find which way the steepest slope points.  At 
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the edges of our slope the angles are θ −= 1tan ( / )x h d  and θ −= 1tan ( / )y h w .  But the question is if there is a 
steeper angle somewhere in between the  x- and y-directions.  One may be tempted to think that this leads 
to a minimization problem involving some sort of derivative.  However, there is a shortcut, if one realizes 
that the angle of steepest descent, θmax , is the one for which the bottom of the slope has the shortest 
distance, r, to the corner of the block. 
SKETCH:  We use the figure in the problem and indicate our coordinate system at the top.  The red 
triangle containing the angle θmax  is a right triangle with side lengths h along the z-direction and r in the 
xy-plane. The hypotenuse of this triangle is the path along which the paperweight slides down.  

 
 

It is also instructive to draw a top view of the bottom triangle in the xy-plane, because it helps us to 
determine the length of the distance r. From this drawing we see that the direction of r has to be such that 
it forms the height of the right triangle in the xy-plane. 

 
 

RESEARCH:  From trigonometry we know that the angle α −= 1tan ( / )w d  and that the length of r is then 
given by α= sinr d . Once we have r, we can compute the angle θ −= 1

max tan ( / )h r . The magnitude of the 
acceleration is then calculated as θ= maxsina g , which is universally the case for inclined plane problems. 
SIMPLIFY:  Inserting all intermediate results, we find 

( )

θ

α

−

−

−
−

  = =     
  =     
  
  =
    

1
max

1

1
1

sin sin tan

sin tan
sin

sin tan
sin tan ( / )

ha g g
r

hg
d

hg
d w d

 

CALCULATE:  Inserting our given numbers results in 

( )
−

−

  
  = =
    

2 1 2
1

105.1(9.81 m/s )sin tan 7.27309 m/s
164.8sin tan (116.5 /164.8)

a  
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ROUND:  Since the gravitational acceleration is only specified to three significant digits, we also round 
our result to = 27.27 m/sa . 

 
DOUBLE-CHECK:  Our result is smaller than the free-fall value of the gravitational acceleration, which is 
comforting.  What about limits?  As → 0h  we find → 0a , as expected.  Also, we find that in either limit, 

→ 0d  or → 0w , that our acceleration value approaches →a g , which is also expected. 

4.53. THINK: The only forces that act on the block are the force of gravity, the normal force from the ramp, and 
the tension force from the rope. Gravity, as always, points straight down. The normal force, also as always, 
is perpendicular to the plane. And the tension force points in the direction of the rope.  No friction is 
present. The block is held in position, which implies force equilibrium.  The only direction that motion 
could occur in is along the plane, and so we should try to compute the force components along the 
direction of the plane and make sure they add up to 0, as required by Newton’s first law. 

 SKETCH:  

 

RESEARCH:  Note that we have drawn the angle α , where   α = sin−1 L / l( ).  It is the angle between the 
rope and the plane. The component of the tension force along the plane is   T cosα , where we have defined 
the direction up the plane as positive.  As always in inclined plane problems, the force component of 
gravity along the plane is   Mg sinθ .  Since these are the only two fore components along the plane, we find: 

  T cosα − Mg sinθ = 0  
 
SIMPLIFY: It is now fairly straightforward to solve for the magnitude of the tension in the string: 

  
T =

Mg sinθ
cosα

=
Mg sinθ

cos sin−1 L / l( )( )  

We can use the trigonometric identity  cosφ = 1− sin2 φ  (which is valid for any angle) and then find 
finally 

( )2

sin sin
cos 1 /

Mg Mg
T

L l

θ θ
α

= =
−

 

CALCULATE: 
( )

( )

2

2

64.0 kg 9.81 m/s sin(26.0 )
284.2532 N

1 0.400 /1.60
T

°
= =

−
  

ROUND:  There are three significant figures in all given values, so the answer should be written as 
284 N.T =  

DOUBLE-CHECK:  There are two limiting cases that we can study to see if our solution makes sense. 
First we can see what happens in the limit that L approaches 0.  We can see that our solution then reduces 
to   T = Mg sinθ , which is as expected, because then the rope is along the plane and the tension is simply 
equal to the component of gravity along the plane.  For any value of L > 0, the tension has to increase.  In 
the limiting case that the side length of the cube approaches the length of the rope, the tension in the rope 
has to become infinitely large, which is also born out by our analytic result.  This gives us added 
confidence that we have solved the problem properly. 
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4.54. THINK: The bowling ball’s mass is 1 6.00 kg.M =  The initial velocity is b0 0.v =  The wedge’s mass is 

2 9.00 kgM =  and it sits on a frictionless surface. The wedge’s angle is 36.9θ = °.  Determine (a) the force 
on the ball, app ,F  to maintain the ball’s vertical position, and (b) the magnitude of the wedge’s acceleration, 

2 ,a  if app 0.F =  

SKETCH: 

 
RESEARCH:  

 (a) 1 net, 0yF =  in order to keep the ball in the same vertical position. Also, the ball and wedge must have the 

same velocity in the x direction at all times in order to prevent the ball from rolling down (or up) the 
wedge ⇒ = =1, 2, .x x xa a a  To determine appF



, sum the forces in the x direction acting on 2M : 

= ∑2net, 2, .x xF F  The normal force of the ball on the wedge 2N  must be determined. By Newton’s third law, 

2 1.N N= −
 

 1N


 can be determined by summing the forces on 1.M  
 (b) The wedge’s acceleration, 2 ,a  in the absence of any external force can be found by writing one 

equation relating accelerations in the x-direction and three equations relating force to acceleration in the 
x- and y-directions. The resulting system of four equations can be solved for 2 .a  
SIMPLIFY:  

 (a) First, consider 1M :  In the y direction, 1 net, 0yF =  to keep the ball in the same vertical position. Then,  

= − =1 net, 1, ,1 0y y gF N F  θ⇒ =1 1 cosN M g  1
1 .

cos
M g

N
θ

⇒ =  

In the x-direction, 1
1 net, app 1, app 1 app app 1sin sin tan .

cosx x
M g

F F N F N F F M gθ θ θ
θ

= − = − = − = −  Now 

consider 2M : The net force in the x- direction is 2net, 2, 2 1sin tan ,x xF N N M gθ θ= = =  where we  have used 

=
 

2 1N N from Newton’s third law.  To keep the ball stationary with respect to the wedge,  

app 11net, 2net, 1
1, 2,

1 2 1 2

tan tanx x
x x

F M gF F M g
a a

M M M M
θ θ−

= ⇒ = ⇒ =  

 Solving for appF  yields 1 1 1
app 1 1

1 2 2

tan tan
1 tan .

M g M g M
F M M g

M M M
θ θ

θ
   

= + = +   
   

 

 (b) To determine 2a  when =app 0,F  note that 2 1,xv v−  is the relative velocity at which the wedge is moves 

horizontally out from under the ball, and therefore ( )2 1, tanxv v θ−  is the rate at which the surface of the 
wedge drops downward beneath the ball. Since the ball drops, too, maintaining contact with the wedge, 
this is also the vertical speed of the ball, 1, .yv  Using the sign convention in the figure to write the 

appropriate equation, and then taking the time derivative of all each side, we obtain 
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( )
( )

( )

2 1, 1,

2 1, 1,

1, 1, 2

tan

tan

tan (1)

x y

x y

y x

v v v

a a a

a a a

θ

θ

θ

− = −

− = −

= −

 

 Now, knowing that 1 2 ,N N N= =  we relate force to acceleration in the x-direction for the wedge, and in 
both the x- and y-directions for the ball: 

2 2

1 1,

1 1 1,

sin (2)
sin (3)

cos (4)
x

y

N M a
N M a

N M g M a

θ
θ

θ

=
= −

− =
 

 We eliminate N using equations (2) and (3): 

2 2 1 1,

2
1, 2

1

(5)

x

x

M a M a
M

a a
M

= −

= −
 

 We also eliminate N using equations (2) and (4):  

2 2
1 1 1,

2 2 1 1 1,

2
1, 2

1

cos
sin

cot

cot (6)

y

y

y

M a
M g M a

M a M g M a
M

a a g
M

θ
θ

θ

θ

− =

− =

= −
 

 Finally, we eliminate 1, ya  using equations (1) and (6), substitute for 1,xa  using (5), and solve for 2 .a  

( )

( )

2
1, 2 2

1

2 2
2 2 2

1 1

2 2
2 2

1 1

2
2 2

1 1

1
2

1 2 2

tan cot

tan cot

1 tan cot

1 tan cot

tan cot

x
M

a a a g
M

M M
a a a g

M M

M M
a a g

M M
g

a
M M
M M

M g
a

M M M

θ θ

θ θ

θ θ

θ θ

θ θ

− = −

 
− − = − 

 
 

− + − = − 
 

=
 

+ + 
 

=
+ +

 

Note that =2 2, ,xa a  as the wedge does not accelerate in the y direction. 
CALCULATE:  

 (a) ( ) ( ) ( )2
app

6.00 kg
6.00 kg 1 9.81 m/s tan 36.9 73.66 N

9.00 kg
F

 
= + ° = 

 
  

 (b) 
( )( )

( ) ( ) ( ) ( )

2
2

w

6.00 kg 9.81 m/s
2.532 m/s

6.00 kg 9.00 kg tan 36.9 9.00 kg cot 36.9
a = =

+ ° + °
 

ROUND:  There are three significant figures in both masses, so the results should be written as 

app 73.7 NF =  and 2
w 2.53 m/s .a =  

DOUBLE-CHECK:  The applied force seems reasonable for the bowling ball on an inclined wedge. A 
positive 2a  implies that the wedge accelerates to the left in the sketch, as it should. 
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4.55. THINK:  The skydiver’s total mass is m = 82.3 kg. The drag coefficient is 0.533.dc =  The parachute area is 
220.11 m .A =  The density of air is 31.14 kg/m .ρ =  The skydiver has reached terminal velocity ( )net 0a = . 

Determine the drag force of the air, drag .F  

SKETCH:  

 
 

RESEARCH: The skydiver has achieved terminal velocity, that is net,y 0.F =  By balancing the forces in y, 

dragF  can be determined. 

SIMPLIFY: net, drag g 0 yF F F= − = ⇒ drag gF F mg= =  

CALCULATE: ( )( )2
drag 82.3 kg 9.81 m/s 807.36 NF = =   

ROUND:  Since the mass has three significant figures, drag 807 N.F =  

DOUBLE-CHECK:  Since the skydiver has reached terminal velocity, the air’s drag force should be equal 
to her weight, mg. 

4.56. THINK: The dragster’s initial speed is 0 0.v =  The distance traveled is 402 mx∆ =  in time, = 4.441 s.t  
Determine the coefficient of static friction, sµ  necessary to achieve this result. 
SKETCH:  

 
 

RESEARCH: s s .f Nµ=  To determine sf  and N, the forces acting along the x and y directions must be 

balanced: net,x xF F= ∑  and net,y .yF F= ∑  Note, the vertical acceleration is zero, so 

net, 0.yF = net, net,x xF ma= .  Determine net,xa  by assuming a constant acceleration and using the equation 

( )2
0 / 2.x v t at∆ = +  

SIMPLIFY:  To determine net,xa :  ( ) ( )2 2
0 net, net,/ 2 / 2x xx v t a t a t∆ = + =  with 0 0.v =  Then, 2

net, 2 / .xa x t= ∆  

Sum the forces in the vertical direction on the dragster: net,y g g0  g.F N F N F m= − = ⇒ = =  Sum the forces 

in the horizontal direction: net, s net, s net, s    .x x xF f ma N ma mgµ µ= ⇒ = ⇒ =  So, 

net,
2

2 .x
s

a x
g gt

µ ∆
= =  
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CALCULATE: 
( )

( )( )
µ = =22

2 402 m
4.1555

9.81 m/s 4.441 s
s   

ROUND:  There are three significant figures in the distance as given, so the result should be written 
µ = 4.16.s  
DOUBLE-CHECK: The coefficient of friction that we have calculated would be extremely high for regular 
tires. If you ever walked around a car racetrack, you might have noticed that the road surface feels sticky.  
Why?  The answer is that racing tires are very sticky, with the resulting higher coefficients of friction.  
However, the value we calculated here is too high, even for real racing tires, because we assumed that the 
only contribution to the normal force is the weight of the dragster.  In real race situations, however, 
spoilers, wings, and other aerodynamics adjustments can convert some of the wind resistance into a 
downward force, which adds to the normal force.  In addition, top fuel dragsters point their exhaust pipes 
almost straight up. The superchargers in the dragsters’ engine expel the exhaust with very large velocities, 
and pointing the exhaust pipes up generates more downward force on the car.  The net effect of all of these 
corrections is that real-life coefficients of friction do not have to be as high as our calculated result in order 
to achieve the accelerations reached. 

4.57. THINK: The initial speed of the truck is = 30.0 m/s.v  The final speed of the truck is v = 0. The mass of 
the block is M. The coefficient of static friction is 0.540.sµ =  Determine the minimum distance, x∆  the 
truck can travel while stopping without causing the block to slide. 
SKETCH: 

 
RESEARCH: The minimum stopping distance occurs at the maximum acceleration the truck can undergo 
without causing the block to slide. Use the equation 2 2

0 2v v a x= + ∆  to determine .x∆  The acceleration is 
found from balancing the forces in the horizontal direction acting on the block.  
SIMPLIFY: For the block, when it is just about to slide, net, s,max .xF f= −  Then, net, s sxMa N Mgµ µ= − = −  

net, s .xa gµ⇒ = −  Since the block and the truck remain in contact, they form a single system with the same 
acceleration. With v = 0,  

( )
2 2 2

2 0 0 0
0 net,

net, ss

0 2   .
2 22x

x

v v v
v a x x

a gg µµ
− −

= + ∆ ⇒ ∆ = = =
−

 

CALCULATE:  
( )

( )( )
∆ = =

2

2

30.0 m/s
84.95 m

2 0.540 9.81 m/s
x   

ROUND:  To three significant figures, the result should be written 84.9 m.x∆ =  
DOUBLE-CHECK:  The displacement is positive, which is consistent with how the sketch is set up. This is 
a reasonable stopping distance. 

4.58. THINK:  The box’s distance from the end of the board is D = 0.540 m. The coefficients of friction are 

s 0.320µ =  and k 0.250.µ =  Determine the speed of the box after it reaches the end of the board, v. It is 
useful to know the angle of the board with respect to the horizontal, .θ  
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SKETCH:  

 

RESEARCH:  The final speed, v can be found from the equation 2 2
0 2 .v v a x= + ∆  Note, 0 0v =  as the box 

starts from rest. The acceleration a is the net acceleration in the x direction. This is found by balancing the 
forces in the horizontal direction when the book is sliding. N is determined by balancing the forces in the 
vertical direction. The angle, θ  can be determined from the equation s,max sf Nµ= , just before the box 

begins to slide. Note that when the box is stationary, net, net, 0.x yF F= =  

SIMPLIFY:  First, determine θ.  When the box is at rest, just about to slide, net, g, ,max 0x x sF F f= − =  

g, ,max x sF f⇒ =  g s sin .F Nθ µ⇒ =   Since gF  is unknown, use the equation:   

net, g, g g0  cos   .
cosy y

NF N F N F Fθ
θ

= − = ⇒ = ⇒ =  

Then, ( )/ cos sin .sN Nθ θ µ=   Rearranging, ( )1
s stan   tan .µ θ θ µ−= ⇒ =   Once the box is sliding, there is 

kinetic friction and a net acceleration in the horizontal direction. Determine net,xa :   

net, net, g, k ksin .x x xF ma F f mg Nθ µ= = − = −  

From above, g cos cosN F mgθ θ= = .   Then, net, ksin cosxma mg mgθ µ θ= − .  This can be reduced:  

( ) ( )( ) ( )( )( )1 1
net, k net, s k ssin cos   sin tan cos tan .x xa g a gθ µ θ µ µ µ− −= − ⇒ = −  

With netxa  known,  2 2
0 net,2   2 .xv v a x v a D= + ∆ ⇒ =  

CALCULATE: ( ) ( )( ) ( ) ( )( )( )2 1 1 2
net, 9.81 m/s sin tan 0.320 0.250 cos tan 0.320 0.6540 m/s ,xa − −= − =  

 ( )( )22 0.654 m/s 0.540 m 0.8404m/sv = =  

ROUND:  Due to the difference in values that appear in the equation for net,xa , there are two significant 
figures. The result should be written as 0.84m/s.v =  
DOUBLE-CHECK:  This is a reasonable speed to achieve after the box slides down the incline. 

4.59. THINK:  It is given that there is a block of mass, 1 0.640 kgM =  at rest on a cart of mass, 2 0.320 kg.M =  
The coefficient of static friction between the block and the cart is s 0.620.µ =  Determine the maximum 
force on the cart and block such that the block does not slip. 
SKETCH:  
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RESEARCH: Use Newton’s second law: x xF ma=∑ , .y yF ma=∑  The force of friction is given by 

f s .F Nµ=   First, consider a composite body (block and cart system, free-body diagram (b)). Applying 

Newton’s second law,  ( )1 2  .xF ma F M M a= ⇒ = +∑   Note that both the block and the cart accelerate at 
the same rate.   Second, consider only the block, applying Newton’s second law in the horizontal and 

vertical directions:  B, 1  0  y y B BF ma N w N w M g= ⇒ − = ⇒ = =∑  ( )0 ,ya =   B, f 1  .x xF ma F M a= ⇒ =∑  
SIMPLIFY: ( )1 2 ,F M M a= +  f 1 ,F M a=  1 .N M g=  The maximum magnitude of F  is when the 
acceleration is at a maximum. This means also that the force of friction is maximum which is equal to 

f s s 1 .F N M gµ µ= =  Note that when f sF Nµ> , the block starts to slip.  f s 1 1 max max s .F M g M a a gµ µ= = ⇒ =  

Therefore, ( ) ( )max 1 2 max max 1 2  .sF M M a F M M gµ= + ⇒ = +  

CALCULATE:   ( )( )( )2
max 0.640 kg 0.320 kg 0.620 9.81 m/s 5.83891 NF = + =   

ROUND:  There are three significant figures initially, so the result should be max 5.84 N.F =  
DOUBLE-CHECK:  By checking the masses given and the coefficient of static friction, it can be 
determined that the result should be the same order of magnitude as gravity. This is indeed the case. 

4.60. THINK: A coffee filter is dropped from a height of 2.0 m. The coffee filter reaches the ground after 3.0 s. 
What happens when there are two coffee filters? A drag force is 2

drag .F Kv=  The drag constant, K does not 

change if there are one or two filters. Since the cross-sectional areas are the same for the filters, the drag 
force for two filters remains 2

drag .F Kv=  

SKETCH: Consider two cases: 

 
RESEARCH:  Use Newton’s second law to determine the acceleration of the system:  

drag  .yF ma F mg ma= ⇒ − =∑  

 However, the brief period when the filters are accelerating has been neglected. This means consider only 
when the filters reach terminal velocity. This occurs when a = 0. 

2 2
drag     

mg mg
F Kv mg v v

K K
= = ⇒ = ⇒ =  

 Because of constant speed, use 0y y vt= −  (y = 0 is the ground). 

SIMPLIFY: 0 0 0  / / / .y vt t y v y mg K= ⇒ = =  For one filter, 0 :m m=  0
1

0

.
y

t
m g

K

=  

 For two filters, 02 :m m=  

0 0 1
2

0 0

.
2 2

2

y y t
t

m g m g
K K

= = =  
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 CALCULATE:  2
3.0 s 2.1213 s

2
t = =  

ROUND:  The first time has two significant figures, so the result should be rounded to 2 2.1 s.t =  

DOUBLE-CHECK:  It can be seen that t is inversely proportional to .m  This implies that if the mass of 
the object is increased, the time will be decreased. 2t is less than 1t  as expected. 

4.61. THINK: The refrigerator has a mass of m = 112.2 kg. The coefficients of static and kinetic friction are 
µ = 0.460s  and µ =k 0.370.  Determine the force of friction if the refrigerator is pushed with a force F. 
SKETCH:  

 
RESEARCH: Use Newton’s second law: f  ,x x xF ma F F ma= ⇒ − =∑  y yF ma=∑ ( )0 ,ya =  

0  .N w N mg− = ⇒ = To move the refrigerator, the maximum static friction needs to be overcome. The 
maximum static friction is given by f ,max s s .sF f N mgµ µ= = =  After the refrigerator has moved, the force 
applied needs to be larger than the force of kinetic friction in order to keep the refrigerator moving. The 
force of kinetic friction is given by k k k .f N mgµ µ= =  
SIMPLIFY: ,max ssf mgµ=  and k k .f mgµ=  

CALCULATE: ( )( )= =2
,max 0.460 112.2 kg 9.81 m/s 506.31 N,sf  

( )( )= =2
k 0.370 112.2 kg 9.81 m/s 407.25 Nf  

ROUND: Rounding to three significant figures, since gravity has three significant figures, the results are 

s,max 506 Nf =  and k 407N.f =   

(a) Here, F is less than s 506 N.f =  This means that the force of friction balances the force F. Therefore, the 
force of friction is 300. N. 

 (b)  F is still less than s 506 N.f =  The force of friction is 500. N. 
(c) F is larger than s 506 N.f =  This means that initially the force of friction is 506 N, but after the 
refrigerator is in motion, the force of friction is the force of kinetic friction, 407 N.f kF f= =  

DOUBLE-CHECK:  The force of friction must be equal or less than the force acting on an object, f .F F≤  
Also, the maximum static friction is always larger than kinetic friction, s,max k .f f>  

4.62. THINK: A towrope pulls the skiers with a constant speed of 1.74 m/s. The slope of the hill is 12.4°.  A 
child with a mass of 62.4 kg is pulled up the hill. The coefficients of static and kinetic friction are 0.152 and 
0.104, respectively. What is the force of the towrope acting on the child? Constant speed means zero 
acceleration, 0.a =  
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SKETCH:  

 
 

RESEARCH:  Use Newton’s second law: ,x xF ma=∑  .y yF ma=∑  The maximum force of static friction 

is given by s,max sf Nµ=  and the force of kinetic friction is given by k k .f Nµ=  Initially, the force of the 

towrope must overcome the maximum static friction in order to move the child. 0y yF ma= =∑  since 

0.ya =  So cos 0  cosN mg N mgθ− = ⇒ = θ.  0x xF ma= =∑  since 0.xa =  So f sin 0F F mg θ− − =  

f sin .F F mg θ⇒ = +  Also, f s,max s s cosF f N mgµ µ θ= = = .  

SIMPLIFY: g cosN m θ= ,  ( )s,max s ssin cos sin cos sin .F f mg mg mg mgθ µ θ θ µ θ θ= + = + = +  After the 

child is in motion with a speed of 1.74 m/s, sµ  above is replaced by kµ . Therefore, 

( )k cos sin .F mg µ θ θ= +  

CALCULATE: ( ) ( ) ( )( )262.4 kg 9.81 m/s 0.152cos 12.4 sin 12.4 222.324 N.F = ° + ° =  After the child is in 

motion, ( ) ( ) ( )( )262.4 kg 9.81 m/s 0.104cos 12.4 sin 12.4 193.63 N.F = ° + ° =  

ROUND:  Rounding to three significant figures, before movement, F = 222 N and after movement begins, 
F = 194 N. 
DOUBLE-CHECK:  The initial force F = 222 N must be larger than the force after the child is in motion 

194 N.F =  

4.63. THINK:  A skier moves down a slop with an angle of 15.0 .°  The initial speed is 2.00 m/s. The coefficient 
of kinetic friction is 0.100. Determine the speed after 10.0 s. First, the acceleration of the skier must be 
determined. 
SKETCH:   

 
RESEARCH:  Assume the direction of motion is the positive direction of the x axis. The force of kinetic 
friction is given by k k .f Nµ=  Use Newton’s second law to determine the acceleration of the skier: 

x xF ma=∑  k sin xmg f ma⇒ θ − =  k sinxma mg Nµ⇒ = θ −  

( )0    cos 0  cosyy y aF ma N mg N mg== ⇒ − θ = ⇒ = θ∑  
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SIMPLIFY:  ksin cosxma mg mgµ= θ − θ  ( ) sin cos .x ka g µ⇒ = θ − θ  The speed after the time interval t∆  

is: ( )0 0 ksin cos .xv v a t v g tµ= + ∆ = + θ − θ ∆  

CALCULATE: ( )( )( )22.00 m/s 9.81 m/s sin15.0 0.100cos15.0 10.0 s 17.91 m/sv = + ° − ° =   

ROUND:  Since 0v  has three significant figures, round the result to v = 17.9 m/s. 
DOUBLE-CHECK:  17.9 m/s is equivalent to about 64.4 km/h, which is a reasonable speed. 

4.64. THINK: A block of mass, 1 21.9 kgm =  is connected to another block of mass, 2 25.1 kgm =  on an 
inclined plane with 30.0 .θ = °  The coefficients of friction are 0.109sµ =  and k 0.086.µ =  Determine the 
displacement of block 2 after 1.51 s.  Because block 2 is heavier than block 1, the displacement of block 2 is 
either downward or zero.  
SKETCH:  

 
The force of friction always opposes a motion. This means its direction is opposite to the direction of 
motion of the system. 
 

RESEARCH: Use Newton’s second law: ,x xF ma=∑  .y yF ma=∑  

 Block 2: 2yF m a=∑ 2 2 .T m g m a⇒ − =  

 Block 1: ( ) 1 100   cos   cosyy aF N m g N m g== ⇒ − θ = 0 ⇒ = θ∑  

 
1xF m a=∑ 1 f 1 sin .m g T F m a⇒ θ − + =  

SIMPLIFY: 2 2 2 2  ,T m g m a T m g m a− = ⇒ = +  f 1 cosF N m gµ µ= = θ  ( sµ µ=  if the blocks are at rest and 

kµ µ=  if the blocks are in motion). So, 

( )
( )

( )

1 f 1

1 2 2 f 1

1 2 f 1 2

1 2 1 1 2

1 2 1

1 2

sin
sin

sin +
sin cos

sin cos

m g T F m a
m g m g m a F m a

m g m g F m m a
m g m g m g m m a

m g m g m g
a

m m

µ
µ

θ − + =
θ − − + =

θ − = +

θ − + θ = +
θ − + θ

=
+

 

Before a is calculated, it must be determined if the net force (excluding friction) is larger than the 
maximum force of static friction. 

2 1 1sin cossm g m g m gµ− θ > θ  2 1 1 sin cossm m mµ⇒ > θ + θ  ( )2 1 sin cossm m µ⇒ > θ + θ  

 Because ( )ssin cos 1µθ + θ <  and 12m m> , the above condition is satisfied.  So the above equation for the 

acceleration can be used.  Displacement after t is ( ) 2
0 0 .1/ 2y y v t at= + + 0 0y =  and 0 0.v =  

( )
1 2 12 2

1 2

sin cos1 1
2 2

km g m g m g
y at t

m m
µ θ − + θ

= =   + 
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CALCULATE:  Displacement is 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

2 2 2
2 21.9 kg 9.81 m/s sin 30 25.1 kg 9.81 m/s 0.086 21.9 kg 9.81 m/s cos 301 1.51 s

2 21.9 kg 25.1 kg

2.9789 m

y
 ° − + °
 =
 +
 

= −

 

 ROUND: Since the coefficient of kinetic friction has two significant figures, round the result to 
3.0 m.y = −  

DOUBLE-CHECK:  It is understandable that the displacement is negative, since 2m  is larger than 1.m  If 
it assumed the acceleration is equal to gravity, then  

( )( )22 21 1 9.81 m/s 1.51 11.2 m.
2 2

y gt= − = − = −  

The result is much smaller than –11.2 m, since the acceleration must be smaller than the acceleration due 
to gravity. 

4.65. THINK: A wedge has a mass, m = 36.1 kg. The angle is 21.3θ = °  and the force is F = 302.3 N. The 
coefficient of kinetic friction is k 0.159.µ =  Determine the acceleration. 
SKETCH:  

 
RESEARCH: Use Newton’s second law: x xF ma=∑  and .y yF ma=∑  cosxF F θ= ,  sinyF F θ= ,  and 

f k .F Nµ=  

0,  since 0y y yF ma a= = =∑   cos 0yN F mg θ⇒ − − =  cos sin cosyN F mg F mgθ θ θ⇒ = + = +  

 x xF ma=∑  f sinxF F mg maθ⇒ − − =  k cos sinma F N mgθ µ θ⇒ = − −  

SIMPLIFY:  
( )

( ) ( )

k k k

k k

cos sin cos sin cos sin cos sin

cos sin cos sin

F F mg mg F F mg mg
a

m m
F g
m

θ µ θ θ θ θ µ θ µ θ θ

θ µ θ µ θ θ

− + − − − −
= =

= − − +

 

CALCULATE: ( ) ( )( ) ( ) ( ) ( )( )2

2

302.3 N cos 21.3 0.159sin 21.3 9.81 m/s 0.159cos 21.3 sin 21.3
36.1 kg
2.3015 m/s

a = ° − ° − ° + °

=

 

ROUND:  Rounding to three significant figures, 22.30 m/s .a =  

DOUBLE-CHECK:  If it is assumed that 0θ = , then the acceleration is a = F/m. 2302.2 8.37 m/s
36.1

a = =  

 Therefore the result is reasonably less than this value. 

4.66. THINK: The chair has a mass of M. The coefficient of static friction is 0.560.sµ =  A force F is acting at an 
angle θ  to the horizontal. Determine the range of θ  so that the chair does not move. The condition 
requires that the horizontal component of the force F be equal to or less than the maximum force of static 
friction, s,max sf Nµ= . 
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SKETCH: 

 
RESEARCH: Use Newton’s second law:   

= = ⇒ − − =∑ 0  0y y yF ma N F Mg   and    x x x fF ma F F ma= ⇒ − =∑  

SIMPLIFY: θ= + sinN Mg F  and cos .fF F maθ − =  The chair not moving means that a = 0, so 0xF =∑ . 

 At the minimum angle,  

( )

( )

θ
θ µ
θ µ θ
θ µ µ θ

θ µ θ µ
µ

θ µ θ

=
=

=

= +
= +

− =

− =

,max

,maxcos
cos

cos sin
cos sin

cos sin

cos sin

x s

f

s

s

s s

s s

s
s

F f
F F
F N

F Mg F
F Mg F

F Mg
Mg
F

 

Since /s Mg Fµ  is greater than or equal to zero, the critical value occurs when θ µ θ− =cos sin 0.s  Solving 

for θ , θθ µ θ θ θ
µ θ µ

−  
= ⇒ = = ⇒ = 

 
11 sin 1cos sin   tan   tan .

coss
s s

  

 CALCULATE: θ −  = = ° 
 

1 1tan 60.751
0.560

 

ROUND:  Rounding to three significant figures, θ = °.60.8c  Thus, the minimum angle at which any force 
can be applied and the chair will not move across the floor is °.60.8  
DOUBLE-CHECK:  If 90θ = ° , the chair is pushed straight down and there are no horizontal forces, 
therefore the chair does not move. 

4.67. THINK: The two blocks have masses =1 0.2500 kgm  and =2 0.5000 kg.m  The coefficients of static and 
kinetic friction are 0.250 and 0.123. The angle of the incline is 30.0 .θ = °  The blocks are initially at rest. 
SKETCH:  
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RESEARCH:  
 (a) If there is no friction, f 0F = , it is given that 2 1.m m>  This would cause block 1 to move up and block 2 

to move down. The same motion occurs when there is friction, only the acceleration is less when there is 
friction.  

 (b) Use Newton’s second law to determine the acceleration: 
 Body 1: 0yF =∑  and 0,ya =  so 1 1cos 0  cos .N m g N m gθ θ− = ⇒ =   

Also, 1xF m a=∑  so 1 f 1sin .T m g F m a− θ − =  

 Body 2: 2yF m a=∑  so 2 2 2 2  .m g T m a T m g m a− = ⇒ = −  

SIMPLIFY:  (b) 1 f 1sinT m g F m aθ− − =  and f k ,F Nµ=  so 

( )

( )
( )( )

( )

2 2 1 k 1

2 1 k 1 1 2

2 1 k 1

1 2

2 1

1 2

sin
sin cos

sin cos

sin cosk

m g m a m g N m a
m g m g m g m m a

m g m g m g
a

m m

m m
a g

m m

µ
µ

µ

µ

− − θ − =

− θ − θ = +
− θ − θ

=
+

− θ + θ
=

+

 

CALCULATE:  (b) ( ) ( ) ( )( )( )
( )

2 2
0.5000 kg 0.2500 kg sin 30.0 0.123cos 30.0

9.81 m/s 4.5567 m/s
0.5000 kg 0.2500 kg

a
− ° + °

= =
+

 

ROUND:   
(b) Rounding to three significant figures,  

24.56 m/s .a =  
 DOUBLE-CHECK:  The result is reasonable since it is less than the acceleration due to gravity.  In 
addition we find the limit of the acceleration of the Atwood machine in the limit of 90θ = ° (See Example 
4.4) and the limit of Example 4.8, Two Blocks Connected by a Rope – with Friction, for 0θ = °  as limiting 
cases of our answer.  This gives us additional confidence in our solution.  

4.68. THINK:  Let’s first consider the case where there is no friction; then the force F obviously has to act 
horizontally direction, because that is the direction of the intended acceleration. What, then, changes with 
the presence of friction? The friction force is always in the opposite direction of the motion of the block, 
and it is proportional to the magnitude of the normal force acting on the block from the supporting 
surface. Thus, if we direct the force downward, with an angle below the horizontal (θ < 0 ), then our 
vertical force component adds to the normal force, which causes a large friction force … which is bad. 
However, if we direct the force upward, then we reduce the normal force and thus reduce the friction force, 
and we have a chance to have a higher acceleration of the block than what we would have if the external 
force acted horizontally. 
SKETCH:   
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RESEARCH:  Use Newton’s second law: 
 θ− + = ⇒ = − = −-direction: 0 siny yy N Mg F N Mg F Mg F  

 − =-direction:  xx F f Ma   and µ= k ,f N  so µ− =kxF N Ma θ µ⇒ − =k cos .F N Ma  
SIMPLIFY: 

( )θ µ θ− − =cos sinkF Mg F Ma ( )θ µ µ θ
θ µ θ µ

− +
⇒ = = + −k k

 k k
cos sin

cos sin
F Mg F Fa g

M M
 

 The acceleration is maximized when θ =/ 0.da d  

( )θ µ θ
θ

= − + = ⇒sin cos 0 k
da F
d M

  

( )

θ µ θ
θ µ

θ µ−

− + =
=

=

k

k

1
k

sin cos 0
tan

tan

 

CALCULATE:  
 (a) ( )θ −= = °1tan 0.41 22.2936  

 (b) ( ) ( ) ( )( ) ( )( )= ° + + ° − =2 210.0 N cos 22.29 0.41 sin 22.29 0.41 9.81 m/s 17.5936 m/s
0.5000 kg

a  

ROUND:  Rounding to three significant figures, θ = °22.3  and = 217.6 m/s .a   
DOUBLE-CHECK:  The fact that the force is directed upward makes sense because the y-component of 
this applied force will reduce the normal force, acting to reduce the force of friction. Assuming no friction, 
the maximum acceleration is when 0.θ =  This means the acceleration is 

2/ 10.0 N/0.500 kg 20.0 m/s .a F M= = =  If there is friction and 0,θ =  the acceleration is  

( ) ( )2 2 220.0 m/s 0.41 9.81 m/s 16.4 m/s .k
k

F Mg Fa g
M M
µ

µ
−

= = − = − =  

 The part (b) result is between 216.4 m/s  and 220.0 m/s , as it should be. 

4.69. THINK:  A car is initially moving at a speed of 15.0 m/s then hits the brakes to make a sudden stop. The 
coefficients of static and kinetic friction are 0.550 and 0.430. Determine the acceleration and the distance 
traveled before the car stops.  
SKETCH:   

 

RESEARCH:  Using Newton’s second law: f k    x xF ma F ma N maµ= ⇒ = ⇒ =∑  and 

0    .y yF ma N mg N mg= = ⇒ − ⇒ =∑   Also, 2 2
0 2  .= −v v ax   

SIMPLIFY:   
(a)  k k  mg ma a gµ µ= ⇒ =  

(b)  2 0
22

2
0 2  

2
v v

v v ax x
a
−

= − ⇒ =  
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CALCULATE:   

(a) ( )2 20.430 9.81 m/s 4.2183 m/sa = =  

(b) 
( )

( )
2 2

2

15.0 m/s 0
 26.6695 m

2 4.2183 m/s
x

−
= =  

ROUND: Rounding to three significant figures,  
(a) 24.22 m/sa =  and  
(b) x = 26.7 m.  
DOUBLE-CHECK:  The acceleration is less than the acceleration due to gravity, as expected. 

4.70. THINK:  There are two blocks with masses, =1 2.00 kgM  and =2 6.00 kg.M  The are two forces, 
=1 10.0 NF  and =2 5.00 N.F   

SKETCH:   

 

RESEARCH:  Using Newton’s second law: .x xF ma=∑  Consider the composite body ( )1 2M M+ : 

( )1 2 1 2F F M M a+ = +  
SIMPLIFY:   

(a) 
( )

( )
1 2

1 2

F F
a

M M
+

=
+

;  Consider 1 :M  ,xF ma=∑  1 1 .F T m a− =  Consider 2M : ,xF ma=∑ 2 2 .F T m a+ =  

(b) 1 1 ,T F m a= −  2 2T m a F= −  

(c) The net force acting on 1M  is 1 1 .xF F T m a= − =∑  
CALCULATE: 

(a) 
( )

( )
+

= =
+

210.0 N 5.00 N
1.875 m/s

2.00 kg 6.00 kg
a  

(b) ( )( )= − =210.0 N 2.00 kg 1.875 m/s 6.25 NT  

(c) ( )( )= = =∑ ∑ 22.00 kg 1.875 m/s 3.75 NxF F    

ROUND:  To three significant figures, = 21.88 m/sa , and T = 6.25 N.  The sum of the forces acting on 1M  

is =∑ 3.75 N.F  

DOUBLE-CHECK:  The tension T  can also be calculated by 2 2 .T m a F= −  

( )( )26.0 kg 1.875 m/s 5.0 N 6.25 NT = − = , which agrees with the previous result. 
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4.71. THINK:  There are two masses, 1 2.00 kgM =  and 2 4.00 kg.M =  For part (a): a constant velocity means 
zero acceleration. 
SKETCH:   

 
RESEARCH:  Using Newton’s second law: 
Mass 1: 1 1 2 1 1  yF m a T T m g m a= ⇒ − − =∑  

Mass 2: 2 2 2 2  yF m a T m g m a= ⇒ − =∑  

SIMPLIFY:  ( )2 2 .T m a g= +  Substitute into the following equation: 

1 2 1 1T T m a m g= + +  ( ) ( ) ( )( )1 2 1 1 2 T m a g m a g m m a g⇒ = + + + = + +  

The composite mass ( )1 2 :m m+  ( ) ( ) ( )( )1 1 2 1 2 1 1 2    .yF ma T m m g m m a T m m a g= ⇒ − + = + ⇒ = + +∑  

CALCULATE:   
(a)  a = 0, so ( )( )2

1 2.00 kg 4.00 kg 9.81 m/s 58.86 NT = + =  

(b)  23.00 m/sa = , so ( )( )2 2
1 2.00 kg 4.00 kg 3.00 m/s 9.81 m/s 76.86 NT = + + =  

ROUND:  Since the masses have three significant figures, the results should be rounded to: 
(a) 1 58.9 NT =  

(b) 1 76.9 NT =  
DOUBLE-CHECK:  The tension increases as acceleration increases (assuming the acceleration is upward). 
As a check, the tension in part (a) is less than the tension in part (b). 
 

4.72. THINK:  The initial speed of a hockey puck is 0 12.5 m/s.v =  The puck stops after sliding a distance of 
60.5 m. Determine the acceleration and then the coefficient of kinetic friction. 
SKETCH:   

 
RESEARCH:  Using Newton’s second law and the relation 2 2

0 2v v ax= − : 

f f k    x xF ma F ma F Nµ= ⇒ = ⇒ =∑  

0y yF ma= =∑  (since 0)ya =  0  N mg N mg⇒ − = ⇒ =  

 



Chapter 4: Force 
 

 201 

SIMPLIFY:  k kma N mgµ µ= =  k k   / .a g a gµ µ⇒ = ⇒ =  The final speed is zero since the puck has 
stopped; v = 0.  

2
2 0
02   

2
v

ax v a
x

= ⇒ =  0
2

k 
2
v
gx

µ⇒ =  

CALCULATE:  
( )

( )
2

k 2

12.5 m/s
0.13163

2 9.81 m/s 60.5 m
µ = =  

ROUND:  Rounding to three significant figures, k 0.132.µ =  
DOUBLE-CHECK:  If the puck is on ice, it is expected that the coefficient of kinetic friction is small since 
the ice surface is smooth and slippery. 

4.73. THINK:  A mass M is attached to a massless spring. The spring stretches a distance D after the mass is 
attached. It stretches an additional D/4 after the elevator accelerates. Assume spring .F k x= ∆  

SKETCH:   

 
RESEARCH:  Using Newton’s second law and the equation for the force of the spring: 

( )spring spring    .yF ma F mg ma F m a g k x= ⇒ − = ⇒ = + = ∆∑  

SIMPLIFY:  When a = 0, .x D∆ =  When 0a ≠ , / 4 5 / 4.x D D D∆ = + =  
0    /a kD mg k mg D= ⇒ = ⇒ =  

( ) ( ) ( )5 55 50          
4 4 4 4 4

mg mg g gD Da k m a g m a g m a g a g a
D

 
≠ ⇒ = + ⇒ = + ⇒ = + ⇒ = + ⇒ = 

 
  

CALCULATE:  
( )2

2
9.81 m/s

2.4525 m/s
4

a = =  

ROUND:  22.45 m/sa =  
DOUBLE-CHECK:  It makes sense that a = g/4, since it produces D/4 displacement and D is proportional 
to g.  

4.74. THINK:  The mass of a crane is M = ⋅ 41.00 10  and the ball has a mass, m = 1200. kg. Determine the 
normal force exerted on the crane by the ground when (a) the acceleration is zero and (b) the acceleration 
is not zero.  
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SKETCH:   

 
RESEARCH:  Use Newton’s second law and the equation 2 2

0 2 .v v ax= −  

For the crane: y yF ma=∑ , 0ya =  because the crane does not move. 0  .N T Mg N T Mg− − = ⇒ = +  

For the ball: y yF ma=∑ , ya a= −  (deceleration). gT m ma− = −  ( ) T m g a⇒ = −  

SIMPLIFY:  ( )N m g a Mg= − +  ( ) .N m M g ma⇒ = + −  v = 0 (the ball has stopped), so ( )2
0 / .2a v x=  

( )
2

0

2
v

N m M g m
x

= + −  

CALCULATE:   

(a) Constant speed means a = 0.  ( )( )= ⋅ + =4 21.00 10  kg 1200. kg 9.81 m/s 109872 N.N  

(b) ( ) ( )
( )

= − =
2

1.00 m/s
109872 N 1200. kg 107472 N

2 0.250 m
N  

ROUND:  Rounding to three significant figures, (a) = ⋅ 51.10 10  NN  and (b) = ⋅ 51.07 10  N.N  
DOUBLE-CHECK:  Because the ball is decelerating, it is understandable that the normal force in part (a) 
is larger than the normal force in part (b). This is a similar situation to measuring weight in an elevator. 

4.75. THINK: A block of mass  20.0 kgm = is initially at rest and then pulled upward with a constant 

acceleration, 22.32 m/s .a =  
SKETCH:   

 
RESEARCH:  Using Newton’s second law and the equation 2 2

0 2 :v v ax= −  0 0v =  2 2 .v ax⇒ =  

( )    .y yF ma T mg ma T m a g= ⇒ − = ⇒ = +∑  

SIMPLIFY:  2 2   2v ax v ax= ⇒ =  
CALCULATE:  

(a)  ( )( )= + =2 22.32 m/s 9.81 m/s 242.6 N20.0 kgT  
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(b)  ( )( )220.0 kg 2.32 m/s 46.4 NyF = =∑  

(c)  ( )( )22 2.32 m/s 2.00 m 3.04631 m/sv = =  

ROUND: Rounding to three significant figures, the results are  
(a) 243 NT = ,  
(b) 46.4 NyF =∑  and  

(c) 3.05 m/s.v =  
DOUBLE-CHECK: Since a is about g/4, the net force must be about T/5.  

4.76. THINK:  There are three blocks A, B and C. A force F = 12 N is pulling block C. Determine the tension in 
the string between blocks B and C. 
SKETCH:   

 
RESEARCH:  First, consider the three blocks as a composite block. Using Newton’s second law: 

2 2    .x x cF ma F T m a T F ma= ⇒ − = ⇒ = −∑  

SIMPLIFY:  2
2

3 3 3
F F FT F m F
m

 
= − = − = 

 
 

CALCULATE:  
( )

2

2 12 N
8.0 N

3
T = =  

ROUND:  It is not necessary to round. 2 8.0 NT =  
DOUBLE-CHECK:  It is reasonable that 2 2 / 3T F=  since 2T  pulls two blocks. 

4.77. THINK: There are two masses, 1 3.00 kgm =  and 2 4.00 kgm =  arranged as an Atwood machine. 
Determine the acceleration of the blocks. 
SKETCH:    

 

RESEARCH:  Using Newton’s second law, block 1: y yF ma=∑ , ,ya a=  and  1 1g .− =T m m a  Block 2: 

y yF ma=∑ , ,ya a= −  and 2 2 .T m g m a− = −  
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SIMPLIFY:  ( )

( ) ( )
( )
( )

1

2 2

1 1 2 2

1 2 2 1

2 1

1 2

0

T m a g
T m g m a

m a m g m g m a
m m a m m g

m m
a g

m m

= +
− = −

+ − + =

+ = −

−
=

+

 

CALCULATE:  
( )
( ) ( )2 24.00 kg 3.00 kg

9.81 m/s 1.4014 m/s
4.00 kg 3.00 kg

a
−

= =
+

 

ROUND:  Rounding to three significant figures, 21.40 m/s .a =  
DOUBLE-CHECK:  If the sum of the forces along the string are considered,  

( ) ( )
( )

2 1
1 2 2 1

1 2

  .
m m

F m m a m g T T m g a g
m m

−
= + = − + − ⇒ =

+∑  

This is the same as above. 

4.78. THINK:  There are two blocks of masses, =1 3.50 kgm  and 2m  arranged as an Atwood’s machine. The 
acceleration of the blocks is =0 0.400 .a g  Determine the mass, 2 .m  
SKETCH:   

 
 

If the axis along the string is considered, the problem can be redrawn.  

 
RESEARCH:  The magnitude of the acceleration is given but not the direction of motion. Consider the 
two values of acceleration, 0 0.4 .a a g= ± = ±  Using Newton’s second law: 

F ma=∑ ( )2 1 1 2 m g m g m m a⇒ − = + ( ) ( )2 1 m g a m g a⇒ − = +
( )
( )2 1 .

g a
m m

g a
+

⇒ =
−

 

SIMPLIFY:  If a = + 0 ,a  
( )
( )

0
2 1

0

.
g a

m m
g a

+
=

−
 If 0 ,a a= −  

( )
( )

0
2 1

0

.
g a

m m
g a

−
=

+
   

CALCULATE:  ( ) ( )
( )

+
= =

−

2

2 2

9.81 m/s 0.400
3.50 kg 8.1667 kg,

9.81 m/s 0.400

g
m

g
  

or, ( ) ( )
( )

−
=

+

2

2 2

9.81 m/s 0.400
3.50 kg =1.5 kg

9.81 m/s 0.400

g
m

g
 

ROUND:  Keeping three significant figures, the mass is either =2 8.17 kgm  or =2 1.50 kg.m  
DOUBLE-CHECK:  There are two masses calculated for 2m  and one of them must be larger than 1m  and 
the other must be smaller than 1.m   This is what we have found, so the answers are reasonable. 
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4.79. THINK:  The sled has a mass, M = 1000. kg. The coefficient of kinetic friction is 0.600.kµ =  The sled is 
pulled at an angle θ = °30.0  above the horizontal. Determine magnitude of the tension in the rope when 
the acceleration is = 22.00 m/s .a  
SKETCH:   

 

RESEARCH: sinyT T θ= , cosxT T θ=  and f k .F Nµ=  Using Newton’s second law: y yF ma=∑  and 

0,ya =  so 0yN T mg+ − =   sinyN mg T mg T θ.⇒ = − = −   Also,  xF ma=∑  f xT F ma⇒ − =  

f .xT F ma⇒ = +  
SIMPLIFY:  

( )

( )
( )

( )

cos

cos sin
cos sin

cos sin

cos sin

k

k

k k

k k

k

k

T N ma

T mg T ma
T T mg ma

T mg ma

m g a
T

θ µ
θ µ θ

θ µ θ µ
θ µ θ µ

µ
θ µ θ

= +

= − +
+ = +

+ = +

+
=

+

 

CALCULATE:  
( ) ( )( )

( ) ( )( )
+

= =
° + °

2 20.600 9.81 m/s 2.00 m/s1000. kg
6763.15 N

cos 30.0 0.600sin 30.0
T  

ROUND:  Rounding to three significant figures, T = 6760 N. 

DOUBLE-CHECK:  If there is no friction, 
( )( )21000. kg 2.00 m/s

cos   2309 N.
cos cos30.0
maT ma Tθ

θ
= ⇒ = = =

°
 

Since friction was considered previously, the result was larger. 

4.80. THINK: A block with a mass of m = 2.00 kg is on an inclined plane with an angle 20.0 .θ = °  The 
coefficient of static friction is 0.60.sµ =  
SKETCH:   

 
 

RESEARCH:   
(a) The three forces are the normal, frictional and the gravitational forces. 
(b) The maximum force of friction is given by f,max s s .F f Nµ= =  To determine the normal force, use 

Newton’s second law: 0y yF ma= =∑  and 0,ya =  so  cos 0N mg θ− =   cosN mg θ.⇒ =  Also,  

x xF ma=∑  f sin .mg F maθ⇒ − =  
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SIMPLIFY:   
(c) The block is moving if f ssinmg F Nθ µ> =  or ssin 0.mg Nθ µ− >   

( )s ssin cos sin cosxF mg mg mgθ µ θ θ µ θ= − = −∑  
CALCULATE:   

(b) ( )22.00 kg 9.81 m/s cos20.0 18.437 NN = ° =  

(c) 0xF >∑  if ssin cos 0.θ µ θ− >  

( ) ( ) ( )ssin cos sin 20.0 0.60 cos 20.0 0.2218 0θ µ θ− = ° − ° = − <  

Therefore, sin .smg Nθ µ<  This means the block does not move. 
ROUND:  (b) 18.437 N.N = Rounding to two significant figures, N = 18 N. 
DOUBLE-CHECK:  The critical angle of the inclined plane such that the blocks starts to move is 

( )1tan   tan .c s c sθ µ θ µ−= ⇒ =  Here, ( )1tan 0.60 30.96 .cθ −= = °  Since cθ θ< , the block is not moving. 

4.81. THINK:  A block of mass, m = 5.00 kg is sliding down an inclined plane of angle 37.0θ = °  at a constant 
velocity (a = 0). Determine the frictional force and the coefficient of kinetic friction. 
SKETCH:   

 
 

RESEARCH:  There is no acceleration in any direction, 0.x ya a= =  The force of friction is given by 

f k .F Nµ=  Using Newton’s second law: 0y yF ma= =∑  and 0,ya =  so cos 0N mg θ− =  

 cosN mg θ.⇒ =  Also, 0x xF ma= =∑  and 0,xa =  so fsin 0mg Fθ − =  f sinF mg θ.⇒ =  

SIMPLIFY:  k sinN mgµ θ=  k cos sinmg mgµ θ θ⇒ =  k
sin tan
cos

θµ θ
θ

⇒ = =  

CALCULATE:   
(a) ( )( )2

f 5.00 kg 9.81 m/s sin37.0 29.519 NF = ° =  

(b)  ( )k tan 37.0 0.75355µ = ° =  
ROUND:  Rounding to three significant figures,  
(a) f 29.5. NF =  and  
(b) k 0.754.µ =  
DOUBLE-CHECK:  kµ  is less than 1 and does not depend on the mass of the block. 

4.82. THINK:  The mass of the skydiver, 83.7 kg,m =  is given as well as her drag coefficient, d 0.587,c =  and 

her surface area, 21.035 m .A =  We need to determine the terminal velocity then the time to reach a 
distance 296.7 m. Air density  is 31.14 kg/mρ =  and 29.81 m/s .g =  
SKETCH:  Not needed. 

RESEARCH:  Terminal speed is t d2 g / ,v m c Aρ=  and for constant velocity / ,v x t=  where x is the 
distance traveled. 
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SIMPLIFY:  d

t 2 g
c Axt x

v m
ρ

= =  

CALCULATE:  ( )
( )( )
( )( )

3 2

2

0.587 1.14 km/m 1.035 m
296.7 m 6.09322 s

2 83.7 kg 9.81 m/s
t = =  

ROUND:  Keeping only three significant digits, 6.09 s.t ≈  
DOUBLE-CHECK:  The typical speed of a sky diver is 60 m/s. ( ) ( )296.7 m / 60 m/s 4.945 s.t = =  The 
result is comparable to this value. 

4.83. THINK:  A book has a mass of m = 0.500 kg. The tension on each wire is T = 15.4 N. Determine the angle 
of the wires with the horizontal.   
SKETCH:   

 
 

RESEARCH:  There is no acceleration in any direction, 0.x ya a= =  Using Newton’s second law: 

0  2 0y y yF ma T mg= = ⇒ − =∑  and 0  0.x x x xF ma T T= = ⇒ − =∑  

SIMPLIFY:  sinyT T θ, = so 2 sinT mgθ =   sin
2
mg

T
θ⇒ =  1 sin .

2
mg

T
θ −  

⇒ =  
 

 

CALCULATE:  
( )

( )

2
1

0.500 kg 9.81 m/s
sin 9.1635

2 15.4 N
θ −

 
 = = °
 
 

 

ROUND:  Rounding to three significant figures, 9.16θ = °.  
DOUBLE-CHECK:  If the angle is 90θ = ° , the tension required is ( )g / 2 0.500 9.81 / 2 2.45 N.T m= = =  It 
is reasonable that a smaller angle requires more tension. 

4.84. THINK:  A bob has a mass of m = 0.500 kg. The angle is 30.0 .θ = °  
SKETCH:   

 
RESEARCH:  There is no acceleration in any direction, so 0.x ya a= =  Using Newton’s second law: 

0  0x xF F T= ⇒ − =∑  and 0  0.x yF T mg= ⇒ − =∑  

SIMPLIFY:  sinxT T θ=  and cos .yT T θ=  sinxF T T θ= =  and cos   / cosT mg T mgθ θ.= ⇒ =  So, 

sin tan
cos
mg

F mgθ θ
θ

 
= = 
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CALCULATE:   

(a)  ( )( ) ( )= ° =20.500 kg 9.81 m/s tan 30.0 2.8319 NF  

(b)  
( )
( )

= =
°

20.500 kg 9.81 m/s
5.66381 N

cos 30.0
T  

ROUND:  Rounding to three significant figures, F = 2.83 N and T = 5.66 N. 
DOUBLE-CHECK:  The ratio F/T is equal to ° =sin30.0 0.5 , which is correct. 

4.85. THINK:  A ping-pong ball with a mass, 32.70 10  kgm −= ⋅  is suspended by a string at an angle of θ = °15.0  
with the vertical. The force of friction is proportional to the square of the speed of the air stream, 

 20.5 m/s.v =  
SKETCH:   

 
 

RESEARCH:  Use the equation 2
f ,F cv=  where c is a constant. There is no acceleration in any direction, 

so 0.x ya a= =  cosyT T θ= , sinxT T θ.=   Using Newton’s second law: f0  0x x xF ma F T= = ⇒ − =∑  and 

0  0.y y yF ma T mg= = ⇒ − =∑  

SIMPLIFY:  f sinF T θ,=   and cos   .
cos
mg

T mg Tθ
θ

= ⇒ =   And so,  

2
f sin

cos
mg

F cv θ
θ

 
= =  

 
 2 2

sin tan
cos

mg mg
c

v v
θ θ
θ

 
⇒ = = 

 
 

CALCULATE:   

(a) 
( ) ( )

( )

3 2
5

2

2.70 10  kg 9.81 m/s tan 15.0
1.688 10  kg/m

20.5 m/s
c

−

−
⋅ °

= = ⋅  

(b)  
( )

( )

3 22.70 10  kg 9.81 m/s
0.027421 N

cos 15.0
T

−⋅
= =

°
  

ROUND:  Rounding to three significant figures, the results should be  
(a) 51.69 10 kg/mc −= ⋅  and 
(b) 0.0274 N.T =  
DOUBLE-CHECK:  Because the mass of the ping pong ball is small, a small value for the tension is 
expected. Also, the cross-sectional area of the ball is small so the coefficient of friction is expected to be 
small. 
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4.86. THINK:  A silicon nanowire has a length of 100.0 nm and a diameter of 5.0 nm. The density of silicon is 
32.33 g/cm .ρ =  

SKETCH:   

 
RESEARCH:  Using Newton’s second law: 
(a)  1 10  0  yF T mg T mg= ⇒ − = ⇒ =∑  

(b)  1
2 20  0  .

2 2 2y

TmgmF T g T= ⇒ − = ⇒ = =∑  The mass of the nanowire is ( )2 .m V R Lρ ρ π= =  

SIMPLIFY:  
2

2

2 4
Dm L D Lπρπ ρ = = 

 
  

CALCULATE:  
( )

3
3 3 3

32

2.33 10  kg
2.33 g/cm 2.33 10  kg/m ,

10  m
ρ

−

−

⋅
= = = ⋅   95.0 nm 5 10  m,D −= = ⋅  

7100.0 nm 1.00 10  m,L −= = ⋅     ( ) ( ) ( )23 3 9 7 212.33 10  kg/m 5.0 10  m 1.00 10  m 4.575 10  kg
4

m π − − −= ⋅ ⋅ ⋅ = ⋅  

(a)  ( )21 2 20
1 4.575 10  kg 9.81 m/s 4.488 10  NT − −= ⋅ = ⋅  

(b)  
20

20
2

4.488 10  N 2.244 10  N
2

T
−

−⋅
= = ⋅     

ROUND:  Rounding to two significant figures, 20
1 4.5 10  NT −= ⋅  and 20

2 2.2 10  N.T −= ⋅  
DOUBLE-CHECK:  Since the volume of a nanowire is very small, it is expected to get a very small tension. 

4.87. THINK:  Two blocks have masses of 1 2.50 kgm =  and 2 3.75 kg.m =  The coefficients of static and kinetic 
friction between the two blocks are 0.456 and 0.380. A force, F is applied horizontally on 1.m  Determine 
the maximum force, F, such that 1m  does not slide, and also the acceleration of 1m  and 2m  when 

 24.5 N.F =  
SKETCH:   

 
RESEARCH:  The force of friction is given by f 1.µ= sF N  First, consider 1.m  Using Newton’s second law: 

x xF ma=∑  f 1 1 f 1 1   F F m a F F m a⇒ − = ⇒ = +  and 0y yF ma= =∑  1 1 1 1 0  .N m g N m g⇒ − = ⇒ =  

Then,  consider 2 :m ,x xF ma=∑  f 2 2 ,F m a=  and 2 1 2 0.N N m g− − =  

(a)  The force is maximum when f s 1F Nµ=  and 1 2 .a a a= =  
(b)  If F = 24.5 N is larger than max ,F  then 1m  slides on 2 .m  
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SIMPLIFY:   
(a)  f s 1 2 2 s 1 2 2  F N m a m g m aµ µ= = ⇒ =  ( )1 2 /sa m m gµ⇒ =  

( ) ( )max f 1 s 1 1 s 111 s2 2/ 1 /F F m a m g m m m g m g m mµ µ µ= + = + = +  

(b)  The force of friction is given by f k 1.F Nµ=  Using the equations, f 1 1F F m a= +  and f 2 2F m a= : 

f k 1
2

2 2

F m g
a

m m
µ

= =  and f k 1
1 k

1 1 1

.
F F F m g Fa g

m m m
µ

µ
− −

= = = −  

CALCULATE:   

(a)  ( )( )2
max

2.50 kg
0.456 2.50 kg 9.81 m/s 1 18.639 N

3.75 kg
F

 
= + = 

 
 

(b)  ( )2 2
1

24.5 N 0.380 9.81 m/s 6.0722 m/s
2.50 kg

a = − =  and 
( )( )( )2

2
2

0.380 2.50 kg 9.81 m/s
2.4852 m/s

3.75 kg
a = =  

ROUND:  Rounding to three significant figures,  
(a) max 18.6 NF = ,  

(b) 2
1 6.07 m/sa =  and 2

2 2.49 m/s .a =  
DOUBLE-CHECK:  For part (b), it is known that 1m  slides on 2 .m  This means that 1a  is larger than 2 .a  

4.88. THINK:  Two blocks with masses of 1 1.23 kgm =  and 2 2.46 kgm =  are glued together, moving on an 
inclined plane of angle 40.0 .θ = °  The coefficients of kinetic friction are 1k 0.23µ =  and 2k 0.35.µ =  
Determine the acceleration of the blocks. 
SKETCH:   

 
 

RESEARCH:  The forces of friction are given by f1 1k 1F Nµ=  and f2 2k 2 .F Nµ= First, consider 1.m  Using 
Newton’s second law: 

x xF ma=∑  1 c f1 1 sinm g F F m aθ⇒ + − =  1 c 1k 1 1 sinm g F N m aθ µ⇒ + − =  

0y yF ma= =∑  1 1 cos 0N m g θ⇒ − =  1 1 cosN m g θ⇒ =  

Consider 2m : 

x xF ma=∑  2 c f2 2 sinm g F F m aθ −⇒ − =  2 c 2k 2 2 sinm g F N m aθ − µ⇒ − =  

0y yF ma= =∑  2 2 cos 0N m g θ⇒ − =  2 2 cosN m g θ⇒ =  

SIMPLIFY:  

( ) ( )

1 c 1k 1 1

2 c 2k 2 2

1 2 1k 1 2k 2 1 2

  sin
sin

sin

m g F N m a
m g F N m a

m m g N N m m a

θ µ
θ − µ

θ µ µ

+ − =
+ − =

+ − − = +
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This implies 
( ) ( )

1k 1 2k 2 1k 1 2k 2

1 2 1 2

cos cos
sin sin cos .

m g m g m m
a g g g

m m m m
µ θ µ θ µ µ

θ − θ θ
 + +

= = −  
+ +  

 

CALCULATE:  ( ) ( ) ( ) ( ) ( ) ( )
( )

2 2

2

0.23 1.23 kg 0.35 2.46 kg
9.81 m/s sin 40.0 9.81 m/s cos 40 0

1.23 kg 2.46 kg

3.976 m/s

a
 +

= ° − °.  
+  

=

 

ROUND:  Rounding to two significant figures, 24.0 m/s .a =  
DOUBLE-CHECK:  For a one block system, the acceleration is given by ksin cos .a g gθ − µ θ=  

( )
1k 1 2k 2

1 2

m m
m m

µ µ+
+

 is an effective coefficient for two blocks. 

4.89. THINK:  Two blocks with masses, 1 567.1 kgm =  and 2 266.4 kgm =  are on inclined planes with angles 
39.3α = °  and 53.2β = °.  Assume there is no friction. Determine the acceleration of the marble block, 1m .  

The marble block, 1m , is heavier than the granite block, 2m , but angle β  is larger than angle α .  It is 
impossible to guess which block will move up the incline, and which block will move down.  The 
assumption will be made that the marble block accelerates down the incline, and choose that to be the 
positive direction.  If the assumption is correct, the acceleration will be positive, and if it is incorrect, the 
acceleration will be negative. 
SKETCH:   

 
 

Assume the motion is in the positive x direction. 
 

 
RESEARCH:  First, consider 1.m  Using Newton’s second law: 0,y yF ma= =∑  1 1 cos 0,N m g α− =  

,x xF ma=∑  and 1 1sin .m g T m aα − =   Then, consider 2m : 0,y yF ma= =∑  2 2 cos 0,N m g β− =  

,x xF ma=∑  and  2 2sin .T m g m aβ− =  
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SIMPLIFY:  2 2sin ,T m g m aβ= +  and so: 

( )

( )

1 1

1 2 2 1

1 2 1 2

1 2

1 2

sin
sin sin

sin sin
sin sin

m g T m a
m g m g m a m a

m g m g m m a
m m

a g
m m

α
α β

α β
α β

− =
− − =

− = +
−

=
+

 

CALCULATE:  ( ) ( ) ( ) ( ) ( )
( )

2 2567.1 kg sin 39.3 266.4 kg sin 53.2
9.81 m/s 1.7169 m/s

567.1 kg 266.4 kg
a

° − °
= =

+
 

ROUND:  Rounding to three significant figures, 21.72 m/s .a =  
DOUBLE-CHECK:  As we expect, the acceleration must be less than 2g 9.81 m/s .=  

4.90. THINK:  There are two blocks with masses, 1 559.1 kgm =  and 2 128.4 kg.m =  The angles are 38.3α = °  
and 57.2β = °.  The coefficients of friction are 1 0.13µ =  and 2 0.31.µ =  Determine the accelertation of the 
blocks. 
SKETCH:   

 
 

Assume motion is in the positive x-direction. 

 
RESEARCH:  The forces of friction are given by f1 1 1F Nµ=  and f2 2 2 .F Nµ=  First, consider 1.m  Using 
Newton’s second law: 

x xF ma=∑  and 1 f1 1sinm g T F m aα − − =  1 1 1 1 sinm g T m m aα µ⇒ − − =  

0,y yF ma= =∑  0,ya =  and  1 1 cos 0N m g α− =  1 1 cosN m g α⇒ =  

Then, consider 2m : 

x xF ma=∑  and 2 f2 2sinT m g F m aβ− − =  2 2 2 2 sinT m g N m aβ µ⇒ − − =  

0y yF ma= =∑  and 2 2 cos 0N m g β− =  2 2 cosN m g β⇒ =  
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SIMPLIFY:  1 1 1 1sin cosm g T m g m aα µ α− − =  and 2 2 2 2sin cos ,T m g m g m aβ µ β− − =  which implies  

2 2 2 2sin cos .T m a m g m gβ µ β= + +  Eliminate T: 

( )
1 2 2 2 2 1 1 1

1 2 2 2 1 1 1 2

sin sin cos cos
sin sin cos cos

m g m a m g m g m g m a
m g m g m g m g m m a

α β µ β µ α
α β µ β µ α

− − − = +

− − − = +
 

( )
( ) ( )

1 2 2 2 1 1

1 2

1 1 2 2

1 2 1 2

sin sin cos cos

sin cos sin cos

m m m m
a g

m m

m m
a g

m m m m

α β µ β µ α

α µ α β µ β

− − −
=

+

 − +
= −  + + 

 

CALCULATE:  

( )( )
( )

( )( )
( )

 ° − ° ° + °
 = −
 + + 

=

2

2

559.1 kg sin38.3 0.13cos38.3 128.4 kg sin57.2 0.31cos57.2
9.81 m/s

559.1 kg 128.4 kg 559.1 kg 128.4 kg

2.283 m/s

a  

ROUND:  Rounding to two significant figures, 22.3 m/s .a =  
DOUBLE-CHECK:  The acceleration must be less than 29.81 m/s .g =  

4.91. THINK:  Three blocks have masses, 1 3.50 kgm = , 2 5.00 kgm =  and 3 7.60 kg.m =  The coefficients of 
static and kinetic friction between 1m  and 2m  are 0.600 and 0.500. Determine the accelerations of 1m and 

2m ,  and tension of the string. If 1m  does not slip on 2m , then the accelerations of both blocks will be the 
same.  First, make the assumption that the blocks do not slide.  Then, it must be determined whether the 
acting force of friction, fF , is less than or greater than the maximum force of friction. 
SKETCH:   

 
RESEARCH:  Simplify the problem by looking at the axis along the string.  
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Using Newton’s second law: F ma=∑  ( )3 1 2 3 m g m m m a⇒ = + +  and F ma=∑  ( )1 2 .T m m a⇒ = +  
SIMPLIFY:   

(a) 
( )

3

1 2 3

m g
a

m m m
=

+ +
  

(b) 
( )
( )

1 2 3

1 2 3

m m m g
T

m m m
+

=
+ +

 

CALCULATE:   

(a)  
( )

( )

2
2

7.60 kg 9.81 m/s
4.631 m/s

3.50 kg 5.00 kg 7.60 kg
a = =

+ +
 

(b)  ( ) 23.50 kg 5.00 kg 4.631 m/s 39.362 NT = + =  

Now, it must be determined if the force of friction, fF  is less than the maximum force of static friction. 

From the free-body diagram of 2m : 2  xF m a= ⇒∑  ( )2
f 2 5.00 4.631 m/s 23.15 N.F m a= = =   The 

maximum force of static friction is s,max s 1f Nµ=  where 1 1 .N m g=  ( )( )( )s,max 0.600 3.50 9.81 20.60 N.= =f  

f s,maxF f> , so block 1 slips on block 2.  Some parts of the question must be reconsidered.  

RESEARCH:  The force of friction is given by f k 1.F Nµ=  First, consider 1.m  Using Newton’s second law: 

x xF ma=∑  f 1 1 T F m a⇒ − =  k 1 1 1 T N m aµ⇒ − =  k 1 1 1 T m g m aµ⇒ − =  

0y yF ma= =∑  1 1 0N m g⇒ − =  1 1 N m g⇒ =  

Now,  consider 2m : x xF ma=∑  k 1 1
f 2 2 2 k

2 2

   .
N m g

F m a a
m m

µ
µ⇒ = ⇒ = =  Finally, consider 3m : 

y yF ma=∑ 3 3 1 .m g T m a⇒ − =  

SIMPLIFY:  k 1 1 1T m g m aµ− =  and 3 3 1m g T m a− =  can be used to eliminate T: 

3 1 1 k 1 3 1m g m a m g m aµ− − =  ( )3 k 1 1 3 1 m g m g m m aµ⇒ − = +  
( )
( )

3 1
1

1 3

 km m
a g

m m
µ−

⇒ =
+

 

Also, k 1
2

2

m
a g

m
µ

=  and ( ) ( )1 1 k 3 1 .T m a g m g aµ= + = −  

CALCULATE:   

(a) ( ) ( )( )
( )

2 2
1

7.60 kg 0.500 3.50 kg
9.81 m/s 5.1701 m/s ,

7.60 kg 3.50 kg
a

−
= =

+
 

( ) ( )2 2
2

0.500 3.50 kg
9.81 m/s 3.4335 m/s

5.00 kg
a = =  

(b) ( )2 27.60 kg 9.81 m/s 5.1701 m/s 35.26 NT = − =  

ROUND:  Rounding to three significant figures,  
(a) 2

1 5.17 m/sa = , 2
2 3.43 m/sa =  and  

(b) 35.3 N.T =  
DOUBLE-CHECK:  Because block 1 slips on block 2, 1a  is larger than 2 .a  
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4.92. THINK:  There are two blocks with masses, 1 2.30 kgm =  and 2 5.20 kg.m =  The coefficient of static 
friction between the blocks is 0.65. 
SKETCH:   

 
RESEARCH:   
(a) From the above diagram, there are three forces acting on block 1; the normal, frictional and 
gravitational forces. 
(b)  Consider block 1. Using Newton’s second law: 

 x xF ma= ⇒∑  1 1N m a=   and  0y yF ma= =∑  1 0fF m g⇒ − =  1 fF m g⇒ =  

There is a minimum force F, when there is a minimum acceleration and 1.f sF Nµ=  

SIMPLIFY:  1
f s 1 1 1

s

  
m g

F N m g Nµ
µ

= = ⇒ =  s 1 1
s

   .
g

m a m g aµ
µ

⇒ = ⇒ =  Consider a block composed of 

block 1 and block 2: x xF ma=∑  ( )1 2 F m m a⇒ = +  
( )1 2

s

 .
m m g

F
µ
+

⇒ =  

(c)  1
1

s

m g
N

µ
=  

(d)  2
2

s
x

m g
F m a

µ
= =∑  

CALCULATE:   

(b)  
( )( )22.30 kg 5.20 kg 9.81 m/s

113.19 N
0.65

F
+

= =  

(c)  
( )2

1

2.30 kg 9.81 m/s
34.71 N

0.65
N = =  

(d)  
( )25.20 kg 9.81 m/s

78.48 N
0.65xF = =∑   

ROUND:  Rounding to two significant figures, F = 110 N, 1 35 NN =  and 78 N.xF =∑  

DOUBLE-CHECK:  The net force on block 2 added to the contact force 1N  should equal F.  F = 78 N + 
35 N = 113 N, as expected.  
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4.93. THINK: The suitcase has a weight of = 450. N.gM  The coefficient of kinetic friction is 0.640.kµ =  

Determine the angle that minimizes the force to pull the suitcase. 
SKETCH:   

 
 

RESEARCH:  The force of friction is given by f k .F Nµ=   Also, cosxT T θ=  and sinyT T θ.=  Using 

Newton’s second law: 
,x xF ma=∑  and 0,xa =  so f 0xT F− =  f k cosT F Nθ µ⇒ = =  

0y yF ma= =∑   0yT N Mg⇒ + − =   sin 0T N Mgθ⇒ + − =   sinN Mg T θ⇒ = −  

SIMPLIFY:  ( )
( )

( )

k k k

k
1

k k

cos sin sin

cos sin

cos sin
k

T Mg T Mg T

T Mg

T Mg

θ µ θ µ µ θ

θ µ θ µ

µ θ µ θ
−

= − = −

+ =

= +

 

Differentiate T with respect to ;θ ( )( ) 2

k ksin cos cos sin .k
dT Mg
d

µ θ µ θ θ µ θ
θ

−
= − − + +  The minimum 

tension is when / 0 :dT dθ =  ( )( ) 2

k kg sin cos cos sin 0k Mµ θ µ θ θ µ θ
−

− − + + = , which simplifies to 

( )1
k k ksin cos 0,  or tan . Thus, tan .θ µ θ θ µ θ µ−− + = = =  

CALCULATE:   
(a) ( )1tan 0.640 32.6192θ −= = °  

(b) 
( )

( ) ( )( )
= =

° + °

0.640 450. N
242.5 N

cos 32.6 0.640sin 32.6
T  

ROUND:  Rounding to three significant figures,  
(a) 32.6θ = °  and  
(b) T = 243 N. 
DOUBLE-CHECK:  As a comparison, if 0θ = ° , ( )µ= = =0.640 450. N 288 N.k gT M  The minimum 

tension calculated is less than this value.  

4.94. THINK:  There are three blocks with masses, 1 0.450 kgM = , 2 0.820 kgM =  and 3 .M  The coefficients of 
static and kinetic friction are s 0.560µ =  and k 0.340.µ =  
SKETCH:  
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RESEARCH:  The force of friction is given by f .F Nµ=  It is given that block 1 does not slide on 2M , 
which means 1 2 .a a a= =  First, consider 1M . Using Newton’s second law: 

= ⇒ =∑ f,1 1  x xF ma F M a   and  0y yF ma= =∑  1 1 1 1 g 0  gN M N M⇒ − = ⇒ =  

Then, consider 2M : = ⇒ − − =∑ f,1 f,2 2  x xF ma T F F M a   

and 0y yF ma= =∑  ( )⇒ − − = ⇒ = +2 1 2 2 1 2 g 0  gN N M N M M  

Finally, consider 3M : 3 3  g .y yF ma M T M a= ⇒ − =∑  

SIMPLIFY:  The maximum force of friction before 1M  will slip is given by µ µ= = =f,1 s,max s 1 s 1 .F f N M g   

µ= =f,1 s 1 1F M g M a  µ⇒ = s a g  (1) 

Mass 2 is slipping along the table so ( )µ µ= = = +f,2 k k 2 k 1 2 gF f N M M ; therefore, the equation for the x- 

direction yields ( ) ( )s 1 k 1 2 2 2 s 1 k 1 2T M g M M g M a T M a M g M M gµ µ µ µ− − + = ⇒ = + + +   (2). 

Substituting (1) in (2) yields ( ) ( ) ( )µ µ µ µ µ= + + + = + + +2 s s 1 k 1 2 s 1 2 k 1 2T M g M g M M g M M g M M g  (3). 

Solving the equation x-direction equation for M3 yields, 
−3
T= .M

g a
 Substituting (1) and (3) for a and T, 

respectively, yields 
( ) ( ) ( )( )µ µ µ µ

µ µ
+ + + + +

=
− −

s 1 2 k 1 2 s k 1 2
3

s s

= .
1

M M g M M g M M
M

g g
 

CALCULATE:  
( )( )+ +

= =
−3

0.560 0.340 0.450 kg 0.820 kg
2.5977 kg

1 0.560
M  

ROUND:  Rounding to three significant figures, =3 2.60 kg.M  
DOUBLE-CHECK:  The order of magnitude of 3M  is reasonable in comparison to 1M  and 2 .M  

4.95. THINK:  The three blocks have masses, 1 0.250 kgM = , 2 0.420 kgM =  and 3 1.80 kg.M =  The coefficient 
of kinetic friction is k 0.340.µ =  
SKETCH:   
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RESEARCH:  The force of friction is given by µ=f k .F N  First, consider 1.M  Using Newton’s second law: 

= ⇒ =∑ f,1 1 1  x xF ma F M a   and  0y yF ma= =∑  1 1 1 1 0  N M g N M g⇒ − = ⇒ =  

Then, consider 2M : = ⇒ − − =∑ f,1 f,2 2  x xF ma T F F M a  and 

0y yF ma= =∑  ( )2 1 2 2 1 2 0  N N M g N M M g⇒ − − = ⇒ = +  

Finally, consider 3M : 3 3  .y yF ma M g T M a= ⇒ − =∑  

SIMPLIFY:   
(a) f,1 k 1 k 1 1 1F N M g M aµ µ= = =  1 k ,a gµ⇒ = which is the acceleration of the block. 

(b) For the slab (M2) the friction with the table is ( )f,2 k k 2 k 1 2F f N M M gµ µ= = = + ; therefore, the 

equation for the x direction yields ( )k 1 k 1 2 2 .T M g M M g M aµ µ− − + =  From the equation for M3, 

( )3 .T M g a= −  Substituting this for T yields the following. 

( ) ( ) ( ) ( )3 k 1 k 1 2 2 2 3 3 k 1 22M g a M g M M g M a M M a M g M M gµ µ µ− − − + = ⇒ + = − +  

( )3 k 1 2

2 3

2M M M g
a

M M

µ − + ⇒ =
+

 

CALCULATE:   

(a)  ( )( )= =2 2
1 0.340 9.81 m/s 3.335 m/sa  

(b)  
( )( ) ( ) − ⋅ + = =

+

2
2

1.80 kg 0.340 2 0.250 kg 0.420 kg 9.81 m/s
6.572 m/s

0.420 kg 1.80 kg
a  

 
ROUND:  Rounding to three significant figures,  
(a)  = 2

1 3.34 m/sa  and  

(b)  = 26.57 m/s .a  
DOUBLE-CHECK:  Because 1M  slides on 2M , it is expected that 1a  is less than .a  Both 1a  and a  must 
be less than g. 

 
Multi-Version Exercises 

4.96. THINK:  This problem involves two blocks sliding along a frictionless surface. For these types of 
problems, use Newton’s laws. Also note that the tension force from block 1 must be exactly equal and 
opposite from the force or block 2. 
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 SKETCH: Start with the image from the text to create free body diagrams for each block. 

       
 RESEARCH:  Since the blocks are lying on a frictionless surface, there is no friction force acting on the 

blocks. It is necessary to find the tension T on the rope in terms of the force F acting on the second block 
and the masses m1 and m2. Since force F is acting on the blocks and rope as a single system, Newton’s 
Second Law gives that ( )1 2F m m a= + , where a is the acceleration of the blocks. Looking at the horizontal 

forces on block 1 gives 1T m a= . 
 SIMPLIFY: It is necessary to find an expression for the tension in terms of the outside force F acting on 

block 2 and the masses of the two blocks. Rewriting 1T m a= as 
1

Ta
m

=  and combining with 

( )1 2F m m a= + gives ( )1 2
1

TF m m
m

= + . This expression can be re-written to give the tension in terms of 

known quantities: 1

1 2

m
T F

m m
=

+
. 

 CALCULATE:  Using the masses and force given in the question statement gives a tension force of: 

1.267 kg
12.61 N

1.267 kg 3.557 kg
3.311954809 N

T
 

=  + 
=

 

 ROUND: The masses of the blocks are given to four significant figures, and their sum also has four 
significant figures. The only other measured quantity is the external force acting on the second block, 
which also has four significant figures. This means that the final answer should be rounded to four 
significant figures, giving a total tension of T = 3.312 N.  
DOUBLE-CHECK: Think of the tension on the rope transmitting the force from block 2 to block 1. Since 
block 2 is much more massive than block 1, block 1 represents about one fourth of the total mass of the 
system. So, it makes sense that only about one fourth of the force will be transmitted along the string to the 
second block. About 12.61/4 or 3.153 N will be transmitted, which is pretty close to our calculated value of 
3.312 N.  

4.97. ( )1 2
1

TF m m
m

= +  

 ( )

( )

1 1 2

1 2

1 2
4.094 N3.577 kg 1.495 kg

13.89 N 4.094 N

m F m T m T

m F T m T
Tm m

F T

= +

− =

= = =
− −
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4.98. ( )1 2
1

TF m m
m

= +  

 
( )

1 1 2

1 1
2 1

15.17 N 4.915 N1.725 kg 3.599 kg
4.915 N

m F m T m T
m F m T F Tm m

T T

= +
− − −

= = = =
 

4.99. ( ) ( )1 2
1 2

1 1

1.955 kg 3.619 kg
5.777 N 16.47 N

1.955 kg
m mTF m m T

m m
+ +

= + = = =
 

4.100. THINK:  This problem involves two hanging masses and two frictionless pulleys. The rope is massless, so 
it is not necessary to include the gravitational force on the spring. The forces on this system will be the 
gravitational force and the tension in the string. To solve this problem, it will be necessary to use Newton’s 
laws.  

 SKETCH: Begin with the sketch from the text. Then, draw free body diagrams for both masses, keeping in 
mind that the forces exerted by the rope on the masses must be equal. 

 

       
 RESEARCH: First note that the two blocks will accelerate at the same rate, but in opposite directions. First 

note that the gravitational force on each block can be given in terms of the mass and gravitational 
acceleration: 1 1g gm= and 2 2g gm= . It is possible to use Newton’s Second law on each block individually 
to get two equations relating the tension T, the masses of the blocks m1 and m2, and the acceleration a. For 
the first block we have that ( )1 1T m g m a− = . Likewise, ( ) ( )2 2T m g m a− = ⋅ −  because block 2 is 
accelerating in the opposite direction from block 1. With these two equations, we should be able to solve 
for either of the unknown quantities a or T.  

 SIMPLIFY: Since the problems asks for acceleration a, first find an equation for the tension T in terms of 
the other quantities. 1 1T m g m a− = means that 1 1T m a m g= + . Substitute this expression for T into the 

equation ( ) ( )2 2T m g m a− = ⋅ −  to get: 

( )

( )

2 1 1 2

1 2 1 1 1 2

1 2 1 2

1 2

1 2

m a m a m g m g
m a m a m a m a m g m g

m m a m g m g
m g m g

a
m m

− = + − ⇒
− − = − + + − ⇒

− − = − ⇒
−

=
− −

 

 CALCULATE:  The masses m1 and m2 are given in the problem. The gravitational acceleration g is about 
9.81 m·s−2. Using these values gives the acceleration a:  

1 2

1 2
2 2

21.183 kg 9.81 m s 3.639 kg 9.81 m s
4.99654915 m s

1.183 kg 3.639 kg

m g m g
a

m m
− −

−

−
=

− −
⋅ − ⋅

= =
− −
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 ROUND: The masses of the blocks are given to four significant figures, and their sum also has four 
significant figures. Since they are the only measured quantities in this problem, the final answer should 
have four significant figures, giving a final answer of 4.997 m/s2. 
DOUBLE-CHECK: In this situation, it is intuitively obvious that the heavier mass will fall towards the 
ground less quickly than if it were in free fall. So it is reasonable that our calculated value of 4.997 m/s2 is 
less than the 9.81 m/s2, which is the rate at which objects on the Earth’s surface generally accelerate 
towards the ground.  

4.101. 1 1 2 2m g m a m g m a+ = −  

 

( )
2 2

2 1 2 2

9.81 m/s 4.352 m/s1.411 kg 3.661 kg
9.81 m/s 4.352 m/s

g a
m m

g a
+ +

= = =
− −

 
4.102. 1 1 2 2m g m a m g m a+ = −

 

 

( )
2 2

1 2 2 2

9.81 m/s 3.760 m/s3.681 kg 1.641 kg
9.81 m/s 3.760 m/s

g a
m m

g a
− −

= = =
+ +

 
4.103. THINK:  This problem involves friction, so the only forces acting on the curling stone are gravity, the 

normal force, and the frictional force. Since gravity and the normal force act in the vertical direction, the 
only force slowing the horizontal movement of the curling stone is the frictional force. It is necessary to 
come up with a way to relate the initial velocity to the mass, coefficient of friction, and total distance 
traveled by the stone. Since the curling stone is slowing to a stop, there is a net external force, so it will be 
necessary to use Newton’s Second law.  

 SKETCH: It is helpful to draw the free body diagrams for the curling stone at three different times: the 
moment the curling stone is released, part of the way along its path, and after it has stopped. When the 
stone is at rest, there is no velocity and no kinetic friction (there is, however, static friction).  

    
 RESEARCH:  The only unknown force acting on the curling stone is the kinetic friction force. The 

magnitude is given by k kf Nµ= . But the normal force is equal and opposite to the gravitational force 

( ( )gN F mg= − = −
 

), so the magnitude of the normal force is N = mg. The initial kinetic energy of the stone 

is 21
02K mv=  and the kinetic energy of the stone at rest is zero. So, all of the kinetic energy has been 

dissipated by friction. The energy dissipated by friction is equal to the magnitude of the force times the 
distance traveled, .kf d K=  This will allow us to find the initial velocity in terms of known quantities.  

 SIMPLIFY: First, it is necessary to combine kf d K=  with the equations for the kinetic energy, normal 
force, and frictional force. So: 

( )
( )

21
02
21
02

k

k

k

f d K

N d mv

mg d mv

µ

µ

= ⇒

= ⇒

=
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 Use algebra to find an expression for the initial velocity in terms of known quantities: 
( ) 21

02

21
02

2
0

0

2 2

2

2

k

k

k

k

mg d mv

mgd mv
m m

gd v

gd v

µ

µ

µ

µ

= ⇒

= ⇒

= ⇒

=

 

 CALCULATE:  The mass of the curling stone m = 19.00 kg, the coefficient of kinetic friction between the 
stone and the ice μk = 0.01869 and the total distance traveled d = 36.01 m. The acceleration due to gravity 
on the surface of the Earth is not given in the problem, but it is g = 9.81 m/s2. Using these values, 

0

2

2

2 0.01869 9.81 m/s 36.01 m 3.633839261 m/s

kv gdµ=

= ⋅ ⋅ ⋅ =
 

 ROUND: The mass of the curling stone, distance traveled, and coefficient of friction between the ice and 
the stone are all given to four significant figures. These are the only measured values in the problem, so the 
answer should also be given to four significant figures. The initial velocity was 3.634 m/s.  
DOUBLE-CHECK:  Since the gravitational and normal forces are perpendicular to the direction of the 
motion and cancel one another exactly, they will not affect the velocity of the curling stone. Between the 
time the stone is released and the moment it stops, the frictional force acts in the opposite direction of the 
velocity and is proportional to the normal force, so this is one-dimensional motion with constant 
acceleration. It is possible to check this problem by working backward from the initial velocity and force to 
find an expression for velocity as a function of time, and then use that to find the total distance traveled. 
Newton’s Second law and the equation for the frictional force can be combined to find the acceleration of 
the curling stone: .k k x x kf mg ma a gµ µ= − = ⇒ = −  If the spot where the curling stone was released is x0 = 
0, then the equations for motion in one dimension with constant acceleration become:  

0

3.634 0.01869 9.81
xv v at

t
= +
= − ⋅

  and  

2
0 0

2

1
2

10 3.634 0.01869 9.81
2

xd x v t at

t t

= + +

= + − ⋅
 

 Solving the first equation for v = 0 gives 0 3.634 0.01869 9.81t= − ⋅  ⇒  3.634 19.82 sec.
0.01869 9.81

t = =
⋅

 (The 

stone was in motion 19.82 seconds, which is reasonable for those who are familiar with the sport of 
curling.) This value can be used to compute the distance traveled by the stone at the moment it stops as  

( ) ( )

2

2

10 3.634 0.01869 9.81
2

10 3.634 19.82 0.01869 9.81 19.82 36.01 m
2

d t t= + − ⋅

= + − ⋅ =
 

This confirms the calculated result. 

4.104. ( ) 2
k 0

1
2

mg d mvµ =  

 

( )
( )

( )( )
22 2

0 0
2

k k

2.788 m/s
36.11 m

2 2 2 0.01097 9.81 m/s
mv v

d
mg gµ µ

= = = =  

4.105. ( ) 2
k 0

1
2

mg d mvµ =  

 

( )
( )( )

22
0

k 2

3.070 m/s
0.01327

2 2 9.81 m/s 36.21 m
v
gd

µ = = =  
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Chapter 5:  Kinetic Energy, Work, and Power 
 
Concept Checks 

5.1. c  5.2. b  5.3. d  5.4. a) True  b) False  c) True  
 
Multiple-Choice Questions 

5.1. c  5.2. d  5.3. a  5.4. d  5.5. e  5.6. e  5.7. c  5.8. b  5.9. b  5.10. c  5.11. e   5.12. d   5.13. b   5.14. a   
 
Conceptual Questions 

5.15. If the net work done on a particle is zero, then the net force on the particle must also be zero. If the net 
force is zero, then the acceleration is also zero. Hence, the particle’s speed is constant. 

5.16. If Paul and Kathleen both start from rest at a height h , then, by conservation of energy, they will have the 
same speed when they reach the bottom. That is, their initial energy is pure potential energy mgh  and 

their final energy is pure kinetic energy ( ) 21/ 2 mv . Since energy is conserved (if we neglect friction!) then 

( ) 21/ 2mgh mv=  ⇒  2v gh= .  Their final velocity is independent of both their mass and the shape of 
their respective slides! They will in general not reach the bottom at the same time. From the figure, 
Kathleen will likely reach the bottom first since she will accelerate faster initially and will attain a larger 
speed sooner. Paul will start off much slower, and will acquire the bulk of his acceleration towards the end 
of his slide. 

5.17. No. The gravitational force that the Earth exerts on the Moon is perpendicular to the Moon’s displacement 
and so no work is done. 

5.18. When the car is travelling at speed 1 ,v  its kinetic energy is ( ) 2
11/ 2 .mv  The brakes do work on the car 

causing it to stop over a distance 1.d  The final velocity is zero, so the work 1Fd  is given by the initial 

kinetic energy: ( ) 2
1 11/ 2 .mv Fd=  Similarly, when the car is travelling at speed 2 ,v  the brakes cause the car 

to stop over a distance 2 ,d  so we have ( ) 2
2 21/ 2 .mv Fd=  Taking the ratio of the two equations, we have 

( )
( )

( )22 2
2 2 12

2 1 1 12 2 2
1 1 1 1

1/ 2 2
4 .

1/ 2
mv Fd vv

d d d d
mv Fd v v

=
→ = = =

=
 

Thus the braking distance increases by a factor of 4 when the initial speed is increased by a factor of 2. 
  
Exercises 

5.19. THINK:  Kinetic energy is proportional to the mass and to the square of the speed.  m  and v  are known 
for all the objects:  
(a) 10.0 kg,m =  30.0 m/sv =  
(b) 100.0 g,m =  60.0 m/sv =  
(c) 20.0 g,m =  300. m/sv =  

 SKETCH: 

 

 RESEARCH: 21
2

K mv=   

 SIMPLIFY: 21
2

K mv=  is already in the right form. 
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 CALCULATE:  

 (a) 21 (10.0 kg)(30.0 m/s) 4500 J
2

K = =  

 (b) 3 21 (100.0 10  kg)(60.0 m/s) 180 J
2

K −= ⋅ =  

 (c) 3 21 (20.0 10  kg)(300. m/s) 900 J
2

K −= ⋅ =  

 ROUND:  
 (a)  3 significant figures: 34.50 10  JK = ⋅  
 (b)  3 significant figures: 21.80 10  JK = ⋅  
 (c)  3 significant figures: 29.00 10  JK = ⋅  
 DOUBLE-CHECK: The stone is much heavier so it has the greatest kinetic energy even though it is the 

slowest. The bullet has larger kinetic energy than the baseball since it moves at a much greater speed.  

5.20. THINK: I want to compute kinetic energy, given the mass ( 1900. kgm = ) and the speed ( 100. km/hv = ). 
I must first convert the speed to m/s .   

3km m 1 h 1 min100. 10
h km 60 min 60 s

⋅ ⋅ ⋅
3100. 10  m 27.778 m/s

3600 s
⋅

= =  

SKETCH:  

 
RESEARCH: 2 / 2K mv=  
SIMPLIFY:  No simplification needed. 

CALCULATE:  ( ) ( )( )( )22 51/ 2 1/ 2 1900. kg 27.778 m/s 7.3302 10  JK mv= = = ⋅  

ROUND: 100. km/h  has three significant figures. Round the result to three significant figures: 
57.33 10  JK = ⋅ . 

DOUBLE-CHECK: This is a very large energy. The limo is heavy and is moving quickly. 

5.21. THINK: Since both cars come to rest, the final kinetic energy of the system is zero.  All the initial kinetic 
energy of the two cars is lost in the collision. The mass ( 7000. kgm = ) and the speed 

3km 10  m 1 h90.0 25.0 m/s
h km 3600 s

v = ⋅ ⋅ =  of each car is known. The total energy lost is the total initial 

kinetic energy. 
 SKETCH: 
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 RESEARCH: 2 2
lost

1 1
2 2

K mv mv= +  

SIMPLIFY:  2 2
lost

12
2

K mv mv = = 
 

 

CALCULATE: ( ) 6
lost

27000. kg 4.375 10  J25.0 m/sK = = ⋅  

ROUND: To three significant figures: 6
lost 4.38 10  JK = ⋅ . 

DOUBLE-CHECK: Such a large amount of energy is appropriate for two colliding railroad cars. 

5.22. THINK: The mass and the speed are given: 
 (a) 1500. kg,m =  15.0 m/sv =  
 (b) 1500. kg,m =  30.0 m/sv =  
With this information, I can compute the kinetic energy and compare the results. 
SKETCH:  

 

RESEARCH: 21
2

K mv=   

SIMPLIFY:  b) The change in kinetic energy is the difference of the kinetic energies. 
CALCULATE:  

(a) 2 51 (1500. kg)(15.0 m/s) 1.688 10  J
2

K = = ⋅  

(b) 2 51 (1500. kg)(30.0 m/s) 6.750 10  J
2

K = = ⋅ , so the change is 5 5 56.750 10  J 1.688 10  J 5.062 10  J.⋅ − ⋅ = ⋅  

ROUND: Three significant figures: 
(a) 51.69 10  JK = ⋅  
(b) 55.06 10  JK∆ = ⋅  
DOUBLE-CHECK: Such large energies are reasonable for a car. Also, when the speed doubles, the kinetic 
energy increases by a factor of 4, as it should since K 2v∝ .  

5.23. THINK: Given the tiger’s mass, 200. kgm = , and energy, 14400 JK = , I want to determine its speed. I 
can rearrange the equation for kinetic energy to obtain the tiger’s speed. 
SKETCH:  
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RESEARCH: 21
2

K mv=  

SIMPLIFY: 2Kv
m

=  

CALCULATE: 2(14400 J) 12.0 m/s
200. kg

v = =   

ROUND: Three significant figures: 12.0 m/s.v =     

DOUBLE-CHECK: ( )
310  km 3600 s10 m/s 36 km/h.

1 m 1 h

−

⋅ ⋅ =  This is a reasonable speed for a tiger.  

5.24. THINK: I want to calculate the original speeds of both cars. I know only the ratios of their masses and 
kinetic energies.  For speeds 1v  and 2v : 1 22 ,m m= ( )1 2 .1/ 2K K=   For speeds ( 1 5.0 m/sv + ) and 
( 2 5.0 m/sv + ): 1 22 ,m m= 1 2 .K K=  
SKETCH:  

 
 

RESEARCH: 2
1 2 1 2

1 1;  2 ;  
2 2

K mv m m K K= = =  

SIMPLIFY:   ( )2 2 2 2
1 1 1 2 2 2 1 2 2 1 2

1 1 1 1 1 1  2   
2 2 2 2 4 2

K m v m v m v m v v v = = ⇒ = ⇒ = 
 

 

 When the speeds are increased by ,v∆  the kinetic energies are equal: 

( ) ( )1 1 1 2 2
2

2
21 1

2 2
K m v v K m v v= + ∆ = = + ∆  

( ) ( ) ( ) ( )
2 2

2 2
2 2 2 22 2

1 11 12     2
2 22 2

m m v v v vv v v v   = + ∆ ⇒ = + ∆+ ∆ + ∆   
   

 

 ( ) ( )
2 2

2 12  1 2 1     
2 21

2

v v v v
− 

⇒ − = − ∆ ⇒ = ∆      −  
 

 

( )2 2 22

21  2     2
22

v v v v v vv v ⇒ = + ∆ ⇒ + ∆ = + ∆+ ∆ 
 

 

CALCULATE: ( )
( )

2

2 1
5.0 m/s 7.0711 m/s,

21
2

v
−

= =
 

−  
 

 1 1
7.0711 m/s   3.5355 m/s

2
v v= ⇒ =  

ROUND:  Two significant figures: 1 3.5 m/s,v =  and 2 7.1 m/s.v =  
DOUBLE-CHECK: If 1 22m m=  and ( )1 21/ 2v v= , then ( )1 21/ 2K K= :  

2 2
1 1 1 2 2

1 1 1(2 )( )
2 2 2

K m v m v= = 2
2 2

1
4

m v= = 2
2 2 2

1 1 1
2 2 2

m v K  = 
 

 

The results are consistent.  
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5.25. THINK: At the apex of the projectile’s trajectory, the only velocity is in the horizontal direction. The only 
force is gravity, which acts in the vertical direction. Hence the horizontal velocity is constant. This velocity 
is simply the horizontal component of the initial velocity or 27.3 m/s  at an angle of 46.9° .  The mass of 
the projectile is 20.1 kg.   
SKETCH:  

 

RESEARCH: 21
2 xE mv=  (at the apex, 0)yv = ; cosxv v θ=   

SIMPLIFY: 2 21 cos
2

K mv θ=  

CALCULATE: 2 2 31 (20.1 kg)(27.3 m/s) cos (46.9 3.497 10  J
2

E = °) = ⋅  

ROUND: 3 significant figures: 33.50 10  J.K = ⋅     
DOUBLE-CHECK: For such a heavy mass moving at a large speed, the result is reasonable. 

5.26. THINK: A force 5.00 NF =  moves an object a distance 12.0 md = . The object moves parallel to the 
force. 
SKETCH:  

 
RESEARCH: cosW Fd θ=   
SIMPLIFY: 0  W Fdθ = ⇒ =  
CALCULATE: (5.00 N)(12.0 m) 60.0 JW = =  
ROUND: Three significant figures: 60.0 JW = .    
DOUBLE-CHECK: This is a relatively small force over a moderate distance, so the work done is likewise 
moderate.  

5.27. THINK: The initial speeds are the same for the two balls, so they have the same initial kinetic energy. 
Since the initial height is also the same for both balls, the gravitational force does the same work on them 
on their way down to the ground, adding the same amount of kinetic energy in the process. This 
automatically means that they hit the ground with the same value for their final kinetic energy. Since the 
balls have the same mass, they consequently have to have the same speed upon ground impact.  This 
means that the difference in speeds that the problem asks for is 0. No further steps are needed in this 
solution. 
SKETCH: Not necessary. 
RESEARCH: Not necessary. 
SIMPLIFY: Not necessary. 
CALCULATE: Not necessary.  
ROUND: Not necessary. 

 DOUBLE-CHECK: Even though our arguments based on kinetic energy show that the impact speed is 
identical for both balls, you may not find this entirely convincing.  After all, most people expect the ball 
throw directly downward to have a higher impact speed. If you still want to perform a double-check, then 
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you can return to the kinematic equations of chapter 3 and calculate the answer for both cases. Remember 
that the motion in horizontal direction is one with constant horizontal velocity component, and the 
motion in vertical direction is free-fall. In both cases we thus have: 

0

2
0 2

x x

y y

v v

v v gh

=

= +

 

 If you now square each equation and add them, you get: 

( ) ( ) ( )2 2 2 2 2 2 2 2
0 0 0 0 02 2 2x y x y x yv v v v v gh v v gh v gh= + = + + = + + = +  

 Then you see that indeed we have each time for the final speed 2
0 2v v gh= + , independent of the 

direction of the initial velocity vector. What we can learn from this double-check step is two-fold.  First, 
our energy and work considerations yield the exact same results as our kinematic equations from Chapter 
3 did. Second, and perhaps more important, the energy and work considerations required much less 
computational effort to arrive at the same result.  

5.28. THINK: The object moves at constant speed so the net force is zero. The force applied is then equal to the 
force of friction. f 180 NF = , 4.0 md = , 95 kg.m =  
SKETCH:  

 
RESEARCH: cosW Fd θ=  
SIMPLIFY:  f0  W Fd F dθ = ⇒ = − =  
CALCULATE: f (180 N)(4.0 m) 720 JW F d= = =   
ROUND:  2 significant figures: 720 JW =     
DOUBLE-CHECK: If we applied a force greater than 180 N, the object would accelerate. 720 J  is 
reasonable for pushing a refrigerator 4.0 m.  

5.29. THINK:  The maximum amount of work that the hammerhead can do on the nail is equal to the work 
that gravity does on the hammerhead during the fall. 0.400 mh =  and 2.00 kg.m =  
SKETCH:  

 
RESEARCH: The work done by gravity is gW mgh=  and this is equal to the maximum work W that the 
hammerhead can do on the nail. 
SIMPLIFY: W mgh=   

CALCULATE: ( )2(2.00 kg) 9.81 m/s (0.400 m) 7.848 JW = =   

ROUND:  Three significant figures: 7.85 J.W =     
DOUBLE-CHECK:  This result is reasonable. If the hammerhead had an initial velocity, more work could 
be done.  
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5.30. THINK: Only those forces that have a component along the couch’s displacement contribute to the force. 
You push your couch with a force of 200.0 NF = a distance of 4.00 m.d = The frictional force opposes the 
motion, so the direction of fF is opposite to .F  
SKETCH:  

 
RESEARCH: cosW Fd θ= . Friction: 180θ = ° , f fW F d= − ;  You: 0θ = ° , youW Fd= ;  Gravity: 90θ = ° , 

ygW Fd= ;  Net: net fW Fd F d= − . 

SIMPLIFY:  youW Fd=   

f fW F d= −  

g cos90.W Fd= °  

net f( )W d F F= −  

CALCULATE: ( )( )you
4.00 m 200.0 N 800.00 JW = =  

( )( )f 4.00m 150.0 N 600.0 JW = − = −  
g 0W =  

( )( )net 4.00 m 200.0 N 150.0 N 200.0 JW = − =   
ROUND:  Since the distance is given to three significant figures, 

you

28.00 10  J,W = ⋅  2
f 6.00 10  J,W = − ⋅  

g 0,W =  and 2
net 2.00 10  J.W = ⋅  

DOUBLE-CHECK:  The work done by the person is greater than the work done by friction. If it was not, 
the couch would not move.  The units of the work calculations are Joules, which are appropriate for work. 

5.31. THINK: Only the component of the force parallel to the displacement does work. 
SKETCH:  

 
RESEARCH: cosW Fd θ=  
SIMPLIFY:  Not applicable. 
CALCULATE: 2cos (25.0 N)(25.0 m)cos30.0 5.4127 10  JW Fd θ= = ° = ⋅   
ROUND: Three significant figures: 25.41 10  JW = ⋅ .    
DOUBLE-CHECK:  The magnitude of the work done by the person is greater than the magnitude of the 
work done by friction. The units of the work calculations are joules, which are appropriate for work. 

5.32. THINK: Neglect friction and use conservation of energy. Take the zero of gravitational potential energy to 
be the bottom of the swinging arc. Then, the speed at the bottom of the swinging motion can be 
determined from the fact that the initial potential energy is all converted to kinetic energy.  
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SKETCH:  

 

RESEARCH: + =21
2

mv mgh C  

SIMPLIFY:  Initial: θ= = − = −0,  (1 cos )v h l d l ,  θ+ = + − =21 0 (1 cos )
2

mv mgh mgl E  

Final: 0,h =  21 0
2

mv E+ =  

i fE E=  21 (1 cos )
2

mv mgl θ⇒ = −   2 (1 cos )v gl θ⇒ = −  

CALCULATE: ( )22 9.81 m/s (3.00 m)(1 cos33.6 ) 3.136 m/sv = − ° =   

ROUND: Three significant figures: 3.14 m/s.v =  
DOUBLE-CHECK: The result is independent of mass here because both potential and kinetic energy 
depend linearly on mass.  

5.33. THINK: The scalar product can be used to determine the work done, since the vector components of the 
force (4.79, 3.79,2.09) NF = −



 and the displacement (4.25,  3.69,  2.45) m,r = −


 are given.  
SKETCH:  

 
RESEARCH: W F r= •

 

 
SIMPLIFY: x x y y z zW F r F r F r= + +  

CALCULATE: [ ](4.79)(4.25) ( 3.79)(3.69) (2.09)( 2.45) 1.2519 JW = + − + − =   
ROUND: 3 significant figures: 1.25 JW = .    

DOUBLE-CHECK: The work done is much less than F r⋅
 

 since the force and the displacement are not 

parallel.  
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5.34. THINK: Take the zero of gravitational potential energy to be at the bottom of the swinging arc. The final 
speed can then be determined using conservation of energy. 
SKETCH:  

 

RESEARCH: 21 constant
2

mv mgh+ =  

SIMPLIFY:  At 1θ : 10,  v h h= =  2
1

1 (0) const.
2

m mgh E⇒ + = =  1 mgh E⇒ =  

At 2θ : 2h h=  2
2 1

1 
2

mv mgh E mgh⇒ + = =  ( )2
1 2

1 
2

v g h h⇒ = −  1 2 2 ( )v g h h⇒ = −  

[ ]1 2 1 2 2 (1 cos ) (1 cos ) 2 ( cos cos )v g l l glθ θ θ θ⇒ = − − − = − +  

CALCULATE: ( )22 9.81 m/s (3.50 m)( cos35.0 cos15.0 ) 3.1747 m/sv = − ° + ° =   

ROUND: 3 significant figures: 3.17 m/sv =     
DOUBLE-CHECK: The result is independent of mass and the final velocity seems reasonable. 

5.35. THINK: The work done by gravity is mgh . In the absence of friction, the potential energy mgh  will be 
converted to kinetic energy. The actual kinetic energy, when friction is included is less than this. The 
“missing” energy is the work done by friction. If the work done by friction is known, the frictional force 
and the coefficient of friction can be determined.   
SKETCH:  

 

RESEARCH: g fW W W= + 21
2

mv= , gW mgh= , f fW F d=  

SIMPLIFY: f gW W W= −  2
f

1 
2

F d mv mgh⇒ = −  21 
2

Nd m v ghµ  ⇒ − = − 
 

 

But g cos cosN F mgθ θ= =  21 cos
2

mg d m v ghµ θ  ⇒ − = − 
 

 21 1 
cos 2

gh v
gd

µ
θ

 ⇒ = − 
 

 

CALCULATE: ( )2 21 ft9.81 m/s 32.185 ft/s ,
0.3048 m

g  = = 
 

 

( ) ( )
( )

22

2

32.185 ft/s (80.0sin30.0  ft) (0.5) 45.0 ft/s

32.185 ft/s (80.0 ft)cos30.0
µ

° −
=

°
= 0.123282 

ROUND: Three significant figures: 0.123µ = .    
DOUBLE-CHECK: This is a reasonable result for the friction coefficient. If I had used SI units, the result 
would be the same because µ  is dimensionless. 
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5.36. THINK: The molecule’s initial speed can be determined from its mass and kinetic energy. At the highest 
point all the initial kinetic energy has been converted to potential energy.  
SKETCH:  

 

RESEARCH: 21 constant.
2

E mv mgh= + =   When 2
i

10,  .
2

h E mv= =  When f f0,  .v E mgh= =   

SIMPLIFY: E  is known: 21 2  .
2

EE mv v
m

= ⇒ =  At the maximum height   .EE mgh h
mg

= ⇒ =  

% of Earth’s radius: 100%
E

hp
R

= ×  

CALCULATE: 
21

26

2(6.2 10  J) 513.64 m/s
4.7 10  kg

v
−

−

⋅
= =

⋅
  

 
( )

21
4

26 2

6.2 10  J 1.3447 10  m
(4.7 10  kg) 9.81 m/s

h
−

−

⋅
= = ⋅

⋅
 

 
4

6

(1.3447 10  m) 100% 0.21110%
(6.37 10  m)

p ⋅
= × =

⋅
 

ROUND: 2 significant figures: 510 m/sv = , 41.3 10  m,h = ⋅ and 0.21%.p =   
DOUBLE-CHECK: The particle is not expected to escape the Earth’s gravity, or to reach relativistic 
speeds. This lends support to the reasonableness of the answers. 

5.37. THINK: If the resistance of the plank is independent of the bullet’s speed, then both bullets should lose the 
same amount of energy while passing through the plank. From the first bullet, the energy loss can be 
determined. This can then be used to determine the second bullet’s final speed.  
SKETCH:  

 

RESEARCH: 21 ,
2

K mv=  2 2 2 2
1f 1i 2f 2i

1 1( ) ( )
2 2

K m v v m v v∆ = − = −  

SIMPLIFY: 2 2 2 2
1f 1i 2f 2i( ) ( ),v v v v− = −  2 2 2

2f 1f 1i 2iv v v v= − +  

CALCULATE: ( ) ( ) ( )2 2 2
2f 130. m/s 153 m/s 92.0 m/s 44.215 m/sv = − + =   

ROUND: By the rule for subtraction, the expression inside the square root has two significant figures. 
Rounding to two significant figures: 2f 44 m/s.v =  
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DOUBLE-CHECK: The final speed should be positive because the bullet is still moving to the right. The 
final speed should also be less than the initial speed. The answer is reasonable.  

5.38. THINK: An expression xF  as a function of x is given, (3.0 0.50 ) N.xF x= +  The work done by the force 
must be determined. 
SKETCH:  

 

RESEARCH: Recall that the work done by a variable force is 
f

i

( )
x

x

W F x dx= ∫ , or the area under the curve of 

F versus x plot. 

SIMPLIFY: 
f

i

4

0

( ) (3.0 0.50 )
x

x

W F x dx x dx= = +∫ ∫  

CALCULATE: 
4.04.0

2

00

1(3.0 0.50 ) 3
4

x

x

W x dx x x
=

=

 = + = +  ∫ 213(4) (4) 0 12 4 16 J
4

= + − = + =  

ROUND: W = 16 J    

DOUBLE-CHECK: Since xF  is a linear function of x, ( )W F x= ∆


. F


 is the average force. F


= 4.0 N and 
4.0 mx∆ = . So 4.0(4.0) 16 JW = = , as expected. 

5.39. THINK: Determine the work necessary to change displacement from 0.730 m to 1.35 m for a force of 
4( )F x kx= −  with a constant 420.3 N/m .k =  

SKETCH:  
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RESEARCH: The work done by the available force is
f

i

( )
x

x

W F x dx= ∫ . 

SIMPLIFY: ( )
ff

ii

4 5 5 5 5 5
i f i f5 5 5 5

xx

xx

k k k kW kx dx x x x x x = − = − = − = −  ∫  

CALCULATE: ( ) ( )
4

5 520.3 N/m 0.730 m 1.35 m 17.364 J
5

W  = − = −    

ROUND: Due to the difference, the answer has three significant figures. The work done against the spring 
force is the negative of the work done by the spring force: W = 17.4 J.    
DOUBLE-CHECK: The negative work in this case is similar to the work done by a spring force.  

5.40. THINK: Find a relationship between ( )a t


 and ( )v t


 for a body of mass m moving along a trajectory ( )r t


 
at constant kinetic energy. 
SKETCH: Not necessary. 

RESEARCH: Kinetic energy ( ) constantK t = . Therefore, the work done by a force F ma=
 

 is zero since 

0W K= ∆ =  at all times. This means / 0P dW dt= = . 

SIMPLIFY: 0  0P F v ma v a v= • = • = ⇒ • =
     

.  The acceleration vector is perpendicular to the velocity 
vector. 
CALCULATE: Not necessary.  
ROUND: Not necessary.    
DOUBLE-CHECK: If a particle is moving in a circular motion at constant speed the kinetic energy is 
constant. The acceleration vector is always perpendicular to the velocity vector. 

 

5.41. THINK: 3 3ˆ( ) 5  N/mF x x x=


3 3ˆ( ) 5  N/mF x x x=  is acting on a 1.00 kg mass. The work done from x = 2.00 m 
to x = 6.00 m must be determined.  
SKETCH: Not applicable. 
RESEARCH:  

(a) Work done by a variable force is 
f

i

( )
x

x

W F x dx= ∫ . 

(b) Work-kinetic energy relation is .W K= ∆  
SIMPLIFY:  

(a) ( )
ff

ii

3 4 4 4
f i

5 5(5 )
4 4

xx

xx

W x dx x x x = = = −  ∫  

(b) ( )2 2 2 2
f i f i f i

1 1 1
2 2 2

W K K K mv mv m v v= ∆ = − = − = −  2 2 2
f i f i

2 2   W Wv v v v
m m

⇒ = + ⇒ = +  

CALCULATE:  

(a) 4 4
3

5 N (6.00 m) (2.00 m) 1600 J
4 m

W   = − =   
 

(b) 2
f

2(1600 J) (2.00 m/s) 56.6039 m/s
1.00 kg

v = + =  

ROUND: Quantities in the problem are given to three significant figures. 
(a) 31.60 10  JW = ⋅  
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(b) f 56.6 m/sv =  
DOUBLE-CHECK: Since / ,v dx dt=  /a dv dt=  ( )( ) ( )./ / /vdv dx dx dt dv dx= =   So, .vdv adx=  

i

f f

i i

f f

i

2 2 2 2 2 2
f i f i f i

1 1 1  ( ) ( ) ( )
2 2 2

v x x x

v x x x

Fvdv adx v v dx m v v Fdx m v v W
m

= ⇒ − = ⇒ − = ⇒ − =∫ ∫ ∫ ∫  

This is the same as above. 

5.42. THINK: The spring has a constant k = 440 N/m. The displacement from its equilibrium must be 
determined for W = 25 J.  
SKETCH:  

 

RESEARCH: 21
2

W kx=  

SIMPLIFY: 2Wx
k

=  

CALCULATE: 2(25 J) 0.3371 m
440 N/m

x = =  

ROUND: x = 0.34 m    
DOUBLE-CHECK: Because the value of k is large, a small displacement is expected for a small amount of 
work.  

5.43. THINK: The spring constant must be determined given that it requires 30.0 J to stretch the spring 5.00 cm 
= 25.00 10  m.−⋅  Recall that the work done by the spring force is always negative for displacements from 
equilibrium. 
SKETCH: Not necessary.  

RESEARCH: 2
s

1
2

W kx= −  

SIMPLIFY:  s
2

2W
k

x
= −  

CALCULATE: 4
2 2

2( 30.0 J) 2.40 10  N/m
(5.00 10  m)

k −

−
= − = ⋅

⋅
 

ROUND: Variables in the question are given to three significant figures, so the answer remains 
42.40 10  N/m.k = ⋅     

DOUBLE-CHECK: Because the displacement is in the order -210  m , the spring constant is expected to be 

in the order of ( )2-2 41/ 10 10 .≈  
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5.44. THINK: The ratio of work done on a spring when it is stretched and compressed by a distance 0x  is to be 
determined. 
SKETCH:  

 
 

RESEARCH: ( ) 2 .1/ 2W kx=  When the spring is stretched, the work done is ( ) 2
01/ 2sW kx= . When the 

spring is compressed, the work done is ( ) 2
01/ 2cW kx= . 

SIMPLIFY: Ratio s

c

W
W

=  

CALCULATE: Ratio s

c

W
W

= 2 2
0 0

1 1/ 1
2 2

kx kx   = =   
   

  

ROUND: Not necessary.    
DOUBLE-CHECK: The work done on a spring is the same, regardless if it compressed or stretched; 
provided the displacement is the same.   

5.45. THINK: The spring has a constant of 238.5 N/m and 0.231 mx∆ = . The steel ball has a mass of 0.0413 kg. 
The speed of the ball as it releases from the spring must be determined. 
SKETCH:  

 

RESEARCH: 2 2
i f

1 1
2 2

W kx kx= − ,  f iW K K K= ∆ = −  

SIMPLIFY: f 0,x =  i 0K =  and 2
f f

1 .
2

K mv=  It follows that: 

2
i f

1 0 0
2

W kx K= − = −  2 2
i f

1 1 
2 2

kx mv⇒ =  
2

i
f 

kx
v

m
⇒ = f i kv x

m
⇒ =  

CALCULATE: i 0.231 mx x= −∆ = − ,  f
238.5 N/m0.231 m
0.0413 kg

v = 17.554 m/s=   
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ROUND: f 17.6 m/sv =  (three significant figures) 
DOUBLE-CHECK: Energy stored in the spring is transferred to kinetic energy of the ball, 
( ) ( )2 21/ 2 1/ 2 .kx mv=  

5.46. THINK: Determine the power needed to move a sled and load with a combined mass of 202.3 kg at a 
speed of 1.785 m/s if the coefficient of friction between the sled and snow is 0.195. 
SKETCH:  

 
RESEARCH: Use Newton’s second law, fF Nµ=  and P F v=

 

 .  Since 0,xa =  

f f0  0  .xF F F F F Nµ= ⇒ − = ⇒ = =∑  Also, 0  0  .y yF ma N mg N mg= = ⇒ − = ⇒ =∑  
SIMPLIFY:  F mgµ=  and .P mgvµ=  

CALCULATE: ( )2(0.195)(202.3 kg)(9.81 m/s ) 1.785 m/s 690.78 WP = =   
ROUND: 691 WP =     
DOUBLE-CHECK: 1 horse power (hp) = 746 W. Our result is about 1 hp, which is reasonable since the 
sled is drawn by a horse. 

5.47. THINK: Determine the constant speed of a sled drawn by a horse with a power of 1.060 hp. The 
coefficient of friction is 0.115 and the mass of the sled with a load is 204.7 kg.                                                      
P = ( )1.060 hp 746 W/hp 791 W= .  
SKETCH:  

 
RESEARCH: Use Newton’s second law, fF Nµ=  and P F v=

 

 .  0xF =∑ , since 0xa = .  So f 0F F− =  

f F F Nµ⇒ = =  and 0y yF ma= =∑   0N mg⇒ − =   .N mg⇒ =  

SIMPLIFY: P Fv=   P P Pv
F N mgµ µ

⇒ = = =  

CALCULATE: 2

791 W
(0.115)(204.7 kg)(9.81 m/s )

v = 3.42524 m/s=   

ROUND: 3.43 m/sv =  (three significant figures)    
DOUBLE-CHECK: 3.43 m/sv =  = 12.3 km/h, which is a reasonable speed.  

5.48. THINK: Determine the power supplied by a towline with a tension of 6.00 kN which tows a boat at a 
constant speed of 12 m/s. 
SKETCH: Not necessary. 
RESEARCH: P Fv=  
SIMPLIFY: Not required. 
CALCULATE: ( )36.00 10 N (12 m/s)P = ⋅ 372.0 10  W 72.0 kW= ⋅ =   

ROUND: Not necessary.    
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DOUBLE-CHECK: 1 hp72,000 W 96 hp
746 W

P  = = 
 

, which is a reasonable value.  

5.49. THINK: A car with a mass of 1214.5 kg is moving at 62.5 mph 0.447 m/s
1 mph

 
 
 

= 27.94 m/s and comes to rest 

in 0.236 s. Determine the average power in watts. 
SKETCH: Not required. 

RESEARCH: Work, W K= ∆  and the average power WP
t

=
∆

. 

SIMPLIFY: 

2 2
f i

1 ( )
2 .

m v vW KP
t t t

−∆
= = =

∆ ∆ ∆
  fv = 0, so 

2 2
i i

1 1
2 2

mv mv
P

t t

−
= =

∆ ∆
 

CALCULATE: 

2

6

1 (1214.5 kg)(27.94 m/s)
2 2.0087 10  W

0.236 s
P = = ⋅   

ROUND: Three significant figures: 62.01 10  WP = ⋅     
DOUBLE-CHECK: Without the absolute values, the value would have been negative. The omitted 
negative sign on the power would indicate that the power is released by the car. It is expected that to make 
a car stop in a short time a large amount of power must be expended.  

5.50. THINK: Determine the retarding force acting on a car travelling at 15.0 m/s with an engine expending 
746W40.0 hp 29,840W
1 hp

 
= 

 
.                                                                    

SKETCH: Not necessary. 
RESEARCH: P Fv=  

SIMPLIFY: PF
v

=  

CALCULATE: 29840 W 1989.33 N
15.0 m/s

F = =  

ROUND: 1990 kNF =     
DOUBLE-CHECK: Assume the mass of the car is 1000 kg and the coefficient of friction is about 0.1. The 
force of friction is about: 0.1(1000)(9.81) 981 N 1 kNF N mgµ µ= = = = ≈ . So, the result is reasonable. 

5.51. THINK: Determine the speed of a 942.4 kg car after 4.55 s, starting from rest with a power output of 140.5 
hp. ( )140.5 hp 746 W/hp 104,813 W= . 
SKETCH: Not necessary. 

RESEARCH: Use the definition of average power, WP
t

=
∆

, and the work-kinetic energy relation, 

.W K= ∆  

SIMPLIFY:  

2 2
f i

f i

1 1
2 2 .

mv mvK KW KP
t t t t

−−∆
= = = =

∆ ∆ ∆ ∆
 

2
f

i 0, so =
2
mv

v P
t

=
∆

 f
2 .P tv

m
∆

⇒ =  

CALCULATE: 
( )

f

2(104,813 W) 4.55 s
31.81 m/s

942.4 kg
v = =  

ROUND: f 31.8 m/sv =     
DOUBLE-CHECK: f 31.8 m/s 114 km/h.v = =  This represents a large acceleration, but the car is very 
light.  This is consistent with a high performance sports car. 
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5.52. THINK: If you ride your bicycle on a horizontal surface and stop pedaling, you slow down to a stop.  The 
force that causes this is the combination of friction in the mechanical components of the bicycle, air 
resistance, and rolling friction between the tires and the ground. In the first part of the problem statement 
we learn that the bicycle rolls down the hill at a constant speed.  This automatically implies that the net 
force acting on it is zero. (Newton’s First Law!)  The force along the slope and downward is θsinmg  (see 
sketch).  For the net force to be zero this force has to be balanced by the force of friction and air resistance, 
which acts opposite to the direction of motion, in this case up the slope.  So we learn from this first 
statement that the forces of friction and air resistance have exactly the same magnitude in this case as the 
component of the gravitational force along the slope. But if you go up the same slope, then gravity and the 
forces of air resistance and friction point in the same direction. Thus we can calculate the total work done 
against all forces in this case (and only in this case!) by just calculating the work done against gravity, and 
then simply multiplying by a factor of 2.  
SKETCH: (for just pedaling against gravity) 

 
 

RESEARCH: Again, let’s just calculate the work done against gravity, and then in the end multiply by 2. 
The component of the gravitational force along the slope is sinmg θ . F  is the force exerted by the 
bicyclist. Power Fv= .  Using Newton’s second law:  

0x xF ma= =∑   sin 0F mg θ⇒ − =   sinF mg θ⇒ =  

SIMPLIFY:  Power 2 2( sin )Fv mg vθ= =  

CALCULATE: ( ) ( )22·75 kg 9.81 m/s sin(7.0 5.0 m/s 896.654 WP = °) =  

ROUND: 0.90 kWP =     

DOUBLE-CHECK: 1 hp900 W 1.2 hp
746 W

P  = = 
 

. As this shows, going up a 7 degree slope at 5 m/s 

requires approximately 1.2 horsepower, which is what a good cyclist can expend for quite some time.  (But 
it’s hard!) 

5.53. THINK: A blimp with a mass of 93.5 kg is pulled by a truck with a towrope at an angle 53.3o from the 
horizontal. The height of the blimp is 19.5 mh = and the truck moves for 840.5 m at a constant velocity 

8.90 m/s.v =  The drag coefficient of air is 0.500 kg/m.k =  Determine the work done by the truck.  
SKETCH:  

 
RESEARCH: The tension in the towrope can be determined using Newton’s second law. 
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2

0

cos
x x D x

x D

F T F ma

T T F Kvθ

= − = =

= = =
∑  

SIMPLIFY: The work done by the truck is:  ( )( ) 2cos .DW F d T d Kv dθ= • = =




 

CALCULATE: ( )( )20.500 kg/m 8.90 m/s (840.5 m) 33,288 JW = =   

ROUND: Rounding to three significant digits, 43.33 10  J.W = ⋅  
DOUBLE-CHECK: It is expected that the work is large for a long distance d.   

5.54. THINK:  A car of mass m accelerates from rest with a constant engine power P, along a track of length x. 
(a) Find an expression for the vehicle’s velocity as a function of time, ( )v t .  
(b) A second car has a constant acceleration .a  I want to know which car initially takes the lead, and 
whether the other car overtakes it.   
(c) Find the minimum power output, 0 ,P  required to win a race against a car that accelerates at a constant 

rate of 212 m/s .a =  This minimum value occurs when the distance at which my car overtakes the other car 
is equal to the length of the track. 
SKETCH:  Not necessary. 
RESEARCH:  
(a) Use the relation between power and work, /P W t= ∆  and .W K= ∆  
(b) 2 0v at v= + , 

(c) Use the result from part b, 
2

2 3
1

512
81

oP
x

m a
=  ⇒  

2 3
1

0
81

.
512
xm a

P =   

The typical track is a quarter mile long.  1609 m0.250 mi 402.25 m 402 m.
mi

x  = = = 
 

 

SIMPLIFY:  

(a) 

21
2 ,

m vW EP
t t t

∆∆
= = =

∆ ∆ ∆
 2P tv

m
∆

=  

(b) 0 0v =  ⇒ 2 .v at=  As a comparison, 1 12 /v P m t= , so plot v t=  and v t= . 

 
By looking at the area under the curve for the distance traveled that the first car initially takes the lead but 
after a time t, the second car overtakes the first car. Assume this occurs at distances 1 2x x= . 

0
0

t

x vdt x= +∫ , 0 0x =  
0

 
t

x vdt⇒ = ∫  

 1/2 3/2 20 0
1 2 1 2 0

1 10 0

2 2 2 1So, ,  ,  .
3 2

t tP P
x t dt t x a tdt at x x x

m m
 = = = = = = 
 ∫ ∫  

(c)  3
0 1 0 0

81
512

P m x a=  (see below) 
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CALCULATE:  
(a)  Not necessary.   

(b)  3/2
1 2

1

2 2  
3

Px x t
m

 = ⇒  
 

 = 21
2

at  1/2

1

2 4 
3

P t
m a

⇒ =   
2

2
1 1

2 4 32 
3 9

P Pt
m a m a

  ⇒ = =  
  

 

2 2
2

0 2 2 3
1 1

1 1 32 512
2 2 9 81

P Px at a
m a m a

 
= = = 

 
 

(c) ( ) ( )( )32
0

81 1 hp1000. kg 402 m 12.0 m/s 331507 W 444.38 hp
512 746 W

P  = = = 
 

 

ROUND:  
(a) Not necessary.    
(b) Not necessary. 
(c) o 444 hpP =  
DOUBLE-CHECK: 
(a) Not necessary.    
(b) Not necessary. 
(c) Even a typical sports car does not have an overall power band of 444 hp. This car must be some kind of 
professional drag racer. 

5.55. THINK: Determine the work done by an athlete that lifted 472.5 kg to a height of 196.7 cm. 
SKETCH:  

 
 

RESEARCH: Use =W Fd . F is the combined force needed to the lift the weight, which is =F mg . 
SIMPLIFY: W mgd=  

CALCULATE: ( )( )( )2472.5 kg 9.81 m/s 1.967 m 9117.49 JW = =   

ROUND: Rounding to three significant figures, 9.12 kJ.W =     
DOUBLE-CHECK: A large amount of work is expected for such a large weight.  

5.56. THINK: Determine the amount of work done in lifting a 6 kg weight a distance of 20 cm. 
SKETCH: Not necessary. 
RESEARCH: Use W Fd=  and F mg= . 
SIMPLIFY: W mgd=  

CALCULATE: ( )( )( )26.00 kg 9.81 m/s 0.200 m 11.772 JW = =   

ROUND: 11.8 JW =     
DOUBLE-CHECK: For such a small distance, a small amount of work is expected.  

5.57. THINK: Determine the power in kilowatts and horsepower developed by a tractor pulling with a force of 
14.0 kN and a speed of 3.00 m/s. 
SKETCH: Not necessary. 
RESEARCH: P Fv=  
SIMPLIFY: Not necessary. 
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CALCULATE: ( )( ) 1 hp14.0 kN 3.00 m/s 42.0 kW 42000 W 56.3 hp
746 W

P  = = = = 
 

 

ROUND: Variables in the question are given to three significant figures, so the answers remain 
42.0 kW 56.3 hpP = = .    

DOUBLE-CHECK: This is a reasonable value for a tractor.  

5.58. THINK: It is given that a mass of m = 7.3 kg with initial speed i 0v =  is accelerated to a final speed of 

f 14 m/sv =  in 2.0 s. Determine the average power of the motion. 
SKETCH: Not necessary. 

RESEARCH: 2 2
f i

1 ( ),
2

W K m v v= ∆ = −  WP
t

=
∆

 

SIMPLIFY: 

2 2
f i

1 ( )
2 .

m v vW KP
t t t

−∆
= = =

∆ ∆ ∆
 i 0,v =  so  

2
f

1
2 .

mv
P

t
=

∆
 

CALCULATE: 
( )( )21 7.3 kg 14 m/s

2 357.7 W
2.0 s

P = =  

ROUND: 360 WP =     
DOUBLE-CHECK: 360 W is equivalent to about half a horsepower, so this is a reasonable result. 

5.59. THINK: A car with mass 1200. kgm = can accelerate from rest to a speed of 25.0 m/s in 8.00 s. Determine 
the average power produced by the motor for this acceleration. 
SKETCH: Not necessary. 

RESEARCH: ,W K= ∆  WP
t

=
∆

 

SIMPLIFY: WP
t

=
∆

 = 

2 2
f i

1 ( )
2 .

m v vK
t t

−∆
=

∆ ∆
  i 0,v =  so 

2
f

1
2 .

mv
P

t
=

∆
 

CALCULATE: 
( )( )21 1200. kg 25.0 m/s 1 hp2 46875 W 62.835 hp

8.00 s 746 W
P  = = = 

 
  

ROUND: Three significant figures: 62.8 hpP =     
DOUBLE-CHECK: An average car motor has a power between 100 and 500 hp. This result is reasonable 
for a small car.  

5.60. THINK: Determine the work that must be done to stop a car of mass m = 1250 kg traveling at a speed v0 = 
105 km/h (29.2 m/s). 
SKETCH: Not necessary. 
RESEARCH: ,W K= ∆  i 29.2 m/s,v = f 0v =  

SIMPLIFY: 2 2 2 2
f i i i

1 1 1( ) (0 )
2 2 2

W m v v m v mv= − = − = −  

CALCULATE: ( )( )21 1250 kg 29.2 m/s 532900 J
2

W = − = −   

ROUND: 533 kJW = −     
DOUBLE-CHECK: A negative amount of work means that the force to stop the car must be in the 
opposite direction to the velocity. This value is reasonable to stop a car moving at this speed. 

5.61. THINK: A bowstring exerts an average force F = 110. N on an arrow with a mass m = 0.0880 kg over a 
distance d = 0.780 m. Determine the speed of the arrow as it leaves the bow. 
SKETCH: Not necessary. 
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RESEARCH: 2 2
f i

1 ( )
2

W Fd K m v v= = ∆ = −  

SIMPLIFY: 2
f

1 ( 0)
2

Fd m v= −  f
2 Fdv
m

⇒ =  

CALCULATE: 
( )( )

f

2 110. N 0.780 m
44.159 m/s

0.0880 kg
v = =   

ROUND: f 44.2 m/sv =     
DOUBLE-CHECK: As a comparison, the speed of a rifle bullet is about 1000 m/s and the speed of sound 
is 343 m/s. This result is reasonable. 

5.62. THINK: A textbook with a mass m = 3.4 kg is lifted to a height h = 0.47 m at a constant speed of v = 0.27 
m/s. 
SKETCH:  

 
RESEARCH:  
(a) Work is given by cosW Fh θ= , where θ  is the angle between F  and h. The force of gravity is given by 

g .F mg=  
(b) Power is given by .P Fv=  
SIMPLIFY:  
(a) g g cos ,W F h θ=  180θ = °  g W mgh⇒ = −  

(b) g .P F v=  From (a), gF mg=   .P mgv⇒ =  
CALCULATE:  
(a) ( )( )( )2

g 3.4 kg 9.81 m/s 0.47 m 15.676 JW = − = −    

(b) ( )( )( )23.4 kg 9.81 m/s 0.27 m/s 9.006 WP = =  

ROUND:  
(a) g 16 JW = −    
(b) 9.0 WP =  
DOUBLE-CHECK:  
(a) This is a reasonable result for a relatively light textbook moved a short distance.  
(b) This result is much less than the output power of human muscle, which is of the order of 210  W . 
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5.63. THINK: Determine the initial speed of a sled which is shoved up an incline that makes an angle of 28.0°  
with the horizontal and comes to a stop at a vertical height of h = 1.35 m. 

 SKETCH:  

 
 

RESEARCH: The work done by gravity must be equal to the change in kinetic energy: W K= ∆ . 

SIMPLIFY: 2 2
g f i f i

1 ( ).
2

W mgh K K m v v= − = − = −  f 0,v =  so 2
i i

1 (0 )  2
2

mgh m v v gh− = − ⇒ =  

CALCULATE: ( )( )2
i 2 9.81 m/s 1.35 m 5.1466 m/sv = =   

ROUND: The angle was given to three significant figures; so you may think that our result needs to be 
rounded to three digits.  This is not correct, because the angle did not even enter into our calculations. The 
height was given to three digits, and so we round iv = 5.15 m/s.    
DOUBLE-CHECK: i 5.15 m/s 18.5 km/hv = =  is a reasonable value. 

5.64. THINK: Determine the maximum height h that a rock of mass m = 0.325 kg reaches when thrown straight 
up and a net amount of work, Wnet = 115 J is done on the rock. 
SKETCH:  

 
 

RESEARCH: The amount of work done by the person’s arm must equal the work done by gravity: 

net gW W= − . 

SIMPLIFY: g ,W mgh= −  netW mgh=  net 
W

h
mg

⇒ =  

CALCULATE: 
( )2

115 J 36.0699 m
0.325 kg 9.81 m/s

h = =  

ROUND: 36.1 mh =     
DOUBLE-CHECK: This is just under 120 ft—fairly high, but it is not unreasonable that an object with a 
small mass can be thrown this high. 

5.65. THINK: Since we know the displacement, and we know that the car travels at constant velocity, the force 
must act in the same direction as the displacement. Then the work is simply the product of force times 
displacement. 
SKETCH: Not necessary 
RESEARCH: W Fx=  
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SIMPLIFY: WF
x

=  

CALCULATE: 
4

3

7.00 10  J 25.0 N
2.8 10  m

F ⋅
= =

⋅
  

ROUND: The variables in the question were given to three significant figures, so the answer remains 
25.0 N.F =  

DOUBLE-CHECK: It should take about 200 seconds to travel this distance. The average power is the net 
work done divided by the time interval, which under this assumption would compute to 350 W, which is 
realistic for a small car at relatively slow cruising speeds.  The mass of the car should be around 1000 kg.  A 
force of 25.0 N could accelerate it at 0.025 m/s2, if it was not for friction and air resistance.  These numbers 
are all of the right magnitude for a small passenger car, which gives us confidence in our solution. 

5.66. THINK:  A softball of mass m = 0.250 kg is pitched at an initial speed of 0v  = 26.4 m/s. Air resistance 
causes the ball to slow down by 10.0% over a distance 15.0 m.d =  I want to determine the average force of 
air resistance, airF , which causes the ball to slow down. 
SKETCH:  

 
 

RESEARCH: W Fd=  and .W K= ∆  

SIMPLIFY:  Work done by air resistance: 2 2 2 2
air f i air i f

1 ( )  ( ).
2 2

mW F d K m v v F v v
d

= − = ∆ = − ⇒ = −  

CALCULATE: ( )f 0.900 26.4 m/s 23.76 m/s,v = =  ( ) ( )2 2
air

0.250 kg
26.4 m/s 23.76 m/s 1.104 N

2(15.0 m)
F  = − =    

ROUND: Rounding to three significant figures, air 1.10 NF = .   
DOUBLE-CHECK: As a comparison, the force of gravity on the softball is  

( )2
g 0.25 kg 9.81m/s 2.45 NF = =  

5.67. THINK: The stack of cement sacks has a combined mass m = 1143.5 kg. The coefficients of static and 
kinetic friction between the sacks and the bed of the truck are 0.372 and 0.257, respectively. The truck 

accelerates from rest to 0.447 m/s56.6 mph 25.3 m/s
mph

 
= 

 
 in 22.9 s.t∆ =  Determine if the sacks slide and 

the work done on the stack by the force of friction. 
SKETCH:  

 
 

RESEARCH: The acceleration of the truck ta  and the acceleration of the stack ca  must be determined: 

t / .a v t= ∆  The maximum acceleration that will allow the cement sacks to stay on the truck is calculated 
by: f,max c,max s .F ma Nµ= =  

SIMPLIFY:  f,max c,max s c,max s  F ma mg a gµ µ= = ⇒ =  
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CALCULATE: 2
t

25.3 m/s 1.1048 m/s ,
22.9 s

a = =  ( )( )2 2
c,max 0.372 9.81 m/s 3.649 m/sa = =  

c,maxa  is larger than ta . This means that the stack does not slide on the truck bed and f sF Nµ< . The 

acceleration of the stack must be the same as the acceleration of the truck 2
c t 1.10 m/sa a= = . The work 

done on the stack by the force of friction is calculated using :W K= ∆  
2 2

f i f i
1 ( ).
2

W K K m v v= − = −  Since i 0,v =  ( )( )22
f

1 1 1143.5 kg 25.3 m/s 365971 J
2 2

W mv= = = . 

ROUND: 366 kJW =     
DOUBLE-CHECK: The work done by the force of friction can also be calculated by fW F d=  ; where 

f cF ma=  and 2
c

1 :
2

d a t=  

( )22 2 2
c c c c

1 1 1 .
2 2 2

W ma a t ma t m a t = = = 
 

 Using f cv a t= , ( )2
f

1
2

W m v=  as before. 

5.68. THINK:  Determine the power needed to keep a car of mass m = 1000. kg moving at a constant velocity     
v = 22.2 m/s. When the car is in neutral, it loses power such that it decelerates from 25.0 m/s to 19.4 m/s in 
t = 6.00 s. The average velocity over the period of deceleration is 22.2 m/s.  Therefore, the power required 
to maintain this velocity is equal in magnitude to the power lost during the deceleration.  
SKETCH: Not necessary. 
RESEARCH: The power is given by the change in energy over time, ( )f i /P K K t= − . The energy is 

kinetic energy, 2(1/ 2) .K mv=  

SIMPLIFY: ( )
2 2

f i
2 2f i

f i

1 1
2 2

2

mv mvK K mP v v
t t t

−−
= = = −  

CALCULATE: 
( )

( ) ( )2 21000. kg
25.0 m/s 19.4 m/s 20720 W

2 6.00 s
P  = − =   

ROUND: Rounding to three significant figures, P = 20.7 kW.   
DOUBLE-CHECK: A 300 hp engine is equivalent to ( )300 hp 746 W/hp 223800 W 223 kW.= =  Since the 
solution is smaller than 300 hp, the calculation is reasonable. 

5.69. THINK:  There are four forces acting on a 125 kg cart at rest. These forces are 1 300. N at 0F = °,


 

2 300. N at 40.0F = °,


 3 200. N at 150.F = °


 and gF mg=


 downward. The cart does not move up or down, 
so the force of gravity, and the vertical components of the other forces, need not be considered. The 
horizontal components of the forces can be used to determine the net work done on the cart, and the 
Work-Kinetic Energy Theorem can be used to determine the velocity of the cart after 100. m. 
SKETCH:  
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RESEARCH: 1, 1 1 2, 2 2 3, 3 3cos ,  cos ,  cos ,x x xF F F F F Fθ θ θ= = =  , f i
1

,   ,
n

i x
i

W F x W K K K
=

= ∆ = ∆ = −∑   

( )
3

2 2
, 1 1 2 2 3 3 f i f i

1

1cos cos cos ,
2i x x

i

F F F F F K K K m v vθ θ θ
=

= + + = ∆ = − = −∑  

SIMPLIFY:  
3

1 1 2 2 3 3
, f i f

1

2 2( cos cos cos )
,   .x

i x
i

F x F F F x
W F x K K v

m m
θ θ θ

=

∆ + + ∆
= ∆ = − = =∑     

CALCULATE: 
( )

f

1

2 300. N cos0 (300. N)cos40.0 (200. N)cos150. (100. m)

125 kg
23.89 m/s in the direction of .

v

F

° + ° + °  =

=

 

ROUND: Rounding to three significant figures, f 23.9 m/sv =  in the direction of 1.F     
DOUBLE-CHECK: If only 1F  was acting on the cart, the velocity would be 21.9 m/s. This is close to the 
answer above, so the answer is reasonable.  

5.70. THINK:  Determine the power required to propel a 1000.0 kg car up a slope of 5.0° .  
SKETCH: 

 
 

RESEARCH: Since the speed is constant, the power is given by the change in potential energy over time, 
gm hW EP

t t t
∆∆

= = =
∆ ∆ ∆

. 

SIMPLIFY: 
g

sin
m hEP mgv

t t
θ

∆∆
= = =

∆ ∆
 

CALCULATE: ( )( ) ( )21000.0 kg 9.81 m/s 25.0 m/s sin 5.0 21,374.95 WP = ° =   

ROUND: Rounding to two significant figures, 21 kWP = .    
DOUBLE-CHECK: This is a reasonable amount of power for a car.  

5.71. THINK:  Determine the angle θ  that the granddaughter is released from to reach a speed of 3.00 m/s at 
the bottom of the swinging motion. The granddaughter has a mass of m = 21.0 kg and the length of the 
swing is l = 2.50 m.   
SKETCH:  
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RESEARCH: The energy is given by the change in the height from the top of the swing, gm h . It can be 

seen from the geometry that ( )cos 1 cosh l d l l lθ θ= − = − = − . At the bottom of the swinging motion, there 

is only kinetic energy, ( ) 2 .1/ 2K mv=  
SIMPLIFY: Equate the energy at the release point to the energy at the bottom of the swinging motion and 
solve for :θ  

 ( )
2

2 2 11 1  1 cos   cos 1
2 2 2

vmgh mv gl v
gl

θ θ −  
= ⇒ − = ⇒ = − 

 
 

CALCULATE: 
( )

( )( )

2
1

2

3.00 m/s
cos 1 35.263

2 9.81 m/s 2.50 m
θ −

 
 = − = °
 
 

 

ROUND: Rounding to three significant figures, 35.3θ = ° .    
DOUBLE-CHECK: This is a reasonable angle to attain such a speed on a swing.  

5.72 THINK:  
(a) Determine the work done against gravity by a 65 kg hiker in climbing from height 1 2200 mh =  to a 
height 2 3900 mh = . 

(b) The trip takes ( )5.0 h 3600 s/h 18,000 s.t = =  Determine the average power output. 
(c) Determine the energy input rate assuming the body is 15% efficient. 
SKETCH: 

 
 

RESEARCH:  
(a) The work done against gravity is ( )2 1W mg h h= − . 

(b) f iE E EP
t t
− ∆

= =  

(c) The energy output is given by in out% conversionE E× = . 
SIMPLIFY:  
(a) Not necessary. 
(b) Not necessary. 

(c) out
in % conversion

E
E =  

CALCULATE:  
(a) ( )( )265 kg 9.81 m/s 3900 m 2200 m 1,084,005 JW = − =   

(b) 1,084,005 J 60.22 W
18,000 s

P = =  

(c) in
1,084,005 J 7,226,700 J

0.15
E = =  

ROUND:  
(a) Rounding to two significant figures, 61.1 10  JW = ⋅ .    
(b) Rounding to two significant figures, 60. WP = .  
 (c) Rounding to two significant figures, 6

in 7.2 10  JE = ⋅ . 
DOUBLE-CHECK:  
(a) This is a reasonable value for such a long distance traveled.  
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(b) This value is reasonable for such a long period of time. 
(c) The daily caloric requirements for a 65 kg man is 2432 calories, which is about 71.0 10  J⋅ . This is on the 
same order of magnitude as the result. 

5.73. For work done by a force that varies with location, 
2

1

x

x
x

W F dx= ∫  . In order to oppose the force, equal work 

must be done opposite the direction of Fx. 
2 2

2

1
1 1

3 4 4 4
1 2( )

4 4

x x
x

x x
x x

c cW F dx cx dx x x x   = = − = − = −   ∫ ∫  

This evaluates to: 

( ) ( )
3

4 419.1 N/m
0.810 m 1.39 m 15.77 J

4
W  = − = −

 
 

Therefore the work required to oppose Fx is the opposite: 15.77 JW = or 15.8 J when rounded to three 
significant figures.  

5.74. Apply Hooke’s law to find the spring constant k: 

 0
0

FF kx k
x

= − → =   

The work done to compress the spring further is equal to the change in spring energy.  
2 2 2 2

0 0
0

1 1
2 2f f

FW E k x x x x
x

   = ∆ = − = −     

( ) ( )2 263.5 N1 0.0815 m 0.0435 m 3.47 J
2 0.0435 m

W
 

 = − =   
 

 

5.75. The amount of power required to overcome the force of air resistance is given by .P F v= ⋅  And the force 
of air resistance is given by the Ch. 4 formula  

21
2d dF c A vρ =  

 
 

2 31 1
2 2d dP c A v v c A vρ ρ ⇒ = ⋅ = 

 
 

This evaluates as: 

( )( )( )( ) ( )32 31 1 hp0.333 3.25 m 1.15 kg/m 26.8 m/s 11,978.4 W 11,978.4 W 16.06 hp
2 745.7 W

P  = = = = 
 

 

To three significant figures, the power is 16.1 hp. 
 
Multi-Version Exercises 

5.76. THINK:  This problem involves a variable force. Since we want to find the change in kinetic energy, we 
can find the work done as the object moves and then use the work-energy theorem to find the total work 
done.  

 SKETCH:  
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 RESEARCH:  Since the object started at rest, it had zero kinetic energy to start. Use the work-energy 
theorem W K= ∆ to find the change in kinetic energy. Since the object started with zero kinetic energy, the 
total kinetic energy will equal the change in kinetic energy: K K∆ = . The work done by a variable force in 

the x-direction is given by ( )
0

' '
x

xx
W F x dx= ∫  and the equation for our force is ( ) ( )6'xF x A x′= . Since the 

object starts at rest at 1.093 m and moves to 4.429 m, we start at x0 = 1.093 m and end at x = 4.429 m.  
 SIMPLIFY: First, find the expression for work by substituting the correct expression for the force: 

( )
0

6 '
x

x
W A x dx′= ∫ . Taking the definite integral gives ( ) ( )

0

7 7 7
07 7

x

x

A AW x x x′= = − . Combining this with 

the work-energy theorem gives ( )7 7
07

A x x W K− = = . 

 CALCULATE:  The problem states that A = 11.45 N/m6, that the object starts at x0 = 1.093 m and that it 
ends at x = 4.429 m. Plugging these into the equation and calculating gives: 

( )

( ) ( )( )

7 7
0

6
7 7

4

7
11.45 N/m 4.429 m 1.093 m

7
5.467930659 10  J

AK x x= −

= −

= ⋅

 

 ROUND: The measured values in this problem are the constant A in the equation for the force and the 
two distances on the x-axis. All three of these are given to four significant figures, so the final answer 
should have four significant figures: 5.468·104 J or 54.68 kJ.   
DOUBLE-CHECK: Working backwards, if a variable force in the +x-direction changes the kinetic energy 
from zero to 5.468·104 J, then the object will have moved  

( )4
77

6

7 5.468 10 J
1.093

11.45 N/m
4.429008023 m.

x
⋅

= +

=

 

This is, within rounding error, the 4.429 m given in the problem, so it seems that the calculations were 
correct.  

5.77. ( )7 7
07

AK x x= −  

 ( )
( )

7 7
0

3
77 77

0 6

7

7 5.662 10  J7 1.105 m 3.121 m
13.75 N/m

K x x
A

Kx x
A

= −

⋅
= + = + =

 

5.78. ( )7 7
07

AK x x= −  

 

( )
( )

7 7
0

4
77 77

0 6

7

7 1.00396 10  J7 3.313 1.114 m
16.05 N/m

K x x
A

Kx x
A

= −

⋅
= − = − =

 

5.79. THINK:  In this problem, the reindeer must pull the sleigh to overcome the friction between the runners 
of the sleigh and the snow. Express the friction force in terms of the speed and weight of the sleigh, and the 
coefficient of friction between the sleigh and the ground.  It is then possible to find the power from the 
force and velocity.  
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 SKETCH: Draw a free-body diagram for the sleigh: 

     
 RESEARCH:  Since the sleigh is moving with a constant velocity, the net forces on the sleigh are zero. This 

means that the normal force and the gravitational force are equal and opposite ( gN F= −
 

), as are the 

friction force and the force from the reindeer ( reindeer kF f= −




). From the data given in the problem, it is 
possible to calculate the friction force kkf mgµ= . The power required to keep the sleigh moving at a 
constant speed is given by reindeerP F v= . Eventually, it will be necessary to convert from SI units (Watts) to 
non-standard units (horsepower or hp). This can be cone using the conversion factor 1 hp = 746 W.  

 SIMPLIFY: To find the power required for the sleigh to move, it is necessary to express the force from the 
reindeer in terms of known quantities. Since the force of the reindeer is equal in magnitude with the 
friction force, use the equation for frictional force to find: 

reindeer k

k

k

F f

f
mgµ

= −

=
=




 

 Use this and the speed of the sleigh to find that reindeer kP F v mgvµ= = .  
 CALCULATE:  With the exception of the gravitational acceleration, all of the needed values are given in 

the question. The coefficient of kinetic friction between the sleigh and the snow is 0.1337, the mass of the 
system (sleigh, Santa, and presents) is 537.3 kg, and the speed of the sleigh is 3.333 m/s. Using a 
gravitational acceleration of 9.81 m/s gives: 

20.1337 537.3 kg 9.81 m/s 3.333 m/s
2348.83532 W

kP mgvµ=

= ⋅ ⋅ ⋅
=

 

 This can be converted to horsepower: 1 hp2348.83532 W 3.148572815 hp
746 W

⋅ = . 

 ROUND: The measured quantities in this problem are all given to four significant figures. Though the 
conversion from watts to horsepower and the gravitational acceleration have three significant figures, they 
do not count for the final answer. The power required to keep the sleigh moving is 3.149 hp.  
DOUBLE-CHECK: Generally, it is thought that Santa has 8 or 9 reindeer (depending on how foggy it is 
on a given Christmas Eve). This gives an average of between 0.3499 and 0.3936 horsepower per reindeer, 
which seems reasonable. Work backwards to find that, if the reindeer are pulling the sled with 3.149 hp, 
then the speed they are moving must be (rounding to four significant figures): 
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2

2

2 3

2

3.149 hp

3.149 hp 746 W/hp
0.1337 537.3 kg 9.81 m/s

W3.333452207
kg m/s

kg m /s
3.333 3.333 m/s

kg m/s

k

v
mgµ

=

⋅
=

⋅ ⋅

=
⋅

⋅
= =

⋅

 

This matches the constant velocity from the problem, so the calculations were correct.  

5.80. kP mgvµ=  

 
( )

( )( )( )k 2

746 W2.666 hp
hp 0.1465

540.3 kg 9.81 m/s 2.561 m/s
P

mgv
µ = = =  

5.81. kP mgvµ=  

 
( )

( )( )( )2
k

746 W3.182 hp
hp 543.6 kg

0.1595 9.81 m/s 2.791 m/s
Pm
gvµ

= = =  

5.82. THINK:  In this problem, the energy stored in the spring is converted to kinetic energy as the puck slides 
across the ice. The spring constant and compression of the spring can be used to calculate the energy 
stored in the spring. This is all converted to kinetic energy of the puck. The energy is dissipated as the puck 
slides across the ice. It is necessary to compute how far the puck must slide to dissipate all of the energy 
that was, originally, stored in the spring.  

 SKETCH: Sketch the puck when the spring is fully compressed, when it leaves contact with the spring, as 
it moves across the ice, and at the moment it comes to a stop. Include a free body diagram showing the 
forces on the puck as it moves across the ice.  

 

 RESEARCH:  The potential energy stored in the spring is 21 
2

U kx= , where x is the compression of the 

spring. The energy dissipated by the force of friction is  U Fd∆ = . The force of friction on the puck is given 
by .kF mgµ=  It is necessary to find the total distance traveled d.  

 SIMPLIFY: First, find the energy dissipated by the force of friction in terms of known 

quantities kU mgdµ∆ = . This must equal the energy that was stored in the spring, 21 
2

U kx= . 

Setting U U∆ = , solve for the total distance traveled in terms of known quantities:  
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2

2

 
1
2

2

k

k

U U

mgd kx

kxd
mg

µ

µ

∆ =

=

=

 

 It is important to note that x represents the compression of the spring before the puck was released, and d 
is the total distance traveled from the time that the puck was released (not from the time the puck left 
contact with the spring). 

 CALCULATE:  Before plugging the values from the question into the equation above, it is important to 
make sure that all of the units are the same. In particular, note that it is easier to solve the equation directly 
if the compression is changed from 23.11 cm to 0.2311 m and the mass used is 0.1700 kg instead of 170.0 g. 
Then the distance is: 

 
( )

2

2

2

2

15.19 N/m 0.2311 m
2 0.02221 0.1700 kg 9.81 m/s
10.95118667 m

k

kxd
mgµ

=

⋅ −
=

⋅ ⋅ ⋅
=

 

 Of this distance, 0.2311 m is the distance the spring was compressed. So the distance traveled by the puck 
after leaving the spring is 10.95118667 m – 0.2311 m = 10.72008667 m. 

 ROUND: The measured values are all given to four significant figures, so the final answer is that the 
hockey puck traveled 10.72 m.  
DOUBLE-CHECK:  Working backwards, if the hockey puck weighs 0.1700 kg and traveled 10.95 m across 
the ice (including spring compression) with a coefficient of kinetic friction of 0.02221, then the energy 
dissipated was 2 0.0221 9.81 m/s 0.1700 kg 10.95 m 0.4056 J.kU mgdµ∆ = = ⋅ ⋅ ⋅ = Since the energy stored in 

this spring is 2 21 15.19 N/m 
2 2

U kx x= = , it is necessary for the spring to have been compressed by 

0.4056 J 2 0.231092 m,
15.19 N/m

x ⋅
= =  within rounding of the value of 23.11 cm given in the problem.  

5.83. 
2

2 k

kxd
mgµ

=  

 
( )( )

( )( )( )

22

k 2

17.49 N/m 0.2331 m
2 2 0.1700 kg 9.81 m/s 12.13 m 0.2331 m

0.02305kx
mgd

µ = = =
+

 

5.84. THINK:  Since the bricks travel at a low, constant speed, use the information given in the problem to find 
the tension force that the crane exerts to raise the bricks.  The power can be computed by finding the scalar 
product of the force vector and the velocity vector. 

 SKETCH: A free body diagram of the bricks as they are raised to the top of the platform is helpful. The 
only forces are tension from the crane and gravity.  
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 RESEARCH:  The average power is the scalar product of the force exerted by the crane on the bricks and 
the velocity of the bricks: P F v=





 , where the force is the tension from the crane. (The speed of the bricks 
is low, so air resistance is negligible in this case.) The bricks are moving at a constant velocity, so the sum 
of the forces is zero and gT F mg= − = −






. The velocity is constant and can be computed as the distance 

divided by the time dv
t

∆
=

∆





.  

 SIMPLIFY: Instead of using vector equations, note that the tension force and the velocity are in the same 
direction. The equation for the power then becomes cosP F v Fv α= =





 , where α is the angle between the 

velocity and force. Since T mg= and dv
t

= , the power is given by the equation cos
mgd

P
t

α= . 

 CALCULATE:  The mass, distance, and time are given in the problem. The velocity of the bricks is in the 
same direction as the tension force, so α = 0.  

2

cos

75.0 kg 9.81 m/s 45.0 m
cos0

52.0 s
636.7067308 W

mgd
P

t
α=

⋅ ⋅
= °

=

 

 ROUND: The mass of the bricks, height to which they are raised, and time are all given to three significant 
figures, and the answer should have four significant figures. The average power of the crane is 637 W.  
DOUBLE-CHECK: To check, note that the average power is the work done divided by the elapsed time: 

WP
t

=
∆

. Combine this with the equation for the work done by the constant tension force 

cosW F r α= ∆




 to find an equation for the average power: 
cos

.
F r

P
t

α∆
=

∆







 Plug in the values for the 

tension force gT F mg= − = −




 and distance 45.0 mr∆ =


 upward to find: 

2

cos

75.0 kg 9.81 m/s 45.0 m
cos0

52.0 s
636.7067308 W

mgd
P

t
α=

⋅ ⋅
= °

=

 

When this is rounded to three decimal places, it confirms the calculations.  

5.85. 
( )( )( )275.0 kg 9.81 m/s 45.0 m

45.7 s.
725 W

mgd
t

P
= = =  

5.86. 
( )( )

( )( )2

815 W 52.0 s
57.6 m.

75.0 kg 9.81 m/s
Ptd
mg

= = =   
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Concept Checks 

6.1. b  6.2. a  6.3. c  6.4. e  6.5. e  6.6. d  6.7. b 
 
Multiple-Choice Questions 

6.1. a  6.2. c  6.3. e  6.4. e  6.5. d  6.6. e  6.7. d  6.8. e  6.9. a  6.10. d  6.11. c  6.12. c  6.13. b   
 
Conceptual Questions 

6.14. The kinetic energy, K, of an object is proportional to the mass, m, of the object and the square of its speed, 
v. The formula is = 2 / 2.K mv  The mass is always positive, and the square of the velocity is non-negative. 
Since the product of non-negative numbers is non-negative, the kinetic energy of an object cannot be 
negative. However, the potential energy of an object can be negative because it is a relative value. An 
example of negative potential energy is gravitational potential energy, given by the formula = ,U mgh  
where m is the mass of the object, g is the acceleration due to gravity, and h is the vertical distance above 
the ground. Consider a person standing at the base of a bridge as in the figure below.  

 

 
 

In this coordinate system, the person has potential energy due to gravity of ( )( )= −29.81 m/s 10 mU m  

relative to the reference point of the bridge. Since a mass is always positive, the potential energy of the 
person standing on the ground relative to the bridge above has a negative value. 

6.15. (a)  If a person jumps off a table onto the floor, mechanical energy is not conserved.  Mechanical energy is 
conserved while you are falling towards the floor (assuming energy lost to air resistance is ignored) 
because gravitational potential energy is being converted to kinetic energy. However, once you land on the 
floor all of the kinetic energy is absorbed by your body on impact. The energy is lost to non-conservative 
forces such as friction within your body and heat expelled by your muscles.  

 (b) The car’s mechanical energy is not conserved. Assume a car is on a level plane so it has no gravitational 
potential energy. The car is in motion so its energy is in the form of kinetic energy.  The energy is lost to 
non-conservative forces such as friction on the tires, thermal energy on the car’s brakes and energy 
dissipated as the car’s body is bent by the tree. 

6.16. Work is defined as the dot product of force and displacement. This is indicated in the formula 

θ= ⋅∆ = ∆
 

 

cosW F r F r , where 


F  is the applied force, 


r  is the displacement of the object, and θ  is the 

angle between the vectors 


F  and 


.r  When you are standing still, the bag of groceries does not travel any 
distance, i.e. =



0r , so there is no work done. Assuming that you do not lift or lower the bag of groceries 

when you carry the bag a displacement 


r  across the parking lot, then you do not do any work. This is 
because the applied force 



F   is perpendicular to the displacement 


.r  Using θ = °90  in the formula gives 

= ∆ ° = ∆ ⋅ =
 

 

cos90 0 0 J.W F r F r    
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6.17. The energy in the system, E, is the sum of the energy stored in the bow by flexing it, bE , the kinetic energy 
of the arrow, K, and the gravitational potential energy of the arrow, U. Let the arrow have mass m and the 
bow have spring constant k. Five separate positions of the arrow and bow system will be considered. 
Position 1 is where the arrow is put in the bow.  Position 2 is where the arrow is pulled back in the bow. 
Position 3 is where the bow has returned to its relaxed position and the arrow is leaving the bowstring. 
Position 4 is where the arrow has reached its maximum height h. Position 5 is where the arrow has stuck in 
the ground. 

 
 At position 1 the arrow has gravitational potential energy = +( )U mg y d  (refer to diagram) relative to the 

ground.  The total energy in the system at this position is = +1 ( ).E mg y d    At position 2, the arrow now 

has gravitational potential energy =U mgy  and the elastic energy stored in the bow is = 2
b / 2E kd  due to 

the downward displacement d. The total energy in the system at this position is ( )= + 2
2 / 2 .E mgy kd   The 

work done by the bowstring during this displacement is =tot 2.0 JE  At position 3, the bow’s tension is 
released and the arrow is launched with a velocity, v. The total energy is given by 

( ) ( )= + +2
3 / 2 .E mv mg y d  The work done on the arrow by the bow is = 2

3 / 2.W kd  At position 4, the 

arrow has reached its maximum height, h. At this position, the velocity of the arrow is zero, so the kinetic 
energy is zero. The total energy is given by =4 .E mgh  The work done on the arrow by gravity is equal to 

the change in kinetic energy, = ∆ = − 2
4 0 / 2.W K mv  At position 5, the arrow has hit the ground and stuck 

in. The total energy is =5 0.E  When the arrow hits the ground the energy of the system is dissipated by 
friction between the arrow and the ground. The work done on the arrow by gravity during its fall is given 
by ( )= ∆ = −2

5 / 2 0.W K mv  This is equal to the kinetic energy of the arrow just before it strikes the 

ground. 

6.18. (a) Assuming both billiard balls have the same mass, m, the initial energies, AiE  and BiE  are given by 
=AiE mgh  and =Bi .E mgh  The final energy is all due to kinetic energy, so the final energies are 

( )= 2
Af A / 2E mv  and ( )= 2

Bf B / 2.E mv  By conservation of energy (assuming no loss due to friction), 

=i f .E E  For each ball the initial and final energies are equal. This means ( )= =⇒A
2

A/ 22mgh mv v gh  

and ( )= ⇒ =2
B B/ 2 2 .mgh mv v gh  Therefore, =A B .v v  The billiard balls have the same speed at the end.  

 (b) Ball B undergoes an acceleration of a and a deceleration of –a due to the dip in the track. The effects of 
the acceleration and deceleration ultimately cancel. However, the ball rolling on track B will have a greater 
speed over of the lowest section of track. Therefore, ball B will win the race. 

6.19. Because the girl/swing system swings out, then returns to the same point, the girl/swing system has moved 
over a closed path and the work done is zero.  Therefore the forces acting on the girl/swing system are 
conservative.  Assuming no friction, the only forces acting on the girl/swing system are the tension in the 
ropes holding up the girl/swing system and the force of gravity.  Assume that the ropes cannot be stretched 
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so that the tension in the ropes is conservative. Gravity is a conservative force, so it is expected that all 
forces are conservative for the girl/swing system. 

6.20. No. Friction is a dissipative force (non-conservative). The work done by friction cannot be stored in a 
potential form.  

6.21. No. The mathematical expression for the potential energy of a spring is ( )= 2 / 2.U kx  The spring constant, 

k is a positive constant. The square of the displacement of the spring, x, will always be non-negative. 
Hence, the potential energy of a spring will always be non-negative. 

6.22. The elastic force is given by = −




F kr , where 


r  is the displacement of the spring. The force is therefore a 
function of displacement, so denote that the force by ( )





.F r  The sum of the inner product between ( )




F r  

and the local displacements ∆r  can be expressed as ( )
1

.
n

i
iF r r

=

⋅∆∑




 If the local displacements are chosen so 

they are infinitesimally small, the sum can be expressed as an integral:  

( ) ( )
1

lim .
bn

in i a

F r r F r dr
∞→

=

⋅∆ = ⋅∑ ∫
 

  

 

 If the trajectory is a closed loop, then a = b and the integral becomes ( ) 0
b

a

F r dr⋅ =∫


 

 because  

( ) ( ) ( ) ( ) ( ) 0.
b

a

F r dr f b f a f a f a⋅ = − = − =∫


 

 

 It should be noted that work,W F dr= ⋅∫




, is independent of a path because the force is conservative. If 

there was a dissipative force, such as friction present, the force would be non-conservative and therefore be 
path-dependent.  

6.23. No. There is not a 1-1 correspondence between potential energy functions and conservative forces. The 
conservative force is the negative gradient of the potential energy. Therefore, two conservative forces will 
have the same potential energy function U if they differ by a constant.  For example, consider the force 
= 0.F The corresponding potential function is a constant, but it could be any constant depending on the 

situation. Therefore there is not necessarily a unique potential function corresponding to a conservative 
force. 

6.24. When the person first steps out of the plane, all of the energy is potential energy and as they fall, the 
potential energy is converted to kinetic energy. In the first stage, before they reach the terminal velocity, 

they accelerate at a constant rate, so their velocity increases at a linear rate, and so = 21
2

K mv  increases at a 

quadratic rate. On the other hand, their height decreases at a quadratic rate, so =U mgh decreases at a 
quadratic rate. Because there is no air resistance in the first stage of the model, the total energy, 

= +totE K U , remains constant. In the second stage, their acceleration becomes zero, and their velocity 

becomes constant. This means that = 21
2

K mv is constant, and =U mgh decreases at a linear rate. The sum 

of the energies is no longer constant. The lost energy is due to the air resistance that counter-balances the 
acceleration due to gravity.  
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 The rate of decrease of energy in the system is equal to the rate of decrease of potential energy. 

 
6.25.  

 
The lengths of the component vectors of 0v  are θ=0, 0 0cosxv v  and θ=0, 0 0sinyv v . Velocity is a vector 

quantity, so = +
 ˆ ˆ.x yv v x v y  Let =



.v v  Then, = +2 2 2 .x yv v v  The velocity vector 


v  has component vectors 

θ= 0 0cosxv v (horizontal component is constant) and θ= −0 0sin gyv v t (which changes relative to time). 

To compute the kinetic energy, use the formula = 2 / 2K mv . First, compute  

( )
θ θ θ

θ θ θ

θ

= + − +

= + − +

= +−

2 2 2 2 2 2 2
0 0 0 0 0 0

2 2 2 2 2
0 0 0 0 0

2 2
0

2
0 0

cos sin 2 sin

cos sin 2 sin

sin .2

v v v v gt g t

v v gt g t

v gt g tv

 

So, ( ) ( )θ = − + 
2 2 2

0 0 02 sin / 2.K t m v v gt g t  The potential energy only changes with displacement in the 

vertical direction. The gravitational potential energy is given by = .U mgy  From kinematics equations, 

( )= + − 2
0 0, / 2.yy y v t gt  Because the projectile was launched from the ground, =0 0.y  Substitute 

θ=0, 0 0sinyv v  into the equation to get ( )θ= − 2
0 0sin / 2.y v t gt  Substituting this into the expression for U  

yields ( ) ( )( )θ= − 2
0 0g sin g / 2 .U t m v t t The total energy of the projectile is ( ) ( ) ( )= + .E t K t U t  This 

equation can be written as  

( )
( )θ

θ
− +  = + − 

 

2 2 2
0 0 0 2

0 0

2 sin 1sin .
2 2

m v v gt g t
E t mg v t gt  

Grouping like terms, the equation can be simplified:  

( ) ( ) ( )θ θ= − − + + ⇒ =2 2 2 2 2 2
0 0 0 0 0 0

1 1sin sin   .
2 2 2
mE t g t g t mgv t mgv t mv E t mv  

Notice that E is actually not time dependent. This is due to the conservation of energy. 

6.26. (a) The total energy is given by the sum of the kinetic energy, = 2 / 2,K mv  and potential energy, 

= .U mgh This gives the formula 21
2

E mv mgh= +  for total energy.  Therefore,  

( )
+ +

= = = +

2 2
2

1 1
2 2, , .

2

mv mgh v gh vH m h v h
mg g g
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(b)  The aircraft has a mass of = ⋅ 53.5 10  kgm , a velocity of v = 250.0 m/s and a height of = ⋅ 41.00 10  mh  
Substituting these values gives  

( )
( )

2
4

2

250.0 m/s
1.00 10  m 13,185.5 m 13,200 m.

2 9.81 m/s
H = + ⋅ = ≈  

6.27.  (a)  The energy in the system is the sum of the kinetic energy and the gravitational potential energy, 
= + .E K U  For motion in the x-direction, = 0U  and = 2 / 2.K mv  So, = 2 / 2.E mv  Newton’s second law 

is =




F ma , which can also be written as =




/ .F m dv dt  By the work-kinetic energy theorem, = ∆W K  and 

=




 .W F x  If the work on the body as a function of position is to be determined,  

( )
=

= ∆∑




1

.
n

i
i

W F x x  

If the motion is continuous, let the intervals become infinitesimal so that the sum becomes an integral, 

= ∫




 .
b

a

W F dx  Since =




/F m dv dt  and =
 

/v dx dt , it must be that =
 

.dx v dt  Substituting these values into 

the equation:  

= =∫ ∫


  

  .dvW m v dt mv dv
dt

 

Work is also equal to the change in kinetic energy, therefore,  

( )= −∆ = =∫
 



f

f

i

i

2 2
f i

21 1| .
2 2

v
v
v

v

K mv dv mv vm v  

(b)  Newton’s second law, expressed as =




,F ma does not hold for objects on the subatomic scale or for 
objects approaching the speed of light. The law of conservation of energy holds under all known 
circumstances. 

6.28. (a) The force function is ( ) ( )  
= − = − 

 

12 6
0 0

0 13 7

12 64 .
dU x x xF x U

dx x x
 

(b) The two atoms experience zero force from each other when F = 0, which is when 
 

− = 
 

12 6
0 0
13 7

6
12 0.

x x
x x

 

Solving for  x  yields = ⇒ =
6 12

0 0 6 6
07 13

6 12 2x x x x
x x

 or = ± 6
02 .x x  Since x is the separation, = 6

02 .x x  

(c)  For separations larger than = 6
02x x , let = 03x x : 

( )
           = − = −                    

12 6 12 6
0 0

0 0 0
0 0

1 13 4 4 .
3 3 3 3
x x

U x U U
x x

 

The factor ( ) ( ) − 
12 61/ 3 1/ 3  is negative and the potential is negative.  Therefore, for > 6

02 ,x x  the nuclei 

attract. For separations smaller than = 6
02x x , let = 0 /2x x : 

( )
    
   = − = −          

12 6

12 60 0
0 0 0

0 0

2 2
/ 2 4 4 2 2 .

x x
U x U U

x x
  

The term  − 
12 62 2  is positive and the potential is positive.  So, when < 6

02x x , the potential is positive 

and the nuclei repel. 
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6.29.  (a)  In two-dimensional situations, the force components can be obtained from the potential energy using 

the equations 
∂

= −
∂
( , )

x
U x y

F
x

 and ( ) ( ) ( )( )= − − =2 2
a 10.0 N/cm 5.00 cm 5.00 cm / 2 0JW  The net force is 

given by: 

( ) ( ) ( ) ( )

( )

∂ ∂  ∂ ∂
= + = − − = − + + + ∂ ∂ ∂ ∂ 

= − + = − +



2 2 2 2, , 1ˆ ˆ ˆ ˆ ˆ ˆ
2

1 ˆ ˆ ˆ ˆ2 2 ( ).
2

x y

U x y U x y
F F x F y x y k x y x x y y

x y x y

k xx yy k xx yy

 

(b)  The equilibrium point will be where =


0.F  This occurs if and only if x and y are both zero. 
(c)  These forces will accelerate the mass in the −x̂  and − ŷ  directions for positive values of x and y and 
vice versa for negative values of x and y.  

(d)  ( ) ( ) = +  



1
22 2 .x yF F F   For x = 3.00 cm, y = 4.00 cm and k = 10.0 N/cm:  

( )( )( ) ( )( )( ) = − + − =  


1
2 2 210.0 N/cm 3.00 cm 10.0 N/cm 4.00 cm 50.0 N.F  

(e)  A turning point is a place where the kinetic energy, K is zero. Since K = E – U, the turning point will 

occur when U = E, so the turning points occurs when U = 10 J. Solve ( ) ( )= = +2 21, 10 J
2

U x y k x y . This 

gives ( )= ⋅ + + =2 2 2 2210.0 N 100 cm20.0 J ,  or 0.0200 m .
cm m

x y yx  The turning points are the points on the 

circle centered at the origin of radius 0.141 m. 

6.30. Setting the kinetic energy equal to the potential energy will normally not yield useful information. To use 
the example in the problem, if the rock is dropped from a height, h above the ground, then solving for the 
speed at two different locations: 

 
 

Point 1: =1U mgh  and ( )= 2
1 1 / 2.K mv  If = 2g / 2m h mv , then solving for 1v : =1 2 .v gh  But the rock has 

not been dropped yet so in fact 1v  is really zero. Point 2: just before the rock hits the ground. In this case, 

the rock’s height above the ground, y, is almost zero. If =2 2U K , then = 2
2 / 2mgy mv  or =2 2 .v gy  But if 

y is about 0 m, then ≈2 0 m/s.v  At point 2, the rock’s velocity is reaching its maximum value, so by setting 
the potential and kinetic energy equal to one another at this point, the wrong value is calculated for the 
rock’s speed. 
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Exercises 

6.31. THINK:  The mass of the book is m = 2.00 kg and its height above the floor is h = 1.50 m. Determine the 
gravitational potential energy, g .U  
SKETCH:   

 
 

RESEARCH:  Taking the floor’s height as =g 0U , gU  for the book can be determined from the formula 

=g .U mgh   
SIMPLIFY:  It is not necessary to simplify. 
CALCULATE:  ( )( )( )= =2

g 2.00 kg 9.81 m/s 1.50 m 29.43 JU  

ROUND:  The given initial values have three significant figures, so the result should be rounded to 
=g 29.4 J.U  

DOUBLE-CHECK:  This is a reasonable value for a small mass held a small distance above the floor. 

6.32. THINK:  The rock’s mass is m = 40.0 kg and the gravitational potential energy is =g 500. J.U  Determine: 
(a) the height of the rock, h, and  
(b) the change, ∆ gU  if the rock is raised to twice its original height, 2h.  
SKETCH:   

 
 

RESEARCH:  Use the equation =g g .U m h  Note: ∆ = −g g g ,0 .U U U  

SIMPLIFY:   

(a)  = ⇒ = g
g

U
U mgh h

mg
 

(b)  

( )
∆ = −

= −
=
=

g g g,0

g

2

U U U

mg h mgh
mgh
U

 

CALCULATE:   

(a)  
( )

= =
2

500. J 1.274 m
40.0 kg 9.81 m/s

h  

(b)  g 500. JU∆ =   
ROUND:   
(a) =1.27 mh  
(b) g 500. JU∆ =  does not need to be rounded. 

DOUBLE-CHECK:  The initial height is reasonable for such a large mass, despite the large g .U  Since the 
potential energy is proportional to height, it should double when the height is doubled.  
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6.33. THINK: The rock’s mass is m = 0.773 kg. The length of the string is L = 2.45 m. The gravitational 
acceleration on the Moon is =M /6.g g  The initial and final angles are θ = °0 3.31  and θ = °14.01 , 
respectively. Determine the rock’s change in gravitational potential energy, ∆ .U  
SKETCH:   

 
 

RESEARCH: To determine ∆U , the change in height of the rock, ∆h , is needed. This can be determined 
using trigonometry. Then ∆ = ∆M .U mg h  

SIMPLIFY:  To determine ∆h : ( )θ θ θ θ∆ = − = −0 0cos cos cos cos .h L L L  Then  

( )θ θ∆ = ∆ = −M 0
1 cos cos .
6

U mg h mgL  

CALCULATE:  ( )( )( ) ( ) ( )( )∆ = ° − ° =21 0.773 kg 9.81 m/s 2.45 m cos 3.31 cos 14.01 0.08694 J
6

U  

ROUND:  With three significant figures in the values, the result should be rounded to ∆ = 0.0869 J.U  
DOUBLE-CHECK:  ∆U  is small, as it should be considering the smaller gravitational acceleration and 
the small change in height.   

6.34. THINK:  The child’s mass is m = 20.0 kg. Each rope has a length of  L = 1.50 m. Determine (a) gU  at the 

lowest point of the swing’s trajectory, (b) gU  when the ropes are θ = °45.0  from the vertical and (c) the 
position with the higher potential energy. 
SKETCH:   

 
RESEARCH:  Use =g .U mgh  
SIMPLIFY:   
(a)  Relative to the point where =g 0U , the height of the swing is –L. Then = −g .U mgL  

(b)  Now, the height of the swing is θ− cos .L  Then θ= −g cos .U mgL  
CALCULATE:   
(a)  ( )( )( )= − = −2

g 20.0 kg 9.81 m/s 1.50 m 294.3 JU  

(b)  ( )( )( )= − ° = −2
g 20.0 kg 9.81 m/s 1.50 m cos45.0 208.1 JU  

(c) Relative to the point =g 0U , the position in part (b) has greater potential energy.  
ROUND:  With three significant figures in m and L : 
(a) = −g 294 JU  

(b) = −g 208 JU  

DOUBLE-CHECK:  Had =g 0U  been set at the lowest point of the swing’s trajectory, the potential energy 
in part (b) would still be greater than the potential energy in part (a), as it should be.  

6.35. THINK: The mass of the car is = ⋅ 3 1.50 10  kg.m  The distance traveled is = = ⋅ 3 2.50 km  2.50 10  m.d  
The angle of inclination is θ = °3.00 .  The car travels at a constant velocity. Determine the change in the 
car’s potential energy, ∆U  and the net work done on the car, net .W  
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SKETCH:   

 
 

RESEARCH:  To determine ∆U  the change of height of the car ∆h  must be known. From trigonometry, 
the change in height is θ∆ = sin .h d  Then, ∆ = ∆g .U m h  To determine netW  use the work-kinetic energy 
theorem. Despite the fact that non-conservative forces are at work (friction force on the vehicle), it is true 
that = ∆net .W K  
SIMPLIFY:  θ∆ = ∆ = sinU mg h mgd   

( )= ∆ = − −= 2 2
f f 0

2 2
net 0

1 1 1
2 2 2

W v mv m v vK m  

CALCULATE:  ( )( )( ) ( )∆ = ⋅ ⋅ ° =3 2 31.50 10  kg 9.81 m/s 2.50 10  m sin 3.00 1925309 JU  

( ) ( )−= = =2 2
f 0net

1 1 0 0
2 2

W mvm v   

ROUND:  Since θ  has two significant figures, ∆ = ⋅ 61.93 10  J,U  and there is no net work done on the car. 
DOUBLE-CHECK:  The change in potential energy is large, as the car has a large mass and a large change 
in height, ( ) ( )∆ = ⋅ ° =32.50 10  m sin 3.00 131 m.h  The fact that the net work done is zero while there is a 

change in potential energy means that non-conservative forces did work on the car (friction, in this case).  

6.36. THINK:  The constant force is F = 40.0 N. The distance traveled is = ⋅ 35.0 10  m.d  Assume the force is 
parallel to the distance traveled. Determine how much work is done, and if it is done on or by the car. The 
car’s speed is constant. 
SKETCH:   

 
RESEARCH:  In general,  

( )= ∫
0

x

x

W F r dr  (in one dimension). 

Here the force is constant, so =( ) .F r F  Bearing in mind that = ∆ =net 0W K , due to the constant speed, the 
work done by the constant force, F can still be calculated. 

SIMPLIFY:   = = = ∆ =∫ ∫
1 1

0 0

x x

x x

W Fdr F dr F x Fd  

CALCULATE: ( )( )= ⋅ =340.0 N 5.0 10  m 200,000 JW . This is the work done on the car by the constant 

force, as it is a positive value.  
ROUND:  With two significant figures in d, = ⋅ 52.0 10  J.W   
DOUBLE-CHECK:  This is a reasonable amount of work done by F, given the large distance the force acts 
over. 

6.37. THINK:  The piñata’s mass is m = 3.27 kg. The string length is L = 0.810 m. Let h be the height of the 
piñata at its initial position, at an initial angle of θ = °56.5  to the vertical. Determine the work done by 
gravity, gW , by the time the string reaches a vertical position for the first time. 
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SKETCH:   

 

RESEARCH:  Since the force of gravity is constant, the work is given by = =


ggW F h mgh .  

SIMPLIFY:  ( )θ θ= = − = −g ( cos ) 1 cosW mgh mg L L mgL  

CALCULATE:  ( )( )( ) ( )( )= − ° =2
g 3.27 kg 9.81 m/s 0.810 m 1 cos 56.5 11.642 JW  

ROUND:  With three significant figures in L, =11.6 J.gW  

DOUBLE-CHECK:  The work done by gravity should be positive because gF  pulls the piñata downward.  

6.38. THINK:  ( ) = + + −21 1.U x x x
x

 Determine (a) a function which describes the force on the particle, and 

(b) a plot of the force and the potential functions and (c) the force on the particle when =  2.00 m.x   
SKETCH:  A sketch will be provided when part (b) is completed. 

RESEARCH:  The relationship between F and U, in one dimension, is ( ) ( )= − .dF x U x
dx

 

SIMPLIFY:  (a) ( ) ( )− = − + + − = − − + + = − − 
 

2 2
2

1 11 2 1 2 1dF x x x x x x
dx x x

  

CALCULATE:   
(a) Not necessary. 
(b) Plotting yields: 

 

(c) At x = 2.00 m, ( )
( )

( )= − − = −2

12.00 2 2.00 1 4.75 N
2.00

F  (SI units are assumed). 

ROUND:  ( ) = −2.00 m 4.75 NF  

DOUBLE-CHECK:  ( )F x  is the negative of the slope of ( ).U x F(x) crosses the x-axis where U(x) has a 
local minimum, as would be expected. 

6.39. THINK: The potential energy functions are (a) = −3 2( )U y a y b y  and (b) ( )= 0( ) sin .U y U cy  Determine 

( )F y  from ( )U y .  
SKETCH:  A sketch is not necessary. 

RESEARCH:  
∂

= −
∂

( )
( )

U y
F y

y
 

SIMPLIFY:   

(a)  
( )∂ −

= − = −
∂

3 2
2( ) 2 3

a y by
F y by ay

y
 



Chapter 6:  Potential Energy and Energy Conservation 

265 
 

(b)  
( )( ) ( )

∂
= − = −

∂
0

0

sin
( ) cos

U cy
F y cU cy

y
 

CALCULATE:  There are no numerical calculations to perform. 
ROUND:  It is not necessary to round. 
DOUBLE-CHECK:  The derivative of a cubic polynomial should be a quadratic, so the answer obtained 
for (a) makes sense. The derivative of a sine function is a cosine function, so it makes sense that the answer 
obtained for (b) involves a cosine function. 

6.40. THINK:  The potential energy function is of the form = +2 3( , ) .U x z ax bz  Determine the force vector, 


,F  
associated with U.  
SKETCH:  Not applicable. 

RESEARCH:  ( ) ( ) ˆ ˆ ˆ, , , ,F x y z U x y z Ux Uy Uz
x y z

 ∂ ∂ ∂
= −∇ = − + + ∂ ∂ ∂ 



 

SIMPLIFY:   The expression cannot be further simplified. 

CALCULATE:  
( ) ( ) ( )

( ) ( )
( ) ( )

2 3 2 3 2 3

2

2

ˆ ˆ ˆ

ˆ ˆ ˆ2 0 3

ˆ ˆ2 3

ax bz x ax bz y ax bz z
F

x y z

ax x y bz z

ax x bz z

∂ + ∂ + ∂ +
= − − −

∂ ∂ ∂

= − − −

= − −



 

ROUND:  Not applicable. 
DOUBLE-CHECK:  Notice that U is the sum of a function of x and a function of z, namely,  

if = 2( )G x ax  and = 3( )H z bz  then = +( , ) ( ) ( ).U x z G x H z  
Since ( )G x  has a critical point at = 0x  and ( )H z  has a critical point at = 0,z  we may expect that 

=


0.F And in fact, ( )( ) ( )( )= − − =
 2ˆ ˆ2 0 3 0 0.F a x b z Therefore, the answer is reasonable. 

6.41. THINK:  The maximum height achieved is =max 5.00 mH , while the initial height 0h  is zero. The speed of 
the ball when it reaches its maximum height is v = 0. Determine the initial speed.  
SKETCH:  

 
RESEARCH:  In an isolated system with only conservative forces, ∆ =mec 0.E  Then, ∆ = −∆ .K U  Use 

= maxU mgH  and = 2 / 2.K mv  

SIMPLIFY:  ( )− = − − = −f i f i i fK K U U U U , so − = −2 2
0 m0 ax

1 1
2 2

mv mv mgh mgH .  

Substituting v = 0 and =0 0h  gives the equation − = − m x
2

0 a
1 g
2

mv m H . Therefore, = m0 ax2g .v H  

CALCULATE:  ( )( )= =2
0 2 9.81 m/s 5.00 m 9.9045 m/sv  

ROUND:  With three significant figures in maxH , =0 9.90 m/s.v  
DOUBLE-CHECK:  This is a reasonable speed to throw a ball that reaches a maximum height of 5 m. 

6.42. THINK:  The cannonball’s mass is m = 5.99 kg. The launch angle is θ = °50.21  above the horizontal. The 
initial speed is =0 52.61 m/sv  and the final vertical speed is = 0.yv  The initial height is zero. Determine 
the gain in potential energy, ∆ .U  
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SKETCH:   

 
 

RESEARCH:  Neglecting air resistance, there are only conservative forces at work. Then, ∆ = −∆K U  or 
∆ = −∆ .U K  Determine ∆K  from = 2 / 2.K mv  From trigonometry, θ= 0 cos .xv v  

SIMPLIFY:  ( )∆ = −∆ = − − = −f i i f .U K K K K K  Note that initially the ball has a horizontal speed xv  

(which is constant throughout the cannonball’s motion) and a vertical speed 0 .yv  At its maximum height, 

= 0.yv  Then, ( ) ( )θ θ∆ = − = −22 2 2
0 0 0

1 1 1cos 1 cos .
2 2 2

U mv m v mv  

CALCULATE:  ( )( ) ( )( )∆ = − ° =2 21 5.99 kg 52.61 m/s 1 cos 50.21 4894.4 J
2

U  

ROUND:  With three significant figures in m, ∆ = 4890 J.U   
DOUBLE-CHECK:  The change in potential energy is positive, implying that the ball gained potential 
energy, which it would if raised any height above its initial point. Since the horizontal velocity of the 
cannonball is constant, it makes sense that the initial vertical velocity is converted entirely into potential 
energy when the cannonball reaches the highest point. 

6.43. THINK:  The initial height of the basketball is =0 1.20 m.y  The initial speed of the basketball is 
=0 20.0 m/s.v  The final height is = 3.05 m.y  Determine the speed of the ball at this point. 

SKETCH:   

 
 

RESEARCH:  Neglecting air resistance, there are only conservative forces, so ∆ = −∆ .K U  The kinetic 
energy K can be determined from = 2 / 2K mv  and U from = .U mgh  

SIMPLIFY:  − = −f i i fK K U U , so ( ) ( )− = −2 2
0 01/ 2 1/ 2mv mv mgy mgy . Dividing through by the mass m 

yields the equation ( ) ( )− = −2 2
0 01/ 2 1/ 2v v gy gy . Then solving for v gives  

( ) = − + 
 

2
0 0

12 .
2

v g y y v  

CALCULATE:  ( )( ) ( )

( )

 = − + 
 

= − +

=

22

2 2 2 2

12 9.81 m/s 1.20 m 3.05 m 20.0 m/s
2

2 18.1485 m /s 200.0 m /s

19.071 m/s

v   

ROUND:  The initial height is given with the fewest number of significant figures. Since it has three 
significant figures the value of v needs to be rounded to three significant figures: v = 19.1 m/s. 
DOUBLE-CHECK:  The final speed should be less than the initial speed since the final height is greater 
than the initial one.   

6.44. THINK:  The book’s mass is m = 1.0 kg. The initial height is =0 1.0 my , where =g 0U , the maximum 

height is H = 3.0 m, and the final height is =f 0 m.y  Determine (a) the potential energy of the book when 
it hits the ground, g ,U  and (b) the velocity of the book as it hits the ground, f .v   The book is thrown 
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straight up into the air, so the launch angle is vertical. The sketch is not a plot of the trajectory of the book, 
but a plot of height versus time. 
SKETCH:   

 
RESEARCH:   
(a) Gravitational potential energy is given by =g .U mgh  To compute the final energy, consider the height 

relative to the height of zero potential, =i 1.0 m.y  
(b) To determine fv , consider the initial point to be at =y H  (where = 0v ), and the final point to be at 
the point of impact = =f 0.y y Assume there are only conservative forces, so that ∆ = −∆ .K U  ∆U  
between H and fy  is unaffected by the choice of reference point.  
SIMPLIFY: 
(a)  Relative to =g 0U at i ,y  the potential energy of the book when it hits the ground is given by 

( )= = −g f i .U mgh mg y y  

(b) ∆ = −∆ ⇒K U ( )− = − −f i f i .K K U U  With = 0v  at the initial point, = −f i fK U U  and 

( ) = − =2
f .1/ 2 mv mgH mgy mgH  Solving for fv  gives the equation: = −f 2 .v gH  The negative root is 

chosen because the book is falling. 
CALCULATE:   
(a)  ( )( )( )= − = −2

g 1.0 kg 9.81 m/s 0 1.0 m 9.81 JU  

(b)  ( )( )= − = −2
f 2 9.81 m/s 3.0 m 7.6720 m/sv  

ROUND:  With two significant figures in m, iy  and H: 
(a) = −g 9.8 JU  

(b) = −f  7.7 m / s,v or 7.7 m/s downward. 
DOUBLE-CHECK:  gU  should be negative at f ,y  relative to =g 0U  at 0y , because there should be a loss 
of potential energy. Also, it is sensible for the final velocity of the book to be directed downward. 

6.45. THINK:  The ball’s mass is m = 0.0520 kg. The initial speed is =0 10.0 m/s.v  The launch angle is 
θ = °0 30.0 .  The initial height is =0 12.0 m.h  Determine:  
(a) kinetic energy of the ball when it hits the ground, fK  and  
(b) the ball’s speed when it hits the ground, v. 
SKETCH:   

 
 

RESEARCH:  Assuming only conservative forces act on the ball (and neglecting air resistance), 
∆ = −∆ .K U  fK  can be determined using the equations ∆ = −∆K U , = 2 / 2K mv  and = .U mgh Note that 

=f 0,U  as h = 0. With fK  known, v can be determined. 
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SIMPLIFY:   

(a)  ∆ = −∆ ⇒ − = − = ⇒ = + = + 2
f i i f i f i i 0 0

1    
2

K U K K U U U K U K mgh mv  

(b)  = ⇒ =2
f f

1   2 /
2

K mv v K m  

CALCULATE:   

(a)  ( )( )( ) ( )( )= + = + =22
f

10.0520 kg 9.81 m/s 12.0 m 0.0520 kg 10.0 m/s 6.121 J 2.60 J 8.721 J
2

K  

(b)  ( ) ( )= =2 8.721 J / 0.0520 kg 18.32 m/sv  

ROUND:  With m having three significant figures, =f 8.72 JK and v = 18.3 m/s. 
DOUBLE-CHECK:  The amount of kinetic energy computed is a reasonable amount for a ball. The final 
speed should be greater than the initial speed because the mechanical energy has been completely 
transformed to kinetic energy.  It is, so the calculated value is reasonable. 

6.46. THINK:  The chain’s mass is m and has a length of L = 1.00 m. A third of the chain hangs over the edge of 
the table and held stationary. After the chain is released, determine its speed, v, when two thirds of the 
chain hangs over the edge.  
SKETCH:   

 
 

RESEARCH:  Consider the center of mass (com) location for the part of the chain that hangs over the 
edge. Since the chain is a rigid body, and it is laid out straight (no slack in the chain), =com .v v  

∆ = −∆K U , ( )= 2 / 2K mv  and U = mgh. 

SIMPLIFY:  Initially, 1/3 of the chain is hanging over the edge and then =com,0 / 3m m , and = −com, / 6ih L  . 

When 2/3 of the chain is hanging over the edge, the hanging mass is =com 2 / 3.m m  Then, 
∆ = −∆ ⇒ − = −f i i f  K U K K U U  and =i 0K , so = −f i fK U U . Substituting gives 

( ) = −2
com com, com, com com1/ 2 i imv m gh m gh , so        = − − −       

       
21 2

2 3 6 3 3
m L m Lmv g g , and dividing through 

by m gives the equation = − +21 1 2
2 18 9

v gL gL . Solving for v yields = / 3.v gL  

CALCULATE:  ( )( )= =29.81 m/s 1.00 m / 3 1.808 m/sv  

ROUND: With three significant figures in L, v = 1.81 m/s. 
DOUBLE-CHECK:  This is a reasonable speed for the chain to achieve while sliding off the table. 

6.47. THINK:  The initial height is h = 40.0 m. Determine:  
(a) the speed fv  at the bottom, neglecting friction,  
(b) if the steepness affects the final speed; and  
(c) if the steepness affects the final speed when friction is considered. 
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SKETCH:   

 
 

RESEARCH:   
(a) With conservative forces, ∆ = −∆ .K U  v can be determined from ( )= 2

f / 2K mv  and U = mgh.  

(b and c)  Note that the change in the angle θ  affects the distance, d, traveled by the toboggan: as θ  gets 
larger (the incline steeper), d  gets smaller. 
(c) The change in thermal energy due to friction is proportional to the distance traveled: µ∆ =th k .E Nd The 
total change in energy of an isolated system is ∆ =tot 0E , where ∆ = ∆ + ∆ + ∆tot th ,E K U E  and ∆ thE  
denotes the non-conservative energy of the toboggan-hill system (in this case, friction). 
SIMPLIFY:   
(a) With = 0iK  (assuming =0 0v ) and =f 0U  (taking the bottom to be  h = 0): 

= ⇒ = ⇒ =2
f i f f

1    2
2

K U mv mgh v gh  

(b) The steepness does not affect the final speed, in a system with only conservative forces, the distance 
traveled is not used when conservation of mechanical energy is considered. 
(c)  With friction considered, then for the toboggan-hill system,  

∆ = ∆ + ∆ + ∆ =th 0E K U E  ⇒ ∆ = −∆ −∆ th K U E   µ⇒ = −∆ = −f i th k gK U E m h Nd  
The normal force N is given by θ= cosN mg , while on the hill. With θ= / sind h , 

( ) ( )µ θ µ θ
θ

 = − = − 
 

f k kcos 1 cot .
sin

hK mgh mg mgh  

The steepness of the hill does affect fK  and therefore v at the bottom of the hill. 
CALCULATE: 

(a)  ( )( )= =2
f 2 9.81 m/s 40.0 m 28.01 m/sv

 
ROUND:  Since h has three significant figures, v = 28.0 m/s. 
DOUBLE-CHECK:  This is a very fast, but not unrealistic speed for the toboggan to achieve. 

6.48. THINK:  The block’s mass is m = 0.773 kg, the spring constant is k = 239.5 N/m and the amplitude is        
A = 0.551 m. The block oscillates vertically. Determine the speed v of the block when it is at x = 0.331 m 
from equilibrium. 
SKETCH:   

 
 

RESEARCH:  The force of gravity in this system displaces the equilibrium position of the hanging block 
by mg/k. Since the distance from equilibrium is given, the following equation can be used to determine v:  

+ =2 2 21 1 1 .
2 2 2

kxmv kA  
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SIMPLIFY:  ( )= −2 2kv A x
m

 

CALCULATE:  ( ) ( )( )= − =2 2239.5 N/m 0.551 m 0.331 m 7.7537 m/s
0.773 kg

v  

ROUND:  The least precise value has three significant figures, so round the answer to three significant 
figures: v = 7.75 m/s. 
DOUBLE-CHECK:  This is a reasonable speed for the block on the spring. 

6.49. THINK:  It is known that =  10.0 N/cmk  and ∆ =1.00 cm.x  Determine (a) the energy needed to further 
stretch the spring to ∆ =' 5.00 cmx  and (b) the energy needed to compress the spring from ′∆ = 5.00 cmx  
to ′′∆ = −5.00 cm.x  
SKETCH:  

 
 

RESEARCH:  Assume the spring is stationary at all positions given above. The energy required to stretch 
the spring is the work applied to the spring, aW , and = −a sW W  for ∆ = 0.k  It is known that 

( ) ( )   = −   
2 2

s i f/ 2 / 2 .W kx kx  

SIMPLIFY:  ( ) ( ) ( )   = − = − + = −   
2 2 2 2

a s i f f i/ 2 / 2 / 2W W kx kx k x x  

CALCULATE:   

(a)  ( ) ( ) ( )( )= − = =2 2
a 10.0 N/cm 5.00 cm 1.00 cm / 2 120. N cm 1.20 JW  

(b)  ( ) ( ) ( )( )= − − =2 2
a 10.0 N/cm 5.00 cm 5.00 cm / 2 0JW  

ROUND:  With three significant figures in each given value, (a) =a 1.20 JW  and (b) =a 0.W  Take this 
zero to be precise. 
 
DOUBLE-CHECK:   
(a) aW  should be positive because energy must be transferred to the spring to stretch it further from 
equilibrium.  
(b)  The spring is the same distance from the equilibrium point, so the net energy transferred to the spring 
must be zero.   

6.50. THINK:  The mass of the ball is m = 5.00 kg. The initial height is h = 3.00 m. The initial speed is 
=0 5.00 m/s.v  The spring constant is k = 1600. N/m. The final speed of the ball is zero. Determine (a) the 

maximum compression ∆x  of the spring and (b) the total work done on the ball while the spring 
compresses. The spring is initially at equilibrium, so the height given is the height above the equilibrium 
point of the spring. 
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SKETCH:   

 
RESEARCH:   
(a) There are no non-conservative forces, so ∆ = −∆K U , ( )= 2

s / 2U kx , =g gU m h  and ( )= 2 / 2.K mv  

(b) Use the work-kinetic energy theorem to find the net work done on the ball while the spring compresses 
∆x by = ∆net .W K  
SIMPLIFY:   
(a)  ∆ = −∆K U  so − = − + −f i s i s f g i g f .K K U U U U  Note that the equilibrium position of the spring is 0 .l  

Since fK  and siU are zero, − = − + −i sf gi gf0 0 ,K U U U   and 

( ) ( ) ( )− = − ∆ + + − − ∆22
0 0 0

1 1
2 2

mv k x mg l h mg l x , which simplifies to 

( )− = − ∆ + + ∆22
0

1 1 g g
2 2

mv k x m h m x  and subsequently ( )∆ − ∆ − − =2 2
0

1 1 0
2 2

k x mg x mv mgh . 

Solving the quadratic equation gives  

( ) ( ) ( )
 ± − + +  ± + + ∆ = =

2 2 2 20
0

12 22
.

mg mg k mv mgh mg mg mk v gh
x

k k
 

(b)  = ∆ = −∆ = −∆ −∆net s gW K U U U  

( ) ( )

( )

= − + −

= − ∆ + − − ∆

= − ∆ + ∆

net si sf gi gf

2
0 0

2

10
2

1
2

W U U U U

k x mgl mg l x

k x mg x

 

CALCULATE:   

(a) 
( )( )

( ) ( ) ( )( ) ( ) ( )( )( )
∆ =

+ +
±

= −

2

22 22 2

5.00 kg 9.81 m/s

1600. N/m 

5.00 kg 9.81 m/s 1600. N/m 5.00 kg 5.00 m/s 2 9.81 m/s 3.00 m

1600. N/m 
0.54349 m, 0.48218 m

x  

Since ∆x  is defined as a positive distance (not a displacement), the solution must be positive. Take 
∆ = 0.54349 m.x  

(b)  ( )( ) ( )( )( )= − + = −2 2
net

1 1600. N/m 0.54349 m 5.00 kg 9.81 m/s 0.54349 m 209.6 J
2

W  

ROUND:  Since the least precise value given in the question has three significant figures, both answers will 
have three significant figures: ∆ = 0.543 mx  and = −net 210. J.W   
DOUBLE-CHECK:  ∆x  should be positive. Relative to the height, h, the value of ∆x  is reasonable. 
Because the net work is negative, and since ∆ > ∆s gU U  for the distance ∆ ,x  the clay ball does positive 

work on the spring and the spring does negative work on the clay ball.  This makes sense for spring 
compression. 
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6.51. THINK:  The spring constant for each spring is k = 30.0 N/m. The stone’s mass is =  1.00 kg.m  The 
equilibrium length of the springs is =0 0.500 m.l  The displacement to the left is =  0.700 m.x  Determine 
the system’s total mechanical energy, mecE  and (b) the stone’s speed, v, at x = 0. 
SKETCH:   

  
Note:  The sketch is a side view. The word “vertical” means that the springs are oriented vertically above 
the ground. The path the stone takes while in the slingshot is completely horizontal so that gravity is 
neglected. 
RESEARCH:   
(a) In order to determine mecE , consider all kinetic and potential energies in the system. Since the system 

is at rest, the only form of mechanical energy is spring potential energy, ( )= 2 / 2.sU kx  

(b) By energy conservation, ∆ mecE  (no non-conservative forces). v can be determined by considering 
∆ =mec 0.E  
SIMPLIFY:   

(a) ( ) ( ) ( )= + = = + = − + − = −2 2 2
mec 1 2 1 0 2 0 0

1 1' ' '
2 2s s sE K U U U U k l l k l l k l l . To determine 'l , use the 

Pythagorean theorem, = +2 2
0' .l l x  Then, ( )= − +

2
2 2

mec 0 0 .E k l l x   

(b) As the mechanical energy is conserved, =mec f mec iE E  so + =f f mecsK U E  (with =f 0U ), and therefore 

=f mecK E . Solving the equation for kinetic energy, = ⇒ =2
mec mec

1 2 / .
2

mv E v E m  

CALCULATE:   

(a) ( ) ( ) = − + = 
 

2
2 2

mec 30.0 N/m 0.500 m 0.500 m 0.700 m 3.893 JE  

(b)  ( )= =2 3.893 J /1.00 kg 2.790 m/sv  

ROUND:  Since all of the given values have three significant figures, the results should be rounded to 
=mec 3.89 JE  and v = 2.79 m/s. 

DOUBLE-CHECK:  The values are reasonable considering the small spring constant.  

6.52. THINK:  The spring constant for each spring is k = 30.0 N/m. The stone’s mass is m = 0.100 kg. The 
equilibrium length of each spring is =0 0.500 m.l  The initial vertical displacement is d = 0.700 m. 
Determine (a) the total mechanical energy, mecE  and (b) the stone’s speed, v, when it passes the 
equilibrium point.  
SKETCH:   
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RESEARCH:   
(a) To determine mecE , all forms of kinetic and potential energy must be calculated for the system. Note 

that initially K = 0. Use the equations ( )= 2 / 2sU kx  and =g .U mgh  

(b)  As there are no non-conservative forces, mecE  is conserved. The speed, v , can be determined from 

=mec f mec iE E , using ( )= 2 / 2.K mv   

SIMPLIFY:   

(a) ( ) ( ) = + = + + = − + − 
 

2
mec g s1 s2 0

12 '
2

E K U U U U mg d k l l .  Note = +2 2
0'l l d  from Pythagorean’s 

theorem. Then, ( )= + − −
2

22 2
0 0mec .E k l d l mgd  

(b)  = =mec i mec f mecE E E  so =f mecK E  (as = =gf sf 0U U ) and therefore = ⇒ =2
mec mec

1   2 /
2

mv E v E m . 

 
CALCULATE:   

(a)  ( ) ( ) ( ) ( )( )( ) = + − − 
 

= −
=

2
2 2 2

mec 30.0 N/m 0.500 m 0.700 m 0.500 m 0.100 kg 9.81 m/s 0.700 m

3.893 J 0.6867 J
3.206 J

E  

(b)  ( ) ( )= =2 3.206 J / 0.100 kg 8.0075 m/sv  

ROUND:  As each given value has three significant figures, the results should be rounded to =mec 3.21 JE  
and v = 8.01 m/s. 
DOUBLE-CHECK:  mecE  is decreased by the gravitational potential energy. The stone’s speed is 
reasonable considering its small mass.  

6.53. THINK:  The mass of the man is m = 80.0 kg. His initial height is =0 3.00 m.h  The applied frictional force 
is = 400. N.kf  His initial speed is =0 0.v  What is his final speed, v? 
SKETCH:   

 
RESEARCH:  In an isolated system, the total energy is conserved. ∆ = ∆ + ∆ + ∆ =tot th 0.E K U E  

Using ( )= 2 / 2K mv , = 0gU mgh and ∆ =th k ,E f d  v can be determined.  

SIMPLIFY:  Note = =gf 0.iK U  Then, ∆ + ∆ + ∆ = ⇒ − + ∆ =th f gi th0  0.K U E K U E  Note that the force of 
friction acts over the length of the pole, h0. Then, 

( ) ( )− + = ⇒ = − = −2
0 k 0 k 00 0 k

1 0  2 / 2 / .
2

mv mgh f h v gh f h m h g f m  

CALCULATE:  ( )( ) ( )( ) ( )( )
( )

= −

= −

=

2

2 2 2 2

2 9.81 m/s 3.00 m 400. N 3.00 m / 80.0 kg

2 29.43 m /s 15.0 m /s

5.372 m/s

v  

ROUND:  With three significant figures in each given value, the result should be rounded to = 5.37 m/s.v  
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DOUBLE-CHECK:  This velocity is less than it would be if the man had slid without friction, in which 
case v would be ≈02 8 m/s.gh   

6.54. THINK:  The ball’s mass is =  0.100 kg.m  The initial speed is =0 10.0 m/s.v  The final height is 
=  3.00 mh  and the final speed is =  3.00 m / s.v  Determine the fraction of the original energy lost to air 

friction. Note that the initial height is taken to be zero. 
SKETCH:   

 
 

RESEARCH:  For an isolated system, ∆ = ∆ + ∆ + ∆ =tot other 0.E K U E  The fraction that must be determined 

is as follows: 
∆ ∆

=friction f

initial i

.
E E
E E

 

SIMPLIFY:  ∆ + ∆ + ∆ =f 0K U E . Note = 0.iU  This means that  

( ) ∆ = −∆ − ∆ = − − + 
 

2 2
f 0

1
2

E K U m v v mgh   and = + = = 2
0

1 .
2i i i iE K U K mv  

Then, 
( ) ( )− − − −∆

= =

2 2 2 2
0 0f

2
2i 0

0

1 2 22 .
1
2

m v v gh v v ghE
E vmv

 

CALCULATE:  
( ) ( ) ( )( )

( )
− −∆

= =
2 2 2

f
2

i

10.0 m/s 3.00 m/s 2 9.81 m/s 3.00 m
0.3214

10.0 m/s
E

E
 

ROUND:  Each given value has three significant figures, so the result should be rounded as ∆ =f i0.321E E . 
The final answer is 32.1% of iE  is lost to air friction. 
DOUBLE-CHECK:  If there were no friction and the ball started upward with an initial speed of 

=0 10 m/sv , its speed at a height of 3 m would be using kinematics 

( ) ( )( )= − = − =22 2
0 2 10 m/s 2 9.81 m/s 3 m 6.41 m/s.v v gh  This corresponds to a mechanical energy of 

( )( ) ( )( )( )= + =2 21 0.1 kg 6.41 m/s 0.1 kg 9.81 m/s 3 m 5.00 J.
2

E  The ball actually had a mechanical energy 

of ( )( ) ( )( )( )= + =2 21 0.1 kg 3 m/s 0.1 kg 9.81 m/s 3 m 3.93 J,
2

E  which corresponds to a 32.1% loss, which 

agrees with the result using energy concepts. 

6.55. THINK:  The skier’s mass is m = 55.0 kg. The constant speed is v = 14.4 m/s. The slope length is 
=  123.5 ml  and the angle of the incline is θ = °14.7 .  Determine the mechanical energy lost to friction, 
∆ th .E  
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SKETCH:   

 
 

RESEARCH:  The skier and the ski slope form an isolated system. This implies that  
∆ = ∆ + ∆ + ∆ =tot th 0.E K U E  Note that ∆ = 0K  since v is constant. Use the equation U = mgh, where the 
height of the ski slope can be found using trigonometry: θ= sin .h l  
SIMPLIFY:  At the bottom of the slope, Uf  = 0.  Then,  

( ) θ∆ = −∆ = − − = = =th f i i sin .E U U U U mgh mgl  

CALCULATE:  ( )( )( )∆ = ° =2
th 55.0 kg 9.81 m/s 123.5 m sin14.7 16909 JE  

ROUND: With three significant figures in m, g and θ , the result should be rounded to ∆ =th 16.9 kJ.E  
DOUBLE-CHECK:  If this energy had been transformed completely to kinetic energy (no friction), and if 
the skier had started from rest, their final velocity would have been 24.8 m/s at the bottom of the slope. 
This is a reasonable amount of energy transferred to thermal energy generated by friction. 

6.56. THINK:  The truck’s mass is m = 10,212 kg. The initial speed is  
  = =  
  

0
1609.3 m 1 h61.2 mph 27.3581 m/s.

 1 mile 3600 s
v  

The incline angle is θ = °40.15  and the coefficient of friction is µ =k 0.634.  Determine the distance 
traveled along the incline, ∆ ,x  before the truck stops (when =  0v ). 
SKETCH:   

 
RESEARCH:  The truck and the gravel incline form an isolated system. Use energy conservation to 
determine ∆ .x  The initial energy is purely kinetic, ( )= 2 / 2.K mv  The final energies are thermal, 

∆ =th kE f d  and gravitational potential, U = mgh.  
SIMPLIFY:  

θ µ

∆ =
∆ + ∆ + ∆ =
− + + ∆ =

− + + ∆ =

− + ∆ + ∆ =

tot

th

i f th

2
0 k

2
0 k

0
0
0

1 0
2

1 sin 0
2

E
K U E
K U E

mv mgh f x

mv mg x N x
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Note that θ= cosN mg  on the incline. This gives: 

( )

( )

θ µ θ

θ µ θ

θ µ θ

− + ∆ + ∆ =

∆ + =

∆ =
+

2
0 k

2
k 0

2
0

k

1 sin cos 0
2

1sin cos
2

2 sin cos

mv m g x mg x

x g g v

v
x

g

 

CALCULATE:  
( )

( ) ( ) ( )( )
∆ = =

° + °

2

2

27.3581 m/s
33.777 m

2 9.81 m/s sin 40.15 0.634cos 40.15
x  

ROUND:  With three significant figures in 0v , the result should be rounded to ∆ = 33.8 m.x  
DOUBLE-CHECK:  This is a reasonable stopping distance given the incline angle and high coefficient of 
friction.   

6.57. THINK:  The snowboarder’s mass is m = 70.1 kg. The initial speed is =0 5.10 m/s.v  The slope angle is 
θ = °37.1 .  The coefficient of kinetic friction is µ =k 0.116.  Determine the net work, netW  done on the 
snowboarder in the first t = 5.72 s.  
SKETCH:   

 
 

RESEARCH:  It is known that = ∆net .W K  By considering the forces acting on the skier, and assuming 

constant acceleration, fv  can be determined at t = 5.72 s. Use µ=k kf N , =∑ netx xF F  and = +0 .v v at  

SIMPLIFY:  In the x-direction (along the slope), = − net g k .x xF F f  Since θ= g cosN m , the force equation is 
expanded to  

( )θ µ θ θ − µ θ= − ⇒ =net k net ksin cos   sin cos .ma mg mg a g  
 Then, the velocity is given by the formula ( )θ µ θ= + = + −0 0 ksin cos ,v v at v g t  and 

( )( )( )θ µ θ= − = + − −
2 2

net f i 0 0
1 sin cos .
2 kW K K m v g t v  

CALCULATE:  

( ) ( ) ( ) ( )( )( )( ) ( )

( ) ( ) ( )( )
( )( )

 = + ° − ° − 
 

= + −

= −

=

2
2 2

net

2 2

2 2 2 2

1 70.1 kg 5.10 m/s 9.81 m/s sin 37.1 0.116cos 37.1 5.72 s 5.10 m/s
2
1 70.1 kg 5.10 m/s 28.66 m/s 5.10 m/s
2
1 70.1 kg 1139.5 m /s 26.01 m /s
2
39027.5 J

W  

ROUND:  Because the m and 0v  have three significant figures, the result should be rounded to 
=net 39.0 kJ.W  

DOUBLE-CHECK:  This is a reasonable energy required to change the snowboarder’s speed.  
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6.58. THINK:  The ball’s mass is m = 0.0459 kg. The length of the bar is  ( )= 30.0 in 0.0254 m/inl  = 0.762 m.   
The incline angle is θ = °20.0 .  The distance traveled on the green is  

 
= = 

 

0.3048 m
11.1 ft 3.38328 m.

1 ft
d  

Determine the coefficient of friction between the green and the ball. Assume the bar is frictionless. 
SKETCH:   

 
 

RESEARCH:  The ball-bar-green system is isolated, so ∆ =tot 0.E  Take the initial point to be when the ball 
starts to roll down the bar, and the final point where the ball has stopped rolling on the green after 
traveling a distance, d , on the green. = = =i f f 0K K U . Then, ∆ + ∆ + ∆ =th 0K U E , with U = mgh and 
∆ =th kE f d  can be used to determine µk .  
SIMPLIFY:  ∆ + ∆ + ∆ = ⇒ − + ∆ =th i th0  0K U E U E  ⇒ ∆ =th i E U  ⇒ =k f d mgh  µ θ⇒ =k sinmgd mgl  

θµ⇒ =k
sinl

d
 

CALCULATE:  
( ) ( )

k

0.762 m sin 20.0
0.0770316

3.38328 m
µ

°
= =  

ROUND:  With three significant figures in each given value, the result should be rounded to µ =k 0.0770.  
DOUBLE-CHECK:  µk  has no units and has a small value, which is reasonable for golf greens. 

6.59. THINK:  The block’s mass is m = 1.00 kg. The length of the plank is L = 2.00 m. The incline angle is 
θ = °30.0 .  The coefficient of kinetic friction is µ =k 0.300.  The path taken by the block is L/2 upward, L/4 
downward, then up to the top of the plank. Determine the work , ,bW done by the block against friction.  
SKETCH:  

 
 

RESEARCH:  Friction is a non-conservative force. The work done by friction, f ,W  is therefore dependent 
on the path. It is known that = −f kW f d , and with = −b fW W , the equation is =b k .W f d  The total path of 
the block is = + + =/ 2 / 4 3 / 4 1.5 .d L L L L   
SIMPLIFY:  ( )µ µ θ= = =b k k k cosW f d Nd mg d   ( θ= cosN mg  on the incline)  

CALCULATE:  ( )( )( ) ( ) ( )( )= ° =20.300 1.00 kg 9.81 m/s cos 30.0 1.50 2.00 m 7.646 JbW  

ROUND:  Each given value has three significant figures, so the result should be rounded to =b 7.65 J.W  
DOUBLE-CHECK:  This is a reasonable amount of work done against friction considering the short 
distance traveled. 
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6.60. THINK:  The block’s mass is m = 1.00 kg. The initial velocity is =0 0 m/s.v  The incline’s length is 

= 4.00 m.l  The angle of the incline is θ = °45.0 .  The coefficient of friction is µ =k 0.300  for the lower half 

of the incline. Determine (a) the block’s speed just before the rough section, ′,v  and (b) the block’s speed 
at the bottom, v.  
SKETCH:   

 
RESEARCH:  Energy is conserved in the block/incline system. Recall ( )= 2 / 2K mv , U = mgh and 

µ∆ = =th k k .E f d Nd  
(a)  With no friction, ∆ + ∆ = 0.K U  
(b)  With friction, ∆ + ∆ + ∆ =th 0.K U E    
SIMPLIFY:   
(a)  With =0 0 m/sv  and =i 0K , − + − =f i f i 0K K U U  becomes = −f i f .K U U  

 = − = 
 

21 '
2 2 2

mghhmv mgh mg  θ⇒ =21 1 ' sin
2 2

v gl  θ⇒ = ' sinv gl  

(b)  Consider the initial point to be halfway down l (when the velocity is 'v ), and the final point where 
=f 0U : ∆ + ∆ + ∆ =th 0K U E  ⇒ − + − + ∆ =f i f i th 0K K U U E  ⇒ = + −∆f i i thK K U E  

 ′⇒ = + − 
 

2 21 1
2 2 2 k

hmv mv mg f d  θ µ θ  ′⇒ = + −  
 

2 2
k

1 1 1 sin cos
2 2 2 2

lmv mv mgl mg  since 

θ µ= =k kcos  and .N mg f N  So θ µ θ′= + −2 2
ksin cosv v gl lg . Since θ′ =2 sinv gl , 

( )θ µ θ= − k2sin cos .v gl  

CALCULATE:   

(a)  ( )( ) ( )′ = ° =29.81 m/s 4.00 m sin 45.0 5.2675 m/sv  

(b)  ( )( ) ( ) ( )( )= ° − ° =29.81 m/s 4.00 m 2sin 45.0 0.300cos 45.0 6.868 m/sv  

ROUND:  With l having three significant figures, the results should be rounded to ′ = 5.27 m/sv  and 
= 6.87 m/s.v  

DOUBLE-CHECK: In the complete absence of friction, the speed at the bottom would be 
= =2 7.45 m/s.v gh  The velocity calculated in part (b) is less than this due to the thermal energy 

dissipated by friction. 

6.61. THINK:  The spring constant is k = 500. N/m. The mass is m = 0.500 kg. The spring compression is 
= 30.0 cm.x The length of the plane is l = 4.00 m. The incline angle is θ = °30.0 .  The coefficient of kinetic 

friction is µ =k 0.350.  With the spring compressed, the mass is 1.50 m from the bottom of the inclined 
plane. Determine (a) the speed of the mass at the bottom of the inclined plane, (b) the speed of the mass at 
the top of the inclined plane, and (c) the total work done by friction from beginning to end.  
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SKETCH:   

 
RESEARCH:   
(a) The elastic potential energy is ( )=spring

2 / 2.U kx  The mass loses energy µ= − = −f f kW F d mgd  due to 

friction. Therefore, the kinetic energy at the bottom is given by µ= = −2 2
b b k

1 1 .
2 2

K mv kx mgd  

(b) To reach the top of the incline, the gravitational potential energy must also be considered:  
∆ = −gravity top bottom .U U U  Since the plane has length, l, and incline angle,θ , θ∆ =gravity sin .U mgl  
The kinetic energy at the top (and thus the speed) can then be calculated by subtracting the gravitational 
potential energy and work due to friction from the kinetic energy at the bottom: 

µ θ − θ= −top b k cos sin .K K mgl mgl  

(c)  The total work due to friction is given by ( )= − +f f .W F d l  
SIMPLIFY:   

(a)  µ µ= = − ⇒ = −
2

2 2
b b k k

1 1 2
2 2 b

kxK mv kx mgd v gd
m

 

(b)  ( )µ θ − θ µ θ θ = = − ⇒ = − + 
2

top top b k top b k
1 2cos sin cos sin
2

K mv K mgl mgl v K mgl
m

 

(c)  ( )µ µ θ= − −f k k cosW mgd mg l  
CALCULATE:   

(a)  
( )( ) ( )( )( )= − =

2
2

b

500. N/m 0.300 m
2 0.350 9.81 m/s 1.50 m 8.927 m/s

0.500 kg
v  

( )( )= =2
b

1 0.500 kg 8.927 m/s 19.92 J
2

K  

(b)  ( ) ( )( )( )( ) = − ° + ° = 
2

top
2 19.92 J 0.500 kg 9.81 m/s 4.00 m 0.350cos30.0 sin30.0 4.08 m/s

0.500 kg
v  

(c)  ( )( )( ) ( )( )= − + ° = −2
f 0.350 0.500 kg 9.81 m/s 1.50 m 4.00cos 30.0  m 8.52 JW  

ROUND:  Rounding to three significant figures, =b 8.93 m/sv , =top 4.08 m/sv  and = −f 8.52 J.W  
DOUBLE-CHECK:  The results are reasonable for the given values.  
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6.62. THINK:  Determine the speed of the sled at the end of the track or the maximum height it reaches if it 
stops before reaching the end. The initial velocity is =0 20.0 m/s.v  
SKETCH:  

 
RESEARCH:  The total initial energy is given by = −0 0 0 .E K U  When the sled reaches point p at the 
bottom of the second incline, it has lost energy due to friction given by = + + + ,p A B C DW W W W W  where 

Αµ θ,=A k cosW mg  µ=B k ,W B mg  =C 200. J,W  and µ=D k .W D mg  As the sled reaches point p, it has 
kinetic energy = −p 0 p .K E W  In order for the sled to reach the end of the incline, it needs to have enough 
energy to cover the work due to friction as well as the gravitational potential energy at the top. Therefore, 
if > +p E E ,K U W  then it does reach the top and the speed can be determined from the kinetic energy at the 

top: = − −top p E E .K K P W  If < +p E fE ,K U W  then it stops before reaching the top and the height the sled 
reaches can be determined by considering the gravitational potential energy equation: 

= = −p fE ,U mgh K W  where fEW  is the work due to friction for the section of the incline up to h. The 

height can be related to the distance covered on the incline by recalling that θ θ= ⇒ =sin   / sin .h l l h  

 
 Therefore,  

( ) ( ) ( )
θ

µ θ µ µ θ
θ

= = =f E k k k

cos
cos cot .

sin
h

W mg l mg mg h  

SIMPLIFY:  It is convenient to evaluate the following terms separately: 

0 ,E A ,W B C D E E fE, , , ,  and .W W W U W W  

= +2
0 0 1

1 ,
2

E mv mgh  =E 2 ,U mgh  µ θ µ θ.= =E k k2cos cotW E mg h mg  

CALCULATE:  ( )( ) ( )( )( )= + =2 2
0

1 20.0 kg 20.0 m/s 20.0 kg 9.81 m/s 30.0 m 9886 J
2

E  

( )( )( )( ) ( )= ° =2
A 39.2 m 0.250 20.0 kg 9.81 m/s cos 50.0 1236 JW

( )( )( )( )= =2
B 5.00 m 0.250 20.0 kg 9.81 m/s 245 J,W        = 200. JCW  

( )( )( )( )= =2
D 10.0 m 0.250 20.0 kg 9.81 m/s 491 J ,W     ( )( )( )= =2

E 20.0 kg 9.81 m/s 10.0 m 1962 JU  

( )( )( )( ) ( )= ° =2
E 10.0 m 0.250 20.0 kg 9.81 m/s cot 50.0 412 JW  

Therefore, ( ) ( ) ( ) ( )= − − − − =p 9886 J 1236 J 245 J 200. J 491 J 7714 J,K  and  

( ) ( )+ = + =E E 1962 J 412 J 2374 J.U W  Therefore, since > +p E E ,K U W  the sled will reach the top and have 

speed: = − − ⇒ = − −2
top p E E top p E E

1  
2

K K U W mv K U W  

( ) ( ) ( )( ) 
⇒ = − − = − = 

 
top p E E

2 2 7714 J 2374 J 23.11 m/s.
20.0 kg

v K U W
m
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ROUND:  Rounding to three significant figures, =top 23.1 m/s.v  
DOUBLE-CHECK:  The fact that the sled reaches the top of the second ramp is reasonable given how 
much higher the second ramp is than the first. The value of the velocity is of the same order of magnitude 
as the initial velocity so it is reasonable. 

6.63. THINK:  The mass of the cart is 237.5 kg. The initial velocity is =0 16.5 m/s.v  The surface is frictionless. 
Determine the turning point shown on the graph in the question, sketched below. 
SKETCH:   

 
RESEARCH:  Since the system is conservative, = = =tot max maxconstant .E U K  Therefore, the kinetic 
energy at x = 0, y = 10. m is the same as the kinetic energy whenever the track is at y = 10. m again. Set y = 
10. m as the origin for gravitational potential energy. Therefore,  

= =
2
0

tot max .
2

mv
E K  

This is the available energy to climb the track from y = 10. m. The turning point is when v = 0 and  

= ⇒ =
2
0

max max .
2

mv
U K mgh  

SIMPLIFY:  =
2
0 ,

2
v

h
g

  y = 10. m + h 

CALCULATE:  
( )
( )

= =
2

2

16.5 m/s
13.9 m,

2 9.81 m/s
h  = + =10. m 13.9 m 23.9 my  

ROUND:  Reading off the graph is accurate to the nearest integer, so round the value of y to 24 m. 
Reading off the graph, the value of x at = 24 my is x = 42 m. 
DOUBLE-CHECK:  It is reasonable that the cart will climb about 18 m with an initial velocity of 

=0 16.5 m/s.v  

6.64. THINK:  A 70.0 kg skier’s initial velocity is =0 4.50 m/sv  towards a °20.0  incline. Determine (a) the 
range up the incline if there is no friction and (b) the range up the incline if µ =k 0.100.  
SKETCH:   

  
RESEARCH:   
(a) Since the system is conservative, ( ) θ= = ⇒ = =2

tot max max 0 1 1/ 2 sinE K U mv mgh mg l . 

(b) The work due to friction is determined by µ θ= =f f 2 k 2 cos .W F l mg l  Therefore,  

= −bottom top f .K U W  
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SIMPLIFY:   

(a) θ=2
0 1

1 sin
2

mv mgl ⇒
θ

=
2
0

1 2 sin
v

l
g

 

(b) θ µ θ= +2
0 2 k 2

1 sin cos
2

mv mgl mgl  θ µ θ
θ µ θ

⇒ = + ⇒ =
+

2 2
0 0

2 k 2
k

 (sin cos )  
2 2 (sin cos )
v v

l g l
g

 

CALCULATE:   

(a)  
( )

( ) ( )
= =

°

2

2

4.50 m/s
3.0177 m

2 9.81 m/s sin 20.0
l  

(b)  
( )

( )
2

2 2

4.50 m/s
2.3672 m

2 9.81 m/s (sin(20.0 ) 0.100cos(20.0 ))
l = =

° + °
 

ROUND:  The final rounded answer should contain 3 significant figures: 
(a) = 3.02 ml  
(b) = 2.37 ml   
DOUBLE-CHECK:  As expected, introducing friction into the system will decrease the available 
mechanical energy. 

6.65. THINK:  The particle has a total energy of =tot 40.0 JE  at its initial position and retains it everywhere.  
Thus we can draw a horizontal line (gray) for its total energy, approximately at 4/5 of the value of the 
potential energy at point A (= 50.0 J) for this value of the total energy. The locations of the turning points 
are here this horizontal line intersects the potential energy curve (red). 

 Further, we can determine the shape of the potential curve in a more analytical form. From the drawing we 
can clearly see that it is piecewise linear, falling from 50.0 J at x = 0 to 0 J at x = 1, rising from 0 J at x = 2 to 
25.0 J at x = 3.25, falling again from 25.0 J at x = 4.25 to 10.0 J at x = 5, and finally rising from 10.0 J at x = 
6 to 60.0 J at x = 7.  (We have drawn in a gray rectangle; this way it is easier to see at what x-values the 
slopes change.) 
The turning points are where v = 0, which is where the total energy is equal to the potential energy. 
SKETCH:   

  
 

RESEARCH:  Assume a conservative system and = +tot .E K U  
 (a) Consider the potential energy at the point x = 3 m and call it 3U : 

= + ⇒ = −to tt 3 ot 3  E K U K E U , and =
2
3

3 .
2

mv
K  

(b) Similarly, = −4.5 tot 4.5K E U , and ( )= 2
4.5 4.5 / 2.K mv  

(c) Since =tot 40.0 JE  at x = 4.00 and =C 25.0 JU , then − =tot C C .E U K  This kinetic energy will become 
potential energy to reach the turning point. 

 SIMPLIFY:   

(a)  ( )= − ⇒ = −2
3 tot 3 3 tot 3

1 2  .
2

mv E U v E U
m

 3U  is obtained from the graph. 
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(b)  ( )= −4.5 tot 4.5
2 .v E U
m

 4.5U  is obtained from the graph.  

(c)  − = =tot C C 4 .E U K U  Therefore, = + =turning C t tot .U U U E  
CALCULATE:   
(a) Interpolation between x = 2 and x = 3.25 yields 

= − − ⇒ ≡ = − − =C 3( ) ( 2) / (3.25 2) ( =3) (25.0 J)(3 2) / (3.25 2) 20.0 JU x U x U U x  

( ) 
= − = 

 
3

2 40.0 J 20.0 J 14.14 m/s
0.200 kg

v  

 
(b) Interpolation between x = 4.25 and x = 5 yields 

= − − − − ⇒ ≡ = − − =C C D 4.5( ) ( )( 4.25) / (5 4.25) ( =4.5) (25.0 J) (15.0 J)(4.5 4.25) / (0.75) 20.0 JU x U U U x U U x

( ) 
= − = 

 
4.5

2 40.0 J 20.0 J 14.14 m/s
0.200 kg

v  

(c) Graphical interpolation between 0 and 1 and between 6 and 7 then results in turning points results in 
= − = − =1 / 1 (40.0 J) / (50.0 J) 0.2L Ax E U  for the left turning point, and 
= + − − = + =6 ( ) / ( ) 6 (30.0 J) / (50.0 J) 6.6R D E Dx E U U U  for the right one. 

ROUND:  Since we are reading data of a graph, we should probably round to two figures and state our 
results as = =3 4.5 14 m/sv v  and = 0.2 mLx  and = 6.6 m.Rx  
DOUBLE-CHECK:  Our numerical findings for the turning points agree with our graphical estimation, 
within the uncertainties stated here. 

6.66. THINK:  The mass of the ball is m = 1.84 kg. The initial height is =1 1.49 my  and the second height is 
=2 0.87 m.y  Determine the energy lost in the bounce. 

SKETCH:   

  
 

RESEARCH:  Consider the changes in the potential energy from 1y to 2y . The energy lost in the bounce is 
given by −1 2 .U U  

SIMPLIFY:  ( )= − = −lost 1 2 1 2E mgy mgy mg y y  

CALCULATE:  ( )( )( )= − =2
lost 1.84 kg 9.81 m/s 1.49 m 0.87 m 11.2 JE  

ROUND:  Since the least precise value is given to two significant figures, the result is =lost 11 J.E  
DOUBLE-CHECK: The ball lost roughly half of its height, so it makes sense that it lost roughly half of its 
potential energy (which was about 27 J). 

6.67. THINK:  The mass of the car is m = 987 kg. The speed is v = 64.5 mph. The coefficient of kinetic friction is 
µ =k 0.301.  Determine the mechanical energy lost.  
SKETCH:   
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RESEARCH:  Since all of the mechanical energy is considered in the form of kinetic energy, the energy 
lost is equal to the kinetic energy before applying the brakes. Using the conversion 1 mph is equal to 0.447 

m/s, the speed can be converted to SI units. Convert the speed: ( ) 
= = 

 

0.447 m/s64.5 mph 28.8 m/s.
1 mph

v  

SIMPLIFY:  = 2
lost

1
2

E mv  

CALCULATE:  ( )( )= = ⋅2 5
lost

1 987 kg 28.8 m/s 4.10 10  J
2

E  

ROUND:  Rounding to three significant figures, = ⋅ 5
lost 4.10 10  J.E  

DOUBLE-CHECK:  For an object this massive, it is reasonable that it requires such a large amount of 
energy to stop it.   

6.68. THINK:  Two masses, =1 10.0 kgm  and =2 5.00 kgm  are attached to a frictionless pulley. The first mass 
drops h = 1.00 m. Determine (a) the speed of the 5.00 kg mass before the 10.0 kg mass hits the ground and 
(b) the maximum height of the 5.00 kg mass. 

SKETCH:   

  
RESEARCH:   
(a) Since energy is conserved, ∆ = −∆ .K U  Since the masses are attached to each other, their speeds are the 
same before one touches the ground.  
(b) When 1m  hits the ground, 2m  is at h = 1.00 m with a speed v. The kinetic energy for 2m  is then 

( )2
2 / 2m v  and this is given to potential energy for a height above h = 1.00 m. Let th be the height where 

the potential and kinetic energies are equal. When the kinetic energies are equal, 

( )= ⇒ = ⇒ =2
2 2

2  / 2  / 2 .ttU K m gh m v h v g  Therefore, the maximum height is = +max .th h h  

SIMPLIFY:   
(a) 

( )

( ) ( )

− = −

+ =  − 
 

 −
=  + 

 −
= ±  +

+ −

+ =

 

−

f i i f

2 2
1 2 1 2

2
1 2 1 2

2 1 2

1 2

1 2

1 2

1 1 0
2 2

2

0

2

2

m m
gh

m m

m m
v g

K K U U

m v m v m gh m gh

m m v gh m m

m

v

h
m

 

(b)  = +
2

max 2
vh h

g
 

CALCULATE:   

(a)  ( )( ) −
= = + 

2 10.0 kg 5.00 kg
2 9.81 m/s 1.00 m 2.557 m/s

10.0 kg 5.00 kg
v  
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(b)  
( )
( )

= + =
2

max 2

2.557 m/s
1.00 m 1.333 m

2 9.81 m/s
h  

ROUND:  Rounding to three significant figures, v = 2.56 m/s and =max 1.33 m.h  
DOUBLE-CHECK: The calculated values have appropriate units and are of reasonable orders of 
magnitude for a system of this size. 

6.69. THINK: The distance that each train covered is ∆ = 3200 m.x  The weight of each train is = ⋅ 61.2 10  N.w  
Their accelerations have a magnitude of = 20.26 m/s ,a but are in opposite directions. Determine the total 
kinetic energy of the two trains just before the collision. The trains start from rest. 

SKETCH:   

  
 

RESEARCH: The total kinetic energy will be twice the kinetic energy for one train. With ( )= 2 / 2K mv ,  

m can be determined from w = mg and v from = + ∆2 2
0 2 .v v a x  

SIMPLIFY:  m = w/g.  Then, ( )( ) ( )= = = ∆2
tot 2 2 / 2 2 / .K K mv w a x g  

CALCULATE:  
( )( )( )

( )
⋅

= = ⋅
6 2

8
tot 2

2 1.2 10  N 0.26 m/s 3200 m
2.035 10  J

9.81 m/s
K  

ROUND:  With two significant figures in each given value, = ⋅ 8
tot 2.0 10  J.K  

DOUBLE-CHECK:  For such a horrific explosion, a very large kinetic energy is expected before impact. 

6.70. THINK:  The ball’s mass is ( )= =5.00 oz 0.02835 kg/oz 0.14175 kg.m  The final speed is  

  = =  
  

miles 1609.3 m 1 h90.0 40.2325 m/s.
h 1 mile 3600 s

v  

The distance traveled is  = = 
 

0.0254 m2(28.0 in) 1.4224 m.
1 in

d Determine the average force, av .F  

SKETCH:   

  
 

RESEARCH:  There are no non-conservative forces in the system. So, ∆ = −∆ .K U  With avF  as a 

conservative force, the work it does is given by = −∆cW U  and = •




c .W F d  From this, avF  can be 
determined. 
SIMPLIFY:  Note 



avF  and 


d  are in the same direction, so =c avW F d  and 
∆ = −∆ = ⇒ − =c f i c  .K U W K K W  Since =i 0K , =f c .K W  

=2
av

1
2

mv F d  ⇒ =
2

av 2
mvF

d
 

CALCULATE:  
( )( )

( )
= =

2

av

0.14175 kg 40.2325 m/s
80.654 N

2 1.4224 m
F  

ROUND:  Since the values are given to three significant figures, =av 80.7 N.F  
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DOUBLE-CHECK:  This average force is equal to holding an object that has a mass of 14.8 kg 
( ( )= = 2/ (145 N) / 9.81 m/sm F g ), so it is reasonable. 

6.71. THINK:  The mass of the ball is m = 1.50 kg. Its speed is v = 20.0 m/s and its height is h = 15.0 m. 
Determine the ball’s total energy, tot .E  

SKETCH:   

  
RESEARCH:  Total energy is the sum of the mechanical energy and other forms of energy. As there are no 
non-conservative forces (neglecting air resistance), the total energy is the total mechanical energy.  

= +tot .E K U   Use ( )= 2 / 2K mv  and U = mgh. 

SIMPLIFY:   = + 
 

2
tot

1 g
2

E m v h  

CALCULATE:  ( ) ( )( )

( )

 = + 
 

= +

=

2 2
tot

2 2 2 2

11.50 kg 20.0 m/s 9.81 m/s 15.0 m
2

1.50 kg 200 m /s 147.15 m /s

520.725 J

E  

ROUND:  As the speed has three significant figures, the result should be rounded to =tot 521 J.E  
DOUBLE-CHECK:  The energy is positive and has the correct unit of measurement. It is also on the right 
order of magnitude for the given values. This is a reasonable energy for a ball. 

6.72. THINK: The average force used to load the dart gun is =av 5.5 N.F  The dart’s mass is −= ⋅ 34.5 10  kgm  
and the distance the dart is inserted into the gun is d = 0.060 m. Determine the speed of the dart, v, as it 
exits the gun. 

SKETCH:   

  
 

RESEARCH: Assuming the barrel is frictionless, and neglecting air resistance, the conservation of 
mechanical energy can be used to determine v. Use ∆ = −∆K U , ( )= 2 / 2K mv  and = −∆ =




cW U F d  ( cW  

is work done by a conservative force). 
SIMPLIFY:  Note 



F  and 


d  are in the same direction so the equation can be reduced to −∆ = =c av .U W F d  

∆ = −∆ ⇒ − = avf iK U K K F d  ⇒ =2
av

1 
2

mv F d  ( )=0as 0v  ⇒ = av 2 /v F d m  

CALCULATE:  ( )( ) ( )−= ⋅ =32 5.5 N 0.060 m / 4.5 10  kg 12.111 m/sv  

ROUND:  All given values have two significant figures, so the result should be rounded to v = 12 m/s. 
DOUBLE-CHECK:  This is a reasonable velocity for a dart to exit a dart gun. 
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6.73. THINK:  The jumper’s initial speed is =0 9.00 m/sv  and his final speed as he goes over the bar is                  
v = 7.00 m/s. Determine his highest altitude, h.   

SKETCH:   

  
 

RESEARCH:  As there are no non-conservative forces in the system, the conservation of mechanical 
energy can be used to solve for h as follows, ∆ = −∆ .K U  

SIMPLIFY:  − = − ⇒ − = −2 2
f i i f 0

1 1  
2 2

K K U U mv mv mgh    

CALCULATE:  
( ) ( )

( )
−

= =
2 2

2

9.00 m/s 7.00 m/s
1.63099 m

2 9.81 m/s
h  

ROUND:  There are three significant figures in 0v  and v, so the result should be rounded to h = 1.63 m. 
DOUBLE-CHECK:  Since < 0v v , it is necessary that > 0h h  to conserve mechanical energy. 

6.74. THINK:  The initial speed of the roller coaster is =0 2.00 m/sv  and its initial height is =0 40.0 m.h  
Determine the speed, v at the top of the second peak at a height of h = 15.0 m. 

SKETCH:   

  
 

RESEARCH:  As there are no non-conservative forces in this system, to solve for v, the conservation of 
mechanical energy can be used: ∆ = −∆K U , where ( )= 2 / 2K mv  and U = mgh. 

SIMPLIFY:  

( )

∆ = −∆
− = −

− = −

= − +

f i i f

2 2
0 0

2
0 0

1 1
2 2

2

K U
K K U U

mv mv mgh mgh

v g h h v

  

CALCULATE:  ( )( ) ( )= − + =222 9.81 m/s 40.0 m 15.0 m 2.00 m/s 22.24 m/sv  

ROUND:  As 0h  has three significant figures, the result should be rounded to v = 22.2 m/s. 
DOUBLE-CHECK:  The speed on the lower hill must be greater than the speed on the higher hill. 

6.75. THINK:  The length of the chain is l = 4.00 m and the maximum displacement angle is θ = °.35  
Determine the speed of the swing, v, at the bottom of the arc. 

SKETCH:   
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RESEARCH:  At the maximum displacement angle, the speed of the swing is zero. Assuming there are no 
non-conservative forces, to determine the speed, v, the conservation of mechanical energy can be used: 
∆ = −∆ .K U  Use ( )= 2 / 2K mv  and U = mgh. The initial height can be determined using trigonometry. 

Take the top of the swing to be h = 0. 
SIMPLIFY:  =0 0v  and =i 0.K  From the sketch, θ= −0 cosh l  and = − .h l  Then,  

( ) ( )θ= − ⇒ = − − −2
f i f

1 cos
2

K U U mv mg l mg l ( )θ⇒ = −21 g cos
2

v l l ( )θ⇒ = −2g cosv l l  

CALCULATE:  ( ) ( )( )= − ° =22 9.81 m/s 4.00 m 4.00 m cos35.0 3.767 m/sv  

ROUND:  l and θ  have two significant figures, so the result should be rounded to v = 3.77 m/s. 
DOUBLE-CHECK:  This is a reasonable speed for a swing to achieve when initially displaced from the 
vertical by °.35  

6.76. THINK:  The initial height of the truck is =0 680 m.h  The initial speed is =0 15 m/sv  and the final height 
is h = 550 m. Determine the maximum final speed, v.  

SKETCH:   

  
 

RESEARCH:  The maximum final speed, v, can be determined by neglecting non-conservative forces and 
using the conservation of mechanical energy, ∆ = −∆ .K U  Use ( )= 2 / 2K mv  and U = mgh. 

SIMPLIFY:  − = − ⇒ − = −2 2
f i i f 0 0

1 1  
2 2

K K U U mv mv mgh mgh  ( )⇒ = − + 2
0 0 2v g h h v  

CALCULATE:  ( )( ) ( )= − + =222 9.81 m/s 680 m 550 m 15.0 m/s 52.68 m/sv  

ROUND:  Each initial value has two significant figures, so the result should be rounded to v = 53 m/s. 
DOUBLE-CHECK:  Since the truck is going downhill, its final speed must be greater than its initial speed 
in the absence of non-conservative forces. 

6.77. THINK:  Determine Tarzan’s speed when he reaches a limb on a tree. He starts with a speed of =0 0v  and 
reaches a limb on a tree which is 10.0 m away and 4.00 m below his starting point. Consider the change in 
potential energy as he moves to the final point and relate this to the change in kinetic energy. The velocity 
can be determined from the kinetic energy.  
SKETCH:   

  
 

RESEARCH:  Gravitational potential energy is given by = g .U m h  The change in potential energy is given 
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by ∆ = −2 1.U mgh mgh  Kinetic energy is given by ( )= 2 / 2.K mv  The change in kinetic energy is given by 

( ) ( )∆ = −2 2
2 1/ 2 / 2.K mv mv  

SIMPLIFY:  Assume the system is conservative. The change in potential energy must be equal to the 
negative of the change in kinetic energy: 

( ) ( )
( ) ( )

( )

∆ = −∆

 − = − − 
 

− = −

− = −

= − +

2 2
2 1 2 1

2 2
1 2 2 1

2 2
2 1 1 2

2
2 1 2 1

1 1
2 2

1
2
2

2 .

U K

mgh mgh mv mv

g h h v v

v v g h h

v g h h v

 

CALCULATE:  ( )( )= =2
2 2 9.81 m/s 4.00 m 8.86 m/sv  

ROUND:  Since the values are given to three significant figures, the result remains =2 8.86 m/s.v  
DOUBLE-CHECK:  This speed is reasonable for swinging on a vine. 

6.78. THINK:   
(a) Determine the net work done on the block given a varying applied force, θcos .F  The mass of the block 
is 2.0 kg. 
(b) Given an initial speed of zero at s = 0, determine the final speed at the end of the trajectory. 
SKETCH:   

  
RESEARCH:   
(a) The net work is given by =∑net i

i

W W  and =i i i .W F d   

(b) By the work-energy theorem, = ∆netW K , where ( ) ( )∆ = −2 2
2 1/ 2 / 2.K mv mv  

SIMPLIFY:  
(a)  = + + +net I I II II III III IV IV .W F d F d F d F d  

(b)   = + 
 

2
2 net 1

2 1
2

v W mv
m
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CALCULATE:   
(a)  ( )( ) ( )( ) ( )( ) ( )( )= + + − +

= −
=

net 0.0 N 1.0 m 2.0 N 4.0 m 1.0 N 2.0 m 0.0 N 1.0 m

8.0 N m 2.0 N m
6.0 N m

W  

(b)  ( )( )
  = +     

=

=

=

2
2

2

2

2 16.0 N m 2.0 kg 0.0 m/s
2.0 kg 2

N m6.0 
kg

m6.0 
s

2.4 m/s

v  

ROUND:  Since all values are given to two significant figures, the results remain =net 6.0 N mW  and 
=2 2.4 m/s.v  

DOUBLE-CHECK:  An increase of speed of 2.4 m/s after doing ⋅6.0 N m  of work is reasonable. 

6.79. THINK:  A rocket that has a mass of = 3.00 kgm reaches a height of ⋅ 21.00 10  m  in the presence of air 

resistance which takes ⋅ 28.00 10  J  of energy away from the rocket, so = − ⋅ 2
air 8.00 10  J.W  Determine the 

height the rocket would reach if air resistance could be neglected. 
SKETCH:   

  
 

RESEARCH:  Air resistance performs − ⋅ 28.00 10  J  of work on the rocket. The absence of air resistance 
would then provide an extra ⋅ 28.00 10  J  of energy to the system. If this energy is converted into potential 
energy, the increase in height of the rocket can be determined. 

SIMPLIFY:  = − ⇒ = −t air t air  U W mgh W  
−

⇒ = air
t ,

W
h

mg
 where th  is the added height.  

CALCULATE:  
( )

( )( )
− − ⋅

= = ⋅ =
2

2
t 2

8.00 10  J
27.183 J/kg m/s 27.183 m

3.00 kg 9.81 m/s
h  

Therefore, the total height reached by the rocket in the absence of air resistance is  
= + = ⋅ + ⋅ = ⋅2 2 2

tot 0 t 1.00 10  m 0.27183 10  m 1.27183 10  m.h h h  
ROUND:  Since the values are given to three significant figures, the result should be rounded to 

= ⋅ 2
tot 1.27 10  m.h  

DOUBLE-CHECK:  It is reasonable that air resistance will decrease the total height by approximately a 
fifth. 

6.80. THINK:  The mass-spring system is frictionless. The spring constant is k = 100. N/m and the mass is 0.500 
kg. For a stretch of 25.0 cm, determine (a) the total mechanical energy of the system, (b) the speed of the 
mass after it has moved 5.0 cm (at x = 20.0 cm) and (c) the maximum speed of the mass. 
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SKETCH:  
(a)   

  
(b) 

  
(c) 

  
RESEARCH:   
(a) The total mechanical energy of the system is given by = +tot .E K U  For a conservative system, it is 
known that = = =tot max maxconstant .E K U  The maximum potential energy can be calculated so the total 
mechanical energy can be determined: 

= = 2
tot max max

1 .
2

E U kx  

(b) The speed at any point can be determined by considering the difference in potential energy and 
relating this to the kinetic energy. Kinetic energy at x is given by  

( ) = −∆ = −
2 2
max

2 2
kx kxK x U , and =

2

.
2

mvK  

(c) Speed, and therefore kinetic energy, is at its maximum when potential energy is zero, i.e., at the 
equilibrium position x = 0.  Since =max maxK U , ( ) ( )=2 2

max max/ 2 / 2.mv kx  

SIMPLIFY:   

(a) = 2
tot max

1
2

E kx  

(b) ( ) ( )= = − ⇒ = −2 2 2 2 2
x max max

1 1 1   
2 2 2 x

kK x mv kx kx v x x
m

 

(c) = ⇒ = =2 2 2
max max max max max

1 1   
2 2

k kmv kx v x x
m m

 

CALCULATE:   

(a) ( )( )−= ⋅ =
21

tot
1 100. N/m 2.50 10 m 3.125 J
2

E  
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(b) ( ) ( )− −  = ⋅ − ⋅ = =    

2 21 1 2 2100. N/m 2.50 10 m 2.00 10 m 4.5 m /s 2.1213 m/s
0.500 kgxv  

(c) ( ) ( )−= ⋅ =1
max

100. N/m
2.50 10 m 3.5355 m/s

0.500 kg
v  

ROUND: The results should be rounded to three significant figures: =tot 3.13 JE , = 2.12 m/sxv  and 
=max 3.54 m/s.v  

DOUBLE-CHECK:  A total mechanical energy of 3 J is reasonable for this system, based on the given 
values. A speed anywhere other than at x = 0 must be less than at x = 0. In this case, xv  must be less than 

max .v  At = 0x the potential energy is zero. Therefore, all of the energy is kinetic energy, so the velocity is 
maximized. This value is greater than the value found in part (b), as expected. 

6.81. THINK:  The mass of a refrigerator is m = 81.3 kg. The displacement is d = 6.35 m. The coefficient of 
kinetic friction is µ =k 0.437.  
SKETCH:   

  
 

RESEARCH:  The force of friction is given by µ=f k .F N  Use Newton’s second law and = .W Fd  This net 
mechanical work is the work done by you. The net mechanical work done by the roommate is zero, since 
he/she lifts the refrigerator up and then puts it back down.  Therefore, ∆ = 0E . 
SIMPLIFY:  = ⇒ − = ⇒ =∑     0 0 ,yF N mg N mg  µ µ= ⇒ − = ⇒ = ⇒ =∑     f k k0 0xF F F F N F mg  

The work done is given by µ= = k .W Fd mgd  

CALCULATE:  ( )( )( )( )= =20.437 81.3 kg 9.81 m/s 6.35 m 2213.17 JW  

ROUND:  Rounding to three significant figures, = 2.21 kJ.W  
DOUBLE-CHECK:  Joules are a usual unit for work. One kilogram is equivalent to about 10 Newtons on 
Earth, and the fridge weighs about 100 kilograms. The fridge is being moved about 5 meters with a 
coefficient of friction around a half, so the work should be roughly ⋅ ⋅ ⋅ =0.5 100 10 5 2500 J. The calculated 
value is reasonable close to this approximation, so the calculated value is reasonable. 

6.82. THINK: A 1.00 kg block is moving between two springs with constants =1 100. N/mk  and 
=2 50.0 N/m.k  If the block is compressed against spring 1 by 20.0 cm, determine  

(a) the total energy in the system,  
(b) the speed of the block as it moves from one spring to the other and  
(c) the maximum compression on spring 2. 
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SKETCH:   
(a)   

  
(b)   

  
 
 
(c)   

  
RESEARCH:   
(a) The total mechanical energy can be determined by recalling that in a conservative system 

= = =tot max maxconstant .E U K  maxU  can be determined from spring 1: = =2
max 1 max tot

1 .
2

U k x E  

(b) ( ) ( )= ⇒ =2 2
max max max 1 max,1/ 2 / 2.K U mv k v  Since the system is conservative, the speed of the block is 

maxv  anytime it is not touching a spring. 
(c)  The compression on spring 2 can be determined by the following relation:  

= ⇒ =2
max,2 max 2 max, 2 max

1 .
2

U K k v K  

SIMPLIFY:   

(a) = 2
tot 1 max,1

1
2

E k x  

(b)  = =21 1
max max,1 max,1

k k
v x x

m m
 

(c)  = max
max,2

2

2K
x

k
 

CALCULATE:   

(a)  ( )( )−= ⋅ =
22

tot
1 100. N/m 20.0 10  m 2.00 J
2

E  

(b)  ( ) ( )−= ⋅ =2
max

100. N/m
20.0 10  m 2.00 m/s

1.00 kg
v  

(c)  
( ) −= = ⋅ =1

max,2

2 2.00 J
2.83 10  m 28.3 cm

50.0 N/m
x  
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ROUND:  Since the least number of significant figures in the given values is three, so the results should be 
rounded to =tot 2.00 JE , =max 2.00 m/sv  and =max,2 28.3 cm.x  

DOUBLE-CHECK:  It can be seen that = =max,1 max,2 maxU U K  

( )( )

( )( )

( )( )

−

−

= = ⋅ =

= = ⋅ =

= = =

2
max,1 1 max,1

2
max,2 1 max,1

22
max m

22

2

a

2

x

1 1 100. N/m 20.0 10  m 2.00 J
2 2
1 1 50. N/m 28.3 10  m 2.00 J
2 2

1 1 1.00 kg 2.00 m/s 2.00 J
2 2

U k x

U k x

K mv

  

and all results are reasonable for the given values.   

6.83. THINK:  A block of mass, m = 1.00 kg is against a spring on an inclined plane of angle, θ = °30.0 .  The 
coefficient of kinetic friction is µ =k 0.100.  The spring is initially compressed 10.0 cm and the block 
moves to 2.00 cm beyond the springs normal length after release (therefore the block moves        d = 12.0 
cm after it is released). Determine (a) the change in the total mechanical energy and (b) the spring 
constant. 
SKETCH:   

  
RESEARCH:   
(a) Since this is not a conservative system, the change in the total mechanical energy can be related to the 
energy lost due to friction. This energy can be determined by calculating the work done by the force of 
friction: ( )µ θ= =friction friction k cos ,W F d mg d  and ( )µ θ∆ = − = −tot friction k cos .E W mg d  

(b)  From conservation of energy, the change in total energy, ∆ totE determined in (a), is equal to 
∆ + ∆ .K U  Since K = 0 at both the initial and final points it follows that  

θ∆ = − = − ∆ 2
tot final initial

1sin .
2

E U U mgd k L  

SIMPLIFY:   
(a)  ( )µ θ∆ = −tot coskE mg d  

(b)  
( )θ − ∆

=
∆

tot
2

sin
2

mgd E
k

L
  

CALCULATE:   
(a)  ( )( )( ) ( )( )−∆ = − ° ⋅ = −2 2

tot 0.100 1.00 kg 9.81 m/s cos 30.0 12.0 10  m 0.1019 JE  

(b)  
( )( )( ) ( ) ( )

( )
° − −

= − =
2

2

1.00 kg 9.81 m/s 0.120 m sin 30.0 0.1019 J
2 138.1 N/m

0.100 m
k  

ROUND:   
(a) Since the lowest number of significant figures is three, the result should be rounded to 

−∆ = − ⋅ 1
tot 1.02 10  JE  (lost to friction). 
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(b) Since the mass is given to three significant figures, the result should be rounded to =138 N/m.k  
DOUBLE-CHECK:   
(a) A change of about 0.1 J given away to friction for a distance of 12 cm and with this particular 
coefficient of friction is reasonable. 
(b) The spring constant is in agreement with the expected values. 

6.84. THINK:  A 0.100 kg ball is dropped from a height of 1.00 m. If the spring compresses 10.0 cm, determine 
(a) the spring constant and (b) the percent difference between a spring constant calculated by neglecting a 
change in gravityU  while compressing the spring, and the result in part (a). 
SKETCH:   

  
RESEARCH:   
(a) Determine the spring constant by relating the gravitational potential energy, given to the system, to the 
elastic potential energy stored by the spring: ( )= ⇒ = 2

gravity spring   1/ 2 .U U mgh kx  
(b)  If the change in gravitational potential energy is ignored during the compression:  

( )− = 21 .
2

mg h x kx  

To calculate the percent difference, use 
( ) ( )

−
=

+
1 2

1 2

% difference 100% .
/ 2

k k
k k

 

SIMPLIFY:   

(a)  = ⇒ =2
1 1 2

21   
2

mgh
mgh k x k

x
 

(b)  ( ) ( )−
− = ⇒ =2

2 2 2

21   
2

mg h x
mg h x k x k

x
 

Therefore,  

( )

( )
( )

( )

−
−

− −
= = =

+ − − −
+  

 

2 2

2 2

22
2% difference .

/ 2 222 / 2

mg h xmgh
h h xx x x
h h x h xmg h xmgh

x x

 

CALCULATE:   

(a) 
( )( )( )

( )
= =

2

1 2

2 0.100 kg 9.81 m/s 1.10 m
215.82 N/m

0.100 m
k  

(b) 
( )

= =
−

2 0.100 m
% difference 9.52%

2(1.10 m) 0.100 m
 

ROUND:  Rounding to three significant figures, =1 216 N/mk and the % difference is 9.52 %. 
DOUBLE-CHECK:  The percent difference is reasonable. 
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6.85. THINK:  The mass is m = 1.00 kg, k = 100. N/m, the amplitude is A = 0.500 m and =1 0.250 m.x  
Determine:  
(a) the total mechanical energy,  
(b) the potential energy for the system and the kinetic energy of the mass at 1x ,  
(c) the kinetic energy of the mass at x = 0, that is maxK ,  
(d) the change in kinetic energy of the mass if the amplitude is cut in half due to friction, and  
(e) the change in potential energy if the amplitude is cut in half due to friction.  
SKETCH:   

  
RESEARCH:   
(a)  Assume a frictionless table and write = =max maxtotE U K  and calculate ( )= 2

max / 2.U kA  

(b)  At 1x , the potential energy is ( )=
1 1

2k / 2xU x  and the kinetic energy will be given by: 

= −
1 1max .x xK U U  

(c)  At x = 0, all the energy is in the form of kinetic energy, therefore = = =0 max max .xK K U  
(d)  Let max *K denote that the maximum kinetic energy of the mass if there was friction between the mass 
and the table. At the moment when the amplitude is cut in half, the maximum kinetic energy is obtained 
by the maximum potential energy: 

   = = ⇒ = =   
   

2
2 2

max max max
1 1 1 1  * .
2 2 2 4 2

AK U kA K k kA  

(e)  As described in part (d), =max max
1* .
4

U U  

SIMPLIFY:   

(a) = 2
tot

1
2

E kA  

(b) ( )= − = − = −
1 1

2 2 2 2
max 1 1

1 1 1
2 2 2x xK U U kA kx k A x  
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(c) = = 2
max max

1
2

K U kA  

(d) =max max
1*
4

K K  

(e) =max max
1*
4

U U  

CALCULATE:   

(a) ( )( )= =2
tot

1 100. N/m 0.500 m 12.5 J
2

E  

(b) ( )( )= =
1

21 100. N/m 0.250 m 3.125 J,
2xU ( ) ( ) ( ) = − = 1

2 21 100. N/m 0.500 m 0.250 m 9.375 J
2xK  

(c) = =max tot 12.5 JK E  
(d) A factor of ¼. 
(e) A factor of ¼. 
ROUND:  Rounding to three significant figures:  
(a) =tot 12.5 JE  
(b) =

1
3.13 JxU =

1
9.38 JxK  

(c) =max 12.5 JK  
(d) maxK  changes by a factor of ¼. 
(e) maxU  changes by a factor of ¼. 
DOUBLE-CHECK:  As expected, the kinetic energy at any point other than x = 0 is less than the 
maximum kinetic energy. 

6.86. THINK:  Bolo has a mass of 80.0 kg and is projected from a 3.50 m long barrel. Determine the average 
force exerted on him in the barrel in order to reach a speed of 12.0 m/s at the top of the trajectory at 
15.0 m above the ground.  
SKETCH:   

  
 

RESEARCH:  When Bolo is at the top of the trajectory, his total energy (neglecting air friction) is 
= + .totE U K  This energy can be related to the force exerted by the cannon by means of the work done on 

Bolo by the cannon: = ⇒ =  / .W Fd F W d  Since all the energy was provided by the cannon, 
= ⇒ =tot tot  / .W E F E d  

SIMPLIFY:  
+  +

= = = = + 
 

2
2

tot

1
2

2

mgh mvE U K m vF gh
d d d d

 

CALCULATE:  ( )( ) ( )   = + =    

2
2 12.0 m/s80.0 kg

9.81 m/s 15.0 m 5009.14 N
3.50 m 2

F  

ROUND:  Since the number of significant figures in the calculation is three, the result rounds to 
= 5010 N.F   

DOUBLE-CHECK:  That a force of about 5000 N is required to propel an 80 kg object through such a 
distance is reasonable. 
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6.87. THINK: The mass hanging vertically from a spring can be treated using a method that is independent of 
gravitational effects on the mass (see page 185 in the text).  The mechanical energy of the mass on a spring 
is defined in terms of the amplitude of the oscillation and the spring constant.  When the mass is pushed, 
the system gains mechanical energy.  This new mechanical energy can be used to calculate the new velocity 
of the mass at the equilibrium position (b) and the new amplitude (c). 
SKETCH: Before the mass is hit, the amplitude of the oscillation is .A  After the mass is hit, the amplitude 
of the oscillation is new .A  

 

RESEARCH:  The total mechanical energy before the hit is = 21 .
2

E kA  After the hit, the total mechanical 

energy is given by = +2 2
new push

1 1
2 2

E kA mv  where pushv  is the speed with which the mass is pushed.  The 

new speed at equilibrium is given by  =2
new new

1
2

mv E  and the new amplitude of oscillation is given by 

=2
new new

1
2

kA E . 

SIMPLIFY:   

(a) = +2 2
new push

1 1
2 2

E kA mv  

(b) = new
new

2E
v

m
 

 (c) = new
new

2E
A

k
 

 CALCULATE:   

(a) ( )( ) ( )( )= + = + =2 22 2
new push

1 1 1 1100. N/m 0.200 m 1.00 kg 1.00 m/s 2.50 J
2 2 2 2

E kA mv  

(b) 
( )

= = =new
new

2 2.50 J2
2.236 m/s

1.00 kg
E

v
m

 

(c) 
( )

= = =new
new

2 2.50 J2
0.2236 m

100. N/m
E

A
k

 

ROUND:  Rounding to three significant figures: =new 2.50 JE , =max,2 2.24 m/sv  and =2 22.4 cm.A  
DOUBLE-CHECK: The mechanical energy before the hit was 

( ) ( )( )( )= = =221/ 2 1/ 2 100. N/m 0.200 m 2.00 JE kA . 

The speed of the mass passing the equilibrium point before the hit was 
( )

= = =
2 2.00 J2 2.00 m/s.
1.00 kg

Ev
m

 

It is reasonable that adding 0.5 J to the total energy by means of a hit results in an increase of the speed of 
the mass at the equilibrium point of 0.24 m/s and an increase of about 2.4 cm to the amplitude. 
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6.88. THINK: Determine the total work done by a runner on a track where the initial speed is =1 6.50 m/sv at a 
height of 50.0 m and the final speed is =2 4.50 m/sv  at a different hill with a height of 28.0 m. The runner 
has a mass of 83.0 kg, there is a constant resistance of 9.00 N and the total distance covered is 400. m.   
SKETCH:   

  
 

RESEARCH:  Let the force of resistance be denoted rF The total work done by the runner can be 
determined by considering the change in kinetic and potential energy and by considering the work done 
by the resistance force: = ∆1W K , = ∆2W U  and = r3 .W F d  

SIMPLIFY:  ( )= − = −2 2 2 2
1 1 2 1 2

1 1 1 ,
2 2 2

W mv mv m v v  ( )= −2 1 2 ,W mg h h  and =3 .rW F d  The total energy at 

point 1: = +2
tot,1 1 1

1 .
2

E mv mgh  The total energy at point 2: = +2
tot,2 2 2

1 .
2

E mv mgh  

CALCULATE:  ( )( ) ( )( )( )2 2 4
tot,1

1 83.0 kg 6.50 m/s 83.0 kg 9.81 m/s 50.0 m 4.25 10  J
2

E = + = ⋅  

( )( ) ( )( )( )= + = ⋅2 2 4
tot,2

1 83.0 kg 4.50 m/s 83.0 kg 9.81 m/s 28.0 m 2.36 10  J
2

E  

Therefore, 4 4 4
tot 4.25 10  J 2.36 10  J 1.89 10  J.E∆ = ⋅ − ⋅ = ⋅  

( )( )friction 9.00 N 400. m 3600 J.W = =   

Therefore, 4 3 4
lost tot friction 1.89 10  J 3.60 10  J 2.25 10  J.E E W= ∆ + = ⋅ + ⋅ = ⋅  

ROUND:  Rounding to three significant figures, 4
lost 2.25 10  J.E = ⋅  

DOUBLE-CHECK:  This is a reasonable value for the energy exerted by a runner with the given values. 

6.89. THINK:  Once the package is dropped on the left, the only horizontal force acting on the package is 
friction. The speed the package is moving relative to the belt is known, so the constant acceleration 
expressions can be used to determine the time taken for the package to stop sliding on the belt, i.e. the time 
it takes for the package to stop moving relative to the belt (part (a)). For the remaining problems, the 
principles of work and conservation of energy can be used to determine the required values. The known 
quantities are: v (the speed of the belt relative to the package), m (the mass of the package), µk  (the 
coefficient of kinetic friction). 
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SKETCH:   

  
RESEARCH:  Work is given by =W Fd  (



F  is parallel to 


d ).  Kinetic energy is given by ( )= 2 / 2.K mv   

The constant acceleration equations are:  = +f iv v at  and = +2 2
f i 2 .v v ax  

SIMPLIFY:   

(a)  = +f iv v at , =i 0v  ⇒ = f 
v

t
a

,    =f ,v v     µ µ= = ⇒ =f k k  ,ma F mg a g   and 
µ

= =f

k

.
v vt
a g

 

(b)  = +2 2
f i 2v v ax ,   =i 0v ,   =f ,v v    µ= k ,a g   and   

µ
= =

2 2
f

k

.
2 2
v vx
a g

 

(c)  The energy dissipated is equal to the work done by the belt minus the change in kinetic energy: 

( ) ( )( ) ( ) ( )( ) ( ) ( )µ µ µ− ∆ = − = − = − =2 2 2 2 2
k k k/ 2 / 2 / / 2 / 2W E Fd mv mg vt mv mg v g mv mv  

(d)  The total work done by the belt is ( )( ) ( )( )µ µ µ= = = =2 2
k k k/W Fd mg vt mg v g mv  

CALCULATE:  It is not necessary to calculate any values. 
ROUND:  This step is not necessary. 
DOUBLE-CHECK:  Of the work done by the conveyor belt, half has ended up as kinetic energy of the 
package and the other half has been dissipated as friction heat. This seems reasonable, since the package 
transitioned steadily from a state ( =i 0v ) where all the belt work was being dissipated as friction to a state 
( =fv v ) where none of it was. 

6.90. THINK:  There is enough information to determine all the forces. From the forces, the work can be 

determined. The given values are as follows:  m = 85.0 kg, d = 8.00 m, θ = °20.0 , = ⋅


22.40 10  NF  

and µ =k 0.200.  
SKETCH:   
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RESEARCH:  θ= ⋅ = ⇒




cosW F d Fd   θ=tot net cosW F d  
SIMPLIFY:   
(a) θ=father father cosW F d  
(b) =friction frictionW F d  (the force is parallel to the displacement), µ θ= −friction k ( sin )F mg F  

(c) = +total father frictionW W W  
CALCULATE:   
(a) ( )( ) ( )= ⋅ ° = ⋅2 3

father 2.40 10 N 8.00 m cos 20.0 1.8042 10  JW  

(b) ( ) ( )( ) ( ) ( )( )= − ⋅ ° =2 2
friction 0.200 85.0 kg 9.81 m/s 2.40 10 N sin 20.0 150.35 NF    

( )( ) ( )= ⋅ ° = − ⋅2 3
friction 1.5035 10 N 8.00 m cos 180 1.2028 10  JW  

(c) ( ) ( )= ⋅ − ⋅ = ⋅3 3 2
total 1.8042 10  J 1.2028 10  J 6.014 10  JW  

ROUND:  The given quantities have three significant figures, so the results should be rounded to 
= ⋅ 3

father 1.80 10  JW , = − ⋅ 3
friction 1.20 10  JW  and =total 601 J.W   

DOUBLE-CHECK: Note also that the total work can be calculated using the net force, θ=tot net cosW F d , 
which gives the same result.  

6.91. THINK:  The total work can be determined if the path taken and the force applied are known. These are 
both given as follows: ( ) ( )= +



2 2ˆ ˆ,  NF x y x x y y  and the points are S(10.0 m,10.0 m), P(0 m,10.0 m), Q(10.0 

m,0 m) and O(0 m,0 m). 
SKETCH:   

 
RESEARCH:  Work is given by:   

( )= = +∫ ∫





2 2 .
b b

a a

W dl F x dx y dy  

The equations of the paths are:  along OP, x = 0, dx = 0;  along OQ, y = 0, dy = 0;  along OS, y = x,      dy = 
dx;  along PS, y = 10, dy = 0;  along QS, x = 10, dx = 0. 
SIMPLIFY:   

(a) OPS: ( ) ( )

( ) ( ) ( )

= + + +

= + +
=

= + =

= +

∫ ∫

∫ ∫

2 2 2 2

2
10 10

10 102 3 3

0 0
0 0

3 3 3

OP PS

1
1 3
3

1 1 210 10 10
3 3 3

P S

O P

W x dx y dy x dx y dy

x dx
y dy y x

W W
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(b) OQS: = +

= +

= +
= +

 =  
 

∫ ∫

∫ ∫

 
 

 

10 10
2 2

0 0

32 10
3

Q S

O Q

OQ QS

PS OP

W dl F dl F

x dx y dy

W W
W W

 

(c) OS: ( ) ( ) ( )= = + ⇒ + = = =∫ ∫ ∫
10

2 2 2 2 2 3
PS

0

2 2 2 10
3

S S

OS
O O

W W x dx y dy x dx x dx x dx W   

(d) OPSQO: ( ) ( ) ( ) ( )= + + + = + + − + − = − =
3 3

3 3
OP PS SQ QO QS OQ

10 10 2 210 10 0
3 3 3 3

W W W W W W W  

(e) OQSPO: = + + + = + − − =
3 3 3 3

OQ QS SP PO
10 10 10 10 0

3 3 3 3
W W W W W  

CALCULATE:  ( ) =32 10.0 666.67.
3

 (a), (b) and (c): = 666.67.W  (d) and (e): W = 0. 

ROUND:  Rounding to three significant figures, (a), (b) and (c): W = 667 J, and (d), (e): W = 0 J. 
DOUBLE-CHECK:  The force is conservative and it should not depend on the path. It is expected 
that = + = +OS OP PS OQ QSW W W W W , which is shown to be true in the calculation. It is also expected that the 
work along a closed path is zero, which is also shown to be true in the calculations. 

6.92. THINK:  The net work done is the sum of the work done by the applied force, calculated in the previous 
problem, and the work done by the frictional force.  
SKETCH:   

 
RESEARCH:  The force of friction is constant, µ=f ,kF mg  and always points opposite to the direction of 
motion. First determine the work done by friction, Wf, and then calculate Wnet = Wapplied (from 6.87) + Wf. 
Refer to the constraints on x, y, dx, and dy determined in 6.87. 

Along OP: = −


f f ˆF F y , µ⋅ = −


f kF dl mg dy µ µ⇒ = − = −∫
10

f k k
0

10W mg dy mg  

Along OQ: = −


f f ˆF F x , µ⋅ = −


f kF dl mg dx µ⇒ = −f k10W mg  

Along OS: 
( )+

= −


f f

ˆ ˆ

2

x y
F F , ( ) ( )µ µ

µ⋅ = − + = − + = −


k k
k2

2 2
mg mg

F dl dx dy dx dx mg dx   

µ⇒ = −f k10 2W mg  

Along PS: = −


f f ˆF F x , µ⋅ = −


kF dl mg dx µ⇒ = −f k10W mg  
 
Along QS: = −



f f ˆF F y , µ⋅ = −


kF dl mgdy µ⇒ = −f k10W mg  
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SIMPLIFY:   
(a)  Friction: µ µ µ= + = − − = −OPS,f OP,f PS,f k k k10 10 20W W W mg mg mg ;    

       ⇒ Net work: ( ) µ= + = −3
OPS OPS,applied OPS,f k

2 10 20
3

W W W mg  

(b) Net work: ( ) µ= + = − =3
OQS OQS,applied OQS,f k OPS

2 10 20
3

W W W mg W  

(c) Net work: ( ) µ= + = −3
OS OS,applied OS,f k

2 10 10 2
3

W W W mg  

(d) Net work: µ= + = −OPQSO OPQSO,applied OPQSO,f k0 40W W W mg  

(e)  Net work: µ= = −OQSPO OPQSO k40W W mg  
CALCULATE:   

(a) and (b) ( ) ( )( )( )( )= − =3 2
net

2 10.0 20.0 0.100 0.100 kg 9.81 m/s 664.7 J
3

W  

(c) ( ) ( )( )( )( )( )= − =3 2
net

2 10.0 10.0 2 0.100 0.100 kg 9.81 m/s 665.3 J
3

W  

(d) and (e)  ( )( )( )= − = −2
net 40 0.100 0.100 kg 9.81 m/s 3.924 JW . 

ROUND:  Rounding to three significant figures, (a), (b) and (c): W = 665 J, and (d), (e): = −3.92 JW . 
DOUBLE-CHECK:  The work is slightly reduced but within the significant figures quoted in the question, 
friction only changes the result for (d) and (e) where the path is the longest. As expected, the net work is 
path dependent because friction is a non-conservative force. 

 
Multi-Version Exercises 

6.93. THINK:  The gravitational potential energy that the snowboarder has at her highest point is dissipated by 
friction as she rides down the hill and across the flat area.  Think of her motion in two parts: riding down 
the slope and riding across the flat area.  

 SKETCH: The sketch needs to show the snowboarder sliding down the hill and on the flat area: 

  
 RESEARCH:  The energy dissipated by friction must equal the change in gravitational potential energy 

from her highest point (at the start) to her final position. The work-energy theorem gives 

slope slope flat flatmgh f d f d= + , where flatd is the distance she travels on the flat snow and sloped  is the distance 

she travels down the slope. Her original starting height is given by slope sinh d θ= . The friction force on the 

slope is given by slope k cosf mgµ θ=  and the friction force on the flat snow is given by flat kf mgµ= .  
 SIMPLIFY: Since the mass of the snowboarder is not given in the question, it is necessary to find an 

expression for the distance traveled on the flat snow flatd  that does not depend on the mass m of the 
snowboarder. Substitute the frictional forces slope k cosf mgµ θ= and flat kf mgµ=  into the work-energy 
theorem to get  
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( ) ( )
( )

slope flat

slope flat

slope flat

cos

cos

cos

k k

k k

k k

mgh mg d mg d

mgh mg d d

h d d

µ θ µ

µ θ µ

µ θ µ

= ⋅ +

= ⋅ +

= ⋅ +

 

 Finally, substitute in slope sinh d θ= for the height h and solve for flatd  to get: 

slope flat

slope flat slope

flat slope slope

slope slope
flat

cos
cos sin

sin cos
sin cos

k k

k k

k k

k

k

d d h
d d d

d d d
d d

d

µ θ µ
µ θ µ θ

µ θ µ θ
θ µ θ

µ

⋅ + =
⋅ + =

= − ⋅
− ⋅

=

 

 CALCULATE:  The question states that the distance the snowboarder travels down the slope is  

slope 38.09 md = , the coefficient of friction between her and the snow is 0.02501, and the angle that the hill 
makes with the horizontal is θ = 30.15°. Plugging these into the equation gives: 

slope slope
flat

sin cos

38.09 m sin30.15 0.02501 cos30.15 38.09 m
0.02501

732.008853 m

k

k

d d
d

θ µ θ
µ

− ⋅
=

⋅ ° − ⋅ ° ⋅
=

=

 

 ROUND: The quantities in the problem are all given to four significant figures. Even after performing the 
addition in the numerator, the calculated values have four significant figures, so the snowboarder travels 
732.0 m along the flat snow.  
DOUBLE-CHECK: For those who are frequent snowboarders; this seems like a reasonable answer: travel 
38.0 m down a slope of more than 30°, and you go quite far: almost three quarters of a kilometer. Working 
backwards from the answer, the snowboarder traveled 732.0 m along the flat snow and 38.09 m along the 
slope, so the energy dissipated is 

( ) ( ) ( )slope slope flat flat 0.02501 cos 30.15 38.0 m +0.02501 732.0 mf d f d mg mg+ = ° ⋅ , or 19.13mg.  

Since this must equal the loss in gravitational potential, we know 19.13mgh mg= , so the start was 19.13 m 
above the flat area. This agrees with the values given in the problem, where the snowboarder traveled  
38.09 m at a slope of 30.15°, so she started 38.09sin30.15 19.13= meters above the horizontal area.  

6.94. slope k slope k flatsin cosd d dθ µ θ µ= +  

 
( )

( )
slope

k
slope flat

sin 30.37 m sin30.35
0.02881

cos 30.37 m cos30.35 506.4 m
d

d d
θ

µ
θ

°
= = =

+ °+
 

6.95. slope k slope k flatsin cosd d dθ µ θ µ= +  

 ( ) ( )

slope k slope k flat

k
slope flat

k

sin cos
0.03281478.0 m 32.65 m

sin cos sin30.57 0.03281 cos30.57

d d d

d d

θ µ θ µ
µ

θ µ θ

− =

= = =
− °− °

 

6.96. THINK:  At the maximum height, the baseball has no kinetic energy, only gravitational potential energy.  
We can define zero gravitational potential energy at the point where the catcher gloves the ball. Then the 
total gravitational potential energy at maximum height equals the total kinetic energy when the ball was 
caught. The velocity is computed from the kinetic energy. 
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 SKETCH: Sketch the path of the baseball, showing the different heights: 

   
 RESEARCH:  The gravitational potential energy is given by K mgh= and the total kinetic energy is given 

by 21
2

KE mv= . In this case, the kinetic energy when the baseball lands in the catcher’s mitt is equal to the 

gravitational potential energy difference from the maximum height to the height at which the catcher 
caught the baseball.   

 SIMPLIFY: To find the velocity of the baseball when it was caught, it is necessary to note that K = KE. This 

means that 21
2

mgh mv=  or 
2

2
vgh = . Since the height h in this problem is really the difference between the 

maximum height and the height at which the ball was caught ( max catcherh h h= − ), the equation can be 
solved for the velocity when the ball is caught: 

( )
( )

2

2
max

max

2
2

2
catcher

catcher

v gh

v g h h

v g h h

=

= −

= − −

 

 Since the baseball is moving downward when it was caught, we take the negative square root to indicate 
that the velocity is in the downward direction.  

 CALCULATE:  The maximum height of the baseball and the height at which it was caught are given in the 
problem as 7.653 m and 1.757 m, respectively.  The velocity is then calculated to be 

     ( ) ( )2
max2 2 9.81 m/s 7.653 m 1.757 mcatcherv g h h= − − = − ⋅ − , or –10.75544141 m/s 

 ROUND: The measured heights are all given to four significant figures, and the height h calculated by 
taking their difference also has four significant digits. These are the only measured values used in the 
problem, so the final answer should also have four significant digits. The velocity of the ball when it was 
caught was 10.76 m/s towards the ground.  
DOUBLE-CHECK: Normally, the speed of pitches and batted balls in baseball are given in terms of miles 
per hour. It is not uncommon for pitchers to achieve speeds of around 100 mph, but a pop fly rarely 

travels that quickly. The baseball was going m 1 mile 3600 s10.76 24.07 mph
s 1609.344 m hour
⋅ ⋅ = when it was caught, 

which is reasonable in this context.  

6.97. ( ) 2
max catcher

1
2

g h h v− =  

 ( )
( )

2

max catcher

22

max catcher 2

2

10.74 m/s
1.859 m 7.738 m

2 2 9.81 m/s

vh h
g

vh h
g

− =

= + = + =
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6.98. ( ) 2
max catcher

1
2

g h h v− =  

 ( )
( )

2

max catcher

22

catcher max 2

2

10.73
7.777 m 1.909 m

2 2 9.81 m/s

vh h
g

vh h
g

− =

= − = − =
 

6.99. THINK:  This is a projectile motion problem, where it is possible to ignore air resistance. So, the 
horizontal velocity stays constant. The vertical component of the velocity can be calculated using energy 
conservation, and then the angel that the ball strikes the ground can be calculated from the horizontal (x-) 
and vertical (y-) components of the velocity. 

 SKETCH: Sketch the path of the ball as it is thrown from the building:  

   
 RESEARCH:  Since the horizontal velocity is constant, the x–component of the velocity when the ball is 

released is equal to the x–component of the velocity when the ball lands; fx ix iv v v= = . Since the only 
change in the velocity is to the y–component, the kinetic energy from the y–component of the velocity 

must equal the change in gravitational potential energy, ( )21
2 fymgh m v= . The angle at which the ball 

strikes the ground can be computed from the x– and y– components of the velocity, plus a little 

trigonometry: 1tan fy

fx

v
v

θ −
 

=   
 

. 

 SIMPLIFY:  To find the final velocity, it is necessary to eliminate the mass term from the equation 

( )21
2 fymgh m v=  and solve for the final velocity, getting 2 fygh v= . Since the horizontal velocity does not 

change, fx iv v= can also be used. Substitute these into the equation 1tan fy

fx

v
v

θ −
 

=   
 

 to get that 

1 2
tan

i

gh
v

θ −
 

=   
 

. 

 CALCULATE:  The height and initial velocity are given in the problem, and the gravitational acceleration 
on Earth is about 9.81 m/s2 towards the ground. This means that 



Chapter 6:  Potential Energy and Energy Conservation 

307 
 

1

2
1

2
tan

2 9.81 m/s 20.27 mtan
24.89 m/s

38.7023859

i

gh
v

θ −

−

 
=   

 
 ⋅ ⋅
 =
 
 

= °

 

 ROUND: The measured values in the question were given to four significant figures, and all of the 
calculations maintain that degree of accuracy. So the final answer should be rounded to four significant 
figures. The ball lands at an angle of 38.70° from the horizontal.  
DOUBLE-CHECK:  Working backwards, if the ball lands with a velocity of magnitude 

2 2

f fx fyv v v= +


, the final velocity has a magnitude 
2224.89 2 1017.2095  m/sgh+ = . The initial 

velocity was 24.89 m/s, so the ball gained ( ) ( )
2 21 11017.2095 24.89

2 2
m m− J or 198.8487 J in kinetic 

energy. Since the gravitational potential energy is given by mgh, use conservation of energy and algebra to 
solve for h: 

( ) ( )

( )

2 2

2

2

2

1 11017.2095 24.89
2 2

1 19.81 1017.2095 24.89
2 2

1 11017.2095 24.89
9.81 2 2

1 1017.2095 24.89
2 9.81
20.27

mgh m m

mh m

mh
m

= −

 = − 
 

 = − 
 

= −
⋅

=

 

This height (20.27 m) agrees with the value given in the problem, confirming the calculations.  

6.100. 1 2
tan

i

gh
v

θ −
 

=   
 

 

 
( )( )2

2
tan

2 9.81 m/s 26.01 m2
25.21 m/s

tan tan41.86

i

i

gh
v

gh
v

θ

θ

=

= = =
°

 

6.101. 1 2
tan

i

gh
v

θ −
 

=   
 

 

 

( ) ( )
( )

2 22 2

2

2
tan

2 tan

25.51 m/s tan 44.37tan
31.74 m

2 2 9.81 m/s

i

i

i

gh
v

gh v

v
h

g

θ

θ

θ

=

=

°
= = =
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Chapter 7:  Momentum and Collisions 
 
Concept Checks 

7.1. c  7.2. b  7.3. d  7.4. b  7.5. b  7.6. d  7.7. c  7.8. d  7.9. a  7.10. d  7.11. b 
 
Multiple-Choice Questions 

7.1. b   7.2. b, c   7.3. b, d   7.4. e   7.5. e   7.6. b   7.7. c   7.8. a, c, and d   7.9. c  7.10. a    
7.11. a, b, and c   7.12. c   7.13. a    
 
Conceptual Questions 

7.14. She should push object B because it is 10 times more massive than object A. Momentum is conserved here 
so, after she pushes both she and the object have the same momentum.  Since object A has the same mass 
as the astronaut, it will also have the same speed as the astronaut after she pushes it.  Since object B is 10 
times more massive than object A, the astronaut will have 10 times the speed of the object. 

7.15. If the bullet passes through the block then the bullet carries momentum with it. Since momentum is 
conserved, the block now has less momentum than it did when the bullet remained lodged in the block (in 
which case it imparted all of its momentum to the block). Since the block now has less momentum, its 
maximum height is reduced. In contrast, if the bullet bounces off the block, then the maximum height of 
the block is increased. This is again because momentum is conserved. The block now has a momentum 
equal to the initial momentum of the block plus an additional momentum equal in magnitude to the 
bullet’s final momentum. 

7.16. No, this is not a good idea. The steel cable will not gradually absorb energy from the jumper. Because of 
this, the jumper’s kinetic energy will be transferred to the cable very suddenly, leading to a much greater 
impulse and a higher probability that the jumper will be hurt or the cable breaks. Because the bungee cord 
stretches, the jumper’s kinetic energy and momentum will be transferred much more gradually to the 
cord, leading to a smaller impulse. 

7.17. The momentum of the block/ball system is not conserved. The details of the impact are complex, but in 
simple terms it is like a ball bouncing directly on the ground: the ground remains (ideally) motionless and 
the ball experiences an impulse that changes its momentum. However, since the impulse from the ice will 
in this case be straight up, the horizontal components of momentum for the ball and for the block will be 
equal and opposite, since their sum must be zero. Also, if the impacts between the ball and the block and 
between the block and the ice are both perfectly elastic, then kinetic energy will be conserved and therefore 
the total kinetic energy of the block/ball system will be exactly the same before and after--again on the 
(ideal) assumption that the ice does not move and therefore does not aquire any kinetic energy. 

7.18. Conservation of momentum is applicable only when there are no external forces acting on the object of 
interest. In the case of projectiles, gravity acts on the system and will accelerate the objects. We compute 
the momentum immediately before and after the collision or explosion so that the time interval is very 
small. In this case, the acceleration due to gravity is negligible and momentum can be considered to be 
conserved. 

7.19. (a)  The carts exert forces only during the collision. Hence, the curves must go to zero at the beginning and 
the end of the time shown on the plots. Only #4 and #5 do this. During the collision, cart B exerts a 
positive force (i.e., a force in the positive x-direction) and cart A exerts a negative force. Graph #5 is 
consistent with this. 
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(b)  Initially, cart A’s position is a constant in time (i.e., a horizontal line in the graph) and cart B’s position 
is increasing linearly (i.e., constant positive velocity). After the collision, both A and B move with constant 
velocity. B’s speed is reduced and A’s speed is increased.  Graph #2 shows this behavior. 
(c) All initial and final velocities of the carts are constants (i.e. horizontal lines in the graph). B’s final 
velocity is less than its initial velocity and A’s final velocity is increased from its initial velocity of zero. 
Because B has the larger mass, the velocity change in A is greater than that of B. Graph #7 could describe 
these properties. 
(d) The initial and final accelerations of both carts are zero. During the collision, cart B decelerated (i.e., 
negative acceleration) and cart A’s acceleration is positive. This is as shown in graph #4. 
(e) Momentum is conserved; the sum of B’s momentum and A’s momentum must be a constant at all 
times. The momenta of both carts are constants before and after the collision. A’s momentum increases 
and B’s momentum decreases during the collision, and A’s initial momentum is zero. Only graph #6 
satisfies all of these constraints. 

7.20. The air bag is softer than the dashboard and the steering wheel. As the occupant continues to move 
forward due to inertia immediately after the collision, this momentum will eventually be transferred to the 
car. In the case of no air bag, the steering column and dashboard absorb the momentum very abruptly and 
a great impulse causes injury. In the case of the air bag, the momentum transfer is much more gradual; as 
the occupant compresses the air bag, the forces that the air bag exerts on the passenger is gradually 
increases due to the increasing pressure of the air in the air bag. Thus the impulse is partially mitigated and 
injury is reduced. 

7.21. Momentum is conserved. The total momentum of the rocket-fuel system is always zero. The momentum 
with which the fuel is expelled from the rocket is equal in magnitude and opposite in direction to the 
momentum of the rocket itself. The rocket must move in order to conserve the total momentum. 
Energy is also conserved, if we include the chemical energy stored in the fuel. A chemical reactor converts 
the fuel’s chemical potential energy to mechanical kinetic energy, with the velocity directed out the fuel 
nozzles. 

7.22. By riding the punch, the momentum transfer to the boxer’s head occurs over a greater time interval than if 
the boxer stiffens his neck muscles. In the latter case, the momentum transfer is very abrupt and the boxer 
experiences a greater force resulting in greater damage. By pulling his head back, the boxer lengthens the 
time interval and thereby reduces the impact force, leading to less injury. 

7.23. Momentum is conserved. As the car is filled with water, the total mass being transported increases. In 
order for the momentum to remain constant, the speed of the rail car must decrease. 
 

Exercises 

7.24. THINK: The masses and the speeds of all the objects are given. The kinetic energy and momentum of each 
object can be directly computed, and then sorted in decreasing order. 

 m v 
(a) 610  kg  500 m/s  
(b) 180,000 kg  300 km/h  
(c) 120 kg  10 m/s  
(d) 10 kg  120 m/s  
(e) −⋅ 272 10  kg  ⋅ 82 10  m/s  

SKETCH:   
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RESEARCH:  = 21
2

E mv , =p mv  

SIMPLIFY:  Not applicable. 
CALCULATE:   

(a) ( )( )= = ⋅26 111 10 500 m kg 1.3 1/ 0 Js
2

 E ,  ( )( )= = ⋅6 810  kg 500 m/s 5.0 10  kg m/s,p  

(b) ( ) ( )  ⋅  = =


⋅
 

5 8
2

1 1000 m/km1.8 10 300 km/h
2 3

 kg 6.3
600 s h

10 ,
/

 JE  

( ) ( )  = ⋅ = ⋅  
  

75 1000 m/km1.8 10  kg 300 km/h 1.5 10  kg m/s
3600 s/h

p  

(c) ( )( )= ° =2 49.5 J 0.442 kg sin58.0 5.610 kg m/syp ,  ( )( )= =120 kg 10 m/s 1200 kg m/sp  

(d) = = ⋅2 41 ( )(120 10 kg 7.2m/s) 10 J
2

 E ,  ( )( )= =10 kg 120 m/s 1200 kg m/sp  

(e) ( )( )− −= ⋅ ⋅ = ⋅
227 8 111 2 10  kg 2 10  m/s 4 10  J

2
E ,  ( )( )− −= ⋅ ⋅ = ⋅27 8 192 10  kg 2 10  m/s 4 10  kg m/sp  

ROUND:  Rounding to one significant figure: 

 E [J] p [kg m/s] 

(a) ⋅ 111 10  ⋅ 85 10  
(b) ⋅ 86 10  ⋅ 72 10  
(c) ⋅ 36 10  ⋅ 31 10  

(d) ⋅ 47 10  ⋅ 31 10  

(e) −⋅ 114 10  −⋅ 194 10  

DOUBLE-CHECK:  In order from largest to smallest energy:  (a), (b), (d), (c), (e); and momentum: (a), 
(b), (d) = (c) , (e). 

7.25. THINK:  Compute the ratios of the momenta and kinetic energies of the car and SUV.  

=car 1200. kg,m = =SUV car car
31 5
2

,.m m m  =car 72.0 mph,v  and =SUV car
2
3

.v v  

SKETCH:  

 
RESEARCH:  
(a) =p mv   

(b)
 

= 21
2

K mv
 

SIMPLIFY:   

( ) ( )
= = car carSUV SUV SUV

car c cara rr car ca

3 2
( )

2 3
a  

m vm v
m v m v

p
p

 
( )
( )

( ) ( )( )
= =

2
2

car carSUV SUVSUV
22

car car carcar car

3 / 2 2 31 2
(b) 

1 2

m vm v

K m vm v
K
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CALCULATE:   

( )( )
= =SUV

car

3 2 2 3
(a) 1

1
p
p

 
( )( ) ( )( )

= = = =
2

SUV

car

3 2 4 9
(b) 2 /

3 / 2 2 / 3
1

3 0. 6
1

66 7
K
K

 

ROUND:  (a) =SUV

car

1.0
p
p

  (b) =SUV

car

0.67
K
K

 

DOUBLE-CHECK:  Although the car is lighter, it is moving faster. The changes in mass and speed cancel 
out for the momentum but not for the kinetic energy because the kinetic energy is proportional to 2 .v  

7.26. THINK:  Both the mass and velocity of the proton are given; = 2938.3 MeV/ ,m c  and =17,400 km/s.v   
The velocity of the proton must be converted to units of c, the speed of light. 

= ⋅ = ⋅8 52.998 10  m/s 2.998 10  km/s,c      = = =   ⋅   517,400 km/s 17,400 km/s 0.0580387 .
2.998 10  km/s

c cv c
c

 

SKETCH:  

 
RESEARCH: =p mv  
SIMPLIFY:  No simplification is required. 
CALCULATE:  ( )( )= =2938.3 MeV/ 0.0580 54.4577 38 Me7 V/cp c c  

ROUND:  Round to three significant figures. = 54.5 MeV/p c  
DOUBLE-CHECK:  For something as small as a proton, moving at large speeds, units in terms of MeV 
and c are more reasonable than J and m/s. 

7.27. THINK:  The ball’s velocity can be determined from its kinetic energy. The angle of the ball’s velocity is 
given, so the velocity vector can be determined.  The components of the ball’s momentum can be 
computed from the velocity vector and the mass.  m = 442 g,   θ = °58.0 ,   and  K = 49.5 J. 
SKETCH:  

 

RESEARCH:  = 21 ,
2

K mv   θ= c ,osxv v   = ,x xp mv   θ= s ,inyv v  and  

ϕ −   = − ° −
=


1 16.756 m/s 50.27 .

13.928 m/s
tan  

SIMPLIFY:  =
2 ,Kv
m

   θ θ θ= = = =
2cos cos 2 cos ,x x

Kp mv mv m Km
m

   ϕ = °50.3 .  

CALCULATE:  ( )( )= ° =2 49.5 J 0.442 kg cos58.0 3.505 kg m/s,xp   

( )( )= ° =2 49.5 J 0.442 kg sin58.0 5.610 kg m/syp  

ROUND:  The answers should be rounded to 3 significant figures:  = 3.51 kg m/s,xp  and 
= 5.61 kg m/s.yp  
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DOUBLE-CHECK:  The values seem appropriate. Note that >y xp p . This makes sense because the angle 
of deflection is greater than °45 . 

7.28. THINK:  The change of momentum is ∆ −=
   

2 1pp p . Its magnitude is −
 

2 1p p . The magnitude and 

direction can be calculated by components. 
SKETCH:  

 
 

RESEARCH:  =
 

p mv ,   θ= 11, 1sinxv v ,   θ= − 11, 1cos ,yv v    θ=2, 2 2sinxv v ,   θ=2, 2 2cos ,yv v   = +2 2 ,x yp p p   

and  ϕ −  
 =
 

1n .ta y

x

p
p

 

 
SIMPLIFY: ( )− = −∆ =

   

2 1 2 1 ,p m v vp p  θ θ∆ = ∆ = − = −2, 1, 2 2 1 1( ) ( sin sin ),x x x xp m v m v v m v v  

( )θ θ∆ = −2 2 1 1cos c ,osyp m v v  
θ θ

ϕ
θ θ

− −∆   −
=   ∆ −  

= 1 1 2 2 1 1

2 2 1 1

cos cos
tan ,

sin sin
tan y

x

p v v
p v v

 and finally, 

( ) ( ) ( ) ( )θ θ θ θ ∆ = ∆ + ∆ = − + − 
 1/222 2 2

2 2 1 1 2 2 1 1sin sin cos cos .yxp p p m v v v v  

CALCULATE:  ( )( ) ( )( )θ θ= − = − = −° °2 2 1 1sin sin 10.0 m/s 27.0 m/s 13.928 m/s,sin71.0 sin60.0xv v v  

( )( ) ( )( )θ θ= − = − − =° °2 2 1 1cos cos 10.0 m/s 27.0 m/s 16.756 m/s,cos71.0 cos60.0yv v v  

( ) ( ) ∆ = − + = 
 1/22 20.250 kg 13.928 m/s (16.756) 5.447 kg m/s,p   ϕ −   = − ° −

=


1 16.756 m/s 50.27 .
13.928 m/s

tan  The 

sign is negative because one of the components is negative. To determine the direction, draw a diagram. 

 
ROUND:  The answers should be rounded to 3 significant figures:  ∆ =



5.45 kg m/s,p   and  ϕ = °50.3 .   

The magnitude is 5.45 kg m/s . The direction is upwards and to the left 50.3  along the horizontal. 
DOUBLE-CHECK:  To get the directions correct, it is far more useful to draw diagrams here than it is to 
rely on the sign of −1tan . 

7.29. THINK:  Lois has a mass of 50.0 kg and speed 60.0 m/s. We need to calculate the force on Lois, sF , when 
∆ = 0.100 st . (Subscript s means “Superman, mostly, with a small assist from air resistance.”) Then we 
want the value of ∆t where acceleration is a = 6.00g, which when added to the 1.00g required to counteract 
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gravity will mean Lois is subjected to 7.00g total. (A person standing motionless on the ground experiences 
1 g, and any upward acceleration means additional g’s.) 
SKETCH:  

 
RESEARCH:  The impulse is defined as the change in momentum,  = ∆ = ∆net .J p F t  
SIMPLIFY:  Applying Newton’s second law and assuming the force exerted is in the positive y-direction, 

=∑ .y yF ma   

( )−∆ ∆
= − = = ⇒ = + = +

∆ ∆ ∆
f

s snet   .im v vp p
F F mg ma F mg mg

t t t
 Since =f 0,v  ∆ = 0.75 s.t  

CALCULATE:  = −60.0 m/siv  (Note the negative sign as v is in the negative y-direction), 

( )( ) ( )( )−
= − =s

2 50.0 kg 60.0 m/s
50.0 kg 9.81 m/s 30,490.5 N,

0.100 s
F   ( )= ⇒ = =net6.00     6.00 ,a g F ma m g   

and  

( ) ( ) ( )
− −

∆ = ∆ = − = ⇒ ∆ = = = =i i
f i fnet 2

60.0 m/s,  0    1.0194 s.
6.00 6.00 6.00 9.81 m/s
mv v

F t p m v v v t
m g g

 

ROUND:  =s 30,500 NF   and  ∆ =1.02 s.t  
DOUBLE-CHECK:  The minimal time ∆ =1.02 st  is reasonable. 

7.30. THINK:  A 9.09 kg  bag of hay has an initial velocity of 2.7 m/s . I want to calculate the impulse due to 
gravity. 
SKETCH:  

 
 

RESEARCH:  Impulse is defined as = ∆ = ∆


.J F t p  
SIMPLIFY:   
(a)  ( )= ∆ = −f iJ p m v v , =f 0v , = −= ⇒i 0 0  v J mvv  

(b)  ( )= −f iJ m v v , = −f 0v v , = ⇒ = −i 00    J mvv  

(c)  = ∆totalJ F t , total total 0 02 2
    

J J mv v
F mg t

mg mg mg g
−

= − ⇒ ∆ = = − = − =
−

 

CALCULATE:   
(a)  ( )( )= − = −9.09 kg 2.7 m/s 24.54 kg m/sJ  

(b)  ( )( )= − = −9.09 kg 2.7 m/s 24.54 kg m/sJ  

(c)  ∆ = =
2(2.7 m/s)

0.55 s
(9.81 N)

t   
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ROUND:  Rounding to two significant digits: 
(a)  = −25 kg m/sJ  
(b)  = −25 kg m/sJ  
(c)  ∆ = 0.55 st  
DOUBLE-CHECK:  The impulses are expected to be negative since the direction of the force due to 
gravity is in the negative y-direction and ∆t  must always be a positive value. 

7.31. THINK:  There is an 83.0-kg  running back running with a speed of 6.50 m/s . A 115-kg  linebacker 
applies a force of 900. N on the running back for ∆ = 0.750 s.t  
SKETCH:  

 
 

RESEARCH:  We use the definition of impulse, = ∆
 

aveJ F t  and ∆ =




.p J  
SIMPLIFY:  Simplification is not needed here. 
CALCULATE:   
(a)  ( )( )= ∆ = =

 

ave 900. N opposite to 0.750 s 675 Ns opposite to .J F t v v  

(b)  The change in momentum is ∆ = =




675 Ns opposite to .p J v  

(c)  The running back’s momentum is − == ⇒ = +⇒∆




 

  

f i f i        p J p Jpp pJ .  

( )( )= + = − = − =


 


f 675 kg m/s  + 83.0 kg 6.50 m/s 135.5 kg m/s 135.5 kg m/s opposite to p J mv v  
(d)  No, because the running back’s feet have touched the ground. There will be friction between their feet 
and the ground. 
ROUND:   
(a)  =





675 N s opposite to J v  

(b)  ∆ = =





675 N s opposite to p J v  
(c)  =




f 136 kg m/s opposite to p v  
DOUBLE-CHECK: The speed of the running back when his feet touch the ground is 

( ) ( )= ==f f / 135.5 kg m/s opposite to / 83.0 kg 1.63 m/s opposite to v m vp v  (rounding to three 
significant figures). So the force on the running back changed his direction in mid air. 

7.32. THINK:  The initial speed and angle of the baseball are = =i 88.5 mph 39.6 m/sv  and θ = °i 7.25 .  Its final 
speed and angle are =102.7 mph 45.9 m/s  and 35.53 .fθ = °  The mass of the ball is = 0.149 kgm . I want 
to calculate the magnitude of the impulse. 
SKETCH:  
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RESEARCH:  The vector form of impulse and momentum relation must be used in this problem: = ∆
 

J p . 
So, in terms of components:  = ∆ = −f i ,x x x xJ p p p   = ∆ = −f i ,y y yyJ p p p  where the magnitude of J  is 

= +2 2 .x yJ J J  

SIMPLIFY:  ( ) ( ) ( )θ θ θ θ− += − = − = −f i f f i i f f i icos cos cos co ,sx x xm v v m v m vJ v v   and   

( ) ( )θ θ= − +=f i f f i isin n .siy yy m v vJ vm v   The magnitude of impulse is: 

( ) ( )

( ) ( )
( )

( )

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ

= + = + + +

=

+

−

+ + +

= + +

= + +

2 22 2 2 2
f f i i f f i i

2 2
f f i i f f i i

2 2
f i i f i f i f

2 2
f i i f f i

cos cos sin sin

cos cos sin sin

2 cos cos sin sin

2 cos

x yJ J J m v v m v v

m v v v v

m v v v

m v v v

v

v

 

CALCULATE:  ( ) ( ) ( ) ( )( ) ( )° − °= + +

=

2 20.149 kg 45.9 m/s 39.6 m/s 2 45.9 m/s 35.53 7.239.6 m/s cos
12.356 

5
kg m/s

J  

ROUND:  =12.4 kg m/sJ  

DOUBLE-CHECK:  The result should be less than ( )= + =max i f 12.7 kg m/s.J m v v  

7.33. THINK:  The momentum of a photon is given to be −⋅ 271.30 10  kg m/s . The number of photons incident 

on a surface is ρ = ⋅ 213.84 10  photons per square meter per second. A spaceship has mass =1000. kgm  
and a square sail 20.0 m  wide. 
SKETCH:  

 
RESEARCH:  Using impulse, = ∆ = ∆ = −



f iJ F t p p p .  Also, = .v at  
SIMPLIFY:  In ∆ =1 st , the number of protons incident on the sail is ρ ∆= .N A t  The change in 

momentum in ∆t  is ( )∆ −= f ip N p p  ( )ρ ∆⇒ ∆ = −f i  .A t ppp   Using = −f ip p ,  

( )ρ ρ∆ −∆ −= = ⇒∆ − =i i i    2F t p pA t p F Ap . 

The actual force on the sail is ρ= − =s i2F F Ap , so the acceleration is:  
ρ

= =s

s s

2 ia
m

ApF
m

. 

CALCULATE:  ( ) = = 
 hour

3600 s 3600 s,1 hr
1 hr

t  

( )   = = ⋅       
5

week

24 hours 7 days 3600 s 6.048 10  s,1 week 1 day 1 week 1 hr
t  

( )
     = = ⋅         

mo
6

nth

365 days24 hours3600 s 1/12 year 2.628 10  s,1 month 1 day 1 year1 hour 1 month
t  

( )( )( )ρ
−

−
⋅ ⋅ ⋅

= = = ⋅
21 2 27

6

s

2
2 3.84 10  /(m  20.0 m 20.0 m 1.30 10  kg m/s2

3.994 10  m/s ,
1000. kg

s)
iA

m
p

a  

( )( )−= =⋅hour
6 2 0.0144 m/s,3600 s3.994 10  m/sv   ( )( )−= =⋅ ⋅6 2

wee
5

k 2.416 m/s,3.994 10  m/s 6.048 10  sv  
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( )( )−= =⋅ ⋅6 2 6
month 10.496 m/s,3.994 10  m/s 2.628 10  sv   

−= = ⋅ =
⋅ 6 2

98000. m/s 2.003 10  s 762.2 months.
3.994 10  m/s

t  

ROUND:  =hour 0.0144 m/s,v   =week 2.42 m/s,v   =month 10.5 m/s,v   and  = 762 months.t  
DOUBLE-CHECK:  The answer for velocities and time are understandable since the acceleration is very 
small. 

7.34. THINK:  In a time of ∆ = = ⋅ 330.0 min 1.80 10  st , 1.00 cm of rain falls with a terminal velocity of 
= 5.00 m/sv  on a roof. The area of the roof is 2100. m .  Note that mass is density times volume. 

SKETCH:  

 

RESEARCH:  Use 
( )∆

= =
∆ ∆

−f im v
F

vp
t t

, where =f 0v . 

SIMPLIFY:  = − ∆i .F mv t  The mass of the rain is ρ ,wV  where =V Ah  is the volume of the water for a 

depth h of rainfall.  ρ= − ∆i / .wF Ahv t  

CALCULATE:  From a table in the textbook, ρ = ⋅ 3 31.00 10  kg/m .w  −= = ⋅ 21.00 cm 1.00 10  m,h  

= −5.00 m/s,v  and ∆ = ⋅ 31.80 10  s.t  

( )( )( )( )−⋅ ⋅ −
= − = −

⋅

3 2

3

3 21.00 10  kg/m 100. m 1.00 10  m 5.00 m/s
2.777778 N

1.80 10  s
F  

ROUND:  Round to three significant figures: = −2.78 NF  
DOUBLE-CHECK:  This result looks reasonable. It is the equivalent of an approximately half-pound 
object sitting on the roof. 

7.35. THINK:  An asteroid has mass = ⋅ 102.10 10  kgm  and speed =12.0 km/sav , and a rocket has mass 

⋅ 48.00 10  kg . I want to calculate the speed of the rocket necessary to a. stop the asteroid, and b. divert it 
from its path by °1.00 .  
SKETCH:  
(a)   
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(b)   

   
RESEARCH:  Use conservation of momentum: =

 

i fp p . 
SIMPLIFY:   
(a) The rocket and asteroid collide head on.  = ⇒i f   p p + = +a ai R Ri a af R Rf .m v m v m v m v   The final 

velocities of the rocket and the asteroid are =Rf 0v  and =af 0.v ⇒= = −− a
R Ri a ai Ri ai

R

m   
m

v
m

v vv m  

(b) I draw a vector diagram for this collision, assuming that the final velocity of the rocket is =Rf 0.v  

 

Therefore, θ θ= ⇒ =



 



    tanta .n
Ri

Ri ai

ai

p
p p

p
  

θ θ θ= ⇒ ⇒= =    tan tan t n a   a
Ri ai R Ri a ai Ri ai

R

p m v
m

p v m v v
m

 

CALCULATE:   

(a)  = − ⋅ 3
ai 12.0 10  m/sv , 

( )( )− ⋅ − ⋅
= = ⋅

⋅

10 3
9

Ri 4

2.10 10  kg 12.0 10  m/s
3.15 10  m/s

8.00 10  kg
v  

(b)  
( )( )⋅ ⋅ °

= = ⋅
⋅

10 3
7

Ri 4

2.10 10  kg 12.0 10  m/s tan1.00
5.498 10  m/s

8.00 10  kg
v  

ROUND:   
(a)  ⋅= 9

Ri 105 s3.1  m/v  

(b)  = ⋅ 7
Ri 5.50 10  m/sv   

DOUBLE-CHECK:  For comparison, the speed of the rocket cannot exceed the speed of light, which is 
about ⋅ 83.00 10  m/s . The speed of the rocket in (a) is greater than the speed of light, which would be 
impossible. This means the rocket could not stop the asteroid. The result in (b) is large but is still less than 
the speed of light. 

7.36. THINK:  An electron has velocity = ⋅ 51.00 10  m/sxv . The vertical force is −⋅ 138.0 10  N . If = 0yv  and the 

wall is at °45 , the deflection angle θD  is °90 . I want to calculate ∆t  such that the deflection angle θD  is 

120.0 .  
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SKETCH:  

 
RESEARCH:  I first need to calculate the angle of the electron velocity after the vertical force has been 
applied. I need to calculate the angle θE  in the above diagram.  θ α= °−E 45 ,  α β θ =+ °+ D 180 ,  and 
α β= .  
SIMPLIFY:  Since it is a reflection condition, the angle of incidence is equal to the angle of reflection. 
Thus, α θ α θ⇒= °− = °−D D2     180 90 2 . ( )θ θ θ= ° − − °=° −E D D45 / 2 / 290 45 .   Using impulse, 

J F t= ∆ ( )= ∆ = −f i ,y y yp m v v  where =i 0yv  and θ=f Etany xv v .  
( )θθ − °

∆ = = DE tan / 2 45tan xx mvmv
t

F F
. 

CALCULATE:  −= ⋅ 31
E 9.1 10  kg,m  

( )( ) ( )−

−

⋅ ⋅ ° − °
∆ = =

⋅

31 5

13

9.1 10  kg 1.00 10  m/s tan 120 / 2 45
30.48 fs

8.0 10  N
t  

ROUND:  Rounding to two significant figures: ∆ = 30.5 fs.t  
DOUBLE-CHECK:  As a comparison, compute the time taken for an electron with speed 
= ⋅ 51.00 10  m/sv  to move a distance of = 91 nm 10  m:  − −= ⋅ = ⋅ =9 5 1410  m 1.00 10  m/s 1.0 10  s 10 fst .  The 

result ∆ = 30. fst  is reasonable. 

7.37. THINK:  A projectile with mass 7502 kg is fired at an angle of °20.0 . The total mass of the gun, mount 
and train car is ⋅ 61.22 10  kg . The speed of the railway gun is initially zero and = 4.68 m/sv after finishing.  
I want to calculate the initial speed of the projectile and the distance it travels. 
SKETCH:  

 
RESEARCH:  Use the conservation of momentum. =i fx xp p  and =i 0xp , so =f 0xp . 

SIMPLIFY:  θ
θ

= ⇒+ = − T T
p p T T p

p

cos 0    
cos

m v
m v v v

m
m  

= pxx v t , where t is twice the time it takes to reach the maximum height. =0 pyt v g ,  and  = 02 .t t  
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( )
θ θ θ 

= = = = 
 

2 2
p p p

p 0 p

2 2 sin cos sin2
2 y

x x

v v v
x v t v

g g g
 

CALCULATE:  
( )( )

( )
⋅

= − = −
°

6

p

1.22 10  kg 4.68 m/s
809.9 m/s

7502 kg cos20.0
v  

 
( ) ( )− ⋅ °

= =2

2809.9 m/s sin 2 20.0
42979 m

9.81 m/s
x  

ROUND:  = −p 810. m/sv  and = 43.0 km.x  
DOUBLE-CHECK:  The documented muzzle velocity for Gustav was 820 m/s, and its maximum range 
was approximately 48 km. 

7.38. THINK:  A 6.00-kg clay ball collides with a wall and then shatters into three pieces with masses 
=1 2.00 kgm , =2 1.00 kgm  and =3 3.00 kgm , and velocities =1 10.0 m/sv  at an angle of °32.0  above the 

horizontal, =2 8.00 m/sv  at an angle of °28.0  below the horizontal and 3v . I need to calculate the velocity 
of the third mass. The wall exerts a force on the ball of 2640 N for 0.100 s. 
SKETCH:  

 
RESEARCH:  To solve this problem, use the definition of impulse, = ∆ = ∆

 

J F t p , or, in component form, 
∆ = −f ix x xF t p p  and =i fy yp p  since = 0yF . 

SIMPLIFY: θ θ− ∆ = − − − −1 1 1 2 2 2 3 3 0cos cos xF t m v m v m v Mv  and θ θ= + +1 1 1 2 2 2 3 30 sin sin ym v m v m v . 
Rearranging these expressions gives: 

θ θ∆ − − −
= 1 1 1 2 2 2 0

3
3

cos cos
,x

F t m v m v Mv
v

m
   and  

θ θ− −
= 1 1 1 2 2 2

3
3

sin sin
.y

m v m v
v

m
 

Use = +2 2
3 3 3x yv v v  and θ =3 3 3tan y xv v  to get the speed and the angle. 

CALCULATE:  
( )( ) ( )( ) ( )− ° − − °

= = −3

2.00 kg 10.0 m/s sin32.0 1.00 kg 8.00 m/s sin 28.0
2.281 m/s,

3.00 kgyv  

( )( ) ( )( ) ( )( ) ( )( )− ° − ° −
=

=

3

2640 N 0.100 s 2.00 kg 10.0 m/s cos32.0 1.00 kg 8.00 m/s cos28.0 6.00 kg 22.0 m/s

3.00 kg
35.992 m/s,

xv
 

( ) ( )= + =2 2
3 35.992 m/s 2.281 m/s 36.064 m/s,v   and θ − − = = − ° 

 
1

3
2.281 m/stan 3.6263 .

35.992 m/s
 

ROUND:  Rounding to three significant figures: =3 36.0 m/sv , θ = °3 3.63  below the horizontal 
DOUBLE-CHECK:  The angleθ3  is expected to be negative or below the horizontal. 

7.39. THINK:  The mass of a sled and its contents is =full sled 52.0 kgm .  A block of mass =block 13.5 kgm  is 
ejected to the left with velocity = −block 13.6 m/sv . I need to calculate the speed of the sled and remaining 
contents. 
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SKETCH:  

 
RESEARCH:  Use the conservation of momentum. =i fp p , and =i 0p  since the sled and its contents are 
initially at rest. 

SIMPLIFY:  = + = ⇒ = −
−

block block
f block

full sled block
block 0    

m v
p m v mv v

m m
 

 

CALCULATE:  
( )( )−

= − =
−

13.5 kg 13.6 m/s
4.7688 m/s

52.0 kg 13.5 kg
v  

ROUND:  = 4.77 m/sv  

DOUBLE-CHECK:  Because the sled and its remaining contents have a mass larger than the mass of the 
block, it is expected that the speed of the sled and the remaining contents is less than the block’s speed, i.e. 
< blockv v . 

7.40. THINK:  The mass of the book is =B 5.00 kgm  and the mass of the person is = 62.0 kg.m  Initially the 
book and the person are at rest, and then the person throws the book at 13.0 m/s. I need to calculate speed 
of the person on the ice after throwing the book. 
SKETCH:  

 
RESEARCH: We use conservation of momentum. =i fp p  and =i 0p  since the speed is initially zero. 

SIMPLIFY:  = = + ⇒ = − B B
f B B0     

m v
p mv m v v

m
 

CALCULATE:  
( )( )

= − = −
5.00 kg 13.0 m/s

1.0484 m/s
62.0 kg

v  

ROUND:  = −1.05 m/sv  
DOUBLE-CHECK:  The direction of the person’s motion should be in the direction opposite to the 
direction of the book. 
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7.41. THINK:  The astronaut’s mass is =A 50.0 kgm  and the baseball’s mass is =b 0.140 kgm . The baseball has 
an initial speed of 35.0 m/s  and a final speed of 45.0 m/s . 
SKETCH:  

 
RESEARCH:  Use the conservation of momentum. =i fp p . 

SIMPLIFY:  
( )−

= ⇒ + = + ⇒ = b i f
i f b i b f A A A

A

    0     
m v v

p p m v m v m v v
m

 

CALCULATE:  = −i 35.0 m/sv , =f 45.0 m/s,v  and 
( )( )− −

= = −A

0.140 kg 35.0 m/s 45.0 m/s
0.224 m/s.

50.0 kg
v  

ROUND:  Three significant figures: = −A 0.224 m/s.v  

DOUBLE-CHECK:  The magnitude of Av  is proportional to b Am m , which is about −310  so it would be 
expected to find the velocity of the astronaut as relatively small. 

7.42. THINK:  The mass of an automobile is =a 1450 kgm  and the mass of a railcar is =r 38,500 kg.m Initially, 
both are moving at = +i 8.7 m/s.v  The automobile leaves the railcar at a speed of = −af 22 m/s.v  I need to 
determine the distance D  between the spot where it lands and the left end of the railcar. Call the x-
component of the velocity of the railcar  rv   and that of the automobile  .av  
SKETCH:  
 

 
 

RESEARCH:  I need first to calculate the speed of the railcar just after the automobile leaves and then I 
need to find the amount of time it takes for the automobile to reach the ground. Conservation of 
momentum leads to the two equations = ⇒ + = +i f a ai r ri a af r rf    p p m v m v m v m v  and 

( )+ −
⇒= = = a r i a af

ai ri i rf
r

    .
m m v m v

v vv v
m

The final relative velocity between the automobile and the 

railcar is ∆ = −rf afv v v . The time to reach the ground is determined using = ⇒ =2 /2    2 / .h gt t h g The 
separation distance is the product of time and the relative velocity, = ∆ .D t v  
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SIMPLIFY: Insert the expression for the time and the relative velocity into the distance equation and 
obtain: 

( )
= ∆ = −

 + −
= −  

 
 +

= − 
 

a r i a af

r

a r
i

rf af

af

a
r

f

2 ( )

2

2 ( )

D t v h g v v

m m v m v
h g v

m

m m
h g v v

m

 

CALCULATE:  
 +

= + = 
 

2 1450 kg 38,500 kg
2(1.5 m) (9.81 m/s ) (8.7 m/s 22 m/s) 17.6165 m

38,500 kg
D  

ROUND: Rounding to three significant figures, =17.6 m.D   
DOUBLE-CHECK:  The value of D is reasonable.  If the mass of the automobile relative to that of the 
railcar is neglected, then the railcar’s velocity is not changed due to the recoil from the car, and the relative 
velocity between the two is simply ( )+ =8.7 22  m/s  30.7 m/s. If something moves at a speed of 30.7 m/s 

for 22(1.5 m) (9.81 m/s ) = 0.553 s, then it moves a distance of 16.977 m.  The actual answer is close to 

this estimate.  The actual answer has to be slightly bigger than this estimate because the railcar receives a 
small velocity boost forward due to the car jumping off in the backwards direction. 

7.43. THINK:  The raft is given to be of mass =r 120. kgm  and the three people of masses =1 62.0 kgm ,  
=2 73.0 kgm  and =3 55.0 kgm  have speeds =1 12.0 m/sv , =2 8.00 m/sv , and =3 11.0 m/sv . I need to 

calculate the speed of the raft. 
SKETCH:  

 
RESEARCH:  Because of the conservation of momentum, =

 

i fp p , or =i fx xp p  and =i fy yp p . The 

question provides the information that =


i 0p , i.e. =i 0xp  and =i 0yp . 

SIMPLIFY:  = +2 2
r r r .x yvv v  

θ θ
θ θ

−
= ⇒ − + = ⇒ =

−
+ + 2 2 3 3

f 1 1 2 2 3 3 r r
1 1

r
r

cos cos
0  cos cos 0  .x x x

m v m v v
p m v m v

m
v vm

m
mv  

θ θ
θ θ

+−
= ⇒ + − = ⇒+ = 2 2 3 3

f 2 2 3 3 r r r
r

sin sin
0  sin sin 0  .0y y y

m v v
p m v

m
vm v v

m
m  

CALCULATE:  

( )( ) ( )( ) ( )( )− ° − °
= =r

62.0 kg 12.0 m/s 73.0 kg 8.00 m/s cos60.0 55.0 kg 11.0 m/s cos60.0
1.2458 m/s

120. kgxv  

( )( ) ( )( )− ° + °
= =r

73.0 kg 8.00 m/s sin60.0 55.0 kg 11.0 m/s sin60.0
0.1516 m/s

120. kgyv  
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( ) ( )= + =2 2
r 1.2458 m/s 0.1516 m/s 1.2550 m/sv  

ROUND:  =r 1.26 m/sv  
DOUBLE-CHECK:  Due to the large mass of the raft, rv  is expected to be small, and it is smaller than 8.00 
m/s. 

7.44. THINK:  A missile that breaks into three pieces of equal mass 1m  = 2m  = 3m = m. The first piece has a 
speed of 30.0 m/s in the direction °28.0  east of north. The second piece has a speed of 8.00 m/s and is in 
the direction °12.0  south of west. I want to calculate the speed and direction of the third piece. 
SKETCH:  

 
RESEARCH:  Use the conservation of momentum. =

 

i fp p , and in component form =i fx xp p  and 

=i fy yp p . Also, =


i 0p . 

SIMPLIFY:  = +2 2
3 3 3x yv v v  

= =i f0x xp p , θ θ θ θ− + = ⇒ = − +1 1 2 2 3 3 1 1 2 2sin cos 0    sin cosx xmv mv mv v v v  
= =i f0y yp p , θ θ θ θ− + = ⇒ = − +1 1 2 2 3 3 1 1 2 2cos sin 0    cos siny ymv mv mv v v v  

CALCULATE:  ( ) ( )= − ° + ° = −3 30.0 m/s sin28.0 8.00 m/s cos12.0 6.26 m/s,xv  

( ) ( )= − ° + ° = −3 30.0 m/s cos28.0 8.00 m/s sin12.0 24.83 m/s,yv  

( ) ( )= − + − =2 26.26 m/s 24.83 m/s 25.61 m/s.v  

θ − − = = ° − 
1 24.83 m/stan 75.8498

6.26 m/s
. Because both 3xv  and 3 yv  are negative, we need to add °180  to the 

angle. Thus θ = ° + ° = °180 75.85 255.85 . 
ROUND:  Round to three significant figures: = 25.6 m/sv , θ = °256 , or °75.8  south of west. 
DOUBLE-CHECK:  Since 1v  is much larger than 2v , 3v  is roughly the same speed as 1v  but in the 
opposite direction. 

7.45. THINK:  A soccer ball and a basketball have masses =1 0.400 kgm  and =2 0.600 kgm  respectively. The 
soccer ball has an initial energy of 100. J and the basketball 112 J. After collision, the second ball flew off at 
an angle of °32.0  with 95.0 J of energy. I need to calculate the speed and angle of the first ball. Let 
subscript 1 denote the soccer ball, and subscript 2 denote the basketball. 
SKETCH:  
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RESEARCH:  I need to calculate the speed of the balls using =21 2mv K , or = 2v K m , and then apply 

the conservation of momentum to get =i fx xp p  and =i fy yp p . I also use =i 0yp . 

SIMPLIFY:  θ θ= ⇒ − = −i f 1 1i 2 2i 1 1f 1 2 2f 2    cos cos ,x xp p m v m v m v m v  
θ θ= = ⇒ − =i f 1 1f 1 2 2f 20    sin sin 0,y yp p m v m v   

θ=1 1f 1cosxv v  and 
θ

θ
− +

= ⇒ = 1 1i 2 2i 2 2f 2
1 1f 1 1

1

cos
sin     y x

m v m v m v
v v v

m
 and 

θ
= 2 2f 2

1
1

sin
,y

m v
v

m
 

= 1i
1i

1

2
,

K
v

m
 =

2

2i
2i

2
,

K
v

m
 =

2

2f
2f

2
,

K
v

m
 and = +2 2

1f 1 1 .x yv v v  

CALCULATE:  
( )

= =1i

2 100. J
22.36 m/s,

0.400 kg
v  

( )
= =2i

2 112 J
19.32 m/s,

0.600 kg
v  

( )
= =2f

2 95.0 J
17.80 m/s,

0.600 kg
v  

( )( ) ( )( ) ( )( )− + °
= =1

0.400 kg 22.36 m/s 0.600 kg 19.32 m/s 0.600 kg 17.80 m/s cos32.0
16.02 m/s,

0.400 kgxv

( )( ) °
= =1

0.600 kg 17.80 m/s sin32.0
14.15 m/s,

0.400 kgyv  ( ) ( )= + =2 2
1f 16.02 m/s 14.15 m/s 21.37 m/s,v  and  

θ −   = ° 
 

= 1
1

14.15 m/s 41.5 .
16.02 m/s

tan  

ROUND:  =1 21.4 m/sfv  and  θ = °1 41.5 .  

DOUBLE-CHECK:  The results for speed and angle are comparable to 2v  and θ2 , which is expected. 
From energy conservation (assuming elastic collision), the energy is = + −1f 1i 2i 2fE E E E  = 100. J + 112 J – 
95.0 J = 117 J, which corresponds to a speed of 24.2 m/s for 1fv . The result =1f 21.4 m/sv  is less than this 
because the energy is not conserved in this case. 

7.46. THINK:  Two bumper cars have masses =1 188 kgm  and =2 143 kgm  and speeds =1 20.4 m/sv  and 
=2 9.00 m/sv  respectively. I want to calculate 1v  after the elastic collision. 

SKETCH:  

 
RESEARCH:  Use the conservation of momentum and the conservation of energy. =i fp p  and =i fE E . 

SIMPLIFY:  ( ) ( )= ⇒ + = + ⇒ − = −i f 1 1i 2 2i 1 1f 2 2f 1 1i 1f 2 2f 2i                                   (1)p p m v m v m v m v m v v m v v   

( ) ( )
( )( ) ( )( )

( )
( ) ( )

=

+ = +

=

−

− −

+ +

−
+ = +

−

= −

i f

2 2 2 2
1 1i 2 2i 1f 2 2f

2 2 2 2
1 1i 1f 2 2f 2i

1 1i 1f 1i 1f 2f 2i 2f 2i

2 2f 2i
1i 1f

2

2f 2i
1 1i 1f

1 1 1 1
2 2 2 2i

E E

m v m v m v m v

m v m v

m v v m v v

v v

v v v v

m v
v v

v
v

v v
m v

 

Using (1) above, ⇒+ = + = + −1i 1f 2f 2i 2f 1i 1f 2i    v vvv v v v v .  Substituting back into the equation of 
conservation of momentum,  
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( )
( )

+ = + + −

−+ = + +
−

= +
+ +

1 1i 2 2i 1 1f 2 1i 1f 2i

1 1i 2 2i 1 2 1f 2 1i 2 2i

1 2 2
1f 1i 2i

1 2 1 2

2

m v m v m

v m v m m v m
m m m

v v v
m m m m

v m v v v

m v m v  

CALCULATE:  ( ) ( )   − ⋅
= + =   + +   

1f
188 kg 143 kg 2 143 kg

20.4 m/s 9.00 m/s 10.55 m/s
188 kg 143 kg 188 kg 143 kg

v  

ROUND:   Rounding to three significant figures: =1f 10.6 m/sv  
DOUBLE-CHECK:   It is expected that some of the kinetic energy of 1m  is transferred to 2m . As a result, 

1fv  is smaller than 2iv . Since >1 2m m , 1fv  should be smaller than 2iv . 

7.47. THINK:  The mass of the satellite is =1 274 kgm  and its initial speed is =i,1 13.5 km/sv   The initial speed 

of the planet is = −i,2 10.5 km/s.v  I want to calculate the speed of the satellite after collision. It is assumed 

that the mass of the planet is much larger than the mass of the satellite, i.e. 2 1m m . 
SKETCH:  

 
RESEARCH:  Use the conservation of energy and the conservation of momentum; =i fE E  and =i fp p . 

SIMPLIFY:  ( ) ( )= ⇒ + = + ⇒ − = −i f 1 i,1 2 i,2 1 f,1 2 f,2 1 i,1 f,1 2 f,2 i,2                              (1)p p m v m v m v m v m v v m v v   

( ) ( )
( )( ) ( )( )

( )
( ) ( )

− −

+ +

=

+ = +

=

− = −

−
+ +

−
=

i f

2 2 2 2
1 i,1 2 i,2 1 f,1 2 f,2

2 2 2 2
1 i,1 f,1 2 f,2 i,2

1 i,1 f,1 i,1 f,1 f,2 i,2 f,2 i,2

2 f,2 i,2
i,1 f,1 f,2 i,2

1 i,1 f,1

2

1 1 1 1  
2 2 2 2

E E

m v m v m v m v

m v m v

m v v v m v v v

m

v v

v v

v
v

v

v
v vv

m v

 

Using (1), ⇒+ = + −=+i,1 f,1 f,2 i,2 f,2 i,1 f,1 i,2    v v vv v v v v . Substituting back into the conservation of 
momentum equation above, 

( )
( )

+ + + −

+

=

+ = + −

= +
+
−

+

1 i,1 2 i,2 1 f,1 2 i,1 f,1 i,2

1 i,1 2 i,2 1 2 f,1 2 i,1 2 i,2

1 2 2
f,1 i,1 i,2

1 2 1 2

2

m v m v

m v m v m v m v m v
m m

v v v
m m m m

m v v m v v

m
m

 

Using the fact that 2 1m m , ( ) ( )− + ≈ −1 2 1 2 1m m m m  and ( )+ ≈2 1 22 2m m m . Therefore, 

≈ − +f,1 i,1 i,22v v v . 

CALCULATE:  =i,1 13.5 km/s,v   = −i,2 10.5 km/s,v   ( )= − + − = −f,1 13.5 km/s 2 10.5 km/s 34.5 km/sv  
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ROUND:  = −f,1 34.5 km/sv  

DOUBLE-CHECK:  The result makes sense. f,1v  should be negative since it is in the opposite direction. 

7.48. THINK:  A stone has mass of =1 0.250 kg.m  The mass of one of the shoes is =2 0.370 kgm . I need to 
calculate the speed of the shoe after collision, and then the height of the shoe. 
SKETCH:  

 
RESEARCH:  Use the conservation of momentum and energy, =i fp p  and =i fE E , as well as =2K mgh . 

SIMPLIFY:  ( )= ⇒ ++ == −⇒f i 1 1i 1 1f 2 2f 1 1i 1f 2 2f    ,0p p m v m v m mv vm v v  and  

( )( ) ( )= ⇒ = ⇒ ⇒− + + + = = −2 2
1 1i 1f 1i 1f 2 2 2f 1i 1f2 2 2f 1i 1f 2f 1f 2ff 1i      .v v v v v vm v v m v m v v m v vv v  

Substituting back into the conservation of momentum equation, 

( ) ( ) ( )= − ⇒
+

+ ==++ ⇒ 1
1 1i 1 2f 1i 2 2f 1 1 1i 1 2 2f 2f 1i

1 2

    
2

m v m v v m v m v m v v
m

m
m m v

m
 

Using = =2
2f

1 ,
2

K mv mgh   
 

= ⇒  + 

22
2f 1 1i

1 2

2 1   
2 2
v m v

h
g m m g

. 

CALCULATE:  
( )( )

( )
  
 = =    +   

2

2
2 0.250 kg 2.30 m/s 1 0.1754 m

0.250 kg 0.370 kg 2 9.81 m/s
h  

ROUND:  Rounding to three significant figures,  = 0.175 m.h   
DOUBLE-CHECK:  This is a reasonable height. As a comparison, the length of a shoelace is between 
about 0.5 m and 1.8 m. 

7.49. THINK:  Two blocks with a spring between them sit on an essentially frictionless surface. The spring 
constant is k = 2500. N/m. The spring is compressed such that −∆ = = ⋅ 23.00 cm 3.00 10  m.x I need to 
calculate the speeds of the two blocks. =A 1.00 kg,m  and  =B 3.00 kg.m   
SKETCH:   

 
 

RESEARCH:  I use the conservation of momentum and the conservation of energy. Thus =i fp p , and 

=i fE E . I also know that = 0ip  and ( )= = ∆ 2
i s 1/ 2 .E E k x  
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SIMPLIFY:  = = ⇒ + = ⇒ = −i f A A B B A A B B0  0  p p m v m v m v m v  

 
= ⇒ ∆ = + ⇒ ∆ = − + ⇒ ∆ = + 

 

2 2
2 2 2 2 2 2 2 2B B

i f A A B B A B B B B B B
A A

1 1 1      
2 2 2

m m
E E k x m v m k x m v m k x v m

m m
v v v  

Simplifying further gives: 

  ∆ ∆
+ = ∆ ⇒ = = = − 

   + + 
 

2 2 2
2 2B B

B B B A B2
BA AB

B B
A A

      and   .
1

m mk x k xm v k x v v v
mm mmm m
m m

 

CALCULATE: 
( )( )
( )

−⋅
= =

 
+ 

 

22

B

2500. N/m 3.00 10  m
0.4330 m/s

3.00 kg3.00 kg 1
1.00 kg

v  

( )= − = −A
3.00 kg

0.4330 m/s 1.299 m/s
1.00 kg

v  

ROUND:  =B 0.433 m/sv   and  = −A 1.30 m/s.v  
DOUBLE-CHECK:  The speed of block A should be larger than the speed of block B since Am is less 
than Bm . 

7.50. THINK:  An alpha particle has mass =A 4.00 um  and speed Ai ,v  and a nucleus has mass  =N 166 um  and 
is at rest. Conservation of momentum and energy can be used to calculate the kinetic energy of the nucleus 
after the elastic collision. 
SKETCH:   

 
 

RESEARCH:  Conservation of momentum and energy are: =i fp p  and =i fE E . 
SIMPLIFY:  Conservation of momentum gives  

( )= ⇒ + = ⇒ =+ −i f A Ai A Af N Nf A Ai Af N Nf  0   v mp p m v m v mv vvm  
Conservation of energy gives: 

( )
( )( )

( )
− +

+
+ =

=

+ = +

− =

=

=

= −

i f

2 2 2
A Ai A Af N Nf

2 2 2
A Ai Af N Nf

2
A Ai Af Ai Af N Nf

2
N Nf Ai Af N Nf

Ai Af Nf

Af Nf Ai

1 1 10
2 2 2

v

v

E E

m v m m v

m v v m v

m v v m

m v m
v

v v

v v

v v v
v v

v
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Substituting this back into the equation of conservation of momentum gives: 

( )( ) =
− + =

+ =

−

=
+

−A Ai Nf Ai N Nf

A Nf A Ai N Nf

N Nf A Nf A Ai

A
Nf Ai

A N

2
2

2

m v v m v
m v m m v

m v m v m
m

v
m m

v
v

v

v

 

The kinetic energy of the nucleus is: 

( ) ( )
   = = = =   +  + + 

2

2 2 2A N A NA
N N Nf N Ai A Ai A2 2

A N A N A N

4 421 1 1 ,
2 2 2

m m mm
K m v m

m
m m

v m v K
m m m m

 

which gives  

( )
=

+
N A N

2
A A N

4
.

K m m
K m m

 

CALCULATE:  
( )( )
( )

= = =
+

N
2

A

4 4.00 u 166 u
0.09190 9.190%

4.00 u 166 u

K
K

 

ROUND:  To three significant figures, =N

A

9.19 %.
K
K

 

DOUBLE-CHECK:   To check the equation, set the masses equal: 

( ) ( )
= = = =

+

2 2
2 1 2

2
1

2
1 2

2

4 4 4 1.
42

K m m m m
K mm m m

 

This means that all of energy is transferred, which is expected for two equal masses (i.e. billiard balls).  
This confirms that the derived equation is correct. Here, since the mass of the nucleus is much larger than 
the mass of the alpha particle, it is reasonable that the ratio is small.   

7.51. THINK:  Two carts, separated by a distance =0 20.0 m,x  are travelling towards each other with speeds 

=1 1.10 m/sv  and =2 0.700 m/sv . They collide for ∆ = 0.200 st . This is an elastic collision. I need to plot 
x vs. t, v vs. t and F vs. t. 
SKETCH:   

 
RESEARCH:  Use the conservation of momentum and energy to get the speeds after collision.  Then use 
the impulse = ∆ = ∆

 



J F t p  to get the force. 
SIMPLIFY:  First, need the position of the collision. Using = + ⇒0 0x x v t  = +1 10x v t   and = −2 0 2 ,x x v t    

( )= = = − ⇒ = +1 2 1 0 2 0 1 2    / .x x v t x v t t x v v   Conservation of momentum: 

= ⇒ =+ +i f 1 i1 2 i2 1 f1 2 f2  m v vp v mm vp m  
= =1 2m m m  because they are both the same type of cart.  Then   

− = −i1 f1 f2 i2 .v v vv                                                                         (1) 
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( )( ) ( )( )
−

− + − +
+ =

= +

=

+ = +

− =

=
+

−

i f

2 2 2 2
1 i1 2 i2 1 f1 2 f2

2 2 2 2
i1 f1 f2 i2

i1 f1 i1 f1 f2 i2 f2 i2

i1 f1 f2 i2

f2 i1 f1 i2

1 1 1 1
2 2 2 2

K K

m m m m

v v v

v

v v v v

v

v v v v
v v v

v v

v
v

v v

v v
 

Substituting back into (1): 
− + − − = == ⇒ ⇒ =i1 f1 i1 f1 i2 i2 f1 i2 f1 i2 f2 i1  2      and  .2v v v v v vv v v v v v  

The change of momentum is ( ) ( )∆ = =− −2 f2 i2 i1 i2 .p vm vv m v  The force on the other cart is  

( )∆
∆ = ∆ ⇒ = =

∆ ∆

−i1 i22
22 2  .

m vp
t

v
F t p F

t
   

The force on your car is equal and opposite.  

CALCULATE: The time for the collision to occur is = =
+

20.0 m 11.11 s
0.700 m/s 1.10 m/s

t   and during this 

time the other cart has moved ( )( )= =0.700 m/s 11.11 s 7.78 m.x  
ROUND:  For the two calculations shown above three significant figures are required: =11.1 st and 
= 7.78 m.x  

 

 
DOUBLE-CHECK:  Since =1 2m m  it makes sense that =f1 i2v v  and =f2 i1v v . This means that energy is 
transferred completely from one to the other. 
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7.52. THINK: There are two balls with masses =1 0.280 kgm  and 2m . The initial speeds are =1i 0v v  and 
=2 0iv . After the collision, the speeds are 1fv  and ( )=2f 01/ 2v v . I want to calculate the mass of the second 

ball. This is an elastic collision. 
SKETCH:  

 
RESEARCH:  I use the conservation of momentum and energy. =i fp p  and =i fE E . 
SIMPLIFY:   
(a)   ( )+ += ⇒ + = ⇒ ⇒= + = −i f 1 1i 2 2i 1 1f 2 2f 1 1i 1 1f 2 2f 2 2f 1 1i 1f              0     (1)p p m v m v m m m vv m v v m v m v v m v  

( )
( )( )

−

− +

=

+ =

+ =

+

=

=

= −

i f

2 2 2
1 1i 1f 2 2f

2 2 2
1 1i 1f 2 2f

2
1 1i 1f 1i 1f 2 2f

1i 1f 2f

1 2f 1

1

f i

1 1 10
2 2 2

E E

m m m

m

v v v

v v

v v

v m

m v v m v
v

v v
v v

v

 

Substituting back into (1), I have: 

( )( ) ( )
 

− = − ⇒ = =
−

−  
 

= − 1 2 1
2 2f 1 1i 2f 1i 1 1 2 2 1 1

2 2

2
2   2 1i f i

i f
f f

v v
m v v m v v m m m

v v
v

v m v  

(b)  The fraction of kinetic energy is 
( )
( )

∆
= =

2
2 2f

2
1 1i

1/ 2 .
1/ 2

K m v
f

K m v
 

CALCULATE:   
(a)     ( ) ( )( ) ( )= − = =2 0.280 kg 2 2 1 3 0.280 kg 0.840 kgm  

(b)  Using =2 13m m  and =2f 1i / 2v v , 
( )

= =
2

1 1i
2

1 1i

3 / 2 3
4

m v
f

m v
. 

ROUND:   
(a)  =2 0.840 kgm  
(b)  = 3 / 4f  
DOUBLE-CHECK:  Because 2fv  is less than 1iv  it is expected that >2 1m m . 

7.53. THINK:  A particle has an initial velocity = − ⋅ 3
i 2.21 10  m/sv . I want to calculate the speed after 6 

collisions with the left wall (which has a speed of = ⋅ 3
1 1.01 10  m/sv ) and 5 collisions with the right wall 

(which has a speed of = − ⋅ 3
2 2.51 10  m/sv ). The magnetic walls can be treated as walls of mass M. 

SKETCH:   
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RESEARCH:  Consider one wall with speed Wv . Using the conservation of momentum and energy, 
=i fp p  and =i fE E . 

SIMPLIFY:  

( ) ( )
= ⇒ + = +

− = −
i f i Wi f Wf

i f Wf Wi

     

    (1)

p p mv Mv mv Mv

m v v M v v

 

( ) ( )
( )( ) ( )( )

=

+ = +

− = −

− + − +
+ +

+ −

=
=
=

i f

2 2 2 2
i Wi f Wf

2 2 2 2
i f Wf Wi

i f i f Wf Wi Wf Wi

i f Wf Wi

Wf i f Wi

1 1 1 1
2 2 2 2

E E

mv Mv mv Mv

m v v M v

m v v M v v
v v

v v

v

v v v v
v v

v v

 

Substituting back into (1): 

( ) −
+ + − = +

+
= +

+
⇒i Wi f i f Wi f i Wi 2 m M Mmv Mv v v v v

m M
M

m
v

M
m v v  

If m M  then  =Sf 121 J.K . This means that every collision results in an additional speed of W2v . So 

after 6 collisions with the left wall and 5 collisions with the right wall, I get ( ) ( )= − + −f i 1 26 2 5 2v v v v . 

CALCULATE:  = − ⋅ 3
i 2.21 10  m/sv , = ⋅ 3

1 1.01 10  m/sv , and = − ⋅ 3
2 2.51 10  m/s.v  

( ) ( )= ⋅ + ⋅ − − ⋅ = ⋅3 3 3 4
f 2.21 10  m/s 12 1.01 10  m/s 10 2.51 10  m/s 3.943 10  m/sv  

Since the last collision is with the left wall, the particle is moving to the right and the velocity is positive. 
ROUND:  = ⋅ 4

f 3.94 10  m/sv  
DOUBLE-CHECK:  Since there have been 11 collisions, it is expected that the resulting speed is about 10 
times the original speed.  

7.54. THINK:  We have a golf ball with mass =1 0.0459 kgm and a basketball with mass =2 0.619 kgm . The 
balls are dropped from a height of 0.701 m. 
SKETCH:  
(a, b) (c) 

 

 

RESEARCH:  Use the conservation of momentum and energy as well as = ⇒ =2 2     2v gh v gh . 
SIMPLIFY:   
(a)  The momentum of the basketball is = =2 2 2 2 2p m v m gh . 

(b)  The momentum of the golf ball is = =1 1 1 1 2p m v m gh . 
(c)  The basketball collides with the floor first then collides with the golf ball. After the collision with the 
floor, the basketball’s velocity is opposite the initial velocity. (See diagram (ii) above.)  Using conservation 
of momentum, and conservation of energy:  = ⇒ + = +i 1 1i 2 2if 1 1f 2 2f  p p m v m v m v m v  and therefore  
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( ) ( )=− −1 1i 1f 2 2f 2im v m vvv                                                                 (1) 

( ) ( )
( )( ) ( )( )

=

+ = +

=− −

− + − +
+ = +

=

= + −

i f

2 2 2 2
1 1i 2 2i 1 1f 2 2f

2 2 2 2
1 1i 1f 2 2f 2i

1 1i 1f 1i 1f 2 2f 2i 2i 2f

1i 1f 2f 2i

2f 1i 1f 2i

1 1 1 1
2 2 2 2

E E

m v m v m m v

m v m v

m v v m

v

v v

v v vv v
v v

vv
v

v

v
v

v

 

Substituting back into (1), we have: 

( ) −
+ = + + −

+
⇒ +

+
= 1 2 2

1 1i 2 2i 1 1f 2 1i 1f 2i 1f 1i 2i
1 2 1 2

2
  

m m
m v v v v

m m
m

v m v m v m v v
m m

 

The speed of the golf ball is calculated using = − = −1i 1 2v v gh  and = =2i 2 2v v gh . 

( ) ( ) − + + −
− +

− +
=

+
= =

+ + +
1 2 2 1 2 2 1 2

1f
1 2 1 2 1 2 1 2

2 2
2

3
2 2 2

m m m m m m
v gh gh gh gh

m m m
m

m m m
m

m m
 

(d)  The height is calculated using ( )= ⇒ =2 22     / 2 .v gh h v g  
CALCULATE:   

(a)  ( ) ( )( )= =2
2 0.619 kg 2 9.81 m/s 0.701 m 2.296 kg m/sp  

(b)  ( ) ( )( )= =1
20.459 kg 2 9.81 m/s 0.701 m 0.1702 kg m/sp  

(c)  
( ) ( )( )

− +
= =

+1f
20.0459 kg 3 0.619 kg

2 9.81 m/s 0.701 m 10.102 m/s
0.0459 kg 0.619 kg

v  

(d)  
( )
( )

= =
2

210.102 m/s
5.201 m

2 9.81 m/s
h  

ROUND:  Rounding to three significant figures: 
(a)  =2 2.30 kg m/sp  
(b)  =1 0.170 kg m/sp  
(c)  =1f 10.1 m/sv  
(d)  = 5.20 mh  

DOUBLE-CHECK:  We can see that ≈1f 1i3v v , so ( ) ( ) ( ) ( )≈ = =2 2
1i 01i3 / 2g 9 / 2g 9h v hv . Our result in (d) 

should be about 9 times the original height. 

7.55. THINK:  There are two hockey pucks with equal mass = =1 2 0.170 kg.m m  The first puck has an initial 
speed of 1.50 m/s and a final speed after collision of 0.750 m/s at an angle of °30.0 .  We want to calculate 
the speed and direction of the second puck. 
SKETCH:   

 
RESEARCH:  We need to use the conservation of momentum, i.e. =

 

i fp p , or, in component form, 
=i fx xp p  and =i fy yp p . 
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SIMPLIFY:  θ= ⇒ + = +1i 1 1f 1 2 2i f 1  0 cos .x xxp p m v m v m v  Since = =1 2 ,m m m  θ= −2 1i 1f 1cos .xv v v  
θ= = ⇒ = +i f 1 1f 1 2 20  0 sin .y y yp p m v m v  Since = =1 2 ,m m m  θ= −2 1f 1sin .yv v  

The speed of the second puck is = +2
2 2

2
2x yv v v  and the angle is:  

θ
θ

θ −  −
=  − 

1f 1

1i 1

1

1f

sin
tan .

cos
v

v v
 

CALCULATE:  ( )( ) ( )( )= − ° + − ° =2

2 2
1.50 m/s 0.750 m/s cos30.0 0.750 m/s sin30.0 0.92949 m/s,v   and  

( )
( )

θ −
 − °

= = − °  − ° 

1 0.750 m/s sin30.0
tan 23.79 .

1.50 m/s 0.750 m/s cos30.0
  Since = =1 2m m m , the energy is conserved if 

= +1i 1 2
2

f
2 2v v v  we calculate these values to determine if the collision was elastic.  

( ) ( )= =1i
22 21.50 m/s 2.25 m/sv    and  ( ) ( ) ( )+ = + =1f 2

2 2 22 2 0.750 m/s 0.930 m/s 1.43 m/s .v v  

These values are not equal, thus ≠ +1i 1f 2K K K , and the collision is not elastic. 
ROUND:  =2 0.929 m/s,v   and  θ = − °23.8 .  
DOUBLE-CHECK:  The angle and speed for the second puck are reasonable since they are comparable to 
the angle and speed of the first puck. 

7.56. THINK:  We want to find the kinetic energy of a ball after it collides elastically with a ball at rest. We 
know the energy and can easily calculate the momentum of the balls before collision. The kinetic energy of 
the two balls respectively are =1 2.97 JK  and =2 0 JK . The masses of both balls are the same, 

= 0.210 kgm . After the collision we know only the angle the first ball makes with its own path, θ = 

1 30.6 . 
This means we have three unknowns: the velocities of the balls after collision and the angle of the second 
ball. Having three unknowns means we should have three equations. 
SKETCH:   

 
RESEARCH:  The three equations we will use are the conservation of energy and one for each of the x and 
y components of the conservation of momentum:  + = +1i 2i 1f 2f ,K K K K  + = +1i 2i 1f 2f ,x x x xp p p p   and 

+ = +1i 2i 1f 2f .y y y yp p p p Here, the kinetic energy is given by ( ) 21/ 2 mv  and the momentum by .mv  

SIMPLIFY:  + = + ⇒ + = + ⇒ = +1i 2i 1f 2f 1f 2f 1f 2f
2 2 2 2 2 21 1 1  0                                     (1)

2 2 2
K K K K mv mv mv v v v  

θ θ+ = + ⇒ + = + ⇒ = +1i 2i 1f 2f 1f 2f 1f 1 2f 2  0   cos cos                           (2)x x x x x xp p p p mv mv mv v v v  
θ θ+ = + ⇒ + = + ⇒ = +1i 2i 1f 2f 1f 2f 1f 1 2f 2  0 0   0 sin sin                              (3)y y y y y yp p p p mv mv v v  

Our goal is to solve for 1fv  in equations (1), (2) and (3) so that we can calculate the kinetic energy.  With 
this in mind, first rewrite equation (2) and (3) and then square them: 

( )θ θ θ θ θ θ= + ⇒ = − ⇒ = −1f 1 2f 2 2f 2 1f 1 2f 2 1f
22 2

1cos cos   cos cos   cos cos                 (4)v v v v v v v v v  

( )θ θ θ θ θ θ= + ⇒ = − ⇒ = − 22
1f 1 2f 2 2f 2 1f 1 2f 2 1f 1

20 sin sin   sin sin   sin sin                       (5)v v v v v v  

Next we add equations (4) and (5) so thatθ2 can be removed from the equation 

( ) ( )
( ) ( )
θ θ θ θ

θ θ θ

+ = − + −

⇒ = − + − = − +

2 2
2f 2 2f 2 1f 1 1f 1

2f 1f 1 1f 1 1f 1 1f

2 2 2 2

2 22 2 2

      cos sin sin cos

 sin cos 2 cos

v v v v v

v v v v v vv v
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Substituting f
2

2v into equations (1), we obtain 

θ θ

θ
θ

= + = + − + = − +

⇒ =
⇒ =

1f 2f 1f 1
2

f 1 1f 1f 1 1f

1f 1f

2 2 2 2 2

1

1

2

1f

2

2

     2 cos 2 cos 2

 2 2 cos
 cos

v v v v v vv v v vv v

v vv
v v

 

Note the kinetic energy of ball 1 after collision can now be represented in term of 1K  

θ θ= = =2 2 2 2
1 11f 1f 1 1 1

1 1 cos cos
2 2

K m v m v K  

CALCULATE:  = ° =2
1f · cos ( )2.97 J 30.6 2.200404 JK  

ROUND:  The kinetic energy will be given to three significant digits since both 1K  and θ1  are given to 
three significant figures. =1f 2.20 J.K  
DOUBLE-CHECK:  The kinetic energy after the collision is less than the original kinetic energy, which 
makes sense. 

7.57. THINK:  I want to find the final velocity of the molecules after they collide elastically. The first molecule 
has a speed of =1 672 m/sv at an angle of °30.0  along the positive horizontal. The second has a speed of 
246 m/s  in the negative horizontal direction. After the collision, the first particle travels vertically. For 
simplicity, we ignore rotational effects and treat the molecules as simple spherical masses. 
SKETCH:   

 
RESEARCH:  Since this is an elastic collision, there is conservation of momentum in the x and y 
components and conservation of energy. + = +1i 2i 1f 2fx x x xp p p p , + = +1i 2i 1f 2fy y y yp p p p  and =i fK K . 
SIMPLIFY:  In the x-direction, the momentum equation gives: 

θ θ θ− = ⇒ − =1i 1 2i 2f 2 1i 1 2i 2fcos cos   cos                                            (1)xmv mv mv v v v  
The y-component of the momentum gives: 

θ θ θ θ= + ⇒ = + ⇒ − =1i 1 1f 2 2 1i 1 1f 2fy 1i 1 1f 2fsin sin    sin    sin                        (2)ymv mv mv v v v v v v  
The kinetic energy gives: 

+ = + ⇒ + = +2 2 2 2 2
1i 2i 1f 2f 1i 2i 1f 2f

2 2
f

2
2

21 1 1 1   +                                   (3)
2 2 2 2 x ymv mv mv mv v v v v v

 
Squaring and adding equations (1) and (2), 

( ) ( )θ θ+ = − + −2f 2f 1i 1 2i
2

1i 1 1
2

f
22 cos sin                                                   (4)x yv v v v v v  

Substituting (4) into equation (3), 

( ) ( )
( ) ( )

θ θ

θ θ θ θ

θ θ

θ

+ = + − + −

⇒ + = + − + − +

⇒ + = + + −

⇒ −

+

−

−

1i 2i 1f 1i 1 2i 1i 1 1f

1i 2i 1f 1i 1 1i 2i 1 2i 1i 1 1i 1f 1 1f

1i 2i 1f 1i 2i 1i 2i 1 1i 1f 1

1f 1i 1f 1 1i 2i

2 22 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2 2

2

      cos sin

 cos 2 cos sin 2 sin

 2 2 cos 2 sin

 sin

v v v v v v v

v v v v v v v v v v v

v v v v v v v v v

v v v v v θ =1cos 0

 

There is only one unknown in this equation, so I can solve for 1fv . 

( )θ θ θ± − +
=1f

2
1i 1 1i 1 1i 2i 1sin sin 4 cos

2

v v v v
v  
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I can solve for 2fyv  in terms of 1fv  using θ= −2fy 1i 1 1fsinv v v . The angle θ
 ′ =  
 

2f
2

2f

arctan .y

x

v
v

 

CALCULATE:  
( )⋅ ° ± − ° + °

=

=

⋅

−

⋅ ⋅
1f

2672 m/s sin30.0 672 m/s sin30.0 4 672 m/s 246 m/s cos30.0

2
581.9908 m/s or 245.99 s

·

08 m/

v  

Since I know that the molecule travels in the positive y direction, =1f 581.9908 m/sv . 
θ= − = ⋅ ° − = −2f 1i 1 1fsin 672 m/s sin30 581.9908 m/s 245.9908 m/syv v v  

θ= − = ⋅ ° − =2f 1i 1 2i ccos 672 m/s 30 246 m/s 335.969os 1 m/sxv v v  

Therefore, ( ) ( )= + − =2f
2 2335.9691 m/s 245.9908 m/s 416.3973 m/sv  at an angle of 

θ − ′ = = − ° 
 

2
245.9908 m/sarctan 36.211 .

335.9691 m/s
 

ROUND:  =1f 582 m/sv  in the positive y-direction and =2f 416 m/sv  at an angle of °36.2  below the 
positive x-axis. 
DOUBLE-CHECK:  The results show <1f 1v v and >2f 2iv v as expected, so the answers look reasonable.   

7.58. THINK: Since the wedge is solidly attached to the ground, it will not move during the collision, because 
the Earth has, for all practical purposes, infinite mass.  This means that we can consider the surface of the 
wedge as a rigid wall and the angle of deflection relative to the normal will be equal to the angle of 
incidence relative to the normal. 

 SKETCH:  We can simply use the figure supplied in the problem as our sketch, where we indicate the 
surface normal to the wedge (dashed line), as well as the angle of incidence and the angle of reflection. 

     
 RESEARCH: In equation 7.19 we found that θ θ=f i . Since the normal to the wedge surface makes a 45°-

angle with the x-axis, this implies that the final momentum of the ball after the collision points 
horizontally. Since the collision is totally elastic the kinetic energy is conserved, which means that the 
length of the ball’s momentum vector does not change. Consequently, = − =

 

i f(0, );   ( ,0)p mv p mv . The 
momentum change of the ball in the collision is ∆ = −

  

f ip p p . Since the total momentum is  conserved in 
all collisions, the recoil momentum that the Earth receives in this collision is then = −∆

 

recoilp p . 
 SIMPLIFY: = −∆ = − − = − = − − = − −

     

recoil f i i f( ) (0, ) ( ,0) ( , )p p p p p p mv mv mv mv  

 The absolute value of the recoil momentum is = − + − =
 2 2

recoil ( ) ( ) 2p mv mv mv  

 CALCULATE: = − − = − −


recoil ( 1, 1)(3.00 kg)(4.50 m/s) ( 1, 1)(13.5 kg m/s)p  

 = =


recoil 2(13.5 kg m/s) 19.0919 kg m/sp  
 ROUND: We round the absolute value of the recoil momentum to three significant figures: 

=


recoil 19.1 kg m/sp  
 
 



Bauer/Westfall: University Physics, 2E 

  336 

 DOUBLE-CHECK: We have assumed that the wedge, which is attached to the Earth, does not move in the 
collision process.  Is it reasonable then to find that the wedge+Earth system receives a finite recoil 
momentum in the collision process?  The answer is yes, but only because we can assume that the mass of 
the Earth is practically infinitely large compared to the mass of the ball. 

7.59. THINK:  I want to find the kinetic energy of Betty and Sally after they collide together. Also, I would like 
to know if the collision is elastic. Betty and Sally have masses and velocities of =B 55.0 kg,m  

= = =,B B 22.0 km/h 6.111 m/sxv v , =S 45.0 kgm  and = = =S S, 28.0 km/h 7.778 m/syv v  respectively. After 

the collision, Betty is travelling θ = °B 76.0  from the horizontal and Sally is moving θ = °S 12.0  below the 
horizontal. 
SKETCH:   

 
RESEARCH:  Use the conservation of momentum + = +

   

Bi Si Bf Sfp p p p  to get the velocities after the 

collision. This information will allow calculation of the kinetic energy 2 / 2mv  for the skaters. 
SIMPLIFY:  The momentum gives the two following equations: 

θ θ= +B Bi S Sf S B Bf Bcos cosm v m v m v                                                            (1) 
 θ θ= − +S Si S Sf S B Bf Bsin sinm v m v m v                                                           (2) 

Solving equation (1) for Sfv , 
θ

θ
−

= B Bi B Bf B
Sf

S S

cos
cos

m v m v
v

m
 

Substituting into equation (2), 

( )

θ
θ θ

θ
θ θ θ θ

θ
θ θ θ

 −
= − + 

 
= − + +

+
=

+

B Bi B Bf B
S Si S S B Bf B

S

S Si B Bi S B Bf B S B Bf B

S Si B Bi S

S

B
S

f
B B B

cos
sin sin

cos
tan cos tan sin

tan
cos tan sin

m v m v
m v m m v

m
m v m v m v m v

m v m v
v

m

 

Similarly, 
( )

θ
θ θ θ

−
=

+
B Bi B S Si

Sf
S S B

tan
sin cos tanS

m v m v
v

m
. To get the kinetic energy, we simply plug the result into the 

equation = 21
2

K mv . 

CALCULATE: 
( )( ) ( )( )

( )( )
+

= =
+



  

Bf

45.0 kg 7.778 m/s 55.0 kg 6.111 m/s tan12.0
7.49987 m/s

55.0 kg cos76.0 tan12.0 sin76
v   and  

( )( ) ( )( )
( )( )

−
= =

+



  

Sf

55.0 kg 6.111 m/s tan76.0 45.0 kg 7.778 m/s
5.36874 m/s.

45.0 kg sin12.0 cos12.0 tan76.0
v

 

Betty’s final kinetic energy is 

then =2
B Bf

1 1546.82 J
2

m v .  Sally’s final kinetic energy is then =2
S Sf

1 648.526 J
2

m v . The ratio of the final and 

initial kinetic energy is 
+
+

= =
2 2
Bf S Sff
2 2

i B

B

Bi S Si

0.9193
v

v m v
m v mK

K m
. 
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ROUND:  Our results will be reported to 3 significant figures, the same accuracy as the given values. 
=Bf 1.55 kJK   and  =Sf 649 J.K   The ratio f iK K  is not equal to one, so the collision is inelastic. 

DOUBLE-CHECK:  These are reasonable results. 

7.60. THINK:  I want to find the mass of dark matter in terms of GM , 0v  and θ .  The initial velocity of the 
galaxy is in the x-direction. After it interacts with the dark matter it travels at 50% of its original speed in 
the direction of θ  below the x-axis. 
SKETCH:   

 
RESEARCH:  Use the conservation of momentum in the x and y directions. Also use the conservation of 
energy.  + = +Gi DMi Gf DMfp p p p , =i fK K . 
SIMPLIFY:  The momentum in the x and y direction gives: 

( ) ( )θ θ+ = ++ =G 0 G 0 DMf G 0 DMf;0 0.50 cos 0.50 si   n0 .x yM v pM pv Mv  
The conservation of energy gives: 

( ) ( )
+ +

= + ⇒ = +G G 0 G
DM

2 2 2 2
2 2DMf DMf DMf DMf2 2

G 0
D

0 0
M

1 1 0.50   0.50 .
2 2 2

x y x yp p p p
M v M v M M

M
v v

M
 

Use the conservation of energy to solve for DMM . 

( )
( )( ) ( )( )

( )
( ) ( )

( )

θ θ

θ θ

θ θ θ

θ

θ

+
=

−

− + −
=

−

− + −
=

−
−

=
+

−
=

+

= −

2 2
DMf DMf

DM 2 2
G 0

2 2

G 0 G

2

0

2 2
G 0

2 22 2
G 0

2
G 0

2 2

G

G

G

1 0.50

1 0.50cos 0.50sin

1 0.50

1 0.

0.25cos 0.2

50cos 0

5si

.50sin
1 0.50

1 cos
0.75

1.25 cos
3 4

4 1.25 co

n

s
3

x yp p
M

M v

M v M v

M v

M v
M v

M

M

M

 

CALCULATE:  There are no values to calculate. 
ROUND:  There is no rounding to do. 
DOUBLE-CHECK:  This result is reasonable. 
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7.61. THINK:  I want to know what the speed of the railroad car is after a perfectly inelastic collision occurs. 
Knowing = =1 2 1439 kgm m , =1 12.0 m/sv  and =2 0 m/s.v  
SKETCH:   

 
 

RESEARCH:  The equation for a perfectly inelastic collision with identical masses is given by 
+ =1i 2i f2v v v . 

SIMPLIFY:  ( )= + if 1i 2 / 2v v v  

CALCULATE:  ( )= + =f 12.0 m/s 0 m/s / 2 6.00 m/sv  
ROUND:  Because the velocity before the collision is given to three significant figures, keep the result to 
three significant figures.  The velocity of the cars after the collision is 6.00 m/s. 
DOUBLE-CHECK:  This is equivalent to a speed of 22 km/h, which is reasonable for railroad cars. 

7.62. THINK:  I want to know the speed of a 50.0 g bat after it catches a 5.00 g insect if they travel at 8.00 m/s 
and 6.00 m/s in opposite directions. 
SKETCH:   

 
 

RESEARCH:  Since the bat catches the insect this is an elastic collision. Use the equation 
( )= ++1i 1i 2i 2i 1 2 fm v m v mm v . 

SIMPLIFY:  
+
+

= 1i 1i 2

1

2

2

i i
f

m v m v
m m

v  

CALCULATE:  
( )( ) ( )( )+ −

= =
+f

50.0 g 8.00 m/s 5.00 g 6.00 m/s
6.727 m/s

50.0 g 5.00 g
v  

ROUND:  To three significant figures, the speed of the bat after a tasty treat is 6.73 m/s. 
DOUBLE-CHECK:  I would expect a small loss in the speed of the bat since the insect is small compared 
to it. 

7.63. THINK:  I want to know the acceleration of the occupants of each car after a perfectly inelastic collision. 
The first car has mass =1 1000. kgm  and velocity =1 33.0 m/sv  while the second has mass =2 3000. kgm  
and velocity = −2 30.0 m/sv . The collision lasts for 100. ms, or 0.100 s .  
SKETCH:   

 
 

RESEARCH:  First to find the change of moment each car experiences using the equation of perfectly 
inelastic collision, ( )+ = +1 1 2 2 1 2 fm v m v m m v . Using this find the force experienced with the help of the 
equation ∆ = ∆F t p . 

SIMPLIFY:  
+

=
+

1 1 2 2
f

1 2

.
m v m v

v
m m

  Then ( )∆ = + −1 1 2 f 1 1p m m v m v  and ( )∆ = + −2 1 2 f 2 2p m m v m v . 
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So 
( )

( )
−

=
+ ∆

2 2 1
1

1 2

m v v
a

m m t
 and 

( )
( )

−
=

+ ∆
1 21

2
1 2

.
m v v

a
m m t

 

CALCULATE:  
( )( )
( )( )

− −
= = −

+
2

1

3000. kg 30.0 m/s 33.0 m/s
472.5 m/s ,

3000. kg 1000. kg 0.100 s
a   and 

( ) ( )( )
( )( )

− −
= =

+
2

2

1000. kg 33.0 m/s 30.0 m/s
157.5 m/s .

3000. kg 1000. kg 0.100 s
a  

ROUND:  The acceleration the occupants of the smaller car feel is = − 2
1 473 m/sa , or −48.2 .g   The 

acceleration the occupants of the larger car feel is = 2
2 158 m/sa , or 16.1g . 

DOUBLE-CHECK:  This makes sense since we often hear how the drivers of smaller cars fair worse than 
those in larger cars. 

7.64. THINK:  I am looking for the speed of the bullet of mass =bu 2.00 gm  that moves the 2.00 kg block on a 
string. The kinetic energy of the block and bullet is converted to potential energy and attains a height of 
0.500 cm.  First start by converting the mass of the bullet to kilograms, =bu 0.00200 kgm , and the height 
to meters; h = 0.00500 m. 
SKETCH:   

 

RESEARCH:  First use the relation between the kinetic energy = 21
2

T mv  and the potential energy 

=U mgh . From these find the final velocity of the block and bullet. Then using the conservation of 

momentum for perfectly inelastic collisions, find the initial speed of the bullet. ( )+ = +1 1 2 2 1 2 fm v m v m m v  
SIMPLIFY:  Set the kinetic energy equal to the potential energy and solve for the velocity. Use this in the 

conservation of momentum equation: = ⇒ =2
f f

1     2 .
2

mv mgh v gh
 
Note that = =2 bl 0.v v  

( ) ( ) +
= + = + ⇒ = 1 2

1 2 f1 1
1

1 2 12   2
m

m v m m v m m gh v gh
m

m
 

CALCULATE:  ( )( )+
= =2

1
2.00 kg 0.00200 kg

2 9.81 m/s 0.00500 m 313.522 m/s
0.00200 kg

v  

ROUND:  The height attained by the block and bullet was only given to three significant figures, thus the 
velocity of the bullet will be reported as 314 m/s . 
DOUBLE-CHECK:  The speed of a typical bullet is 1000 m/s, thus our answer is reasonable. 

7.65. THINK:  The Volkswagen of mass =V 1000. kgm  was going eastward before the collision and the Cadillac 
had mass =C 2000. kgm  and velocity =C 30.0 m/sv  northward, and after the collision both cars stuck 
together travelling θ = °55.0  north of east. 
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SKETCH:   

 
RESEARCH:  The collision was perfectly inelastic so use the equation +C C V Vm v m v  ( )= +C V fm m v  for 
each component of the motion. 
SIMPLIFY:  In the east-west direction: 

( ) θ
θ

= =⇒
+

+ V V
C V f f

C V
V V    1cos

cos
 

m
m v m v

m
m

m
v

v  , 

and in the north-south direction: 

( ) θ
θ

= =⇒
+

+ C C
C V f f

C V
C C    1sin

sin
 

m
m v m v

m
m

m
v

v  

Equating these two expressions for the final velocity gives: 
θ θ

θ θ θ
= ⇒ = =

+ +
V V C C C C

V C C
C V C V V V

1 1 cos  cot
cos sin n

.
si

m v m m m
v v v

m m m m m m
v

 

CALCULATE:  ( )= ° =V
2000. kg

30.0 m/s cot55.0 42.01245 m/s
1000. kg

v  

ROUND:  The Volkswagen’s velocity is 42.0 m/s. 
DOUBLE-CHECK:  This is a reasonable result.  It’s in the same order as the Cadillac. 

7.66. THINK:  There are three things to calculate:  
(a)  the angle above the horizontal the mass A+B makes; 
(b)  the ratio f A/v v ; 
(c)  the ratio f i/E E .   
It is known that ==A Bm m m  and that = =B A2 2v v v .   By inspection, θ = °A 60.0  and θ = °60.0B . 
SKETCH:   
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RESEARCH:  The relevant equations are those for conservation of momentum for a perfectly inelastic 
collision for the x and y components, and for the kinetic energy. 

( )++ = AA BBx x xp p p , ( )++ = AA BBy y yp p p ,  and = 21
2

K mv . 

Also, = = + = =A B A B B A;  2 ;  2m m m m m m v v  
SIMPLIFY:  In the x -direction: 

( )
( ) ( )
( ) ( )

θ θ θ
θ

θ

+

+

+

+ = +

° + ° =

° + ° =

A B AB AA A A B B B

A A

A

B

AB A B

AB A BA

cos cos cos

cos 60.0 2 cos60.0 2 cos

cos 60.0 2 cos60.0 2 cos

m v m v m m v

mv m v mv

v v v

 

θ

θ

+

+

+ =

=

AB A B

AB A B

A A

A

2
2 cos

2 2
3 cos
4

v v
v

v v
 

In the y-direction: 
( )

( ) ( )
( ) ( )

θ θ θ
θ

θ

θ

θ

θ

+

+

+

+

+

+

− + = +

− ° + ° =

− ° + ° =

−
+ =

=

=

A A A B B B

A A

A B AB A B

AB A B

A AB A B

AB A B

AB A B

A

A

A A

A

B A
A

B

sin sin sin

sin 60.0 2 sin60.0 2 sin

sin 60.0 2 sin60.0 2 sin

3 2 3
2 sin

2 2
3 2 sin

2
3

sin
4

m v m v m m v

mv m v mv

v v v

v v
v

v v

v
v

 

To find the angle θ +A B , divide the equation found for the y-component by the one for the x-component. 

θ
θ
θ

θ −+

+

 
= ⇒ = ⇒  

 
AB A B

AB A

A

1
A

A
B

AB B

3
sin 1 14   tan   =tan

3 cos 3 3
4

v
v
vv

 

To find the ratio AB A/v v rearrange the y-component equation. 

θ
θ+

+

= ⇒ =AB
AB A B

B

A

AA

3 3sin   
4 4sin
v v

v
v

 

The ratio f i/K K  is: 

( ) ( )
( ) θ +

 +  
= = = = =

+
  ++     +

2 222 2A B AB
ABf AB AB

2 2 222 A AAA A B
2i
B

A B

1
2 2 2 32

1 1 4 5 5 4sin2
2 2

m v m m vK v v
K v

m

v vmv m vmv vm
 

CALCULATE:   

(a)  θ −
+

 
= = ° 

 
1

A B
1tan 30.0
3

 

(b)  = =
°

AB

A

3 3
4sin30.0 2

v
v

 

(c)  
    = = =    °     

2

f

i

2 3 2 3 3
5 4sin30.0 5 4 10

K
K

 

 
 



Bauer/Westfall: University Physics, 2E 

  342 

ROUND: 
(a)  θ + = °A B 30.0  

(b)  = =f

A

3 0.866
2

v
v

 

(c)  = =f

i

3 0.300
10

K
K

 

DOUBLE-CHECK:  These results are reasonable. When the objects collide and stick together is known as 
perfectly inelastic so we would expect the ratio f iK K  to be less than one. 

7.67. THINK:  This is essentially an inelastic collision.  Since Jane is standing still, she has no initial momentum.  
Tarzan must have initial kinetic energy such that when his and Jane’s mass are combined, their 
momentum is sufficient to make it to the tree.  Because this is an inelastic collision, energy is not 
conserved when Tarzan catches Jane, but momentum is conserved.  Tarzan’s mass is 80.0 kg, and Jane’s 
mass is 40.0 kg.  The vine Tarzan swings from is 30.0 m  long.  The cliff from which Tarzan jumps is 20.0 
meters high, and the tree limb Tarzan and Jane must reach is 10.0 m high.   
SKETCH:   

 
RESEARCH:  The problem is most easily solved by working backwards.  The potential energy of Tarzan 
and Jane when they reach the tree is ( )= +TJ T J treeU m m gh .  This potential energy must be equal to the 

kinetic energy just after the “collision”: ( )= + 2
TJ T J TJ

1
2

K m m v .  The combined momentum of Tarzan and 

Jane after the collision, ( )= +TJ T J TJP m m v , must be equal to the sum of their momenta before the collision, 

+ =T T J J T Tm v m v m v  (since Jane’s initial momentum is zero).  Tarzan’s kinetic energy just before he 

catches Jane is = 2
T T T

1
2

K m v , which must be equal to his initial total energy, 

+ = + 2
T T,0 T cliff T T,0

1g
2

U K m h m v .  Tarzan’s initial velocity, T,0v , is the desired quantity.  

SIMPLIFY: 

( ) ( )= + = + =2
TJ T J tree T J TJ TJ TJ tree

1 . Solving for v :   v 2 .
2

U m m gh m m v gh  

( ) ( ) ( )+
= + = + = = T J tree

TJ T J TJ T J tree T T T T
T

2
2 . Solving for v :   v .

m m gh
P m m v m m gh m v

m
 

( ) ( ) + +
 = = =
 
 

2 2

T J tree T J tree2
T T T T

T T

21 1
2 2

m m gh m m gh
K m v m

m m
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( )

( )

+
+ = + = =

 + = −
 
 

2

T J tree2
T T,0 T cliff T T,0 T T,0

T

2

T J tree
T,0 T cliff

T T

1 . Solving for :   
2

2 .

m m gh
U K m gh m v K v

m

m m gh
v m gh

m m

 

CALCULATE:  

( ) ( )( )
( )( )( )

 +
 = − =
 
 

2 2
2

T,0

80.0 kg 40.0 kg 9.81 m/s 10.0 m2 80.0 kg 9.81 m/s 20.0 m 7.00 m/s.
80.0 kg 80.0 kg

v  

ROUND:  Tarzan must jump from the ledge at a speed of 7.00 m/s. 
DOUBLE-CHECK:  7.00 m/s is a fast but reasonable speed for a fit person to achieve with a running 
jump. 

7.68. THINK:  I hope to find the region the second part of the cargo plane lands after the collision. Knowing the 
initial speed and mass of the Cessna to be =1 3000.0 kgm  and =1 75.0 m/sv  northward and the initial 
speed and mass of the cargo plane to be =2 7000. kgm  and =2 100. m/sv  °35.0  north of west. After the 
collision the plane drops =1600. mz  to the ground. The Cessna is =1 1000. md  at °25.0  south of west 
and one piece of the cargo plane of mass =2A 4000. kgm  is 1800. m  °22.0  east of north. 
SKETCH:   

 
RESEARCH:  In order to calculate the position of the second piece of the cargo plane I need the 
conservation of momentum in the x (east-west) component and y (north-south) component.  

′+ = + +1 2 1 2A 2Bx x x x xp p p p p . 

To find the speed of the planes after impact, use = 2 2z gt  and =d vt .  The time it takes the pieces of the 

planes to fall to the ground is = 2t z g , and the velocity of each piece is ( )= = 2v d t d g z , where d is 

the horizontal distance traveled by a given piece.  Therefore the distance traveled by each piece of debris is 

( )= = 2d vt v z g .   

SIMPLIFY:  Now solve for the x and y components of the missing piece of debris. 
′= + − −2B 1 2 1 2Ax x x x xp p p p p   and  ′= + − −2B 1 2 1 2Ay y y y yp p p p p  
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Being careful with directions, these become: 

( )

θ θ θ

θ θ θ

θ θ θ

θ
θ θ

′

′

′

′

′= − + −

= − + −

= − + −

= − + −

2 1 1 1 2A 2A 2A

2 2 2 1 2

2 2 2

2B 2B 1 1 2A

2B 2B 1 1 2A

2 2 2 1 2

A 2A

A
2B 1 2A

2

2 2 2 1 2

B 2B
2A

B

A 2A

2

cos cos sin

g g
cos cos sin

2 2
g g g

cos cos sin
2 2 2

cos
cos sin

g 2

Bx

x

x

x

p m v m v m v

m v m v m d m d
z z

m d m v m d m d
z z z

m v m m
d d

m mm z

 

The y-component is: 

( ) ( ) ( )

( )

θ θ θ

θ θ θ
θ

θ θ

′= + + −

= + + −

+
= +

′

′

′ −

2B 1 1 2 2 2 1 1 1 2A 2A 2A

2B 2B 1 1 2 2 2 1 1 1 2A 2A 2A

1 1 2 2 2 1 2A
2B 1 1 2A 2A

2B 2B2

sin sin cos

g 2 sin g 2 sin g 2 cos

sin
sin cos

g 2

y

y

y

B

p m v m v m v m v

m d z m v m v m d z m d z

m v m v m m
d d d

m mm z

 

The total distance is: ( ) ( )= +
22

2B 2B 2Bx yd d d .  The direction of the missing piece of wreckage is:  

( )θ −= 1
2B 2Btan .y xd d  

 CALCULATE:   
( )( )

( ) ( ) ( )( )
( )

( )

− °  
= + ° 

 

 
− ° = − 
 

2b
2

7000. kg 100. m/s cos35.0 3000. kg
1000. m cos25.0

3000. kg3000. kg 9.81 m/s 2 1600. m

4000. kg
                    1800. m sin22.0 3444.84 m

3000. kg

xd

 

( )( ) ( )( )
( ) ( ) ( )( )

( )

( )

+ °  
= + ° 

 

 
− ° = 
 

2b
2

3000. kg 75.0 m/s 7000. kg 100. m/s sin35.0 3000. kg
1000. m sin25.0

3000. kg3000. kg 9.81 m/s / 2 1600. m

4000. kg
1800. m cos22.0 1969.126 m

3000. kg

yd

 

( ) ( )= − + =2B 3444.84 m 1969.126 m 3967.92 m,d θ −  = = ° − 
1 1969.126 mtan 29.75

3444.84 m
 

ROUND:  3970 m from the point of the collision, at an angle of °29.8  clockwise from the negative x-axis. 
DOUBLE-CHECK:  This is a reasonable answer. The distance is of the same order as the other crash sites. 

7.69. THINK:  I want to find the coefficient of restitution for a variety of balls. 
SKETCH:   

 
RESEARCH:  Using the equation for the coefficient of restitution for heights. = 1ε H h . 

SIMPLIFY:  There is no need to simplify. 
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CALCULATE:  An example calculation:  A range golf ball has an initial height = 85.0 cmH  and a final 
height =1 62.6 cmh . 

= =
62.6 cmε 0.85818
85.0 cm

 

ROUND:  All of the coefficients of restitution will be given to 3 significant figures because all the heights 
are given to 3 significant figures. 
 
 
 
 
 
 
 
 
 
 
 
 
DOUBLE-CHECK:  All these values are less than one, which is reasonable. 

7.70. THINK:  I want to find the maximum height a ball reaches if it is started at 0.811 m and has a coefficient 
of restitution of 0.601. 
SKETCH:   

 

RESEARCH:  Using the equation = f iε /h h . 

SIMPLIFY:  = ⇒ = ⇒ =2 2
f i f i f iε /     ε /     εh h h h h h  

CALCULATE:  ( )( )= =2
f 0.811 m 0.601 0.292934011 mh  

ROUND:  The values are given to 3 significant figures so the final height is =f 0.293 m.h  
DOUBLE-CHECK:  This is a reasonable answer since <f ih h . 

7.71. THINK:  I want to know the angle relative to the wall after the ball hits the wall. The ball has mass m = 
0.162 kg, a speed of v = 1.91 m/s and collides at an angle θ = 

i 35.9  with a coefficient of restitution 
ε = 0.841.  
SKETCH:   

 

Object H  [cm] 1h  [cm] ε  
Range golf ball 85.0 62.6 0.858 
Tennis ball 85.0 43.1 0.712 
Billiard ball 85.0 54.9 0.804 
Hand ball 85.0 48.1 0.752 
Wooden ball 85.0 30.9 0.603 
Steel ball bearing 85.0 30.3 0.597 
Glass marble 85.0 36.8 0.658 
Ball of rubber bands 85.0 58.3 0.828 
Hollow, hard plastic balls 85.0 40.2 0.688 
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RESEARCH:  We will use 
ε

θ − ⊥
 

=   
 

1 i
f

i 

cot
p
p

. 

SIMPLIFY:  
θ θ

θ
ε ε

θ θ
− −   

= =   
   

1 1i i
f

i i

cos cos
cot cot

sin sin
mv
mv

  

CALCULATE:  
( )

θ −  °
= = °  ° 

1
f

0.841 cos35.9
cot 40.719775

sin35.9
 

ROUND:  All values are given to 3 significant figures. The final answer is °40.7 . 
DOUBLE-CHECK:  This is reasonable since θ θ>f i .  

7.72. THINK:  We want to find out if the ball will escape the room. The room is L = 6.00 m by 6.00 m with a 
2.00 m wide doorway located in the center of the wall. The coefficient of restitution for the ball is 0.850. 
SKETCH:   

 
 

RESEARCH:  The angle will be given by ( ) ( )1 1
f i i icot cot cotp p ε θεθ − −

⊥= =


 and this will be used 

through trigonometry to find the distances. 
SIMPLIFY: The angles are:   

( )1
2 1cot cot ,εθ θ−=  

( )( )1
3 2cot c 90ot ,θεθ − −=   and 

( )( )1
4 3cot co 90.0t .θ θε− °= −

 The distances are: 

1 / 2,d L=  
( ) ( )2 1 2ta 90n ,d L d θ° −= −  

( ) ( )3 2 3tan 90 ,d L d θ− °= −   and   

( ) ( )4 3 4ta 90n .d L d θ° −= −  
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CALCULATE: First calculate the angles 
( )1

2 cot 0.850cot 45.0 49.64 ,θ −= ° = °  

( )( )1
3 cot 0.850cot 90.00 49.64 45.00 ,  andθ −= ° − ° = °  

( )( )1 1
4 cot 0.850cot 90.00 45.00 49.64 .θ − −= ° − ° = °

 
Now calculate the distances

 

1 6.00 m 2 3.00 m,d = =  

( ) ( )2 6.00 m 3.00 m tan 90.00 49.64 2.550 m,d = − °− ° =  

( ) ( )3 6.00 m 2.550 m tan 90.00 45.00 3.450 m,d = − °− ° =  and 

( ) ( )4 6.00 m 3.450 m tan 90.00 49.64 2.168 m.d = − °− ° =  

ROUND:  The last distance 4d  is 2.17 m, which is more than 2.00 m from the wall where the door begins.  
Thus, the soccer ball does bounce back out of the room on the first trip around the room. 
DOUBLE-CHECK:  What would we expect if the coefficient of restitution were 1?  We would have 

1 2 3 4 45θ θ θ θ= = = = °  and 1 2 3 4 / 2.d d d d L= = = =  The soccer ball would return to the same place it 
entered the room and would exit the room.  By calculating 4d  for a given ,ε  you can show that for 

0.817,ε >  the soccer ball will exit the room on its first trip around the room. 

7.73. THINK:  I want to know if Jerry will make it over the second fence. Each yard begins and ends with a   
2.00 m fence. The range and maximum height of Jerry’s initial trajectory are 15.0 m and 5.00 m 
respectively. Jerry is 7.50 m away from the next fence and he has a coefficient of restitution of 0.80. 
SKETCH:   

 
 

RESEARCH:  From the range and maximum height the initial velocity can be found, along with the angle 
of Jerry’s trajectory. ( ) ( )θ= 2

0 / sin 2R v g  and ( )( ) θ= 2 2
0 / 2 sinH v g . With this I can find the x- and y- 

components of the velocity. Since the coefficient of restitution only acts on the momentum perpendicular 
to the ground, =f iy yv v  and xv  remains constant. With this information the height Jerry attains after 

travelling another 7.50 m can be found by using = xx v t  and = − 21 .
2yy v t gt  

SIMPLIFY: 
( )

θ
θ θ θ θ

= = ⇒ ⇒ ==2
0 2

2 2        tan
sin 2 sin 2c si

,
os n

4Rg Hg Rv H
R

H    
θ θ

= =0 2

2
sin2 sin

Rg Hg
v  

θ θ
θ θ

= = = = = =i f 0 2

2 2 22
cos cos ,

sin tan 4 4x x

Hg Hg R HgHg
v v

H R H
v   and  ε ε θ ε= = =f i 0 2 .siny yv v Hgv  The 

time it takes to reach the fence is given by = xx v t , or ( ) ( )= = 4 2xt x v Hx R Hg , where x = 7.5 m. The 

height it attains in this time is: 

εε
 

= = − = −−   
 

2
2

2
2

4 1 4 4 42
22

1
2 2y

Hx Hx Hx Hxy v Ht gt g g
R RR Hg R Hg

 

CALCULATE:  
( )( )( ) ( )( )

( )
= − =

2

2

4 5 m 7.50 m 0.800 4 5 m 7.50 m
3 m

15.0 m 15.0 m
y  

 



Bauer/Westfall: University Physics, 2E 

  348 

ROUND:  Jerry is at a height of 3 m when he reaches the fence, which means that he does make it over the 
next fence, with exactly 1 meter to spare. 
DOUBLE-CHECK:  This is a reasonable answer for the world of cartoon characters. 

7.74. THINK:  I want to find the angle θT  at which Toyohibiki moves after collision.  Hakurazan and 
Toyohibiki have masses and speeds of =H 135 kgm , =Hi 3.5 m/sv , =T 173 kgm , and =Ti 3.0 m/sv . After 
collision, there is a loss of 10% of the kinetic energy, and θ = °H 35 . 
SKETCH:   

 
RESEARCH:  I can use the conservation of momentum along the x and y axes. + = +

   

Hi Ti Hf Tfp p p p . Since 
the relation between the initial and final kinetic energy is known, I can also use the equation =f i0.90K K . 
SIMPLIFY:  First set up the three equations starting with momentum along the x axis: 

θ θ− = −H Hi T Ti H Hf H T Tf Tcos cos                                                  (1)m v m v m v m v  
 

Along the y-axis: 
θ θ= −T Tf T H Hf H0 sin sin                                                             (2)m v m v  

The energy gives: 

( )+ = +2 2
H Hi T Ti H Hf T Tf

2 20.90                                                      (3)v vm m m vmv  

Use the first two equations to find ( )θT
2

Tf Tsinm v  and ( )θT
2

Tf Tcos .m v  

( ) ( )θ θ= + −T Tf T H Hf H T Ti H Hi
2 2cos cosm v m v m v m v   and  ( )θ θ=2 2 2 2

H Hf HT Tf Tsin sinm v m v  

( ) ( ) ( )
( ) ( ) ( )

θ θ θ θ

θ θ θ θ

+ = + − +

+ = + − +

T Tf T T Tf T H Hf H T Ti H Hi

2 2 2
T Tf T T H Hf H T T

2 2 2 2 2 2
H Hf H

2 2 2 2
H Hi Hi fH H

cos sin cos sin

sin cos cos sin

m v m v m v m v m v m

m v m v m v vm v m

v  

( )θ θ= + − +22 2 2 2 2
T Tf H Hf HH Hf H T Ti H Hicos sin                                        (4)m m v m v m v mv v  

Substituting this into the third equation gives: 

( ) ( )θ
θ

+ −
+ = + +H Hf H T Ti

2 2 2
2 2 2 2H H Hf

H
Hi

H Hi T Ti H
T

H
T

f

cos
0. n .si90

m v m v m v m
m

v
mm

v v vm m  

This quadratic equation in Hfv  which simplifies to:  ( )( ) ( )( )( )2 2
0.90 135 kg 3.5 m/s 173 kg 3 m/s+

 

( )
( ) ( )( ) ( )( )( )

( )
( )
( )

+ −
= + + °

22 2

f
2 H
H

Hf 2f135 kg cos35 173 kg 3 m/s 135 kg 3.5 m/s 135 kg
135 kg sin 35

173 kg 173 kg
v

v
v

 ⇒ + − =Hf Hf
2 240.3468 59.4477 2877.176 0                                                   (5)v v
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Solving equation (4) for Tfv gives the equation:
( )θ θ+ − +

= H Hf H T Ti H
2 2 2 2

H Hf H
T

T

Hi
f 2

cos sin
.

m v vm v m v m
v

m
 

CALCULATE:  Solving equation (5), gives =Hf 3.3384 m/sv . Using this in equation (4), gives: 

( )( ) ( )( ) ( )( ) ( ) ( )
( )

 ° + − + ° =

=

Tf

2 2 2 2

2

135 3.3384 cos35 173 3.0 135 3.5 135 3.3384 sin 35

173
2.829,  with units of:

v

 
( )( ) ( )( ) ( )( ) ( ) ( )

( )
 + − +  = =

2 2 2

2 Tf

kg m/s kg m/s kg m/s kg m/s
m/s. Therefore, v 2.829 m/s.

kg

 

Use equation 

(2) to find θT : 
( )( )
( )( )

θ −
 

= = °  
 

°1
T

135 kg 3.3384 m/s
sin sin 31.88 .

173 kg 2.829 
5

m/s
3

 ROUND:  The angle θH  is given to two significant figures and limits our answer to two significant figures. 
θ = °T 32 . 
DOUBLE-CHECK:  The sumo wrestlers’ masses and initial speeds and directions are similar, so in is 
reasonable that their final speeds and directions would be similar as well. 

7.75. THINK:  I want to find the coefficient of restitution and the ratio of the final and initial kinetic energies. 
The puck initially has a mass, velocity and angle of m = 170. g, =0 2.00 m/sv , and θ = °30.0i  respectively. 
The puck bounces off the board with an angle of θ = °f 40.0 . 
SKETCH:   

 
RESEARCH:  To find the coefficient of restitution we will use ( )θ ε−= 1

f i^ iPcot p p . To find the ratio for 

the initial kinetic energy we will use =f^ i^p p  and =fP iPp p . 
SIMPLIFY:  The coefficient of restitution is given by: 

θε
θ

θ
ε

θ
ε

ε
θ

θ⊥= = = ⇒ =


0 ii f
f i

i 0 i i

cos cot
cot cot   

sin cot
vp

p v
 

Now we use =
 f i p p  to find ′0v . 

θ
θ θ

θ
′ ′= ⇒ = ⇒ = ⇒ =

 

i
i f i f 0 i 0 f 0 0

f

sin
    sin sin   

sinx xp p mv mv v v v v  

The ratio 
( )
( )

θ
θ

′
= =

2 2
0 i

f i 2 2
0 f

sin1/ 2/
sin1/ 2

mv
K K

mv
. 

CALCULATE:  ε °
= =

°
cot 40.0 0.688059,
cot30.0

  and  °
= =

°

2
f

2
i

sin 30.0 0.6051.
sin 40.0

K
K

 

ROUND:  The coefficient of restitution is ε = 0.688  and the kinetic energy ratio =f i/ 0.605K K . 
DOUBLE-CHECK:  These numbers seem reasonable. 
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7.76. THINK:  I want to know the speed a 5.00 g fly must have to slow a 1900. kg car by 5.00 mph. The car is 
travelling at an initial speed of 55.0 mph.   
SKETCH:   

 

RESEARCH:  Using the conservation of momentum:  ( ) ′+ = +
  

F F C C F C .v m mm v m v  

SIMPLIFY: ( )( )
( )( )
( )( )

− + = − ∆

= −

+

+ − ∆

− − ∆
=

+

F F C C

F F C C

C C
F

F C C

F C C

F C C

F

m

m

m v m v m v v

m v m v m v v

m v m v v
v

m
m

 

CALCULATE:  
( )( ) ( )( )− +

= =
1900. kg 55.0 mph 1900. kg 0.00500 kg 50.0 mph

1899950 mph
0.00500 kgFv  

ROUND:  The fly must travel ⋅ 61.90 10  mph  to change the speed of the car by 5.00 mph. 
DOUBLE-CHECK:  This is a crazy speed for a fly to attain.  It is about 800000 m/s. This value is extreme, 
but the notion of a fly being able to slow a car from 55 mph to 50 mph is absurd, and this is verified by the 
very high speed required of the fly. 

7.77. THINK:  I want to find the speed of the tailback and linebacker and if the tailback will score a touchdown. 
The tailback has mass and velocity =t 85.0 kgm  and =t 8.90 m/sv , and the linebacker has mass and 
velocity =l 110. kgm  and = −l 8.00 m/sv . 
SKETCH:   

 
 

RESEARCH:  The conservation of momentum for this perfectly inelastic collision is  
( )+ = +t t l l t lm v m v m m v . 

SIMPLIFY:  Rearranging the equation to solve for the final velocity, 
+

=
+

t t l l

t l

.
m v m v

v
m m

 

CALCULATE:  
( )( ) ( )( )−

= = −
+

85.0 kg 8.90 m/s 110. kg 8.00 m/s
0.633 m/s

85.0 kg 110. kg
v  

ROUND:   
(a)  The values are given to 3 significant figures so the final speed is 0.633 m/s . 
(b) Since the velocity is negative, the two go in the direction of the linebacker and the tailback does not 
score a touchdown. 
DOUBLE-CHECK:  The speed is quite small, as would be expected of two people opposing each other’s 
motion. Since the initial momentum of the linebacker is greater than the initial momentum of the tailback, 
the tailback should not be able to score. This is consistent with the calculated result. 
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7.78. THINK:  I want to know the recoil speed of the remaining nucleus. The thorium-228 nucleus starts at rest 
with a mass of −= ⋅ 25

t 3.8 10  kgm  and the emitted alpha particle has mass −= ⋅ 27
a 6.64 10  kgm  and velocity 

= ⋅ 7
a 1.8 10  m/sv . 

SKETCH:   

 

RESEARCH:  Using the conservation of momentum: ( )= − −t a recoil a a0 m m v m v . 

SIMPLIFY: ( )− = ⇒ =
−
a a

t a recoil a a recoil
t a

  
m v

m m v m v v
m m

 

CALCULATE:  
( )( )
( ) ( )

−

− −

⋅ ⋅
= =

⋅ − ⋅

27 7

recoil 25 27

6.64 10  kg 1.8 10  
320,120 m/s

3.8 10  6.64 10  kg

m/s

kg
v  

ROUND:  The given values have two significant figures. Therefore, the recoil velocity is ⋅ 53.2 10  m/s.  
DOUBLE-CHECK:  This value seems like a reasonable speed because it is less than the speed of the alpha 
particle. 

7.79. THINK:  I want to know the time it takes the astronaut to reach the other side of the 7.00 m long capsule. 
The astronaut and the capsule both start at rest. The astronaut and capsule have masses of 60.0 kg and 
500. kg respectively. After the astronaut’s kick, he reaches a velocity is 3.50 m/s. 
SKETCH:   

 
RESEARCH:  I can find the speed of the capsule by using the conservation of momentum. The time it 
takes is the distance divided by the sum of the velocities. 

SIMPLIFY:  = ⇒ = A
A A C C C A

C

  .
m

m m v v
m

v v  Using this in our distance equation: 

( )    
= = + = + ⇒ =   

     +


+




A A
A C A A A

C C A
A

C

1   
1

m m dd v t v v t v t t
m m mv

m

v  

CALCULATE:  
( ) ( ) ( )( )

= =
+

7.00 m 1.7857 s
3.50 m/s 1 60.0 kg 500. kg

t  

ROUND:  The time to cross the capsule is reported as 1.79 s. 
DOUBLE-CHECK:  This is a reasonable time. 

7.80. THINK:  The conservation of momentum and the definition of kinetic energy and momentum can be 
used to find the momentum and kinetic energy of a 57 Co  nucleus that emits an x-ray. The nucleus has a 
mass of −= ⋅ 26

Co 9.52 10  kgm  and the x-ray has a momentum and kinetic energy of 14 keV/c and 14 keV, 
respectively. 
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SKETCH:   

 

RESEARCH: = −Co x-rayp p , = 21
2

K mv  and = .p mv  

SIMPLIFY:  
( )

= = =
2 2

21 1
2 2 2

mv p
K mv

m m
 

CALCULATE:   

( )( )
( )

−
−

− ⋅ ⋅
= − = − = = − ⋅

⋅

3 19
24

Co x-ray 8

14 10  eV/c 1.602 10  J/eV
14 keV/c 7.4810 10  kg m/s

2.998 10 (m/s) c
p p  

( )
( )−

−
−

−
− ⋅

= = ⋅ = ⋅
⋅

224

2
3

6
22

7.4810 10  kg m/s
2.939 10  J 1.83 10  eV

2 9.52 10  kg
K

 
ROUND:  The momentum is given to two significant figures so the answer can be reported to two 
significant figures:  = −Co 14 keV/cp  and −= ⋅ 31.8 10  eV.K  The negative sign means that the 57 Co  nucleus 
is in the opposite direction of the x-ray.  
DOUBLE-CHECK:  These are reasonable values. 

7.81. THINK:  I am looking for the velocity of the nucleus after the decay. The atom starts at rest, i.e. 
=0 0 m/sv , and its nucleus has mass −= ⋅ 25

0 3.68 10  kgm . The alpha particle has mass −= ⋅ 27
a 6.64 10  kgm  

and energy −⋅ 138.79 10  J . 
SKETCH:   

 

RESEARCH:  I can find the velocity of the alpha particle with the equation = 2
a a

1 .
2

K m v  The conservation 

of momentum gives =a 0p p . 

SIMPLIFY:  =a
a

2Kv
m

, ( ) ( ) ( )
= ⇒ = − ⇒ = =

− −
a a

a 0 a a 0 a 0 0 a
0 a 0 a a

2m m Kp p m v m m v v v
m m m m m

 

CALCULATE:  
( )

( )−−

−− −

⋅⋅
= =

⋅⋅ − ⋅

1327

0 2725 27

2 8.79 10 J6.64 10 kg
298988 m/s

6.64 10 kg3.68 10 kg 6.64 10 kg
v  

ROUND:  The values are given to three significant figures, so = ⋅ 5
0 2.99 10 m/s.v  

DOUBLE-CHECK:  Such a high speed is reasonable for such small masses. 

7.82. THINK:  I am looking for the speed of the skateboarder after she jumps off her skateboard. She has a mass 
of =g 35.0 kgm  and the skateboard has mass =s 3.50 kg.m  They initially travel at v = 5.00 m/s in the same 
direction. 
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SKETCH:   

 
 

RESEARCH:  To find the speed we can use the conservation of momentum. 

SIMPLIFY:  ( ) ( ) ( )−
= ⇒ = − ⇒

+
+ − + =

s s g s
g s s s g g g g s s g s g

g

    
m v m

m v m
m v

m v m v v mm v m m v v
m

 

CALCULATE:  
( )( ) ( )( )− +

= =g

3.50 kg 8.50 m/s 35.0 kg 3.50 kg 5.00 m/s
4.65 m/s

35.0 kg
v  

ROUND:  The speed is accurate to three significant figures since all of our values are given to three 
significant figures. The speed of the girl is =g 4.65 m/s.v  
DOUBLE-CHECK:  This is a reasonable speed. 

7.83. THINK:  I am looking for the recoil the archer experiences. The mass of the archer and the arrow are 
=A 50.0 kgm  and =B 0.100 kgm  respectively. The initial velocity is 0 and the arrow has a velocity 
=B 95.0 m/s.v  

SKETCH:   

 
 

RESEARCH:  I use the conservation of momentum to find the recoil velocity: = −A B .p p  

SIMPLIFY:  = − ⇒ = −A A B B
B

A B
A

    
m

m v m v v v
m

 

CALCULATE:  ( )= − = −
0.100 kg

95.0 m/s 0.190 m/s
50.0 kgAv  

ROUND:  The three significant figures of the values limit the answers to three significant figures. The 
recoil speed of the archer is 0.190 m/s.  
DOUBLE-CHECK:  This is reasonable recoil. 

7.84. THINK:  I want to find the recoil of an astronaut starting at rest after he throws a baseball. The astronaut 
and baseball have masses =A 55.0 kgm  and =B 0.145 kgm  respectively. The ball is thrown with a speed of 
31.3 m/s. 
SKETCH:   

 
 

RESEARCH:  I can find the recoil speed of the astronaut with the conservation of momentum: = −A Bp p . 
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SIMPLIFY:  = − ⇒ = −A A B B
B

A B
A

    
m

m v m v v v
m

 

CALCULATE:  ( )= − = −A
0.145 kg

31.3 m/s 0.082518 m/s
55.0 kg

v  

ROUND:  The values are given to three significant figures so the recoil speed will be reported to three 
significant figures. The recoil speed is =A 0.0825 m/s.v  
DOUBLE-CHECK:  This is a reasonable speed. 

7.85. THINK:  I want to find the average force exerted on the jumper and the number of g’s she experiences. 
She has a mass of =j 55.0 kgm  and reaches a speed of =i 13.3 m/sv  downwards then goes =f 10.5 m/sv  
upwards after the cord pulls her back up in ∆t = 1.25 s. 
SKETCH:   

 
 

RESEARCH:  I use the impulse equation, ∆ = ∆F t p , to find the net force acting on the jumper. I can then 
use =F ma  to find the net force (cord pulling up plus gravity pulling down) and then the number of g’s 
experienced. Number of g’s is determined by the action of forces other than gravity, so in this case the cord 
tension. (A person standing motionless on the ground experiences 1 g from the upward normal force.) 

SIMPLIFY:  
( )∆

= =
∆ ∆

−j f im vp
F

t
v

t
  and  =

j

.Fa
m

 

CALCULATE:  
( ) ( )( )− −

= =net

55.0 kg 10.5 m/s 13.3 m/s
1047.2 N

1.25 s
F  

( )( )= − ⇒ = + = + =2
net cord cord net 1047.2 N 55.0 kg 9.81 m/s 1586.75 NF F mg F F mg  

Acceleration due to cord: = = = 2cord 1586.75 N 28.85 m/s
55.0 kg

F
a

m
.  

Dividing 28.85 by 9.81, the cord subjects the number to 2.9408 g’s. 
ROUND:  The values are given to three significant figures, so the average force is 1590 N and the jumper 
experiences 2.94 g’s. 
DOUBLE-CHECK:  These numbers are within reasonable levels. A person can experience a few g’s 
without harm and without losing consciousness. 

7.86. THINK:  I want to find the impulse exerted on the ball of clay when it sticks to a wall. The ball has a mass 
of =c 3.00 kgm  and speed = 21.0 m/s.v  
SKETCH:   

 
 

RESEARCH:  I use the impulse equation. = ∆ = ∆J p F t . 

SIMPLIFY:  ( )= −c f iJ m v v  
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CALCULATE:  ( )( )= − =3.00 kg 0 m/s 21.0 m/s 63.0 kg m/sJ  

ROUND:  Our result will have  threesignificant figures since our values are accurate to three significant 
figures. The impulse exerted on the ball is 63.0 kg m/s. 

DOUBLE-CHECK:  This is a reasonable value. 

7.87. THINK:  I want to find the change in the momentum of the cart. (This is the same as the impulse.) The 
cart has a mass of 10.0 kg and initially travels at =i 2.00 m/sv  to the left then travels at =f 1.00 m/sv  after 
it hits the wall. 
SKETCH:   

 
 

RESEARCH:  All I need to do is find the momentum in each case then subtract them to find the change in 
momentum. ∆ = −f ip p p . 

SIMPLIFY:  ( )∆ = − = − = −f i f i f ip p p mv mv m v v  

CALCULATE:  ( ) ( )( )∆ = − − =10.0 kg 1.00 m/s 2.00 m/s 30.0 kg m/sp  

ROUND:  The change in momentum is 30.0 kg m/s. 
DOUBLE-CHECK:  This is a reasonable value. 

7.88. THINK: I have a tennis ball with mass −= ⋅ 257.0 g 5.70 10  kg  and speed 127 mph  

( )( )= =127 mph 0.447 (m/s) mph 56.8 m/s.  I want to calculate impulse. I am given that ∆ = 0.250 s.t  

SKETCH:  
(a)   

   
 
(b)   

  
 

RESEARCH:  I use the definition of impulse. = ∆ = ∆ .aveJ F t p  
SIMPLIFY:   
(a)  The tennis ball is initially at rest before the serve. =i 0 m/s.v   

( )= ∆ = ∆ = =− ⇒ =
∆

f
f i f     

mv
J F t p m v mv Fv

t
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(b) The tennis ball has an initial speed = − = −i 127 mph 56.8 m/sv  and a final speed 
= =f 50.0 mph 22.4 m/s.v  

( ) ( )−
= ∆ = ∆ = − ⇒ =

∆
f i

f i     
m v

J F t p m v
v

v F
t

 

CALCULATE:   

(a)  
( )( )−⋅

= =
25.70 10  kg 56.8 m/s

12.95 N
0.250 s

F  

(b)  
( ) ( )( )−⋅ − −

= =
25.70 10  kg 22.4 m/s 56.8 m/s

18.06 N
0.250 s

F  

ROUND:   
(a)  F = 13.0 N 
(b)  F = 18.1 N 
DOUBLE-CHECK:  I expect the answer for (a) to be less than that of (b) because −f iv v  in (a) is less than 
in (b). 

7.89. THINK:  I have three birds with masses =1 0.100 kgm , =2 0.123 kgm , and =3 0.112 kgm  and speeds 
=1 8.00 m/sv , =2 11.0 m/sv , and =3 10.0 m/sv . They are flying in directions θ = °1 35.0  east of north, 

θ = °2 2.00  east of north, and θ = °3 22.0  west of north, respectively. I want to calculate the net momentum. 
SKETCH:  

 
 

RESEARCH: = + +
   

1 2 3p p p p , or in component form, = + +1 2 3x x x xp p p p  and = + +1 2 3y y y yp p p p . 

SIMPLIFY: θ θ θ= + −1 1 1 2 2 2 3 3 3sin sin sin ,xp m m vv m v   θ θ θ= + +1 1 1 2 2 2 3 3 3cos cos cos ,yp m vv mvm   

= +


ˆ ˆ,x yp p x p y and =




.
p

v
m

 

CALCULATE:   
( )( ) ( )( ) ( )( )= ° + ° − °

=
0.100 kg 8.00 m/s sin35.0 0.123 kg 11.0 m/s sin2.00 0.112 kg 10.0 m/s sin22.0

0.0865 kg m/s
xp

 

( )( ) ( )( ) ( )( )= ° + ° + °

=

0.100 kg 8.00 m/s cos35.0 0.123 kg 11.0 m/s cos2.00 0.112 kg 10.0 m/s cos22.0
3.0459 kg m/s

yp
 

The speed of a 0.115 kg bird is:  
+

= = +
 ˆ ˆ0.0865 kg m/s 3.0459 kg m/s ˆ ˆ0.752 m/s 26.486 m/s .

0.115 kg
x y

v x y  

( ) ( )= + =
 2 20.752 m/s 26.486 m/s 26.497 m/s,v  

( )θ θ −= = = °⇒ = 10.752 m/s 0.02839    tantan 0.02839
26.486

1.
 m s

626
/

 east of north 

ROUND:  = 0.0865 kg m/sxp , = 3.05 kg m/syp , = +


ˆ ˆ0.0865 kg m/s 3.05 kg m/s ,p x y  =


26.5 m/sv , 

θ = °1.63  east of north 
DOUBLE-CHECK:  The speed of the fourth bird must be less than the sum of the speeds of the three 
birds. = + + = + + =1 2 3 8.00 m/s 11.0 m/s 10.0 m/s 29.0 m/sv v v v . 
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7.90. THINK:  I have a golf ball with mass = =B 45.0 g 0.0450 kgm and speed = =B 120. km/h 33.3 m/sv . A 

train has mass = ⋅T
53.80 10  kgm  with speed = =300. km/h 83.3 m/sTv . I want to calculate the speed of 

the golf ball after collision. 
SKETCH:   

 
 

RESEARCH:  I use the conservation of momentum and energy. =i fp p  and =i fK K . 

SIMPLIFY:  ( ) ( )= ⇒ + = + ⇒ − = −i f B Bi Bf TB B Tfi T Ti B Bf T Tf Ti                            (1)p p m v m v m v m v m v v m v v  

( ) ( )
( )( ) ( )( )− +

=

+ = +

− =

= −

−

+

i f

2 2 2 2

2 2 2 2
B Bi Bf T Ti Tf

B Bi Bf Bi Bf T T

B Bi T Ti B Bf T Tf

i Tf Ti Tf

1 1 1 1
2 2 2 2

K K

m m m m

m v v m v v

m v v m v

v v v

v v v

v

v v

 

Using equation (1) above, I have + = +Bi Bf Tf Tiv v vv , or = + −Tf Bi Bf Tiv v vv . Therefore, 

( )
( ) ( )

+ = + + −

− + = +

   −
= + +  +   

B Bi T Ti B Bf T Bi Bf Ti

B T Bi T Ti B T Bf

B T T
Bf Bi Ti

B T B T

2

2

m v m m v m v v v

m m v m v m m v

m m

v

m
m

v v v
m m m

 

Since Bm  is much smaller than Tm , i.e. B Tm m , I can approximate:  
−

≈ −
+

B T

B T

1,
m m
m m

, ≈
+

T

B T

2
2

m
m m

, and 

≈ − +Bf Bi Ti2v v v  

CALCULATE:  = −Bi 33.3 m/sv , =Ti 83.3 m/s,v   and  ( ) ( )= − − + =Bf 33.3 m/s 2 83.3 m/s 199.9 m/s.v  

ROUND:  Rounding to three significant figures: =Bf 200. m/sv  

DOUBLE-CHECK:  Let us compute ( ) ( )− +B T B Tm m m m . 

− − ⋅
= = −

+ + ⋅

5

5
B T

B T

0.0450 kg 3.80 10  kg
0.9999997...

0.0450 kg 3.80 10  kg
m m
m m

 

The approximation is correct. 

7.91. THINK: I have two balls with masses =1 1.00 kgM  and = 0.0450 kgm  which are a distance of 
=0 2.00 md  apart.  I threw a third ball with mass 2M  at a speed =1.00 m/sv . Calculate the distance 

between the balls after the collision. = =1 2 .M M M  
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SKETCH:  

 
RESEARCH: 
(a)  Since = =1 2M M M  and there is an elastic collision, the final speeds after collision are =2 0 m/sv  and 

= =1 1.00 m/sv v . 
(b)  Since m M  and there is an elastic collision, the final speeds after the collision are =2v v  and 

= = =3 22 2 2.00 m/sv v v . 
SIMPLIFY:  Using Newton’s second law, µ µ= = =f gk kF N m ma . Therefore the acceleration is µ= gka . 

The distance travelled by a ball is ( ) ( )µ= ⇒ =2 2
0 0/ 2    / 2 .kx v a x v g  Therefore the distance between the 

two balls is ( )µ= − = − 2
0 0 0 / 2 .kd d x d v g  

CALCULATE:   
(a)  =0 1.00 m/sv . The distance between the first ball and the pallina is:  

( )
( )( )

= − =
2

2

1.00 m/s
2.00 m 1.745 m

2 0.200 9.81 m/s
d . 

The distance between the second ball and the pallina is 2.00 m because it stops after the collision. 
(b)  (i)  = =0 32 2.00 m/sv v . The distance between the first ball and the pallina is: 

( )
( )( )µ

= − = − =
22

0
1 0 2

2.00 m/s
2.00 m 0.9806 m

2 2 0.200 9.81 m/sk

v
d d

g
. 

(ii)  = =0 2 1.00 m/sv v . The distance between the first ball and second ball is: 

( )
( )( )µ

= − = − =
22

0
2 0 2

1.00 m/s
2.00 m 1.745 m

2 2 0.200 9.81 m/sk

v
d d

g
 

The distance between the second ball and the pallina is = − = − =2 1 1.745 m 0.9806 m 0.764 md d d . 
ROUND:   
(a)  Three significant figures: the distance between the first ball and the pallina is 1.75 m and the distance 
between the second ball and the pallina is 2.00 m. 
(b)  Two significant figures, because of subtraction: The distance between the first ball and the pallina is 
0.98 m and the distance between the second ball and the pallina is 0.76 m. 
DOUBLE-CHECK:  Only the first ball is in motion after the collision in part (a) and in part (b) the second 
ball and the pallina are in motion. It makes sense that the distances in part (b) are shorter than the 
distances in part (a).   

7.92. THINK:  I have a soft pellet with mass −= = ⋅ 31.2 g 1.2 10  kgm  and an initial speed =0 65 m/sv . The pellet 
gets stuck in a piece of cheese with mass = 0.25 kgM . The cheese slides 25 cm before coming to a stop. I 
want to calculate the coefficient of friction between the cheese and the surface of the ice. 
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SKETCH:   

 
 

RESEARCH:  I apply the conservation of momentum to calculate the speed of the cheese and the pellet 
after collision and then use = −2 2

f i 2v v ad  and µ=f kF N  to obtain the coefficient of friction. 

SIMPLIFY:  ( )= ⇒ + = + ⇒ =
+

0
i f 0 i i  0   .

mv
p p mv m M v v

m M
  Since =f 0v , we have ( )= 2

i / 2 .a v d  Using 

Newton’s second law, we get:  ( )= + gN m M  and ( ) ( )µ µ= + = = +f k kF m M a N m M g .  The coefficient 

of friction is µ =k ,g a  or ( )µ = = 2
k i/ / 2 .a g v gd  

CALCULATE:  
( )( )−

−

⋅
= =

+ ⋅

3

3

1.2 10  kg 65 m/s
0.311 m/s

0.25 kg 1.2 10  kgiv   and  
( )

( )( )
µ = =

2

k 2

0.311 m/s
0.01966.

2 9.81 m/s 0.25 m
 

ROUND:  To three significant figures, µ =k 0.0200.  
DOUBLE-CHECK:  This is reasonable since the initial speed is small. 

7.93. THINK:  I have a rocket which at the top of the trajectory breaks into two equal pieces. One piece has half 
the speed of the rocket travelling upward. I want to calculate the speed and angle of the second piece. 
SKETCH:   

 
 

RESEARCH:  Use the conservation of momentum. =
 

i fp p , or in component form, =i fx xp p  and 
=i fy yp p . I also know that =i 0yp . Let us assume that the speed of the rocket before it breaks is 0v  and 

mass 0m . 

SIMPLIFY:  = ⇒ = +0 0 1 1 2 2i f   .x xx xp p m v m v m v  Since =1 0xv  and =2 0
1 ,
2

m m  =0 0 0 2
1
2 xm m vv  

=⇒ 2 0 .2xv v = = ⇒ = +i f 1 1 2 20 . 0y y y yp m v m vp  Since = =1 2 0
1
2

m m m  and =1 0
1 ,
2yv v  

= − = −⇒2 1 2 0
1  .
2y y yvv v v ( )+= = + −

22 2 2 2 2
2 2 2 0 02 1 2x yv vvv v ; 

( )
θ −

 −
 
 
 

= 01

0

1 2
.

2
tan

v

v
  

Drawing the vector 


2v : 

 

CALCULATE:  = + =2 0 0
174 1 4 ,
2

v v v  θ −  − = − ° 
 

= 1 1tan 14.04
4
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ROUND:  Rounding is not needed here. 
DOUBLE-CHECK:  It makes sense that θ  is negative since the first piece is travelling upwards.  The y 
component of 2v  must be in the negative y-direction. 

7.94. THINK:  A soccer ball has mass 0.265 kg. The ball is kicked at an angle of 20.8  with respect to the 
horizontal. It travels a distance of 52.8 m. Calculation of the impulse received by the ball is needed. 
SKETCH:   

 
 

RESEARCH:  I use the definition of impulse. = ∆ = −f iJ p p p , and =i 0p  since the ball is initially at rest. 
Thus = 0J mv . I need to determine 0v . 
SIMPLIFY:  I can determine the time to reach the  maximum height by:  = − = ⇒ =0 00  / .y yv v gt t v g   
The time to reach a distance d is twice the time taken to reach the  maximum height. So,  

θ= =0 02 / 2 sin / .d yt v g v g  I can also use: 

θ θ
θ

θ
== = ⇒ =

2
0 0

0 0 0
sin sin2

cos   
sin2

2
x d

dg
d v t v v

v
g g

v
 

The impulse is 
θ

=
sin2

dg
J m . 

CALCULATE:  ( )
( )( )

( )
= =

⋅ °

252.8 m 9.81 m/s
0.265 kg 7.402 kg m/s

sin 2 20.8
J  

ROUND:  = 7.40 kg m/sJ  
DOUBLE-CHECK:  This is a reasonable value. 

7.95. THINK:  Tarzan swinging on a vine 14.5 m long picks Jane up at the bottom of his trajectory.  At the 
beginning of his swing, the vine was at an angle of °25.9  to the vertical.  What will be the maximum angle 
relative to the vertical Tarzan and Jane will reach?  Tarzan and Jane have masses =T 70.4 kgm  and 

=J 43.4 kgm . 
SKETCH:   

 
RESEARCH:  Use conservation of energy to calculate the speed of Tarzan just before he picks up Jane. 
Use conservation of momentum to find the speed just after Tarzan picks up Jane. Then use conservation 
of energy again to find the final height. Relate the initial and final heights to the angles and L.  
SIMPLIFY:   
By conservation of energy, noting that Tarzan starts with v = 0 at hi, 

T i
2
iT i i

1 2
2

m gh m v v gh= ⇒ =
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By the conservation of momentum, 

( )    
= ⇒ = + ⇒ = =      + +   

T T
i f T i T J f f i i

T J T J

    2
m m

p p m v m m v v v gh
m m m m

 

The final height is determined using conservation of energy, noting that v = 0 at the maximum height, 

( ) ( )    
+ = + ⇒ = = =      + +   

2 2

T i T
i

T J

2
2 f

T J f T J f f
T J

21 .
2 2 2

v m gh m
m m v m m gh h h

g m m g m m
 

 Knowing that  θ= −f 2cosh L L  and θ= −i 1cosh L L . 

( )

( )

( )

θ θ

θ θ

θ θ

 
− = −  + 

 
− = −  + 

 
= − −  

 + 

2

T
2 1

T J

2

T
2 1

T J

2

T
2 1

T J

cos cos

1 cos 1 cos

cos 1 1 cos

m
L L L L

m m

m
m m

m
m m

 

CALCULATE:  

( ) ( )θ θ θ − 
= − − ° ⇒ = ⇒ = = ° + 

2

1
2 2 2

70.4 kg
cos 1 1 cos25.9   cos 0.9616  cos 0.9616 15.929

70.4 kg 43.4 kg
 

ROUND:  θ = °2 15.9  
DOUBLE-CHECK:  θ2  must be less than θ1  because fv  is less than iv .  This is the case. 

7.96. THINK:  Since the bullet has a mass = =35.5 g 0.0355 kgm  and a block of wood with mass = 5.90 kg.M  
The height is = =12.85 cm 0.1285 mh . Determine the speed of the bullet. 
SKETCH:   

 
 

RESEARCH:  First determine fv  using = 2v gh  and then determine the speed of the bullet using the 
conservation of momentum. 

SIMPLIFY:  = ⇒ =f
21 2 ,

2 fmv mgh v gh    

( ) + +   = ⇒ = + ⇒ = =   
   

i f i f i f    2m M m Mp p mv m M v v v gh
m m

 

CALCULATE:  ( )( ) +
= = 
 

2
i

0.0355 kg 5.90 kg
2 9.81 m/s 0.1285 m 265.48 m/s

0.0355 kg
v  

ROUND:  =i 265 m/sv  
DOUBLE-CHECK:  The result is reasonable for a bullet. 
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7.97. THINK:  I have a 170. g hockey puck with initial velocity =i 30.0 m/sv  and final velocity = −f 25.0 m/s,v  
changing over a time interval of ∆ = 0.200 s.t  
SKETCH:   

 

RESEARCH:  The initial and final momentums are calculated by =i ip mv  and =f fp mv . The force is 

calculated using ( )= ∆ = ∆ = −f i .J F t p m v v  
SIMPLIFY:  Simplification is not necessary. 
CALCULATE: ( )( )= =i 0.170 kg 30.0 m/s 5.10 kg m/s,p  ( )( )= − = −f 0.170 kg 25.0 m/s 4.25 kg m/s,p  and 

( )− −−
= = = −

∆
f i 4.25 kg m/s 5.10 kg m/s

46.75 N.
0.200 s

p p
F

t
 The position of the puck at t = 2.00 s is:  

( )( )= = =2 30.0 m/s 2.00 s 60.0 m.ix v t  The position of the puck at t = 5.00 s is: 

( ) ( )( )= + − = + − = −5 2 f 5.00 s 2.20 s 60.0 m 25.0 m/s 2.80 s 10.0 m.x x v  
With all this information I can plot p vs. t, x vs. t and F vs. t. 

 
ROUND: =i 5.10 kg m/sp , = −f 4.25 kg m/sp , = −46.8 NF , =2 60.0 mx , and = −5 10.0 m.x  
DOUBLE-CHECK:  The force F is applied only during the interval of 0.200 s. At other times F = 0, or 
= 0.a  
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7.98. THINK:  I know the distance between the cue ball and the stripe ball is x = 30.0 cm, and the distance 
between the cue ball and the bumper is y = 15.0 cm. I want (a) the angle of incidence θ1  for the cue ball 
given an elastic collision between the ball and the bumper and (b) the angle θ2  given a coefficient of 
restitution of =r 0.600c . 
SKETCH: 

 
RESEARCH:   
(a)  To conserve momentum in a purely elastic collision, the incidence and reflection angles are equal. I 
can use basic trigonometry to find θ . 
(b)  When =r 0.600c  I know how the speed of the ball changes after colliding with the bumper. Since 
there are no horizontal (x-direction) forces, only the vertical (y-direction) speed changes, and does so by a 
factor of rc . That is, =f ix xv v  while =f r iy yv c v   
SIMPLIFY:   

(a)  From the sketch we see that ( )θ = 1tan / 2 x
y

. Then θ −  
 
 

= 1

2
tan x

y
. 

(b) I know φ θ== ⇒f i f i    sin sinx xv v v v , and φ θ= ⇒ =f r i f r i    co .s cosy yv c v vcv   Dividing these two 
equations gives: 

φ θ
θ φ

φ θ
= ⇒ =f i

r
f r i

sin sin
 tan tan

cos cos
.

v v
v c v

c
 

 

 
 

I know that θ =tan /d y  and that ( )φ = − /tan x d y . Then φ θ= − = −/ / / tant .an x y d y x y  

Now θ φ= rtan tanc  becomes: 

( ) ( )
θ θ θ θ −= + =

  
− ⇒ ⇒     +   

= 1 r
r r r

r

1 tt anan tan   tan   
1
c xx x

y y y c
c c c  

CALCULATE:   

(a)  
( )

θ −
 

= ° 


= 


1 30.0 cm 45.0
2 15.0 cm

tan  

(b)  
( )

( )( )
θ −

 
= °  + 

= 1 0.600 30.0 cm
36.87

15.0 cm 0.600 1
tan  

ROUND: 
Rounding to three significant figures: 
(a)  θ = °45.0  
(b)  θ = °36.9  
DOUBLE-CHECK:  When rc  decreases from 1 (a perfectly inelastic collision), θ  should become smaller 
(steeper). 
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7.99. THINK:  I know that the phone’s mass =p 0.111 kgm , the key ring’s mass =r 0.020 kgm  and the mass 

per key =k 0.023 kgm . I want to find the minimum number of keys, n, to make the keys and the phone 
come out on the same side of the bookcase, and the final velocities of the phone, 2fv  and the key ring, 1fv , 
if the key ring has five keys and an initial velocity of =1i 1.21 m/s.v  
SKETCH:   

 
RESEARCH:  Note that this is an elastic collision, therefore kinetic energy is conserved. Also, the phone is 
initially stationary and the collision is one dimensional. I can use the following equations: 

=
−
+

1 2
1f 1i

1 2

m
m

v v
m

m
  and  =

+
1

2f 1i
1 2

2m
v v

m m
 

When determining the minimum number of keys, keep in mind that the final key velocity must be 
positive, as negative would imply that the keys and the phone come out on opposite sides. 
SIMPLIFY:  Find n given the condition that 1fv  is positive. Note the condition that ensures >1f 0v  is 

>1 2m m . Then 

( ) ( )> >+ ⇒ −r k p p r
k

1  m m n m
m

nm m  

( )
( )

+

++

−
= r k p

1f 1i
r k pn

m nm m
v v

m mm
  and 

( )
( ) ++

+
= r k

2f 1i
r k p

2
.

m n
m mm

v
n

m
v  

CALCULATE:  ( )> − =
1 0.111 kg 0.020 kg 3.96

0.023 kg
n   

( )( )
( ) ( )

+ −
= =

+ +1f

0.020 kg 5 0.023 kg 0.111 kg
1.21 m/s 0.118 m/s

0.020 kg 5 0.023 kg 0.111 kg
v  

( )( )
( ) ( )

+
= =

+ +2f

2 0.020 kg 5 0.023 kg
1.21 m/s 1.3280 m/s

0.020 kg 5 0.023 kg 0.111 kg
v  

ROUND:  rm  and km  have two significant figures. As n is an integer, the minimum n is 4, =1f 0.12 m/sv  
and =2f 1.33 m/s.v  
DOUBLE-CHECK:  The combined mass of four keys and the key ring is just slightly more than the mass 
of the cell phone.  The result is reasonable. 

7.100. THINK:  I know the ball’s initial mass M = 7.00 kg, initial speed =0 10.0 m/sv , launch angle θ = °0 40.0  
and that it explodes at the peak of its trajectory. By choosing “straight up” to be along the positive y axis 
and “straight back” to be along the negative x-axis, I know one piece of the mass travels with 

=


1 ˆ3.00 m/s v y  and the other travels with = −


2 ˆ2.00 m/s .v x  Calculate the velocity of the third piece, 


3v . 

Note that all three pieces have the same mass, =
1 .
3

m M  
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SKETCH:   

 
RESEARCH:  Note that at the peak height, yv  for the ball (before exploding) is zero. Then the initial 

momentum of the ball prior to exploding is ( )θ=


0 ˆcos  p M v x . Find 


3v  by conservation of momentum.  

Specifically, =i fx xp p  and =i f .y yp p  

SIMPLIFY:  Along x,  =i fx xp p  so: 

( )θ θ θ= + + = − + ⇒ = + = +0 0 1 2 3 2 3 3 0 0 2 0 0 2cos   cos 3 cosx x x x x
MMv mv mv mv m v v v v v v v
m

 

Along y,  = = −⇒ = + + ⇒i f 1 2 3 3 1  0   .y y y y y y ypp mv mv vmv v  Then = +2 2
3 3 3x yv v v  and 

( )θ −= 1
3 3tan /y xv v  with respect to the horizontal. 

CALCULATE:  ( )= ° + =3 3 10.0 m/s cos40.0 2.00 m/s 24.98 m/s,xv  

= − = −3 1 3.00 m/s,y yv v    ( ) ( )= + =2 2
3 24.98 m/s 3.00 m/s 25.16 m/s,v    and 

θ −   =


= °


1 3.00 m/s 6.848 .
24.98 m/s

tan  

ROUND:  =3 25.2 m/sv  and θ = °6.85  below the horizontal. 
DOUBLE-CHECK:  The speeds of the first two fragments are small; it makes sense that the third fragment 
should have a larger speed to conserve the total momentum.  

7.101. THINK:  I know the skier’s initial speed =0 22.0 m/sv , the skier’s mass = 61.0 kgM , the mass of each ski 

=1.50 kgm  and the final velocity of each ski: =


1 25.0 m/sv  at θ = °1 12.0  to the left of the initial direction, 

and =


2 21.0 m/sv  at θ = °2 5.00  to the right of the initial direction. Calculate the magnitude and direction 

with respect to the initial direction of the skier’s final velocity,


sv . 
SKETCH:   

 
RESEARCH:  The conservation of momentum requires ( ) ( )=∑ ∑f ix

j j
xj j

p p  and ( ) ( )=∑ ∑fy iy .
j

j j
j

p p   By 

conserving momentum in each direction, find 


sv . Take the initial direction to be along the x-axis. 
SIMPLIFY: Then, ( )= = +total 0 02ixp m v M m v ,  and take =ix fxp p  in the equation 

θ θ= + + = + +s 1 2 s 1 1 2 2cos cosfx x x x xp Mv mv mv Mv mv mv .  

( ) ( ) ( ) ( )( )θ θ θ θ+ = + + ⇒ = + − +0 s 1 1 2 2 s 0 1 1 2 2
12 cos cos   2 cos cos .x xM m v Mv m v v v M m v m v v
M
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Similarly,  

( ) ( )θ θ θ θ+ = + − ⇒= = = − = −s 1 2 s 1 1 2 2 s 2 2 1 1sin sin   sin0 siniy fy y y y y yp Mv m mp mv Mv m v v v v vv
M

 

With sxv  and syv  known, get the direction with respect to the initial direction from ( )θ −= 1
s s stan .y xv v  

The magnitude of the velocity is = +2 2
s s sx yv v v . 

CALCULATE:  

( )( )( ) ( ) ( ) ( )( )( )= + − ° + °

=

s
1 61.0 kg 2 1.50 kg 22.0 m/s 1.50 kg 25.0 m/s cos12.0 21.0 m/s cos5.00

61.0 kg
21.9662 m/s

xv
 

( ) ( )( )= ° − ° = −s
1.50 kg

21.0 m/s sin5.00 25.0 m/s sin12.0 0.08281 m/s
61.0 kgyv    

( ) ( )= + − =2 221.9662 m/s 0.08281 m/s 21.9664 m/ssv  

θ − − = = − ° 
 

1
s

0.08281 m/stan 0.2160 ,
21.9662 m/s

  where the negative indicates that θs  lies below the x-axis, or to the 

right of the initial direction. 
ROUND:  = °



22.0 m/s at 0.216sv  to the right of the initial direction. 
DOUBLE-CHECK:  As the skier’s mass is much greater than the mass of the two skis, it is reasonable that 
the skier carries the majority of the final momentum. 

7.102. THINK:  I know the car’s initial speed =0 6.70 m/sv  and mass = ⋅ 5
c 1.18 10  kgm . There is no friction or 

air resistance. I want (a) the speed of the car 1v  after collecting = ⋅ 4
w 1.62 10  kgm  of water, and (b) the 

speed of the car 2v  after all the water has drained out, assuming an initial speed of =0 6.70 m/sv . 
SKETCH:   

 
 

RESEARCH:  (a) Because the water enters the car completely in the vertical direction, it contributes mass 
but no horizontal momentum. Use conservation of momentum to determine the car’s subsequent speed. 
∆ = 0p . (b) The water drains out vertically in the moving frame of the car, which means that right after 
leaving the car the water has the same speed as the car. Therefore the speed of the car does not get changed 
at all by the draining water. No further calculation is necessary for part (b); the final speed of the car is the 
initial speed of 6.70 m/s. 
SIMPLIFY:   
(a)  The initial mass is that of just the car. If I think of the water colliding perfectly inelastically with the 
car, the final mass is +c w .m m  

( ) ( )= ⇒ + = ⇒ +=f i c w c 0 w1 0 c c1    /p p m m v m v mvm mv  
CALCULATE:   

(a)  
( )( )⋅

= =
⋅ + ⋅

5

5 41

1.18 10  kg 6.70 m/s
5.8912 m/s

1.18 10  kg 1.62 10  kg
v  

ROUND:  With three significant figures in 0v , (a) =1 5.89 m/sv  and (b) =2 6.70 m/sv  
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DOUBLE-CHECK:  The car slows down when the water is added. So why does the car not speed up when 
the water is drained? In the first case v decreased when mass was added to the car, because the water had 
no initial horizontal velocity component. But when the water was drained from the car the water did have 
the same initial velocity component as the car, which is where the essential difference lies. 

7.103. THINK:  At first this looks like a complicated problem involving nuclear physics, because it describes 
beams, nuclei, rare isotopes, and beam stops.  However, all that the beam stop does is to stop the nuclei 
hitting it, i.e. it sets the final speed to 0.  Since we are given the mass and initial speed of each nucleus, we 
can find its initial momentum.  Since the final momentum is zero, we therefore know the impulse that the 
beam stop receives from the collision with an individual nucleus. 

SKETCH: 

 
RESEARCH:  The magnitude of the impulse a given nucleus receives from the beam stop is 
= −f iJ mv mv , where the final speed is zero.  From momentum conservation we know that the 

magnitude of the impulse that the beam stop receives form the nucleus is the same.  The average force is 
defined as = ∆ave total /F J t , where the total impulse is the combined impulse of all nuclei hitting the beam 

stop in a given time interval: = ∆total
dnJ J t
dt

, and dn
dt

 is the rate of nuclei per second given in the problem 

text. 

SIMPLIFY:  The average force is  

 = ∆ = ∆ ∆ = = − = 
 

ave total f i i/ /dn dn dn dnF J t J t t J mv mv mv
dt dt dt dt

 

CALCULATE:  

− −= ⋅ ⋅ ⋅ ⋅ = ⋅26 8 2
e

1
v

5 2
a ( )(0.247 2.998 10 m/s)( / s) 4.783488.91 10 kg 7.25 10 10 kg m/sF  

ROUND: We round to three significant figures and state =ave 4.78 pNF  as our final answer. 

DOUBLE-CHECK:  Our first check should almost always by to make sure that the units and order of 
magnitude of our answer work out.  The units we found, kg m/s2, are indeed the same as the force-unit, N.  
The magnitude, however, may at first seem surprising, because a pico-Newton is an incredibly small force.  
The reason why this force is so small is that the mass of the individual nuclei is so incredibly small. 

7.104. THINK:  I know the student’s mass =s 60.0 kgm , her average force =av 770. NF , the time ∆ = 0.250 st , 

and the Earth’s mass = ⋅ 24
E 5.98 10  kgm . I want to know the student’s momentum after the impulse, sp , 

the Earth’s momentum after the impulse, Ep , the speed of the Earth after the impulse, Ev , the fraction of 
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the total kinetic energy produced by the student’s legs that goes to the Earth, E sK K , and the maximum 
height of the student, h. 
SKETCH:  Consider the student-Earth system: 

 
RESEARCH:  In the student-Earth system, momentum is conserved; ∆ = 0p . Find the change in the 
student’s momentum from ∆ = ∆avp F t  and then find the Earth’s momentum and speed from momentum 

conservation.  To find E sK K  calculate EK  and sK  using = 21
2

K mv . Using energy conservation I can 

find h for the student from ∆ + ∆ =s 0K U . 
SIMPLIFY: To find sp : ∆ = ∆avp F t , with =s,0 0p  ( = 0iv ). = ∆s av .p F t  To find Ep : 

∆ = ⇒ − + − =system s s,0 E E,00    0p p p p p . Then = −E sp p . To find Ev : = ⇒ = E

E

    E

p
p mv v

m
. (only want 

the speed, not the velocity) To find E sK K : = = =
22

2 s
E

E E

1 1 1
2 2 2

E
E E

pp
K m v

m m
, and = =

2
2 s

s s s
s

1 1
2 2

p
K m v

m
. Then 

( )( )
( )( )

= =
2
s E sE
2

s Es s

1 2

1 2

p m mK
K mp m

. To find h: Note the kinetic energy of the Earth is negligible. Then ∆ + ∆ = 0K u  

becomes − + − = ⇒ = ⇒ = ⇒ =
2 2
s s

s,f s,i s,f s,i s,f s,i s 2
s s

10      .
2 2

p p
K K U U U K m gh h

m gm
 

CALCULATE: ( )( )= ∆ = =s av 770. N 0.250 s 192.5 kg m/s,p F t   = − = −E S 192.5 kg m/s,p p   

−= = = ⋅
⋅

E 23
E 24

E

192.5 kg m/s
3.2191 10  m/s,

5.98 10  kg
p

v
m

  −= = = ⋅
⋅

23sE
24

s E

60.0 kg
1.003 10 ,

5.98 10  kg
mK

K m
  and   

( )
 

= = = 
 

2

2 2
s

192.5 kg m/s1 0.1635 m.
2 60.0 kg2 9.81 m/s

sp
h

gm
 

ROUND: To three significant figures, =s 193 kg m/sp , = −E 193 kg m/sp , −= ⋅ 233.22 10  m/sEv , 
−= ⋅ 23

E s 1.00 10K K  and h = 0.164 m. 
DOUBLE-CHECK:  Because the mass of the Earth is so large, its resulting velocity due to momentum 
conservation, and therefore its kinetic energy, should be negligible compared to the student’s. The height h 
is reasonable considering the time ∆t  the student’s avF  acts over. 

7.105. THINK: I want (a) the cannon’s velocity 


cv  when the potato has been launched, and (b) the initial and 
final mechanical energy. There is no friction in the potato-cannon-ice system. Let the cannon’s mass be 

=c 10.0 kg,m  the potato’s mass be =p 0.850 kg,m  the cannon’s spring constant be = ⋅ 3
c 7.06 10  N/m,k  the 

spring’s compression be ∆ = 2.00 m,x  the cannon and the potato’s initial velocities be = =
 

,0 ,0 0,c pv v  and 

the potato’s launch velocity be =


ˆ175 m/s .pv x  Take “horizontally to the right” to be the positive x̂  
direction. 
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SKETCH:   

 
RESEARCH: 
(a)  Use the conservation of momentum ∆ =



0p  to determine 


cv  when the potato, cannon and ice are 
considered as a system. Since the ice does not move, we can neglect the ice in the system and only consider 
the momenta of the potato and cannon. 
(b)  The total mechanical energy, mec ,E  is conserved since the potato-cannon-ice system is isolated. That 
is, =mec,f mec,iE E . The value of mec,iE  can be found by considering the spring potential energy of the 
cannon. 
SIMPLIFY:   

(a)  ∆ = ⇒ = − ⇒ = − ⇒ = −− + − = ⇒
         p

c pp p,0 c c,0
c

0       0  c pc pc pp p p p m
m

p p p m v v
m

v v  

(b)  ( )= = = ∆ 2
mec,f mec,i s,i c

1
2

E E u k x  

CALCULATE:   

(a)  ( ) 
= − = − 

 

 0.850 kg ˆ ˆ175 m/s  14.875 m/s 
10.0 kg

cv x x  

(b)  ( )( )= = ⋅ =23
mec,f mec,i

1 7.06 10  N/m 2.00 m 14120 J
2

E E  

ROUND:  With three significant figures for all given values, 
(a) = −



c ˆ14.9 m/s v x , or =


c 14.9 m/sv  horizontally to the left. 
(b) = =mec,f mec,i 14.1 kJE E . 

DOUBLE-CHECK:  Note 


cv  and 


pv  are directed opposite of each other, and <c pv v , as expected. Also, if 

mec,fE  had been determined by considering the kinetic energies of the potato and the cannon, the same 
value would have been found. 

7.106. THINK:  The cannon has mass =c 10.0 kgm  and the potato has mass =p 0.850 kgm . The cannon’s spring 

constant = ⋅ 3
c 7.06 10  N/mk  and ∆ = 2.00 mx . The initial and final speeds of the potato are =i 0v  and 

=f 165 m/sv respectively. In this case there is friction between the potato and the cannon. 
SKETCH:   

 
 

RESEARCH: 
(a)  I will use the conservation of momentum: =i fp p . 

(b)  I will use = 21
2

K mv  and ( )= ∆ 2
s

1
2

U k x . 

(c)  I will use = ∆W E . 
SIMPLIFY:   

(a)  = = ⇒ = + ⇒ = − p
c c p pi f c p

c

0  0   
m

p p m v m v v v
m
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(b)  The total mechanical energy is ( )= + ∆ 22
mec

1 1 .
2 2

E mv k x   Before firing ∆ = 2.00 mx  and = 0v  so 

( )= ∆ 2
mec,i

1
2

E k x .  After firing cv  and pv  are non-zero and ∆ = 0x , so = +2 2
me ,f pc c c p

1 1
2 2

v m vE m . 

(c)  The work done by friction is = ∆ = −f mec,f mec,iW E E E . 
CALCULATE:   

(a)  ( )= − = −c
0.850 kg

165 m/s 14.025 m/s
10.0 kg

v  

(b) ( ) ( )( )= ∆ = ⋅ =2 23
mec,i c

1 1 7.06 10  N/m 2.00 m 14120 J
2 2

E k x , 

( )( ) ( )( )= − + =2
me ,f

2
c

1 110.0 kg 14.025 m/s 0.850 kg 165 m/s 12554.13 J
2 2

E  

(c)  = − = −f 12554.13 J 14120 J 1565.87 JW  
ROUND:   
Round to three significant figures: 
(a) =c 14.0 m/sv , directed opposite to the direction of the potato. 
(b) =mec,i 14.1 kJE , =mec,f 12.6 KJE  

(c) f 1.56 KJW = −   
DOUBLE-CHECK: The final mechanical energy is approximately 10% lower that the initial one.  From 
the previous problem we know that the muzzle velocity in the absence of friction is 175 m/s.  The muzzle 
velocity in this case is 165 m/s, about 5% lower.  Since the kinetic energy is proportional to the square of 
the velocity, we should then expect a lowering of 10%. It also makes sense that fW  is negative as it is due to 
a frictional force 

7.107. THINK:  There are two masses =1 1.00 kgM  and =2 2.00 kgM  and the initial and final speeds of 1M ; 
=1i 2.50 m/sv  and =1f 0.500 m/sv . 

SKETCH:   

 
RESEARCH:  Use the conservation of momentum, =i fp p , in the x- and y-directions. 
SIMPLIFY:   

θ θ θ= ⇒ = −1 1i 0 2 2f 2 1 1fi fx 1x cos cos cosp p M v M v M v  
θ θ θ= ⇒ − = − −1 1i 0 2iy fy 2f 2 1 1f 1sin sin sinp p M v M v M v  

( )θ θ
θ θ θ

+
= = = +1 1i 0 1 1f 1 1

2 2f 2 1i 0 1f 1
2 2

cos cos
cos cos cosx

M v M v M
v v v v

M M
 

( )θ θ
θ θ θ

−
= = = −1 1i 0 1 1f 1 1

2 2f 2 1i 0 1f 1
2 2

sin sin
sin sin siny

M v M v M
v v v v

M M
 

( ) ( )θ θ θ θ= + = + + −2 22 2 1
2f 2 2 1i 0 1f 1 1i 0 1f 1

2

cos cos sin sinx y
M

v v v v v v v
M
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CALCULATE:   

( ) ( ) ( ) ( )   = ° + ° + ° − °   

=

2 2

2f
1.00 kg

2.50 m/s cos30.0 0.50 m/s cos32.0 2.50 m/s sin30.0 0.50 m/s sin32.0
2.00 kg
1.3851 m/s

v
 

ROUND:   
=2f 1.39 m/sv  

DOUBLE-CHECK:  Initial kinetic energy is ( )( ) =21 1.00 kg 2.50 m/s 3.13 J
2

. Final kinetic energy is 

( )( ) ( )( )+ =2 21 11.00 kg 0.500 m/s 2.00 kg 1.39 m/s 2.06 J
2 2

. Energy has been lost during the collision, as 

expected. 

7.108. THINK:  Since it is an elastic collision, kinetic energy and momentum are both conserved. Both particles 
are protons and therefore have equal masses. The first particle is deflected θ = 25  from its path while the 
particle initially at rest is deflected by an angle φ . The initial kinetic energy of the first particle is 0K . 
SKETCH:   

 

RESEARCH:  θ= cosxv v , θ= sinyv v , = +0 f1 f 2K K K , = 2
i i

1
2

K mv , =∑ ∑i fp p , θ θ+ =2 2sincos 1 , 

( )+ = −cos cos cos sin sinA B A B A B  

SIMPLIFY:  +=0 f1 f2K K K ,   = 2
f1 f1

1
2

K mv ,   and  = 2
f2 f2

1 .
2

K mv  So: 

= + ⇒ + =2 2 2 2 0
0 f1 f2 f1 f2

21 1   .                                                                (1)
2 2

K
K mv mv v

m
v  

 

=i fx xp p ,   =i fy yp p ,   and  = 2
0 i1

1 .
2

K mv  So 

φ= + ⇒ = ⇒ = °++ 0
i1 f1 f 2 i1 f1 f 2 f1 f 2

2
    cos25 co .                     s   (2)x x x x

K
mv mv mv v v v

m
v v  

φ= ⇒ − = ⇒− =°−f1 f 2 f1 f 2 f1 f 2 0                           0   0  sin25 sin      (3)y y y ymv v v v vmv  
Squaring equations (2) and (3) and taking the sum, 

( ) ( ) ( )

( )

φ φ φ φ

φ

° + ° + + ° =

+

+ − °

+ ° + =

2 2 2 2 2 2 0
f1 f 2 1f 2f

2 2 0
f1 f 2 1f 2f

2
cos 25 sin 25 cos 2 cos25 csin sios

2

n25 si

2

n

cos 25

v

v

K
v v v

m
K

v v v
m

 

Subtracting equation (1), 
( ) ( )φ φ φ φ° + = ⇒ ° = °+ = ⇒ °+ ⇒ = °1f 2f2 cos 25 0  cos 25 0 90    25 5 6v v  
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Therefore ° + ° =f1 f 2 0cos25 cos65 2v v K m  and ° − ° =f1 f 2sin25 sin65 0v v .  
°

=
°

f1 f 2
sin65
s n25

,
i

v v   and 

°
=

°f 2 f1
sin25
sin65

v v :

° ° °   + ° = + ° = ⇒ =   ° °    ° + ° ° 

20 0
f 2 f 2 f 2 f 22

2 2sin65 cos25 sin65cos65 cos65   
sin25 tan25 sin65 cos65

tan25

K K
v v v v

m
m

 

° ° °   ° + = + ° = ⇒ =   ° °    ° + ° ° 

20 0
f1 f1 f1 f12

2 2sin25 cos65 sin25cos25 cos25   
sin65 tan65 sin25 cos25

tan65

K K
v v v v

m
m

 

Therefore, = =
° + ° ° 

f
2 0

f1 1 2

1
2 sin25 cos25

tan65

K
K vm   and  = =

° + ° ° 

2 0
f f22 2

1 .
2 sin65 cos65

tan25

K
K vm  

CALCULATE:  = 0
f1 1.2174

K
K ,   and  = 0

f 2 .
5.5989

K
K  

ROUND:  =f1 00.821K K   and  =f2 00.179 .K K  
DOUBLE-CHECK:  The sum of the coefficients is 0.18+0.82 = 1, which means +=0 f1 f2K K K  which 
means that energy is conserved, so it makes sense. 

7.109. THINK:  Since the collision is elastic, momentum and kinetic energy are conserved. Also, since the alpha 
particle is backscattered, that means that is reflected 180  back and therefore the collision can be treated as 
acting in one dimension. The initial and final energies of the alpha particle are given in units of MeV and 
not J, =iα 2.00 MeVK  and =fα 1.59 MeV.K  I can leave the energy in these units and not convert to Joules. 

−= ⋅ 27
α 6.65 10  kg.m  

SKETCH:  

 

RESEARCH:  
 

=  +
−

 
1 2

f1 1i
1 2

m m
v v

m m
, 

 
=  + 

1
f 2 1i

1 2

2m
v v

m m
,   and  =i fK K , ( )= 2 .1/ 2E mv  

SIMPLIFY:  ⇒ −+ = + =iα iX fα f fX iα fα  ,xKK K KK K K    = ⇒ =2 iα
iα α iα iα

α

21   ,
2

E
E m v v

m
  and  

   
= =   + +   

α α iα
fX iα

α X α X α

2 2 2
.

m m K
v v

m m m m m
  Since = 2

fX X fX
1
2

K m v : 

( )
     
 = = = =       + + ++ 

−
   

2
2

2 α iα α iα X α iα
iα fα X fX X X 2 2 2

α X α α α α XX Xα

2 2 4 2 41 1 1 .
2 2 2 2

m K m K m m K
K m v m m

m m m m m m m mm
K

m
 

This simplifies to 
      − − −

= + − +             

2 2iα fα iα fα iα fα
α α α

iα iα iα

0 2 4 .x x
K K K K K K

m m m m m
K K K

 

So, 

        − − −
− ± − −                   =

 −
 
 

2 2

iα fα iα fα iα fα
α α

iα iα iα

X
iα fα

iα

4 2 2 4 4

2

K K K K K Km m
K K K

m
K K

K

 by the quadratic formula. 
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CALCULATE:  
( )

( )

−

−

 − − ⋅  
  =

− 
 
 

 − −   ⋅ − −    
    ±

−

27

2 2
7

X

2

2.00 MeV 1.59 MeV4 2 6.65 10  kg
2.00 MeV
2.00 MeV 1.59 MeV2

2.00 MeV

2.00 MeV 1.59 MeV 2.00 MeV 1.59 MeV6.65 10  kg 2 4 4
2.00 MeV 2.00 MeV

2.00 MeV 1.59 MeV2
2.00 

m

− −

 
 
 

= ⋅ ⋅25 28

MeV
1.1608 10  kg,  3.8098 10  kg

 

ROUND: −= ⋅ 25
X 1.16 10  kgm . Since the ratio of the masses of atom X and the alpha particle is 

α
− −= ⋅ ⋅25 27

X / (1.16 10  kg)/(6.65 10  kg) = 17.5m m , and since the alpha particle has 4 nucleons,  expect atom 
X to have 70 nucleons.  Consulting the table in Appendix B, germanium is a good guess. Another 
possibility would be zinc, but zinc-70 is a relatively rare isotope of zinc, whereas germanium-70 is a 
common isotope of germanium. 
DOUBLE-CHECK:  Since the alpha particle is reflected back, the mass of atom X must be greater than the 
mass of the alpha particle, so this value makes sense. 
 

Multi-Version Exercises 

7.110. THINK:  The coefficient of restitution is used to compute the height of the next bounce from the peak of 
the previous bounce. Since the ball was dropped (not thrown), assume that it started with no velocity, 
exactly as it would at the peak of a bounce.  

 SKETCH: The ball hits the floor three times: 
 

   

 RESEARCH:  The coefficient of restitution is defined to be f

i

h
h

ε = . In this case, the ball bounces three 

times; it is necessary to find expressions relating 0 1 2 3,  , , and h h h h . 
  

 SIMPLIFY: For the first bounce, 1

0

h
h

ε = . For the second bounce, 2

1

h
h

ε = , and for the third bounce, 

3

2

h
h

ε = . Squaring all three equations gives: 2 1

0

h
h

ε = , 2 2

1

h
h

ε = , and 2 3

2

h
h

ε = . Now, solve for h3 in terms 

of h2 and ε: 2
3 2h hε= . Similarly, solve for h2 in terms of h1 and ε, then for h1 in terms of h0 and ε, to get: 
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2
3 2

2
2 1

2
1 0

h h

h h

h h

ε

ε

ε

=

=

=

 

 Finally, combine these three equations to get an expression for h3 in terms of the values given in the 
problem, h1 and ε. 

( )
( )( )

2
3 2

2 2
1

2 2 2
0

6
0 .

h h

h

h

h

ε

ε ε

ε ε ε

ε

=

=

=

=

 

 CALCULATE:  The coefficient of restitution of the Super Ball is 0.8887 and the ball is dropped from a 
height of 3.853 m above the floor. So the height of the third bounce is: 

( )

6
3 0

60.8887 3.853 m
1.89814808 m

h hε=

=
=

 

 ROUND: The only numbers used here were the coefficient of restitution and the height. They were 
multiplied together and were given to four significant figures. Thus the answer should have four figures; 
the ball reached a maximum height of 1.898 m above the floor.  
DOUBLE-CHECK: From experience with Super Balls, this seems reasonable. Double check by working 
backwards to find the maximum height of each bounce. If the ball bounced 1.898 m on the third bounce, 
then it reached a height of 1.898 m / 0.88872 = 2.403177492 m on the second bounce and 2.403177492 m / 
0.88872 = 3.042814572 m on the first bounce. From there, the height at which the ball was dropped is 
computed to be 3.042814572 m / 0.88872 = 3.852699416 m. When rounded to four decimal places, this 
gives an initial height of 3.853 m, which agrees with the number given in the problems and confirms that 
the calculations were correct.  

7.111. 
( )

3
0 66

2.234 m 3.895 m
0.9115

h
h

ε
= = =  

7.112. 3 66

0

2.621 m 0.9345
3.935 m

h
h

ε = = =  

7.113. THINK:  This problem uses the properties of conservation of energy. Since the masses and initial speeds 
of the gliders are given, it is possible to use the fact that the collision is totally elastic and the initial 
conditions to find the velocity of the glider after the collision.  

 SKETCH: The sketch shows the gliders before and after the collision. Note that the velocities are all in the 
x – direction. Define the positive x – direction to be to the right.  

 BEFORE: 
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 AFTER:    

 
 RESEARCH:  Since this is a one-dimensional, totally elastic collision, we know that the speed of the first 

glider after the collision is given by the equation:  

1 2 2
f1, i1 i2 

1 2 1 2

2
x x x

m m m
v v v

m m m m
   −

= +   + +   
 

 SIMPLIFY: Since the masses are given in grams and the velocities in meters per second, there is no need to 
convert any of the units in this problem. All of the values needed to compute the final velocity of Glider 1. 

 CALCULATE:  The masses and velocities are given in the problem. Substitute them into the equation to 

get ( ) ( )f1, 
160.1 g 354.1 g 2 354.1 g

2.723 m/s 3.515 m/s
160.1 g 354.1 g 160.1 g 354.1 gxv
   − ⋅

= + ⋅ −   + +   
, so the velocity of Glider 1 

after the collision is –5.868504473 m/s. The velocity is negative to indicate that the glider is moving to the 
left. 

 ROUND: The measured numbers in this problem all have four significant figures, so the final answer 
should also have four figures. This means that the final velocity of Glider 1 is  
5.869 m/s to the left.  
DOUBLE-CHECK: Though the speed of Glider 1 is greater after the collision than it was before the 
collision, which makes sense because Glider 2 was more massive and had a faster speed going into the 
collision. The problem can also be checked by calculating the speed of Glider 2 after the collision using the 

equation 1 2 1
f2, i1 i2 

1 2 1 2

2
x x x

m m m
v v v

m m m m
   −

= +   + +     
and confirming that the energy before the collision is 

equal to the energy after the collision, 
2 2 2 2
f1 f2 i1 i2

1 2 1 22 2 2 2
p p p p
m m m m

+ = + . Before the collision,  

( ) ( )

( ) ( )

2 22 2
1 i1 2 i2i1 i2

1 2 1 2
2 2

2 2

2 2 2 2

160.1 g 2.723 m/s 354.1 g 3.515 m/s
2 160.1 g 2 354.1 g

2781.041643 g m / s

m v m vp p
m m m m

+ = +

⋅ ⋅
= +

⋅ ⋅
= ⋅
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 After the collision,  

( ) ( )

( )

( )

2 2
f1 f2

1 2
2 2

1 f1 2 f2

1 2
2

1 2 1
2 i1 i2 2

1 2 1 21 f1

1 2
2

2 2

2 2

2

2 2

160.1 g 5.869 m/s
2 160.1 g

2 160.1 g 354.1 g 160.1354.1 g 2.723 m/s
160.1 g 354.1 g

x x

p p
m m

m v m v
m m

m m mm v v
m m m mm v

m m

+

= +

     −
+      + +      = +

⋅
=

⋅

 ⋅ −
⋅ ⋅ + + 

+

( )
2

2 2

 g 3.515 m/s  
160.1 g 354.1 g

2 354.1 g
2781.507234 g m / s

   
⋅ −    +    

⋅
= ⋅

 

 The energies before and after the collision are both close to 2781 g·m2 / s2, confirming that the values 
calculated for the speeds of the gliders were correct. 

7.114. 1 2 2
f1 i1 i2

1 2 1 2

2m m m
v v v

m m m m
   −

= +   + +   
 

 

( ) ( )

( )

( ) ( )( )
( )

1 2 f1 1 2 i1 2 i2

1 f1 2 f1 1 i1 2 i1 2 i2

2 f1 2 i1 2 i2 1 i1 1 f1

1 i1 f11 i1 1 f1
2

f1 i1 i2 i1 f1 i2

2

2
2

2

2 2
176.3 g 2.199 m/s 4.511 m/s

275.8 
2.199 m/s 4.511 m/s 2 3.301 m/s

m m v m m v m v
m v m v m v m v m v
m v m v m v m v m v

m v vm v m v
m

v v v v v v

m

+ = − +
+ = − +
+ − = −

−−
= =

+ − + −

− −
= =

− − −
g

 

7.115. 1 2 2
f1 i1 i2

1 2 1 2

2m m m
v v v

m m m m
   −

= +   + +   
 

 

( ) ( )

( )

( ) ( )( )
( )

1 2 f1 1 2 i1 2 i2

1 f1 2 f1 1 i1 2 i1 2 i2

2 f1 2 i1 2 i2 1 i1 1 f1

2 f1 i1 i22 f1 2 i1 2 i2
1

i1 f1 i1 f1

1

2
2

2
22

277.3 g 4.887 m/s 2.277 m/s 2 3.789 m/s
192

2.277 m/s 4.887 m/s

m m v m m v m v
m v m v m v m v m v
m v m v m v m v m v

m v v vm v m v m v
m

v v v v

m

+ = − +
+ = − +
+ − = −

+ −+ −
= =

− −

− + − −
= =

− −
.3 g

 

7.116. THINK:  For this problem, it will help to think about the components of the momentum that are 
perpendicular to and parallel to the wall. After the collision, the momentum parallel to the wall is 
unchanged The perpendicular component is in the opposite direction and is multiplied by the coefficient 
of restitution after the collision with the wall.  
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 SKETCH: Show the path of the racquetball before and after it hits the wall.  

  
 RESEARCH: The mass and initial speed can be used to calculate the initial momentum ip mv=


 . The 

angle at which the racquetball hits the wall is used to calculate the parallel and perpendicular components 
from the initial momentum: i, i icosp p θ⊥ = and i, i isinp p θ=



. The component of the momentum parallel 

to the wall is unchanged in the collision, so f , i,p p=
 

. The component of the final momentum 
perpendicular to the wall has a magnitude equal to the coefficient of restitution times the component of 
the initial momentum parallel to the wall: f, i,p pε⊥ ⊥=  in the opposite direction from i,p ⊥ . With a little 
trigonometry, the final angle can be calculated from the perpendicular and parallel components of the 

final momentum: f, 
f

f, 

tan
p
p

θ
⊥

=  . 

 SIMPLIFY: Since f, 
f

f, 

tan
p
p

θ
⊥

=  , take the inverse tangent to find f, 1
f

f, 

tan
p
p

θ −

⊥

 
=   

 

 . Substitute 

f , i, i isinp p p θ= =
 

and f, i icosp pε θ⊥ =  into the equation to get: 

1 i i
f

i i

1

1

sin
tan

cos

sin1tan
cos

1tan tan

i

i

i

p
p

θ
θ

ε θ

θ
ε θ

θ
ε

−

−

−

 
=  

 
 

= ⋅ 
 
 = ⋅ 
 

 

 CALCULATE:  The exercise states that the initial angle is 43.53° and the coefficient of restitution is 
0.8199. Using those values, the final angle is: 

1
f

1

tan
tan

tan43.53tan
0.8199

49.20289058

iθθ
ε

−

−

 =  
 

° =  
 

= °

 

 ROUND: The angle and coefficient of restitution are the only measured values used in these calculations, 
and both are given to four significant figures, so the final answer should also have four significant figures. 
The racquetball rebounds at an angle of 49.20° from the normal.  
DOUBLE-CHECK: This answer is physically realistic. The component of the momentum does not 
change, but the perpendicular component is reduced by about one fifth, so the angle should increase. To 
double check the calculations, use the speed and mass of the racquetball to find the initial and final 
momentum: i, i, isinip mv mv θ= =

 



 and i, i, i icosp mv mv θ⊥ ⊥= =


. Thus i, 437.9416827 g m/sp = ⋅


 and 
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i, 461.0105692 g m/sp ⊥ = ⋅ . The parallel portion of the momentum is unchanged, and the perpendicular 
portion is the coefficient of restitution times the initial perpendicular momentum, giving a final parallel 
component of f, 437.9416827 g m/sp = ⋅



 and f, 377.9825657 g m/sp ⊥ = ⋅ . The final angle can be computed 

as f, 1
f

f, 

tan
p
p

θ −

⊥

 
=   

 

  or 49.20°, which confirms the calculations.  

7.117. f i
1tan tanθ θ
ε

=  

 

i

f

tan tan48.67 0.7742
tan tan55.75

θ
ε

θ
°

= = =
°

 

7.118. f i
1tan tanθ θ
ε

=  

 

( ) ( )1 1
i ftan tan tan 0.8787tan57.24 53.78θ ε θ− −= = ° = °  

7.119. THINK:  When the boy catches the dodgeball, he holds on to it and does not let go. The boy and the ball 
stick together and have the same velocity after the collision, so this is a totally inelastic collision. This 
means that the final velocity of the boy and ball can be calculated from the initial velocities and masses of 
the boy and dodgeball.  

 SKETCH: Choose the x – axis to run in the same direction as the dodgeball, with the origin at the boy’s 
initial location.   

     
 RESEARCH:  In a totally inelastic collision, the final velocity of both objects is given by 

ball ball boy boy
f

ball boy

m v m v
v

m m
+

=
+

.  

 SIMPLIFY: Because the initial velocity of the boy boy 0v = , the equation can be simplified to 

ball ball boy ball ball
f

ball boy ball boy

0m v m m v
v

m m m m
+ ⋅

= =
+ +

. Since the mass of the ball is given in grams and the mass of the boy is 

given in kilograms, it is necessary to multiply the mass of the ball by a conversion factor of 
1 kg

.
1000 g

 

 CALCULATE:  The mass of the ball is 511.1 g, or 
1 kg

511.1 g 0.5111 kg
1000 g
⋅ = . The mass of the boy is 

48.95 kg and the initial velocity of the dodgeball is 23.63 m/s. The final velocity is  

    

ball ball
f

ball boy

0.5111 kg 23.63 m/s
48.95 kg 0.5111 kg
0.2441776062 m/s.

m v
v

m m
=

+

⋅
=

+
=

 

 ROUND: The measured values in this problem are given to four significant figures, and the sum of the 
masses also has four significant figures, so the final answer should also have four significant figures. The 
final velocity of the boy and dodg ball is 0.2442 m/s in the same direction that the dodgeball was traveling 
initially.  
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DOUBLE-CHECK: This answer makes sense. The mass of the boy is much greater than the mass of the 
dodgeball, so a smaller speed of this massive system (boy plus dodgeball) will have the same momentum as 
the ball traveling much faster. To confirm that the answer is correct, check that the momentum after the 
collision is equal to the momentum before the collision. Before the collision, the boy is not moving so he 
has no momentum, and the dodgeball has a momentum of 0.511 kg 23.63 m/sx xp mv= = ⋅  or  

12.075 kg · m/s. After the collision, the total momentum is ( )0.511 kg 48.95 kg 0.2442 m/sxmv = + ⋅  or 
12.078 kg · m/s. These agree within rounding error, so this confirms that the original calculation was 
correct.  

7.120. ball ball
f

ball boy

m v
v

m m
=

+
 

 

( )
( ) ( )( )

f ball boy ball ball

f ball boy
ball

ball

0.2304 m/s 0.5131 kg 53.53 kg
24.27 m/s

0.5131 kg

v m m m v

v m m
v

m

+ =

+ +
= = =

 

7.121. ball ball
f

ball boy

m v
v

m m
=

+
 

 

( )

( )

f ball boy ball ball

f ball f boy ball ball

ball ball f ball ball f
boy ball

f f

24.91 m/s 0.2188 m/s0.5151 kg 58.13 kg
0.2188 m/s

v m m m v

v m v m m v
m v v m v v

m m
v v

+ =

+ =

− − −
= = = =
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Chapter 8:  Systems of Particles and Extended Objects 
 
Concept Checks 

8.1. b   8.2. a  8.3. d   8.4. b   8.5. a      
 
Multiple-Choice Questions 

8.1. d 8.2. b  8.3. d  8.4. b and d  8.5. e  8.6. a  8.7. b  8.8. d  8.9. b  8.10. e  8.11. a  8.12. c  8.13. a  8.14. b  8.15. b  
8.16. b   
 
Conceptual Questions 

8.17. It is reasonable to assume the explosion is entirely an internal force. This means the momentum, and 
hence the velocity of the center of mass remains unchanged. Therefore, the motion of the center of mass 
remains the same. 

8.18. The length of the side of the cube is given as d. If the cubes have a uniform mass distribution, then the 
center of mass of each cube is at its geometric center. Let m be the mass of a cube. The coordinates of the 
center of mass of the structure are given by: 

cm

3
32 2 2 2 ,

4 4

d d d dm
dX

m

 + + + 
 = =   cm

3
32 2 2 2

4 4

d d d dm
dY

m

 + + + 
 = =    and   cm

3
32 2 2 2 .

4 4

d d d dm
dZ

m

 + + + 
 = =  

Therefore, the center of mass of the structure is located at ( )cm cm cm
3 3 3,  ,  , , . 
4 4 4
d d dR X Y Z  = =  

 



  

8.19. After the explosion, the motion of the center of mass should remain unchanged. Since both masses are 
equal, they must be equidistant from the center of mass. If the first piece has x-coordinate 1x and the 

second piece has x-coordinate 2 ,x then − = −cm 1 cm 2 .X x X x  For example, since the position of the 

center of mass is still 100 m, one piece could be at 90 m and the other at 110 m:  100 90 100 110 .− = −  

8.20. Yes, the center of mass can be located outside the object. Take a donut for example. If the donut has a 
uniform mass density, then the center of mass is located at its geometric center, which would be the center 
of a circle. However, at the donut’s center, there is no mass, there is a hole. This means the center of mass 
can lie outside the object.  

8.21. It is possible if, for example, there are outside forces involved. The kinetic energy of an object is 
proportional to the momentum squared ( )2 .K p∝  So if p increases, K increases.  

8.22. The intersection of the triangle’s altitudes implies the triangle has a uniform mass density, meaning the 
center of mass is at the geometric center. To show this point by physical reasoning means using geometry 
to show where it is.  
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It can be seen that ° =1 sin60 / 2h L  and ° =1 2cos60 .h h  Therefore, 

( )1 2
3 3 3 31cos60 .

2sin60 2 3 3 3 6233 / 2

L L L L L L Lh h  = = = = ⇒ = ° = = °  
 

If the center of the bottom side of the triangle is (0, 0), then the center of mass is located at 

( ) ( )=20, 0, 3 / 6 .h L  To calculate by direct measurement, note that due to symmetry by the choice of 

origin, the x coordinate of the center of mass is in the middle of the x axis. Therefore, =cm 0,X  which 
means only cmY  must be determined.  

 
 

Clearly, the x value of a point along the side of the triangle is dependent on the value of y for that point, 

meaning x is a function of y. When y is zero, x is L/2 and when x is zero, y is max 1 2 3 / 2.y h h L= + =  The 

change in x should be linear with change in y, so x my b= + , where 
( )
( )

−∆
= = = −
∆ −

/ 2 0 1 .
30 3 / 2

Lxm
y L

 

Therefore, 
0 0   

2 23
L Lb b b= − + = + ⇒ =  and 30   .

2 22 3
L L Lb b b= − + = − + ⇒ = The equation for x is 

then given by ( ) = − + .
23

y Lx y Since the mass density is uniform, the geometry of the triangle can be 

considered. = ∫∫cm
1 ,Y ydA
A

 where =
2 3
4

LA  and = .dA dxdy  
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The integral then becomes:  

( )

( )

( ) ( )( )= = −∫ ∫ ∫
maxmax

min min

3
2

cm max min2 2
0

4 4 .
3 3

L
x yy

y x y

Y ydy dx y x y x y dy
L L

 Due to symmetry, ( ) ( )= −max minx y x y  and 

( ) ( )=max .x y x y  Therefore,  

( )
3 3

22 2

cm 2 2
0 0

3
2 3 3 3 32

2 2 2
0

8 8
23 3 3

8 8 3 8
4 16 8 163 3 3 3 3

3 .
62 3

L L

L

y yL
Y yx y dy dy

L L

y L y L L L
L L L

L L

 −
= = + 

 

     
= − = − =     

    

= =

∫ ∫

 

The center of mass is located at ( )
 

= =   
 

cm cm
3, 0, .

6
LR X Y  This is consistent with reasoning by geometry. 

8.23. (a)  The empty can and the liquid should each have their centers of mass at their geometric centers, so 
initially the center of mass of both is at the center of the can (assuming the can is filled completely with 
soda). Assuming the liquid drains out uniformly, only the height changes and the cross sectional area 
remains constant, so the center of mass is initially at L/2 and changes only in height. As liquid drains, its 
mass M will drop by ∆M  but the mass of the can, m, remains the same. As liquid drains, its center of mass 
will also fall such that if the liquid is at a height h, < <0 h L , its center of mass is at h/2. As long as 

− ∆ >M M m , the center of mass of both will also fall to some height 'h , < </ 2 ' .h h L  Once 
− ∆ <M M m , the center of mass of both will begin to increase again until − ∆ = 0M M  and the center of 

mass is that of just the can at L/2. A sketch of the height of the center of mass of both as a function of 
liquid height is shown below. 

 
(b)  In order to determine the minimum value of the center of mass in terms of L, M and m, first consider 
where the center of mass for a height, h, of liquid places the total center of mass. 

 
1Z  is the center of mass of the can. 2Z  is the center of mass of the liquid. Notice the center of mass moves 

along the z axis only. A is the cross sectional area of the can in the xy plane. ρM  is the density of the liquid. 
h is the height of the liquid. 
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The coordinate of the center of mass is given by 

+
=

+cm
2 2 .

mL Mh

Z
m M

 

When h = L, =cm / 2.Z L  When <h L , α=h L , where α≤ <0 1.  In other words, the height of the liquid 
is a fraction, α , of the initial height, L. Initially the mass of the liquid is ρ ρ= = .M V AL  When 

( )α α=h L , the mass of the liquid is ( ) ( )α ρ α αρ α= = = .M Ah AL M  This means the center of mass for 
some value of α is  

( )
( ) ( )

( )

2

2

cm
12 2 2 2 .

2 1

M hmL mL ML
L bZ

m M m M b

α α α
αα

α α α

+ +  +
= = =  + + + 

 

where b = M/m and M is the initial mass of the liquid. In order to determine the minimum value of cm ,Z  

( )αcmZ  must be minimized in terms of α  to determine where αmin  occurs and then determine 

( )cm min .Z α  

( )
( )

α α α α
α α α α

  + + − = = +  +   

2 2 2
cm

2

1 2
1 1

dZ d b b b ba a
d d b b

, where a = L/2. 

When ( )α α α α= ⇒ + − =2 2
cm / 0 2 0.dZ d b b b  Using the quadratic equation, α − ± +

=
1 1 .b

b
Since > 0b  

and α > 0 ,  α − + +
=min

1 1 .b
b

 Therefore, ( ) α
α

α
  + + − +

= =     + +   

2
min

cm min
min

1 1 12 .
1 1

b b bZ a a
b b b

 

( )α

 
+ − +  

 =

+
cm min

1

1

ML M m m
m

Z
MM
m

 

If it is assumed that soda has a similar density to water and the can is made of aluminum, then the ratio of 
≈/ 30M m , giving a minimum cmZ  of about L/6.  

8.24. (a)  If the astronaut throws both at the same time, he gains their momentum of them moving at a velocity, 
v. If he throws one first at a velocity, v, he will recoil back at a velocity, '.v  So when he throws the second 
item, he will gain its momentum at a velocity of − 'v v , which is less than v. So he gains less momentum 
from throwing the second item after the first than if he throws both items at the same time. Therefore, he 
obtains maximum speed when he throws both at the same time. 
(b)  If the astronaut throws the heavier object (tool box) first, it will give the astronaut a large velocity, 'v , 
so when he throws the lighter object (hammer), it will have a small velocity of − '.v v  So its momentum 
contribution will be very small. However, if he throws the lighter item first, 'v  will be smaller in this 
scenario, so the momentum of the box will be dependent on − 'v v , which is greater and contributes a 
large amount of momentum to the astronaut, giving him a larger velocity. Therefore, throwing the lighter 
object first will maximize his velocity. 
(c) The absolute maximum velocity is when both items are thrown at the same time. Initially the 
momentum is zero and after the toss, the astronaut travels with velocity, 'v  and the box and hammer 
travel with velocity, v in the opposite direction. 

 = ⇒ = − + ⇒ = 
 

 

i f
30 ' '

2 4 4
M Mp p Mv v v v  

Therefore, the maximum velocity is ¾ of the velocity at which he throws the two items. 
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8.25. Let the angle θ  sweep through from / 2φ−  to / 2.φ  Keeping R constant asθ increases, the length of the 
rod, ,l Rθ=  increases and in turn the mass, λ= ,m l  increases. Since the mass is uniformly distributed, the 
center of mass should be in the same location. So rather than bending a rod of constant length where θ  
and R change, keep R constant and change θ  and l. Use Cartesian coordinates to determine the center of 
mass. Since the center of mass is a function ofθ , it must be determined how the coordinates change with 
the angle .θ  

 
θ ,= − cosy R R  θ ,= sinx R  λ φ= ,m R  λ θ=dm Rd  

φ
φ φ

φφ φ

φ φθλ θ θ θ θ
λ φ φ φ φ− − −

    = = = = − = − − − =       
∫ ∫ ∫

/2 /2 2

cm
/2 /2

2

1 1 sin sin cos cos cos 0
2 2

R R RX xdm R Rd d
m R

 

( ) ( ) ( )
φ

φ φ

φφ φ

θ λ θ θ θ θ θ
λ φ φ φ

φ
φ φ φ φ

φ φ φ

− − −

 
= = − = − = − 

 

 
           = − − − − − = −                

∫ ∫ ∫
/2 /2 2

cm
/2 /2

2

1 1 cos 1 cos sin

2 sin
2sin sin

2 2 2 2

R RY ydm R R Rd d
m R

R
R R R

 

( ) ( )φ
φ

 
= = − 

 



cm cm cm

2 sin / 2
, 0,

R
R X Y R  

8.26. As eggs A, B and/or C are removed, the center of mass will shift down and to the left. To determine the 
overall center of mass, use the center of the eggs as their center position, such that eggs A, B and C are 
located respectively at  

3 5, , , , , .
2 2 2 2 2 2
d d d d d d     

     
     

 

Since all of the eggs are of the same mass, m, and proportional to d, m and d can be factored out of the 
equations for cmX  and cm .Y   

(a)  
          = − + − + − + + + = −          
          

cm
5 3 1 1 3 52 2 2 2 2 ,

11 2 2 2 2 2 2 22
md dX

m
    = − + = −    
    

cm
1 16 5

11 2 2 22
md dY

m
 

 = − − 
 



cm ,
22 22
d dR  
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(b) 
          = − + − + − + + + = −          
          

cm
5 3 1 1 3 5 32 2 2 2 2 ,

11 2 2 2 2 2 2 22
md dX

m
    = − + = −    
    

cm
1 16 5

11 2 2 22
md dY

m
 

 = − − 
 



cm
3 ,
22 22
d dR  

(c) 
          = − + − + − + + + = −          
          

cm
5 3 1 1 3 5 52 2 2 2 2 ,

11 2 2 2 2 2 2 22
md dX

m
    = − + = −    
    

cm
1 16 5

11 2 2 22
md dY

m
 

 = − − 
 



cm
5 ,
22 22
d dR  

(d) 
      = − + − + − + + + = −      
      

cm
5 3 1 1 3 52 2 2 ,

9 2 2 2 2 2 2 2
md dX

m
 

    = − + = −    
    

cm
1 16 3

9 2 2 6
md dY

m
 

 = − − 
 



cm ,
2 6
d dR    

8.27. The center of the pizza is at ( )0,0  and the center of the piece cut out is at ( )−3 / 4,0 .R  Assume the pizza 
and the hole have a uniform mass density (though the hole is considered to have a negative mass). Then 
the center of mass can be determined from geometry. Also, because of symmetry of the two circles and 
their y position, it can be said that =cm 0,Y  so only cmX  needs to be determined. 

 

π= 2
p ,A R  π π = = 

 

2 2

h ,
4 16
R RA    ( ) ( )=p p, 0,0 ,x y    ( )  = − 

 
h h

3, ,0
4

x y R  

π

ππ

  − −   −   = = =
−

−

2

p p h h
cm 2

2p h

30
4 16

,
20

16

RR
x A x A RX

A A RR
    =  

 



cm ,0
20
RR  

8.28. Since the overall mass of the hourglass does not change and the center of mass must move from the top 
half to the bottom half, then the center of mass velocity,   vcm , must be non-zero and pointing down. As the 
sand flows from the top part of the hourglass to the lower part,   vcm  changes with time. The magnitude of 

  vcm  is larger when the sand has just started to flow than just before all the sand has flowed through. Thus 

  dvcm / dt = acm  must be in the opposite direction from   vcm , which is the upward direction. The scale must 
supply the force required to produce this upward acceleration, so the hourglass weighs more when the 
sand is flowing than when the sand is stationary. You can find a published solution to a similar version of 
this problem at the following reference: K.Y. Shen and Bruce L. Scott, American Journal of Physics, 53, 787 
(1985). 
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Exercises 

8.29. THINK: Determine (a) the distance, 1 ,d  from the center of mass of the Earth-Moon system to the 
geometric center of the Earth and (b) the distance, 2 ,d  from the center of mass of the Sun-Jupiter system to 

the geometric center of the Sun. The mass of the Earth is approximately = ⋅ 24
E 5.9742 10  kgm  and the 

mass of the Moon is approximately = ⋅ 22
M 7.3477 10  kg.m  The distance between the center of the Earth to 

the center of the Moon is EM 384,400 km.d =  Also, the mass of the Sun is approximately 

= ⋅ 30
S 1.98892 10  kgm  and the mass of Jupiter is approximately = ⋅ 27

J 1.8986 10  kg.m  The distance 

between the center of the Sun and the center of Jupiter is =SJ 778,300,000 km.d  
SKETCH:   

 

RESEARCH:  Determine the center of mass of the two object system from 
+

=
+

 



1 1 2 2

1 2

.
r m r m

R
m m

 By 

considering the masses on the x-axis (as sketched), the one dimensional equation can be used for x. 
Assuming a uniform, spherically symmetric distribution of each planet’s mass, they can be modeled as 
point particles. Finally, by placing the Earth (Sun) at the origin of the coordinate system, the center of 
mass will be determined with respect to the center of the Earth (Sun), i.e. ( ) =1 2 .d d x  
SIMPLIFY:   

(a)  
+

= = =
+ +

1 E 2 M EM M
1

E M E M

x m x m d m
d x

m m m m
 

(b)  
+

= = =
+ +

1 S 2 J SJ J
2

S J S J

x m x m d m
d x

m m m m
 

CALCULATE:   

(a)  
( )( )

( ) ( )
⋅ ⋅ ⋅

= = =
⋅⋅ + ⋅

22 28

1 2424 22

384,400 km 7.3477 10  kg 2.8244559 10  km kg
4670.3 km

6.047677 10  kg5.9742 10  kg 7.3477 10  kg
d  

(b)  
( )( )

( ) ( )
⋅ ⋅

= =
⋅ + ⋅

8 27

2 30 27

7.783 10  km 1.8986 10  kg
742247.6 km

1.98892 10  kg 1.8986 10  kg
d  

ROUND:   
(a)  EMd  has four significant figures, so 1 4670. km.d =  
(b)  SJd  has four significant figures, so =2 742,200 km.d  

DOUBLE-CHECK:  In each part, the distance 1 2/d d  is much less than half the separation distance 

EM SJ/ .d d  This makes sense as the center of mass should be closer to the more massive object in the two 
body system. 



Chapter 8: Systems of Particles and Extended Objects 
 

 387 

8.30. THINK:  The center of mass coordinates for the system are ( )−/ 4, / 5 .L L  The masses are =1 2 kgm , 

=2 3 kgm  and =3 4 kg.m  The coordinates for 2m  are ( ),0L  and the coordinates for 3m  are ( )−0, / 2 .L  

Determine the coordinates for 1.m  
SKETCH:   

 
RESEARCH:  The x and y coordinates for 1m  can be determined from the equations for the center of 
mass in each dimension: 

=

= ∑
1

1 n

i i
i

X x m
M

 and 
=

= ∑
1

1 .
n

i i
i

Y y m
M

 

SIMPLIFY:  
+ +

=
+ +

1 1 2 2 3 3

1 2 3

x m x m x m
X

m m m
( )( )⇒ = + + − −1 1 2 3 2 2 3 3

1

1x X m m m x m x m
m

 

Similarly, ( )( )= + + − −1 1 2 3 2 2 3 3
1

1 .y Y m m m y m y m
m

 

CALCULATE:  ( ) ( ) ( )  = + + − − = −  
  

1
1 32 kg 3 kg 4 kg 3 kg 0 4 kg

2 kg 4 8
Lx L L  

( ) ( ) ( )   = − + + − − − =   
   

1
1 12 kg 3 kg 4 kg 0 3 kg 4 kg

2 kg 5 2 10
L Ly L  

ROUND:  Rounding is not necessary since the initial values and the results are fractions, so 1m  is located 

at ( )−3 / 8, /10 .L L  

DOUBLE-CHECK:  The coordinates for 1m  are reasonable: since Xcm is positive and Ycm is negative and 
both coordinates have comparatively small values (and thus the center of mass is close to the origin), it 
makes sense that x will be negative to balance the 3-kg mass and y will be positive to balance the 4-kg mass.   

8.31. THINK:  The mass and location of the first acrobat are known to be 1 30.0 kgm =  and 

( )1 3.00 m,4.00 m .r =
  The mass and location of the second acrobat are 2 40.0 kgm =  and 

( )2 2.00 m, 2.00 m .r = − −
  The mass of the third acrobat is 3 20.0 kg.m =  Determine the position of the 

third acrobat, 3 ,r  when the center of mass (com) is at the origin. 

 

 

 

 

 

 



Bauer/Westfall: University Physics, 2E 

  388 

SKETCH:   

 

RESEARCH: Let M be the sum of the three masses. The coordinates of 3m  can be determined from the 
center of mass equations for each dimension, 

=

= ∑
1

1 n

i i
i

X x m
M

 and 
=

= ∑
1

1 .
n

i i
i

Y y m
M

 

SIMPLIFY: Since X = 0, ( )= + + =1 1 2 2 3 3
1 0X x m x m x m

M
( )1 1 2 2

3
3

.
x m x m

x
m

− −
⇒ =  Similarly, with Y = 0, 

( )− −
= 1 1 2 2

3
3

.
y m y m

y
m

 

CALCULATE: 
( )( ) ( )( )( )

3

3.00 m 30.0 kg 2.00 m 40.0 kg
0.500 m,

20.0 kg
x

− − −
= = −     

( )( ) ( )( )( )
3

4.00 m 30.0 kg 2.00 m 40.0 kg
2.00 m

20.0 kg
y

− − −
= = −  

ROUND:  ( )3 0.500 m, 2.00 mr = − −
  

DOUBLE-CHECK:  The resulting location is similar to the locations of the other acrobats. 

8.32. THINK:  The man’s mass is =m 55 kgm  and the canoe’s mass is =c 65 kg.m  The canoe’s length is l = 4.0 
m. The man moves from 0.75 m from the back of the canoe to 0.75 m from the front of the canoe. 
Determine how far the canoe moves, d. 
SKETCH:   

 
RESEARCH:  The center of mass position for the man and canoe system does not change in our external 
reference frame. To determine d, the center of mass location must be determined before the canoe moves. 
Then the new location for the canoe after the man moves can be determined given the man’s new position 
and the center of mass position. Assume the canoe has a uniform density such that its center of mass 
location is at the center of the canoe, =c 2.0 m.x  The man’s initial position is = − =m 0.75 m 3.25 m.x l  
After moving, the canoe is located at ′cx  and the man is located at ′ ′= +m c .x x a  a is the relative position of 
the man with respect to the canoe’s center of mass and = − + = −/ 2 0.75 m 1.25 m.a l  Then the distance 
the canoe moves is ′= −c c .d x x   
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SIMPLIFY:   

=

= ∑
1

1 .
n

i i
i

X x m
M

 

The center of mass is ( )= +m m c c
1 .X x m x m

M
 After moving, 

( ) ( )( )′ ′ ′ ′= + = + +m m c c c m c c
1 1 .X x m x m x a m x m

M M
 Since X does not change, the equations can be equated: 

( )( ) ( )c m c c m m c c
1 1x a m x m x m x m

M M
′ ′+ + = +  

This implies m m c c m
m m c c c m c c m c

m c

  .
x m x m am

x m x m x m x m am x
m m
+ −

′ ′ ′+ = + + ⇒ =
+

 

CALCULATE: 
( )( ) ( )( ) ( )( )3.25 m 55.0 kg 2.00 m 65.0 kg 1.25 m 55.0 kg

3.1458 m
55.0 kg 65.0 kgcx

+ − −
′ = =

+
 

Then 3.1458 m 2.00 m 1.1458 m.d = − =  
ROUND:  As each given value has three significant figures, d = 1.15 m. 
DOUBLE-CHECK:  This distance is less than the distance traveled by the man (2.5 m), as it should be to 
preserve the center of mass location. 

8.33. THINK:  The mass of the car is c 2.00 kgm =  and its initial speed is c 0.v =  The mass of the truck is 

t 3.50 kgm =  and its initial speed is t 4.00 m/sv =  toward the car. Determine (a) the velocity of the center 

of mass, V


, and (b) the velocities of the truck, tv′


 and the car, cv′


 with respect to the center of mass.  
SKETCH:   

 
RESEARCH:   

(a) The velocity of the center of mass can be determined from 
=

= ∑




1

1 .
n

i i
i

V m v
M

 

Take tv  to be in the positive x-direction. 
(b) Generally, the relative velocity, ′v , of an object with velocity, v , in the lab frame is given by 
′ = −



 v v V , where 


V  is the velocity of the relative reference frame. Note the speeds of the car and the 
truck relative to the center of mass do not change after their collision, but the relative velocities change 
direction; that is, ( ) ( )′ ′= − 

t tbefore collision after collisionv v  and similarly for the car’s relative velocity. 
SIMPLIFY:   

(a) Substituting =c 0v  and c tM mm= + , ( )= +


 

c c t t
1V m v m v

M
 becomes 

( )
( )

=
+



 t t

c t

.
m v

V
m m

 

(b) ′tv  and ′cv  before the collision are ′ = −


 

t tv v V  and ′ = − = −
 

 

c c .v v V V  
CALCULATE:   

(a) 
( )( )
( )

ˆ3.50 kg 4.00  m/s
ˆ2.545  m/s

3.50 kg 2.00 kg
x

V x= =
+



 

(b) ( ) ( )t ˆ ˆ ˆ4.00  m/s 2.545  m/s 1.4545  m/s,v x x x′ = − =


 c ˆ2.545  m/sv x′ = −


 
ROUND:  There are three significant figures for each given value, so the results should be rounded to the 
same number of significant figures. 
(a) ˆ2.55  m/sV x=
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(b) Before the collision, t ˆ1.45  m/sv x′ =


 and c ˆ2.55  m/s.v x′ = −


 This means that after the collision, the 
velocities with respect to the center of mass become t ˆ1.45  m/sv x′ = −



 and c ˆ2.55  m/s.v x′ =


 

DOUBLE-CHECK: 


V  is between the initial velocity of the truck and the initial velocity of the car, as it 
should be. 

8.34. THINK:  The motorcycle with rider has a mass of m 350. kg.m =  The flatcar’s mass is f 1500. kg.m =  The 
length of the motorcycle is =m 2.00 ml  and the length of the flatcar is =f 20.0 m.l  The motorcycle starts 
at one of end of the flatcar. Determine the distance, d, that the flatcar will be from the platform when the 
motorcycle reaches the end of the flatcar. 
SKETCH:  After the motorcycle and rider drive down the platform: 

 
RESEARCH: The flatcar-motorcycle center of mass stays in the same position while the motorcycle 
moves. First, the center of mass must be determined before the motorcycle moves. Then the new location 
of the flatcar’s center of mass can be determined given the center of mass for the system and the 
motorcycle’s final position. Then the distance, d, can be determined. Assume that the motorcycle and 
rider’s center of mass and the flatcar’s center of mass are located at their geometric centers. Take the initial 
center of mass position for the motorcycle to be = −m f m / 2x l l , and the initial center of mass for the 
flatcar to be =f f / 2.x l  The final position of the center of mass for the motorcycle will be ′ = +m m / 2x d l , 
and the final position for the flatcar will be ′ = +f f / 2.x d l  Then d can be determined from  

=

= ∑
1

1 .
n

i i
i

X x m
M

 

SIMPLIFY:  Originally, ( )= +m m f f
1 .X x m x m

M
 After the motorcycle moves, ( )′ ′= +m m f f

1 .X x m x m
M

 

As the center of mass remains constant, the two expressions can be equated: 

( ) ( )

( )

m m f f m m f f

m m f f m m f f

m m f f m f m m f f

m m m f f f

m f

1 1

1 1
2 2

1 1  
2 2

1 1
2 2

x m x m x m x m
M M

x m x m d l m d l m

x m x m d m m l m l m

x l m x l m
d

m m

′ ′+ = +

   + = + + +   
   

+ = + + +

   − + −   
   =

+

 

m
m f 2

l
x l= −  and f

f ,
2
l

x =   therefore 
( )f m m

m f

.
l l m

d
m m
−

=
+

 

CALCULATE:  
( )( )20.0 m 2.00 m 350. kg

3.4054 m
350. kg 1500. kg

d
−

= =
+

 

ROUND: mm  has three significant figures, so the result should be rounded to d = 3.41 m. 
DOUBLE-CHECK:  It is reasonable that the distance moved is less than length of the flatcar. 
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8.35. THINK:  The mass of the sled is s 10.0 kg,m =  the mass of the ball is b 5.00 kg,m =  and the mass of the 
student on the left is l 50.0 kg.m =  His relative ball-throwing speed is bl 10.0 m/s.v =  The mass of the 
student on the right is r 45.0 kgm =  and his relative ball-throwing speed is br 12.0 m/s.v =  Determine (a) 
the speed of the student on the left, l ,v  after first throwing the ball, (b) the speed of the student on the 
right, r ,v  after catching the ball, (c) the speed of the student on the left after catching the pass, ′l ,v  and (d) 
the speed of the student on the right after throwing the pass, ′r .v  
SKETCH:   

 
RESEARCH:  Momentum is conserved between each student and ball system. For each step, use =

 

i f .P P  
In addition, the relative velocity of the ball is the difference between its velocity in the lab frame and the 
velocity of the student in the lab frame who has thrown it. That is, = −  

bl b lv v v  and = −  

br b r .v v v  Recall 
each student begins at rest. 
SIMPLIFY:   
(a) Determine lv  after the ball is first thrown: 

( ) ( ) ( ) b bl
i f s l l b b s l l b bl l l

s l b

  0   0   .
m v

P P m m v m v m m v m v v v
m m m

= ⇒ = + + ⇒ = + + + ⇒ = −
+ +



 

       

(b) Determine rv  after the student catches the ball. The velocity of the ball, b ,v  in the lab frame is needed. 
From part (a), lv  is known. Then = +  

b bl l .v v v  So, bv  is known before it is caught. Now, for the student 
on the right catching the ball, 

( ) b b
i f b b b r s r r

b r s

    .
m v

P P m v m m m v v
m m m

= ⇒ = + + ⇒ =
+ +



 

    

(c)  Now the student on the right throws the ball and the student on the left catches it. To determine ′l ,v  
the velocity of the ball after it is thrown, ′bv , is needed. It is known that = −  

br b r .v v v  Then to determine 
′b ,v  consider the situation when the student on the right throws the ball. For the student on the right: 

 =i fP P  ⇒  ( ) ( )′ ′+ + = + +  

s r b r b b r s rm m m v m v m m v , where 

rv  is known from part (b) and 

br b r r b br  .v v v v v v′ ′ ′ ′= − ⇒ = −      Then, the fact that ( ) ( )( )s r b r b b r s b brm m m v m v m m v v′ ′+ + = + + −
     implies 

( ) ( )s r b r r s br
b

b r s

 .
m m m v m m v

v
m m m

+ + + +
′ =

+ +

 

  With ′bv  known, consider the student on the left catching this ball: 

( ) ( )i f b b l s l b l s l  .P P m v m m v m m m v′ ′= ⇒ + + = + +   

lv  is known from part (a) and ′bv  has just been 

determined, so 
( )′ + +

′ =
+ +

 

 b b l s l
l

b l s

.
m v m m v

v
m m m

 

(d)  br b r r b br  v v v v v v′ ′ ′ ′= − ⇒ = −       and ′bv  has been determined in part (c). 
CALCULATE:   

(a)  
( )( )

l

5.00 kg 10.0 m/s
0.76923 m/s

10.0 kg 50.0 kg 5.00 kg
v = − = −

+ +
  

(b)  b 10.0 m/s 0.769 m/s 9.231 m/s,v = − =
  

( )( )
r

5.00 kg 9.23077 m/s
0.76923 m/s

5.00 kg 45.0 kg 10.0 kg
v = =

+ +
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(c) The ball is thrown to the left, or along the −x̂  axis by the student on the right. That is, 

br 12.0 m/s.v = −
   

( )( ) ( )( )
b

10.0 kg 45.0 kg 5.00 kg 0.769 m/s 45.0 kg 10.0 kg 12.0 m/s
10.23100 m/s

5.00 kg 45.0 kg 10.0 kg
v

+ + + + −
′ = = −

+ +
  

( )( ) ( )( )
l

5.00 kg 10.2310 m/s 50.0 kg 10.0 kg 0.769 m/s
1.49685 m/s

5.00 kg 50.0 kg 10.0 kg
v

− + + −
′ = = −

+ +
  

(d)  ( ) ( )r 10.231 m/s 12.0 m/s 1.769 m/sv′ = − − − =
  

ROUND:  
(a) l 0.769 m/sv = −

  (to the left) 
(b) r 0.769 m/sv =

  (to the right) 
(c) l 1.50 m/sv′ = −  (to the left)  
(d) r 1.77 m/sv′ =  (to the right) 

DOUBLE-CHECK:  Before rounding, ′ > > 

l l 0v v  (where the initial speed was zero) and ′ > > 

r r 0v v , 
as expected. 

8.36. THINK:  Jack’s mass is J 88.0 kg.m =  Jack’s initial position is taken as ( )0,0  and the angle of his slope is 

J 35.0 .θ = °  The distance of his slope is d = 100. m. Annie’s mass is A 64.0 kg.m =  Her slope angle is 

A 20.0 .θ = °  Take her initial position to be ( )θ θ−J Jcos , sin .d d  Determine the acceleration, velocity and 

position vectors of their center of mass as functions of time, before Jack reaches the less steep section. 
SKETCH:   

 
RESEARCH:  To determine the acceleration, velocity and position vectors for the center of mass, the 
vectors must be determined in each direction. Assuming a constant acceleration, the familiar constant 
acceleration equations can be used. In addition, 

=

= ∑




1

1 ,
n

i i
i

R r m
M

 
=

= = ∑






1

1 ,
n

i i
i

dRV v m
dt M

 
=

= = ∑






1

1 ,
n

i i
i

dVA a m
dt M

 

where each equation can be broken into its vector components. 
SIMPLIFY:  The magnitude of the net acceleration of each skier is sina g θ=  down the incline of angle, 

θ .  In the x-direction, ( )J J Jsin cosxa g θ θ=  and ( )A A Asin cos .xa g θ θ=  In the y-direction,  

( )J J Jsin sinya g θ θ= − 2
Jsing θ= −  and ( ) 2

A A A Asin sin sin .ya a gθ θ θ= − = −  Then, 

( ) ( )J J A A J J J A A A
1 sin cos sin cos ,x x x

g
A m a m a m m

M M
θ θ θ θ= + = +  where = +J AM m m  and  

( ) ( )2 2
J J A A J J A A

1 sin sin .y y y

g
A m a m a m m

M M
θ θ= + = − +  

Each skier starts from rest. In the x-direction, J J J Jsin cosx xv a t g tθ θ= =  and A A A Asin cos .x xv a t g tθ θ= =  In 

the y-direction, 2
J J Jsiny yv a t g tθ= = −  and 2

A A Asin .y yv a t g tθ= = −  
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Then, 

( ) ( )J J A A J J J A A A
1 sin cos sin cosx x x x

g
V m v m v m m t A t

M M
θ θ θ θ= + = + =  and 

( ) ( )2 2
J J A A J J A A

1 sin sin .y y y y

g
V m v m v m m t A t

M M
θ θ= + = − + =  

The position in the x-direction is given by:  

2 2
J J J0 J J

1 1 sin cos
2 2xx a t x g tθ θ= + =  and 2 2

A A A0 A A J
1 1 sin cos cos .
2 2xx a t x g t dθ θ θ= + = +  

In the y-direction,  

2 2 2
J J J0 J

1 1 sin
2 2yy a t y g tθ= + = −  and 2 2 2

A A A0 A J
1 1 sin sin .
2 2yy a t y g t dθ θ= + = − −  

Then, 

( ) 2 2 2 A
J J A A J J J A A A A J J

1 1 1 1 1sin cos sin cos cos cos
2 2 2 x

m
X m x m x m g t m g t m d A t d

M M M
θ θ θ θ θ θ = + = + + = + 

 

( ) 2 2 2 2 2 A
J J A A J J A A A J J

1 1 1 1 1sin sin sin sin .
2 2 2 y

m
Y m y m y m g t m g t m d A t d

M M M
θ θ θ θ = + = − + + = − 

 
 

CALCULATE:  

( ) ( ) ( )( )
2

2
9.81 m/s

88.0 kg sin35.0 cos35.0 64.0 kg sin20.0 cos20.0 3.996 m/s
88.0 kg 64.0 kgxA = ° ° + ° ° =

+
 

( ) ( ) ( ) ( ) ( )( )
2

2 2 2
9.81 m/s

88.0 kg sin 35.0 64.0 kg sin 20.0 2.352 m/s
88.0 kg 64.0 kgyA = − ° + ° = −

+
 

( )= 23.996 m/s ,xV t  ( )= − 22.352 m/syV t  

( ) ( ) ( ) ( ) ( )2 2 2 264.0 kg1 3.996 m/s 100. m cos 35.0 1.998 m/s 34.49 m
2 88.0 kg 64.0 kg

X t t= + ° = +
+

 

( ) ( ) ( ) ( ) ( )2 2 2 264.0 kg1 2.352 m/s 100. m sin 35.0 1.176 m/s 24.1506 m
2 88.0 kg 64.0 kg

Y t t= − − ° = − −
+

 

ROUND:  Rounding to three significant figures, 24.00 m/sxA = , 22.35 m/s ,yA = −  ( )24.00 m/sxV t=  and 

( )22.35 m/s ,yV t= −  ( )2 22.00 m/s 34.5 mX t= +  and ( )2 21.18 m/s 24.2 m.Y t= − −  

DOUBLE-CHECK:  The acceleration of the center of mass is not time dependent. 

8.37. THINK:  The proton’s mass is 27
p 1.6726 10  kgm −= ⋅  and its initial speed is p 0.700v c=  (assumed to be in 

the lab frame). The mass of the tin nucleus is 25
sn 1.9240 10  kgm −= ⋅  (assumed to be at rest). Determine the 

speed of the center of mass, v, with respect to the lab frame. 
SKETCH:  A sketch is not necessary. 
RESEARCH:  The given speeds are in the lab frame. To determine the speed of the center of mass use  

=

= ∑
1

1 .
n

i i
i

V m v
M

 

SIMPLIFY:  ( )= + =
+ +

p p
p p sn sn

p sn p sn

1 m v
V m v m v

m m m m
 

CALCULATE:  
( )( )

( ) ( )
27

27 25

1.6726 10  kg 0.700
0.0060329

1.6726 10  kg 1.9240 10  kg

c
V c

−

− −

⋅
= =

⋅ + ⋅
 

ROUND:  Since pv  has three significant figures, the result should be rounded to 0.00603 .V c=  

DOUBLE-CHECK:  Since snm  is at rest and >>sn pm m , it is expected that << p .V v  
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8.38. THINK:  Particle 1 has a mass of =1 2.0 kgm , a position of ( )=


1 2.0 m,6.0 mr  and a velocity of 

( )=1 4.0 m/s,2.0 m/s .v  Particle 2 has a mass of =2 3.0 kgm , a position of ( )=


2 4.0 m,1.0 mr  and a 

velocity of ( )=2 0,4.0 m/s .v  Determine (a) the position 


R  and the velocity 


V  for the system’s center of 
mass and (b) a sketch of the position and velocity vectors for each particle and for the center of mass. 
SKETCH:  To be provided in the calculate step, part (b). 

RESEARCH:  To determine 


R , use ( )= +1 1 2 2
1X x m x m

M
 and ( )= +1 1 2 2

1 .Y y m y m
M

To determine 


V , 

use ( )= +1 1 2 2
1

x x xV v m v m
M

 and ( )= +1 1 2 2
1 .y y yV v m v m

M
 

SIMPLIFY:  It is not necessary to simplify. 
CALCULATE:   

(a)  ( )( ) ( )( )( )= + =
+
1 2.00 m 2.00 kg 4.00 m 3.00 kg 3.20 m

2.00 kg 3.00 kg
X  

( )( ) ( )( )( )= + =
+
1 6.00 m 2.00 kg 1.00 m 3.00 kg 3.00 m

2.00 kg 3.00 kg
Y  

( )( ) ( )( )= + =
+
1 4.00 m/s 2.00 kg 0 3.00 kg 1.60 m/s

2.00 kg 3.00 kgxV  

( )( ) ( )( )( )= + =
+
1 2.00 m/s 2.00 kg 4.00 m/s 3.00 kg 3.20 m/s

2.00 kg 3.00 kgyV  

(b)  

 
ROUND:  Each given value has three significant figures, so the results should be rounded to X = 3.20 m, Y 
= 3.00 m, 1.60 m/sxV =  and 3.20 m/s.yV =  

DOUBLE-CHECK:  


R  should point between 1r  and 2 ,r  and 


V  should point between 1v  and 2 .v  

8.39. THINK:  The radius of the hose is r = 0.0200 m and the velocity of the spray is v = 10.0 m/s. Determine the 
horizontal force, 



fF , required of the fireman to hold the hose stationary. 
SKETCH:   

 
RESEARCH:  By Newton’s third law, the force exerted by the fireman is equal in magnitude to the force 
exerted by the hose. The thrust force of the hose can be determined from = −





thrust c / .F v dm dt  To 
determine /dm dt , consider the mass of water exiting the hose per unit time.  
SIMPLIFY:  The volume of water leaving the hose is this velocity times the area of the hose’s end. That is,  
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π= = 2w .
dV

Av r v
dt

 

With ρ =w w/m V , ρ ρ π= = 2w
w w .

dVdm r v
dt dt

 Now, by Newton’s third law, = −
 

f thrust ,F F  so 

=




f c
dmF v
dt

ρ π=  2
c w .v r v  Since cv  is in fact v,  2 2

f w .F r vρ π=  

CALCULATE:  ( )( ) ( )2 23
f 1000 kg/m 0.0200 m 10.0 m/s 125.7 NF π= =  

ROUND:  Since v  has three significant figures, f 126 NF =


 in the direction of the water’s velocity. 
DOUBLE-CHECK:  The result has units of force. Also, this is a reasonable force with which to hold a fire 
hose. 

8.40. THINK:  The block’s mass is =b 1.2 kg.m  It has an initial velocity is =b 2.5 m/sv  (with the positive x axis 
being the right direction). The wedge’s mass is wm  and its initial velocity is = −

w 1.1 m/s.v  Their final 
velocity when the wedge stops moving is b+w .v  Determine (a) wm , if the block’s center of mass rises by     
h = 0.37 m and (b) b+w .v  
SKETCH:   

 
RESEARCH:  Momentum is conserved. As this is an elastic collision, and there are only conservative 
forces, mechanical energy is also conserved. Use =i f ,P P ∆ + ∆ = 0,K U = 2 / 2K mv  and U mgh=  to 
determine wm  and ultimately b+w .v  
SIMPLIFY:  It will be useful to determine an expression for b+wv  first: 

( ) +
= ⇒ + = + ⇒ =

+

 

 

    b b w w
i f b b w w b w b+w b+w

b w

.
m v m v

P P m v m v m m v v
m m

 

(a)  From the conservation of mechanical energy: 

( ) 2 2 2
f i f i b w b+w b b w w b

1 1 10 0
2 2 2

K U K K U U m m v m v m v m gh∆ + ∆ = − + − = ⇒ + − − + =
    

( ) ( )
( )

( )
( )

2
b b w w 2 2

b w b b w w b2
b w

2 2 2 2
b b b w b w w w 2 2

b b w w b
b w

1 1 1 0
2 2 2

2 1 1 0
2 2 2

m v m v
m m m v m v m gh

m m

m v m m v v m v
m v m v m gh

m m

+
⇒ + − − + =

+

+ +
⇒ − − + =

+

 

 

   

 

 

Multiply the expression by ( )+b w2 m m : 

( ) ( ) ( )2 2 2 2 2 2
b b b w b w w w b b b w w w b w b b w2 2 0m v m m v v m v m v m m m v m m m gh m m+ + − + − + + + =
       

2 2 2 2 2 2 2 2 2 2 2
b b b w b w w w b b b w b w b w w w b b w2 2 2 0m v m m v v m v m v m m v m m v m v m gh m m gh⇒ + + − − − + + + =
         

2 2 2
b w b w b w b b w w b b w2 2 2 0m m v v m m v m m v m gh m m gh⇒ − − + + =

     
2

b b
w 2 2 2 2

b b w b b b w b b w b w

2 2
.

2 2 2 2
m gh m gh

m
m v v m v m v m gh v v v v gh

⇒ = − =
− − + + − −
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(b)  With wm  known, 
+

=
+

 

 b b w w
b+w

b w

.
m v m v

v
m m

 

CALCULATE:   

(a) 
( )( )

( ) ( ) ( )( ) ( )( )
=

+ − − − −

⋅
= =

+ + −

2

w 2 2 2

2 2

2 2 2 2 2 2 2 2

2 1.20 kg 9.81 m/s 0.370 m

2.5 m/s 1.10 m/s 2 2.50 m/s 1.10 m/s 2 9.81 m/s 0.370 m

8.712 kg m /s
1.528 kg

6.25 m /s 1.21 m /s 5.5 m /s 7.2594 m /s

m  

(b)  
( )( ) ( )( )+ −

= =
+



b+w

1.20 kg 2.50 m/s 1.528 kg 1.10 m/s
0.4835 m/s

1.20 kg 1.528 kg
v  

ROUND:  Each given value has  three significant figures, so the results should be rounded to: 
=1.53 kgwm  and =



b+w 0.484 m/sv  to the right. 
DOUBLE-CHECK:  These results are reasonable given the initial values. 

8.41. THINK:  For rocket engines, the specific impulse is  ( )′ ′= = ∫
0

tot
spec thrust

expended fuel expended fuel

1 .
t

t

J
J F t dt

W W
 

(a)  Determine specJ  with an exhaust nozzle speed of v. 

(b) Evaluate and compare specJ  for a toy rocket with toy 800. m/sv =  and a chemical rocket with 

=chem 4.00 km/s.v   
SKETCH:  Not applicable. 
RESEARCH:  It is known that = −



thrust c / .F v dm dt  Rewrite expended fuelW  as expended .m g  With the given 

definition, specJ  can be determined for a general v, and for toyv  and chem .v  

SIMPLIFY:  ( )
0

spec 0
expended expended

1 .
m

m

vJ vdm m m
m g m g

= − = − −∫  Now, 0 expendedm m m− = − , so spec .vJ
g

=  

CALCULATE:  
( )

toy
spec, toy 2

800. m/s 81.55 s,
9.81 m/s

v
J

g
= = =  

( )
3

chem
spec, chem 2

4.00 10  m/s 407.75 s
9.81 m/s

v
J

g
⋅

= = =  

spec, toy toy
3

spec, chem chem

800. m/s 0.200
4.00 10  m/s

J v

J v
= = =

⋅
 

ROUND:  
(a) spec, toy 81.6 sJ =  

(b) =spec, chem 408 sJ  and spec, toy spec, chem0.200 .J J=  

DOUBLE-CHECK:  The units of the results are units of specific impulse. Also, as expected 
<spec, toy spec, chem .J J  

8.42. THINK:  The astronaut’s total mass is m = 115 kg. The rate of gas ejection is 
/ 7.00 g/s 0.00700 kg/sdm dt = =  and the leak speed is c 800. m/s.v =  After 6.00 st∆ = , how far has the 

astronaut moved from her original position, ∆ ?x  
SKETCH:   
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RESEARCH:  Assume that the astronaut starts from rest and the acceleration is constant. ∆x  can be 
determined from ( )∆ = + ∆i f / 2.x v v t  To determine f ,v  use the rocket-velocity equation 

( )− =f i c i fln / .v v v m m  The loss of mass can be determined from ∆ = ∆ .dmm t
dt

  

SIMPLIFY:  Since =i 0,v  ( )=f c i fln /v v m m , where =im m  and = − ∆ = − ∆f .dmm m m m t
dt

 Then, 

 
 

=  
 − ∆ 
 

f c ln mv v
dmm t
dt

 and ∆ = ∆f
1 .
2

x v t  

CALCULATE: ( ) ( )( )f

115 kg
800. m/s ln 0.29223 m/s

115 kg 0.00700 kg/s 6.00 s
v

 
= =  − 

 

( )( )1 0.29223 m/s 6.00 s 0.87669 m
2

x∆ = =  

ROUND:   The problem values have  three significant figures, so the results should be rounded to 
=f 0.292 m/sv   0.877 m.x∆ =  

DOUBLE-CHECK:  Considering how such a small amount of the total mass has escaped, this is a 
reasonable distance to have moved. 

8.43. THINK:  The mass of the payload is =p 5190.0 kg,m  and the fuel mass is = ⋅ 5
f 1.551 10  kg.m  The fuel 

exhaust speed is = ⋅ 3
c 5.600 10  m/s.v  How long will it take the rocket to travel a distance ∆ = ⋅ 83.82 10  mx  

after achieving its final velocity, fv ? The rocket starts accelerating from rest. 
SKETCH:   

 
RESEARCH:  The rocket’s travel speed, f ,v  can be determined from ( )− =f i c i fln / .v v v m m  Then ∆t  
can be determined from ∆ = ∆ .x v t   

SIMPLIFY:  
 +

=   
 

p f
f c

p

ln ,
m m

v v
m

 and ∆ = ∆ f/ .t x v  

CALCULATE:  ( )  + ⋅
= ⋅ = 

 

5
3

f

5190.0 kg 1.551 10  kg
5.600 10  m/s ln 19209 m/s,

5190.0 kg
v   

⋅
∆ = =

83.82 10  m 19886 s
19209 m/s

t  

ROUND:  ∆x  has three significant figures, so the result should be rounded to ∆ = =19,886 s 5.52 h.t  
DOUBLE-CHECK:  This is a reasonable time for a rocket with such a large initial velocity to reach the 
Moon from the Earth. 

8.44. THINK:  The linear density of the chain is λ =1.32 kg/m,  and the speed at which one end of the chain is 
lifted is v = 0.47 m/s. Determine (a) the net force acting on the chain, netF  and (b) the force, F, applied to 
the end of the chain when h = 0.15 m has been lifted off the table. 
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SKETCH:   

 
RESEARCH:   
(a)  Since the chain is raised at a constant rate, v, the net force is the thrust force, =thrust c / .F v dm dt Since 
the chain’s mass in the air is increasing, = / .netF vdm dt  
(b)  The applied force can be determined by considering the forces acting on the chain and the net force 
determined in part (a): =∑net .iF F  
SIMPLIFY:   

(a)  λ λ λ= = = = 2
net

dm dhF v v v v v
dt dt

 

(b)  = −net applied gF F m λ λ λ⇒ = + = + = +2 2
applied netF F mg v mg v hg  

CALCULATE:   

(a) ( ) ( )= =2
net 0.470 m/s 1.32 kg/m 0.2916 NF  

(b) ( )( )( )= + = + =2
applied 0.2916 N 1.32 kg/m 0.150 m 9.81 m/s 0.2916 N 1.942 N 2.234 NF  

ROUND:  v and h each have  three significant figures, so the results should be rounded to =net 0.292 NF  
and =applied 2.23 N.F  

DOUBLE-CHECK:  These forces are reasonable to determine for this system. Also, <net applied .F F  

8.45. THINK: The thrust force is = ⋅


6
thrust 53.2 10  NF  and the propellant velocity is = ⋅ 34.78 10  m/s.v  

Determine (a) dm/dt, (b) the final speed of the spacecraft, s ,v  given =i 0v , = ⋅ 6
i 2.12 10  kgm and 

= ⋅ 4
f 7.04 10  kgm  and (c) the average acceleration, ava  until burnout. 

SKETCH:   

 
RESEARCH:   
(a) To determine dm/dt, use = −



thrust c / .F v dm dt  

(b) To determine f ,v  use ( )− =f i c i fln / .v v v m m  
(c) ∆v  is known from part (b). ∆t  can be determined from the equivalent ratios,  

∆
=
∆

dm m
dt t

, where ∆ = −i f .m m m  

SIMPLIFY:   
(a) Since 



thrustF  and cv  are in the same direction, the equation can be rewritten as: 

thrust
thrust c

c

  .
Fdm dmF v

dt dt v
= ⇒ =  
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(b) i
i f c

f

0  ln
m

v v v
m

 
= ⇒ =  

 
 

(c)   ,
/

dm m mt
dt t dm dt

∆ ∆
= ⇒ ∆ =
∆

 ∆  = =  ∆ ∆  
f

av

vv dma
t m dt

  ( )=i 0v  

CALCULATE:   

(a) 
( )
( )

⋅
= =

⋅

6

3

53.2 10  N
11129.7 kg/s

4.78 10  m/s
dm
dt

 

(b) ( )  ⋅
= ⋅ = ⋅ 

⋅ 

6
3 4

f 4

2.12 10  kg
4.78 10  m/s ln 1.6276 10  m/s

7.04 10  kg
v  

(c) 
( )

( ) ( )
⋅

= =
⋅ − ⋅

4
2

av 6 4

1.6276 10  m/s
11129.7 kg/s 88.38 m/s

2.12 10  kg 7.04 10  kg
a  

ROUND:  Each given value has three significant figures, so the results should be rounded to 
=/ 11100 kg/sdm dt , = ⋅ 4

f 1.63 10  m/sv  and = 2
av 88.4 m/s .a  

DOUBLE-CHECK:  The results all have the correct units. Also, the results are reasonable for a spaceship 
with such a large thrust force. 

8.46. THINK:  The mass of the cart with an empty water tank is c 400. kg.m =  The volume of the water tank is 
31.00 m .V =  The rate at which water is ejected in SI units is 

3
3L 1 m 1 min/ 200. 0.003333 m / s.

min 1000 L 60 s
dV dt

    = =    
    

 

The muzzle velocity is =c 25.0 m/s.v  Determine (a) the time, 2t , to switch from backward to forward so 
the cart ends up at rest (it starts from rest), (b) the mass of the cart, 2M , and the velocity, 2v ,  at the 
time, 2t , (c) the thrust, thrustF , of the rocket and (d) the acceleration, 2a , of the cart just before the valve is 
switched. Note the mass of the cart increases by 1000. kg when the water tank is full, as 

( )( )3 3
w 1000. kg/m 1.00 m .m Vρ= =  That is, the initial mass is 1 1400. kg.M =  

SKETCH:   

 
RESEARCH:   

(a)  2t  can be determined from the ratio, 
−

=
−

1 2

2 1

M M dm
t t dt

, with =1 0.t  Note that, ρ=/ / .dm dt dV dt  2M  

can be determined from ( )− =f i c i fln / .v v v m m  When the cart stops moving, the water tank is empty 

and the total mass is =3 400 kg.M  

(b)  Using the mass determined in part (a), 2v  can be determined from ( )− =f i c i fln / .v v v m m  

(c)  Use = −




thrust c / .F v dm dt  

(d)  Since =




netthrust ,F Ma  2a  can be determined from this equation. 
 
 



Bauer/Westfall: University Physics, 2E 

  400 

SIMPLIFY:   
(a)  Consider the first leg of the trip before the valve is switched:  

( ) ( )− = ⇒ =2 1 1 2 2 1 2ln / ln / .c cv v v M M v v M M  

In the second leg, cv  changes direction, and the similar equation is 

( ) ( )− = − ⇒ =3 2 2 3 2 2 3ln / ln / .c cv v v M M v v M M  

Then it must be that ( ) ( )=2 3 2 3ln / ln /M M M M , or =1 2 2 3/ / .M M M M  Then =2 3 1 .M M M  Now, 

ρ
ρ ρ

−− −
= = ⇒ = = 1 3 11 2 1 2

2
2

.
M M MM M M Mdm dV t

dV dVt dt dt
dt dt

 

(b)  From above, =2 3 1 ,M M M  
 

=  
 

1
2 c

2

ln .
M

v v
M

 

(c)  ρ= − = −


 

thrust c c
dm dVF v v
dt dt

 

(d)  =


 thrust
2

2

F
a

M
 

CALCULATE:   

(a)  
( )( )

( )( )2 3 3

1400. kg 400. kg 1400. kg
195.5 s

1000. kg/m 0.003333 m /s
t

−
= =  

(b) ( )( )2 400. kg 1400. kg 748.33 kg,M = =  ( ) ( )
( )2

1400. kg
25.0 m/s ln 15.66 m/s

748.33 kg
v

 
= =  

 
 

(c)  Before the valve is switched, cv  is directed backward, i.e. = −

c 25.0 m/s.v  Then  

( )( )( )3 3
thrust 25.0 m/s 1000. kg/m 0.003333 m /s 83.33 NF = − − =


 forward. After the valve is switched, 


thrustF  

is directed backward, i.e. = −


thrust 83.33 N.F  

(d)  Before the valve is switched,  = =
 2

2
83.33 N 0.111355 m/s .

748.33 kg
a  

ROUND:   
Rounding to three significant figures: 
(a)  2 196 st =  
(b) 2 748 kgM =  and 2 15.7 m/s.v =  

(c)  thrust 83.3 NF = −


 

(d)  2
2 0.111 m/sa =
  

DOUBLE-CHECK:  All the units for the results are appropriate. Also, the results are of reasonable orders 
of magnitude. 

8.47. THINK:  The checkerboard has dimensions 32.0 cm by 32.0 cm. Its mass is b 100. gm =  and the mass of 
each of the four checkers is c 20.0 g.m =  Determine the center of mass of the system. Note the 
checkerboard is 8 by 8 squares, thus the length of the side of each square is 32.0 cm/8 = 4.00 cm. From the 
figure provided, the following x-y coordinates can be associated with each checker’s center of mass: 

( )1 : 22.0 cm,10.0 cm ,m  ( )2 : 6.00 cm,14.0 cm ,m  ( )3 : 14.0 cm,22.0 cm ,m  ( )4 : 30.0 cm,30.0 cm .m  
Assuming a uniform density distribution, the checkerboard’s center of mass is located 
at ( ) ( )b b, 16.0 cm,16.0 cm .x y =  
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SKETCH:   

 

RESEARCH:  To determine the system’s center of mass, use the following equations: 
=

= ∑
1

1 n

i i
i

X x m
M

 and 

=

= ∑
1

1 .
n

i i
i

Y y m
M

 

SIMPLIFY:  = +b c4M m m  

( )( )= + + + +b b c 1 2 3 4
1 ,X x m m x x x x

M
 ( )( )= + + + +b b c 1 2 3 4

1Y y m m y y y y
M

 

CALCULATE:  ( )100. g 4 20.0 g 180. gM = + =  

( ) ( )( )1 16.0 cm 100.0 g 20.0 g 22.0 cm 6.00 cm 14.0 cm 30.0 cm 16.889 cm
180. g

X = + + + + =  

( ) ( )( )1 16.0 cm 100. g 20.0 g 10.0 cm 14.0 cm 22.0 cm 30.0 cm 17.33 cm
180. g

Y = + + + + =  

ROUND:  16.9 cmX =  and 17.3 cm.Y =  The answer is (16.9 cm,17.3 cm). 
DOUBLE-CHECK:  >b c ,m m  so it is reasonable to expect the system’s center of mass to be near the 
board’s center of mass. 

8.48. THINK:  The total mass of the plate is =tot 0.205 kg.M  The dimensions of the plate are L by L, 
= 5.70 cm.L  The dimensions of the smaller removed plate are / 4L  by / 4.L  The mass of the smaller 

removed plate is 
2

tot s tot
s s tot2

tot s tot

tot 1  .
4 16

M m M MLm A M
A A A L

 = ⇒ = = = 
 

 

Determine the distance from the bottom left corner of the plate to the center of mass after the smaller plate 
is removed. Note the mass of the plate with the void is = − =p tot s tot15 /16.m M m M  

SKETCH:   
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RESEARCH:  The center of mass in each dimension is  
=

= ∑
1

1 n

i i
i

X x m
M

 and 
=

= ∑
1

1 .
n

i i
i

y y m
M  

The center 

of mass of the plate with the void, ( )p p, ,X Y  can be determined by considering the center of mass of the 

total system as composed of the smaller plate of mass sm  and the plate with the void of mass p .m  Note 

the center of mass of the total system is at the total plate’s geometric center, ( ) ( )=, / 2, / 2X Y L L , 
assuming uniform density. Similarly, the center of mass of the smaller plate is at its center 
( ) ( )=s s, / 8, / 8 .X Y L L  The distance of the center of mass of the plate from the origin is then 

  
d = Xp

2 +Yp
2 .  

SIMPLIFY:  ( )= +p p s s
tot

1 ,X X m X m
M

 and

  

Xp =
XM tot − Xsms( )
M tot −

1
16

M tot

=
L 1

2
M tot −

1
8

1
16

M tot












15
16

M tot

=
21
40

L.  

Similarly, 
( )

  −  −   = = =tot

tot tot
s s

p
p

tot

1 1 1
2 8 16 21 .

15 40
16

L M MYM Y m
Y L

m M
 

CALCULATE:  ( )p p
21 5.70 cm 2.9925 cm
40

X Y= = =  

  d = 2.9925 cm( )2 + 2.9925 cm( )2 = 4.232 cm  

ROUND:  Since L has three significant figures, the result should be rounded to   d = 4.23 cm.  
DOUBLE-CHECK:  It is expected that the center of mass for the plate with the void would be further 
from the origin than the center of mass for the total plate. 

8.49. THINK:  The height is H = 17.3 cm and the base is B = 10.0 cm for a flat triangular plate. Determine the x 
and y-coordinates of its center of mass.  Since it is not stated otherwise, we assume that the mass density of 
this plate is constant. 
SKETCH:   

 
 RESEARCH:  Assuming the mass density is constant throughout the object, the center of mass is given by 

= ∫


1 ,
A

R rdA
A

 where A is the area of the object.  The center of mass can be determined in each dimension. 

The x coordinate and the y coordinate of the center of mass are given by 
  
X =

1
A

x dA
A
∫  and 

  
Y =

1
A

y dA
A
∫ ,  

respectively. The area of the triangle is = / 2.A HB  
 SIMPLIFY:  The expression for the area of the triangle can be substituted into the formulae for the center 

of mass to get  

  
X =

2
HB

x dA
A
∫  and 

  
Y =

2
HB

y dA
A
∫ .  
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 In the x-direction we have to solve the integral: 

( )= = = = − = −

= − = − =

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫
( ) ( )

2

0 0 0 0 0 0 0

2 3 2 2 21 1 1 1 1
2 3 2 3 60

( ) (1 / ) /

( / )

m my x y xB B B B B

m
A

B

xdA xdydx xdx dy xy x dx xH x B dx H x x B dx

H x x B HB HB HB

 

 Note that in this integration procedure the maximum for the y–integration depends on the value of x: 

  ym (x)= H(1− x / B) . Therefore we arrive at 

  
X =

2
HB

x dA
A
∫ =

2
HB

⋅
HB2

6
= 1

3 B  

 In the same way we can find that   Y = 1
3 H . 

CALCULATE:  ( ) ( )1 1
com com3 310.0 cm 3.33333 cm, 17.3 cm 5.76667 cmX Y= = = =  

ROUND:  Three significant figures were provided in the question, so the results should be written 
  X = 3.33 cm  and   Y = 5.77 cm.  
DOUBLE-CHECK:  Units of length were calculated for both  X  and  Y , which is 
dimensionally correct. We also find that the center of mass coordinates are inside 
the triangle, which always has to be true for simple geometrical shape without 
holes in it. Finally, we can determine the location of the center of mass for a 
triangle geometrically by connecting the center of each side to the opposite corner 
with a straight line (see drawing). The point at which these three lines intersect is 
the location of the center of mass. You can see from the graph that this point has 
to be very close to our calculated result of   (

1
3 B, 1

3 H ) . 

8.50. THINK:  The linear density function for a 1.00 m long rod is 

( ) 2100. g/m 10.0  g/m .x xλ = +  One end of the rod is at =i 0 mx  and the other end is situated at 

f 1.00 m.x =  The total mass, M of the rod and the center of mass coordinate are to be determined. 
SKETCH:   

 
RESEARCH:   
(a) The linear density of the rod is given by ( )λ = / .x dm dx  This expression can be rearranged to get 

( )λ = .x dx dm  An expression for ( )λ x  was given so both sides can be integrated to solve for M. 

(b)  The center of mass coordinate is given by  = ∫com
1 .X xdm

M
 

SIMPLIFY:   
(a)  Integrate both of sides of the linear density function to get: 

( )f f

ii

2 2 2

0

100. g/m 10.0  g/m 100.  g/m 5.0  g/m .
M

x x

xx
x dx dm x x M + = ⇒ + = ∫ ∫  

(b)  Substitute ( )λ=dm x dx  into the expression for comX  to get  

( )λ= ∫
f

i

com
1 .

x

x

X x x dx
M
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The value calculated in part (a) for M can later be substituted. Substitute ( )λ = + 2100 g/m 10.0  g/mx x  

into the expression for comX  to get  

( )
ff

i i

2 2 2 3 2
com

1 1 10.0100.  g/m 10.0  g/m 50.0  g/m  g/m .
3

xx

x x

X x x dx x x
M M

  = + ⇒ +  
  

∫  

CALCULATE:   

(a)  ( ) ( )2

2

1 m
100. g/m 1 m 5.0 g 105 g

m
M = + =  

(b)  ( ) ( )2 3 2
com

1 10.050.0 1 m  g/m 1 m  g/m 0.50793651 m
105 g 3

X  = + = 
 

 

ROUND:   
Rounding to three significant figures 
(a) 105 gM =  
(b) com 0.508 mX =  
DOUBLE-CHECK:  The correct units were calculated for the mass and the center of mass so the results 
are dimensionally correct. Our result for the location of the center of mass of the rod, 50.8 cm, is just larger 
than the geometric center of the rod, 50.0 cm.  This makes sense because the density of the rod increases 
slightly with increasing distance. 

8.51. THINK:  The area density for a thin, rectangular plate is given as σ = 2
1 1.05 kg/m .  Its length is a = 0.600 

m and its width is b = 0.250 m. The lower left corner of the plate is at the origin. A circular hole of radius, r 
= 0.0480 m is cut out of the plate. The hole is centered at the coordinates =h 0.068 mx  and =h 0.068 m.y  
A round disk of radius, r is used to plug the hole. The disk, D, has a uniform area density of 
σ = 2

2 5.32 kg/m .  The distance from the origin to the modified plate’s center of mass, R, is to be 
determined. 
SKETCH:   

 

RESEARCH:  The center of mass, R, of an object can be defined mathematically as 
1

1 n

i i
i

R r m
M =

= ∑  (1). In 

this equation, M is the total mass of the system. The vector ir
  denotes the position of the thi  object’s 

center of mass and im  is the mass of that object. To solve this problem, the center of mass of the plate, 

p ,R  and the center of mass of the disk, D,R  must be determined. Then equation (1) can be used to 

determine the distance from the origin to the modified center of mass, R. First, consider the rectangular 
plate, P, which has the hole cut in it. The position of the center of mass, pR , is not known. The mass of P 

can be denoted p .m  Consider the disk of material, d, that was removed (which has a uniform area density 

of σ1 ), and denote its center of mass as dR  and its mass as d .m  Next, define S as the system of the 
rectangular plate, P, and the disc of removed material, d. The mass of S can be denoted = +s p d .m m m  The 

center of mass of S is ( ) ( )= +s ˆ ˆ/ 2 / 2 .R a x b y  pm and dm  are not known but it is known that they have 

uniform area density of σ1.  The uniform area density is given by σ = / .m A  Therefore, σ=p 1 pm A  and 
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σ=d 1 d ,m A  where pA  is the area of the plate minus the area of the hole and dA  is the area of the disk, d. 

The expressions for these areas are π= − 2
pA ab r  and π= 2

d .A r  Substituting these area expressions into 

the expressions for pm  and dm  gives ( )σ π= − 2
p 1m ab r  and σ π= 2

d 1 .m r  So the center of mass of the 

system is given by: 

( )
( )

h h d p p
s 2 2

1 1

ˆ ˆx x y y m R m
R

ab r rσ π σ π

+ +
=

− +





  (2). 

Now, consider the disk, D, that is made of the material of uniform area density, σ 2 .  Define its center of 

mass as D h hˆ ˆ.R x x y y= +


 Also, define its mass as σ π= 2
D 2 .m r  

SIMPLIFY:  Rearrange equation (2) to solve for 


p :R  

( ) ( )s 1 h h d
p p s 1 h h d p

p

ˆ ˆ
ˆ ˆ .

R ab x x y y m
R m R ab x x y y m R

m
σ

σ
− +

= − + ⇒ =



  

 

Now, substitute the values for 


sR , dm  and pm  into the above equation to get: 

( )

( )

2
1 h h 1

p 2
1

ˆ ˆ ˆ ˆ
2 2 .

a bx y ab x x y y r
R

ab r

σ σ π

σ π

 + − + 
 =

−



 

Once 


pR  is solved, it can be substituted into the expression for 


R  to get 
+

=
+

 

 p p D D

p D

.
R m R m

R
m m

 Use the 

distance formula 2 2 .x yR R R= +   

CALCULATE:  

( )( )( )( ) ( )( ) ( )

( ) ( )( ) ( )( )
( )

π

π

 + − + 
 =

−

= +



23 3

p 23

0.600 0.250ˆ ˆ ˆ ˆ1.05 kg/m 0.600 m 0.250 m 0.068 0.068 1.05 kg/m 0.0480 m
2 2

1.05 kg/m 0.600 m 0.250 m 0.0480 m

ˆ ˆ0.31176 0.12789  m

x y x y
R

x y

( ) ( ) ( ) ( )

( )

+ + +
=

+
= +

 ˆ ˆ ˆ ˆ0.31176 0.12789  m 0.1499 kg 0.068 0.068  m 0.038507 kg
0.1499 kg 0.038507 kg

ˆ ˆ0.26194 0.11565  m

x y x y
R

x y

 

Then, the distance to the origin is given by ( ) ( )= + =2 20.26194 m 0.11565 m 0.28633  m.R  

ROUND:  Densities are given to three significant figures. For dimensions the subtraction rule applies, 
where all dimensions are known to three decimal places. The result should be rounded to = 0.286  m.R  
DOUBLE-CHECK:  The position of the center of mass for the modified system is shifted closer to the 
position of the disk, D, which has an area density of 25.32 kg/m .  This is reasonable because the disk has a 
much higher area density than the rest of the plate. Also, the results are reasonable considering the given 
values.  

8.52. THINK:  The object of interest is a uniform square metal plate with sides of length, L = 5.70 cm and mass, 
m = 0.205 kg. The lower left corner of the plate sits at the origin. Two squares with side length, L/4 are 
removed from each side at the top of the square. Determine the x-coordinate and the y-coordinate of the 
center of mass, denoted comX  and com ,Y  respectively. 
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SKETCH:   

 

RESEARCH:  Because the square is uniform, the equations for comX  and comY  can be expressed by  

=

= ∑com
1

1 n

i i
i

X m x
M

 and 
=

= ∑com
1

1 .
n

i i
i

Y m y
M

 

M is the total mass of the system. In this problem it will be useful to treat the system as if it were made up 
of two uniform metal rectangles, AR  and .BR  

(a)  The center of mass x-coordinate for rectangle A is ( )=A ˆ/ 2 .x L x   The center of mass x-coordinate for 

rectangle B is ( )=B ˆ/ 2 .x L x  

(b)  The center of mass y-coordinate for rectangle A is ( )=A ˆ7 / 8 .y L y  The center of mass y-coordinate for 

rectangle B is ( )=B ˆ3 / 8 .y L y  Both rectangles have the same uniform area density, σ .  The uniform area 

density is given by σ = =A A B B/ / .m A m A  Therefore, =A B A B/ .m m A A  The areas are given by the 
following expressions:  

  = =  
  

2

A 4 2 8
L L LA  and  = = 

 

2

B
3 3 .
4 4
L LA L  

SIMPLIFY:   

(a)  
+

=
+

A A B B
com

A B

x m x m
X

m m
  

Substitute the expression for Am  into the above equation to get: 

 
++  

 = =
+ +

AA
A BA B B B

BB
com

A
B B

B B

.
1A

AA x xx m x m
AA

X
A A

m m
A A

 

Then substitute the expressions for A ,x  B ,x  AA  and BA  to get: 

 
+  +

 = = = =
++

2

2

com 2

2

/ 8 7
2 23 / 4 112 2 12 .

1 7 2/ 8 11
6 63 / 4

L L L L L L
L

X L
L
L

 

(b)  The same procedure can be used to solve for the y-coordinate of the center of mass: 
   + +  +      = = = = = 

 +

A
A B

B
com

A

B

7 1 3 7 18
25 6 258 6 8 48 48 .

7 7 48 7 561
6 6

A L L L Ly y
A L LY

A
A

 

CALCULATE:   

(a)  ( )= =com
1 5.70 cm 2.85 cm
2

X  
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(b)  ( )= =com
25 5.70 cm 2.5446 cm
56

Y  

ROUND:  Three significant figures were provided in the question, so the results should be rounded to 
=com 2.85 cmX  and =com 2.54 cm.Y  

DOUBLE-CHECK:  Units of distance were calculated, which is expected when calculating the center of 
mass coordinates. The squares were removed uniformly at the top of the large square, so it makes sense 
that the x-coordinate of the center of mass stays at L/2 by symmetry and the y-coordinate of the center of 
mass is shifted slightly lower. 

8.53. THINK:  The linear mass density, ( ),xλ  is provided in the graph. Determine the location for the center 

of mass, com ,X  of the object. From the graph, it can be seen that ( )
λ

λ
λ

 
≤ < =  

 ≤ ≤ 

0
0

0

0 0 0

,  0
.

,  2

x x x
xx

x x x
 

SKETCH:   

 
RESEARCH:  The linear mass density, ( )λ x , depends on x. To determine the center of mass, use the 

equation ( )λ= ∫com
1 .

L
X x x dx

M
The mass of the system, M, can be determined using the equation 

( )λ= ∫ .
L

M x dx  In order to evaluate the center of mass of the system, two separate regions must be 

considered; the region from x = 0 to = 0x x  and the region from = 0x x  to = 02 .x x  The equation for 

comX  can be expanded to 
λ

λ= +∫ ∫
0 0

0

2
0

com 0
00

1 1 .
x x

x

X x xdx xdx
M x M

 The equation for M is 

λ
λ= +∫ ∫

0 0

0

2
0

0
00

.
x x

x

M xdx dx
x

 

SIMPLIFY:  Simplify the expression for M first and then substitute it into the expression for com .X  

λ λ
λ λ λ λ λ λ

 
= + = + = + − =    

 
∫ ∫

00 0
0

0
0

2
220 0

0 0 0 0 0 0 0 0 0 0
0 00 0

1 1 32 .
2 2 2

xx x
x

x
x

M xdx dx x x x x x x
x x

 

Substitute the above expression into the equation for comX  to get: 

λ
λ λ λ λ λ

λ λ λ

λ
λ

      = + = + − = + −            
 = = 
 

∫ ∫
0 0

0

2
2 2 2 2 20

com 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 00

2 0
0 0

0 0

2 2 1 1 2 2 12 32
3 3 3 2 3 6 6 6

112 11 .
3 6 9

x x

x

X x dx xdx x x x x
x x x x

x
x

x

 

CALCULATE:  This step does not apply. 
ROUND:  This step does not apply. 
DOUBLE-CHECK:  The units for the result are units of length, so the answer is dimensionally correct. It 
is reasonable that the calculated value is closer to the denser end of the object. 
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8.54. THINK:  The mass of the cannon is =c 750 kgm  and the mass of the projectile is =p 15 kg.m  The total 

mass of the cannon and projectile system is = +c p .M m m  The speed of the projectile is =p 250 m/sv  

with respect to the muzzle just after the cannon has fired. The cannon is on wheels and can recoil with 
negligible friction. Determine the speed of the projectile with respect to the ground, pg .v  

SKETCH:   

 
RESEARCH:  The problem can be solved by considering the conservation of linear momentum. The 
initial momentum is =



i 0P  because the cannon and projectile are both initially at rest. The final 

momentum is = +


 

f c c p pg .P m v m v  The velocity of the recoiling cannon is c .v  The equation for the 

conservation of momentum is =
 

i f .P P  The  velocity of the projectile with respect to the cannon’s muzzle 
can be represented as = −  

p pg c .v v v  Take pgv  to be in the positive x-direction. 

SIMPLIFY:  Rearrange the above equation so that it becomes = −  

c pg p .v v v  Then substitute this 

expression into the conservation of momentum equation: 

( ) ( ) ( )
= ⇒ = + ⇒ = − + ⇒ + = ⇒ =

+
c p

i f c c p pg c pg p p pg pg c p c p pg
c p

0 0 .
m v

P P m v m v m v v m v v m m m v v
m m

 

CALCULATE:  
( )( )
( )

= =
+pg

750 kg 250 m/s
245.098 m/s

750 kg 15 kg
v  

ROUND:  The least number of significant figures provided in the question is  three, so the result should be 
rounded to pg 245 m/s.v =  
DOUBLE-CHECK:  The units of speed are correct for the result. The  velocity calculated for the projectile 
with respect to the ground is slower than its  velocity with respect to the cannon’s muzzle, which is what is 
expected. 

8.55. THINK:  The mass of a carbon atom is C 12.0 um =  and the mass of an oxygen atom is O 16.0 u.m =  The 

distance between the atoms in a CO molecule is −= ⋅ 101.13 10  m.d  Determine how far the center of mass, 

com ,X  is from the carbon atom. Denote the position of the carbon atoms as CX  and the position of the 
oxygen atom as O .X  
SKETCH:   

 

RESEARCH:  The center of mass of a system is given by 
=

= ∑com
1

1 .
n

i i
i

X m x
M

 

The total mass of the system is = +C O .M m m  It is convenient to assign the position of the oxygen atom to 
be at the origin, =O 0.X  Then the center of mass becomes 

( ) +
= =

+ +
O C C

com
O C O C

0
.

m m d m d
X

m m m m
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Once comX  is determined, then the distance from it to the carbon atom can be determined using the 
equation = −dC C com ,X X X  where dCX  is the distance from the center of mass to the carbon atom. 

SIMPLIFY:  Substitute the expression ( ) ( )com C O C/X m d m m= +  into the expression for dCX  to get 

= −
+
C

dC C
O C

.
m d

X X
m m

 Substitute =CX d  to get  = −
+
C

dC
O C

.
m d

X d
m m

 

CALCULATE:  ( ) ( )10 10 11
dC

12.0 u1.13 10 m 1.13 10 m 6.4571 10 m
28.0 u

X − − − = ⋅ − ⋅ = ⋅ 
 

 

ROUND:  Three significant figures were provided in the problem so the answer should be rounded to 
11

dC 6.46 10 m.X −= ⋅  
DOUBLE-CHECK:  The center of mass of the system is closer to the more massive oxygen atom, as it 
should be. 

8.56. THINK:  The system to be considered consists of the Sun and Jupiter. Denote the position of the Sun’s 
center of mass as SX  and the mass as S .m  Denote the position of Jupiter’s center of mass as JX  and its 

mass as J .m  Determine the distance that the Sun wobbles due to its rotation about the center of mass. 

Also, determine how far the system’s center of mass, com ,X  is from the center of the Sun. The mass of the 

Sun is = ⋅ 30
S 1.98892 10  kg.m  The mass of Jupiter is = ⋅ 27

J 1.8986 10  kg.m  The distance from the center of 

the Sun to the center of Jupiter is 8
J 7.78 10  km.X = ⋅  

SKETCH:  Construct the coordinate system so that the center of the Sun is positioned at the origin. 

 

RESEARCH:  The system’s center of mass is given by 
=

= ∑com
1

1 .
n

i i
i

X m x
M

 

The total mass of the system is = +S J .M m m  The dashed line in the sketch denotes the Sun’s orbit about 
the system’s center of mass. From the sketch it can be seen that the distance the sun wobbles is twice the 
distance from the Sun’s center to the system’s center of mass.  

SIMPLIFY:  S S J J
com

S J

.
m X m X

X
m m

+
=

+
 The coordinate system was chosen in such a way that =S 0.X  The 

center of mass equation can be simplified to =
+
J J

com
S J

.
m X

X
m m

 Once comX  is determined, it can be doubled 

to get the Sun’s wobble. 

CALCULATE:  
( )( )27

com 30 27

81.8986 10  kg 7.78 10  km
741961.5228 km

1.98892 10  kg 1.8986 10  kg
X

⋅ ⋅
= =

⋅ + ⋅
 

The Sun’s wobble is ( ) =2 741961.5228 km 1483923.046 km.  

ROUND:  Rounding the results to three figures, 5
com 7.42 10  kmX = ⋅  and the Sun’s wobble is 

⋅ 61.49 10  km.  
DOUBLE-CHECK:  It is expected that the system’s center of mass is much closer to the Sun than it is to 
Jupiter, and the results are consistent with this. 

8.57. THINK:  The mass of the battleship is =s 136,634,000 lbs.m  The ship has twelve 16-inch guns and each 
gun is capable of firing projectiles of mass, p 2700. lb,m =  at a speed of p 2300. ft/s.v =  Three of the guns 

fire projectiles in the same direction. Determine the recoil velocity, s ,v  of the ship. Assume the ship is 
initially stationary. 
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SKETCH:   

 

RESEARCH:  The total mass of the ship and projectile system is 
=

= +∑s p
1

.
n

i
i

M m m  

All of the projectiles have the same mass and same speed when they are shot from the guns. This problem 
can be solved considering the conservation of momentum. The equation for the conservation of 
momentum is =

 

i f .P P  


iP  is the initial momentum of the system and 


fP  is the final momentum of the 

system. Assume the ship carries one projectile per gun. =


i 0P  because the battleship is initially at rest and 

( )= − + +


f s p s p p9 3 .P m m v m v  

SIMPLIFY:  ( ) ( )
p p

i f s p s p p s
s p

3
  0 9 3   

9

m v
P P m m v m v v

m m
= ⇒ = − + + ⇒ =

+

 

 

CALCULATE:  
( )( )

( )( )
= =

+s

3 2700. lb 2300. ft/s
0.136325 ft/s

136,634,000 lb 9 2700. lb
v  

ROUND:  The values for the mass and speed of the projectile that are given in the question have four 
significant figures, so the result should be rounded to =s 0.1363 ft/s.v The recoil velocity is in opposite 
direction than the cannons fire. 
DOUBLE-CHECK:  The mass of the ship is much greater than the masses of the projectiles, so it 
reasonable that the recoil velocity is small because momentum depends on mass and velocity. 

8.58. THINK:  The system has three identical balls of mass m. The x and y coordinates of the balls are 
( )=



1 ˆ ˆ0 ,0r x y , ( )=


2 ˆ ˆ,0r ax y  and ( )=


3 ˆ ˆ0 , .r x ay  Determine the location of the system’s center of mass, R. 
SKETCH:   

 
 
RESEARCH:  The center of mass is a vector quantity, so the x and y components must be considered 
separately. The x- and y-components of the center of mass are given by 

=

= ∑com
1

1 n

i i
i

X m x
M

 and 
=

= ∑com
1

1 .
n

i i
i

Y m y
M

 

For this system, the equations can be rewritten as  

( ) ( )+ +
= =com

ˆ0 0
ˆ

3 3
m max m aX x

m
 and 

( ) ( )
com

ˆ0 0
ˆ.

3 3
m m may aY y

m
+ +

= =  
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SIMPLIFY:  The x and y components of the center of mass are known, so = +


ˆ ˆ.
3 3com
a aR x y  

CALCULATE:  This step is not necessary. 
ROUND:  This step is not necessary. 
DOUBLE-CHECK:  Considering the geometry of the system, the results are reasonable. In the x-direction 
we would expect the center of mass to be twice as far from the mass on the right as from the two on the 
left, and in the y-direction we would expect the center of mass to be twice as far from the upper mass as 
from the two lower ones. 

8.59. THINK:  Sam’s mass is S 61.0 kgm =  and Alice’s mass is A 44.0 kg.m =  They are standing on an ice rink 
with negligible friction. After Sam pushes Alice, she is moving away from him with a speed of 

=A 1.20 m/sv  with respect to the rink. Determine the speed of Sam’s recoil, S .v  Also, determine the 
change in kinetic energy, ∆ ,K  of the Sam-Alice system. 
SKETCH:   

 
RESEARCH:   
(a) To solve the problem, consider the conservation of momentum. The equation for conservation of 
momentum can be written =

 

i f .P P  


iP  is the initial momentum of the system and 


fP  is the final 

momentum of the system. =


i 0P  because Sam and Alice are initially stationary and = − +


 

f S S A A .P m v m v  

(b) The change in kinetic energy is ( ) ( )∆ = − = +2 2
f i S S A A/ 2 / 2.K K K m v m v  

SIMPLIFY:   

(a)  = ⇒ = − + ⇒ =


 

  A A
i f S S A A S

S

0
m v

P P m v m v v
m

 

(b)  The expression determined for Sv  in part (a) can be substituted into the equation for ∆K  to get 

 
∆ = + 

 



2

2A A
S A A

S

1 1 .
2 2

m v
K m m v

m
 

CALCULATE:   

(a)  
( )( )

= =S

44.0 kg 1.20 m/s
0.8656 m/s

61.0 kg
v  

(b)  ( ) ( )( ) ( )( ) 
∆ = + = 

 

2
244.0 kg 1.20 m/s1 161.0 kg 44.0 kg 1.20 m/s 54.53 J

2 61.0 kg 2
K  

(c)  Sam did work on Alice when he pushed her. The work that Sam did was the source of the kinetic 
energy. Sam was able to do this work by converting chemical energy that was stored in his body into 
mechanical energy. The energy stored in Sam’s body was provided by food that he ate and his body 
processed. 
ROUND:  Three significant figures were provided in the problem so the results should be rounded 
accordingly to =S 0.866 m/sv  and ∆ = 55 J.K  
DOUBLE-CHECK:  Sam’s mass is greater than Alice’s so it reasonable that his recoil speed is slower than 
her sliding speed. The change in kinetic energy is reasonable considering the masses and velocities given. 
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8.60. THINK:  The mass of the bat is batm  and the mass of the ball is ball .m  Assume that the center of mass of 
the ball and bat system is essentially at the bat. The initial velocity of the ball is ball,i 30.0 m/sv = −

  and the 

initial velocity of the bat is bat 35.0 m/s.v =
  The bat and ball undergo a one-dimensional elastic collision. 

Determine the speed of the ball after the collision. 
SKETCH:   

 

RESEARCH:  In the center of mass frame, =

com 0.v  Since the collision is elastic, in the center of mass 
frame the final velocity of the ball, ball,f ,v  will be equal to the negative of the ball’s initial velocity, ball,i .v  

This statement can be written mathematically as = − 

ball,i ball,f .v v  Since the center of mass is in the bat, the 


comv  in the lab reference frame equals bat .v  The following relationships can be written for this system: 
′ = −  

ball,i ball,i comv v v   (1) and ′ = −  

ball,f ball,f comv v v  (2). 

SIMPLIFY:  Recall that ′ ′= − 

ball,i ball,f .v v  Therefore, the following equality can be written: 

( )− = − − ⇒ = −      

ball,i com ball,f com ball,f com ball,i2 .v v v v v v v  

Recall that comv  is equal to bat ,v  so the above expression can be rewritten as = −  

ball,f bat ball,i2 .v v v  

CALCULATE:  ( ) ( )ball,f 2 35.0 m/s 30.0 m/s 100.0 m/sv = − − =
  

ROUND:  Rounding to three significant figures: ball,f 100. m/sv =
  

DOUBLE-CHECK:  The initial velocities of the bat and ball are similar, but the bat is much more massive 
than the ball, so the speed of the ball after the collision is expected to be high. 

8.61. THINK:  The student’s mass is s 40.0 kg,m =  the ball’s mass is b 5.00 kgm =  and the cart’s mass is 

c 10.0 kg.m =  The ball’s relative speed is ′ =b 10.0 m/sv  and the student’s initial speed is =si 0.v  
Determine the ball’s velocity with respect to the ground, b ,v  after it is thrown. 
SKETCH:   

 

RESEARCH:  bv  can be determined by considering the conservation of momentum, =
 

i f ,P P  where 
= .p mv  Note the ball’s relative speed is ′ = −  

b b s+c ,v v v  where bv  and s+cv  are measured relative to the 
ground. 

SIMPLIFY:  ( ) ( )( ) ( )′ +
′= ⇒ = + + ⇒ = + − + ⇒ =

+ +



 

      b s c
i f s c s+c b b s c b b b b b

s c b

0 0
v m m

P P m m v m v m m v v m v v
m m m

 

CALCULATE:  
( )( )
( )b

10.0 m/s 40.0 kg 10.0 kg
9.0909 m/s

40.0 kg 10.0 kg 5.00 kg
v

+
= =

+ +
  

ROUND:  b 9.09 m/sv =
  in the direction of bv′  (horizontal) 

DOUBLE-CHECK:  It is expected that ′<b bv v  since the student and cart move away from the ball when 
it is thrown. 
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8.62. THINK:  Determine the center of mass of an isosceles triangle of constant density σ .  
SKETCH:   

 
RESEARCH:  To determine the center of mass of a two-dimensional object of constant density σ , 

use σ= ∫
1

A

X xdA
A

 and σ= ∫
1 .

A

Y ydA
A

  

SIMPLIFY:  Note the boundary condition on the hypotenuse of the triangle, + = .x y a  First, determine X. 

As x varies, take = .dA ydx  Then the equation becomes σ
= ∫

0

.
a

X xydx
A

From the boundary condition, 

= − .y a x  Then the equation can be rewritten as ( )σ σ σ  = − = − =    ∫
3

2 3

0 0

1 1 .
2 3 6

aa aX x a x dx ax x
A A A

 

Similarly for Y, take =dA xdy  and = −x a y  to get ( )σ σ σ  = − = − =    ∫
3

2 3

0 0

1 1 ,
2 3 6

aa aY y a y dy ay y
A A A

 with 

σσ σ= = ⋅ =∫
2

2 2
bh aA dA  we get σ

σ
= = ⋅ =

3

2

2 .
6 3
a aX Y

a A
 

CALCULATE:  This step is not applicable. 
ROUND:  This step is not applicable. 
DOUBLE-CHECK:  The center of mass coordinates that we obtained are contained within the isosceles 
triangle, as expected for a solid object. 

8.63. THINK:  The payload’s mass is =p 4390.0 kgm  and the fuel mass is = ⋅ 5
f 1.761 10  kg.m  The initial 

velocity is =i 0.v  The distance traveled after achieving fv  is = ⋅ 83.82 10  m.d  The trip time is 
47.00 h 2.52 10  s.t = = ⋅  Determine the propellant expulsion speed, c .v  

SKETCH:   

 

RESEARCH:  cv  can be determined from ( )− =f i c i fln / .v v v m m  First, fv  must be determined from the 

relationship = / .v d t  
SIMPLIFY:  First, determine fv  from =f / .v d t  Substitute this expression and =i 0v  into the above 
equation to determine cv : 

= = =
     +
           

f
c

i i p f

f f p

.
ln ln ln

v d dv
m m m m

t tm m m
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CALCULATE:  

( )
⋅

= = ⋅
 + ⋅

⋅  
 

8
3

c 5
4

3.82 10 m
4.079 10  m/s

4390.0 kg 1.761 10  kg2.52 10  s ln
4390.0 kg

v  

ROUND:  Since t has three significant figures, the result should be rounded to =c 4.08 km/s.v  
DOUBLE-CHECK:  This expulsion velocity is reasonable. 

8.64. THINK:  The cannon’s mass is M = 350 kg. The cannon’s initial speed is =ci 7.5 m/s.v  The ball’s mass is 
m = 15 kg and the launch angle is θ = °55 .  The cannon’s final velocity after the shot is =cf 0.v  Determine 
the velocity of the ball relative to the cannon, ′b .v   
SKETCH:   

 

RESEARCH:  Use conservation of momentum, =
 

i f ,P P  where =


.P mv  To determine the relative 
velocity, b ,v′  with respect to the cannon, use ′ = −  

b b c ,v v v  where bv  is the ball’s velocity in the lab frame. 
Finally, since the cannon moves only in the horizontal (x) direction, consider only momentum 
conservation in this dimension. Take civ  to be along the positive x-direction, that is = +ci 7.5 m/s.v  With 

bxv  known, find bv  from the expression θ=bx b cosv v  and then ′bv  can be determined. 

SIMPLIFY:  ( )i f b c ci c cf b b  .x x xP P m m v m v m v= ⇒ + = +  Note since cfv  is zero, b b ,x xv v′=  that is, the ball’s 
speed relative to the cannon is the same as its speed in the lab frame since the cannon has stopped moving. 

Rearranging the above equation gives 
( ) ( )b c ci b c ci

b b
b b

  .
cosx

m m v m m v
v v

m m θ
+ +

= ⇒ =  

CALCULATE:  
( )( )

( ) ( )
+

= =
°b

15.0 kg 350 kg 7.50 m/s
318.2 m/s

15.0 kg cos 55.0
v  

ROUND:  Each given value has  three significant figures, so the result should be rounded to b 318 m/s.v =  
DOUBLE-CHECK:  This is a reasonable speed at which to launch a cannonball. The component of the 
momentum of the cannon/cannon ball system in the x-direction before the ball is shot is 

( )( ),before 350 kg 15 kg 7.5 m/s 2737.5 kg m/s.xp = + =  The component of the momentum of the 
cannon/cannon ball system in the x-direction after the ball is shot is 

  px ,after = 15 kg( ) 318.2 m/s( )cos 55°( )= 2737.68 kg m/s.   These components agree to within three significant 
figures. 

8.65. THINK:  The rocket’s initial mass is = ⋅ 6
0 2.80 10  kg.M  Its final mass is = ⋅ 5

1 8.00 10  kg.M  The time to 
burn all the fuel is ∆ =160. s.t  The exhaust speed is = =c 2700. m/s.v v  Determine (a) the upward 
acceleration, 0 ,a  of the rocket as it lifts off, (b) its upward acceleration, 1 ,a  when all the fuel has burned 
and (c) the net change in speed, ∆v  in time ∆t  in the absence of a gravitational force. 
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SKETCH:   

 
RESEARCH:  To determine the upward acceleration, all the vertical forces on the rocket must be 

balanced. Use the following equations: = −




thrust c ,dmF v
dt

 g ,F mg=


  ∆
=
∆

.dm m
dt t

 The mass of the fuel used is 

∆ = −0 1.m M M  To determine ∆v  in the absence of other forces (other than 


thrustF ), use 

( )− =f i c i fln / .v v v m m  
SIMPLIFY:   

(a)  
−

=
∆

0 1M Mdm
dt t

 

Balancing the vertical forces on the rocket gives  

c 0 1 c 1
net thrust g 0 0 c 0 0 0

0 0

      1 .
v M M v MdmF F F ma M a v M g a g a g

dt M t t M
 − 

= − = ⇒ = − ⇒ = − ⇒ = − −  ∆ ∆   
 

 (b)  Similarly to part (a): 

c 0 1 c 0
net thrust g 1 1 c 1 1 1

1 1

      1 .
v M M v MdmF F F ma M a v M g a g a g

dt M t t M
 − 

= − = ⇒ = − ⇒ = − ⇒ = − −  ∆ ∆   
 

 (c) In the absence of gravity, =net thrust .F F  The change in velocity due to this thrust force is 

( )∆ = c 0 1ln / .v v M M  
CALCULATE:   

(a)  
5

2 2
0 6

8.00 10  kg2700. m/s 1 9.81 m/s 2.244 m/s
160 s 2.80 10  kg

a
 ⋅ = − − =   ⋅  

 

(b)  
6

2 2
1 5

2.80 10  kg2700. m/s 1 9.81 m/s 32.38 m/s
160. s 8.00 10  kg

a
 ⋅ = − − =   ⋅  

 

(c)  ( )
6

5

2.80 10  kg
2700. m/s ln 3382 m/s

8.00 10  kg
v

 ⋅
∆ = = 

⋅ 
 

ROUND:   
(a)  2

0 2.24 m/sa =  

(b)  2
1 32.4 m/sa =  

(c)  3380 m/sv∆ =  
DOUBLE-CHECK:  It can be seen that >1 0a a , as it should be since 1 0M M< . It is not unusual for ∆v  to 
be greater than c .v  
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8.66. THINK:  The rod has a length of L and its linear density is ( )λ = ,x cx  where c is a constant. Determine 
the rod’s center of mass. 
SKETCH:   

 
RESEARCH:  To determine the center of mass, take a differentially small element of mass: λ=dm dx  and 

use ( )λ= ⋅ =∫ ∫
1 1 ,

L L

X x dm x x dx
M M

 where ( )λ= =∫ ∫ .
L L

M dm x dx  

SIMPLIFY:  First, determine M from  = = =  ∫ 2 2

0 0

1 1 .
2 2

LL

M cxdx c x cL   Then, the equation for the center of 

mass becomes: 

( )  = = = =  ∫ ∫ 2 3 3

00 0

1 1 1 1 1 .
3 3

LL L

X x cx dx cx dx c x cL
M M M M

 

Substituting the expression for M into the above equation gives:  

= =
 
 
 

3

2

2 .
1 33
2

cLX L
cL

 

CALCULATE:  This step is not applicable. 
ROUND:  This step is not applicable. 
DOUBLE-CHECK:  X is a function of L. Also, as expected, X is closer to the denser end of the rod. 

8.67. THINK:  The length and width of the plate are l = 20.0 cm and w = 10.0 cm, respectively. The mass 
density, σ ,  varies linearly along the length; at one end it is 2

1 5.00 g/cmσ =  and at the other it is 
2

2 20.0 g/cm .σ =  Determine the center of mass.  
SKETCH:   

 
RESEARCH:  The mass density does not vary in width, i.e. along the y-axis. Therefore, the Y  coordinate 
is simply w/2. To determine the X  coordinate, use 

( )σ= ∫
1 ,

A

X x r dA
M

 where ( )σ= ∫
 .

A

M r dA  

To obtain a functional form for ( )σ  ,r  consider that it varies linearly with x, and when the bottom left 

corner of the plate is at the origin of the coordinate system, σ  must be σ1  when x = 0 and σ 2  when x = l. 

Then, the conditions are satisfied by  ( ) ( ) ( )σ σ
σ σ σ

−
= = +

 2 1
1.r x x

l
 

SIMPLIFY:  First determine M from ( ) ( ) ( )σ σ
σ σ σ

 −
= = = +  

 
∫ ∫ ∫ ∫ ∫

 2 1
1

0 0 0 0

.
l w w l

A

M r dA x dydx dy x dx
l

 y is not 

dependent on x in this case, so 
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( ) ( ) ( ) ( )2 1 2 12 2
1 1 2 1 1 2 10

0

1 1 1 .
2 2 2 2

l
w wlM y x x w l l wl

l l
σ σ σ σ

σ σ σ σ σ σ σ
   − −  = + = + = − + = +              

 

Now, reduce the equation for the center of mass: 

( ) ( ) ( )

( ) ( ) ( )

2 1 2 1 2
1 1

0 0 0 0

2 1 2 13 2 3 2 2
1 1 2 1 10

0

2
2 1

1 1 1

1 1 1 1 1 1 1
3 2 3 2 3 2

1 1 1
3 6

l w w l

A

l
w

X x x dA x x dydx dy x x dx
M M l M l

y x x w l l wl
M l M l M

wl
M

σ σ σ σ
σ σ σ

σ σ σ σ
σ σ σ σ σ

σ σ

   − −
= = + = +      

   

   − −  = + = + = − +              
 = + 
 

∫ ∫ ∫ ∫ ∫

 

Substitute the expression for M into the above equation to get  

( )

2 1 2 1

2 1
2 1

1 1 1 12
3 6 3 6 .
1
2

l l
X

σ σ σ σ

σ σσ σ

   + +   
   = =

++
 

CALCULATE:  
( ) ( ) ( )2 2

2 2

1 12 20.0 cm 20.0 g/cm 5.00 g/cm
3 6 12.00 cm,

20.0 g/cm 5.00 g/cm
X

 + 
 = =

+
 ( )1 10.0 cm 5.00 cm

2
Y = =  

ROUND: The results should be written to three significant figures: 12.0 cmX =  and 5.00 cm.Y =  The 
center of mass is at (12.0 cm, 5.00 cm). 
DOUBLE-CHECK:  It is expected that the center of mass for the x coordinate is closer to the denser end 
of the rectangle (before rounding). 

8.68. THINK: The log’s length and mass are 2.50 mL = and l 91.0 kg,m =  respectively. The man’s mass is 
=m 72 kgm  and his location is m 0.220 md =  from one end of the log. His daughter’s mass is 

d 20.0 kgm =  and her location is d 1.00 md =  from the other end of the log. Determine (a) the system’s 
center of mass and (b) the initial speed of the log and daughter, l+d ,v  when the man jumps off the log at a 
speed of =m 3.14 m/s.v  
SKETCH:   

 

RESEARCH:  In one dimension, the center of mass location is given by 
1

1 .
n

i i
i

X x m
M =

= ∑  Take the origin of 

the coordinate system to be at the end of log near the father. To determine the initial velocity of the log 
and girl system, consider the conservation of momentum, i f ,p p=

 

 where .p mv=


  Note that the man’s 
velocity is away from the daughter. Take this direction to be along the −x̂  direction, so that 

m
ˆ3.14 m/s  .v x= −
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SIMPLIFY:   

(a)  ( )
( )m m d d l

m m d d l l
m d l

1
1 2

d m L d m Lm
X x m x m x m

M m m m

 + − + 
 = + + =

+ +
  

(b)  ( ) ( )
m m

i f m m d l d+l d+l
d l

  0   
m v

p p m v m m v v
m m

= ⇒ = + + ⇒ = −
+



 
    

CALCULATE:   

(a)  
( )( ) ( )( ) ( )( )10.220 m 72.0 kg 2.50 m 1.00 m 20.0 kg 2.50 m 91.0 kg

2 0.8721 m
72.0 kg 20.0 kg 91.0 kg

X

 + − + 
 = =

+ +
 

(b)  
( )( )
( )d+l

ˆ72.0 kg 3.14 m/s
ˆ2.0368 m/s 

20.0 kg 91.0 kg

x
v x

−
= − =

+
  

ROUND:  To three significant figures, the center of mass of the system is X = 0.872 m from the end of the 
log near the man, and the speed of the log and child is d+l 2.04 m/s.v =  
DOUBLE-CHECK:  As it should be, the center of mass is between the man and his daughter, and d+lv  is 
less than mv  (since the mass of the log and child is larger than the mass of the man). 

8.69. THINK:  Determine the center of mass of an object which consists of regularly shaped metal of uniform 
thickness and density. Assume that the density of the object is ρ.  
SKETCH:   

 
RESEARCH:  First, as shown in the figure above, divide the object into three parts, 1m , 2m  and 3 .m  

Determine the center of mass by using 
3

1

1 ,i i
i

R m r
M =

= ∑


  or in component form 
3

1

1
i i

i

X m x
M =

= ∑  and 

3

1

1 .i i
i

Y m y
M =

= ∑ Also, use m Atρ=  for the mass, where A is the area and t is the thickness.  

SIMPLIFY:   The center of mass components are given by: 

1 1 2 2 3 3 1 1 2 2 3 3 and 
m x m x m x m y m y m y

X Y
M M

+ + + +
= =   

The masses of the three parts are ρπ= 2
1 ,m a t  ( )ρ= 2

2 2m a t  and 2
3 4 .m a tρ=  The center of mass of the 

three parts are 1 0,x =  1 3 ,y a=  2 0,x =  2 ,y a=  3 3 / 2x a=  and 3 0.y =  The total mass of the object is 

( )2 2 2 2
1 2 3 4 4 8 .M m m m a t a t a t a tρπ ρ ρ ρ π= + + = + + = +    

CALCULATE:  The center of mass of the object is given by the following equations: 
( )

( )
2

2

0 0 4 3 / 2 6 ;
88

a t a
X a

a t
ρ

πρ π
+ +  = =  ++  

 

( ) ( )
( )

2 2

2

3 4 0 4 3 .
88

a t a a t a
Y a

a t
ρπ ρ π

πρ π
+ + + = =  ++  

 

ROUND:  Rounding is not required. 
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DOUBLE-CHECK:  The center of mass of the object is located in the area of 2 .m  By inspection of the 
figure this is reasonable. 

8.70. THINK: A jet aircraft has a speed of 223 m/s. The rate of change of the mass of the aircraft is 
( ) =

air
/ 80.0 kg/sdM dt  (due to the engine taking in air) and ( )fuel

/ 3.00 kg/sdM dt =  (due to the engine 

taking in and burning fuel). The speed of the exhaust gases is 600. m/s. Determine the thrust of the jet 
engine. 
SKETCH:   

 
RESEARCH:  The thrust is calculated by using thrust / ,F v dM dt= −



  where v  is the velocity of the gases or 

air, relative to the engine. There are two forces on the engine. The first force, thrust,1 ,F  is the thrust due to 

the engine taking in air and the second force, thrust,2 ,F  is the thrust due to the engine ejecting gases.  

thrust,1 a
air

,dMF v
dt

 = −  
 



  thrust,2 g
air fuel

dM dMF v
dt dt

    = − +    
    



  

The net thrust is given by thrust thrust,1 thrust,2 .F F F= +
  

 
SIMPLIFY:  Simplification is not required. 
CALCULATE: ( )( )thrust,1

ˆ ˆ223 m/s 80.0 kg/s 17840 N ,F x x= − = −


  

( )( )thrust,2
ˆ ˆ600. m/s 80.0 kg/s 3.00 kg/s 49800 N ,F x x= − − + =  



thrust
ˆ ˆ ˆ17840 N 49800 N 31960 N F x x x= − + =



 

ROUND:  To three significant figures, the thrust of the jet engine is thrust
ˆ32.0 kN .F x=



  
DOUBLE-CHECK:  Since the x̂  direction is in the forward direction of the aircraft, the plane moves 
forward, which it must.  A jet engine is very powerful, so the large magnitude of the result is reasonable. 

8.71. THINK:  The solution to this problem is similar to a rocket system. Here the system consists of a bucket, a 
skateboard and water. The total mass of the system is M = 10.0 kg. The total mass of the bucket, 
skateboard and water remains constant at / 0.100 kg/sdM dtλ = =  since rain water enters the top of the 
bucket at the same rate that it exits the bottom.  Determine the time required for the bucket and the 
skateboard to reach a speed of half the initial speed. 
SKETCH:   

 

RESEARCH:  To solve this problem, consider the conservation of momentum, i f .p p=
 

 The initial 
momentum of the system at time t is i .p Mv=  After time + ,t dt  the momentum of the system is 

( )f .p vdM M v dv= + +   

SIMPLIFY:  i f     p p Mv vdM Mv Mdv Mdv vdM= ⇒ = + + ⇒ = −  
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Dividing both sides by dt  gives  

λ= − = −
dv dMM v v
dt dt

 or 1 1  .dv dv dt
v dt M v M

λ λ
= − ⇒ = −  

Integrate both sides to get  

0

0
00

1   ln ln   ln .
v t

v v t

vdv dt v v t t
v M M v M

λ λ λ

= =

 
= − ⇒ − = − ⇒ = − 

 
∫ ∫  

Determine the time such that = 0 / 2.v v  Substituting = 0 / 2v v  into the above equation gives 

( )0

0

/ 2 1ln   ln ln 2 .
2

v M Mt t
v M

λ
λ λ

   = − ⇒ = − =   
  

 

CALCULATE:  
( ) ( )

= =
10.0 kg ln 2

69.3147 s
0.100 kg/s

t  

ROUND:  To three significant figures, the time for the system to reach half of its initial speed is t = 69.3 s. 
DOUBLE-CHECK:  It is reasonable that the time required to reduce the speed of the system to half its 
original value is near one minute.  

8.72. THINK:  The mass of a cannon is M = 1000. kg and the mass of a shell is m = 30.0 kg. The shell is shot at 
an angle of 25.0θ = °  above the horizontal with a speed of s 500. m/s.v =  Determine the recoil velocity of 
the cannon. 
SKETCH:   

 
 

RESEARCH:  The momentum of the system is conserved, =i f ,p p  or in component form, i fx xp p=  and 

i f .y yp p=  Use only the x component of the momentum. 

SIMPLIFY:  ixp  is equal to zero since both the cannon and the shell are initially at rest. Therefore,  

i f s c c s  cos 0  cosx x
mp p mv Mv v v
M

θ θ.= ⇒ + = ⇒ = −  

CALCULATE:  
( )( ) ( )

c

30.0 kg 500. m/s cos 25.0
13.595 m/s

1000. kg
v

°
= − = −  

ROUND:  To three significant figures: c 13.6 m/sv = −  
DOUBLE-CHECK:  The direction of the recoil is expected to be in the opposite direction to the horizontal 
component of the velocity of the shell. This is why the result is negative. 

8.73. THINK:  There are two masses, =1 2.0 kgm  and =2 3.0 kg.m  The velocity of their center of mass and the 

velocity of mass 1 relative to mass 2 are ( )cm ˆ ˆ1.00 2.40  m/sv x y= − +


 and ( )rel ˆ ˆ5.00 1.00  m/s.v x y= +


 
Determine the total momentum of the system and the momenta of mass 1 and  mass 2. 
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SKETCH:   

 
RESEARCH:  The total momentum of the system is cm cm 1 1 2 2 .p Mv m v m v= = +


    The velocity of mass 1 

relative to mass 2 is rel 1 2 .v v v= −
    

SIMPLIFY:  The total mass M of the system is 1 2 .M m m= +  The total momentum of the system is given 

by ( )cm cm 1 2 cm 1 1 2 2 .p Mv m m v m v m v= = + = +


     Substitute 2 1 relv v v= −
    into the equation for the total 

momentum of the system to get ( ) ( )recm 1 1 2 1 1 2 1 2 rell .Mv m v m v v m m v m v= + − = + −
       Therefore, 

2
1 cm rel .

m
v v v

M
= +

    Similarly, substitute 1 2 relv v v= +
    into the equation for the total momentum of the 

system to get ( )cm 1 rel 1 2 2Mv m v m m v= + +
    or 1

2 cm rel .
m

v v v
M

= −
    Therefore, the momentums of mass 1 and 

mass 2 are 1 2
1 1 1 1 cm rel

m m
p m v m v v

M
= = +


    and 1 2

2 2 2 2 cm rel .
m m

p m v m v v
M

= = −


    

CALCULATE:   
(a)  

( )( ) ( )= + − + = − +


cm ˆ ˆ ˆ ˆ2.00 kg 3.00 kg 1.00 2.40  m/s 5.00 12.0  kg m/sp x y x y

( )( ) ( )= + − + = − +


cm ˆ ˆ ˆ ˆ2.0 kg 3.0 kg 1.0 2.4  m/s 5.0 12  kg m/sp x y x y  

(b)  ( )( ) ( )( ) ( )

( ) ( ) ( )

= − + + +
+

= − + + + = +



1

2.00 kg 3.00 kgˆ ˆ ˆ ˆ2.00 kg 1.00 2.40  m/s 5.00 1.00  m/s
2.00 kg 3.00 kg

ˆ ˆ ˆ ˆ ˆ ˆ2.00 4.80  kg m/s 6.00 1.20  kg m/s 4.00 6.00  kg m/s

p x y x y

x y x y x y

 

(c)  ( )( ) ( )( ) ( )

( ) ( ) ( )

= − + − +
+

= − + − + = − +



2

2.00 kg 3.00 kgˆ ˆ ˆ ˆ3.00 kg 1.00 2.40  m/s 5.00 1.00  m/s
2.00 kg 3.00 kg

ˆ ˆ ˆ ˆ ˆ ˆ3.00 7.20  kg m/s 6.00 1.20  kg m/s 9.00 6.00  kg m/s

p x y x y

x y x y x y

 

ROUND:  The answers have already been rounded to three significant figures. 
DOUBLE-CHECK:  It is clear from the results of (a), (b) and (c) that cm 1 2 .p p p= +

  

 

8.74. THINK:  A spacecraft with a total initial mass of s 1000. kgm =  and an initial speed of 0 1.00 m/sv =  must 
be docked. The mass of the fuel decreases from 20.0 kg.  Since the mass of the fuel is small compared to the 
mass of the spacecraft, we can ignore it.  To reduce the speed of the spacecraft, a small retro-rocket is used 
which can burn fuel at a rate of / 1.00 kg/sdM dt =  and with an exhaust speed of E 100. m/s.v =  
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SKETCH:   

 
RESEARCH:   
(a) The thrust of the retro-rocket is determined using thrust c / .F v dM dt=  
(b) In order to determine the amount of fuel needed, first determine the time to reach a speed of 

0.0200 m/s.v =  Use = −0 .v v at  By Newton’s Second Law the thrust is also given by thrust s .F m a=


  
(c)  The burn of the retro-rocket must be sustained for a time sufficient to reduce the speed to 0.0200 m/s, 
found in part (b). 
(d) Use the conservation of momentum, i f .p p=

 

 
SIMPLIFY:   

(a)  thrust c
dMF v
dt

= −


  

(b)  
−

= 0v v
t

a
 

The acceleration is given by thrust s/ .a F m=  Substitute this expression into the equation for t above to get 

( )0 s

thrust

.
v v m

t
F
−

=  Therefore, the mass of fuel needed is
( )0 s

F
thrust

.
v v mdM dMm t

dt dt F
−   = =   

   
 

(c)  
( )0 s

thrust

v v m
t

F
−

=  

(d)  ( ) s
s s f f

s

,
m

m v M m v v v
M m

= + ⇒ =
+

     where M is the mass of the space station. 

CALCULATE:   
(a) The thrust is ( )( )thrust E c

ˆ ˆ100. m/s 1.00 kg/s 100.0 N ,  or 100.0 NF v v= − = −


 in the opposite direction to 
the velocity of the spacecraft. 

(b) ( ) ( )
F

1.00 m/s 0.0200 m/s 1000. kg
1.00 kg/s 9.800 kg

100.0 N
m

−
= =  

(c)  
( )1.00 m/s 0.0200 m/s 1000. kg

9.800 s
100.0 N

t
−

= =  

(d) 
( )

5
5

f

1000. kg 0.0200 m/s
ˆ ˆ3.992 10  m/s ;

5.00 10  kg 1000. kg
v v v−= = ⋅

⋅ +
  that is, in the same direction as the spacecraft is 

moving. 
ROUND:  The answers should be expressed to three significant figures: 
(a)  thrust c

ˆ100. NF v= −


  

(b)  F 9.80 kgm =  
(c)  9.80 st =  
(d)  5

f
ˆ3.99 10  m/s v v−= ⋅

  
DOUBLE-CHECK:  It is expected that the speed of the combined mass will be very small since its mass is 
very large. 
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8.75. THINK:  A chain has a mass of 3.00 kg and a length of 5.00 m. Determine the force exerted by the chain 
on the floor. Assume that each link in the chain comes to rest when it reaches the floor. 
SKETCH:   

 
 

RESEARCH:  Assume the mass per unit length of the chain is ρ = / .M L  A small length of the chain, dy 
has a mass of dm, where = / .dm Mdy L  At an interval of time dt, the small element of mass dm has 
reached the floor. The impulse caused by the chain is given by J .J F dt p vdm= = ∆ =  Therefore, the force JF  

is given by J .
dydm dmF v v

dt dy dt
= =  

SIMPLIFY:  Using =/ /dm dy M L  and = /v dy dt , the expression for force, JF  is  

2
J .MF v

L
=  

For a body in free fall motion, 2 2 .v gy=  Thus, J 2 / .F Mgy L=  There is another force which is due to 
gravity. The gravitational force exerted by the chain on the floor when the chain has fallen a distance y is 
given by g /F Mgy L=  (the links of length y are on the floor). The total force is given by  

J g

2 3
.

Mgy Mgy Mgy
F F F

L L L
= + = + =  

When the last link of the chain lands on the floor, the force exerted by the chain is obtained by substituting 

y = L, that is, = =
3

3 .
Mgy

F Mg
L

 

CALCULATE:  ( )( )= =23 3.0 kg 9.81 m/s 88.29 NF  

ROUND: To three significant figures, the force exerted by the chain on the floor as the last link of chain 
lands on the floor is F = 88.3 N. 
DOUBLE-CHECK:  F is expected to be larger than Mg due to the impulse caused by the chain as it falls. 
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Multi-Version Exercises 

8.76. THINK:  This question asks about the fuel consumption of a satellite. This is an example of rocket motion, 
where the mass of the satellite (including thruster) decreases as the fuel is ejected.   

 SKETCH: The direction in which the xenon ions are ejected is opposite to the direction of the thrust. The 
velocity of the xenon with respect to the satellite and the thrust force are shown. 

    

 RESEARCH:  The equation of motion for a rocket in interstellar space is given by thrust c
dmF v
dt

= −




. The 

velocity of the xenon ions with respect to the shuttle is given in km/s and the force is given in Newtons, or 

kg · m / s2. The conversion factor for the velocity is given by 1000 m/s
1 km/s

. 

 SIMPLIFY: Since the thrust and velocity act along a single axis, it is possible to use the scalar form of the 

equation, thrust c
dmF v
dt

= − . The rate of fuel consumption equals the change in mass (the loss of mass is due 

to xenon ejected from the satellite), so solve for dm
dt

 to get thrust

c

Fdm
dt v

= − .  

 CALCULATE:  The question states that the speed of the xenon ions with respect to the rocket is vc = vxenon 
= 21.45 km/s. The thrust produced is Fthrust = 1.187·10-2 N. Thus the rate of fuel consumption is: 

thrust

2

7

1.187 10  N
1000 m/s21.45 km/s

1 km/s
5.533799534 10  kg/s
1.992167832 g/hr

c

Fdm
dt v

−

−

= −

⋅
= −

⋅

= − ⋅
= −

 

 ROUND: The measured values are all given to four significant figures, and the final answer should also 
have four significant figures. The thruster consumes fuel at a rate of 5.534·10–7 kg/s or 1.992 g/hr.  
DOUBLE-CHECK: Because of the cost of sending a satellite into space, the weight of the fuel consumed 
per hour should be pretty small; a fuel consumption rate of 1.992 g/hr is reasonable for a satellite launched 
from earth. Working backwards, if the rocket consumes fuel at a rate of 5.534·10–4 g/s, then the thrust is 

( )4 2 221.45 km/s 5.534 10  g/s 0.01187 km g/s 1.187 10  N− −− ⋅ − ⋅ = ⋅ = ⋅  

(the conversion factor is 1 km·g/s2 = 1 kg·m/s2). So, this agrees with the given thrust force of 1.187·10–2 N. 
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8.77. ( )( )3 7 2
c 23.75 10  m/s 5.082 10  kg/s 1.207 10  NdmF v

dt
− −= = ⋅ ⋅ = ⋅  

8.78. 
2

c 7

1.299 10  N 26.05 km/s
/ 4.718 10  kg/s

Fv
dm dt

−

−

⋅
= = =

⋅
 

8.79. THINK:  This question asks about the speed of a satellite. This is an example of rocket motion, where the 
mass of the satellite (including thruster) decreases as the fuel is ejected.   

 SKETCH: The direction in which the xenon ions are ejected is opposite to the direction of the thrust. The 
velocity of the xenon with respect to the satellite and the thrust force are shown.  

     
 RESEARCH:  Initially, the mass of the system is the total mass of the satellite, including the mass of the 

fuel: mi = msatellite After all of the fuel is consumed, the mass of the system is equal to the mass of the 
satellite minus the mass of the fuel consumed: mf = msatellite –  mfuel. The change in speed of the satellite is 
given by the equation ( )f i i fln /cv v v m m− = , where vc is the speed of the xenon with relative to the 
satellite.  

 SIMPLIFY: To make the problem easier, choose a reference frame where the initial speed of the satellite 
equals zero. Then f i f f0v v v v− = − = , so it is necessary to find ( )f i fln /cv v m m= . Substituting in the 

masses of the satellite and fuel, this becomes [ ]( )f satellite satellite fuelln /cv v m m m= − . 

 CALCULATE:  The initial mass of the satellite (including fuel) is 2149 kg, and the mass of the fuel 
consumed is 23.37 kg. The speed of the ions with respect to the satellite is 28.33 km/s, so the final velocity 
of the satellite is: 

[ ]( )

( )

f satellite satellite fuel

1

ln /

2149 kg
28.33 km/s ln

2149 kg 23.37 kg

3.0977123 10  km/s

cv v m m m

−

= −

 
=  − 
= ⋅

 

 ROUND: The measured values are all given to four significant figures, and the weight of the satellite 
minus the weight of the fuel consumed also has four significant figures, so the final answer will have four 
figures. The change in the speed of the satellite is 3.098·10–1 km/s or 309.8 m/s.  
DOUBLE-CHECK: Alhough the satellite is moving quickly after burning all of its fuel, this is not an 
unreasonable speed for space travel. Working backwards, if the change in speed was 3.098·10–1 km/s, then 

the velocity of the xenon particles was satellite

i fln( / )c
v

v
m m
∆

= , or 

[ ]
13.098 10 km /s 28.33 km /s

ln(2149 kg / 2149 kg 23.37 kg )cv
−⋅

= =
−

. 
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This agrees with the number given in the question, confirming that the calculations are correct. 

8.80. i
c

f

ln
m

v v
m

 
∆ =  

   

 

( )

c

c

c c

3

i

c f

i

f

f i

fuel i f i i i

236.4  m/s
20.61 10  m/s

fuel

ln

1

2161 kg 1 24.65 kg

v
v

v
v

v v
v v

mv
v m

m
e

m

m m e

m m m m m e m e

m e

∆

∆
−

∆ ∆
− −

−
⋅

 ∆
=  

 

=

=

 
= − = − = −  

 
 

= − =  
 

 

8.81. i
c

f

ln
m

v v
m

 
∆ =  

   

 

( )

( )

c

c

c c c

c c

c

3
c c

i

c f

i

f

i f

f i fuel

i i fuel i fuel

i i fuel

fuel
i fuel 275.0 m/s

22.91 10  m/s

ln

1 125.95 kg 2175 kg
11 1

v
v

v
v

v v v
v v v

v v
v v

v
v

v v
v v

mv
v m

m
e

m

m m e
m m m

m m m e m e m e

m e m m e

m e
m m

ee e

∆

∆

∆ ∆ ∆

∆ ∆

∆

∆ ∆
− −

⋅

 ∆
=  

 

=

=
= −

= − = −

− =

= = = =

−− −

 

8.82. THINK:  The fisherman, boat, and tackle box are at rest at the beginning of this problem, so the total 
momentum of the fisherman, boat, and tackle box before and after the fisherman throws the tackle box 
must be zero. Using the principle of conservation of momentum and the fact that the momentum of the 
tackle box must cancel out the momentum of the fisherman and boat, it is possible to find the speed of the 
fisherman and boat after the tackle box has been thrown.  

 SKETCH: The sketch shows the motion of the tackle box, boat, and fisherman after the throw: 
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 RESEARCH:  The total initial momentum is zero, because there is no motion with respect to the dock. 
After the fisherman throws the tackle box, the momentum of the tackle box is 

box box box box throwp m v m v= = towards the dock. The total momentum after the throw must equal the total 
momentum before the throw, so the sum of the momentum of the box, the momentum of the boat, and 
the momentum of the fisherman must be zero: box fisherman boat 0.p p p+ + =  The fisherman and boat both 
have the same velocity, so fisherman fisherman fisherman fisherman recoilp m v m v= =  away from the dock and 

boat boat boat boat recoilp m v m v= =  away from the dock.  
 SIMPLIFY: The goal is to find the recoil velocity of the fisherman and boat. Using the equation for 

momentum after the tackle box has been thrown, box fisherman boat 0p p p+ + = , substitute in the formula for 
the momenta of the tackle box, boat, and fisherman: box throw fisherman recoil boat recoil0 m v m v m v= + + . Solve for the 
recoil velocity: 

( )

box throw fisherman recoil boat recoil

fisherman recoil boat recoil box throw

recoil fisherman boat box throw

box throw
recoil

fisherman boat

0m v m v m v
m v m v m v

v m m m v
m v

v
m m

+ + =
+ = −

+ = −

= −
+

 

 CALCULATE:  The mass of the tackle box, fisherman, and boat, as well as the velocity of the throw (with 
respect to the dock) are given in the question. Using these values gives:  

box throw
recoil

fisherman boat

13.63 kg 2.911 m/s
75.19 kg 28.09 kg
0.3841685709 m/s

m v
v

m m
= −

+
⋅

= −
+

= −

 

 ROUND: The masses and velocity given in the question all have four significant figures, and the sum of 
the mass of the fisherman and the mass of the boat has five significant figures, so the final answer should 
have four significant figures. The final speed of the fisherman and boat is –0.3842 m/s towards the dock, or 
0.3842 m/s away from the dock.  
DOUBLE-CHECK: It makes intuitive sense that the much more massive boat and fisherman will have a 
lower speed than the less massive tackle box. Their momenta should be equal and opposite, so a quick way 
to check this problem is to see if the magnitude of the tackle box’s momentum equals the magnitude of the 
man and boat. The tackle box has a momentum of magnitude 13.63 kg · 2.911 m/s = 39.68 kg·m/s after it is 
thrown. The boat and fisherman have a combined mass of 103.28 kg, so their final momentum has a 
magnitude of 103.28 kg · 0.3842 m/s = 39.68 kg·m/s. This confirms that the calculations were correct. 

8.83. ( )man boat
box boat

box

77.49 kg 28.31 kg
0.3516 m/s 2.607 m/s

14.27 kg
m m

v v
m
+ +

= = =  

8.84. ( )man boat boat box boxm m v m v+ =

 

( )

man boat boat boat box box

box box boat boat box
man box boat

boat boat

man
3.303 m/s14.91 kg 28.51 kg 79.80 kg

0.4547 m/s

m v m v m v
m v m v v

m m m
v v

m

+ =
−

= = −

= − =
 

8.85. THINK:  The masses and initial speeds of both particles are known, so the momentum of the center of 
mass can be calculated. The total mass of the system is known, so the momentum can be used to find the 
speed of the center of mass.  
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 SKETCH: To simplify the problem, choose the location of the particle at rest to be the origin, with the 
proton moving in the +x direction. All of the motion is along a single axis, with the center of mass (COM) 
between the proton and the alpha particle. 

      
 RESEARCH:  The masses and velocities of the particles are given, so the momenta of the particles can be 

calculated as the product of the mass and the speed p m vα α α=  and p p pp m v=  towards the alpha particle. 
The center-of-mass momentum can be calculated in two ways, either by taking the sum of the momenta of 

each particle (
0

n

COM i
i

P p
=

=∑ ) or as the product of the total mass of the system times the speed of the center 

of mass ( COM COMP M v= ⋅ ).  
 SIMPLIFY: The masses of both particles are given in the problem, and the total mass of the system M is 

the sum of the masses of each particle, M = mp + mα. The total momentum 
0

n

COM i p
i

P p p pα
=

= = +∑  and 

COM COMP M v= ⋅ , so COM pM v p pα⋅ = + . Substitute for the momenta of the proton and alpha particle (since 
the alpha particle is not moving, it has zero momentum), substitute for the total mass, and solve for the 
velocity of the center of mass: 

0

COM p

p
COM

p p

p

p p

p

p p

p

M v p p
p p

v
M

m v m v
m m

m m v
m m

m v
m m

α

α

α α

α

α

α

α

⋅ = + ⇒

+
=

+
=

+

⋅ +
=

+

=
+

 

 CALCULATE:  The problem states that the proton has a mass of 1.673·10−27 kg and moves at a speed of 
1.823·106 m/s towards the alpha particle, which is at rest and has a mass of 6.645·10−27 kg. So the center of 
mass has a speed of 

( )( )

p p
COM

pα

6 27

27 27

5

1.823 10  m/s 1.673 10  kg

1.673 10  kg 6.645 10  kg
3.666601346 10  m/s

m v
v

m m
−

− −

=
+

⋅ ⋅
=

⋅ + ⋅
= ⋅

 

 ROUND: The masses of the proton and alpha particle, as well as their sum, have four significant figures. 
The speed of the proton also has four significant figures. The alpha particle is at rest, so its speed is not a 
calculated value, and the zero speed does not change the number of figures in the answer. Thus, the speed 
of the center of mass is 3.667·105 m/s, and the center of mass is moving towards the alpha particle. 
DOUBLE-CHECK: To double check, find the location of the center of mass as a function of time, and 
take the time derivative to find the velocity. The distance between the particles is not given in the problem, 
so call the distance between the particles at an arbitrary starting time t = 0 to be d0.  The positions of each 
particle can be described by their location along the axis of motion, rα = 0 and rp = d0 + vpt. 
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Using this, the location of the center of mass is 

( )COM p pα α
pα

1R r m r m
m m

= +
+

. 

Take the time derivative to find the velocity: 

( )

( )

( )

( )

( )

( )( )

COM p pα α
pα

0 p pα
pα

0 p p p
pα

0 p p p
pα

p p
pα

p p

pα

6 27

27 27

5

1

1 0

1 0

1

1 0

1.823 10  m/s 1.673 10  kg

1.673 10  kg 6.645 10  kg
3.666601346 10  

d dR r m r m
dt dt m m

d d v t m m
m m dt

d d m v m t
m m dt

d d m v m t
m m dt

v m
m m

v m
m m

−

− −

 
= + 

+  

 = + + ⋅ +

= + +
+

= +
+

= +
+

=
+

⋅ ⋅
=

⋅ + ⋅
= ⋅ m/s

 

This agrees with the earlier result.  

8.86. cm( )p p pm m v m v m vα α α+ = +  

Since 0,vα =  

( ) ( )
27 27

5 6
cm 27

1.673 10  kg 6.645 10  kg
5.509 10  m/s 2.739 10  m/s

1.673 10  kg
p

p
p

m m
v v

m
α

− −

−

+ ⋅ + ⋅
= = ⋅ = ⋅

⋅
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Chapter 9: Circular Motion 
 

Concept Checks 

9.1. e  9.2. b  9.3. a  9.4. d  9.5. b  9.6. d 
 

Multiple-Choice Questions 

9.1. d  9.2. c  9.3. b  9.4. d  9.5. c  9.6. a  9.7. c  9.8. a  9.9. a  9.10. c  9.11. a  9.12. a  9.13. d  9.14. d  9.15. d  9.16. a   
 
Conceptual Questions 

9.17. A ceiling fan is rotating in the clockwise direction, as viewed from below. This also means that the 
direction of angular velocity of the fan is in the clockwise direction. The angular velocity is decreasing or 
slowing down. This indicates that the angular acceleration is negative or in the opposite direction of the 
angular velocity. Therefore, the angular acceleration is in the counter-clockwise direction.  

9.18. No, it will not. This is because when the actor swings across the stage there will be an additional tension on 
the rope needed to hold the action in circular motion. Note that the total mass of the rope and the actor is 
3 lb + 147 lb = 150 lb. This is the maximum mass that can be supported by the hook. Therefore, the 
additional tension on the rope will break the hook.  

9.19. The force body diagram for one of the masses is:  

 
The force of tension in the x-axis is equal to the centripetal force, 2

1sin rT mθ ω= . The force of the tension 

along the y-axis must be equal to the force of gravity, 1cos gmT θ = . This means 
2

1
1

1

sin
tan

cos
T
T

r
g

θ ωθ
θ

== ; 

therefore, both 1θ and 2θ are the same, since they don’t depend on the mass.  

9.20. For the two points of interest, there are two forces acting on the person; the force of gravity and the 
normal force. These two forces combine to create the centripetal force. In case A: c,A N,A gF FF = − and case 

B: c,A N,B g .F FF− = −  This means that the normal force is 2
N,A c,A gF F rF gm mω= + +=  and 

2
N,B g c,A .F F mgF m rω− == −  Therefore, N,AF is greater than N,B .F  

9.21. The linear speed of the bicycle is given by v rω= . The smaller the diameter, D, the lower the linear speed 
for the same angular speed because / 2r D= so tires with a lower diameter than 25 cm will have a velocity 
too slow to be practical transportation.   

9.22. Both the angular velocity and acceleration are independent of the radius. This means they are the same at 
the edge and halfway between the edge and center. The linear velocity and acceleration, however, do 

change with radius, r. At the edge ev rω=  and 2
ea Rω= . The halfway point gives 1/2 2

v rω
=  and 

21
1/2 2a Rω= . Comparing the two points, it can be seen that e 1/22v v=  and e 1/22a a= .  
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9.23. For the car to stay on the road there must be a force in the direction of the centripetal force. In this case, 
the road is not banked, leaving the force of friction as the only possible choice. Since the car travels with 
constant speed, the force of friction holding the car on a circular path points in radial inward direction 
towards the center of the circle.  

9.24. As the car makes the turn, both strings have a new angular position, θ . From the discussion of the conical 

pendulum on page 290 and 291, you can see that this angle is given by 2tan /r gθ ω= , where r  is the 
distance to the center of the circle.  This means that the pendulum that is further away from the center has 
a larger angle. A larger angle means a larger sideways deflection of the pendulum, and thus the distance 
between the two pendula increase during the turn, both for a right turn and for a left turn.  If the distance 
d  between the two pendula is small compared to the turning radius r , however, this effect is hard to 
measure or see. 

9.25. The kinetic energy when the point mass gets to the top of the loop is equal to the difference in potential 

energy between the height h and 2R. Rearranging 
2

2
2

mg gm h Rv m= −  for 2v  gives ( )2 2 2gv h R= − . For 

the particle to stay connected to the loop, the centripetal force has to be greater than or equal to the force 
of gravity. This requirement means 2 .v Rg=  Using these two equations, the height, h, can be determined: 

( ) 1 52 2 .
2

2
2

h R Rg h Rg R R− = ⇒ = + =  

The height should be 5 / 2R  or greater for the point to complete the loop. 

9.26. The bob is moving in a horizontal circle at constant speed. This means that the bob experiences a net force 
equal to the centripetal force inwards. This force is equal to the horizontal component of the tension. The 
vertical component of the tension must be balanced by the force of gravity. The two forces acting on the 
bob are the tension and the force of gravity.  

9.27. From our discussion of the conical pendulum on page 271, you can see that this angle is given by 
2tan /r gθ ω= .  As the angular speed assumes larger and larger values, the angle approaches a value of 

90° , which is the condition that the string is parallel to the ground.  However, the exact value of 90°  
cannot be reached, because it would correspond to an infinitely high value of the angular speed, which 
cannot be achieved.  

9.28. A picture of the situation is as follows: 

 
 

This picture tells us that the normal force can be related to the force of gravity by 

N g g sin sin .F F F mgθ θ⊥= = =   In this situation, the normal force provides the centripetal force, so 

c sinF mg θ=  and c sina g θ= .  As θ  decreases, sinθ  decreases, and therefore ca  decreases.  The 

acceleration vector for circular motion has two components; the centripetal acceleration, ca , and the 
tangential acceleration, t cosa θ= , which increases as θ  decreases to zero.  This satisfies the requirement 

that t
ˆ ˆ

ca a t a r= −


. 
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9.29. The forces that you feel at the top and bottom of the loop are equal to the normal force. At the top and 

bottom of the loop, the normal force are along the vertical direction and are 
2
T

T

mv
N mg

R
= −  and 

2

B
Bmv

N mg
R

= + . If you experience weightlessness at the top, then 2

T T
0 /N mg mv R= ⇒ = .  Energy 

conservation tells us that 2 21
B T2 2

1 2mgm Rv mv= + . Insert both of these results into the expression for the 
normal force at the bottom and find:  

2 2

B B T
/ (4 ) / 4 6N mg mv R mg mgR mv R mg mg mg mg= + = + + = + + =  

This means that the normal force exerted by the seat on you, your apparent weight, is indeed 6 times your 
weight at the top of the loop. 

9.30. The combined weight of the five daredevils is W.  To determine the strength of the rope needed, the 
tension at the bottom of the arc must be determined.  At this point the centripetal force is equal to the 

difference between the tension and the force of gravity. The tension is equal to 
2

mmvT g
R

= +  

2Wv W
Rg

= + .   The kinetic energy at the bottom of the arc is equal to the potential energy at the level of the 

bridge, =21
2

mv mgR or 2 2v gR= . Using this, 
2

3 .
W gR

T W W
Rg

= + =  The rope must be able to withstand a 

tension equal to three times the combined weight of the daredevils.     
 

Exercises 

9.31. THINK:  Determine the change in the angular position in radians. Winter lasts roughly a fourth of a year. 
There are 2π  radians in a circle. Consider the orbit of Earth to be circular. 
SKETCH:   

 
RESEARCH:  The angular velocity of the earth is / r2 yω π= . The angular position is given 
by 0 0tθ θ ω= + . 
SIMPLIFY:  0 0tθ θ θ ω∆ == −  

CALCULATE:  2  rad 1  rad 3.14 rad  yr 1.57 rad
yr 4 2 2

π πθ  
∆ = = = = 

 
 

ROUND:  Since π is used to three significant figures, the angle the Earth sweeps over winter is 1.57 rad. It 
would also be entirely reasonable to leave the answer as / 2π  radians. 
DOUBLE-CHECK:  This value makes sense, since there are four seasons of about equal length, so the 
angle should be a quarter of a circle. 
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9.32. THINK:  Determine the arc length between Dubuque and Guatemala City. The angular positions of 
Dubuque and Guatemala City are D 42.50θ = °  and G 14. ,62θ = ° respectively. The radius of the Earth is 

6
E 6.37  .10 mR = ⋅  

SKETCH:   

 
RESEARCH:  The length of an arc is given by s rθ= , where r  is the radius of the circle, and θ  is the arc 
angle given in radians. 

SIMPLIFY: E D G
2( )

360
s R πθ θ−=

°
, where the units of the angles are degrees. 

CALCULATE:  ( )( )6 610 m 42.50 14.6 26.37   
360

2 3.0996 10 ms π
= ⋅ ° − °

°
= ⋅  

ROUND:  The arc length’s accuracy is given by the least accurate value used to determine it. In this case, 
the least accurate value is the radius of Earth, given to three significant figures, so the arc length is 

613 10 .0. m⋅  
DOUBLE-CHECK:  This is equal to 3100 km, a reasonable distance between the northern United States 
and Central America. 

9.33. THINK:  Determine the linear distance between Dubuque and Guatemala city. Also, determine the angle 
below the horizontal for a tunnel that connects the two. The angular positions of Dubuque and Guatemala 
City are D 42.50θ = °  and G 14. ,62θ = ° respectively. The radius of the Earth is 6

E 6.37 m.10R ⋅=  
SKETCH:   

 
RESEARCH:  Use the triangle of the drawing to relate GDθ θ− , ER and / 2l . The right triangle gives rise 

to the equation GD

E2
/ 2sin l

R
θ θ−

= . The angle of the tunnel is D
t

G

2
.

θ θ
θ

 
=  

 

−
 

SIMPLIFY:  D
E

G2 si
2

nl R
θ θ− 

=  
 

 

CALCULATE: ( )6 642.50 14.2 6210 m sin 3.6.37   
2

06914 10 ml − ⋅ = ⋅
 

° °
=   t

42.50 14.62 13.94
2

θ − ° 
= = 



°


°  

ROUND:  The length will have the same accuracy as the radius of Earth. The angle of the tunnel will be as 
accurate as the latitude of the cities. Therefore, the length of the tunnel is 6107 ,3 0. m⋅  with an angle of 
13.94° below the surface of the Earth. 
DOUBLE-CHECK:  The length of the tunnel is a bit shorter than the arc length, which is expected. See the 
solution to Problem 9.32. 
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9.34. THINK:  Determine the number of rotations the ball will make as it travels to the catcher’s glove. The 
linear and angular speeds of the ball are 88 mphv = and 110 rpmω = . In SI units, these are  

0.447m / s 39.3 m/s
mph

88 mphv
 

= 
 

=   and   2  rad 1 min110 rpm .
1 rot 60 s

11.52 rad/sπω   
=   

 
=


 

The ball travels a distance, = 60.5 ftd or 18.4 m. 
SKETCH:   

 
RESEARCH: The time it takes for the ball to reach the catcher is given by = / .t v d  This time will then be 
used to calculate the number of rotations, given by ω=n t .  This number n will be in radians which will 

then have to be converted to rotations, where 
π

 
= 

 

1rev
1rad 0.16 revolution.

2
 

SIMPLIFY:  ω =  
 

dn
v

 

CALCULATE: 
( )

π
= =

 
= 

 

18.4 m 11.52 rad/s
5.394 

1rev
0.8586  rotations

39.3 m/
r

s 2
adn  

ROUND: The linear speed of the ball, the distance traveled, and the angular speed of the ball are  all given 
to three significant figures, so the number of rotations should be  0.859. 

DOUBLE-CHECK:  Dimensional analysis: [ ] m revolrad/ ution .
m/s 2 rad

sn
π

= ⋅⋅  All units cancel giving a 

dimensionless quantity, as expected. 

9.35. THINK:  Determine the average angular acceleration of the record and its angular position after reaching 
full speed. The initial and final angular speeds are 0 rpm to 33.3 rpm. The time of acceleration is 5.00 s.  
SKETCH:   

 
RESEARCH: The equation for angular acceleration is ( )f i / tα ω ω= − ∆ . The angular position of an 

object under constant angular acceleration is given by 21
2

tθ α= . 

SIMPLIFY:  There is no need to simplify the equation. 

CALCULATE: 
( )

2 233.3 rpm 0 rpm 0.111 rev/s 0.6974 rad/
2 rad

5.00 s 1
s

60 r s/m evin
α

π−
=⋅= =   

( )( )2 2 rad
1.3875 rev 8.718 r1 0.111 rev/s 5.00 s

2
ad

1rev
θ

π
= ⋅ ==  
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ROUND:  To three significant figures, the angular acceleration and position are:  
(a)  20.697 rad/sα =  
(b)  8.72 radθ =  
DOUBLE-CHECK:  The calculations yield the correct units of radians and 2rad/s .  

9.36. THINK:  Determine the horizontal distance the teddy bear travels during its fall. In order to do this, the 
height and the horizontal speed of the bear must be determined. The diameter of the wheel is 12.0 m, the 
bottom of which is 2.0 m above the ground. The rim of the wheel travels at a speed of 1.0 m/sv = . The 
height of the bear is 14.0 m from the ground and is traveling at a speed of 1.0 m/s  in the horizontal 
direction when it falls. 
SKETCH:   

 
RESEARCH: The horizontal distance is given by x vt= . The time is not yet known but can be determined 

from 2 .1 g
2

h t=  

SIMPLIFY:  The time it takes the bear to fall is 2 2t h
g

= or 2 .t h
g

=  The horizontal distance traveled is 

2 .x vt v h
g

= =  

CALCULATE: ( ) ( )
== 2

2 14.0 m
1.6894 m

9.
1.00 m/s

81 m/s
x  

ROUND:  The velocity is given to three significant figures, so round the distance to 1.69 m. 
DOUBLE-CHECK:  The bear lands a short distance from the base of the wheel, as one would expect given 
its small initial velocity. 

9.37. THINK:  Determine the distance between the three teddy bears. The bears will be traveling at 1.00 m/s but 
will have different directions and distances from the ground. The angle between adjacent bears is 45.0°.  
The diameter of the wheel is 12.0 m and the bottom of the wheel is 2.00 m above the ground. 
SKETCH:   
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RESEARCH: The height of bear 1 and 3 is the same and is ( )( )1 8.00 6.00sin 45.  m0h = + ° . The second 

bear is 2 14.0 mh =  above the ground. The velocities of each bear in the horizontal and vertical directions 
are cosxv v θ= and sin ,y vv θ= where 1 245.0 0,  θ θ= ° = ° and 3 45.0θ = − ° .The distance between each bear 

before they are dropped is ( )sin 46 5.0 .  00 md∆ = ° . Use the regular equations for projectile motion: 

21 and .
2x yt yv vx t gt∆ = −∆ =  

SIMPLIFY: For different initial heights, H, the time of the fall can be determined from 

( ) 2( .) 1sin
2

t gth t v Hθ −= +  This is a quadratic equation with solution 
2 2

2

sin si . n 2v v H
g gg

t θ θ
= +±   

Choose the positive root, that is, 
2 2

2

sin sin 2 .vt v H
g gg

θ θ
+= +   The change in distance is 

( )
2 2

2

sin sin 2cos cos v v Ht
g

v vx
g g

θ θθ θ= +
 
=


+ ∆
 


,  which means that the value of x is given by the 

equation 
2 2

0 2

sin sin 2c .os v Hv
g g

x
g

vx θ θθ
 
+


+


+ =



 

CALCULATE: For the first bear 0 1 10,  ,  and 45 ..0Hx h θ= = = °  Recall cos45.0 sin45.0 1/ 2.° = ° =  

( ) ( )
( )

( )2

1 22 22

21.00 m/s1 1.00 m/s 10 1.00 m/s
.81 m/s .81 m/s2 2 .

2 8.00 6.00 /  m
1.1693 m

9 981 m/s2 9
x

    
= + + +    



 +  =
  

 
  


 

The initial velocity of the second bear is horizontal, so the bear travels a horizontal distance of 
1.6894 mx∆ = (see solution to question 9.36). The second bear’s position is  

2 0
6.00 m 1.6894 m 5.9320 m

2
x x dx x∆ = ∆ += + += =∆ from the origin. For the third bear, 

0 1 22 ,  and ,  45.0 .x d H h θ= = −= °∆  

( )
( )

( )
( )

( )2

23 22 2

2 8.00 6.00 /  m1.00 m/ s 1.00 m/ s6.00 m 1.00 m/ s 9.5526 m
9.81 m/s9.81 m/s 2 9.81 m

2

/s
2

2 2 2
x

 +  − + =     

+


= +  

The distance between the first 2 bears is 12 4.7627 m.d∆ =  The distance between the last two bears is 

23 3.6206 m.d∆ =  
   ROUND:  The velocity has three significant figures, so the results should also have three significant 

figures. The distances between the bears once they hit the ground are 12 4.76 md =∆ and 23 3.62 m.d =∆  
DOUBLE-CHECK: The result is reasonable since 12 23d d>∆ ∆ . This must be so since the third bear is in 
the air for a shorter time because the original horizontal velocity points towards the ground.  

9.38. THINK:  Determine (a) the angular distance between the two planets a year later, (b) the time it takes the 
two planets to align again and (c) the angular position the alignment occurs at. The radius and period of 
each planet’s orbit are 6

M 228  10 kmr = ⋅ , M 687 daysT = , 6
E 149.6  10 kmr = ⋅  and E 365.26 days.T =  
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SKETCH:   

 
RESEARCH: The questions can be answered using  and 2 / .t Tθ ω ω π= =  
SIMPLIFY:  The angular distance is  

E E E
E M E E M E

E M M

2 2 1 .
T T T

T T
T T T

ωθ θ θ ω π π
   

∆ = = = −  = −
  

− 


−  

The time it takes the planets to realign occurs when E M 2θ θ π= + or E M ,2t tω ω π∆ = ∆ +  so 
E M

E M M E

E M

2 2 .
2 2

T T
t

T T
T T

π π
π πω ω

∆ = = =
− −−

 

The angular position is found by solving for the angle instead of the time.  M M M M    / ,t tωθ ωθ= ∆ ⇒ ∆ =  

so: E M E
E M M

E MM M E

M

E

E

  2 2 2 .
1 1

22 22t
T T T
T

Tω θ
θ

ππ ππ π π πω θ θ
ωω
ω

= ⇒ − == ∆ − = −
−− −

= + =  Subtract 2π  from 

the answer, so that 2θ π≤ . 

CALCULATE: 2
687

365.261 2.9426 rad,πθ  
− = 

 
∆ =  

( )687 365.26
687 36

779.93 days
5.

,
26

t∆ =
−

=   

( )2
687 365.

365.26
2 0.84989 ra

26
d

π
θ π= =

−
−  

ROUND:  The periods of Mars and Earth have three significant figures, so the results should be rounded 
accordingly.  
(a)  2.94 radθ∆ =  
(b)  780. dayst∆ =  
(c)  0.850 radθ =   
DOUBLE-CHECK:  The numbers are of the correct order for this solar system. 

9.39. THINK:  Determine (a) the magnitude and direction of the velocities of the pendulum at position A and 
B, (b) the angular speed of the pendulum motion, (c) the period of the rotation and (d) the effects of 
moving the pendulum to the equator.  The latitude of the pendulum is 55.0° above the equator. The 
pendulum swings over a distance of d = 20.0 m. The period of the Earth’s rotation is 

E 23 hr 56 min 86160 sT = + =  and the Earth’s radius is 6
E 6.37 . 10 mR = ⋅  
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SKETCH:   

 

RESEARCH: The following equations can be used:  A E,  ,  cos si2 n
2
dv r R R

T
π ω θ θω  = = −  

 
=  and 

EB cos sin .
2
dR R θ θ = +  

 
 

SIMPLIFY:  The magnitudes of the velocities are:  

E
A

A A A
E E

2
2 cos sin

2
v

T

dR
R

R
T

π θ θ
π

ω

  −  
  = = =  and 

E

B
E

2 cos sin
2

.

dR
v

T

π θ θ
  +  

  =  

The angular speed of the rotation is related to the linear speed by R .dv ω∆ =  Rearranging gives: 

E ER
E E E

2cos sin cos sin si1 2 si .
2 2

2 n nv
d d T dT

dR d
T

dRπ π πθ θ θ θω θ θ
         = = + − − =                   

∆
=  

The period is then E

E

.
si

2 2
2 sinn

R
R

T
T

w
T

π
θθ

π
π

= = =   At the equator, 0 .θ = °  

CALCULATE:  

(a)  
( ) ( ) ( ) ( )6

A

10 cos 55.0 sin 556.37  m 10.0 m
266.44277 m/s

86,160 s

.0
2v π

 ⋅ ° °
=

−
  =
 
 

 

 
( ) ( ) ( ) ( )6

B

10 cos 55.0 sin 556.37  m 10.0 m
266.44396 m/s

86,160 s

.0
2v π

 ⋅ ° °
=

+
  =
 
 

   

B A 266.44396 m/s  266.44277 m/s 0.00119 m/s or 1.19 mm/sv v v∆ = − = − =  

(b)  
( ) 5

R

2 sin 55.0
5.97  rad/s

86,160 s
10

π
ω −= ⋅

°
=  

(c)  
( )R

86,160 s
sin 5

105
5

,
.0

182 sT = =
°

or about 29.2 hours 

(d)  At the equator, 
θ θ→

== ∞
0

Elim
sin

.R
T

T  

ROUND:  The values given in the question have three significant figures, so the answers should also be 
rounded to three significant figures: 
(a) The velocities are 266.44277 m/sAv =  and B 266.44396 m/s,v = are in the direction of the Earth’s 
rotation eastward. This means the difference between the velocities is 1.19 mm/s.v∆ =  
(b)  The angular speed of rotation is 4

R 1.19 10  rad/s.w −= ⋅  
(c)  The period of rotation is about 29.2 hours. 
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(d) At the equator there is no difference between the velocities at A and B, so the period is RT = ∞ . This 
means the pendulum does not rotate.  
DOUBLE-CHECK:  These are reasonable answers. If the difference in velocities was larger, these effects 
would be seen in everyday life but they are not. These are things pilots deal with when planning a flight 
path.  

9.40. THINK:  Determine the centripetal acceleration of the Moon around the Earth. The period of the orbit is 
T = 27.3 days and the orbit radius is 83.85 m 10 .R ⋅=  
SKETCH:   

 

RESEARCH: The centripetal acceleration is given by 
2

c .va
R

=  The radius, R, is known, so the speed, v, can 

be determined by making use of the period and noting that in this period the moon travels a distance equal 
to the circumference of a circle of radius R. Therefore, 

π
==

2circumference
pe od

.
ri

EMv
T
R

 

SIMPLIFY:  
π π   =  

   
= =

2 22

c 2

2 41 EM

M

EM

E

Rva
R T

R
R T

 

CALCULATE:  Convert the period to seconds: 27.3 days = 62.3587  10 seconds.⋅ Therefore, 

( )
( )5

2 8
3 2

c 2

10
2.732 10

23.587 1

4 3.85  m
 m/s .

0  s
a

π
−

⋅
= = ⋅

⋅
 

ROUND:  Since the values are given to three significant figures, 3 2
c 2.73 10  m/s .a −= ⋅  

DOUBLE-CHECK:  This is reasonable for a body in uniform circular motion with the given values. 

9.41. THINK:  Determine the angular acceleration of a wheel given that it takes 1.20 seconds to stop when put 
in contact with the ground after rotating at 75.0 rpm. The wheel has a radius 35.0 cm and a mass of  
1.00 kg.  
SKETCH:   
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RESEARCH: Consider the angular speed of the wheel, and the necessary acceleration to bring that speed 

to zero in the given time. The angular acceleration is given by 
( )0

t t
ω ωωα = =

−∆
∆

 and the rotational 

speed is given by: 
2  rad 1 min(rpm) .

rev 60 s
πω   

=   
  

 

SIMPLIFY:  Since the final rotational speed is zero,  0

2  rad min(rpm)
rev 60 s

.
tt

ω
α

π
−

=

  
  
  = −  

CALCULATE: 
( )( )( )

( )
rad

rev 2 1 min75.0 rpm 2
6.54 rad/s

1.
/ 60 s

20 s
π

α = − = −  

 ROUND:  Since the values are given to three significant figures, the result is 26.54 rad/s .α = −  
DOUBLE-CHECK:  It is important that the acceleration is negative since it is slowing down the wheel. 
The magnitude seems reasonable based on the given values.  

9.42. THINK:  Determine the frequency of rotation required to produce an acceleration of 511 00 .0. g⋅  The 
radius is R = 10.0 cm. 
SKETCH:   

 
RESEARCH:  Recall that the centripetal acceleration is given by 2

c .a Rω=  Also, 2 fω π= .  Therefore, 

( )2 2 2
c 2 4a f R f Rπ π= = .   

SIMPLIFY:  Solving for f, c1 .
2

a
f

Rπ
=  

CALCULATE: 
( )( )5 21.00 10 9.81 m/s1 498.49 Hz

2 0.100 m
f

π

⋅
= =  

ROUND:  Since all values are given to three significant figures, the result is 498 Hz.f =  
DOUBLE-CHECK:  A frequency of about 500 Hz seems reasonable to try to obtain an acceleration five 
orders of magnitude greater than g.  

9.43. THINK: The initial angular speed is 0
2  rad 1 min3600. rpm 3600. rpm 120  rad/s.

1 rotation 60 s
πω π= = ⋅ ⋅ =  

Calculate the time, 1 ,t  it takes for the centrifuge to come to a stop 1 1) 0)( (tω ω ==  by using the average 
angular speed, ω , and the fact that that it completes 60.0n = rotations. Use the time taken to stop to find 
the angular acceleration. 
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SKETCH:   

 

RESEARCH:  The average angular speed is given by ( )f 0
1 .
2

ω ω ω= +  Since the centrifuge completes 60.0 

turns while decelerating, it turns through an angle of 2  rad60.0 turns 120  rad.
turn
πθ π∆ = ⋅ =  Use the two 

previous calculated values in the formula  1tθ ω∆ =  to obtain the time taken to come to a stop. Then, use 
the equation 0( )t tω ω α= + to compute the angular acceleration, .α  

SIMPLIFY:  The time to decelerate is given by, 
( )1

1 0

.
/ 2

t θ θ
ω ω ω
∆ ∆

= =
+

 Substituting this into the last 

equation given in the research step gives the equation, 
( )1 1 0

1 0

2( ) .t θω ω ω α
ω ω

∆
= = +

+
 Solving for α yields 

the equation:
( )( )1 0 1 0 .

2
ω ω ω ω

α
θ

− +
=

∆
 

CALCULATE: 
( )( )

( )
2 20 120  rad/s 0 120  rad/s

60  rad/s 188.496 rad/s
2 120  rad

π π
α π

π
− +

= = − = −  

 ROUND:  Since the number of rotations is given to three significant figures, the final result should be also 
rounded to three significant figures: 2188 rad/s .α = −  
DOUBLE-CHECK:  The negative sign of α  indicates deceleration, which is appropriate since the 
centrifuge is coming to a stop. The centrifuge decelerates from 120  rad/sπ  to rest in 

( )
( )

( )1
1 0

2 120  rad2 2 s,
0 120  rad/s

t
πθ

ω ω π
∆

= = =
+ +

and since the angular deceleration is constant, it must be the case 

that the deceleration is 260  rad/s .π The answer is therefore reasonable. 

9.44. THINK:  A circular motion has a constant angular acceleration of 22.5 rad/sα =  and a radius of r = 1.2 m. 
Determine (a) the time required for the angular speed to reach 4.7 rad/s, (b) the number of revolutions to 
reach this angular speed of 4.7 rad/s, (c) the linear speed when the angular speed is 4.7 rad/s, (d) the linear 
acceleration when the angular speed is 4.7 rad/s, (e) the magnitude of the centripetal acceleration when the 
angular speed is 4.7 rad/s and (f) the magnitude of the discus’ total acceleration.  
SKETCH:   
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RESEARCH:  
(a)  Since the angular acceleration is constant, the time required to reach the final angular speed can be 
determined by means of the kinematic equation, 0 tω αω= + , where 0 0.0 rad/s.ω =  
(b) Once the time required to reach the angular speed, ω , is determined, the number of revolutions can 
be determined by setting 1 rev 2  rad,π= where the number of radians is obtained from 

( )0
1rad .
2

d tω ω= +    

(c) The linear speed, v, can be determined from the angular speed, ,ω  by the relation .v rω=   
(d) The linear acceleration, ta  , can be obtained from the angular acceleration, ,α  by the relation t .a rα=  
(e)  The magnitude of the centripetal acceleration can be determined from the linear speed by the relation 

2

c .a v
r

=  

(f)  The total acceleration, Ta , can be found as the hypotenuse of a right angle triangle where the sides are 
the linear (tangential) acceleration, t ,a  and the angular acceleration, .α  The relationship is 

2
T t

2 .a a α+=  
SIMPLIFY:   

(a)  0   t t t ωα αω ω
α

+ = ⇒ ==   

(b)  ( ) ( )0
1 1rad
2 2

d t tω ω ω= + =   , and to convert to the number of revolutions, 
( )

rev .
2
d
π

=   

(c)  v rω=  
(d)  ta rα=  

(e)  
2

ca v
r

=  

(f)  T t
2 2a a α= +  

 
CALCULATE:  

(a)  = =2
4.70 rad/s 1.88 s

2.50 rad/s
t  

(b)  [ ] ( )( )
= =

4.70 1.88 s
rad 4.42 rad

2
rad/s

d  or 
π

 
=  

 

1rev
4.42 rad 0.70314

2 rad
 rev  

(c)  ( )( ) == 4.70 1.rad 20 5.64s m s/  m/v  

(d)  ( )( )= = 2
t

22.50 1.20 3.00rad/s m  m/sa   

(e)  
( )

= =
2

2
c

5.64 m/s
26.5 m/s

1.20 m
a  

(f)  ( ) ( )= + =
2 22 2

T
22.88 m/s 26.5 m/s 26.656 m/sa  

ROUND:  Rounding to  three significant figures: 
(a)   t = 1.88 s   
(b)   0.703 revolutions 
(c)   v = 5.64 m/s 
(d)  = 2

t 3.00 m/sa  

(e)  = 2
c 26.5 m/sa  
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(f)  = 2
T 26.7 m/sa  

DOUBLE-CHECK:  Based on the given values, these results are reasonable.  

9.45. THINK: Three coupled disks have radii 21 30.100 m, 0.500 m, 1.00 m.r r r= = = The rotation rate of disk 3 
is one revolution every 30.0 seconds. Determine (a) the angular speed of disk 3, (b) the tangential velocities 
of the three disks, (c) the angular speeds of disks 1 and 2 and (d) if the angular acceleration of disk 1 is 

2
1 0.100 s rad/α = , what are the angular accelerations of disks 2 and 3? 

SKETCH:   

 
RESEARCH:   
(a) To obtain the angular speed of disk 3, use its rotation rate, 30.0 s,T =  and the relationship between 
revolutions and radians, 2  rad/revπ .  Therefore, 3 2 /Tω π= . 
(b) Since the three disks are touching each other and there is no slipping, they all have the same tangential 
speed. Therefore, only one tangential speed must be determined. Since the angular speed of disk 3 is 
known, the tangential speed can be determined from 3 3 .v rω=  
(c)  Calculate the angular speed for disks 1 and 2 from the tangential speeds and the radii. That is, 

1 1 2 2/ ,  an .d /v r v rωω = =  
(d) Since the angular acceleration of disk 1 is known, its tangential acceleration can be determined. Since 
the disks are touching each other, and no slipping occurs, this tangential acceleration is common to all 
disks. The angular acceleration for disks 2 and 3 can be determined from this tangential acceleration and 
the radii. Therefore, 1 1 1/ raα = , implies 1 1 1.a rα=  Since 1 2 3a aa a= = = , 2 2/ raα = and 3 3 ./a rα =  
SIMPLIFY:   
(a)  3 2 /Tω π=  
(b)  3 3v rω=  
(c)  1 1 2 2/ ,  an .d /v r v rωω = =  
(d)  2 2/ raα =  and 3 3 ,/a rα = where 1 1.a rα=  
CALCULATE:  

(a)  
( )

3

2  rad/rev
0.209 rad/s

30.0 s
π

ω = =  

(b)  ( )( )0.209 rad/s 1.00 m 0.209 m/sv = =  for all three disks. 

(c)  1
0.209 m/s 2.09 rad/s
0.100 m

ω = =  and 2
0.209 m/s 0.419 rad/s.
0.500 m

ω = =  

(d)  ( )( )2 2 20.100 0.100 m 1.00rad/s 10  m/s .a −= ⋅=   

Therefore,  
2 2

2 2
2

1.00  m/s 2.00
0.50

10 10 rad/s
0 m

α
−

−⋅
= ⋅=  and 

2 2
2 2

3
1.00  m/s 1.00  .

1.00
10

 m
10 rad/sα

−
−=

⋅
⋅=  

 ROUND:  Keeping three significant figures, the results are: 
 (a)  3 0.209 rad/sω =  
 (b)  0.209 m/sv =  for all three disks 
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 (c)  1 2.09 rad/sω =  and 2 0.419 rad/sω =  

 (d)  2
2

2102.00  rad/sα −⋅= and 2
3

2101.00  rad/sα −⋅=  
 DOUBLE-CHECK:  Based on the given values, all the results are reasonable.  

9.46. THINK:  Determine the speed of a particle whose acceleration has a magnitude of 225.0 m/sa =  and 
makes an angle of 50.0θ = °  with the radial vector. 
SKETCH:   

 
RESEARCH: To determine the tangential speed, v, recall that the centripetal acceleration is given by 

2

c .a v
r

=  The centripetal acceleration is the projection of the total acceleration on the radial axis, i.e. 

c T cos .aa θ=  

SIMPLIFY:  Therefore, the tangential speed is given by Tc cos .v ra a r θ= =  

CALCULATE: ( ) ( )( )2 cos 50.0 1.00 25.0 m/s m 4 m/ s.01v == °  

 ROUND:  The values are given to three significant figures, therefore the result is 4.01 m/s.v =  
DOUBLE-CHECK:  This result is reasonable based on the magnitudes of the given values.  

9.47. THINK:  Determine the angular speed of the take-up spool in a tape recorder in the following cases: 
(a)  When the take-up spool is empty with radius, e 0.800 cm.r =  
(b)  When the take-up spool is full with radius, f 2.20 cm.r =  
(c)  Determine the average angular acceleration of the take-up spool if the length of the tape is 

100.80 m.l =  The magnetic tape has a constant linear speed of 5.60 cm/s.v =  
SKETCH:   

 
RESEARCH:  

(a) & (b) To determine the angular speed, make use of the relationship   .vv r
r

ω ω= ⇒ =  

(c) To determine an average angular acceleration, use the definition, / ,w tα = ∆ ∆  where the time is 

determined from 
( )

( )
distance

.
speed

lt
v

∆ = =  
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SIMPLIFY:   

(a)  e
e

v
r

ω =  

(b)  f
f

v
r

ω =  

(c)  
( )f ef e

/

v

T l v l

ω ωω ωωα
−−∆

= = =
∆

 

CALCULATE:  

(a)  
2

3

5.60  m/s 7.00 rad/s
8.0

0
00 m

1
1eω

−

−

⋅
⋅

= =  

(b)  
2

f 2

5.60  m/s 2.54 rad/s
2.20

10
1  0 m

ω
−

−

⋅
⋅

= =  

(c)   
( )( )2

3 2
5.60 10  m/s 2.54 7.00

2.48 10
100.80 

 /
m

rad sα
−

−
⋅ −

= = − ⋅  

 ROUND:  Keep three significant figures: 
(a)  7.00 rad/seω =  

(b)  f 2.54 rad/sω =  

(c)  3 22.48 10  rad/sα −= − ⋅  
 DOUBLE-CHECK:  It is reasonable that the angular speed of the spool when it’s empty is greater than 

when it’s full. Also, it is expected that the angular acceleration is negative since the angular speed is 
decreasing as the spool gets full.  

9.48. THINK:  Determine the radial velocity of a ring fitted around a rod as it reaches the end of the rod. The 
rod is spun in a horizontal circle at a constant angular velocity. The given values are the length of the rod,  
l = 0.50 m, the initial distance of the ring from the fixed end of the rod, 0 0.30 m,r =  and the constant 
angular velocity, 4.0 rad/s.ω =  
SKETCH:   

 
RESEARCH: For the ring to move in a circular path at a fixed distance along the rod, it would require a 
centripetal acceleration of 2

ca rω=  directed toward the center of the path. However, there is no force on 
the ring that will supply this acceleration, thus the inertia of the ring will tend to pull it outward along the 
rod. The resulting radial acceleration is equal to the missing centripetal acceleration, 2

c .a rω=  Since this 
radial acceleration depends on the radial position, the differential kinematic relations must be used: 

2 2r r  ,
dv dv drr r
dt dr dt

ω ω
  

= ⇒ =  
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where the second equation follows from using the chain rule of calculus. 

SIMPLIFY:  Since r ,dr v
dt

=  use separation of variables to set up the integral: 

0

2 2
r r r r0

  
l

r

v
v v ddv dr v r rr dωω ′ ′ ′ ′== ⇒ ∫ ∫  

( ) ( )
r

0

2 2

r 2

0
2 2

lv

r

v r
ω

′ ′
=  

( )2 2 22
0 2 2r

r 0 
2

. 
2

l rv
v l rω

ω
=

−
= → −  

CALCULATE:  The speed is therefore, ( ) ( ) ( )−= =2 2
r 0.500 m 0.300 4.00 rad/s 1.60 m m/s.v  

 ROUND: Since the angular velocity is given to  three significant figures, the result remains =r 1.60 m/s.v  
DOUBLE-CHECK:  Based on the given values, the resulting radial velocity is reasonable.  

9.49. THINK:  A flywheel with a diameter of 1.00 m is initially at rest, and has an angular acceleration in terms 
of time as ( ) 20.1t tα = , and has units of 2rad / s . Determine: 
(a)  The angular separation between the initial and final positions of a point on the rim 8.00 seconds after 
the rotations begin. 
(b) Find the linear position, velocity, and acceleration of a point 8.00 seconds after the wheel starts 
rotating, where the starting position of the point is at 0.θ = Use the known equations relating the position 
and velocity to the acceleration. 
SKETCH:   

 
RESEARCH:  
(a) The angular separation can be determined by first considering the change in angular speed through the 
time period: 

( )f

i
 .t dtω α∆ = ∫  

Since the initial angular speed is zero, .ω ω∆ =  Then consider the change in the angle through the time 
period: 

f

i
 .dtθ ω∆ = ∫  

(b) The angular acceleration and angular velocity are known and can be related to the tangential 
component of the linear acceleration and to the velocity through the equations   at = α(t)r  and v = ω r.  The 
radial component of the acceleration vector is the centripetal acceleration,   ar =  v 2/ r.  The position will be 
on the circumference, given by ( ) ( )ˆ ˆcos sinr xr r yθ θ+=

  where the angle is known from (a). Note that in 

this case, the question indicates that 0 0v = and 0 0.θ =  By convention, θ  is measured counterclockwise 
from the positive x-axis. 
SIMPLIFY:   

(a)  
f

i
 dtαω∆ = ∫  and 

f

i
 .dtθ ω∆ = ∫  

(b) ( )a t rα= , ( ) ,v t rω=  ( ) ( )ˆ ˆcos sinr xr r yθ θ+=
 do not need simplifying. 
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CALCULATE:  

(a)  ( )
84

f 8

0

3

i

2

0

3

0

0.1 0.1
0.1    

0.1
,  34.13333 rad 5.43249 rev

3 123
t t t

t dt dt dt
t

θ ωω∆ = = ∆ = = = = =∫ ∫ ∫     

This is 5 complete revolutions plus an additional 0.43249 of a revolution. Therefore the angular separation 
is given by ( )( )0.43249 2 2.717 rad.π =   

 (b) For the linear velocity, 
( )( ) ( )3 3
0.1 8.00 s 0.500 m0.1

8.53333 m/s.
3 3

rt
v = = =  The linear position, 

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ0.500 m cos 2.717 rad 0.500 m sin 2.717 rad 0.4556 m 0.20597 my xr x y=    + = − +   


 

For the tangential acceleration,   at = 0.1t 2r = 0.1( ) 8.00 s( )2 0.500 m( )= 3.200 m/s2 .   

For the radial acceleration:   ar = 8.53333 m/s( )2 / 0.500 m( )= 145.635 m/s2 .  
Therefore the magnitude of the total acceleration is dominated by the centripetal acceleration: 

   a = ar
2 + at

2 = 145.6352 + 3.22  m/s2 = 145.671 m/s2 .  
 ROUND:  The constant 0.1 in the function for α  is treated as precise. 
 (a)  Since all values are given to three significant figures, the result is 2.72 rad.θ∆ =  

(b) To three significant figures, the results are 23.20 , m/sta = 2 m46 ,s1 /ra = and 8.53 m/s.v =  The 
position of the point is ˆ ˆ0.456 0.206x y− + (or 0.500 m from the center at an angle of + 2.72 rad from its 
initial position). 

 DOUBLE-CHECK:   Based on the given values, these results are reasonable. The magnitude of the linear 

position vector is ( ) ( )2 2
0.4556 m 0.20597 m 0.500 m,r − + ==

  which is consistent with the requirement 

that the point is at the edge of the wheel. 

9.50. THINK:  Determine the force that plays the role of and has the value of the centripetal force on a vehicle 
of mass m = 1500. kg, with speed v = 15.0 m/s around a curve of radius R = 400. m.  
SKETCH:   

 
RESEARCH: The force that keeps the vehicle from slipping out of the curve is the force of static friction. 
The force can be calculated by recalling the form of the centripetal force, 

2

c .vF m
R

=  

SIMPLIFY:  The equation is in its simplest form. 
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CALCULATE: ( ) ( )2

c

15.0 m
1500. kg 843.75 N

400. m
F = =  

 ROUND:  To three significant figures: c 844 NF =  
 DOUBLE-CHECK:  The coefficient of static friction can be determined from the equation c s :F mgµ=  

( )
c

2s
800 N 0.05.

1500 kg 9.81 m/smg
F

µ⇒ = ==  

 This is within the expected values before slipping occurs. Therefore this is a reasonable force to obtain for 
the centripetal force. 

9.51. THINK:  The apparent weight of a rider on a roller coaster at the bottom of the loop is to be determined. 
From Solved Problem 9.1, the radius is r = 5.00 m, and the speed at the top of the loop is 7.00 m/s. 
SKETCH:   

 
RESEARCH:  The apparent weight is the normal force from the seat acting on the rider. At the bottom of 
the loop the normal force is the force of gravity plus the centripetal force: 

2 2

g .mv mvN F mg
r r

= + = +  

The velocity at the bottom of the loop can be determined by considering energy conservation between the 
configuration at the top and that at the bottom: 

2 21 1  
2 2 tmv mgh mv= +  

where h = 2r. In Solved Problem 9.1 it as determined that the feeling of weightlessness at the top is 

achieved if 
2

.tmv
mg

r
=  

SIMPLIFY:  Multiply the equation for energy conservation by a factor of 2 / r  and find: 
2 22

.tmvmghmv
r r r

= +  

Since h = 2r, this results in:  
2 2

4 .tmvmv mg
r r

= +  

Insert this for the normal force and see 
22

4 4 6 .tmvmvN mg mg mg mg mg mg mg
r r

= + = + + = + + =  

CALCULATE:  Not needed. 
 ROUND:  Not needed. 

DOUBLE-CHECK:  Our result means that you experience 6g of acceleration at the bottom of the loop, 
which seems like a large number, if you consider that the maximum acceleration during the launch of a 
Space Shuttle is kept to 3g.  However, if you have ever had the opportunity to ride on such a roller coaster, 
then our result does not seem unreasonable. 
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9.52. THINK:  Two skaters have equal masses and periods of rotation but the radius of one is half of the other. 
Determine: 
(a)  The ratio of their speeds. 
(b)  The ratio of the magnitudes of the forces on each skater.  
SKETCH:   

 
RESEARCH:  
(a)  The ratio of the speeds, 1 2/v v , can be determined by considering the period of rotation, given by 

2 / .T r vπ=  Since the two skaters have the same period, 1 1 2 22 / /2 .T v r vrπ π= =  

(b) The force acting on each skater has only a centripetal component whose magnitude is 2 / .mv r  

Therefore the ratio of the magnitudes is simply 2

1

,
F
F

 and 
( )
( )

2
2 2 22

2
1 2 1 1

/
.

/

m v rF
m v rF

=  

SIMPLIFY: 

(a)  2 2 11 1 1

1 2 1 2 2 2

2 2
    

r r r r r v
v v v v r v
π π

= ⇒ = ⇒ =  

(b)  
( )
( )

( )
( )

( )
( )

2 2 2
2 2 2 2 2 2 22 2

2 2 2
1 12 1 11 1 1 1

/ /

/

/

/ /

m v r v r rF r
m v r v r

T

F Tr r
= = = =  

CALCULATE:  

(a)  Since 1
2 ,

2
r

r =  2 2

11

1 .
2

r v
r v

= =  

(b)  2

1 1

2 2

1

1
2

F r v
F r v

= = =  

 ROUND:  It is not necessary to round. The result for both parts (a) and (b) is a ratio of 1/2. 
DOUBLE-CHECK:  It is reasonable that by doubling the radius, both the speed of rotation and centripetal 
force also double.  

9.53. THINK:  Determine the minimum time required for a block held by a peg inside a cylinder to stay in place 
once the cylinder starts rotating with angular acceleration, .α  The coefficient of static friction is given as 

.µ  To avoid slipping in the vertical direction, balance the force due to gravity with the force due to friction 
between the block and the cylinder. For large values of the angular acceleration, we also obtain a 
significant force in tangential direction.  However, we restrict our considerations to the case of small 
angular acceleration and neglect the tangential force. 
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SKETCH:   

 
RESEARCH:  The force due to friction is given by ,f Nµ=  and in this case N is simply the centripetal 

force, 2
c / ( / 2).dF mv=  The time required to reach a suitable centripetal force can be determined by 

means of the angular speed, / ,v rω = and the angular acceleration,  / .tα ω=  

SIMPLIFY:  The centripetal force can be rewritten as ( )22 2
c / / ( / 2) / 2.F mv mr dr m dω ω= = =  Thus, the 

force of static friction is given by 2
f 2 .( / )m df µ ω=  Therefore, from the balancing of the vertical forces: 

g ,f F=  or ( )2 2/ 2   2 / .m dd mg gµ ω ω µ= ⇒ =  Since /t ω α= , the time interval is: 

2

2
 2 / /

g
t g d

d
αµ

µ α
= = . 

CALCULATE: There are no numbers to insert in this problem. 
ROUND:  There is nothing to round since there are no numerical values. 
DOUBLE-CHECK:  An easy check we can perform right away is to make sure that the units on the right-
hand side of our formula indeed work out to be seconds.  

9.54. THINK:  The maximum velocity such that the car performs uniform circular motion without slipping 
must be determined. The coefficient of static friction is s 1.20µ = and the radius of the circular path is r = 
10.0 m. 
SKETCH:   

 
RESEARCH:  Consider which force is providing the centripetal force. Since the car is not sliding, it is the 
force of static friction. Those two forces must be related to determine the maximum velocity. That is, 

centripetal

2

friction s . mvmg
r

F F µ= ⇒ =  
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SIMPLIFY:  
2

s s   mvmg v gr
r

µ µ= ⇒ =  

CALCULATE: ( )( )( )2
s 1.20 9.81 m/s 10.0 m 10.84988 m/sv grµ= = =  

ROUND:  Since the values given have three significant figures, the result is then  10.8 m/s.v =  
DOUBLE-CHECK:  This result may seem quite small for a racecar. But, consider that 10.8 m/s are ~24 
mph, and that this is a very tight curve with a diameter of less than the length of a basketball court.  It then 
seems reasonable that a car cannot go very fast through such a tight curve. Also, note that as expected, the 
maximum velocity is independent of the mass of the car. 

9.55. THINK:  Determine the maximum speed of a car as it goes over the top of a hill such that the car always 
touches the ground. The radius of curvature of the hill is 9.00 m. As the car travels over the top of the hill it 
undergoes circular motion in the vertical plane.  The only force that can provide the centripetal force for 
this motion is gravity.  Clearly, for small speeds the car remains in contact with the road due to gravity.  
But the car will lose contact if the centripetal acceleration exceeds gravity. 
SKETCH:   

 
RESEARCH: In the limiting case of the maximum speed we can set the centripetal acceleration equal to g:  

2
max / .g v r=  

SIMPLIFY:  Solve for the maximum speed and find max .v gr=  

CALCULATE: ( )( )2
max 9.81 m/s 9.00 m 9.40 m/sv gr= = =   

ROUND:  Since the radius is given to three significant figures, the result is max 9.40 m/s.v =  
DOUBLE-CHECK: This speed of 9.40 m/s, which is approximately 21.0 mph, seems very small. But on 
the other hand, this is a very significant curvature at the top of the hill, equivalent to a good-sized speed 
bump. Going over this type of bump at more than 21 mph makes it likely that your car will lose contact 
with the road surface. 

9.56. THINK:  A ball attached to a string is in circular motion as described by the sketch. Determine: 
(a)  The free-body diagram for the ball. 
(b)  The force acting as the centripetal force. 
(c)  The required speed of the ball such that 45.0 .θ = °  
(d)  The tension on the string. 
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SKETCH:   

 
RESEARCH:  
(a)   

 
(b)  As shown in the sketch, the projection of the tension onto the horizontal plane provides the 
centripetal force. Therefore, 2 / sin .r Tmv θ=  
(c)  From the sketch, the force due to gravity is balanced by the projection of the tension on the vertical 
axis, i.e. cos .g Tm θ=  From part (b), the centripetal force is given by 2 / sin .r Tmv θ=  By solving both 
equations for T and then equating them, the speed for the given angle can be determined. 
(d)  The tension on the string can most easily be found from cos ,g Tm θ=  for the given angle, .θ  
SIMPLIFY:   
(a)  Not applicable. 
(b)  Not applicable. 

(c)  
2 2

cos   ,  and sin   .
cos sin
m mv mvm

g
g T T T T

r r
θ θ

θ θ
= ⇒ = = ⇒ =  

Equating the above equations gives 
2

  tan ,
cos sin
mg

v gmv r
r

θ
θ θ

= ⇒ =  where sin .r L θ=  

(d)  cos   
cos
mg

g T Tm θ
θ

= ⇒ =  

CALCULATE:  
(a)  Not applicable. 
(b)  Not applicable. 

(c)  ( ) ( ) ( )( )2 9.81 m/s 1.00 m sin 45.0  tan45.0 2.63376 m/sv = ° ° =  

(d)  
( )( )

( )

20.200 kg 9.81 m/s

cos 45.
2.7747 N

0
T ==

°
 

 ROUND:   
(a)  Not applicable. 
(b)  Not applicable. 
(c)  Since values are given to three significant figures, the result is  2.63 m/s.v =  
(d)  Keeping three significant figures, 2.77 N.T =  
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 DOUBLE-CHECK: All results are reasonable based on the given values. It is expected that the tension on 
the string will be greater than the weight of the ball.  

9.57. THINK:  Determine the banking angle for a plane performing uniform circular motion. The radius is 7.00 
miles ( 41.12654 10⋅ meters), the speed is 360. mph (160.93 m/s), the height is 42.00 10 ft⋅  ( 6096 meters) 
and the plane length is 275 ft (83.82 meters). 
SKETCH:   

 
RESEARCH: Suppose F is the lift force, which makes an angle, ,θ  with the vertical as shown in the sketch. 
Also, suppose the weight of the plane is mg. Now, cosF θ  balances the weight of the plane when the plane 
is banked with the horizontal and sinF θ  provides the necessary centripetal force for the circular motion. 
Therefore, 

2

sin   and  cos .mvF F mg
r

θ θ= =  

SIMPLIFY: Dividing the two equations gives 
2 2

1tan   tan .v v
rg rg

θ θ −  
= ⇒ =  

 
 

CALCULATE: 
( )

( )( )
2

1
4 2 m

160.93 m/s
tan 13.189

1.12654 10 9.81 m/s
θ −

 
 = = °
 ⋅ 

 

 ROUND:  Rounding to three significant figures, the result is an angle of approximately 13.2°.  
DOUBLE-CHECK:  Based on the given values, the result is reasonable.  

9.58. THINK:  Determine the tension on the string attaching a cylinder (m = 20.0 g) to the center of a turntable 
as the angular velocity increases up to 60.0 rpm. The coefficient of static friction is s 0.800µ = and the 
distance between the center of the turntable and the cylinder of l = 80.0 cm.  
SKETCH:   

 
RESEARCH: As the turntable speeds up from the rest, the static friction force provides the centripetal 
force and no tension is built into the string for a while. The corresponding free body diagram for the 
cylinder under these conditions is presented. (Since the turntable speeds up very slowly, the tangential 
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static friction force that acts on the cylinder from the turntable and keeps it moving with the turntable is 
important physically, but negligible in magnitude). 

 
At a critical value, 1 ,ω  of the angular velocity, the static friction force reaches its maximum value, so 

f s g becomesF mµ=  
2

2 s
1 s 1  .

gmv m mr g
r r

µ
ω µ ω= ⇒ ==  

Once the angular velocity exceeds 1 ,ω  static friction alone is not enough to provide the required 
centripetal force, and a tension is built into the string. The corresponding free body diagram is presented. 

 
SIMPLIFY: The tension in the string when the angular velocity of the turntable is 

2
2  rad 1 min60.0 rpm 2.00

rev 60 sec
 rad/sπ πω   

= =  
  

 is calculated from the centripetal force at this velocity, 

2
c2 2 ,  F m rω=  and the tension is given by ( )2 2

c2 f 2 s 2 s .T r mg m rF m gF µω ω µ= = − = −−  

CALCULATE:  ( ) ( ) ( ) ( )( )2 20.0200 kg 2.00  rad/s 0.800 m 0.800 9.81 m/s 0.475 NT π = − =  
 

ROUND:  To three significant figures, 0.475 N.T =  
DOUBLE-CHECK: This is a reasonable tension for the small system described.  

9.59. THINK: A speedway turn has a radius, R, and is banked at an angle of θ above the horizontal.  This 
problem is a special case of Solved Problem 9.4, and the results of that solved problem will be used to 
obtain a solution to this problem. Determine: 
(a)  The optimal speed to take the turn when there is little friction present. 
(b)  The maximum and minimum speeds at which to take the turn if there is now a coefficient of static 
friction, s .µ  
(c)  The value for parts (a) and (b) if 45.0 0.70400. m,  , 0 and .sR θ µ= ° ==  
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SKETCH:   

 
RESEARCH:  It was found in Solved Problem 9.4 that the maximum speed a car can go through the 
banked curve is given by 

max

(sin cos )
.

cos sin
s

s

Rg
v

θ µ θ
θ µ θ

+
=

−
 

 SIMPLIFY:   

(a)  For the case of zero friction the case above approaches the limit of zero friction

sin
tan .

cos
Rg

v Rg
θ

θ
θ

= =  

(b) For the maximum speed we can use the formula already quoted above. The minimum speed that the 
car can travel through the curve is given by reversing the direction of the friction force.  In this case the 
friction force points up the bank, because it needs to prevent the car from sliding down.  Reversing the 

sign of the friction force leads to min

(sin cos )
.

cos sin
s

s

Rg
v

θ µ θ
θ µ θ

−
=

+
 

CALCULATE:  
(c)  For the results from part (a):  

2
zero friction (400. m)(9.81 m/s )tan45.0 62.64184 m/s.v = ° =  

For the results from part (b), the minimum speed is: 
2

min
(400. m)(9.81 m/s )(sin45.0 0.700cos45.0 ) 26.31484 m/s.

cos45.0 0.700sin45.0
v ° − °

= =
° + °

 

and the maximum speed is:  
2

max
(400. m)(9.81 m/s )(sin45.0 0.700cos45.0 ) 149.1174 m/s.

cos45.0 0.700sin45.0
v ° + °

= =
° − °

 

ROUND:   
(a)  Not applicable. 
(b)  Not applicable. 
(c)  zero friction 62.6 m/s,v = min 26.3 m/sv =  and max 14 s.9 m/v =  
DOUBLE-CHECK: The results are reasonable considering that the friction-free speed should be within 
the minimum and maximum speed. The values for the given parameters are consistent with experiment.    
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9.60. THINK: A Ferris wheel has a radius of 9.00 m, and a period of revolution of T = 12.0 s. Let’s start with 
part (a) and solve it all the way. 
SKETCH:  

 
RESEARCH: The constant speed of the riders can be determined by the equation for the speed,   v = 
distance/time, where the distance is calculated from the circumference of the path.  

SIMPLIFY:  2d r
T T

v π
==  

CALCULATE:  
( )π

==
2 9.00 m

4.712 m/s
12.0 s

v  

ROUND:  Since the input values are given to two significant figures, the result for the linear speed is: 
4.7 m/s.v =  

DOUBLE-CHECK: For part (b) and part (c), realize that there is an essential difference between a Ferris 
wheel and a loop in a roller coaster:  the speed of the Ferris wheel is gentle enough so that the riders do not 
get lifted out of their seats at the top. However, we need to check that the speed is actually sufficiently 
small so that this does not happen. In Solved Problem 9.1 we found that the minimum speed to experience 

weightlessness (i.e. zero normal force from the seat) at the top of the loop is 0Nv Rg= = . For the given 
value of  R this speed works out to 9.4 m/s.  Since our result is below this value, it is at least possible that a 
Ferris wheel could exist, which uses the values given here. Note that the centripetal acceleration from the 
speed use here is:  

2 2
2(4.71 m/s)

2.47 m/s 0.25 .
9 mc

v
a g

R
= = = =  

With the above information from our double-check we can solve parts (b) and (c): 
(b)  At the bottom of the ride the normal force has to balance gravity and in addition provide the 
centripetal force of 0.25 mg. The free-body diagram is as follows: 

 
The normal force at the bottom of the path is thus: 0.25 1.25 .N mg mg mg= + =  
(c)  At the top of the Ferris wheel gravity points in the direction of the centripetal force. The free-body 
diagram at the top is therefore: 

 
The normal force is in this case: 0.25 0.75 .N mg mg mg= − =  
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Note the essential difference in parts (b) and (c): in part (b) the magnitude of the vector for the normal 
force is greater than that of the gravitational force, and in part (c) it is smaller.  

9.61. THINK:  The radius of the Ferris wheel is r = 9.00 m and its period is T= 12.0 s. Use these values to 
calculate .ω  ω∆  and θ∆  are known when stopping at a uniform rate, which is sufficient to determine .α  
Also, the time it takes to stop, ,t∆  can be determined and with this, the tangential acceleration, t ,a  can be 
determined. 
SKETCH:   

 
RESEARCH:  

(a)  ω π
=

2 r ad  
T

 

(b)  θ ω α= ∆ + ∆∆ 2
i

1 ,
2

t t  αω∆ = ∆t  

(c)  α=ta r  
SIMPLIFY:   

(a)  ω π
=

2
T

 

(b)  θ ω α= ∆ + ∆∆ 21
2i t t  and 

ωω ω
α α α

ωω − −∆
∆ = = = =f i i

f,  since 0.t  

ω ω ω ω ω ω
θ ω α

α α α θα
α

α
  ∆ +  

− −
⇒ = = − + = −     ∆ 

⇒ =
2 2 2 2 2

2
1
2 2

   
2 2

i i i i i i
i  

(c)  α=ta r  
CALCULATE:  

(a)  πω = =
2 rad 0.5236 rad/s
12.0 s

  

(b)  
( )

( )
α

π
−

= = −
2

20.5236 rad/s
0.08727 rad/s

2 / 2  rad
 

(c)  ( )( )= − = −2 2
t 0.08727 rad/s 9.00 m 0.785 m/sa  

ROUND:  The given values have three significant figures, so the results should be rounded accordingly. 
(a)  ω = 0.524 rad/s  
(b)  α = − 20.0873 rad/s  
(c)  = − 2

t 0.785 m/sa  
DOUBLE-CHECK: These numbers are reasonable for a Ferris wheel. Note that the radius is only required 
for part (c). As expected, the value for the tangential acceleration is small compared to the gravitational 
acceleration g. 

9.62. THINK:  Determine the linear speed, given the blade’s rotation speed and its diameter. To help determine 
the constant (negative) acceleration, it is given that it takes a time interval of 3.00 s for the blade to stop.  
The known values are ω = 3400. rpm, d = 53.0 cm. 
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SKETCH:   

 

RESEARCH: π
=

 2 rad1 rpm
60 s

 

(a)  ω ω= =
1
2

v r d  

(b)  α = =
∆

−∆
∆

f iw w

t
w

t
 

SIMPLIFY:  It is not necessary to simplify.  
CALCULATE:  

(a)  π  =   
  

  = 
 

23400.  rad/s
60

0.530 m 94.35 m/s
2

v  

(b)  ω πω  = = = = 
 

∆
20,  3400.  rad/s 356 rad/s an 3d 
60

 s, sof i t α −
= = − 2356 rad/s 118.7 rad/s

3.00 s
.  

ROUND:  The results should be rounded to three significant figures. 
(a)  = 94.3 m/sv  
(b)  α = − 2119 rad/s       
DOUBLE-CHECK: For lawn mower blades, these are reasonable values. 

9.63. THINK:   
(a)  If the distance traveled can be determined, then the number of revolutions the tires made can be 
determined, since the diameter of the tires is known. 
(b)  The linear speed of the tires and the diameter of the tires are known, so the angular speed can be 
determined. The known variables are i f0,  22.0 m/s,  9.00 s, 58.0 cm.v tv d= = ∆ = =  Use 

rad rad 1 rev   1 .
s s 2

rev1 2
s s

π
π

== ⇒  

SKETCH:   

 
 

RESEARCH: The circumference of a circle is given by 2 .C r dπ π= =  The displacement at constant 

acceleration is 2
i

1
2

x v t a t∆ + ∆∆ = , where .v rω=   

 SIMPLIFY:   

(a)  2
i

1 ,0  
2

xv a t∆ = ∆= ⇒  21 1  
2 2

v va x t v t
t t

∆ ∆
= ⇒ ∆ = ∆ = ∆ ∆

∆ ∆
 

Let N = number of revolutions and the displacement is given by displacement
revolutio

.
n

Nx  
∆ =  

 
The 

displacement per revolution is simply the circumference, C, so  
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1 
2

1 .
2

N N
C d d
x v tx C v t

π π
∆ ∆ ∆

∆ = ⇒ ∆
 

= = = 


∆


 

(b)  2
/ 2

v v v
r d d

ω = = =  

CALCULATE:  

(a)  
( )( )

( )
22.0 m/s 9.00 s

54.33 revolutions
2 0.58 m

N
π

= =  

(b)  
( ) 75.86 rad/

2 22.0 m/s
75.86

0
s  rev/s

.58 
12.07 rev/s

2m
ω

π
= == =  

ROUND:  The results should be rounded to three significant figures. 
(a)  54.3 revolutionsN =  
(b)  12.1rev/sω =   
DOUBLE-CHECK:  For the given values, these results are reasonable. 

9.64. THINK:  First, determine the number of revolutions gear A undergoes while slowing down. From this, 
determine the total arc-length of gear A. Gear B must have the same arc-length, from which the number of 
rotations undergone by gear B can be determined. The following values are given: i,A 120. rpm,ω =  

f,A 60.0 rpm,ω =  3.00 s,t∆ =  A 55.0 cm,r =  B 30.0 cm,r =  A 1.00 kg,m =  B 0.500 kgm =  and 

A f,A i,A 60.0 rpm.ω ω ω∆ = − = −  Use the conversion factor  r21 ad .
6

rpm
0 s

π
=  

SKETCH:   

 
RESEARCH:  The arc-length is given by .s rθ=  

 

The angular displacement is 2
i

1
2

t tθ αω ∆∆ +=  The angular acceleration is .
t
ωα ∆

=
∆

 

SIMPLIFY:  The arc-length of gear A is given by 2
A A A i, AA A

1 .
2

s r r t tθ ω α 
= ∆ = ∆ + 

 
 

A A
A A A i,A 2

  
t

s r t
t

ω ω
α ω

∆ ∆ ∆ 
= ⇒ = ∆ + ∆  

 

Gear B has the same arc-length, A B .s s=  The angular displacement of gear B is B B B ,rs θ= ∆  so 

B A
B

B B

s s
r r

θ∆ = =  (since A Bs s= ). 

The number of rotations, n, of gear B is B

2
,n

π
θ∆

=  so A A
i,A A

B B

1
2 2

1
2

s r
n

r r
t tω

π
ω

π
∆ = =  


+ ∆


∆  

A
i,A A

B

1
2

1
2

t
r

n
r

ω ω
π

∆ + ∆ =  
 

  



Bauer/Westfall: University Physics, 2E 
 

460 
 

CALCULATE:  ( )

( )

1 11 0.550 m 2 2120.  s 1 60. s 3.00 s
2 0.300 m 60 60

1 0.550 m 9.00 0.5504 3.0

0  

0 8.250
2 0.300 m 2 0.3

2

00

n π π
π

π π
π

− −
       

=   
 

+ − 


     
        
   

= − = =     
   


 

ROUND:  Rounding the result to three significant figures gives n = 8.25 rotations. 
DOUBLE-CHECK:  There is an alternate solution. The average angular speed of A during the slowing 
down is ( )120 60 / 2 rpm 90 rpm.+ =  In 3 s, A undergoes ( )90 3/60 4.5=  rotations. Since B has a smaller 
radius, it undergoes a proportionally greater number of rotations. The proportionality is the ratio of the 
radii: 

0.55 m
4.5 8.25,

0.30 m
n

 
= =  

 
 as before.  

9.65. THINK:  The angular acceleration is constant, so the uniform angular acceleration equations can be used 
directly. The known quantities are fi 10.0 rev/s, 0 and 10.0 min.tω ω= = ∆ =  
SKETCH:   

 

RESEARCH:  2
i

1,    
2

t t
t

θω ωα α∆
= ∆ +

∆
∆ =  

SIMPLIFY:  Simplification is not necessary. 

CALCULATE:  
( )
( )

2 2 210.0 rev/s 20  rad/s  rad/s 0.1047 rad/s
600 3010.0 min min

2  rad/rev
60 s /

π πα
π−

= = − = − = −  

( )( ) ( )( ) ( )( )

( )( ) ( )

22

22 4 4 4

110.0 rev/s 10.0 min min rad/s 10.0 min min
2 30

     600 s  rad/s 600 s 3.77  rad 1.885  rad 1

2  rad/rev 60 s / 60 s /

20  rad/s 1 .885  rad
60

0 10 10

ππ

π

θ

π ⋅ ⋅

 ∆ = −  
 

= − = ⋅ − =
 

ROUND: Rounding each result to three significant figures gives 20.105 rad/sα = −  and 
4101.88  rad.θ∆ = ⋅   

DOUBLE-CHECK:  The average angular speed is  

( )0 10.0 rev/s 5 r 2ev/s 5  /s
2

rad .π+
= =  

The displacement during this time interval for the average speed is avg tθ ω∆ = ∆  

( )( )600 s rad/s10π= 41.885 1 d0  ra ,= ⋅  as above. The results are consistent and reasonable. 

9.66. THINK:  The force of static friction between the penny and the phonograph disk provides the centripetal 
force to keep the penny moving in a circle.  
SKETCH:   
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RESEARCH:  The maximum force of static friction between the penny and the photograph disk 
is   fs = µsmg .  The centripetal force required to keep the penny moving in a circle is    Fc =mrω 2 .  Frequency 
is related to angular frequency by    ω = 2π f .  

SIMPLIFY:  
   
mrω 2 = µsmg  Þ  µs =

ω 2r
g

 Þ  µs =
2π f( )2 r

g
.  

CALCULATE:  
   
f = 33 rev

min
min
60 s

= 0.5500 s-1 ,  r =
12 in

2
2.54 cm

in
1 m

100 cm
= 0.1524 m,  

  
µs =

2π 0.5500 s-1( )é
ëê

ù
ûú
2

0.1524 m( )
9.81 m/s2 = 0.1855.  

ROUND:  Rounding the result to two significant figures gives   µs = 0.19.  
DOUBLE-CHECK:  The results are reasonable for the given values. 

9.67. THINK:  The acceleration is uniform during the given time interval. The average angular speed during 
this time interval can be determined and from this, the angular displacement can be determined.  
SKETCH:   

 

RESEARCH:  f i
avg avg,  

2
t

ω ω
θω ω

+
= ∆ = ∆  

SIMPLIFY:  Simplification is not necessary. 

CALCULATE:  i
233.33 rpm 33.33 3.491 rad/s

60 s
rpm ,πω  = =  


=


 f 0ω =  

( )13.491  s rad 26.18 rad15.0 s
2

θ − ∆ =  =
 

 

number of rotations = 4.167
2

θ
π

=
∆  

ROUND:  Rounding the result to three significant figures gives the number of rotations to be 4.17 
rotations. 
DOUBLE-CHECK:  These are reasonable results for a turntable. 

9.68. THINK:  Given the radius (2.0 cm) and rotation speed (250 rpm), the linear and angular speeds and 
acceleration can be determined. 
SKETCH:   

 

RESEARCH: π ω ωω α= = = = 
 

22rpm , rad/s ,     ,  0
60

v r a r  

SIMPLIFY:  Simplification is not necessary. 

CALCULATE:  πω  =  
 

=
22  rad/s 26.18 rad/s,
6

0.
0

5  ( )( )ω= = =26.18 0.0200  m/s 0.5236 m/sv r  
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( ) ( )ω α== = =22 2 226.18 0.020  m/s  m/13.71 ,s  0a r  

ROUND: Rounding the results to  three significant figures gives ω = =26.2 rad/s, 0.524 m/s,v  
= 214 m/s ,a  and α = 0.  

DOUBLE-CHECK:  The rotation speed is constant, so 0α = . The other values are likewise reasonable. 

9.69. THINK:  The angular acceleration of the Earth is zero. The linear acceleration is simply the centripetal 
acceleration. 111 AU or 1.50 10  m r r= = ⋅  and 2  rad / year.ω π=  
SKETCH:   

 
RESEARCH:  2 7,   1 yr 3.16 10  sra ω == ⋅  
SIMPLIFY:  Simplification is not necessary. 

CALCULATE:  ( )11
2

3
7

22 1.50 10  m 5.93 10  m/s
3.16 10  s

a π − 
= ⋅ = ⋅ ⋅ 

 

ROUND:  Keeping three significant figures, 3 25.93 10  m/s .a −= ⋅  
DOUBLE-CHECK:  The linear acceleration is rather small because the distance to the Sun is so great.  

9.70. THINK:  From the given data, the ratio of the angular accelerations of Mars and Earth can be determined. 
SKETCH:   

 

RESEARCH:  day yr
2 2,   
1 day 1 y

rad a
r

 r dπ πω ω= =  

SIMPLIFY: M E My Ey
 rad  rad  ra2 2 2 2,   , ,   

24.6 hr 24 hr 687 Earth-days 365 Earth-d
d  rad

ays
π π π πω ω ω ω= = = =  

CALCULATE:    
 

ωM

ωE

=
24.0 hr

24.6
= 0.9756,  

ωMy

ωEy

=
365
687

= 0.5319  

ROUND:  Rounding the results to three significant figures gives 
 

ωM

ωE

= 0.976 and 
ωMy

ωEy

= 0.532.  

DOUBLE-CHECK:  The angular speed of Mars’ orbit is 0.532 that of Earth. The latter is reasonable given 
that Mars is further from the Sun than Earth, as we will learn in Chapter 12. 

9.71. THINK:  Parts (a) and (b) can be solved using the constant angular acceleration equations. For part (c), 
calculate the angular displacement and, from this, compute the total arc-length, which is equal to the 
distance traveled.  
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SKETCH:   

 
RESEARCH:   
(a)  v rω=  

(b)  21,   
2i t t

t
θα ωω α∆ =

∆
= ∆ + ∆

∆
 

(c)  ( )2 total re,   vs.s r θ πθ ∆ == ∆  
SIMPLIFY:   

(a)  i
i

v
r

ω =  

(b)  i
f i i0 ,

v
r

ωω ω ω∆ = = −− = −  it
ωω

α α
∆

∆ = = −  

2 2 2 2 2
2

2 2
1
2 2 2

i i i i i i
i it tθ ω

ω
ω α

α α
ω ω ω ω ωα

θα α
α

α
− − − −   ∆ + ∆ = + = + = − ⇒    ∆  

=


∆ =  

(c)  s r θ= ∆  
CALCULATE:   

(a)  135.8 m/s 65.09 s
0.550 miω −= =  

(b)  
( )

( )( )

21
2 

40.2

65.09 s
8.387 s

2 2
α

π

−
−

−
= −=  

(c)  ( ) ( )( )40.0 2.550 m 2 138.92 ms π= =  

ROUND:  Rounding the results to three significant figures: 
(a)  165.1 siω −=  

(b)  28.39 sα −−=  
(c)  139 ms =  
DOUBLE-CHECK:  For the parameters given, these are reasonable results. 

9.72. THINK:  Everything in the problem rotates at constant angular speed. The two wheels have radii of 

m 2.00 cmr = and f 3.00 cmr =  and rotate at the same linear speed. 
SKETCH:   

 
RESEARCH:  v rω=  
SIMPLIFY:  fm m m b bf f b,   ,   v r v r v rω ω ω= = =  
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The wheels are attached by a belt, so m m
m m mf f f f

f

    .
rv v r r

r
ω

ω ω ω= ⇒ = ⇒ =  The blades are attached to 

wheel F, so f b f
m m

b b
f

b  .
rv r r

r
ω

ω ω ω= ⇒ = =  

CALCULATE:  ( )( )b
1 21200 0.02 m 0.15 m 12.57 m/s

0.03 m 60 s
v π  

=  
  

=  

ROUND:  Rounding the result to three significant figures gives b 12.6 m/s.v =  

DOUBLE-CHECK:  From m
b

f

m br r
v

r
ω

= , it can be seen that bv  grows with m ,ω  m ,r  b ,r  and bv decreases 

as fr  grows. All these relations are reasonable. 

9.73. THINK:  The net force due to gravity (down) and normal force from the hill (upward) equals the 
centripetal force determined by the car’s speed and the path’s radius of curvature. The force the car exerts 
on the hill is equal and opposite to the force of the hill on the car. 
SKETCH:   

 

RESEARCH:  gF mg= acts downward, and let N be the upward force of the hill on the car. The net force, 

netF , which is the centripetal force 
2

c
vF m
r

= , acts downward. 

SIMPLIFY:  Taking upward force as positive and downward force as negative, 
 

− = − = − = − = − ⇒ = − 
 

2

g c

2

net
v vF N F N mg F m N m g
r r

 

CALCULATE:  ( ) ( ) 
 = − − =
 
 

2
2 60.0 m/s

1000. kg 9.81 m/s 80.270 N
370. m

N  

ROUND:  To three significant figures, = 80.3 N.N  
DOUBLE-CHECK:  The equation confirms what we know from observation, namely that if v is large 
enough, then the normal force will go to zero and the car will lose contact with the ground.  

9.74. THINK:  A free body diagram will show all the forces acting on the plane. The net force is horizontal, 
directed towards the center of the radius of curvature. The speed is v = 4800 km/h and the turning radius 
is r = 290 km. The banking angle, ,θ  must be determined. 
SKETCH:   
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RESEARCH:  lnet net,   F ma F w F= = +
  

 

 

SIMPLIFY:  
2

net ,  vF ma m w mg
r

= = =  

l
l lcos 0  cos   ,

cosyF mg F F
F g

mg
m

θ θ
θ

= ⇒ = ⇒ == −∑  
2 2

l
l sin

n
 

si
 x

vF F m
r

F v
m r

θ
θ

= == ⇒∑  

Equating the two above equations gives 
2 2 2

1   tan   tan .
cos sin

g
r g

v v v
r gr

θ θ
θ θ

−  
= ⇒ = ⇒ =  

 
 

CALCULATE:  
3

3104800 km/h 4800 1.333 10
3600

 m
 s

 m/s,v = = = ⋅
 
 
 

 5290 2.9  m km 10r ⋅= =  

( )
( )( )

23
1

2 5

1.333 10
tan 32.00

9.81 m/s 2.9 1

 m/s

 0 m
θ −

⋅
= = °

⋅
 

ROUND:  The speed is given to  three significant figures, so the result should be 32.0 .θ = °  
DOUBLE-CHECK:  A banking angle of 32° is reasonable for the SR-71. 

9.75. THINK:  From the linear speed and the radius, the centripetal acceleration can be determined. With the 
pilots’ mass, the centripetal force can also be determined. The pilot’s apparent weight is the combined 
effect of gravitational and centripetal accelerations. 
SKETCH:   

 
RESEARCH:   

(a)  
2 2

c c,  v mva F
r r

= =  

(b)  
2 2

c g,  ,  mv mvF F mg w mg
r r

= = = +  

SIMPLIFY:  Simplification is not necessary. 
CALCULATE:   

(a)  
( ) ( )( )

2

2 2 3
c c

500. m/s
62.50 m/s ,     80.0 kg 62.50 m/s 5.00  N

4000. m
10ca F ma = = ⋅= = =  

(b)  ( )( )⋅= + =3 25.00  N 80.0 kg10 9.81 m/s 5784.8 Nw  

ROUND:  Round the results to three significant figures: 
(a)  2

c 62.5 m/sa =  and 3
c 5.00  N10F ⋅=  

(b)  5780 Nw =  
DOUBLE-CHECK:  These are all reasonable values. 

9.76. THINK:  The net force on the ball is the centripetal force. Gravity and tension sum to produce this force. 
m = 1.00 kg, r = 1.00 m and v = 10.0 m/s. At the top of the circle, gravity and tension both point down. At 
the bottom of the circle, gravity still points down, but the tension points up. 
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SKETCH:   

 

RESEARCH:  
2

net
mvF

r
=  

(a)  netF T w= +  
(b)  netF T w= −  
SIMPLIFY:   

(a)  
2

net
mvT F w mg

r
= − = −  

(b)  
2

net
mvT F w mg

r
= + = +   

CALCULATE:  
( )( )22 1.00 kg 10.0 m/s

100. N,
1.00 m

mv
r

= =  ( )( )21.00 kg 9.81 m/s 9.81 Nmg = =  

(a)  100. N 9.81 N 90.19 NT = − =  
(b)  100. N 9.81 N 109.8 NT = + =  
(c) The tension in the string is greatest at the bottom of the circle. As the ball moves away from the 
bottom, the tension decreases to its minimum value at the top of the circle. It then increases until the ball 
again reaches the bottom. 
ROUND:  Round the results to three significant figures. 
(a)  T = 90.2 N  
(b)  T = 110. N  
DOUBLE-CHECK:  If you are swinging the ball with a high speed like in this problem, the weight 
becomes almost negligible, and thus we should expect that the tensions at the bottom and top become 
almost identical. The tension is still highest at the bottom, as would be reasonably expected. 

9.77. THINK: The car start slipping at the point where the magnitude of the total acceleration exceeds the 
maximum acceleration that can be provided by the friction force. The total acceleration of the car is 
composed of contributions from the centripetal and the tangential acceleration, which have to be added as 
vectors. Given here are R = 36.0 m, 2

t 3.30 m/s ,a =  i 0v =  and 0.950.µ =  
SKETCH:   

 
RESEARCH: The magnitude of the total acceleration is given by the tangential and radial acceleration, 

2 2
t ca a a= + . The centripetal acceleration is 2

c /a v R= .  Since the car accelerates at constant linear 

acceleration starting from rest, the speed as a function of time is tv a t= . The maximum force of friction is 
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given by .f mgµ=  So the maximum acceleration due to friction is fa gµ= . The distance traveled by then 

is 2
t

1 .
2

d a t=  

SIMPLIFY:  Slippage occurs when fa a= ; so 2 2
f t ca g a a aµ= = = +  

2 2 2 2 2 2 2 2 2 2 2
t c t t t( / ) ( / )g a a a v R a a t Rµ⇒ = + = + = +   2 2 2 2 2

t t/t R g a aµ⇒ = −  

µ −
⇒ = =

2 2 2
2 t

t
t

1
1 2
2

R g a
d a t

a
 

CALCULATE: 
−

= =
2 2 2 2 2

2

1 (36.0 m) 0.950 (9.81 m/s ) (3.30 m/s )2 47.5401 m
(3.30 m/s )

d  

ROUND:  Rounding to three significant figures gives = 47.5 m.d  
DOUBLE-CHECK:  d  is proportional to R. This makes sense because a larger R implies less curvature 
and thus less centripetal force. d  is also inversely proportional to t ,a  which also makes sense since a 
smaller tangential acceleration implies a greater distance traveled before the maximum speed is attained. 

9.78. THINK:  The pendulum experiences a vertical force due to gravity and a horizontal centripetal force. 
These forces are balanced by the tension in the pendulum string. r = 6.0 m and 0.020 rev/s.ω =  
SKETCH:   

 

RESEARCH:  θ =
2

net sin ,mvF
r

 θ =net cos ,F mg  ω= ,v r  π=1 rev/s 2  rad/s  

SIMPLIFY:  
θ

=
2

net ,
sin

F v
m r

 
θ

=net

cos
F g
m

 

Equating the equations, ω ω ωθ θ
θ θ

−  
= ⇒ = = = ⇒ =   

 

2 2 2 2 2 2
1tan tan .

sin cos g
gv v r r rg

r rg rg g
 

CALCULATE:  
( )( ) ( )π

θ
−

−
 
 = = ° 
 
 

21
1

2

0.0200 2 s 6.00 m
tan 0.5533

9.81 m/s
 

ROUND:  Rounding to three significant figures, θ = °.0.553  
DOUBLE-CHECK:  Such a small deviation is reasonable, given that the rotation is so slow. 

9.79. THINK:  Use the relationship between angular and centripetal acceleration. The given values are 

s 2.75 m,r =  c 6.00 m,r =  i 0,ω =  f 0.600 rev/sω =  and 8.00 s.t∆ =   
SKETCH:   
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RESEARCH:   

(a)  =
t
ωα ∆

∆
 

(b)  
2

s
c

s

,
v

a
r

=   s s sv rω=  

(c)  c t ,a a a= +
  

  t sa rα=  
SIMPLIFY:   
(a) Simplification is not necessary. 
(b)  2

c s sa rω=  

(c)  2 2
c t ,a a a= +   t

c

tan
a
a

θ
 

=  
 

 

CALCULATE:   

(a) 
( ) 20.600 2  rad/s

0.4712 rad/s
8.00 s

π
α = =  

(b) At 8.00 s, s 0.600 rev/s,ω =  so ( )( ) ( )21 2
c 0.600 2  s 2.75 m 39.08 m/sa π −= =  and 20.4712 rad/s .α =  

(c)  ( ) ( ) ( )2 2 22 2 239.08 m/s 0.4712 s 2.75 m 39.10 m/sa −= + =  
( )( )2

1
2

0.4712 s 2.75 m
tan 1.899

39.08 m/s
θ

−

−= = °  

If the centripetal acceleration is along the positive x axis, then the direction of the total acceleration is 
1.90°  along the horizontal (rounded to three significant figures). 
ROUND:  Values are given to three significant figures, so the results should be rounded accordingly. 
(a)  20.471 rad/sα =  
(b)  2

c 39.1 m/sa =  and 20.471 rad/s .α =  

(c)  239.1 m/sa =  at 1.90θ = °.  
DOUBLE-CHECK:  The total acceleration is quite close to the centripetal acceleration, since the 
tangential acceleration and the angular acceleration are both quite small. 

9.80. THINK:  The forces acting on the ornament are the tension on the string and the force of gravity. The net 
force is the centripetal force acting towards the center of the track. The centripetal force is close to the car’s 
friction with the ground. c 10.0 kN,m g =  20.0θ = °  and 30.0 .φ = °  fF  is the frictional force acting on the 
car. 
SKETCH:   

 

RESEARCH:  ( ) 0cos ,T m gθ φ+ =   ( )
2

0sin ,vT m
r

θ φ+ =   
2

c f c
vF F m
r

= =  

SIMPLIFY:  
( )0 cos

gT
m θ φ

=
+

 

 
( )

2

0 sin
T v
m r θ φ

=
+
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Equating the equations above gives 
( ) ( ) ( ) ( )

2 2 2

  tan   tan .
cos sin

g v v v g
rg rr

θ φ θ φ
θ φ θ φ

= ⇒ + = ⇒ = +
+ +

 

The force of friction then becomes ( )
2

f c c tan .vF m m g
r

θ φ= = +  

CALCULATE:  ( ) ( )3 4
f 10.0 10  N tan 20.0 30.0 1.192 10  NF = ⋅ ° + ° = ⋅  

ROUND:  Rounding to three significant figures gives 4
f 1.19 10  N.F = ⋅  

DOUBLE-CHECK:  This is a reasonable value for a car of this weight. 

9.81. THINK:  Both gravity and tension act on the passenger. The net force is the centripetal force acting 
towards the center. The given values are as follows: 30.0θ = °,  m = 65.0 kg, L = 3.20 m and 3.00 m.R0 =   
SKETCH:   

 

RESEARCH:  cos ,T wθ =  w = mg,  
2

sin ,mvT
r

θ =   sinr R L θ0= +  

SIMPLIFY:  2 sin ,rTv
m

θ
=   

cos cos
mgwT

θ θ
= =  

(a)  2 sin tan   tan
cos
mgrv rg v rg

m
θ θ θ

θ
 

= = ⇒ = 
 

 

(b)  
2

or .
cos sin
mg mvT T

r
  

θ θ
= =  

CALCULATE:   

(a)  ( )( )( )23.00 m 3.20sin30.0  m 9.81 m/s tan30.0 5.104 m/sv = + ° ° =  

(b)  
( )( )265.0 kg 9.81 m/s

736.3 N
cos30.0

T = =
°

 

ROUND:  All values are given to three significant figures, so the results should be rounded accordingly. 
(a)  v = 5.10 m/s 
(b)  T = 736 N 
DOUBLE-CHECK:  Note that the speed increases if the main disk, ,R0  increases, or the length of the 
cable, L, increases, as it should. 
 

Multi-Version Exercises 

9.82. THINK:  The only values given in this problem are the radius of the sphere and the coefficient of static 
friction between the motorcycle and the sphere. The motorcycle will stay on the surface as long as the 
vertical force exerted by the force of friction is at least as much as the weight of the motorcycle.  The 
friction force is proportional to the normal force exerted by the wall of the dome, which is given by the 
centripetal force. Combine these to solve for the minimum velocity. 
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 SKETCH: 

        

 RESEARCH:  The centripetal force required to keep the motorcycle moving in a circle is 
2

c
mvF

R
= . The 

friction force is f sF Nµ= , and it must support the weight of the motorcycle, s o fF mg≥ .  
 SIMPLIFY: Since the normal force equals the centripetal force in this case, substitute cF  for N in the 

equation f sF Nµ= to get 
2

f s c s
mvF F

R
µ µ= = . Combine this with the fact that the frictional force must be 

enough to support the weight of the motorcycle, so 
2

f s
mvmg F

R
µ≤ = . Finally, solve the inequality for the 

velocity (keep in mind that the letters represent positive values): 

  

2

2

2

s

s
s s

s

s

mv mg
R

R mv R mg
m R m

Rg
v

Rg
v

µ

µ
µ µ

µ

µ

≥ ⇒

⋅ ≥ ⋅ ⇒

≥

≥

 

 CALCULATE:  The radius of the sphere is 12.61 m, and the coefficient of static friction is 0.4601. The 
gravitational acceleration near the surface of the earth is about 9.81 m/s2, so the speed must be: 

212.61 m 9.81 m/s
0.4601

16.3970579 m/s

s

Rg
v

v

v

µ
≥

⋅
≥

≥

 

 ROUND: Since the measured values are all given to four significant figures, the final answer will also have 
four figures. The minimum velocity is 16.40 m/s.  
DOUBLE-CHECK: In this case, the motorcycle is traveling at 16.40 m/s, or about 59 kilometers per hour, 
which is a reasonable speed based on how fast motorcycles can go. It needs to travel 12.61(2π) = 79.23 
meters to go all the way around the sphere, so it makes one revolution every 4.83 seconds, or between 12 
and 13 revolutions per minute. These values all seem reasonable based on past experience with 
motorcycles. 

9.83. 
( )( )

( )

2

s 22

13.75 m 9.81 m/s
0.4662

17.01 m/s
Rg
v

µ = = =  

9.84. ( )( )22
s

2

0.4741 15.11
11.03 m

9.81 m/s
v

R
g

µ
= = =  
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9.85. THINK:  The speed of a point on the tip of the propeller can be calculated from the angular speed and the 
length of the propeller blade. The angular speed of the propeller can be calculated from the frequency. 
Find the maximum length of the propeller blade such that the angular speed at the tip of the propeller 
blade is less than the indicated speed of sound.  

 SKETCH: A view, looking towards the airplane from the front, is shown.   

      
 RESEARCH:  The linear velocity should be less than the speed of sound soundv v≤ . The magnitude of the 

linear velocity v is equal to the product of the radius of rotation r  and the angular speed ω: v = rω. The 
angular speed is related to the rotation frequency by 2 fω π= . The length of the propeller blade is twice 
the radius of the propeller (d = 2r). Finally, note that the rotation frequency is given in revolutions per 
minute and the speed of sound is given in meters per second, so a conversion factor of 60 seconds / minute 
will be needed.  

 SIMPLIFY: Use the equation for the linear speed (v = rω) and the equation for the rotation frequency to 
get 2v f rπ= ⋅ . Use this in the inequality soundv v≤  to find that sound2 f r vπ ⋅ ≤ . Solve this for the length of 

the propeller blade r (note that ω is a positiv e number of revolutions per minute) to get sound

2
v

r
fπ

≤ . The 

maximum length of the propeller blade is two times the largest possible value of sound2
v

d r
fπ

= = .  

 CALCULATE:  The angular frequency f is given in the problem as 2403 rpm and the speed of sound is 

343.0 m/s. The maximum length of the propeller blade is thus 343.0 m/s 60 s/min 2.726099649 m
2403 rev/min

d
π

⋅
= =

⋅
.  

 ROUND: The measured values from the problem (the angular frequency and speed of sound) are given to 
four significant figures, so the final answer should also have four significant figures. The maximum length 
of a propeller blade is 2.726 m.  
DOUBLE-CHECK: For those familiar with propeller-driven aircraft, a total propeller length of about 2.7 
m seems reasonable. Working backwards, if the propeller blade is 2.726 m and the linear speed at the tip of 

the propeller is 343.0 m/s, then the angular speed is 343.0 m/s
1.363 m

v
r

ω = = . The angular frequency is then 

343.0 m/s 40.05 rev/sec
2 2 1.363 m

f ω
π π

= = =
⋅

. Since there are 60 seconds in a minute, this agrees with the value of 

2403 rev/min given in the problem, and the calculations were correct. 
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9.86. 
( )

343.0 m/s 1 60 s41.98 2519 rpm
2.601 m s min

vf
dπ π

  = = = =  
  

 

9.87. THINK:  The linear acceleration can be computed from the change in the speed of the car and the time 
required to accelerate, both of which are given in the problem. The angular acceleration can be calculated 
from the linear acceleration and the radius of the tires. Since the car’s acceleration is constant and it starts 
at rest, the motion of the car occurs in only one direction, which can be taken to be the +x direction, and 
the time that the car starts moving can be taken as time zero. 

 SKETCH: The car starts at rest, so the constant acceleration and velocity are in the same direction. 

      

 RESEARCH:  The constant linear acceleration is the change in speed per unit time va
t

∆
=

∆
. The 

relationship between linear acceleration a and angular acceleration α is given by a rα= , where r is the 
radius of the rotating object. 

 SIMPLIFY: Since there are two expressions for the linear acceleration, va
t

∆
=

∆
 and a rα= , they must be 

equal to one another: vr
t

α ∆
=

∆
. Solve for the angular acceleration α to get v

r t
α ∆

=
∆

. The car starts at rest 

at time zero, the final velocity is equal to Δ v and the total time is equal to Δ t, giving .v
rt

α =  

 CALCULATE:  After 3.945 seconds, the car’s final speed is 29.13 m/s. The rear wheels have a radius of 
46.65 cm, or 46.65·10−2 m. The angular acceleration is then  

2

2

29.13 m/s
46.65 10  m 3.945 s
15.82857539 s

α −

−

=
⋅ ⋅

=
 

 ROUND: The time in seconds, radius of the tires, and speed of the car are all given to four significant 
figures, so the final answer should also have four figures. The angular acceleration of the car is 15.83 s−2. 
DOUBLE-CHECK: First note that the units (per second per second) are correct for angular acceleration. 
Working backwards, if the sports car accelerates with an angular acceleration of 15.83 s−2 for 3.945 
seconds, it will have a final angular speed of (15.83·3.945) s−1. With a tire radius of 46.65 cm, this means 
that the car’s final speed will be (46.65·15.83·3.945) cm/s, or 29.13 m/s (when rounded to four significant 
figures), which agrees with the problem statement. This confirms that the first set of calculations was 
correct.  

9.88. ( )( )( )20.4895 m 14.99 s 3.997 s 29.33 m/sv r tα −= = =  

9.89. 
( )( )2

29.53 m/s 0.4120 m 41.20 cm
17.71 s 4.047 s

vr
tα −

= = = =  

9.90. THINK:  The frequency and radius of the flywheel can be used to calculate the speed at the edge of the 
flywheel. The centripetal acceleration can be calculated from the linear speed and the radius of the 
flywheel. 
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 SKETCH:  

       

 RESEARCH:  The centripetal acceleration at the edge of the flywheel is 
2

c
va
r

= , where v is the linear 

speed at the edge of the flywheel and r is the flywheel’s radius. The linear speed v is equal to the angular 
speed times the radius of the flywheel ( v rω= ), and the angular speed ω is related to the frequency f by the 
equation 2 fω π= . The numbers are given in centimeters and revolutions per minute, so conversion 
factors of 1 m

100 cm  and 1 min
60sec  may be needed. 

 SIMPLIFY: First, find the equation for the velocity in terms of the angular frequency to get 
( )2v r r fω π= = . Use this in the equation for centripetal acceleration to find 

( ) ( )
22

22
4c

rfva r f
r r

π
π= = = . 

 CALCULATE:  The radius is 27.01 cm, or 0.2701 m and the frequency of the flywheel is  

4949 rpm. So the angular acceleration is ( ) 2

2 10rev cm
min min

4 27.01 cm 4949 2.611675581 10  π⋅ ⋅ = ⋅ . Converting to 

more familiar units, this becomes 

( )2

210 4 2cm 1 m 1min
100 cm 60secmin

2.611675581 10 7.254654393 10  m/s⋅ ⋅ ⋅ = ⋅ . 

 ROUND: The radius and frequency of the flywheel both have four significant figures, so the final answer 
should also have four figures. The centripetal acceleration at a point on the edge of the flywheel is 7.255·104 
m/s2. 
DOUBLE-CHECK: Work backwards to find the frequency from the centripetal acceleration and the 

radius of the flywheel. The linear velocity is cv a r= , the angular speed is / ca r
v r

r
ω = = , and the 

frequency 
2 2

ca r
f

r
ω
π π

= = . The radius of the flywheel is 0.2701 m and the centripetal acceleration is 

7.255·104 m/s2, so the frequency is 

4 2

1 60sec
1min

1

2
7.255 10  m/s 0.2701 m

2 0.2701 m
82.4853 s

4949.117882  min

ca r
f

rπ

π
−

−

=

⋅ ⋅
=

⋅
= ⋅

=

 

After rounding to four significant figures, this agrees with the frequency given in the problem of 4949 rpm 
(revolutions per minute). 

9.91. ( )2
c 2a r fπ=  

 

4 2
c1 1 8.629 10  m/s 1 60 s83.18 4991 rpm

2 2 0.3159 m s min
a

f
rπ π

⋅   = = = =  
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Concept Checks 

10.1. c  10.2. c  10.3. a 10.4. f  10.5. b  10.6. c  10.7. c  10.8. b  10.9. b  10.10 b 
 
Multiple-Choice Questions 

10.1. b  10.2. c  10.3. b  10.4. d  10.5. c  10.6. c  10.7. c  10.8. d  10.9. b  10.10. e 10.11. b  10.12. a  10.13. c  10.14. b  
10.15. c  10.16. b  10.17. a  10.18. b  10.19. c  10.20. b 
 
Conceptual Questions 

10.21. Rotational kinetic energy is given by = 21
rot 2

K cMv  

The total kinetic energy for an object rolling without slipping is given by: 
21

total trans rot 2

rot

total

(1 )  with 2 / 5  for a sphere

2 / 5 2

1 1 2 / 5 7

K K K Mv c c

K c

K c

= + = + = ⇒

= = =
+ +

 

10.22. Assume negligible drag and no slipping. The object that reaches the bottom of the incline first will be the 
one with the lowest moment of inertia (that is, with the least resistance to rotation). The moments of 

inertia for the given objects are as follows: Thin ring: 2
r ;I MR=  Solid sphere: 2

ss
2 ;
5

I MR=  Hollow sphere: 

2
hs

2 ;
3

I MR=  Homogeneous disk: 2
d

1 .
2

I MR=  Therefore, the order of the moments of inertia from 

smallest to greatest (assuming equal mass and radius) is ss d hs r,  ,   and . I I I I Therefore, the order of finish 
of the objects in the race is: First: solid sphere; Second: homogeneous disk; Third: hollow sphere; Last: thin 
ring. 

10.23. The net translational and rotational forces on both the solid sphere and the thin ring are, respectively, 

net staticsinF ma mg fθ −= =  and static ,τ f r Iα= =  where the angular acceleration is / .α a r=  Since the 

moment of inertia for the solid sphere is ( )22 / 5,I mr=  the force of static friction is given by 

static 2 / 5.f ma=   Substitute this expression into the net force equation to solve for the acceleration of the 

solid sphere:  ( )ss 5 sin / 7.a g θ=   The moment of inertia for the thin ring is 2 .I mr=  Therefore, the force 

of static friction in this case is given by static .f ma=  Substitute this expression into the net force equation to 

solve for the acceleration of the thin ring:  ( )r sin / 2.a g θ=  Therefore, the ratio of the acceleration is: 

( )
( )

r

ss

sin / 2 7 .
5 sin / 7 10
ga

a g
θ
θ

= =  

10.24. The net translational and rotational forces on the solid sphere on the incline are, respectively, 

net staticsinF ma mg fθ −= =  and static ,τ f r Iα= =  where the angular acceleration is / .α a r=  Since the 

moment of inertia for the solid sphere is ( )22 / 5I mr= , the force of static friction is given by 

static 2 / 5.f ma=   Substituting this expression into the net force equation to solve for the acceleration gives 

( )5 sin / 7.a g θ=  Thus,  ( )static 2 / 5 2 sin / 7.f ma mg θ= =   The limiting friction corresponding to a 

coefficient of static friction, s ,μ  is { }static s normal smax cos .fμ F μ mg θ= =  For rolling without slipping to take 
place, it is required that 
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{ }static static s

2 sin
max cos .

7
mg

f fμ mg
θ

θ≤ ⇒ ≤  Therefore, 1s s7 7
tan tan .

2 2
μ μ

θ θ −  
≤ ⇒ ≤  

 
 

Thus, the maximum angle for which the sphere will roll without slipping is 1 s7
tan .

2
μ

θ −  
=  

 
 

10.25. The “sharp horizontal blow” means that a force of magnitude F acts horizontally on the object along the 
arrow in the figure. With this force, we have to apply Newton’s Second Law for linear motion ( =F Ma ) 
and Newton’s Second Law for rotation (τ α= I ).  According to the problem text, the round object rolls 
without slipping. In Section 10.3 we have learned that this condition implies ω=v R  and α=a R . The 
force exerts a torque of magnitude τ = Fh  (= magnitude of force times perpendicular distance) around the 
center of mass of the round object.  Using all these relationships we can write 

( ) ( )τ α α α= = = = = .Fh Ma h M R h MRh I  
Simplifying and rearranging, we get 

= ⇒ =2    .I hI MRh
RMR

 

 
As a double-check, let’s calculate h  assuming a uniform solid sphere 

 
 
 = = =

2

2 2

2
25 .
5

R MR
RIh R

MR MR
 

So, for example, you might strike a cue ball with a horizontal cue a distance of 2R/5 above the center of the 
cue ball to start it rolling without sliding. 

10.26. (a)  Since the path of the projectile is not a straight line about the origin (which would give an angular 
momentum of zero), the angular momentum can be determined by considering that the velocity of the 
projectile changes continuously along its path because of the change in the vertical component of velocity 
under the gravitational pull. If θ  is the angle of projection, the horizontal component of velocity, 

0 0cosv θ ,  remains unchanged throughout the path and at the maximum height, the vertical component of 
velocity is zero and it has only the horizontal 0 0cos .v θ  The ‘lever arm’ for angular momentum at the 

maximum height is the maximum height itself, ( )2 2
0 0sin / 2v gθ  so that the angular momentum is  

( )( )θ θ
=

2 2
0 0 0 0cos sin

.
2

mv v
L

g
 

Since the angular momentum is conserved in this case, the angular momentum above is the same 
throughout the path. 
(b) Since the angular momentum does not change throughout the path, the rate of change is zero. 
(c) The rate of change of this angular momentum is the net torque about the origin, which also equals  
zero, that is: 

( )0
0.

ddLτ
dt dt

= = =  
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10.27. For each object we convert the initial potential energy into kinetic energy at the bottom of the ramp. 

Sphere:  2 21
0 sphere 0 sphere2

(1 ) 2 / (1 )Mgh Mv c v gh c= + ⇒ = +  

Cylinder: 2 21
cylinder cylinder2

(1 ) 2 / (1 )Mgh Mv c v gh c= + ⇒ = +  

If the speed is to be the same in both cases, this means: 

cylinder 0 sphere

cylinder

0 0 0 0

sphere

2 / (1 ) 2 / (1 )

1 1 1 / 2 3 / 2 15

1 1 2 / 5 7 / 5 14

gh c gh c

c
h h h h h

c

+ = + ⇒

+ +
= = = =

+ +

 

10.28. To open a door (that is, to rotate a door about the hinges), a force must be applied so as to produce a 
torque about the hinges. Recall that torque is defined as .τ r F= ×



 

 The magnitude of this torque is then 
given by sin ,τ rF θ=  where θ  is the angle between the force applied at a point p, and the vector 
connecting the point p to the axis of rotation (to the axis of the hinges in this case). Therefore, torque is 
maximal when the applied force is perpendicular to the vector .r



 That is, when the force is perpendicular 
to the plane of the door. Similarly, torque is minimal (i.e. zero) when the applied force is parallel to r



 (i.e. 
along the plane of the door). 

10.29. Angular momentum is conserved, however, energy is not conserved; her muscles must provide an 
additional centripetal acceleration to her hands to pull them inwards. That force times the displacement is 
equal to the work that she does in pulling them in. Since she is doing work on the system, energy is not 
conserved. 

10.30. Consider a particle of constant mass, m, which starts at position, 0r , moving with velocity, v, and having 
no forces acting on it. By Newton’s first law of motion, the absence of forces acting on it means that it 
must continue to move in a straight line at the same speed, so its equation of motion is given by 0 .r r vt= +  
Its linear momentum is mv, so its angular momentum relative to the origin is given by 

( )0 .L r mv r vt mv= × = + ×


    

 The cross product is distributive over addition, so this can be rewritten as 

( ) ( )0 .L r mv vt mv= × + ×


   

 Clearly the vectors vt


and mv


 are parallel, since they are both in the direction of 

v


, and the cross product of two parallel vectors is zero. So, the last term in the sum above comes to zero, 
and the expression can be rewritten as 0 .L r mv= ×



 

 Now 0r


, m and v


 are all constants in this system, so it 

follows that L


is also constant, as required by the law of conservation of angular momentum. Therefore, 
whether or not the particle has angular momentum is dependent on the 0r  vector, given non-zero velocity. 
If the path of the particle crosses the origin, 0 0r = and the particle has no angular momentum relative to 
the origin. In every other case, the particle will have constant, non-zero angular momentum relative to the 
origin.  

10.31. Work is given by cosW Fd θ=  for linear motion, and by Wτ θ=  for angular motion, where the torque, 
τ , is applied through a revolution of .θ  
(a)  Gravity points downward, therefore, ( )gravity sin .W mg s θ=  

(b) The normal force acts perpendicular to the displacement. Therefore, = ⇒ =normalcos90 0 0.W  
(c) The frictional force considered in this problem is that of static friction since the cylinder is rolling 
without slipping. The direction of the static friction is opposite to that of the motion. Work done by the 
frictional force consists of two parts; one is the contribution by translational motion and the other is the 
contribution by rotational motion.  
(i)  Translational motion: ( )( ) ( )translation s scos 180W f s f s= ° = −  

(ii)  Rotational motion: ( )rotational s sWτ Rf f sθ θ= = =  
Therefore, the total contribution to work done by the friction is zero. 
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10.32. Mechanical energy is conserved for the rolling motion without slipping. Setting the top as the vertical 
origin, the mechanical energy at the top is t 0 0.E K U= + = +  The mechanical energy at the bottom is  

( ) ( ) ( )2
b translational rotational 1 / 2 ,E K U c mv mgh = + + = + + −  where h is the vertical height. By 

conservation of energy, t bE E=  implies  ( ) θ θ= + = = ⇒ =
4 42 / 1 , sin sin ,

3 3
gh hv gh c v sg

s
 where c is 

1/2 for the cylindrical object. Using 2 2
f i 2 ,v v as− =  the acceleration is  

( ) ( )
( )

2 / 1 2 sin / 1 sin .
2 2 1

gh c gs c
a g

s S c
θ θ+ +

= = =
+

 

For a cylinder, c = 1/2. Therefore, 2 sin .
3

a g θ=  

10.33. Prove that the pivot point about which the torque is calculated is arbitrary. First, consider the definition of 
torque, .τ r F= ×



 

 Therefore, for each of the applied forces, 1F


 and 2 1 ,F F= −
 

 their contributions to the 

torque are given by = ×


 

1 1 1τ r F  and = ×


 

2 2 2 ,τ r F  where 1r


 and 2r


 are the respective distances to the pivot 
point. The net torque is calculated from the algebraic sum of the torque contributions, that is, 

= + = × + × = × − ×
   

      

net 1 2 1 1 2 2 1 1 2 1.τ τ τ r F r F r F r F  Since the cross product is distributive, 

( )= − ×


  

net 1 2 1τ r r F = ×



1.d F  Therefore, the net torque produced by a couple depends only on the distance 
between the forces, and is independent of the actual pivot point about which the contributing torques are 
calculated or the actual points where the two forces are applied. 

10.34. It is actually the act of pulling in her arms that makes the figure skater increase her angular velocity. Since 
angular momentum is conserved ( )1 1 2 2 constantIω I ω= = , by reducing her rotational inertia (by means of 
reducing the distance between her arms and hands to the axis of rotation), the figure skater increases her 
angular velocity. 

10.35. By momentarily turning the handlebars to the left, the contact point of the motorcycle with the ground 
moves to the left of the center of gravity of the motorcycle so that the motorcycle leans to the right.  Now 
the motorcycle can be turned to the right and the rider can lean to the right.  The initial left turn creates a 
torque that is directed upwards, which deflects the angular momentum of the front tire upward and causes 
the motorcycle to lean to the right.  In addition, as the motorcycle leans to the right, a forward pointing 
torque is induced that tends to straighten out the front wheel, preventing over-steering and oscillations.  
At low speeds, these effects are not noticeable, but at high speeds they must be considered.  

10.36. The Earth-Moon system, to a good approximation, conserves its angular momentum (though the Sun also 
causes tides on the Earth). Thus, if the Earth loses angular momentum, the moon must gain it. If there 
were 400 days in a year in the Devonian period, the day was about 10% shorter, meaning the angular 
velocity of the Earth was about 10% greater. Since the rotational inertia of the Earth is virtually unchanged, 
this means that the rotational angular momentum of the Earth was then about 10% greater, and 
correspondingly the orbital angular momentum of the Moon was about 10% less. 

10.37. In this problem, the key is that the monkey is trying to reach the bananas by climbing the rope. Since the 
monkey has the same mass as the bananas, if he didn’t try to climb the rope, both the net torque and total 
angular momentum on the pulley would be zero. Take counterclockwise to be positive just for aesthetics. 
(a)  Consider the extra tension provided by the monkey on the rope by climbing (i.e. by pulling on the 
rope). Average out the force caused by the monkeys pulling with a constant force downwards, ,T



 on the 

monkey side. Therefore, the net torque on the pulley axis is provided by this extra force, ,T


 as 

( )net monkey banana .τ F T F R TR = + − = 
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(b)  Since there is now a non-zero net torque on the pulley, there is a non-zero total angular momentum 
given by 

net   .dLτ L τdt
dt

= ⇒ = ∫






 

Using the results of part (a), the above expression can be rewritten as .L TRdt TRt= =∫
 



 Recall that the 

extra “climbing” force was taken to be constant. In reality, the monkey’s pulling will be time dependent 
and this will affect the final form of the time dependent angular momentum. 
 

Exercises 

10.38. THINK:  Determine the energy of a solid cylinder as it rolls on a horizontal surface. The mass of the 
cylinder is  5.00 kgM =  and the translational velocity of the cylinder’s center of mass is  30.0 m/s.v =  
SKETCH: 

 
RESEARCH:  Since the motion occurs on a horizontal surface, consider only the total kinetic energy of the 

cylinder, 2 2
T

1 1 .
2 2

K Mv Iω= +  2I cMR=  and, for a solid cylinder,  1/ 2c =  as in Table 10.1. For rolling 

without slipping, vωR= . 

SIMPLIFY: ( ) ( )
2

2 2 2
T 2

1 1 1 1
2 2 2

vK Mv cMR Mv c
R

 
= + = + 

 
  

CALCULATE:  ( )( ) ( )2

T
1 5.00 kg 30.0 m/s 1 1/ 2 3375 J
2

K = + =  

ROUND:  Both given values have three significant figures, so the result is rounded to 3
T 3.38 10  J.K = ⋅  

DOUBLE-CHECK:  The calculated result has Joules as units, which are units of energy. This means that 
the calculated result is plausible. 

10.39. THINK:  The children can be treated as point particles on the edge of a circle and placed so they are all the 
same distance, R, from the center. Using the conversion, 1 kg = 2.205 lbs, the three masses are 

1 27.2 kg,m =  2 20.4 kgm =  and 3 36.3 kg.m =  Using the conversion 1 m = 3.281 ft, the distance is 
 3.657 m.R =  

SKETCH:   

 
RESEARCH:  The moment of inertia for point particles is given by 2 .i i

i

I m r=∑  

SIMPLIFY:  ( ) 2
1 2 3I m m m R= + +  

CALCULATE:  ( )( )2 227.2 kg 20.4 kg 36.3 kg 3.66 m 1123.9 kg mI = + + =  
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ROUND:  3 21.12 10  kg mI = ⋅  
DOUBLE-CHECK:  Since the children are located on the edge of the merry-go-round, a large value for I is 
expected.  

10.40. THINK:  Since the pen with a length of l = 24 cm rotates at a constant rate, rotational kinetic energy 
remains constant so only the translational energy is converted to potential energy at a height of h = 1.2 m 
from release. Use kinematics to determine the time it takes the pen to reach the top and make 1.8 
revolutions, in order to determine .ω  
SKETCH:   

 
RESEARCH:  The pen has a translational kinetic energy of 2

T / 2,K mv=  where iv  is the velocity at 

release. The potential energy at the top is given by U = mgh and 2
i / 2.mgh mv=  The rotational kinetic 

energy is given by 2
R / 2,K Iω=  where 2 /12.I ml=  The initial velocity of the pen is determined from 

2 2
f i 2v v gh= −  and the time of flight is given by ( )f i / .t v v g= − −  Angular velocity is given by 

( )2 1.8 rev / .ω π t=  

SIMPLIFY:  The final velocity is zero, so the expression reduces to 2
i i0 2   2 .v gh v gh= − ⇒ =  The 

expression for the time of flight also reduces to  
( )i0 2 .

v ht
g g
−

= − =   

The angular velocity is given by 3.6 3.6  rad/s.
22 /
gπω π
hh g

= = The ratio is then: 

( )222
2

2R
2

2T

1 11 3.6
2 12 2 12.962 .

1 48
2

gmlπIωK h lπ
K mgh hmv

 
 
 = = =  

CALCULATE:  
2

2R

T

12.96 0.24 m 0.1066
48 1.2 m

K
π

K
 

= = 
 

 

ROUND:  To three significant figures: = 0.107.R

T

K
K

 

DOUBLE-CHECK:  Remember that this is not a case of rolling without slipping.  Here the translational 
motion is independent of the rotational motion, and so the ratio between translational and rotational 
kinetic energies could have almost any value.  A simple double-check is thus not easily possible. 

10.41. THINK:  With no friction and no slipping, each object with mass, m = 1.00 kg, conserves energy. Since 
each object starts at the same height, they all have the same potential energy and hence kinetic energy after 
they travel a distance l = 3.00 m at an incline of 35.0 .θ = °  Each ball has a radius of r = 0.100 m. 
Whichever object has the highest velocity at the bottom should reach the bottom first, and vice versa. 
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SKETCH:   

 
RESEARCH:  The constant c is related to the geometry of a figure. The values of c for different objects can 
be found in Table 10.1. The solid sphere has 1 2 / 5,c =  the hollow sphere has 2 2 / 3c =  and the ice cube has 

3 0.c =  Since energy is conserved, the velocity of each object at the bottom is ( )2 / 1 .v gh c= +  The 

incline shows that sin .h l θ=   

SIMPLIFY:  1 2 3
1 2 3

2 sin 2 sin 2 sin
,  ,  

1 1 1
glθ gl θ gl θ

v v v
c c c

= = =
+ + +

 

CALCULATE:  1 2 3
10 6sin ,  sin ,  2 sin
7 5

v glθ v gl θ v gl θ= = =  

(a)  Since the velocity is inversely proportional to c, the object with a smaller c will have a larger velocity 
than that of one with a greater c, and will reach the end first. Since 1 2 ,c c<  the solid sphere reaches the 
bottom first. 
(b)  Since 3 1 ,c c<  and the velocity is inversely proportional to c, the ice cube travels faster than the solid 
ball at the base of the incline. 

(c)  ( )( ) ( )2
1

10 9.81 m/s 3.00 m sin 35.0 4.911 m/s
7

v = ° =  

ROUND:  Parts (a) and (b) do not need to be rounded. (c) 1 4.91 m/sv =  
DOUBLE-CHECK:  It is reasonable that the ice cube reaches the bottom first since it does not have to 
contribute any energy to rotational motion. As expected, the velocity of the sphere is less than it would be 

if it were in freefall ( )2 8 m/s .v gl= =  

10.42. THINK:  With no friction and no slipping, the object of mass, m, and radius, r, will conserve energy. 
Therefore, the potential energy of the ball at height, h, should equal the potential energy at the top of the 
loop of radius, R, plus translational and rotational kinetic energy. For the ball to complete the loop, the 
minimum velocity required is the one where the normal force of the loop on the ball is 0 N, so that the 
centripetal force is solely the force of gravity on the ball. 
SKETCH:   

 
 
RESEARCH:  The only force on the ball at the top of the loop is 2

g 1 / .F mg mv R= =  The initial potential 

energy is given by iU mgh=  and the final potential energy is given by ( )f 2 .U mg R=  The kinetic energy at 

the top of the loop is ( ) 2
11 / 2,K c mv= +  where the c value for a solid sphere is 2/5. 
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SIMPLIFY:  The conservation of energy is given by  

( ) 2
i f 1

1  2 1 .
2

U U K mgh mgR c mv= + ⇒ = + +  

From the forces,
2

21
1  .

mv
mg v gR

R
= ⇒ =  Therefore, 1 7 7 272 2 .

2 5 10 10
mgh mgR mgR h R R   

= + ⇒ = + =   
   

 

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  The height is greater than 2 ,R  which neglecting rotational energy would be the 
minimum energy needed, so the result is reasonable. 

10.43. THINK:  The change in energy should be solely that of the change in rotational kinetic energy. Assume 
the pulsar is a uniform solid sphere with 302 10  kgm ≈ ⋅  and 12 km.R =  Initially, the pulsar rotates at 

60  rad/sω π=  and has a period, T  which is increased by 510  s−  after 1 y.  We calculate the power 
emitted by the pulsar by taking the time derivative of the rotational kinetic energy.  The power output of 
the Sun is 26

Sun 4 10  W.P = ⋅  
SKETCH:   

 
RESEARCH:  The kinetic energy is given by 2 / 2,K Iω=  so 

Crab .dK dP I
dt dt

ωω= − = −  

 The angular velocity is given by 2 / ,Tω π=  so 

 
2

22

2 2 .
22

d dT dT dT
dt T dt dt dt
ω π π ω

ππ
ω

= − = − = −
 
 
 

 

 The moment of inertia of a sphere is 

 22 .
5

I mR=  

SIMPLIFY:  Combining our equations gives us 
2 2 3

2
Crab

2 .
5 2 5

dT mR dTP mR
dt dt

ω ωω
π π

= =  

CALCULATE: First we calculate the change in the period over one year, 

( )( )( )
5

1310  s 3.17 10 .
365 days 24 hour/day 3600 s/hour

dT
dt

−
−= = ⋅  

The power emitted by the pulsar is 

( )( ) ( ) ( )
2 330 3

13 31
Crab

2 10  kg 12 10  m 60 rad/s
3.17 10 3.89 10  W.

5
dKP
dt

π

π
−

⋅ ⋅
= = ⋅ = ⋅  

So the ratio of the power emitted by the pulsar to the power emitted by the Sun is 
31

4Crab
26

Sun

3.89 10  W 9.73 10 .
4 10  W

P
P

⋅
= = ⋅

⋅
 

ROUND:  5Crab

Sun

1 10 .
P
P

= ⋅  
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DOUBLE-CHECK:  Our result for the ratio of the loss in rotational energy of the Crab Pulsar is close to 
the expected value of 100,000. 

10.44. THINK:  With no friction and no slipping, mechanical energy is conserved. This means that the potential 
energy of the block of mass m = 4.00 kg will be converted into the potential energy of the spring with a 
constant of k = 32.0 N/m, kinetic energy of the block and rotational energy of the pulley with a radius of R 
= 5.00 cm and mass M = 8.00 kg. If the block falls a distance h, then the spring is extended by a distance h 
as well. Consider the lower position of the block in parts (a) and (b) to be at zero potential. In part (a), the 
block falls a distance h = 1.00 m. In part (b), when the block comes to rest, the kinetic energy of the system 
is zero so that the block’s potential energy is converted entirely into spring potential. 

SKETCH:   (a)   (b)   
RESEARCH:  The initial energy of the system is i i .E U mgh= =   

(a)  The final energy is ( )2 2 2
f 0

1 1 1 .
2 2 2

E k x h Iω mv= − + +  

(b) The final energy is ( )2

f / 2.E k x h= −  The moment of inertia of the wheel is 2 / 2.MR  With no 

slipping, .Rω v=  Let 0 0x =  for the spring equilibrium. 
SIMPLIFY:   

(a)  
2

2 2 2
i f 2

1 1 1 1  .
2 2 2 2

vE E mgh kh MR mv
R

  
= ⇒ = + +  

  
 Therefore,  

2

2 2

1
1 1 1 2  .

1 12 4 2
4 2

mgh kh
mgh kh M m v v

M m

− 
− = + ⇒ = 

  +
 

(b)  2
i f

21    
2

mg
E E mgh kh h

k
= ⇒ = ⇒ =  

CALCULATE:   

(a)  
( )( )( ) ( )( )

( ) ( )

22 14.00 kg 9.81 m/s 1.00 m 32.0 N/m 1.00 m
2 2.410 m/s

1 18.00 kg 4.00 kg
4 2

v
−

= =
+

 

(b)  
( )( )22 4.00 kg 9.81 m/s

2.45 m
32.0 N/m

h = =  

ROUND: Three  significant figures:  
(a)  The block has a speed of v = 2.41 m/s after it has fallen 1.00 m. 
(b)  The maximum extension of the spring is h = 2.45 m. 

DOUBLE-CHECK:  For part (a), the speed should be less than it is for free fall ( )2 4.4 m/s ,v gh= =  

which it is. For part (b), the distance is reasonable. 

10.45. THINK:  With no friction and no slipping, the energy of the object of mass, m, and radius, r, is conserved. 
This means that the initial potential energy at height H = 6.00 m is equal to the potential energy at height    
R = 2.50 m, plus its rotational and translational energy. The object has a c value of 0.400. Using 
conservation of energy, the velocity of the object can be determined. Then, using kinematics, the 
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maximum height the object achieves can be determined. Let the subscript i indicate the ball is at the top of 
the ramp, and the subscript f indicate the ball is at the end of the ramp, at the launch point. 
SKETCH:   

 
RESEARCH:  The initial energy of the ball is i i .E U mgH= =  The final energy of the ball is 

( ) 2
f f f  1 / 2 ,E U K E mgR c mv = + ⇒ = + +   where c = 0.400. The kinematics equation for the velocity is 

= + ∆2 2
f i 2 .v v g y  Since the ball is at rest at the top, the equation becomes  
2 22   / 2 .v g y y v g= ∆ ⇒ ∆ =  The maximum height achieved is max .y R h∆ + =  

SIMPLIFY:  ( ) ( ) ( ) ( )2 2 2
i f

21 1  1   1  
2 2 1

g H R
E E mgH mgR c mv mg H R c mv v

c
−

= ⇒ = + + ⇒ − = + ⇒ =
+

 

( )2

max 2 1
H Rvh y R R R

g c
−

= ∆ + = + = +
+

 

CALCULATE:  
( )−

= + =
+max

6.00 m 2.50 m
2.50 m 5.000 m

1 0.400
h  

ROUND:  =max 5.00 mh  
DOUBLE-CHECK:  If the object did not rotate, the mass is expected to reach its original height of 6 m. 
Since the object does rotate, the height it reaches should be less than the original height. 

10.46. THINK:  In both cases, energy should be conserved. In part (a), if the ball of mass, M, and radius, R, 
continues to spin at the same rate, then there is no change in rotational kinetic energy and only the 
translational energy is converted to potential energy. In part (b), there is slipping so both rotational and 
translational kinetic energy are converted to potential energy. The ball has an initial velocity of 3.00 m/s 
and travels a distance, d, up an incline with an angle of 23.0 .θ = °  
SKETCH:   

 
RESEARCH:   
(a) The initial translational kinetic energy is given by 2

T / 2K mv= , the initial rotational energy is given by 

ω= 21
2RK I  , and the final potential energy is given by f .U mgh=  

(b)  The initial kinetic energy is ( ) 21 / 2K c mv= +  and the final potential energy is f .U mgh=  The height 

of the ball is given by the expression sinh d θ,=  and c = 2/5 for a solid sphere. 
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SIMPLIFY:   

(a)  ω θ + ω
θ

= ⇒ + = ⇒ =
2

2 2 2
i f

1 1 1 1  sin   
2 2 2 2 sin

vE E mv I mgd I d
g

 

(b)  ( ) ( )
θ

θ θ
+

= ⇒ + = ⇒ = =
2 2

2
i f

11 7  1 sin   
2 2 sin 10 sin

v c vE E c mv mgd d
g g

 

CALCULATE:   

(a)  
( )

( ) ( )
= =

°

2

2

3.00 m/s
1.174 m

2 9.81 m/s sin 23.0
d  

(b)  
( )

( ) ( )
= =

°

2

2

7 3.00 m/s
1.644 m

10 9.81 m/s sin 23.0
d  

ROUND:   
Rounding to three significant figures: 
(a)  d = 1.17 m 
(b)  d = 1.65 m 
DOUBLE-CHECK:  Since the ball in part (b) does contribute rotational energy to the potential, it is 
expected to go higher up the ramp and hence have a larger value for d. 

10.47. THINK:  The hanging block with a mass of M = 70.0 kg, will cause a tension, T, in the string that will in 
turn produce a torque, ,τ  in the wheel with a mass, m = 30.0 kg, and a radius, R = 40.0 cm. This torque 
will give the wheel an angular acceleration, .α  If there is no slipping, then the angular acceleration of the 
wheel is directly related to the acceleration of the block. 
SKETCH:   

 
RESEARCH:  The balance of forces is given by .T Mg Ma− = −  The torque produced by the tension, T, is 

given by ,τ TR Iα= =  where I of the wheel is 2 / 2.mR  With no slipping, .Rα a=  
SIMPLIFY:  First, determine the tension, ( )  .T T M g a⇒ = −  This expression can be substituted into 
the torque equation to solve for a: 

( ) 21 1 1      .
12 2 2
2

MgaM g a R mR MgR MaR mRa Mg m M a a
R m M

   
− = ⇒ − = ⇒ = + ⇒ =   

    +
 

CALCULATE:  
( )

( )
= =

+

2
2

70.0 kg 9.81 m/s
8.079 m/s

1 30.0 kg 70.0 kg
2

a  
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ROUND:  = 28.08 m/sa  
DOUBLE-CHECK:  Since there is tension acting opposite gravity, the overall acceleration of the hanging 
mass should be less than g. 

10.48. THINK: The torque is simply the cross product of the vectors, ( )ˆ ˆ ˆ4 4 4  mr x y z= + +


 and 

( )ˆ ˆ2 3  N.F x y= +


 
SKETCH:  Not applicable. 
RESEARCH:  τ r F= ×



 

 
SIMPLIFY:  ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆ4 4 4 2 3  N m

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ8 12 8 12 8 12  N m

τ x y z x y

x x x y y x y y z x z y

= + + × +

 = × + × + × + × + × + × 



 

CALCULATE:  ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ8 0 12 8 12 0 8 12  N m 12 8 4  N mτ z z y x x y z = + + − + + + − = − + + 


 

ROUND:  Not applicable. 
DOUBLE-CHECK:  The magnitude of the calculated torque is about 15. As required, this number is 
smaller than (or at most equal to) the product of the magnitudes of the force and the position vectors, 
which is about 25 in this case. 

10.49. THINK:  There are two forces, 1 70.0 NF =  (applied from 0 to 2.00 seconds) and 2 24.0 NF =  (applied 
after 2.00 seconds). These forces are applied at an angle of 37.0θ = °  on the surface of a disk of mass, m = 
14.0 kg, and diameter of d = 30.0 cm (radius, R = 15.0 cm). After 2.00 seconds, the disk moves at a 
constant angular speed, ω.  This means that the sum of the torques is zero, so the torque produced by 
friction is equal and opposite the torque produced by the applied force. Assuming the frictional torque is 
constant, the angular acceleration, ,α  of the disk from 0 to 2.00 seconds can be calculated and ω  can be 
determined. 
SKETCH:   

 

RESEARCH:  The torque that AF  produces is A A sin .τ RF θ=  After t = 2.00 s, when ω  is constant, 

A f0 ,τ τ τ= = −∑  where fτ  is the frictional torque. For t = 0 to t = 2 s, A f net τ τ τ τ= − =∑  and net .τ Iα=  

Starting from rest, .ω αt=  The rotational kinetic energy of the wheel after t = 2.00 s is then 2 / 2,K Iω=  

where 2 / 2.I mR=  
SIMPLIFY:   
(a)  A f A f 2 0  sinτ τ τ τ τ RF θ= − = ⇒ = =∑  

(b)  
( ) ( )1 2 1 2

net A f 1 2
2

sin 2sin
sin sin   

1
2

R F F F F
τ τ τ RF RF Iα α

mRmR

θ θ
θ − θ

− −
= − = = ⇒ = =  

( )1 22sin F F
ω αt t

mR
θ −

= =  

(c)  2 2 21 1
2 4

K Iω mR ω= =  
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CALCULATE:   
(a)  ( )( ) ( )= ° =f 0.150 m 24.0 N sin 37.0 2.167 Nmτ  

(b)  
( )( )( )

( )( )
2sin 37.0 70.0 N 24.0 N 2.00 s

52.73 rad/s
14.0 kg 0.150 m

ω
° −

= =  

(c)  ( )( ) ( )2 21 14.0 kg 0.150 m 52.73 rad/s 218.96 J
4

K = =  

ROUND:   
(a)  f 2.17 Nmτ =  
(b)  52.7 rad/sω =  
(c)  219 JK =  
DOUBLE-CHECK:  Given the initial variables, these results are reasonable. 

10.50. THINK:  When the rod is at an angle of 60.0θ = °  below the horizontal, the force of gravity acting at the 
center of mass of the rod, with mass, m = 2.00 kg, and length, l = 1.00 m, will produce a torque, ,τ  and 
hence an angular acceleration, .α  If the rod has a uniform density, then the center of mass is at the 
geometric center of the rod. 
SKETCH:   

 
RESEARCH:  From geometry it can be shown that 90φθ + = °.  Therefore, 90 90 60 30 .φ θ= ° − = ° − ° = °  

The torque that the force of gravity produces is ( )/ 2 sin ,τ mg l φ Iα= =  where 2 / 3.I ml=  

SIMPLIFY:  2 3 sin1sin   
2 3 2

gφlmgφ ml α α
l

  = ⇒ = 
 

 

CALCULATE:  
( ) ( )

( )

2
2

3 9.81 m/s sin 30.0
7.35 rad/s

2 1.00 m
α

°
= =  

ROUND: To three significant figures: 27.35 rad/sα =  
DOUBLE-CHECK:  The vertical component of the tangential acceleration at the end is given by 

2
v T sin sin 6 m/s ,a a lα θ θ= = ≈  which is less than g. This is expected since the pivot is causing the rod to 

swing and the vertical displacement of the end is slowing down and a smaller acceleration is expected. 

10.51. THINK:  Each object has its own moment of inertia, AI  and B .I  Disk A with a mass, M = 2.00 kg, and a 
radius, R = 25.0 cm, rotates about its center of mass while disk B with a mass, m = 0.200 kg and a radius, r 
= 2.50 cm, rotates a distance, ,d R r= −  away from the axis. This means the parallel axis theorem must be 
used to determine the overall moment of inertia of disk B, B .I ′  The total moment of inertia is the sum of 
the two. If a torque, 0.200 Nm,τ =  is applied then it will cause an angular acceleration, .α  If the disk 
initially rotates at = −2  rad/s,ω π  then kinematics can be used to determine how long it takes to slow 
down. 
 
 
 
 



Chapter 10: Rotation 
 

 487 

SKETCH:   

 

RESEARCH:  The moment of inertia of disk A is 2
A / 2.I MR=  The moment of inertia of disk B is 

2
B / 2.I mr=  Since disk B is displaced by d R r= −  from the axis of rotation, 2

B B ,I I md′ = +  by the parallel 
axis theorem. Therefore, the total moment of inertia is tot A B .I I I ′= +  The torque that is applied produces 

tot ,τ I α=  where ( )f i / .α ω ω t= − ∆  
SIMPLIFY:   

(a)  ( )2

tot A B A B

2 2 2 2 2 21 1 1 32 2
2 2 2 2

I I I I I m R r

MR mr mR mRr mr M m R mr mRr

′= + = + + −

 
= + + − + = + + − 

 

 

(b)  
( )tot i tot i

tot

0Iω Iω
τ I α t

tτ
−

= = ⇒ = −  

CALCULATE:   

(a)  ( ) ( ) ( )( ) ( )( )( )2 2 2
tot

1 32.00 0.200 0.250 0.200 0.0250 2 0.200 0.0250 0.250 0.0726875 kg m
2 2

I  
= + + − = 
 

 

(b)  
( )( )−

= − =
20.0726875 kg m 2  rad/s

2.284 s
0.200 N m

π
t  

ROUND:   
(a)  2 2

tot 7.27 10  kg mI −= ⋅  
(b)  t = 2.28 s 
DOUBLE-CHECK:  Given the small masses and disk sizes, the moment of inertia should be small. Also, 
given the small torque and angular velocity, two seconds to come to a stop is reasonable. 

10.52. THINK:  The stuntman with a mass, m = 50.0 kg, will cause a tension, T, in the rope which produces a 
torque, ,τ on the drum of mass, M = 100. kg and radius, R = 0.500 m. This torque will cause the drum to 
have an angular acceleration, ,α  and if the rope does not slip, then it will be directly related to the 
stuntman’s translational acceleration, a. If the stuntman starts from rest and needs to accelerate to 

 4.00 m/sv =  after dropping a height, 20.0 m,h =  then kinematics can be used to determine the 
acceleration. 
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SKETCH:   

 
RESEARCH:  The sum of the forces yields .T mg ma− = −  The torque produced by the tension is given by 

.τ TR Iα= =  With no slipping, .Rα a=  The velocity of the stuntman after falling a height, h, at an 
acceleration of a is given by 2 2

f i 2 ,v v ah= +  where i 0.v =  Also, if there is no slipping, .v Rω=  The angle 

the barrel makes is given by 2 2
f i 2 .ω ω α θ= + ∆  

SIMPLIFY:   
(a) The tension is given by ( ).T m g a= −  Therefore, the torque is given by ( )τ α= = − = 0 .TR m g a R I  
This implies: 

− = ⇒ = + ⇒ =
+

2
2 2

0 0 2
0

    .
mgRamgR maR I mgR maR I a a

R mR I
 

(b) = + ⇒ =
2

2 0 2   ;
2
vv ah a
h

 From part (a), 
−  = = − 

 

2 2
2

0 1 .
mgR maR g

I mR
a a

 

(c) aα
R

=  

(d) 
2 2

f
2 ,

2 2
ω v

α αR
θ∆ = =  

2

2#revolutions
2 4

v
π παR
θ∆

= =  

CALCULATE:   
(a) No calculation is necessary. 

(b) 
( )
( )

2

24.00 m/s
0.400 m/s ,

2 20.0 m
a = =  ( )( ) ( )2

2 2
2

9.81 m/s
50.0 kg 0.500 m 1 294.0625 kg m

0.400 m/s
I

 
 = − =
 
 

 

(c) 
2

20.400 m/s 0.800 rad/s
0.500 m

α = =  

(d) 
( )

( )( )

2

22

4.00 m/s
#revolutions 6.366

4 0.800 rad/s 0.500 mπ
= =  

ROUND:  
Rounding to thre significant figures:  
(a)  Not applicable. 
(b)  20.400 m/sa =  and 2294 kg m .I =  

(c)  20.800 rad/sα =  
(d)  #revolutions 6.37=  
DOUBLE-CHECK:  Given the large height and the small final velocity, the small accelerations and the few 
rotations of the drum are reasonable. 
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10.53. THINK:  Since the center of mass of the tire with mass, M = 23.5 kg, is at a distance, r = 1.10 m, from the 
axis of rotation, the parallel axis theorem is used to determine the overall moment of inertia of the tire. 
Consider both cases where the tire is a thin hollow cylinder of radius, R = 0.350 m, and a thick hollow 
cylinder with radii, =1 0.300 mR  and =2 0.400 m.R  The torque, 20.0 N m,τ =  the athlete applies will 
cause an angular acceleration, .α  Kinematics can be then be used to determine the linear speed after three 
rotations. 
SKETCH:   

 
RESEARCH:  From the parallel axis theorem, the moment of inertia of a tire is 2

cm .I I Mr= +  For a thin 

hollow cylinder, 2
cmI MR=  and for a thick hollow cylinder, ( )2 2

cm 1 2 / 2.I M R R= +  

The torque is given by .τ Iα=  Then time can be determined from 2 / 2,αtθ∆ =  where θ∆  is three 
rotations or 6  radians.π  Since the tire starts from rest, its final angular velocity is ω αt=  and its 
tangential velocity is .v rω=  
SIMPLIFY:   

(a)  ( ) ( )
2 2

2 2
  ,ττ Iα MR Mr α α

M R r
= = + ⇒ =

+
 

( )( )
throw thro

2 2

w
2

121 2  
2

π M R r
αt t

α τ
θθ

+∆
∆ = ⇒ = =  

(b)  
( )2 2

122 πτv rω rαt r α r
M R r

θ= = = ∆ =
+

 

(c)  

2 2

throw

2 1 212
2

,   

R R
π M r

t
τ

  +
+     =

2 2
2 1 2

12

2

πτv r
R R

M r
=

 +
+ 

 

 

CALCULATE:   

(a)  
( ) ( ) ( )( ) + 
 = =

2

t ow

2

hr

12 23.5 kg 0.350 m 1.10 m
7.683 s

20.0 Nm

π
t  

(b)  ( ) ( )
( ) ( ) ( )( )

= =
+

2 2

12 20.0 Nm
1.10 m 5.39766 m/s

23.5 kg 0.350 m 1.10 m

π
v  

(c)  

( ) ( ) ( ) ( )  +  +
  

  = =

2 2
2

throw

0.300 m 0.400 m
12 23.5 kg 1.10 m

2
7.690 s

20.0 Nm

π

t  
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( ) ( )

( ) ( ) ( ) ( )
= =

 +
 +
 
 

2 2
2

12 20.0 Nm
1.1 m 5.393 m/s

0.300 m 0.400 m
23.5 kg 1.10 m

2

π
v  

ROUND:   
(a)  =throw  7.68 st  
(b)  v = 5.40 m/s 
(c)  =throw  7.69 st and v = 5.39 m/s 
DOUBLE-CHECK:  Given the small change in the two moments of inertia between the thin and thick 
cylinder, virtually identical values in time and velocity are reasonable. 

10.54. THINK:  Due to the symmetry of the barrel, assume the tension, T, in each rope is equal. The barrel with 
mass, M = 100. kg, and radius, R = 50.0 cm, will cause a tension, T, in the ropes that in turn produces a 
torque, ,τ  on the barrel and hence an angular acceleration, .α  If the ropes do not slip, the angular 
acceleration will be directly related to the linear acceleration of the barrel. Once the linear acceleration is 
determined, kinematics can be used to determine the velocity of the barrel after it has fallen a distance, h = 
10.0 m, assuming it starts from rest. 
SKETCH:   

 
RESEARCH:  From the kinematic equations, 2 2

f i 2 ,v v ah= +  where the initial velocity is zero. The sum of 
the forces acting on the barrel is given by 2 .T Mg Ma− = −  The tension in the ropes also cause a torque, 

2 ,τ TR Iα= =  where 2 / 2.I MR=  
SIMPLIFY: Summing the tensions in the ropes gives ( )= −2 .T M g a  The torque this tension produces is  

( ) 21 3 22     .
2 2 3

aτ TR MR g a MR MgR MRa a g
R

 
= = − = ⇒ = ⇒ = 

 
 

The velocity is given by 2 42   .
3

v ah v gh= ⇒ =  The tension in one rope is ( ) / 2 / 6.T M g a Mg= − =  

CALCULATE:  ( )( )24 9.81 m/s 10.0 m 11.437 m/s,
3

v = =  ( )( )21 100. kg 9.81 m/s 163.5 N
6

T = =  

ROUND: Rounding to three significant figures, 11.4 m/sv =  and T = 164 N. 
DOUBLE-CHECK:  If the barrel is in free fall, it would have a velocity of 14 m/s after falling 10 m, so a 
smaller velocity for this result is reasonable. 

10.55. THINK:  The hanging mass, m = 2.00 kg, will cause a tension, T, in the rope. This tension will then 
produce a torque, ,τ  on the wheel with a mass, M = 40.0 kg, a radius, R = 30.0 cm and a c value of 4/9. 
This torque will then give the wheel an angular acceleration, .α  Assuming the rope does not slip, the 
angular acceleration of the wheel will be directly related to the linear acceleration of the hanging mass. 
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SKETCH:   

 
RESEARCH:  With no slipping, the linear acceleration is given by .a Rα=  The tension can be determined 
by ( ),T m g a= −  which in turn produces a torque ,τ TR Iα= =  where the moment of inertia of the wheel 

is 24 / 9.MR  
SIMPLIFY:  To determine the angular acceleration: 

( ) 2 24 4  m
9 9

TR m g a R MRα gR maR MR α= − = ⇒ − =  2 2 m4 m   .
9 4

9

g
gR mRα MR α α

m M R
⇒ = + ⇒ =

 + 
 

 

CALCULATE:  
( )

( ) ( )
= =
 + 
 

2
2

2.00 kg 9.81 m/s
3.3067 rad/s

42.00 kg 40.0 kg 0.300 m
9

α  

ROUND:  = 23.31 rad/sα  
DOUBLE-CHECK:  Given the small hanging mass and the large mass of the wheel, this acceleration is 
reasonable. 

10.56. THINK: As the rod with mass, M = 250.0 g and length, L = 50.0 cm, tips over, the torque, ,τ  caused by the 
force of gravity on the center of mass will change, which means the angular acceleration, ,α  of the rod will 
change with the angle it makes with the vertical.   We can use energy conservation to calculate the angular 
velocity, ,ω  of the rod for any angle.  The linear acceleration of any point on the rod is equal to the sum of 
the tangential acceleration plus the centripetal acceleration. 
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SKETCH: 

 
 RESEARCH:   (a) In part a) of the sketch, we can see that the three forces acting on the rod are the normal 

force exerted by the table, the force of friction between the rod and the surface of the table, and the force of 
gravity. 
(b1) To calculate the speed of the rod at 45.0θ   , we can use energy conservation.  Conservation of 
mechanical energy gives us 0 0 .K U K U    The kinetic energy before the rod begins to fall is zero and 

at angle θ  the kinetic energy is given by the kinetic energy of rotation   21/ 2K Iω  where ω  is the 

angular velocity and   21/ 3I ML .  The potential energy before is  0 / 2U mg L  and the potential 

energy at angle θ  is  / 2 cosU mg L θ  as illustrated in part b) of the sketch. 
(b2) To calculate the vertical acceleration of the moving end of the rod, we need to calculate the tangential 
acceleration and the centripetal acceleration.  The tangential acceleration can be calculated by realizing 
that that the force of gravity exerts a torque on the rod given by  / 2 sinmg Lτ θ assuming the pivot on 

the table at the end of the rod.  The angular acceleration is given by Iτ α  where   21/ 3 .I ML  The 
tangential acceleration can then be calculated from t .a Lα  The centripetal acceleration is given by 

2
ca Lω  where ω  was obtained in part b1).  As shown in part f) of the sketch, the vertical component of 

the tangential acceleration is t sina θ  and the vertical component of the centripetal acceleration is c cos .a θ  
(b3)  To calculate the normal force exerted by the table on the rod, we need to calculate the vertical 
component of the tangential and centripetal acceleration of the center of mass of the rod.  The angular 
acceleration is the same as calculated in part b2) so the tangential acceleration is  t / 2 .a L α  The 

centripetal acceleration is   2
c / 2 .a L ω  The vertical components of the tangential and centripetal 
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acceleration are then t sina θ and c cosa θ  respectively.  The normal force is then given by    N - Mg  Mav ,  
where   av  is the vertical acceleration of the center of mass of the rod. 
(c)  When the rod falls on the table,   θ  90.0  and we have 

   
at 

3
2

g sin90.0
3
2

g .
  

The centripetal acceleration is given by 

    

ac  Lω2  where

ω 
3g
L

1-cos90.0 
3g
L

  Þ   ac  L 3g
L

 3g .
 

 

SIMPLIFY: 
 (b1) We can combine the equations in b1) to obtain 

 
21 cos .

2 2 2
L LI mg mgω θ ðð  

 We can rewrite the previous equation as 

 ( ) ( )ω θ ω θ  = − ⇒ = − 
 

2 2 31 1 1 cos 1 cos .
2 3 2

gLmL mg
L

  

 (b2)  We can combine the equations in (b2) to get the tangential acceleration ta  

 θ θ θ= → = ⇒ =2 t
t

1 1 1 3sin sin sin .
2 3 2 3 2t

aLmg mL g a a g
L

  

 We can then write the vertical component of the acceleration as 

 θ θ θ ω θ= + = − −2 2
v t c

3sin cos sin cos .
2

a a a g L  

 (b3)  We can combine the equations in (b3) to get 

 
( )

θ θ θ= → = ⇒ =2 t t
t

21 1 3sin sin sin .
2 3 / 2 2 3 4

a aLmg mL g a g
L

  We can now write the vertical component of the acceleration as

 
    

av -
3
4

g sin2θ-
L
2
ω2 cosθ .  

 The normal force is 

    
N m g av m g -

3
4

g sin2θ-
L
2
ω2 cosθ

æ
è
ççç

ö
ø
÷÷÷.  

 (c)  The  linear acceleration at   θ  90.0  is 

     
a  ac

2 ac
2  3g 2 

3
2

g
æ
è
ççç

ö
ø
÷÷÷

2

 3g 1-
1
4

 3g 3
4


3 3

2
g .

  CALCULATE:   
(a) Not necessary. 

 (b1)  
  
ω 

3 9.81 m/s2 
0.500 m

1-cos45.0  4.1521 rad/s.  

 (b2) 
   
av -

3
2

9.81 m/s2 sin2 45.0- 0.500 m  4.1521 rad/s 2 cos45.0-13.453 m/s2 .  

 (b3) 
   
N  0.2500 kg  9.81 m/s2 -

3
4

9.81 m/s2 sin2 45.0-
0.500 m

2
4.1521 s-1 2

cos45.0
æ
è
ççç

ö
ø
÷÷÷ 0.77091 N.  

 (c) 
   
a 

3 3
2

9.81 m/s2  25.487 m/s2 .  

ROUND:  Three significant figures: 
(a)  Not necessary 
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(b)     ω  4.15 rad/s, av -13.5 m/s2  and N  0.771 N.  

(c)     a  25.5 m/s2 .  
 DOUBLE-CHECK:  When 0θ ð ,   ω  0 , i.e. the rod is perfectly upright and not rotating, looking at the 

equation for the normal force it can be seen that the normal force is equal to the force of gravity.  The 
values for the accelerations may seem surprising because they are larger than  g .   However, we have to 
remember that the force of friction and the normal force must provide the centripetal force necessary to 
keep the rod rotating around one end.  Note that the assumption that the friction force can provide the 
required centripetal force all the way to   θ  90.0  is unrealistic. 

10.57. THINK:  If we place the ball (blue dot) at the end of the board, it can only be caught by the cup (half 
circle), if the end of the board falls with a vertical component of the acceleration  which is greater (or at 
least equal) to  The cup is to be placed at a distance  away from the end so that it can be vertically 
under the ball and catch it when the board lands on the ground. 
SKETCH:   

    
 
RESEARCH: The board rotates about its lower end and has the same moment of inertia as a rod, 

 The torque equation is Iτ α= , where the torque is given by 1
2sin sinFr mg Lτ ϕ ϕ= = ⋅ ⋅ . The 

angular and tangential acceleration are related to each other via t .a Lα=  The vertical component of the 
tangential acceleration is then (see sketch) v t cosa a θ= . 
Geometrical relations: Since 90 ,θ ϕ= °−  (see sketch), we find that sin cos .ϕ θ=  Also from the sketch, we 
see that the height of the vertical support stick is sin .H L θ=   In addition (dashed circular segment in the 
sketch), we see that cos (1 cos ).d L L Lθ θ= − = −  
SIMPLIFY:   

2 31 1 1 1
t t2 2 3 3 2sin cos cosmgL mgL mL mLa a gτ ϕ θ α θ= = = = ⇒ =  

Inserting this result into v t cosa a θ=  from above, we find 23
v 2 cos .a g θ=  If, as required, v ,a g≥  this 

means 23
2 cosg gθ ≥  or 2

3cos .θ ≥   Since 2 2sin cos 1,θ θ+ =  this implies 1
3sin .θ ≤   So, finally, from 

sinH L θ=  we see 1
3 .H L≤  

CALCULATE:   

(a)  = = =1 1
max 3 3 (1.00 m) 0.57735 m.H L  

(b)  θ= − = − =2
3(1 cos ) (1.00 m)(1 ) 0.1835 m.d L  

ROUND: Rounding to 3 digits leaves us with   
(a)   
(b)   
DOUBLE-CHECK: Clearly, this is a somewhat surprising result.  However, it is also a standard lecture 
demonstration. When you see it you can convince yourself that these calculations for  are correct. 

10.58. THINK:  If the brakes applies an inward radial force, F = 100. N, and the contact has a coefficient of 
friction, k 0.200,μ = then this frictional force, f, will be perpendicular to F and cause a torque, ,τ  on the 
flywheel of mass, M = 120. kg, and radius, R = 80.0 cm. The torque can be used to determine the angular 
acceleration, ,α  of the wheel. Kinematics can then be used to determine the number of revolutions, n, the 
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wheel will make and the time it will take for it to come to rest. The work done by torque should be the 
change in rotational energy, by conservation of energy. The flywheel has an initial angular speed of 500. 
rpm or 50 / 3 rad/s.π  
SKETCH:   

 
RESEARCH:  Similarly to the relation between the normal force and friction, kfμ F= , the friction causes 

a torque, ,τ fR Iα= =  where the moment of inertia of the wheel is 2 / 2.I MR=  Kinematics is used to 

determine the number of revolutions and the time it takes to come to an end, 2 2
f i 2ω ω α θ= − ∆  and 

f i .ω ω αt− = −  The work done by the friction is 2
i / 2.W K Iω= ∆ = −  

SIMPLIFY:  The angular acceleration is given by 
µ µ

α = = =k k

2

2
.

1
2

fR FR F
I MRMR

 Therefore, the total angular 

displacement is given by 
ω

ω ω α θ θ
α

= + ∆ ⇒ ∆ =
2

2 2 0
0 2

2f . The number of revolutions, n, is given by 

ωθ
π πα
∆

=
2

0 .
2 4

   The time to come to rest is ω α= i / .t  The work done is then ω− 2 2
i / 4.MR  

CALCULATE:  

π π   
=      

   

500 revolutions 2 rad 1 min 50 rad / sec
1 min 1revolution 60 sec 3

  

 
( )( )

( )( )
α = = 22 0.200 100. N

0.4167 rad/s ,
120. kg 0.800 m

 
( )π

π
= =

2

2

50 / 3 rad/s
523.60 revolutions

4 0.4167 rad/s
n  

π
= =2

50 / 3 rad/s 125.66 s,
0.4167 rad/s

t  ( )( ) π = − = − 
 

2
21 50120. kg 0.800 m  rad/s 52638 J

4 3
W  

ROUND: To three significant figures: 524 revolutions,n =  126 st =  and 45.26 10 J.W = − ⋅  
DOUBLE-CHECK:  Given the small friction, and hence the small torque, and the fast speed of the wheel, 
it would take a long time to stop, so the results are reasonable. 

10.59. THINK:  Assuming a constant angular acceleration, ,α  and 25 s,t∆ =  regular kinematics can be used to 
determine α  and .θ∆  The total work done by torque, ,τ  should be converted entirely into rotational 

energy. = 225.0 kg mI  and =f 150. rad/s.ω  
SKETCH:   
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RESEARCH:  From kinematics, f iω ω α t− = ∆  and ( )2
/ 2.α tθ∆ = ∆  The torque on the wheel is .τ Iα=  

Since the torque is constant, the work done by it is .Wτ θ= ∆  The kinetic energy of the turbine is 
2 / 2.K Iω=  

SIMPLIFY:   
(a)  f f  /ω α t α ω t= ∆ ⇒ = ∆  
(b)  τ Iα=  

(c)  ( )21
2

α tθ∆ = ∆  

(d)  Wτ θ= ∆  

(e)  2
f

1
2

K Iω=  

CALCULATE:   

(a)  = = 2150. rad/s  6.00 rad/s
25.0 s

α  

(b)  ( )( )= =2 225.0 kg m 6.00 rad/s 150. N mτ  

(c)  ( )( )θ∆ = =
221 6.00 rad/s 25.0 s 1875 rad

2
 

(d)  ( )( )= =150. N m 1875 rad 281,250 JW  

(e)  ( )( )= =
221 25.0 kg m 150. rad/s 281,250 J

2
K  

ROUND:   
(a)  = 26.00 rad/sα  
(b)  =150. N mτ  
(c)  θ∆ =1880 rad  
(d)  = 281 kJW  
(e)  = 281 kJK  
DOUBLE-CHECK:  It is expected that the work and kinetic energy are equal. Since they were each 
determined independently and they are the same value, the procedure must have been correct. 

10.60. THINK:  Since the two masses have an equal mass of m = 6.00 kg, their center of mass will be at the 
geometric center, l/2, which is also the location of the axis of rotation. Initially, l = 1.00 m and then it 
extends to 1.40 m. When the length increases, the moment of inertia also increases. Since there are no 
external torques, conservation of angular momentum can be applied. The masses initially rotate at 

i 5.00 rad/s.ω =  
SKETCH:   

 
RESEARCH:  The angular momentum before and after are i i iL Iω=  and f f f .L Iω=  The moments of 

inertia for before and after are ( )2

i 2 / 2I m l=  and ( )2

f 2 / 2 .I m l′=  The conservation of angular 

momentum is represented by i f .L L=  
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SIMPLIFY:  
2 2

i f i f  2 2
4 4
l lL L mω m ω

  ′
= ⇒ = 

 

2
2 2

i f f i   llω l ω ω ω
l

 ′⇒ = ⇒ =  ′ 
 

CALCULATE:  
2

f
1.00 m 5.00 rad/s 2.551 rad/s
1.40 m

ω  = = 
 

 

ROUND:  To three significant figures: f 2.55 rad/sω =  
DOUBLE-CHECK:  Since the string length and hence the moment of inertia increases, a smaller 
rotational speed is expected, since angular momentum is conserved. 

10.61. THINK:  For the moment of inertia of the Earth, treat it as a solid sphere with mass, 245.977 10  kg,M = ⋅  

and radius, R = 6371 km. The Chinese ( = ⋅ 91.30 10  peoplen  and m = 70.0 kg each) can be treated as a 
point mass of total mass, ,nm  standing on the surface of the Earth and then also at h = 1.00 m above the 
surface. Conservation of angular momentum relates the change in moment of inertia to the change in 
angular frequency, and hence period, of the Earth. 
SKETCH:   

 
RESEARCH:  The Earth’s (solid sphere) moment of inertia is 2

E 2 / 5,I MR=  while the Chinese have a 

moment of inertia of 2
CI nmR=  on the surface of the Earth and ( )2

CI nm R h′ = +  when standing on the 
chair. The angular momentum is .L Iω=  The period of the Earth’s rotation is 1 day or 86,400 s, and is 
related to the angular velocity by 2 / .ω π T=  
SIMPLIFY:   
(a)  The moment of inertia of Earth is 2

E 2 / 5.I MR=  

(b)  The moment of inertia of the Chinese people on Earth is 2
C .I nmR=  

(c)  The moment of inertia of the Chinese people on chairs is ( )2

C 1 .I nm R′ = +  The change in the moment 

of inertia for the Chinese people is ( ) ( )2 2
C C C 2 1 2 1 .I I I nm R R R nm R′∆ = − = + + − = +  

(d)  The conservation of angular momentum states, ( ) ( )E C i CI Iω I ω+ = ∆ ∆  ( ) ( )E C C
i

2 2 .π πI I I
T T

⇒ + = ∆
∆

  

Therefore,  C

E C

IT
T I I

∆∆
=

+
 (fractional change) and C

E C

ΔI
T T

I I
∆ =

+
 (total change). 

CALCULATE:   

(a)  ( )( )= ⋅ = ⋅
224 37 2

E
2 5.977 10  kg 6,371,000 m 9.704 10  kg m
5

I  

(b)  ( )( )( )= ⋅ = ⋅
29 24 2

C 1.30 10 70.0 kg 6,371,000 m 3.694 10  kg mI  

(c)  ( )( ) ( )( )∆ = ⋅ + = ⋅9 18 2
C 1.30 10 70.0 kg 2 6,371,000 m 1.00 m 1.1595 10  kg mI  

(d)  −⋅∆
= = ⋅

⋅ + ⋅

18 2
20

37 2 24 2

1.1595 10  kg m
1.1949 10

9.704 10  kg m 3.694 10  kg m
T

T
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ROUND:   
(a)  37 2

E 9.704 10  kg mI = ⋅  

(b)  = ⋅ 24 23.69 10  kg mCI  

(c)  ∆ = ⋅ 18 21.16 10  kg mCI  

(d)  −∆
= ⋅ 201.19 10T

T
   

DOUBLE-CHECK:  Despite the large number of Chinese people, the Earth is so massive that the rotation 
is hardly affected by their jump onto the surface. 

10.62. THINK:  The bullet with a mass, 2
B  1.00 10  kg,m −= ⋅ has a linear momentum. When it strikes the rod 

with length, L = 1.00 m, and mass, R  5.00 kg,m = the rod begins to rotate about its center and thus has an 
angular momentum. Conservation of momentum means the bullet’s linear momentum is equal to the rod 
and bullet’s angular momentum. Likewise, the bullet has a linear kinetic energy and the rod and bullet 
have a rotational kinetic energy so the change in kinetic energy is the difference between these two. The 
bullet can be treated as a point particle that is a distance L/4 from the axis of rotation. 
SKETCH:   

 
RESEARCH:  The momentum of the bullet is given by B .p m v=  When it hits the rod at L/4 from the 
center, its linear momentum can be converted to angular momentum by / 4.pL  The moment of inertia of 

the rod is 2
R /12m L  and that of the bullet when in the rod is ( )2

/ 4 .m L  The kinetic energy of the bullet is 

all translational, B
2

T / 2,K m v=  while the kinetic energy of the bullet and rod together is all rotational, 
2

R / 2.K Iω=  
SIMPLIFY:   
(a) The initial angular momentum is Bi / 4.L m vL=  The final angular momentum is 

( )R
2

f B/12 /16 .L Iω m m L ω= = +  The angular velocity is then 

B B
R B

R

2
i f

B

1 1    .
4 12 16 1 1

3 4

m vL m v
L L m m Lω ω

m m L

 
= ⇒ = + ⇒ =     + 

 

 

(b) B
2

T
1
2

K m v=  and 2 2
R R

2
B

1 1 1 .
2 24 32

K Iω m m L ω 
= = + 

 
 Therefore, R T .K K K∆ = −  

CALCULATE:   

(a)  
( )( )

( )

21.00 10  kg 100. m/s
0.5991 rad/s

5.00 kg 0.0100 kg 1.00 m
3 4

ω
−⋅

= =
 + 
 

 

(b)  ( ) ( ) ( )( )
2

22 2 25.00 kg 1.00 10  kg 11.00 m 0.599 rad/s 1.00 10  kg 100. m/s 49.925 J
24 32 2

K
−

− ⋅
∆ = + − ⋅ = − 
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ROUND:   
To three significant figures, 
(a)  0.599 rad/sω =  
(b)  49.9 JK∆ = −  
DOUBLE-CHECK:  Given that the rod is five hundred times heavier than the bullet and that the bullet 
will lose energy from imbedding itself in the rod, a small ω  and a negative value for K∆  is reasonable. 

10.63. THINK:  The sphere of mass, M, spins clockwise when a horizontal impulse J is exerted at a height h 
above the tabletop when R < h < 2R. 
SKETCH:   

 
RESEARCH: To calculate the linear speed after the impulse is applied, we use the fact that the impulse J 
can be written as .J p M v= ∆ = ∆  To get the angular velocity, we write the change in the angular 

momentum of the sphere as ( )L p h R∆ = ∆ − . To calculate the height where the impulse must be applied, 
we have to apply Newton’s Second Law for linear motion, ,F Ma=  and Newton’s Second Law for 
rotation, .Iτ α=  The torque is given by ( ).F h Rτ = −  The object rolls without slipping so from Section 
10.3 we know that v Rω=  and .a Rα=  In addition, we can write the impulse as .J F t= ∆   
SIMPLIFY:  a) Combining these relationships to get the linear velocity gives us 

    .JJ p M v Mv v
M

= ∆ = ∆ = ⇒ =  

Combining these relationships to get the angular velocity gives us 
( ) ( )

( )

( )

2

2

2

2
5

2
5

5
.

2

L p h R J h R

L I I MR

J h R MR

J h R
MR

ω ω ω

ω

ω

∆ = ∆ − = −

∆ = ∆ = =

− =

−
=

 

b) Combining these relationships to get the height 0h  at which the impulse must be applied for the sphere 
to roll without slipping we get 

( ) ( ) 2
0 0

    

2    .
5

JF Ma MR
t

JF h R I h R MR
t

α

α α

= ⇒ =
∆

− = ⇒ − =
∆

 

Dividing these two equations gives us 

0 0
2 7    .
5 5

h R R h R− = ⇒ =  

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
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DOUBLE-CHECK:  The linear velocity will always be positive.  However, the angular velocity can be 
positive or negative, depending on whether h R>  or .h R<  The fact that 0h R>  is consistent with the ball 
rolling to the right after the impulse is applied. 

10.64. THINK:  If the man, approximated by a cylinder of mass, m = 80.0 kg, and radius, m 0.200 m,R =  walks at 
a constant velocity, v = 0.500 m/s, then his distance, d, from the center of the platform of mass, 

400. kg,pM =  and radius, p 4.00 m,R =  will change linearly with time. The platform initially rotates at 

6.00 rpm or 0.200  rad/s.π  Initially, the man and the platform have their center of mass on the axis of 
rotation, so their moments of inertia are summed. When the man is a distance, d, from the center, the 
parallel axis theorem is needed to determine his overall moment of inertia. 
SKETCH:   

 
RESEARCH:  The distance, d, the man is from the center is .d vt=  The moment of inertia of the platform 
is 2

p p p / 2.I M R=  The man has a moment of inertia of 2
m m / 2I mR=  and by the parallel axis theorem has 

a final moment of inertia of ( )2 2
m m / 2 .I mR md′ = +  Conservation of angular momentum states i f ,L L=  

where .L Iω=  

SIMPLIFY:  The man’s moment of inertia as a function of time is ( )2 2 2 2 2
m m m/ 2 .I mR mv t I mv t′ = + = +  

The initial angular momentum of the system is ( )i p m i .L I Iω= +  The angular momentum at time t is 

( )f p m f .L I Iω ′= +  Therefore, ( ) ( )2 2
p m i p m fI Iω I I mv t ω+ = + +  

( )
( )

ω
ω ω ω

−
 +
 ⇒ = ⇒ = +
 ++ +  

1
2 2p m i

f i 2 22 2
p p mp m

2( ) 1 .f

I I mv tt
M R mRI I mv t

 

When the man reaches the end, p p  / .d R t R v= ⇒ =  Therefore, 
12

p
f i 2 2

p p m

2
1 .

mR
ω ω

M R mR

−
 

=  + 
 + 

 

CALCULATE:  ( ) ( )( )
( )( ) ( )( )

12

f 2 2

2 80.0 kg 4.00 m
0.200  rad/s 1 0.4489 rad/s

400. kg 4.00 m 80.0 kg 0.200 m
ω π

−
 
 = + =
 + 

 

ROUND:  To three significant figures: f 0.449 rad/s.ω =  
DOUBLE-CHECK:  As time increases (i.e. the man walks from the center), the overall moment of inertia 
increases, so a smaller angular velocity is expected. 
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10.65. THINK:  Initially, the system has zero angular momentum. The boy with mass, m = 25.0 kg, can be treated 
as a point particle a distance, r = 2.00 m, from the center of the merry-go-round, which has a moment of 
inertia, 2

0 200. kg m .I =  When the boy starts running with a velocity, v = 0.600 m/s, the merry-go-round 
will begin to rotate in the opposite direction in order to conserve angular momentum. 
SKETCH:   

 

RESEARCH:  The initial angular momentum is i 0.L =  The angular velocity of the boy is =1 / .ω v r  The 

moment of inertia of the boy is 2 .mr  The angular momentum is given by .L Iω=  The tangential velocity 
of the merry-go-round at r is 2 2 .v rω=  The boy’s velocity relative to the merry-go-round (which is 
rotating in the opposite direction) is 2 .v v v′ = +  
SIMPLIFY:   

(a)  
2

2 1
f 0 2 1 2 2

0 0

0    
mrω mrvL Iω mr ω ω ω

I I
= − = ⇒ = ⇒ =  

(b)  2v v rω′ = +  
CALCULATE:   

(a)  
( )( )( )

2 2

25.0 kg 2.00 m 0.600 m/s
0.150 rad/s

200. kg m
ω = =  

(b)  ( )( )0.600 m/s 2.00 m 0.150 rad/s 0.900 m/sv ′ = + =  
ROUND:   
(a)  2 0.150 rad/sω =  
(b)  0.900 m/sv ′ =  

DOUBLE-CHECK:  Since the merry-go-round must move opposite to the boy, a relative velocity greater 
than the velocity compared to the ground makes sense. Also, since the boy and the merry-go-round have 
comparable moments of inertia, the comparable velocities are reasonable. 

10.66. THINK:  In every case, the momentum (angular and linear) must be conserved. If the asteroid with mass, 
22

A 1.00 10  kg,m = ⋅  and velocity, 31.40 10  m/s,v = ⋅  hits the Earth, which has an angular speed of 
5

E 7.272 10  rad/s,ω −= ⋅  dead on (radially inward), then it will not contribute any of its linear momentum 
to the angular momentum of the planet, meaning the change in the Earth’s rotation is solely a result of it 
gaining mass. If the asteroid hits the planet tangentially, then the full amount of the asteroid’s linear 
momentum is contributed to the angular momentum. If the asteroid hits in the direction of Earth’s 
rotation, it will add its momentum and the Earth will spin faster and vice versa for the opposite direction. 
The mass of the Earth is 24

E 5.977 10  kgm = ⋅  and the radius is E 6371 km.R =  The Earth can be treated as 
a solid sphere. 
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SKETCH:   
(a)      (b) 

      
 (c) 

   
RESEARCH:  The moment of inertia of Earth is 2

E E E2 / 5.I M R=  After the asteroid has collided, the 

moment of inertia of the system is then given by 2
T E A E .I I m R= +  The angular momentum is .L Iω=  

Conservation of angular momentum applies in each case. The momentum the asteroid contributes is 

Ap m v=  and its linear momentum will be E ,pR±  depending on which way it hits. 
SIMPLIFY:   

(a)  

2
E E

E
E E T F F E F E

2 2 E A
E E A E

2
25    

2 2 5
5

M R M
Iω I ω ω ω ω ω

M MM R M R
= ⇒ = ⇒ =

++
 

(b)  

2
E E E A E E E E A

E E A E T F F
2 2

E E A E E E A E

2 2
5 5    

2 2
5 5

F

M Rω M vR M R ω M v
Iω M vR I ω ω ω

M R M R M R M R

+ +
+ = ⇒ = ⇒ =

+ +
 

(c)  
E E E A

E E A E T F F

E E A E

2
5  
2
5

M Rω M v
Iω M vR I ω ω

M R M R

−
− = ⇒ =

+
 

CALCULATE:   

(a)  
( )( )
( ) ( )

24 5
5

F 24 22

2 5.977 10  kg 7.272 10  rad/s
7.2417 10  rad/s

2 5.977 10  kg 5 1.00 10  kg
ω

−

−
⋅ ⋅

= = ⋅
⋅ + ⋅

 

 
(b)  

( )( )( ) ( )( )
( )( ) ( )( )

24 5 22 3

5
F

24 22

2 5.977 10  kg 6371000 m 7.272 10  rad/s 1.00 10  kg 1.40 10  m/s
5 7.333 10  rad/s

2 5.977 10  kg 6371000 m 1.00 10  kg 6371000 m
5

ω

−

−
⋅ ⋅ + ⋅ ⋅

= = ⋅
⋅ + ⋅

 

(c)  

( )( )( ) ( )( )

( ) ( ) ( )

24 5 22 3

5
F

24 22

2 5.977 10  kg 6371000 m 7.272 10  rad/s 1.00 10  kg 1.40 10  m/s
5 7.1502 10  rad/s

2 5.977 10  kg 1.00 10  kg 6371000 m
5

ω

−

−
⋅ ⋅ − ⋅ ⋅

= = ⋅
 ⋅ + ⋅ 
 

ROUND:   
To three significant figures: 
(a)  5

F 7.24 10  rad/sω −= ⋅  
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(b)  5
F 7.33 10  rad/sω −= ⋅  

(c)  5
F 7.15 10  rad/sω −= ⋅  

DOUBLE-CHECK:  In part (a), it is expected that ω  would be reduced very little, since the Earth gains a 
0.4% mass on the surface and the moment of inertia is changed only slightly. In part (b), the asteroid 
would make the Earth spin faster, provided the velocity was great enough. In part (c), the asteroid would 
definitely make the Earth slow down its rotation. 

10.67. THINK:  If the disk with radius, R = 40.0 cm, is rotating at 30.0 rev/s, then the angular speed, ,ω  is 
60.0  rad/s.π  The length of the gyroscope is L = 60.0 cm, so that the disk is located at r = L/2 from the pivot.  
SKETCH:   

 
RESEARCH:  The precessional angular speed is given by p / .ω rmg Iω=  The moment of inertia of the disk 

is 2 / 2.I mR=  

SIMPLIFY:  p 2
2

2
1
2

L mg Lg
ω

RωmRω
= =  

CALCULATE:  
( )

( )

2

p 2

0.600 m 9.81 m/s
0.19516 rad/s

0.400 m 60.0  rad/s
ω

π
= =  

ROUND:  p 0.195 rad/sω =  

DOUBLE-CHECK:  The precession frequency is supposed to be much less than the frequency of the 
rotating disk. In this example, the disk frequency is about one thousand times the precession frequency, so 
it makes sense. 

10.68. THINK:  Assume the star with a mass, 305.00 10  kg,M = ⋅  is a solid sphere. After the star collapses, the 
total mass remains the same, only the radius of the star has changed. Initially, the star has radius, 

8
iR 9.50 10  m,= ⋅  and period, i 30.0 days 2592000 s,T = =  while after the collapse it has a radius, 

fR 10.0 km,=  and a period, f .T  To determine the final period, consider the conservation of angular 
momentum. 
SKETCH:   
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RESEARCH:  The moment of inertia of the star is 22 / 5,I MR=  so initially it is 2
i i2 R / 5I M=  and 

afterwards it is 2
f f2 R / 5.I M=  Angular momentum is conserved, so i f ,L L=  where .L Iω=  The period is 

related to the angular frequency by 2 /Tπ ω=  or 2 / .ω π T=  

SIMPLIFY:  
( ) ( )2 2

2i f
f

i i f f f i2
i f i

2 2R 2 R 2 R5 5    
R

Mπ M π
Iω I ω T T

T T
= ⇒ = ⇒ =  

CALCULATE:  
( ) ( )

( )

23
4

f 28

10.0 10  m 2,592,000 s
2.872 10  s

9.50 10  m
T −

⋅
= = ⋅

⋅
 

ROUND:  4
f 2.87 10  sT −= ⋅  

DOUBLE-CHECK:  Given the huge reduction in size, a large reduction in period, or increase in angular 
velocity is expected. 

10.69. THINK:  The flywheel with radius, R = 3.00 m, and 61.18 10  kg,M = ⋅  rotates from rest to f 1.95 rad/sω =  
in ∆ = =10.0 min 600. s.t  The wheel can be treated as a solid cylinder. The angular acceleration ,α  can be 
determined using kinematics. The angular acceleration is then used to determine the average torque, .τ  
SKETCH:   

 
RESEARCH:  The energy is all rotational kinetic energy, so = 2 / 2.E Iω  The moment of inertia of the 
wheel is 2 / 2.I MR=  From kinematics, f i .ω ω α t− = ∆  The torque is then given by .τ Iα=  

SIMPLIFY:  The total energy is given by  
= = 

 
2 2 2 21 1 1 .

2 2 4
E MRω MR ω  The angular acceleration is given 

by f f0   / .ω α t α ω t− = ∆ ⇒ = ∆  The torque needed is 
2

2 f f1 .
2 2

ω MR ω
τ Iα MR

t t
  

= = =   ∆ ∆  
 

CALCULATE:  ( )( ) ( )= ⋅ = ⋅
2 26 71 1.18 10  kg 3.00 m 1.95 rad/s 1.0096 10  J

4
E  

( )( ) ( )
( )

261.18 10  kg 3.00 m 1.95 rad/s
17257.5 N m

2 600. s
τ

⋅
= =  

ROUND:  = ⋅ 71.01 10  J,E   17,300 N mτ =  
DOUBLE-CHECK:  The problem mentions that a huge amount of energy is needed for the experiment 
and the resulting energy is huge. It is reasonable that a huge torque would also be required. 

10.70. THINK:  With no friction and no slipping, energy is conserved. The potential energy of the hoop of mass, 
m = 2.00 kg, and radius, r = 50.0 cm,  will be converted entirely into translational and rotational kinetic 
energy at l = 10.0 m down the incline with an angle of 30.0 .θ = °  For a hoop, c = 1. 
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SKETCH:   

 
 
RESEARCH:  The change in height of the hoop is sin .h lθ=  The initial potential energy of the hoop is 

g .m h  The kinetic energy of the hoop is ( ) 2
f 1 / 2.K c mv= +  The c value for the hoop is 1. 

SIMPLIFY:  ( ) 2
i f

2 sin
  sin 1 / 2  

1
gl

U K mglθ c mv v
c
θ

= ⇒ = + ⇒ =
+

 

CALCULATE:  
( )( ) ( )22 9.81 m/s 10.0 m sin 30.0

7.004 m/s
1 1

v
°

= =
+

 

ROUND: To three significant figures: v = 7.00 m/s 
DOUBLE-CHECK:  This value is less than the velocity the hoop would have going a distance, h, in free fall 
(v = 9.9 m/s), so it seems reasonable. 

10.71. THINK:  The oxygen atoms, 262.66 10  kg,m −= ⋅  can be treated as point particles a distance, d/2 (where 
101.21 10  m)d −= ⋅  from the axis of rotation. The angular speed of the atoms is 124.60 10  rad/s.ω = ⋅  

SKETCH:   

 
 
RESEARCH:  Since the masses are equal point particles, the moment of inertia of the two is 

( )2
2 / 2 .I m d=  The rotational kinetic energy is 2 / 2.K Iω=  

SIMPLIFY:   

(a)  
2

212
4 2

dI m md
 

= = 
 

 

(b)  2 2 21 1
2 4

K Iω md ω= =  

CALCULATE:   

(a)  ( )( )226 10 46 21 2.66 10  kg 1.21 10  m 1.9473 10  kg m
2

I − − −= ⋅ ⋅ = ⋅  

(b)  ( )( ) ( )2 226 10 12 211 2.66 10  kg 1.21 10  m 4.60 10  rad/s 2.06 10  J
4

K − − −= ⋅ ⋅ ⋅ = ⋅  

ROUND:   
(a)  46 21.95 10  kg mI −= ⋅  

(b)  212.06 10  JK −= ⋅  
DOUBLE-CHECK:  Since an oxygen molecule is so small, a very small moment of inertia and energy are 
expected. 

10.72. THINK:  If the force, F, is tangent to the circle’s radius, then the angle between it and the radius, R = 0.40 
m, is 90 .°  The bead with mass, M = 0.050 kg, can be treated as a point particle. The required angular 
acceleration, 26.0 rad/s ,α =  is then found using the torque, .τ  
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SKETCH:   

 
RESEARCH:  The force produces a torque, .τ FR Iα= =  The moment of inertia of the bead is 2 .I MR=  
SIMPLIFY:  α α α= = ⇒ =2   .FR I MR F MR  

CALCULATE:  ( )( )( )= =20.0500 kg 0.400 m 6.00 rad/s 0.120 NF  

ROUND: To three significant figures:  = 0.120 NF  
DOUBLE-CHECK:  For a small mass, a small force is reasonable. 

10.73. THINK:  Angular momentum will be conserved when the professor brings his arms and the two masses, 
because there is no external torque. 
SKETCH:   

 
RESEARCH: Conservation of angular momentum states i i f fI Iω ω= , and the moment of inertia at any 

point is 2
body 2I I r m= + .  We assume that body,i body,f .I I=  

SIMPLIFY:  Substituting the moments of inertia into the conservation equation gives 
2

body,i ii
f i i2

f body,f

2
.

2 f

I r mI
I I r m

ω ω ω
+

= =
+

 

CALCULATE: 
The initial angular speed is ( )i 2 2 1.00 rev/ 0.1047 rad/sm .infω π π= = =  
So the final angular speed is 

2 2
1

f 2 2

(2.80 kg m ) 2(1.20 m) (5.00 kg)
(0.1047 rad/s)  rad/s .

(2.80 kg m ) 2(0.
0.48671

300 m) (5.00 kg)
35ω −+

= =
+

 

ROUND:  

f 0.487 rad/s.ω =  
DOUBLE-CHECK:  We find that the angular velocity increases from 0.105 rad/s to 0.487 rad/s. Does it 
make sense that the professor speeds up by pulling in the arms? If you have ever watched a figure skating 
competition, you know that the answer is yes, and that speeding up the rate of rotation by a factor of ~3 is 
very reasonable. 

10.74. THINK:  Determine the angular acceleration, which can be obtained by first determining the total torque. 
Make sure that the moments of inertia are calculated with respect to the pivot point. A 1.00 kg,M =  

B 10.0 kg,M =  C 20.0 kgM =  and L = 5.00 m. 
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SKETCH:   

 
RESEARCH:  τ Iα=∑  

For AM : ( )2

A A 3 / 4 .I M L=  For BM : ( )2

B B / 4 .I M L=  For the rod: ( ) ( )22
C C C1/12 / 4 .I M L M L= +  

A B C ,I I I I= + +   A C B ,τ τ τ τ= + −∑   ( )A Ag 3 / 4 ,τ M L=   ( )B Bg / 4τ M L=  and ( )C Cg / 4 .τ M L=  

SIMPLIFY:  ( )A B C A B C

g3 1 1g 3
4 4 4 4

L
τ L M M M M M M 
= − + = − + 

 
∑  

2
2

A B C A B C
9 1 1 1 79 ,

16 16 12 16 16 3
LI L M M M M M M

    
= + + + = + +    

    
  

τ
τ Iα α

I
= ⇒ = ∑∑  

A B C A B C
2

A B C A B C

3 3g 4g16
7 74 9 9
3 3

M M M M M ML
α

LL M M M M M M

   
   − + − + = =    

    + + + +   
   

 

CALCULATE:  
( ) ( )

( )

2
2

4 9.81 m/s 3 1.00 kg 10.0 kg 20.0 kg
1.55 rad/s

75.00 m 9 1.00 kg 10.0 kg 20.0 kg
3

α

 
 − +

= = 
 + + 
 

 

ROUND:  Using three significant figures, 21.55 rad/s .α =   The positive sign indicates that the angular 
acceleration is counter clockwise. 
DOUBLE-CHECK:  Note that α  decreases as L increases. This makes sense because I increases faster with 
L (L is squared) than does .τ    

10.75. THINK:  To determine the cart’s final speed, use the conservation of energy. The initial gravitational 
potential energy is converted to kinetic energy. The total kinetic energy at the bottom is the sum of the 
translational and rotational kinetic energies. Use p 8.00 kg,m =  w 2.00 kg,m =  p 1.20 m,L =  

p 60.0 cm,w =  r = 10.0 cm, D = 30.0 m and 15.0 .θ = °  

SKETCH:   

 
RESEARCH:  The initial energy is totE U=  (potential energy). The final energy is totE K=  (kinetic 

energy). tot ,U M gh=  sinh D θ,=  tot p w4 ,M m m= +  2 2
tot / 2 / 2,K M v Iω= +  /ω v r=  and ( )= 2

w4 / 2 .I m r  

SIMPLIFY:  

( ) ( ) ( )θ
  = ⇒ = + ⇒ + = + +   

  

2
2 2 2 2

tot tot p w p w w 2

1 1 1 1 1    4 sin 4 4
2 2 2 2 2

vU K M gh M v Iω m m gD m m v m r
r
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( ) ( ) θ
θ

+ 
⇒ + = + + ⇒ = 

  +

p w2
p w p w w

p w

4 sin1 4 sin 2   
12 3
2

m m gD
m m gD m m m v v

m m
 

CALCULATE:  
( )( )( )( )

( ) ( )

28.00 kg 4 2.00 kg 9.81 m/s 30.0 m sin15.0
11.04 m/s

1 8.00 kg 3 2.00 kg
2

v
+ °

= =
+

 

ROUND:  The length of the incline is given to three significant figures, so the result should be rounded to v = 11.0 m/s. 
DOUBLE-CHECK:  This velocity is rather fast. In reality, the friction would slow the cart down. Note also 
that the radii of the wheels play no role. 

10.76. THINK:  Determining the moment of inertia is straightforward. To determine the torque, first determine 
the angular acceleration, ,α  and both ω∆  and θ∆  are known. Knowing α  and I, the torque can be 
determined. m =15.0 g, 1 1.5 cm/2,r = 2 11.9 cm/2,r =  i 0,ω =  f 4.3 rev/sω =  and 0.25 revs.θ∆ =  
SKETCH:   

 

RESEARCH:  ,τ Iα=   ( )2 2
1 2

1 ,
2

I m r r= +   2 2
f i 2ω ω α θ= + ∆  

SIMPLIFY:   

(a)  ( )2 2
1 2

1
2

I m r r= +  

(b)  
( )2 2

f i ,
2

ω ω
α

θ

−
=

∆
  ( )2 2 2

1 2 f4
mτ Iα r r ω

θ
= = +

∆
 ( )i 0ω =  

CALCULATE:   

(a)  ( )
2 22 2

3 5 21 1.50 10 11.9 10  m15.0 10  kg  m 2.697 10  kg m
2 2 2

I
− −

− −
    ⋅ ⋅ = ⋅ + = ⋅           

 

(b)  πθ  ∆ = = 
 

2  rad0.250 revs 1.571 rad,
rev

  πω  = = 
 

f
2  rad4.30 rev/s 27.02 rad/s

rev
 

( )
( )

α = =
2

227.02 rad/s
232.4 rad/s ,

2 1.571 rad
  ( )τ − −= ⋅ = ⋅5 2 2 32.697 10  kg m 232.4 rad/s 6.267 10  N m  

ROUND:  Rounding to  three significant figures, (a)  −= ⋅ 5 22.70 10  kg mI  and (b)  τ −= ⋅ 36.27 10  N m.  
DOUBLE-CHECK:  These results are reasonable for the given values. 

10.77. THINK:  Begin with the moment of inertia of the door about an axis passing through its center of mass, 
then use the parallel axis theorem to shift the axis to the edge of the door, and then add the contribution of 
the handle, which can be treated as a point particle. = 3550. kg/m ,ρ  w = 0.550 m, h = 0.790 m, t = 0.0130 
m,   d = 0.450 m and =h 0.150 kg.m  
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SKETCH:   

 

RESEARCH:  ,MρV ρwht= =   ( )2 2
center

1 ,
12

I M w t= +   
2

edge center ,
2
wI I M  

= +  
 

  2
handle hI m d=  

edge handleI I I= +  

SIMPLIFY:  ( ) ( )2 2 2 2 2 2 2
h h4

12 4 12
M M MI w t w m d w t m d= + + + = + +  

CALCULATE:  Substituting Mρwht=  into the above equation yields: 

( )( )( )( ) ( ) ( )( ) ( )( )= + +

=

2 2 23

2

1 550. kg/m 0.550 m 0.790 m 0.0130 m 4 0.550 m 0.0130 m 0.150 kg 0.450 m
12
0.3437 kg m .

I
 

ROUND:  Rounding to three significant figures gives = 20.344 kg m .I  
DOUBLE-CHECK:  This is a reasonable result for a door of this size. Note that the height of the door 
enters into only the calculation of the door’s mass. 

10.78. THINK:  The moment of inertia of the machine part is the moment of inertia of the initial solid disk about 
its center, minus the moment of inertia of a solid disk of the amount of mass removed about its outside 
edge (which is at the center of the disk). M = mass of the disk without the hole cut out, and m = mass of 
the material cut out to make a hole. 
SKETCH:   

 

RESEARCH:  2
center / 2I MR=  (disk spinning about its center). ( ) ( )2 2

edge
1 / 2 / 2
2

I m R m R= +  (disk 

spinning about its edge). The area of the hole is 2 / 4.πR  The area of the disk without the hole is 2 .πR  The 
area of the disk with the hole is 2 2 2/ 4 3 / 4.πR πR πR− =  The area of the hole is 1/4 the area of the disk 
without the hole; therefore, because the disk has uniform density, / 4.m M=  The moment of inertia is 

2 2
21 1 .

2 2 2 2
R RI MR m m

     = − +        
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SIMPLIFY:  Substitute / 4m M=  into the above equation to get 
2 2

2 2 2 2 21 16 1 2 13 .
2 8 4 4 4 32 32 32 32

M R M RI MR MR MR MR MR
    

= − + = − − =    
     

 

CALCULATE:  This step is not necessary. 
ROUND:  This step is not necessary. 
DOUBLE-CHECK:  As expected, the moment of inertia decreases when the hole is cut out. 

10.79. THINK:  If the angular momentum and the torque are determined, the time can be determined by 
recalling that torque is the time rate of change of angular momentum. To determine the angular 
momentum, first determine the angular speed required to produce a centripetal acceleration equal to 
Earth’s gravitational acceleration. From this, the angular momentum, L, of the space station can be 
determined. Finally, the torque can be determined from the given force and the radius of the space station. 
R = 50.0 m, 52.40 10  kgM = ⋅  and 21.40 10  N.F = ⋅  
SKETCH:   

 

RESEARCH:  2 ,I MR=  ,L Iω=   ,v Rω=   
2

,v g
R
=   ,τ FR=   Lτ

t
∆

=
∆

 

SIMPLIFY:  
20 ,L Iω MR ω MRωt

τ FR FR F
∆ −

∆ = = = =   1 ,
gvω Rg

R R R
= = =   

M RggMRt
F R F

∆ = =  

CALCULATE:  
( )( )5 2

4
2

2.40 10  kg 50.0 m 9.81 m/s
3.797 10  s

1.40 10  N
t

⋅
∆ = = ⋅

⋅
 

ROUND:  The radius of the space station is given to three significant figures, so the result should be 
rounded to 43.80 10  s.t∆ = ⋅  
DOUBLE-CHECK:  The result is equal to about 10 hours. For such a relatively small thrust, this result is 
reasonable. As expected, this time interval increases if either the thrust decreases or the mass increases. 

10.80. THINK:  There is enough information given to determine the stars’ rotational and translational kinetic 
energies directly and subsequently determine their ratio. Note that the orbital period is given as 2.4 hours. 
Use the values: S1 un1.250 ,M M=  S2 un1.337 ,M M=  1 2  rad/2.8 s,ω π=  2 2  rad/0.023 s,ω π=  r = 20.0 km, 

8
1 4.54 10  m,R = ⋅ 8

2 4.23 10  mR = ⋅  and orb 2  rad/2.4 h.ω π=  
SKETCH:   

 

RESEARCH:  2
rot

1 ,
2

K Iω=  22 ,
5

I MR=   2 2 2
orb

1 1
2 2

K Mv MRω= =  
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SIMPLIFY:   

(a)  
2 2 2 2

1,rot 1 1 1 1 1 1
2 2 2 2

2,rot 2 2 2 2 2 2

K Iω M r ω M ω
K Iω M r ω M ω

= = =  

(b)  

2 2
2 21 1

1,rot 1
2 2

2 21,orb 1 orb
1 1 orb

1
25 ,

1 5
2

M rωK rω
K RωM Rω

= =   
2 2

2,rot 2
2 2

2,orb 2 orb

2
5

K rω
K Rω

=  

 
CALCULATE:   

(a)  
( )
( )

2

1,rot 5
2

2,rot

1.25 / 2.8
6.308 10

1.337 / 0.023

K
K

−= = ⋅  

(b)  
( ) ( )

( ) ( )
( ) ( )

( ) ( )

2 23
1,orb

2 28
1,rot

2 23
2,rot

2 28
2,orb

2 20 10 / 2.8 s
0.00739128

5 4.54 10 / 2.4 h 3600 s/h

2 20 10  m / 0.023 s
126.186

5 4.23 10 / 2.4 h 3600 s/h

K
K

K
K

⋅
= =

⋅ ⋅

⋅
= =

⋅ ⋅

 

ROUND:  The rotation periods are given to at least  three significant figures, so the results should be 
rounded to: 
(a)  −= ⋅ 5

1,rot 2,rot/ 6.31 10K K  

(b)  −= ⋅1,orb 1,rot
3/ 7.39 10 ,K K   =2,orb 2,rot/ 126K K  

DOUBLE-CHECK:  2M  has a much faster rotational speed than 1.M  The kinetic energy for 1M  is 
dominated by the orbit, while for 2M  it is dominated by rotational motion. 

10.81. THINK:  Conservation of angular momentum can be considered to determine the angular momentum of 
the merry-go-round. From this, the mass, M, of the merry-go-round can be determined. For parts (b) and 
(c), use the uniform acceleration equations to answer the problem. R = 1.50 m, =1.30 rad/s,ω  m = 52.0 kg 
and v = 6.80 m/s (speed of the student just prior to jumping on). 
SKETCH:  

 

RESEARCH:  student ,L Rmv=   L Iω=  (merry-go-round),  2 21 ,
2

I MR mR= +   2
i

1 ,
2

αt ω tθ∆ = +  

f i ,ω αt ω= +  and .τ Iα=    
SIMPLIFY:   

(a)  

( )

2 2 2 2
student

2
2

1 1      
2 2

2 2   2 1

L L Rmv Iω Rmv MR mR ω Rmv mR ω MR ω

m v vM Rmv mRω M R m
Rω ωRωR

 
= ⇒ = ⇒ = + ⇒ − = 

 
   

⇒ = − ⇒ = − = −   
   

 

(b)  2 21 ,
2

τ Iα MR mR α 
= = + 

 
  ω ωα

t t
∆

= = −
∆

 ( )i f f i,  0,  ,  0 ,ω ω ω t t t= = = =   
2

2
ωR Mτ m

t
 

= − + 
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(c)  2 2
i

1 1 1 1
2 2 2 2

ωαt ω t t ωt ωt ωt ωt
t

θ  
∆ = + = − + = − + = 

 
 

CALCULATE:   

(a)  ( ) ( )−

 
= − =  

 
1

6.80 m/s2 52.0 kg 1 258.7 kg
1.30 rad s 1.50 m

M  

(b)  
( )( )−

 = − + = − 
 

211.30 rad s 1.50 m 258.7 kg
52.0 kg 15.15 N m

35.0 s 2
τ  

(c)  ( )( )θ  
∆ = = = = 

 

1 1 rev1.30 rad/s 35.0 s 22.75 rad 22.75 rad 3.621 rev
2 2  radπ

 

ROUND:  Round the results to three significant figures. 
(a)  = 259 kgM  
(b)  = −15.2 N mτ  
(c)  θ∆ = 3.62 revolutions  
DOUBLE-CHECK:  The results are all consistent with the given information. 

10.82. THINK:   
(a) The speed of the pendulum just after the collision can be determined by considering the conservation 
of linear momentum. From the conservation of energy, the maximum height of the pendulum can be 
determined, since at this point, all of the initial kinetic energy will be stored as gravitational potential 
energy. 
(b)  From the conservation of angular momentum, the rotation speed of the pendulum just after collision 
can be determined. From the conservation of energy, the maximum height of the pendulum can be 
determined, since at this point, all of the initial rotational kinetic energy will be stored as gravitational 
potential energy. L = 0.48 m and v = 3.6 m/s. 
SKETCH:   
(a)        (b) 

       
 (c)        (d)   
 

       
 
RESEARCH:   

(a)  constant ,E K U= = +   21 ,
2

K mv=   U mgh=  

(b)  constant ,L Iω= =   2
rod

1 ,
3

I ML=   2
projI ML=  

SIMPLIFY:  0v  is the speed of the projectile just prior to collision. pv is the speed of the pendulum at the 

lower edge just after collision. 
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(a)  ( )i f 0 p p 0
1    ;
2

P P Mv M M v v v= ⇒ = + ⇒ =  At the pendulum’s maximum height, 

( ) ( ) 2
f p

1 .
2

K M M gh M M v= + = +  

2 2 2 2
10 0 0  cos 1 1   cos 1

2 8 8 8
pv v v vhh
g g L gL gL

θ θ −  
= = ⇒ = − = − ⇒ = −  

 
 

(b)  ,L Iω=  / ,ω v L=   0
i i 0

v
L I MLv

L
= =  

( ) 2 0
f rod i f 0 f 0 f 02

34 3    
3 44

v
L I Iω MLv ML ω MLv ω Lv

LL
= + = ⇒ = ⇒ = =  p0

p 0

3 3   
4 4

vv
v v

L L
⇒ = ⇒ =  

At maximum height: 
2 2

2 2 20 0
f 0

3 31 1 4 3  2 g   2   .
2 2 3 4 8 16

v v
Iω mgh ML M h v gh h

L g
  

= ⇒ = ⇒ = ⇒ =  
  

 

This is the height attained by the center of mass of the pendulum and projectile system. By symmetry, the 
center of mass of the system is located 3L/4 from the top. So, 

2 2 2
10 0 034 4cos 1 1 1 1   cos 1 .

3 / 4 3 3 16 4 4
v v vh h

L L L g gL gL
θ θ −  
= − = − = − ⋅ = − ⇒ = −  

 
 

CALCULATE:   

(a)  
( )

( )( )

2

1
2

3.6 m/s
cos 1 49.01

8 9.81 m/s 0.48 m
θ −

 
 = − = °
 
 

 

(b)  
( )

( )( )

2

1
2

3.6 m/s
cos 1 71.82

4 9.81 m/s 0.48 m
θ −

 
 = − = °
 
 

 

ROUND:  Round the results to  three significant figures. 
(a)  49.0θ = °  
(b)  71.8θ = °  
DOUBLE-CHECK:  The rod swings higher. This is expected since the center of mass is higher than for the 
pendulum. The projectile exerts a greater torque on the rod. 

10.83. THINK:  The quantity of interest can be calculated directly from the given information. =r 5.20 kg,m  
=h 3.40 kg,m  =s 1.10 kg,m  =1 0.900 m,r  =2 0.860 m,r  =h 0.120 mr  and 2 .hl r r= −  

SKETCH:   
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RESEARCH:  
  
Irim =

1
2

mr r1
2 + r2

2( ),   
  
Ispoke =

1
12

msl
2 +msd

2 ,  (with   d = 1
2 l + rh ) , 2

hub h h
1
2

I m r=  

SIMPLIFY:  rim hub spoke12 ,I I I I= + +   r h s12 ,M m m m= + +   1R r=  

CALCULATE:  ( ) ( )( )= + =
2 2 2 2

rim
1 5.20 kg 0.900 0.860  m 4.029 kg m
2

I  

( )( ) −= = ⋅
2 2 2

hub
1 3.40 kg 0.120 m 2.448 10  kg m
2

I  

( )( ) ( )( ) −= − + = ⋅
2 2 1 2

spoke
1 1.10 kg 0.860 m 0.120 m 1.10 kg 0.490 m 3.143 10  kg m

12
I

  I = Irim + Ihub +12Ispoke = 7.825 kg m2 , ( ) = + + = 5.20 3.40 12 1.10  kg 21.8 kgM

( )( )
= = =

2

2 2

7.825 kgm
0.4431

21.8 kg 0.900 m

Ic
MR

 

ROUND:  Rounding to three significant figures, = 0.443.c  
DOUBLE-CHECK:  It is reasonable that the moment of inertia is dominated by the rim and the spokes, 
and the hub is negligible.  

10.84. THINK:  To determine the angles in parts (a), the vertical and horizontal components of the velocity just 
after impact must be determined.  To determine the vertical velocity, consider the conservation of energy. 
To determine the horizontal velocity, consider the linear and angular impulses experienced in either of the 
following two situations. Situation I: The ball slips on the floor during the entire impact time. Kinetic 
friction must be considered the entire time. Situation II: The ball stops slipping on the floor at some point 
during the impact. From this point for the duration of the impact, rolling motion is attained, and the usual 
equations relating angular and rotational speeds are applicable. 
SKETCH:   

 
 
RESEARCH:  Energy conservation is given by 2

0 / 2.mgh mv=  0v  is the speed of the ball just prior to the 

impact for the first time. Also, from energy conservation: ( ) 2
2

1 ,
2 ymgαh mv= where 2 yv  is the vertical 

velocity just after the impact of the ball with the ground.  Linear impulse is given by 

( ) ( ) ( )
2

1

2 1 .
t

t

F t dt p t p t= −∫  

Angular impulse is given by  ( ) ( ) ( ) ( )
2

1

2 1 0 2 .
t

t

τ t dt L t L t I ω ω= − = −∫  

SIMPLIFY:  Just prior to impact: 2
0 0/ 2  2 .mgh mv v gh= ⇒ =  Just after impact: 

2
2 2

1   2 .
2 y yαmgh mv v αgh= ⇒ = +  
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Situation I: 
n is the normal force and μn  is the frictional force. The impulses are as follows: 

( ) ( ) ( )
2

1

0 0 01 ,
t

y
t

I n t dt mαv v m α v= = − − = +∫   ( ) ( )
2

1

0 21
t

x y x
t

Iμn t dt μI μm α v mv= = = + =∫  

( ) ( ) ( )
2

1

0 0 21
t

y
t

I Rμn t dt RμI Rμm α v I ω ωθ = = = + = −∫ ( ) ( )2 0 1 1 2xvμ α v μ α gh⇒ = + = +

( ) ( ) 2
2 0 0 0 0

1 1 1 2 xRmvRω ω Rμm α v ω μm α gh ω
I I I

= − + = − + = −  

(a)  
( ) ( )

1 1
1

2

2

1 2 1
tan

2
x

y

μ α gh μ αv
v αgh α

θ

− −
−    + +     = = =               

 

(b)  The time, t, it takes for the ball to fall is 22 2 82 .yv αhtαgh
g g g

= = =  

The distance traveled during this time is ( )( ) ( )( )2
81 2 4 1 .x

αhd v tμ α gh μ α α h
g

 
= = + = +  

 
 

(c)  2
2 0 .xRmv

ω ω
I

= − The minimum 0ω  occurs when 2 2 ,xRω v=  where 2Rω  is the velocity of the contact 

point. 
2

2
0,min 2 ,x

x

R mv
Rω v

I
− =   

( )2 2
2

0,min 2

1 21 1 1x
x

μ α ghvRm mR mRω v
R I R I R I

+    
= + = + = +    

     
 

Situation II: 
After the ball stops slipping, there is a rolling motion and 2 2 .xω R v=  The impulses are as follows. 

( )
2

1

2 ,
t

x x
t

Iμn t dt mv= =∫   ( ) ( )
2

1

0 2

t

x
t

I Rμn t dt I ω ω RIθ = = − =∫  

( ) 2
0 2 2 0 2   .x

x x

v
Iω ω Rmv I ω Rmv

R
 

⇒ − = ⇒ − = 
 

 

Solve for 2xv  by substituting ( )22 / 5I mR=  into the above equation to get: 

( )2 2
0 2 0 2 2 2 0

2 2 2 2    1
5 5 5 5

x
x x x x

v
mRω Rmv ω R v v v ω R

R
   

− = ⇒ − = ⇒ + =   
  

 2 0 0
5 2 2 .
7 5 7xvω R ω R 

⇒ = = 
 

 

(d)  
0

2

2

2
7tan
2

x

y

ω Rv
v αgh

θ = =  

(e)  2 0
2 8
7x

αhd v tω R
g

= =  
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CALCULATE:  This step is not necessary. 
ROUND:  This step is not necessary. 
DOUBLE-CHECK:  When only partial slipping occurs, the horizontal distance traveled should and does 
depend on 0 .ω  
 

Multi-Version Exercises 

10.85. THINK:  The length and mass of the propeller, as well as the frequency with which it is rotating, are given. 
To find the kinetic energy of rotation, it is necessary to find the moment of inertia, which can be calculated 
from the mass and radius by approximating the propeller as a rod with constant mass density.  

 SKETCH: The propeller is shown as it would be seen looking directly at it from in front of the plane. 

 
 RESEARCH:  The kinetic energy of rotation is related to the moment of inertia and angular speed by the 

equation 21
rot 2K Iω= . The angular speed 2 fω π= can be computed from the frequency of the propeller’s 

rotation. Approximating the propeller as a rod with constant mass density means that the formula 
21

12
I mL=  for a long, thin rod rotating about its center of mass can be used.    

 SIMPLIFY: Combine the equations for the moment of inertia and angular speed to get a single equation 

for the kinetic energy ( )22 21
rot 2

1 1 2
2 12

K I mL fω π = = ⋅ 
 

. Using algebra, this can be simplified to 

( )2
rot 6

mK Lfπ= . Since the angular speed is given in revolutions per minute, the conversion 1 minute = 60 

seconds will also be needed.  
 CALCULATE:  The propeller weighs m = 17.36 kg, it is L = 2.012 m long, and it rotates at a frequency of f 

= 3280. rpm. The rotational kinetic energy is  

( )2
rot

2
6
17.36 kg 1min2.012 m 3280. rpm

6 60sec
345,461.2621 J

mK Lfπ

π

=

 = ⋅ ⋅ ⋅ 
 

=

 

 ROUND: The values in the problem are all given to four significant figures, so the final answer should 
have four figures. The propeller has a rotational kinetic energy of 3.455·105 J or 345.5 kJ.  
DOUBLE-CHECK: Given the large amount of force needed to lift a plane, it seems reasonable that the 
energy in the propeller would be in the order of hundreds of kilojoules. Working backwards, if a propeller 
weighing 17.36 kg and having length 2.012 m has rotational kinetic energy 345.5 kJ, then it is turning at 
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5
rot61 1 6 3.455 10  J

2.012 m 17.36 kg
K

f
L mπ π

⋅ ⋅
= =

⋅
. This is 54.667 revolutions per second, which agrees with 

the given value of 54.667·60 = 3280 rpm. This confirms that the calculations were correct. 

10.86. ( )2
rot 6

mK Lfπ=  

( )
( )

rot

3

61

6 422.8 10  J1 57.8 rev/s 3470. rpm
2.092 m 17.56 kg

K
f

L mπ

π

=

⋅
= = =

 

10.87. ( )2
rot 6

mK Lfπ=  

 

( )
( )

( )

rot
2

3

2

6

6 124.3 10  J
17.76 kg

11.812 m 2160. rpm  s/min
60

K
m

Lfπ

π

=

⋅
= =
  ⋅    

 

10.88. THINK:  The total kinetic energy of the golf ball is the sum of the rotational kinetic energy and the 
translational kinetic energy. The translational kinetic energy can be calculated from the mass of the ball 
and the speed of the center of mass of the golf ball, both of which are given in the question. To find the 
rotational kinetic energy, it is necessary to find the moment of inertia of the golf ball. Though the golf ball 
is not a perfect sphere, it is close enough that the moment of inertia can be computed from the mass and 
diameter of the golf ball using the approximation for a sphere. 

 SKETCH: The golf ball has both rotational and translational motion. 

 
 RESEARCH:  The total kinetic energy is equal to the translational kinetic energy plus the rotational 

kinetic energy trans rotK K K= + . The translational kinetic energy is computed from the speed and the mass 

of the golf ball using the equation 21
trans 2K mv= . The rotational kinetic energy is computed from the 

moment of inertia and the angular speed by 21
rot 2 .K Iω=  It is necessary to compute the moment of inertia 

and the angular speed. The angular speed 2 fω π= depends only on the frequency. To find the moment of 
inertia, first note that golf balls are roughly spherical. The moment of inertia of a sphere is given by 

22
5I mr= . The question gives the diameter d which is twice the radius (d / 2 = r). Since the frequency is 

given in revolutions per minute and the speed is given in meters per second, the conversion factor 
1 min
60 sec

will be necessary. 

 SIMPLIFY: First, find the moment of inertia of the golf ball in terms of the mass and diameter to get 
21

10I md= . Substituted for the angular speed and moment of inertia in the equation for rotational kinetic 



Bauer/Westfall: University Physics, 2E 

  518 

energy to get ( )( )22 21 1 1
rot 2 2 10 2K I md fω π= = . Finally, use the equations 21

trans 2K mv=  and 

( )( )221 1
rot 2 10 2K md fπ= to find the total kinetic energy and simplify using algebra: 

( )( )
( )

trans rot

22 21 1 1
2 2 10

221 1
2 5

2

K K K

mv md f

mv m df

π

π

= +

= +

= +

 

 CALCULATE:  The mass of the golf ball is 45.90 g = 0.04590 kg, its diameter is 42.60 mm = 0.04260 m, 
and its speed is 51.85 m/s. The golf ball rotates at a frequency of 2857 revolutions per minute. The total 
kinetic energy is 

 

( )

( )( ) ( )

221 1
2 5

2
21 1

2 5

1 min
0.04590 kg 51.85 m/s 0.04590 kg 0.04260 m 2857 rpm

60 sec

62.07209955 J

K mv m dfπ

π

= +

 
= + ⋅ ⋅ ⋅  

 
=

 

 ROUND: The mass, speed, frequency, and diameter of the golf ball are all given to four significant figures, 
so the translational and rotational kinetic energies should both have four significant figures, as should 
their sum. The total energy of the golf ball is 62.07 J.  
DOUBLE-CHECK: The golf ball’s translational kinetic energy alone is equal to 

( )( )21
2 0.04590 kg 51.85 m/s 61.7 J,=  and it makes sense that a well-driven golf ball would have much 

more energy of translation than energy of rotation.  

10.89. ( )221 1
trans rot 2 5K K K mv m dfπ= + = +  

( ) ( )

2

2

1 15
2

1 67.67 J 15 54.15 m/s 47.79 rev/s 2867 rpm
0.04260 m 0.04590 kg 2

Kf v
d mπ

π

 = − 
 

 
= − = = 

 

 

10.90. ( )221 1
trans rot 2 5K K K mv m dfπ= + = +  

( )2

2

12
5

73.51 J 1 12 0.04260 m 2875 rpm  min/s 56.45 m/s
0.04590 kg 5 60

Kv df
m

π

π

 = − 
 

  = − ⋅ ⋅ ⋅ =     

 

10.91. THINK:  The gravitational force on the block is transmitted through the rope, causing a torque on the 
pulley. The torque causes an angular acceleration, and the linear acceleration is calculated from the 
angular acceleration.   
 

 
 
 
 
 
 
 
 
 



Chapter 10: Rotation 
 

 519 

 SKETCH: Use the figure from the text: 

 
 RESEARCH:  The torque on the pulley is given by the tension on the rope times the radius of the pulley  

τ = TR. This torque will cause an angular acceleration τ = Iα, where the moment of inertia of the pulley is 
given by 2

p .I m R=   The tension on the rope is given by b bT m g m a− = −  (the minus indicates that the 
block is accelerating downward). The linear acceleration of the block a is related to the angular 
acceleration of the pulley α by the equation a Rα= . 

 SIMPLIFY: First, substitute for the tension on the pulley b bT m g m a= −  in the equation for the torque τ to 

get ( )b bm g m a Rτ = − . Then, substitute for the moment of inertia ( 2
pI m R= ) and angular acceleration 

( /a Rα = ) in the equation Iτ α= to get ( )2
p p

am R m Ra
R

τ  = = 
 

. Combine these two expressions for the 

torque to get ( )b b pm g m a R m Ra− = . Finally, solve this expression for the linear acceleration a of the 
block: 

( )

( )

b b p

b b b p b

b p b

b

p b

b

p b

m g m a R m aR
m gR m aR m aR m aR m aR

m gR m R m R a

m gR
a

m R m R
m g

a
m m

− =
− + = +

= +

=
+

=
+

 

 CALCULATE:  The mass of the block is mb = 4.243 kg and the mass of the pulley is mp = 5.907 kg. The 
acceleration due to gravity is –9.81 m/s2. So, the total (linear) acceleration of the block is 

2
2b

p b

9.81 m/s 4.243 kg
4.100869951 m/s

5.907 kg 4.243 kg
m g

a
m m

− ⋅
= = = −

+ +
. 

 ROUND: The masses of the pulley and block are given to four significant figures, and the sum of their 
masses has five figures. On the other hand, the gravitational constant g is given only to three significant 
figures. So, the final answer should have three significant figures. The block accelerates downward at a rate 
of 4.10 m/s2.  
DOUBLE-CHECK: A block falling freely would accelerate (due to gravity near the surface of the Earth) at 
a rate of 9.81 m/s2 towards the ground. The block attached to the pulley will still accelerate downward, but 
the rate of acceleration will be less (the potential energy lost when the block falls 1 meter will equal the 
kinetic energy of a block in free fall, but it will equal the kinetic energy of the block falling plus the 
rotational kinetic energy of the pulley in the problem). The mass of the pulley is close to, but a bit larger 
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than, the mass of the block, so the acceleration of the block attached to the pulley should be a bit less than 
half of the acceleration of the block in free fall. This agrees with the final acceleration of 4.10 m/s2, which is 
a bit less than half of the acceleration due to gravity.  

10.92. b

p b

m g
a

m m
=

+
 

( )
2

b
p b b 2

9.81 m/s1 4.701 kg 1 5.95 kg
4.330 m/s

m g g
m m m

a a
  = − = − = − =  

   
 

10.93. b

p b

m g
a

m m
=

+
 

b
p b b

p
b 2

2

1

5.991 m 5.16 kg
9.81 m/s1 1

4.539 m/s

m g g
m m m

a a
m

m
g
a

 = − = − 
 

⇒ = = =
− −
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Chapter 11:  Static Equilibrium 
 

Concept Checks 

11.1. d  11.2. b  11.3. e  11.4. c  11.5. a  11.6. c  11.7. a 
 

Multiple-Choice Questions 

11.1. c  11.2. c  11.3. b  11.4. e  11.5. c  11.6 b  11.7. a  11.8 d  11.9. c  11.10. a  11.11. c  11.12. d   
 
Conceptual Questions 

11.13. The upward force exerted on the wing gears is four times that exerted on the nose gear. By symmetry, the 
center of mass must lie along the centerline of the plane. In order for the torque about the center of mass 
to be zero, the center of mass must be one fifth of the distance from the midpoint of the wing gears and the 
nose gear. 

11.14. By symmetry, a vertical force equal to half the weight of the arch, v / 2f W=  must be supplied at the base 
of each leg. The torque about the base of each leg must be zero. The weight of each leg exerts a torque 
about the base equal to the weight of the leg, W/2, times the horizontal distance between the center of mass 
of the leg and the base. The center of mass of each leg is not at its midpoint. Rather, if the legs are of 
uniform cross section and density, the horizontal distance from the center line of the arch to the center of 
mass of the leg is 

 

/2 /22

0 0
/2

2

0

cos sin 2 .

2

a d a ax
ad a

π π

π

θ θ θ
π πθ

= = =∫
∫

 

The lever arm of the weight of the leg about its base is therefore ( 2) / .a π π−  The horizontal force exerted 
by each leg on the other has lever arm, a, about the base. The condition of zero torque requires that this 

force be ( 2) /π π−  times the weight of the leg. Hence, a horizontal force of h
2 0.18169

2
Wf Wπ

π
−

= =  

must be supplied at the base of each leg. Of course, it is possible to stand an arch on a frictionless surface, 
with no horizontal force at the base. In that case, the torque required to keep the legs standing must be 
supplied by the stresses at the top of the arch in the form of a couple – compression and tension in equal 
measure. But stone, concrete, and brick are not strong under tension. 

11.15. The previous two problems show that there is a limit to the number of unknowns which can be 
determined. 
(a)  In a two-dimensional problem, the equilibrium of forces can provide only two equations. All torques 
must be perpendicular to the plane of the problem, so torque equilibrium provides only a single equation.  
Hence, at most three unknown force components can be determined in the general case. 
(b)  In three dimensions, the equilibrium conditions can involve three components of force and three 
components of torque. Hence, six unknown force components can be determined in the general case. 
(c)  This is more subtle, because the cross product used to define torque is not a vector quantity except in 
three dimensions. The generalization of the cross product is the antisymmetric tensor product, a two-
index object with components of the form 0 1i jx F x F− , where xi and xj are vector quantities with indices 

running from 1 to n. The number of independent components of this form is the number of pairs of 
distinct values { , }i j , which is  

( ) ( )1
2 2

n nn −
= . 
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These plus n independent force components provide equations to determine at most ( 1) / 2n n+  unknown 
force components in the general case. Note that this coincides with the preceding results for 2n =  and 

3.n =  

11.16. No. A homogenous meter stick would balance at the 50 cm mark, the geometric center. 

11.17. Yes. An example of an inhomogeneous meter stick that balances at the 50 cm mark is one whose density at 
position x is the same as its density at position 100 – x. The ruler must balance at the 50 cm mark by 
symmetry. 

11.18. Without the small rotor on its tail, the helicopter and the main rotor would rotate in opposite directions. 
The small rotor provides a torque to offset the rotational motion that the helicopter would otherwise have. 

11.19. The system is at equilibrium in the symmetrical position. Indeed, the two normal forces exerted by the 
cylinders on the board will be equal, and therefore the opposite dynamic friction forces will be equal. A 
small displacement of the system from equilibrium will increase one normal force at the cost of reducing 
the other. The friction force on one side becomes larger than that on the other side, and the net force will 
tend to bring the system back to equilibrium. Thus, this is a stable equilibrium position. If the board is 
given a small nudge, the system will perform an oscillatory motion about the equilibrium. 

11.20. An umbrella that is pointing east into a strong wind (as shown in the diagram Case 1) is in equilibrium, 
however it is an unstable one.  If the umbrella is held perfectly into the wind, it will stay in this orientation. 
However, even a small change in orientation will cause the umbrella to move away from this equilibrium. 
An umbrella being held perpendicular to the wind (as shown in the diagram Case 2) is not in equilibrium. 
The person holding the umbrella will have to overcome the torque caused by the wind. 

 

11.21. As can be seen in the figure, the forces cancel if A S slab ,F F m g+ =  but since the center of mass of the slab is 
closer to the assistant, A S ,R R<  and the torques A A,perp(R F  and S S,perp )R F  cancel only if FA > FS. So the 

assistant has to hold with a greater force. 

 
11.22. (a)  First, I use the fact that the sum of forces on the rod, and the sum of torques around any pivot point 

must be zero in order for the rod to be hanging in equilibrium: L R L R0 0.F T T W T T Mg= = + + = + − =∑  
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It is useful to consider torques about a point in which at least one of the applied forces acts, so that it can 
be excluded from the calculation. I choose the point at which the right wire is attached to the rod, so 

 τ τ τ        
= = + = − + − = ⇒ = ⇒ =       

       
∑ L R L R L R R L

20 0    3 .
2 3 2 2 6
L L L L LT T T T T T  

Substitute =R L3T T  into L R g 0T T M+ − =  to get = ⇒ = =L L R

M 3
4    and .

4 4
g Mg

T Mg T T  

(b)  Now, I need to add another mass, m, on the right end so the tension in the left end wire vanishes. If 
the tension in the left wire is to be zero, then what must happen is that the mass of the rod must be 
balanced by the mass hung at the right edge of the rod. The force of gravity is applied at a distance, as 
calculated above, of L/6 to the left of the right wire. The string and hanging mass apply a force downward a 
distance of L/3 to the right of the right wire. The moment arm for the hung mass is twice that for the 
center of mass of the rod. Therefore, if no tension is to be in the left wire, the torques about the right wire’s 
attachment point must balance. This means the torque from the hanging mass is equal and opposite to the 
torque due to the force of gravity. Thus the force applied by the hanging mass must be half that of the 
force of gravity on the rod. Thus m = M/2. 

11.23. (a) By symmetry, the center of gravity must lie on the horizontal line passing through the center of the 
disk. Take the origin of the x-axis to be the left edge of the disk.  Consider a disk of mass M1 and radius R1 
without a hole in it, whose center of gravity is then at   x = R1 .  Also consider a smaller disk of mass M2 and 
radius 12 / 2R R= whose center of gravity is at   x = R1 + R2 .  The equation for x-coordinate of the center of 
gravity for the disk is then  

( ) ( ) ( ) ( )π π
π π
π π

π π

  −   − + − +    = = =
− −  

−  
 

2
2 1

2 2 1 1 1
1 1 1 2 2 1 1 1 2 2

2 2 2
1 2 1 2 2 1

1

3
2 2

,

2

R
R R R

R M R R M R R R R R
X

M M R R R
R

 

which can be simplified to 

  

X =
R1 −

3
8

R1

3
4

=
5
8

R1
4
3






=

5
6

R1 .  

(b)  There will be two equilibrium positions for the disk resting on its side; one will be a stable equilibrium 
and one unstable. The unstable equilibrium will have the hole oriented directly downwards, and the stable 
equilibrium will have the hole oriented directly upwards. 

11.24. In order for the system not to undergo rotation, the pivot point should be placed to the right of the center.  
Suppose the pivot point is placed a distance, s, to the right of the center of the rod. In order for the system 
not to rotate the sum of the torques about the pivot point must be equal to zero.  

10 2 0  10 2 0  13 0  .
2 2 2 2 2 26
L L L L L LMg s Mgs Mg s s s s s s       
+ + − − = ⇒ + + − − = ⇒ − + = ⇒ =       

       
 

The pivot point must be moved L /26 to the right. 

11.25. The first block is a cube with sides of length, L and mass M1. The second block is three cubes together 
lengthwise, so its longest edge is 3L in length, and its mass is 2 13M M=  . The third block is two cubes stuck 
together, so its longest edge is 2L in length, and its mass is 3 12M M= . Initially, the centers of each block 
are in a vertical line. I want to calculate the furthest distance the top block can be slid along the middle 
block before the middle block tips. Take the center of mass of block 1 to have an x-coordinate of zero. 
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I can treat the bottom block as a pivot. The middle block will start to tip when the composite center of 
mass, com,f ,x  of the two top blocks is at / 2.L The general equation for the center of mass is: 

 1 1 2 2
co

3 3

1 2
,

3
m f .

x MM x M
x

M
x

M M
+

+ +
+

=  

The mass of the system consisting of block 2 and block 3 is 2,3 1 1 13 2 5 .M M M M= + =  I can treat block 2 as 

a point mass whose center of mass is at ( )0, / 2L , and block 3 (after it has moved x∆ ) as a point mass 

whose center of mass is at ( ),5 / 2 .x L∆ I can simplify the equation for com,fx  in terms of .x∆  The x-
coordinate of the center of mass of the block 2 and block 3 system is: 

+ ∆ ∆
= =co ,f

1
m

1

1

3 (0) 2 2 .
5 5

M M x xx
M

 

When the x-coordinate of the center of mass is L/2, block 3 will tip. This is when 2 ,
5 2

x L∆
= which is when 

the top block has moved 5 .
4
Lx∆ =  

11.26. A broader base enables more freedom in placing successive stones with respect to balancing each level of 
stones. There is no pivot point for a successive layer provided its ends do not extend beyond the ends of 
previous layers. 

 
 

Consider the situation in figure (b). The stones that make up tier 2 would have to be placed so that the 
center of mass of tier 2 was at the origin. If tier 2’s center of mass was at the position ( ), ,x b  then there 
would be a net torque about the pivot causing the pyramid to lean over.  This would be true for any 
successive layer shown in figure (b). While both situations are equilibria, the first situation is stable and the 
second is unstable. This is because the slightest change in position in the second situation will cause the 
pyramid to topple. This is not true in the first situation. 
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Exercises 

11.27. THINK:  We know that the weight of the crate is W = 1000. N. The length of the crate is L. Two vertical 
ropes are pulling the crate upwards. We know that the tension in the left rope is T1 = 400. N, and it is 
attached a distance L/4 from the left edge of the crate. The crate does not move and does not rotate when 
the platform is lowered. Assume that the crate is of uniform density, so that its center of mass is its 
geometric center. 
SKETCH:   

 
RESEARCH:  The crate does not move so the combined tensions, +1 2 ,T T  must equal the weight of the 
crate, W = 1000. N. Thus we can write + =1 2 .T T W  The crate does not rotate, so there is no net torque 
acting on the system. The tension 1T  acts at a distance =1 / 4x L from the assumed pivot point at the lower 
left corner. The force from the weight of the crate acts at a distance of / 2L  from the pivot point. The force 

2T  acts a distance 2x  from the pivot point. The sum of the torques about the pivot point is given by 

τ = − + + =net 2 2 1 1 0
2
LW T x T x . 

SIMPLIFY: Solving for the maximum value of  from the force equations we get 
  = − = − =2 1 1000. N 400. N 600. N.T W T  
Solving for 2x  from the torque equations gives us 

    

( )

= − + +

= −

− −− −
= = = =

2 2 1 1

2 2 1 1

1 1
11 1 1

2
2 2 2 2

0
2

2

2 / 42 / 22 .
2 2 2

LW T x T x

LT x W T x

LW T x WL T LWL T x WL T L
x

T T T T

 

 
CALCULATE: The tension in the right rope is =2 600. N.T   The rope on the right is attached at 

  

( ) ( )
( )

( )−−
= = = =1

2
2

1000. N 400.N / 2 800./ 2 2 .
2 1200. 32 600.N

L L LWL T L
x L

T
 

 
ROUND:  Not applicable. 
 
 



Bauer/Westfall: University Physics, 2E 

  526 

DOUBLE-CHECK: To double-check, we show that the counterclockwise torque has the same magnitude 
as the clockwise torque when we assume that the pivot point is located at the center of mass of the crate: 

( ) ( )

( ) ( )

   − = −   
   

   =   
   
=

2 1
2
3 2 2 4

600.N 400. N
6 4

100.N 100.N .

L L L LT T

L L

L L

 

11.28. THINK:  The mass of the bowling ball is = 5.00 kg.m  The ball is attached to a rope of length, = 4.00 m.L  
The professor pulls the ball an angular displacement of θ = °20.0  with respect to the vertical position. 
Assume the professor’s force, ,xF  on the ball is entirely in the horizontal direction.  Calculate xF  and the 
tension in the rope, .T  
SKETCH:  

 
RESEARCH:  In order to determine the tension in the rope, T, and the force, ,xF  the forces in the x and y 
directions must be summed separately. The system is in a state of equilibrium, so it is known that there is 
no net force in the x or y directions and the equations are net, net,0  and 0 .y y x x xF T mg F F T= = − = = − +

 

 

SIMPLIFY:  yT mg=    

From the sketch it can be seen that cos .yT T θ=  Therefore, the equation can be written as cos .T mgθ =  

Solving for T gives / cos .T mg θ=  Similarly, the equation for the net force in the x direction can be 
simplified to sin .xF T θ=  Substituting / cosT mg θ=  into this equation gives 

sin tan .
cosx

mg
F mgθ θ

θ
= =  

CALCULATE:  ( ) ( )
= ° = = =

°

2
2

(5.00 kg) 9.81 m/s
(5.00 kg) 9.81 m/s tan(20.0 ) 17.853 N, 52.198 N

cos(20.0 )xF T  

ROUND:  = =17.9 N and 52.2 N.xF T  
DOUBLE-CHECK:  Dimensional analysis confirms the answers have the correct units. It is necessary that 
the horizontal force is less than the tension in the rope. The calculated values are reasonable given the 
mass and displacement of the ball. 

11.29. THINK:  The marble slab has length, 2.00 m,L =  and mass, 75.0 kg.m =  The mass of the slab is 
uniformly distributed along its length. The sculptor and his assistant are pulling directly up, with force 

s a and ,F F
 

 respectively. The slab is at an angle, θ = °30.0 ,  with respect to the horizontal. I want to 

calculate the magnitude of  s a and F F
 

 that will ensure the slab remains stationary during the break. Take 
the sculptor’s end of the slab as the pivot point so only two forces have to be considered. Let torques in the 
counter-clockwise direction be positive. 
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SKETCH:  

 
 
RESEARCH:  In order for the slab to remain stationary, its net torque, net ,τ  about the pivot point must 

equal zero. The net torque is given by the formula: net
1

0;  sin .j j j j

n

j j j
j

F d F dτ τ τ θ
=

= = = × =∑




  

The horizontal distance, D, from the assistant to the pivot point is cos .D L θ=  The horizontal distance, d, 
from the slab’s center of mass to the pivot point is ( )cos / 2.d L θ=  

SIMPLIFY:  net a(0) 0sF F D mgdτ = + − = , which is equivalent to .aF D mgd=  Substituting the equations for 

D and d into this equation gives:  ( )a acos cos   .
2 2

mgLF L mg Fθ θ 
= ⇒ = 

 
  The force the sculptor exerts 

can be determined by adding the forces in the y direction: 

 net, a s s0   .
2 2y

mg mg
F F F mg F mg= = + − ⇒ = − =  

CALCULATE:  
( )2

a s a

(75.0 kg) 9.81 m/s
367.875 N, 367.875 N

2
F F F= = = =  

ROUND:  = =s a 368 N.F F  
DOUBLE-CHECK:  Half the force must be supplied by each person. This makes sense since each person is 
the same distance and same angle from the center of mass of the slab. 

11.30. THINK: During the 3-way tug of war, Roberta pulls west with a force =R 420. N,F  and Michael pulls 
south with a force =M 610. N.F  I want to determine the magnitude and direction of the force with which I 

need to pull to keep the knot stationary. Let the force I supply be ,F


 with component forces: xF  in the x-
direction and yF  in the y-direction. 

SKETCH:   

 
RESEARCH:  To keep the knot from moving I must apply a force that balances the forces applied by 
Roberta and Michael. This means that the sum of the net forces in the x and y directions must be zero: 

 , net, , net,
1 1

0,  0.
n n

y i y x i x
i i

F F F F
= =

= = = =∑ ∑  
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SIMPLIFY:  The magnitude of the force is 2 2 2 2
R M( ) ( ) ( ) ( ) .x yF F F F F= + = +



The values of the net 

forces in each direction are: = = − +net, M0 ,y yF F F and = = − +net, R0 .x xF F F  These imply that = M ,yF F and 

= R .xF F The direction of the force is 1 1 M

R

tan tan .y

x

F F
F F

θ − −   
= =       

  

CALCULATE:  = + =


2 2(420. N) (610. N) 740.6079 NF  

θ −  
= = ° 

 
1 610. Ntan 55.4516  

420. N
with respect to the positive x-axis. This direction is in the first quadrant.  

ROUND:  Values with three significant figures were provided in the question. Therefore, the answers 
must be written θ= = °741 N and 55.5 .F  
DOUBLE-CHECK:  The magnitude of the force calculated is on the same order of magnitude as the forces 
that were given, and the calculated direction is in the first quadrant, which is appropriate to balance the 
forces in the south and west directions. 

11.31. THINK: The magnitudes of the four other forces acting on the merry-go-round are 1 104.9 N,F =  

2 89.1 N,F =  3 62.8 N,F =  and 4 120.7 N.F =  I will use the convention that a torque that acts in the 
clockwise direction is negative and a torque that acts in the counterclockwise direction is positive. 
Consider the torque about the center as a pivot point. 
SKETCH:   

 
RESEARCH:  The merry-go-round has radius, r.  The forces are all applied in a tangential direction, so the 
torque due to each force is given by .i iF rτ =  In order for the merry-go-round to remain stationary, the 
sum of the torques about the pivot point must equal zero: 

 net
1 1

.
n n

i
i i

ir Fτ τ
= =

= =∑ ∑  

SIMPLIFY:  ( )1net 2 3 4 .r F F F F Fτ = − + − + +  I want to prevent the merry-go-round from moving, so the 

net torque is zero. Since the radius is not zero, 1 2 43 .F F F F F= − + −  
CALCULATE:  104.9 N 89.1 N 62.8 N 120.7 N 42.1 N.F = − + − = − The negative sign indicates that the 
force should be applied in the clockwise direction.  
ROUND:  The least number of significant figures provided in the question is three, so no rounding is 
necessary. Write the answer as, 42.1 N clockwise. 
DOUBLE-CHECK:  The calculated force is of the same order of magnitude as the forces which were 
given. The sum of the magnitudes of the forces in the counter-clockwise direction is more than the sum of 
the magnitudes of the forces in the clockwise direction. In order to counter-balance this, the fifth child 
should push in the clockwise direction. This is consistent with the calculated answer. 

11.32. THINK:  A trap door has uniform thickness and density. Its mass is m = 19.2 kg, and its width is 
 1.50 m.w = The door has a handle a distance, d = 1.41 m, away from the hinge. If the rope that is tied to 

the handle is horizontal and the door is open so that the handle has a height of h =1.13 m, what is the 
tension, T, in the rope? Compute the torque using the hinge as the pivot point. Use the convention that a 
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counter-clockwise torque is positive. It will be vital to know the perpendicular distances from the forces to 
the pivot point. The perpendicular distance from T



to the pivot point is h. Let the perpendicular distance 
from gF mg=



to the pivot point be x. It will be important to compute x.  

SKETCH:   

 
 

RESEARCH:  In order to compute the value of x, find the value of θ  using the top triangle and use this 
value in the bottom small triangle. In the top triangle, the hypotenuse is d, and the leg opposite θ  is h. 
Then, arcsin( / ).h dθ =  The value of θ  can be used in the lower (small) triangle to find the value of x, 
using a cosine. The hypotenuse is w/2, so ( / 2)cos .x w θ=  
 With respect to the pivot point, the torque due to the rope is positive and the torque due to gravity is 
negative. The door has uniform thickness and density, so its center of mass is located at / 2.w  Thus, the 
torque due to the force of gravity is gravity .mgxτ = −  The torque due to the rope is rope .Thτ = + The system is 

in static equilibrium, so the sum of the torques about the pivot point equals zero: τ τ τ= + =net rope gravity 0.  

SIMPLIFY:  τ τ θ 
= + = − = − = − 

 
rope gravity

cos(arcsin( / ))
0 cos .

2 2
mgw h dwTh mgx Th mg Th  Solving for T: 

cos(arcsin( / ))
.

2
mgw h d

T
h

=  

CALCULATE:  
( )( )( )

( )

219.2 kg 9.81 m/s 1.50 m cos(arcsin(1.13 m /1.41m))
74.77042 N

2 1.13 m
T = =  

ROUND:  The values given in the question have three significant figures, so the answer should be rounded 
to 74.8 N.T =  
DOUBLE-CHECK: Dimensional analysis confirms the tension is in the correct units of force. The 
magnitude of the force is reasonable considering the quantities given. 

11.33. THINK: The mass of the rigid rod is 13 3 ,m m=  and the masses of the two hanging weights are 

1 2 1 and 2 .m m m=  The pivot point for the rod is at point A.  I want to calculate the normal force acting on 
the pivot, and the ratio of  1 2 to L L  which are the distances from the pivot to 1 2 and ,m m  respectively. The 
rod is in static equilibrium, so the sum of the forces acting on the pivot is zero, and also the sum of the 
torques about the pivot point is zero. Use the convention that a torque that would cause a 
counterclockwise rotation is positive, and a torque that would cause a clockwise rotation is negative. 
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SKETCH:   

 
RESEARCH:   
(a) The rod is in static equilibrium, so the sum of the forces acting on the pivot is zero. All of the forces are 
acting in the y-direction, so the equation is 

 net, , 1 2 3
1

0 .
n

y i y
i

F F N m g m g m g
=

= = = − − −∑


 

(b) The rod is in static equilibrium, so the sum of the torques about the pivot point equals zero: 

 net
1

0.
n

i
i

τ τ
=

= =∑  

The torque due to m1 is positive, the torque due to m2 is negative, and the torque due to m3 is negative. 
There is no torque due to the normal force at the pivot point because its distance is zero. The 
perpendicular distances from the forces to the pivot point are: L1 for m1, L2 for m2, and since the length of 

the whole rod is 1 2 ,L L+ the distance from the midpoint to the right end is 1 2

2
L L+

, and the distance from 

the pivot to the midpoint then is 1 2 2 1
2 2 2

L L L L
L

+ −
− = , which is the distance to the pivot point from  m3 

by treating the rod as a point-mass. 
SIMPLIFY:   
(a) From considering the balanced forces, 1 2 3 1 1 1 1( ) ( 2 3 ) 6 .N m m m g m m m g m g= + + = + + =   
(b) By setting the sum of the torques about the pivot point equal to zero: 

( ) ( )net 1 1 1 1
2 1 2 1

1 1 2 2 3 1 21 1 2
5 70 2 3 .

2 2 2 2
L L L L

m gL m gL m g m gL m gL m g m gL m gLτ
− −   

= − − = − − = −   
   

=  

Since the mass and acceleration due to gravity are non-zero, divide them out, and solve for 1

2

.
L
L

The ratio 

is 1

2

7 .
5

L
L

=  

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  The value calculated for the normal forces seems reasonable considering the given 
values. The ratio of 1 2 to L L  also seems reasonable considering that 2m  is more massive than 1.m  

11.34. THINK:  The distance between the axles of the vehicle is d = 2.80 m.  The balance weight when the front 
wheels are on the scale is =f 8.00 kN.W  The balance weight when the rear wheels are on the scale is 

=r 6.00 kN.W  I want to calculate the weight of the vehicle, and determine how far its center of gravity, 

com ,x  is behind the front axle. 
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SKETCH:   
(a)           (b)            

            
RESEARCH:  The total weight of the vehicle is f r .W W W= +  The position of the center of gravity is 

com
1

1 .i

n

i
i

x W x
W =

= ∑  

SIMPLIFY:  I can take the position of the vehicle’s front wheels to be at f 0,x =  so the distance from the 
front wheels to the rear wheels will be r .x d=  Substituting these values into the equation for cogx  gives  

 f r r
com

r f

(0)
.

W W d W d
x

W W W
+

= =
+

 

CALCULATE:  = + = = =com
(6.00 kN)(2.80 m)8.00 kN 6.00 kN 14.0 kN, 1.20 m

14.0 kN
W x  

ROUND:  The weights were provided to three significant figures, so the answers must be written as 
= =com14.0 kN and 1.20 m.W x  

DOUBLE-CHECK:   It is reasonable that the total weight of the vehicle is the sum of its components.  It is 
also reasonable that the center of gravity is closer to the front of the vehicle because the front is heavier 
than the rear. The ratio of the masses 8:6 is the inverse of the ratio of the distances 1.2:1.6. This suggests 
the result is correct. 

11.35. THINK:  I must estimate the distance, d, from the shoulder pivot to the point where the deltoid muscle 
connects to the upper arm.  I must also estimate the distance from the shoulder pivot point to the center of 
mass of the arm, x.  The deltoid muscle will have to pull up the arm at an angle θ.  The mass of the arms is 

a .m  The mass of the weight is ( ) 
= = 

 
w

1 kg
10.0 lb 4.55 kg.

2.20 lb
m  I want to calculate the force, D ,F  the 

deltoid muscle would have to exert to hold my arm at shoulder lever, and also the force, D ,F ′  required to 
hold the 4.55 kg weight at shoulder level. 
SKETCH:   
(a) 

   
 (b)      
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RESEARCH:  To hold the arm at shoulder level in either situation, the sum of the torques about the pivot 
point must equal zero:   

1

0.
n

i
i

τ
=

=∑  

In order to calculate values, estimates must be made for d, x, θ, and a .m  I will assume that the center of 
mass of my arm is in the middle of the arm. I estimate d = 0.120 m, x = 0.300 m, θ = 20.0°, and              

am = 4.00 kg.   
SIMPLIFY:  For the first situation where the arm is extended at shoulder level, the equation is 

 a
a D D

1

0 sin   .
sin

n

i
i

m gx
m gx F d F

d
τ θ

θ=

= = − + ⇒ =∑  

For the second situation, the torque about the pivot due to the force of the weight must be considered: 

 
( )a W

a W D
1

2
0 2 sin   .

sin

n

i D
i

m gx m g x
m gx m g x F d F

d
τ θ

θ=

+
′ ′= = − − + ⇒ =∑  

CALCULATE:  
( )( )( )

( )
= =

°

2

D

4.00 kg 9.81 m/s 0.300 m
286.83 N

0.120 m sin(20.0 )
F  

( )( ) ( )( )( )
( )

+
′ = =

°

2 2

D

(4.00 kg) 9.81 m/s 0.300 m 4.55 kg 9.81 m/s 0.600 m
939.35 N

0.120 m sin(20.0 )
F  

ROUND:  ′= =D D287 N and 939 N.F F  
DOUBLE-CHECK:  Dimensional analysis confirms the answers are given in the correct units of force. It 
makes sense that the deltoid muscle must exert a much larger force to hold the 10.0 lb weight compared to 
the force required to hold up just the arm. 

11.36. THINK:  The uniform, equilateral triangle has sides of length, 2.00 m,l =  and weight, 34.00 10  N.W = ⋅  
The triangle is placed across a gap. The point of the triangle is contacting the north end, and the base of 
the triangle is contacting the south end. I want to calculate the force, n ,F  on the north side and the force, 

s ,F  on the south side. By the z-direction, I refer to down (not to be confused with south). Take the apex of 
the triangle as the pivot point. 
SKETCH:   

 
RESEARCH:  The triangle is in static equilibrium, so the sum of the torques about the pivot point must 
equal zero: 

 
1

0.
n

i
i

τ
=

=∑   
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Also, the sum of the forces in the z direction must equal zero:   

 ,
1

0.
n

z i
i

F
=

=∑  

Since the triangle is equilateral, 60 ,θ = °  30 ,φ = °  and 60 .α = °  
SIMPLIFY:  From the sketch, it can be seen that comR  is located at / 2l  in the west to east direction, and d 
in the south to north direction. Choose the point of the triangle as the pivot point. Then the torque about 
that point is s0 ( )Wh F h d= − + +  ⇒  s / ( ).F Wh h d= +  From the geometry shown in the sketch, 

( ) sinh d l θ+ =  and ( ) / 2.tand l φ=   Substitute the equation for d into the equation for (h+d) and solve for 

h:  ( )sin / 2.tanh l lθ φ= −   Substituting the expressions for h and (h+d) into the equation for sF  gives 

 s

sin tan
2 tan .

sin 2sin

lW l
WF W

l

θ φ
φ

θ θ

 − 
 = = −  

The sum of the forces in the z direction can be written as s n n s0 .F F W F W F= + − ⇒ = −  Substituting the 
equation for sF  into the expression for nF  gives: 

 n
tan tan .

2sin 2sin
W WF W W φ φ

θ θ
 

= − − = 
 

 

CALCULATE:  
( )⋅ °

= ⋅ − =
°

3

s
3

4.00 10  N tan30
4.00 10  N 2666.67 N,

2sin60
F  ( )n

tan302000 N 1333.33 N
sin60

F °
= =

°
 

ROUND:  The least precise value given in the question has three significant figures, so the answers must 
be written as s n2670 N and 1330 N.F F= =  
DOUBLE-CHECK:  The center of mass of the triangle is closer to the south end so it makes sense that the 
force of the south end is greater than the force on the north end. 

11.37. THINK:  The bricklayer has a weight W = 600.0 N and is a distance, d = 1.50 m, from one end of a 
uniform scaffold. The scaffold has a length, l = 7.00 m, and a weight, Ws = 800.0 N. There is a pile of bricks 
of weight, Wb = 500.0 N, at a distance, D = 3.00 m, from the end of the scaffold. Determine the net force on 
each end of the scaffold, which can be denoted as F1 and F2. Choose the pivot point to be located at the end 
of the scaffold where the force, 2 ,F  is being applied. Use the convention that counterclockwise torque is 
positive and clockwise torque is negative. 
SKETCH:   

 
 
RESEARCH:  The unknowns in the problem are F1 and F2. Use two equations to solve for the two 
unknowns. The scaffold is in static equilibrium, so the sum of the torques about the pivot point equals 
zero: 

 
1

net 0
n

i
i

τ τ
=

==∑  (1). 

Also, the sum of the forces in the y-direction equal zero because the scaffold is in static equilibrium: 

 net net, ,
1

0
n

y
i

y iF F F
=

= == ∑  (2). 
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SIMPLIFY:  From equation (1): 
s b

s b 1 1
1

20   .
2

n

i
i

lW W D WdlW W D Wd F l F
l

τ
=

+ +
= = + + − ⇒ =∑  

From equation (2): , 1 2 s b 2 s b 1
1

0   .
n

y i
i

F F F W W W F W W W F
=

= = + − − − ⇒ = + + −∑  

CALCULATE:  + +
= =1

(800.0 N)(3.50 m) (500.0 N)(3.00 m) (600.0 N)(1.50 m) 742.86 N
7.00 m

F  

= + + − =2 800.0 N 500.0 N 600.0 N 742.86 N 1157.14 NF  
ROUND:  The least precise value provided in the question has three significant figures. Therefore, the 
answers must be written as = =1 2743 N and 1160 N.F F  
DOUBLE-CHECK:  Most of the weight is positioned closer to the scaffold end where the force, 2 ,F is 
applied. It is therefore expected that the force applied by this support is greater than the force applied at 
the other end of the scaffold. 

11.38. THINK:  The uniform rod is supported at its ends by two strings. The rod is tilted at an angle, ,θ  with 
respect to the vertical. The string attached to the ceiling is at an angle, φ = °30.0 ,  with respect to the 
vertical.  The string attached to the wall is horizontal.  Determine the value of .θ  Use the convention that 
counter-clockwise torques are positive. 
SKETCH:   

 
RESEARCH:  A convenient choice for a pivot is the point where the string attached to the wall connects to 
the rod. The uniform rod is in static equilibrium, so the sum of the torques about its pivot point is equal to 
zero. Also, the sum of the forces acting on it is zero:  

 net net, net,, ,
1 1 1

0;  0; 0.
n n n

i y i x i
i

y
i i

xF F F Fτ τ
= = =

= = = = ==∑ ∑ ∑  

The force mg acts at a distance, / 2,l  along the rod. 

SIMPLIFY:  The sum of the vertical forces is:  φ
=

= = − + ⇒ = =∑ , 1, 1, 1
1

0   cos .
n

y i y y
i

F mg T mg T T  From the 

sketch, it can be seen that ( )sin , / 2 sin / 2,  cos .x l x l y lθ θ θ= = =  The sum of the torques is: 

( ) ( ) ( )τ φ φ
=

= = − − − −=∑ 11, 1, 1
1

0 cos sin
2 2y

n

i
i

x
x xT x mg T T x mg T yy  

  ( )( ) ( )φ θ θ φ θ ⇒ − − = 
 

1 1cos sin sin sin cos 0.
2
lT l mg T l  

Use the equation from the balanced forces: Substitute φ= 1 cosmg T  into the equation and solve for :θ  

 ( ) ( ) ( ) ( )
φ θθφ θ φ φ θ φ θ− = ⇒ =1

1 1 1 1

cos sinsincos sin cos sin cos   sin cos .
2 2

T llT l T T l T l  
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1Dividing both sides by cos  givesT l θ  
φ θθ φ φ θ φ−= ⇒ = ⇒ = 1cos tantan sin   tan   tan (2tan ).

2 2
 

CALCULATE:  θ −= ° = °1tan (2tan30.0 ) 49.1066  
ROUND:  θ = °49.1 .  
DOUBLE-CHECK:  The calculated angle seems reasonable considering the geometry of the problem and 
the value of the angle that was provided. 

11.39. THINK:  The construction supervisor has mass, 92.1 kg,M =  and stands a distance, 1 1.07 m,x =  away 
from sawhorse 1. He is standing on a board that is supported by sawhorse 1 and sawhorse 2 on either end. 
The board has a mass, 27.5 kg.m =  The two sawhorses are separated by a distance, 3.70 m.l =  The 
question asks for the force, F, that the board exerts on sawhorse 1. Use the convention that counter-
clockwise torques are positive. 
SKETCH:   

 
 
RESEARCH:  Assuming the board is of uniform density and thickness, its center of mass should be at 

/ 2.l  The board is in static equilibrium, so the sum of the torques about the pivot point is zero:   

 
1

net 0.
n

i
i

τ τ
=

= =∑  

The force that the board exerts on sawhorse 1 should be equal in magnitude and opposite in direction to 
the normal force sawhorse 1 exerts on the board.  

SIMPLIFY: 
1

1 1 1
1

( )
20 ( )   

2

n

i
i

lmg Mg l xlN l mg Mg l x N
l

τ
=

+ −
= = − + + − ⇒ =∑ and 1,F N= −  so 

1( )
2  .

lmg Mg l x
F

l

− − −
=  

CALCULATE:  

( )( ) ( ) − − − 
 = = −

2 23.70 m27.5 kg 9.81 m/s 92.1 kg 9.81 m/s (3.70 m 1.07 m)
2

777.106 N
3.70 m

F  

The negative sign indicates that the force of the board is directed down on sawhorse 1. 
ROUND:  The question provided three significant figures, so the answer is 777 NF = downward. 
DOUBLE-CHECK:  Dimensional analysis confirms that the answer is in the correct units of force, 
Newtons. The weight of the board is about 300 N, and the weight of the man is about 900 N.  The 
magnitude and direction of the calculated force seem reasonable for the values given in the question.  

11.40. THINK:  A horizontal bar of mass, 4.00 kg,m =  and length, 1.20 m,l =  is suspended by two vertical 
wires at its ends. A sausage of mass s 2.40 kgm =  is hung a distance 0.20 mx =  from the left end of the 
bar.  Determine the tension in the two wires, denoted 1 2 and ,T T respectively. A convenient choice for the 
pivot point is the left end of the bar where the wire is attached. Use the convention that a counter-
clockwise torque is positive. 
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SKETCH:   

 
RESEARCH:  The system is in static equilibrium, so the sum of the torques about the pivot point is zero:  

 
1

net 0.
n

i
i

τ τ
=

= =∑  

Assuming the rod is uniform, its center of mass will be at / 2.l  The sum of the forces in the y-direction is 
also zero due to the system being in static equilibrium: 

 ,
1

net, 0.
n

y iy
i

F F
=

= =∑  

SIMPLIFY:  
s

s 2 2
1

220   
2

n s

i
i

mlmgl g m xm gxmgl
m gx T l T

l l
τ

=

 ++  
 = = − − + ⇒ = =∑  

, 1 12 s 2
1

0   ( )s

n

y i
i

F T T m g mg T m m g T
=

= = + − − ⇒ = + −∑  

Substitute the value found for 2T  in the above equation to solve for 1.T  

CALCULATE:  
( ) ( ) ( )2

2

9.81 m/s 2.40 kg 0.20 m 4.00 kg 0.60 m
23.544 N

1.20 m
T

 + = =  

( )2
1 (2.40 kg 4.00 kg) 9.81 m/s 23.544 N 39.240 NT  = + − =   

ROUND:  The distance 0.20 m given in the question has two significant figures, so the answers must be 
written 1 239 N and 24 N.T T= =   
DOUBLE-CHECK:  It is reasonable that 1 2T T>  because the sausage was hung closer to the end supported 
by wire 1. Furthermore, the total upward force is about 39 N + 24 N = 63 N, while the total downward 
force is about 10 m/s2(6.4 kg) = 64 N. The two tensions agree within rounding errors. 

11.41. THINK:  The two uniform planks each have mass, ,m  and length, .L  They are connected at the top by a 
hinge and held together at their centers by a chain of length,  , and negligible mass. I want to find the 
tension, ,T  in the chain, the force, ,F  of the hinge on each plank, and the force, ,N  of the ground on each 
plank as a function of the chain length. Note that the system sits on a frictionless surface. Use the 
convention that a counter-clockwise torque is positive. 
SKETCH:   
(a)           (b) 
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RESEARCH:  The two planks are in static equilibrium, so the sums of the forces in the x and y directions 
are zero. Also, the sum of the torques about the pivot point equals zero: 

 τ τ
= = =

= = = = = =∑ ∑ ∑ne , ,
1 1 1

t, net, net0; 0; 0
n n n

x i y i
i

x iy
i i

F F F F  

SIMPLIFY: ,
1

0   ,   
n

x i
i

F T F F T
=

= = − + ⇒ =∑  ,
1

0   ,  
n

y i
i

F mg N N mg
=

= = − + ⇒ =∑ and 

θτ
=

= = + −∑
1

cos0 2 .
2

n

i
i

Lmg Th Fh  From sketch (a), it can be seen that θ = =
 / 2cos .

/ 2L L
 Using the 

Pythagorean Theorem, −   + = ⇒ =   
   

 

2 2 2 2
2

2 2 2
L Lh h . Substituting these values into the torque 

equation gives − − = + − 
 

  

2 2 2 2

0 2 .
2 2 2

mgL L LT F
L

 Substitute F T=  into this equation to further 

simplify it to 
−

− =
 

2 2

0.
2 2

mg LT
 

(a) =
−





2 2

mg
T

L
 

(b) = =
−





2 2

mg
F T

L  
(c) .N mg=   
CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  It makes sense that the force the ground exerts on the planks is equal to the weight of 
the planks. It also makes sense that the tension in the chain equals the force of the hinge on the planks 
because the planks lean against each other and do not fall.  

11.42. THINK:  The knot is at the center of the table, so each of the masses is an equal distance r from the center. 
The known masses are 1 24.30 kg and 5.40 kg.m m= =  The third mass, 3 ,m  is not known. The measure of 
the angle between strings 1 and 2 is 74 .α = °  Determine the angle, ,β  between strings 1 and 3.   The 
strings and masses are not moving and thus are in force equilibrium. 
SKETCH:  Choose the x-axis to lie along the string connecting 1m  to the center. 

 
RESEARCH:  Set up two equations for the force components in x- and y-direction. 
x-direction: 1 2 3 1 2 3cos cos 0 cos cosgm gm gm m m mα β α β+ + = ⇒ + = −  
y-direction: 2 3 2 30 sin sin 0 sin singm gm m mα β α β+ − = ⇒ =  
These are two equations for two unknowns, 3m  and .β  First, square both and add them: 

2 2 2
1 2 3 2 2 2 2

1 2 2 32 2 2 2
2 3

( cos ) cos
( cos ) sin

sin sin

m m m
m m m m

m m

α β
α α

α β

+ =  + + =
= 
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In other words, 2 2
3 1 1 2 22 cos .m m m m mα= + +  Insert this back into the x- equation: 

1 1 2

2 2
1 1 2 2

cos
cos

2 cos

m m

m m m m

α
β

α
−
 + = −
 + + 

 

CALCULATE: β −
 + ° = − = °
 + ° + 

1

2 2

4.30 5.40cos74cos 138.116
4.30 2(4.30)(5.40)cos74 5.40

 

ROUND:  The angle, ,α  was given to two significant figures. Therefore, the answer is 140 .β = °  
DOUBLE-CHECK:  We can double-check our result in the limits 0α →  and 180α → ° . For 0,α → the 
result is that 180β → °  (and 3 1 2m m m= + ). For  180α → °  the result is that 0β → °  (and 3 2 1m m m= − ). 

11.43. THINK:  The uniform ladder has length, 10.0 m,l =  and its mass is ( ) 1 kg
20.0 lb 9.072 kg.

2.2046 lb
m  = = 

 
 

The ladder is leaning against a frictionless wall at an angle 60.0θ = °  with respect to the horizontal.  The 
mass of the boy is  

( )b
1 kg

61.0 lb 27.67 kg.
2.2046 lb

m  = = 
 

 

The boy climbs a distance 4.00 md =  up the ladder.  I want to calculate the magnitude of the frictional 
force exerted on the ladder by the floor. I will use the convention that counterclockwise torque is positive 
and clockwise torque is negative. Choose the top of the ladder as the pivot point. 
SKETCH:   

 
 
RESEARCH:  The system is in static equilibrium, so the sum of the torques about the pivot point is zero: 

 
1

net 0.
n

i
i

τ τ
=

==∑  

SIMPLIFY:  f b b
1

( ) ( ) 0,
n

i
i

F h NL m g L x mg L xτ
=

= − + − + − =∑  
( )b b

f

( ) ( )NL g m L x m L x
F

h
− − + −

=  

From the sketch I can derive expressions for b, , , and :L h x x  

 b b
cos coscos ,  sin ,  cos   cos ( ),    .

2 2
l lL l h l x d L x l d x L xθ θθ θ θ θ= = = ⇒ − = − = ⇒ − =  

Substituting these values into the expression for fF  gives: 

 
b

f

coscos ( )cos
2

.
sin

lNl g m l d m
F

l

θθ θ

θ

 − − +  =  
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N is unknown, but because the system is in static equilibrium, the sum of the forces in the y direction is 

zero.  ( ), b b
1

0 .
n

y i
i

F N m g mg N m m g
=

= − − = ⇒ = +∑  Substituting this expression for N into the equation 

for fF  gives:  

 
b b b b

f

cos coscos cos cos cos cos
2 2 .

sin sin

l lm gl mgl m gl m gd mg mg m gd
F

l l

θ θθ θ θ θ θ

θ θ

+ − + − +
= =  

CALCULATE:  

( ) ( ) ( )( )
( )

2 2

f

10.0 m cos60.0
9.072 kg 9.81 m/s (27.67 kg) 9.81 m/s 4.00 m cos60.0

2 88.378 N
10.0 m sin60.0

F

°
+ °

= =
°

 

ROUND:  All of the values given in the question have three significant figures. Therefore the answer 
should also be rounded to this precision. The final answer is is f 88.4 N.F =  
DOUBLE-CHECK:  Given that the force of static friction is s sf Nµ= , the calculated values indicate 

s 88.4 N / 360 N 0.25µ ≈ ≈ , which is a reasonable value for a coefficient of static friction between the 
ladder and the floor. 

11.44. THINK:  The masses of the four stuffed animals are: =T 0.0160 kg,m  =L 0.0180 kg,m  =P 0.0220 kgm  
and =B 0.0150 kg.m  The three wooden dowels each have the same mass, =d 0.00500 kg,m  and same 
length, = 0.150 m.l   Robin wants to hang Tm  and Pm  from the ends of dowel 1, and Lm  and Bm  from 
the ends of dowel 2.  She wants to suspend dowels 1 and 2 from the ends of dowel 3 and hang the entire 
system from the ceiling.  Assume that the thread used to attach the stuffed animals and the dowels has 
negligible mass.  Determine where each thread must be positioned in order for the entire assembly to hang 
level. Use the convention that a torque in the counter-clockwise direction is positive. 
SKETCH:   
(a)      (b) 

      
 
(c) 

           
RESEARCH:  The system is in static equilibrium, so the sum of the torques around the pivot point equals 
zero and the sum of all forces acting on the system must also equal zero:  

1
net 0

n

i
i

τ τ
=

= =∑ ;  ,
1

net, 0.
n

y iy
i

F F
=

= =∑  

Note that in this system all the forces are acting in the y-direction. 
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SIMPLIFY: For the parts of the system shown in sketch (a), I will assume that Tm  and Pm  are attached at 
the ends of the dowel.  I will choose the point where Tm  is attached as the pivot point.  The distance from 
this end to the point where the string is attached is Tx .   

( )P d
1 T P d T

1 1

/ 2
0   

2

n

i
i

m gl m g llT x m gl m g x
T

τ
=

+
= = − − ⇒ =∑  

In this section, the net forces in the y direction are 1 T P d 1 T P d0, so ( ).T m g m g m g T g m m m− − − = = + +  
Substituting this expression into the equation for Tx  gives 

( )p d
T

T P d

/ 2
.

m l m l
x

m m m

+
=

+ +
 

For the system shown in sketch (b), I will assume L B and m m  are hung from the ends of the dowels.  The 
pivot point will be where Lm  is attached.  The distance Lx  will be the distance from the pivot end to the 
point where the string is attached. 

 
B d

2 L B d L
1 2

20   
2

n

i
i

lm gl m glT x m gl m g x
T

τ
=

+
= = − − ⇒ =∑  

But 2 L B d( ),T g m m m= + +  so, 
B d

L
L B d

2 .

lm l m
x

m m m

+
=

+ +
 For the system shown in sketch (c), I will assume that 

dowels 1 and 2 will be hung from the ends of dowel 3.  I choose the system’s pivot point to be the end with 
the string that has tension, 1T .  The distance x will be the distance from this end to the point where the 
string is attached. 

 3 2 d 2 L B d 3 T P L B d
1

0 . But, ( )  and ( 3 ) .
2

n

i
i

lT x T l m g T m m m g T m m m m m gτ
=

= = − − = + + = + + + +∑  

Substituting these expressions into the torque equation, 

( )+ + + + +
= =

+ + + + + + + +

L B d d
L B d

T B P L d T B P L d

( ) ( 3 / 2)2 .
( 3 ) ( 3 )

lm m m gl m g m m m l
x

m m m m m g m m m m m
 

 The values of Px  and Bx are given by = − = −P T B0.150 , 0.150 .Lx x x x  

CALCULATE:  

 +  
 = =

+ +

 +  
 =

+ +

= − =

L

P

T

0.150 m

0.150 m(0.0220 kg)(0.150 m) (0.00500 kg)
2

0.0855 m
(0.0160 kg 0.0220 kg 0.00500 kg)

m

0.150 

0.0855 m 0

m(0.0150 kg)(0.150 m) (0.00500 kg)
2

(0.0150 kg 0.0180 kg 0.0

.

0

0

5

64

0 k

5

0 g)

x

x

x

( )

=

= − =

+ +
= =

+ + + +

B

0.06908 m

0.150 m 0.06907 m 0.08092 m
(0.0180 kg 0.0150 kg 3 0.00500 kg / 2)(0.150 m)

0.07064 m
[0.0180 kg 0.0150 kg 0.0220 kg 0.0160 kg 3(0.00500 kg)]

x

x

 

ROUND: = =T 0.0855 m 8.55 cm,x  = =P m 6.0.0 45645  cm,x  = =L 0.0691 m 6.91 cm,x  

= =B 0.0809 m 8.09 cm,x  and = =0.0706 m 7.06 cm.x  
DOUBLE-CHECK:  The value for Tx  is appropriate because the mass of the pony is greater than the mass 
of the teddy bear, so the string would need to be attached closer to the pony.  Similarly, the mass of the 
lamb is greater than the mass of the bird, so the string should be attached closer to the lamb. 
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11.45. THINK:  The door is uniform and has height 2.00 mh = , width = 0.800 mw , and weight 100.0 N.W =  
The door is supported at one end by two hinges at positions =1 0.300 my  and 2 1.70 my =  with respect to 
the bottom of the door.  I want to calculate the horizontal components of the forces HF  on the hinges. 
SKETCH:   
(a)       (b) 

      
 
RESEARCH:  The system is in static equilibrium, so the sum of the torques about the pivot point is equal 

to zero: 
1

0
n

i
i

τ
=

=∑ .  The force on the upper hinge will be equal in magnitude but opposite in direction to 

the force on the lower hinge.  The weight of the door will pull out on the upper hinge and push in on the 
lower hinge, so the force on the upper hinge will be positive while the force on the lower hinge will be 
negative.  In sketch (b) the direction of HF  indicates the force that the hinge exerts on the door to keep it 
from pivoting about the lower hinge. 

SIMPLIFY: H 2 1 H
1 2 1

2
0 ( ) ( )   

2

n

i
i

wW
wF y y W F

y y
τ

=

 
    = = − − ⇒ =  − 

∑  

CALCULATE:  

 
 
 = =
−H

0.800 m(100.0 N)
2

28.57 N
1.70 m 0.300 m

F  

ROUND:  The width provided in the question has three significant figures, so =H 28.6 NF  away from the 
wall.  The horizontal force on the lower hinge is 28.6 N towards the wall. 
DOUBLE-CHECK:  Newtons are appropriate units for force. The calculated value for the horizontal force 
is reasonable considering the weight and dimensions of the door. 

11.46. THINK:  The mass of the ladder is = 20.0 kg,m  and its length is .L  The ladder is hinged on a horizontal 
platform at a point 1P , and anchored by a steel cable that is attached a length / 2L  up the ladder.  A 
person of mass =p 80.0 kgm  stands on the ladder at 3 / 4L .  I want to calculate the tension T  in the cable 

and the reaction forces  and .x yF F  I will use the convention that a counter-clockwise torque is positive. 

SKETCH:   
(a)      (b) 

     
 
RESEARCH:  The system is in static equilibrium, so the sum of the torques about the pivot point is zero, 
and the sums of the forces in the x- and y-directions are also zero: 
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 , ,net net, n t
1

e ,
1 1

0; 0; 0.
n n n

i y i x i
i i

y x
i

F F F Fτ τ
= = =

= = = = = =∑ ∑ ∑  

SIMPLIFY:  For the torque, τ
=

= = + − +∑ p
1

0 .
n

i x y
i

mgx m gd T y T x  From sketch (b): 

 
3cos ; sin ; cos ;  cos ; sin .

2 2 4 x y
L L Lx y d T T T Tα α α θ θ= = = = = −  

Substituting these expressions into the torque equation gives 

 α α θ α θ α= + − −
30 cos cos cos sin sin cos

2 4 2 2p
L L L Lmg m g T T  

( )
( ) ( )

α θ θ α α α

α θ θ α α

⇒ + = +

⇒ + = +

p

p

(sin cos sin cos ) 2 cos 3 cos
2 4

sin cos sin cos cos (2 3 ).
2

gLLT m m

g
T m m

 

Using the trigonometric identity sin cos sin cos sin( ) :α θ θ α α θ+ = +  

 
α

α θ
+

=
+

pcos (2 m 3 )
.

2sin( )

g m
T  

For the reaction forces: 

,
1

0 cos   cos ,
n

x i x x
i

F F T F Tθ θ
=

= = − + ⇒ =∑  , p p
1

0 sin sin g .
n

y i y y
i

F F mg m g T F T m m gθ θ
=

= = − − − ⇒ = + +∑  

CALCULATE:  
( )( ) ( ) ( )( )° ⋅ + ⋅

= =
° + °

29.81 m/s cos50.0 2 20.0 kg 3 80.0 kg
896.42 N

2sin(50.0 30.0 )
T   

( )= ° =896.42 N cos30.0 776.33 N,xF  

( ) ( )( ) ( )( )= ° + + =2 2896.42 N sin30.0 20.0 kg 9.81 m/s 80.0 kg 9.81 m/s 1429.21 NyF  

ROUND:  = = =896 N, 776 N, and 1430 N.x yT F F  

DOUBLE-CHECK: The tension should depend on the mass of the person on the ladder, the mass of the 
ladder, and the angles  and α θ .  The calculated tension is a function of these values.  It makes sense that 
the horizontal reaction force cancels the x component of the tension.  It is also reasonable that the y 
component of the reaction force depends on the masses and the y component of the tension in the cable. 

11.47. THINK:  The beam has length 8.00 ml =  and mass 100. kg.m =  The beam is attached by a bolt to a 
support a distance 3.00 md =  from one end.  The beam makes an angle 30.0θ = °  with respect to the 
horizontal.  A mass of 500. kgM =  is attached to one end of the beam by a rope.  A rope attaches the 
other end of the beam to the ground.  I want to calculate the tension T  in the rope, and the force 

b b
ˆ ˆ

x yF F x F y= +


 exerted on the beam by the bolt. 

SKETCH:   
(a)      (b) 
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RESEARCH:  The sum of the torques about the pivot point is zero because the system is in static 

equilibrium; 
1

0
n

i
i

τ
=

=∑ . The sums of the forces in the x and y directions are also zero: 

, ,
1 1

0;  0
n n

y i x i
i i

F F
= =

= =∑ ∑ . 

Counterclockwise torque is considered positive and clockwise torque is considered negative. 

SIMPLIFY:   
θ θ

τ θ θ
=

 − −    = = − − − − ⇒ =  − 
∑

1

cos cos
2

0 cos cos ( )  
2

n

i
i

lMgd mg d
lMgd mg d T l d T

l d
 

b
1

0
n

yi y y
i

F Mg mg T F
=

= = − − − +∑  

From sketch (b), cos ,yT T θ= so, b cos .yF Mg mg T θ= + +  

 , b b
1

0 sin   sin
n

x i x x
i

F F T F Tθ θ
=

= = − + ⇒ =∑  

CALCULATE: 

( ) ( )° − − °
= =

−

2 2(500. kg) 9.81 m/s (3.00 m)cos30.0 (100. kg) 9.81 m/s (4.00 m 3.00 m)cos30.0
2378.799 N

8.00 m 3.00 m
T  

( ) ( )= + + ° =2 2
b (500. kg) 9.81 m/s (100. kg) 9.81 m/s (2378.799 N)cos30.0 7946.100 NyF  

= ° =b (2378.799 N)sin30.0 1189.399 NxF  
ROUND:  To three significant figures: = 2380 NT , =b 7950 NyF , =b 1190 N.xF  

DOUBLE-CHECK:  The calculated values are reasonable given the masses and their configuration in the 
system. 

11.48. THINK: The ball’s mass is b 15.49 kg.m =  The glass plate’s mass is p 12.13 kg.m =   The table’s dimensions 

are = = =0.720 m,  1.380 m,  and 0.638 mh w d . The ball is located at b b( , )x y  = (0.690 m,  0.166 m)  with 
respect to corner 1.  What is the force that the plate exerts on each leg, 1 2 3 4, , ,N N N N′ ′ ′ ′ ? 
SKETCH:   

 
 
RESEARCH:  In static equilibrium, 0xF =∑ , 0yF =∑ , 0zF =∑ , and τ τ τ= − =∑ ∑net ccw cw 0 .  Use 

the sides of the table as pivot points.  Note the forces that the glass plate exerts on each leg, 1 2 3 4, , ,N N N N′ ′ ′ ′ , 
have the same magnitude as the force of each leg on the table, 1 2 3 4, , ,N N N N , by Newton’s third law.  In 

addition, because the ball is placed in the middle with respect to the x-axis ( )b / 2x w= , symmetry exists 

such that 1 4N N=  and 2 3 .N N=  
SIMPLIFY:  Choose the bottom edge as a pivot point: 

 pb b
net b b p 2 3 b b p 2 20  2 0  .

2 2 2 4

m gm gyd dm gy m g N d N d m gy m g N d N
d

τ = + − − = ⇒ + − = ⇒ = +  
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From 0,zF =∑  

p b
1 2 3 4 p b 1 2 p b 1 20  2 2 0  .

2 2

m g m g
N N N N m g m g N N m g m g N N+ + + − − = ⇒ + − − = ⇒ = + −  

CALCULATE:  
( )( )( ) ( )( )2 2

3 2

15.49 kg 9.81 m/s 0.166 m 12.13 kg 9.81 m/s
49.52 N

2(0.638 m) 4
N N= = + =  

( )( ) ( )2 2

4 1

12.13 kg 9.81 m/s (15.49 kg) 9.81 m/s
49.52 N 85.96 N

2 2
N N= = + − =  

ROUND:  Since the table dimensions have three significant figures, ′ ′= =1 4 86.0 NN N and 

2 2 49.5 N.N N′ ′= =  
DOUBLE-CHECK: These forces seem reasonable given the masses of the ball and the glass plate. 

11.49. THINK: The plank’s length density is λ = 2.00 kg/m.  The height is 10.0 m.h =  Each rope is 2L h=  in 
length. Their maximum tension is =max 2000. NT . A hiker on the left side of the bridge causes it to tip 
θ = °25.0 . Find the hiker’s mass, m . Since the mass density of the plank is constant, we know that the 
plank’s weight acts at its geometric center. For all of these problems of static equilibrium, we need to find 
the equilibrium equations for the forces and for the torques.  For the latter we need to pick pivot point.  
Usually, the choice of pivot point does not matter, and one can find the result for any choice.  However, 
sometimes it really pays to put a little thought into picking the correct pivot point, and the equations 
become much simpler.  For this problem, let’s make a somewhat unfortunate choice and pick the left edge 
of the plank is the pivot point first.  Then, in the double-checking process we will pick another pivot point.   
SKETCH:   

                  

RESEARCH:  Note 2 3l h=  from the Pythagorean Theorem. 

 1 1 1sin sin
2 2
h
h

φ − −   
= =   

   
 and M, the plank’s mass is 2 3 .M l hλ λ= =  

For static equilibrium, τ τ τ= = = − =∑ ∑ ∑ ∑ ∑net ccw cw0,  0,  and 0.x yF F  

SIMPLIFY:  Choose the left edge as a pivot point. Then 

 
θ

τ θ φ
φ

 
= − ° − + = ⇒ = 

 
net 2 2

cos
sin(90 ) sin 0  .

2 2sin
MglMg T l T  

Note 2 2 sinxT T α=  and 2 2 cosyT T α=  where 180 (90 ) 90α φ θ θ φ= ° − − ° − = ° + − . Also, 

1, 1 cos( )xT T θ φ= +  and 1, 1 sin( ).yT T θ φ= +  From 0xF =∑ , 

 2
1, 2, 1 2 1

sin
  cos( ) sin   .

cos( )x x

T
T T T T T

α
θ φ α

θ φ
= ⇒ + = ⇒ =

+
 

From 0,yF =∑  

 
( )1, 2, 1 2

1, 2,

( ) sin cos
0  y y

y y

T T T T
T T mg Mg m M M

g g
θ φ α+ + +

+ − − = ⇒ = − = −  
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2 2( sin tan( ) cos ) cos (sin tan( ) cos )
2sin

cos (sin tan( ) cos ) 1 .
2sin

T T MM M
g

M

α θ φ α θ α θ φ α
φ

θ α θ φ α
φ

+ +
= − = + + −

 
= + + − 

 

 

CALCULATE:  ( )(2.00 kg/m) 2 3 (10.0 m) 69.282 kg,M lλ= = =  1 1sin 30.0
2

φ −  
= = ° 

 
 

90.0 25.0 30.0 85.0 ,α = °+ ° − ° = ° 30 25 55φ θ+ = °+ ° = °

( )( ) ( )( ) ° 
= ° ° + ° − =  °  

cos25.069.282 kg sin85.0 tan55.0 cos85.0 1 25.52 kg
2sin30.0

m  

ROUND:  We round to three significant figures, 25.5 kg.m =  
DOUBLE-CHECK:   As previously advertised, let’s not pick a different pivot point. The “natural” pivot 
point is the location of the branch.  We also produce a new sketch. 

 
We draw in a vertical line through the new pivot point, and from geometry we can calculate the 
perpendicular distances of M and m to this line, a and b, respectively. They are   a = hsinθ  and 

  b = 2hcos(θ +φ) . With this choice of pivot point the only torques are due to M and m, and they act in 
opposite directions. This leads to 

  

mgb = Mga⇒

m = M
a
b
= M

sinθ
2cos(θ +φ)

 

Inserting the number, we again find 
  
m = (69.282 kg)

sin25°
2cos(25°+ 30°)

= 25.52 kg . This double-check step 

shows that we can reach the same final result in very different ways, but that one often can save a lot of 
work by thinking about the problem beforehand. 

11.50.   THINK:  The arch has a functional form that is described by   y(x)= 2a− acosh(x / a) , where a  is the 
maximum height and x varies from –a cosh-1(2) to +a cosh-1(2).  We can find the force on the legs of the 
arch using the fact that the forces must sum to zero and that the sum of the torques must be zero.  The 
arch has a uniform density and cross section, so we can treat the mass in one dimension,   x.  
SKETCH:   
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RESEARCH:  For static equilibrium, and net cw ccw .τ τ τ= −∑ ∑  To find the vertical forces on the legs, 

balance all the forces in that direction, 0yF =∑ . The horizontal forces on the legs can be found by 

considering the torque of the weight of one leg and the horizontal force on the bottom of the leg. The x-

coordinate of the center of mass of the left leg is given by 

  

X =
xy x( )dx

0

k

∫
y x( )dx

0

k

∫
,  where k = acosh−1 2 . To find 

,θ  consider 1 V

H

tan .
F
F

θ −  
=  

 
 

SIMPLIFY:  From V V0,  0yF F F W= + − =∑ .  V
1
2

F W=  (for each leg). For one leg, 

 

Then τ = − + =net H
1 0.
2

WX F a  For uniform density, and considering the bridge as a two dimensional 

object,  

  

X =
x 2a− acosh(x / a)( )dx

0

k

∫
2a− acosh(x / a)( )dx

0

k

∫
=

2x dx − x cosh(x / a)( )dx
0

k

∫0

k

∫
2dx − cosh(x / a)( )dx

0

k

∫0

k

∫

X =
k2 − a x sinh x / a( )− acosh x / a( )( ) 0

k

2k − asinh x / a( ) 0

k

Note that cosh acosh−1 2( )/ a( )= 2 and sinh acosh−1 2( )/ a( )= 3

X =
k2 − a 3k − 2a+ a 

2k − 3a
=

acosh−1 2( )2 − 3a2 cosh−1 2+ a2

2acosh−1 2− 3a
=

a cosh−1 2( )2 − 3acosh−1 2+ a

2cosh−1 2− 3

 

With  X  known, 
  
FH =

WX
2a

.  Then, 
  
θ = tan−1 FV

FH







.  

CALCULATE:  
  
X = a

cosh−1 2( )2 − 3 cosh−1 2+1

2cosh−1 2− 3
= 0.50267a  

  k = acosh−1 2 =1.31696a  

Then, 
  
FH =

W 0.50267a( )
2a

= 0.251335W  and 
  
FV =

1
2

W ,  so 
  
θ = tan−1

1
2

W

0.251335W
= 63.3127°.  
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ROUND: We report our answer to three significant digits, θ = 63.3°.  This force points down and to the 
right as shown below. 

 
So the bottom face of each leg should make an angle of  63.3°  with respect to the ground. 
DOUBLE-CHECK:   An angle of  θ = 63.3°  for an inverse catenary curve arch seems reasonable according 
to our sketch.  Note that the Gateway Arch in Saint Louis is a flattened inverse catenary and does not have 
a uniform cross section or density. 

11.51. THINK:  The bookcase has height H , mass m , and width / 2W H= .  The bookcase is to be pushed with 
a constant velocity v  across a level floor.  The bookcase is pushed with a force F  horizontally at its top 
edge a distance H  above the floor.  I want to calculate the maximum coefficient of kinetic friction, kµ , 
between the bookcase and the floor so that the bookcase does not tip over while being pushed.  
SKETCH:   

 
 
RESEARCH:  The condition for the bookcase to not tip over is that the sum of the torques about the pivot 

point must equal zero, 
1

0.
n

i
i

τ
=

=∑  The bookcase stays in contact with the ground, so the sum of forces in 

the y-direction is zero, 0yF =∑ . The bookcase is being pushed in the x-direction at a constant velocity, 

which implies its acceleration is zero, therefore the sum of the forces in the x-direction is zero, 0xF =∑ . 

SIMPLIFY: 0   ,yF mg N N mg= = − + ⇒ =∑  f f0   .xF F F F F= = − ⇒ =∑  The definition of the 

frictional force is f k .F Nµ=   Substituting this into the equation gives k .F Nµ=  

 τ
=

= = −∑
1

0
2

n

i
i

Wmg FH  

CALCULATE:  Substituting / 2W H= , µ= kF N , and gN m= into this equation, and solving for kµ : 

 k k  0.25.
4
Hmg mgHµ µ= ⇒ =  

ROUND:  Not applicable. 
DOUBLE-CHECK: The coefficient of kinetic friction calculated is reasonable. 

11.52. THINK:  The rod has length L  and mass .M  It is held in an upright position. The top of the rod is tied to 
a fixed surface with a string. A force, F  is applied at / 2.L   The coefficient of static friction between the 
rod and the horizontal surface is s .µ   I want to calculate the maximum force, maxF  that can be applied 
such that the rod maintains a condition of static equilibrium. 
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SKETCH:   

 
 
RESEARCH:  The system is in static equilibrium, so the sum of the torques about the pivot point is zero: 

1

0.
n

i
i

τ
=

=∑  Also, the sum of the forces in the x and y directions are zero: 
=

=∑ ,
1

0
n

y i
i

F  and 
=

=∑ ,
1

0
n

x i
i

F  

SIMPLIFY:  
=

= = − + ⇒ =∑ ,
1

0   ,
n

y i
i

F Mg N N Mg  f
1

0
2

n

i
i

LF L Fτ
=

= = − +∑  

By definition f sF Nµ=  and .N Mg=   Substituting these expressions into the above equation gives 

 s s  2
2
LF MgL F Mgµ µ= ⇒ =  

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  This seems like a reasonable force as it has to balance the tension in the string and the 
frictional force between the rod and the horizontal surface. 

11.53. THINK:  The ladder has mass, 37.7 kg,m =  length, 3.07 m,L =  and leans against a wall at an angle, .θ   
The coefficient of static friction between the ladder and the floor is s 0.313.µ =  Assume that the wall is 
frictionless.  I want to calculate the maximum angle, max ,θ  before the ladder starts to slip.  
SKETCH:   

 
 
RESEARCH:  The system is in static equilibrium, so the sum of the torques about the pivot point is zero. 
This also implies that the sum of the forces in the x and y directions equals zero.  Mathematically this can 

be stated as 
1

0
n

i
i

τ
=

=∑ , ,
1

0
n

y i
i

F
=

=∑ , and ,
1

0
n

x i
i

F
=

=∑ . 

SIMPLIFY: τ
=

= = + − −∑ s
1

0 g( )
n

i
i

F h m D x ND . From the sketch it can be seen that sin ,D L θ=  

cos / 2x L φ= , and 90 .φ θ= ° −   Also, cos .h L θ=   Substituting these values gives: 

 θ θ θ θ 
+ − ° − = 

 
s cos sin cos(90 ) sin .

2
LF L mg L NL  
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Simplify further using the identity cos(90 ) sinθ θ° − =  and the fact that s s .F Nµ=  Substituting these 
values into the equation gives: 

 s s
1cos sin sin cos sin sin .

2 2
LNL mg NL N mg Nµ θ θ θ µ θ θ θ + = ⇒ + = 

 
 

By summing the forces in the y direction, g,N m=  which can be substituted into the torque balance 
equation: 

 1
s s s s

1cos sin sin cos sin tan 2 tan (2 ).
2 2

mg
mg mgµ θ θ θ µ θ θ θ µ θ µ−+ = ⇒ = ⇒ = ⇒ =  

CALCULATE:  θ −= = °1tan [2(0.313)] 32.047  
ROUND:  There are three significant figures provided in the question, so the result is 32.0 .°  
DOUBLE-CHECK:  This seems like quite a large angle with which to lean a ladder against a wall, so it is 
reasonable that exceeding this angle would cause the ladder to slip. 

11.54. THINK:  The uniform, rigid pole has length, ,L and mass, .M  The vertical force on the pole, where it 
meets the wall, is provided by the frictional force s .F  The coefficient of friction is s .µ  The other end of the 
pole is supported by a rope of negligible mass that is attached to the wall at height, ,D  above the rod.  
Determine the minimum value for s ,µ  as a function of L  and ,D  so the pole does not slide down the 
wall.  The rope has tension .T  
SKETCH:   

 
RESEARCH:  The system is in static equilibrium so the sum of the torques about the pivot point is zero:   

0
n

i
i n

τ
=

=∑ .  This also implies that the sum of the forces in the x and y directions are zero. 

SIMPLIFY:  
1

0 .
2

n

i y
i

LT L Mgτ
=

= = −∑  From the sketch it is seen that sin ,yT T θ=  so the equation can be 

written as 
2sin

Mg
T

θ
= . The balance of the forces in the y-direction is given by , s

1

0 .
n

y i y
i

F Mg F T
=

= = − + +∑  

But sinyT T θ=  and s s ,F Nµ=  so substitute these values into the equation for the forces in the y-direction 

to get s sin .N Mg Tµ θ= −  The balance of the forces in the x-direction is given by 

,
1

0 ,  
n

x i x
i

F T N
=

= = − +∑ which becomes cos .N T θ=  Substitute this expression into the equation for the 

forces in the y direction to get s cos sin .T Mg Tµ θ θ= −  Substituting 
2sin

Mg
T

θ
=  into this equation gives: 

 s
s s

cos 1 sincos sin tan .
2sin 2sin 2 sin 2 cos

Mg Mg
Mg

µ θ θµ θ θ µ θ
θ θ θ θ

= − ⇒ = ⇒ = =   

From the sketch it can be seen that tan / ,D Lθ = therefore, 

 s .D
L

µ =  

CALCULATE:  Not applicable. 
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ROUND:  Not applicable. 
DOUBLE-CHECK:  This answer is reasonable.  The coefficient of friction should depend on the geometry 
of the system, as is shown here. 

11.55. THINK:  The boy’s weight is 60.0 lb, so his mass is b 27.2 kg.m =   The plank weighs 30.0 lb, so its mass is 

p 13.6 kg.m =
 
Its length is 8.00 ft 2.44 m,L = =  and lies on two supports, each 2.00 ft 0.6096 md = =  

from each end of the plank.  Determine (a) the force exerted by each support, L R,  ,N N  when the boy is 
3.00 ft 0.9144 ma = =  from the left end, and (b) the distance the boy can go to the right before the plank 

tips, b .X    
SKETCH:   

 
RESEARCH:  
(a)  Use 0yF =∑  and net ccw cw 0τ τ τ= − =∑ ∑  for the plank in static equilibrium. 

(b)  The plank will tip when the boy-plank system’s center of mass, X  is to the right of the right support. 

Solve for bX  from 1
i iX x m

M
= ∑ .  Assume the plank’s weight acts at its center, / 2.L  

SIMPLIFY:   
(a)  Choose the left support as a pivot point:   

 
b p

net b p R R

( )
2

( ) ( 2 ) 0  .
2 2

Lg m a d m d
Lm g a d m g d N L d N

L d
τ

  − + −      = − − − − + − = ⇒ =  − 
 

R L p bFrom 0,  0yF N N m g m g= + − − =∑  L p b R ( ) .N g m m N⇒ = + −  

(b)  Choose the left edge of the plank as the origin of the coordinate system.  Then  

 
p b p bp p b p

b b p b
b b b

11 ( )( )( ) 21 2 2  .
2

L L m m d m mXM m L d m m m LLX m x m x
M m m m

 + − +− − + −     = + ⇒ = = = 
 

 

CALCULATE: 

(a) 
( )2

R

2.44 m9.81 m/s 27.2 kg(0.9144 m 0.6096 m) 13.6 kg 0.6096 m
2

133.33 N
2.44 m 2(0.6096 m)

N

  − + −  
  = =

−
 

      ( )= + − =2
L 9.81 m/s (13.6 kg 27.2 kg) 133.33 N 266.918 NN  

(b)  b

13.6 kg2.44 m 27.2 kg 0.6096 m(13.6 kg 27.2 kg)
2

2.1356 m
27.2 kg

x

 + − + 
 = =  

ROUND:  Since all of the given values have three significant figures, 
(a)  The right support applies an upward force of R 133 N (29.9 lb).N =  The left support applies an upward 
force of L 267 N (60.0 lb).N =  
(b)  b 2.14 m (7.02 ft)x =  from the left edge of the board. 



Chapter 11: Static Equilibrium 

 551 

DOUBLE-CHECK:  Since the boy is closer to the left edge, L R .N N>   It is expected that the board will tip 
when the boy is just past the right support, b 2.44 m 0.61 m 1.83 m.x L d> − = − =  

11.56. THINK:  The track’s height varies with x as 3 2( ) 3 24 16h x x x x= + − + .  Where are the stable locations?  
What kind of equilibrium do they have? 
SKETCH:   

 
RESEARCH:  Consider the height as a potential energy landscape (e.g. u mgh=  is directly proportional to 
h).  The marble will be stable for all positions ox  where / 0.dh dx =   These equilibrium points can be 

classified based on the sign of the second derivative
0

2

2 ,
x

d h
dx

where x0 is an equilibrium point. If the sign is 

negative, the equilibrium is unstable. If the sign is positive, it is a stable equilibrium. 

SIMPLIFY:  3 2 2( 3 24 16) 3 6 24dh d x x x x x
dx dx

= + − + = + −  and 
2

2
2 (3 6 24) 6 6.d dh x x x

dxdx
= + − = +  

CALCULATE:  Solving the derivative equal to zero gives the values: 2
0 03 6 24 0x x+ − =  

2
0 0 2 8 0x x⇒ + − =  0 0 ( 4)( 2) 0.x x⇒ + − =  So, 0 4x = − and 0 2x =  are the two equilibrium points. Now, 

0

2

0 2
4

At 4,  18 0,
x

d hx
dx

=−

= − = − <  so this is an unstable equilibrium point. 

0

2

0 2
2

At 2,  18 0,  so this is a stable equilibrium point.
x

d hx
dx

=

= = >  

ROUND:  Not applicable. 
DOUBLE-CHECK:  The first derivative of ( )h x  is a second order polynomial, and should have at most 
two roots. This means that there will be at most two equilibrium points. This is consistent with the 
computed values. 

11.57. THINK:  Each block has length 0.159 ml =  and thickness = 0.0220 m.d   
(a)  For seven blocks, find the maximum distance, ,x  between the right edge of the table and the right 
edge of the right-most block. 
(b)  Find the minimum height, ,h  of blocks for which the left edge of the top block is located off of the 
table. 
SKETCH:   
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RESEARCH:   

(a)  From the text, use 1 1
1

1 1 ,
2

n

n
i

x x l
i+

=

 
= +  

 
∑  where 1x  is the location of the right edge of the top block 

with respect to taking 1nx +  to be zero.  The minimum height will be h dn= , where n  is the minimum 
number of blocks. n  can be determined from when 1 0x l− ≥ , as this is the condition that the top block’s 
left edge is right of the table’s edge. 
SIMPLIFY:   

(a)  
7

1
1

1 1 1 1 1 1 1 1 1 3631
2 2 2 3 4 5 6 7 280i

lx l l
i=

 
= = + + + + + + = 

 
∑  

(b) 4n =  is the minimum number of blocks required.  Then, 4 .h d=  
CALCULATE:   

(a)  1
363(0.159 m) 0.20613 m

280
x = =  

(b)  = =4(0.0220 m) 0.0880 mh  
ROUND:   
(a)  l  has three significant figures, so 1 0.206 m.x =  
(b)  d  has three significant figures, so = 0.0880 m.h  
DOUBLE-CHECK:  1x  should be greater than l  for seven blocks.  It is expected for part (b) that n  
should be less than seven blocks. 

11.58. THINK:  The ladder is 5.00 mL =  long, and it touches the house at a height 4.00 mh =  above the 
ground.  Its mass is l 20.0 kgm = .  Your mass is 60.0 kgm = , and you are 3/4 of the way up the ladder.  
Treat “3/4 of the way up the ladder” as precise. Determine: 
(a)  The forces exerted by the side wall, wF , and the ground, N , on the ladder, and  
(b)  The coefficient of static friction, sµ , between the ground and the ladder. 
SKETCH:   

 
RESEARCH:  Use net ccw cw 0τ τ τ= − =∑ ∑ , and net, 0x xF F= =∑ , and net, 0y yF F= =∑ .  Assume the 

ladder’s center of mass (com) is at its center ( / 2)L . 
SIMPLIFY:  
(a)  To determine wF , use net 0τ =  and choose the point where the ladder touches the ground as a pivot 

point.  It is useful to note that 1cos h
L

θ −  
=  

 
. 

 net ccw cw l
30  0 ( )( )sin(90 ) ( ) sin ( ) sin

2 4w
L LF L m g mgτ τ τ θ θ θ   

= − = ⇒ = °− − −   
   

∑ ∑  
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w l w l
1 3 1 3 0 cos sin sin   tan
2 4 2 4

F L m gL mgL F g m mθ θ θ θ  
⇒ = − − ⇒ = + 

 
 

To determine N , use 0yF =∑ : 0   ( ).l lN m g mg N g m m= − − ⇒ = +  

(b)  To determine sµ  use 0xF =∑ : w
s w s w s0   0   .

F
f F N F

N
µ µ= − ⇒ = − ⇒ =  

CALCULATE:   

(a) ( )  
= ° + = 

 
2

w

20.0 kg 3(60.0 kg)
9.81 m/s tan(36.87 ) 405 N,

2 4
F  ( )29.81 m/s (20 kg 60 kg) 785 NN = + =  

(b)  s
405 N 0.516
785 N

µ = =  

ROUND:  Each value given has three significant figures, so w 405 N,F =  785 N,N =  and s 0.516.µ =  
DOUBLE-CHECK:  It is reasonable for wN F> .  The coefficient sµ  is reasonable as well. 

11.59. THINK:  The ladder’s mass is M  and its length is 4.00 m.L =  The coefficient of static friction between 
the floor and the ladder is s 0.600µ = . The angle is 50.0θ = °  between the ladder and the floor.  The man’s 
mass is 3 .M   Determine the distance up the ladder, ,d  the man can climb before the ladder starts to slip. 
SKETCH:   

 
RESEARCH:  Use net ccw cw 0τ τ τ= − =∑ ∑ , net, 0x xF F= =∑ , and net, 0.y yF F= =∑   Assume the ladder’s 

center of mass is at its center, / 2.L  Since the force of the wall on the ladder, ,wF  is not known, choose the 
point where the ladder touches the wall as a pivot point when evaluating net .τ  
SIMPLIFY:  Determine N  first: net, 0  3 0  4 .yF N Mg Mg N Mg= ⇒ − − = ⇒ =  

netConsider 0 :τ =  

 cos 3 ( )cos sin cos 0.
2
LMg Mg L d fL NLθ θ θ θ+ − + − =  

 scos 3 cos 3 cos 4 sin 4 cos 0
2
LMg MgL Mgd MgL MgLθ θ θ µ θ θ+ − + − =  

 
s

s

14 sin cos 4 12 tan .
3cos 3 6

L L
d L L

µ θ θ
µ θ

θ

−
⇒ = = −  

CALCULATE:  = ° − =
4 1(0.600)(4.00 m)tan(50.0 ) (4.00 m) 3.15 m
3 6

d  

ROUND:  Since all values have three significant figures, = 3.15 md .  The man can go 3.15 m  up the 
ladder before it starts to slip. 
DOUBLE-CHECK:  It was determined that d L< , which it must be. 
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11.60. THINK: The short cylinder is brass, with 3
B 8.60 g/cmρ = , with dimensions 2 4.00 cmr =  and 

2 4.00 cm.d =  The longer cylinder is aluminum, with 3
A 2.70 g/cmρ =  and dimensions 1 2.00 cmr =  and 

1 20.0 cm.d =  Determine (a) its center of mass (com) and (b) if it is in equilibrium, and if it is a stable 
equilibrium. 
SKETCH:  Not necessary. 
RESEARCH:  Since these objects have uniform densities, their individual center of mass will be at their 
geometric centers, ( / 2, )d r .  Then determine the composite center of mass from  

1
i ix x m

M
= ∑  and 1

i iy y m
M

= ∑ . 

Their individual masses can be found from m Vρ=  where 2V r dπ=  for a cylinder.  The object will be in 
equilibrium if its X com is located within its support base, in this case the shorter brass cylinder. 
SIMPLIFY:  2 2

B B B B 2 2 B 2 2( ) ,m V r d r dρ ρ π πρ= = =  2
A A 1 1 ,m r dπρ=  B AM m m= +  

Taking the bottom left corner as the origin of the coordinate system, 

 B B A A 2 B 2 1 A
1 1 1 1( ) ( ) ,

2 2
x x m x m d m d d m

M M
 

= + = + + 
 

 B B A A 2 B 2 A 2
1 1( ) ( )y y m y m r m r m r
M M

= + = + =  

( Am  is centered at 2r  in the y-direction). 
CALCULATE:  

(a) ( )( ) ( )23
B 8.60 g/cm 4.00 cm 4.00 cm 1729 g,m π= =  

( )( ) ( )23
A 2.70 g/cm 2.00 cm 20.0 cm 678.6 g,m π= =  

1729 g 678.6 g 2408 g,M = + =       

( ) ( )    
= + + =    

    

1 1 14.00 cm 1729 g 4.00 cm 20.0 cm 678.6 g 5.38 cm,
2408 g 2 2

x  and  

( )( ) ( )( )( )= + =
1 4.00 cm 1729 g 4.00 cm 678.6 g 3.9998 cm.

2408 g
y  

(b)  Since the x center of mass is to the right, outside of the brass cylinder, the object is not in equilibrium. 
It will tip over. 
ROUND:  To three significant figures, the center of mass is located at (5.38 cm, 4.00 cm). 
DOUBLE-CHECK: Given how the object is assembled, we expect y com to be at r2.  The value for x center 
of mass should be closer to the more massive object’s x center of mass, as it is. 

11.61. THINK: An object’s potential energy is ( ) ( )4 2 22U x a x b x= − , where a and b are both positive.  

Determine the locations of any equilibrium points, and their classification (stable, unstable, indifferent). 
SKETCH:  Not necessary. 
RESEARCH:  Equilibrium points exist where ( ) / 0dU x dx = . Their classification can be determined from 

( )
( )

0

2

2

x

d U x

d x
, where 0x  is the equilibrium point. 

SIMPLIFY:  First, find the derivative of U: 

 ( ) ( )( )4 2 22 .d dU x a x b x
dx dx

= −  

Setting the derivative of ( )U x  to zero yields ( )( )− + =0 0 04 0.ax x b x b  Then, = = ±0 00 and x x b  are the 
three equilibrium points. Now, 

( ) ( )
2

3 2 2 2
2 4 4 12 4 .

d U x d ax ab x ax ab
dxdx

= − = −  
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When 0 0,  x =  

 
( )

( )
0

2
2

2

0

4 0,
x

d U x
ab

d x
=

= − <  since a > 0. Therefore = 0x  is an unstable equilibrium point. 

When ,x b= ±  

( )
( )

0

2
2 2 2

2
12 4 8 0,  

x b

d U x
ab ab ab

d x
=±

= − = > since a > 0. Therefore x b= ± are stable equilibrium points. 

CALCULATE: Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK: The first derivative of ( )U x  is a third order polynomial, and should have a maximum 
of three distinct roots, corresponding to at most three equilibrium points. 

11.62. THINK:  The two-dimensional square is centered at the origin of the x-y plane, and has mass, 

s 2.00 kg,m =  and sides of length, 20.0 cm.l =   A point mass, 2
p 2.00 10  g 0.200 kgm = ⋅ =  is placed at one 

corner of the square.  Where must the support, S, be placed to keep the system in equilibrium? S has 
coordinates ( , )x y . The square has a uniform mass density. 
SKETCH:   

 
RESEARCH:  The support must be placed at the system’s center of mass. Since the square has a uniform 
mass density, its center of mass is at the origin. The point mass’s center of mass is at 

( ) ( )p p, / 2, / 2 ,x y l l= − − since it is a point mass.  Use the formulas for finding the center of mass in terms 

of the x- and y-coordinates: 

i i
1x x m
M

= ∑  and  
1 .i iy y m
M

= ∑  

SIMPLIFY:  The combined mass is s pM m m= + . The x-coordinate of the point mass is: 

 ( )s s p p p p p p
1 1 1 1 ,

2 2
l lx x m x m x m m m

M M M M
− 

= + = = = − 
 

 

 and the y-coordinate is: 

( )s s p p p p p p
1 1 1 1 .

2 2
l ly y m y m y m m m x

M M M M
− 

= + = = = − = 
 

 

CALCULATE: 2.00 kg 0.200 kg 2.200 kg,M = + =   

( )1 20.0 cm 0.200 kg 0.90909 cm
2.200 kg 2

x y  
= = − = − 

 
 

ROUND:  With three significant figures in each given value, the center of mass, and therefore the 
support’s location, is ( )0.909 cm, 0.909 cm .− −  
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DOUBLE-CHECK:  The center of mass should be in the same quadrant as the point mass, but closer to 
the more massive object’s center of mass. The fact that x=y is consistent with the fact that the center of 
mass of two objects is on the line joining their center of masses. The ratio of the distances from mp to S and 
S to the origin is 10:1, which is the inverse of the ratio of the masses, 0.200:2.00. This indicates that the 
correct result was obtained. 

11.63. THINK:  Person B has a mass twice that of person A, that is, 2 .B Am m=  The board’s mass is b /2.Am m=   
Assume the board’s weight acts at its center, / 2L , where L is the length of the board.  To determine the 
distance, x, from the edge of the board that person A can stand without tipping the board, balance the 
torques around a pivot point. The two natural choices for the pivot point are the two support points of the 
board. In this case, we note that if the board tips in a counterclockwise direction, the right support will not 
contribute to the torque.  If the board tips in a clockwise direction, the left support will not contribute to 
the torque. 
SKETCH:   

 
 
RESEARCH:  First, consider the case of the board tipping in the clockwise direction.  The pivot point 
must be the right support and the left support will not contribute.  The torque due to the weight of the 
board is zero because the moment arm is zero.  The counterclockwise torque is 

( ) ( ) ( ) ( )3 / 8 2 3 / 8 3 / 4 .B A Am g L m g L m gL= = The maximum clockwise torque with 0x =  is 

( ) ( )/ 2 1/ 2 .A Am g L m gL=  Thus, the board cannot tip in the clockwise direction. 
 We then consider the case of the board tipping in the counterclockwise direction.  The pivot point is the 
left support.  The counterclockwise torque due to person B is ( )/ 8B Bm g Lτ = . The clockwise torque due 

to person A is ( )( )3 / 4 ,AA m g L xτ = −  and the clockwise torque due to the board is ( )b b / 4 .m g Lτ =  

   SIMPLIFY: In static equilibrium, we have net 0τ = , so we can write 

  
( ) ( )( ) ( )

counterclockwise, clockwise

bB

,

/ 8 3 / 4 / 4 .

i j
i j

Am g L m g L x m g L

τ τ=

= − +

∑ ∑
 

   Now we express all terms as multiples of Am m=  

    ( ) ( ) ( )( ) ( ) ( )2 / 8 3 / 4 / 2 / 4 .m g L mg L x m g L= − +  

   This gives us 

  
( )( ) ( )( ) ( )( )

( )

2 / 8 3 / 4 1/ 2 / 4
/ 4 3 / 4 / 8

5 / 8 .

L L x L
L L x L

x L

= − +

= − +

=  

   

CALCULATE:  Not applicable. 
ROUND:  Not Applicable 



Chapter 11: Static Equilibrium 

 557 

DOUBLE-CHECK:  Our result for x is somewhat surprising since this means that person A is standing to 
the left of the right support.  However, it seems reasonable because person B is standing so close to the 
pivot point at the left support and the center of mass of the board is to the right of the left support.  Thus 
person A must stand closer to the left support to tip the board in a counterclockwise direction. 

11.64. THINK:  The SUV has height, h, wheelbase, b, and its center of mass is marked on the diagram, hα above 
the ground and midway between the wheels.  It enters a turn of radius R b>>  with speed, v, and the 
coefficient of static friction is sµ .  Determine the following. 
(a)  the speed required to skid, skidv , when sf Nµ=  
(b)  the speed required to tip, tipv  

(c)  the maximum value for α  (in terms of b, h, and µ ) for skid tipv v<  

Use the convention that a counter-clockwise torque is positive. Choose the center of mass as the pivot 
point. 
SKETCH:   

 
RESEARCH:  To determine skidv , use net,x xF F=∑ .  To determine tipv , balance the torque on the SUV so 

that net 0τ = .  s s ,f Nµ=  and in this case, gN m= .  2
c /a v R=  is the centripetal acceleration. 

SIMPLIFY: 

(a)   = skid ;v v 2
net, s c s s s skid s    /   xF f ma N mg v R g v gRµ µ µ µ= ⇒ = = ⇒ = ⇒ =  

(b)  The moment arm from N to mg is b/2. The moment arm from sf  to mg is .hα  Balancing these 

torques yields ( ) ( )s / 2 0.f h N bα− + =  From net ,xF F=∑  it is known that 2
s tipc / .f ma mv R= =  Then, 

( ) ( )
2

tip
tip

1 1   .
2 2 2

mv gbR
h Nb mg b v

R h
α

α

 
  = = ⇒ =
 
 

 

(c)  From skid tip ,v v<  s
s

    .
2 2 2s

gbR gbR bgR gR
h h h

µ µ α
α α µ

< ⇒ < ⇒ <  

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  skidv  should depend on sµ  and R, while tipv  should depend on the dimensions of the 

SUV and R.  

11.65. THINK:  The plank’s length is L = 8.00 m and its mass is M = 100. kg. The cube’s width is S = 2.00 m. The 
person’s mass is m = 65.0 kg. Determine the distance from the center of the plank, x, the person can reach 
before tipping the plank. 
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SKETCH:   

 
RESEARCH:  The plank will tip when the plank and person system’s center of mass is on the edge of the 
cube (1.00 m from the center). The person’s location can be determined by using 

tot

1 ,i iX x m
M

= ∑  

and taking the plank’s center as the origin. Assume the plank’s center of mass is at its center (at the origin).  
Then the position of the center of mass of the plank 0.Mx =   

SIMPLIFY:  ( ) tot
tot tot

1 1 1  M m m mX Mx mx mx x M X
M M m

= + = ⇒ =  

CALCULATE:  ( )( )1 100. kg 65.0 kg 1.00 m 2.54 m
65.0 kgmx

 
= + = 
 

 

ROUND:  The answer should have three significant figures, so 2.54 m.mx =  The man can walk 2.54 m 
from the center before tipping the plank. 
DOUBLE-CHECK:  mx  must be less than half the length of the board in order for the answer to be valid.  

11.66. THINK:  The board’s weight is mg = 120.0 N, its length is L = 5.00 m, the distance is d = 1.00 m, and the 
box’s weight is Mg = 20.0 N. Determine the tension in each rope, AT  and B .T   
SKETCH:   

 
RESEARCH:  Two equations are required because there are two unknowns. Use the static equilibrium 
equations, ,net 0y yF F= =∑  and net ccw cw 0.τ τ τ= − =∑ ∑  Assume the board’s weight acts at its center, L/2. 

SIMPLIFY:  From ,net 0,yF =  A B A B0  .T T Mg mg T Mg mg T+ − − = ⇒ = + −  Choose the left edge as a 

pivot point. Then from net 0,τ =  

( )− − − =B 0,
2
LT L d Mgd mg  B

1
2 .

Mgd mgL
T

L d

+
=

−
 

CALCULATE:  

( )( ) ( )( )
B

120.0 N 1.00 m 120.0 N 5.00 m
2 80.0 N,

5.00 m 1.00 m
T

+
= =

−
 

A 20.0 N 120.0 N 80.0 N 60.0 NT = + − =  
ROUND:  Since L, d and Mg have three significant figures, the results remain A 60.0 NT =  and 

B 80.0 N.T =  
DOUBLE-CHECK: The total tension must equal the total weight of the system, and due to the 
configuration, it is not expected that A B .T T=   
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11.67. THINK:  The only forces acting on the air freshener are the tension in the string and the force of gravity.  
The vertical component of the tension must balance the force of gravity while the horizontal component of 
the tension will cause the air freshener to accelerate in the positive x-direction. 
SKETCH:   

 
RESEARCH:  The sum of the forces in the x-direction is   Fx∑ =T sinθ =ma.  The sum of the forces in the 

y-direction is cos 0 cos .yF T mg T mgθ θ= − = ⇒ =∑  

SIMPLIFY: Divide the two equations to get: 
θ θ θ
θ θ
= ⇒ = =

sin sin tan ,
cos cos

T ma a
T mg g

 which implies 

1tan .a
g

θ −  
=  

 
 

CALCULATE:  
2

1
2

5.00 m/stan 27.007
9.81 m/s

θ −  
= = ° 

 
 

ROUND:  Since a has three significant figures, 27.0 .θ = °  
DOUBLE-CHECK:  θ  is expected to be 0 90 .θ< < °  The size of the angle, 27.0θ = ° is consistent with an 
angle someone might realistically observe in their own car. 

11.68. THINK:  The barbell has length, L = 2.20 m, and is supported at L /5 from each end. The weight has a 
mass of M = 22.0 kg. Determine the barbell’s mass, m. The barbell is a uniform rod, so its center of mass is 
located at m / 2.x L=  
SKETCH:   

 
RESEARCH:  The barbell will not tip if the weight-barbell system’s center of mass is not less than X = L/5 
from the end that the weight is being attached to. The mass, m, can be determined from 

tot

1 .i iX x m
M

= ∑  

Take the end at which the weight is attached as the origin of the coordinate system. 

SIMPLIFY:  ( )m
tot

1
MX Mx mx

M
= +  

0,Mx =  so, ( )tot
m

1 2 2 2 .m M X M m X MX mX
x L L L

= = + = +  Then, 
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2 22
5 25 .

2 32 2 11 1
55

LM MMX LLm M
LX

L L

 
 
 = = = =

    −− −   
   

 

CALCULATE:  ( )= =
2 22.0 kg 14.67 kg
3

m  

ROUND:  Since M has three significant figures, m = 14.7 kg. 
DOUBLE-CHECK:  Given the barbell’s length and support locations, m < M.  

11.69. THINK:  The board’s length is L = 5.00 m and its mass is M = 50.0 kg. A girl of mass, gm 45.0 kg,=  sits at 

the left end and a boy of mass, bm 60.0 kg,=  sits at the right end. For static equilibrium, determine the 
pivot’s position, X. 
SKETCH:   

 
RESEARCH:  For static equilibrium, the pivot must be placed at the boy-girl-board system’s center of 
mass. Take the girl’s position to be the origin of the coordinate system and assume the board’s weight acts 
at its center, L/2. X can be determined from 

tot

1 .i iX x m
M

= ∑  

SIMPLIFY:  tot b g ,M m m m= + +  ( ) ( )M b b g g b g
tot tot

1 1 1   0
2

X x m x m x m X mL m L x
M M

 = + + ⇒ = + = 
 

 

CALCULATE:  tot 50.0 kg 60.0 kg 45.0 kg 155.0 kgM = + + =  

( )( ) ( )( ) ( )1 1 150.0 kg 5.00 m 60.0 kg 5.00 m = 125 kg m 300 kg m 2.7419 m
155.0 kg 2 155.0 kg

X  
= + ⋅ + ⋅ = 

 
 

ROUND:  To three significant figures, X = 2.74 m. 
DOUBLE-CHECK:  It must be that X < L, and it is expected that X is closer to the boy’s end than the girl’s 
end since he has more mass.  

11.70. THINK:  The masses of objects 1 and 3 are 1 6.40 kgm =  and 3 3.20 kg.m =  The bar’s length is L = 0.400 
m and the distance is x = 0.160 m. Determine object 2’s mass, 2 .m  
SKETCH:   

 
RESEARCH:  The total mass of 2 3 and m m  must first be determined.   Use net ccw cw 0τ τ τ= − =∑ ∑  to 

determine 2 3 ,m m+  as the system is in static equilibrium. 
SIMPLIFY: Since 1T  is unknown, choose its location as a pivot point. Then, 

( ) ( )τ = + − − =net 2 3 1 0m m gx m g L x ⇒  
( )1

2 3

m L x
m m

x
−

+ = , and 
( )1

2 3

m L x
m m

x
−

= − . 



Chapter 11: Static Equilibrium 

 561 

CALCULATE:  
( )( )

2 3

6.40 kg 0.400 m 0.160 m
9.60 kg,

0.160 m
m m

−
+ = =   2 9.60 kg 3.20 kg 6.40 kgm = − =  

ROUND:  Since 2 ,m  L and x have three significant figures, the result remains 2 6.40 kg.m =  
DOUBLE-CHECK:  Since the pivot point, 1 ,T  is closer to 2 ,m  it is expected that 2 3 ,m m>  as it is.  

11.71. THINK:  The given values are 1 1.00 m,L =  2 0.200 kg,M =  2 0.200 m,L =  d = 0.550 m, m = 0.500 kg and 
y = 0.707 m. Determine 1.M  
SKETCH:   

 
RESEARCH:  The beam, 1 ,B  is in static equilibrium, so use τ τ τ= − =∑ ∑net ccw cw 0  to determine 1.M  

Assume 1M  acts at the center of 1B  (a distance 1 / 2L  along the beam). 
SIMPLIFY:  The force of the support on 1B  at point, 1 ,P  is not known, so choose this as a pivot point. 

Note ( )1
1cos /y Lθ −=  and T = mg. Now, 

( )
τ θ θ θ

θ
−

= + − = ⇒ = + − ⇒ = 21
net 1 2 1 1 1 2 1

1

21sin cos 0  0 sin   .
2 2 sin

my M dL
M g M gd TL M gL M gd mgy M

L
 

CALCULATE:  1 0.707 mcos 45.0
1.00 m

θ −  
= = ° 

 
 

( )( ) ( )( )( )
( ) ( )1

2 0.500 kg 0.707 m 0.200 kg 0.550 m 0.3535 kg m 0.110 kg m
2 0.6887 kg

0.707 m1.00 m sin 45.0
M

− − 
= = = °  

 

ROUND:  To three significant figures, 1 0.689 kg.M =  
DOUBLE-CHECK:  Compared to the other masses given in the problem, this result is reasonable.  

11.72. THINK:  The length and mass of beam, 1 ,B  are 1 1.00 mL =  and 1 0.6887 kgM =  (from the result of the 
previous problem). In addition, 2 0.200 m,L =  2 0.200 kg,M =  d = 0.550 m, m = 0.500 kg and y = 0.707 m. 
Determine the net torque, net ,τ  at 1 2 3,   and .P P P  
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SKETCH:  Consider 1B  only. 

 
RESEARCH:  To determine net ,τ  use net ccw cw .τ τ τ= −∑ ∑  Note ( )1

1cos /y Lθ −=  and since 1B  is 

assumed to have no acceleration in any direction, it must be that 0xF =∑  and 0.yF =∑  

SIMPLIFY:  From 0,xF =∑  the normal force, N, at 1P  from the stand (not drawn) is N = T, where T = 

mg. From 0,yF =∑  the frictional force, f, at 1P  from the stand is ( )1 2 .f g M M= +  Also, note in the 

sketch that 1/ sin / 2.d Lα θ= >  The balance of forces about the pivot points are as follows. 

For pivot point 1 :P  ( )τ α θ θ θ

α θ θ θ θ

= + − °−

 
= + − = + − 

 

1
net 2 1 1

2 1 1 1 2 1 1

sin sin sin 90
2

1 1sin sin cos sin .
2 2

L
M g M g TL

M g M gL mgL g M d M L my

  

For pivot point 2 :P  

( ) ( ) ( ) ( )

( ) ( )

τ α θ α θ α θ α θ

α θ α θ α θ α θ

α θ α θ θ α θ α θ θ α θ

θ θ

 
= − − ° − − − ° − − ° − 

 
 

= + − − − − − 
 

= + − + − + −

 
= − + 

 

1
net 1 1

1
1 2 1 1

1 2 1 1 1 1

2 1 1 1

sin sin 90 sin 180 sin 90
2

sin cos sin cos
2

1sin sin cos cos sin sin cos
2

1cos sin .
2

L
f T L M g N

L
g M M T L M g T

M g M g TL T M g M gL T

g M d mL M L

 

For pivot point 3 :P  

( ) ( ) ( ) ( )

( ) ( )

τ θ α θ θ θ

θ α θ θ θ

θ θ θ α θ θ θ

θ θ

= − − °− − ° − − ° −

= + − − − −

= + − + − −

 
= + − 

 

1
net 1 2 1 1 1

1 2 1 2 1 1 1 1

1 1 2 1 2 1 2 1 1 1

1 1 2 1

sin sin 180 sin 180 sin 90
2

1sin sin sin cos
2

1sin sin sin sin sin cos
2

1 sin cos .
2

L
fL M g L M g NL

g M M L M g L M gL TL

M gL M gL M gL M g M gL mgL

g M L M d mL

 

CALCULATE:  1 0.707 mcos 45.0
1.00 m

θ −  
= = ° 

 
 

For 1 :P  ( ) ( )( ) ( )( ) ( ) ( )( )

( )( )

τ  
= + ° − 

 
= + − =

2
net

2

19.81 m/s 0.200 kg 0.550 m 0.6887 kg 1.00 m sin 45 0.500 kg 0.707 m
2

9.81 m/s 0.110 kg m 0.2435 kg m 0.3535 kg m 0.
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For 2 :P  

( ) ( )( ) ( )( ) ( ) ( )( ) ( )

( )( )

τ  
= − ° + ° 

 
= − + =

2
net

2

19.81 m/s 0.200 kg 0.550 m 0.500 kg 1.00 m cos 45 0.6887 kg 1.00 m sin 45
2

9.81 m/s 0.110 kg m 0.3535 kg m 0.2435 kg m 0.

 

For  3 :P   

( ) ( )( ) ( )( ) ( )( )

( )( )

τ  
= ° + − ° 

 
= + − =

2
net

2

19.81 m/s 0.6887 kg 1.00 m sin45 0.200 kg 0.550 m 0.500 kg 1.00 m cos45
2

9.81 m/s 0.2435 kg m 0.110 kg m 0.3535 kg m 0.

 

ROUND:  Not applicable.   
DOUBLE-CHECK:  In static equilibrium, the torque about any pivot point must be zero.  

11.73. THINK:  The beam’s mass is M = 50.0 kg, the hanging mass is m = 20.0 kg, the cable length is l = 3.00 m 
and its attachment height above the hinge is h = 4.00 m. Determine (a) the tension in the cable and the 
rope, cT  and r ,T  respectively, and (b) the forces that the hinge exerts on the beam, f and N. 
SKETCH:   

 
RESEARCH:  The beam is in static equilibrium, so use 0,xF =∑  0yF =∑  and net ccw cw 0.τ τ τ= − =∑ ∑     

SIMPLIFY:  Note ( )1tan /l hθ −=  and 2 2L l h= +  is the beam length. 

(a)  From 0yF =∑  on the hanging mass, r .T mg=  To determine c ,T  use the hinge as a pivot point. Also, 

assume the beam’s weight, ,Mg  acts at its center, L/2. Then, 

( )τ θ θ θ

θ θ θ θ θ

 
= ° − − − = 

 
 

⇒ = − − ⇒ = + = + 
 

net c r

c r c r r

sin 90 sin sin 0
2

1 1 1 0 cos sin sin   tan tan .
2 2 2

LT L Mg T L

lT L MgL T L T Mg T Mg T
h

 

(b)  From 0xF =∑  on the beam, it can be seen that c .N T=  From 0yF =∑  on the beam, it can be seen 

that r .f Mg T= +  
CALCULATE: 

(a)  ( )( )2
r 20.0 kg 9.81 m/s 196.2 N,T = =  ( )( )2

c
3.0 m 1 50.0 kg 9.81 m/s 196.2 N 331.1 N
4.0 m 2

T   
= + =  
  

 

(b)  ( )( )250.0 kg 9.81 m/s 196.2 N 686.7 Nf = + =  

ROUND:  The least precise values given in the question have three significant figures. The results should 
be rounded to: 
(a) =r 196 N,T  =c 331 NT   
(b) = = =c 331 N,xF N T = = 687 NyF f  
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DOUBLE-CHECK:  All of the results have units of force, as they should. Since the steel cable is supporting 
both the beam and the hanging mass, it is expected to have a greater tension than the rope, which only 
supports the hanging mass. This is consistent with the calculated results. 

11.74. THINK:  The bar’s mass and length are M = 100. kg and L = 5.00 m. The cable is attached to the wall a 
distance D = 2.00 m above the bar. Determine (a) the tension, T, on the cable, and (b) the horizontal and 
vertical components of the force, Hf  and V ,f  on the bar at point A.  
SKETCH:   

 
RESEARCH:  Use τ τ τ= − =∑ ∑net ccw cw 0,  since the bar is in static equilibrium. Also, 0xF =∑  and 

0.yF =∑  Assume the bar’s weight acts at its center, L/2. 

SIMPLIFY:  Note that ( )1tan / .D Lθ −=  

(a)  Choose point A as a pivot point: ( )τ θ
θ

 
= − ° = ⇒ = 

 
net sin sin 90 0  .

2 2sin
MgLTL Mg T  

(b)  From 0,xF =∑  H cosf T θ= and from 0,yF =∑  V sin .f Mg T θ= −   

CALCULATE:  1 2.00 mtan 21.8
5.00 m

θ −  
= = ° 

 
 

(a)  
( )( )

( )
= =

°

2100. kg 9.81 m/s
1321 N

2sin 21.8
T  

(b)  ( ) ( )H 1321 N cos 21.8 1227 N,f = ° =  

 ( )( ) ( ) ( )2
V 100 kg 9.81 m/s 1321 N sin 21.8 490 Nf = − ° =  

ROUND:  Since each given value has three significant figures, the results should be rounded accordingly. 
(a)  T = 1320 N 
(b)  H 1230 Nf =  and V 490. N.f =  
DOUBLE-CHECK:  Since T point up and towards the wall, it is expected that H V .f f>   

11.75. THINK:  Given the mobile sketched in the problem, determine 1 2 3,  and m m m  using the equations of 
static equilibrium. 
SKETCH:  Consider the following subsystems of the given mobile. 

 
1.50",a =  3.00",b =  3.00",c =  1.00",d =  1.50",e =  7.50",f =  6.00",h =  9.00",i =  =h 0.0600 kgm  and 
=m 0.0240 kg.m  
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RESEARCH:  The mobile is in static equilibrium, so use 0,xF =∑  0,yF =∑  net ccw cw 0.τ τ τ= − =∑ ∑  

Note all angles are 90 ,°  so sinFd θ  becomes .Fd  
SIMPLIFY:  1 :m  choose 1T  as a pivot point on the a-b bar. Then, 

net 1 h 1 h0  .abm g am g m m
b

τ = − + = ⇒ =  

2 :m  From 0yF =∑  on the a-b bar, it is seen that ( )1 1 .hT g m m= +  Choose 2T  as a pivot point on the c-d 

bar. Then, 1
net 1 2 20  .

T d
T d m gc m

gc
τ

 
= − + = ⇒ =  

 
 

3 :m  From 0yF =∑  on the c-d bar, it can be seen that 2 1 2 .T T m g= +  From 0yF =∑  on the e-f bar, it can 

be seen that ( )3 2 m 1 m 2 .T T m g T g m m= + = + +  Choose 4T  as pivot point on the h-i bar. Then, 

3
net 3 3 30  .

T h
m gi T h m

gi
τ = − + = ⇒ =      

CALCULATE:  ( )= =1
1.50 " 0.0600 kg 0.0300 kg,
3.00 "

m  ( )( )= + =2
1 9.81 m/s 0.0300 kg 0.0600 kg 0.8829 NT  

( )( )
( )( )

= =2 2

0.8829 N 1.00 "
0.0300 kg,

9.81 m/s 3.00 "
m  ( )( )= + + =2

3 0.8829 N 9.81 m/s 0.0240 kg 0.0300 kg 1.41264 NT  

( )( )
( )( )3 2

1.41264 N 6.00 "
0.0960 kg

9.81 m/s 9.00 "
m = =  

ROUND:  Three significant figures: =1 0.0300 kg,m  =2 0.0300 kgm  and =3 0.0960 kg.m  
DOUBLE-CHECK:  Given the mobile arrangement, it is expected that 1 hm m<  and 3 1 2, .m m m>   

11.76. THINK: The rod of length, L, has a mass of m = 2.00 kg. The variable force is given by 

( ) ( )( )4
15.0 N /F x x L=  from the left end (where x = 0, at the pivot point). Determine where the point x 

where the force should be applied for static equilibrium. Use the convention that counter-clockwise 
torques are positive. 
SKETCH:   

 
RESEARCH:  For static equilibrium, net 0.j

j

τ τ= =∑  Assume the rod’s weight acts at its center, L/2. 

SIMPLIFY:  ( ) ( ) ( )

1/5
4

net 4

10  15.0 N
2 2 2 15.0 N

mgL xmg F x x mgL x x L
L

τ
   

= − + = ⇒ − + ⇒ =           
 

CALCULATE:  
( )( )

( )

1/5
22.00 kg 9.81 m/s

0.9186
2 15.0 N

x L L
 
 = =
 
 

 

ROUND:  Since each given value has three significant figures, so round the final answer to x = 0.919L. 
DOUBLE-CHECK:  It is expected that / 2 .L x L< <  The force supplied at x = 0.919L is 

( )
4

0.9186(0.9186 ) 15.0 N 10.7 N.LF L
L

 
= = 

 
Since the weight is about 20 N, this is a reasonable force. 
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11.77. THINK:  The rod is L = 2.20 m long and has a mass, M = 8.13 kg. The two chains are d = 0.20 m from each 
end. The lights of mass, m = 7.89 kg, are 1 0.65 mx =  and 2 1.14 mx =  from the left end of the rod. Find 
the tension, 1T  and 2 ,T  in each chain. Assume the rod’s weight acts at its center, L/2, and that it is in static 
equilibrium. Use the convention that a counter-clockwise torque is positive. Choose the point where the 
left chain is attached as the pivot point. 
SKETCH:   

 
RESEARCH:  For static equilibrium, net 0

j
jτ τ= =∑  and 0.yF =∑  

SIMPLIFY:  Choose 1T  as a pivot point and solve for 2 :T  

( ) ( ) ( )
( )1 2

net 1 2 2 2

2
2

2 0  .
2 2

Lmg x x d Mg d
Lmg x d Mg d mg x d T L d T

L d
τ

 + − + −    = − − − − − − + − = ⇒ =  − 
 

From 0,yF =∑  ( )1 2 1 22 0  2 .T T Mg mg T g m M T+ − − = ⇒ = + −   

CALCULATE:  

( )( ) ( )( ) ( )( )
( )

2 2

2

2.20 m7.89 kg 9.81 m/s 0.65 m 1.14 m 2 0.20 m 8.13 kg 9.81 m/s 0.20 m
2

2.20 m 2 0.20 m
99.648 N

T

 + − + − 
 =

−
=

 

( ) ( )( )2
1 9.81 m/s 2 7.89 kg 8.13 kg 99.648 N 134.91 NT = + − =  

ROUND:  In the calculation, each factor in the quotient has three significant figures. Therefore, the 
answers should be rounded to 2 99.6 N,T = and 1 135 N.T =  
DOUBLE-CHECK: The tensions both have units of newtons, which is appropriate. From the pipe’s 
configuration, 1T  and 2T  should be different, which is the case. 

11.78. THINK:  The diving board’s length and mass are L = 2.00 m and b  12.0 kgm = and it is h = 3.00 m above 
the water. Two attachments, one at the back edge and the other at d = 0.250 m from the edge, hold the 
board in place. Assume the board has uniform density. Determine (a) the forces on each attachment (take 
downward as positive), and (b) the forces on each attachment if a diver with mass, d  65.0 kgm = , stands 
on the front end. Use the convention that a counter-clockwise torque is positive. Let 1F  be the force at the 
first attachment, and let 2F  be the force at the second attachment. Start with the assumption that F1 and F2 
are both upward. If the signs of their forces are found to be negative, then they are downward forces. 
SKETCH:   
  (a)     (b) 
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RESEARCH:  Assume static equilibrium. net 0
j

jτ τ= =∑  and 0.yF =∑  Note 90θ = °,  so sin .Fd Fdθ =  

Since the board has uniform density, the board’s weight acts at its center, L/2 from the end.  
SIMPLIFY:   

a) No diver:  Choose F2 as a pivot point. The net torque is net 1 b 0
2
LF d m g dτ  

= − − − = 
 

 

b1 1
2
LF m g
d

 ⇒ = − − 
 

. This value will be negative when L > 2d. Next, choose 1F  as a pivot point. The net 

torque is given by net 2
b

b2 0  .
2 2

m gLLF d m g F
d

τ  = − = ⇒ = 
 

Note that 2 0,F >  implying the force is upward.  

b) With the diver: Choose 2F ′  as a pivot. The net torque is given by 

( )b d bt dne 1 10  1 1 .
2 2
L L LF d m g d m g L d F g m m

d d
τ

      ′ ′= − − − − − = ⇒ = − − + −      
      

 

As before, 1F ′  acts downward. Next, choose 1F  as a pivot point. The net torque is given by 

b d b dnet 2 2
10  .

2 2
gLLF d m g m gL F m m
d

τ    ′ ′= − − = ⇒ = +   
   

 

As before, 2F ′  acts upward. 
CALCULATE:   

(a) ( )( ) ( )
2

1
2.00 m12.0 kg 9.81 m/s 1 353.2 N

2 0.250 m
F

 
= − − = −  

 

( )( ) ( )
2

2
2.00 m12.0 kg 9.81 m/s 470.9 N

2 0.250 m
F

 
= =  

 
 

(b) ( ) ( )
( )( )

( )

2
1

2

2

2.00 m 2.00 m9.81 m/s 12.0 kg 1 65.0 kg 1 4817 N
0.250 m2 0.250 m

9.81 m/s 2.00 m 1 12.0 kg 65.0 kg 5572 N
0.250 m 2

F

F

    ′  = − − + − = −        

 ′ = + = 
 

 

ROUND:  Each given value has three significant figures, so the results should be rounded to  
(a) 1 353 N,F = − and 2 471 NF =   
(b) 1 4820 N,F ′= −  and 2 5570 NF ′ =  
DOUBLE-CHECK:  For static equilibrium, 1F  must be downward on the board while 2F  is upward on the 

board. With the diver, 1F  and 2F  must increase significantly. This is what the computed values confirm. 

11.79. THINK:  Depending on whether the box is pushed or pulled, it will pivot about point R or L, respectively. 
This will not affect the solution; so choose L as the pivot point. If we pivot about L, then the force we apply 
at the handle should be perpendicular to its moment arm in order to generate maximum torque for a given 
force, i.e. point in horizontal direction.  If we want to find the minimum force needed for tipping, then it 
would be a good starting point to try this first.  However, we need to be able to generate a force of static 
friction at least as big as this horizontal force; otherwise we cannot prevent slipping.  As we will see below, 
the numbers indeed work out in such a way that the force needed is bigger than the friction force that the 
weight of the box alone can provide.  In order to increase the friction force, we need to increase the normal 
force between the box and the ground beyond the weight of the box.  We can accomplish this by applying 
some downward force component at the handle.  (BTW, this downward force component does not 
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contribute to the torque, because it is parallel to the moment arm.) Let’s call the horizontal force 
component xF  and the vertical component yF . 
SKETCH:   

 
RESEARCH:  The equations for equilibrium are for the 
• x-component of the forces: − + = 0xF f , where f  is the friction force between box and ground 
• y-component of the forces: + − = 0yF N mg  

• torques: τ α= − =1
net 2g 0xF m w  

Here we assume that the force is directed to the right and upward.  We do not know if the force has a 
positive or negative y-component.  We assumed a positive value, but if it turns out to be negative, then our 
assumption was incorrect, and the y-component is negative. 
For the case of the maximum friction force without slipping, we have µ= s .f N  
SIMPLIFY: From the equation for zero net torque we obtain 

τ α
α

= − = ⇒ =1
net 2

g
g 0  .

2x x
m w

F m w F  

From + − = 0yF N mg  we can solve for the y-component of the force: 
µ µ= − = − = −/ / .y xF mg N mg f mg F  

 Then the magnitude of the force is = +2 2 .x yF F F  

With xF  and yF  known, the direction of F is given by ( )θ −= 1tan / .y xF F  
CALCULATE:   

(a) 
( )( )( )

( )
= =

220.0 kg 9.81 m/s 0.300 m
58.86 N,

2 0.500 mxF   

and ( )( )= − = −2 58.86 N20.0 kg 9.81 m/s 14.01 N.
0.280yF  

Thus the y-component of the force is in the negative y-direction. 

Then,  ( ) ( )= + =
2258.86 N 14.01 N 60.50 N.F  

(b) θ − − = = − ° 
 

1 14.01 Ntan 13.39
58.86 N

 , so below the horizontal. 

ROUND:  The least precise value given in the question has two significant figures. The answers should be 
rounded so they also have two significant figures. Therefore, the minimum force is 60.5 N and is directed 
at an angle of °13.4  below the horizontal. 
DOUBLE-CHECK:  Since the y-component of the force turned out to have a negative value, this indeed 
implies that we had to apply some downward force to prevent the box from slipping. Just to make sure that 
our solution is consistent, we can calculate the product of the box’s weight and the coefficient of friction 
and make sure that this product is really smaller than our result for the horizontal component of the force, 

( )µ = =2
s 0.280 (20.0 kg)(9.81 m/s ) 54.94 N.mg  This is indeed smaller than our result for xF , which shows 

that some downward force component was indeed needed.  

11.80. THINK: The torque exerted by a torsional spring is proportional to the angle over which it is displaced.  
The initial angular displacement gives the spring constant.  The additional torque added by the hanging 
mass will create further angular displacement.The arm’s mass is m = 0.0450 kg and is l = 0.120 m long. The 
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equilibrium angle is 0 17.0 .θ = °  A mass, M = 0.420 kg, hung d = 0.0900 m from the axle creates a new 
angular displacement, ,θ where τ κθ=  (κ is a constant). It is useful to use radians, when dealing with 
angular displacement, so 17.0 0.2967 rad.° = Use the convention that counter-clockwise torques are 
positive. 
SKETCH:   

 
RESEARCH:  κ  can be determined from the initial condition with no hanging mass, and then θ  can be 
determined when the mass hangs from the arm. Assume the arm’s weight acts at its center, l/2.  

SIMPLIFY: Initially, 
  
τ =κθ0  ⇒  κθ0 = −mg

l
2







sin 90°+θ0( )=  ⇒  κ = −
1
2

mglcosθ0

θ0

.  With the added 

mass, 

  

τ =κθ  ⇒  −mg
l
2







sin 90°+θ( )+ −Mgd sin 90°+θ( )=κθ  ⇒  
cosθ
θ

=
−κ

1
2

mgl + Mgd
.  

CALCULATE:  
( )( )( ) ( )20.045 kg 9.81 m/s 0.12 m cos 0.2967 rad1 0.085371 J/rad

2 0.2967 rad
κ = − = −  

( )( )( ) ( )( )( )2 2

cos 0.085371 J/rad 0.21488
1 0.045 kg 9.81 m/s 0.12 m 0.42 kg 9.81 m/s 0.090 m
2

θ
θ

= =
+

 

Solve for θ  numerically.  Here is a table of θ  in degrees and  cos θ( )/θ  with θ  in radians: 

For  θ = 73.9°,   cos θ( )/θ = 0.21501 , which is close to our value of 0.21488. 
ROUND:  The answer should be rounded to three significant figures, so 

 θ = 73.9°.  
DOUBLE-CHECK:  For an object hanging off the arm, θ  must be 

0 180θ θ< < ° .  
 
 
 
 
 
 
 
 
 

 cos()/ 
73.0 0.22947 
73.1 0.22785 
73.2 0.22623 
73.3 0.22462 
73.4 0.22301 
73.5 0.22140 
73.6 0.21980 
73.7 0.21820 
73.8 0.21660 
73.9 0.21501 
74.0 0.21342 
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Multi-Version Exercises 

11.81. THINK:  If the hinge where the bar is attached to the wall is the rotation point, then the sum of the 
clockwise torque and the counterclockwise torque is zero. The counterclockwise torque can be found from 
the mass and the length of the bar, and the clockwise torque can be used to find the tension in the cable. 

 SKETCH:  

 
 RESEARCH:  The net torque is zero, to the magnitude of the counterclockwise torque is equal to the 

magnitude of the clockwise torque, CCW CWτ τ= . The gravitational force pulling down on the bar (Fg = mg) 
causes a counterclockwise torque that is given by the equation CCW ( / 2)mg Lτ = . The clockwise torque, 
due to the tension of the cable, is given by CW sinTLτ θ= .  

 SIMPLIFY: Since the counterclockwise and clockwise torques are equal, ( )sin / 2TL mg Lθ = . Solve for the 

tension on the cable: 
2sin

mg
T

θ
= .  

 CALCULATE:  The mass of the bar is 81.95 kg and the angle between the bar and the wall is θ = 38.89°. 
Near the surface of the earth, gravitational acceleration is g = 9.81 m/s2. The tension on the cable is thus 

281.95 kg 9.81 m/s
640.2474085 N.

2sin38.89
T

⋅
= =

°
 

 ROUND: The mass and angle are given to four significant figures, so the final answer should also have 
four figures. The tension in the cable has a magnitude of 640.2 N.  
DOUBLE-CHECK: The bar has a weight of 81.95 kg · 9.81 m/s2 = 803.9 N. Since much of the weight of the 
bar is supported by the wall, it is reasonable to expect the tension on the cable to be less than the weight of 
the bar, confirming that the calculated value is a reasonable one.  

11.82. 
2sin

mg
T

θ
=  

( )( )
( )

1

2
1

sin
2

82.45 kg 9.81 m/s
sin 40.81

2 618.8 N

mg
T

θ −

−

 =  
 
 
 = = °
 
 

 

11.83. 
2sin

mg
T

θ
=  

( ) ( )
2

2 sin

2 599.3 N sin 42.75
82.94 kg

9.81 m/s

Tm
g
θ

=

°
= =
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11.84. THINK:  Since the velocity of the refrigerator is constant, the magnitudes of the friction force and the 
applied force must be equal (the total force on the refrigerator is zero so Fapp = Ff). The refrigerator is on 
the verge of tipping but does not tip over, so the weight will cause a counterclockwise torque that exactly 
balances the clockwise torque from the force pushing the refrigerator. Find equations for the torques, set 
them equal to one another, and solve for the maximum coefficient of kinetic friction.   

 SKETCH: The refrigerator is being pushed from left to right by an applied force, Fapp.  

 
 RESEARCH:  The counterclockwise torque due to weight has the same magnitude as the clockwise torque 

due to the force pushing the refrigerator, CCW CWτ τ= . The clockwise torque is due to the applied force on 

the refrigerator, and is given by ( )CW app / 2F hτ = . The counterclockwise torque is given by 

( )CCW / 2mg wτ = . The friction force f kF mgµ= is computed from the coefficient of kinetic friction and 
the normal force (the normal force is equal to the gravitational force on the refrigerator, but opposite in 
direction). 

 SIMPLIFY: Since the applied force and frictional force have the same magnitude, the clockwise torque can 
be expressed in terms of the frictional force as ( )CW f / 2F hτ = . The clockwise and counterclockwise 

torques must be equal ( CCW CWτ τ= ), so ( ) ( )f/ 2 / 2mg w F h= . Replace the frictional force in this equation 

with f kF mgµ= , and solve for the coefficient of kinetic friction to get: 

( ) ( )( )/ 2 / 2

/

k

k

k

mg w mg h
w h

w h

µ
µ
µ

=
=
=

 

 CALCULATE: The width and height of the refrigerator are given in the problem as  
1.247 m and 2.177 m, respectively. The maximum coefficient of kinetic friction is then 

/ 1.247 m / 2.177 m 0.5728066146k w hµ = = = . 
 ROUND: The dimensions of the refrigerator are given to four significant figures, so the final answer 

should also have four figures. The maximum coefficient of kinetic friction is 0.5728.  
DOUBLE-CHECK: For a refrigerator sliding across the floor, the coefficient of friction must be between 0 
and 1. The calculated value is close to the vale for steel sliding on steel, and between the value of rubber 
sliding or wet and dry concrete. Since the bottom of most refrigerators is made of metal or smooth plastic, 
and the floor might be linoleum or carpet, a number in this range makes sense. Based on an understanding 
of how things move in the real world, the calculated value is reasonable.  

11.85. ( )( )0.4696 2.187 m 1.027 mkw hµ= = =   
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11.86. kw hµ=  
1.059 m 2.197 m
0.4820k

wh
µ

= = =  

11.87. THINK:  In this problem, the maximum angle will occur when the torque due to gravity and the torque 
due to friction exactly cancel one another. In this case, both the sum of the torques and the sum of the 
forces will be zero. For this problem, it will be easier to break down the forces into their horizontal and 
vertical components.  

 SKETCH: The weight of the ladder is labeled Wl and the weight of the person climbing the ladder is 
labeled Wp. 

 
 RESEARCH:  Both the net force and the net torque are zero in this situation. The only horizontal forces in 

the x-direction are the force of static friction and the horizontal force of the wall.  These must cancel one 
another, so s s0f R f R− = ⇒ = . In the y-direction, the normal force exerted by the floor, the weight of the 
person, and the weight of the ladder must also cancel out, giving that l p l p0N W W N W W− − = ⇒ = + . 

The weight is easily calculated from the mass and the gravitational acceleration: l lW m g= and p pW m g= . 

The maximum force of static friction is calculated from the normal force using the equation s sf Nµ= . If l 
is the length of the ladder, and the pivot point is the place where the ladder touches the floor, then the 

clockwise torque is given by CW l psin sin
2 2
l lW Wτ θ θ= + . The counterclockwise torque is given by 

CCW cosRlτ θ= . Since the net torque is zero, CCW CW CCW CW0τ τ τ τ− = ⇒ = .  

 SIMPLIFY: Since the net torque is zero ( CCW CWτ τ= ), l pcos sin sin
2 2
l lRl W Wθ θ θ= + . Substitute in for 

the weights to get l pcos sin sin
2 2
l lRl m g m gθ θ θ= + . Solve for theta to get:  

( )
( )

( )

l p

l p

l p

l p1

cos sin
2

cos
sin 2

cot
2

cot
2

lRl m g m g

m g m g l

Rl
m g m g

R
m g m g

R

θ θ

θ
θ

θ

θ −

= +

+
=

+
=

+ 
=  
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 Use the fact that s sR f Nµ= = , and the normal force l p l pN W W m g m g= + = +  to get an expression for R: 

( )s l pR m g m gµ= + . Finally, substitute this into the equation for theta to get a final expression for the 

angle 
( ) ( )l p1 1 1

s
ss l p

1cot cot tan 2
22

m g m g

m g m g
θ µ

µµ
− − −
 +   = = =  +   

.  

 CALCULATE:  The coefficient of friction is 0.2881, so the maximum angle will be: 

( )
( )

1

1

tan 2 0.2881

tan 0.5762
29.9505462

θ −

−

= ⋅

=
= °

 

 ROUND: The coefficient of friction is given to four significant figures, so the final answer should also have 
four figures. The maximum angle between the ladder and the wall is 29.95°. 
DOUBLE-CHECK: Based on real-world experience, the maximum angle between a ladder of this type and 
the wall against which it leans is about 30 degrees. Furthermore, it makes intuitive sense that the 
maximum angle would depend only on the coefficient of friction between the ladder and the floor. If the 
ladder is at a fixed angle, then it will either slide or not slide regardless of the weight of the person standing 
at the ladder’s midpoint.  

11.88. ( )1
stan 2θ µ−=  

( )s
1 1tan tan 27.30 0.2581
2 2

µ θ⇒ = = ° =
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Chapter 12:  Gravitation 
 
Concept Checks 

12.1. d  12.2. a  12.3. d  12.4. a  12.5. d  12.6. b  12.7. c 
 
Multiple-Choice Questions 

12.1. a  12.2. b  12.3. c  12.4. c  12.5. c  12.6. b  12.7. e  12.8. a  12.9. a  12.10. e  12.11. c  12.12. c  12.13. a  12.14. b  
12.15. a   
 
Conceptual Questions 

12.16. No, one cannot.  The expression for gravitational potential energy ( )gU y mgy=  is only accurate when the 

height y is much less than the radius of the Earth, RE.  The correct expression for the potential energy is: 

( )

1
E E

E EE
1 .

GM m GM m y
U

R RR y

−
 

= − = − + 
+  

 Expanding this in powers of E/Y R  gives:   

2

2
E

E E E

11 ... .
2

GM m y y
U

R R R

 
= − − + + 

  
 

The potential energy is approximately linear, in the same manner as g ,U m y=  only when ( )2E/y R  is 

small.  So, ( )gU y mgy=  is only valid when E .y R  

12.17.  

 
 

A parabolic trajectory only occurs when the gravitational acceleration due to gravity is constant.  Instead 
of a uniform gravitational force downwards, consider two bodies in orbit as their gravitation attraction 
constantly changes.  It is known from Kepler’s laws that these orbits are elliptical.  Now consider a 
projectile fired into the air on the Moon where air friction is not a factor.  Once this projectile is in the air 
it is simply an object in an elliptical orbit with the center of mass of the Moon at one focus.  If the initial 
velocity is not great enough, the projectile will not be able to complete the orbit since it will collide with 
the surface of the Moon.  Therefore, the actual shape of the projectile’s path will be that of an ellipse.  A 
parabolic trajectory for a projectile is an approximation that is only valid when the gravitational 
acceleration is nearly constant.  This is a good approximation for short and shallow trajectories.  However, 
if the path is high and long then a parabolic trajectory is no longer valid.   

12.18. In order to determine whether the two satellites would crash into the Earth, the final velocity after the 
collision is needed. 

 
 



 Chapter 12:  Gravitation 

 575 

The velocities before the collision are determined from the motion of a satellite in circular orbit where the 
centripetal acceleration is equal to the gravitational acceleration, that is: 

( ) ( ) ( )
2

sE E
s2

E EE

  = .
vGM m GM

F ma m v
R h R hR h

= ⇒ = ⇒
+ ++

 

Since sv  does not depend on the mass m of the satellite and both satellites are orbiting at the same height 
=1000. kmh , 1 2 sv v v= = . The final velocity after collision is obtained using conservation of momentum, 

i fp p= : ( )1 s 2 s 1 2 .m v m v v m m− = +  The final velocity is: 
( )
( )

( )
( ) ( )

1 2 1 2 E
s

1 2 1 2 E
.

m m m m GM
v v

m m m m R h
− −

= =
+ + +

 

Since the final velocity is less than s ,v  the satellites move in an elliptical orbit after the collision.  The 
closest distance of this orbit to the center of the Earth is determined from the net energy of the elliptical 
orbit: 

( )
2E E

E

1 ,
2 2

GM m GM m
E K U mv

a R h
= − = + = −

+
 

where a is the semi-major axis.  Therefore, the semi-major axis of the elliptical orbit is:  

( )

E

2E

E

.
2

GM
a

GM
v

R h

=
−

+

 

Substituting 
( )

2
2 1 2 E

1 2 E

m m GM
v

m m R h
 −

=  
+ + 

 yields:  

( ) ( )

E E
2 2

E 1 2 E 1 2

1 2 1 2E E

.
2

2

GM R h
a

GM m m GM m m
m m m mR h R h

+
= =

   − −
− −   + ++ +   

 

Since the maximum distance for this new orbit must be where the collision took place, ( )E ,R h+ the 
distance of closest approach (to the center of the Earth) is: 

( ) ( ) ( )E
E E2

1 2

1 2

2
2 .

2

R h
R a R h R h

m m
m m

+
= − + = − +

 −
−  + 

 

Therefore, the closest distance is: 

( ) ( )2

2 6370 km 1000. km
6370 km 1000. km 683 km.

250. kg 600. kg
2

250. kg 600. kg

R
+

= − + =
 −

−   + 

 

Since R is less than E ,R  the satellite would crash into the Earth. 

12.19.  
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Since 12 ,a  23a  and 13a  are constant in time, the net force on the system must be zero and the centripetal 
force must be zero as well.  Let the origin of an inertial frame located at the centre of mass of the system.  
The positions of 1,m  2m  and 3m  are given by vectors 1r



, 2r


 and 3.r


  The net force on 1m  is 

( ) ( )1 31 2
net,1 2 1 3 13 3

12 13

.
m mm m

F G r r G r r
a a

= − + −


   

 Similarly, for  m2  and m3, the net forces are:  

( ) ( )2 31 2
net,2 1 2 3 23 3

12 23

m mm m
F G r r G r r

a a
= − + −



   

 and ( ) ( )1 3 2 3
net,3 1 3 2 33 3

13 23

.
m m m m

F G r r G r r
a a

= − + −


   

 

The net forces on 1,m  2m  and 3m  must be equal to the centripetal forces on 1,m  2m  and 3 ,m  which 

are: 2
c,1 1 1F m rω= −




, 2
c,2 2 2F m rω= −




, and 2
c,3 3 3F m rω= −




  Therefore, three equations are obtained: 

( ) ( ) ( )

( ) ( ) ( )

( )

2 1 31 2
1 1 2 1 3 13 3

12 13

2 2 31 2
2 2 1 2 3 23 3

12 23

2 3 1
3 3 1 33

13

                                             1

                                           2

m mm m
m r G r r G r r

a a
m mm m

m r G r r G r r
a a

m m
m r G r r

a

ω

ω

ω

− = − + −

− = − + −

− = − +

    

    

   ( ) ( )3 2
2 33

23

                                           3
m m

G r r
a

−
 

 

Eliminate 1m  in (1) and using 2 2 2
c,net 1 1 2 2 3 3 0F m r m r m rω ω ω= + + =


  

 to eliminate 3 3m r


 in (1) gives: 

( ) ( )( )
( )

2 2
1 2 1 1 1 2 2 3 13 3

12 13

1 3 22
1 2 23 3 3 3

12 13 12 13

1 1 .

Gm Gr r r m r m r m r
a a

G m mGm
r Gm r

a a a a

ω

ω

− = − + − + −

   +
+ − = −      

   

     

 

 

Since 1r


 and 2r


 are not collinear, the coefficients in front of 1r


 and 2r


 must be zero.  Thus: 

12 133 3
12 13

1 1 0  a a a
a a

− = ⇒ = =  and  
( )1 3 22

3 3
12 13

0.
G m mGm

a a
ω

+
+ − =  

Using 12 13a a a= = , this becomes ( ) 3 2
1 2 3 /G m m m a ω+ + =  or 2 3GM aω= , where 1 2 3M m m m= + + .  

In similar manner, for equation (2), the conditions 12 23a a a= =  and 2 3GM aω=  are obtained.  For 

equation (3), the conditions 13 23a a a= =  and 2 3GM aω=  are also obtained.  Therefore, the conditions for 

the system to rotate around the axis σ as a rigid body are 12 13 23a a a a= = =  and 2 3 .GM aω=  

12.20. The escape velocity of an object from a planet’s surface is given by ( )E 2 / ,v GM R=  where M is the mass 

of the planet and R is the radius of the planet. Also, the gravitational acceleration on a planet’s surface is 

given by 2/ ,g GM R=  which can be rewritten as / .GM R gR=   Substituting this expression into the 

equation for escape velocity yields E 2 .v gR= Therefore, Ev  is directly proportional to g and R.  This 
means that even though g is smaller on Uranus, the escape velocity is larger on Uranus because its radius is 
much larger than Earth’s radius.  

12.21.  

 



 Chapter 12:  Gravitation 

 577 

As the Earth moves in an elliptical orbit around the Sun, the angular momentum of the Earth is conserved.  
This means that the angular momentum when the Earth is closest to the Sun (at perihelion, p )r  and when 

the Earth is farthest from the Sun (at aphelion, a )r  must be the same; that is, p p a a .mv r mv r=   Therefore, 

p a a p/ / .v v r r=   Since a p ,r r>  p a .v v>  The orbital speed at the perihelion is larger than the orbital speed 

at the aphelion. 

12.22. The only flaw in the statement is “This explains the main cause of seasons (Summer – Winter) on Earth.”  
The seasons on Earth are not caused by the change in the Earth-Sun distance as Earth follows its elliptical 
orbit.  The seasons are caused by the tilt of the axis of Earth’s rotation relative to the elliptical plane.  As the 
Earth travels along its elliptical orbit the orientation of Earth’s axis relative to the Sun changes.  

12.23.  

 
As the comet moves in an elliptical orbit around the Sun, the angular momentum of the comet is 
conserved.  This means that the angular momentum when the comet is closest to the Sun (at perihelion, 

p )r  and when the comet is farthest from the Sun (at aphelion, a )r  must be the same; that is, 

p p a a .mv r mv r=   Therefore, p a a p/ / .v v r r=   Since a p ,r r>  p a .v v>  Since the orbital speed is largest at 

perihelion, the kinetic energy of the comet is a maximum at perihelion.  Since the total energy of the comet 
is conserved, the maximum gravitational potential energy must be a maximum at aphelion. This is 
confirmed by inspecting the equation for gravitational potential energy: 1/ .U r∝ −   As the distance r 
increases the gravitational potential energy increases (by becoming less negative). 

12.24. If an astronaut measures his/her weight on a scale, the measured weight is 
= = = − cNormal force .W N mg ma  Since the gravitational acceleration is equal to the centripetal 

acceleration, the weight is zero.  This means also that the normal force exerted by a wall or the floor of the 
space station on the astronaut is zero.  Therefore, the astronaut floats in the space station because both are 
moving in an orbit where their gravitational forces are equal to their centripetal forces.   

12.25. In this case, there are two factors that cause a change in the kinetic energy of the satellite.  First, the kinetic 
energy is reduced by the collision with the tenuous atmosphere.  Second, the kinetic energy is increased by 
the decrease in potential energy of the satellite (it speeds up as it falls inward).  This increase is much 
greater than the decrease due to the collision with the atmosphere.  Therefore, as the satellite falls, its 
kinetic energy increases until it reaches a terminal velocity, whereby the gravitational force is equal to the 
drag force. 

12.26. Neither, the magnitude of the two forces must be equal.  This is Newton’s third law, 

E M
E M M E 2

.
GM M

F F
r→ →= =  

12.27. The ball released in Tunnel 1 reaches the center of the Earth first.  This is because the ball in Tunnel 1 
moves in free fall with acceleration given by its gravitational acceleration g ,a  while the ball in Tunnel 2 

moves with an acceleration of g c ,a a−  where ca  is the centripetal acceleration due to the rotation of the 

Earth.  Therefore, the acceleration of the ball in Tunnel 1 is larger than the acceleration of the ball in 
Tunnel 2.  This means that the ball in Tunnel 1 reaches the center of the Earth first. 
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12.28. . 

 
Initially, the ball has angular speed i E .ω ω=   When the ball is released it experiences a force only in the 
radial direction.  This means the angular momentum is conserved.  When the ball reaches a distance r 
from the center of the Earth, the angular speed of the ball is:  

2
2 2 E

i f E E f f E    .
R

L L m R m r
r

ω ω ω ω
 

= ⇒ = ⇒ =  
 

 Since r is less than E ,R  its angular speed increases as it 

falls.  After its angular speed is large enough, it catches up with the east wall and hits the wall.  After the 
ball hits the wall, the angular momentum of the ball is no longer conserved.  However, the angular 
momentum of the Earth- ball system is conserved. 

12.29. . 

 

 Using Newton’s second law and =
2

c
va
R

 for centripetal acceleration, it is found that: 

2

c   sin sin .x
vF F T mg m
R

θ α= ⇒ − = −∑  Since v Rω=  and Esin :R R α=  

2
Esin sin sin .T mg m Rθ α ω α= −                                                                       1) 

Similarly,  
0  cos cos 0  cos cos .yF T mg T mgθ α θ α= ⇒ − = ⇒ =∑                                       (2)   
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Dividing (1) by (2) gives: 
2

Esin sinsin tan
cos cos

mg m RT
T mg

α ω αθ θ
θ α

−
= =  

2 2
E E tan tan 1 tan

g R R
g g
ω ω

θ α α
   −

⇒ = = −      
   

 

Using 57.27 10  rad/s,ω −= ⋅  90.0 55.0 35.0α = °− ° = °  and 6
E 6.37 10  m,R = ⋅  the angle θ  is: 

( ) ( )
( )

25 6

2

7.27 10  rad / s 6.37 10  m
tan 1 tan 35.0 0.698  34.9 .

9.81 m/s
θ θ

− ⋅ ⋅ 
= − ° = ⇒ = ° 
 
 

 

Since the angle θ  is less than ,α  the line intersects the Earth’s axis south of the Earth’s center. 
 

Exercises 

12.30. THINK:  To solve this problem, the mass of the Moon, the Earth’s radius, and the distance between the 
Earth and the Moon are needed.  These values can be found from a table in the textbook.  The mass of the 

Moon is 22
m 7.36 10  kg,M = ⋅  the radius of the Earth is 66.37 10  mER = ⋅  and the distance between the 

Earth and the Moon is 83.82 10  m.d = ⋅  
SKETCH:   

 
RESEARCH:  Note in the above diagram that the position A is the nearest to the Moon and the position B 
is the farthest from the Moon.  The gravitational accelerations due to the Moon at the positions A and B 

are ( )2A m E/a GM d R= −  and ( )2B m E/ .a GM d R= +  

SIMPLIFY:  The difference in the accelerations is: 
( ) ( )

A B m 2 2
E E

1 1a a a GM
d R d R

 
 ∆ = − = −
 − + 

 

CALCULATE:  

( )( )
( ) ( )

11 2 2 22
2 28 6 8 6

6 2

1 1
6.67 10  N m /kg 7.36 10  kg

3.82 10  m 6.37 10  m 3.82 10  m 6.37 10  m

2.2452 10  m/s

a −

−

 
 

∆ = −⋅ ⋅  
 ⋅ − ⋅ ⋅ + ⋅
 

= ⋅
ROUND:  Three significant figures: 6 22.25 10  m/sa −∆ = ⋅   
DOUBLE-CHECK:  Since Ed R>>  it is reasonable that the difference in the gravitational acceleration 
between two points separated by 2 ER  is very small.     

12.31. THINK:  Since the objects are floating in outer space, it can be assumed that the only force on each object 
is their mutual force of gravity.  The space station and the tool exert forces with the same magnitude on 
each other (Newton’s Third Law). In order to find the distance that the objects drift towards each other, 
we have to calculate the acceleration of the objects, which is the ratio of the gravitational force divided by 
the mass. Since the space station is MUCH more massive than the tool, it will experience negligible 
acceleration, and it is sufficient to just calculate the distance the tool moves after an hour needs to be 
calculated.  Even though this force will increase slightly since they will be closer as they accelerate towards 
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each other, it will be assumed that the force of gravity is constant. This assumption can only be made, 
however, if the distance the tool moves is small compared to the initial separation, and we will have to 
check this after we are done with our calculation. 
SKETCH:   

 
RESEARCH:  The two objects attract each other by their mutual gravitational force: 2

g / .F GMm r= Using 

Newton’s Second Law, the acceleration of the tool toola  towards the space station due to gravity is 
2

tool /a GM r= . Assuming that the objects were initially at rest and constant acceleration over a time 

interval t, the distance traveled by the tool is given by: 21
tool2 .x a t=  

SIMPLIFY:  2 2
tool 2

1 1
2 2

GMx a t t
r

= =  

CALCULATE:  Substituting the given values:  

( )
( )

−
−⋅ ⋅

= = ⋅
11 2 2 4

2 3
2

(6.67 10  N m /kg )(2.00 10 kg)1 3600. s 3.45773 10  m
2 50.0 m

x  

ROUND:  3.46 mmx =  
DOUBLE-CHECK:  Since the displacement x is much smaller than the initial separation 50 m,r =  the 
assumption of constant acceleration is justified.  

12.32. THINK:  There are four masses ( )1 2 3 4m m m m m= = = =  as shown in the sketch. Calculate the forces on 

mass 1.m  
 SKETCH:   

 
 

 RESEARCH:  Use Newton’s Law of Gravity: 1 2
2

.
Gm m

F
r

=  

SIMPLIFY:  The forces on 1m are as follows. 
2

1 2
12 2 2

ˆ ˆ(1)   
m m mF G x G x

a a
= =
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( )1 3
13 2

ˆ ˆ(2)   cos sin ,    45
m m

F G x y
d

θ θ θ= + = °


 

 Since d is the diagonal of the square, 2 2 2.d a a a= + =  

( ) ( )( ) ( )
2 2

13 2 2
1ˆ ˆ ˆ ˆcos 45 sin 45

2 2 2
m mF G x y G x y
a a

 
= ° + ° = + 

 



 

( )
2

1 4
14 2 2

ˆ ˆ3    
m m mF G y G y

a a
= =



 

 The net force is: ( ) ( )
2 2

net 2 2
1 1ˆ ˆ ˆ ˆ ˆ ˆ1 .

2 2 2 2
m mF G x x y y G x y
a a

   
= + + + = + +   

   



 Using ˆ ˆ 2,x y+ =  the 

magnitude of net force is: 
2 2

net 2 2
1 11 2 2 .

22 2
m mF G G
a a

   
= + = +   

  



 

 CALCULATE:  No numerical values were given.  The solution is algebraic. 
 ROUND:  No rounding is necessary since the answer is algebraic. 

 DOUBLE-CHECK:  In the above equation the 2  term is due to the 2 4 and m m  combination at the 
adjacent corners, while the (1/2) term is due to 3m  at the opposite corner.       

12.33. THINK:  The location of a spacecraft located between two planets is desired, such that the net force on the 
spacecraft is zero.  The two planets have masses 1M  and 2M .  The distance between the two planets is L. 

 SKETCH:   
 

 
RESEARCH:  The variable x needs to be determined in the above diagram.  Use Newton’s Law of Gravity, 

1 2
2

.
m m

F G
r

 
=  

 
  The forces on the spacecraft are 1

1 2

mM
F G

x
 

=  
 

 and 
( )

2
2 2

.
mM

F G
L x

 
 =
 − 

 

 SIMPLIFY:  Since the net force is zero, 1 2 .F F= −
 

 This equation means that the magnitudes of the two 
forces are equal, but the forces are pointing in the opposite directions (hence, the negative sign).  

Therefore, ( ) ( )( ) ( )2 22 2
1 2 1 2/ / .G mM x G mM L x M L x M x= − ⇒ − =  Expanding ( )2L x−  gives: 

2 2 2 2 22 2

1 1
2   1 2 0

M M
L Lx x x x Lx L

M M
 

− + = ⇒ − − + = 
 

 

 Solving for x using the quadratic formula: 

2 2 22

11

22

11

12 4 4 1

12 1

MM LL L L
MM

x
MM
MM

  
±± − −        = =

  −− 
 

 

 The spacecraft is only between the planets when the negative sign is used in front of the square root: 
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2

1

2 2

1 1

1

1 1

M
L

M Lx
M M
M M

 
−  

 = =
− +

 

 CALCULATE:  No numerical values were given.  The solution is algebraic. 
 ROUND:  No rounding is necessary since the answer is algebraic. 
 DOUBLE-CHECK:  Using the above formula for 1 2 ,M M= / 2.x L=  Since the force would be zero 

midway between two equal masses, the derived formula is correct.  

12.34. THINK:  Using the given density of iron ( )37860 kg/m  the gravitational force between two 1.00 kg iron 

spheres that are touching can be calculated using Newton’s Law of Gravity.  
 SKETCH:   

 

RESEARCH:  Using the mass and volume of the sphere, 34 / 3 ,V Rπ=  the radius of the sphere can be 

calculated.  Newton’s Law of Gravity: ( )( )2 2 2/ 2 / 4 .F G MM R GM R= =  

SIMPLIFY:  Since 
3

,
4
3

M M
V R

ρ
π

= =  the radius of the spheres is 3
3 .
4

MR
πρ

=   Therefore, the force is: 

2

2
3

.
34
4

GMF
M
πρ

=

 
 
 

 

 CALCULATE:  
( )( )

( )
( )

211 2 2
8

2
3

3

1.00 kg6.67 10  N m / kg
1.713 10  N

3 1.00 kg
4

4 7860 kg/m

F

π

−
−⋅

= = ⋅

 
 
 
 

 

 ROUND:  To three significant figures, the gravitational force between the two spheres is 81.71 10  N.−⋅  
 DOUBLE-CHECK:  A dimensional analysis gives units of Newton’s which is expected for the unit of 

force.  Since the masses of the two spheres are small it is reasonable that the force is small as well.  

12.35. THINK:  Consider a uniform rod of mass 333 kgM =  in the shape of a semi-circle of radius 5.00 m.R =  
To calculate the magnitude of the force on a 77.0 kg point mass m at the centre of this semi-circle it can be 
assumed that the density of the rod is uniform such that / ,M Lρ =  where L is the length of the rod.  If the 
rod is divided into small elements each of mass ,dM dlρ=  integration can be used to find the total force 
on mass m. 
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SKETCH:   

 
RESEARCH:  Use Newton’s law of Gravity, ( )2

1 2 ˆ/ .F G m m r r=  The gravitational force on mass m at the 

center of the semi-circle caused by a small element dM is 
2

ˆ,mdMdF G r
R

 
=  

 



 or in component form, 

( )2/ cos ,xdF G mdM R θ=  ( )2/ sin .ydF G mdM R θ=  

SIMPLIFY:  The components of the force on mass m is then,  

2
0

cosM

x
GmF dM

R
θ

= ∫   and   
2

0

sin .
M

y
GmF dM

R
θ

= ∫  

Using ,dM dl Rdρ ρ θ= =    

2
0

cos
x

Gm RF d
R

π ρ θ θ= ∫  and  
2

0

sin .y
Gm RF d

R

π ρ θ θ= ∫  

Since ,  ,  G m ρ  and R are constant, these can be simplified further to  

0

cosx
GmF d

R

πρ θ θ= ∫   and  
0

sin .y
GmF d

R

πρ θ θ= ∫  

From a mathematical table of integrals, 

0
0

cos sin sin sin0 0d
π πθ θ θ π= = − =  ∫  and 

0
0

sin cos cos cos0 2.d
π πθ θ θ π= − = − + =  ∫  

Therefore, 0xF =  and 2 .y
GmF

R
ρ

=   Using M
L

ρ =  and L Rπ=  gives 
2

2 .y
GmMF

Rπ
=  

CALCULATE:  
( )( )( )

( )

11 2 2
8

2

2 6.67 10  N m / kg 77.0 kg 333 kg
4.355 10  N

5.00 m
yF

π

−
−

⋅
= = ⋅  

ROUND:  To three significant figures, 84.36 10  N.yF −= ⋅  The total net force is in the positive y-direction. 

DOUBLE-CHECK:  From the symmetry of the shape of the semi-circle, it is clear that 0,xF =  since a 
force due to mass dm on one side will have the same magnitude and opposite direction of a force due to 
mass dm on the other side.  

12.36. THINK:  There are four masses as shown in the figure in the sketch step.  I need to determine the 
magnitude and the direction of the gravitational force on the 10.0 kg mass.  We choose the axis so that the 
distance of 1m  along the x-axis, the distance of 2m  along the z-axis and the distance of 4m  along the y-axis 
are all the same. 
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SKETCH: 

 
RESEARCH:  The net force on 1m is = + +

   

net 12 13 14F F F F as shown in the figures above.  The forces are 

calculated using Newton’s law of Gravity: ( )=ij i j ij ijˆ/ ,F G m m r r where ijr̂ is the directional unit vector from i 

to j.  Note that = = = =12 13 14 10.0 cm,r r r a  θ θ θ= = ° = °2 4 345.0  and 15.0 .  

SIMPLIFY:  ( ) ( )( )

( ) ( )( )

( ) ( )( )

1 2
12 2 22

1 3
13 3 32

1 4
14 4 42

ˆ ˆcos sin

ˆ ˆcos sin

ˆ ˆcos sin

Gm m
F x z

a
Gm m

F x z
a

Gm m
F x y

a

θ θ

θ θ

θ θ

= − +

= − −

= − +







 

The net force is:  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

1
net 2 2 2 3 3 3 4 4 42

1
2 2 3 3 4 4 4 4 2 2 3 32

ˆ ˆ ˆ ˆ ˆ ˆcos sin cos sin cos sin

ˆ ˆ ˆcos cos cos sin sin sin

Gm
F m x z m x z m x y

a
Gm

m m m x m y m m z
a

θ θ θ θ θ θ

θ θ θ θ θ θ

= − + + − − + − +

 = − − − + + − 



 

CALCULATE: 
( )( )

( )

11 2 2

net 1 2 32

6.67 10  N m / kg 10.0 kg
ˆ ˆ ˆ ,

0.100 m
F z x z y z z

−⋅
= + +  



 where  

( ) ( ) ( ) ( ) ( ) ( )1 cos 45.0 cos 15.0 cos 45.0 78.5 kg,50.0 kg 30.0 kg 20.0 kgz = ° − ° − ° = −−  

( ) ( )2 sin 45.0 14.1 kg,20.0 kgz = ° =  and ( ) ( ) ( ) ( )3 sin 45.0 sin 15.0 27.6 kg.50.0 kg 30.0 kgz = ° − ° =   
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So ( )8
net ˆ ˆ ˆ6.67 10  N 78.5 14.1 27.6 .F x y z−= ⋅ − + +


 The magnitude of the net force is 

( ) ( ) ( )− −= ⋅ − + + = ⋅
 2 2 28 6
net 6.67 10  N 78.5 14.1 27.6 5.629 10  N.F  

ROUND:  Three significant figures: 65.63 10  N.−⋅  The direction of the force is given by the vector 
ˆ ˆ ˆ78.5 14.1 27.6 .x y z− + +  

DOUBLE-CHECK:  The magnitude of netF is reasonable.  From the above diagram it is noted that the 

direction of 


netF is mainly in negative x-direction.  This is in agreement with the above vector where the x-
component is dominant and negative.  

12.37. THINK:  The new planet has mass E2M  and density E .ρ ρ=  Once the radius of the new planet us found, 
Newton’s law of Gravity can be used to determine the weight of the object on the new planet. 
SKETCH:  

 
RESEARCH:  Density of an object: / ,M Vρ =  volume of a sphere ( ) 34 / 3 ,V Rπ= and Newton’s law of 

Gravity: ( )2
1 2 / .F G m m R=  

SIMPLIFY: The density is 
( ) ( )

E
E 3 3

E

.
4 / 3 4 / 3

MM
R R

ρ ρ
π π

= = =  Since 
1

E E 3
E E3 3

E

2
2 , 2 .

M M
M M R R

R R
= = ⇒ =   

The weight of the object on the surface of the new planet is   

E 3
E2 2

23
E

2 2 .

2

GM mGMmW W
R

R

= = =  

This means that the weight of the object on the new planet is 3 2 times the weight of the object on the 
surface of the Earth.  
CALCULATE:  No numerical values were given.  The solution is algebraic. 
ROUND:  No rounding is necessary since the answer is algebraic.  
DOUBLE-CHECK:  Since the new planet is larger in size (twice the mass with the same density) than the 
Earth, it is expected that the weight of an object is larger on the new planet since there will be a stronger 
gravitational force. 
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12.38. THINK:  The free fall acceleration is just the gravitational acceleration, which comes from Newton’s Law 
of Gravity.  The mass of the Earth can be placed at the center of the Earth.   
SKETCH:  

 
RESEARCH:  The free fall acceleration is given by 2

E / .g GM d=  
SIMPLIFY:  If the ball is at an altitude of E2R  then the distance from the center of the Earth is E3 .d R=  

Therefore, the free fall acceleration of the ball is 
( )

E E
b 2 2

EE

1 .
9 93

GM GM g
g

RR
= = =  

CALCULATE:  
2

2
b

9.81 m/s 1.09 m/s
9

g = =  

ROUND:  Since the value of the gravitational acceleration on Earth is given to three significant figures, the 

free fall acceleration is 21.09 m/s .  
DOUBLE-CHECK:  It was expected that the free fall acceleration at this altitude is smaller than that at the 
surface of the Earth since it is inversely proportional to distance. 

12.39. THINK:  The gravitational acceleration decreases towards the center of the Earth since the exterior shell of 
mass no longer contributes a gravitational force.   The equation for gravitational acceleration can be used 
and it can be assumed that the Earth has a uniform density, E E E/ .M Vρ =  
SKETCH:  

 
RESEARCH:  The gravitational acceleration at the bottom of the mine shaft is given by 2

int / ,a GM r=  
where intM is the interior portion of Earth’s mass. 

SIMPLIFY: 
( )
( )

3 3
E3 3 E

int E E3 3
E E E

4 / 34 4 .
3 3 4 / 3

r MM rM r r M
V R R

π
π ρ π

π
= = = =  Therefore, the gravitational 

acceleration is:  
3

E E
2 3 2

E EE E

.
GM GMr r ra g

R Rr R R

   
= = =   
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CALCULATE:   
(a) Substituting / 2a g=  gives ( )E / 2 6370 km / 2 3185 km.r R= = =  Therefore, the mine depth required 

for the gravitational acceleration to be reduced by a factor of 2 is E 3185 km.d R r= − =  
(b)  The percentage difference of the gravitational acceleration at the bottom of 3.5 km  deep mine relative 
to that at the Earth’s surface is: 

E

4surf 3.5km E

surf E E

3.5 km1 1 5.495 10
6370 km

R d
g g

a a R d d
a g R R

−

−
−

 −
= = − − = = = ⋅ 

 
 

ROUND:  
(a) To three significant figures, the depth required is 3190 km.  
(b) To two significant figures the percentage difference is 0.055%. 
DOUBLE-CHECK:  Since 3.5 km is a relatively small distance into the surface of the Earth it is expected 
that the percentage change in the gravitational acceleration is very small.   

12.40. THINK:  The depth of a vertical shaft needs to be calculated using the equation for gravitational 
acceleration and projectile motion concepts developed in previous chapters.  To measure the gravitational 
acceleration at the bottom of the shaft, a ball is tossed vertically with an initial speed 0 10.0 m/s.v =  The 
ball reaches a maximum height of 5.113 m.   The  projectile motion equations which assume constant 
acceleration can be used here since the maximum height is small (gravitational acceleration does not 
change much over such distances). 
SKETCH:  

 
RESEARCH:  The gravitational acceleration at the bottom of the shaft is determined by 

2 2
0 2 ,  where 0v v ax v= − =  when the ball is at maximum height.  Therefore, 2

0 / 2 .a v x=  This acceleration 

must be equal to the gravitational acceleration given by 2
int / ,a GM r=  where intM is the interior portion 

of Earth’s mass. 

SIMPLIFY:  
( )
( )

3 3
E3 3 E

int E E3 3
E E E

4 / 34 4 .
3 3 4 / 3

r MM rM r r M
V R R

π
π ρ π

π
= = = =   

Therefore, the gravitational acceleration is:  
3

E E E
2 3 2

E E E EE E

1 .
GM GM R dr r r da g g g

R R R Rr R R

       −
= = = = = −       

       
 

Since 2
0 / 2 ,a v x=  

2 2
0 0

E
E

  1 .
2 2
v vdg g d R

R x gx

    
= − ⇒ = −             

  

CALCULATE:  ( ) ( )

( )( )

2

2
10.0 m/s6370 km 1 20.133 km

2 9.81 m/s 5.113 m
d

 
 = − =  
 

 

ROUND:  The least precise value given in the question had three significant figures, so the final answer 
should also be rounded to three significant figures. The depth of the shaft is 20.1 km.  
DOUBLE-CHECK:  The unit of the depth is distance, as it should be, and the calculated value is plausible.   
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12.41. THINK:  To determine the gravitational acceleration at a location on the surface of the Earth near a 
deposit of oil Newton’s Law of Gravity needs to be used.  Let 1.00 km,r = and 2.00 km.d =  
SKETCH:  

 
 

RESEARCH:  From Newton’s Law of Gravity, the gravitational acceleration is given by 2/ ,a GM R=  

where mass M can be expressed as .M Vρ=   The density of the Earth is 3
E 5500. kg/mρ =  and the density 

of the oil is 3
oil 900. kg/m .ρ =  Instead of considering the Earth and the oil as one object, consider it as a 

superposition of two objects: the Earth with a uniform density and the Earth with a density given by 

oil E ,ρ ρ ρ= − which is a negative density.   
SIMPLIFY:  The gravitational acceleration at the location above the oil deposit is:  

( )oil E oilE E
2 2
E

.
G VG V

a
R d

ρ ρρ −
= +  Using 3

E E
4
3

V Rπ=   and  3
oil

4
3

V rπ=  gives 

( ) ( ) 2 233
oil EE E

E E oil2 2
E

44 41     .
33 3

G rG R G r ra R r r
d dR d

ρ ρ πρ π π ρ ρ
  −      = + = − +          

 

The ratio of this acceleration relative to the acceleration due to a uniform Earth (the first term in equation 
(1) is given by:  

2 2

E E oil

E
E E

2 2
oil

E E E
2

oil

E E

4
3

Ratio
4
3

1

1 1

G r rR r r
d da

a G R

r r r r
d R d R

r r
d R

π ρ ρ

π ρ

ρ
ρ

ρ
ρ

       − +          = =

      
= − +      

      
    

= − −    
    

 

CALCULATE:  −    
= − − = − ⋅         

23
5

3
900. kg/m 1.00 km 1.00 kmRatio 1 1 1 3.2824 10

2.00 km 6370 km5500. kg/m
 

ROUND:  To three significant figures the ratio is 0.99997 1.00.≈  The fractional deviation, rounded to 
three significant digits, is 5

no oil oil no oil( ) / 3.28 10g g g −− = ⋅ . 
DOUBLE-CHECK: It is expected that the ratio of the gravitational acceleration with and without oil 
would be very close to 1 since the volume of oil is much smaller than the volume of the Earth. It becomes 
clear from this exercise that finding even very large oil deposits as the one in this problem would require 
extremely precise measurements of the gravitational acceleration in order to have any chance of success. 
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12.42. THINK:  The speed of a spaceship is needed as its distance from the Earth approaches infinity.  The initial 
speed of the spaceship on the surface of the Earth is .v  The principle of conservation of energy and the 
equation for gravitational potential energy can be used to find the final speed.  The gravitational potential 
energy at infinity can be set to zero. 
SKETCH:  

 
 
RESEARCH:  From the principle of conservation of energy, i fE E ,=  

 
i i f f

2 2
f

1 1 0.
2 2

K U K U
GMmmv mv

R

+ = +

− = +
 

SIMPLIFY:  Solving for f ,v it is found that 2 2
f

2GMv v
R

= − or 2
f

2 .GMv v
R

= −  

CALCULATE:  No numerical values were given.  The solution is algebraic. 
ROUND:  No rounding is necessary since the answer is algebraic.  
DOUBLE-CHECK:  From the equation it is seen that the final speed is less than the initial speed.  This is 
expected since the spaceship is gaining gravitational potential energy as it moves away from the Earth. 

12.43. THINK:  The ratio of the escape speed to the satellite speed at the surface of the Moon is needed.  The 
principle of conservation of energy can be used to solve this problem. 
SKETCH:  

 
 
RESEARCH:  The escape speed Ev  is found by using conservation of energy, i fE E ,=  at the surface of the 
Moon and at infinity. Because the speed at infinity is zero and the gravitational potential energy is taken to 

be zero at infinity, the final energy is also zero.  Therefore, ( ) ( )2
E1/ 2 / 0.mv GMm R− =  This gives 

E 2 / .v GM R=  The satellite speed sv  is obtained from the condition that the gravitational acceleration is 

equal to the centripetal acceleration; that is, 2 2
s/ / .GM R v R=  This yields s / .v GM R=  

SIMPLIFY:  Therefore, the ratio of the escape speed to the satellite speed is E

s

2 / 2.
/

v GM R
v GM R

= =  

CALCULATE:  No numerical values were given.  The solution is algebraic. 
ROUND:  No rounding is necessary since the answer is algebraic.  
DOUBLE-CHECK: In our algebraic simplification, notice that the mass and radius of the Moon dropped 

out of the equation, and the escape speed was simply a factor of 2  larger than the orbital speed.  This 
result confirms the universal result obtained in equation (12.22) in the textbook. 
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12.44. THINK:  An astronaut throws a rock with a mass 2.00 kgm = and a speed i 40.0 m/s.v =  The astronaut is 

on a small spherical moon whose radius is 46.30 10  m⋅  and mass is 188.00 10  kg.⋅  The principle of 
conservation of energy and the equation of gravitational potential energy can be used to find the 
maximum height.  
SKETCH:  

 
 
RESEARCH:  At the maximum height, the kinetic energy of the rock is zero.  Using the principle of 
conservation of energy, the total energy of the rock on the surface of the moon must be equal to its total 
energy at the maximum height, that is: 

i i f f

2
i

1 0 .
2

K U K U
GMm GMmmv

R R h

+ = +

− = −
+

 

SIMPLIFY:  Canceling the factor m, and then rearranging the above equation gives 
2
i

.
1
2

GMR h
GM v

R

+ =
−

 

Therefore, the maximum height is 
2
i

.
1
2

GMh R
GM v

R

= −
−

 

CALCULATE:  The maximum height is 

( )( )
( )( ) ( )

1811 2 2
4 3

1811 2 2
2

4

8.00 10 kg6.67 10  Nm / kg
6.30 10  m 6.5712 10  m.

8.00 10 kg6.67 10  Nm / kg 1 40.0 m / s
26.30 10 m

h
−

−

⋅⋅
= − ⋅ = ⋅

⋅⋅
−

⋅

 

ROUND:  To three significant figures, the maximum height of the rock is 36.57 10  m.h = ⋅  
DOUBLE-CHECK: In Solved Problem 12.1 the inverse problem is solved for the same small moon.  In 
that case the final height of 2.2 km was specified, and the initial speed was calculated as 23.9 m/s. Here we 
find a final height of 6.57 km for an initial velocity of 40 m/s.  These two pairs of numbers are consistent 
with each other. 

12.45. THINK:   In order to find the minimum speed required for an object to reach a height of E4 ,R  the 
principle of conservation of energy and the equation for gravitational potential energy can be used.   
SKETCH:  

 
 
RESEARCH:  Using the principle of conservation energy, i fE E ,=  it is found that 

i i f f

2 2E E
i f

E E

1 1 .
2 2 5

K U K U
GM m GM m

mv mv
R R

+ = +

− = −
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SIMPLIFY:  The minimum speed iv  is when f 0.v =  This leads to  

2
min E E

E E E

1 1 42 2
5 5

v GM GM
R R R

   
= − =   

   
 E

min
E

8
 .

5
GM

v
R

⇒ =  

CALCULATE:  The requested equation has been derived. 
ROUND:  Not required. 
DOUBLE-CHECK:  Since the object only reaches a height of E4 ,R  it has not escaped the gravitational 
pull of the Earth.  This would only be achieved at the escape speed.  Therefore, it was expected that minv  is 

less than the escape speed from Earth, given by E E E2 / .v GM R=     

12.46. THINK:  A satellite is orbiting the Earth at a distance of E3.75R , with a speed of 4.08 km/s.  The speed of 
the satellite when it impacts the Earth is required.  It is assumed that the initial speed of the satellite is 

i 0v = (since it was suddenly stopped). 
SKETCH:  

 
 
RESEARCH:  To determine the final speed of the satellite when it impacts the Earth, the principle of 

conservation energy is used, =i f .E E Thus ( ) ( ) ( ) ( )− = −2 2
i E E f E E1/ 2 / 3.75 1/ 2 / .mv GM m R mv GM m R  

SIMPLIFY:  Since i 0,v = this simplifies to ( )( )= −f E E2 / 1 1/ 3.75 .v GM R  

CALCULATE:  The final speed is:  

( )( )−⋅ ⋅  = − = ⋅ ⋅  

11 2 2 24
3

f 6

2 6.67 10  N m /kg 5.98 10  kg 11 9.5832 10  m/s
3.756.37 10  m

v  

ROUND:  Three significant figures: = ⋅ 3
f 9.58 10  m/sv  

DOUBLE-CHECK:  It is expected that an object falling to Earth from such a great distance would achieve 
a very large speed, particularly since the effects of air resistance are being ignored. 

12.47. THINK:  To solve this problem, a reasonable value of the initial speed of the jump is needed.  It is assumed 
that the density Eρ  of the asteroid is uniform.  
SKETCH:  

 
 
RESEARCH:  Take the maximum height of a jump on Earth to be 1.0 m.x =  Using this height, the initial 

speed can be found by using 2 2
f 2v v gx= −  (g can be assumed constant over a distance of 1.0 m). At 

maximum height on Earth, f 0v =  so: 2 .v gx=  The escape speed from the asteroid is given by 

2 / .v GM R=  



Bauer/Westfall: University Physics, 2E 

  592 

SIMPLIFY:  Setting the equations equal gives: 22 .GM GMgx R
R gx

= ⇒ = The mass of the asteroid is 

3
3

E E
E

4 .
3

RM R M
R

π ρ
 

= =  
 

 Therefore,  
3 3

E
E2

E EE

.
GMR RR R xR

R gx xRR

 
= = ⇒ =  

 
 

CALCULATE:  ( )( )6 2.524 km1.0 m 6.37 10  mR = =⋅  

ROUND:  To two significant figures the largest asteroid that one could escape from by jumping is about 
2.5 km.R =  

DOUBLE-CHECK:  The initial velocity of a 1.0 m  jump on Earth is  ( )( )22 9.81 m/s 1.0 m 4.4 m/s.v = =  

Since this is a small velocity, it is reasonable that this would be the escape speed from a very small asteroid. 

12.48. THINK:  The radius and surface gravity of Eris are known, 1200 kmR = and 20.77 m/s .g =  The escape 
velocity can be found by using the equation for gravitational acceleration.  By using the principle of 
conservation of energy, the maximum height can be found for an initial speed of half of the escape speed. 
SKETCH:  

 
RESEARCH:   

(a) The escape speed is given by 2 /v GM R=  while the surface gravity is 2/ .ga GM R=   

(b) In order to find the height, the conservation of energy is useful:   

i i f f

2 2
i f

1 1 .
2 2

K U K U
GMm GMmmv mv

R R h

+ = +

− = −
+

 

SIMPLIFY:   

(a) The escape speed is e 2
2 2 2 .GM GMv R gR

R R
= = =   

(b) At the maximum height the velocity is zero, f 0.v =  The conservation of energy gives 

2
i

1 .
2

GM GMv
R R h

− = −
+

 Substituting i e
1 1 2
2 2 2

GM GMv v
R R

= = =  and solving for h  yields:   

1 1 1 1 3 1 4
2 2 4 4 3

GM GM GM h R R
R R R h R R R h R R h

− = − ⇒ − = − ⇒ − = − ⇒ = −
+ + +

 

Therefore, the maximum height above the surface is 1 .
3

h R=   

CALCULATE:   

(a) ( )( )2 3
e 2 1359.41 m/s0.77 m/s 1200 10  mv = =⋅  

(b) ( )1 1200 km 400. km
3

h = =  

ROUND:  The answers are limited to two significant figures since both values have this accuracy.  
(a)  The escape speed of Eris is 1400 m/s.  

(b)  The maximum height attained for half the escape velocity is ⋅ 24.0 10 km  above the surface of Eris. 
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DOUBLE-CHECK:  Earth has an escape velocity around 11000 m/s which is greater than Eris, as expected 
since Earth is much more massive.  

12.49. THINK:  There are two objectives for this question.  The first is to find the speed at which the two spheres 
collide.  The second is to find the energy that is required to separate the two spheres by 1.00 m  once they 
are in contact. The spheres each have a mass of 20.0 kgm =  with a radius of =10.0 cmR   and are 
separated by i 30.0 cm.d =  The spheres are initially at rest. 
SKETCH:  
(a) 

 
(b) 

 
RESEARCH:  To find the speed of the spheres, use the principle of conservation of energy, i fE E= .  Note 
that the energy is the sum of the kinetic and potential energies.  Conservation of energy can also be used to 
find the energy required to separate the spheres.  
SIMPLIFY:   
(a) Since there are two spheres that share the decrease in gravitational potential energy as they fall toward 
each other, the principle of conservation of energy gives: 

i i f f
2 2

2
f

i f

10 2 .
2

K U K U

Gm Gmmv
d d

+ = +

 
− = − 

 

 

Solving for the final velocity:  

 2
f f

f i f i

1 1 1 1 .v Gm v Gm
d d d d

   
= − ⇒ = −   

   
 

(b) The energy to separate the two spheres is equal to the change in potential energy: 

2

f

1 1 .E U Gm
d d

 
= ∆ = − 

 
 

CALCULATE:   
(a) The final velocity is of each sphere is:  

( )( ) 511 2 2
f

1 1 4.7166 10  m/s.20.0 kg6.674 10  N m /kg
0.200 m 0.300 m

v −−
 

= − = ⋅ ⋅  
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 (b) The energy required to separate the spheres is: 

( )( )2 711 2 2 1 120.0 kg 1.0678 10  J.6.674 10  N m /kg
0.200 m 1.00 m

E U −−
 

= ∆ = − = ⋅ ⋅  
 

 

ROUND:  Rounding will be done to three significant figures. 

(a) The velocity of a ball when it touches the other is 5
f 4.72 10  m/s.v −= ⋅  

(b) The energy needed to separate the balls by 1.00 m  is 71.07 10  J.E −= ⋅  

DOUBLE-CHECK:  In our day-to-day life we don’t see 20.0 kg balls moving towards each other.  This 
means the calculated values should be very small which they are.  

12.50. THINK:  The object of this question is to find the potential energy of a ball with mass 5.00 kg,  and the 
speed at which it passes through the center of the Earth.  The speed of the ball at the center is found using 
the principle of the conservation of energy.   
SKETCH:  

 
RESEARCH:  As seen in this chapter, the force on the ball inside the Earth is ( ) EF 4/3 .G mrπ ρ= −  This is 

related to the potential energy by .U F dr= − ⋅∫




  

SIMPLIFY:  The potential energy is ( ) ( ) 2 2
E E E

00

4 2 20 .
3 3 3

r r

U r U G mr dr G mr G mrπ ρ π ρ π ρ 
− = − − = = 

 ∫  

The potential at the center is defined as zero so ( ) 2
E

2 .
3

U r G mrπ ρ=  The speed at the center of the Earth is 

found by solving the following for :v  

i i f f

2 2 2 2 2
E E E E E E

 

2 1 4 40  0    
3 2 3 3

K U K U

G mR mv v G R v G Rπ ρ π ρ π ρ

+ = +

+ = + ⇒ = ⇒ =
 

CALCULATE:  ( )( )( )π −= ⋅ ⋅ ⋅ =
211 2 2 3 3 34 6.674 10  N m /kg 5.5 10  kg/m 6370 10  m 7898.75 m/s

3
v  

ROUND:  The equation of the potential as a function of the distance from the center of the Earth is 

( ) ( )π ρ= 2
E2/3 .U r G mr  The speed of the ball has the same accuracy as the density of the Earth.  The ball 

reaches a speed of 7900 m/s  at the center of the Earth. 
DOUBLE-CHECK:  The ball is traveling extremely fast; about 23  times faster than the speed of sound.  
This is a reasonable value because of the large distance travelled to the center of the Earth.   
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12.51. THINK:  The orbit is 111 km above the surface of the Moon.  The Moon has a mass and radius of 
22

m 7.35 10  kgM = ⋅ and 6
m 1.74 10  m,R = ⋅  respectively.  

SKETCH:  

 

RESEARCH:  Using Kepler’s third law, the period is 
3

T 2 .r
GM

π=  

SIMPLIFY:  
( )3m

m
T 2

R h
GM

π
+

=  

CALCULATE:  
( )

( )( )
π

−

⋅ + ⋅
= =

⋅ ⋅

36 6

11 2 2 22

1.74 10  m 0.111 10  m
2 7144.19 s

6.674 10  N m / kg 7.35 10  kg
T  

ROUND:  To three significant figures, the period of this orbit is 7140 s. 
DOUBLE-CHECK:  This trip of about 2 hours around the Moon is fast, but reasonable since the orbit is 
so close to the surface.   

12.52. THINK:  The goal is to find the semi-major axis, the maximum distance from the Sun, and the 
eccentricity of the orbit of Halley’s comet.  The comet has a period of =H 75.3 yearsT  and the perihelion 
of its orbit is =p 0.586 AU.r  

SKETCH:  

 
 

RESEARCH:  The period and semi-major axis of the orbits of the Earth and the comet are related by 
Kepler’s third law: =2 3 2 3

E E H H/ / .T a T a  The sum of the distances at perihelion and aphelion is equal to twice 

the semi-major axis + =a p H2 .r r a  The eccentricity can be calculated with the equation ( )= −p H1 .r e a  

SIMPLIFY:   

(a) The semi-major axis of the orbit is 
 

= ⇒ =  
 

2 2
3 3H H3H E H E2 2

E E

  .
T T

a a a a
T T
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(b) The maximum distance from the Sun occurs at aphelion, = − = −
2

H3a H p E p2
E

2 2 ,
T

r a r a r
T

  and the 

eccentricity of the orbit is given by  − = ⇒ = − = −
2

E3
2

H H E H

1   1 1 .p p pr r r T
e e

a a a T
 

CALCULATE:   

(a) Semi-major axis: ( )
( )
( )

 
 = =
 
 

1
2 3

H 2

75.3 yr
17.8319 AU,1 AU

1 yr
a    

(b) Maximum distance at aphelion: ( ) ( )
( )

( )
 
 = − =
 
 

1
2 3

a 2

75.3 yr
1 AU 2 0.586 AU 35.0777 AU, 

1 yr
r and the 

eccentricity: 
( )

( )

   = − =     

1
2 3

2

1 yr0.586AU1 0.967137.
1 AU 75.3 yr

e  

ROUND:   
(a) To three significant figures the semi-major axis of Halley’s comet is =H 17.8 AU.a  
(b) To three significant figures, the distance at aphelion is =a 35.1 AUr  and the eccentricity of the orbit is 
= 0.967.e  

DOUBLE-CHECK:  The measured values for Halley’s comet are: =H 17.8 AU,a  and =a 35.1 AU,r and 
= 0.967e .  So our results seem reasonable. 

12.53. THINK:  The goal of this question is to derive expressions for the semi-major axis and the eccentricity in 
terms of the energy and angular momentum of the satellite.  The principle of the conservation of energy 
and angular momentum can be used here.  The object has a mass of m and orbits another body of mass M, 
such that .M m>>  
SKETCH:  

 
RESEARCH:   

(a) E UK= +  with 2(1/ 2)K mv=  and / .U GMm r= −  
(b)  At the extremes of the orbit, the angular momentum is given by L m rv= , so ( )/ .v L mr=  
(c)  Multiply the equation for energy that will be obtained in part (b) by the square of the radius. This will 
result in a quadratic equation in terms of the radius. Its two roots will be the maximum and minimum 
radii. 
(d)  The minimum and maximum radii are related to the semi-major axis by the equations ( )max 1r a e= +  

and ( )min 1 .r a e= −  The semi-major axis is found by using the equation ( ) ( ) max min1 1 .a e a e r r+ + − = +  

The eccentricity is found by ( ) ( )max min / 2e r r a= − . 
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SIMPLIFY:   

(a)  The energy of the satellite is 21 .
2

GMmE mv
r

= −  

(b)   Eliminating v allows the energy at the extreme distances to be written in terms of the angular 
momentum: 

2 2

2
1 .
2 2

L GMm L GMmE m
mr r rmr

 
= − = − 

 
 

(c)   
2

2 ,
2
LEr GMmr
m

= −  which is equivalent to 
2

2 0.
2
LEr GMmr
m

+ − =  Solving for the radius:   

 

2 22 2 2 2 2 2 24
2

.
2 2

L L EGMm G M m E GMm G M mm mr
E E

 
− ± − −  − ± + 

 = =  

 
Since 0,E <   

( ) ( )( )
( )
( )

2
2 2 2

2 2 2 2

min 2 2

22 2

min 2

2
2

2 2 4 4

/
2 / 2 /2 /

L EGMm G M m
GMm G M m L Emr

E E E mE

L mGM G Mr
E m E mE m

− + +
= = − + +

= − + +

 

 and 

  

( ) ( )( )
( )
( )

2
2 2 2

2 2 2 2

max 2 2

22 2

max 2

2
2

2 2 4 4

/
.

2 / 2 /2 /

L EGMm G M m
GMm G M m L Emr

E E E mE

L mGM G Mr
E m E mE m

− − +
= = − − +

= − − +

 

(d)  max min2  a r r= +  and ( ) ( )max min max min/e r r r r= − + .  Substituting the equations from part (c) yields: 

2 2
2 2 2 2 2 2

2 2
2 2 2 2 2 2

2
2 2 2

2 2

1 1 2
2 2 2 2 2 2

2 E 2 E

2E 2E
2 E

L E L EGMm G M m GMm G M m
m m GMm GMma

E E E E

L LGMm G M m GMm G M m
m m

LG M m
m

e
GMm

E

    
    − − + − + +
          = + = − = −    
 
  

    
    − − + − + +
        −
     +   = =

− 
 
 

GMm




 

Thus, the semi-major axis and the eccentricity in terms of the angular momentum per unit mass and 

energy per unit mass are 
( )2 2 /

GMm GMa
E E m

= − = −  and 
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( ) ( )( )2

2

2 2 3 2 2

/
1 1

/ 22 .
L mLe

G M m G

E

M

mE
+ += =   

CALCULATE:  Since the result is entirely algebraic, there are no calculations to perform. 
ROUND:  Since the result is entirely algebraic, no rounding is necessary. 
DOUBLE-CHECK:  The formula for the eccentricity of the orbit will always produce a result less than 1, 
since 0.E <  The formula for the semi-major axis will always produce a positive number as well, and the 
formula matches that derived in the text. 

12.54. THINK:  The goal is to find the speed and distance of an asteroid at closest approach to the Sun.  At a 

given time, the velocity and position of the asteroid are ( )− ⋅ − ⋅3 39.00 10  m/s, 7.00 10  m/s and 

( )⋅ ⋅11 112.00 10  m,3.00 10  m ,  respectively. 

SKETCH:  

 
 
RESEARCH:  Two equations are required to find the velocity and the distance at closest approach, since 
there are two unknowns.  Both energy and angular momentum are conserved in the orbit.  The total 

energy is 21
2

GMmE mv
r

= −  and the angular momentum is .L mr v= ×


 

 

SIMPLIFY:  The conservation of energy gives the first equation:  

( )2 2 2
0 0 max2 2 min0 0

1 1
2 2x y

x y

GMm GMmm v v mv
rr r

 
  + − = −      + 

 ⇒   ( )2 2 2
0 0 max2 2 min0 0

1 1 .
2 2x y

x y

GM GMv v v
rr r

+ − = −
+

 

Conservation of angular momentum gives the second equation:  

( )0 0 0 0 min maxx y y xL m r v m r v r v mr v= × = − =


 

  ⇒    ( )min max 0 0 0 0 .x y y xr v r v r v= −  

With two equations, it is now possible to solve for minr and max .v  To simplify, let 

( )2 2
0 0 2 2

0 0

1
2 x y

x y

GMv v
r r

ε = + −
+

 and ( )0 0 0 0 .x y y xL r v r v≡ −  

So the equations are ( ) 2
max min/1/ 2 v GM rε = −  and min max .L r v=  Plug min max/r L v=  into the energy 

equation 2
max max

1 0.
2

GMv v
L

ε− − =  This is a quadratic equation with solution:  

( )ε
ε

 + − − 
 = = + +

 
 
 

2 2

2 22

max 2

14
2

2 ,
12
2

GM G M
L GM G MLv

L L
 

where the positive sign was chosen because this gives the maximum value,  and  

ε
= =

+ +

2

min 2 2 2max
.

2

L Lr
v GM G M L
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CALCULATE:  

( ) ( ) ( )( )
( ) ( )

ε
−⋅ ⋅ = − ⋅ + − ⋅ − = − ⋅   ⋅ + ⋅

11 2 2 30
2 23 3 8

2 211 11

6.674 10  N m /kg 1.99 10  kg1 9.00 10  m/s 7.00 10  m/s 3.03356 10  J/kg
2

2.00 10  m 3.00 10  m

 

( )( ) ( )( )   = − ⋅ − − ⋅ = ⋅⋅ ⋅      
3 3 15 211 117.00 10  m/s 9.00 10  m/s 1.30 10  m /s2.00 10  m 3.00 10  mL  

( )( )

( ) ( )
( )

( )

−

−

⋅ ⋅
= +

⋅

⋅ ⋅
+ − ⋅

⋅

= ⋅

11 2 2 30

max 15

2 211 2 2
8

215

5

2

30

2

6.674 10 N m /kg 1.99 10  kg

1.30 10  m

6.674 10 N m /kg 1.99 10  kg
2 3.03356 10  J/kg

1.30 10  m

2.

/s

0131 1 s

/

0

s

 m/

v

⋅
= = ⋅

⋅

215
9

min 5
1.30 10  m /s 6.4577 10  m

2.013112 10  m/s
r  

ROUND:  To three significant figures, the speed and position of closest approach are = ⋅ 52.01 10  m/sv  

and = ⋅ 96.46 10 m.r  
DOUBLE-CHECK: The calculated distance of closest approach is less than the given distance 

( )113.6 10  m⋅ .  Due to conservation of angular momentum, at the distance of closest approach the speed 

will be a maximum.  Since the calculated speed is greater than the magnitude of the given velocity, the 
results are reasonable.       

12.55. THINK:  The goal is to find the orbital speed and period of a satellite 700. kmh = above the Earth.  The 
speed of a circular orbit is found by setting the force of gravity equal to the centripetal force. 
SKETCH:  

 
 

RESEARCH:  The orbital speed is equal to / ,v GM r=  where the radius r is the sum of the radius of the 
Earth and the height above the surface e .r R h= +  The period is just the distance travelled divided by the 

speed: 2 rT
v
π

= . 

SIMPLIFY:  
e

GM GMv
r R h

= =
+

 and 2 .rT
v
π

=  

CALCULATE: 
( )( )

( )

11 2 2 24

3

6.67 10  N m /kg 5.97 10  kg
7504.82 m/s

6370 700. 10  m
v

−⋅ ⋅
= =

+ ⋅
  and 

( )
π

+ ⋅
= =

36370 700. 10  m
2 5919.15 s

7504.82 m/s
T   
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ROUND:  To three significant figures, the orbital speed and period are  and 5920 s. T =  
DOUBLE-CHECK:  A speed of 7.50 km/s is a reasonable value for a satellite in orbit.  Notice that the 

period 
32 2 2 ,r r rT r

v GM GM
π π π= = =  which is Kepler’s third law.    

12.56. THINK:  The goal is to find the ratio of the gravitational force on the Moon due to the Earth to the 
gravitational force on the Moon due to the Sun and to determine why the Sun doesn’t pull the Moon away 
from the Earth.  
SKETCH:  

 
RESEARCH:  The force of gravity is given by 2/ .F GMm r=   

SIMPLIFY:  The ratio then is 
2

S M E SMEM E M
2 2 2

SM EM SM S EM

/ .
GM m M rF GM m

F r r M r

  
= =     
   

 

CALCULATE: From Table 12.1, you can see that the ratio of the masses of Earth and Sun is 
6

E E
/ 3 10M M −= ⋅ , and the ratio of the distances is 2

SM EM
/ 4 10r r = ⋅ .  Therefore 

6 2 2EM

SM

(3 10 ) (4 10 ) 0.5
F
F

−= ⋅ ⋅ ⋅ ≈  

ROUND:  There is no need to round.  
DOUBLE-CHECK:  This answer is somewhat surprising: The Sun’s gravitational force on the Moon is 
approximately twice as big as that from the Earth on the Moon.  Again, the question:  Why does the Sun 
not pull the Moon away from Earth? The answer is that the Suns gravity does not only act on the Moon, 
but also on the Earth.  Because the Moon orbits around the Earth, the Sun’s gravitational pull acts on the 
center of mass of the Earth-Moon system, and both Earth and Moon orbit the Sun. 

12.57. THINK:  The goal is to find the speed of the shuttle before and after the retrorocket is fired.  The radius of 

the orbit is 66.60 10  mr = ⋅  before the shuttle loses 10% of its total energy.  The speed of a circular orbit is 
found by setting the force of gravity equal to the centripetal force. 
SKETCH:  

 
 

RESEARCH:  The orbital speed is given by / .v GM r=  The energy of the orbit, /(2 ),E GMm r= −  can be 
used to relate the radius of the orbit before and after the retrorocket is fired. 
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SIMPLIFY:  The speed before the retrorocket is fired is: b i/ .v GM R=  The initial energy of the space  

shuttle is i
i

.
2

GMmE
R

= −  Since the energy of the orbit is reduced by 10%  the final energy of the orbit is 

i
f f

i f

(1.1) .
2 2 1.1

RGMm GMmE R
R R

= − = − ⇒ =  This means the speed after the retrorocket fires is 

a
f i

(1.1) .GM GMv
R R

= =  

CALCULATE:  The speed before the retrorocket fires is:  

( )( ) ( )11 2 2 24 6
b 6.674 10 Nm /kg 5.97 10 kg / 6.60 10 m 7769.77 m/s,v −= ⋅ ⋅ ⋅ =  

and the after the retrorocket fires the speed is: 

( )( ) ( )−= ⋅ ⋅ ⋅ =11 2 2 24 6
a 1.1 6.674 10 Nm /kg 5.97 10 kg / 6.60 10 m 8149.01 m/s.v  

ROUND:  To three significant figures, the speeds before and after the retrorocket fires are b 7770 m/sv =  

and 8150 m/s,av =  respectively. 
DOUBLE-CHECK:  Since the space shuttle goes into a lower orbit after the retrorocket is fired, 
gravitational potential energy must be converted into kinetic energy.  The calculation shows that the speed 
increases after firing so the result is reasonable.    

12.58. THINK:  The work required to double the height of a satellite of mass 200. kg,m =  orbiting the Earth at a 

speed of 35.00 10 m/sv = ⋅  is just the change in kinetic energy. The speed of a circular orbit is found by 
setting the force of gravity equal to the centripetal force.   
SKETCH:  

 
 

RESEARCH:  The speed is related to the radius of the satellite’s orbit by / .v GM r=   This relation can be 
used to find the final speed.  The work done on the satellite is equal to the change in kinetic energy: 

( )2 2
f i

1K .
2

W m v v= −∆ = − −  

SIMPLIFY:  The initial and final speeds are given by: 
( )

2
i

E

GMv
R h

=
+

 and 
( )

2
f

E
.

2
GMv

R h
=

+
   The initial 

height h can be found from the first expression: E2
i

.GMh R
v

= −  The final speed can be given in terms of the 

initial speed:  
2

2 i
f 2

i EE2E E2 ii

.
2

22

vGM GMv
GM v RGM RR R v GMv

= = =
  − −+ −  
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The work needed then is:  

( )2 2 2
f i i 2

i E

1 1 1 1 .
2 2

2
W m v v mv

v R
GM

 
 
 = − − = − −
 

− 
 

 

CALCULATE:  

( )( )
( ) ( )

( )( )

23 8
23 3

11 2 2 24

1 1200. kg 5.00 10  m/s 1 9.3781 10  J
2 5.00 10 m/s 6370 10 m

2
6.674 10 Nm /kg 5.97 10 kg

W

−

 
 
 
 

= − ⋅ − = ⋅ 
 ⋅ ⋅
 −
 ⋅ ⋅
 

 

ROUND:  The work done that must be done on the satellite is 89.38 10  J.⋅  
DOUBLE-CHECK:  This is a large amount of energy, but reasonable since the objects and distances 
involved are very large.  The sign of the work is expected to be positive since work must be done on the 
satellite in order to put it into a higher orbit. 

12.59. THINK:  The goal of this question is to find the Schwarzschild radius of a black hole with twice the mass 
of the Sun, the radius at which the orbital speed is the same as the speed of light, and the radius of a black 
hole with Earth’s mass.  It can be assume that the orbit is circular so that the speed can be found by setting 
the force of gravity equal to the centripetal force. 
SKETCH:  

 
 

RESEARCH:  The escape speed is given by 2 / .v GM R=  The radius of the orbital velocity can be found 

with / .v GM R=   The mass of the Sun is 301.9891 10  kg⋅ .  The mass of the Earth is 245.9742 10  kg.⋅   
SIMPLIFY:  (a) The Schwarzschild radius can be found by setting the escape speed to the speed of light 

and solving for R: 2 2
s2 /   2 /   2 / .v c GM R c GM R R GM c= = ⇒ = ⇒ =  

(b) The radius when the orbital speed is the speed of light is given by: 2/ / .v c GM R R GM c= = ⇒ =   

(c) 2
s 2 /R GM c=  

CALCULATE:  

(a)
( ) ( )( )

( )

11 2 2 30

s 2 28

2 6.674 10  N m /kg 2 1.9891 10  kg2 5907.99 m
2.998 10  m/s

GMR
c

−⋅ ⋅
= = =

⋅
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(b)
( ) ( )( )

( )

11 2 2 30

2 28

6.674 10  N m /kg 2 1.9891 10  kg
2953.99 m

2.998 10  m/s

GMR
c

−⋅ ⋅
= = =

⋅
 

 (c) 
( )( )

( )

11 2 2 24

s 2 28

2 6.674 10  N m /kg 5.9742 10  kg2 0.0088722 m
2.998 10  m/s

GMR
c

−⋅ ⋅
= = =

⋅
  

ROUND:  To four significant figures: 
(a) The radius of the black hole with a mass twice that of the sun is s 5.908 km.R =  
(b) The orbital radius when the orbital speed is equal to the speed of light is 2.954 km.R =  
(c) The radius of a black hole with a mass equal to the mass of the Earth is s 8.872 mm.R =   
DOUBLE-CHECK:  Such extreme values are typical when dealing with black holes since they are so dense 
and massive. 

12.60. THINK:  The object is to find the ratio of the kinetic energy to the potential energy of a satellite in a 
circular orbit.  For a circular orbit, the force of gravity and the centripetal force are equal. 
SKETCH:  

 
RESEARCH:  To show that the ratio is constant, the expression for both types of energy are needed: 

21K
2

mv=   and  g g, 0 at .GMmU U r
r

= − = = ∞  Centripetal force is 
2

c
mvF

r
= , and Newton’s Law of 

Gravity  is 
2

.GMmF
r

=  

SIMPLIFY:  Setting the forces equal gives or 2 .GMv
r

=  Using this result in the expression for the kinetic 

energy gives g21K .
2 2 2

UGMmmv
r

= = = −  Thus, the ratio of the kinetic and potential energy of an object in 

a circular orbit is 
g

1 .
2

K
U

= −  

CALCULATE:  Since the result is entirely algebraic, there are no calculations to perform. 
ROUND:  Since the result is entirely algebraic, no rounding is necessary. 
DOUBLE-CHECK:  Since gravitational potential energy is negative, it is expected that the ratio is 
negative.  The ratio is independent of masses and the size and speed of the orbit, as expected.  

12.61. THINK:  The goal is to find the energy needed to launch a projectile into circular orbit from the North 
Pole and the equator. The launch site that requires the least amount of energy is better since less fuel is 
used and the cost is lower. The projectile has a mass 100.0 kgm =  and the orbit is 10.00 kmh =  above the 
surface of the Earth. 
 
 
 
 



Bauer/Westfall: University Physics, 2E 

  604 

SKETCH:  

 
 
RESEARCH:  Before being launched from the surface, the projectile has a total energy of 

2
i

E

1 .
2

GMmE mv
R

= −  While in orbit, the projectile has an energy of 
( )orbit

E

1 .
2 2

GMmE U
R h

= = −
+

 

SIMPLIFY:   

(a) At the North Pole, the projectile starts from rest so its energy is NP, i
E

0 .GMmE
R

= −   The energy 

required to launch the projectile at the North Pole is: 

( )NP orbit NP, i
E E

1 1 .
2

E E E GMm
R R h

 
= − = − 

+  
 

(b) At the equator the rotation of the Earth gives the projectile an initial speed of E E ,v Rω=  so the initial 

energy of the projectile launched at the equator is ( )22
eq, i E E

E E

1 1 .
2 2

GMm GMmE mv m R
R R

ω= − = −  The 

energy required to launch the projectile at the equator is: 

( )
2 2 2 2

eq orbit eq, i E E NP E E
E E

1 1 1 1 .
2 22

E E E GMm m R E m R
R R h

ω ω
 

= − = − − = − 
+  

 

CALCULATE:   
(a) The energy required to launch at the North Pole is: 

( )( )( ) ( )
−

 
 = ⋅ ⋅ − ⋅ ⋅ + ⋅  

= ⋅

11 2 2 24
NP 6 6 3

9

1 16.674 10  N m /kg 5.974 10  kg 100.0 kg
6.357 10  m 2 6.357 10  m 10.00 10  m

3.14088 10  J.

E

 
 (b) The energy required to launch at the equator is: 

 ( ) ( ) ( )πω
 

= − = ⋅ − ⋅  
 

= ⋅

2
22 2 9 6

eq NP E E

9

1 1 23.13052 10  J 100.0 kg 6.378 10  m
2 2 86,400 s

3.130123 10  J.

E E m R  

ROUND:  To four significant figures, the energy required to launch the projectile from each site is:  

(a)  = ⋅ 9
NP 3.141 10  JE  

(b)  = ⋅ 9
eq 3.130 10  JE   

The difference in energy is ⋅ 71.1 10  J  which is large, but it is only about 0.4%  of the energy required to 
make the launch.  Thus, the difference is not very significant. 
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DOUBLE-CHECK:  This result might have been expected since the rotation of the Earth is relatively slow.  
Therefore, the initial speed at the surface is small and there is only a small energy advantage in launching 
projectiles from the equator.    

12.62. THINK:  The rocket has a mass of = = ⋅ 412.0 metric tons 1.20 10  kgM  and orbits the Moon at a height  

100. kmh =  above the surface. The Moon has a radius 3
M 1.74 10  kmR = ⋅ and an acceleration of gravity of 

2
M 1.62 m/sg =  near the surface. In the first case, the rocket fuel, ejected at a velocity of 41.00 10  m/su = ⋅



 
forward, is used to land the rocket at point B. In the second case, the rocket fuel is ejected at the same 
speed away from the Moon, in order to land that rocket at point C. It can be assumed that the gravitational 
acceleration is constant throughout the descent in each case. The equation for the speed of a circular orbit 
is found by setting the force of gravity equal to the centripetal force. The conservation of energy and 
momentum can be used to find the amount of fuel needed in each case.   
SKETCH:  
(a)      (b) 

                

RESEARCH:  The first step is to find the speed of the rocket in orbit / .v GM r=  In order to accomplish 

this, rewrite G using 2
M M M/ .g GM R=  Using the conservation of energy and angular momentum, the 

change in speed can be determined. The conservation of linear momentum is then used to find the 
amount of fuel needed for each trip. 

SIMPLIFY:  The speed of the orbit is = = =
+

2 2
M M M M M

M
.

GM g R g R
v

R R R h
  

(a) If Av  is the speed of the rocket at A after the braking, and Bm  is the mass of fuel required to send the 
rocket to point B, so that the rocket’s remaining mass is ′ = − B ,M M m  then conservation of energy gives 

′ ′ ′ ′
− = −

+

2 2
A M B M

M M
,

2 2
M v GM M M v GM M

R h R
 and conservation of angular momentum gives 

( )′ ′+ =A M B M .M v R h M v R  After ′M  cancels, there are two unknowns in two equations, so the velocity 

Av  at point A can be found: 

M
B A

M
 

R h
v v

R
+

=  
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( )

( )( )
( )

2 2
A B

M
M M

22 2
A A M

M
M M M

22 2
A M M

M2
M MM

1 1
2 2

2 2

2

v v
GM

R h R

v v R h hGM
R R R h

v R R h hGM
R R hR

 
− = − 

+ 
  +

− = −    +   

− +  
= −  + 

 

 
( ) ( ) ( ) ( )

( )( ) ( )( )

−
= ⋅ =

+ + +− +

= = =
+ + + + +

2 2
M M M

A M 2 22
M M M M MM M

3
M M M M M

M M M M M

2
2

2

2 2 2
2 2 2

R GM R hhv GM
R R h R h h R R hR R h

GM R g R R
v

R h R h R h R h R h

 

The change in velocity is 
 

∆ = − = − = −  + + 

M M
A

M M

2 2
1 .

2 2
R R

v v v v v v
R h R h

 Conservation of linear 

momentum gives ( )B BM m v m u− ∆ = .  Therefore, ( )BM v m u v∆ = + ∆  or B .M vm
u v

∆
=

+ ∆
  

(b) In the second case, the change in direction is perpendicular to the motion so the velocity at point A is 

( )22
A .v v v= + ∆  Conservation of energy gives: 

( )( )′ + ∆ ′′ ′
− = −

+

22 2
CM M

M M
,

2 2

M v v M vGM M GM M
R h R

 and 

conservation of angular momentum gives: ( )′ ′+ =M C M ,M v R h M v R  where Cm  is the mass of fuel 

required to send the rocket to point C and now ′ = − C .M M m  Solving these equations for v∆ gives 
2

M

M
.

g h
v

R h
∆ =

+
 Conservation of linear momentum in the direction perpendicular to the original direction 

gives ( )C CM m v m u− ∆ =  or ( )= ∆ + ∆C / .m M v u v   
CALCULATE:   
(a) In the first case, the change in velocity is  

( )( )
( )

( )
( )

22 6 6

6 3 6 3

1.62 m/s 1.74 10  m 2 1.74 10  m
1 22.964 m/s.

1.74 10  m 100. 10  m 2 1.74 10  m 100. 10  m
v

 ⋅ ⋅ 
∆ = − = 

⋅ + ⋅ ⋅ + ⋅ 
 

 

Therefore, the mass of spent fuel is 
( )( )
( )

⋅
= =

⋅ +

4

B 4

1.20 10  kg 22.964 m/s
27.494 kg.

1.00 10  m/s 22.964 m/s
m   

(b) For the second case the change in velocity is 

( )( )
( )

22 3

6 3

1.62 m/s 100. 10  m
93.831 m/s.

1.74 10  m 100. 10  m
v

⋅
∆ = =

⋅ + ⋅
  

Therefore, the mass of spent fuel is  
( )( )
( )

⋅
= =

⋅ +

4

C 4

1.20 10  kg 93.831 m/s
111.55 kg.

1.00 10  m/s 93.831 m/s
m  

ROUND:   
(a)  The fuel required to send the rocket to point B is 27.5 kg.  
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(b)  The fuel required to send the rocket to point C is 112 kg.  
DOUBLE-CHECK:  The rocket requires less fuel to reach point B than point C.  The path to C is shorter 
so it is expected that a greater deceleration and, therefore, more fuel would be required. 

12.63. THINK:  The force of gravity acting on the Moon due to the Sun and the Earth are calculated separately.  
The net force due to gravity from the Earth and the Sun can then be found by summing up the two forces. 
SKETCH:  

 
RESEARCH:  Use Newton’s Law of Gravity, 2

1 2 / ,F Gm m r=  to calculate both forces.  

SIMPLIFY: 
( ) ( )

S M E M
S E2 2

SE EM EM

ˆ ˆ,  .
Gm m Gm m

F x F x
r r r

= − =
−

 

 The net force acting on the Moon is 

( ) ( )
S E

M S E M 2 2
SE EM EM

ˆ.
m m

F F F F Gm x
r r r

 
 = = + = − +
 − 

∑
   

 

CALCULATE:   

( )( )( )
( )

11 2 2 30 22
20

S 211 8

6.674 10  N m /kg 1.99 10  kg 7.344 10  kg
ˆ ˆ4.381 10  N

1.496 10  m 3.844 10  m
F x x

−⋅ ⋅ ⋅
= − = − ⋅

⋅ − ⋅



 

( )( )( )
( )

( )

11 2 2 24 22
20

E 28

20 20 20
M

6.674 10  N m /kg 5.97 10  kg 7.344 10  kg
ˆ ˆ1.980 10  N

3.844 10  m

ˆ ˆ4.381 10  N 1.980 10  N 2.401 10  N

F x x

F x x

−⋅ ⋅ ⋅
= = ⋅

⋅

= − ⋅ + ⋅ = − ⋅





 

ROUND:  To three significant figures, the force on the Moon due to the Sun is 20
S 4.38 10  NF = ⋅  towards 

the Sun.  The force on the Moon due to the Earth is 20
E 1.98 10  NF = ⋅  towards the Moon. The total force 

on the Moon is 20
M 2.40 10  NF = ⋅  towards the Sun.  The Moon’s orbit never curves away from the Sun 

toward the Earth.   
DOUBLE-CHECK: Use the answer of problem 12.56 as a double-check, the ratio of the magnitude of the 
two forces was calculated to be approximately 0.5, in accordance with the present result. 
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12.64. THINK:  Conservation of energy can be used to find the initial speed of the projectile. 
SKETCH:  

 
 

RESEARCH:  At the surface the initial energy is 2
i

1 ,
2

GMmE mv
R

= −  where v is the initial speed, M is the 

mass of the Earth, R is the radius of the Earth, and m is the mass of the projectile. At its highest point the 

projectile’s speed is zero so its final energy is f .GMmE
R

= −  Conservation of energy demands that 

i f .E E=  

SIMPLIFY:  2 21 1 1 1 1  2 2
2

GMm GMmmv v GM v GM
R R h R R h R R h

   − = − ⇒ = − ⇒ = −   + + +   
 

CALCULATE: ( )( )11 2 2 24
6 6 3

1 12 6.674 10  N m /kg 5.97 10  kg
6.37 10  m 6.37 10  m 55.0 10  m

1034.83 m/s

v −  
= ⋅ ⋅ − ⋅ ⋅ + ⋅ 
=

 

ROUND:  To three significant figures, the initial speed of the projectile is 1.03 km/s.  
DOUBLE-CHECK:  Such a large speed is reasonable because the projectile travels to such a high altitude.  

12.65. THINK:  The force due to gravity between the large and small balls can be found by using Newton’s Law 
of Gravity.   Since there are two small balls and two large balls, the force measured by the apparatus is 
twice the force due to one set of balls. Converting the data to SI units gives:  

( )( )= =1.61 lb 0.4536 kg/lb 0.7303 kg,m  
( )( )= =348 lb 0.4536 kg/lb 157.85 kg,M   

( )= =9.00 in. 0.0254 m/in. 0.2286 m.r  
SKETCH:   

 



 Chapter 12:  Gravitation 

 609 

RESEARCH:  The force that is measured between the balls is b 2
22 .GmMF F

r
= =  The weight of the small 

balls is =g 2 .F mg  

SIMPLIFY:  The ratio is  

CALCULATE:  
( )( )( )

( )
( )( )

( )( )

−
−

−
−

⋅
= = ⋅

⋅
= = ⋅

11 2 2
7

b 2

11 2 2
8

b g 22

2 6.674 10  N m /kg 0.7303 kg 157.85 kg
2.944 10  N

0.2286 m

6.674 10  N m /kg 157.85 kg
/ 2.056 10

9.81 m/s 0.2286 m

F

F F

 

ROUND:  To three significant figures, the force measured by the apparatus to the gravitational attraction 

of the large and small balls is 7
b 2.94 10 N.F −= ⋅  The force of gravity of the Earth on the small balls is much 

larger than the force due to the balls.  The ratio of the ball forces to the weight of the small balls is 
  

DOUBLE-CHECK:  Since the gravitational force is proportional to the mass of the objects involved, it is 
expected that the Earth would exert a much greater force on the balls than the balls exert on each other. 

12.66. THINK:  The point of this question is to show the major gravitational force on an apple.  The apple has a 
mass of 100. g.  Newton’s mass is 80.0 kg  and is 50.0 cm  away from the apple.  
SKETCH:   

 
 

RESEARCH:  The gravitational force is given by 2/ .F GMm R=  
SIMPLIFY:  Not required. 
CALCULATE:  The force due to Newton is  

( )( )( ) ( )211 2 2 9
N 6.674 10  N m /kg 80.0 kg 0.100 kg / 0.500 m 2.13568 10  N.F − −= ⋅ = ⋅  The force due to the 

Earth is ( )( )2
E 9.81 m/s 0.981 N.0.100 kgF mg= = =  The force due to the Sun is  

( )( )( )

( )

11 2 2 30
4

s 29

6.674 10  N m /kg 1.99 10  kg 0.100 kg
5.9344 10  N.

149.6 10  m
F

−
−

⋅ ⋅
= = ⋅

⋅
 

ROUND:  The answers should have three significant figures.  The force of gravity due to Newton is 
−= ⋅ 9

N 2.14 10  N,F  the force of gravity due to the Earth is E 0.981 NF =  and the force of gravity due to the 

Sun is  4
S 5.93 10  N.F −= ⋅  
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DOUBLE-CHECK:  This makes sense; the force due to the Earth at close range is much bigger than that 
due to the Sun, and greater than that exerted by the much less massive Newton.  This is consistent with 
everyday experience – when the apple is released it falls to the Earth.  

12.67. THINK:  The principle of the conservation of energy can be used to determine the energy supplied by the 
rockets in order to increase the altitude of the orbit.  The energy supplied by the rockets is the difference in 
orbital energies of the two orbits. 
SKETCH:   

 

RESEARCH:  The total energy of the orbit is .
2

GMmE
R

= −  

SIMPLIFY:  f i
f i i f

1 1
2 2 2

GMm GMm GMmE E E
R R R R

 
= − = − + = − 

 
 

CALCULATE:  
( )( )( )11 2 2 24

6 7

10

6.674 10  N m /kg 5.97 10  kg 1000. kg 1 1
2 7.00 10  m 5.00 10  m

2.448 10  J

E
−⋅ ⋅  = − ⋅ ⋅ 

= ⋅

 

ROUND:  To three significant figures, the energy supplied by the rockets to move the satellite into a 

higher orbit is 102.45 10  J.⋅  
DOUBLE-CHECK:  This is the same amount of energy required to lift a 2 million kilogram object 1 
kilometer into the air (assuming gravitational acceleration of Earth is constant). This large value was 
expected since the force of gravity between the Earth and the satellite is rather large.    

12.68. THINK:  By Newton’s third law, the force that the apple exerts on the Earth is the same as the force that 
the Earth exerts on the apple.  Whether the apple is tied to a tree or is in free fall does not matter.  The 
force of gravity only depends on the mass of the two objects and their separation.  Since the height of an 
apple in a tree is much less than the radius of the Earth, the distance can be approximated to be the radius 
of the Earth. 
SKETCH:   
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RESEARCH:  This gravitational force is 
( )

E
2

E

GM m
F

R h
=

+
, where EM  is the mass of the Earth, m  is the 

mass of the apple, ER  is the radius of the Earth, and h is the height of the apple above the surface of the 
Earth. 

SIMPLIFY:  Because ER h>> , the equation reduces to the familiar E
2

E

GM
F m mg

R

 
= =  

 
. 

CALCULATE:  ( )( )29.81 m/s 2.943 N.0.300 kgF = =  

ROUND:  To three significant figure, the force that the apple exerts on the Earth is 2.94 N,F =  towards 
the apple.  Because  h is very small compared to ER , this force remains constant whether the apple is on 
the tree of falling toward the ground. 
DOUBLE-CHECK:  This small force is reasonable since the mass of the apple is very small.  Newton’s 
third law states that each force has an equal magnitude, but opposite direction.  Since the Earth is very 
massive, it’s acceleration towards the apple is minuscule.  Since the apple as a small mass it accelerates 
towards the Earth.  

12.69. THINK:  Kepler’s third law can be used to determine the height required to have half the period of the 
Earth about its axis. 
SKETCH:   

 

RESEARCH:  Kepler’s third law relates the period of an orbit to its radius: 
2 2

3
4 .T
GMr
π

=  

SIMPLIFY:  Solving for the radius gives: 
π

 
=   
 

1
2 3

s 2
.

4
GMTR   The height above the surface of the Earth is 

given by the equation = +s ER R h  or 

1
2 3

E2
.

4
GMTh R
π

 
= −  
 

 

CALCULATE:  
( )( )

1
2 3

11 2 2 24

3 7
2

86400 s
6.674 10  Nm /kg 5.97 10  kg

2
6370 10  m 2.024 10  m

4
h

π

−
   ⋅ ⋅  
  = − ⋅ = ⋅ 
 
 
 

 

ROUND:  To three significant figures, the satellite must be at a height of 72.02 10  m⋅  or 42.02 10  km.⋅  
DOUBLE-CHECK:  This answer is of a reasonable order of magnitude for the height of a satellite in orbit. 
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12.70. THINK:  The neutral point for the Earth/Moon system is the point between the Earth and the Moon 
where the gravitational force of the Moon exactly equals the gravitational force of the Earth (or the net 
force of gravity is zero). Using Newton’s Law of Gravity the ratio of the forces between the Sun and the 
Earth, and the Sun and the Moon can be calculated. Let the distance from the center of the Earth to the 
neutral point be x, and let R denote the distance between the Earth and the Moon.  Assume the mass of the 
Moon is 1/81 the mass of the Earth. 
SKETCH:   

 

RESEARCH:  Newton’s Law of Gravity gives the gravitational force: 2F / .GMm r=  The distance between 
the Moon and the neutral point is R x− .  The gravitational force of the Earth on an object of mass m at 

the neutral point is E
E 2

GM m
F

x
= . The gravitational force of the Moon on an object at the neutral point is 

( )
( )

1
E81

M 2

G M m
F

R x
=

−
.   

SIMPLIFY:  
(a) By definition, E M  at L1F F= , so  

( )
( ) ( )

1
E81E

2 2 2 2
1 1  

81

G M mGM m
x xR x R x

= ⇒ =
− −

 ⇒  2 280 162 81 0x Rx R− + =  

This factors to (10 9 )(8 9 ) 0x R x R− − = .  Therefore the possible values of x are 9 /10 or 9 / 8.x R x R= =  
Since the neutral point is between the Earth and the Moon, the value of x has to be between 0 and R. 
Therefore, 9 /10x R=  is the proper solution. 
(c) The ratio of the gravitational force due to the Sun to that due to the Earth or the Moon is 

( )
( )

2S S
2

EE

2
SS S

2
E M S

/
.

/

GM m RF F M x
F F M RGM m x

= = =  

Recall that E MF F=  at the neutral point.  Since the Moon revolves around the Earth, the exact distance 
between the Sun and the neutral point varies.  But it is reasonable to use the Earth-Sun distance SR  as an 
approximation. 
CALCULATE:  
(a) The distance of the neutral point from the Earth is:  

( )5
5

9 3.844 10  km
3.4596 10  km

10
x

⋅
= = ⋅  

(b) If an object at the neutral point is pushed towards the Earth or the Moon the object will have a net 
gravitational force in the direction of the push.  Therefore, since the object does not settle back into the 
neutral point after a perturbation, the neutral point is an unstable equilibrium. 
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(c) 
( )( )
( )( )

230 5
S S

224 8E M

1.99 10  kg 3.4596 10  km
1.7827

5.97 10  kg 1.496 10  km

F F
F F

⋅ ⋅
= = =

⋅ ⋅
. 

ROUND:  To three significant figures, the neutral point is 53.46 10  km⋅  from the Earth in the direction of 
the Moon. The ratio of the forces of gravity is 1.78 at the neutral point. 
DOUBLE-CHECK: Since the Earth is much more massive than the Moon, the neutral point should be 
substantially closer to the Moon than it is to the Earth. Since the Sun is much more massive than the Earth 
or the Moon, it is reasonable that the force of gravity due to the Sun is greater than the force of gravity due 
to the Earth or the Moon at the neutral point.   

12.71. THINK:  The effective gravitational force acting on a particle on the Earth’s surface at λ = °30.0 north of 
the equator can be found by summing the forces acting on the particle.  The only two forces acting on the 
particle are the force of gravity, pointing toward the center of the Earth, and the force exerted by the 
surface of the Earth.  Because the Earth is rotating and the particle is traveling in a circle, the difference 
between the x-component of the force of gravity and the x-component of the force exerted by the surface 
of the Earth must be equal to the centripetal force required to keep the particle traveling in a circle. 
SKETCH:   

 
 
RESEARCH:  The y-components of the forces must sum to zero 
 λ λ− = ⇒ =S, S,sin 0    sin .y yF mg mg F  
The x-components of the forces must equal the centripetal force required to keep the particle traveling in a 
circle with radius λ= cosr R  

 
λ ω λω

λ λω

− = − = −

= −

2 2
S,

2
S,

cos cos

cos cos .
x

x

F mg mr mR

F mg mR
 

SIMPLIFY:   
We can write the magnitude of the force exerted by the surface as 

 

( ) ( )

( ) ( ) ( ) ( )

( )

λ λω λ

λ λω λ λ λω λ

ω λ λ

= − +

= − + = − +

= − +

2 22
S

2 22 22 2
S

22 2 2 2
S

cos cos sin

cos cos sin cos cos sin

cos sin .

F mg mR mg

F mg mR mg m g R g

F m g R g

 

The angle of the force exerted by the surface is 

 
λ λ λ

θ
λ λω λ λω ω

− − −     
= = =     − − −     

1 1 1
2 2 2

sin sin tan
tan tan tan .

cos cos cos cos
mg g g

mg mR g R g R
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The deviation can be expressed as 

 
λ

λ
ω

−  
∆ = −  − 

1
2

tan
tan .

g
g R

 

CALCULATE: 
(a) The magnitude of the force exerted by the surface for λ = °30.0  is 

 

  

( )

( )( )( ) ( )
( )

ω λ λ

−

= − +

= − ⋅ ⋅ ° + °

=

22 2 2 2
S

22 22 6 5 2 2 2
S

2
s

cos sin

9.81 m/s 6.37 10  m 7.27 10  rad/s cos 30.0 9.81 m/s sin 30.0

9.7848 m/s .

F m g R g

F m

F m

 

 The angular deviation at λ = °30.0  is 

  
( )
( )( )

λ
λ

ω
− −

−

 °   ∆ = − = °−   −  − ⋅ ⋅ 
∆ = − °

2
1 1

22 2 6 5

9.81 m/s tan30.0tan
tan 30.00 tan

9.81 m/s 6.37 10  m 7.27 10  rad/s

0.085365 .

g
g R  

 We can get the maximum by taking the derivative, setting it equal to zero, and solving for λ , 

  

( )

( )

ω
λλ λ

λ λ λ
λ λ

λ λ

λ

−

−

= =
−

∆  = − = − =  +
+ =

+ =

 = + − + = = ° 
 

2

2
1

2 2

2 2 2

2 2 2

1

Let 1.00344

sectan tan 1 0
1 tan

1 tan sec

cos sin
Solving numerically (in this case, using Mathematica)

2tan 1 2 2 1 0.784539 rad 44.95 .

g
a

g R
d d aa
d d a

a a

a a

a a a

 

 ROUND: 

(a) The effective force of gravitation is ( )= 2
S 9.78 m/sF m . 

(b) The direction of the effective gravitational force is °29.9  above the horizontal. 
(c) The angle of λ  that maximizes the deviation is °45.0  or π / 4  radians. 

DOUBLE-CHECK:  It is expected that the effective gravitational acceleration is less than g.  If the Earth 
were to rotate fast enough, objects would not stay on the surface.  The direction points toward the equator 
from the radial direction.  This is the same effect that makes the Earth’s oceans bulge at the equator.  For 

λ = 0,  we see that ( )ω ω= − + = −
22 2 2 2 2

S cos 0 sin 0 ,F m g R g mg mR  which is what we would expect at 

the equator. 

12.72. THINK:  The goal of the exercise is to find the acceleration of gravity and the escape speed of the asteroid.  
The asteroid has a radius of 20.0 km.r =  There is a tiny moon in a circular orbit about the asteroid at a 

distance of 100. kmd =  and a period of 40.0 hrT =  or 144000 s.  The equation for the acceleration of 
gravity and Kepler’s third law can be used here.  
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SKETCH:   

 
RESEARCH:  The acceleration of gravity is defined as 2/ .g GM r=  Using Kepler’s third law 

2 3 2/ 4 / ,T d GMπ=  the acceleration of gravity of the asteroid can be found.  The escape speed is given by 

2 / .v GM r=  
SIMPLIFY:   

(a) From Kepler’s third law: 
2 3

2
4 .dGM

T
π

=  Therefore, the acceleration due to gravity is 

2 3

2 2 2
4 .GM dg

r r T
π

= =  

(b) The escape speed is E
2 2 .GMv gr

r
= =  

CALCULATE:   
(a) The acceleration of gravity at the surface of the asteroid is: 

( )
( ) ( )

32 5
3 2

2 25 4

4 1.00 10  m
4.7596 10  m/s

1.44 10  s 2.00 10  m
g

π
−

⋅
= = ⋅

⋅ ⋅
 

(b) The escape speed from the asteroid is: ( )( )−= ⋅ ⋅ =3 2 4
E 2 4.7596 10  m/s 2.00 10  m 13.798 m/s.v  

ROUND:  

(a) The acceleration of gravity at the surface of the asteroid is 3 24.76 10  m/s .g −= ⋅  
(b) The escape speed is E 13.8 m/s.v =  
DOUBLE-CHECK:  These values are much smaller than those of Earth, as they should be since the 
asteroid is very small. 

12.73. THINK:  The values for the distances at perihelion and aphelion will need to be used to find a value for the 
percentage change in the gravitational potential energy.  By using conservation of energy, the percentage 
change in kinetic energy can be found.  
SKETCH:   

 
 
RESEARCH:  The potential energy is given by = − E S / ,U GM M r  where SM  is the mass of the Sun and 

EM  is the mass of the Earth. The percentage change is given by 
 −

⋅ 
 

f i

i
100%.

U U
U
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SIMPLIFY:   
(a) The percentage change for the potential energy is:  
 

( )
( ) ( )

( )
( ) ( )

( )
( )

( ) ( )

− − −   − −
= =      −   
 − − −  = =           

E S a E S pa p a p

p pE S p

p a p aa p p a

p p a

/ / 1/ 1/
100% 100% 100%

1//

/
.100% 100% 100%

1/

GM M r GM M rU U r r

U rGM M r

r r r rU U r r

U r r

 

(b) The kinetic energy is related to the potential energy through = + ,E U K  so we an express the kinetic 
energy as = − .K E U   The percentage change for kinetic energy is 

( )
( )

( ) ( )
− − −− −

∆ = = =
− −

a pa p p a

p

.100% 100% 100%
p p

E U E UK K U U
K

K E U E U
 

Remembering that = − E1
2

M m
E G

a
 where a is the semimajor axis , we can write 

( ) ( )

( ) ( )
( ) ( )

−
+

−
∆ = = =

− − +

−
−

−
∆ = = =

− −−

E S E S

p a p a

E S E S

p

p a

p p aa p a p

p a p p

p p

100% 100%
1
2

1 1
2

100% 100% .
1 1 2 2

2 2

p

GM M GM M
U U r r

K
M M GM ME U G

a r
r r

ar r rr r r r
K

a r r r a r
r a ar

    

 CALCULATE:   

(a) 
( ) ( )

( )
( )

⋅ − ⋅
∆ = = −

⋅

6 6

6

147.1 10  km 152.1 10  km
3.28731%.100%

152.1 10  km
U  

(b) 
( )( )( )

( )( ) ( )( ) ( )
⋅ ⋅ ⋅ − ⋅

∆ = =
⋅ ⋅ ⋅

−
− ⋅

6 6 6 6

6 6 6 6

2 149.6 10  km 147.1 10  km 147.09 10  km 152.1 10  km
100%

152.1 10  km 147.1 10  km 2 149.6 10  km 147.1 1
6.466

0 km
.

 
56%K  

ROUND:  The answer will be rounded to four significant figures. 
(a) The potential energy increases (becomes less negative) by 3.287% from going from the perihelion to 
the aphelion. 
(b) To conserve energy, the kinetic energy must decrease by 6.467%.  
DOUBLE-CHECK:  Such a modest change in gravitational potential energy and kinetic energy is 
reasonable, because the orbit of the Earth around the Sun is nearly circular.    

12.74. THINK:  The linear velocity, period, and the total mechanical energy are desired for a planet of mass 
217.00 10  kgm = ⋅  in circular orbit around a star of mass 302.00 10  kg.M = ⋅  The radius of the orbit is 

103.00 10  m.r = ⋅    
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SKETCH:   

 
RESEARCH:   
(a) For a circular orbit the linear velocity (or orbital speed) is found by setting the centripetal force equal to 

the force of gravity. The linear velocity is equal to GMv
r

=  for a body in a circular orbit.   

(b) The period of a circular orbit is 2 .rT
v
π

=   

(c) The total energy for an orbiting object is simply .
2 2
U GMmE

r
= = −  

SIMPLIFY:  The equations are already in simplified form. 
CALCULATE:   

(a) The linear velocity is:  
( )( )

( )
11 2 2 30

10

6.674 10  N m /kg 2.00 10  kg
66.703 km/s.

3.00 10  m
v

−⋅ ⋅
= =

⋅
  

(b) The period is 
( )10

4

2 3.00 10  m
2825880 s.

6.6703 10  m/s
T

π ⋅
= =

⋅
  

(c) The total mechanical energy of the planet is:  

 
( )( )( )

( )
11 2 2 30 21

31
10

6.674 10  N m /kg 2.00 10  kg 7.00 10  kg
1.5573 10  J.

2 3.00 10  m
E

−⋅ ⋅ ⋅
= − = − ⋅

⋅
 

ROUND:  The answers should be rounded to three significant figures. 

(a) The linear velocity is 46.67 10  m/s.v = ⋅  
(b) The period of the circular orbit is 32.7 days.T =  

(c) The total mechanical energy of the orbit is 311.56 10  J.E = − ⋅  
DOUBLE-CHECK:  These are typical values for an orbit.  Recall that the value for the mechanical energy 
of an orbit is always negative because the kinetic energy of a circular orbit is half the gravitational potential 
energy. 

12.75. THINK:  Given the distance 111.4960 10  mr = ⋅  and period 73.1557 10  sT = ⋅  of the Earth’s orbit about 
the Sun, along with the gravitational constant − − −= ⋅ 11 3 1 26.6738 10  m  kg  s ,G  the mass M of the Sun can 

be calculated by using Kepler’s third law. The radius and period for the orbit are 111.4960 10  m⋅  and 
73.1557 10  s,⋅ respectively. 
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SKETCH:   

 

RESEARCH:  The mass of the Sun can be found by using Kepler’s third law: 
2 2

3
4 .T
GMr
π

=   

SIMPLIFY:  Solving for M gives: 
2 3

2
4 .rM
GT
π

=  

CALCULATE:  
( )

( )( )
π
− − −

⋅= = ⋅
⋅ ⋅

32 11
30

211 3 1 2 7

4 1.4960 10  m 1.98879 10  kg
6.6738 10  m kg s 3.1557 10  s

M  

ROUND:  The values are given to five significant figures, thus, the answer also has this accuracy.  The 
mass of the Sun is ⋅ 301.9888 10  kg.  

DOUBLE-CHECK:  This agrees with the known value of 301.99 10  kg.⋅  

12.76. THINK:  The question asks to find the ratio of the speed of Pluto at perihelion versus aphelion.  The 

perihelion and aphelion distances are 6
p 4410 10  kmr = ⋅  and 6

a 7360 10  km.r = ⋅  

SKETCH:   

 
RESEARCH:  The conservation of angular momentum is all that is needed to answer this question: 

.L mrv=  

SIMPLIFY:  = = =p p p a

a a a p

/ 1/

/ 1/

v L mr r r
v L mr r r

 

CALCULATE:   
6

p
6

a

7360 10  km 1.66893
4410 10  km

v

v
⋅

= =
⋅

 

ROUND:  This value is known to three significant figures.  The ratio of Pluto’s speed at perihelion relative 
to aphelion is 1.67.  
DOUBLE-CHECK:  This indicates that the speed at the perihelion is greater than at the aphelion, which is 
known to be true. 

12.77. THINK:  This question explores the properties of neutron stars.  Consider a neutron star of radius 
=10.0 kmR  and mass =N S2 .M M  The question asks to calculate several things: the speed at the equator 

of the neutron star, the g value of the star, the weight of a 1.00 kg  mass on its surface, the number of 

revolutions a satellite makes in a minute while orbiting at a distance =10.0 kmr  from the surface of a 
neutron star and the radius of the geostationary orbit.  The period of rotation of the star about its axis is 

=1 s.NT  The satellite is orbiting a distance of 10.0 km above the star. 
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SKETCH:   

 
RESEARCH:   

(a) The speed of a point on the equator is given by π
=

2 .rT
v

  

(b) The acceleration of gravity at the surface is = N
N 2 .

GM
g

r
  

(c) The weight on the surface is given by =N NF mg  for the Neutron star and =EF mg on Earth.   
(d) and (e) The revolutions per minute of the satellite and the radius of the geostationary orbit are found 

by using Kepler’s third law, π
=

2 2

3
N

4 .T
GMr

 

SIMPLIFY:  

(a) The velocity at the equator is 
π

=
N

2 .
T

rv   

(d) The revolutions per minute of the satellite is 
( )π

 
= =  

+  
rp 32m

N 60 s1 .
min4

GM
S

T r R
  

(e) The radius of the geostationary orbit is 
π

 
=   
 

1
2 3

N N
geo 2 .

4
GM T

r  

CALCULATE:   

(a) 
( )
( )

π ⋅
= = ⋅

3
4

2 10.0 10  m
6.28319 10  m/s

1.00 s
v  

(b) 
( )( )

( )

−⋅ ⋅ ⋅
= = ⋅

⋅

11 2 2 30
12 2

N 23

6.674 10  N m /kg 2 1.99 10  kg
2.65625 10  m/s

10.0 10  m
g  

(c) ⋅
= = = ⋅

12 2
11N N

2
E

2.65625 10  m/s 2.7077 10
9.81 m/s

F g
F g

  

(d) 
( )( )

( )π

−⋅ ⋅ ⋅  
= = ⋅ 

 ⋅
r

11 2 2 30
4

p 32
m

3

6.674 10  N m /kg 2 1.99 10  kg 60 s
5.5025 10  rpm

min4 20.0 10  m
S  

(e) 
( )( )( )

π

− ⋅ ⋅ ⋅
 = = ⋅  
 

1
211 2 2 30 3

6
geo 2

6.674 10  N m /kg 2 1.99 10  kg 1.00 s
1.8879 10 m

4
r  

ROUND:  The values should be rounded to three significant figures. 
(a) The speed of a point on the equator is ⋅ 46.28 10  m/s for this neutron star.  This is very fast, the speed 
about the equator of the Earth is about 464 m/s  or 135 times smaller. 
(b) The acceleration of gravity at the surface of the neutron star is ⋅ 12 22.66 10  m/s .  
(c) The weight of a 1.00 kg  object is ⋅ 112.71 10  times bigger than on the Earth. 
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(d) The satellite completes ⋅ 45.50 10  revolutions per minute. 
(e) The distance for a geostationary orbit is ⋅ 61.89 10  m.  
DOUBLE-CHECK:  These extreme values are reasonable since neutrons stars are extremely dense.  They 
rotate very fast because as the star compresses and becomes smaller the star must rotate faster in order to 
conserve angular momentum. 

12.78. THINK:  The minimum distance at perihelion for the new elliptical orbit must be greater than the radius 
of the Earth or I will crash into the surface of the Earth.  The new period is half the old period and the 

radius is 42.5000 10  km.⋅  
SKETCH:   

 
 
RESEARCH:  Use the subscript 1 to refer to the circular orbit, and the subscript 2 to denote the new 
elliptical orbit. This means that 1 a .r a r= =  To find the new semi-major axis 2a use Kepler’s third law, 

2 3 2 3
1 1 2 2/ / .T a T a=  The perihelion distance pr can be found using p 22 .ar r a+ =  

SIMPLIFY:  

1 2 2
2 3 3 32 2

2 12
11

1 .
2

T T
a a r r

TT

     
= = =          

 Using this I can find the distance at perihelion: 

2 2
3 3

a p p p
1 12 2 1 .
2 2

r r r r r r r
 

    + = + = ⇒ = −        
 

 

CALCULATE:  ( )
2
3 4

p
12 1 2.5000 10  km 6498.026 km
2

r
 
  = − ⋅ =    

 

 

ROUND:  To five significant figures, the minimum distance at perihelion is 6498.0 km  which is greater 
than the radius of the Earth, but not by much. 
DOUBLE-CHECK:  The space ship with come close to the Earth but not crash. The minimum radius is 
just less than the original radius, so the result is reasonable. 
 
 
 



 Chapter 12:  Gravitation 

 621 

12.79. THINK:  The space ship starts at 6720 km  from the center of the Earth.  Instead of slowing the spacecraft, 
the forward boosters will be applied to put the craft in an elliptical orbit.  The current position is the 
distance at perihelion, pr . The new period should be 1.5  times greater than the present one so that the 

spaceship meets the station.  
SKETCH:   

 
 
RESEARCH:  Use the subscript 1 to refer to the circular orbit, and the subscript 2 to denote the new 
elliptical orbit.  This means that 1 p .r a r= =  To find the new semi-major axis we use Kepler’s third law, 

2 3 2 3
1 1 2 2/ / .T a T a=  The distance at aphelion, a ,r  can be found by using the equation a p 2 .r r a+ =  The period 

of the new orbit can be found by using 2 3 2/ 4 / .T a GMπ=  
SIMPLIFY:  The distance at perihelion is r, the radius of the original orbit. 

1 2 2
2 3 3 32 2

2 12
11

3 .
2

T T
a a r r

TT

     
= = =          

 Using this, find the distance at aphelion: 

2 2
3 3

a p a a
3 32 2 1 .
2 2

r r r r r r r
 

    + = + = ⇒ = −        
 

 The new period is 
2 2

2 3 3
2 2 2

4 9T   .a T r
GM GM
π π   

= ⇒ =      
   

 

CALCULATE:  ( )
2
3

a
32 1 6720 km 10891 km
2

r
 
  = − =    

 

 

( )( ) ( )
2 33

2 11 2 2 24

9 6720 10  m 8225.2 s
6.674 10  Nm /kg 5.97 10  kg

T π
−

= ⋅ =
⋅ ⋅

 

ROUND:  The answers should be rounded to three significant figures. For the new orbit, the distance at 

perihelion is 36.72 10  km,⋅  the distance at aphelion is 41.09 10  km,⋅  and the period is 
38.23 10  s 2.28 hours.⋅ =  
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DOUBLE-CHECK:  The period of the original orbit was  

( )( ) ( )
2 2 33 3

1 11 2 2 24

4 4 6720 10  m 5480 s 1.52 hours.
6.674 10  Nm /kg 5.97 10  kg

T r
GM
π π

−

 
= = ⋅ = =   ⋅ ⋅ 

 Since 

2

1

2.28 hours 3 ,
1.52 hours 2

T
T

= =  the spacecraft will rendezvous with the station, as was required.    

12.80. THINK:  For the satellite to stay in orbit between the Earth and the Moon, the period of the orbit of the 
satellite must be the same as the period of the orbit of the Moon.  The satellite is to stay between the Earth 
and the Moon with a period the same as that of the Moon: 27.3 days.T =  Newton’s second law and 
Newton’s Law of Gravity can be used to calculate the correct placement of the satellite. 
SKETCH:   

 
RESEARCH:  The gravitational forces on the satellite must equal its centripetal force, c E M .F F F= −  The 

period is related to the velocity by 2 .rT
v
π

=  

SIMPLIFY:  Newton’s second law: 
( )

2
E M

c E M 2 2
.

GM m GM mmvF F F
x x d x

= − = = −
−

  

Using 2 ,xv
T
π

=  
( )

2
E M

22 2

4 .
GM GMx

T x d x
π

= −
−

 This equation can be solved using math software such as a 

computer algebra system. 

CALCULATE: Using 11 2 26.674 10  N m /kg ,G −= ⋅  24
E 5.97 10  kg, M = ⋅  22

M 7.36 10  kg,M = ⋅  

27.3 days 2358720 s,T = =  and 83.84 10  md = ⋅  a computer program will verify that there is one real root, 

with a value of approximately 83.25695821 10  m.x = ⋅  

ROUND:  To three significant figures, the proper radius of the orbit is 83.26 10  m⋅  from the Earth’s 
center. 
DOUBLE-CHECK:  The distance the satellite is from Earth is reasonable since it is 85% of the distance to 
the Moon.  It is expected that the satellite should be closer to the Moon since the Moon is less massive than 
the Earth.  Note that this distance not the same as the distance where the gravitational force from the Earth 
balances the gravitational force from the Moon, which is 90% of the distance from the Earth to the Moon. 

 
Multi-Version Exercises 

12.81. THINK:  When it is launched, the projectile has kinetic energy. At its highest point, it is not moving at all; 
the energy is now in the form of gravitational potential energy. So, find the kinetic energy of the projectile 
when it was launched, and that should equal the gravitational potential energy of the projectile at its 
maximum height.  
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 SKETCH: The projectile when it is launched and at maximum height are shown, with arrows indicating 
the gravitational force and velocity vectors. Take the surface of the moon to be height  
y = 0 m.  

 
 RESEARCH:  The acceleration due to gravity on the surface of the moon can be found from Newton’s 

Law of Gravity to be M
M 2

M

Gm
g

R
= . The kinetic energy of the projectile when it is launched is given by 

21
0 02K mv= . The change in potential energy of the projectile is given by M M

M M

Gmm Gmm
U

R h R
∆ = − +

+
. 

Conservation of energy gives us 0 .K U= ∆  Since the radius of the moon is given in kilometers and the 
initial velocity of the projectile is given in meters per second, the conversion factor of 1 km = 1000 m will 
also be necessary. 

 SIMPLIFY: Since 0K U= ∆ , substitute in on both sides for the kinetic energy and change in potential 

energy to get 2 M M1
02

M M

Gmm Gmm
mv

R h R
= − +

+
. Use algebra to solve for the maximum height h:  

( )2 M M1
02

M M

2 M M1
02

M M
2
0M M

M M

M
M 2

0M

M

M
M2

0M

M

2

2

2

Gm Gm
m v m

R R h
Gm Gm

v
R R h

vGm Gm
R h R

Gm
R h

vGm
R

Gm
h R

vGm
R

 
= − + 

= −
+

= −
+

+ =
 

− 
 

= −
 

− 
 

 

 CALCULATE:  According to the question, the mass of the moon is mM = 7.348·1022 kg, the radius of the 
moon is RM = 1737 km = 1,737,000 m, and the initial speed of the projectile is  
v0 = 114.5 m/s. The gravitational constant is G = 6.674·10−11 N·m2 / kg2. Using these values, the maximum 
height of the projectile is 
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( )

M
M2

0M

M
11 2 2 22

6
211 2 2 22

6

2

6.674 10  N m / kg 7.348 10  kg
1.737 10  m

114.5 m /s6.674 10  N m / kg 7.348 10  kg
1.737 10  m 2

4042.358098 m

Gm
h R

vGm
R

−

−

= −
 

− 
 

⋅ ⋅ ⋅ ⋅
= − ⋅
 ⋅ ⋅ ⋅ ⋅
 −

⋅  
=

 

 ROUND: The numbers used in the calculation all have four significant figures, and the final answer 
should also have four figures. The projectile reaches a height of 4042 m or 4.042 km.  
DOUBLE-CHECK: On Earth, a projectile shot up with an initial velocity v0 = 114.5 m/s would reach a 
maximum height of about 670 m. The mass of the Moon is about one sixth that of the Earth, so the object 
will go much higher.   

12.82. As determined in the preceding solution, 2 M M1
02

M M

.
Gm Gm

v
R R h

= −
+

 Then 

( )( ) ( ) ( )

0 M
M M

11 2 2 22
6 6 3

1 12

1 12 6.674 10  N m / kg 7.348 10  kg
1.737 10  m 1.737 10  m 4.905 10  m

126.1 m/s

v Gm
R R h

−

 
= − + 

 
 = ⋅ ⋅ ⋅ −
 ⋅ ⋅ + ⋅ 

=

   

12.83. THINK:  Kepler’s law can be used to compute the semimajor axis from the period. Then, use the 
geometric fact that the location of the comet at aphelion is equal to twice the semimajor axis minus the 
location at perihelion to find the aphelion. 

 SKETCH: The semimajor axis (length 2a), as well as the location of the comet at perihelion and aphelion 
are labeled. 

 

RESEARCH:  According to Kepler’s third law, for all of the objects orbiting a given star 
2

3 constantT
a

= . 

Since both the comet and the Earth orbit the Sun, 
2 2

Earth Comet
3 3
Earth Comet

T T
a a

= . To find the location of the comet at 

perihelion, use the fact that the perihelion + aphelion = 2a.  

 SIMPLIFY: Since 
2 2

Earth Comet
3 3
Earth Comet

T T
a a

= , the semimajor axis of the comet’s orbit is given by 

2 3
Comet Earth3Comet 2

Earth

T a
a

T
⋅

= . Then the location of the comet at aphelion is given by  
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Comet

2 3
Comet Earth3

2
Earth

aphelion 2 perihelion

2 perihelion.

a

T a
T

= −

⋅
= −

 

 CALCULATE:  The comet orbits the sun with a period of 89.17 years, and it is 1.331 AU from the sun at 
perihelion.  The Earth orbits the sun with a period of 1 year and has a semimajor axis of 1 AU. At 
aphelion, the distance between the comet and the sun is 

( ) ( )
( )

2 3
Comet Earth3

2
Earth

2 3

3 2

aphelion 2 perihelion

89.17 yr 1 AU
2 1.331 AU

1 yr
38.5876495 AU.

T a
T
⋅

= −

⋅
= −

=

 

 
 ROUND: Since the numbers used in the calculations all have four figures, the final answer should also 

have four figures. The distance between the comet and the sun at aphelion is 38.59 AU.   
DOUBLE-CHECK: Generally, comets have very eccentric orbits, so it is reasonable that the comet is more 
than ten times further from the sun at aphelion than it is at perihelion.  The comet travels a much greater 
distance than the Earth, which makes sense as it takes almost 90 times longer to orbit the Sun. 

12.84. 
2 3

Comet Earth3
2

Earth

aphelion 2 perihelion
T a

T
⋅

= −  

( ) ( )
( )

2 3
Comet Earth3

2
Earth

2 3

3 2

perihelion 2 aphelion

98.11 yr 1 AU
2 41.19 AU

1 yr
1.35 AU

T a
T
⋅

= −

= −

=

 

12.85. 
2 3

Comet Earth3
2

Earth

aphelion 2 perihelion
T a

T
⋅

= −  

 
( )
( )

32
Earth

Comet 3
Earth

2 3

3

aphelion perihelion
2

1 yr 31.95 AU 1.373 AU
21 AU

68.01 yr

T
T

a
+ =  

 

+ =  
 

=

 

 
 
 
 
 
 
 
 
 
 



Bauer/Westfall: University Physics, 2E 

  626 

12.86. THINK:  To escape from the asteroid’s gravitational influence, the total kinetic energy of the object must 
be greater than or equal to the gravitational potential energy.  

 SKETCH: The escape speed is the minimum speed that a projectile will need to escape the pull of the 
asteroid’s gravity.  

 
 RESEARCH:  The kinetic energy of a projectile when it is shot with a speed v from the surface of the 

asteroid is 21
0 02K m v= . The (absolute value) gravitational potential energy is 0 asteroid

asteroid

Gm m
U

R
= . To escape 

from the asteroid, the kinetic energy must be greater than or equal to the potential energy, K ≥U. The 
minimum escape speed occurs when they are equal. 

 SIMPLIFY: First, set the kinetic and potential energies equal to one another 2 0 asteroid1
0 02

asteroid

Gm m
m v K U

R
= = = . 

Solve this for the escape speed: 
2 0 asteroid1

0 02
asteroid

2 asteroid
0

asteroid

asteroid
0

asteroid

2

2

Gm m
m v

R
Gm

v
R

Gm
v

R

=

=

=

 

 CALCULATE:  The gravitational constant is G = 6.674·10−11. The mass of the asteroid is masteroid = 
1.869·1020 kg, and the asteroid has a radius of Rasteroid = 358.9 km = 358,900 m. The escape speed is  

asteroid
0

asteroid

11 2 2 20

2

2 6.674 10  N m / kg 1.869 10  kg
358900 m

263.6489345 m/s.

Gm
v

R
−

=

⋅ ⋅ ⋅ ⋅ ⋅
=

=

 

 ROUND: Since all of the numbers in this problem have four significant figures, the final answer should 
also have four significant figures. The escape speed from this asteroid is 263.6 m/s.   
DOUBLE-CHECK: 263.6 m/s is faster than most objects on Earth, but it is less than the escape speed from 
Earth, which makes sense as the asteroid is less massive than Earth. Although the energy that is needed to 
escape from the asteroid will depend on the mass of the object, the minimum speed that it needs to achieve 
depends only on the mass and radius of the asteroid (and the gravitational constant). Any object that 
leaves the asteroid, heading away from the asteroid at the escape speed or greater, will have enough energy 
to escape the gravitational pull of the asteroid.  
 



 Chapter 12:  Gravitation 

 627 

12.87. asteroid
0

asteroid

2Gm
v

R
=  

( )( )
( )

asteroid
asteroid 2

0

11 2 2 20

2

2

2 6.674 10  N m / kg 1.769 10  kg

273.7 m/s
315.2 km

Gm
R

v
−

=

⋅ ⋅ ⋅
=

=

 

12.88. asteroid
0

asteroid

2Gm
v

R
=  

( ) ( )
( )

2
0 asteroid

asteroid

2 3

11 2 2

20

2
319.2 m/s 365.1 10  m

2 6.674 10  N m / kg

2.787 10  kg

v R
m

G

−

=

⋅
=

⋅ ⋅

= ⋅
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Chapter 13:  Solids and Fluids 
 

Concept Checks 

13.1. a  13.2. d  13.3. d  13.4. a  13.5. c  13.6. i) b  ii) a 13.7. c  13.8. e 
 

Multiple-Choice Questions 

13.1. a  13.2.  c  13.3.  d  13.4. b  13.5. 32 1F F F= >   13.6. c  13.7. d  13.8. d  13.9. e  13.10. c  13.11. b  13.12. c   
13.13. a  13.14. a  13.15. a 

 
Conceptual Questions 

13.16. When the car decelerates, loose heavy objects within the car tend to continue forward because of inertia.  
Air, which is denser than helium, will have more inertia than helium and thus moves forward, displacing 
the lighter helium balloon, which then moves to the rear. One can also view the accelerated frame of 
reference inside the car having a fictitious “gravity”, pointing to the right during braking (right being 
toward the front on the car). This gives rise to a “buoyant force” directed to the left that “buoys” the less 
dense helium balloon.  

13.17. The paper will move down, narrowing the gap between the paper and the table. The higher velocity air 
between the paper and the table results in a lower pressure on the bottom of the paper. The net force on 
the paper is then down and the gap narrows. 

13.18. The air inside the shower is being pushed by the water so the speed inside is greater than the air speed 
outside. From Bernoulli’s equation, that means that the pressure inside is lower so that the curtain will be 
pushed inward, toward the shower. 

13.19. The flaw in this statement concerns the amount of work done by the input and output forces in a 
hydraulic lift device. While the output force is much larger than the input force, the corresponding 
displacement is much smaller, and the work done by both forces is the same. 

13.20. The steel has the higher spring constant. As the motion of the spring tends to cause a shear deformation 
and not volume deformation of individual segments, the system depends heavily on the shear modulus. 
Since steel resists this more, it has the higher spring constant.  

13.21. No, a higher density is not necessarily due to a material’s heavier molecules. The first material could have a 
higher density because its molecules are more closely packed together than the molecules of the second, 
although the molecules of the second are heavier. Gold and lead are typical examples of this case.  Gold has 
an atomic number of 79 and a density of 19.3 g/cm3.  Lead has atomic number 82, but its density, 11.35 
g/cm3, which is less than that of gold. 

13.22. The force exerted on the balance by an object of mass, m, and density, ,ρ  is the weight of the object minus 
the buoyant force exerted on the object by the air: 

( )a a1 / ,mF mg g mgρ ρ ρ
ρ

= − = −  

where /m ρ  is the volume of the object. The balance is calibrated to compensate for this for steel test 
masses. Hence, the mass displayed by the balance is  

( )
a

bal
a s a s

1 /
.

1 / 1 /
Fm m

g
ρ ρ

ρ ρ ρ ρ
 −

= =  − − 
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To obtain the true mass, one must correct the balance reading with the factor: 

a s
bal

a

1 /
.

1 /
m m

ρ ρ
ρ ρ

 −
=  − 

 

Of course, the density of the sample must be known to make this correction. Yes, it can matter. For 
example, if the sample being weighed is aluminum, with a density of 32694.1 kg/m ,ρ =  then the 
correction is  

3
a

3
s

Al bal bal bal3
a

3
Al

1.205 kg/m1 1
8000.00 kg/m

1.000297 .
1.205 kg/m1 1
2694.1 kg/m

m m m m

ρ
ρ
ρ
ρ

  − −  
  = = =
  − −  

   

 

The correction amounts to almost 300 parts per million. But a good analytical balance can weight a 
hundred-gram mass to tenths of a milligram, i.e. to parts per million. For measurements at the full 
sensitivity of the balance, then the buoyancy correction is quite significant. 

13.23. The flow rate of an incompressible fluid like water is constant. This means that the flow rate through any 
cross-section of the system is constant. But the speed of the water is greater near the bottom of the sink 
compared to near the spigot since the water accelerates due to gravity. Since the flow rate is constant, the 
cross-sectional area of the stream must be smaller near the bottom of the sink compared to near the spigot. 
That is, the stream narrows as it leaves the spigot. 

13.24. In fact, most fluid-flow problems become horribly complicated without viscosity, because only viscosity 
preserves laminar flow. Without viscous forces between elements of the fluid, the elements can move 
independently of their neighbors, thus producing the tremendous complexity of turbulence. The lower the 
viscosity, the higher the Reynolds number, and high Reynolds numbers lead to turbulent flow. 

13.25. The buoyant force on the sphere in fluid A is less than the buoyant force on the sphere in fluid B. The 
weights of the spheres are the same; therefore, the buoyant force, which points upward, will determine if 
the object sinks or floats. If it sinks, bF  is less than the weight and if it floats, bF  is greater than the weight. 

13.26. The water free-falls at a speed given by ( ) ( )1/22
0 2g ,v y v y= +  where g is the acceleration of gravity. By 

continuity, the radius of the stream follows from ( ) ( ) ( )( )1/22 2 2 2
0 0 0 2g .r v r y v y r y v yπ π π= = +  This yields 

( ) 0
1/4

2
0

2g1

r
r y

y
v

=
 
+ 

 

for the radius of the falling stream. 

 
Exercises 

13.27. THINK:  The density at sea-level and the volume can used to determine the total mass. From the molar 
mass, the number of moles and thus the number of molecules can be determined. V = 0.50 L, 

28.95 g/molA =  and 31.229 kg/m .ρ =  
SKETCH:   

 
RESEARCH:  m Vρ=  
The number of moles, n, is given by /n m A=  (m in grams and A in grams per mole). The number of 
molecules, N, is given by A ,N nN=  where 23

A 6.02 10  molecules/mol.N = ⋅  
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SIMPLIFY:  A
A A

VNmN nN N
A A

ρ
= = =  

CALCULATE:  
( ) ( )3 3 3 23

22
3

1.229 kg/m 0.50 L 1 m /10  L 6.02 10  molecules/mol
1.278 10  molecules

28.95 10  kg/mol
N −

⋅
= = ⋅

⋅
 

ROUND:  Rounding to two significant figures, 221.3 10  molecules.N = ⋅  
DOUBLE-CHECK:  N is proportional to both the density and the volume. This is a reasonable result. 

13.28. THINK:  The eight sodium ions at the corners of each unit cell are each shared with adjacent cells; each 
constitutes one-eighth of an ion to a single cell. The six ions at the centers of the cell faces are each shared 
by two adjacent cells; each constitutes one half to a single cell. Thus, a single unit cell contains four sodium 
and four chloride ions. The total mass contained in a unit cell can be determined. Through the density, the 
volume of the unit cell can be determined. This is a cubic lattice and the volume gives the edge length as 
well. The distance between an adjacent chloride and sodium ion is half the edge length. Na 22.99 ,m u=  

Cl 35.45m u=  and 3 32.165 10  kg/m .ρ = ⋅  
SKETCH:   

 
RESEARCH:  .m Vρ= The cube edge length is given by 1/3 .a V=  The distance between the sodium and 
chloride ions is given by / 2.d a=  

SIMPLIFY:  ( ) ( ) ( )1
Na Cl3 3

Na Cl Na Cl

44 1 1 14 ,   ,   
2 2 2

m mmm m m V m m d a V
ρ ρ ρ

+
= + = = + = = =  

CALCULATE:  
( )( )−

−
+ ⋅

= = ⋅
⋅

27
103

3 3

4 22.99 u 35.45 u 1.661 10  kg/u1 2.820 10  m
2 2.165 10  kg/m

d  

ROUND:  Keeping four significant figures, = 2.820 Å.d  
DOUBLE-CHECK:  This is a typical spacing for ions in a solid and can be measured, for example, by X-
ray diffraction. 

13.29. THINK:  Each wire supports 1/4 of the weight of the chandelier. This weight can be determined, then 
using Young’s modulus, determine the amount of stretching. Use the values L = 1 m, 2a = 2 mm,  
m = 20 kg and = ⋅ 9 2200 10  N/m .Y  
SKETCH:   

 

RESEARCH:  
LF AY

L
∆

=  and 2 .A aπ=  

SIMPLIFY:  2 2

g
4
m LFL FLL

AY a Y a Yπ π
∆ = = =  
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CALCULATE:  
( )( )( )

( )

2
5

23 9 2

20 kg 9.81 m/s 1 m
7.807 10  m

4 1 10  m 200 10  N/m
L

π
−

−
∆ = = ⋅

⋅ ⋅
 

ROUND:  Rounding to one significant figure, 0.08 mm.L∆ =  
DOUBLE-CHECK:  This is a reasonable stretch for a steel wire. 

13.30. THINK:  From the total weight of the object, use Young’s modulus to determine the amount of stretching. 
From this, the required diameter can be determined. Use the values: L = 50.0 m, m = 70.0 kg, 

1.00 cmL∆ =  and 9 23.51 10  N/m .Y = ⋅  
SKETCH:   

 

RESEARCH:  ,LF AY
L
∆

=  ( )2/ 2A dπ=  and F = mg. 

SIMPLIFY:  
2 4

    
4

mgL mgLFL dA d
Y L Y L Y L

π
π

= ⇒ = ⇒ =
∆ ∆ ∆

 

CALCULATE:  
( )( )( )
( )( )

2
2

9 2

4 70.0 kg 9.81 m/s 50.0 m
3.529 10  m

3.51 10  N/m 0.0100 m
d

π
−= = ⋅

⋅
 

ROUND:  Rounding to three significant figures, 3.53 cm.d =  
DOUBLE-CHECK:  The string is rather thick since it is so long. Note that d increases if L increases. This 
is reasonable. 

13.31. THINK:  Young’s modulus can be used to determine the change of length for the given tension. Use the 
values: F = 90.0 N, L = 2.00 m, r = 0.300 mm and = ⋅ 10 220.0 10  N/m .Y  
SKETCH:   

 

RESEARCH:  ,LF AY
L
∆

=  and 2 .A rπ=  

SIMPLIFY:  2

FL FLL
YA Y rπ

∆ = =  

CALCULATE:  
( )( )

( ) ( )π −
∆ = =

⋅ ⋅
210 2 3

90.0 N 2.00 m
0.3183 cm

20.0 10  N/m 0.300 10  m
L  

ROUND:  Rounding to three significant figures, 0.318 cm.L∆ =  
DOUBLE-CHECK:  This is a reasonable result for a wire of the given dimension. 
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13.32. THINK:  The shear force can be determined at an arbitrary distance x from the wall. From this, the shear 
force at the right, center and left ends of the rod can be determined. 
SKETCH:   

 

RESEARCH:  ( ) .WxdF x dx
L

=  Shear force is given by ( ) ( ).
L

x

F x dF x= ∫  

SIMPLIFY:  ( ) ( )
2 2

2 2

2 2 2 2

LL

x x

Wx Wx W WL WxF x dx L x
L L L L
′  ′ 

′= = = − = − 
 

∫  

CALCULATE:   

(a)  ( )
2

0
2 2

WL WLF L
L

= − =  

(b)  
2 3

2 2 2 4 2 8 8
L WL W L WL WLF WL

L
   = − = − =  

   
 

(c)  ( )0 0
2 2

WL WLF = − =  

ROUND:  This step is not necessary. 
DOUBLE-CHECK:  The shear force decreases as a quadratic as the distance along the rod increases. This 
is reasonable for an applied force which increases linearly. 

13.33. THINK:  The change in pressure can be determined first. Then the change in density can be determined 
by using the equation for the bulk modulus. For the following, d = 10.922 km is the depth, 0 101.3 kPa,p =  

3
0 1024 kg/m ,ρ = and ( ) ( )0 06.67B p B p p= + −  with 9

0 2.19 10  Pa.B = ⋅  We simplify the calculation by 
assuming that that the density of the water is constant until just above depth d at the bottom. 
SKETCH:   

 

RESEARCH: 0 0
0

,   ,   V mp p gz p B V
V

ρ
ρ

∆
= + = =  

SIMPLIFY: The pressure at depth d is given by 0 0 .p p gdρ= +  For a given mass of water a decrease in 

volume results in an increase in pressure, and vice versa.  Therefore, 
0

.Vp B
V
∆

∆ = −   Taking m as the mass 

of a volume of seawater at depth d that is smaller than the same mass on the surface by ,V∆  

( )( )

0

0 0

0 0 0
0 0

0 0 0

0
0 0 06.67

m mV m

mBp p p B B
V

p p B p p

ρ ρ
ρ ρ ρρ

ρ ρ ρ ρ ρ ρ
ρ

ρρ ρρ ρ

ρ ρ
ρ

 −
∆ = − = −  

 
     − − −

∆ = − = = =     
    

 −
− = + −  
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Solving for the density :ρ  

( ) ( )( ) ( )( )
( )( ) ( ) ( )( )

( )
( )

0 0 0 0 0 0

0 0 0 0 0 0

0 0
0

0 0

0 0
0

0 0

6.67 6.67

6.67 6.67

6.67
5.67

6.67
5.67

p p B p p B p p

B p p p p B p p

B p p
B p p

B gd
B gd

ρ ρ ρ

ρ ρ

ρ ρ

ρ
ρ ρ

ρ

− = + − − + −

 + − − − = + − 
+ −

=
+ −
+

=
+

 

CALCULATE:  ( )( )( )3 3 2 3 8101.3 10  Pa 1024 kg/m 9.807 m/s 10.922 10  m 1.098 10  Pap = ⋅ + ⋅ = ⋅  

( ) ( )( )( )
( ) ( )( )( ) ( )

9 3 2 3
3 3 3

9 3 2 3

2.19 10 Pa 6.67 1024 kg/m 9.807 m/s 10.922 10  m
1024 kg/m 1.06394 10  kg/m

2.19 10 Pa 5.67 1024 kg/m 9.807 m/s 10.922 10  m
ρ

⋅ + ⋅
= = ⋅

⋅ + ⋅
 

The percent change in density is 
3 3 3

0
3

0

1.06394 10  kg/m 1024 kg/m
0.039 3.9%.

1024 kg/m
ρ ρ
ρ
− ⋅ −

= = =   Therefore, it 

is a good approximation to treat the density of seawater as being constant.      
ROUND:  Rounding to three significant figures, the pressure at the bottom of Challenger Deep is 

81.10 10  Pap = ⋅  and the density is 3 31.06 10  kg/m .ρ = ⋅  
DOUBLE-CHECK:  The change in pressure is very large, but the change in density is quite small.  This is 
consistent with the fact that water, like most liquids, is nearly incompressible. 

13.34. THINK:  Pressure is defined as the force per unit area. Determine the area of the textbook cover, and 
calculate the force exerted on the textbook by the atmosphere. Find the mass of an object whose weight 
would be equal to this force. w = 21.9 cm, l = 28.3 cm, p = 101.3 kPa. 
SKETCH:   

 
RESEARCH:  p g,   F pA plw F mg= = =  

SIMPLIFY:  g     p
plw

F F mg plw m
g

= ⇒ = ⇒ =  

CALCULATE: ( )( )( )3
P 101.3 10  Pa 0.219 m 0.283 m 6278.27 NF = ⋅ =  

 
( )( )( )

( )
3

2

101.3 10  Pa 0.219 m 0.283 m
639.99 kg

9.81 m/s
m

⋅
= =  

ROUND:  Rounding to three significant figures gives 6280 NF =  and m = 640. kg. 
DOUBLE-CHECK:  The equivalent mass is large but reasonable. 
 
 
 
 
 
 
 



Bauer/Westfall: University Physics, 2E 
 

  634 

13.35. THINK:  From the height and the density, the required pressure can be determined. 3
b 1.00 g/cmρ =  

(blood) 3
Hg 13.6 g/cmρ =  (mercury). 

SKETCH:   

 
RESEARCH:  p ghρ=  

SIMPLIFY:  b b
b b b Hg Hg Hg b Hg Hg

Hg

,   ,     
h

p gh p gh p p h
ρ

ρ ρ
ρ

= = = ⇒ =  

CALCULATE:  
( )( )3 2

1
Hg 3

1.00 g/cm 4.0 10  cm
2.941 10  cm 294.1 mm

13.6 g/cm
h

⋅
= = ⋅ =  

ROUND:  Rounding to two significant figures gives Hg 290 mm.h =  
DOUBLE-CHECK:  The systolic blood pressure of a giraffe must be two to three times that of a human.  
Since the relationship between pressure and height is linear, and a giraffe is about three times the height of 
a human, this seems like a reasonable result. 

13.36. THINK:  Pressure changes differently in water than it does in air. Determine the changes separately and 
add the results. h = 5000. m, d = 20.0 m, 31024 kg/m ,wρ =  3

0 1.229 kg/mρ =  and 0 101.3 kPa.p =  
SKETCH:   

 
RESEARCH:  0 0/

w 0 w 0 a 0 0,   h g Pp p gd p p p p e ρρ −− = − = −  

SIMPLIFY:  ( )0 0/
w a w 0 1 h g Pp p gd p e ρρ −− = + −  

CALCULATE:  ( )( )( )

( )( )

3 2
w a

3 2

3

1024 kg/m 9.81 m/s 20.0 m

5000. 1.229 kg/m 9.81 m/s1000 Pa101.3 kPa 1 exp
1 kPa 101.3 10  Pa

246340 Pa

p p− = +

 − 
 −   ⋅  

=

 

ROUND:  Rounding to three significant figures gives w a 246 kPa.p p− =  
DOUBLE-CHECK: Note that the pressure of the atmosphere at sea level is 101 kPa. Our pressure 
difference found here is 246 kPa, 201 kPa of which are generated by the 20 m of water above the diver’s 
head in the dive.  The part about the unpressurized airplane ride only contributes 45 kPa.  Even if the 
plane was replaced by a rocket, and our poor diver were to leave the Earth’s atmosphere altogether, the 
pressure difference of this part of the journey relative to sea level could never be bigger than 101 kPa. 
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13.37. THINK:  The pressure inside the balloon is equal to the pressure outside the balloon. Since the mass of the 
air inside the balloon is constant, the volume of the air inside the balloon changes as the pressure changes. 

0 20.0 cm,d =  3
0 1.229 kg/m ,ρ =  0 101.3 kPap =  and 2 .h hd r=  

SKETCH:   

 
 

RESEARCH:  / ,m Vρ =  0 0g/
0

h p
h e ρρ ρ −=  and 34 / 3.h hV rπ=  

SIMPLIFY:  ( ) ( )0 00 0

1
3

/ 3/3

0 0

3 3 3 1 3  
4 4 4 4

h g ph g ph
h h

h

V m m mr e r e ρρ

π π ρ π ρ πρ
   

= = = ⇒ =   
   

 

Take 

1
3

0
0

3
4

mr
πρ

 
=  
 

 and the expression becomes ( ) ( )0 0 0 0/ 3 / 3
h 0 h 0  2 .h g p h g pr r e d r eρ ρ= ⇒ =  

CALCULATE:  ( )
( )( )

( )
( )5

3 2
3.967 10

3

1.229 kg/m 9.81 m/s
0.200 m exp 0.2  m

3 101.3 10  Pa
h

h

h
d e

−⋅
 
 = =
 ⋅ 

 

(a)  ( )53.967 10 1000.
1 km 0.2  m 0.2081 md e

−⋅ ⋅
= =  

(b)  ( )53.967 10 2000.
2 km 0.2  m 0.2165 md e

−⋅ ⋅
= =  

(c)  ( )53.967 10 5000.
5 km 0.4  m 0.2439 md e

−⋅ ⋅
= =  

ROUND:  Round the results to three significant figures. 
(a)  1 km 20.8 cmd =  
(b)  2 km 21.7 cmd =  
(c)  5 km 24.4 cmd =  
DOUBLE-CHECK:  The diameter grows exponentially with increasing altitude, which is reasonable since 
the air is less dense at higher altitudes. 

13.38. THINK:  The question refers to the atmosphere of Mars. The values given are an atmospheric pressure at 
the surface, 0 600. Pa,p =  and a density of 3

0 0.0200 kg/m .ρ =  Determine (a) the thickness of the 
atmosphere based on the pressure at the boundary with space being 0.0100% of 0 ,p  (b) the atmospheric 
pressure, 8 ,p−  at a depth of 8.18 km, (c) the atmospheric pressure, 21 ,p  at an altitude of 21.3 km and (d) 

the relative change in pressure 
∆p
p

 between the results of parts (b) and (c) and compare with the relative 

change in pressure on Earth between a depth of 400. m and an altitude of 8850 m. 
SKETCH: 
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RESEARCH:   
(a) The thickness, h, of the Martian atmosphere can be determined using the relationship  
( ) 0 0/

0 ,h g pp h p e ρ−=  and solving for h when the pressure is 0.01 % of the pressure at 0 .p  Note that g is the 

acceleration due to gravity at the surface of Mars (i.e. not 29.81 m/s !).  
(b) Make use of the barometric pressure formula, ( ) 0 0g/

0 ,h pp h p e ρ−=  where h = -8.18 km. 

(c) Make use of the barometric pressure formula, ( ) 0 0g/
0 ,h pp h p e ρ−=  where h = 21.3 km. 

(d)  Determine the relative change in pressure by low high

surface

.
p pp

p p
−∆

=  Then compare with that of Earth for 

the given locations. 
SIMPLIFY:   
(a)  Since the boundary between atmosphere and space is defined when the pressure is 0.0100% or 
0.000100 of 0p ,  

( ) ( ) ( ) ( )0 0g/ 0 0
0 0

0 0

0.000100   ln 0.000100   ln 0.000100 .h p h g p
p h p p e h

p g
ρ ρ

ρ
−= = ⇒ = − ⇒ = −  

(b, c and d) Simplification is not necessary. 
CALCULATE:   
(a) First, determine g at the surface of mars. From Newton’s law of gravitation: 

( ) ( )
( )

23
11 3 1 2 2

22 6

6.4186 10  kg
g G 6.67300 10  m  kg  s 3.73 m/s .

3.3895 10  m

M
R

− − −
⋅

= = ⋅ =
⋅

 

Plugging in the values, the thickness is 

( )( ) ( )3 2

600. Pa ln 0.000100 74.1 km.
0.0200 kg/m 3.73 m/s

h = − =  

(b)  ( ) ( ) ( )( )( ) ( )3 3 28.18 10  m 0.0200 kg/m 3.73 m/s / 600. Pa
8.18 km 600. Pa 1659.01 PaP e

⋅
− = =  

(c)  ( ) ( ) ( )( )( ) ( )4 3 22.13 10  m 0.0200 kg/m 3.73 m/s / 600. Pa
21.3 km 600. Pa 42.4629 PaP e

− ⋅
= =  

(d)  First, calculate the change in pressure for Mars: 
1659.01 Pa 42.4629 Pa 2.69425

600. Pa
P

P
∆ −

= =  

Determine the pressures at -400 m and 8850 m for Earth: 

( ) ( ) ( )( ) ( )( ) ( )3 2 5400. m 1.229 kg/m 9.81 m/s / 1.01 10  Pa5400. 1.01 10  Pa 106 kPaP e
⋅

− = ⋅ =  and 

( ) ( ) ( )( ) ( )( ) ( )3 2 58850 m 1.229 kg/m 9.81 m/s / 1.01 10  Pa58850 m 1.01 10  Pa 35.1 kPa,P e
− ⋅

= ⋅ =  

respectively. Now, the change in pressure for Earth is: 

5

106 kPa 35.1 kPa 0.702 70.2%.
1.01 10  Pa

P
P
∆ −

= = =
⋅

 

ROUND:  Round the results to three significant figures. 
(a) The thickness of the atmosphere of Mars is h = 74.1 km. 
(b) ( )8.18 km 1660 PaP − =  

(c) ( )21.3 km 42.5 PaP =  

(d) ( )Mars
/ 2.69P P∆ = . So, it can be seen that Mars’ atmospheric pressure changes about 269% from the 

lowest to highest points, compared with only 70.2% for Earth’s atmospheric pressure. 

DOUBLE-CHECK:  The units are correct. As expected, the pressure increases as the height decreases, and 
vice versa. The results are also reasonable for the given parameters. 
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13.39. THINK:  The question asks for the height of Mount McKinley when it is known that the atmospheric 
pressure on top is 47.7 % of the pressure at sea level and that the air density on Mount Everest is 34.8 % of 
that at sea level. The height of Mount Everest is given as Everest 8850 m.h =  
SKETCH:  Not needed. 

 
RESEARCH:  We make use of the equations for barometric pressure and for density in a compressible 
fluid, that is, ( ) 0 0g/

0 ,h PP h P e ρ−=  and ( ) 0 0g/
0

h ph e ρρ ρ −= .  By solving for the constant 0 0g / pρ  from the 
density equation, we need only use the values given by the question without actual knowledge of the 
constants.  We can then use this information in the barometric pressure equation to obtain the height of 
Mount McKinley. 
SIMPLIFY:  The air density on Mount Everest is given by ( ) Everest 0 0g/

Everest 0 00.348 h Ph e ρρ ρ ρ −= = , which can 

be solved for the set of constants as 
( )0

0 Everest

ln 0.348g
p h
ρ

= − . Now, the pressure on Mount McKinley is given by 

( ) McKinley 0 0g/
McKinley 0 00.477 .h PP h P P e ρ−= =  If we solve for the height of Mount McKinley, McKinleyh , we get 

( )0
McKinley

0

ln 0.477
p

h
gρ

= − .  Using the result above, we can write  

( ) ( )
( )

0
McKinley Everest

0

ln 0.477
ln 0.477

g ln 0.348
p

h h
ρ

= − = . 

CALCULATE: Inserting the given value for the height of Mount Everest we find  
( )
( )McKinley

ln 0.477
8850 m 6206.33 m.

ln 0.348
h = =  

ROUND:  Since the input values have been given to at least three significant figures, our result for the 
height of Mount McKinley is McKinley 6210 m.h =  
DOUBLE-CHECK:  You can look up the height of Mount McKinley and see if what we calculate is 
reasonably close. (The official height of the mountain is 6194 m, which make it the tallest mountain in 
North America). However, in an exam situation this check would not be an option. Instead, we can make 
simple checks of the right unit of our answer, which is meters, and the right order of magnitude.  Since we 
are talking about a mountain, it should be at least a few thousand meters high, which is true for our 
answer.  And of course our answer should come out less than the height of Mt Everest, which is the tallest 
peak on Earth. 

13.40. THINK:  The question asks for the change in height of a column of water in a cylinder after a small valve 
is opened at the bottom of the cylinder. The cylinder has a total height of h = 0.60 m and is initially half 
filled with water. The pressure of the air trapped inside the top half of the cylinder is initially at 

5
0 1.01 10  Pa.p = ⋅  Use ρ = 31000. kg/m  for the density of water. By summing the forces acting on the 

column of water, the distance that the water drops by can be found.  
SKETCH:   
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RESEARCH:  In equilibrium, the downward force of gravity and the force due to the pressure of the air in 
the cylinder is equal to the upward force of atmospheric pressure acting on the bottom of the cylinder: 

= = − −net 00 ,F p A pA mg  where A  is the cross-sectional area of the cylinder, and y is the distance that the 
water level drops below its initial depth of / 2.h  At constant temperature, the pressure of the air is 
inversely proportional to volume.  Therefore, ( )0 0 / ,p p V V=  where the initial volume of air is 0 / 2V Ah=  

and the final volume of air is ( )/ 2 .V A h y= +   In terms of the density and volume, the mass of the water 

is given by w w .m Vρ=   
SIMPLIFY:  Using the force balance equation,  

  

( )

( )

( )( )

0

0
0 0 w w

0
0 w

0 w

0 w

2
2

0 w w

2
2 0

w

0

0

1 0
2

/ 21 0
/ 2 2

/ 2 / 2 0
2 2

0
4

0
4

p p A mg

V
p p A V g

V
V hp A A y g
V

Ah hp A A y g
A h y

h hp h y h y y g

hp y g gy

p hy y
g

ρ

ρ

ρ

ρ

ρ ρ

ρ

− − =

 − − = 
 

   − − − =     
   − − − =    +   

  + − − − + =  
  

− + =

+ − =

 

The positive solution of this quadratic equation is: 
2

20 0

w w

2

p p h
g g

y
ρ ρ

 
− + + 

 =  

CALCULATE:  Plug in the values to get: 

( )
( )( )

( )
( )( ) ( )

−

 ⋅ ⋅
 − + +
 
 = = ⋅ =

2
5 5

2

3 2 3 2

3

1.01 10 Pa 1.01 10 Pa
0.60 m

1000. kg/m 9.81 m/s 1000. kg/m 9.81 m/s
8.734 10 m 8.734 mm

2
y  

ROUND:  To two significant figures, the depth of the water is lowered by 8.7 mm. 

DOUBLE-CHECK:  Since the initial height of the water is quite small, it is reasonable that the amount 
that the water level drops is also small. 

13.41. THINK:  The question presents a pool embedded in a parking lot. 0.450sµ =  and 32.50 g/cm .ρ =  
SKETCH:   

 
RESEARCH:  For the pool to fail, the net force on the walls due to the water pressure must exceed the 
force necessary to move the blocks, that is, the force of static friction. The pressure as a function of depth h 
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is ( ) ρ= +0 w .P h P gh  The force necessary to move the blocks is failure s N s c s c s cF F m g Vg sthgµ µ µ ρ µ ρ= = = = , 
The total force due to the pressure is the integrated force for a small differential depth dx: 

( ) ( )Pressure 0
.

x
F P h A P h dA= ∆ =∑ ∫  

In this case, dA = s dh, where dh is the thickness of a layer at depth h. The total force on a wall for a pool of 
a particular depth x is: 

( ) ( ) 2 2
Pressure 0 w 0 w 0 w0 0

0

1 1 .
2 2

x
x x

F P h dA P gh sdh s P h gh s P x gxρ ρ ρ
    = = + = + = +    
    

∫ ∫  

However, the force of the air pressure on the other side of the blocks (pushing against the water) must not 
be forgotten. Assuming constant pressure 0 0 .airF P A P sx= =  The depth necessary for the pool to fail is the 
depth when Pressure air failureF F F− > , which is equivalent to when Pressure air failure 0.F F F− − >  Compute the value 
of x when Pressure air failure 0F F F− − = . This will be a quadratic equation in x that opens upwards. The 
corresponding inequality will be satisfied outside the two roots of the quadratic equation. 
SIMPLIFY:   

2
0 w 0 s c

2
0 w 0 s c

w
s c

s c

w

1  =0
2

1 0
2

s
 0

2
2

 0 or .

s P x gx P sx sthg

sP x s gx P sx stgx

gx
x stg

t
x x

ρ µ ρ

ρ µ ρ

ρ
µ ρ

µ ρ
ρ

 + − − 
 

⇒ + − − =

 ⇒ − = 
 

⇒ = =

 

Therefore the depth of the pool will be sufficient to collapse the wall if 0x < (which does not make sense 

since the depth has to be non-negative) or if 
2 s c

w

t
x

µ ρ
ρ

> . Compute this value of x. 

CALCULATE:  
( )( )( )3 3

3

2 0.450 2.50 10  kg/m 0.500 m
1.125 m.

1000. kg/m
x

⋅
= =  

ROUND:  Since the values have three significant figures, the result should be rounded to 1.13 m.x =  
DOUBLE-CHECK:  The computed depth has units of meters, and the depth is a reasonable size in a 
parking lot. 

13.42. (a) Consider a thin slice of the atmosphere at height r and with thickness dr. The upward force that this 
slice of the atmosphere experiences from the gas below it is up ( )F p r A= , where A is the area and p is the 

pressure. The downward force from the gas above is down ( + )F p r dr A= . The net force due to the pressure 
experienced by this slice of the atmosphere is then net up down ( ( ) ( + ))F F F p r p r dr A= − = − . This force has to 

be equal that of gravity, ( ) ( ) ( ) ( ) ( )mg r V r g r Adr r g rρ ρ= = , where we have used the fact that the volume of 
the thin slice of the atmosphere is the product of the area and the thickness. So we find 

( ( ) ( + )) ( ) ( )p r p r dr A Adr r g rρ− =  
or 

( )
( ) ( )

dp r
r g r

dr
ρ= −  

which is the equation of hydrostatic equilibrium. 
 
(b) If, as stated in the problem, ( ) ( )p r rγρ=  with a constant γ , then our differential equation becomes 

( ) ( ) ( )d r r g r
dr
ργ ρ= −  
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The gravitational acceleration for this spherical distribution is given by the mass interior to the radius r, 

see Chapter 12, ( )2 2 2

0
( ) ( )/ 4 ( ') ' ' /

r
g r Gm r r G r r dr rπ ρ= = ∫ . So our equation to solve becomes 

 ( )2 2

0

( ) ( ) 4 ( ') ' ' /
rd r r G r r dr r

dr
ργ ρ π ρ= − ∫  (*) 

This looks very complicated, but we already have a proposed solution, and all we need to show is that it 
works. Our solution is ( ) 2/r rρ α=  with some constant α .  With this ansatz, ( )g r  simply becomes: 

( )2 2 2
20 0

( ) 4 ' ' / 4 ' / 4 /
'

r r
g r G r dr r G dr r G r

r
απ π α πα = = = 

 ∫ ∫  

With this, our right-hand side of equation (*) is: 2 2 3( )(4 / ) ( / )(4 / ) 4 /r G r r G r G rρ πα α πα πα− = − = − . Our 

left-hand side of the same equation is 
2

3( ) ( / ) 2 / .d r d r r
dr dr
ρ αγ γ γ α= = −  

In other words, this ansatz implies that 3 2 32 / 4 /r G rγ α πα− = − , which means that the constant has to 

have the value 
2 G
γα
π

= . Our solution for the density is a function of radius is therefore: 

( ) 22
r

Gr
γρ

π
=  

The difficulty with this solution as a model of a star is that the density, ,ρ does not go to zero at any 
infinite radius, r. If the model is cut off at some radius representing the surface of the star, the infinite 
pressure gradient at the surface would lift the surface layer off the star; the model could not be in 
equilibrium. But if the model is extended to an infinite radius, the total mass diverges to infinity. Real stars 
in equilibrium are not isothermal, of course; they produce energy in their cores and radiate it into space 
from their surfaces. A star which can no longer do this collapses under its own gravity, either to a 
configuration (white dwarf or neutron star) with a different equation of state than p ,γρ=  or to a black 
hole. 

13.43. THINK:  The question asks for the number of pennies that can be placed in half of a floating racquetball 
such that the racquetball does not sink. The values given are: the diameter of the racquetball, d = 5.6 cm, 
the mass of the racquetball, ball 42 g,m =  the volume of a penny, 3

penny 0.36 cm ,v =  and the mass of a 

penny, penny 2.5 g.m =  
SKETCH:   

 
RESEARCH:  In static equilibrium, the net force is zero and the buoyant force equals the weight of the 
racquetball boat and the pennies. The maximum buoyant force occurs when the maximum amount of 
water is displaced. The maximum amount of displaced water occurs when the top of the boat is level with 
the surface of the water and water ball / 2.V V=  Therefore, buoyant boat .F F=  Recalling that the buoyant force is 

equal to the weight of the fluid displaced gives buoyant water water water ball
1 .
2

F V g V gρ ρ= =  Since the weight of the 

half-racquetball plus the pennies is ball
boat pennies :

2
m

F mg m g = = + 
 

ball
pennies water ball

1 .
2 2

m
m g V gρ + = 
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SIMPLIFY:  Solving for penniesm gives ball
pennies water ball

1 .
2 2

m
m Vρ= −  Now, determine the volume of the 

racquetball: 

( )33
3

ball

5.6 cm
91.95 cm .

6 6
dV

ππ
= = =  

The maximum number of pennies the racquetball boat can hold without sinking is then given by: 

pennies

penny

.
m

N
m

=  

CALCULATE:  First, calculate the volume of the racquetball: 
( )33

3
ball

5.6 cm
91.95 cm .

6 6
dV

ππ
= = =  

The maximum number of pennies the racquetball boat can hold without sinking is then given by: 

( )( )
( )

ρ −−
= = = =

3 3
pennies water ball ball

penny penny

1.0 g/cm 91.95 cm 42 g
9.99.

2 2 2.5 g

m V m
N

m m
 

ROUND:  Since the number of pennies is an integer, we must round to either 9 or 10. And since rounding 
up would cause the racquetball boat to sink, the answer must be rounded down, to N = 9 pennies. 
DOUBLE-CHECK:  Based on the given weight of a penny and that of the racquetball (half) compared to 
the weight of the fluid displaced, the answer is reasonable. It should be noted that the copper and zinc 
content of an American penny was changed in 1982 and pennies made before 1982 have a different 
density. 

13.44. THINK:  The question asks for the depth, d, that a supertanker is submerged based on its dimensions. The 
length is L= 250. m, the width is w = 80.0 m and the height is h = 80.0 m. Assume the mass of its contents 
is 810.2 10  kg,m = ⋅  and the density of sea water is ρ = 3

sea 1024 kg/m .  
SKETCH:   

 
RESEARCH:  The buoyant force, buoyantF , is equal to the weight of the water displaced by the tanker. 

Therefore, ( )buoyant sea water sea ,F V g Lwd gρ ρ= = where d is the depth of the bottom of the tanker below sea 
level. Recall that an object will only float on a fluid if the buoyant force balances the weight of the object, 
that is, gravity buoyantF F= . 

SIMPLIFY:  ( )gravity buoyant sea
sea

mF F mg Lwd g d
Lw

ρ
ρ

= ⇒ = ⇒ =  

CALCULATE:  Plugging in the values gives: 
( )( )( )

8

3

10.2 10  kg
49.8047 m.

250. m 80.0 m 1024 kg/m
d

⋅
= =  

ROUND:  Since the dimensions of the tanker are given to three significant figures, the depth the 
supertanker sinks into the water is x = 49.8 m. 
DOUBLE-CHECK:  Based on the given information, the density of the supertanker is about 60 % that of 
seawater. Therefore, it’s reasonable that the tanker has approximately 60 % of its volume under water. 

13.45. THINK:  A box has volume, 30.0500 m ,V =  and the density of lake water is 3 31.00 10  kg/m .ρ = ⋅  
Determine the force necessary to lift a box which lies at the bottom of a lake when its mass is (a) 1000. kg, 
(b) 100. kg and (c) 55.0 kg. 
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SKETCH:   

 
 

RESEARCH:  The buoyant force will point along the same direction as the applied force, whereas the force 
of gravity will point downwards. If the box is to lifted with no acceleration, then the sum of the forces on 
the box are B B0  .F F mg F mg F+ − = ⇒ = −  
SIMPLIFY:  Now, recall that B ,F gVρ=  where V is the volume of the box, so the above equation becomes 

.F mg gVρ= −  
CALCULATE:   
(a)  For m = 1000. kg: ( )( ) ( )( )( )2 3 3 2 31000. kg 9.81 m/s 1.00 10  kg/m 9.81 m/s 0.0500 m 9319.5 N.F = − ⋅ =  

(b)  For m = 100. kg: ( )( ) ( )( )( )2 3 3 2 3100. kg 9.81 m/s 1.00 10  kg/m 9.81 m/s 0.0500 m 490.5 N.F = − ⋅ =  

                  (c) For m = 55.0 kg, ( )( ) ( )( )( )2 3 3 2 355.0 kg 9.81 m/s 1.00 10  kg/m 9.81 m/s 0.0500 m 49.05 N.F = − ⋅ =  

ROUND:  Since all values are given to three significant figures, the answers should be: 
(a)  9320 N  
(b) 491 N  
(c)  49.1 N 
DOUBLE-CHECK:  The box displaces the same volume of water no matter what its mass, so the buoyant 
force remains the same.  It is expected that more force will be required to lift the box as it gets heavier. 

13.46. THINK:  The question asks to determine the normal force on a man standing in a pool where 32% of his 
body is submerged. The given values are the mass of the man, m = 64 kg, and the density of the man 

3970 kg/m .ρ =  
SKETCH:   

 
RESEARCH:  To determine the normal force, look at the free-body diagram above. When the body is in 
equilibrium, an upward normal force, N ,F  is required along with the buoyant force, B ,F  to balance the 
weight of the man. That is, net N B N B0   .F F F mg F mg F= = + − ⇒ = −  To determine B ,F  recall that the 
magnitude of the buoyant force is equal to the weight of the fluid displaced. Therefore, 

ρ= =B fluid fluid displaced .F m g V g  The volume displaced is equal to 32% of the volume of the man, therefore,  

( ) ( )displaced man0.32 0.32 .mV V
ρ

= =  
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SIMPLIFY:  The above expressions can be combined and simplified as follows: 

( ) fluid
N B fluid displaced 1 0.32 .F mg F mg V g mg

ρ
ρ

ρ
 

= − = − = − 
 

 

CALCULATE:  ( )( ) ( ) 
= − = 

 

3
2

N 3

1000. kg/m
64 kg 9.81 m/s 1 0.32 420.72 N

970 kg/m
F  

ROUND: Since the given values have two significant figures, the result should be rounded to 
2

N 4.2 10  N.F = ⋅  
DOUBLE-CHECK:  A quick check shows that the 68% of the man’s volume that is not in the water would 
weigh 426 N, which is very close to the normal force calculated.  This is consistent with the fact that the 
density of the man and the density of the water are fairly close.  

13.47. THINK:  The question asks for the volume of a piece of iron such that when glued to a piece of wood, this 
will submerge completely but not sink. The given values are: the length of the piece of wood, l = 20.0 cm, 
the width of the piece of wood, w = 10.0 cm, the thickness of the piece of wood, t = 2.00 cm, the density of 
the piece of wood, 3

wood 800. kg/m ,ρ =  the density of iron, 3
iron 7860 kg/m ,ρ =  and the density of water, 

3
0 1000. kg/m .ρ =  

SKETCH:   

 
RESEARCH:  If the object is to be at equilibrium, the weight of the wood piece plus the weight of the iron 
piece have to be equal to the buoyant force, that is, B wood iron .F W W= +  Recall that the buoyant force is 
equal to the weight of the fluid displaced: water wood iron 0 displaced wood wood iron iron  ,W W W V g V g V gρ ρ ρ= + ⇒ = +  

where displaced wood iron .V V V= +  

SIMPLIFY:  ( ) 0 wood
0 wood iron wood wood iron iron iron wood

iron 0

  V V V V V V
ρ ρ

ρ ρ ρ
ρ ρ

 −
+ = + ⇒ =  − 

 

CALCULATE:  ( )( )( )
3 3

5 3
iron 3 3

1000. kg/m 800. kg/m
0.200 m 0.100 m 0.0200 m 1.1662 10  m

7860 kg/m 1000. kg/m
V −

 −
= = ⋅  − 

 

ROUND:  The result should be rounded to three significant figures: 5 3
iron 1.17 10  m .V −= ⋅  

DOUBLE-CHECK:  This corresponds to a cube of iron with sides about 2.27 cm, and mass approximately 
91.7 g. The result is reasonable based on the given values. 

13.48. THINK:  The question gives the average density of the human body as 3
h 985 kg/m ,ρ =  and the density of 

sea water as 3
s 1024 kg/m .ρ =  (a) Draw a free-body diagram and determine the percentage of the human 

body submerged in sea water and (b) the percentage of the volume of the human body submerged when 
the density of the body is 3985 kg/m  compared to when it is 3945 kg/m .  (c) If two thirds of the body is 
submerged, what is the density of the water? 
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SKETCH:   

 
RESEARCH:   
(a)  Looking at the sketch above, the weight of the body must be balanced by the buoyant force. Since the 
magnitude of the buoyant force is the weight of the fluid displaced: 

ρ
ρ ρ

ρ
= ⇒ = ⇒ = h

B h s submerged h h submerged h
s

    .F W V g V g V V  

(b)  The difference between the volumes submerged under the two densities is submerged 985 945 .V V V∆ = −  
(c)  For the body to be in equilibrium, the weight of the body must be balanced by the weight of the fluid 
displaced, therefore,  

h
h h s sub s h

sub

  .
V

V g V g
V

ρ ρ ρ ρ= ⇒ =  

SIMPLIFY:   

(a) Therefore, the percentage submerged is given by  ( ) h
submerged

s

% 100 % .
ρ
ρ

=  

(b) From part (a), submerged h h s/ ,V V ρ ρ=  therefore, 985 945
submerged 985 945 h

s s

.V V V V
ρ ρ
ρ ρ

 
∆ = − = − 

 
 Therefore, 

the percentage bobbing up and down is given by:  

( ) ( )submerged 985 945
bob

h s

% 100 % 100 % .
V

V
ρ ρ

ρ
∆  −

= =  
 

 

(c)  No simplification is necessary.  
CALCULATE:   

(a)  ( )submerged
985% 100 % 96.191 %

1024
= =  

(b)  ( ) − = = 
 

bob
985 945% 100 % 3.91 %

1024
 

(c)  ( )3 3
s

3985 kg/m 1477.5 kg/m
2

ρ = =  

ROUND:  Round the results to three significant figures. 
(a)  submerged% 96.2 %=  

(b)  =bob% 3.91 %  

(c)  3
s 1480 kg/mρ =  

DOUBLE-CHECK:  All results are reasonable for the given values. It is expected that the density of the 
Dead Sea is greater than that of regular seawater. 

13.49. THINK:  The problem gives the following information about the diver: mass, m = 60.0 kg, density, 
ρ = 3

h 945 kg/m , and the density of sea water is 3
s 1024 kg/m .ρ =  Determine (a) the tension on the chain, 

(b) the mass whose weight is equivalent to the tension of part (a), and (c) the upward acceleration of the 
diver due to the buoyant force. 
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SKETCH:   

 
RESEARCH:   
(a)  To determine the tension on the chain, consider the free-body diagram above. The tension is given by 

B ,T F mg= −  where BF  is the buoyant force, given by the weight of the water displaced by the diver. Since 
the diver is completely submerged, the weight of the water displaced is given by   

B w s s s diver .F W V g V gρ ρ= = =  

(b) From Newton’s second law,   .TT mg m
g

= ⇒ =  

(c)  Since the net force on the diver is given by net B ,F ma F mg T= = − =  as obtained in part (a). The 
corresponding acceleration is given by / .a T m=  
SIMPLIFY:   

(a) Since diver h/ ,V m ρ=  the tension is given by s
s diver s

h h

1 .mT V g mg g mg mg
ρ

ρ ρ
ρ ρ

 
= − = − = − 

 
 

(b) Simplification is not necessary.  
(c) Simplification is not necessary. 
CALCULATE:   

(a)  ( )2 102460.0 kg 9.81 m/s 1 49.2057 N
945

T  = − = 
 

 

(b)  2

49.2057 N 5.01587 kg
9.81 m/s

m = =  

(c)  249.2057 N 0.820095 m/s
60.0 kg

a = =  

ROUND: 
(a) T = 49.2 N. 
(b) m = 5.02 kg 
(c) 20.820 m/sa =  
DOUBLE-CHECK:  The units for all of our answers are the appropriate ones, which is comforting.  The 
magnitude of the answer in part (b) may cause us to hesitate, because the equivalent mass seems rather 
small at only around 5 kg.  But if you are a diver this sounds about right, because this is on the order of the 
extra ballast lead weights that you need to strap on to float under water.  Could you really only lift a mass 
of 5 kg off the bottom of the sea?  No, you can do quite a bit better by grabbing the chain and making 
swimming motions towards the surface, thus propelling you with an additional force beyond the buoyant 
force, which was the only one assumed to be in play for this problem. 

13.50. THINK:  Determine the maximum mass that can be added to a balloon such that the balloon hovers 
without sinking to the ground. The gas in the balloon has density ρ = 3

gas 0.20 kg/m ,  the mass of the 

balloon is M = 10.0 kg, the volume of the balloon is 320.0 mV =  and the density of air is given to be 
3

air 1.30 kg/m .ρ =  
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SKETCH:   

 
RESEARCH:  In order for the balloon not to fall to the ground, the sum of the forces acting on the balloon 
must equal zero. There are a total of five forces acting on the balloon. These forces are the buoyant force 
(pointing upwards), the weight of the balloon, the weight of the gas, the weight of the rope and the weight 
of the unknown mass. Therefore, gas ropeg g g g,BF M V m mρ= + + +  where B air .F Vgρ=   

SIMPLIFY:  Solving for the mass tied to the balloon, ( ) ( )air gas rope .m V M mρ ρ= − − +  

CALCULATE:  ( ) ( )= − − + =3 3 320.0 m 1.30 kg/m 0.20 kg/m 10.0 kg 2.00 kg 10.0 kgm  

ROUND:  m = 10.0 kg. 
DOUBLE-CHECK:  This result is reasonable for the given values. 

13.51. THINK:  The volume of the Hindenburg zeppelin is 5 32.000 10  mV = ⋅  and the useful lift is 
6

useful 1.099 10  N.W = ⋅  The densities of air, hydrogen and helium are 3
air 1.205 kg/m ,ρ =  

3
H 0.08988 kg/mρ =  and 3

He 0.1786 kg/m ,ρ =  respectively. Determine (a) the weight of the structure of 
the zeppelin and (b) the useful lift capacity of helium compared with that of hydrogen. Since these values 
are given to four significant figures, the value of the acceleration due to gravity used will be treated as 
having four significant figures, = 29.810 m/s .g  
SKETCH:   

 
RESEARCH:   
(a)  Recall that the magnitude of the buoyant force is given by the weight of the fluid displaced (in this 
case, air), therefore, B air g.F Vρ=  Then the weight of the zeppelin can be determined from the difference in 
the total lift capacity and the useful lift capacity. The total lift capacity is given by tot B H ,W F W= −  where 

HW  is the weight of the hydrogen inside the zeppelin. Therefore, the weight of the zeppelin is given by 

zep tot useful .W W W= −  
(b)  If the zeppelin had been filled with helium instead of hydrogen, the total weight that could be lifted 
would be l B He .W F W= −  Therefore, the useful lift would be He,useful l zep .W W W= −  By switching from 
helium to hydrogen, the useful lift is increased by only, 

useful He,useful

He,useful

.
W W

W
−

 

SIMPLIFY:   
(a)  zep air H usefulg g .W V V Wρ ρ= − −  

(b)  He,useful B He zepW F W W= − − ρ ρ= − −air He zepg gV V W  

CALCULATE:   
(a)  ( )( )( ) ( )= − ⋅ − ⋅ = ⋅3 3 5 3 2 6 6

zep 1.205 kg/m 0.08988 kg/m 2.000 10  m 9.810 m/s 1.099 10  N 1.0888 10  NW  
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(b)  ( )( )( ) ( )5 3 2 3 3 6
He,useful 2.000 10  m 9.810 m/s 1.205 kg/m 0.1786 kg/m 1.0888 10  NW = ⋅ − − ⋅  

         59.2493 10  N= ⋅  

The increase in lift is then ⋅ − ⋅
=

⋅

6 5

5

1.099 10  N 9.2498 10  N 0.188196 or 18.8196%.
9.2498 10  N

 

ROUND:  Round the results to four significant figures. 
(a)  = ⋅ 6

zep 1.089 10  NW  

(b)  = ⋅ 5
He,useful 9.249 10  N,W  which is an 18.82% increase from using hydrogen rather than helium. 

DOUBLE-CHECK:  This result is somewhat counterintuitive, since the density of hydrogen is half the 
density of helium. The explanation is in the fact that it is the difference between the air density and the 
filling gas density that matters, which changes by a small fraction when the gas is changed from hydrogen 
to helium. By this account, filling the Hindenburg with hydrogen rather than helium was a risk not worth 
taking. The initial plans called for the Hindenburg to be filled with helium. It was the blockade imposed on 
Germany in the years preceding World War II that determined the use of hydrogen rather than helium. 

13.52. THINK:  The first question we need to answer is “what changes between the measurements in dry air and 
in humid air?” And the answer is that the brass and aluminum objects displace a different amount of air; 
so changing the humidity changes (ever so slightly!) the mass of the air that is displaced. The question asks 
about the mass of a sample in an analytical balance, given a sensitivity of 0 0.100 mg.m =   
SKETCH:   

 
RESEARCH:  Suppose in dry air the scale is exactly balanced between the aluminum object on one side 
and the brass weight on the other.  This means that the net force, including the buoyant force on both 
sides, is zero. Since the weight is given by the product of the mass times the gravitational acceleration, and 
the mass is the product of the density and the volume, we get 

A A dry B B dry
( ) ( ) 0V Vρ ρ ρ ρ− − − =  

In the humid air, however, there will be a slight imbalance, m, given by 

A A humid B B humid
( ) ( )V V mρ ρ ρ ρ− − − =  

Let’s set m to the size of the sensitivity of the balance scale given in the problem and solve for the two 
unknown volumes of the aluminum and brass objects. 
SIMPLIFY:  We solve the upper of the two equations for 

B
V  and find 

B A A dry B dry
( ) / ( )V V ρ ρ ρ ρ= − −  

Inserting this result into the lower of our two equations then gives us: 

A A humid A A dry B humid B dry

B dry

A

B A dry humid

( ) ( )( ) / ( )

( )( )

V V m

V m

ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ

ρ ρ ρ ρ

− − − − − = ⇒

−
=

− −

 

Multiplying both side of this equation with the density of aluminum gives us the minimum mass needed to 
show an observable effect of the change of the air density due to humidity changes on the balance scale: 

B dry

A A A A

B A dry humid
( )( )

m V m
ρ ρ

ρ ρ
ρ ρ ρ ρ

−
= =

− −
 

CALCULATE:  We insert the given numbers for the densities and use the scale sensitivity 0 0.100 mgm =  
for m. We find 

− ⋅ ⋅ −
= ⋅ =

⋅ − ⋅ −

3 3 3

6

A 3 3 3 3

3 3

3 3

(2.70 10 kg/m )(8.50 10 kg/m 1.2285 kg/m )
(0.1 10  kg) 0.329694 kg

(8.50 10 kg/m 2.70 10 kg/m )(1.2285 kg/m 1.2273 kg/m )
m  
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ROUND:  The input values are given to at least three significant figures, so the result should be rounded to 
≥A 0.330 kg.m  

DOUBLE-CHECK: First, as in most cases, we check the units of our answer to make sure that it is 
dimensionally correct. (Obviously, in a Solutions Manual this double-check should not turn up any 
problems, though …).  More importantly, we can check the limits of our derived answer for Am . The 
effect we are looking for can only exists if the displaced air volume is large; therefore the smaller the 
difference between the dry and humid air densities is, the bigger we expect the volume and therefore the 
mass of the aluminum object to be.  This is born out by our formula above. 

13.53. THINK:  Determine the difference in pressure between the fountain and a point 100. m above. 
SKETCH:   

 
RESEARCH:  The total pressure at the fountain is the sum of the gauge pressure at a depth of 100. m, and 
the atmospheric pressure. That is, f gauge atm .P P P= +  I can then determine the pressure at 100. m above by 
subtracting the gauge pressure because the only relevant pressure is the atmospheric pressure. The total 
pressure at the top is then atm f gauge .P P P= −  Thus, the difference in pressure is given by f atm gauge .P P P− =  

SIMPLIFY:  Since gauge pressure is defined as fluid ,ghρ  the difference in pressure is then given by: 

f atm water .P P ghρ− =  
CALCULATE:  Inserting the values gives: 

( )( )( )ρ= = = ⋅3 2 5 2
gauge water 1000. kg/m 9.81 m/s 100. m 9.81 10  N/m .P gh  

ROUND:  The only value given is the height of the water column with three significant figures, so the 
difference in pressure is 5 29.81 10  N/m .⋅  
DOUBLE-CHECK:  For a height of 100. m, the result is reasonable. 

13.54. THINK:  Determine the pressure in a rectangular pipe where the width remains constant but the height 
decreases by half. The question gives the initial velocity as 1 1.00 m/s,v =  and the initial pressure is 

1 3000. Pa.P =  
SKETCH:   

 
RESEARCH:  Since the pipe is rectangular and the width remains the same but the height decreases by 
half, the cross-sectional area also decreases by half, that is,  

( )( ) ( )1 2 1
1 1width height   width height .
2 2

A A A = ⇒ = = 
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Assuming that the water is incompressible, then the continuity equation must hold: 1 1 2 2 .A v A v=  
Therefore, the final velocity must increase by a factor of 2. By making use of the Bernoulli equation: 

2 2
1 1 1 2 2 2

1 1 .
2 2

P v gh P v ghρ ρ ρ ρ+ + = + +  

Since the overall height of the water is essentially fixed, then 1 2 .h h=  
SIMPLIFY:  Solving for the final pressure: 

( )2 2
2 1 1 2

1 .
2

P P v vρ= + −  

CALCULATE:  ( ) ( )( )ρ= + − = − =
22 2 3

2 1 1 1
1 34 3000. Pa 1000. kg/m 1.00 m/s 1500. Pa
2 2

P P v v  

ROUND:  The values were given to three significant figures, so the answer should be rounded to 
3

2 1.50 10  Pa.P = ⋅  
DOUBLE-CHECK:  The pressure is expected to decrease as the velocity increases (Bernoulli’s effect!). 

13.55. THINK:  The question presents a nozzle with square sides of side length 50.0 cm and 20.0 cm, 
respectively. While this looks like an awfully big nozzle, it still may be possible to find such a device inside 
a hydroelectric power plant, for example.  Since we are dealing with flowing water, our equations for fluid 
flow, in particular the continuity equation will come in handy. One word of caution: in part a) we are 
interested in the fluid speed at the exit end, while the fluid speed at the entrance is given; so it may be 
tempting to use some kind of kinematic equation to solve for the acceleration in part b).  However, this 
would be wrong, because the condition of constant acceleration is not fulfilled in this case, and so the 
kinematic equations derived for point particles in Chapters 2 and 3 do not apply. 
SKETCH:   

 
RESEARCH:   
(a) From the equation of continuity, 1 1 2 2 V .A v A v R= =  Therefore, the flow rate at the exit will be the same 
as that of the entrance. Since the velocity of the fluid at the entrance is known, the flow rate can be readily 
obtained. 
(b) If we call the coordinate along the direction of the fluid flow ,x (measured in units of m) then the area 
is given as a function of this coordinate as 

= − 2 2( ) (0.500 0.150 )  mA x x  
From the continuity equation we then obtain for the fluid speed as a function of the x -coordinate: 

= = − 2 2
V V( ) / ( ) / (0.500 0.150 ) mv x R A x R x  

In order to take the derivative of the fluid speed with respect to time and thus obtain the local acceleration, 
we have to make use of a change of variables: 

≡ = =
dv dv dx dva v
dt dx dt dx

 

For the derivative /dv dx  we find 
= − 3 3

V( ) / 0.300 / (0.500 0.150 ) mdv x dx R x  
(c) The increased flow rate increases the velocity, and we can obtain our result by simply inserting a new 
value of VR  at the exit. 
SIMPLIFY:  Simplification is not necessary for part a). In part b) we obtain: 

= = =
− − −

2
V V V

3 3 2 2 5 5

0.300 0.300
(0.500 0.150 ) m (0.500 0.150 ) m (0.500 0.150 ) m

R R Rdva v
dx x x x
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CALCULATE:   
(a) The flow rate throughout is given by ( )( )( ) 3

V 8.00 m/s 0.500 m 0.500 m 2.00 m /s.R = =  

(b) The acceleration at the exit is then given by = =
−

3 2
2

5 5

0.300(2.00 m /s)( =2) 3750 m/s
(0.500 0.150·2)  m

a x  

(c)    In part a) we found a flow rate of 32.00 m /s , and in part b) we found that the acceleration depends 
on the square of the flow rate.  Increasing the flow rate to 36.00 m /s  then increases the acceleration by a 
factor of 9 to 233,750 m/s .  
ROUND:  
(a)  The flow rate is 32.00 m /s.  
(b)  2( 2) 3,750 m/sa x = =  

(c)  = = ⋅ 4 2( 2) 3.38 10  m/sa x  
DOUBLE-CHECK:  Our calculations resulted in extremely high accelerations of hundreds of g.  This 
might make us suspicious.  However, a nozzle like the one described in the problem is not something we 
might encounter in our everyday experiences, and so we have no easy reference point to check how 
reasonable our answer is.  It is comforting, though, that the units work out properly. We can also calculate 
the average acceleration and see how this compares to our answer for part b). The average acceleration is 
the velocity change between the beginning and end of the nozzle, divided by the average time the water 
took to cross the nozzle. To do this, we can use our continuity equation and find that the speed at the end 
of the nozzle is 50 m/s. This means that the velocity change is 50 m/s 8 m/s 42 m/sv∆ = − = . We can 
obtain the time interval from taking the ratio of the length of the nozzle, divided by the average velocity 

/t x v∆ = ∆ . With 2 mx∆ =  and 1
2 ( ) 29 m/siv v v= + =  we get 2 / 29 st∆ =  and thus for the average 

acceleration 2609 m/sa = . This is also a very large number, but not nearly as large as what we found in 
part b).  It indicates that the acceleration rises sharply along the nozzle. For comparison, if we insert 0x =  
into our formula for the acceleration, we find a value of 238.4 m/s  at the beginning of the nozzle. 

13.56. THINK:  The question asks for the pressure at the right-most side of the pipe. The velocity at the entrance 
of the pipe is 1 4.00 m/s,v =  the pressure in the left section of the pipe is 1 100. kPa,P =  and the diameter of 
the left section of the pipe is 1 5.00 cm.d =  The diameter of the right section of the pipe is 2 3.00 cm,d =  
and the right section of the pipe is h = 1.50 m higher than the left section. 
SKETCH:   

 
 

RESEARCH:  The equation of continuity gives the velocity of the fluid at the upper gauge: 
1

1 1 2 2 2 1
2

  .
A

v A v A v v
A

= ⇒ =  

Now, Bernoulli’s equation states that 21 constant.
2

P v ghρ ρ+ + =  Setting 1 0h =  gives: 

2 2
2 2 2 1 1

1 1 .
2 2

P v gh P vρ ρ ρ+ + = +  

SIMPLIFY:  The pressure at the right section of the pipe is given by: 
2

2 2 2 1
2 1 1 2 2 1 1 1 2

2

1 1 1 1 .
2 2 2 2

A
P P v v gh P v v gh

A
ρ ρ ρ ρ ρ ρ

 
= + − − = + − − 
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CALCULATE:  

( )( ) ( ) ( ) ( )
( )

( )( )( )

 
 = + − −
 
 

=

2
2

23 3
2 2

3 2

0.00250 m1 1100. kPa 1000. kg/m 4.00 m/s 1000. kg/m 4.00 m/s
2 2 0.000900 m

1000. kg/m 9.81 m/s 1.50 m

31556 Pa

P  

ROUND:  2 31.6 kPa.P =  
DOUBLE-CHECK:  It is expected that the pressure will decrease as the velocity increases. 

13.57. THINK:  The question asks for the speed of the water at the valve. It is given that the area of the valve is 
1/10th  the area at the top of the tank. 
SKETCH:   

 
 

RESEARCH:  From Bernoulli’s equation, 
2 2

1 1 1 2 2 2
1 1 .
2 2

p v gh p v ghρ ρ ρ ρ+ + = + +  

Consider that the atmospheric pressure at both ends is the same; 1 2 .p p=  Now, by the continuity 
equation: 

top
valve top top

valve

10 .
A

v v v
A

= =  

Therefore, from Bernoulli’s equation, 
2

2 2 2valve
1 1 1 2 2 2 valve2

1 1 1 1  .
2 2 2 10 2

v
p v gh p v gh gh vρ ρ ρ ρ+ + = + + ⇒ + =  

SIMPLIFY:  Solving for valvev  gives valve 2

2
.

1 10
gh

v −=
−

 Consider a drop released from rest. The velocity 

after a height, h, will given by the kinematic equation, 2 2
0 2 2 2 .v v gh gh v gh= + = ⇒ =  

CALCULATE:  
( )( )2

valve 2

2 9.81 m/s 1.0 m
4.45 m/s,

1 10
v −= =

−
( )( )22 9.81 m/s 1.0 m 4.43 m/sv = =  

ROUND:  Since the height is given to two significant figures, the velocity of the water at the valve is 

valve 4.5 m/sv =  and the velocity of a drop of water from rest is v = 4.4 m/s. 
DOUBLE-CHECK:  When the area of the tank is much greater than that of the release valve, the speed of 
the water at the top relative to the speed at the valve is almost negligible, and Bernoulli’s equation 
essentially gives the kinematic equation for free fall.  The velocity at the valve is slightly larger than the 
velocity of a drop after free fall because the water at the tank surface has nonzero downward velocity. 
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13.58. THINK:  The question asks for the height from the ground that would maximize the range of the outgoing 
water stream. It is given that the range is zero both at the top and at the bottom of the tank. 
SKETCH:   

 
RESEARCH:  Apply Bernoulli’s equation to determine the speed at which the water is exiting at the 
height, h: 

2 2
1 1 1 2 2 2

1 1 .
2 2

v gh v ghρ ρ ρ ρ+ = +  

Substituting 1 0v =  at the height, H,  the velocity, 2 ,v v=  at height, y, can be determined: 

21 .
2

gH v gyρ ρ ρ= +  Therefore, 
( )2

.
g H y

v
ρ

ρ
−

=   (12) 

Next, determine how long it will take the water to hit the ground by using the following equation: 
2

f 0 0
1 .
2y yy y v t a t− = +  

Taking f 0,y =  0 ,y y=  0 0yv =  and gya = − , the above equation becomes: ( )20 0 / 2 ,y gt− = −  which 

gives 2 / .t y g=  The velocity calculated in (12) is along the x direction. Knowing this velocity and the 
time, the range, x, can be determined from 

( )2
.

g H y xv
t

ρ
ρ
−

= =  Therefore, 
( )2 g H y

x t
ρ

ρ
−

=  or ( )4 .x y H y= −   

SIMPLIFY:  To determine the y-value for which the range, x, would be a maximum, determine when 
dx/dy = 0. From equation (3), 

0.
H y ydx

dy y H y
−

= − =
−

 

This gives ( ) ( )/ /H y y y H y− = −  or y = H/2. Therefore, the maximum range would be obtained 

when the hole in the tank would be half of its height.   
CALCULATE:  This step is not necessary. 
ROUND:  This step is not necessary. 
DOUBLE-CHECK:  There is nothing to double check. 

13.59. THINK:  The question describes a water pump mechanism. By using tap water and drastically reducing 
the size of the pipe one can create much higher water streaming speed and thus create pressure below 
atmospheric pressure.  (This is similar to putting your thumb on the garden hose, which enables you to 
spray farther.) The reduced pressure can then be used to suck water out of the sump well and keep the 
basement dry.  In this problem we need to proceed in two steps.  First we deal with the horizontal pipe and 
calculate the speed and pressure in the part of the pipe that has the reduced pipe size. Of course, the 
Bernoulli equation in the special case of equal height seems tailor-made to do this. Then, in the second 
step, we take the calculated pressure difference and see to what height we can lift water with it.  Again we 
can use a limit of the Bernoulli equation.  We can obtain information on the maximum height we can lift 
the water to, if we consider the case of very slowly flowing water (v=0), in which we can neglect the 2v  
term in the Bernoulli equation). 
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SKETCH:   

 
RESEARCH:   
(a) To determine the speed at the discharge outlet, recall the continuity equation: 

1
1 1 2 2 2 1

2

  .
A

A v A v v v
A

= ⇒ =  

(b) Recall Bernoulli’s equation: 2 2
1 1 1 2 2 2

1 1 .
2 2

p v gh p v ghρ ρ ρ ρ+ + = + +  Since 1 2 ,h h=  

2 2
1 1 2 2

1 1 .
2 2

p v p vρ ρ+ = +  

(c) Making use of Bernoulli’s equation: 
2 2

3 3 3 2 2 2
1 1 ,
2 2

p v gh p v ghρ ρ ρ ρ+ + = + +  

where 3 0h =  and 2 .h h=  For negligible 2v  we then find with  3 atm ,p p=  

3 3 2 2 3 2 2 3( )p gh p gh p p g h h ghρ ρ ρ ρ+ = + ⇒ − = − =  
SIMPLIFY:   
(a) Since 2 1 /10,A A=  the speed is given by ( )2 1 10 .v v=  

(b) The pressure, 2 ,p  is given by ( )2 2
2 1 1 2

1 .
2

p p v vρ= + −  

(c) 3 2p p
h

gρ
−

=  

CALCULATE:   
(a) ( )( )2 2.05 m/s 10 20.5 m/sv = =  

(b) ( ) ( ) ( )( )= ⋅ + − =
2 25 3

2
13.03 10  Pa 1000. kg/m 2.05 m/s 20.5 m/s 94.98 kPa
2

p  

(c) 
−

= =3 2

(101 kPa) (94.98 kPa) 0.614 m
(1000. kg/m )(9.81 m/s )

h  

ROUND:  Round the results to three significant figures. 
(a) 2 20.5 m/sv =  
(b) 2 95.0 kPap =  
(c) h = 0.614 m 
DOUBLE-CHECK:  The last number is a bit worrisome, because lifting water 2 ft usually does not get it 
out of the basement. But if you examine the input numbers, you see that the final result depends strongly 
on the ratio by which the pipe area is reduced and on the initial streaming speed of the water.  Adjusting 
these one can get pumps operating on this principle, which lift water by 10 ft, which is certainly enough for 
the intended purpose.  Water-powered sump pump are a great safety device in case that electricity fails 
(which is not unusual in some parts of the country during strong thunderstorms …). 
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13.60. THINK:  A basketball with circumference, C = 75.5 cm or 0.755 m and mass, m = 598 g or 0.598 kg, is 
forced to the bottom of a swimming pool then released. 
(a)  Determine the buoyant force on the basketball.  
(b)  Determine the drag force the basketball experiences while rising at a constant velocity.  
SKETCH:   

 
RESEARCH:   
(a) Recall that the magnitude of the buoyant force is equal to the magnitude of the weight of the fluid 
displaced. Therefore, B water ,F Vgρ=  where the volume is given by: 

34 .
3

V rπ=  

(b) Since the velocity of the ball is constant, the net force acting on it must be zero. From the free-body 
diagram: B drag drag B0   .F mg F F F mg= − − ⇒ = −  
SIMPLIFY:   
(a)  Nothing to simplify. 
(b)  Nothing to simplify. 
CALCULATE:   
(a)  First, determine the volume: 

3 3
3 34 4 0.755 m 7.27 10  m .

3 2 3 2
CV π π
π π

−   = = = ⋅   
   

 

Then, the buoyant force is given by ( )( )( )−= ⋅ =3 3 3 2
B 1000. kg/m 7.27 10  m 9.81 m/s 71.3 N.F  

(b)  Plugging in the result from part (a) gives ( )2
drag 71.3 N 0.598 kg 9.81 m/s 65.4 N.F = − =  

ROUND:  The given values had three significant figures, so the results remain as they are. 
(a)  B 71.3 NF =  
(b)  drag 65.4 NF =  
DOUBLE-CHECK:   
(a)  71.3 N corresponds to about 7 kg or 15 lbs on Earth. Since the buoyancy force is simply the amount of 
water displaced by the object, it is easy to imagine a water filled basketball weighing this amount (ignoring 
the thickness of the basketball’s material, the volume of the basketball is virtually the volume inside the 
basketball). 
(b)  The drag force should be smaller since the basketball moves upward.   

13.61. THINK:  The question asks for the amount of oil flowing out of a container in a period of 10.0 s. The oil 
has a viscosity of 0.300 Pa s  and a density of 3670. kg/m .  The ejection tube is 20.0 cm long with a 
diameter of 0.200 cm. 
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SKETCH:   

 

RESEARCH:  Determine the volume of oil per second: 
4

v .
8
r p

R
l

π
η
∆

=  

Assume that the change in pressure does not vary much in 10 s. Then, the volume of oil ejected in time t∆  
is v .V R t= ∆  

SIMPLIFY:  
4 4

v 8 8
r p r g y

V R t t t
l l

π π ρ
η η
∆ ∆

= ∆ = ∆ = ∆  

CALCULATE:  
( ) ( )( )( )

( )( ) ( )
4 3 2

7 3
0.00100 m 670. kg/m 9.81 m/s 0.500 m

10.0 s 2.1509 10  m
8 0.300 Pa s 0.200 m

V
π

−= = ⋅
⋅

 

ROUND:  Rounding to three significant figures, 7 32.15 10  m .V −= ⋅  
DOUBLE-CHECK:  This volume is equal to 0.215 mL, which is a reasonable amount of oil to drip out of 
such an opening. 

13.62. THINK:  The question asks for the pressure inside Hurricane Rita. Use 1 0v ≈  as the outside wind speed. 
After converting the wind speed inside the hurricane to meters per second, use 

2 290 km/h 80.6 m/s.v = = From Example 13.5 from the text, use 31.205 kg/mρ =  as the density of air (a 
typical value for the density of air at a temperature of 20  C° ). 
SKETCH:  A sketch is not needed to solve the problem. 
RESEARCH:  Use = =1 atm 101 kPa,P P  and take 1 2h h= in Bernoulli’s equation: 

2 2
1 1 1 2 2 2

1 1 .
2 2

P v gh P v ghρ ρ ρ ρ+ + = + +  

SIMPLIFY:  2 2
atm hur 2 hur atm 2

1 1  
2 2

P P v P P vρ ρ= + ⇒ = −  

CALCULATE:  ( )( )= ⋅ − =
23 3

hur
1101 10  Pa 1.205 kg/m 80.6 m/s 97.1 kPa.
2

P   

ROUND:  The wind speed was given to two significant figures, so the answer should be rounded to the 
same precision. The atmospheric pressure inside the hurricane was 97 kPa. 
DOUBLE-CHECK:   NASA maintains data they obtain using Hurricane hunter aircraft. They report that 
Hurricane Rita had a minimum recorded central pressure of 89.7 kPa. The calculated pressure is 
reasonably close to, but greater than the minimum recorded central pressure, so the calculated value is 
reasonable.  

13.63. THINK:  The question asks for the weight of a car if it is known that the tire pressure is 28.0 psi, and the 
width and length of the contact surface of each tire is 7.50 in, and 8.75 in, respectively. 
SKETCH:   
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RESEARCH:  Recall that the definition of pressure is: 
Force .
Area

FP
A

= =  

Therefore, the weight of the car can be taken as the force due to the pressure on all four tires. That is, 

car 4 .F PA=  
SIMPLIFY:  Simplification is not necessary. 
CALCULATE:  Recall also that 1 pound per square inch = 6894.75729 Pascals, and that 1 inch = 0.0254 m. 

Therefore, ( )( )( ) ( )( )= =
2

car 4 28.0 6894.75729 Pa 0.0254 m 7.50 8.75 32694.4 N.F  
ROUND:  To three significant figures, the weight of the car is 32700 N.  
DOUBLE-CHECK:  Although the result is somewhat high for the weight of an average car, it is reasonable 
for the given values. 

13.64. THINK:  The question asks for the ratio of the lifting powers of helium to hydrogen gases. The molar 
mass of air is 28.95 g/mol and that of hydrogen gas is 2.016 g/mol. (Hydrogen is a diatomic molecule, and 
the mass number of the average hydrogen atom is 1.0079, which is slightly larger than 1 because of the 
small admixtures of the heavier hydrogen isotopes deuterium and tritium.) Helium is a noble gas and 
therefore monatomic.  Its mass number is 4.003 and therefore the molar mass of helium gas is 4.003 g/mol. 
SKETCH:   

 
RESEARCH:  Avogadro’s Hypothesis states that equal volumes of any gases at the same temperature and 
pressure contain equal amount (number of particles or moles) of gas. Hence, the mass of a given volume of 
any gas is proportional to its molar mass. By Archimedes’ Principle, then, the lifting power of any gas is 
proportional to the difference between the equivalent molar mass of air and the molar mass of the gas. 
Hence, the desired ratio of lifting powers is: 

2

air He

2 air H

He .
H

m mL
L m m

−
=

−
 

SIMPLIFY:  Simplification is not necessary. 

CALCULATE:  
2

He 28.95 4.003 0.926227
H 28.95 2.016

L
L

−
= =

−
 

ROUND:  Since the equivalent molar mass of air is given to four significant figures, the answer is rounded 
to 0.9262. 
DOUBLE-CHECK:  Our first guess might have been that perhaps the lifting power of hydrogen might be 
about twice as high as that of helium, because it weighs only half of helium.  The lifting power comes from 
the weight of the displaced air minus the weight of the gas.  Since helium and hydrogen are both very light 
compared to air, this means they should have approximately the same lifting power, with hydrogen having 
a slight advantage.  Our answer shows this. Clearly the only slight extra lifting power of hydrogen is far 
outweighed by the difficulty and danger of handling it. 

13.65. THINK:  The problem describes a large barrel filled with water with a small cork plugging a hole 1.5 m 
below the top of the barrel.  
(a)  Determine the magnitude of the static friction, assuming the cork pops out as the water reaches the 
top of the barrel. 
(b)  Would the cork pop out if the water was replaced with sea water? 
 
 
 



Chapter 13: Solids and Fluids 

 657 

SKETCH:   

 
RESEARCH:   
(a)  The cork will fly out of the barrel when the force on it from inside the barrel exceeds the combination 
of force due to air pressure from the outside and the maximal static friction force. The cork flies out when 
the barrel is completely full, so the pressure at depth, h, below the top of the barrel can be determined as 
follows. Inside the barrel, at depth, h = 2.0 m – 0.50 m = 1.5 m, the pressure is given by 0 ,P P ghρ= +  
where 0P  is the external air pressure. Then, the force on the cork due to the water inside the barrel can be 

determined as ( ) ( )( )2
int 0 / 2F PA P gh dρ π= = +  and that from the outside as ext 0 s .F P A F= +  These forces 

will be equal to each immediately before the cork flies out.  

(b)  Seawater is slightly denser than fresh water ( )3 31024 kg/m  versus 1000. kg/m ,  so the pressure inside 

the barrel will be slightly increased compared to the fresh water case. Thus the cork would have flown out 
of the barrel somewhat before it became full. 
SIMPLIFY:   
(a)  Thus, the static force can be determined from: 

( )
2

ext int 0 s 0 ,
2
dF F P A F P ghρ π

  = = + = +      
 

which implies ( ) ( )
2 2 2 2

s 0 0 0 0  .
2 2 2 2
d d d dF P gh P A P gh P ghρ π ρ π π ρ π

            = + − ⇒ + − =                             
 

(b) No simplification is necessary. 
CALCULATE:   

(a)  ( )( )( )π  
= = 

 

2
3 2

s
0.030 m1000. kg/m 9.81 m/s 1.5 m 10.4 N.

2
F  

(b)  Nothing to calculate. 
ROUND:   
(a)  Since the values are given to two significant figures, the result should be rounded to s 10. N.F =  
(b)  Rounding is not necessary. 
DOUBLE-CHECK:   
(a)  The value obtained for the static friction is reasonable based on the given values. 
(b)  It is expected that by increasing the density of the fluid, the gauge pressure will also increase, and thus 
the corresponding force. Thus, for a greater force, it is expected that the threshold of static friction will be 
reached sooner. 

13.66. THINK:  The problem asks for the maximum weight a hydraulic lift can support given that the maximum 
gauge pressure in the lift is 17.00 atm, and the diameter of the output line is d = 22.5 cm = 0.225 m. 
SKETCH:   
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RESEARCH:  Recall that the pressure can be written in terms of the force per unit area as .FP
A

=  

SIMPLIFY:  Therefore, the maximum force the lift can sustain is: 

max
max max max  ,

F
P F P A

A
= ⇒ =  where ( )2/ 2 .A dπ=  

CALCULATE:  Recall that 1 atm = 101325 Pa, thus: 

( )( )π  
= = = 

 

2

max max
0.225 m17 101325 Pa 68489 N.

2
F P A  

ROUND:  Since the diameter of the output line is given to three significant figures, the maximum weight 
the lift can sustain is 68.5 kN. 
DOUBLE-CHECK:  It is reasonable that a lift will have such great lift capacity since it should be well 
above the weight of a heavy vehicle. 

13.67. THINK:  The question asks about the velocity of water in a pipe when the radius of the pipe is 

1 5.00 cmr =  and the water is flowing into the pipe at this end with a speed of 2.00 m/s.  The pipe narrows 

down to a radius of 2 2.00 cmr =  and we are interested in finding the speed of the water at this end. 
SKETCH:   

 
RESEARCH:  Using the continuity equation: 1 1 2 2 .A v A v=  Therefore, 2 2

1 1 2 2 .v r v rπ π=  

SIMPLIFY:  Solving for 2 :v
2

1
2 1

2

.
r

v v
r

 
=  

 
 

CALCULATE:  ( )
 

= =  
 

2

2

5.00 cm
2.00 m/s 12.5 m/s

2.00 cm
v  

ROUND:  Since the values are given to three significant figures, the result should remain as 2 12.5 m/s.v =  
DOUBLE-CHECK:  It is expected that the velocity of the fluid will increase as the cross-sectional area of 
the pipe decreases.  

13.68. THINK:  The problem describes Uncle Scrooge’s boat being sunk. The mass of the boat is m = 4500 kg, 
and it is made of steel with density, 3

steel 7800 kg/m .ρ =  The mass of a ping pong ball is ball 2.7 g,m =  and 

the volume of a ping pong ball is 5 3
ball 3.35 10  m .V −= ⋅  

(a)  Determine the buoyant force on one ball in water. 
(b)  Determine how many balls are necessary to float the ship. 
SKETCH:   
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RESEARCH:   
(a) Recall by Archimedes’ principle that the magnitude of the buoyant force is equal to the magnitude of 
the weight of the water displaced. Therefore, the buoyant force on one ping-pong ball is B water ball .F V gρ=  
(b) The total buoyant force when the boat is filled with N ping-pong balls is equal to the weight of water 
displaced by the N ping-pong balls and by the steel boat, ( )B,total water ball water steel+ .F N V g V gρ ρ=  The 
minimum buoyant force necessary for the boat to float is equal to the weight of the boat plus the weight of 
the N ping-pong balls, g,total steel ball .F m g Nm g= +  The number of balls can be determined solving for N. 
SIMPLIFY:   
(a) There is nothing to simplify. 
(b) Using the fact that B,total g,total ,F F= solving for N yields the equation: 

( ) ( )water ball water steel steel ball water ball ball steel water steel+N V g V g m g Nm g N V m m Vρ ρ ρ ρ= + ⇒ − = −  

steel water
steel water steel

steel steelsteel water steel

water ball ball water ball ball water ball ball

1
= .

mm m
m V

N
V m V m V m

ρρ
ρ ρρ

ρ ρ ρ

   
− −   

−    ⇒ = =
− − −

 

CALCULATE:   

(a)  ( )( )( )−= ⋅ =3 5 3 2
B 1000. kg/m 3.35 10  m 9.81 m/s 0.3286 NF  

(b) 
( )

( )( ) ( )− −

 
− 

 = =
⋅ − ⋅

3

3

3 5 3 3

1000. kg/m4500 kg 1
7800 kg/m

127373
1000. kg/m 3.35 10  m 2.7 10  kg

N   

ROUND:   
(a)  Keeping two significant figures, the buoyant force on each ball is B 0.33 N.F =  

(b)  In order to lift the boat the minimum number of ping pong balls needed is 51.3 10 .⋅  
DOUBLE-CHECK:   
It is expected that a very large number of balls is needed to overcome the weight of the boat. Note that if 
the weight of the balls and volume of the steel is neglected (reasonable as the balls are light and steel is 

dense), 
( )( )

= = = ⋅
2

5
4500 kg 9.81 m/sweight of boat

1.338 10  balls,
buoyant force on a single ball from (a) 0.33 N

N which is 

equal to the above answer to two significant figures. 

13.69. THINK:  The question asks about the density of (a) wooden block and (b) mineral oil, given that the block 
will be two thirds submerged in sea water, and 80.0% submerged in mineral oil. 
SKETCH:  

 
RESEARCH:   
(a)  Since the wooden block is floating, its weight must be equal to the displaced sea water. 
(b)  It is the same core idea for determining the density of the mineral oil.  
SIMPLIFY:   

(a)  block block sea water submerged block block sea water block block sea water
2 2    .
3 3

V g V g V g V gρ ρ ρ ρ ρ ρ   = ⇒ = ⇒ =   
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(b)  ( ) block
block block oil submerged block block oil block oil  0.80   .

0.80
V g V g V g V g

ρ
ρ ρ ρ ρ ρ= ⇒ = ⇒ =  

CALCULATE:   

(a)  ( )3 3
block

2 1.024 g/cm 0.683 g/cm .
3

ρ = =  

(b)  
3

3
oil

0.683 g/cm
0.853 g/cm .

0.800
ρ = =  

ROUND:  
(a)  Keeping three significant figures, the answer remains 3

block 0.683 g/cm .ρ =  

(b)  Keeping three significant figures, the answer is 3
oil 0.853 g/cm .ρ =  

DOUBLE-CHECK:  Both results are reasonable based on the given values. It is expected that since more 
of the wooden block is submerged in the mineral oil than in sea water, then the density of mineral oil must 
be lower than that of sea water. 

13.70. THINK:  Use the change in tendon length, 0.37 mm,l∆ =  to determine the strain. Use the force, F = 13.4 
N, to determine the stress. Assume the tendon is a cylinder of length, L = 15 cm, and diameter, d = 3.5 
mm. 
SKETCH:   

 
RESEARCH:  The cross-sectional area of the tendon is ( )2/ 2 .A dπ=  The strain on the tendon is / .L L∆  
The stress on the tendon is F/A. Young’s modulus is Y = stress/strain. 

SIMPLIFY:  2

stress / 4
strain /

F A FLY
L L d Lπ

= = =
∆ ∆

 

CALCULATE:  
( )( )

( ) ( )
8 2

2

4 13.4 N 0.15 m
5.64636 10  N/m

0.0035 m 0.00037 m
Y

π
= = ⋅  

ROUND:  = ⋅ 9 20.56 10  N/mY  
DOUBLE-CHECK:  A check of the proper units works out fine. Table 13.1 shows that 9 210  N/m  is 
approximately the right order of magnitude for Young’s modulus.  Tendons should be much harder to 
stretch than rubber and easier than wood, and according to Table 13.1 this is true for our result. 

13.71. THINK:  On another planet, the pressure under water is determined in the same manner as it is on Earth. 
The only difference is the new value of gravity, 0.135 .g g′ =  The depth is d = 1.00 km and the density of 

water is ρ = 31000. kg/m .  Assume the pressure in the atmosphere is zero. 
SKETCH:   

 
 

RESEARCH:  The pressure at a certain depth is given by 0 .P P gdρ= +  
SIMPLIFY:  0.135P g d gdρ ρ′= =  

CALCULATE:  ( )( )( )= ⋅ = ⋅3 2 3 60.135 1000. kg/m 9.81 m/s 1.00 10  m 1.324 10  PaP  

ROUND:  P = 1.32 MPa 



Chapter 13: Solids and Fluids 

 661 

DOUBLE-CHECK:  This pressure is still greater than the atmospheric pressure ( )0P  of Earth, which is 
expected even on another planet. 

13.72. THINK:  Since the density of each ball, 3
A 0.90 g/cmρ =  and 3

B 0.80 g/cm ,ρ =  is less than the density of 

water, 3
w 1.00 g/cm ,ρ =  they should float to the top, i.e. the buoyant force, B ,F  is greater than the 

gravitational force, g .F  The volumes are equal and irrelevant in calculating their accelerations. Whichever 
has the higher acceleration wins. 
SKETCH:   

 
RESEARCH:  The buoyant force on each sphere is the same, B w .F Vgρ=  The mass of each sphere is 

A Am Vρ=  and B B .m Vρ=  The net force on each sphere gives the sphere its acceleration such that, in 
general, B g .F F ma− =  
SIMPLIFY:   
(a) Using g A ,F m g=  and balancing the forces gives 

w A
w A A A w A A A A

A

  V   .Vg m g m a Vg g Va a g
ρ ρ

ρ ρ ρ ρ
ρ

 −
− = ⇒ − = ⇒ =  

 
 

(b) Using g B ,F m g=  and balancing the forces gives 

w B
w B B B w B B B B

B

  V   .Vg m g m a Vg g Va a g
ρ ρ

ρ ρ ρ ρ
ρ

 −
− = ⇒ − = ⇒ =  

 
 

CALCULATE:   

(a) ( ) −
= = 
 

3 3
2 2

A 3

1.00 g/cm 0.90 g/cm
9.81 m/s 1.09 m/s

0.90 g/cm
a  

(b) ( )
3 3

2 2
B 3

1.00 g/cm 0.80 g/cm
9.81 m/s 2.45 m/s

0.80 g/cm
a

 −
= = 
 

 

ROUND:   
(a) 2

A 1.1 m/sa =  

(b) 2
B 2.5 m/sa =  

(c) Ball B reaches the top first. 
DOUBLE-CHECK:  Since the densities of the balls are close to that of the water, they should have a 
relatively small acceleration. 

13.73. THINK:  It is the cross-sectional area of the stream lines which are reduced by 80.0%. If sA  is the cross-
sectional area of the streamline under the wing (where no distortion occurs), then it is s0.800A  above the 
wings. The continuity equation can be used to determine the velocity above the wing. The Bernoulli 
equation can then be used to determine the pressure above the wing, assuming the change in height from 
the bottom to the top of the wing is negligible. The pressure difference multiplied by the cross-sectional 
area of the wing should provide the lift force. The velocity of air under the wing is v = 200. m/s, the area of 
the wing is 2

w 40.0 mA =  and the density of air is 3
a 1.30 kg/m .ρ =  
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SKETCH:   
(a)           (b) 

                 
(c) 

        
 
RESEARCH:  The continuity equation is 1 1 2 2 constant.A v A v= =  The Bernoulli equation (for same 

height) is  2 2
1 1 2 2

1 1 .
2 2

P v P vρ ρ+ = +  The force produced when a pressure difference is applied on an area is 

.F PA= ∆  
SIMPLIFY:   

(a)  1 1 sA v A v=  and 2 2 s0.800 .A v A v′=  The continuity equation gives s

s

5 .
0.800 0.800 4

A v v vv
A

′ = = =  

(b)  2 2
1 1 a

1 1
2 2

P v P vρ ρ′+ = +  and 2 2
2 2 a

1 1 .
2 2

P v P vρ ρ ′+ = +  Equating these expressions gives 

( )2 2
a

1 .
2

P P v vρ′ ′− = −  

(c)  ( )  F PA F P P A′= ∆ ⇒ = −  
CALCULATE:   

(a)  
( )5 200. m/s

250. m/s
4

v′ = =  

(b)  ( ) ( ) ( )( )2 231 1.30 kg/m 250. m/s 200. m/s 14625 Pa
2

P P′ − = − =  

(c)  ( )( )214625 Pa 40.0 m 585,000 NF = =  

ROUND:   
(a)  250. m/sv′ =  
(b)  14.6 kPaP P′ − =  
(c)  F = 585 kN 
DOUBLE-CHECK:  Overall, the force from the lift is equivalent to around 60 tons, which is a reasonable 
mass for an airplane. 

13.74. THINK:  Since the buoy is partially submerged and not moving, the buoyant force and gravitational force 
are equal. Since the forces are equal, the ratio of densities is equal to the ratio of volumes. The density of 
the buoy of mass, M = 75.0 kg, can be calculated by first determining the volume of the buoy. L = 0.600 m, 
R = 0.200 m and the density of water is 3

w 1027 kg/m .ρ =  
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SKETCH:   

 
 

RESEARCH:  Each cap is half a sphere, so the total volume is the volume of the cylinder and a sphere 
summed: 

2 3
B

4 .
3

V R L Rπ π= +  

The density of the buoy is B B/ .M Vρ =  The volume of the displaced water is the same as the volume of the 
buoy that is submerged, which is part of a cylinder and half of a sphere: 

( )( )2 3
w

1 4 .
2 3

V R L h R Rπ π = − − +  
 

 

Since the forces are equal: wB

w B

.
V
V

ρ
ρ

=  

SIMPLIFY:  ( )( )ρ
π π

ρ ρ ρ ρ

π ρ π ρ

= ⇒ = ⇒ = ⇒ = − − +

⇒ = + − ⇒ = + −

2 3w wB
w

w B B w B w w

2 2
w w

4      
6

10 10   
6 6

V VM M MV R L h R R
V V V
M R R ML h h L

R R

  

CALCULATE:  ( )
( ) ( )2 3

75.0 kg10 0.200 m 0.600 m 0.3522 m
6 0.200 m 1027 kg/m

h
π

= + − =  

ROUND:  h = 0.352 m 
DOUBLE-CHECK:  Since most of the mass is at the bottom, it is expected that most of it is submerged. Its 
total length is L + 2R = 1.00 m, so most of the buoy is submerged ((1.00 – 0.352) m = 0.648 m). 

13.75. THINK:  Assume the height of the water remains the same. The Bernoulli equation can then be used to 
determine the velocity at which it boils. The pressure when the water boils is 2.3388 kPa.P′ =  The water is 
at atmospheric pressure, 0 101.3 kPa,P =  when stationary ( )0v 0 m/s .≈  The density of water is 

3
w 998.2 kg/m .ρ =  

SKETCH:   

 
 

RESEARCH:  The Bernoulli equation for constant height is 2 2
1 1 2 2

1 1 .
2 2

P v P vρ ρ+ = +  

SIMPLIFY:  
( )2

0 w
w

21   
2

P P
P P v vρ

ρ
′−

′ ′ ′= + ⇒ =  
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CALCULATE:  
( )

3

2 101.3 kPa 2.3388 kPa
14.081 m/s

998.2 kg/m
v

−
′ = =  

ROUND:  14.08 m/sv′ =  
DOUBLE-CHECK:  This velocity is about 32 mph, which is a fairly brisk speed for a boat to travel, but 
certainly seems in the right order of magnitude. 

13.76. THINK:  To determine the gravity on the surface of Mars, use the mass, 236.42 10  kg,M = ⋅  and the radius, 
63.39 10  m,R = ⋅  of Mars. Since the scale is to still read 760 mm for 0 101.325 kPa,P =  the change in 

gravity will produce a change in height and this height must still read 760 mm, so the length of a 
millimeter will change. The density of mercury, m ,ρ  is the same on either planet. 
SKETCH:   

 
RESEARCH:  The force of gravity on the surface of Mars is 2

M G / .g M R=  Since the pressure in the 
manometer is zero, the atmospheric pressure is the depth pressure, so 0 mgP hρ=  on Earth and 

m
0 2

GMh
P

R
ρ ′

=  on Mars. The scale needs to be stretched by a factor of / .h h′  

SIMPLIFY:  For the same pressure: 
2

m m 2

G   .
G
gRM hgh h

R h M
ρ ρ

′
′= ⇒ =  

CALCULATE:  
( )( )

( )( )

22 6

11 2 2 23

9.81 m/s 3.39 10  m
2.63155

6.673 10  N m / kg 6.42 10  kg
h
h −

⋅′
= =

⋅ ⋅
 

ROUND:  / 2.63,h h′ =  i.e. 1 mm on Earth’s barometer needs to be 2.63 mm on Mars’ barometer. 
DOUBLE-CHECK:  Since Mars’ gravity is about (2/5)g, it is expected that the mercury rises about 2.5 
times that on Earth. 

13.77. THINK:  If the mass is distributed uniformly and if 35.0 % of the volume is above, then 65.0 % is below, 
which is the same volume of the displaced water. If the block floats, the buoyant and gravitational forces 
are equal and the ratio of volumes is equal to the ratio of densities. 
SKETCH:   
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RESEARCH:  The overall density of the block is the total mass over the total volume: c s
0

c s

.
M M
V V

ρ
+

=
+

 

Since the forces are equal, w 0

0 w

.
V
V

ρ
ρ

=  The volume of displaced water is the same as the submerged volume 

of the block, so =w 00.650 .V V  

SIMPLIFY:  
ρ

ρ ρ
ρ

= = ⇒ =0 w
0 w

w 0

0.650  0.650
V
V

 

The mass of concrete is c c c .M Vρ=  The mass of Styrofoam is s s s .M Vρ=  The overall density is then: 

( )
( ) ( ) ( )c c s sc s c c s s

0 0 0 c s c c s s
c s c s c s

/
  / /

/ 1
V VM M V V

V V V V
V V V V V V

ρ ρρ ρ
ρ ρ ρ ρ ρ

++ +
= = = ⇒ + = +

+ + +

ρ ρ ρ ρ
ρ ρ ρ ρ

− −
⇒ = =

− −
c s 0 s w

s 0 c w c

0.650
 .

0.650
V
V

 

CALCULATE:  
( )

( )
−

= =
−

3 3

c
3 3

s

50.0 kg/m 0.650 1000. kg/m
0.3871

0.650 1000. kg/m 2200 kg/m

V
V

 

ROUND: Two significant figures: c

s

0.39.
V
V

=  

DOUBLE-CHECK:  For the block to float, there must be more Styrofoam than concrete in the block. As 
expected, the ratio is less than one. 

13.78. THINK:  Assume the balloon is thin, so the volume of the balloon is the same as the volume of helium. If 
it is not moving, the buoyant force of the balloon is balanced by the gravitational force of the balloon with 
mass, 1 1.0 g,m =  and the hanging mass, 2 4.0 g.m =  Consider the balloon to be a sphere. The density of 

helium is 3
H 0.179 kg/m ,ρ =  and the density of air is 3

a 1.3 kg/m .ρ =  
SKETCH:   

 
 

RESEARCH:  The sum of the forces indicates that B 1 2 3 ,F F F F= + +  where 1 1F m g=  is the force of the 
balloon, 2 2F m g=  is the force of the hanging mass, and 3 3F m g=  is the force of the helium. The buoyant 
force is B a .F Vgρ=  The volume of the balloon with the helium is 34 / 3.V Rπ=  The mass of helium is 

3 H .m Vρ=  
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SIMPLIFY:  ( ) 1 2
B 1 2 3 a 1 2 3 a 1 2 H

a H

      
m m

F F F F Vg m m m g V m m V Vρ ρ ρ
ρ ρ

+
= + + ⇒ = + + ⇒ = + + ⇒ =

−
and 

3 3
34 4 .

3 2 3 8 6
d dV dππ π

  = = =  
   

 Equating the volume expressions gives 

1
3

1 2

a H

6 .
m m

d
π ρ ρ
  +

=   −   
 

CALCULATE:  

1
3

3 3

0.0010 kg 0.0040 kg6 0.2042 m
1.3 kg/m 0.179 kg/m

d
π
  +

= =  −   
 

ROUND:  d = 0.20 m 
DOUBLE-CHECK:  A diameter of 20. cm is reasonable for a balloon. 

13.79. THINK:  The continuity equation states that the volumes per second at the inlet and outlet pipe are the 
same. The Bernoulli equation can then be used to determine gauge pressure in the outlet pipe. Assume 
gauge pressure of the inlet pipe is o 101.3 kPa.P =  The diameters of the inlet and the outlet pipes are 2.00 
cm and 5.00 cm, respectively. The heights of the pipes are 1.00 m and 6.00 m, respectively. The density of 
water is ρ = 31000. kg/m .  The volume through the pipes is 30.300 mV∆ =  in 60.0 s.t∆ =  
SKETCH:   

 
 

RESEARCH:  The area of each pipe is ( )2
i i / 2A dπ=  and ( )2

o o / 2 .A dπ=  The continuity equation states 

i i o o / .A v A v V t= = ∆ ∆  The Bernoulli equation states  2 2
i i i o o o

1 1 .
2 2

p gh v p gh vρ ρ ρ ρ+ + = + +  

SIMPLIFY:   

(a)  The velocity in the outlet pipe can be determined from o o o 2
o

4  .V VA v v
t t dπ

 ∆ ∆
= ⇒ =  ∆ ∆  

 

(b)  First, determine the velocity in the inlet pipe: i i i 2
i

4  .V VA v v
t t dπ

 ∆ ∆
= ⇒ =  ∆ ∆  

 

Then, the gauge pressure at the outlet is 2 2
o i i o i o

1( ) ( )
2

p p g h h v vρ ρ= + − + − . 

CALCULATE:   

(a)  
( )

3

o 2

0.300 m 4 2.546 m/s
60.0 s 0.0500 m

v
π

  
 = =    

 

(b)  
( )

3

i 2

0.300 m 4 15.92 m/s
60.0 s 0.0200 m

v
π

  
 = =    

 

( )( ) ( ) ( ) ( )( )= + − + −

=

2 23 2 3
o

1101.3 kPa (1000. kg/m ) 9.81 m/s 1.00 m 6.00 m 1000. kg/m 15.92 m/s 2.546 m/s
2

175732.1 Pa

p

ROUND:  o 176 kPap =  
DOUBLE-CHECK:  In the limit that the inlet and outlet pipes have the same diameter, this whole 
problem only would involve pumping water up a height of 5 m, which would result in a gauge pressure 
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drop of 50 kPa, reducing the outlet pressure to 50 kPa.  Since our outlet pipe is larger than the inlet pipe, 
and since they have to carry the same water flow, the speed in the inlet pipe is greater. This, in turn, means 
that the pressure in the outlet pipe has to be greater than 50 kPa, which our solution fulfills. 

13.80. THINK:  As the two spheres of steel, 9
s 160 10  Pa,B = ⋅  and lead, L ,B  go under water, they experience the 

same pressure at similar heights. However, the different bulk moduli cause them to compress differently. 
Even thought their initial volumes, 0 ,V  are the same, when submerged a distance, h = 2000. m, under 

water with a density of 3
w 1024 kg/m ,ρ =  they have different volumes, sV  and L ,V  such that 

s L/ 1.001206.V V =  
SKETCH:   

 
 

RESEARCH:  The relative change in volume of a sphere is ∆
− = ∆ .V B P

V
 For each sphere, the change in 

pressure is ρ∆ = w .P gh  The volume of a sphere after it is submerged is + ∆0 .V V  

SIMPLIFY:  ρ∆ = w .P gh  The new volume of the steel ball is 
 ∆

= + ∆ = − 
 

s 0 s 0
s

1 .PV V V V
B

 The new 

volume of the lead ball is 
 ∆

= + ∆ = − 
 

L 0 L 0
L

1 .PV V V V
B

 Therefore, 

s s

L

L

s

s

L

L

sL

s L

1

1

.

P
V B

PV
B

B P
B

B P
B

B PB
B B P

∆
−

=
∆

−

− ∆

=
− ∆

 − ∆
=  − ∆ 
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This implies that:  

( ) ( )− ∆ = − ∆

 
⇒ − + ∆ = ∆ 

 

∆
⇒ =

 
− + ∆ 

 

s
s L L s

L

s s
s s L s

L L

s
s

L
L

s
s

L

 

  

 .
1

V
B B P B B P

V

V V
B B P B PB

V V
V

PB
V

B
V

B P
V

 

CALCULATE:  ( )( )( )∆ = = ⋅3 2 71024 kg/m 9.81 m/s 2000. m 2.009 10  PaP  

( )( )( )
( )( )

⋅ ⋅
= = ⋅

− ⋅ + ⋅

7 9
10

L 9 7

1.001206 2.009 10  Pa 160 10  Pa
1.511 10  Pa

1.001206 1 160 10  Pa 2.009 10  Pa
B  

ROUND:  =L 15 GPaB  
DOUBLE-CHECK:  The published value for the bulk modulus of lead is 46 GPa.  An alloy composed of 
lead and a more compressible metal would be expected to have a smaller bulk modulus. 

 
Multi-Version Exercises 

13.81. THINK:  The diving bell is at a fixed depth, so there is no net force moving it up or down (the weight of 
the diving bell, buoyant force from the water, and the tension from the chain holding the diving bell cancel 
one another exactly). The net force on the viewing port will depend on the difference in pressure inside 
and outside of the diving bell. The pressure inside the diving bell is equal to atmospheric pressure, and the 
pressure outside the diving bell will depend on the depth of the viewing port.  

 SKETCH: The depth of the diving bell (h) and the diameter of the viewing port (d) are not shown to scale. 
The forces on the diving bell due to gravity, buoyancy, and the tension on the chain are equal (the diving 
bell is submerged at a fixed depth and it is not moving), so there is no net upward or downward force. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 RESEARCH:  The pressure at depth h is ext atmP gh pρ= + , where ρ is the density of water and patm is the 

atmospheric pressure. The pressure inside the diving bell is Pint = patm. The total pressure on the viewing 
port is ext intP P P= − . Since pressure is defined as force per unit area, the total force on the viewing port, 
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surface area of the viewing port, and pressure are related by the equation F PA= , where A is the surface 

area of the viewing port. The area of the round viewing port is given by
2

2

2
dA rπ π  = =  

 
.  

 SIMPLIFY: The total pressure at depth h is given by  

ext int

atm atm

.

P P P
gh p p
gh

ρ
ρ

= −
= + −
=

 

 The net force on the viewing port is then ( ) 2

4
F PA gh dπρ  = =  

 
. 

 CALCULATE:  The depth h = 129.1 m and diameter d = 22.89 cm = 0.2289 m are given in the question. 
The gravitational acceleration near the surface of the earth is g = 9.81 m/s2, and the density of fresh water is 
ρ = 1000 kg/m3. The net force on the viewing port is: 

( )

( )

2

23 2

4

1000 kg/m 9.81 m/s 129.1 m 0.2289 m 52116.67693 N
4

F gh dπρ

π

 =  
 

= ⋅ ⋅ ⋅ =
 

 ROUND: All of the numbers in this calculation had four significant figures, so the final answer will also 
have four figures. The viewing port experiences a force of 5.212·104 N = 52.12 kN towards the interior of 
the diving bell.  
DOUBLE-CHECK: As a rule of thumb, divers expect the pressure to increase by 1 atmosphere = 1.103·105 
Pa for every 10 m of depth, so the expected pressure is about 1.424·106 Pa. The window experiences a force 
of magnitude 5.212·104 N, so the pressure is P = F/A = 1.267·106 Pa. This is the correct order of magnitude, 
so this rough estimate confirms that the calculation is of the correct order of magnitude.  

13.82. 21
4

F gh dρ π=  

 
( )

( )( ) ( )

4

22 3 2

4 6.251 10  N4 151.9 m
1000 kg/m 9.81 m/s 0.2311 m

Fh
g dρ π π

⋅
= = =  

13.83. 21
4

F gh dρ π=  

 
( )

( )( ) ( )

4

3 2

4 7.322 10  N4 0.2331 m 23.31 cm
1000 kg/m 9.81 m/s 174.9 m

Fd
g hρ π π

⋅
= = = =  

13.84. THINK:  The balloon experience an upward force from buoyancy and a downward force from gravity. 
When the balloon is lifting the maximum weight, the upward force and downward force are equal.  

 SKETCH: The sketch shows the buoyant force and the gravitational force: 

 



Bauer/Westfall: University Physics, 2E 
 

  670 

 RESEARCH:  The weight of the air the balloon displaces is B outsideF Vgρ= . The weight of the hot air filling 
the balloon is hot air insideW Vgρ= . The weight that can be lifted, plus the weight of the hot air filling the 
balloon, is equal to the weight of the air the balloon displaces: B hot airF W W= + .  

 SIMPLIFY: The goal is to find the weight W of the load that the balloon can lift. Using algebra, the weight 
of the load is B hot airW F W= − . Substituting in for B outsideF Vgρ= and hot air insideW Vgρ=  gives 

( )outside inside outside insideW Vg Vg Vgρ ρ ρ ρ= − = − . 
 CALCULATE:  The acceleration due to gravity is g = 9.81 m/s. The volume of the balloon is  

V = 2979 m3. The density of the air outside the balloon is ρoutside = 1.205 kg/m3 and the density of the air 
inside the balloon is ρinside = 0.9441 kg/m3. The total weight that the balloon can lift is then 

( )
( )

outside inside

3 2 3 32979 m 9.81 m/s 1.205 kg/m 0.9441 kg/m

7624.538991 N

W Vg ρ ρ= −

= ⋅ −

=

 

 ROUND: The volume of the balloon and the density of the air are all given to four significant figures. 
However, the difference in the density outside the balloon and the density inside the balloon 

outside inside 0.2609,ρ ρ− =  has only three significant figures, so the final answer should also have only three 
figures. The balloon can lift a maximum of 7.62·103 N = 7.62 kN.  
DOUBLE-CHECK: To check this, convert the weight from Newton to pounds. The balloon can lift 

3 1  lb7.62 10  N 1710 lb
4.448 N

⋅ ⋅ = . For a hot air balloon with a wicker basket, nylon balloon, propane or 

other compressed gas heating mechanism, and a few human passengers, this seems like a realistic weight. 
(Keep in mind that, if the maximum weight is too low, the balloon will never get off the ground, and if the 
maximum weight is too high, it will take too long for the balloon to return to earth.) 

13.85. ( )outside insideW Vg ρ ρ= −  

 
( ) ( )( )

3
2 3 3

outside inside

5626 N 2205 m
9.81 m/s 1.205 kg/m 0.9449 kg/m

WV
g ρ ρ

= = =
− −

 

13.86. ( )outside insideW Vg ρ ρ= −  

 

( )( )

outside inside

3 3
inside outside 3 2

6194 N1.205 kg/m 0.946 kg/m
2435 m 9.81 m/s

W
Vg

W
Vg

ρ ρ

ρ ρ

= −

= − = − =
 

13.87. THINK:  The bulk modulus can be used to compute the fractional change in volume from the pressure. 
The pressure can be computed from the depth of the water, which is given in the question.  

 SKETCH: The ball is submerged to depth h. The ball is shown before and after it has been submerged. 
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 RESEARCH:  The pressure at depth h is given by p ghρ= , where ρ is the density of the water in which 

the ball is submerged. The pressure is defined to be the force per unit area 
Fp
A

= , and the equation for 

volume compression is F VB
A V

∆
= . 

 SIMPLIFY: The goal is to find the fractional change in the volume of the ball, V
V
∆ . Replace force per unit 

area in the equation for volume compression, substitute in for the pressure at depth h, and finally use 
algebra to solve for the fractional change in volume. 

V FB
V A
VB p

V
VB gh

V
ghV

V B

ρ

ρ

∆
= ⇒

∆
= ⇒

∆
= ⇒

∆
=

 

 CALCULATE:  The density of water is 1000 kg/m3 and the acceleration due to gravity near the surface of 
the earth is 9.81 m/s2. The question states that the ball is submerged to a depth of 55.93 m and the bulk 
modulus is 6.309·107 N/m2. The fractional change in volume is then 

2 2

7 2

3

1000 kg/m 9.81 m/s 55.93 m
6.309 10  N/m

8.696676177 10

ghV
V B

ρ

−

∆
=

⋅ ⋅
=

⋅
= ⋅

 

 ROUND: The height and bulk modulus are both given to four figures, so the final answer should also have 
four significant figures. The fractional change in volume is 8.697·10–3 or 0.8697%.  
DOUBLE-CHECK: The pressure is increasing, so it is natural to expect the volume to decrease. From 
experience, when a ball is submerged at the bottom of a pool or pond, the decrease in radius is minimal. It 
is reasonable that, even when the ball is submerged to a depth of over 50 meters, the fractional change in 
volume is less than 1 percent.  

13.88. Vgh B
V

ρ ∆
=  

 
( )( ) ( )

7 2
3

3 2

8.141 10  N/m 6.925 10 57.47 m
1000 kg/m 9.81 m/s

B Vh
g Vρ

−∆ ⋅
= = ⋅ =  

13.89. Vgh B
V

ρ ∆
=  

 

( )( )( )3 2
7 2

2

1000 kg/m 9.81 m/s 59.01 m
1.971 10  N/m

/ 2.937 10
gh

B
V V
ρ

−= = = ⋅
∆ ⋅

  13.90. THINK:  The Betz limit calculated in Example 13.7 applies to seawater. Use the Betz limit, speed of the 
current, and geometry of the turbine to determine the maximum power that can be extracted.  

 SKETCH: The diameter of the turbine and velocity of the seawater are shown. The seawater is flowing into 
the turbine from left to right.  
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 RESEARCH:  The Betz limit states that a fraction of 16/27 of the total power can be extracted from the 

fluid. The total power of a fluid flowing at a velocity v with a density ρ flowing through an area A is 
31

in 2 .P Av ρ=  In this case, the area is the surface area of one end of the turbine and can be expressed in 

terms of the turbine’s diameter as ( )2/ 2 .A dπ=  The power extracted by the turbine is 16/27 of the total, 

so the maximum power extracted is 16
in27 .P P=   

 SIMPLIFY: Use the Betz limit to express the maximum power ( )316 1
27 2 .P Av ρ=  Express the area in terms 

of the diameter of the turbine ( ( )2/ 2A dπ= ) and simplify to get 2 32
27 .P d vπ ρ=  

 CALCULATE:  The density of seawater is given in the problem as ρ = 1024 kg/m3, and it flows through 
the turbine with a speed of 1.35 m/s. The turbine’s rotors have a diameter of 24.5 m. The maximum power 
that can be extracted is  

( ) ( )

2 32
27

2 3 3

5

2 24.5 m 1.35 m/s 1024 kg/m
27
3.519245266 10  W
351.9245266 kW.

P d vπ ρ
π

=

=

= ⋅
=

 

 ROUND: Although the other values have four significant figures, the velocity of the seawater is given to 
only three figures, so the final answer should have only three significant figures. The maximum power that 
the turbine can extract under these conditions is 352 kW.  
DOUBLE-CHECK: Flowing water, such as a current, river, or waterfall, has a tremendous amount of 
power. For seawater flowing fairly quickly (a speed greater than 1 m/s), the expected power output is on 
the order of 103 times the square of the diameter. For a turbine with diameter  d = 24.5 m, the order of 
magnitude of the square of the diameter is about 102, so it is reasonable to expect that the answer should 
have an order of magnitude of 105 Watts. This agrees with the calculated value (352 kW = 3.52·105 W). 

13.91. 
2

3 3 2 316 1 16 1 2
27 2 27 2 2 27

dP Av v d vρ π ρ π ρ
      = = =           

 

( )
( ) ( )33 3

27 571,800 W27 24.9 m
2 2 1.57 m/s 1024 kg/m

Pd
vπ ρ π

= = =  

13.92. 2 32
27

P d vπ ρ=  

( )
( ) ( )

3 3 22 3

27 918,800 W27 1.81 m/s
2 2 25.5 m 1024 kg/m

Pv
dπ ρ π

= = =  
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Chapter	14:		Oscillations	
	
Concept	Checks	

14.1.	e		14.2.	c		14.3.	a		14.4.	a		14.5.	b		14.6.	c		14.7.	c		14.8.	c	
	
Multiple‐Choice	Questions	

14.1.	c		14.2.	c	14.3.	b		14.4.	d		14.5.	b		14.6.	c		14.7.	a		14.8.	c		14.9.	a		14.10.	b		14.11.	b		14.12.	c		14.13.	c		14.14.	e		
14.15.	d			
	
Conceptual	Questions	

14.16. The	 amplitude	 of	 the	 oscillations	 decreases	 to	 5	 %	 in	 2	 seconds.	 The	 equation	 of	 motion	 for	 a	
damped	particle	is	    sin .tx t Ae t

    	The	decrease	in	amplitude	implies	    = tA t Ae  ,	with	

period	
2k

T




.	Using	this	decrease	in	amplitude	equation	at	time	 0t  ,	  0  = 1A A  .		At	time	 2t s 	

the	 amplitude	 is	 5%	 or	 less	 of	 what	 it	 was	 at	 0t  ,	   2 22  = (1) 0.05 ,A e e     	 so	

2 ln0.05,  and	therefore	
ln0.05 1.5

2  


.	Using	the	fact	that	 ,
2
b

m  	b	can	be	computed	using	

the	 formula	 2 2(2200)(1.5) 6600 kg/sb m    .	 	 To	 complete	 three	 oscillations	 in	 2	 seconds	 the	

period	 has	 to	 satisfy	 the	 equation	
2 2 3
3

T
  


   


.	 It	 follows	 that	 because	

2 2 2 2
0 9 2.25 k

m          	     2 59 2.25 91 91 2200 2 10  N/mk m m      .	 The	 vehicle	 has	

an	effective	spring	constant	of	 52 10  N/m, 	and	a	damping	constant	of	 36 10  kg/s. 	

14.17. The	frequency	of	a	pendulum	is	 / .g l  	That	is,	it	is	dependent	on	the	acceleration	of	gravity.	If	

the	acceleration	increases,	so	will	the	angular	frequency.	The	digital	watch	keeps	its	time	using	the	
vibrations	of	a	crystal,	which	do	not	change.	During	the	acceleration	of	the	shuttle,	the	g’s	felt	by	the	
pendulum	 increase	 and	 in	 turn	 the	 frequency	of	 the	 clock	 increases.	The	 clock	will	 then	 report	 a	
time	that	is	ahead	of	the	digital	watch.	

14.18. The	 cylinder	 only	 has	 the	 force	 of	 the	 spring	 acting	 on	 it.	 Because	 it	 is	 rotating,	 the	 force	 on	 the	
spring	 must	 equal	 the	 centripetal	 force	 at	 equilibrium,	 2

0 ,m r kr  	 where	 2
0 	 is	 the	 angular	

frequency	 of	 the	 turntable.	 This	 means	 the	 equilibrium	 position	 of	 the	 cylinder	 is	 r	 	 0,	 unless	
2

0 / .k m  	 The	 period	 of	 the	 cylinder	 is	 the	 same	 as	 it	 is	 when	 the	 turntable	 is	 not	 spinning,	

2 / ,T m k 	 and	 is	 independent	 of	 0 . 	 If	 the	 condition	 2
0 /k m  	 is	met,	 then	 the	 equilibrium	

position	has	no	bounds.	If	the	cylinder	is	placed	at	r,	there	will	be	no	oscillations.	

14.19. Critical	damping	will	close	the	door	the	fastest	without	having	the	door	overshoot	and	slam	into	the	
frame	 see	 Fig.	 14.16 .	 Overdamping	 will	 cause	 the	 door	 to	 close	 and	 open	 very	 slowly.	
Underdamping	will	 cause	 the	 door	 to	 close	 quickly,	 but	 the	 door	will	 then	 overshoot	 the	 closed	
position,	hitting	the	frame.	If	there	is	no	frame,	and	the	door	is	underdamped,	the	door	will	swing	
back	and	 forth	about	 the	 closed	position.	As	a	 result,	 critical	damping,	or	damping	 slightly	below	
critical	is	the	best	compromise,	providing	a	relatively	quick	return	with	no	overshoot.	

14.20. The	 period	 a	 stretched	 string	 is	 2 / 2 / .T m k    	 Since	 the	 period	 does	 not	 depend	 on	 the	
amplitude,	any	change	in	the	amplitude	does	not	affect	the	period.	

14.21. The	elasticity	of	a	spring	may	change	after	repeated	use	or	due	to	aging.	The	resulting	change	in	the	
spring	 constant	 changes	 the	 oscillation	 period.	 A	 pendulum	 does	 not	 have	 the	 same	 problem,	
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although	more	care	must	be	taken	to	keep	the	oscillation	amplitude	the	same	on	each	measurement	
since	the	period	does	depend	on	the	amplitude,	particularly	as	the	amplitude	gets	larger .	

14.22. The	oscillations	of	a	mass	and	spring	do	not	depend	on	gravity.	The	period,	T,	of	the	oscillations	is	
related	to	the	mass,	m,	and	spring	constant,	k,	via	 2 / .T m k 	The	unknown	spring	constant	can	
be	determined	by	measuring	the	oscillation	period	with	the	standard	mass	attached	to	the	spring:	

2
std

2
std

4 .m
k

T


 	

An	unknown	mass	can	be	determined	by	attaching	the	mass	to	the	spring	and	measuring	the	period.	
The	relation	between	the	mass	and	period	is:	

2

24
T

m k


 	or	
2

std 2
std

,T
m m

T
 	

where	 all	 the	 variables	 on	 the	 right‐hand	 side	 are	 known	 or	 measurable.	 An	 oscillator	 used	 to	
measure	masses	 in	 this	 way	 is	 known	 as	 an	 inertial	 balance;	 it	 measures	 inertial	 mass	 directly,	
rather	 than	 passive 	 gravitational	mass.	 An	 apparatus	 of	 this	 sort	 is	 used	 to	measure	 the	 body	
masses	of	astronauts	on	a	space	shuttle	or	the	International	Space	Station.	Loss	of	bone	and	muscle	
mass	is	a	serious	concern	on	prolonged	space	flights.	

14.23. The	 frequency	of	 a	pendulum	 is	given	by	 / .g l  	 Since	 the	 frequency	 is	not	dependent	on	 the	

mass,	the	frequencies	of	pendulum	A	and	B	are	equal.	

14.24. The	bell	can	be	considered	a	harmonic	oscillator	driven	simultaneously	at	all	possible	frequencies	
with	 equal	 amplitude.	 The	 response	 at	 each	 frequency	 is	 proportional	 to	 the	 height	 of	 the	 bell’s	
amplitude	resonance	curve	at	that	frequency.	A	well‐made	bell	has	very	low	damping;	the	peak	of	
the	 resonance	 curve	 is	 very	high	 and	narrow.	The	 response	of	 the	bell	 is	 therefore	 very	 strongly	
dominated	 by	 the	 response	 at	 the	 resonant	 frequency,	 i.e.	 its	 natural	 frequency	 –	 that	 is,	 the	
frequency	which	is	heard.	

	
Exercises	

14.25. The	 angular	 frequency	 is	 given	 by	 /k m  	 or	 2 .k m 	 The	 spring	 constant	 is	 then	

  22 15.00 kg 5.00 s 125 N/m.k m    	

14.26. The	angular	frequency	is	given	by:	 / .k m  	

a 		 1
1

1000. N/m/ 70.7 s
0.200 kg

k m    	

b 		 1
2

1500. N/m/ 86.6 s
0.200 kg

k m    	

c 	 	 The	 spring	 constant	 is	not	 straightforward	 for	 this	problem.	There	 are	 two	springs	 in	 series,	
which	creates	an	effective	spring	constant	obtained	as	follows.	If	the	force	in	the	spring	is	F	and	the	
two	springs	lengthen	by	x1	and	x2,	respectively,	then	

 1 1 2 2 eff 1 2F k x k x k x x    	

from	which	it	follows	that	
1 2

eff
1 2 1 2 1 2 1 2

1
/ / 1/ 1/

k kF F
k

x x F k F k k k k k
   

   
	

The	angular	frequency	is:	
 

  
  

1eff 1 2

1 2

1000. N/m 1500. N/m
54.8 s .

1000. N/m 1500. N/m 0.200 kg
k k k

m k k m
    

 
	

14.27. THINK:		The	spring	constant,	k,	can	be	determined	from	the	definition	of	Young’s	modulus.	In	turn,	
the	frequency	can	be	determined.	
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SKETCH:			

	

RESEARCH:	 	The	definition	of	Young’s	modulus	 is:	
F x

Y
A l
  .	Remember	 that	A	here	 is	 the	cross‐

sectional	area	of	the	wire,	not	amplitude.	
The	spring	force	is	given	by	 .F kx  	The	angular	frequency	is	defined	as	 /k m  ,	and	 2 .f  	
SIMPLIFY:		Equating	the	force	from	the	Young’s	modulus	to	the	force	of	a	spring	gives:	

.A
F Y x kx

l
    	

The	spring	constant	is:	
2 2

.
4

A r d
k Y Y Y

l l l

 
   	

This	means	the	frequency	is:	
21 1 .

2 2 2 4
k d

f Y
m lm

 
  

   	

CALCULATE:		    
  

2
11 2 0.00100 m1 2.0 10  N/m 19.947 Hz

2 4 1.00 m 10.0 kg
f




   	

ROUND:		Young’s	modulus	for	steel	is	given	to	two	significant	figures,	so	the	frequency	of	the	mass	is	
reported	as	20.	Hz.	
DOUBLE‐CHECK:	 	 Dimensional	 analysis	 shows	 that	 the	 calculation	 yields	 the	 correct	 units	 of	

frequency:		
 

  

1/22
1

2 2

1/2
2

2

m kg m mN s Hz.
m m kg s  m  m kg


                   

	

14.28. THINK:	 	 The	 time	 taken	 for	 the	 displacement	 to	 reach	 1 30.0 cmx  	 can	 be	 determined	 from	 the	
equation	of	oscillation.	The	time	can	then	be	used	to	determine	the	speed	of	the	block.	The	mass	is	m	
	 0.100	 kg	 and	 the	 spring	 constant	 is	 k	 	 5.00	 N/m	 	 5.00	 kg/s2.	 At	 t	 	 0	 s,	 the	 block	 is	 at	

0 20.0 cmx   	and	moving	with	a	speed	of	v	 	200.	cm/s.	
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SKETCH:			

	
RESEARCH:	 	The	angular	 frequency	 is	given	by	 / .k m  The	equations	of	 the	displacement	and	

the	speed	of	the	block	are	    sinx t A t   	and	    cos ,v t A t    	respectively.	

SIMPLIFY:		The	amplitude	and	phase	shift	are	determined	using	the	initial	conditions:	

  0 sin 0 sinx A A     	and	   0 cos 0 cos .v A A       	

The	phase	can	be	determined	by	dividing	the	equations:	

1 10 0 0

0 0 0

sin tan  tan tan .
cos

x x xA k

A v v m v

   
  

    
            

	

The	amplitude	is	determined	using	the	phase	shift:	 0 .
sin
x

A


 Next,	determine	the	time	at	which	the	

displacement	is	 1x :	

     1
111 1

1

sin /
sin   sin   sin   .

x Ax x
x A t t t t

A A


     




            
 

	

The	speed	at	time	t	is	given	by:	

     
1

1 1
1

sin /
cos cos cos sin / .

x A
v A t A A x A


      






  
             

	

CALCULATE:		The	phase	is:	
2

1 5.00 kg/s 20.0 cmtan 0.6155 rad.
0.100 kg 200. cm/s

 
       

   
		

The	displacement	is:	
 

0 20.0 cm 34.640 cm.
sin sin 0.6155 rad
x

A


   


	

The	angular	frequency	is:	
2

15.00 kg/s 7.071 s .
0.100 kg

   	

The	speed	is:	   1 1 30.0 cm34.640 cm 7.071 s cos sin 122.46 cm/s.
34.640 cm

v       
  

	

ROUND:		To	three	significant	figures,	the	result	is:	v	 	122	cm/s.	
DOUBLE‐CHECK:	 	 The	 speed	must	 be	 smaller	 further	 from	 the	 equilibrium	position	 of	 the	 spring	
because	more	energy	is	stored	as	potential	energy	in	the	spring.		Therefore,	our	result	is	reasonable.	

14.29. THINK:	 	 The	 spring	 constant	 can	 be	 determined	 from	 the	 mass	 and	 the	 frequency.	 The	 mass	
is 1 55.0 gm  	and	bobs	with	a	frequency	of	 1 3.00 Hz.f  	The	mass	is	then	changed	to	 2 250. g.m  	
	
	
SKETCH:			
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RESEARCH:		The	angular	frequency	is	given	by	 /k m  	and	 / 2 .f   	

SIMPLIFY:	 	 The	 spring	 constant	 is	  22 2 2
1 1 1 1 12 4 .k m m f m f     	 Assume	 this	 spring	 constant	

does	not	change	with	the	new	mass.	The	new	frequency	is:	
2 2

1 1 1 1 1
2 1

2 2 2 2

4 21 1 .
2 2 2 2

m f f m mk
f f

m m m m

 
   

     	

CALCULATE:		   22 24 0.0550 kg 3.00 Hz 19.54 kg/s 19.54 N/m.k    	The	frequency	is:		

55.0 g3 Hz 1.407 Hz.
250. g

f   	

ROUND:		The	results	should	be	rounded	to	three	significant	figures.	
a 		The	spring	constant	is	k	 	19.5	N/m.	
b 		The	frequency	is	1.41	Hz.	
DOUBLE‐CHECK:	 	 Since	 the	 frequency	 is	 inversely	proportional	 to	 the	mass,	 a	 larger	mass	 should	
oscillate	with	a	smaller	frequency.		The	results	are	reasonable.	

14.30. THINK:		The	oscillation	period,	T,	can	be	determined	from	the	given	values.	The	balance	of	forces	on	
the	spring	can	then	be	used	to	determine	the	stretch	distance,	d.	
SKETCH:			

	
	

RESEARCH:	 	 The	 force	 of	 gravity	 is	 balanced	 by	 the	 spring	 force	 and	 this	 balance	 is	 given	 by	
g .m kd 	The	oscillation	period,	T,	is	related	to	k	and	m	via	 2 / .T m k 	

SIMPLIFY:		
2

2 /   / .
2
T

T m k m k


     
 

	Rearranging	the	balance	of	forces	equation	for	d	yields	

.mg
d

k
 	The	expression	for	 /m k 	can	be	inserted	into	the	above	equation	to	get	

2

.
2
T

d g


   
 

	

CALCULATE:	 From	 the	 given	 values,	 the	 period	 is:	

30 s 0.60 s.
50

T    
2

20.60 s 9.81 m/s 0.08945 m 8.945 cm
2

d


    
 

	

ROUND:		Given	value	have	three	significant	figures,	so	the	result	should	be	rounded	to	d	 	8.95	cm.	
DOUBLE‐CHECK:		This	is	a	reasonable	distance	for	a	spring	to	stretch.	

14.31. THINK:		When	the	cube	is	put	into	the	liquid,	it	will	feel	a	buoyant	force	acting	upward.	The	cube	will	
sink	 until	 the	 buoyant	 force	 equals	 the	 weight	 of	 the	 cube.	 	 If	 the	 cube	 is	 then	 given	 a	 small	
downward	push,	 the	buoyant	 force	will	 act	 as	 a	 restoring	 force,	 proportional	 to	 the	distance	 it	 is	
moved	downward.	Thus	we	can	make	an	analogy	with	Hooke’s	Law.		When	the	cube	is	released,	it	
will	undergo	simple	harmonic	motion,	in	analogy	with	a	mass	on	a	spring.	
SKETCH:			
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RESEARCH:		To	determine	the	effective	spring	constant,	we	apply	an	analogy	to	Hooke’s	Law.		The	
weight	of	the	cube	will	force	it	to	sink	at	distance	 h 	until	the	buoyant	force	is	equal	to	the	weight	of	
the	cube,	 just	as	when	we	attach	an	object	to	a	spring,	 it	will	stretch	until	the	upward	force	of	the	
spring	equals	the	weight	of	the	object.		The	analogy	to	Hooke’s	Law	gives	us	
	 	 3

c c        .F kx m g kh l g kh     	

The	 frequency	 of	 an	 object	 in	 simple	 harmonic	 motion	 is	 / .k m  	 The	 mass	 of	 the	 cube	 is	
3

c c .m l 	
SIMPLIFY:		We	can	write	effective	spring	constant	as	

	 	
3

c .l g
k

h


 	

The	frequency	of	the	oscillatory	motion	of	the	cube	is:	

	
3

c
3

c c

/1 1 1 1 .
2 2 2 2

l g h gk
f

m l h




    
    	

CALCULATE:		There	are	no	calculations	necessary.	
ROUND:		Rounding	is	not	necessary.	
DOUBLE‐CHECK:		The	units	of	the	result	are	 1s , 	which	is	correct	for	frequency.	 	The	frequency	of	
oscillation	does	not	depend	on	the	density	of	the	liquid	as	long	as	the	density	of	the	cube	is	less	than	
the	density	of	the	liquid.	

14.32. THINK:	 	The	water	 levels	are	different,	so	the	system	will	push	the	liquid	down	that	 is	at	a	higher	
level.	This	action	is	similar	to	a	ball	in	a	half	pipe.	The	water	will	continue	to	oscillate	up	and	down	
due	to	the	conservation	of	energy.	
SKETCH:			

	

RESEARCH:	 	The	mass	on	which	any	 force	will	 act	 is	 the	mass	of	 the	 fluid	 in	 the	system	given	by	
M V AL   	where	 A 	 is	 the	cross	sectional	area	of	 the	 tube	and	  	 is	 the	density	of	 the	 fluid.		

The	restoring	force	is	given	by	the	force	of	gravity	on	the	part	of	the	fluid	above	the	lower	fluid	level.		
We	define	the	position	of	the	fluid	in	terms	of	the	position	of	the	top	of	the	fluid	in	the	right	half	of	
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the	tube,	 .y We	can	write	the	restoring	force	as	    2 2 ,F Ay g Ag y     where	 2 Ay 	is	the	mass	

of	the	fluid	between	the	upper	and	lower	level	of	the	fluid.	Now	we	can	make	the	analogy	with	the	
spring	force,	which	has	the	form	 .F kx  	The	period	of	a	mass	m 	on	a	spring	with	spring	constant	

k 	is	 2 / 2 / .T m k    	

SIMPLIFY:	The	effective	spring	constant	for	this	case	is	 2k Ag 	The	period	is	then:	

2 2 2 .
2 2

M AL L
T

k Ag g

  


   	

CALCULATE:		It	is	not	necessary	to	do	any	calculations.	
ROUND:		Rounding	is	not	necessary.	
DOUBLE‐CHECK:	 	Notice	 that	 the	period	 is	 independent	of	 the	mass	density	of	 the	 liquid	 and	 the	
cross‐sectional	area	of	the	tube	 as	long	as	the	tube	has	a	uniform	cross‐section .	Also,	if	the	tube	is	
long	compared	to	 the	curve	at	 the	bottom	of	 the	 tube,	 then	the	 length,	L,	can	be	considered	to	be	
simply	the	length	of	both	arms	of	the	tube	and	we	obtain	a	result	that	is	similar	to	the	period	of	a	
pendulum.	

14.33. THINK:	 	Block	 2m 	will	slide	off	of	block	 1m 	 if	 the	maximum	acceleration	of	oscillation	produces	a	

force	greater	than	the	force	of	static	friction.	The	spring	constant	is	 10.0 N/mk  	and	the	masses	are	

1 2 20.0 g.m m  	The	coefficient	of	static	friction	is	 0.600.  	
SKETCH:			

	
	

RESEARCH:	 	 The	 maximum	 acceleration	 of	 the	 oscillation	 is	 2 .a A 	 The	 angular	 frequency	 is	

/ .k m  	
SIMPLIFY:		The	maximum	force	on	the	second	mass	is	given	by:	

2 2
max 2 max 2

1 2

.m kA
F m a m A

m m
  


	

The	maximum	force	is	equal	to	the	force	of	static	friction:	
 1 22

s max 2
1 2

.
g m mm kA

F F m g A
m m k





    


	

CALCULATE:		
   

 

20.600 9.81 m/s 0.0200 kg 0.0200 kg
0.023544 m

10.00 N/m
A


  	

ROUND:		The	given	values	have	three	significant	figures,	so	the	maximum	amplitude	the	system	can	
have	without	having	the	second	mass	slip	is	A	 	0.0235	m	 	2.35	cm.	

DOUBLE‐CHECK:	 	Dimensional	 analysis	 of	 the	 calculation	 shows	 that	 the	 answer	 is	 in	 the	 correct	

units	of	length:	
 

 
   

  

2 2

2

m/s kg m kg m s
    m.

N/m s kg m

       
   		

This	result	is	reasonable.	

14.34. THINK:		This	problem	explores	what	occurs	to	two	identical	harmonic	oscillators	that	have	slightly	
different	 initial	 conditions.	 For	 well‐behaved	 systems,	 the	 results	 should	 be	 similar	 for	 both	
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situations.	Systems	whose	solutions	are	vastly	different	 for	small	 changes	 in	 initial	 conditions	are	
known	as	chaotic	systems.	
SKETCH:			

	
RESEARCH:			
a 	 	The	position	of	 the	oscillation	 is	 given	by	  sin ,x A t   	where	 the	 amplitude,	A,	 and	 the	

phase,	 , 	are	determined	by	the	initial	conditions.	The	phase	is	given	by	  1
0 0tan / ,x v  	and	the	

amplitude	is	given	by	 0 / sin .A x  	
SIMPLIFY:			
a  From	the	sketch,	it	can	be	seen	that	the	amplitude	is	now	given	by:		

2 2 2
0 02 2 20

0 0
0

.
x vx

A x v
x




 


  
	

The	position	of	an	oscillator	is	then:	      
2 2 2

0 0sin sin .
x v

x t A t t


   



    	Using	the	double	

angle	formula,	  sin sin cos sin cos ,A B A B B A   	gives:	

   
2 2 2

0 0 sin cos sin cos .
x v

x t t t


   



  	

Noting	the	relation	of	the	triangle:	

         
2 2 2

0 0 0 0 0
1 02 2 2 2 2 2

0 0 0 0

sin cos sin cos .
x v v x v

x t t t t x t
x v x v

 
   

  

        
     

	

The	positions	of	each	oscillator	are	given	by:	

     0
1 0sin cos ,

v
x t t x t 


   
 

	and	        0
2 0sin cos .

v v
x t t x x t


  


    

 
	

Thus,	

                 0 0
2 1 0 0sin cos sin cos sin cos .v v v v

x t x t t x x t t x t t x t
        

  
         

 

b 	The	difference,	    2 1 ,x t x t 	can	be	written	in	the	form	  sin .A t  	In	terms	of	 0 ,x 	 0 ,x 	 0v 	

and	 ,v 	the	difference	is:	

   
2 2 2

1
2 1 sin tan .x v x

x t x t t
v

    
 

        
  

	

Since	the	sine	function	has	a	range	of	 1 sin 1x   	for	all	x,	the	difference	is	bounded	by:	

   
2 2 2

2 1 ,x v
x t x t

  



  	

where	 / .k m  		
CALCULATE:		No	calculations	are	necessary.	
ROUND:		There	are	no	values	to	round.	
DOUBLE‐CHECK:		This	shows	that	the	harmonic	oscillator	is	not	chaotic.	A	system	obeying	a	linear	
equation	of	motion	cannot	be	chaotic.	
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14.35. For	a	simple	pendulum,	the	period	is	given	by:	
2 2 2 .

/
l

T
gg l

  


   	The	value	of	g	can	change	

depending	on	the	forces	on	the	pendulum.	

a 		In	the	physics	lab,	 29.81 m/s ,g  	so	  22  1.00 m / 9.81 m/s 2.01 s.T   	

b 	 	 In	 the	 elevator	 accelerating	 upwards,	 2 2 29.81 m/s 2.10 m/s 11.9 m/s ,g g a      	 and	 the	

period	is	  2 22 1.0 m / 9.81 m/s 2.10 m/s 1.82 s.T    	

c 		In	the	elevator	accelerating	downwards,	 2 2 29.81 m/s 2.1 m/s 7.71 m/s ,g g a      	and	the	

period	is	  2 22 1.0 m / 9.81 m/s 2.1 m/s 2.26 s.T    	

d 		In	free	fall,	the	pendulum	experiences	no	tension	in	the	string,	thus	there	is	no	period,	 .T   	

14.36. The	period	of	the	pendulum	is	given	by:	 1
2 2 2 .

/
l

T
gg l

  


   	 If	the	measured	value	of	gravity	

varies	by	0.16	%,	then	the	new	period	is:	

2 1
1 12 2 .

1.0016 1.0016 1.0016
l l

T T
g g

 
 

    
 

	

The	period	therefore	varies	by:	  11 100 % 0.080 %.
1.0016

 
   

 
	

14.37. THINK:		The	two	balls	create	a	moment	of	inertia,	I,	which	oscillates	about	the	pivot	point,	P.	Using	
the	 sum	 of	 the	 torques	 acting	 on	 the	 pendulum,	 the	 period	 can	 be	 determined.	 The	 masses	 are	

1 1.00 kgm  	and	 2 2.00 kg.m  	The	two	masses	are	separated	by	30.0	cm.	The	pivot	point	is	10.0	cm	

away	 from	the	1.00	kg	mass,	 so	 1 10.0 cmr  	 and	 2 20.0 cm.r  A	 ‘slight	displacement’	 implies	small	
values	for	θ.	
SKETCH:			

	

RESEARCH:	 	The	 torque	 is	 given	by	 sin .r F rF   




	 The	 sum	of	 the	 torques	 is	
2

2 .i
i

d
I

dt

   	

The	period	is	given	by	 2 / .T   	

SIMPLIFY:	 	The	torque	equation	gives	 1 2

2

1 2 g2 g sin sin .d
I r F r F

dt

     	For	small	angles,	 sin .  	The	

equation	thus	becomes:	  1 1 22 2

2

.d
I rm r m g

dt

    	The	angular	frequency	is	then:	

 2 2 1 1 .
m r m r g

I



 	

The	moment	of	inertia	is	 2 2 2
1 1 2 2 .i i

i

I m r m r m r   	Using	the	above	equations,	the	period	is:	
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2 2

1 1 2 2

2 2 1 1 2 2 1 1

2 2 2 .m r m rI
T

m r m r g m r m r g

  



  

 
	

CALCULATE:		
   

     
2 2

2

1.00 kg 0.100 m 2.00 kg 0.200 m
2 1.09876 s

2.00 kg 0.200 m 1.00 kg 0.100 m 9.81 m/s
T 


 


	

ROUND:		Rounding	to	three	significant	figures,	the	period	of	oscillation	is	T	 	1.10	s.	

DOUBLE‐CHECK:		A	simple	pendulum	of	length	0.3	m	will	have	a	period	of	
0.3 m2 1.09876 s,

g
  	the	

same	as	that	calculated	above.					

14.38. THINK:	 	 Knowing	 the	 form	 of	 a	 linear	 oscillator	 allows	 for	 the	 theory	 of	 angular	 oscillators	 and	
torsional	pendulums	to	be	inferred.	
SKETCH:			

	

RESEARCH:		The	equation	of	motion	for	a	linear	oscillator	is	 .F ma kx   	The	frequency	of	such	a	

system	is	 / .k m  	The	torsional	pendulum	has	a	total	torque	of	
2

2 ,d
I

dt

    	where	I	 is	the	

moment	of	the	oscillator,	and	 	is	similar	to	the	spring	constant.	
SIMPLIFY:		The	angular	frequency	of	the	torsional	pendulum	is	then	

I

  	or	
1 .

2 2
f

I

 
 

  	

CALCULATE:		No	calculations	are	necessary.	
ROUND:		There	are	no	values	to	round.	
DOUBLE‐CHECK:		Note	that	the	units	of	 	are	N	m/rad	and	the	units	of	I	are	 2kg m / rad. 	Therefore,	

f 	has	units	
 2

2 2 2

kg m / s m/radN m/rad 1 1,
kg m /rad kg m / rad s s

   	as	expected.	

14.39. THINK:	 	The	usual	pendulum	equations	cannot	be	used	because	 the	moment	of	 inertia	of	 the	rod	
must	be	taken	into	account.	The	results	of	Solved	Problem	14.2	can	be	used	to	determine	the	period	
and	how	it	depends	on	x.	Then	the	maximum	and	minimum	values	can	be	determined.	
SKETCH:			

	
	

RESEARCH:		The	period	is	given	by:	 2 .I
T

xMg
 	Using	the	parallel	axis	theorem,	the	moment	of	

inertia	of	the	rod	is	given	by:	 2 21 .
12

I ML Mx  	
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SIMPLIFY:		
2 2 2/ 122 2 .

12
ML Mx L x

T
xMg xg g

 
   	To	determine	the	extrema,	set	the	derivative	to	

zero:	
2

1
22 2 2 2 22

2
2 2 22

1
121 10  0   0  1  .

12 12 12 12 12
12

L

x g gdT L x L L L L
x

dx xg g x g g x g g xL x

xg g




 
                     

    

Since	 x	 is	 a	 distance,	 the	 only	 solution	 is	 / 12.x L Extrema	 can	 also	 occur	 where	 the	 second	
derivative	 is	 not	 defined,	 which	 is	 when	 x	 	 0.	When	 x	 	 0,	 the	 tension	 T	 is	 not	 defined	 as	 x	
approaches	 zero	 from	 the	 right,	 the	 tension	 goes	 to	 infinity .	 	 To	 verify	 that	 / 12x L 	 is	 a	

minimum,	take	the	second	derivative	of	T	with	respect	to	x,	and	evaluate	it	at	 / 12x L .		
22

22 2

3/22 22
3

363
,

363 36 312

L

x g gd L

dx L xL x x g
xg gxg g

T



 
  
   
   
 

	

and	
/ 12

2

2 12 0.
3x L

d

dx L
Lg

g

T 



  	 By	 the	 second	 derivative	 test,	 / 12x L 	 is	 a	 minimum.	 As	 x	

increases,	T	increases	without	bound.	Therefore,	there	is	no	maximum.	
a  0x  	

b  / 12x L 	
CALCULATE:		This	step	is	not	necessary.	
ROUND:		Rounding	is	not	necessary.	
DOUBLE‐CHECK:	 	The	results	are	reasonable.	For	example,	at	x	 	0,	 there	is	no	restoring	force,	so	
there	will	be	no	oscillatory	motion.	The	period	should	therefore	diverge.	

14.40. THINK:	 	 Ensure	 the	 use	 of	 the	 correct	 expressions	 for	 the	 period	 of	 a	 physical	 pendulum	 and	 an	
ordinary	pendulum.	
SKETCH:			
a 	 b 	 c d 	

	

	

RESEARCH:	 	 The	 period	 of	 a	 bob	 pendulum	 is	 given	 by	 2 .L
T

g
 	 The	 period	 of	 a	 pendulum	 in	

general	is	given	by	 2 .I
T

MgR
 	The	moment	of	inertia	of	a	rod	about	one	end	is	 2 / 3.I ML 	

SIMPLIFY:			

a 		
2 / 3 22 2

/ 2 3
ML L

T
MgL g
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b 		
22 / 3 22 2

2 / 2 3
ML L

T
MgL g

   	

c 		 2 L
T

g
 	

d 		
/ 22 2

2
L L

T
g g

   	

CALCULATE:		This	step	is	not	necessary.	
ROUND:		This	step	is	not	necessary.	
DOUBLE‐CHECK:		The	initial	angle	and	the	masses	play	no	role.	However,	the	initial	angle	must	be	
known,	because	it	must	be	ensured	that	the	angle	is	small	enough	for	the	small	angle	approximation	
to	be	valid,	which	it	is	in	this	case.	

14.41. THINK:		To	determine	the	moment	of	inertia,	the	expressions	for	a	thin	rod	and	a	sphere,	along	with	
the	 parallel	 axis	 theorem	 are	 needed.	 Using	 this	 result,	 the	 period	 of	 the	 pendulum	 can	 be	
determined	by	direct	substitution	into	what	we	have	derived	in	Solved	Problem	14.2.	
SKETCH:			

	
RESEARCH:	 	The	moments	of	 inertia	are	given	by:	 21

rod 3I ML 	and	 22
sphere 5 .I Mr 	The	parallel	axis	

theorem	is	given	by	 2
center ,I I Mx  	where	x	is	the	distance	of	the	pivot	point	to	the	center	of	mass.	

The	period	is	given	by:	

t

2 ,I
T

M gR
 	

where	R	is	the	distance	from	the	pivot	point	to	the	center	of	gravity	and	 tM 	is	the	total	mass,	which	
is	2M	in	the	present	case.	
SIMPLIFY:			
a 		The	total	moment	of	inertia	is	  2

rod sphere .I I I ML   	Substituting	the	moments	of	inertia	gives:	

2
2 2 2 2 21 2 1 1 10 3 30 431 .

3 5 4 3 10 30 30
L

I ML M ML ML ML ML
                  

    
	

b 		The	distance	from	the	pivot	point	to	the	center	of	gravity	is	 3 / 4,R L 	so:	

 
 

2

t

4 4343 / 30 172 432   2 2 2 2 .
2 3 / 4 6 30 180 45

LI ML L L
T T

M gR Mg L g g g
          	

c 		
 

2
2 2

2

45434   
45 43 4

gTL
T L

g



 

   
 

	

CALCULATE:			
a 		Not	necessary.	
b 		Not	necessary.	

c 		 2.0 s,T  	so,	
  

 

22

2

45 9.81 m/s 2.0 s
1.0401915 m.

43 4
L


  	

ROUND:			
a 		Not	necessary.	
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b 		Not	necessary.	
c 		Since	the	desired	period	is	given	to	two	significant	figures,	L	 	1.0	m.	
DOUBLE‐CHECK:	 	 The	 results	 are	 reasonable,	 because	 they	 work	 out	 similar	 to	 the	 case	 of	 the	
pendulum	with	a	point	mass	at	the	end,	for	which	we	have	calculated		 2 / .T L g 	This	implies	that	

taking	care	of	the	proper	distribution	of	the	mass	has	a	noticeable	effect	relative	to	what	one	obtains	
for	a	point	mass	pendulum,	but	 it	 is	not	drastically	different.	 	 Since	 the	entire	exercise	 involving	
moments	 of	 inertia	 and	 center‐of‐mass	 coordinates	 only	 resulted	 in	 a	 correction	 factor	 of	

43/45 0.98 ,	you	may	think	that	it	was	not	worth	the	effort.	However,	if	a	clock	is	off	by	this	factor,	it	
is	slow	by	approximately	half	an	hour	per	day	and	therefore	pretty	much	useless	as	a	time‐keeping	
device.

	

	

14.42. THINK:		Use	the	expression	for	the	oscillation	frequency	of	a	physical	pendulum.	For	the	moment	of	
inertia,	use	the	parallel	axis	theorem.		
SKETCH:			

	

RESEARCH:		  2 2 2
out in in

1 ,
2

I m r r mr   r	 	d/2,	 in in1 1, 
2 2

mgr mgr
f

I I
 

 
   	

SIMPLIFY:		  
2 2 2

2 2 2 2out in in
out in out in

1 3 3
2 4 4 4 4 2 2 8

d d dm m m
I m d d d d

              
	

 
in in

2 22 2
out inout in

d / 2 4 d1 1
2 2 33 / 8

mg g
f

d dm d d 
 


	

CALCULATE:		
  

   

2
1

2 2

4 1.5 cm 980 cm/s1 0.994 s
2 12 cm 3 1.5 cm

f


 


	

ROUND:		Rounding	to	two	significant	figures,		 10.99 s .f  	
DOUBLE‐CHECK:		These	results	are	reasonable.	Note	that	the	mass	and	the	thickness	of	the	CD	are	
not	relevant	here.	

14.43. a 	 	 Substitute	 t	 	 0	 and	 evaluate	 the	 expression:	    0 2sin / 6 1.00 m.x   	 To	 get	 the	 velocity	

function,	take	the	derivative	of	the	position	function	   ( ) 2sin / 2 / 6x t t   :	

   
cos .

2 6
dx t

v t t
dt

      
 

	

Again,	substitute	 t	 	0:	    0 cos / 6 2.72 m/s.v    	Take	 the	derivative	of	 the	velocity	 to	get	 the	

acceleration:	

     2 2

2 sin .
2 2 6

dv t d x t
a t t

dt dt

        
 

	

Once	again,	substitute	t	 	0:	  
2

20 sin 2.47 m/s .
2 6

a
      

 
	

b 	  2 2 21( ) 2.5 cos
2 2 6

K t mv t
      

 
	

c 	 The	 kinetic	 energy	 will	 be	 a	 maximum	when	  2cos / 2 / 6 1t   	 or	 / 2 / 6 ,t    	 which	

gives	  5 / 3 s  1.67 s.t   	
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14.44. a 		Once	the	mass	has	been	displaced	to	the	right	and	at	the	moment	the	mass	is	released	there	will	
be	two	forces	acting	on	it.	The	forces	are	due	to	spring	1	and	spring	2.	They	both	point	towards	the	
left.	 The	 magnitude	 of	 the	 net	 force	 acting	 on	 the	 mass	 is	  net 1 2 1 2 eff .F k x k x k k x k x     	

Therefore,	the	effective	spring	constant	is	 eff 1 2 300. N/m.k k k   	

b 		 eff 1 21 1 1 300. N/m 0.872 Hz
2 2 2 2 10.0 kg

k k k
f

m m


   


     	

c 		The	total	energy	is:	     22
1 2

1 1 300. N/m 0.100 m 1.50 J.
2 2

E k k x    	The	maximum	velocity	is	

at:	
   2 2 1.50 J 2 1.50 J1 1.50 J  0.548 m/s.

2 10.0 kg
mv v

m
     	

14.45. THINK:		For	both	parts,	use	the	conservation	of	energy,	along	with	the	expressions	for	kinetic	and	
potential	energy.	The	mass	 is	m	 	2.00	kg,	 the	displacement	 is	 0 8.00 cmx  	 and	 the	 frequency	 is		
f	 	4.00	Hz.	
SKETCH:			

	

RESEARCH:			

a 		 2
0 tot

1Total energy constant ,
2

kx E   		 2 2 24k m mf   	

b 		 21 ,
2

K mv 		 21 ,
2

U kx 		 totK U E  	

SIMPLIFY:			
a 		The	energy	is	constant	throughout	the	oscillation:	

 22 2 2 2 2 2 2
tot 0 0 0 0

1 1 1 2 2 .
2 2 2

E kx m x m f x mf x      	

b 		 2 2
tot

1 1  
2 2

mv kx E  	

   
2 2

2 2 2 2 2 2 2 2 2 2
tot 0 0 0 0

42 1 2 1 1   2
2 2 2

mfk
v E kx kx kx x x x x v f x x

m m m m


                 

   
	

CALCULATE:			

a 	     2 22
tot 2 2.00 kg 4.00 Hz .0800 m 4.043 JE   	

b 	      2 22 4.00 Hz 8.00 cm 2.00 cm 194.7 cm/s 1.947 m/sv     	

ROUND:		Rounding	to	three	significant	figures,	 4.04 JE  ,	v	 	1.95	m/s	

DOUBLE‐CHECK:		These	results	are	reasonable.	

14.46. THINK:		The	period	can	be	determined	directly	from	the	given	values.	The	maximum	kinetic	energy	
is	 equal	 to	 the	maximum	potential	 energy,	which	 is	 also	equal	 to	 the	 total	 energy.	The	maximum	
speed	can	be	determined	from	the	maximum	kinetic	energy.	The	pendulum	has	a	length,	l	 	15	m,	
the	bob	has	a	mass	of	m	 	110	kg,	and	the	angle	has	an	amplitude	of	 3.5 .   	
SKETCH:			
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RESEARCH:			

a 		 2 l
T

g
 	

b 		 max max maxK U mgh  	and	  max 1 cos .h l   	

c 		 2
max max

1
2

K mv 	

SIMPLIFY:			
a 		It	is	not	necessary	to	simplify.	
b 		  max 1 cosK mgl   	

c 		 max
max

2K
v

m
 	

CALCULATE:			

a 		 2

15.0 m2 7.769 s
9.81 m/s

T   	

b 		    2
max 110. kg 9.81 m/s 15.0 m 1 cos3.50 30.19 JK     	

c 		
 

max

2 30.19 J
0.7409 m/s

110 kg
v   	

ROUND:		Rounding	to	two	significant	figures:	
a 		 7.8 sT  	
b 		 max 30. JK  	

c 		 max 0.74 m/sv  	
DOUBLE‐CHECK:		The	results	are	reasonable	for	such	a	large	pendulum.	Each	value	has	appropriate	
units.	

14.47. THINK:	 	 By	 considering	 the	 conservation	 of	 momentum,	 the	 initial	 velocity	 of	 the	 mass/spring	
system	can	be	determined.	The	amplitude	can	then	be	determined	by	considering	the	conservation	
of	energy.	The	period	can	then	be	determined,	which	will	yield	the	time	needed	to	reach	maximum	
compression.	The	given	values	are	 1 8.00 kg,m  	 2 5.00 kg,m  	k	 	70.	N/m	and	 0 17.0 m/s.v  	
	
SKETCH:			

	
RESEARCH:			
a 	 The	 conservation	 of	 momentum	 gives:	  2 0 1 2 .m v m m v  	 The	 conservation	 of	 energy	 gives:	

  2 2
1 2 max

1 1 .
2 2

m m v kx  	

b 		
1 ,
4

t T 		 1 22 2 m m
T

k

 



  	

SIMPLIFY:			
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a 		
  2

1 2
max ,

m m v
x

k


 		

 
2 2

2 0 2 0
max

1 2 1 2

  m v m v
v x

m m k m m
  

 
	

b 		 1 2 1 212   
2

m m m m
T t

k k
 

 
   	

CALCULATE:			

a 		
   

  

2 2

max

5.00 kg 17.0 m/s
2.818 m

70.0 N/m 8.00 kg 5.00 kg
x  


	

b 		
8.00 kg 5.00 kg1 0.6769 s

2 70.0 N/m
t 


  	

ROUND:		Rounding	to	three	significant	figures:	
a 		 max 2.82 mx  	
b 		t	 	0.677	s	
DOUBLE‐CHECK:		Dimensional	analysis	confirms	the	units	are	correct	for	the	calculated	quantities.		
The	results	are	reasonable	for	this	large	initial	speed.	

14.48. THINK:	 	 The	 maximum	 compression	 can	 be	 determined	 from	 the	 conservation	 of	 energy.	 The	
elapsed	 time	 is	 twice	 the	 time	 taken	 to	 reach	 the	 spring,	 plus	 half	 the	period	of	 the	mass/spring	
system.	The	given	values	are	m	 	0.460	kg,	D	 	0.250	m,	k	 	840	N/m	and	v	 	3.20	m/s.	
SKETCH:			

	
RESEARCH:			

a 		 2 2
max

1 1
2 2

mv kx 	

b 	 	 2 / ,T m k 	 0/v D t 	 and	 02 / 2,t t T  	 where	 t0	 is	 the	 time	 it	 takes	 to	 cover	 the	 initial	
distance	D	to	the	spring,	and	t	is	the	elapsed	time	to	return	to	the	starting	point.		
SIMPLIFY:			

a 		
2

max
mv m

x v
k k

  	

b 		 2 D m
t

v k
  	

CALCULATE:			

a 		   2
max

0.460 kg3.20 m/s 7.488 10  m
840 N/m

x    	

b 		
0.460 kg0.250 m2 0.2298 s

3.20 m/s 840 N/m
t     

 
	

ROUND:	Two	significant	figures:	
a 		The	maximum	distance	that	the	spring	is	compressed	is	 2

max 7.5 10  m.x   	
b 	The	total	time	taken	for	the	block	to	get	back	to	its	original	position	is	t	 	0.23	s.	
DOUBLE‐CHECK:		These	are	reasonable	results	for	the	given	parameters.	

14.49. THINK:		The	equilibrium	separation	will	occur	at	the	minimum	of	the	potential.	For	small	deviations	
from	equilibrium,	the	potential	can	be	expanded	to	second	order	about	the	minimum.	The	resulting	
potential	will	be	formally	equivalent	to	the	harmonic	potential.	
SKETCH:			
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RESEARCH:		The	minimum	is	at	 0 :r 	
 

0

0.
r r

dU r

dr


 
 

  
	The	Taylor	series	about	 0r r 	is:	

       
0 0

2
2

0
1

0 0 2

1 1 ...
1! 2!r r

dU d U
U r U r r r r r

dr dr

            
	

     
0 0

2
2

0 0 2

10  
2r r

dU d U
U r U r r r

dr dr

             
	

SIMPLIFY:			

a 		 12 6 13 7

12 6dU d A B A B

dr dr r r r r
      
 

	

0

0 :
r

dU

dr
    

	

1
66

0 013 7 6
0 0 0

12 6 12 12 20  6 0    
6

A B A A A
B r r

r r r B B
             
 

	

b 		
   

0

2

2 14 8 14 8
0 0 0 0

12 13 6 7 156 42

r

A Bd U A B
k

dr r r r r

 
     

 
	

         2 2 2 2
0 0 0 0 0 0

1 1 1 2 constant
2 2 2

U r U r r r k U r k r rr r kr r kr           	

0 constant .dU
F kr kr kr

dr
       	

This	is	Hooke’s	law	with	a	spring	constant,	k.	The	angular	frequency	is	given	by	 / .k m  	

 
14 7 7

7/36 3 36
014 7/3 4/3

0

1 2 72156 42 156 42 156 84 72
2 2 2 2
B A B B B

k A r B A B A A
r A B A A A

                                       
	

1/37

4

4 9 B
k

A

 
   

 
	

1/67

4

3 4k B

m Am


 
   

 
	

CALCULATE:		This	step	is	not	necessary.	
ROUND:		Rounding	is	not	necessary.	
DOUBLE‐CHECK:		These	oscillations	yield	the	vibration	spectra	of	the	molecule.	Most	systems	with	
an	 equilibrium	 configuration	 can	 exhibit	 simple	 harmonic	 motion	 for	 small	 perturbations	 from	
equilibrium.	

14.50. a 	 	b	 	10.0	kg/s,	 	   2 23.00 kg 140. N/m 420. kg / s 20.49 kg/s.mk    	Note	that	 2 ,b mk 	so	

this	is	small	damping.	The	position	is	given	by:	

     cos sin .t tx t Be t Ce t       	

The	amplitude	will	reach	1.00	%	of	its	initial	value	when	 0.0100te   	or	  ln 0.0100 .t  		
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Solving	for	t:	

       
2.00 3.00 kg1 2ln 0.0100 ln 0.0100 ln 0.0100 2.76 s.

10.0 kg/s
m

t
b

       	

b 		Solve	for	b,	given	that	t	 	1.00	s.	Use	the	equation	  ln 0.0100 :t  	

       
2.00 3.00 kg2ln 0.0100 ln 0.0100 ln 0.0100 27.6 kg/s.

2 1.00 s
bt m

b
m t

        	

Note	that	 2 .b mk 	

14.51. First,	 determine	 the	 damping	 region:	   2 2 0.3 kg 2.00 N/m 1.549 kg/s,mk   		

0.025 kg/s 2 .b mk  	This	is	the	weak	damping	region.	Therefore,	

     cos sin ,t t
x t Be t Ce t       		 0 ,B x 		and	 0 0 .

v x
C 







	

Here	
 

2 10.025 kg/s 4.167 10  s
2 2 0.3 kg
b

m
     	

In	the	present	case,	 0 5.0 cmx  	and	 0 0,v  	so	 0 .
x

C 





	The	exponential	envelope	of	the	amplitude	

of	the	oscillation	is	 2 2 .t
A e B C  	Substituting	the	expressions	for	B	and	C	into	this	equation:	

	

At	 f :t t 	 	

This	plot	shows	the	damped	oscillation,	its	 ‐ 	exponential	amplitude	envelopes,	and	the	horizontal	
line	of	2.5	cm	as	a	function	of	time	in	the	interval	from	0	to	20	cm.	The	point	at	which	the	exponential	
envelope	crosses	the	line	x	 	2.5	cm	is	the	time	we	just	derived.	

 

14.52. Determine	the	damping	region:		   2 2 0.404 kg 206.9 N/m 18.29 kg/s,mk   	 14.5 kg/s 2 .b mk  	

So,	this	is	the	small	damping	region.	The	angular	oscillation	frequency	is	therefore:	
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22 14.5 kg/s206.9 N/m 13.8 rad/s.
2 0.404 kg 2 0.404 kg

k b

m m


              
	

14.53. THINK:		From	the	critical	damping	condition,	determine	the	value	of	the	damping	constant,	b.	When	
b	 is	 60.7	%	of	 its	 full	 value,	 use	 the	 expression	 for	 the	 underdamped	 oscillator	 to	 determine	 the	
period.	Model	the	system	as	four	independent	oscillators,	each	supporting	a	quarter	of	the	weight	of	
the	car.	The	mass	of	the	car	is	 c 851 kgm  	and	the	value	of	the	spring	constant	is	k	 	4005	N/m.	
SKETCH:			

	

RESEARCH:		For	critical	damping,	 0 2 .b mk 	 	 0 00.607   0.607,b b b     	 	 c .
4

m
m  	The	period	

of	underdamped	motion	is	given	by	 2 / .T   	

2 2
0 ,     		 ,

2
b

m  		 0
k

m
  	

SIMPLIFY:		 0
0

2 ,
2 2
b mk k

m m m
       		 2 2 2 2

0 0 0 1          	

 22
0

2 2
11
m

T
k

 
 

 


	

CALCULATE:		
  2

851 kg/42 1.822 s
4005 N/m 1 0.607

T  


	

ROUND:		Rounding	to	three	significant	figures,	T	 	1.82	s	
DOUBLE‐CHECK:	 	This	is	a	reasonable	result	for	a	car’s	shock	absorbers.	The	value	has	seconds	as	
units,	which	are	appropriate	for	time.	

14.54. THINK:		From	the	change	in	length	after	the	mass	is	hung	on	the	spring,	the	spring	constant	can	be	
determined	and	hence	the	undamped	oscillation	frequency.	By	the	decrease	of	the	amplitude	after	
five	cycles,	the	damping	frequency	and	hence	the	period	of	oscillation	when	damping	is	included	can	
be	determined.	 0 11.2 cm,l  	l	 	20.7	cm,	m	 	100.0	g	and	 0 .x l l  		
	
	
	
SKETCH:			

	
	

RESEARCH:	 	 When	 the	 mass	 is	 hung,	 the	 stretching	 of	 the	 spring	 by	 x	 yields	 a	 balance	 of	
forces: g.kx m 	
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The	 undamped	 frequency	 is	 given	 by:	 0 .k

m
  	 The	 undamped	 period	 is	 given	 by:	

0
0

2 2 .m
T

k

 


  	 The	 damped	 frequency	 is	 given	 by	 2 2
0 ,     	 where	 / 2 .b m  	 The	

position	at	time,	t,	is	given	by:	        0 0 0sin sin .tx t A e t A t t          	The	amplitude	at	time,	t,	

is	given	by	   0 .tA t A e  	

SIMPLIFY:			

a 		Substitute	 /k mg x 	into	the	equation	for	 0T 	to	get:	 0 2 2 .
/

m x
T

mg x g
   	

b 		The	amplitude	at	t	 	0	is	   00 .A A 	The	amplitude	at	t	 	5T	is	   5
0 05 / 2.TA T A e A  	

5 51 ln2   2  5 ln2  
2 5

T Te e T
T

  
          	

2 2
0

2 2 ,T


 
  

 
 

		
     

2 2 2 2
02 2 2

02

ln2 ln2
25 4 10


 

 
  

 

           
	

Let	  ln2 / 10 :  		

   
2

2 2 2 2 2 2 2 2 2 2
0 0 0 02 2

  1     
1 1

    
            
 

        
 

	

2
2 2 2 2

0 0 0 22 2
0

2 2   
1

T 



     
  

 
          

2 2 2
2 2 2 2 2

0 0 0 02 2 2

1 11
1 1 1
      
  

    
            

	

   
2

2 2 2
0 0 0

0

1 2 2 1 1   1 1m
T T T T T

k

    


 
            

 
	

CALCULATE:			

a 		 0 2

0.207 m 0.112 m2 0.61831 s
9.81 m/s

T  
  	

b 		  
2

2 4
0 0

ln21 1 0.61831 1 1 1.5048 10  s.
10

T T T 



               

	This	is	too	small	to	be	

detected	by	the	student.	
ROUND:			
a 		Rounding	to	three	significant	figures,	 0 0.618 s.T  	
b 		Not	applicable.	
DOUBLE‐CHECK:	 	The	calculation	presented	is	essentially	exact.	Since	the	damping	is	so	small,	 the	
approximate	methods	outlined	in	the	text	could	have	been	used.	The	approximate	method	is:	

0

4
.

E

E





 		

This	would	have	yielded	very	similar	results.	

14.55. THINK:	 	 For	 parts	 a 	 and	 b ,	 the	 motion	 can	 be	 treated	 as	 undamped.	 For	 part	 c ,	 use	 the	
expressions	for	underdamped	harmonic	motion.	The	mass	of	the	jumper	is	m	 	80.0	kg,	the	initial	
amplitude	is	 0 10.0 m,A  	the	final	amplitude	is	 f 2.00 m,A  	the	initial	period	is	 0 5.00 sT  	and	the	
damping	is	b	 	7.50	kg/s.	
SKETCH:			
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RESEARCH:	
a 		 0 02 /T   	and	 0 / .k m  	

b 		 2 2
max 0

1 1
2 2

E mv kA  	

c 		 f
0 f

tA e A  	and	 / 2 .b m  	

SIMPLIFY:	

a 		
2

2 2
0 0 2

0

4    k
k m k m

m T

      	

b 		
2 2 2

0 0 0
max 2

0 0

4 2kA A A
v

m T T

 
   	

c 		 0 0f
f f f

0 f f

1 2ln   ln   ln
A AA m

t t t
A A b A






      	

CALCULATE:	

a 		  
 

2

2

480.0 kg 126.33 N/m
5.00 s

k


  	

b 		
 

max

2 10.0 m
4  m/s 12.566 m/s

5.00 s
v


   	

c 		
 

f

2 80.0 kg 10.0 mln 34.335 s
7.50 kg/s 2.00 m

t
   
 

	

ROUND:	Rounding	to	three	significant	figures:	
a 		k	 	126	N/m	
b 		 max 12.6 m/sv  	

c 		 f 34.3 st  	
DOUBLE‐CHECK:		In	each	part	the	calculated	value	has	appropriate	units.	

14.56. THINK:		This	is	simple	harmonic	motion.	For	the	damping	case,	the	time	taken	for	the	oscillator	to	
reach	half	its	initial	value	must	be	determined.	The	motion	is	underdamped.	m	 	50.0	g,	L	 	1.00	m,	
b	 	0.0100	kg/s,	 0 10.0   	 f 5.00   	 the	 initial	amplitude	 is	 0 0A L 	and	the	 final	amplitude	 is	

f f .A L 	
SKETCH:			



Bauer/Westfall:	University	Physics,	2E	

  694

	

RESEARCH:		 0
0

2 2 L
T

g

 


  	

For	small	damping,	    0 cos .tx t A e t     		    0 cos ,tL t L e t      		   00 ,  		
2
b

m  	

SIMPLIFY:		 0 2 ,L
T

g
 		 f f 0 0

f 0 f f f
f f

1 2 ln2    ln   ln2  t t m
e e t t t

b
  




 
  

  
         	

CALCULATE:		 0 2

1.00 m2 2.006 s,
9.81 m/s

T   		
 3

f

2 50 10  kg ln2
6.931 s

0.0100 kg/s
t


  	

ROUND:		Rounding	to	three	significant	figures, 0 2.01 sT  	and	 f 6.93 s.t  	
DOUBLE‐CHECK:		These	are	reasonable	results	with	appropriate	units	for	time.	Note	that	the	results	
are	valid	only	because	the	angles	are	small	enough	to	treat	the	motion	as	linear.	

14.57. THINK:	This	is	a	straightforward	exercise	in	inserting	numbers	into	Eq.	14.33,	which	states	that	the	
amplitude	of	the	damped	driven	oscillation	is	

 
d

22 2 2 2
0 d d4

F
A

m


   


 
	

RESEARCH:	The	problem	text	specifies	that	 0 2.40 rad/s,  	and	that	 0.140 rad/s.  		

SIMPLIFY:	No	simplification	necessary.	
CALCULATE:	Inserting	values	of	 a 	 1

d 02  ,	 b 	 d 0  ,	and	 c 	 d 02  	then	yields:	

a 	1.20	rad/s:	

        
22 2 2 2

2 m 0.1538 m
3 2.40 1.20 4 1.20 0.140

A  
 

	

b 	2.40	rad/s:	

        
22 2 2 2

2 m 0.9921 m
3 2.40 2.40 4 2.40 0.140

A  
 

	

c 	4.80	rad/s:	

        
22 2 2 2

2 m 0.03846 m
3 2.40 4.80 4 4.80 0.140

A  
 

	
ROUND:		Rounding	to	three	significant	figures,

	
a 	Aγ		 	0.154	m.	
b 	Aγ		 	0.992	m.		
c 	Aγ		 	0.0385	m.	
DOUBLE‐CHECK:	The	values	seem	reasonable.	The	largest	value	is	for	the	case	where	the	driving	
angular	speed	is	the	resonant	speed	of	the	system.	

14.58. THINK:		The	maximum	displacement	will	be	dictated	by	the	driving	force.	The	maximum	speed	can	
be	 determined	 by	 taking	 the	 derivative	 of	 position	with	 respect	 to	 time	 and	 using	 the	maximum	
value.	m	 	0.404	kg,	k	 	204.7	N/m,	 d 29.4 NF  	and	 1

d 17.1 s .  	
SKETCH:			
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RESEARCH:		The	driving	force	will	cause	motion	of	the	mass:	  d dcos .A t 	

a 		The	maximum	displacement	is	given	by:	
 

d
d 2 2

0 d

,F
A

m  



	where	 0 / .k m  	

b 		The	maximum	speed	is	given	by	 d d .A 	
SIMPLIFY:		Simplification	is	not	necessary.	
CALCULATE:	

a 		 1
0

204.7 N/m 22.51 s ,
0.404 kg

   		
    d 2 21 1

29.4 N 0.3396 m
0.404 kg 22.51 s 17.1 s

A
 

 


	

b 		   1
max d d 17.1 s 0.3396 m 5.807 m/sv A    	

ROUND:	Three	significant	figures:	
a 		The	maximum	displacement	is	 d 0.340 m.A  	

b 		The	maximum	speed	is	 max 5.81 m/s.v  	
DOUBLE‐CHECK:	 	 The	 units	 are	 appropriate,	 and	 the	 orders	 of	magnitude	 are	 reasonable	 for	 the	
given	system.	

14.59. THINK:		The	amplitude	is	approximately	a	maximum	when	the	driving	angular	speed	is	equal	to	the	
natural	 angular	 speed.	 	However,	 the	maximum	amplitude	occurs	 for	a	driving	 frequency	 slightly	
lower	than	the	natural	frequency.	
SKETCH:			

	

RESEARCH:		The	amplitude	is	given	by:	
 

d

22 2 2 2
0 d d

.
4

F
A

m


   


 
	

A 	is	maximized	when	    2 2
d 0 2 . 		

SIMPLIFY:		We	can	combine	these	equations	to	get	

    

 



  



     

     

        


   

  
  

d
,max 2

2 2 2 2 2 2
0 0 0

d d d
,max 2 2 2 4 2 22 2 2 4

0 00

2 4 2

.
4 4 22 4 8

F
A

m

F F F
A

m mm

	

	
	
The	amplitude	is	half	this	value	when	
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,max

d d

2 2 22 2 2 2
00 d d

2 2 22 2 2 2
00 d d

2 22 2 2 2 2 2
0 d d 0

2 22 2 2 2 2 2 2 2 2
0 0 d d d 0

2
d

22 2 2 2 2 2 2
0 0 0

2 2 2 4
0 0

1
2

44

1 1
44

4 4

2 4 16

Let 

2 4 16

4 2 16

A A

F F

mm

x

x x x

x x      2 2 4
0 16 0

	

Now	we	can	solve	a	quadratic	equation	with	

            2 2 4 2 2 4
0 0 01,  4 2 , and 16 16 .a b c 	

CALCULATE:		    1
0

578 N/m 19.007 s ,
1.60 kg

k

m
		

 
16.40 kg/s 2.000 s

2 2 1.60 kg
b

m
   	

The	driving	angular	speed	is	

        
2 21 1 1

d 19.007 s 2 2.000 s 18.795 s . 	

The	driving	frequency	is	then	


 


  

1
1d

d,max
18.795 s 2.9913 s .

2 2
f 	

The	maximum	amplitude	is	then	

      


      
   

 

d
,max 2 2 2 21 1 1

0

52.0 N 
2 2 1.60 kg 2.000 s 19.007 s 2.000

0.42 9
 s

9 m.F
A

m
	

Now	for	the	driving	angular	speed	at	half	amplitude	

   

       



 

 

   

  

    

     

  

   

2 22 2 1 1 2
0

4 2 2 4
0 0

4 2 2 41 1 1 1 4

4 2 4 2.000 s 2 19.007 s 706.5 s ,

16 16

19.007 s 16 19.007 s 2.000 s 16 2 107,638.000 s  s .

b

c 	

      



  

 

 

      
 



 

22 2 42

2 1

1 1
d

706.5 s 706.5 s 4 1  s4
2 2

107

222.30 s ,  484.20 s

14.910 s  or 22.006 s .

,638b b ac
x

a
x

x

	

	 It	is	necessary	that	    1
d 0 19.007 s , 	so	  1

d 14.910 s . 	
	 The	driving	frequency	for	half	of	the	maximum	amplitude	is		


 


  

1
d,half 1

d,half
14.910 s 2.3730 s .

2 2
f 	

ROUND:	We	round	to	three	significant	digits: 
   1 1

d,max ,max d,half2.99 s ,  0.430 m, 2.37 s .f A f 	



Chapter	14:	Oscillations	

 697

DOUBLE‐CHECK:		If	there	were	no	damping,	then	the	maximum	amplitude	would	occur	at	a	driving	

angular	speed	equal	to	the	natural	angular	speed,	 d 0 ,  	so	

 


  

1
10

d
19.007 s 3.03 s ,

2 2
f which	is	

close	 to	 our	 result	 including	 damping.	 	 The	 amplitude	 at	 this	 angular	 speed	 would	 be	 infinite	
without	any	damping.		It	makes	sense	that	we	could	decrease	the	amplitude	by	driving	the	system	at	
a	frequency	below	resonance	and	above	resonance.	

14.60. When	 the	 displacement	 of	 a	 mass	 on	 a	 spring	 is	 one	 half	 of	 the	 amplitude	 of	 its	 oscillation,	
determine	the	fraction	of	the	energy	that	is	kinetic	energy.		The	total	energy	of	a	spring	stretched	to	

the	full	amplitude	of	its	oscillation	is	 2
tot / 2.E K U kA   	When	 ,

2
A

x  	
2

21 1 1 .
2 2 4 2

A
U k kA

       
   

	

Therefore,	 tot
3 .
4

K E 	

14.61. The	 conservation	 of	 energy	 gives	 1 1 2 2 .K U K U   	 For	 a	 mass	 oscillating	 on	 a	 spring,	

max max 1 1,K U K U   	since	U	 	0,		when	 maxK K 	and	K	 	0,	when	 max .U U 	Therefore,	when	

max
1 ,
2

K K 	 2 2
max max

1 1 1 1 ,
2 2 2 2

U U kx kx
    
 

		

and	this	is	when	 max .
2

x
x  	

14.62. The	oscillator	has	initial	 t	 	0 	displacement	of	zero	and	initial	velocity	 0 0 / .v J m 	The	momentum	
imparted	 to	 the	 oscillator	 is	 equal	 to	 the	 impulse	 of	 the	 kick,	 the	 time	 integral	 of	 the	 force	 the	
spring	and	damping	forces	have	negligible	effect	during	the	infinitesimal	duration	of	the	kick .	The	
solution	of	the	weakly	damped	oscillator	with	these	initial	conditions	is:	

 
2

0 2
22

2

/
sin ,

4
4

bt

m
J m k b

x t e t
m mk b

m m

   
   
    

	for	 0,t  	with	   0x t  	for	 0.t  	

14.63. a 	 	The	 frequency	 is	  / 1.00 N/m / 1.00 kg 1.00 rad/s.k m    	 If	    0 sin ,x t C t   	 then	at	

time	 0 :t  	 0,x  	 00 m sinC  	 and	 0.  	  0 cosv C t    	 and	 at	 0 :t  	

  0 01.00 m/s 1.00 rad/s   1.00 m.C C   	 The	 equation	 of	 motion	 is	 thus	

     1.00 m sin 1.00 rad/s .x t t    	

b 	 	 The	 frequency	 is	  / 1.00 N/m /1.00 kg 1.00 rad/s.k m    	 Since	    0 sin ,x t C t   	 at	

time	t	 	0:	

00.500 m sinx C   																																																																					 1 		
and		

   0 0cos   1.00 m/s 1.00 rad/s cos .v C t C       																																							 2 	

Dividing	 1 	by	 2 	gives	 0.500 tan   26.6     	or	0.464	rad.	Using	 this	 in	equation	 1 	yields	

0 1.12 m.C  	Thus,	the	equation	of	motion	is	       1.12 m sin 1.00 rad/s 0.464 rad .x t t  	

14.64.    sin , cos ,x A t v A t    		    2 2 2 2 2 2 2
s

1 1 1 1    sin cos
2 2 2 2

U K kx mv kA t m A t       	

2k m 	so	the	previous	equation	becomes:	

   sin cos      rad/s.
4 4

t t t
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14.65. THINK:	We	model	the	hydrogen	atom	as	two	masses	connected	by	a	massless	spring.		Consider	two	
masses	 1m 	and	 2m 	located	at	positions	 1x 	and	 2x 	respectively.	These	two	masses	are	connected	by	

a	spring	with	spring	constant	 .k 	The	equilibrium	length	of	the	spring	is	 .L 	Hooke’s	Law	for	a	spring	
tells	us	that	F kx  	and	Newton’s	Second	Law	tells	us	that	 .F ma 	

	 RESEARCH:	The	equations	describing	the	motion	of	the	two	masses	are	

 
 

1 1 2 1

2 2 2 1 .
m a k x x L

m a k x x L

  

   
	

	 We	can	define	the	quantity	 2 1 ,x x x L   		which	is	the	amount	by	which	the	spring	is	stretched	or	

compressed	from	its	equilibrium	length.		We	can	then	write	

1 1

2 2 .
m a kx

m a kx


 

	

	 If	we	add	these	two	equations	we	get	

 1 1 2 2 1 1 2 2   0.m a m a kx kx m a m a       	

	 The	mass	of	the	system	is	 1 2 .M m m  	The	x‐coordinate	of	the	center	of	mass	of	the	system	is	

1 1 2 2
cm

1 2

.m x m x
x

m m





	

	 Because	the	center	of	mass	of	the	system	is	at	rest,	we	can	write	

cm 0.Ma  	

	 We	can	re‐express	our	first	two	equations	as	

1
1

2
2

.

kx
a

m

kx
a

m






	

	 SIMPLIFY:	We	can	subtract	the	second	equation	from	the	first	to	get	

1 2
1 2 1 2

1 1 .kx kx
a a kx

m m m m

 
     

 
	

	 Remembering	that	 2 1 ,x x x L   	we	can	take	the	time	derivative	to	get	

     
2 2 2 2

2 1 2 2 2 12 2 2 2 .d x d d d
x x L x x a a

dt dt dt dt
       	

	 Now	combining	the	last	two	equations	we	get	
2

1 2
2

1 2 1 2

1 1 .m md x
kx kx

dt m m m m

   
       

   
	

	 We	can	define	the	reduced	mass	  		of	our	system	as	

1 2

1 2

.m m

m m
 


	

	 So	we	then	have	
2

2 0.d x k
x

dt 
  	

	 	
	
	
	 We	recognize	this	differential	equation	as	having	the	same	form	as	simple	harmonic	motion	with	an	

angular	speed	of	
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.k


 	

	 Each	hydrogen	atom	has	 1 2 Hm m m  		so	the	reduced	mass	becomes	

	

H H H
H

H H

.
2

m m m

m m
  


	

	 The	angular	speed	then	becomes	

H H

2 .

2

k k
m m

  
 
 
 

	

	 Solving	for	the	spring	constant	gives	us	
2

H .
2

m
k


 	

	 The	period	is	related	to	the	angular	speed	as	
2 2   .T

T

 


   	

	 We	can	then	write	
2

H 2
H

2

2
2 .

2

m
mT

k
T




 
 
   	

	 CALCULATE:	Putting	in	our	numbers	we	get	

 
 

2 27

215

2 1.7 10  kg
524.3 N/m.

8.0 10  s
k

 




 


	

	 ROUND:	Rounding	to	two	significant	digits	gives	us	520	N/m.	
	 DOUBLE‐CHECK:	Our	answer	has	the	correct	units.		This	answer	is	half	what	we	would	get	if	we	

incorrectly	used	 H/ .k m  	

14.66. For	 critical	 damping:	   ,t tx t Be tCe     	 0 ,B x 	 0 0C v x   	 and	 / 2 .b m  	 At	 t	 	 0:	

0 6.41 cmx B  	and	 0 00  .v C x    	At	 0 0.0247 s:t t  	

   
     

0 0 0

1

0 0 0 0 0 0

72.4 s 0.0247 s1

1

6.41 cm 1 0.0247 s 72.4 s 2.99 cm.

t t tx t x e t x e x t e

e

    
  



  



   

    
	

14.67.  
2 2

2
22 22     0.500 m 8.77 m/s

2 1.50 s
L T L

T g L
g g T

 


                
     

	

	
	
	
	

14.68. THINK:	The	angle,	 14.2   	is	small	enough	to	consider	the	motion	harmonic.	The	weight	of	the	
child	is	irrelevant.	The	length	values	given	for	the	problem	are:	 1 2 39.65 m, 5.99 m, 0.47 m.L L L   	
SKETCH:	
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RESEARCH:	For	half	the	oscillation	period,	the	swing	is	a	pendulum	of	length,	 0 .l 	For	the	other	half,	

it	is	a	pendulum	of	length,	 1.l 	Thus,	

   0 1
0 1

1 1 1 12 2 .
2 2 2 2

l l
T T T

g g
    

		
The	length	values	are	given	by	

	
0 1 3 1 2 3.,  l L L l L L   

	SIMPLIFY:			

1 3 2 3 .
L L L L

T
g g


  

   
  		

CALCULATE:		

2 2

9.65 m 0.47 m 5.99 m 0.47 m 5.395 s.
9.81 m/s 9.81 m/s

T 
  

    
  	

ROUND:

		

To	three	significant	figures	the	period	is	T	 	5.40	s.	
DOUBLE‐CHECK:	The	value	is	between	T0	 	6.08	s	and	T1	 	4.71	s,	so	it	seems	reasonable.	

14.69. THINK:	 	The	difference	 in	 the	respective	periods	dictates	how	long	they	remain	out	of	phase.	The	
smaller	this	difference	 but	not	zero! ,	the	longer	it	takes	them	to	come	back	into	phase.	l	 	1.000	m,	

2
M 9.784 m/sg  	and	 2

O 9.819 m/s .g  	
SKETCH:			

	

RESEARCH:		 2 l
T

g
 	

SIMPLIFY:		 M O
M O

1 12T T T l
g g


 
     
 
 

	

They	 will	 be	 in	 phase	 after	 n	 oscillations	 of	 the	 Manila	 pendulum,	 such	 that	
   M O M O O1nT n T n T T T     and	so	 O / .n T T  	This	will	take	a	time	of	 Mt nT 	to	happen.	

CALCULATE:		 3

2 2

1 12 1.000 m 3.58327 10  s
9.784 m/s 9.819 m/s

T  
 

      
 

	


 



2

3

2 1.000 m/9.819 m/s 559.56,
3.58327 10  s

n     2559.56 2 1.000 m/ 9.784 m/s 1124 st 	
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ROUND:		n	 	559.6,		t	 	1124	s.	
DOUBLE‐CHECK:	 	 It	 takes	approximately	19	minutes	 for	 the	pendulums	 to	 come	back	 into	phase.		
This	result	is	reasonable.	

14.70. THINK:		Both	the	amplitude	and	the	initial	velocity	 zero 	of	each	pendulum	is	given.	The	phase	of	
both	 springs	 and	 their	 phase	 difference	 can	 be	 determined.	 k	 	 125	 N/m,	

 1 0 5.00 cm,x    2 0.300 s 4.00 cm,x   	  1 0 0,v  	  1 0.300 s 0v  	and	m	 	1.00	kg.	

SKETCH:			

	
	

RESEARCH:		    cos ,x t A t   	    sinv t A t     	

SIMPLIFY:		      1 1 1 1 1 1 1 1cos     0 5.00 cm cos     5.00 cm and ,x t A t x A A             	so:	

   1 5.00 cm cos .x t t   	

        2 2 2 2 2 2cos     0.300 s 4.00 cm cos 0.300 s   x t A t x A         

 2 2  4.00 cm, 0.300 s ,A      
		
so:		

    2 4.00 cm cos 0.300 s .x t t     	

      1 2 0.300 s 0.300 s 0.300 s    k k

m m
       

 
          

 
	

CALCULATE:			   125 N/m 1800.300 s 3.354 rad 3.354 rad 192.2
1.00 kg  rad




       
 

	

1 180 ,    	 2 1 180 192.2 12.20           	 1 N/m 11.18 s
1.00 kg

 
  	

    1
1 5.00 cm cos 11.18 s ,x t t  

	
  1

2 0.300 s 11.18 s 0.2125 rad,     
	

    1
2 4.00 cm cos 11.18 s 0.2125 radx t t  	

ROUND:	 Rounding	 to	 three	 significant	 figures,	 192   	     1
1 5.00 cm cos 11.2 s ,x t t   	 and	

    1
2 4.00 cm cos 11.2 s 0.213 rad .x t t  	

DOUBLE‐CHECK:		Note	that	the	solutions	fulfill	the	initial	velocity	conditions,	as	verified	below.	
   1 1 1 1sin ,  ;v t A t        	    1 10 sin 0;v A    	      2 2 2 2sin ,   0.3 sv t A t          	

        2 2 20.3 s sin 0.3 s 0.3 s sin 0v A A            	

14.71. THINK:		The	only	forces	acting	on	the	car	are	gravity	and	the	normal	force,	due	to	the	piston.	The	car	
will	 leave	 the	 piston	when	 the	 piston’s	 acceleration	 exceeds	 the	 acceleration	 due	 to	 gravity.	 The	
amplitude	is	A	 	0.0500	m.	
	
SKETCH:			
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RESEARCH:		   cos ,x t A t 	    sin ,v t A t   	    2 cosa t A t   	

SIMPLIFY:		 2
net .a A g  	The	car	leaves	the	piston	when	 net 0 :a  		

2
net max max0   .g

a A g
A

      	

CALCULATE:		
2

max
9.81 m/s 14.007 rad/s,

0.05 m
   	

14.007 2.23 Hz
2 2

f

 

   	

ROUND:		f	 	2.23	Hz	
DOUBLE‐CHECK:	This	result	is	reasonable.	

14.72. THINK:		The	period	of	the	pendulum	depends	only	on	its	length	and	the	acceleration	due	to	gravity.	
Knowing	the	period	on	planet	X	and	on	Earth	is	enough	to	determine	the	acceleration	of	gravity	on	
planet	X.	 If	 the	acceleration	due	to	gravity	and	the	mass	of	planet	X	are	known,	the	radius	can	be	
determined.	 ET 0.24 s 	and	 XT 0.48 s. 	
SKETCH:			

	
	

RESEARCH:		 E
E

T 2 ,L

g
 	 X

X

T 2 ,L

g
 	 E

E 2
E

,M
g G

R
 	 X E

X 2 2
X X

g M M
G G

R R
  	

SIMPLIFY:			

a 		
2

E X E
X E 2

X E X

T T  
T T

g
g g

g
   	

b 		

E
2 2

E E X E
X E2

EX E X
2

X

  

M
G

g R R g
R R

Mg R gG
R

    	

CALCULATE:			

a 		  
2

2 2
X

0.24 s9.81 m/s 2.4525 m/s
0.48 s

g
   
 

	

b 		
2

X E E2

9.81 m/s 2.00
2.4525 m/s

R R R  	

The	radius	of	planet	X	is	twice	the	radius	of	Earth.	
ROUND:			
a 		 2

X 2.5 m/sg  	

b 		 X E2.0R R 	
DOUBLE‐CHECK:	 	 The	 period	 on	 planet	 X	 is	 longer,	 so	 it	 is	 expected	 that	 the	 gravitational	
acceleration	is	less	than	on	Earth.	Since	the	masses	of	the	two	planets	are	the	same,	it	 is	expected	
that	planet	X	is	less	dense	or	has	a	larger	radius.	

14.73. THINK:		A	pendulum	has	a	period	of	2.00	s	and	the	mass	of	the	bob	is	0.250	kg.	A	weight	slowly	falls	
to	provide	the	energy	to	overcome	the	frictional	damping	of	the	pendulum.	The	mass	of	the	weight	
is	1.00	kg	and	it	moves	down	0.250	m	every	day.	The	Q	factor	of	the	pendulum	must	be	determined.	
SKETCH:			
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RESEARCH:	 	The	Q	factor	 is	defined	by	 Q 2 / ,E E  	where	E	is	the	energy	of	the	pendulum	and	
E 	is	the	energy	loss.	The	energy	of	the	pendulum	is	determined	using	the	maximum	height,	h,	by	

 1 cos .E mgh mgL    	From	the	period	of	the	pendulum,	it	is	found	that:	

2 24 L
T

g
 	or	

2

2 .
4
gT

L


 	

SIMPLIFY:		Thus,	the	energy	is	given	by:	    
2 2 2

2 21 cos 1 cos .
4 4
gT mg T

E mg  
 

 
    

 
	The	energy	loss	

in	 one	 period	 of	 oscillation	 is:	
   

.
24 3600 s / 2.00 s

d
E Mgx Mg   	 Thus,	 the	 Q	 factor	 is:	

   
2 2 2

2

43200Q 2 1 cos 43200 1 cos .
4 g 2

mg T gTm

M d M d
  

 
         

  
	

CALCULATE:		
  

   
229.81 m/s 2.00 s0.250 kgQ 43200 1 cos10.0 4098.78

1.00 kg 2 0.250 m
 

    
 

	

ROUND:		Keeping	three	significant	figures,	Q	 34.10 10 .	

DOUBLE‐CHECK:		The	Q	factor	is	a	dimensionless	quantity.		
 
   

   
   

2 2m/s skg kg m s
  .

kg m kg m s

       
	
All	the	

units	cancel.		The	result	is	reasonable.	

14.74. THINK:		The	restoring	forces	in	this	problem	are	the	buoyant	force	and	the	gravitational	force.	
SKETCH:			

	
	

RESEARCH:		The	buoyant	force	is	given	by	 B w .F gV 	Note	that	V	is	the	volume	of	water	displaced	
by	 the	 can,	 i.e.	 the	 fractional	 volume	 of	 the	 can	 that	 is	 below	 the	 water.	 Thus,	 B w 0.F gAx 	 In	

equilibrium,	the	buoyant	force	must	be	equal	to	the	gravitational	force;	 g w 0 .F mg gAx  	If	the	can	

is	 lifted	 by	 a	 distance,	 ,x 	 the	 restoring	 force	 is	

 B w 0 w 0 w .F mg F mg gA x x mg gAx gA x               	

SIMPLIFY:	 	Since	 w 0g ,m gAx 	 the	restoring	 force	 is	 w .F gA x k x      	Thus,	 w .k gA 	Using	

/ ,k m  	the	angular	frequency	is	

w gA

m


  	and	

2

.
4
d

A
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Therefore,	the	equation	for	the	displacement	is	  cos ,x B t 	where	B	is	the	initial	displacement.		

CALCULATE:		
    23 21000 kg/m 9.81 m/s 0.100 m / 4

9.81 rad/s.
0.8000 kg


   	

Therefore,	      1.00 cm cos 9.81 rad/s .x t t The	period	of	oscillation	is:	
2 2 0.641 s.

9.81 rad/s
T

 


   	

ROUND:		Keeping	two	significant	figures,	T	 	0.64	s.	
DOUBLE‐CHECK:	 	This	result	 is	consistent	with	everyday	observations	of	small	objects	bobbing	 in	
the	water.	

14.75. THINK:	 	 The	 restoring	 constant,	 k,	 must	 be	 determined	 in	 order	 to	 determine	 the	 period	 of	
oscillation.	
SKETCH:			

	
	

RESEARCH:		The	force	due	to	gravity	at	a	distance,	r,	from	the	center	of	the	Earth	is:	
in

2 ,GmM
F

r
 	

where	 inM 	is	the	mass	inside	the	spherical	volume	with	radius,	r.	So,	

3E
E2

4 4 .
3 3

Gm
F r Gm r

r


         

   
	

SIMPLIFY:		Since	  3
E E / 4 / 3EM R  	and	F	 	kr,	the	restoring	constant	is:	

3 3

34 ,
3 4

E E

E E

M mMGm
k G

R R




     
  

	thus	

3

EE
3

2 2 .E

E

Rm
T

GMGmM

R

  
 
 
 

	

CALCULATE:		
 

 

36

11 2 2 24

6.37 10  m
2 5057 s

6.67 10  Nm / kg 5.98 10  kg
T 




 

 
	

ROUND:		Rounding	the	result	to	three	significant	figures	gives	T	 	5060	s.	
DOUBLE‐CHECK:	 	The	period	T	is	proportional	to	the	ratio	of	the	radius	to	the	acceleration	due	to	

gravity.		That	is,	 / g.T R 		Since	 E M

E M

,
g g
R R

 	the	period	through	the	Earth	is	expected	to	be	less	than	

the	period	through	the	Moon.	
	

14.76. THINK:		The	period	of	oscillation	of	an	object	is	related	to	the	spring	constant,	k.	
SKETCH:			
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RESEARCH:		From	Kepler’s	third	law:	
2

2 34 ,T R
GM


 	

where	R	is	the	radius	of	revolution	and	M	is	the	mass	of	an	attracting	body,	which	in	this	case	is	a	
star.	 The	 effective	 “spring	 constant”	 can	 be	 determined	 using	 an	 expression	 for	 a	 period	 of	
oscillation:	

2 m
T

k
 	or	 2 24 .m

T
k

 	

SIMPLIFY:			

a 		 2 2
2 32

3

4 4
4

m m GMm
k

T R
R

GM

 


  
 
 
 

	

b 		The	angular	frequency	of	oscillation	is:		

32
3

2 2 .
4

GM

T R
R

GM

 


   	

The	amplitude	of	the	oscillation	is	R.	Therefore,	the	displacement	of	the	observed	planet	is:	

    3sin sin .GM
x t R t R t

R


 
    

 
	

Taking	the	first	derivative	of	this	equation	yields	the	velocity:	

  3 3 3cos cos .dx GM GM GM GM
v t R t t

dt R R R R

   
        

   
	

The	speed	of	the	planet	in	orbit	is	equal	to	the	maximum	speed	in	the	oscillatory	motion.	Therefore,		

max .GM
v v

R
  	

CALCULATE:		Not	necessary.	
ROUND:		Not	necessary.	
DOUBLE‐CHECK:		Using	a	centripetal	acceleration	equal	to	an	acceleration	of	gravity,	it	is	obtained:	

2

2 .v GM

R R
 	

This	simplifies	to	 ,GM
v

R
 	which	is	equivalent	to	the	above.	

	
	
	
	
	
	
	

14.77. THINK:		A	restoring	force	of	an	oscillator	is	related	to	its	potential	energy.	
SKETCH:	
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RESEARCH:		The	restoring	force	at	a	position,	x,	is	given	by	     / .F x dU x dx  	Thus,	the	potential	is	

   
0

.
x

x
U x F x dx  	The	velocity	of	a	mass	m	at	the	position	x	is	determined	using	the	conservation	

of	energy.	The	energy	at	x	 is	equal	 to	 the	energy	at	x	 	A,	 so,	 f f i i .K U K U   	Using	 i 0,K  	 the	

equation	becomes	      2 / 2 0 .mv U x U A   	

SIMPLIFY:		
    2 2

U A U x
v

m


 	or	          

1/22 2 .dx
v U A U x dt U A U x dx

dt m m


        

	

Integrating	both	sides	with	intervals	  ,x A A  	and	  0, / 2t T 	yields:	

    
1/2

/2

0

2 .
T A

A
dt U A U x dx

m





      	

Thus,	the	period	of	oscillation	is:		

    
1/222

A

A
T U A U x dx

m





     																																																									 1 .	

a 	 Substituting	   3F x cx  	 into	    
0

x

x
U x F x dx  	 gives:	  

0

3 4 4
0 .

4 4
x

x

c c
U x cx dx x x   	 For	

simplicity,	 it	 is	 assumed	 that	 0 0.x  	 The	 potential	 is	 therefore	 given	 by	   4 / 4.U x cx 	 Thus,	 the	

expression	for	the	period	is:	

 
1/2

4 42 .
2

A

A

c
T A x dx

m





     	

b 	 Changing	 the	 variable,	 x,	 with	 x	 	 Ay	 yields:	  
1/2

1 4 4

1
2 1 .

2
c

T A y Ady
m





     	 Simplifying	 the	

previous	expression	gives:	  1 1/24

1

2 12 1 ,m B
T y dy

c A A




   	where	B	is	a	constant.	 	Therefore,	the	

period	is	inversely	proportional	to	A.	

c 		Substituting	  U x x



 	into	equation	 1 	yields:	

1/2
22 .

A

A
T A x dx

m

  
 





     
  

 	

Similarly	as	above,	changing	the	variable,	x,	with	x	 	Ay	yields:	

 
1/2

1 1/2

1

22 1 .T A y Ady
m

 







     	

Thus,	  
1 11 1/22 2

1
2 1 .

2
m

T A y dy BA
 




       
   


   	The	period	is	proportional	to	

1
2 .A
  

  	

CALCULATE:		Not	necessary.	
ROUND:		Not	necessary.	
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DOUBLE‐CHECK:		If	 2,  	T	is	constant	and	independent	of	A.	If	. 4,  .	then	T	 	B/A,	which	is	the	

same	as	the	result	in	part	 b 	.	
	

Multi‐Version	Exercises	

14.78. THINK:	 	This	problem	 involves	 a	 block	 and	 spring	 assembly,	where	 the	block	 is	 sliding	back	 and	
forth	on	a	 frictionless	surface.	The	block	 in	 this	problem	undergoes	simple	harmonic	motion.	The	
mass	of	the	block,	spring	constant,	and	displacement	are	given,	so	it	should	be	possible	to	find	the	
displacement	as	a	function	of	time,	using	the	equations	for	the	motion	of	a	mass	on	a	spring	with	no	
damping.			

	 SKETCH:	 Show	 the	displacement,	 velocity,	 and	 the	 force	 on	 the	block	due	 to	 the	 spring.	 Consider	
only	 the	 motion	 of	 the	 block	 in	 the	 x‐direction,	 since	 there	 is	 no	 net	 force	 in	 the		
y‐direction,	and	no	friction	force.	Take	the	start	time	t	 	0	to	be	the	moment	the	block	is	released,	
and	the	equilibrium	position	of	the	spring	to	be	the	origin	where	x	 	0.	

	

	 RESEARCH:		The	equation	of	motion	for	a	mass	on	a	spring	with	no	damping	is	   0 0sin( )x t A t   ,	

where	A	is	the	amplitude	of	the	oscillation,	ω0	is	the	angular	speed,	and	θ0	is		the	phase	angle.	The	
angular	 speed	 can	 be	 found	 from	 the	 mass	 of	 the	 block	 and	 the	 spring	 constant	 using	 the	

equation 0
k

m
  ,	 where	 k	 is	 the	 spring	 constant	 and	 m	 is	 the	 mass.	 The	 amplitude	 of	 the	

oscillation	is	equal	to	the	maximum	stretch	of	the	spring,	which	is	the	initial	position	of	the	block.		

	 SIMPLIFY:	 The	 location	 of	 the	 block	 at	 time	 t	 	 0	 is	 A	 	 12.09	 cm,	 so	  1
0 sin 1 rad

2
   .	

Substituting	 for	 the	 angular	 speed,	 the	 equation	 for	 the	 motion	 of	 the	 block	

becomes   0sin k
x t A t

m


 
   

 
.		

	 CALCULATE:		The	amplitude	of	the	oscillation	is	A	 	12.09	cm	 	0.1209	m,	the	block	has	mass	1.605	

kg,	and	the	spring	constant	is	14.55	N/m.	The	phase	angle	is	 0 rad
2
  .	The	location	of	the	block	at	

time	t	 	2.834 10–1	s	is:	
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 1 1
0

1

2

2.834 10  s sin 2.834 10

14.55 N/m0.1209 m sin 2.834 10 s
1.605 kg 2

7.949320781 10  m
7.949320781 cm

k
x A

m




 





 
       

 
 

      
 

 


	

	 ROUND:	All	of	the	numbers	in	this	calculation	had	four	significant	figures,	so	the	final	answer	will	
also	have	four	figures.	After	2.834 10–1	s,	the	block	is	7.949	cm	from	the	equilibrium	position,	in	the	
same	direction	that	the	mass	had	been	pulled	at	the	start	of	the	experiment.		

	 DOUBLE‐CHECK:	The	period	of	this	motion	is	
0

2 2.087sec.


 Time	t	 	2.834 10–1	s	is	 less	than	one	

fourth	of	the	total	period,	so	it	is	expected	that	the	mass	is	between	the	fully	stretched	position	and	
the	equilibrium	position.	In	fact,	since	the	time	is	closer	to	one	eighth	of	the	period,	 it	 is	expected	
that	the	block	will	be	less	than	½	way	from	the	fully	stretched	position	to	the	equilibrium	position,	
somewhere	close	to	 but	more	than 	6	cm	from	the	equilibrium	position.	These	estimates	confirm	
that	the	calculated	answer	is	reasonable.		

14.79. THINK:	 The	 system	 is	 undergoing	 simple	 harmonic	 motion.	 We	 are	 given	 1.833 kg,m  	

14.97 N/m,k  	and	 13.37 cm.d  	We	are	asked	for	the	time	 t 	so	that	   4.990 cm.x t  		

RESEARCH:	 The	 general	 equation	 for	 simple	 harmonic	 motion	 is	    0 0sin ,x t A t   	 with	

0 .k

m
  	

SIMPLIFY:	As	in	14.78	we	arrive	at	an	equation	for	position:   sin cos .
2

k k
x t d t d t

m m

   
        

   
		

Solving	for	 t 	yields	 1cos .m x
t

k d
    
 

		

	

CALCULATE:	 1 11.833 kg 4.990 cmcos 4.1582 10  s.
14.97 N/m 13.37 cm

t      
 

	

ROUND:	To	four	significant	figures:	 14.158 10  s.t   	
DOUBLE‐CHECK:	The	units	 of	 seconds	 are	 correct	 recall	 that	N/m	 	kg/s2 	 and	 the	value	 seems	
reasonable.	It	is	a	little	less	than	half	a	second.	

14.80. THINK:	 The	 system	 is	 undergoing	 simple	 harmonic	 motion.	 We	 are	 given	

 11.061 kg, 15.39 N/m, and 3.900 10  s 1.250 cm.m k x t      	We	are	asked	for	 the	distance	 d 	 that	

the	block	was	initially	displaced	from	equilibrium.	
RESEARCH:	 The	 general	 equation	 for	 simple	 harmonic	 motion	 is	    0 0sin ,x t A t   	 with	

0 .k

m
  	

SIMPLIFY:	 As	 in	 14.78	we	 arrive	 at	 an	 equation	 for	 position:   sin cos .
2

k k
x t d t d t

m m

   
        

   
	

Solving	for	d 	yields	
  

.
cos

x
d

k m t
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CALCULATE:	
  

1.250 cm 14.645 cm.
cos 15.39 N/m 1.061 kg 0.3900 s

d   	

ROUND:	To	four	significant	figures:	 14.65 cm.d  	
DOUBLE‐CHECK:	The	units	of	d	are	correct	and	the	value	of	the	displacement	seems	reasonable.	

14.81. THINK:		This	problem	involves	the	motion	of	a	pendulum,	but	the	motion	is	restricted.	For	half	of	its	
motion,	 the	pendulum	will	have	a	period	corresponding	to	the	whole	 length	of	 the	string.	For	the	
other	half	of	 its	motion,	 it	will	have	a	period	 corresponding	 to	 the	 length	of	 the	 string	minus	 the	
distance	of	the	peg	from	the	ceiling.		

	 SKETCH:	The	sketch	shows	the	motion	of	the	pendulum:	

	

	 RESEARCH:	 	 The	 period	 of	 a	 pendulum	 hanging	 from	 a	 string	 of	 length	 l	 is	 2l

l
T

g
 .	 The	

pendulum	swings	 for	half	of	 the	period	 corresponding	 the	 full	 length	of	 the	 string	 l1,	with	a	half‐

period	of	 1
1

1 1 2
2 2

l
T

g
 .	Similarly,	it	swings	for	half	of	the	period	corresponding	to	the	length	of	the	

string	 minus	 the	 distance	 of	 the	 peg	 from	 the	 ceiling,	 2
2

1 1 2
2 2

l
T

g
 .	 The	 total	 period	 of	 the	

pendulum	is	the	sum	of	the	swing	corresponding	to	length	l1	and	the	swing	corresponding	to	length	

l2,	for	a	total	period	of	 1 2
1 1
2 2

T T T  .		

	 SIMPLIFY:	 The	 goal	 is	 to	 find	 the	 total	 period.	 Substitute	 the	 expressions	 for	 the	 periods	

corresponding	 to	 length	 l1	 and	 l2	 to	 find	 the	 total	 period	 1 21 12 2
2 2

l l
T

g g
   .	 This	 can	 be	

simplified	 to	
 1 2l l

T
g

 
 ,	where	 l1	 is	 the	 full	 length	 of	 the	 string,	 and	 l2	 is	 the	 length	 of	 the	

string	minus	the	distance	from	the	peg	to	the	ceiling.		
	 CALCULATE:	 	 The	 question	 states	 that	 the	 length	 of	 the	 string	 is	 l1	 	 71.57	 cm	 	 0.7157	m.	 The	

distance	from	the	peg	to	the	ceiling	is	40.95	cm,	so	the	length	corresponding	to	the	second	period	is	
l2	 	71.57	cm	 	40.95	cm	 	30.62	cm	 	0.3062	m.	The	gravitational	acceleration	near	the	surface	of	
the	Earth	is	9.81	m/s2.	The	total	period	is	then		

 

 

1 2

2

0.7157 m 0.3062 m

9.81 m/s
1.403588643 s.

l l
T

g













	



Bauer/Westfall:	University	Physics,	2E	

  710

	 ROUND:	The	 length	of	 the	 string,	 the	distance	 from	the	peg	 to	 the	 ceiling,	 and	 their	difference	all	
have	four	significant	figures,	so	the	final	answer	should	have	four	significant	figures.	The	pendulum	
has	a	period	of	1.404	s.		

	 DOUBLE‐CHECK:	Imagine	that	there	were	two	pendulums.	A	pendulum	on	a	string	of	length	0.7157	
m	has	a	period	of	1.697	seconds,	while	a	pendulum	on	a	string	of	length	0.3062	m	has	a	period	of	
1.110	seconds.	The	average	of	these	two	periods	is	1.404	s.	A	pendulum	swinging	for	half	a	cycle	on	
a	string	of	one	length	and	half	a	cycle	on	a	string	of	a	second	length	will	have	a	period	equal	to	the	
average	 of	 the	 periods	 corresponding	 to	 the	 two	 lengths	 it	will	 NOT	 have	 the	 same	 period	 as	 a	
string	of	the	average	of	the	two	lengths .	

14.82.  1 2T
g


   	

 

 

1 1

1 1

1 1

22 2

1 1

1.404 s 9.81 m/s
0.7239 m 0.7239 m 0.4226 m 42.26 cm

T h
g

T g
h

T g
h

T g
h







 

  

  

  

  
               

 

 

 

 

	

14.83. THINK:	 	 The	 speed	 of	 the	 object	 attached	 to	 the	 spring	 depends	 only	 on	 the	 distance	 from	 the	
equilibrium	 position.	 Since	 it	 does	 not	 matter	 if	 the	 object	 is	 above	 the	 equilibrium,	 below	 the	
equilibrium,	moving	up,	or	moving	down,	 it	 is	easiest	 to	solve	this	problem	using	conservation	of	
energy.		

	 SKETCH:	The	object	is	shown	at	four	times:	when	the	spring	is	stretched	down	before	being	released	
xmin ,	 1.849	 cm	 below	 equilibrium	 x0 ,	 at	 equilibrium	 x	 	 0 ,	 and	 at	maximum	 height	 above	
equilibrium	 xmax .	The	spring	and	gravitational	forces	are	shown.	The	velocity	of	the	object	on	the	
way	up	and	its	velocity	on	the	way	down	are	both	shown.		
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	 RESEARCH:		The	potential	energy	stored	in	a	spring	is	 2
S

1
2

U kx ,	and	the	kinetic	energy	of	the	mass	

is	 21
2

K mv .	 The	 total	 mechanical	 energy	 of	 the	 mass	 on	 the	 spring	 is	 21
2

E kA .	 The	 total	

mechanical	 energy	 should	 also	 equal	 the	 sum	 of	 the	 kinetic	 energy	 and	 the	 potential	 energy		

SE U K  .	The	spring	constant	is	given	in	Newtons	per	meter	and	the	displacements	are	given	in	

centimeters,	so	the	conversion	100	cm	 	1	m	will	be	needed.		
	 SIMPLIFY:	Since	 there	are	 two	expressions	 for	 the	 total	mechanical	energy,	 set	 them	equal	 to	one	

another	 to	 get	 2
S

1 .
2

kA U K  	 Then,	 substitute	 in	 the	 expressions	 for	 the	 potential	 energy	 and	

kinetic	energy	to	get	 2 2 21 1 1
2 2 2

kA kx mv  .	Finally,	solve	for	the	speed	of	the	mass:	

2 2 2

2 2 2

2 2
2

2 2

1 1 1
2 2 2

kA kx mv

mv kA kx

kA kx
v

m

kA kx
v

m

 

 







	

	 CALCULATE:	 	 Since	 the	 spring	 was	 stretched	 and	 the	 object	 released	 from	 rest,	 the	 maximum	
distance	 from	 the	 equilibrium	 point	 the	 amplitude 	 is	 equal	 to	 the	 distance	 at	 which	 it	 was	
released.	So	the	amplitude	A	 	18.51	cm	 	0.1851	m.	The	spring	constant	k	is	23.31	N/m,	and	the	
object	 has	 a	 mass	 of	 1.375	 kg.	 The	 goal	 is	 to	 find	 the	 velocity	 when	 the	 mass	 is	 a	 distance	 of		
1.849	cm	 	0.01849	meters	from	the	equilibrium	point,	so	x	 	 0.01849	m.	Using	these	values,		

   

2 2

2 223.31 N/m 0.1851 m 23.31 N/m 0.01849 m
1.375 kg

0.7583130694 m/s

kA kx
v

m




   




	

	 ROUND:	 The	 values	 used	 in	 this	 calculation	 all	 have	 four	 significant	 figures,	 so	 the	 final	 answer	
should	also	have	four	figures.	When	it	is	1.849	cm	from	the	equilibrium	point,	the	mass	has	a	speed	
of	0.7583	m/s.		

	 DOUBLE‐CHECK:	The	speed	of	the	mass	is	0	m/s	when	it	is	at	the	bottom	or	top	of	its	oscillations.	
The	maximum	speed	of	the	mass	occurs	when	the	mass	passes	the	equilibrium	point	 x	 	0 .	At	this	

point,	the	mass	achieves	a	speed	of	
23.31 N/m0.1851 m 0.7621 m/s.
1.375 kg

 This	is	slightly	faster	than	the	

speed	of	the	mass	when	it	is	1.849	cm	from	the	equilibrium	point,	but	not	by	much,	confirming	that	
the	answer	of	0.7583	m/s	is	reasonable.		

14.84.  2 2 k
v A x

m
  	

 

        

2 2 2

2 22 2
22

23.51 N/m0.1979 m 0.07417 m 1.491 kg
0.7286 m/s

k
v A x

m
k

m A x
v
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14.85.  2 2 k
v A x

m
  	

 

    

2 2 2

2
2 2

22
22 1.103 kg 0.4585 m/s

0.04985 m
23.73 N/m

0.1107 m

k
v A x

m
mv

A x
k

mv
A x

k
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Chapter 15:  Waves 
 

Concept Checks 

15.1. a  15.2. c  15.3. e  15.4. a  15.5. e  15.6.  b, c, a 
 
Multiple-Choice Questions 

15.1. a  15.2. d  15.3.  c  15.4.  e  15.5. d  15.6. a  15.7. a  15.8. a  15.9. c  15.10. c 
 
Conceptual Questions 

15.11. (a) A transverse wave has a displacement perpendicular to the line of the Slinky. A simple motion up or 
down would produce this type of wave. 
(b) A longitudinal wave travels along the line of the slinky. To create this type of motion, the Slinky should 
be pushed towards the friend. 

15.12. The speed of the wave traveling along the wire is / .v T µ=  A change in the area does not change the 
tension, but the linear mass does change. If the area increases, the linear mass decreases and thus the speed 
decreases. The wavelength is also related to the speed of the wave by the relation, .v fλ=  As the speed 
changes, the frequency does not, so the wavelength must follow the change of speed. At the interface there 
will be a transmitted and reflected wave. The reflected wave will have a smaller amplitude than the 
incident wave and will be inverted (undergoes a 180°  phase shift). A phase change will not occur for the 
transmitted wave, but a decrease in amplitude will occur when the wave crosses the boundary thin to thick. 

15.13. For two waves to interfere with each other, the waves must have almost equal frequencies and constant 
phase. Since noise is composed of various frequencies, amplitudes and phases, it is unlikely that more than 
a few frequencies of the noise interfere. Thus, interference of noise between two sources is unlikely. 

15.14. Since some of the sound is reflected off the walls, floor and ceiling, the intensity is the sum of the direct 
intensity and reflected sound. The sound falls off more slowly than 21/ .R  If the sound is considered to be 
perfectly reflected, the sound intensity is constant except for points close to the source. 

15.15. It is possible for two standing waves to create a traveling wave. If both standing waves have the same 
amplitude and frequency, ( )1 , cos siny x t A wt kx=  and ( ) ( ) ( )2 , cos / 2 sin / 2 ,y x t A wt kxπ π= − + they can 
be added as follows: 

( ) ( ) ( ) ( ) ( )
( )

1 2, , , cos sin cos / 2 sin / 2

cos sin sin cos sin .

y x t y x t y x t A wt kx A wt kx

A wt kx A wt kx A kx wt

π π= + = + − +

= − = −
 

This is a traveling wave propagating to the right. Standing waves and traveling waves are at the base of the 
wave phenomena. 

15.16. The only ways for the ball to be stationary is for it to be at the node of a standing wave or at an interference 
point of two or more interfering waves. On a lake it is very unlikely that a standing wave is created. To 
create points of interference more than one wave is needed. There is no situation where one wave will 
allow the ball to stay in a stationary position. 

15.17. There are two effects that contribute to the decrease of the amplitude. The first effect is due to the energy 
being spread over a greater line as the distance from the source increases. The energy of the wave is 
directly proportional to the square of the amplitude. Thus, as the energy decreases, so should the 
amplitude. The second effect is due to the damping of the wave. This also dissipates the mechanical 
energy, converting it to sound and heat, thus the amplitude decreases. 
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15.18. The speed of a point on a wave is given by ( ) ( )( )κ κ φ= − − +, sin ,pv x t A v x vt  where the wave the number 

is 2 / .κ π λ=  The maximum speed occurs when the cosine function is equal to negative one. Thus, the 
maximum speed is max 2 / .v A v Avκ π λ= =  

15.19. The tightrope walker will fall as soon as the “signal” that the rope was cut reaches the walker. This takes a 
length of time given by t = d/v, where d is the distance to the walker, 0.5 mi, and v is the speed at which the 
signal travels. To know the speed, one would need to know the rope’s linear mass density, μ, and also the 
rope tension, F; then the speed could be estimated as µ= /v F  using the assumption that the signal is a 
transverse wave. In reality the signal would be a more complicated motion, having both transverse and 
longitudinal components, which is why the calculation could only be an estimate. 

15.20. The wave is longitudinal, meaning that it travels along the same axis as the cars—just as a sound wave 
travels through air along the same axis as the forward-backward motion of the air molecules. Also, just as a 
sound wave propagates through the action of air molecules with adjacent air molecules, the wave of 
moving cars propagates as each car begins to follow the one in front of it. The speed of propagation is set 
by the distance between cars and the time it takes for each car to start moving after the one in front of it 
has started moving.  

15.21.  

( )

( )

( )

( )
( )

( )

( ) ( )

( ) ( ) ( ) ( )

θ θ
θ θ

θ

θ

µ

− + −

+ −

+
+

−
−

+ −

+ −

= + = − −

= − +
−

=
∆
−

=
∆

= − +
∆

∆
− + =

∆ ∂
=
∂∆

∂
= ∆

∂
∆∂ ∂ ∂

= =
∂ ∂ ∂

+

1

1

1 1 1

1 1 1

2

2 2

2

2

2 2 2

2 2 2

sin sin
sin sin

sin

sin

2

2

,

,

, , ,

i

i

i i

i i

i i i

i
i i

i

i

F F F F F
ma F

y y
x

y y
x

Fma y y y
x

ma x
y y y

F
ma x

y x t
xF x

ma F x y x t
x

F x Fy x t y x t y x t
t m x x

 

So µ= / .v F  

15.22. We will not derive the most general case but rather focus on the case of a wave traveling along a string. 
Therefore, assume a wave of the form ( ) ( )κ ω φ= − + 0, sin .y x t A x t  
The kinetic energy is given by 

( ) ( )( )ω κ ω φ
 ∂

= = − − +  ∂ 

2
2

0
,1 1 cos

2 2
y x t

K m m A x t
t
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( )ω ω= 2 2 21 cos .
2

K m A t  

The time-average is 

ω∆ = 2 2
ave

1 .
4

K m A  

The potential energy is given by the work done by the tension:  F  times the distance the mass moves in 
the same direction, = ∆ = ∆ .W U F l  We can see from the sketch in the preceding solution that 

( ) ( ) ( )∆ = ∆ + ∆2 2 2 .s x y  The distance the mass moves is ∆ = ∆ −∆ .l s x   We assume that the deflection of 
the string is small, which allows us to write 

( ) ( ) ( ) ( )
 ∆ ∆ = ∆ + ∆ = ∆ +   ∆  

2
2 2 2 2 1 .

y
s x y x

x
 

Because ∆ ∆ / 1,y x  we can write 

( )

( )
( )

( )

 ∆ ∆ = ∆ + ∆ ∆ ≈ ∆ +   ∆  
∆

∆ ≈ ∆ +
∆

∆ ∆ = ∆ −∆ = ∆ ∆ 

2
2

2

2

11 / 1
2

2

1 .
2

y
s x y x x

x

y
s x

x

y
l s x x

x

 

We can then write the potential energy as 

∆ = ∆ = ∆ ∆ 

2

.
2

yFU F l x
x

 

We can calculate ∆ ∆/y x  

( )κ κ ω φ
∆

= − +
∆ 0cos .

y
A x t

x  

( )( )

( )

κ κ ω φ

κ κ ω φ

= ∆ = − + ∆

= ∆ = − + ∆

2
0

2 2 2
0

cos
2

cos .
2

FU F l A x t x

FU F l A x t x  

The time-average is
 

κ= ∆2 2
ave .

4
FU A x

 
Since κ ω= / v , µ =2v F  and µ = ∆/ ,m x  we can write 

µ ω ω
µ

 = = 
 

22
2 2 2

ave
1 .

4 4
v mU A m A

v  

ω= + = 2 21 .
2

E K U m A  

 
Exercises 

15.23. The time resolution in the air is determined by the time it takes sound to travel 20.0 cm. At a speed of 343 
m/s, the resolution time is ( ) −= = ⋅ 4

max 0.200 m / 343 m/s 5.83 10  s.t  In the water, the speed of sound is 

⋅ 31.50 10  m / s,  corresponding to a resolution time of −= ⋅ = ⋅3 4
max 0.200 m / (1.50 10  m / s) 1.33 10  s.t  If an 

individual can only resolve a time difference of −⋅ 45.83 10  s,  they will not be able to distinguish a time 

difference of −⋅ 41.33 10  s.  Since our hearing is adapted to land conditions, a sound produced in water 
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seems to reach the listener’s ears at the same time regardless of direction. This is why it is impossible for 
the diver to detect the direction of a motor boat underwater. 

15.24. In air, sound travels at a speed of 343 m/s. A time difference of 2.00 seconds gives a distance of 
( )( )343 m/s 2.00 s 686 m,d vt= = =  between the produced “hey” sound waves. Since the sound must 

travel to a surface before it is reflected, the total distance traveled by the sound is twice that of the distance 
from you to the mountain. The distance to the mountain is then ( )( )/ 2 343 m/s 5.00 s /2 858 m.d vt= = =  

15.25. (a)  The amplitude is the magnitude of the number outside of the sine function, A = 0.00200 m.  
(b)  The number of waves is given by the wave number, κ, times the distance traveled, divided by 2 .π  In 

this case, the number of waves is  
( )140.0 m 1.00 m

6.37 waves.
2 2

xκ
π π

−

= =  

(c)  The number of complete cycles in one second is the angular frequency, ω,  times the time interval, t, 

divided by 2 .π  In this case, the number of complete cycles is 
( )( )1800. s 1.00 s

127 cycles.
2 2

tω
π π

−

= =  

(d) The wavelength is 2π  divided by the wave number, κ. The wavelength of this wave is 
12 / 40.0 m 0.157 m.λ π −= =  

(e)  The speed of the wave is equal to the ratio of the angular frequency to the wave number: 
ω
κ

−

−
= = =

1

1

800. s 20.0 m/s.
40.0 m

v  

15.26. THINK:  The point of this question is to study the phases along a traveling wave. The wave is described by 

( ) ( ) ( ) ( )( )1 1, 5.00 mm sin 157.08 m 314.16 s 0.7854 .y x t x t− −= − +  

SKETCH:   

 
RESEARCH:  A traveling wave is described by ( ) ( ), sin .y x t A x tκ ω φ= − +   

(a) The minimum separation, min ,x∆  of two points that oscillate in perfect opposition is given by:  

min min  / .x xκ π π κ∆ = ⇒ ∆ =  
(b) The separation, AB ,x∆  between two points A and B with a phase difference of 1 0.7854 rad,φ =  can be 
determined from AB 1 AB 1  / .x xκ φ φ κ∆ = ⇒ ∆ =   
(c) The number of crests passing through the point A is equal to the number of troughs passing through 
the point in 10 seconds. The number, n, is determined from 2   / 2 .t n n tω π ω π∆ = ⇒ = ∆   
(d) The point along the oscillation’s trajectory is given by y at = 0x  and = 0,t  

( ) ( ) ( )( )0,0 sin 0 0 sin .y y A Aκ ω φ φ= = − + =  

SIMPLIFY:  
(a) min /x π κ∆ =   
(b) AB 1 /x φ κ∆ =   
(c) / 2n tω π= ∆   

(d) ( ) ( ) ( )( )0,0 sin 0 0 siny y A Aκ ω φ φ= = − + =  
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CALCULATE: 

(a)  min 1 0.019999953 m
157.08 m

x π
−

∆ = =  

(b)  AB 1

0.7854 0.00500000 m
157.08 m

x
−

∆ = =  

(c)  
( )( )1314.16 s 10.0 s

500.0017
2

n
π

−

= =  

(d)  ( ) ( ) ( )0,0 5.00 mm sin 0.7854 3.53554 mmy y= = =  
ROUND:  Taking into account significant figures: 
(a)  The minimum distance between to points which are out of phase is min 0.019999 m.x∆ =  
(b)  The distance between two points which are out of phase by 0.7854 rad is 5.000 mm.ABx∆ =  
(c)  The number of crests and troughs that pass through the points A and B is 500. . 
(d)  The oscillator should be 3.54 mm above the zero line. 
DOUBLE-CHECK:  From the given parameters, the wavelength is 2 / 0.04 m.λ π κ= =  minx∆  is half of 
the wavelength.  ABx∆  is equal to 1/ 8  of the wavelength, which makes sense since the phase shift 

2 / 8.φ π=  Also from the given parameters, the velocity of the wave is / 2 m/s.v ω κ= =  At this velocity, 
50 waves of wavelength 0.04 m will pass a given point in one second, or equivalently, 500 waves in ten 
seconds.  The y-value calculated is within the given amplitude of the wave.  These values are reasonable. 

15.27. THINK:   
(a) The question asks for the equation of motion for the masses of an array of n masses each with mass m  
connected by with springs each with spring constant .k  Each mass is located at =ix ia  at equilibrium and 
we define the displacement of each mass as ψ= + .i ix ia  
(b) The object is to determine the angular frequencies of the normal modes of the array of masses. 
SKETCH:   

    
RESEARCH:   
(a) Let ψ i  denote the displacement of the thi  mass from its equilibrium position. The forces acting on the 

masses are due to the springs and have the form ψ= −s .F k  The angular frequency is given by ω =2
0 / .k m  

(b) For each normal mode, the whole system oscillates with an angular frequency of Ω,  so the motion of 
each particle can be described as ( )ψ = Ωcos .i iA t  The left hand side is stationary, which implies ψ =0 0.   

The right hand side is stationary, which means ψ + =1 0.n  This suggests an Ansatz for the amplitudes 

( )φ= siniA A i  where A  is an arbitrary amplitude, φ  is a real number that is different for each normal 
mode, and =1 to .i n  
SIMPLIFY:   
(a) The net force on the  ith mass is  

( ) ( ) ( )ψ
ψ ψ ψ ψ ψ ψ ψ− + − += = = − − − − = − +

2

1 1 1 12 2i
i i i i i i i i i

d
F ma m k k k

dt
 

( )ψ
ω ψ ψ ψ− += − +

2
2

0 1 12 2 .i
i i i

d
dt

 

All the masses and springs are identical, so this result describes the entire system. 
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 (b) Insert ψ = Ωcosi iA t  into the result of part (a): 

( )

( ) ( )
( )

ψ

ω ψ ψ ψ ω

ω
− + − +

− +

= Ω = − Ω Ω

− + = Ω − Ω + Ω

Ω + − + =

2 2
2

2 2

2 2
0 1 1 0 1 1

2 2
0 1 1

cos cos

2 cos 2 cos cos

2 0.

i
i i

i i i i i i

i i i i

d d A t A t
dt dt

A t A t A t

A A A A

 

We have n  equations of motion, one for each i  from 1 to .n  These normal modes look like standing 
waves.  Each mass will oscillate with a sinusoidal form given by ( )Ωcos t  and an amplitude that depends 

on the normal mode.  We take ( )φ= siniA A i  as an Ansatz. A  is an arbitrary amplitude and φ  is a real 
number determined by the boundary conditions.  For = 0,i  this form is clearly a solution.  For = +1i n  

this form is a solution if ( )( )φ+ = + =1 sin 1 0,nA A n  which is only true for ( )φ π+ =1 ,n j  where j  is an 

integer, which is true for 
π

φ =
+

.
1j

j
n

 

There are n  normal modes so ≤ ≤1 .j n   We can write 
π = ≤ ≤ + 

,  1 .
1i

j
A A i j n

n
 

Now we put this result into our expression for the normal angular frequencies 

( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( )

φ ω φ φ φ

φ ω φ φ φ φ φ

Ω + − − + + =

Ω + − − + + =

2 2
0

2 2
0

sin sin 1 2 sin sin 1 0

sin sin 2sin sin 0.

A i A i A i A i

i i i i
 

Remembering that 
( ) ( ) ( ) ( ) ( )φ φ φ φ φ φ± = ±sin cos sin cos sin ,i i i  

we can write 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

( )

φ ω φ φ φ φ φ φ φ φ φ

ω φ φ φ φ φ φ φ φ

ω φ φ

ω φ

φω

φω

φω

Ω + − − + + =

Ω + − − + + =

Ω + − + =

Ω = −

  Ω =   
  

 Ω =  
 

Ω = 


2 2
0

2 2
0

2 2
0

2 2
0

2 2 2
0

2 2 2
0

0

sin cos sin cos sin 2sin cos sin cos sin 0

cos cos sin / sin 2 cos cos sin / sin 0

cos 2 cos 0

2 1 cos

2 2sin
2

4 sin
2

2 sin
2

i i i i i i

i i i i




.

 

Putting in out result for φ j  we get the angular frequencies for all the normal modes 

( )
π

ω
 

Ω = ≤ ≤  + 
02 sin ,  1 .

2 1j
j

j n
n

 

CALCULATE:  This step is not necessary. 
ROUND:  This step is not necessary. 
DOUBLE-CHECK:   
Let’s double-check our result for = 2n  masses. We have two normal modes with angular frequencies 
given by 
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πω ω

πω ω

 Ω = = 
 
 Ω = = 
 

1 0 0

2 0 0

2 sin
6

2 sin 3 .
3

 

Ω1  corresponds to the two masses moving back and forth together while Ω2  corresponds to the two 
masses vibrating opposite against each other.  This result makes sense because when the two masses are 
moving together, the middle spring does not contribute and we have two masses with two springs so the 
angular frequency is just ωΩ = =1 02 / 2 .k m  For the two masses vibrating against each other, we 

essentially have three springs for each mass leading to ωΩ = =2 03 / 3 .k m   So our result makes sense. 

15.28. For a function to be a solution of the wave equation, the second time derivative of the function must be 
proportional to the second derivative of the function with respect to space. The second time derivative of 
this function is:  

( )
( )

2

2ln .d d d v AvA x vt A
dt dt dt x vt x vt

   
+ = = −   +    +

 

The second position derivative is: ( )
( )2ln .d d d A AA x vt

dx dx dx x vt x vt

   
+ = = −   +    +

 

Inserting these values into the wave equation: 
( ) ( )

2 2 2
2 2

2 2

d d Av AD v D v
dt dx x vt x vt

 
 = = − = −
 + + 

, and it can 

be seen that the wave equation is satisfied. 

15.29. The general equation of a wave is ( ) ( ), sin .y x t A x tκ ω φ= − +  Thus, A, κ , ,ω  and φ  must be 

determined using v = 30.0 m/s,  f = 50.0 Hz, ( )0,0 4.00 mmy =  and 0, 0/ | 2.50 m/s.x tdy dt = = =  The angular 

frequency is ( ) 1 12 2 50.0 Hz 100. s 314 .f sω π π π − −= = = =  To determine the wave number:  

( ) 12 50.0 Hz
10.5 m .

30.0 m/sv
πωκ −= = =  

In order to determine A and ,φ  both of the initial conditions must be met. At x = 0 and t = 0: 

( ) 30,0 4.00 10  m sin .y A φ−= ⋅ =                                                              (1) 

The time derivative of the wave function is ( )/ cos .dy dt A x tω κ ω φ= − − +  At x = 0 and t = 0: 

( )12.50 m/s 314 s cos
dy

A
dt

φ−= = −  or,  

1

2.50 m/s cos .
314 s

A φ
−
=

−
                                                                        (2) 

Square these two functions and add them: 

( )
2

23 2 2 2 2
1

2.50 m/s4.00 10  m cos sin .
314 s

A Aφ φ−
−

 
⋅ + − = + 

 
 

Using the trigonometric identity, 2 2cos sin 1:φ φ+ =  

( ) ( ) ( )( )223 14.00 10  m 2.50 m/s / 314 s 0.008910 m 8.91 mm.A − −= ± ⋅ + − = =  

The phase, ,φ  is determined by dividing equation (1) by equation (2): 

( ) ( )( ) ( )
3

1

1

4.00 10  m 0.5024 tan   tan 0.5024 0.466 rad.
2.50 m/s / 314 s

φ φ
−

−

−

⋅
= − = ⇒ = − = −

−
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This is the wrong quadrant since it is the time derivative that is negative, not the displacement. This means 
0.466 rad 2.68 rad.φ π= − + =  It is best to keep extra significant figures in the equation at this point, and 

to only round after values of x and t have been substituted. The equation for the wave is: 

( ) ( ) ( )π− −= − +1 1, 8.91 mm sin 10.5 m 100.  s 2.68 rad .y x t x t  

15.30. (a)  The amplitude of the wave is 0.0200 m or 20.0 mm. 
(b)  The period of the wave is related to the angular frequency of the wave, 12.63 s .ω −=  Calculating the 
period using the angular frequency gives: 

1

2 2 2.39 s.
2.63 s

T π π
ω −

= = =  

(c)  The wavelength is related to a value given in the wave function, the wave number, κ . The wavelength 
is given by: 

1

2 2 0.989 m.
6.35 m

π πλ
κ −

= = =  

(d)  The speed of the wave is the ratio of the angular frequency and the wave number: 
1

1

2.63 s 0.414 m/s.
6.35 m

v ω
κ

−

−
= = =  

(e)  Since the functional dependence is ( ),x tκ ω φ− +  the wave travels in the negative x-direction. 

15.31. THINK: Determine the equation for a wave traveling in the direction of the positive x-axis with 
12.0 cm,λ =  f = 10.0 Hz, A = 10.0 cm and ( )0,0 5.00 cm.y =  Note that during each complete wave 

oscillation the displacement assumes the same value twice.  Since the displacement at (0,0) is given, find 
two solutions (unless the displacement corresponds to an extremum, which is not the case here).  Sketch 
both cases, 1 and 2, in the next step of the solution. 
SKETCH:   

 
RESEARCH:  The wave number and the angular frequency are given by 2 /κ π λ=  and 2 ,fω π=  
respectively. The period is related to the frequency by T = 1/f. The speed of the wave is .v fλ=  To 

determine the phase constant, use the point ( )0,0 sin .y A φ=  The equation of motion is given by: 

( ) ( ), sin .y x t A x tκ ω φ= − +  

SIMPLIFY:  
( ) ( )10,0 0,0

sin   sin
y y

A A
φ φ −

 
= ⇒ = ±   

 
 

CALCULATE:   

(a)  π πκ −= = = 12 2 52.36 m
12.0 cm 0.120 m

 

(b)  = =
1 0.100 s

10.0 Hz
T  

(c)  ( )ω π −= = 12 10.0 Hz 62.83 s  
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(d)  ( )= =0.120 m 10.0 Hz 1.20 m/sv  

(e)  πφ −  = ± = ± 
 

1 0.0500 msin
0.100 m 6

 

(f)  ( ) ( ) π− − = − ± 
 

1 1, 10.0 cm sin 52.36 m 62.83 s
6

y x t x t  

ROUND:  
(a)  The wave number is 152.4 m .κ −=  
(b)  The period is T = 0.100 s. 
(c)  The angular frequency is 162.8 s .ω −=  
(d)  The velocity is v = 1.20 m/s. 
(e)  The phase is / 6.φ π= ±  
(f)  It is better not to round the coefficients of the equation at this stage, and only round once particular 
values of x and t are substituted. 
DOUBLE-CHECK:  Each of the calculated values have the proper SI units. 

15.32. THINK:  The task is to compare the wave pulse in a rope with a mass, m, at its end versus a mass, 3.00 m, 
at its end. In each case the rope has the same linear density, but the tension will change. In each case the 
distance traveled by the wave pulse is the same. This means the speed of the wave pulses will be different in 
each case.   
SKETCH:   

 
 

RESEARCH:  The speed of a wave is / .v T µ=  For the hanging mass, the tension on the rope is equal to 
the force of gravity on the mass.  In terms of the distance and velocity and distance, the time is given by 

/ .t d v=  

SIMPLIFY:  2 2 1 1
2

1 1 2

// 1
/ 3 / 3 3

mgt d v v t
t

t d v v mg

µ

µ
= = = = ⇒ =  

CALCULATE:  2 10.577t t=  
ROUND:  Not required. 
DOUBLE-CHECK: As expected, an increase in tension leads to a higher wave speed and thus to a smaller 
travel time. 

15.33. THINK:  Determine the time difference between a wave pulse that travels along wire 1 and one that travels 
along wire 2. To solve this problem, both the length of each wire and the speed of a wave on the wire must 
be determined. The tension in the wire is required to determine the speed along the wire. Wire 1 makes a 
60.0°  angle with the vertical line. Wire 2 makes a 30.0°  angle with the vertical. The distance from the 
ceiling to point A is 0.300 m. 
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SKETCH:   

 
RESEARCH:  The time is given by t = l/v. The velocity is related to the tension by / .v T µ=  The net 
force on a stationary body is zero. This can be used to determine the tension. The right angle triangle in 
the diagram is needed to determine the length and tension of each wire. 
SIMPLIFY:  The forces in the horizontal plane give:  

net 1 2 1 1 2 2sin sin 0x x x xF F T T T Tθ θ= = − = − =∑  or 1 2 2 1sin / sin .T T θ θ=   

The forces in the vertical plane give: net 1 2 g 1 1 2 2cos cos 0.y y y yF F T T F T T mgθ θ= = + − = + − =∑  Using these 

two equations to solve for 1T  and 2T : 

2 2
1 1 2 2 2 1 2 2 2 2

1 1

2 1 2
2

2
1

sin tan
cos cos cos cos cos 1  

sin tan

3   (Recall that 60  and 30 .)
2tan

cos 1
tan

T T T T T mg

mg
T mg

θ θ
θ θ θ θ θ

θ θ

θ θ
θ

θ
θ

 
+ = + = + = 

 

⇒ = = = ° = °
 

+ 
 

 

Similarly, 2 2
1

1

1 2sin 3
sin 2 23 2

T mg
T mg

θ
θ

  
 = = =     

. The lengths are given by cos /d lθ =  or 1 1/ cosl d θ=  

and 2 2/ cos .l d θ=  With the specific angles in mind: 

2
2

cos30 3 / 2 3
d d dl = = =

°
 and 1 2 .

cos60 1/ 2
d dl d= = =

°
 

The times are given by / / / .t l v l T µ= = Hence 11 1/ /t l T µ=  and 22 2/ / .t l T µ=  

CALCULATE:  1
2 22 ,

gg
2

dt d
mm

µ

µ

= =
 
  
 

  /2 3 4

2
3 2 2

33 g
2

d
dt

mgm

µ

µ

 
 
 = =

 
 
 
 

 

µ µ   
= = ⇒ = =      
   

3/4 3/1
1 2 2

2

4
3/4

2 2 22 3   3 2.2795 .
3

t dd t t t
mg mgt

 

ROUND:  =1 2 2.28t t  
 The trip along Wire 1 takes 2.30 times longer than the trip along Wire 2. 

DOUBLE-CHECK:  The tension is higher in the second wire than the first by a factor of 3. The second 

wire is shorter than the first by a factor of 1 .
3

Since the wave speed is proportional to the length, and 

inversely proportional to the square root of the tension, it makes sense for the pulse to take 

3/4

1 1 1
33 3

⋅ = the time for the pulse to travel through Wire 2 than it takes to travel through Wire 1. 
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15.34. THINK:  Determine the speed of a wave traveling along a guitar string. Also, determine the required 
tension to increase the speed of the wave by 1.00 %. The wire has a linear density of 

31.93 g/m 1.93 10  kg/mµ −= = ⋅  and starts with a tension of T = 62.2 N. 
SKETCH:  A sketch is not needed to solve the problem. 

RESEARCH:  The speed of a wave along a wire is / .v T µ=  

SIMPLIFY:  The speed of the wire in the first case is simply 1 1 / .v T µ=  For the second case, the speed is 

( )2 11 /100 ,v vα= +  where α  is the percent increase. To determine the new tension, substitute /T µ  for 
v:  

2 11 .
100

T Tα
µ µ

 = + 
 

 

Squaring both sides gives: 
2

2 11
100

T Tα
µ µ

 
= + 
 

 or 
2

2 11 .
100

T Tα = + 
 

 

CALCULATE:  1 3

62.2 N 179.52 m/s,
1.93 10  kg/m

v
−

= =
⋅

     = + = = +   
   

2

2 1 1 1
1.00 2.011 1.0201 1
100 100

T T T T  

ROUND:  Round the results to three significant figures. 
(a)  The speed of the wave is 180. m/s. 
(b)  The tension should increase by 2.01 % for the speed to increase by 1.00 %. 
DOUBLE-CHECK:  Dimensional analysis confirms that the calculated values have the correct units.  
These values are reasonable. 

15.35. THINK:  Determine the time it takes for sound waves to reach Alice via two different media and compare 
these values. The first medium is air, in which sound travels at a speed of about 343 m/s. The second 
medium is a string with a tension of 25.0 N and a linear density of 6.13 g/m or 0.00613 kg/m. The distance 
between Alice and Bob is 20.0 m. 
SKETCH:   

 
RESEARCH:  The time it takes for the sound to travel a distance, d, is given by a/t d v= .  The velocity of 

sound in a wire is given by w / .v T µ=  

SIMPLIFY:  The time it takes to travel through air is a a/ .t d v=  The time it takes sound to travel through 

the wire is w w/ / / / .t d v d T d Tµ µ= = =  The time difference is given by: 

a w
a a

1 .dt t t d d
v T v T

µ µ 
∆ = − = − = −  

 
 

CALCULATE: 
36.13 10  kg/m120.0 m 0.254868 s

343 m/s 25.0 N
t

− ⋅ ∆ = − = −
 
 

, indicating that the sound in air 

reaches Alice 0.245868 seconds before the sound in the wire. 
ROUND:  Rounding the result to three significant figures, the sound in the air reaches Alice 0.255 seconds 
before the sound from the wire does. 
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DOUBLE-CHECK:  a
20.0 m 0.0583090 s,
343 m/s

t = = and 
3

w

6.13 10  kg/m
20.0 m 0.313177 s.

25.0 N
t

−⋅
= =   The 

difference is –0.255 seconds, confirming the original result. 

15.36. THINK:  It is given that a wire hanging from the ceiling has a uniform linear mass, density, / ,M Lµ = . It 
takes 1.00 second for a pulse to travel the length of the wire L. L is unknown and must be determined. In 
order to determine L, the speed of the pulse is needed. 
SKETCH:   

 
 

RESEARCH:  The speed of the pulse in the wire is / .v T µ=  Since T is not constant, the speed is also 
not constant, but depends on the height, x. Consider a position on the wire at a height, x, as shown in the 
above figure. Using Newton’s second law, the tension in the wire is .T xgµ=  Therefore, the speed of the 
pulse at the position, x, is: 

.
x g

v xg
µ
µ

= =  

SIMPLIFY:  Since / ,v dx dt=  the above equation simplifies to: / .dx x g dt=  Integrating both sides: 
1 1 1
2 2 2

0 0
0

  2   2 .
L

L t
x dx g dt x gt L gt
−  

= ⇒ = ⇒ = 
 

∫ ∫  Therefore, the length of the wire is 21 .
4

L gt=  

CALCULATE:  ( )( )221 9.81 m/s 1.00 s 2.453 m
4

L = =  

ROUND:  2.45 mL =  

DOUBLE-CHECK:  The maximum speed on the wire is given by max / ,v L g Lgµ µ= =  and the 

minimum speed is 0 0.v =  The average speed is ( ) ( )ave max 0 / 2 / 2.v v v Lg= + =  Using this speed, the 

length of the wire is ( )ave / 2.L v t Lg t≈ =  After manipulation, it is determined that the length of the wire 

is 2 / 4.L g t=  This result is the same as the previous “exact” result. This means that the speed is increasing 
linearly with time or the acceleration of the pulse is constant. 

15.37. THINK:  A Gaussian wave is represented by ( ) ( ) ( )20.1 5, 5.00 m .x ty x t e − −=  Determine if the equation 
satisfies the wave equation. 
SKETCH:  A sketch is not necessary. 

RESEARCH:  The wave equation is given by: 
2 2

2 2 2

1 .
y y

x v t
∂ ∂

=
∂ ∂
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SIMPLIFY:   
(a)  Differentiating ( ),y x t  with respect to x yields: 

( ) ( )( ) ( ) ( ) ( )− − − −∂
 = − − = − − ∂

2 20.1 5 0.1 55.00 m 0.1 2 5 1.0 5 .x t x ty
x t e x t e

x
 

Differentiating a second time with respect to x gives the second derivative of y with respect to x:  

( ) ( ) ( ) ( )2 22
20.1 5 0.1 5

2 1.0 5 0.2 5 .x t x ty
x t e x t e

x
− − − −∂  = − − + −  ∂

 

Differentiating ( ),y x t  with respect to t yields: 

( ) ( )( ) ( ) ( ) ( ) ( )− − − −∂
 = − − − = − ∂

2 20.1 5 0.1 55.00 m 0.1 2 5 5 5.0 5 .x t x ty
x t e x t e

t
 

Differentiating a second time with respect to t gives the second derivative of y with respect to t:  
( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )

2 2

2 2

2
0.1 5 0.1 5

2

20.1 5 0.1 5

25 5.0 5 0.1 2 5 5

25 1.0 0.2 5 .

x t x t

x t x t

y
e x t x t e

t

e x t e

− − − −

− − − −

∂  = − + − − − − ∂
 = − + −  

 

Careful examination of these two second partial derivatives reveals 
2 2

2 2

1 .
25

y y
x t

∂ ∂
=

∂ ∂
 This means that 

( ),y x t  satisfies the wave equation with a wave speed of v = 5 m/s. 
(b)   

 
(c)  Consider a function, ( ) ( ), .f x t h x vt= ±  Taking the first derivative of ( ),f x t  with respect to t yields: 

( ) ( ) ( ) ( )∂ ± ∂ ∂ ± ∂∂ ∂
= = ⇒ = ±

∂ ∂ ∂ ∂ ∂ ∂
  ,

h x vt h y x vt h yf f
v

t t y t t y
where .y x vt= ±  

Differentiating the second time with respect to t gives: 

( ) ( ) ( )22

2 2 .
h y h y h yf y

v v v
t y y y tt y

   ∂ ∂ ∂∂ ∂∂ ∂  
= ± = ± = ±        ∂ ∂ ∂ ∂ ∂∂ ∂     

 

Since ,y x vt= ±  the above equation simplifies to:  
( )22

2
2 2 .

h yf
v

t y

∂∂
=

∂ ∂
 The second derivative of ( ),f x t  

with respect to x is: 
( )22

2 2 ,
h x vtf

x x

∂ ±∂
=

∂ ∂
and using ,y x vt= ±  the derivative is: 

( )22

2 2 ,
h yf

x y

∂∂
=

∂ ∂
 since dy = 

dx. Thus, 
2 2

2
2 2 ,
f f

v
t x

∂ ∂
=

∂ ∂
 which is the wave equation. 

CALCULATE:  This step is not necessary. 
ROUND:  This step is not necessary. 
DOUBLE-CHECK:  The proof is complete, and has verified what was to be shown. 
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15.38. THINK: The slope of the ground underneath the ocean at a beach is equal to 
/ 12.0 cm/1.00 m 0.120.dy dx = − = −  Note that because y is decreasing, dy/dx is negative.  The acceleration 

of a wave at 10 m from the shore is required. 
SKETCH:   

 
 

RESEARCH:  The speed of a water wave when its wavelength is much larger than the depth of the ocean is 

.v gy=  The acceleration of the wave is / .a dv dt=  Using the chain rule for differentiation, the 
acceleration is given by: 

.
dy dydv dx dva v

dy dx dt dy dx
       

= =       
       

 

SIMPLIFY:  Therefore, the acceleration becomes: ( ) 1 1 1 .
2 2

y y
a gy g g

x xy

  ∂ ∂    = =     ∂ ∂    
 

CALCULATE:  The acceleration is: ( )( )2 21 9.81 m/s 0.120 0.5886 m/s .
2

a = − = −  

ROUND:  20.589 m/sa = −  
DOUBLE-CHECK:  The negative value of the acceleration indicates that the wave is slowing down, as 
expected. 

15.39. THINK:  The speeds of S waves and P waves of an earthquake are S 4.0 km/s,v =  and P 7.0 km/s,v =  
respectively. The distance of the dog from the location of the earthquake’s epicenter must be determined. 
The time difference is 30.0 s.t∆ =  
SKETCH:   

 
 

RESEARCH:  The time taken for the P waves to reach the dog’s position is P P/ .t x v=  Similarly, for S 
waves, the time is S S/ .t x v=  Therefore, the interval of time between S waves and P waves at the dog’s 
position is: 

S P

.x xt
v v

∆ = −  

SIMPLIFY:  After manipulation, the distance from the epicenter is S P

P S

.
v v t

x
v v

∆
=

−
 

CALCULATE:  Substituting the values:  
( )( )( )4.0 km/s 7.0 km/s 30.0 s

280. km.
7.0 km/s 4.0 km/s

x = =
−

 

ROUND:  The values in the question were given to two significant figures, so the final answer should be 
rounded so it also has two significant figures. x = 280 km. 
DOUBLE-CHECK:  Calculate the actual times for the different kinds of waves to arrive. The P waves 
travel at 7.0 km/s, so they will cover 280 km in 40. s. The S waves travel at 4.0 km/s, so they will cover 280 
km in 70. s. The difference between these times is 30. s, which is consistent with what is given in the 
question. 
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15.40. It is given that the mass, the length and the tension of a string are −= = ⋅ 230.0 g 3.00 10  kg,m   = 2.00 m,L  
and  = 70.0 N,T  respectively. Therefore, the speed of a wave on the string is:  

( )( )2

70.0 N 68.31 m/s.
/ 3.00 10  kg / 2.00 m

T Tv
m Lµ −

= = = =
⋅

 

The power needed to generate a traveling wave with a frequency of 50.0 Hz and an amplitude of 4.00 cm is:  

2 21 .
2

P v Aµ ω=  

Substituting /m Lµ =  and 2 fω π=  yields: 

( ) ( )( ) ( ) ( )
2 22 2 22 2 13.00 10  kg1 12 68.31 m/s 2 50.0 s 0.0400 m 80.9 W.

2 2 2.00 m
mP v f A
L

π π
−

− ⋅
= = = 

 
 

15.41. The power of a wave on a string is given by 2 21 .
2

P v Aµ ω=  Substituting 2 fω π=  and /v T µ=  gives: 

( ) ( )2 22 2 2 21 12 2 .
2 2

TP f A T f Aµ π µ π
µ

= =  

Substituting 0.100 kg/m,µ =  T = 100. N, f = 120. Hz and 22.00 10  m,A −= ⋅  the power is: 

( )( ) ( ) ( ) ( )2 22 1 21 0.100 kg/m 100. N 2 120. s 2.00 10 360. W.
2

P π − −= ⋅ =  

15.42. THINK:  The equation of a wave on a string is ( ) ( )= −0.100 m sin 0.750 40.0 ,y x t  and the density of the 

string is 210.0 g/m 1.00 10  kg/m.µ −= = ⋅  
SKETCH:  A sketch is not necessary. 
RESEARCH:  A sinusoidal wave on the string has an equation in the form ( )sin ,y A x tκ ω φ= − +  where 

A is the amplitude of the wave, κ  is the angular wave number and ω  is the angular frequency. The term 
in the bracket, ( ),x tκ ω φ− +  is the phase of the wave. φ  is the phase constant. 

SIMPLIFY:   
(a) The phase constant is φ . 
(b) The phase of the wave is given by x tκ ω φ− + . 

(c) The speed of the wave is v ω
κ

= . 

(d) The wavelength is 2πλ
κ

= . 

(e) From 2 ,fω π=  the frequency is 
2

f ω
π

= . 

(f) The power transmitted by the wave is 2 21
2

P v Aµ ω= . 

CALCULATE:  Comparing ( )siny A x tκ ω φ= − +  with ( ) ( )= −0.100 m sin 0.750 40.0 ,y x t  A = 0.100 m, 

0.750 rad/sκ = , 40.0 rad/sω =  and 0.φ =  
(a)  0φ =  

(b)  ( ) ( )0.750 0.0200 40.0 0.100  rad 3.985 radx tκ ω φ− + = − = −  

(c)  40.0 rad/s 53.33 m/s
0.750 rad/m

v = =  

(d) 2 8.3776 m
0.750 rad/m

πλ = =  
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(e)  40.0 rad/s 6.366 Hz
2

f
π

= =  

(f)  ( )( )( ) ( )2 21 0.0100 kg/m 53.33 m/s 40.0 rad/s 0.100 m 4.266 W
2

P = =  

ROUND:   
(a)  0φ =  
(b)  The phase is 3.99 rad.−  
(c)  v = 53.3 m/s 
(d)  8.38 mλ =  
(e)  f = 6.37 Hz 
(f)  P = 4.27 W 
DOUBLE-CHECK:  The results have the correct units, and this supports the calculations as being 
reasonable. 

15.43. The system is shown in the figure. 

 
It is given that the mass of a string is 3

S 5.00 g 5.00 10  kgm −= = ⋅  and its length is L = 70.0 cm = 0.700 m. 
The mass of the weight is M = 250. kg. Using Newton’s second law, the tension is given by 

( )g   .T M Ma T M a g− = ⇒ = +  The fundamental frequency is given by:  

1

/
.

2 2
Tvf

L L
µ

= =  

Substituting S /m Lµ =  and ( ) :T M a g= +  
( ) ( )s

s s

/ / 1 1 .
2 2 2

T m L M a gTf
L m L m L

+
= = =  

(a)  Substituting the values of the variables and a = 0 yields: 

( )( )
( )( )

2

3

250. kg 0 9.81 m/s1 418.5 Hz 419 Hz.
2 5.00 10  kg 0.700 m

f
−

+
= = ≈

⋅
 

(b)  It was found previously that 
( )

s

1 .
2

M a g
f

m L
+

=  After rearrangement:  

( ) ( )2 32
2 2

4 440. Hz 5.00 10  kg 0.700 m4
9.81 m/s 1.03 m/s .

250. kg
Sf m L

a g
M

−⋅
= − + = − + =  

Since a is positive, the elevator moves upward. 

15.44. The fundamental mode of a string is given by f = v/2L. The speed of a wave on the string is given by 

/ .v T µ=  Therefore, the fundamental frequency is ( )/ / 2 .f T Lµ=  This means that the tension that 

produces the fundamental frequency, 0 ,f  is: 

2 2 2 2
0 04   4 .T f L T f Lµ

µ
= ⇒ =  
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Substituting 45.51 10  kg/m,µ −= ⋅  L = 0.350 m and =0 660. Hzf  yields: 

( )( ) ( )−= ⋅ = ≈2 244 5.51 10  kg/m 660. Hz 0.350 m 117.61 N 118 N.T  

15.45. (a) The linear density of the string is  
0.0100 kg

0.00500 kg/m.
2.00 m

m
L

µ = = =  

Using the tension, T = 150. N, the speed of a wave on the string is: 

µ
= = = ≈

150. N 173.2 m/s 173 m/s.
0.00500 kg/m

Tv  

(b)   

 
 

Since both ends of the string are fixed, there are two nodes at the ends of the string. To get two anti-nodes, 
there must be one node in the middle of the string as shown in the above figure. This means there is one 
wavelength on the string, that is, .L λ=  Thus, the wavelength is 2.00 m.Lλ = =  The frequency is 
obtained from the relation   / .v f f vλ λ= ⇒ =  Thus, 

= =
173.2 m/s 86.6 Hz.

2.00 m
f  

15.46. THINK:  It is given that there is a 3.00 m long string, fixed at both ends, that vibrates 15.0 times in a 
second (f = 15.0 Hz). A standing wave on the string has three anti-nodes of amplitude 2.00 cm. At time  t = 
0, ( ),y x t  is equal to zero for all x. The equation of the standing wave and the speed of a pulse on the 
string are needed. 
SKETCH:   

 
 

RESEARCH:  The equation of a standing wave is given by:  

( ) ( ) ( ), sin siny x t A x t A x tκ ω φ κ ω φ= + + + − −  or ( ) ( ), 2 sin cos .y x t A x tκ ω φ= +  

SIMPLIFY:  It is given that the amplitude of the anti-nodes are equal to 2.00 cm. This means 2A = 2.00 
cm, and therefore, A = 1.00 cm. From the value of frequency, f = 15.0 Hz, the angular frequency can be 
determined from 2 .fω π=  It is given that the standing wave has three anti-nodes and both ends of the 
string are fixed. This means that there are three halves of the wavelength, as shown above. Therefore, 

1 23   .
2 3

L Lλ λ 
= ⇒ = 

 
 

The angular wave number is given by: 
( )

2 2 3 .
2 / 3 LL

π π πκ
λ

= = =  

CALCULATE:   
Substituting A = 1.00 cm, ( )2 15.0 Hz 30.0  rad/sω π π= =  and ( ) ( )3 / 3.00 m  rad /mκ π π= =  yields: 

( ) ( ) ( ) ( ) ( ) ( ) ( ), 2 0.0100 m sin cos 30.0 0.0200 m sin cos 30.0y x t x t x tπ π φ π π φ= + = + , 
where x is in meters and t is in seconds.  It is given that at t = 0, y = 0. This means cos 0φ =  or / 2.φ π=  
Thus,  

( ) ( ) ( ) ( ), 0.0200 m sin cos 30.0 / 2 .y x t x tπ π π= +  
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Next, using the angular frequency, 30.0  rad/s,ω π=  and the angular wave number,  rad/m,κ π=  the 
speed of a pulse on the string is: 

30.0  rad/s 30.0 m/s.
 rad/m

v ω π
κ π

= = =  

ROUND:  Three significant figures are required, so the answer is 30.0 m/s.v =  
DOUBLE-CHECK:  The standing wave equation is ( ) ( ) ( )2.00 cm sin cos 30.0 / 2 .y x tπ π π= +  From the 
sketch, note that the nodes (not including the ends of the string) are x = 1.00 m and x = 2.00 m. 
Substituting these values into the wave equation gives y = 0 as expected. 

15.47. THINK:  It is known that a string has a length of 3.00 m and a mass of 6.00 g. Both ends of the string are 
fixed. A standing wave on the string has a frequency, f = 300. Hz and three anti-nodes. The tension in the 
string is to be determined. 
SKETCH:   

 
 

RESEARCH:  The speed of a pulse on the string is given by /v T µ=  or / .v ω κ=  

SIMPLIFY:  Combining these equations gives:  T ω
µ κ
= ⇒  

2

.T ω
µ κ

 =  
 

 Using / ,m Lµ =  the tension is: 

2

.mT
L

ω
κ

  
=   
  

 Substituting / ,fω κ λ=  the tension becomes: ( )2
.mT f

L
λ 

=  
 

Because there are three 

anti-nodes, the wavelength of the standing wave is 2 / 3.Lλ =  Therefore,  
2

22 4 .
3 9

mT Lf mLf
L

  
= =  
  

 

CALCULATE:  Substituting 36.00 10  kg,m −= ⋅  L = 3.00 m and f = 300. Hz yields: 

( )( )( )− = ⋅ = 
 

234 6.00 10  kg 3.00 m 300. Hz 720. N.
9

T  

ROUND:  Rounding to three significant figures, 720. NT =  
DOUBLE-CHECK:  The computed value has correct units for a force, and 720. N is a reasonable tension 
for a system such as the one given in the question.  

15.48. THINK:  It is given that a glass of milk has a diameter of 10.0 cm. For every step the cowboy takes, the 
milk sloshes in the glass once.  The frequency of oscillation of the milk is the same as the number of steps 
the cowboy takes in one second. This means that the frequency is f = 2.00 Hz. If the sloshing amplitude is 
increasing with each step, this frequency must be near the resonant frequency for the standing wave shown 
in the sketch. 
SKETCH:   

 
RESEARCH:  The speed of the wave is λ=v f and λ = 2L . 
SIMPLIFY:  λ= = 2v f Lf  

CALCULATE:  ( )( )2 0.100 m 2.00 Hz 0.400 m/s.v = =  
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ROUND:  0.400 m/sv =  
DOUBLE-CHECK:  The calculated speed has appropriate units and is of realistic magnitude. 

15.49. THINK:  A wave function is given by ( ) ( ) ( )1 12.00 cm sin 20.0 m cos 150. s .y x t− −=  This expression must be 

converted to the form of ( ) ( ) ( ), , , .y x t f x t g x t= +  The speed of the wave on the string is unknown. 
SKETCH:  A sketch is not necessary. 

RESEARCH:  Using the trigonometric relation, ( ) ( )1 1sin cos sin sin ,
2 2

α β α β α β= + + −  

a wave function of the form ( ) ( )2 sin cosy A x tκ ω=  can be written in the form:  

( ) ( )sin sin .y A x t A x tκ ω κ ω= + + −  

SIMPLIFY:  Simplification is not necessary. 
CALCULATE:  Use the formula found in RESEARCH, using the values: 2A = 2.00 cm, 120.0 mκ −=  and 

1150. s .ω −=  The wave function can be rewritten as: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1 11 1, 1.00 cm sin 20.0 m 150. s 1.00 cm sin 20.0 m 150. s .y x t x t tx− −− −= + + −  

This means that ( ) ( ) ( ) ( )( )1 1, 1.00 cm sin 20.0 m 150. sf x t x t− −= +  and 

( ) ( ) ( ) ( )( )1 1, 1.00 cm sin 20.0 m 150. s .g x t x t− −= −  Using 120.0 mκ −=  and 1150. s ,ω −=  the speed of the 

wave is given by: 
1

1

150. s 7.50 m/s.
20.0 m

v ω
κ

−

−
= = =  

ROUND: The solution requires three significant figures. The answers are already expressed in the 
appropriate format. 
DOUBLE-CHECK:  The units for the speed are m/s, which are reasonable units for speed. The magnitude 
of the speed is reasonable for a wave. The functions f(x,t) and g(x,t) are both trigonometric functions, and 
are appropriate for left-moving and right-moving waves, respectively. 

15.50. THINK:  An array of wave emitters is shown in the figure in the Sketch step. It is known that L is much 
greater than d. 
SKETCH:   

 
 

RESEARCH:  The interference of two waves from two sources at a detector is constructive when the path 
difference from the sources is 0, , 2 ,  3 ,...λ λ λ  and destructive when the path difference is 

/ 2, 3 / 2,  5 / 2,...λ λ λ  The distance of the nth emitter to the detector is given by 2 2 2 .s L n d= +  
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SIMPLIFY: Bringing L outside the square root yields: 
2 2

21 .n ds L
L

= +  Since L>>d and using 

1 1 / 2,x x+ ≈ +  the distance, s, is: 
2 2

2

11 .
2

n ds L
L

  
≈ +     

  

(a)  The extra distance for the nth emitter is: 
2 2

.
2

n ds s L
L

∆ = − =  

(b)  If 2 / 2 ,d Lλ =  the extra distance for the nth emitter is: 
2 2

2
2

1 .
2 / 2

n ds n
L d L

λ λ 
∆ = = 

 
 Since s∆  is a 

multiple of the wavelength, the interference at the detector will be constructive. 

(c)  Since 2 / 2 ,d Lλ =  the distance, d, between the emitters is 2 .d Lλ=   

CALCULATE: (c)  Substituting 310  mλ −=  and 3 1.00 10  mL = ⋅ yields:  

( )( )3 32 10.0  m 1.00 10  m 2.00  m 1.414 m.d −= ⋅ = =  

ROUND:  (c)  d = 1.41 m 
DOUBLE-CHECK:  A distance of around 1 meter is much less than 1000 meters, as expected. 

15.51. THINK:  This problem is a superposition of three wave sources with three different frequencies, 

1 2.00 Hz,ω =  2 3.00 Hzω =  and 3 4.00 Hz.ω =  The speed of each wave is 5.00 m/s. The amplitudes of the 
waves are the same. The wave sources are located at the edges of a circular pool, as shown below. The 
displacement of a ball in the center of the pool must be plotted as a function of time. 
SKETCH:   

 
 

RESEARCH:  From the principle of superposition, the displacement of the ball is given by the sum of all 
the displacements due to the wave sources, that is, 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 1 1 1 2 2 2 2 3 3 3 3
1 2 3

sin sin sin .C C Cz t z t z t z t r t r t r t
r r r

κ ω φ κ ω φ κ ω φ= + + = − + + − + + − +  

SIMPLIFY:  Since 1 2 3 0φ φ φ= = =  and 1 2 3 ,r r r R= = =  the displacement, ( )z t  is: 

( ) ( ) ( ) ( )1 1 2 2 3 3sin sin sin .Cz t R t R t R t
R

κ ω κ ω κ ω = − + − + −   

Note that when / ,t R v<  the displacement, ( ),z t  is zero, since the waves have not reached the center of 

the pool. Using the speeds of the waves and the frequencies, the angular frequencies are 1 12 ,fω π=  

2 22 fω π=  and 3 32 ,fω π=  and the wave numbers are 1 1 / ,vκ ω=  2 2 / vκ ω=  and 3 3 / .vκ ω=  Assuming 

the amplitudes of the waves are all / 1 m,C R =  the displacement is given by: 
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( ) ( ) ( ) ( )31 2 22 2
sin sin sin ,

ff f
z t R vt R vt R vt

v v v
ππ π     

= − + − + −     
      

 

if 0,R vt− >  and ( ) 0z t =  if 0.R vt− <  If a new time variable, c / ,t t R v= −  is used, the above equation 

simplifies to: ( ) ( ) ( ) ( )c 1 c 2 c 3 csin 2 sin 2 sin 2 ,z t f t f t f tπ π π= + +  if c 0t >  and ( )c 0,z t =  if c 0.t <  

CALCULATE:  ( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )

1 1 1
c c c c

1 1 1
c c c

sin 2 2.00 s sin 2 3.00 s sin 2 4.00 s

sin 4  s sin 6  s sin 8  s

z t t t t

t t t

π π π

π π π

− − −

− − −

= + +

= + +

 

The time for the waves to reach the center of the pool is: 0
5.00 m 1.00 s.

5.00 m/s
Rt
v

= = = The plot of the 

displacement, ( ),z t  is given next. 

 
 

Note that ( )z t  does not depend on the location of the wave sources at the edges of the pool. This is 
because the distance to the center of the pool is the same regardless of the location of the sources at the 
edges of the pool. 
ROUND:  Rounding is not necessary. 
DOUBLE-CHECK:  The superposition of three waves is also a wave, which is consistent with the plot. 

15.52. THINK:  Four waves are interfering. Two of the waves are traveling in the positive x direction with 
angular frequencies ω ω=1  and ω ω=2 3 , and the other two waves are traveling in the negative x 

direction with angular frequencies ω ω=1  and ω ω=2 3.  The amplitudes of the four waves are the same 
and equal to A. The first two nodes produced by these waves must be determined. The values 

0.0250 kg/m,µ = 3000. rad/sω =  and 250. NF =  are given in the question.  
SKETCH:   

 
 

RESEARCH:  Using the superposition principle, the displacement of the string is: 
( ) ( ) ( ) ( )1 2 3 4, , , , .y y x t y x t y x t y x t= + + +  

Since the first two waves travel in the positive x direction and the last two waves travel in the negative x 
direction, the displacement can be written as: 

( ) ( ) ( ) ( )1 1 2 2 1 1 2 2sin sin sin sin .y A x t A x t A x t A x tκ ω κ ω κ ω κ ω= − + − + + + +  
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SIMPLIFY:  Using the trigonometric relation  

sin sin 2sin cos ,
2 2

α β α βα β + −   
+ =    

   
 

the above expression can be rewritten as: ( ) ( ) ( ) ( )1 1 2 22 sin cos 2 sin cos .y A x t A x tκ ω κ ω= +  The nodes can 

be determined by solving y = 0 for x at all time, t. This means that the conditions, ( )1sin 0xκ =  and 

( )2sin 0xκ =  must be satisfied. Therefore, 1x nκ π=  and κ π=2 ,x m  where n and m are integers. 

Substituting 1 1 / /v vκ ω ω= =  and 2 2 / / 3v vκ ω ω= =  into the conditions, it is found that /x v nω π=  
and / 3 ,x v mω π=  or /x nvπ ω=  and 3 / .x mvπ ω=  Therefore, the condition for the nodes is: 

3   3 .nv mv n mπ π
ω ω

= ⇒ =  

Since m is an integer, the nodes are located at 3 ,  1,2,3,...mvx mπ
ω

= =  

CALCULATE:  Using 250. N 100. m/s
0.0250 kg/m

Fv
µ

= = = the nodes are located at: 

( )3 100. m/s
 m.

3000. rad/s 10
m m

x
π π

= =  

The first two nodes are located at π=1 /10.0 mx  and π π= =2 2 /10.0 m / 5.00 m.x  
ROUND:  1 0.314 mx =  and 2 0.628 m.x =  
DOUBLE-CHECK:  The units of these calculated values are meters, which are the expected SI unit for 
distance.  

15.53. THINK:  The equation for a standing wave is ( ) ( )ω κ= 2 cos sin .y A t x  The mass density of a string is µ.  

The time-average kinetic energy and the time-average potential energy must be determined. 
SKETCH:   

 
 

RESEARCH:  Consider a small element of the string with a length, ∆ ,x  and a mass, ∆ .m  At a time, t, the 
transverse speed of the element ∆m  is = ∂ ∂/ .v y t  Therefore, the kinetic energy is: 

∂ ∆ = ∆  ∂ 

21 .
2

y
K m

t
 

The potential energy is given by the product of the tension F  and the distance the mass ∆m  must move, 
∆ .l  
SIMPLIFY:  The kinetic energy is given by 

( ) ( ) ( ) ( ) ( )ω ω κ ω ω κ∆ = ∆ = ∆2 2 2 2 2 2 2 21 4 sin sin 2 sin sin .
2

K m A t x A t x m  

The time-average of the kinetic energy is obtained by realizing that the time-average of ( )ω2sin t  is 1/2 

( )ω κ∆ = ∆2 2 2
ave sin .K A x m  

 
 



Chapter 15: Waves 

 735 

Substituting µ∆ = ∆ ,m x  the kinetic energy per unit of length is: 

( )µ ω κ∆  = ∆ 
2 2 2

ave

sin .K A x
x

 

The potential energy is given by the work done by the tension F  times the distance the mass moves in the 

same direction, = ∆ = ∆ .W U F l  We can see from the sketch that ( ) ( ) ( )∆ = ∆ + ∆2 2 2 .s x y  The distance the 

mass moves is ∆ = ∆ −∆ .l s x   We assume that the deflection of the string is small, which allows us to write 

( ) ( ) ( ) ( )
 ∆ ∆ = ∆ + ∆ = ∆ +   ∆  

2
2 2 2 2 1 .

y
s x y x

x
 

Because ∆ ∆ / 1,y x  we can write 

( )

( )
( )

( )

 ∆ ∆ = ∆ + ∆ ∆ ≈ ∆ +   ∆  
∆

∆ ≈ ∆ +
∆

∆ ∆ = ∆ −∆ = ∆ ∆ 

2
2

2

2

11 / 1
2

2

1 .
2

y
s x y x x

x

y
s x

x

y
l s x x

x

 

We can then write the potential energy as 

∆ ∆ = ∆ = ∆ ∆ 

2

.
2

yFU F l x
x

 

We can calculate ∆ ∆/y x  

( ) ( )κ ω κ
∆

=
∆

2 cos cos ,
y

A t x
x

 

which gives us 

( ) ( )( ) ( ) ( )κ ω κ κ ω κ∆ = ∆ = ∆
2 2 2 2 22 cos cos 2 cos cos .

2
FU A t x x F A t x x  

Since the time-average of ( )ωcos t  is 1/2, the time-averaged potential energy per unit length is then 

( ) ( ) ( )κ κ κ κ
∆

= =
∆

22 2 2 2ave cos cos .
U

F A x F A x
x

 

CALCULATE:  This step is not necessary. 
ROUND:  Rounding is not necessary. 
DOUBLE-CHECK:  The average value of the kinetic energy per unit length is 

µ ω=
∆

2 2ave 1 .
2

K
A

x
 

The average value of the potential energy per unit length is 

( )κ
∆

=
∆

2ave 1 .
2

U
F A

x
 

Since κ ω= / v  and µ =2v F  

( ) ωµ µ ω
 ∆  = =   ∆   

22
2 2 2ave 1 1 .

2 2
U

v A A
x v

 

So the average value per unit length of the kinetic energy is equal to the average value of the potential 
energy per unit length, which means our results are correct. 

15.54. A sinusoidal wave is moving in the positive x direction. This means that the wave function is of the form 
( )sin .y A x tκ ω φ= − +  Note that the negative sign in from of ω  means the wave travels in the positive x 
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direction. The next step is to determine ω,  κ  and φ.  Using the wavelength of the wave, the angular wave 
number, κ , is: 

π π πκ π
λ

= = = =
2 2  rad/m 0.5  rad/m.

4 m 2
 

Similarly, using the frequency of the wave, the angular frequency can be determined as 
( )ω π π π= = =2 2 50.0 Hz 100.  rad/s.f  The constant phase, φ ,  is an arbitrary value and it is assumed to be 

zero. The amplitude of the wave is A = 3.00 cm. Therefore, the wave equation is given by 
( ) ( )π π= −3.00 cm sin 0.5 100. .y x t  

15.55.  (a) To determine the frequency of the fundamental note of a guitar string, the speed of a wave on the 
string is needed. Using the density of the string, s/ ,m Lµ =  the speed of wave is:  

s .
TLTv
mµ

= =  

The fundamental frequency is then: s 1 .
2 2

TLvf
L m L

 
= =  

 
Note that L is the distance between two fixed 

ends of the guitar string. Substituting m = 10.0 g = 0.0100 kg, L = 0.650 m, s 1.00 mL =  and T = 81.0 N 
into the above equation yields: 

( )
( )

81.0 N 1.00 m 1 69.2 Hz.
0.0100 kg 2 0.650 m

f
 

= =  
 

 

(b)  Replacing the mass with m = 16.0 g = 0.0160 kg, the frequency becomes: 

( )
( )

81.0 N 1.00 m 1 54.7 Hz.
0.0160 kg 2 0.650 m

f
 

= =  
 

 

15.56. A sinusoidal wave is propagating in the negative x direction with a speed of 120. m/s. This implies that the 
wave equation is of the form ( ) ( ), sin .y x t A x tκ ω φ= + +  From the range of displacements, 

Range/2 6.00 cm/2 3.00 cm.A = = =  The period of the oscillation is T = 4.00 s, since the particle swings 
back and forth in 4.00 seconds. Therefore, the angular frequency is: 

2 2 0.500  rad/s.
4.00 sT

π πω π= = =  

From the speed, v, and the angular frequency, the angular wave number is: 
0.500  rad/s 0.00400  rad/m.

120. m/sv
ω πκ π= = =  

At t = 0, the displacement is y = 0 and the particle moves to positive values of y immediately after t = 0. 
This means that /y t∂ ∂  is positive at t = 0. Substituting t = 0 and x = 0 into the wave equation, the phase 

constant, ,φ  is found to be: ( )0 sin 0 0 0 sin 0 , with 0,1, 2 ...y A m m= = + + = ⇒ = ⇒ = =φ φ φ π  
Substituting t = 0 and x = 0 into the expression for / ,y t∂ ∂  the second condition for the phase constant is 

( )cos 0 0 a positive value.
y

A
t

ω φ
∂

= + + =
∂

 

This means that cosφ  must be positive. Therefore, the phase constant is , with 0, 2, 4 ...,m mφ π= =  so 

choose 0.φ =  Collecting all parameters, the wave equation is ( ) ( )3.00 cm sin 0.00400 0.500 .y x tπ π= +   

15.57. (a)  Here, there is a half period of the oscillation. From the figure, / 2 40.0 ms,T =  therefore the period is 

( )2 40.0 ms 80.0 ms.T = =  

(b)  Since this is a sinusoidal wave, ( ) ( )sin ,y t A tω=  where 2 / .Tω π=  The maximum transverse speed is 

( )t / cos ,v dy dt A tω ω= =  at t = 0, that is,  
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( )max
2 2 10.0 cm 0.785 cm/ms.

80.0 ms
v A A

T
π πω= = = =  

Converting to SI units, max 7.85 m/s.v =  

(c) The maximum acceleration is obtained from 2 2/ .a d y dt=  Differentiating ( )y t  twice gives 

( )2 sin .a A tω ω= −  Therefore, the maximum acceleration is: 

( )
2 2

2 2 2
max 3

2 2 0.100 m 616.8 m/s 617 m/s .
80.0 10  s

a A A
T
π πω

−

   
= = = = ≈   ⋅   

 

15.58. It is given that a wire has a mass, m = 10.0 g, and a length, L = 50.0 cm. The tension of the wire is 
50.0 NT =  and the two ends of the wire are held rigidly. 

(a)  The speed of a wave on the wire is given by / .v T µ=  Using / ,m Lµ =  the speed is / .v TL m=  
Substituting m = 10.0 g = 0.0100 kg, L = 0.500 m and T = 50.0 N gives: 

( )50.0 N 0.500 m
50.0 m/s.

0.0100 kg
v = =  

(b)  The fundamental frequency is: 
( )
50.0 m/s 50.0 Hz.

2 2 0.500 m
vf
L

= = =  

(c)  The third harmonic frequency is: ,
2
vf n
L

=  with n = 3: 
( )
50.0 m/s3 150. Hz. 

2 0.500 m
f

 
= =  

 
 

15.59. The wave speed on a brass wire is given by / .v T µ=  The linear density, ,µ  is equal to ,Aµ ρ=  where 
2A rπ=  is the cross-sectional area of the wire. Therefore, the speed of the wave is: 

2 .T Tv
A rρ ρπ

= =  

Inserting 30.500 mm 0.500 10  m,r −= = ⋅  T = 125 N and 3 38.60 10  kg/mρ = ⋅  yields: 

( ) ( )23 3 3

125 N 136.04 m/s 136 m/s.
8.60 10  kg/m 0.500 10  m

v
π −

= = =
⋅ ⋅

 

15.60. The wires are made of the same material, so assume that the densities of both wires are the same. Say the 
density is .ρ  The linear density of a wire is related to the volume density, ,ρ  by 2 .A rµ ρ ρπ= =  
 

 
 

The speed of a wave on the first wire is 1 1/ .v T Aρ=  From this, the tension is found to be 2
1 1 .T A vρ=  

The speed of a wave on the second wire is 2 2/ .v T Aρ=  Substituting 2
1 1 ,T A vρ=  gives: 

2 2
1 1 1 1

2 1 2 12
2 22

0.500 mm  50.0 m/s 25.0 m/s.
1.00 mm

A v r r
v v v v

A rr
ρ π
ρ π

   
= = ⇒ = = =   
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15.61. The fundamental frequency of a string is given by f = v/2L. Substituting / ,v T µ=  gives:  

1 1 .
2 2

Tf T
L Lµ µ

= =  

The ratio of two fundamental frequencies of the string is: 

( )
( )

11 1

2 22

/ 2
.

/ 2

T Lf T
f TT L

µ

µ
= =  

Therefore, the ratio of tensions in the two strings is: 
2

1 1

2 2

.
T f
T f

 
=  
 

 Substituting 1 262 Hzf =  and 

2 1046.5 Hzf =  yields: 
2

1

2

262 Hz 0.06268 0.0627.
1046.5 Hz

T
T

 
= = ≈ 
 

 

15.62. A sinusoidal wave has an equation of the form ( )sin .y A x tκ ω= −  The maximum displacement of a point 

on the string is equal to the amplitude, A. The speed of the point is given by 
( )/ cos .v y t A x tω κ ω= ∂ ∂ = − −  This means that the maximum speed is max .v Aω=  The acceleration of the 

point is: 

( )
2

2
2 sin .
y

a A x t
t

ω κ ω
∂

= = − −
∂

 

This implies that the maximum acceleration is 2
max .a Aω=  Using max ,v Aω=  the maximum acceleration 

becomes ( )2 2
max max max/ / .a v A A v A= =  Inserting A = 2.00 cm = 0.0200 m and max 1.00 m/sv =  yields: 

( )2

2
max

1.00 m/s
50.0 m/s .

0.0200 m
a = =  

15.63. THINK:  Two strings are connected and have the same tension, T. The linear mass density of string 2 is 

2 13 .µ µ=  If the speed, the frequency and the wavelength of a wave on string 1 are 1 ,v  1f  and 

1 ,λ respectively. The corresponding variables for string 2, 2 ,v 2f  and 2 ,λ can be determined in terms of 
string 1’s variables. 
SKETCH:   

 
 

RESEARCH:  It is known that when a wave travels to a different material or medium, the frequency of the 
wave does not change. This means that the frequency of string 2, 2 ,f  is equal to the frequency of string 1, 

that is, 2 1.f f=  The speeds of the wave on string 1 and string 2 are 1 1/v T µ=  and 2 2/ .v T µ=  

SIMPLIFY:  Since 1v  and 1µ  are known, the tension is given by 2
1 1 .T vµ=  Substituting this expression 

into 2 ,v  the speed of the wave on string 2 becomes: 
2

1 1 1
2 1

2 2

.
v

v v
µ µ
µ µ

= =  
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Using 2 13 ,µ µ= the above equation simplifies to 2 1 / 3.v v=  The wavelength of the wave on string 2 is 

determined using the relation 2 2 2 .v fλ=  Therefore, 2 2 2/ .v fλ =  Substituting 2 1f f=  and 2 1 / 3,v v=  

gives 2 1 1/ 3 .v fλ =  Since 1 1 1/ ,v f λ=  this becomes 2 1 / 3.λ λ=  Therefore, 2 1 ,f f=  2 1 / 3v v=  and 

2 1 / 3.λ λ=  
CALCULATE:  This step is not necessary. 
ROUND:  This step is not necessary. 
DOUBLE-CHECK:  It is expected that as the speed of a wave decreases, the wavelength of the wave also 
decreases. 

15.64. THINK:  A cable has a length of 2.70 m, a diameter of 1.00 cm and a density of 37800 kg/m .  The tension 
in the cable is 840. N. The fundamental frequency of vibration of the cable must be determined. 
SKETCH:   

 
RESEARCH:  The fundamental frequency of vibration is given by ( )/ 2f v L= . The speed of a wave on the 

cable is given by / ,v T µ=  where the linear mass density is equal to .Aµ ρ=  A is the cross-sectional 

area of the cable and is given by 2 2 / 4.A r Dπ π= =  

SIMPLIFY:  The fundamental frequency is given by: 2 2

1 1 .
2 / 4

T Tf
L LD Dρπ ρπ

= =  

CALCULATE:  Substituting L = 2.70 m, −= ⋅ 21.00 10  m,D 37800 kg/mρ =  and T = 840. N yields: 

( ) ( )π −
= =

⋅
23 2

1 840. N 6.857 Hz.
2.70 m 7800 kg/m 1.00 10  m

f  

ROUND:  f = 6.86 Hz 
DOUBLE-CHECK:  This result is reasonable. 

15.65. THINK:  A wave function is given as ( ) ( ), 0.0200sin 5.00 8.00 .y x t x t= −  The wavelength, the frequency 

and the velocity of the wave must be determined. If the mass density is 0.10 kg/m,µ =  the tension on the 
string can be determined. 
SKETCH:  A sketch is not necessary. 
RESEARCH:  The wave function can be expressed as ( )sin .y A x tκ ω= −   

SIMPLIFY:  Comparing the above equation with the given equation yields 15.00 m ,κ −=  18.00 sω −=  and 
A = 0.0200 m. The wavelength can be determine from 2 /λ π κ=  and the frequency can be determined 

from / 2 .f ω π=  The tension is determined from 2/   .v T T vµ µ= ⇒ =  
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CALCULATE:   

(a) The wavelength is given by: 
1

2 1.2566 m.
5.00 m

πλ
−

= =  The frequency is given by: 

18.00 s 1.2732 Hz.
2

f
π

−

= =  

(b)  Using the values of λ  and f, the speed of the wave is ( )1.26 m 1.27 Hz 1.6002 m/s.v fλ= = =  

(c)  The tension in the string is ( )( )230.10 kg/m 1.60 m/s 0.256 N.T = =  

ROUND:   
(a)  λ =1.26 m,  f = 1.26 Hz 
(b)  v = 1.60 m/s 
(c)  T = 0.256 N 
DOUBLE-CHECK:  The units of the calculated results are standard SI units. This supports the results as 
reasonable. 

15.66. THINK:  A standing wave is produced in a bathtub of length  1.50 m,L = holding water with a depth of d 
= 0.380 m. The frequency of the standing wave can be determined from considering the surface speed of 
the wave and its wavelength. 
SKETCH:   

 
RESEARCH:  Use /f v λ=  and surface .v gd=  Assume it is an n = 1 standing wave, and 2 .Lλ =  

SIMPLIFY:  
2
gdvf
Lλ

= =  

CALCULATE:  
( )( )

( )

2

1
9.81 m/s 0.380 m

0.6436 s
2 1.50 m

f −= =  

ROUND:  Since L and d have three significant figures, the result should be rounded to 10.645 s .f −=  
DOUBLE-CHECK:  The period is T = 1/f = 1.6 s and this is a reasonable period for a standing wave in a 
bathtub. 

15.67. THINK:  The guitar string has length, l = 0.800 m, and it is oscillating at its fundamental frequency, which 
means that it has one antinode in the middle, and thus the guitar string length is half of the wavelength 
(see sketch). The wave speed, v, can be determined from knowing the wavelength and the frequency, 
which is also given (261.6 Hz). But to find the maximum speed of the midpoint of the string, max ,v we have 
to take the derivative with respect to time. 
SKETCH:   

 
RESEARCH:  The wave speed is given by .v fλ=  For n =1, 1 2 .lλ =  To determine max ,v  consider the 

standing wave equation ( ) ( ) ( ), 2 sin cos .y x t A x tκ ω=  For the midpoint   sin κ x( )=1 , and thus the 

midpoint oscillates in times according to   ymid t( )= 2Acos ωt( ).  Taking the derivative with respect to time, 

we find   vmid t( )= −ω2Asin ωt( ).  
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SIMPLIFY:  The velocity of the midpoint reaches its maximum value when the sine has a value of  −1 . We 
also use   ω = 2π f . And finally we use the fact that the initial displacement of the midpoint from 
equilibrium   ∆y0 = 2.00 mm  was specified, which means that   2A = ∆y0 . 

  

v = λ1 f1 = 2l f1

vmax,mid = 2Aω = ∆y0 2π f1

 

CALCULATE:   v = 2 0.800 m( ) 261.6 Hz( )= 418.56 m/s,    vmax,mid = 2π 2.00 mm( ) 261.6 Hz( )= 3.287 m/s   
ROUND:  All the given values have three significant figures, so the results should be rounded to v = 419. 
m/s and   vmax,mid = 3.29 m/s.  

DOUBLE-CHECK:    vmax,mid  should be much less than v, because in the transverse direction the string is 
moving at this speed, but in the wave direction, no part of the string actually moves at this speed. 

15.68. The standing wave is represented by ( ) ( ) ( )−= ⋅ 2, 1.00 10 sin 25.0 cos 1200. .y x t x t  The string has a linear 

mass density 0.0100 kg/mµ =  and a mass, m, hangs on one end of the string. In addition, n = 3. By 

comparison with the general standing wave equation, ( ) ( ) ( ), 2 sin cos ,y x t A x tκ ω=  and taking units to be 

in meters and seconds for x and t, respectively: 1
3 3

3

2 225 m    m,
25 

π πκ λ
λ

−= = ⇒ =   

3 32 1200 Hz fω π= = ⇒  ( )2
3

1 6.00 10  Hz,f
π

= ⋅    32 0.0100 m 5.00 10  m.A A −= ⇒ = ⋅  

(a)  The length, L, of the string can be determined from: 
λ λ π π   = = = = ≈     

3 3 2 33  m  m 0.377 m.
2 2 2 25.0 25.0

nL n  

(b)  The velocity is: πλ
π

 ⋅
= = = 

 

2

3 3
2 6.00 10  m/s 48.0 m/s.

25.0
v f  

(c)  The mass is m = T/g, by Newton’s third law. From / ,v T µ=  2 .T v µ=  Then: 

( ) ( )22

2

48.0 m/s 0.0100 kg/m
2.349 kg 2.35 kg.

9.81 m/s
vm

g
µ

= = = ≈  

15.69. The known values for the transverse harmonic wave are 0.200 m,λ =  f = 500. Hz, and A = 0.0300 m. It 
travels in the ẑ+  direction and its oscillations occur in the xz-plane. At t = 0 s, ( ) ( )0 0, ,0 .x z A=  
(a)   

 
 

(b)  ( )( )0.200 m 500. Hz 100. m/sv fλ= = =  

(c)  2 2 10.0  rad/m 31.4 rad/m
0.200 m

π πκ π
λ

= = = ≈  

(d)  30.0 g/cm 0.0300 kg/mµ = =  
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From / ,v T µ=  ( ) ( )22 100. m/s 0.0300 kg/m 300. N.T v µ= = =  

(e)  For a traveling wave, in general, ( ) ( )0, sin .y x t A x tκ ω φ= − +  By inspection, 0 / 2.φ π=  Then: 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

ππ π

π π

 = = − + 
 

= −

, 0.0300 m sin 10.0  rad/m 2  rad 500. Hz  rad
2

0.0300 m cos 10.0  rad/m 1000.  rad/s .

x D z t x t

x t
 

15.70. THINK:  A cable of mass, M, and length, L = 5.00 m, hangs from a support. Determine the time, ,t ′  for a 
small transverse displacement to propagate from the bottom to the top of the cable. Recall that tension is 
proportional to the mass of the cable. 
SKETCH:   

 
 

RESEARCH:  As the wave travels upward, the tension in the cable at the location of the transverse 
displacement will increase as the mass below the displacement increases. In general, / ,m Lµ =  so the 
mass of the cable below the displacement at height y, is m yµ=  (where y = 0 at the bottom of the cable). 

Then the tension as a function of height is .T mg ygµ= =  The traveling wave’s velocity is / ,v T µ=  and 

v = dy/dt. By separation of variables, and integrating y over the length of the cable, the travel time, ,t ′  can 
be determined. 

SIMPLIFY:  / /v T yg ygµ µ µ= = =  
Equating the velocity expressions gives: 

( ) ( )
1 11 1
2 22 2

0 0
0

      2 2 .
L

L tdy Lyg yg dy dt yg dy dt t g y
dt g

′ −− −  
′= ⇒ = ⇒ = ⇒ = = 

 
∫ ∫  

CALCULATE:  ′ = =2

5.00 m2 1.4278 s
9.81 m/s

t  

ROUND:  Since L has three significant figures, ′ =1.43 s.t  
DOUBLE-CHECK:  The units of the result are the correct units of time. This is a reasonable travel time 
for a pulse along a 5.00 m cable. 
 

Multi-Version Exercises 

15.71. THINK:  The mass and total length of the rubber band can be used to find its mass density. The mass 
density, tension, and the length of the standing wave can be used to find the lowest-frequency 
(fundamental frequency) vibration.    

 SKETCH: Imagine that the standing wave is on the front portion of the rubber band.  

 
 RESEARCH:  Since this is a transverse wave on a rubber band, the velocity can be computed from the 

tension F and linear mass density μ using the equation /v F µ= . The linear mass density /m lµ =  is 
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computed from the total length and total mass of the rubber band. The resonance frequency of the 

fundamental frequency is given by 1 2
vf
L

= , where L is the length of the vibrating portion of the rubber 

band.  
 SIMPLIFY: Since the velocity /v F µ= , the fundamental frequency is given by  

1

/
2 2 2

Fv Ff
L L L

µ
µ

= = = . Finally, express the mass density in terms of the total length and total mass of 

the rubber band to get 1 2 /
Ff

L m l
= . 

 CALCULATE:  According to the problem statement, the tension on each side of the rubber band is F = 
1.777 N, the total length of the rubber band is 20.27 cm = 0.2027 m, the length of the vibrating portion of 
the rubber band is 8.725 cm = 0.08725 m, and the mass of the rubber band is 0.3491 g = 3.491·10−4 kg. The 
fundamental frequency is  

1

4

2 /
1.777 N

2 0.08725 m 3.491 10  kg / 0.2027 m
184.0772987 Hz

Ff
L m l

−

=

=
⋅ ⋅

=

 

 ROUND: All of the numbers in this problem have four significant figures and the final answer will also 
have four figures. The lowest frequency of a vibration on this part of the rubber band is 184.1 Hz.  
DOUBLE-CHECK: It is possible to stretch a rubber band with your hands so a low frequency sound is 
produced when it is plucked. A frequency of 184.1 Hz corresponds approximately to the F-sharp below 
middle C on a piano. It is possible to reproduce this with a rubber band at home, confirming that the 
answer is reasonable. 

15.72. 1 2 /
Ff

L m l
=  

( )( ) ( )

2 2
1

2 23

4

4 0.4245 10  kg 0.08117 m 184.2 Hz

0.2091 m
1.825 N

mL f
F

l
−

=

⋅
=

=

 

15.73. 1 2 /
Ff

L m l
=  

( ) ( ) ( )

1

3

2 /

1.851 N

2 254.6 Hz 0.1701 10  kg / 0.2155 m

9.510 cm

FL
f m l

−

=

=
⋅

=

 

15.74. THINK:  Assuming that Sun’s power is emitted uniformly from every point on the spherical surface, the 
power per unit area can be computed for a given orbital radius. It is then possible to compute the power 
intercepted by the solar panel using the area and efficiency of the solar panel. 
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 SKETCH: The sun and satellite are not shown to scale. Only the solar panel portion of the satellite is 
shown.  

 
 RESEARCH:  The area of the solar panel is 2 .A d= The surface area of a sphere or radius r is 24 rπ . The 

power of the sun PSun is distributed evenly, so the power intercepted by the solar panel is Sun
2 .

4
P

P A
rπ

= ⋅  The 

solar panel is not 100% efficient, so the power delivered is delP Pε= , where ε is the efficiency of the solar 
panel.  

 SIMPLIFY: First, use 2A d=  to find the power of intercepted by the solar panel,  
2

Sun Sun
2 24 4

P d P
P A

r rπ π
= ⋅ = . 

The power delivered is then 
2

Sun
del 24

d P
P P

r
ε ε

π
= = . 

 CALCULATE:  According to the question, the efficiency of the solar panel is ε = 16.57% = 0.1657, the 
radius of the satellite’s orbit is r = 4.949·107 km = 4.949·1010 m, and the total power output of the Sun is 
3.937·1026 W. Since the edges of the square solar panel are each d = 1.459 m long, the power provided by 
the solar panel is 

( )
( )

2
Sun

del 2

2 26

210

4
1.459 m 3.937 10  W

0.1657  
4 4.949 10  m

4511.840469 W
4.511840469 kW

d P
P

r
ε

π

π

=

⋅ ⋅
=

⋅

=
=

 

 ROUND: The numbers in the problem all have four significant figures, so the final answer should also 
have four figures. The total power provided to the satellite by the solar panel is 4512 W. 

DOUBLE-CHECK: The sunlight hitting the solar panel is about 
2

23
2 6.916 10

4
d

rπ
−= ⋅ of the total sunlight. 

The power of the solar panel should have an order of magnitude about 10−23 times the power output of the 
sun. 26 23 310 10 10−⋅ = , so the final answer (4.512·103) is indeed of an order about 10−23 times the power 
output of the sun (3.937·1026 W), confirming that the final answer is reasonable.  
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15.75. 
2

Sun
del 24

d P
P

r
ε

π
=  

( )

del

Sun

3
10

26

2

5.215 10  W2 6.103 10  m
0.1687 3.937 10  W

1.917 m

P
d r

P
π
ε

π

 
=  

 

 ⋅
= ⋅  ⋅ 
=

 

15.76. 
2

Sun
del 24

d P
P

r
ε

π
=  

( )
( )

2
del

2
Sun

210 3

2 26

4

4 7.257 10  m 5.768 10  W
3.937 10  W2.375 m

0.1719 17.19%

Pr
d P
πε

π

 
=  

 

⋅  ⋅
=  ⋅ 
= =

. 

15.77. THINK:  The mass density of the string and tension on the string are given in the problem. To find the 
frequency, it is necessary to determine at which harmonic the string is oscillating, which can be deduced 
from the image. 
SKETCH: Use the image from the text for your sketch, labeling the wavelength and each spot where the 
amplitude of the wave is maximal: 

 
 RESEARCH:  Looking at the picture, there are four places where the amplitude is maximal, so the string is 

oscillating in its fourth harmonic. This means that the frequency of the oscillation is given by the equation 

4 4
2

Ff
L µ

= . Since the mass density and length of the string are given in grams and centimeters while the 

tension is given in Newtons, the conversion factors of 100 cm = 1 m and 1000 g = 1 kg will be needed. 

 SIMPLIFY: Using algebra, rewrite the equation 4 4
2

Ff
L µ

=  as 4
2 .Ff
L µ

=  

 CALCULATE:  The problem statement includes the information that the total length of the string  
L = 116.7 cm = 1.167 m, the string’s mass density is 0.2833 g/cm = 0.02833 kg/m, and the tension on the 
string is 18.25 N. The frequency is thus 

4

2

2

2 18.25 N
1.167 m 2.833 10  kg/m
43.49779947 Hz.

Ff
L µ

−

=

=
⋅

=

 

 ROUND: The values in the question all have four significant figures. The harmonic number (an integer) is 
considered to have infinite precision, so the final answer should also have four figures. The string is 
vibrating at 43.50 Hz.  
DOUBLE-CHECK: The velocity of the wave is given by / 25.38 m/s.v F µ= =  Since v f λ= , this means 
that, if the frequency is 43.50 Hz and the velocity is 25.38 m/s, the wavelength is  
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58.35 cm. This agrees with the observation that the wavelength is half of the total length of the string  
(L / 2 = 58.35 cm), confirming that the calculated frequency was correct.  

15.78. 4
2 Ff
L µ

=  

( )( ) ( )

2 2
4

2 22

1
4
1 1.291 10  kg/m 93.63 Hz 1.175 m
4
39.06 N

F f Lµ

−

=

= ⋅

=

 

15.79. 4
2 Ff
L µ

=  

4

2

2

2 10.81 N
59.47 Hz 1.747 10  kg/m
83.66 cm

FL
f µ

−

=

=
⋅

=
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Chapter	16:		Sound	
	

Concept	Checks	

16.1.	d		16.2.	a		16.3.	b		16.4.	e		16.5.	a		16.6.	b		16.7.	a		16.8.	d			
	

Multiple‐Choice	Questions	

16.1.	b		16.2.	e		16.3.	c		16.4.	e		16.5.	c		16.6.	e		16.7.	a		16.8.	b		16.9.	b		16.10.	c		16.11.	b		16.12.	a		16.13.	a			

16.14.	c			
	
Conceptual	Questions		

16.15. The	speed	of	sound	in	a	solid	is	much	greater	than	the	speed	of	sound	in	air,	so	the	sound	from	the	
train	in	the	tracks	will	be	detected	before	the	sound	from	the	train	in	the	air.	

16.16. As	mentioned	 in	 the	 chapter,	 sound	 requires	 a	medium	 for	propagation.	By	 evacuating	 the	 jar	 to	
lower	and	lower	pressures,	the	air	molecules,	whose	motion	transmits	the	sound,	are	removed,	thus	
eliminating	the	medium	in	which	the	sound	propagates.	As	the	jar	is	evacuated,	 it	will	take	longer	
and	 longer	 for	 the	alarm	sound	to	 transmit	 to	 the	glass	walls	of	 the	 jar	until	all	air	molecules	are	
removed	and	no	sound	is	heard	anymore.	

16.17. Presuming	you	are	the	same	distance	from	each	engine,	the	detection	of	audible	beats,	or	recurring	
pulses,	 would	 suggest	 the	 engines	 are	 not	 perfectly	 synchronized.	 If	 one	 is	 1%	 faster,	 or	

5252 / min,f   	then	their	beat	frequency	would	be	 beat 52 / min,f f f   	or	 beat 0.87 Hz 1 Hz.f   	
To	detect	this	with	a	wrist	watch,	you	would	hear	the	engine	noise	increase	in	volume	once	every	
second.	To	get	a	more	accurate	beat	frequency,	you	would	need	to	count	the	beats	for	a	longer	time	
interval.	

16.18. Sound	travels	faster	under	water,	so	it	would	be	more	difficult	to	discern	any	difference	in	time	it	
takes	sound	to	reach	one	ear	over	the	other.	Sound	waves	would	therefore	seem	to	be	located	more	
in	the	front	or	back	than	to	the	side	of	where	the	sound	wave	is	actually	coming	from.	

16.19. By	considering	the	Doppler	shift	of	the	sound	of	the	school	bell,	 the	velocity	of	 the	wind	does	not	
affect	the	frequency	of	the	school	bell.	The	velocity	of	the	wind	will	affect	the	velocity	of	the	sound	
as	the	medium	in	which	the	sound	travels	is	itself	moving.	Given	that	 ,v f 	and	f	is	unaffected,	the	
wavelength	must	change	since	the	velocity,	v,	changes.	

16.20. As	the	car	approaches	the	two	frequencies,	f	and	 f  ,		increase	because	of	the	Doppler	shift:	

sound
o

sound car

,
v

f f
v v

 
  

 
	 sound

o
sound car

.
v

f f
v v

 
   

 
	

In	addition,	the	observed	beat	frequency,	 beat,o ,f 	increases:	

 sound
beat,o o o

sound car

.
v

f f f f f
v v

 
     

 
	

As	 the	 car	 passes	 the	 pedestrian,	 assuming	 the	 pedestrian	 is	 directly	 beside	 the	 car’s	 path,	 the	
frequencies	and	the	beat	frequency	drop	suddenly,	and	remain	at	this	lower	frequency	while	the	car	
moves	away,	according	to	the	Doppler	shift:	

sound
o

sound car

,
v

f f
v v

 
  

 
		. sound

o
sound car

,
v

f f
v v

 
   

 
		  sound

beat,o o
sound car

.
v

f f f
v v

 
  

 
					

16.21. Sound	cannot	be	generated	in	the	vacuum	that	surrounds	the	Moon,	as	there	is	no	medium	for	the	
sound	 to	 propagate.	 Sound	waves	 can	 travel	 in	 the	 solid	matter	 that	makes	 up	 the	Moon.	 These	
waves	would	be	more	“felt”	than	“heard”.	
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16.22. Wave	1	is	described	by	the	equation	    1 , sin .y x t A x t   	Wave	2	is	described	by	the	equation	

      2 , sin .y x t A x t         		The	wave	packet	is	shown	below.	

	

x 	 is	 equal	 to	 sound beat .v T 	 Consider	 beatf :	  beat 1 2 sound sound 1 2
1 2

1 1 2 .f f f v v   
 

      	 Then,	

 
beat

sound2
f

v



  and	      

beat sound beat
sound beat

sound beat sound

1 .
2 2 2

f v f
x v T

v f v


  
   

          
   

	

16.23. To	the	nearest	orders	of	magnitude,	assume	you	are	a	distance,	r	 	10	m	from	the	convertible	and	

you	hear	the	music	at	a	sound	level	of	 100 dB.  	Then,	  /10 12 2 10 2 2
010 10  W/m 10 10  W/m .I I      	

Assume	the	people	in	the	car	are	a	distance, driver 0.5 m,r  	from	the	speakers.	Then:	
2 2

2driver
driver

driver driver

 4 W/m .
I r r

I I
I r r

   
      
   

	

This	 intensity	 translates	 into	 a	 sound	 level	 of	  driver driver 010log / 126 dB 130 dB.I I    	 This	 is	 as	

loud	as	a	jet	taking	off	from	an	aircraft	carrier	and	the	driver’s	ears	will	not	be	able	to	sustain	this	
without	damage.	

16.24. By	pouring	water	 into	 the	bottle,	 the	wavelength	of	 the	 fundamental	 frequency	 is	decreased.	The	
bottle	is	similar	to	a	pipe	with	one	open	end	and	adding	water	is	analogous	to	shortening	the	pipe.	
Since	 soundv 	is	constant,	the	frequency,	or	pitch,	must	increase.	

	
Exercises	

16.25. Assume	 sound 343 m/s.v  	

	
In	t	 	0.500	s,	the	sound	travels	a	distance,	d.	It	travels	from	your	position,	where	you	first	hear	it,	to	
the	 tall	 building	 and	 back	 to	 your	 position.	 Note	 the	 distance	 between	 the	 clock	 tower	 and	 the	
building	is	also	d.	Now,	solving	gives	   343 m/s 0.500 s 172 m.d   	

	

16.26. The	distance	between	the	farmers	is	d	 	510	m.	The	travel	time	for	the	sound	is	t	 	1.5	s.	Consider	
   331 0.6 / C  m/s.v T T   	Then,	  / 331 0.6 / C  m/s.v d t T    This	implies	that:	

    
     

/ 331 510 / 1.50 331
  C  C 15.0 C.

0.6 0.6
d t

T 	
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16.27. In	this	problem,	the	density	of	an	air	sample	 is	given	as	 31.205 kg/m ,  	and	the	bulk	modulus	 is	
5 21.42 10  N/m .B   	Determine	 a 	the	speed	of	sound	in	the	air	sample	and	 b 	the	temperature	of	

the	air	sample.	
a 	 	 The	 relationship	 between	 the	 speed	 of	 a	 wave,	 v,	 in	 a	medium	 of	 density,	 , 	 and	 the	 bulk	
modulus,	B,	is	given	by:	

5 2

3

1.42 10  N/m 343 m/s.
1.205 kg/m

B
v




   	

b 	The	 temperature	dependent	wave	 speed	 for	 sound	 is	 given	by	 the	 relation,	   331 0.6 .v T T  	

Therefore,	if	the	speed	is	known,	the	temperature	can	be	determined	by:	
 

    
331 343 331 12 20.0 C.

0.6 0.6 0.6
v

T 	

The	temperature	of	the	air	sample	is	  20.0 C.T 	

16.28. THINK:		Determine	the	amount	of	time	it	takes	to	hear	the	splash	of	a	stone	after	dropping	it	down	a	
well.	It	is	given	that	the	well	is	9.50	m	deep,	and	the	speed	of	sound	in	air	is	343	m/s.	First,	calculate	
the	time	it	takes	the	stone	to	reach	the	water	in	the	well	 9.50	m	down ,	and	then	the	time	it	takes	
for	 the	 sound	wave	 to	make	 the	 trip	 up	 to	 your	 ear.	 The	 total	 time	will	 be	 the	 sum	of	 these	 two	
times.	
SKETCH:			

	
RESEARCH:	 	To	determine	the	 time	 it	 takes	 for	 the	stone	to	drop	down	to	 the	well	water,	use	 the	

kinematic	equation	for	constant	acceleration,	 2
0 1 1

1 ,
2

d v t at  	where	 in	this	case,	 29.81 m/s .a g  	

Since	the	stone	is	being	dropped,	it	is	clear	that	its	initial	speed,	 0 ,v 	is	zero.	Therefore,	

2
1 1

1 2 .
2

d
d gt t

g
   	

Now,	to	determine	the	time	it	takes	the	sound	wave	to	reach	your	ear,	recall	that	the	basic	definition	
of	speed	is	 / .v d t 	Therefore,	 2 / .t d v 	

SIMPLIFY:		Putting	all	the	expressions	together:	 1 2
2 .d d

t t t
g v

    	

CALCULATE:		
 

2

2 9.50 m 9.50 m 1.419 s
343 m/s9.81 m/s

t    	

ROUND:		Since	the	values	are	given	to	three	significant	figures,	the	result	should	be	rounded	to	t	 	
1.42	s.	

DOUBLE‐CHECK:	 	
2

2

m sm m m s
= s.

m/s mm/s m

                     
             

	 	 Dimensional	 analysis	 confirms	 that	

the	answer	has	the	correct	units.	Note	that	the	stone’s	speed	during	free‐fall	down	the	well	is	always	
quite	significantly	below	the	speed	of	sound.		Therefore,	it	is	expected	that	the	bulk	of	the	time	in	the	
answer	will	be	taken	by	the	stage	in	which	the	stone	falls.		The	calculation	reproduces	this,	giving	a	
time	of	0.03	s	for	the	sound	wave	to	travel	up	the	well	and	1.39	s	for	the	stone	to	travel	down	the	
well.	

16.29. Wave	speed	is	given	by	 / .v B  	Solving	for	the	elastic	modulus	gives:	
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   22 8 3 20 22.0 10  m/s 2500 kg/m 1.0 10  N/m .B v      	

This	value	 is	 some	nine	orders	of	magnitude	 larger	 than	 the	actual	value.	 Indeed,	 light	waves	are	
electromagnetic	oscillations	that	do	not	require	the	motion	of	glass	molecules,	or	the	hypothetical	
ether	for	transmission.	

16.30. Determine	the	intensities	at	pain	and	whisper	levels	from:	

     12 12 2 12 2120
120 0

0

120 dB 10log   10 10  W/m 10 1 W/m
I

I I
I

	and	

      2 12 2 2 10 220
20 0

0

20 dB 10log   10 10  W/m 10 10  W/m .
I

I I
I

	

Therefore,	the	pain	level	is	 1010 	times	more	intense	than	the	whisper	level.	

16.31. The	question	is	asking	for	the	value	of	the	sound	pressure	amplitude,	P,	from	a	rock	concert	with	an	
intensity	level	of	110.	dB.	Use	the	expression	for	loudness	and	solve	for	P:	


 

     
 

5.50
0

0

110. dB 20log  dB  10 .P
P P

P
	

Recall	 that	 the	 threshold	 pressure	 is	 given	 by	   5
0 2.00 10  Pa,P 	 so	    5 5.502.00 10 10 6.32 Pa.P 	

Therefore,	the	sound	pressure	amplitude	due	to	an	intensity	level	of	110.	dB	is	  6.32 Pa.P 	

16.32. The	question	 is	asking	 for	 the	 intensity	 level	due	 to	10,000	sources	 people 	at	an	equal	distance	
from	the	detector	 a	person	in	the	center	of	the	field ,	when	the	intensity	level	due	to	one	source	is	
50	dB.	One	way	to	solve	this	problem	is	to	obtain	the	intensity	due	to	one	source	from	the	equation	
for	intensity	level,	

/10
0

0

10log   10 .I
I I

I


 
   

 
	

Since	the	threshold	intensity	for	humans	is	 12 2
0 10  W/m :I  		

 /10 12 50/10 72 2
010 10 10  W/m 10  W/m .I I      	

Therefore,	 the	 intensity	 due	 to	 10,000	 sources	 is	 given	 by	   7 2 3 2
all 10000 10  W/m 10  W/m ,I    	

and	the	intensity	level	is	given	by	
3

all
12

0

1010log 10log 90 dB.
10

I

I






   
     

  
	Another	way	to	solve	the	

problem	 is	 to	 realize	 that	 a	multiple	 of	 10	 inside	 a	 10log 	 function	will	 result	 in	 an	 addition	 of	 1	

outside.	Therefore,	 410,000 10 	 inside	 the	 10log 	 function	 results	 in	 1	 	 1	 	 1	 	 1 	 	 4	 outside.	

Therefore,	 the	 intensity	 level	will	 increase	 from	50	dB	 to	  50 10 4 90 dB.  	Note	also	 that	 every	

multiple	of	1/10	inside	a	 10log 	function	results	in	a	subtraction	of	1	outside.	

16.33. THINK:	 	 The	 question	 asks	 for	 the	 sound	 intensity,	 2 ,I 	 measured	 by	 a	 detector	 2 4.00 mr away	

from	a	source,	when	the	sound	intensity	at	 1 3.00 mr is	   2
1

71.10 10  W/m .I 	
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SKETCH:	

	
RESEARCH:		Recall	that	the	intensity	is	defined	as	 Power/Area.I  	The	power	emitted	by	the	source	
can	be	determined	from	the	intensity	at	the	3.00	m	detector,	and	then	this	can	be	used	to	determine	
the	intensity	at	4.00	m.	

SIMPLIFY:		  


    2
2

Power   4 .
Area 4

P
I P I r

r
		Therefore,	

 
 



 

2 2
1 1 11

2 2 2
22

4
.

4

I r I r
I

rr
	

CALCULATE:		
  

 





  

27 2
8 2

4 m 2

1.10 10  W/m 3.00 m
6.188 10  W/m

4.00 m
I 	

ROUND:	 	 Since	 the	 given	 values	 have	 three	 significant	 figures,	 the	 result	 should	 be	 rounded	 to	
  8 2

4 m 6.19 10  W/m .I 	
DOUBLE‐CHECK:		It	is	reasonable	that	the	intensity	will	decrease	as	the	distance	increases.	

16.34. THINK:	 	The	question	 asks	 for	 the	 intensity	 level	 heard	by	 a	 climber	850.	m	away	 from	a	 yelling	
child,	when	the	parent	hears	it	at	90.0	dB	standing	only	1.20	m	away.	
SKETCH:			

	

RESEARCH:		Let	 pI 	be	the	intensity	measured	at	the	parent’s	position	and	 cI 	be	the	intensity	at	the	

climber’s	position.	Let	 pr 	be	the	distance	between	the	parent	and	the	child	and	 cr 	be	the	distance	

between	the	climber	and	the	child.	The	intensity	will	fall	off	by	a	factor	of	 21/ ,r 	that	is,	

p 2
p

,
4

P
I

r
 	 c 2

c

,
4

P
I

r
 	where	P	is	the	power	of	the	sound.	

SIMPLIFY:		Since	the	power	of	the	sound	is	the	same	in	both	the	parent’s	and	the	climber’s	equation	
for	intensity,	the	intensities	can	be	related	as:	

2 2
p pc

c p2 2
p c c

 .
r rI

I I
I r r

 
    

 
 

	

Therefore,	
 2 2 2 2

p c p p pc
c p2 2

0 0 0 c c

/
10log 10log 10log 10log 10log .pI r r I r rI

I I I r r
 

    
                    

	

CALCULATE:		
 
 


 
   
  

2

c 2

1.20 m
90.0 dB 10log 32.995 dB

850. m
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ROUND:	 	 Since	 all	 values	 are	 given	 to	 three	 significant	 figures,	 the	 result	 should	 be	 given	 as	
 c 33.0 dB. 	
DOUBLE‐CHECK:		It	is	expected	that	the	farther	you	are	from	the	source,	the	weaker	the	signal.	The	
result	supports	this	assertion.	

16.35. THINK:		The	question	asks	for	the	distance	from	speakers	at	a	rock	concert	where	the	intensity	level	
is	below	or	equal	to	90.0	dB.	It	is	known	that	the	intensity	level	is	115.0	dB	at	5.00	m.	
SKETCH:			

	

RESEARCH:		Recall	that	the	intensity	level	is	defined	as	  010log / ,I I  	and	the	intensity	drops	as	a	

square	of	the	distance,	 2 2
2 1 1 2/ / .I I r r 	Therefore,	for	the	115.0	dB	location	and	the	90.0	dB	location,	

 1 1 010log /I I  	 and	  2 2 010log / ,I I  	 which	 implies:	
2

1 2 2
1 2 2

2 1 1

10log 10log 20log .I r r

I r r
  

     
          

     
	

SIMPLIFY:		The	distance	is	given	by	 /20
2 110 .r r  	

CALCULATE:		Since	 115.0 90.0 25.0 dB    	and	 1 5.00 m,r  	

  25.0/20
2 10 88.91397 m.5.00 mr   	

ROUND:		The	result	should	be	rounded	to	 2 88.9 m.r  	
DOUBLE‐CHECK:		Considering	an	intensity	level	at	the	source	of	more	than	115.0	dB,	it	is	reasonable	
that	a	person	has	to	move	back	almost	100	m	to	be	safe	from	hearing	damage.	

16.36. In	order	to	have	constructive	interference,	the	difference	in	path	length	must	be	equal	to	an	integer	
number	of	wavelengths.	Therefore,	 3 .s d n     	The	largest	wavelength	is	for	n	 	1.	Therefore,	

3d    	and	 / 4.d  	Recall	the	expression	for	the	velocity	of	a	wave	is	 .v f  	Use	the	fact	that	

 340. m/sv and	 10.0 m.d  The	frequency	is	given	by:	

 


         
   

4 4340. m/s 136 Hz.
10.0 m

v
f v

d
	

16.37. The	wavelength	of	 the	 sound	 is	 / (343 m/s)/(490. Hz) 0.700 m.v f    	 Since	 the	 speakers	are	 in	
phase	and	are	facing	each	other,	their	interference	will	yield	a	standing	wave	with	an	anti‐node	at	
the	 center	 between	 them.	 If	 she	 sits	 a	 half	wavelength	 away	 from	 the	 center,	 then	 she	will	 be	 at	
another	anti‐node.	Therefore,	the	minimum	distance	away	from	the	center	that	she	can	move	on	the	
straight	line	connecting	the	two	speakers	and	again	hear	the	loudest	sound	is:	 / 2 0.350 m.d   	

16.38. a 	Recall	that	the	beat	frequency	is	given	by	 beat 1 2 ,f f f  	and	as	the	string	is	tightened,	the	beat	

frequency	and	thus	the	difference	between	the	fork	and	violin	frequencies	increases,	it	is	clear	that	
the	frequency	of	the	violin	is	greater	than	that	of	the	fork.	Therefore,	

beat 1 2 violin fork violin fork beat 400. 2 402 Hz.f f f f f f f f          	

b 	 	 Since	 it	 was	 found	 in	 part	 a 	 that	 as	 the	 string	 is	 tightened,	 the	 difference	 in	 frequencies	
between	 the	 fork	 and	 the	 violin	 increases,	 to	 tune	 the	 violin,	 the	 string	must	 be	 loosened	 if	 the	
desired	frequency	for	the	string	is	400.	Hz .	

16.39. THINK:		The	question	asks	for	the	locations	of	the	spots	of	destructive	interference	along	a	far	wall	
from	two	speakers	in	phase.	The	distance	between	the	speakers	is	d	 	3.00	m.	The	distance	between	
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both	speakers	and	the	far	wall	is	L	 	120.	m.	The	frequency	of	the	sound	wave	is	f	 	1372	Hz.	Take	
the	speed	of	the	wave	to	be	v	 	343	m/s.	
SKETCH:			

	
not	to	scale 	

	

	
RESEARCH:	 	 From	 the	 sketch	 above,	 it	 can	 be	 seen	 that	 with	 d	 	 L	 which	 is	 the	 case ,	 the	
difference	in	paths	traveled	by	the	two	sound	waves	is	given	by	    1 2 sin ,r r r d 	assuming	that	
the	wall	 is	sufficiently	 far	away	that	the	two	rays	are	nearly	parallel.	 	  	 is	the	angle	that	the	rays	
make	relative	to	a	perpendicular	line	joining	the	sources	to	the	wall.		The	condition	for	destructive	
interference	at	the	far	wall	is:	

     
 

1sin , 0,1,2,3,...
2

d m m 	

For	d	 	L,	it	can	be	seen	that	     tan sin / ,y L 	where	y	is	the	distance	from	the	point	on	the	
wall	exactly	opposite	to	the	point	centered	between	the	speakers.	
SIMPLIFY:		The	distances	from	the	center	of	the	far	wall	to	the	points	of	destructive	interference	are	
given	by:	




  
      

1
sin 2sin   ,  0,1,2,3,

L m
Ld

y L y m
d d

	

CALCULATE:	 	The	wavelength	is	determined	from	the	equation	for	the	wave	speed,	 ,v f  	which	
gives:	

1372 m/s 0.250 m.
343 Hz

v

f
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Therefore,	the	first	point	of	destructive	interference	occurs	at:	
   1120. m 0.250

2 5.00 m.
3.00 m

y

 
 
   	

ROUND:		 5.00 m.y  	
DOUBLE‐CHECK:	Let’s	double‐check	that	our	small	angle	approximation	is	valid.		We	find	that	

1

5.00 mtan
120.0 m

5.00 mtan
120.0 m

0.0416 2.39 .



 



   





	

So	our	assumed	small	angle	approximation	is	valid.	

16.40. THINK:		A	guitar	and	a	pipe	organ	are	played	at	the	same	time.	The	guitar	frequency	is	 g 400. Hz,f  	

the	guitar	string	 length	 is	  50.0 cm 0.500 m,l 	 the	beat	 frequency	 is	 b 4 Hzf  	and	the	mass	per	
unit	 length	of	the	string	is	   2.00 g/m. 	Determine	 a 	the	possible	frequencies	of	the	open	organ	
pipe,	 b 	the	initial	tension	of	the	string	if	the	beat	frequency	decreases	when	the	string	is	tightened	
and	 c 	the	length	of	the	organ	pipe.	
SKETCH:			

	
RESEARCH:			
a 		The	frequency	of	the	pipe	organ,	 o ,f 	can	be	determined	from	the	definition	of	beat	frequency,	

b g o .f f f  	

b 		Recall	that	the	wave	speed	on	the	string,	 g g ,v f  	can	also	be	written	as / ,v T  	where	T	is	

the	tension	and	  	is	the	linear	density.	The	tension	can	be	determined	by	setting	these	expressions	
equal	to	each	other.	
c 		The	length	of	the	pipe	can	be	determined	from	the	equation	for	the	fundamental	frequency	of	an	
open	pipe	given	by	 o / 2 .f v L 	
SIMPLIFY:			
a 		Solving	for	the	frequency	of	the	organ	gives	 o g b .f f f  	

b 		Equating	the	expressions:	 2 2
g g g g/   .T f T f      	Recall	that	 g 2 ,l  	and	the	expression	

for	the	tension	becomes	 2 2
g 4 .T f l 	

c 		The	length	is	given	by	 o/ 2 .L v f 	
CALCULATE:			
a 		 o o1 o2400. Hz 4 Hz  404 Hz and 396 Hzf f f     	

b 		       
2 232.00 10  kg/m 400. Hz 4 0.500 m 320. NT 	

c 		Since	the	beat	frequency	decreases	as	the	string	is	tightened,	 g o ,f f 	therefore	 o 404 Hz andf  	

 
343 m/s 0.425 m.

2 404 Hz
L   	
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ROUND:		
a 		 o1 o2404 Hz and 396 Hzf f  	
b 		  320. NT 	
c 		 0.425 mL  	
DOUBLE‐CHECK:		Each	of	the	calculated	values	has	appropriate	units	and	is	of	a	reasonable	order	of	
magnitude	for	the	given	values.	

16.41. THINK:	 	The	question	asks	 for	 the	 intensity	of	 the	 sound	wave	at	 the	point	 1P 	 in	 the	 sketch.	The	

frequency	of	the	sound	wave	is	f	 	10,000.0	Hz,	and	the	coordinates	at	point	 1P 	are	 1 4.50 mx 	and	

1 0 m.y 	 The	 distance	 between	 the	 speakers	 is	 D	 	 3.60	 m,	 and	 the	 power	 delivered	 by	 the	

speakers	is	P	 	100.0	W.	The	question	next	asks	for	the	sound	level	due	to	speaker	A	at	point	 1.P 	
Lastly,	the	question	asks	for	the	distance	to	the	first	maximum	 constructive	interference 	from	the	
center	maximum.		
SKETCH:			

	
RESEARCH:	 	The	definition	of	 intensity	 is	  Power / Area.I Recall	the	equation	for	 intensity	 level	 is	

   010log / .I I 	 	With	 both	 speakers	 on,	 as	 one	moves	 toward	 point	 2 ,P 	 the	 distances	 that	 the	

sound	must	travel	from	speakers	A	and	B	change.	When	the	path	difference	is	half	a	wavelength,	the	
interference	 is	 destructive,	 but	 when	 the	 path	 difference	 increases	 to	 a	 full	 wavelength,	 the	

interference	 is	 constructive	 again.	 The	 distance	 from	 speaker	 A	 to	 2P 	 is	     2
1

2/ 2 .d D y L 	

Similarly,	 the	 distance	 from	 speaker	 B	 to	 2P 	 is	     2 2
2 / 2 .d D y L 	 The	 first	 constructive	

interference	peak	occurs	at	 2P 	when	   1 2 1 .d d 	From	this,	 y 	can	be	determined.	

SIMPLIFY:		


  21
Power ,
Area 4

P
I

r
    010 log log .I I 	In	order	to	simplify	the	calculation	of	 1 2 ,d d 	let	

   2 2 2/ 4a D y L 	and	   .b D y 	Rewrite	the	distances	as:	

 

 

               

               

2 2 2 2 2
1

2 2 2 2

2

2
1

2 2

2 2 2

/ 2 / 4 2 / 2 / 4

/ 2 / 4 2 / 2 / 4 .

d D y L D D y y L D D y y L

d D y L D D y y L D D y y L
	

Assume	 that	  y D 	 and	   ,y L 	 then	      2 2 2 2 2/ 4 / 4 .a D y L D L 	 The	 value	 of	 a	 is	 much	
larger	than	the	value	of	b,	so	we	can	apply	the	approximation	given	in	the	statement	of	the	problem	

   .
2

b
a b a

a
	

We	can	write	 1 2d d 	as	


      
 21 2 2

2 .
2 / 4

D yb
d d a b a b

a D L
	

Since	   1 2 sound / ,d v fd 	substituting	the	equation	from	the	previous	line	gives:	
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sound

2 2
,

/ 4

v D y

f D L
	

which	means,	solving	for	 ,y 		

  
   

 

2 2
sound / 4 .

v D L
y

f D
	

CALCULATE:		 a 	The	intensity	at	point	 1P 	is	given	by:		

 

 
     
   

2
1 2

2

100.0 W 0.33877 W/m .
3.60 m4 4.50 m

2

I 	

b 	The	sound	level	at	point	 1P 	

               
    

1 2
12

2

W W10 log 0.33877 log 10 10 log 0.33877 12  dB 115.299 dB.
m m

	

c 	The	distance	to	the	first	maximum	is	

       
 

2 23.60 m / 4 4.50 m343 m/s 0.046178 m.
10,000.0 Hz 3.60 m

y 	

ROUND:	 Since	 the	 distances	 are	 given	 to	 three	 significant	 figures,	 the	 result	 is	  2
1 0.339 W/m .I 	

Because	 the	 intensity	 is	 given	 to	 three	 significant	 figures,	 the	 result	 should	 be	 rounded	 to	
 1 115 dB. 	Since	there	are	values	given	with	three	significant	figures,	  0.0462 m.y 	
DOUBLE‐CHECK:	The	 result	 is	 obtained	directly	 from	 the	definition	 of	 intensity	 and	 the	units	 are	
correct.	This	sound	level	is	high	for	a	loud	speaker	but	is	possible.	The	value	for	 yD 	has	appropriate	
units	for	a	distance,	and	is	consistent	with	  .y D 	

16.42. Recall	 the	 expression	 for	 the	 Doppler	 shift	 in	 frequency	 for	 a	 moving	 source	 is:	




sound
observer source

sound source

.v
f f

v v
	 In	 the	 approach	 to	 the	 policeman,	 the	 source	 is	 moving	 toward	 a	

stationary	observer	so	we	choose	the	negative	sign	in	this	equation,		 


sound
observer source

sound source

.v
f f

v v
	

	 At	 the	 instant	 the	 car	 passes	 the	policemen,	 he	will	 hear	 the	 sound	of	 the	horn	with	 the	 original	
emitting	frequency,	 source .f 	We	can	then	solve	for	the	speed	of	the	car	
	

  
 
 




observer sound source source sound

observer sound observer source source sound

observer sound source sound observer source

observer source
source sound

observer

.

f v v f v

f v f v f v

f v f v f v

f f
v v

f

	

	 Putting	in	our	values	we	get	

 source
494 Hz 440. Hz343 m/s 37.5 m/s 83.87 mph.

494Hz
v


   	

	 So	the	policeman	gives	the	driver	a	speeding	ticket	for	going	84	mph	in	a	40	mph	zone.	

16.43. From	the	Mach‐angle	of	the	cone	expression,	 sound sourcesin / .v v  	

a 		For	 sound 343 m/s,v  	the	angle	is	solved	as:           
  

1 1sound

source

0.343 km/ssin sin 2.23
8.80 km/s

v

v
.	

b 		In	water,	 sound 1560 m/s.v  	The	angle	is:           
  

1 1sound

source

1.56 km/ssin sin 10.2
8.80 km/s

v

v
.	
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16.44. The	Doppler	shift	is	given	by:	 sound d
d s

sound s

.
v v

f f
v v





	Since	 d 0v  	and	f	 	3000.	Hz,	the	magnitude	of	the	

change	in	frequency	when	v	 	343	m/s	and	u	 	30.0	m/s	is	then:	

   
 
 

 
2 2

30.0 m/s2 3000. Hz2 / 343 m/s 528.83 Hz.
1 / 1 / 1 / 30.0 m/s1

343 m/s

f u vf f
f

u v u v u v

 
 
      

      
 

	

Since	the	given	value	for	the	speed	has	three	significant	figures,	the	result	should	be	   529 Hz.f 	

16.45. THINK:			
a 		The	question	asks	for	the	speed	of	a	police	car	as	it	passes,	if	the	frequency	of	the	siren	before	it	
passes	is	 1 1300. Hzf 	and	the	frequency	after	it	passes	is	 2 1280. Hz.f 	
b 	The	question	next	 asks	 for	 the	 actual	 frequency	of	 an	 ambulance	 siren	 if	 before	 it	 passes	 the	
stopped	car	 it	has	a	 shifted	 frequency	of	 1 1400. Hz,f 	 and	after	 it	passes	 the	 car	 it	has	a	 shifted	

frequency	of	 2 1200. Hz.f 	
SKETCH:			
a 			 	 	 	

	 	 	 	
b 	

	
RESEARCH:			
Recall	that	the	shift	in	frequency	 Doppler	shift 	when	both	source	and	observer	are	moving	is	given	

by	 sound
observer source

sound source

car .
v v

f f
v v





	 The	 speed	 of	 the	 source	 can	 be	 obtained	 by	 dividing	 the	

corresponding	 expressions	 for	 the	 before	 and	 after	 frequencies.	 The	 speed	 of	 the	 source	 can	 be	
obtained	by	dividing	 the	corresponding	expression	 for	 the	before	and	after	 frequencies.	Once	 the	
speed	is	determined,	the	actual	frequency	can	be	calculated.	
	
	
SIMPLIFY:			
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a 		From	the	Doppler	shift	for	the	“before”	frequency:	 carsound
1

sound source
0 .

v v
f f

v v





	From	the	Doppler	shift	

for	the	“after”	frequency:	 carsound
2

sound source
0 .

v v
f f

v v





	Therefore,		

 
sound

2
sound sound source soundsound source sound s

car

car carcar

ca

ound source1
2

2 sound source sound sound sound source soundsound

sound sourc

r

e

carcar

v v

v v v v v vv v v v v vf

f v v v v v v v v vv v

v v

 
             

       
  

 

   
   

2 2
1 sound sound 2 sound sound

car

car car

c
source

1 sound 2 soundar car

 .

v

f v v v f v v v
v

f v v f v v



  
 

  

	

b 	 	 For	 the	 “before”	 frequency,	 the	 Doppler	 shift	 gives:	 sound
1

sound s ur e
0

o c

.
v

f f
v v




For	 the	 “after”	

frequency,	 the	 Doppler	 shift	 gives:	 sound
2

sound s ur e
0

o c

.
v

f f
v v




	 Therefore,		

 
sound

sound 1 2sound source1
source

2 1 2sound

sound source

  .

v

v f fv vf
v

f f fv

v v

 
     

 
  

		The	frequency	is	given	by:	
 

  
 

sound source
source 1

sound

.
v v

f f
v

	

CALCULATE:			
a 		

           
   

  


  


2 2

source

1300. Hz 343.0 m/s 343.0 m/s 30.0 m/s 1280. Hz 343.0 m/s 343.0 m/s 30.0 m/s

1300. Hz 343.0 m/s 30.0 m/s 1280. Hz 343.0 m/s 30.0 m/s
32.64 m/s

v

	

b 		
 

 


 

   
 

source

source

343.0 m/s 1400. Hz 1200. Hz
26.385 m/s

1400. Hz+1200. Hz
343.0 m/s 26.385 m/s1400. Hz 1292.3 Hz

343.0 m/s

v

f

	

ROUND:		The	frequencies	of	the	siren	are	given	to	four	significant	figures,	while	the	speed	is	given	to	
three	significant	figures.		
a 		 source 32.6 m/sv 	

b 	 source 1292 Hzf 	
DOUBLE‐CHECK:			
a 		This	is	a	reasonable	speed	for	the	police	car	as	it	passes.	
b 		This	is	a	reasonable	value	for	the	actual	frequency,	based	on	the	given	parameters.			

16.46. THINK:	 	 The	 question	 asks	 about	 the	 shift	 in	 frequency	 of	 an	 ultrasound	wave	 emitted	 by	 a	 bat,	
when	 it	 returns	 to	 the	 bat	 after	 bouncing	 from	a	wall.	 The	 given	 values	 are	 the	 speed	 of	 the	bat	
toward	 the	 wall,	 v	 	 7.0	 m/s,	 and	 the	 original	 wave	 frequency	 of	 0 30.0 kHz.f  As	 the	 bat	 flies	
towards	the	wall	and	emits	the	sound,	the	Doppler	shift	for	the	moving	emitter	applies.	 	Since	the	
bat	moves	 towards	 the	 wall	 and	 the	 reflected	 sound,	 the	 process	 of	 receiving	 the	 sound	 is	 then	
governed	by	the	Doppler	shift	for	a	moving	observer.		The	two	effects	are	superimposed,	in	the	same	
way	as	was	done	in	Solved	Problem	16.4	in	the	textbook.	
SKETCH:			
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RESEARCH:		The	equation	for	Doppler	shift	is:	 sound observer
observer source

sound source

.
v v

f f
v v





	First,	consider	the	shift	

as	the	wave	reaches	the	wall:	 sound
wall 0

sound bat

.
v

f f
v v




	Then	consider	the	shift	from	the	wall	to	the	bat	

again,	where	the	“unshifted”	frequency	is	actually	the	frequency	as	the	sound	wave	leaves	the	wall:	

bat
final wall

sound

1 .
v

f f
v

 
  

 
	

SIMPLIFY:		Putting	both	expressions	together	gives:	

bat sound bat sound bat
final wall 0 0

sound sound bat sound sound bat

1 1 .
v v v v v

f f f f
v v v v v v

     
        

     
	

CALCULATE:		The	total	shift	is	then	given	by:	  final
343 7.0030.0 kHz 31.25 kHz.
343 7.00

f
    

	

ROUND:	 	 Since	 the	 bat’s	 speed	 is	 given	 to	 three	 significant	 figures,	 the	 result	 is	 reported	 as	
final 31.3 kHz.f 	

DOUBLE‐CHECK:		The	expectation	is	for	the	frequency	to	increase	if	the	bat	is	approaching	the	wall.	
Also,	based	on	the	given	values,	the	result	is	reasonable.	

16.47. THINK:		A	plane	is	flying	at	1.30	the	speed	of	sound.	The	Mach	angle	is	simply	related	to	the	Mach	
number	 and	 requires	 almost	 no	 calculation.	 For	 part	 b 	 we	 need	 to	 realize	 that	 the	 sound	
propagates	along	the	surface	of	the	Mach	cone,	and	the	man	on	the	ground	will	hear	the	sound	when	
the	surface	of	the	Mach	cone	travels	across	him.	
SKETCH:			

	
RESEARCH:			
a 		The	Mach	angle	is	given	by	     1 1sin / 1.30 sin (1/ 1.30).m v v 	

b 	 The	 altitude	 can	 be	 obtained	 from	 the	 relation:	   tan / ,m h d 	 where	 h	 is	 altitude	 and	 d	 is	
horizontal	distance	traveled	by	the	plane	during	the	time	it	takes	the	sound	to	reach	the	ear.	
SIMPLIFY:			
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a 		It	is	not	necessary	to	simplify.	

b 		           tan   tan tanm m plane m

h
h d v t

d
	

CALCULATE:			

a 		 1
Mach

1sin 50.285
1.30

      
 

	

b 		        1.30 343. m/s 3.14 s tan 50.285 1.6856 kmh 	

ROUND:		Rounding	to	three	significant	figures,	the	results	are	reported	as:	
a 		  Mach 50.3 	

b 		 1.69 kmh 	
DOUBLE‐CHECK:		We	can	calculate	the	time	it	takes	sound	to	travel	a	distance	of	1.69	km.		This	time	
is	   0 / (1.69 km) / (343 m/s) 4.91 st h v .	As	required,	this	time	is	larger	than	3.14	s,	the	time	that	
was	given	in	the	problem	for	the	shock	wave	to	arrive.	Our	solution	for	h	at	least	passes	this	simple	
check.	

16.48. THINK:	 	The	problem	describes	a	 car	headed	 toward	a	hill.	The	 car	 sounds	 the	horn,	 and	 the	hill	
reflects	 the	 sound	wave,	which	 later	 reaches	 the	 car.	 Determine	 a 	 the	 shifted	 frequency	 as	 the	
sound	waves	reach	the	hill,	 b 	the	frequency	of	the	reflected	wave	as	it	reaches	the	car	again,	and	
c 	the	beat	frequency	heard	at	the	car	between	the	emitted	and	reflected	waves.	The	velocity	of	the	

car	is	
         



1h 1609 m40.0 mph 40.0 mph 17.87 m/s.
3600s 1 mi

v 	

SKETCH:			

	
RESEARCH:			

a 	 The	 Doppler	 frequency	 shift	 is	 given	 by:	 sound observer
observer source

sound source

.
v v

f f
v v





	 Therefore,	 the	 shifted	

frequency	at	the	hill	is	given	by:	 sound
hill 0

sound car

.
v

f f
v v




	

b 		The	shift	in	frequency	of	the	reflected	wave	is	given	by:	 sound car
car hill

sound

,
v v

f f
v


 	where	 hillf 	is	the	

result	from	part	 a .	
c 		The	beat	frequency	is	given	by	 beat 1 2 car 0 .f f f f f    	

SIMPLIFY:			
a 		Simplification	is	not	necessary.	

b 		 sound car sound car
car hill 0

sound sound car

v v v v
f f f

v v v

 
 


	

c 		Simplification	is	not	necessary.	
CALCULATE:			

a 		      
hill

340. m/s250. Hz 263.9 Hz
340. m/s 17.87 m/s

f 	

b 		   
 

car
340. m/s 17.87 m/s250. Hz 277.7 Hz
340. m/s 17.87 m/s

f 	

c 		   beat 277.7 Hz 250. Hz 27.74 Hzf 	

ROUND:		Rounding	to	three	significant	figures:	
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a 		 hill 264 Hzf  	

b 		 car 278 Hzf  	

c 		 beat 27.7 Hzf 	
DOUBLE‐CHECK:	 It	 is	 expected	 that	 the	 frequency	will	 shift	 up	 as	 the	 car	moves	 toward	 the	 hill.	
Similarly,	 it	 is	reasonable	 that	the	 frequency	shifts	up	again	as	 the	reflected	wave	reaches	 the	car	
moving	towards	it.	Also,	based	on	the	given	values,	the	results	are	reasonable.	

16.49. a,	b 	THINK:	The	question	presents	 a	 stationary	 car	as	 a	 train	passes	by	 it.	A	 sketch	of	 the	 time	
dependent	horn	frequency	heard	at	the	car	is	shown.	Determine	 a 	the	frequency	of	the	horn	as	it	is	
emitted	by	the	train	and	 b 	the	speed	of	the	train.	
SKETCH:			

	
RESEARCH:			
a 		From	the	given	sketch,	it	is	clear	that	the	train	passes	the	car	at	the	zero	time	mark.	From	the	
curve,	trace	to	the	corresponding	frequency	at	t	 	0.	
b 		From	the	result	of	part	 a ,	the	speed	of	the	train	can	be	determined	by	looking	at	the	maximum	
frequency	shift	as	shown	in	the	sketch	and	using	the	Doppler	frequency	shift	equation:	

sound detector
detector source

sound source

.
v v

f f
v v





	

SIMPLIFY:			
a 		Simplification	is	not	necessary.	
b 		Since	the	car	is	not	moving,	for	the	case	where	the	train	is	moving	away	from	the	car:	

sound train car
car train train sound

sound train car

 .
v f f

f f v v
v v f

   
     

   
	

CALCULATE:	
a 		From	the	sketch,	the	frequency	corresponding	to	t	 	0	is	 0 900 Hz.f  	

b 		Using	the	result	of	part	 a ,	and	the	maximum	frequency	shift	from	the	sketch,	 car 830 Hz:f  	

 train
900 Hz 830 Hz340 m/s 28.7 m/s.

830 Hz
v

   
 

	

ROUND:			
a 	Since	the	value	was	chosen	from	the	sketch,	the	result	remains	 0 900 Hz.f  	
b 	Since	the	values	are	all	obtained	by	measuring	a	curve	on	a	rough	sketch,	round	the	result	to	one	
significant	figure,	 train 30 m/s.v  	
DOUBLE‐CHECK:	 	 It	 is	 reasonable	 that	 as	 the	 train	 moves	 away	 from	 the	 car,	 the	 frequency	
decreases.	 The	 results	 are	 also	 reasonable	 based	 on	 the	 inaccuracy	 of	 getting	 data	 from	 a	 rough	
sketch.	
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c 	THINK:	In	part	 a ,	the	value	of	 0f 	is	found	to	be 0 900 Hz.f  In	part	 b ,	the	speed	of	the	train	is	

found	to	be	 train 28.7 m/s.v  The	speed	of	sound	is	about	 sound 343m/s.v  From	the	plot	given	in	the	

question,	the	instantaneous	slope	of	 0f 	at	 0t  can	be	approximated.	
SKETCH:	A	sketch	is	not	needed.	

RESEARCH:	The	question	gives	 the	hint	to	use	the	equation	
2

o

sound0

.
t

df fv

dt bv

  Part	 c 	asks	 for	the	

value	of	b.	The	rest	of	the	quantities	in	the	expression	are	known	or	can	be	found.	By	inspecting	the	
graph,	 it	appears	that	 the	 function of passes	 through	the	points	 ‐0.2,	920 	and	 0.2,	870 .	Thus,	a	
reasonable	 approximation	 for	 the	 instantaneous	 slope	 at	 zero	 is	

 
2o

0

870 Hz 920 Hz 50 Hz 125 s .
0.4 s0.2 s 0.2 st

df

dt




 
   

 
	

SIMPLIFY:		
2

o
sound

0t

fv
b

df
v

dt 

  	

CALCULATE:	
  
  

2

2

900 Hz 28.7 m/s
17.2903 m

343 m/s 125 s
b


  


	

ROUND:	Since	the	frequency	can	be	read	off	the	graph	to	two	significant	figures,	the	distance	from	
the	car	to	the	train	tracks	should	be	rounded	to	two	significant	figures.	This	means	b	 	17	m.		
DOUBLE‐CHECK:	Meters	are	appropriate	units	for	a	distance,	and	a	distance	of	17	m	is	a	reasonable	
distance	for	a	car	to	stop	from	train	tracks	while	a	train	passes.	

16.50. THINK:		The	question	asks	for	the	Doppler	shifted	frequency	as	a	car	moves	at	100.	km/h	away	from	
a	siren	elevated	100.	m.	The	frequency	of	the	siren	is	440.	Hz.	Also,	plot	the	frequency	as	a	function	
of	the	car’s	position.	
SKETCH:			

	
RESEARCH:		The	frequency	will	be	lower	as	the	car	drives	away	because	of	the	Doppler	shift.	The	car	
is	moving	from	the	base	of	 the	siren	pole	at	100.	km/h,	but	the	distance	from	the	siren	 is	slightly	
different.	First,	determine	the	velocity	as	the	car	moves	from	the	siren	and	then	use	this	velocity	to	
determine	the	new	Doppler	shifted	frequency.	The	distance	from	the	source	to	the	driver	is	given	by	

2 2 ,x h r  	where	r	is	the	distance	of	the	driver	from	the	base	of	the	pole,	and	h	is	the	height	of	the	
pole.	The	velocity	of	the	driver	from	the	source	is:	

0 2 2 2 2
,r

dx dx dr r dr r
v v

dt dr dt dth r h r
   

 
	

where	 rv 	is	the	ground	velocity	of	the	car	 100.	km/h	or	27.8	m/s .	
SIMPLIFY:		Then,	the	Doppler	shifted	frequency	heard	by	the	driver	is:		

0

2 2
1 1 .rv vr

f f f
v vh r

             
	

CALCULATE:		The	siren	frequency	as	a	function	of	distance	is	plotted.	
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As	the	car	gets	far	away,	it	appears	to	be	moving	radially	from	the	source,	and	the	radius	dependent	
term	 approaches	 unity,	 so	 the	 Doppler	 shift	 approaches	what	 it	would	 be	 if	 the	 car	was	moving	
radially	at	100.	km/h	from	the	source.	
ROUND:		Rounding	is	not	necessary.	
DOUBLE‐CHECK:	 	 The	 results	 of	 the	 plot	 are	 reasonable.	 As	 the	 car	 speeds	 away,	 the	 frequency	
decreases	until	the	horizontal	distance	is	much	greater	than	the	vertical	distance	to	the	siren.	

16.51. The	problem	presents	a	 standing	wave	 in	 a	 column	of	 air	with	both	 ends	open.	The	 frequency	 is	
given	as	 a 440. Hz,f  	and	the	next	higher	harmonic	as	 b 660. Hz.f 	Determine	 a 	the	fundamental	
frequency	and	 b 	the	length	of	the	air	column.	
a 	 	 Recall	 that	 for	 standing	 waves,	 the	 harmonic	 frequencies	 are	 given	 with	 respect	 to	 the	
fundamental	 frequency,	 0 ,f 	 as	  0 .nf nf 	 Therefore,	  a 0440. Hzf nf and	    b 0660. Hz 1 .f n f 	

Therefore,	
        b a 0 0 0660. Hz 440. Hz 220. Hz 1 .f f n f nf f 	

Therefore,	the	fundamental	frequency	is	 0 220. Hz.f 	
b 	 	 Now,	 to	 obtain	 the	 length	 of	 the	 air	 column,	 L,	 recall	 the	 expression	 for	 the	 wave	 speed	 is	

.v f  	The	wavelength	is	then	given	by	 / ,v f  	where	for	the	fundamental	wavelength,	 2 .L  	
Therefore,	

 
   

0

343 m/s 0.7795 m 0.780 m.
2 2 220. Hz
v

L
f

	

16.52. 		

	
Because	the	tube	is	open	at	one	end	and	closed	at	the	other,	the	standing	waves	will	have	a	node	at	
one	end	and	an	antinode	at	the	other	end.		Equation	16.19	tells	us	

  




4  for 1,2,3,
2 1n

L
n

n
	

So	the	shortest	longest	three	wavelengths	correspond	to	 1,2,3 :n 	
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1

2

2

4 4 1.35 m 5.40 m
2 1
4 4 / 3 1.35 m 1.80 m

4 1
4 4 / 6 1.35 m 1.08 m.

6 1

L

L

L







  


  


  


	

Since	these	standing	waves	consist	of	traveling	waves	with	the	speed	of	sound,	 the	wavelength	of	
each	node	can	be	converted	into	a	frequency	as	follows:	


  sound

1
1

343 m/s 63.5 Hz,
5.40 m

v
f 		


  sound

2
2

343 m/s 191 Hz,
1.80 m

v
f 		 sound

3
3

343 m/s 318 Hz.
1.08 m

v
f


   	

The	wavelengths	of	the	sound	waves	created	by	the	bugle	are	the	same	as	the	wavelengths	of	the	
standing	waves	in	the	bugle.	

16.53. Recall	that	the	frequencies	of	standing	waves	in	a	pipe	with	an	open	end	are	given	by:	
 2 1

.
4n

n v
f

L


 	For	n	 	1	 fundamental	node :	

       1 / 4   1047 Hz 343 m/s / 4  8.19 cm,f v L L L 	so	that	the	top	of	the	liquid	must	be	8.19	cm	

from	the	top	of	the	bottle.	

16.54. Recall	that	the	speed	of	the	wave	 is	given	by	 .v f  	The	 lowest	resonant	 frequency	occurs	when	
there	is	a	node	at	the	center	of	the	rod,	and	anti‐nodes	at	each	end,	giving	 / 2.L  	Solving	for	the	
frequency	gives:	

5000. m/s 1250 Hz
2 4.00 m

v v
f

L
    	

16.55. THINK:	 	The	question	asks	for	the	resonant	frequency	of	the	ear	canal	when	the	temperature	is	37	°C.	
The	canal	can	be	approximated	by	a	tube	with	a	diameter	of	8.0	mm	and	a	length	of	L	 	25	mm,	with	one	
open	end.	Therefore	this	is	a	fairly	straightforward	problem	of	the	lowest	frequency	of	a	standing	wave	
in	a	half‐open	pipe.	
SKETCH:		

	
RESEARCH:	 	 Recall	 that	 the	 speed	 of	 sound	 can	 be	 calculated	 in	 terms	 of	 the	 temperature	 by	
  331 0.6 .v T T  	With	this,	the	resonant	frequency	can	be	determined	from	the	relation,	 / ,f v  	

where	  	is	the	wavelength.	
SIMPLIFY:		For	the	fundamental	frequency	of	a	standing	wave	in	a	half‐open	pipe,	the	wavelength	is	
given	by	    4L, 	where	L	is	the	length	of	the	tube.	Therefore,	

f 
v




331 0.6T

4L
. 	

CALCULATE:		Inserting	the	given	values:	 f 
3310.6 37 

4 0.025   Hz  3532 Hz. 	

ROUND:	 Since	 the	 values	 are	 given	 to	 two	 significant	 figures,	 the	 result	 should	 be	 rounded	 to	

  f  3.5 kHz. 	
DOUBLE‐CHECK:	 	Based	on	 the	given	values,	 the	result	 is	 reasonable.	 In	Figure	16.10	you	can	see	
that	 the	 ear	of	 a	 teenager	 is	most	 sensitive	 in	 the	 frequency	 range	between	1	 and	10	kHz,	which	
gives	us	confidence	that	our	result	is	in	the	right	ballpark.	

16.56. THINK:		I	want	to	determine	the	frequency	produced	by	a	pipe	when	the	temperature	is	 35 C. 	It	is	
known	that	when	the	temperature	is	 22 C, 	it	produces	a	frequency	of	 1 262 Hz.f  	
SKETCH:			
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RESEARCH:	 	 Recall	 that	 the	 speed	 of	 sound	 can	 be	 calculated	 in	 terms	 of	 temperature	 by	
  331 0.6 .v T T  	With	this,	the	wave	speed	for	both	temperatures	can	be	determined	from	 ,v f  	

where	  	is	the	wavelength.	Since	the	length	of	the	pipe	is	assumed	to	remain	constant	through	the	
temperature	change,	it	is	clear	that	

1 2 1 2T T T T/ / .f f v v 	

SIMPLIFY:		The	frequency	for	the	warmer	temperature	can	be	determined	from:	


 


2

2 1 1

1

T 2
T T T

T 1

331 0.6 .
331 0.6

v T
f f f

v T
	

CALCULATE:		    
 


 

2T

331 0.6 35.0
262 Hz 267.9 Hz

331 0.6 22.0
f 	

ROUND:	 	 Since	 the	 given	values	 are	accurate	 to	 three	 significant	 figures,	 the	 result	 is	 reported	as		


2T 268 Hz.f 	

DOUBLE‐CHECK:	 	 It	 is	 expected	 that	 the	 frequency	 increases	 as	 the	 temperature	 increases.	 The	
result	confirms	this	expectation.	

16.57. The	 given	quantities	 are	 the	horn	 frequency,	 f	 	 400.0	Hz,	 the	 car’s	 speed,	 c 20.0 m/sv  	 and	 the	

speed	of	sound,	 s 343 m/s.v  	

	

This	problem	can	be	solved	using	the	Doppler	effect.	 In	this	case,	the	equation	is:	 s
0

s c

.
v

f f
v v

 
  

 
	

The	negative	sign	indicates	that	the	source	is	moving	towards	the	observer.	Inserting	the	values:	

 0
343 m/s400.0 Hz 425 Hz.

343 m/s 20.0 m/s
f

 
   

	

16.58. Both	 sounds	 have	 the	 same	 frequency,	 and	 both	 sources	 are	 moving	 with	 the	 same	 velocity,	

sound / 2v v .	 	 Source	 A	 is	 moving	 away	 from	 the	 observer,	 and	 source	 B	 is	 moving	 toward	 the	

observer.	 	The	frequency	observed	for	source	A	is	 A ,f 	 the	frequency	observed	for	source	B	is	 B,f 	

the	 speed	 of	 source	 A	 is	 A s / 2,v v 	 the	 speed	 of	 source	 B	 is	 B s / 2,v v 	 and	 the	 speed	 of	 sound,	

s 343 m/s.v  	
	

	

The	general	equation	that	represents	the	Doppler	effect	is:	 s
0

s

,
v

f f
v v

 
  

 
	

where	 0f 	 is	the	observed	frequency.	Source	A	is	moving	away	from	the	observer,	so	the	observed	
frequency	due	to	source	A	is	given	by:		
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s s s
A

s A s s s

2 2 .
/ 2 3 3

v v v
f f f f f

v v v v v

     
        

      
	

Source	B	is	moving	towards	the	observer,	so	the	observed	frequency	due	to	source	B	is:	

s s s
B

s B s s s

2
2 .

/ 2
v v v

f f f f f
v v v v v

     
        

      
	

The	ratio	of	the	observed	frequencies	is:	 A

B

2 / 3 1 .
2 3

f f

f f
  	

16.59. The	quantities	of	 interest	 for	 this	problem	are	 the	distance	 from	 the	 aircraft	 carrier	 to	 the	diver,	
  31.00 10  md 	 assume	 the	 diver	 is	 stationary ,	 the	 speed	 of	 sound	 in	 air,	 s 343 m/s,v  	 and	 the	

speed	 of	 sound	 in	 seawater,	 w 1530 m/s.v  	 The	 diver	 is	 a	 long	 distance	 from	 the	 jet	 and	 aircraft	
carrier,	so	assume	that	the	distance	between	his	ears	can	be	neglected.	

	
The	 general	 equation	 for	 speed	 is	 v	 	 d/t,	 where	 t	 represents	 time.	 In	 this	 situation,	 the	 time	
difference,	 s w ,t t t   	depends	on	the	speed	of	sound	through	the	two	different	mediums.	The	time	

it	takes	for	the	diver	to	hear	the	jet	in	his	submerged	ear	is	 w w/ .t d v 	The	time	it	takes	for	the	diver	

to	hear	the	jet	in	his	ear	that	is	above	the	water	is	 s s/ .t d v 	The	time	difference	is:	

    
             

  

3
s w

s w s w

1 1 1 11.00 10  m 2.26 s
343 m/s 1530 m/s

d d
t t t d

v v v v
.	

16.60. The	given	quantities	are	the	frequency	of	the	horn,	f	 	311	Hz,	the	speed	of	the	train,	 T 22.3 m/s,v  	

and	the	speed	of	sound	in	air,	 s 343 m/s.v  	
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As	the	train	approaches	the	stationary	observer,	the	observed	frequency	is:	 s
o

s T

.
v

f f
v v

 
  

 
	As	the	

train	moves	 away	 from	 the	 stationary	 observer,	 the	 observed	 frequency	 is:	 s
o

s T

.
v

f f
v v

 
   

 
	 The	

frequency	shift	is	 s s
o 0 s

s T s T s T s T

1 1 .
v v

f f f f f fv
v v v v v v v v

     
           

        
	

   1 1311 Hz 343 m/s 40.6 Hz
343 m/s 22.3 m/s 343 m/s 22.3 m/s

f
       

	

16.61. The	 given	 values	 are	 listed	 in	 the	provided	 table.	Determine	 the	 lengths	 of	 the	pipes	 required	 to	
achieve	the	listed	frequencies.	The	speed	of	sound	in	air	is	 s 343 m/s.v  	A	wind	chime	is	made	from	
pipes	 that	 are	 open	 at	 both	 ends.	 The	 general	 equation	 for	 standing	 waves	 in	 an	 open	 pipe	 is	

/ 2,L n 	where	  	is	the	wavelength	and	n	 	1,	2,	3,	…	The	wavelength	can	be	related	to	frequency	
using	the	equation	 / .v f  	In	this	case,	 / ,sv f  	and	you	can	substitute	this	into	the	equation	for	
L	to	get:	

s .
2

vn
L

f

 
  

 
	

For	the	fundamental	frequency,	n	 1.	The	expression	used	to	fill	in	the	table	is	 s / 2 .L v f 	

Note Frequency	 Hz Length	 m
G4	 392 0.438
A4	 440 0.390
B4	 494 0.347
F5	 698 0.246
C6	 1046 0.164

16.62. The	given	quantities	are	the	speed	of	train	1,	 1 25.0 m/s,v  	 the	speed	of	train	2,	 2 25.0 m/s,v  	 the	

frequency	of	the	whistle,	f	 	300.	Hz,	and	the	speed	of	sound	in	air,	 s 343 m/s.v  	
a 	

	
	

The	choice	of	which	train	blows	the	whistle	is	arbitrary	because	they	are	both	moving	at	the	same	
speed.	 If	 train	 1	 blows	 the	 whistle	 while	 it	 is	 approaching	 the	 stationary	 observer,	 then	 the	
frequency	that	the	observer	detects	is:	

 s
o

s 1

343 m/s300. Hz 323.6 Hz.
343 m/s 25.0 m/s

v
f f

v v

           
	

Because	 the	 frequency	provided	 in	 the	question	has	 three	significant	 figures,	 the	result	 should	be	
rounded	to	 o 324 Hz.f  	
b 			
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The	frequency	that	a	man	on	train	2	would	detect	is:	

s 2
o

s 1

,
v v

f f
v v

 
   

 
	

where	 the	 positive	 sign	 in	 the	 numerator	 and	 the	 minus	 sign	 in	 the	 denominator	 denote	 the	
observer	on	train	2	and	the	source	 train	1 	are	approaching	each	other.	

o
343 m/s 25.0 m/s300. Hz 347 Hz
343 m/s 25.0 m/s

f
     

	

Rounding	to	the	appropriate	number	of	significant	figures,	the	result	remains	 o 347 Hz.f   	

16.63. THINK:	The	given	quantities	are	the	distance,	 2 20.0 m,x 	the	intensity	level,	  2 60.0 dB, 	and	the	
distance,	 1 2.00 m.x 	 The	 distances	 are	 relative	 to	 the	 source.	 The	 source	 radiates	 equally	 in	 all	

directions.	Determine	the	intensity,	 1,I 	at	point	 1.x 	
SKETCH:			

	
RESEARCH:		The	source	is	assumed	to	be	radiating	equally	in	all	directions,	therefore	the	ratio	of	the	
two	intensities	is:	

2
1 2

2
2 1

.
I x

I x
 	

The	relationship	between	intensity,	I,	and	sound	level,	 , 	is:	
0

10log .I

I
  	The	difference	in	sound	

levels	is	 2 1.     	

SIMPLIFY:		 1I 	can	be	solved	for	in	terms	of	 2 :I 	
2

2
1 2 2

1

.
x

I I
x

 	The	difference	in	sound	levels	between	

points,	 2x 	and	 1x 	is	 2 1.     	

2
2 1 2 0 1 0

1

10log 10log 10log 10log 10log
I

I I I I
I

  
 

         
 

	

Substituting	  	into	the	sound	level	difference	equation	gives	the	simplified	expression:	

2 2
2 1 1 2

1 1

10log   10log .
I I

I I
   

   
       

   
	

Substitute	the	expression	for	 1I 	into	this	equation	to	get:	

2
2 1

1 2 22 2
2 2

2 2
1

10log 10log .
I x

x x
I

x
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CALCULATE:		
 
 

 
 
      
 
 

2

1 2

2.00 m
60.0 dB 10.0log 60.0 dB 20.0 dB 80.0 dB

20.0 m
	

ROUND:	 	 The	 values	 in	 the	 question	 are	 given	 to	 three	 significant	 figures,	 so	 the	 result	 remains	
 1 80.0 dB .	
DOUBLE‐CHECK:		It	is	reasonable	that	the	sound	intensity	is	greater	when	the	distance	to	the	source	
is	less.	

16.64. THINK:		The	frequencies	emitted	from	the	speakers	in	the	two	vehicles	are	 A B 1000.0 Hz.f f f   	

The	vehicle	speeds	are	 A 10.00 m/sv  	and	 B 20.00 m/s.v  	The	vehicles	are	approaching	each	other.	

The	 speed	 of	 sound	 in	 air	 is	 s 343.0 m/s.v  	 Determine	 the	 detected	 frequencies	 for	 each	 vehicle,	

denoted	 0Af 	and	 0B.f 	
SKETCH:			

	
	

RESEARCH:		The	general	equation	describing	the	Doppler	effect	when	both	the	source	and	observer	
are	moving	is:	

s observer
o

s source

.
v v

f f
v v

 
  

 
	

When	the	observer	and	the	source	are	approaching	each	other,	the	sign	in	the	numerator	is	positive	
and	the	sign	in	the	denominator	is	negative.	

SIMPLIFY:	 	The	 frequency	an	observer	 in	vehicle	A	detects	 is:	 s A
0A

s B

.
v v

f f
v v

 
  

 
	The	 frequency	an	

observer	in	vehicle	B	detects	is:	 s B
0B

s A

.
v v

f f
v v

 
  

 
	

CALCULATE:		 0A
343.0 m/s 10.00 m/s1000.0 Hz 1092.8793 Hz
343.0 m/s 20.00 m/s

f
 

   
		

0B
343.0 m/s 20.00 m/s1000.0 Hz 1090.0901 Hz
343.0 m/s 10.00 m/s

f
    

	

ROUND:		The	speeds	provided	in	the	question	have	four	significant	figures,	so	the	results	should	be	
rounded	to	 0A 1093 Hzf  	and	 0B 1090. Hz.f  		
DOUBLE‐CHECK:	 	The	detected	frequencies	are	different,	but	similar.	This	 is	expected	because	the	
detected	frequencies	depend	on	the	speed	of	the	sources	and	observers.	The	two	vehicles	travel	at	
different	speeds,	so	a	difference	is	to	be	expected.	

16.65. THINK:		The	separation	distance	is	d	 	80.0	m.	The	frequency	of	the	speakers	is	f	 	286	Hz.	The	beat	
frequency	is	 B 10.0 Hz.f 	Determine	the	speed,	 R ,v 	with	which	you	are	running	toward	one	of	the	

speakers.	The	speed	of	sound	in	air	is	 s 343 m/s.v  	
	
	
	
	
	
	
	
SKETCH:			
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RESEARCH:		The	equation	for	the	beat	frequency	is	 B 1 2 .f f f  	The	frequencies	you	detect	as	you	

run	from	the	position,	d/2,	 towards	speaker	2	are	 1f 	and	 2 .f 	These	are	the	observed	frequencies	
due	 to	 speaker	 1	 and	 speaker	 2,	 respectively.	 The	 general	 equation	 for	 the	 Doppler	 effect	 is:	

s observer
o

s

,
v v

f f
v

 
  

 
	where	the	minus	sign	denotes	the	observer	is	approaching	the	source.	

SIMPLIFY:	 	 You	 are	 the	 observer,	 so	 observer R .v v 	 s R
1

s

,
v v

f f
v

 
  

 
	 	 s R

2
s

.
v v

f f
v

 
  

 
These	

expressions	can	be	substituted	into	the	beat	frequency	equation	to	get:	

 s R s Rs R s R R B s
B

s s s s

2   .
2R

v v v vv v v v v f v
f f f f f v

v v v v f

       
                 

	

CALCULATE:		
 

 
 R

10.0 Hz 343 m/s
5.997 m/s

2 286 Hz
v 	

ROUND:	 	 The	 distance	 and	 the	 beat	 frequency	 each	 have	 three	 significant	 figures,	 so	 the	 result	
should	be	rounded	to	 R 6.00 m/s.v 	
DOUBLE‐CHECK:	 	 The	 calculated	 speed	 has	 the	 proper	 units.	 The	 speed	 of	 6	 m/s	 is	 reasonable,	
considering	a	world	class	sprinter	can	run	at	approximately	10	m/s	 e.g.	a	world	class	athlete	can	
run	the	100	m	dash	in	about	10	s .	

16.66. THINK:		The	loud	speakers	are	driven	in	phase	at	a	frequency,	f	 	3400.	Hz,	and	are	separated	by	a	
distance	d	 	4.00	m.	A	microphone	mounted	to	the	carrier	detects	sound	at	a	distance,	L	 	400.	m,	
from	the	speakers.	The	speed	of	sound	in	air	is	 s 340. m/s.v 	
SKETCH:			

	

RESEARCH:	 	 The	 condition	 for	 constructive	 interference	 is	 2 1 ,r r r n    where	 r 	 is	 the	
difference	between	 the	path	 lengths	of	 the	 two	sound	wave	 fronts.	 	The	condition	 for	destructive	
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interference	 is	  1
2r n    ,	 where	  	 is	 the	 wavelength	 of	 the	 sound.	 	 	 For	 small	 values	 of	 n	

0, 1, 2, 3n     	 r d  ,	 and	 d L .	 	 Therefore	 the	 assumption	 can	 be	 made	 that	 sinr d   .		
From	the	sketch,	it	is	clear	that	 tan /y L  .		By	symmetry,	and	because	the	angles	are	small,	  .		
Further,	 because	 the	 angles	 are	 small,	 the	 approximations	 can	 be	 made	 that	
tan , and sin       	 in	radians .	The	wavelength	is	given	by	 s / .v f  The	distances	in	part	
c 	 and	 d 	 will	 be	 the	 approximate	 distances	 near	 the	 primary	 maximum.	 The	 approximation	
becomes	very	poor	for	very	large	values	of	y.	
SIMPLIFY:			
a tany L L   ,	 sin   /r d d r d        .	 Eliminate	  	 and	 solve	 for	 y :		

s
max

nLvL r Ln
y

d d fd


   .		

b 	   s1
min 2

Lv
y n

fd
  	

c 		Use	the	fact	that	 / .sv f  	The	separation	between	points	of	maximum	intensity	are	given	by		

max,2 max,1 ( 1) .L L L
y y n n

d d d

  
     	

d 		The	separation	between	points	of	minimum	intensity	are	given	by	

min,2 min,1
1 11 .
2 2

L L L
y y n n

d d d

              
   

	

	 e 	The	waves	would	still	 interfere	at	 the	same	positions	 both	constructively	and	destructively .	
However,	at	points	of	destructive	interference,	if	the	sound	waves	had	different	intensities,	then	you	
would	not	detect	zero	intensity.	You	would	detect	an	intensity	that	corresponded	to	the	difference	
between	the	speakers’	intensities.	
CALCULATE:			

a 	
  
  


  

2

max

4.00 10  m 340. m/s
10.0 m.

3400. Hz 4.00 m
y n n 	The	question	asks	where	the	sound	intensity	is	at	its	

maximum.	 	 Intensity	 is	 inversely	 proportional	 to	 the	 distance	 from	 the	 source.	 	 The	 shortest	
distance	from	the	source	is	at	the	primary	maximum,	 0n  .		So	   max (0) 10.0 m 0 m.y 	

b 	
  
  

         
   

2

min

4.00 10  m 340. m/s1 110.0  m
2 23400. Hz 4.00 m

y n n 	

c 		  
340. m/s 0.100 m, so
3400. Hz

  
  

2

max

0.100 m 4.00 10  m
10.0 m.

4.00 m
y 	

d 		
  

  
2

min

0.100 m 4.00 10  m
10.0 m

4.00 m
y 	

e 	does	not	apply	
ROUND:		Rounding	is	not	necessary.	
DOUBLE‐CHECK:	 The	 calculated	 values	 are	 reasonable,	 considering	 the	 given	 quantities	 and	
approximations	made.	

16.67. THINK:	 	The	car	 is	 traveling	 towards	 the	building	at	a	speed	of	v	 	25.0	m/s.	The	car	horn	emits	
sound	 with	 a	 frequency	 of	 0 230. Hz.f 	 The	 sound	 is	 reflected	 off	 the	 building	 and	 back	 to	 the	

driver.	The	mixing	of	 the	emitted	and	 reflected	 sound	 form	a	beat	 frequency,	 B,f 	which	must	be	

determined.	Assume	the	speed	of	sound	is	 s 343 m/s.v 	
SKETCH:			
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RESEARCH:	 	 The	 beat	 frequency	 is	 given	 by	 B 0 2 .f f f  	 In	 this	 case,	 2f 	 is	 the	 frequency	 of	 the	

reflected	 sound.	To	determine	 2 ,f 	 consider	 the	 situation	 in	 steps.	The	 frequency	observed	at	 the	

wall,	 1,f 	can	be	determined	using	the	Doppler	effect	equation:	 s
1 0

s

.
v

f f
v v

 
  

 
	This	frequency,	 1,f 	is	

now	the	frequency	of	the	reflected	sound.	In	this	situation,	treat	the	building	as	the	source.		Because	

the	building	is	stationary,	the	observed	frequency	of	the	reflected	wave	is	given	by:	 s
2 1

s

.
v v

f f
v

 
  

 
	

SIMPLIFY:		Substitute	the	equation	for	 2f 	into	the	equation	for	 Bf 	to	get:		

s
B 0 1

s

.
v v

f f f
v

 
   

 
	

The	equation	can	be	further	simplified	by	substituting	the	expression	for	 1f 	to	get:	

s s
B 0 0

s s

s
0 0

s

.

v v v
f f f

v v v

v v
f f

v v

  
    

  

 
   

 

	

CALCULATE:		        
B

343 m/s 25.0 m/s230. Hz 230. Hz 36.164 Hz
343 m/s 25.0 m/s

f 	

ROUND:		Three	significant	figures	were	provided	in	the	problem	so	the	result	should	be	rounded	to	
	

DOUBLE‐CHECK:		This	is	a	reasonable	beat	frequency	that	could	be	detected	by	the	driver.	

16.68. THINK:		The	two	pipes	are	identical	half	open	pipes	and	have	a	fundamental	frequency,	 1 500. Hz.f 	
Determine	the	percent	change	in	the	length,	L,	of	one	of	the	pipes	that	will	cause	a	beat	frequency	of	

B 10.0 Hzf 	when	the	pipes	are	sounded	simultaneously.	The	speed	of	sound	is	v	 	343	m/s.	
	
	
	
	
	
	
	
	
	
	
	
SKETCH:			
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RESEARCH:		The	possible	frequencies	for	a	half	open	pipe	are	given	by:	

 n 2 1 ,
4
v

f n
L

  	

for	 n	 	 1,	 2,	 3,	 …	 For	 a	 fundamental	 frequency,	 n	 	 1.	 The	 equation	 for	 the	 beat	 frequency	 is	

B 1 2 .f f f  	 In	 this	 case,	 1f 	 is	 the	 fundamental	 frequency	 of	 pipe	 1	 and	 2f 	 is	 the	 fundamental	
frequency	of	the	elongated	pipe	2.	The	percent	change	in	the	length,	L,	of	the	pipe	is	given	by:	

 
 2 1

1

% change 100% .
L L

L
	

SIMPLIFY:		 2 1 B,f f f  		 1 1
1 1

 ,
4 4
v v

f L
L f

   		 2
24

v
L

f
 	

Substitute	the	equations	for	 1L 	and	 2L 	into	the	%	length	change	equation	to	get:	

         
 

 
   1 1 22 1 2 1 1 2

1 2 2

1 1

1 1
4 4

% change 100% 100% 100% 100% .
1

4

v v
f f ff f f f f f

v f f f
f f

	

Substitute	 2 1 Bf f f  	into	the	above	equation	to	get:	

    
 

 
1 B 1 B

1 B 1 B

% length change 100% 100% .
f f f f

f f f f
	

CALCULATE:		    


10.0 Hz 10.0 Hz% length change 100% 2.041%
500. Hz 10.0 Hz 490. Hz

	

ROUND:		Three	significant	figures	are	provided	in	the	question,	so	the	result	should	be	rounded	to	
% length change 2.04%. 	

DOUBLE‐CHECK:		A	small	change	in	length	is	expected	for	a	small	beat	frequency.	The	change	that	
was	calculated	is	consistent	with	this	expectation.	

16.69. THINK:	 	 The	 source	 travels	 to	 the	 right	 at	 a	 speed	 of	 s 10.00 m/sv  	 and	 emits	 a	 sound	wave	 of	

frequency,	 s 100.0 Hz.f  	The	reflector	travels	to	the	left	at	a	speed	of	 R 5.00 m/s.v  	Determine	the	
frequency,	 f,	of	the	reflected	sound	wave	that	 is	detected	back	at	the	source.	The	frequency	of	the	
reflected	sound	wave	is	 Rf .	Use	v	 	343	m/s	as	the	speed	of	sound,	the	known	value	at	 20 C. 	
	
SKETCH:			
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RESEARCH:	 	 The	 general	 equation	 describing	 the	 Doppler	 effect	 when	 both	 the	 source	 and	 the	
observer	are	moving	is:	

sound observer
source

sound source

.
v v

f f
v v

 
  

 
	

When	the	observer	and	source	approaching	each	other,	the	sign	in	the	numerator	is	positive	and	the	
sign	in	the	denominator	is	negative.	In	this	problem,	consider	the	frequency	that	is	observed	at	the	
reflector.	This	frequency	will	be	the	source	frequency	for	the	sound	wave	that	the	observer	moving	
to	the	right	with	the	true	source	detects.	

SIMPLIFY:	 	 R
R s

s

,
v v

f f
v v

 
  

 
	 	 s

R
R

.
v v

f f
v v

 
  

 
	 Substitute	 the	 expression	 for	 Rf 	 into	 the	 above	

equation	to	get:	

R s
s

s R

.
v v v v

f f
v v v v

   
   

   
	

CALCULATE:		
343 m/s 5.00 m/s 343 m/s 10.00 m/s100.0 Hz 109.1423 Hz
343 m/s 10.00 m/s 343 m/s 5.00 m/s

f
         

	

ROUND:	 	The	frequency	should	have	three	significant	figures	since	the	least	precise	value	given	in	
the	question	has	three	significant	figures.	Round	the	frequency	to	 109 Hz.f  	
DOUBLE‐CHECK:		It	is	reasonable	that	the	frequency	of	the	reflected	wave	detected	at	the	source	is	
higher	because	the	source	and	reflector	are	approaching	each	other.	Also,	the	correct	value	has	valid	
units	for	frequency.	

16.70. THINK:		Submarine	X	travels	towards	submarine	Y	at	a	speed	of	 10.0 m/sxv 	and	emits	a	sonar	

wave	of	frequency,	  2000.0 Hz.xf 	Submarine	Y	travels	towards	submarine	X	at	a	speed	of	
y 15.0 m/s.v 	Clearly,	in	this	case	observer	and	source	are	both	moving.	However,	when	the	sonar	

sound	ping	of	submarine	X	bounces	off	the	hull	of	submarine	Y	and	is	reflected	back	to	the	first	
submarine,	submarine	Y	now	emits	the	sound	and	sends	it	back;	so	the	roles	of	emitter	and	observer	
are	reversed.	
SKETCH:			

	
	

RESEARCH:		The	general	equation	describing	the	Doppler	effect	when	both	the	source	and	observer	
are	moving	is:	

	

When	the	observer	and	source	are	approaching	each	other,	the	sign	in	the	numerator	is	positive	and	
the	sign	in	the	denominator	is	negative.	When	the	observer	and	source	are	moving	away	from	each	
other,	the	numerator	sign	is	negative	and	the	denominator	sign	is	positive.	
SIMPLIFY:			
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a 		 s

s

y

y x
x

v v
f f

v v

 
    

	

b 		The	sound	coming	back	at	X	form	Y		 s

s

.x
x y

y

v v
f f

v v

 
     

	

The	 frequency,	 ,yf 	 is	used	as	 the	 source	 frequency	because	 the	 sonar	wave	 is	being	 reflected	off	

submarine	Y.	Substitute	the	expression	for	 yf 	from	part	 a 	into	the	expression	for	 xf  	to	get:	

	

c 	In	this	part	of	the	answer,	both	source	and	receiver	are	moving	away	from	each	other,	and	so	we	
have	to	use	the	opposite	signs	that	were	used	in	part	 a ,	result	now	in:	

	

	
CALCULATE:			

a 		
 

   

1500.0 m/s 15.0 m/s2000.0 Hz 2033.56 Hz
1500.0 m/s 10.0 m/syf 	

b 		 	

c 			
     

1500.0 m/s 15.0 m/s2000.0 Hz 1966.887 Hz,
1500.0 m/s 10.0 m/syf 		

   1966.887 Hz 2000.0 Hz 33.112 Hzf 	

ROUND:			
a 		 y 2033.6 Hzf 	

b 		 	

c 		  1966.9 Hz,yf 	   33.1 Hzf 	

DOUBLE‐CHECK:		It	makes	sense	that	the	detected	frequency	and	frequency	shift	increase	when	the	
two	 submarines	 approach	 each	 other	 and	 decrease	when	 the	 submarines	 are	moving	 away	 from	
each	other.	This	effect	is	experienced	while	approaching	and	moving	away	from	a	siren.	The	sound	
seems	to	increase	in	frequency	and	then	decrease.	

16.71. THINK:		A	sound	wave	is	traveling	in	an	elastic	medium	with	either	Young’s	modulus,	Y,	for	a	solid	
or	bulk	modulus,	B,	for	a	fluid.	The	function	describing	the	wave	is	  , ,x x t 	where	 x 	denotes	the	

displacement	of	a	point	in	the	medium	from	it	equilibrium	position,	x	is	the	position	along	the	path	
of	 the	wave,	and	t	 is	 time.	The	wave	can	also	be	described	by	a	pressure	wave	function,	  , ,p x t 	

where	 p 	 is	 a	 pressure	 change	 in	 the	 medium	 from	 its	 equilibrium	 value.	 Determine	 a 	 the	

relationship	between	  ,p x t 	and	  , ,x x t 	and	 b 	the	pressure	wave	function,	  , ,p x t 	given	the	

wave	function,	    , cos .x x t A x t    	Also,	determine	the	amplitude	of	the	pressure	wave.		

	
	
	
	
	
	
SKETCH:			
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RESEARCH:	 	Young’s	modulus	 is	given	by:	 .F L
Y

A L

    
	The	 term	F/A	 is	 called	 tensile	 stress.	The	

term	 /L L 	 denotes	 the	 fractional	 length	 increase,	 also	 known	 as	 the	 strain.	 In	 the	microscopic	

view,	  f/ / .L L dx dx dx   	In	this	case,	 f ,x x x   	so	  , .L
x x t

L x
 




	Similarly	to	the	discussion	

of	 Young’s	 modulus,	 the	 bulk	 modulus,	 B,	 can	 be	 defined	 as:	 	 .v
B p

v



	 In	 one	 dimension:		

 , .v
x x t

v x
 




	

SIMPLIFY:			

a 		 .L
p Y

L
 

 	Substituting	  ,L
x x t

L x
 




	into	this	equation	gives	  , .p Y x x t
x

 



	Similarly,	

for	the	bulk	modulus:	 ,v
p B

v
 

 	therefore,	    , , .p x t B x x t
x

 



		

b 		    , cos ,x x t A x t    	        , , cos sinp x t Y x x t Y A x t Y A x t
x x

       
     

 
	

For	 the	 bulk	 modulus	 case:	           
    


, cos sin .p x t B A x t B A x t

x
	 The	 maximum	

amplitude	 will	 occur	 when	    sin 1.x t 	 Therefore,	 the	 pressure	 amplitude	 for	 the	 Young’s	

modulus	case	is	 maxp Y A 	and	is maxp B A 	in	the	bulk	modulus	case.		
CALCULATE:		This	step	is	not	necessary.	
ROUND:		Rounding	is	not	necessary.	
DOUBLE‐CHECK:	 	The	derivations	show	that	there	is	a	relationship	between	Young’s	modulus	and	
the	bulk	modulus,	which	is	well	known.	This	lends	support	to	these	derived	equations.	

16.72. THINK:	 	 Consider	 the	 sound	wave	 described	 by	 the	 function	  ,x x t 	 or	  ,p x t 	 in	 the	 previous	

problem.	Determine	 a 	the	intensity,	I,	of	the	general	wave	in	terms	of	  ,x x t 	and	  , ,p x t 	and	

b 	 the	 intensity	of	 the	wave,	    , cos ,x x t A kx t   	 in	 terms	of	 the	displacement	and	pressure	

amplitudes.	
SKETCH:		A	sketch	is	not	necessary.	
	
	
RESEARCH:			
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a 	 	 The	 wave	 can	 be	 thought	 of	 as	 a	 stack	 of	 rectangular	 slabs	 of	 infinitesimal	 thickness,	
compressed	 or	 stretched	 and	 set	 into	 oscillatory	motion	 by	 the	wave.	 Compression	 or	 stretching	
rarefaction 	of	a	slab	imparts	elastic	potential	energy	to	it,	while	its	motion	imparts	kinetic	energy.	
The	sum	of	these	two	energy	densities	times	the	speed	of	the	wave	is	the	energy	flux	transported	by	
the	wave.	 The	 intensity,	 I,	 is	 the	 time	 averaged	 energy	 flux.	 The	 elastic	 force	 associated	with	 the	
deformation	of	a	slab	of	area,	A,	and	thickness,	 ,x 	is:	


 


x

F YA
x
		 solid ,		


 


x

F BA
x
		 fluid .	

The	 above	 expressions	 correspond	 to	 spring	 constants	 of:	 

YA

k
x
	 	 solid ,	 


BA

k
x
	 	 fluid ,	

respectively.		The	associated	elastic	potential	energy	per	unit	volume	of	the	slab	is	then:	

    

2

p
1
2

x
u Y

x
		 solid ,		

    

2

p
1
2

x
u B

x
		 fluid .	

The	 kinetic	 energy	 density	 associated	with	 the	wave	 is:	
     

2

k 0
1 .
2

x
u

t
Hence,	 the	 energy	 flux	

associated	with	the	wave	is:	

 
                

2 2

s 0
1
2

x x
S v Y

x t
		 solid ,		

 
                

2 2

s 0
1
2

x x
S v B

x t
		 fluid ,	

with	the	speed	of	sound	as:	


s

0

Y
v 		 solid ,		


s

0

B
v 		 fluid .	

This	could	also	be	written:	

   
        

2
2

s 0
1 1
2

x
S v p

Y t
		 solid ,		    

        

2
2

s 0
1 1
2

x
S v p

B t
		 fluid ,	

using	the	result	of	part	 a 	in	the	previous	problem.	
b 	This	step	is	not	applicable.	
SIMPLIFY:	
a 	The	 intensity	of	a	sound	wave,	however,	 is	not	measured	 instantaneously,	but	over	several	or	
many	periods	of	the	wave.	That	is,	the	intensity	is	the	time	average	of	the	energy	flux	over	one	or	
more	periods,	and	is	given	by:	

     
                                  

2 2 2
2

s 0 s 0
1 1 1
2 2

x x x
I v Y v p

x t Y t
		 solid 	

     
                                  

2 2 2
2

s 0 s 0
1 1 1
2 2

x x x
I v B v p

x t B t
		 fluid .	

The	angled	brackets	denote	the	time	average	for	one	or	more	periods	of	the	wave.	
b 	 For	 a	 displacement	 wave	 with	 wave	 function	       , cos ,x x t A x t 	 as	 in	 part	 b 	 of	 the	

previous	problem,	the	first	formula	above	for	the	intensity	becomes:	

                 2 2 2 2 2 2 2
s 0 s 0

1 1sin .
2 4

I v Y A x t v Y A 	

Using	the	dispersion	relation	   s/ ,v 	the	above	equation	becomes	

 
 

  
 

2 2
s 02

s

1 ,
4

Y
I v A

v
	

The	first	of	 the	earlier	expressions	 for s ,v


s
0

,Y
v 	 implies	that	the	two	terms	in	parentheses	are	

equal.	Hence,	the	intensity	can	be	written:	
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  2 2
0 s

1 .
2

I A v 	

The	expression	for	the	intensity	in	a	fluid	medium	yields	the	same	result.	In	terms	of	the	amplitude,	
P,	of	the	corresponding	pressure	wave	determined	in	part	 b 	of	the	previous	problem,	this	result	
for	the	intensity	for	a	solid	medium	takes	the	form:	

  
2 32 2

s
0 s 02 2 2

1 1 ,
2 2

P vP
I v

k Y Y
	

again	using	the	dispersion	relation	for	the	waves.	The	above	relationship	for	 sv 	then	implies:	


 

  
 

2

0 s

1 .
2

P
I

v
	

The	corresponding	expression	for	a	fluid	medium	is	identical.	
CALCULATE:		This	step	is	not	necessary.	
ROUND:		This	step	is	not	necessary.	
DOUBLE‐CHECK:	 	 In	 the	 computed	 formula	 the	 intensity	 is	 proportional	 to	 the	 square	 of	 the	
amplitude,	as	it	should	be.	

16.73. THINK:	 	 Using	 the	 results	 of	 the	 previous	 problems,	 determine	 the	 displacement	 and	 pressure	
amplitudes	 of	 a	 pure	 tone	 of	 frequency	 1.000 kHzv  in	 air	 density	 3

0 1.20 kg/m  and	 speed	 of	

sound	 343 m/ssv  	 at	 0.00 db,  and 120. db.  	 Let	 12 2
0 1.00 10  W/mI   	 be	 the	 standard	

reference	intensity,	and	  / 2f   	be	the	frequency	of	the	sound	wave.	

SKETCH:		A	sketch	is	not	needed	to	solve	this	problem.	

RESEARCH:	 	 From	 problem	 16.72,	 we	 learned	 that	 2 2
0 s

1
2

I A v  .	 We	 will	 use	 the	 formula	

0

10log I

I
  	to	eliminate	I.	The	pressure	amplitude	is	 02 .sP I v 	

SIMPLIFY:	 	 Solve	 the	 first	 formula	 in	 RESEARCH	 to	 get 2
0 s

2I
A A

p v 
  ,	 and	 substitute	 the	

expression	 /10
010I I  	 to	 eliminate	 I.	 	 The	 result	 is

/10
0

2 2
0 s

10
.

2
I

A
f v



  
 	 The	 pressure	 amplitude	 is	

 /10
0 0 02 2 10 .s sP P Ip v I p v

   	

CALCULATE:
 

    

12 2
11

0.00 22 3 3 1

0.00/1010 1.00 10  W/m
1.1094 10  m

2 1.20 kg/m 1.000 10  s 343 m/s
A









 
  


and	

 
    

12 2
5

120. 2

1

2 3 3

0 /10

1

2 .10 1.00 10  W/m
1.1094 10  m.

2 1.20 kg/m 1.000 10  s 343 m/s
A









 
  


	 At	 the	 threshold	 of	 hearing	

0.00 decibels  	 the	 value	 of	 the	 pressure	 amplitude	 is	 	 given	 by	 the	 equation	

    12 2 3 5
0.00 2 1 1.00 10  W/m 1.20 kg/m 343 m/s 2.8691 10  Pa.P      	On	the	other	hand,	the	value	of	

the	 pressure	 amplitude	 at	 the	 threshold	 of	 pain	 is	 given	 by	 the	 equation	

    120./ 12 2 3
120.

102 10 1.00 10  W/m 1.20 kg/m 343 m/s 28.691 Pa.P    		

ROUND:	 	 The	 rounded	 values	 are:	 11
0.00 1.11 10  m,A   5

120. 1.11 10  m,A   5
0.00 2.87 10  Pa,P   	 and	

120. 28.7 Pa.P  	
DOUBLE‐CHECK:	 	 The	 calculated	 displacement	 of	 a	 pure	 tone	 frequency	 of	 1.000	 kHz	 at	 zero	
decibels	 is	 roughly	 a	 tenth	 of	 an	 atomic	 diameter.	 This	 is	 suprisingly	 small,	 but	 it	 is	 at	 least	
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consistent	 with	 the	 fact	 that	 such	 a	 wave	 produces	 no	 sensation	 on	 the	 skin	 and	 only	 a	 barely	
discenible	sensation	at	the	eardrum.	Increasing	from	0	to	120	decibels	corresponds	to	a	1012	factor	
increase	 in	 intensity.	 Since	 the	 displacement	 varies	 with	 the	 square	 root	 of	 the	 intensity,	 the	
calculated	value	for	the	displacement	at	120	decibels	should	be	larger	by	a	factor	of	106	,	which	it	is.	

 51.11 10  m 	is	one	hundredth	of	a	millimeter,	and	it	is	plausible	that	such	an	amplitude	would	begin	
to	cause	pain	in	the	ear.	The	pressure	amplitude	at	zero	decibels	is	less	than	three	ten‐thousandths	
of	 an	 atmosphere,	 and	 this	 is	 consistent	 with	 what	 would	 be	 expected.	 Again,	 the	 pressure	
amplitude	varies	with	the	square	root	of	the	intensity,	so	the	calculated	value	of	the	displacement	at	
120	decibels	should	be	larger	by	a	factor	of	106,	which	it	is.	This	shows	that	the	calculated	answers	
are	reasonable.	

	
Multi‐Version	Exercises	

16.74. THINK:	 	The	 frequency	of	 the	sound	will	be	perceived	differently	by	 the	drivers	as	a	 result	of	 the	
Doppler	effect.	In	this	case,	the	source	of	the	sound	is	the	parked	car,	which	is	not	moving,	while	the	
observer	is	in	the	moving	car.	

	 SKETCH:	The	car	on	the	right	is	parked.	The	car	on	the	left	is	moving	towards	the	car	on	the	left	at	a	
speed	v.		

	
	 RESEARCH:		The	source	of	the	sound	is	stationary	and	the	observer	is	moving	towards	the	source,	so	

the	observed	frequency	is	given	by	 observer
O

sound

1 .
v

f f
v

 
  

 
		

	 SIMPLIFY:	The	goal	is	to	find	the	speed	of	the	observer,	so	solve	for	that	variable:	

observer
O

sound

observer O

sound

observer O

sound

O
observer sound

1

1

1

1 .

v
f f

v

v f

v f

v f

v f

f
v v

f

 
  

 

 

 

 
  

 

	

	 CALCULATE:		The	frequency	of	the	horn	is	f	 	489	Hz,	but	the	driver	in	the	approaching	car	hears	a	
sound	of	frequency	fO	 	509.4	Hz.	In	this	case,	the	speed	of	sound	is	343	m/s,	so	the	velocity	of	the	
observer	must	be	

O
observer sound 1

509.4 Hz343 m/s 1
489 Hz

14.30920245 m/s.

f
v v

f

 
  

 
   
 



	

	 ROUND:	Though	the	frequency	measured	by	the	driver	of	the	moving	car	has	four	significant	figures,	
two	other	measured	 values,	 the	 frequency	of	 the	horn	 and	 the	 speed	of	 sound,	 are	 given	 to	 only	
three	significant	figures,	so	the	final	answer	can	have	only	three	significant	figures.	The	car	is	going	
14.3	m/s.	
DOUBLE‐CHECK:	The	car	is	going	14.3	m/s.	Since	1	m	 	6.214 10 4	miles	and	3600	sec	 	1	hour,	the	
car	is	going	   4 miles sec

meter hour14.3 m/s 6.214 10 3600 32 mph.  	For	a	car	driving	on	a	paved	road,	this	is	a	

perfectly	reasonable	speed,	so	the	answer	is	reasonable.		
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16.75. observer
O

sound

1
v

f f
v

 
  

 
	

O

observer

sound

1

579.4 Hz
15.1 m/s1
343 m/s

555.0 Hz

f
f

v

v









	

16.76.  observer
O

sound

15.7 m/s1 333 Hz 1 348 Hz
343 m/s

v
f f

v

          
  

	

16.77. THINK:	 	The	 tuba	 is	brass	 instrument;	 it	makes	music	by	producing	standing	waves	 inside	of	 the	
coiled	tube.		The	lowest	frequency	that	can	be	produced	by	the	tuba	corresponds	to	one	quarter	of	a	
wavelength	inside	the	tube.		

	 SKETCH:	Think	of	the	tuba,	uncoiled,	as	a	pipe	that	is	closed	at	one	end	and	open	at	the	other	end.		
The	lowest	frequency	corresponds	to	a	wave	with	a	node	at	the	closed	end	and	an	antinode	at	the	
open	end.			

	

	
	

	 RESEARCH:		The	lowest	frequency	sound	that	can	be	produced	corresponds	to	half	of	a	wavelength	
inside	the	tuba,	so	the	total	wavelength	is	four	times	the	length	of	the	tuba,	 4L  .	The	speed	of	the	
sound	wave,	wavelength,	and	frequency	are	related	by	the	equation	 v f .	

	 SIMPLIFY:		Solve	 v f for	the	frequency,	 /f v  .	Now	substitute	 4L  to	get .
4
v

f
L

 	

	 CALCULATE:		The The	length	of	the	tuba	is	7.373	m	and	the	speed	of	the	sound	is	343.0	m/s,	so	the	
lowest	frequency	the	tuba	can	produce	is		

 

4
343.0 m/s

4 7.373 m
11.63027 Hz.

v
f

L







	

	 ROUND:	We	round	to	four	sigificant	figures,	 11.63 Hzf  .			
DOUBLE‐CHECK:	 The	 lowest	 tone	 that	most	 humans	 can	 hear	 is	 about	 20	 Hz,	 so	 this	 sound	will	
probably	not	be	audible,	although	you	can	still	feel	it	and	hear	various	overtones.	The	next	highest	
frequency	is		

 

 
 

2 2 1
4

3 343.0 m/s
4 7.373 m

34.89 Hz.

v
f

L

 









	

So	the	lowest	solidly	audible	sound	would	be	34.89	Hz.	This	compares	with	A0	on	a	piano,	which	is	
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27.5	Hz.		

16.78. 
2
v

f
L

 	

2
343.0 m/s

2 22.56 Hz
7.602 m

v
L

f







	

16.79. THINK:		Since	the	metal	bar	is	solid,	the	speed	of	sound	will	depend	on	the	type	and	structure	of	the	
material.	The	speed	of	sound	in	a	solid	can	be	calculated	using	the	density	and	Young’s	modulus.	

	 SKETCH:	The	speed	of	sound,	v,	in	the	metal	bar	is	shown	 see	Figure	16.2 .			
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

RESEARCH:		In	general,	the	speed	of	sound	in	a	solid	is	given	by	 /v Y  	,	where	Y	is	the	Young’s	
modulus	and	ρ	is	the	mass	density.		

	 SIMPLIFY:	n/a	
	 CALCULATE:	 	 The	 question	 states	 that	 the	 mass	 density	 of	 the	 bar	 is	 ρ	 	 3497	 kg/m3	 and	 the	

Young’s	modulus	is	266.3 109	N/m2.	The	speed	of	sound	in	the	metal	bar	is		

9 2

3

/

266.3 10  N/m
3497 kg/m

8726.453263 m/s.

v Y 






	

	 ROUND:	The	values	used	to	calculate	the	speed	of	sound	all	have	four	significant	figures,	so	the	final	
answer	should	also	have	four	figures.	The	speed	of	sound	in	the	metal	bar	is	8726	m/s.			
DOUBLE‐CHECK:	The	speed	of	sound	in	air	is	343	m/s,	but	air	is	less	dense	than	a	solid	metal	bar.	
Looking	 at	 Table	 16.1,	 the	 speed	 of	 sound	 in	 this	metal	 bar	 is	 somewhere	 between	 the	 speed	 of	
sound	 in	Aluminum	and	the	speed	of	sound	 in	Diamond,	confirming	 that	 the	answer	 is	physically	
realistic	and	of	the	correct	order	of	magnitude.			
	
	
	
	

16.80. /v Y  	
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2

29 2

3

/

112.1 10  N/m / 5628 m/s

3539 kg/m

Y v 

 



	

16.81. /v Y  	

  

2

23

9 2

3579 kg/m 6642 m/s

157.9 10  N/m

Y v
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Chapter 17:  Temperature 
 

Concept Checks 

17.1. c  17.2. a  17.3. d  17.4. c  17.5. d 
 

Multiple-Choice Questions 

17.1. a  17.2. a  17.3. c  17.4. b  17.5. d  17.6. d  17.7. a  17.8. d  17.9. c  17.10. e  17.11. b  17.12. b  17.13. e 
 
Conceptual Questions 

17.14.  Yes, this will still work. The lid will heat up more quickly if it is in direct contact with the warm water; the 
lid will expand more than the container, making it easier to open (not as easy as with a glass jar, but easier 
than before heating in the warm water). 

17.15.  As stated in Section 17.1, heat is defined as the transfer of a type of energy in the presence of a temperature 
gradient, and this energy is the random motion of the atoms and molecules that make up the material 
under study. In the conventional definition heat flows from high temperature to low temperature, 
indicating that the material with the higher temperature has more thermal energy. It is conceivable for 
heat to be defined in such a way as to represent the direction opposite to this energy transfer across a 
temperature gradient, in which case heat would flow from lower temperature to higher temperature. 
   In addition to defining heat flow, the methods of measuring temperature involving thermal expansion 
(Section 17.4) also depend upon temperature difference. Therefore it is entirely logical to define a 
temperature scale in such a way that the temperature difference between a cold material and a hot material 
is negative as well as it is to define a scale in such a way that the difference is positive; what is important is 
the magnitude of the difference. In fact, the original scale devised by Celsius had 0 as the boiling point of 
water and 100 as the freezing point. As thermodynamics became better understood, it was clear that there 
was a unique point on any temperature scale, which we now call absolute zero. To define a scale, as we now 
do, such that systems hotter than this have positive, rather than negative, temperatures (or even to label 
this point 0) is a matter of convenience. 

17.16.  Although the corona is very hot, it is not dense, so that the actual energy contained within the corona is 
small. This explains why a spaceship flying in the corona will not be burned up. 

17.17.  Different metals have different melting points and different heat capacities. Thus, one metal may liquefy 
easily while the other remains solid, making welding very difficult. 

17.18.  The volume of each object changes by the same amount during an identical ∆ T. This implies that ∆V/∆T is 
the same for both objects. Therefore: 

1
1 1 1 1 2 1 2

2 1
2 2 2 2 2 1 2

2

1    2   2  .
2

V VV V V V V V V
T T T

β
β β β β β β β β

β
∆ ∆∆

= = = = ⇒ = ⇒ = ⇒ = ⇒ =
∆ ∆ ∆

 

17.19.  The only difference between these two temperature scales is where the zero point is. The units are of 
identical size. Hence, a temperature difference on the Kelvin scale is numerically equal to a temperature 
difference on the Celsius scale. The coefficient of linear expansion is used only in equations involving 
temperature differences, so it will take on the same value for either 1K− or 1C .−°  

17.20.   (a)  The system is not in equilibrium, so 0 d i .T T T> >  
(b) A typical hot day is: 0 40 C (104 F)T = ° ° The ice temperature is close to its melting point: i 0 CT = °  
The drink temperature is somewhere in between, d40 C 0 CT° > > °  but hopefully closer to the ice 

temperature than the air temperature, such as dT 10 C.≈ °  
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17.21.  Rankine temperatures, R ,T differ from Fahrenheit temperatures, F ,T  only in being measured from absolute 
zero. 0 K 273.15 C 459.67 F.= − ° = − ° Thus, = + ° ⇒ = − °R F F R459.67 F  459.67 F.T T T T Rankine 
temperatures differ from Kelvin temperatures, K ,T  only in being measured in Fahrenheit-degree 
increments. Thus, 

R K K R
9 5  .
5 9

T T T T= ⇒ =  

Finally, in terms of degrees Celsius, C :T  

R C C R
9 5( 273.15 C)  273.15 C.
5 9

T T T T= + ° ⇒ = − °  

17.22. For such a two-level system, ordinary postive absolute temperatures correspond to the normal situation in 
which the lower energy level is more popluated than the higher. The lower the temperature, the more 
dominat is the lower level, as expected: the limit T → 0+ corresponds to a “ground state” in which all 
components of the system are in the lower level.  The higher the temperature, the more components are 
excited into the upper level, but the lower level is always more populated; the limit T→+∞ corresponds to a 
limit in which both levels are equally populated. 
   Negative absolute temperatures correspond to a “population inversion,” in which the higher energy level 
is more populated than the lower. The limit T → 0− describes the limiting situation in which the entire 
system is in the higher level. Population inversions are real: the lasing medium of a laser, for example, 
must be driven (“pumped”) into a population inversion for the laser to operate. The total energy of the 
system is higher at negative temperature than positive; negative absolute temperatures are not “colder than 
absolute zero,” they are “hotter than infinity,” in this context. It may be noted that the time dependence of a 
quantum state with energy E is given by the complex function: 

exp cos sinEt Et Eti i     
− = −     

       

, 

where t is time, ħ is Planck’s constant divided by 2 ,π and i the imaginary unit. Comparison of this with the 
temperature-dependent population factor (Maxwell-Boltzmann distribution) suggests that in a quantum 
context, (inverse) temperature can be interpreted as imaginary time! 

17.23. Metal 1 expands and contracts more readily than does Metal 2.   
 (a) The strip will bend toward metal 1, since metal 1 will contract more than metal 2 does.  
 (b) The strip will bend toward metal 2, since metal 1 will expand more than metal 2 does. 

17.24. The metal lid has a larger coefficient of thermal expansion than the glass. Hot food is placed in a hot glass 
jar and then a hot metal lid is screwed on top. As the glass and lid cools, the lid shrinks by a larger 
percentage than does the glass, making a tight seal. 

17.25. Both will expand to the same outer radius. A cavity in a material will expand in the same manner as if it 
was filled with the same material. 

 
Exercises 

17.26. Use C F
5 ( 32 F)
9

T T= − °  and K C( 273.15 C)T T= + °  

 (a) 19 F:− °  C
5 ( 19 F 32 F) 28 C; 
9

T = − ° − ° = − ° = − ° + =K ( 28 C 273.15) 245 K.T Rounding to two 

significant figures gives =K 25 .0 KT  

 (b) 98.6 F:°  C
5 (98.6 F 32.0 F) 37.0 C; 
9

T = ° − ° = ° K (37 C 273.15 C) 310. KT = ° + ° =  
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 (c) C
552 F: (52 F 32 F) 11 C; 
9

T° = ° − ° = °   = ° + ° =K (11 C 273.15 C) 284 K.T  Rounding to two significant 

figures gives =K 28 .0 KT
 

17.27. The temperature 21.8 CCT = − ° is three times its equivalent value F 7.3 F.T = − °  To check this, recall the 

conversion formula: C F
5 ( 32 F).
9

T T= − °  C F3  T T=  F F
5 ( 32 F) 3  
9

T T⇒ − ° =  F
5 27 5 ( 32 F)  
9 9

T− 
⇒ − ° =  

 
 

F
5( 32 F) 7.2727 F

22
T − °

⇒ = = − °
 
and C

5 ( 7.3 F 32 F) 21.8 C
9

T = − ° − ° = − °  

17.28. Using C F
5 ( 32 F)
9

T T= − °  and F 134 F,T = °  it is found that 134 F 56.67 C.° = °  Thus, 

56.67 C 47 C 9.67 C.T∆ = ° − ° = °  Rounding to two significant figures gives 9.7 C.T∆ = °  

17.29. = − ° ° °− − − °= =C F
5 5( 32.0 ) ( 1F F F29 32.0 ) 8
9

C9.4 
9

T T  

17.30. The perception of warmth or coolness is related to the temperature difference between a person and his 
environment.  The temperature difference between an environment at a temperature of °0 F  and normal 
body temperature is °98.2 F.   So for the environment to feel twice as warm to a person, the temperature 
difference should be half of °98.2 F,  or °49.1 F.  

17.31. (a) ° °= + = − + =°K C C C273.15 79 273.15 1C 94 K.T T  Rounding to two significant figures gives 

=K 19 .0 KT  

 (b) F C
9 932 ( 79 ) 32 110 F
5 5

C C CT T= + = − + = −° ° °°   

17.32. In the present-day Celsius scale, °77.0 F corresponds to °25.0 C , so that in the original Celsius scale, 
room temperature is ° − ° = °100. C 25.0 C 75.0 C.  

17.33. F K F K
9 9( 273.15 K) 32. If ,  then ( 273.15 K) 32  
5 5

T T T T T T T= − + = = = − + ⇒

9 9 4(273.15 K) 32  459.7,
5 5 5

T T T− = − ⇒ =
5(459.67)so 574.59  574.59 K 574.59 F

4
T = = ⇒ = °  

17.34. At higher temperatures, the mass of copper remains constant, but its volume increases. Hence, the density 
is expected to decrease. The volume expansion is 0V V Tβ∆ = ∆ . For copper, β − −= ⋅ 5 15.1 10  K .  Taking 
room temperature to be 293 K,  (ie. 20 C° ), 1356 K 293 K 1063 K.T∆ = − = Density is 
mass divided by volume. Thus, 0 0(293 K) / ,  M Vρ ρ= = and mp 0 (1356 K) / ( ).M V Vρ ρ= = + ∆  

ρ
ρ β − −

+ ∆
= = = = = =

+ ∆ + ∆ + ∆ + ⋅
mp 0 0

5 1
0 0 0 0

/ ( ) 1 1 1 0.949
/ 1 ( / ) 1 1 (5.1 10 K )(1063 K)

M V V V
M V V V V V T  

 At 1356 KT = , copper is only 94.9% of the density of copper at 293 K.T =  

17.35. We can calculate the bulk expansion coefficient for steel by multiplying the value of the linear expansion 
coefficient for steel from Table 17.2 by 3, which gives us 

 ( )β α − − − −= = ⋅ ° = ⋅ °6 1 5 13 3 13.0 10  C 3.90 10  C .  

 ρ = ° = 3density at 20.0 C 7800. kg/m ,
 

 ρ′ = ° =
+ ∆0

 density at 100.0 C ,M
V V  = °0 volume at 20.0 CV  

 β∆ = ∆0 ;V V T  
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ρρ

β β β − −
′ = = = =

+ ∆ + ∆ + ∆ + ⋅  ° °

3
3

5 1
0 0 0

7800. kg/m
 = 7776 kg/m .

(1 ) 1 1 (3.90 10 C )(80.0 C)
M M

V V T V T T
 

17.36. The cubes will expand when they are heated and will have a total length of 201.0 mm when 
+ = ∆ + ∆ =al br al br201.0 mm or    1.0 mm.L L L L

 

So, α α∆ + ∆ =al al br br 1.0 mm,L T L T  and: 

− − − −
∆ = =

⋅ + ⋅6 1 6 1

1.0 mm 240 K.
(100.0 mm)(22 10 K 19 10 K )

T  

17.37. The piston ring expands when it is heated, and the inner diameter must increase by 0.10 cm, so, 

α
− −

−
∆ = ∆ ∆ = = °

⋅  °brass 6 1

10.10 cm 10.00 cm and 526.32 C.
(10.00 cm)(19 10 C )

L T L T  

 So the temperature to which the brass piston ring must be heated is 
= ° + ° = °20. C 526.32 C 546.32 C.T  

 We round this result to two significant figures to get = °550 C.T Note that this process cannot be reversed 
to remove a piston ring. Once seated, the piston ring is in thermal contact with the piston and cannot be 
heated without heating and expanding the piston. 

17.38. To calculate the dimension change due to heat, the Kelvin scale should be used. ° =100.0 F 310.9 K , and 
° =200.0 F 366.5 K . Therefore the temperature change is ∆ = 55.6 K.T  

 (a)  The volume change = α π− −∆ = ⋅ =6 1 3 33 (3)(22 10 K )(4 / 3)(10.0 cm) (55.6 K) 15 cmV T  

 (b)  The radius change = α − −∆ = ⋅ =6 1(22 10 K )(10.0 cm)(55.6 K) 0.012 cmR T  

 Note that the radius change could be found from 3 2(4 / 3) ,  ( ) 4 ( ).V R dV R dRπ π= =  Therefore, 

π= =2/ (4 ) 0.012 cm.dR dV R  

17.39. The cross-sectional area has no relevance-this depends on linear expansion, which is governed 
by f (1 )L L Tα= + ∆ , where in this case = ∆ = °f 5.2000 m, 60.0 CL T  and α −= ⋅ 613 10 per degree Celsius 

from Table 17.2. This gives 
( )( )α − −

= = =
+ ∆ + ⋅  ° °

f
6 1

5.2000 m 5.195947 m
(1 ) 1 13 10 C 60.0 C

L
L

T
 at − °10.0 C.   Thus 

there will be 4.1 mm between adjacent rails. 

17.40. The track will be free of any built-in tension as long as the thermal expansion is less than the 10.0 mm gap. 
The expansion of the track at temperature T is: steel ( 20.0 C).L L Tα∆ = − °  At the maximum allowable 

temperature, gap .L d∆ = Therefore, steel max gap( 20.0 C) ,L T dα − ° = so,  

( )( )α

−

− −

⋅
= + ° = + ° = °

⋅  °

2
gap

max 6 1
steel

1.00 10  m20.0 C 20.0 C 51 C.
13 10 C 25.0 m

d
T

L
 

For most places in a temperate climate, this is enough for secure operation of the tracks, although larger 
gaps (on the order of 13 mm) may also be used. 

17.41. Suppose Tf is the temperature at which the two screws will touch. Use the equation 0 f 0( )L L T Tα∆ = − to 
find the increase in length for both brass and the aluminum screws at this temperature and set  

Brass Aluminum 1.00 mmL L∆ + ∆ =                                                                  (1) 
Now:  

Brass Brass f(20.0 cm)( )( 22.0 C)L Tα∆ = − °                                                          (2) 

( )( )Aluminum Aluminum f(30.0 cm) 22.0 CL Tα∆ = − °                                                   (3) 
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Substituting equations (2) and (3) into equation (1) yields:  

Brass f Aluminum f(20.0 cm)( )( 22.0 C) (30.0 cm)( )( 22.0 C) 0.100 cm.T Tα α− ° + − ° =  

Given 6
Brass 18.9 10 / Cα −= ⋅ °  and 6

Aluminum 23.0 10 / C:α −= ⋅ °  
6 6

f f
1 1(20.0 cm)(18.9 10  C )( 22.0 C) (30.0 cm)(23.0 10  C )( 22.0 C) 0.100 cmT T− −−−⋅ ° − ° + ⋅ ° − ° =

− −
= + ° = °

⋅ ° + ⋅ °f 6 6

0.100 cm
22.0 C 116 C

(20.0 cm)(18.9 10 / C) (30.0 cm)(23.0 10 / C)
T  

17.42. THINK:  From the change in volume, the total volume can be determined from the equation of volume 
expansion. It is necessary to find this volume V0 and the radius R of the sphere that can hold it. 
SKETCH:   

 

RESEARCH:  2 3
0 cylinder sphere

4,  = , 
3

dV V dT V r D V Rβ π π= =  

 SIMPLIFY: 
2

2
0 0

1/32 2 2 2
3 3

0

  

4 3 3 3,   
3 4 4 4

r DdV V dT r D V
dT

r D r D r D r DV R R R
dT dT dT dT

πβ π
β

π ππ
β π β β β

= = ⇒ =

 
= = = = ⇒ =  

 

 

 CALCULATE:  π
−

−

− −
−

−

− −
−

−

⋅ ⋅
= = ⋅

⋅ ° °

 ⋅ ⋅
= = ⋅  ⋅ ° ° 

1

3 2 2
6 3

0 4

1/3
3 2 2

3
14

(0.100 10 m) (1.00 10 m) 1.736 10 m
(1.81 10  C )(1.00 C)

3(0.100 10 m) (1.00 10 m) 7.455 10 m
4(1.81 10  C )(1.00 C)

V

R

 

 ROUND:  Three significant figures: − −= ⋅ = ⋅6 3 3
0 1.74 10 m ,  7.46 10 m.V R  

 DOUBLE-CHECK:  The radius at 7.5 mm for the sphere is considerably larger than the radius of 0.1 mm 
for the capillary. This is as expected since the capillary is much longer than the radius of the base. 

17.43. THINK:  Assume that at °37.0 C , the pool just begins to overflow. The volume expansion equation can 
yield the depth of the pool. Let = 1.00 cm = 0.0100 m.d  

 SKETCH:   

 
RESEARCH:  2 3

0 ( ),  ,V S S d V S= − = 0V V Tβ∆ = ∆  
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 SIMPLIFY: 

 

β
β

β
β

β β
β

β

∆ = ∆
− = ∆

− − = − ∆
− − = − ∆
= ∆ − ∆

+ ∆
=

∆

0

0 0
3 2 2( ) ( )

( ) ( )

1 .

V V T
V V V T

S S S d S S d T
S S d S d T
d S T d T

TS d
T

 

 CALCULATE:  
− −

− −

 + ⋅ ° °
= = 

⋅ ° ° 

6 1

6 1

1 (207 10  C )(16.0 C)(0.0100 m) 3.029 m
(207 10  C )(16.0 C)

S  

 ROUND:  Three significant figures: S = 3.03 m. 
DOUBLE-CHECK:  3.03 m is a realistic depth for a pool. 

17.44. THINK:  The change in length of the rods is equal to the sum of the change of the length of each rod 
separately. 
SKETCH: 

 
RESEARCH:  5 1 5 1

Steel Al,  1.30 10  K , 2.20 10  KL L Tα α α− − − −∆ = ∆ = ⋅ = ⋅  and Al StL L L= +  
 SIMPLIFY:  Al Al Al Al Al St St St St St(1 ),   (1 )L L L L T L L L L Tα α′ ′= + ∆ = + ∆ = + ∆ = + ∆ ,  

( ) ( )Al St Al St Al Al St Steel( )L L L L L L L Tα α′ ′∆ = + − + = + ∆  

 CALCULATE:  ( )( )− −∆ = ⋅ ° + ⋅ ° ° =-5 1 -5 1(2.00 m)(2.2 10  C ) (1.00 m)(1.3 10  C ) 178 C 0.010146 mL  

 ROUND:  Rounding the change in length to two significant figures, 1.0 cm. L∆ =  
 DOUBLE-CHECK:  The increase of 1 cm is small but quite noticeable. This is a reasonable result. 

17.45. THINK:  Since the period of a pendulum is proportional to the square of length, I can compute the change 
of length due to thermal contraction and then compute the new period. Let 0t  be the period of the 
pendulum at a temperature of 0T , and let 1t  be the period of the pendulum at temperature 1T . The 
following quantities are given. 0 25. C,0 T = °   When the temperature goes down, the 
pendulum will get shorter, the period of the pendulum will decrease, and the clock will run fast. 

 SKETCH:   

 

RESEARCH:  α α π− −= ⋅ = + ∆ = + ∆ =5 1
Brass 1 0 0 Brass1.9 10 K , (1 ),  2 LL L L L T t

g
 

SIMPLIFY:  Time elapsed = 
 
 
 

0

1
24 h

t
t
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α
π π π π α α

+ ∆
= = ⇒ = = + ∆ = + ∆1/2 1/20 0 Brass 01

0 1 1 Brass 0 Brass
(1 )

2 ,  2   2 2 (1 ) (1 )
L L T LL

t t t T t T
g g g g  

α= + ∆ 1/2
1 0 Brass / (1 ) ,t t T

 

Time elapsed = ( ) α
  

= = + ∆  
   

1/20
B

1
rass

1 0
24 h 24 h / 24 h / (1 )

t t
T

t t
 

 CALCULATE:   ∆ = − = − − = −1 0 20.0 25.0 45.0 K,T T T  

 
( )

( ) ( )( )− −

=

= + ⋅ − = =

0 1

6 1

Time elapsed (24 h) /

24 h / 1 19.0 1 24.0100  K 45.0 K h 24 h an3 d 37 s.

t t

 
 ROUND:  Taking 24 hours to be precise, have two significant figures.  Subtract a precise 24 hours from 

our result, and report the seconds to two significant figures: 24 hours and 37 seconds.

 

 
 DOUBLE-CHECK:  The result shows the clock will run fast and gaining 37 seconds over 24 h is 

reasonable. 

17.46. THINK:  Both the capillary tube and the mercury will expand as the temperature increases. I can compute 
the height of the mercury at °70.0 C  for both the silica and quartz capillary. If the heights differ by more 
than 5%, then the quartz thermometers must be scrapped.  The following quantities are given: 

= =3
0,1.00 cm 0.250 mm,sV r −∆ = = ° − ° = ° =1 0 70.0 C 20.0 C 50.0 C 50.0 K, T TT − −= ⋅ 6 1

Si 0.400 10  K ,  a
6 1

quartz 12.3 10 ,Ka − −= ⋅ and 6 1 6 1
Hg 181 10  C 181 10  K− − − −= = ⋅ ° = ⋅β β . 

SKETCH:   

 
RESEARCH: Hg Hg s ,  V V Tβ∆ = ∆ 2C rπ= = circumference of capillary, 0 ,C C Tα∆ = ∆  volume of a 

cylinder: 2
cyl ,V r hπ= change in volume of spherical reservoir: S S3 .V V Tα∆ = ∆  

 SIMPLIFY:  When the volume of Hg expands by HgV∆ , the excess Hg goes into the excess volume in the 

sphere, and the remainder goes up the capillary, up to a height h. 

cyl
cyl Hg S2

0 0

0
0

Hg S
2 2

0

Hg S S
2 2

0

,  

(1 )
2 2 2
2 (1 )

(1 )
2

(1 )
3

(1 )

V
h V V V

r
C C C TCr

r T
r T

V V
h

r T
V T V T

r T

π
α

π π π
π α

α
π

π α
β α

π α

= = ∆ − ∆

+ ∆ + ∆
= = =

+ ∆
= = + ∆

∆ − ∆
=

+ ∆
∆ − ∆

=
+ ∆
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 For quartz: 

Hg S quartz S
quartz 2 2

0 quartz

S Hg quartz
2 2

0 quartz

3

(1 )
( 3 )

.
(1 )

V T V T
h

r T
V T

r T

β α

π α
β α

π α

∆ − ∆
=

+ ∆

∆ −
=

+ ∆

 

 The fractional change is height is: 

quartz

silica
2

Hg quartz silica

Hg silica quartz

1

( 3 ) (1 )
1 .

( 3 ) (1 )

h
f

h

T
T

β α α
β α α

= −

 − + ∆
= −  

− + ∆  

 

 CALCULATE:  
− −− − − −

− − − − − −

  + ⋅⋅ − ⋅   = − = 
⋅ − ⋅  + ⋅   

2
6 16 1 6 1

6 1 6 1 6 1

1 0.400 10  K (50.0 K)181 10  K 3(12.3 10  K )1 0.1995
181 10  K 3(0.400 10  K ) 1 12.3 10  K (50.0 K)

f  

 ROUND:  To one significant figure, 20 %.f =  
 DOUBLE-CHECK:  The quartz thermometers will give a maximum error of about 20% at 70 C.°  They 

will have to be scrapped. 

17.47. THINK:  Assuming the brass and steel rods, L = 1.00 m each, do not sag, they will increase in length by 

B S and ,L L∆ ∆ respectively. The rods will touch when their combined extensions equals the separation, 

d = 5.00 mm. The linear expansion coefficients of the rods are α α− −= ⋅ ° = ⋅ °6 6
B S19 10 / C and 13 10 / C . The 

initial temperature of the rods is = °i 25.0 C.T  
 SKETCH:   

 
 RESEARCH:  The brass rod will increase by B BL L Tα∆ = ∆ . The steel rod will increase by S SL L Tα∆ = ∆ . 

The final temperature will be iT T∆ + . The rods touch when B S .L L d∆ + ∆ =  

 SIMPLIFY: B S B S( ) .d L L L Tα α= ∆ + ∆ = + ∆  f i
B S B S

Thus,   .
( ) ( )

d dT T T
L Lα α α α

∆ = ⇒ = +
+ +

 

 CALCULATE:  
−

−

⋅
= + ° = °

+ ⋅ °

3

f 6

5.00 10  m 25.0 C 181.25 C
(1.00 m)(19 13) 10 / C

T  

 ROUND:  Two significant figures: f 180 CT = ° . 
 DOUBLE-CHECK:  Given the long length, d, for the total expansion, such a high temperature is not 

unreasonable. 

17.48. THINK: As the pendulum is heated, each bar increases in length. The steel bars, S 50.0 cmL = and 
6

S 13 10 / C,α −= ⋅ ° will increase in length such that the bob will move twice this distance from the pivot. 

The lead bars, 6
Pb 29 10 / C,α −= ⋅ °  will increase in length such that it will reduce the distance from the bob 

to the pivot. Determine the length, Pb ,L L=  of each of the two lead bars. 
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 SKETCH:   

 
 RESEARCH:  The change in length of the steel rods is S S SL L Tα∆ = ∆  , while that of the lead rods is 

Pb Pb PbL L Tα∆ = ∆ .For the pendulum length , h, to remain unchanged, S Pb2 .L L∆ = ∆  

 SIMPLIFY:  S Pb S S Pb Pb2   2L L L T L Tα α∆ = ∆ ⇒ ∆ = ∆ . S
Pb S

Pb

2
Thus, L L

α
α

=  

 CALCULATE:  
6

Pb 6

2(13 10  / C) (50.0 cm) 44.83 cm
29 10  / C

L
−

−

⋅ °
= =

⋅ °
 

 ROUND:  The values in Table 17.2 are given to two significant figures. This results in a final answer of 

Pb 45 cm.L =  
 DOUBLE-CHECK:  The value of S2α is about 10% less than Pbα  (26 and 29, respectively), and this means 

the lead bars being 10% shorter is reasonable. 

17.49. THINK: Since brass has a higher linear expansion coefficient than steel, 6 1
B 19 10  Kα − −= ⋅  and 

6 1
S 13 10  Kα − −= ⋅ , the brass will become larger in length. After being heated up, ∆ = 20.0 K,T  the strip will 

arc. It is vital to focus on the radius of the midline of each part of the strip. Since each material has a 
thickness, δ = 0.500 mm , each will be an arc of different radius, so the radius must be considered. The 
actual arc length of each strip will be its length after being heated up and each will share the same angle. 
The end of the strip lowers by ∆ = 3.00 mm.y  
SKETCH:   
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 RESEARCH: From the geometry of the system, θ∆ = −(1 cos ).y r Also, B( / 2)r Lδ θ ′+ = and 

δ θ ′− = S( / 2) ,r L  because the arc length equals radius times angle. When the strips are heated up, their 
lengths are increased by B BL L Tα∆ = ∆ and S S .L L Tα∆ = ∆   This means the final lengths of the strips are 

B B(1 )L L Tα′ = + ∆  and S S(1 ).L L Tα′ = + ∆  
 SIMPLIFY:  Determine the radius, r, first: 

αδ θ δ
δ θ δ α

′ + ∆+ +
= ⇒ =

− − + ∆′
B B

SS

1( / 2) / 2  .
( / 2) / 2 1

L Tr r
r r TL

 Thus, 

B

S

1( 1)  ,  where .
2 2 2 ( 1) 1

Txr r x r x
x T

αδ δ δ
α

+ ∆+ 
+ = − ⇒ = =  − + ∆   

 Now that the radius is known, the angle, θ, can be determined: 

1(1 cos )  cos 1   cos 1 .
y y

y r
r r

θ θ θ −∆ ∆ 
∆ = − ⇒ = − ⇒ = − 

   

 Next consider the difference in B S ,L L′ ′−  

B S B S B S B S(1 ) (1 ) ( ) .L L L T L T L T L T L Tα α α α α α′ ′− = + ∆ − + ∆ = ∆ − ∆ = − ∆  

However, B S ( / 2) ( / 2) .L L r rδ θ δ θ δθ′ ′− = + − − =  Therefore, B S
B S

( )   .
( )

L T L
T

δθδθ α α
α α

= − ∆ ⇒ =
− ∆

 

Further algebraic simplification leads to δ
α α δ

−  ∆ −  = −   − ∆ +   
1

B S

2 1cos 1 .
( ) 1

y xL
T x

  

CALCULATE:  
− −

− −

+ ⋅
= =

+ ⋅

6 1

6 1

1 (19 10 K )(20.0 K)
1.000119969

1 (13 10 K )(20.0 K)
x  

− −
−

− − −

   ⋅ ⋅ −   = − =     +− ⋅ ⋅     

3 3
1

6 1 3

0.500 10 m 2(3.00 10 m) 1.000119969 1cos 1 0.1581 m
1.000119969 1(19 13) 10 K (20.0 K) 0.500 10 m

L  

 ROUND:  One significant figure (subtraction rule applies to the difference of the two expansion 
coefficients): = 0.2 m.L  

 DOUBLE-CHECK:  This length is a plausible length for a bimetallic strip of metal that deflects 3 mm 
when heated by 20 K. 

17.50. THINK:  Since the bulk modulus, 160 GPa,B =  is the pressure per fractional change in volume, a change 
in temperature of 1.0 CT∆ = °  will cause a change in volume, and thus a change in pressure. The linear 
expansion coefficient of steel is −⋅ °51.2 10 / C.  

 SKETCH:  A sketch is not needed to solve this problem. 
 RESEARCH:  The bulk modulus is given by ( )/ / .B P V V= ∆ ∆  The change in volume is given by 

3 .V V Tα∆ = ∆  

 SIMPLIFY:  3   3 ,     3
/

V P VV V T T B P B B T
V V V V

α α α∆ ∆ ∆ 
∆ = ∆ ⇒ = ∆ = ⇒ ∆ = = ∆ ∆  

 

 CALCULATE:  −∆ = ⋅ ° ° =53(160 GPa)(1.2 10 / C)(1.0 C) 5.76 MPaP  
 ROUND:  Two significant figures: ∆ = 5.8 MPa.P  
 DOUBLE-CHECK:  For comparison, atmospheric pressure is 0.10 MPa.  The problem mentioned it could 

produce very large pressures, so this answer seems reasonable. 
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17.51. THINK:  When the horseshoe is put in the tank, 10.0 cmr = , the water rises by = 0.250 cm.h  The 
horseshoe, =i 293.15 KT  (room temperature, 20.0 C° ) and f 700. K,T =  will increase its volume. When it 
is put back in water, it will raise the water level by h′ . The linear expansion coefficient of the horseshoe is 
α − −= ⋅ 6 111.0 10 K .  

 SKETCH:   

 

 RESEARCH:  When water rises by h or ′h , the volumes displaced are π= 2V r h and π′ ′= 2V r h . The 
volume of the heated horseshoe is α′ = + ∆(1 3 )V V T . The initial volume of the horseshoe, 0 ,V  is the same 

as the volume of water it displaced before it was heated, π 2 .r h  The volume of displaced heated water is 
equal to the volume of the heated horseshoe. 

 SIMPLIFY:  α π π α α′ ′ ′= + ∆ ⇒ = + ∆ ⇒ = + ∆2 2(1 3 )  (1 3 )  (1 3 ).V V T r h r h T h h T  

 CALCULATE:  ( ) ( )( )( )− −′ = + ⋅ =6 10.250 cm 1 3 11.0 10 K 0.25293. 241815 . K  cmh  

 ROUND:  The least precise value given in the question has three significant figures. Therefore the final 
answer should be rounded to =' 0.252 cm.h  

 DOUBLE-CHECK:  The change in the water height is small, which seems reasonable since the change in 
volume is small and the cross sectional area 4 2(3 10 mm )⋅ of the tank of water is relatively large. 

17.52. THINK:  Since the period of a pendulum is proportional to the length, an increase in temperature will 
increase the length and, hence, the period. If the pendulum makes n oscillations in one week when at 
20.0 C° , it will take longer to go through n oscillations when the period is greater, making the week 
appear longer (the clock will run slow). The initial period of the pendulum is i 1.000 s,T = and then 

increases while the temperature increases to 30.0 C° . Use α −= ⋅ °6
Al 22 10 / C.  

SKETCH:   

 

 RESEARCH:  The period of the pendulum is given by 2 /T L gπ= . The length of pendulum after being 

heated is Al(1 )L L Tα′ = + ∆ . The number of oscillations that the pendulum makes over the period of time, t, 
is / .n t T=   

 SIMPLIFY:   
(a) Period after temperature change: 

Al Al i Al2 / 2 (1 ) / 2 / 1 1 .T L g L T g L g T T T′ ′= = + ∆ = + ∆ = + ∆π π α π α α  
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(b) Number of oscillations in one week at 20 C is / .n t T° =  The amount of time for n oscillations at 
30 C is .t nT′ ′° =  The difference in time between the pendulum at 30 C° and the pendulum at 20 C°  is: 

( ) ( / 1).t n T T t T T′ ′∆ = − = −  
 CALCULATE:  

 (a) −′ = + ⋅ ° ° − ° =6(1.000 s) 1 (22 10 / C)(30.0 C 20.0 C) 1.00011 sT  

 (b)  
∆ = − ⋅ ⋅ ⋅ = 

 

7 days1.00011 s 24 hr 3600 s1 week 1 66.53 s
1.000 s 1 week 1 day 1 hr

t  

 ROUND: The answers should be rounded to two significant figures.  
 (a) 1.0 sT ′ =  
 (b) 67 st∆ =  
 DOUBLE-CHECK:  Losing 67 seconds over a full week is a reasonable amount for a temperature change 

of 10. C.°    

17.53. THINK:  Use the subscript 1 to refer to the thin arm and the subscript 2 to refer to the thick arm. After the 
temperature change (using a room temperature of 20.0 C° ), ∆ =1 380. KT  and ∆ =2 180. KT , for the 
upper and lower arms, respectively, each length will increase by a different amount. Since the ends are 
fixed in position, the device overall will begin to angle downward so the tip is pointing below its original 
position. The initial length and linear expansion coefficient of each arm is = 1800. μmL and 

−⋅ 6 -13.20 10  K .The separation of the electrical contacts is = 45.0 μm.h  
SKETCH:  

 
 RESEARCH:  The upper and lower arms each increase in length by 1 1L L Tα∆ = ∆  and 2 2 ,L L Tα∆ = ∆  

respectively. The change in height of the tip is 1( )siny L L θ∆ = + ∆ . The difference in the extended length is 

1 2L L∆ − ∆ and this length is equal to sinh θ .  
 SIMPLIFY:  Determine the angle: 1 2 1 2sin   sin ( ) / .h L L L L hθ θ= ∆ − ∆ ⇒ = ∆ − ∆ The change in tip height: 

1 1 21( )sin ( )( ) / .y L L L L L L hθ∆ = + ∆ = + ∆ ∆ − ∆  Thus, 2
1 1 2(1 )( ) / .y L T T T hα α∆ = + ∆ ∆ − ∆  

 CALCULATE:  

( )− − − − ∆ = ⋅ + ⋅ − = 
6 1 2 6 1(3.20 10 K )(1800.μm) 1 (3.20 10 K )(380. K) (380. K 180. K) / 45.0μm 46.14 μmy  

 ROUND: Three significant figures: ∆ = 46.1 μmy downwards 
 DOUBLE-CHECK: The change in the tip height is of the same order of magnitude as the separation 

between the contact points, so the result is reasonable. 

17.54. THINK: The tip is located at the midpoint of the beam which is also midway between the contact points, 
which are separated by a distance d. The silicon beam, 6 1

Si 3.2 10  K ,α − −= ⋅ makes an angle of  
0.10 radθ = from the horizontal when it is at a temperature of 20. C° . As the beam heats up to 500. C,°  

its length will increase, but since the tip must remain in the same position horizontally, the angle the beam 
makes must also increase, which in turn causes motion of the tip. 
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 SKETCH:   

 
 RESEARCH: Before heating, the length, ,L  of the beam is given by / (2cos )L d θ= . After heating, the 

beam increases in length by SiL L Tα∆ = ∆ . Even after the length increases, the tip does not moves 
horizontally, so that / (2cos ).L L d φ+ ∆ =  The tip moves vertically by an amount 

Si( )sin sin (1 )sin sin .h L L L L Tφ θ α φ θ= + ∆ − = + ∆ −     
 SIMPLIFY:  The initial length of the beam is / (2cos )L d θ= .  Therefore, the length of the beam after 

heating is given by: Si Si(1 ) (1 ) / (2cos ) .L L L T d Tα α θ+ ∆ = + ∆ = + ∆  Since the new angle of the beam after 
heating is / (2cos ),L L d φ+ ∆ = this means that: 

 1
Si

Si Si

cos cos(1 )   cos   cos .
2cos 2cos 1 1

d dT
T T

θ θα φ φ
θ φ α α

−  
+ ∆ = ⇒ = ⇒ =  

+ ∆ + ∆ 
 

 The change in height of the tip is then: 

Si Si

1

Si
Si

sin(1 )sin sin (1 ) tan
2 cos

cossin cos
1

(1 ) tan .
2 cos

dh L T T

Td T

φα φ θ α θ
θ

θ
α

α θ
θ

−

 = + ∆ − = + ∆ −    
 

   
   + ∆    = + ∆ − 
 
 
 

 

 CALCULATE: 

( )
1

6 1

6 1

cos(0.10 rad)sin cos
1 (3.2 10 K )(480 K)1800 μm

1 (3.2 10 K )(480 K) tan(0.10 rad)
2 cos(0.10 rad)

12.993μm

h

−
− −

− −

   
    + ⋅    = + ⋅ − 
 
  
 

=

 

 ROUND:   The answer should be rounded to two significant figures: 13 μm,h = upwards. 
 DOUBLE-CHECK:  This value is the same order of magnitude as the beam width, meaning that it has a 

great sensitivity, which would be desired for such a device. This is sensible. 

17.55. THINK:  For simplicity, define 1.00016,a =  54.52 10b −= ⋅  and 65.68 10 .c −= ⋅  In part (a), a derivative can 
be used to determine the properties of the water. The volume, V, as a function of temperature, T, is given 
by 2V a bT cT= − + when the temperature is in the range [0.00 C,  50.0 C).° °   In part (b), evaluate β when 

20.0 C.T = °   
 SKETCH:  A sketch is not needed to solve this problem. 
 RESEARCH: The general function to evaluate the change in volume is .V V T∆ = ∆β   The differences can 

be approximated as differentials, i.e. / / .Y X dy dx∆ ∆ ≈   
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 SIMPLIFY:  2( ) 2dV d a bT cT b cT
dT dT

= − + = − + . Since ,V V Tβ∆ = ∆  it follows that:  

2

1 1 2V dV b cT
V T V dT a bT cT

β ∆ − +   
= ≈ =   ∆ − +   

 

 CALCULATE:   

 (a) 
5 6

5 6 2

4.52 10 11.36 10( )
1.00016 4.52 10 5.68 10

TT
T T

β
− −

− −

− ⋅ + ⋅
=

− ⋅ + ⋅
 

(b) 
5 6

5 6 2

4

4.52 10 (11.36 10 )(20.0 C)(20 C)
1.00016 (4.52 10 )(20.0 C) (5.68 10 )(20.0 C)
1.8172 10 / C

β
− −

− −

−

− ⋅ + ⋅ °
° =

− ⋅ ° + ⋅ °
= ⋅ °

 

 ROUND:   
 (a) Not necessary. 
 (b) Round to three significant figures: 4( 20.0 C) 1.82 10 / CTβ −= ° = ⋅ °  

 DOUBLE-CHECK:  The value for β for water at 20.0 C° from Table 17.3 is 42.07 10 / C.−⋅ °  Since the 
calculated value is close, this is a reasonable result. 

17.56. THINK: Since copper has a higher linear expansion coefficient than steel (α − −= ⋅ 6 1
C 17 10  K   and 

α − −= ⋅ 6 1
S 13 10  K  ), the copper will become shorter in length than the steel. After a change in temperature 

of ∆ = −5.00 KT , the strip will arc. Since each material has a thickness of δ = 1.00 mm  each will be an arc 
with a different radius, so the radius to the midpoint of each strip must be considered. The actual arc 
length will be the length after being cooled and each will share the same angle or curvature. The initial 
length of each strip is = 25.0 mm.L  
SKETCH: 

 
 RESEARCH:  The lengths of each strip after cooling are C C(1 )L L Tα′ = + ∆  and S S(1 )L L Tα′ = + ∆ . These 

lengths are the arc lengths of circles of radius ( )/ 2r δ− and ( )/ 2 ,r δ+ respectively, so: 

C2
r Lδ θ  ′− = 

 
 and S .

2
r Lδ θ  ′+ = 

 
 

The deflection of the strip is given by (1 cos ).y r θ∆ = −  
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 SIMPLIFY:   
(a) Determine the radius of curvature, :r  

( )
( )

δ θ α αδ
α δ αδ θ

αδδ δ
α

α αδ
α α

′ + + ∆ + ∆+
= = ⇒ =

+ ∆ − + ∆−′

+ ∆+ 
⇒ + = − ⇒ = = − + ∆ 

 + + ∆
⇒ =  

− ∆ 

S S S

C CC

S

C

S C

S C

/ 2 (1 ) 1/ 2  
(1 ) / 2 1/ 2

11 / 2 ( / 2)  ,  where 
2 1 1

2 ( )
 

2 ( )

rL L T Tr
L T r TrL

Txr x r r x
x T

T
r

T

 

(b) To find the deflection, y∆ , I need ( ) ( )C S: / 2 ,  / 2 .r L r Lθ δ θ δ θ′ ′− = + =  Thus,  

C(1 )
/ 2

L T
r

α
θ

δ
+ ∆

=
−

 or S(1 )
.

/ 2
L T

r
α

θ
δ

+ ∆
=

+
 

So, the deflection is C S(1 ) (1 )
(1 cos ) 1 cos 1 cos .

/ 2 / 2
L T L T

y r r r
r r

α α
θ

δ δ
   + ∆ + ∆   

∆ = − = − = −      − +      
 

 CALCULATE:   

 (a) 
− −−

− −

 + + ⋅ −⋅
= =  − ⋅ − 

6 13

6 1

2 (13 17) 10 K ( 5.00 K)1.00 10 m 49.996 m
2 (13 17) 10 K ( 5.00 K)

r  

 (b) 
( )

( )
− − −

−

  ⋅ + ⋅ −
  ∆ = − =
  − ⋅  

3 6 1

3

25.0 10 m 1 17 10 K ( 5.00 K)
49.996 m 1 cos 0.00625 mm

49.996 m (1.00 10 m) / 2
y  

 ROUND:  The results should be rounded to two significant figures. 
 (a)  50. mr =  
 (b) 6.3 μmy∆ =  
 DOUBLE-CHECK:  Since the expansion coefficients of each are close to each other and the change in 

temperature was small, it is reasonable that the strip barely curves (it has a large radius of curvature and a 
small dip). 

17.57. Each side of the cube has length 40 cml = and its initial volume before heating is 3
i .V l=  The change in 

temperature is 100. CT∆ = °  and linear expansion coefficient of copper is 6
Cu 17 10 /  C.α −= ⋅ °  

3 6 3 3
i3 3 3(17 10 /  C)(40. cm) (100. C) 326.4 cmV V T l Tα α −∆ = ∆ = ∆ = ⋅ ° ° =  

 Thus, change in volume is 3330 cm .V∆ =  

17.58. The initial length of the pipe is 50.0 m,L =  the change in temperature is 30.0 CT∆ = ° , and the change in 
length is 2.85 cm.L∆ =  

 (a) 50.0285 m  1.90 10  /K
(50.0 m)(30.0 C)

LL L T
L T

α α −∆
∆ = ∆ ⇒ = = = ⋅

∆ °
 

 (b) This linear expansion coefficient matches that of brass.  

17.59. When the aluminum container is filled with turpentine, the turpentine will have a volume of = 5.00 gal.V   

The volume expansion coefficient of the turpentine, β − −= ⋅  °6 1
turp 900. 10 C .  The volume expansion 

coefficient of aluminum is β − −= ⋅ °6 1
Al 66.0 10  C .  The change in temperature is ∆ = °12.0 C.T  The change 

in volume of the turpentine is given by: 

β − −  
∆ = ∆ = ⋅ ° ° = 

 
6 1

turp
3.785 L(900. 10  C )(5.00 gal)(12.0 C) 0.2044 L.

1 gal
V V T
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 The change in volume of the  is given by: 

β −  
∆ = ∆ = ⋅ ° ° = 

 
6

Al
3.785 L(66.0 10 / C)(5.00 gal)(12.0 C)  L.0.01

1 gal
499V V T  

 Thus, 0.189 L of turpentine spills out of the container. 

17.60. The building has initial height of 600. m.L =  The change in temperature is 45.0 C.T∆ = °  The linear 
expansion coefficient of steel is 5

S 1.30 10 /  C.α −= ⋅ °  
5

S  (1.30 10 / C)(600. m)(45.0 C) 0.351 mL L Tα −∆ = ∆ = ⋅ ° ° =  
 Thus, the building grows by 0.351 m.  

17.61. The initial diameter of the rod at 20. C°  is 1 ,D  and after being cooled by a change in temperature of 

 ∆ = − ° + = − 77.0 K (20. C 273.15 K) 216.15 K,T it will have a diameter of 2 10.000 mm.D =  The linear 

expansion coefficient of aluminum is 6 1
Al 22 10 K .α − −= ⋅  

α α

α
α − −

∆ = ∆ = + ∆ = + ∆

= + ∆ ⇒ = ⇒ = =
+ ∆ + ⋅ −

Al 1 2 1 1 Al

2
2 Al 1 1 1 6 1

Al

 ,  (1 )
10.000 mm(1 )    10.0478 mm

1 1 (22 10 K )( 216.15 K)

D D T D D D D T
D

D T D D D
T

 

 Thus, the maximum diameter the aluminum rod can have at 20. C° is 1 10. mm.D =  

17.62. After the gas is heated up, its final volume is f 213 L.V =  The change in temperature is 63 F.T∆ = °  The 

volume expansion coefficient of gas is 6 1950 10 K .− −⋅  Convert the change in temperature to Kelvin:  

∆ = ∆C f
5
9

T T  and C K
5  (63 F) 35 K.
9

T T T∆ = ∆ ⇒ ∆ = ° =  

f
gas i f i i gas i 6 1

gas

213 L,  (1 )  206.15 L
1 1 (950 10 K )(35 K)

V
V V T V V V V T V

T
β β

β − −
∆ = ∆ = + ∆ = + ∆ ⇒ = = =

+ ∆ + ⋅
 

 Thus, the maximum amount of gasoline that should be put into the tank at 57 F°  is 206.15 L.  Rounding 
this value is dangerous, since the tank would overflow or possibly explode if 210 L is added. 

17.63. The initial volume of the mercury is = 8.00 mL,V  the cross-sectional area of the tube is = 21.00 mmA  

and the volume expansion coefficient of mercury is 6
Hg 181 10 /  C.β −= ⋅ °  Consider a change in 

temperature of ∆ = °1.00 C.T  Since the cross-sectional area remains closely the same, .V A L∆ = ∆  
β

β
−∆  ⋅ ° °

∆ = ∆ = ∆ ⇒ ∆ = = = 
 

6 3
Hg

Hg 2

(181 10 / C)(8.00 mL)(1.00 C) 1000. mm   1.448 mm
mL1.00 mm

V T
V V T A L L

A
 

 Thus, the °1.00 C tick marks should be spaced about 1.45 mm apart. 

17.64. The initial volume of gasoline is 14 gallons and the change in temperature is 27 F.T∆ = °  The volume 
expansion coefficient of gas is −⋅ °49.6 10 /  C.   Convert the temperature change from Fahrenheit to Celsius:  

C F
5 .
9

T T∆ = ∆  Thus 5 (27 F) 15 C.
9

T∆ = ° = °  

 Thus, β −∆ = ∆ = ⋅ ° ° =4
gas (9.6 10 / C)(14 gal)(15 C) 0.2016 gal.V V T  So, 0.20 gallons of gasoline are lost. 

17.65. The change in temperature is 37.8 CT∆ = ° . The initial length of the slabs is 12.0 m.L =  The linear 
expansion coefficient of concrete is α −= ⋅ °6

con 15 10 /  C.  

α −∆ = ∆ = ⋅ ° ° =6
con (15 10 /  C )(12.0 m)(37.8 C) 0.006804 mL L T

 Since the slabs expand uniformly, each side will grow by / 2L∆ . However, the slabs expand towards each 
other, so each can grow by / 2.L∆  Thus, the gap must be 2( / 2) 6.8 mm.L L∆ = ∆ =  
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17.66. Since water and aluminum have similar volume expansion coefficients, both must be accounted for. The 
water has a volume of 3500. cmV = . Though the volume of the aluminum can is not known, it has a 
capacity to carry a volume .V  For simplicity assume that the amount of water that it can hold is the same 
as the volume of the aluminum vessel after heating. The change in temperature is ∆ = °30.0 C,T  the 

volume expansion coefficient of the water is 6
w 207 10 / C−= ⋅ °β  and the linear expansion coefficient of 

aluminum isα −= ⋅ °6
Al 22 10 / C.   The change in volume of the water is given by: w w .V V Tβ∆ = ∆   The 

change in volume of the aluminum vessel is given by: Al Al3 .V V Tα∆ = ∆  The difference in the change in 
volumes is w Al w Al( 3 ).V V V V T β α′ = ∆ − ∆ = ∆ −  

− −′ = ° ⋅ ° − ⋅ ° =3 6 6 3(500. cm )(30.0 C)(207 10 /  C 3(22 10 /  C)) 2.115 cmV  

Thus, about 32.1 cm of water spills out, since the volume change of the water is larger. 

17.67. The volume expansion coefficient of kerosene is β −= ⋅ °6
k 990. 10 /  C. If the volume increases by  1.00%,  

then ∆ =/ 0.0100.V V  

β
β −

 ∆
∆ = ∆ ⇒ ∆ = = = ° 

⋅ ° 
k 6

k

1 0.0100 10.1 C
990. 10 /  C

VV V T T
V  

Thus, the kerosene must be heated up by at least °10.1 C  in order for its volume to increase by 1.00%. 

17.68. The radius of the holes is =h 1.99 cmr and the radius of the ball bearings is =bb 2.00 cmr . The linear 

expansion coefficient of epoxy is α −= ⋅ °4
e 1.30 10 /  C,  the cross-sectional area of the ball bearings 

is 2
bb bbA rπ=  and the cross-sectional area of the holes is 2

h h .A rπ=  The epoxy is heated so that h bb = .A A  
α α

α
α −

∆ = ∆ ⇒ = + ∆

− −
− = ∆ ⇒ ∆ = = = °

⋅ °

bb h e
2 2

bb
2 2 2

bb h
e2 4

eh

2   (1 2 )

(2.00 cm)1 1
(1.99 cm)1 2   38.752 C

2 2(1.30 10 /  C)

A A T A A T

r
r r

T T
r

 

Thus, the epoxy needs to be heated up by about °38.8 C.  

17.69. THINK: When the disk (mass ,M  radius R and moment of inertia I ) is heated up from 
= °i 20.0 CT to f 100. C,T = °  its radius, and hence area, will increase but the mass will stay the same. This 

allows us to determine the new moment of inertia and compare to the initial one.  
SKETCH:   

 
RESEARCH:  Since the object is a disk, its moment of inertia, before and after heating, is:  

21
2

I MR=  and 21
2

I MR′ ′= , respectively. 

The area of the disk is 2A Rπ= and the area changes by 2A A Tα∆ = ∆ upon heating.  The linear expansion 
coefficient of the brass disk is α −= ⋅ °6

B 19 10 /  C.  
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SIMPLIFY:  Area after heating: 2 2
f i B B(1 2 )  (1 2 ).A A T R R Tα α′= + ∆ ⇒ = + ∆ The fractional change in 

moment of inertia given by: 
2 2

2 22 2
B

B2 2
2

1 1
(1 2 )2 2 2 .

1
2

MR MR R T RI I I R R T
I I R RMR

α
α

′ −′ ′ + ∆ −∆ − −
= = = = = ∆  

CALCULATE:  −∆
= ⋅ ° ° − ° =62(19 10 /  C)(100. C 20.0 C) 0.00304I

I
 

ROUND:  Two significant figures:  the moment of inertia changes by 0.30%.  
DOUBLE-CHECK:  From our experience we would not expect the moment of inertia of a disk to change 
very dramatically for such a modest temperature change.  A change of 0.30% is a reasonable result.   

17.70. THINK: Initially, the brass sphere of diameter B 25.01 mmd =  is too big to fit through the 
hole, Al 25.00 mm,d =  in the aluminum plate.  As both are heated up, both will expand. Since aluminum 
has a higher expansion coefficient, the hole will eventually become larger than the sphere.  
SKETCH:   

 
 

RESEARCH: The area of the hole and the cross-sectional area of the sphere increase with temperature 
as Al Al Al2A A Tα∆ = ∆  and B B B2 ,A A Tα∆ = ∆ respectively, where the initial areas of the hole and sphere are 

2
Al Al( / 2)A dπ=  and 2

B B( / 2) ,A dπ= respectively. The sphere will fall into the hole when the final areas of 
the two are equal:  Al Al B B(1 2 ) (1 2 ).A T A Tα α+ ∆ = + ∆  The linear expansion coefficients of brass and 

aluminum are α −= ⋅ °6
B 19 10 /  C  and α −= ⋅ °6

A 22 10 /  C, respectively. The initial temperature of two 
objects is room temperature, = °i 20. C.T     

SIMPLIFY:  
2

B
B B(1 2 )

2
d

A Tπ α
 ′ = + ∆ 
  ，

2

Al
Al Al(1 2 )

2
d

A Tπ α
 ′ = + ∆ 
   

2 2
B Al B B Al Al

2 2
2 2 2 2 B Al

B Al Al Al B B 2 2
Al Al B B

2 2
B Al

f i2 2
Al Al B B

  (1 2 ) (1 2 )

2 ( )  
2( )

2( )

A A d T d T

d d
d d T d d T

d d
d d

T T
d d

α α

α α
α α

α α

′ ′= ⇒ + ∆ = + ∆

−
− = ∆ − ⇒ ∆ =

−
−

= +
−

 

CALCULATE:  

− −

−
= + ° = ° + ° = °

 ⋅ ° − ⋅ ° 

2 2

f 2 6 2 6

(25.01 mm) (25.00 mm) 20. C 134.04 C 20. C 154.04 C
2 (25.00 mm) (22 10 /  C) (25.01 mm) (19 10 /  C)

T

ROUND:  In the previous calculation, the quotient should be rounded to two significant figures, so the 
final answer is f 150 C.T = °  
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DOUBLE-CHECK:  Since the expansion coefficients of the two materials are close in value, such a high 
temperature is expected. 

17.71. THINK: The steel band has an initial diameter of =i 4.40 mm,d  width = 3.50 mm,w and thickness 
= 0.450 mm.t  As the band cools from = °i 70.0 CT  to = °f 36.8 CT  its diameter will decrease. Since the 

circumference of the band is directly proportional to the diameter, both the circumference and the 
diameter have the same relative change with the decrease in temperature. The tension in the band can be 
found by considering the Young’s modulus of the steel band.  Effectively, the band is stretched from its 
diameter at fT  to the diameter of the tooth. 
SKETCH:   

 
 

RESEARCH:  The change in the area of the band (i.e. area around the tooth) is α∆ = ∆S2A A T  where 

( )π= 2/ 2A d . Young’s modulus is the ratio of the stress to the strain where the stress is the force per unit 
area and the strain is the relative change in length,  

  ∆
= ⇒ =

∆
/     .

/
F wt L FY

L L L wtY
 

For steel, = ⋅ 9 2200. 10  N/m .Y The length of the band is the circumference, so π=L d . For this problem, 
use ∆T  in place of ∆ .T  The linear expansion coefficient of steel is 

α − −= ⋅ °6 1
S 13.0 10  C .  

SIMPLIFY:  The relative change in area is:  α∆
= ∆S2 .A T

A
  Since the length is proportional to the 

diameter:  ∆ ∆
= .L d

L d
 Since π= 2 / 4,A d  ( )π∆ = ∆/ 2 .A d d  So we can write 

 
( )π

π
∆∆ ∆

= =2

/ 2
2 .

/ 4
d dA d

A d d
 

We can combine these equations to get 

α α∆ = ⇒ = ∆S S
22     .FT F T wtY

wtY
 

CALCULATE: ( ) ( )( )( )− − − −= ⋅ ° ° − ° ⋅ ⋅ ⋅

=

6 1 3 3 9 213.0 10  C 70.0 C 36.8 C 3.50 10  m 0.450 10  m 200.

1

10

35

 N/m

N..954 

F

F
 

ROUND:  The answer has to be rounded to three significant figures: = 136 N.F  
DOUBLE-CHECK:  Since a tooth is very strong, this large tension that is created will be able to act on the 
tooth without causing problems.  The force must also be large in order to withstand the forces of biting 
food.  Therefore, this is a reasonable result. 

17.72. THINK:  To find the spacing between tick marks, I must consider how high the mercury, of initial 
volume 3

i 8.63 cm ,V =  rises in the tube of diameter 1.00 mmd = when the temperature increases 
by 1.00 C.T∆ = °  I can assume that the cross-sectional area of the tube remains constant. 
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SKETCH:   

 
RESEARCH:  The cross-sectional area of the thermometer is ( )2/ 2A dπ= . The change in volume of the 

mercury due to a temperature change is HgV V Tβ∆ = ∆ . Since the expansion of the tube can be neglected, 

.V A L∆ = ∆  The volume expansion coefficient for the mercury is 4 1
Hg 1.81 10  C .β − −= ⋅ °    

SIMPLIFY:  Hg Hg
Hg 2  .

2

V T V T
V V T A L L

A d

β β
β

π

∆ ∆
∆ = ∆ = ∆ ⇒ ∆ = =

 
 
 

 

CALCULATE:  
4 1 3

2

(1.81 10  C )(8.63 cm )(1.00 C)  cm.
0.100 cm

2

0.19888L
π

− −⋅ ° °
∆ = =

 
 
 

 

ROUND:  Three significant figures: 1.99 mm.L∆ =  
DOUBLE-CHECK: This would indicate that a thermometer should be 20 cm long to allow reasonable 
temperature measurements from 0 C to 100 C .° °  This is a reasonable size for a thermometer, so this 
spacing size is logical. 

17.73. THINK:  The device has an initial volume of 3
i 0.0000500 m ,V =  which will increase upon heating.  Of 

course, this volume change is proportional to the volume expansion coefficient of the material, β .  A 
change in temperature is proportional to a change in volume.  This means that a temperature change rate 
( 200. CT∆ = °  in T 3.00 seconds)t∆ = is also proportional to a volume change rate 3( 0.000000100 mV∆ =  
in V 5.00 seconds).t∆ =  
SKETCH:  A sketch is not needed to solve this problem. 
RESEARCH:  The change in volume is iV V Tβ∆ = ∆ . The maximum volume change rate is: 

i
V Tmax

V TV
t t

β
 ∆ ∆

= 
∆ ∆ 

. 

SIMPLIFY:  The value for β for the maximum volume change rate is when: 

T

V i

1 .
tV

t T V
β

 ∆ ∆
=   ∆ ∆  

 

CALCULATE:  
3

6
3

(0.000000100 m )(3.00 s) 6.0000 10 /  C
(5.00 s)(200. C)(0.0000500 m )

β −= = ⋅ °
°

 

ROUND:  Three significant figures: 66.00 10 /  C.β −= ⋅ °  
DOUBLE-CHECK:  This value has the same order of magnitude that as has been seen for many volume 
expansion coefficients, so it is a reasonable answer. 

17.74. THINK:  The rod has a length of cross-sectional area of 1.0000 mL =  and 4 25.00 10  m .A −= ⋅  After an 
increase in temperature from = °i 0.00 CT  to  = °f 40.0 C,T  the rod will tend to expand. Since it cannot 
expand between the two end points, it will experience stress. The stress can then be determined by using 
Young’s modulus. = ⋅ 11 22.0 10  N/mY ,α −= ⋅ °613 10 /  C.  
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SKETCH:   

 

RESEARCH:  Young’s modulus (for steel is = ⋅ 10 220. 10  N/m )Y  is the ratio of the stress to the strain 
where the stress is the force per unit area and the strain is the relative change in length, 

i.e. stress
/

Y
L L

=
∆

 

Even though the rod does not actually extend because it is between to fixed points, we can then think of 
the stress as preventing the expansion, which still depends on /L L∆ . The change in length of the rod is 

S ,L L Tα∆ = ∆  where the linear expansion coefficient of steel is α −= ⋅ °6
S 13 10 /  C.   

SIMPLIFY:  S
Sstress

L TLY Y Y T
L L

α
α

∆∆
= ⋅ = ⋅ = ∆  

CALCULATE:  −= ⋅ ⋅ ° ° − ° = ⋅11 2 6 8stress (2.0 10  N/m )(13 10 /  C)(40.0 C 0.00 C) 1.04 10  Pa  

ROUND:  Two significant figures: 8stress 1.0 10  Pa= ⋅  
DOUBLE-CHECK:  Even though the rod only wants to increase by 0.52 mmL∆ = (which is small), the 
rod is made of steel which is very strong material, so a large stress is reasonable. 

17.75. THINK:  The bugle can be considered a half-closed pipe of length 183.0 cm.L =  The speed of sound in air 
is dependent on temperature, as is the length of the bugle, so an increase in temperature from i 20.0 CT = °  
to f 41.0 CT = °  will cause both to change. 
SKETCH:   

 
RESEARCH:  The fundamental frequency of an open pipe is ( )1 / 4 ,f v L=  where v is the speed of sound.  

The speed of sound in air as a function of temperature is ( ) (331 0.6 ) m/s,v T T= +  with T in units of C.°   
The length of the tube increases by B ,L L Tα∆ = ∆  with a linear expansion coefficient for brass of 

6 1
B 19.0 10  C .α − −= ⋅ °  

SIMPLIFY:   

(a) If only the change in air temperature is considered, f
1

( )
.

4
v T

f
L

=  

(b) If only the change in length of the bugle is considered, i
1

B

( )
.

4 (1 )
v T

f
L Tα

=
+ ∆

 

(c) If both effects are taken into account, f
1

B

( )
.

4 (1 )
v T

f
L Tα

=
+ ∆

 

CALCULATE:   

(a) 
( )+

= =1

331 (0.6)(41.0)  m/s
 Hz.

4
48.5

(1.830 m
79

)
f  

(b) 
( )

( )− −

+
= =

+ ⋅ ° ° − °
1 6 1

331 (0.6)(20.0)  m/s
 Hz.

4(1.830 m) 1 (19.0 10  C )(4
46

1.0 C 20
.839

.0 C)
f  

(c) 
( )

( )−

+
= =

+ ⋅ ° ° − °
1 6

331 (0.6)(41.0)  m/s
 Hz

4(1.830 m) 1 (19.0 10 / C)(41.0 C 20.0 
48.560

C)
f  
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ROUND:  Three significant figures:  
(a) 1 48.6 Hzf =  
(b) 1 46.8 Hzf =  
(c) 1 48.6 Hzf =  
DOUBLE-CHECK:  The fundamental frequency of the bugle is fairly insensitive to changes in 
temperature if the changes in the speed of sound and the expansion of the brass are considered. 

 
Multi-Version Exercises 

 Exercises 17.76–17.78   The change in length of the steel bar is given by s s s .L L Tα∆ = ∆  The change in 
length of the brass bar is given by b b b .L L Tα∆ = ∆  When the two bars have the same length, 

s s b b .L L L L+ ∆ = + ∆  So we can write s s s b b b .L L T L L Tα α+ ∆ = + ∆  Rearranging and solving for the 
temperature difference gives us  

s s b b b s

b s

s s b b

  

.

L T L T L L
L L

T
L L

α α

α α

∆ − ∆ = − ⇒
−

∆ =
−

 

17.76. Applying the above result, 
( ) ( )

( )( ) ( )( )
b s

6 1 6 1
s s b b

2.6827 m 2.6867 m
249.311 C

13.00 10  C 2.6867 m 19.00 10  C 2.6827 m
L L

T
L Lα α − − − −

−−
∆ = = = °

− ⋅ ° − ⋅ °
 

So the temperature is 0 26.45 C 249.311 C 275.8 C.T T T= + ∆ = ° + ° = °  

17.77. Again applying the above findings, 

( ) ( )

( )
( )( )
( )( )

s s s b b b

s s b b

s
b s

b

0

6 1

b 6 1

1 1
1
1

214.07 C 28.73 C 185.34 C

13.00 10  C 185.34 C 1
2.7073 m 2.704 m

19.00 10  C 185.34 C 1

L L T L L T

L T L T
T

L L
T

T T T

L

α α
α α

α
α

− −

− −

+ ∆ = + ∆

∆ + = ∆ +
∆ +

=
∆ +

∆ = − = ° − ° = °

⋅ ° ° +
= =

⋅ ° ° +

 

17.78. Using the same method as in the preceding problem, 

( ) ( )

( )
( )( )
( )( )

s s s b b b

s s b b

b
s b

s

0

6 1

b 6 1

1 1
1
1

227.27 C 31.03 C 196.24 C

19.00 10  C 196.24 C 1
2.7247 m 2.728 m

13.00 10  C 196.24 C 1

L L T L L T

L T L T
T

L L
T

T T T

L

α α
α α

α
α

− −

− −

+ ∆ = + ∆

∆ + = ∆ +
∆ +

=
∆ +

∆ = − = ° − ° = °

⋅ ° ° +
= =

⋅ ° ° +

 

17.79. Apply Equation 17.6: 

( ) ( )
2

6 1 3 25.093 m2 2 3.749 10  C 33.37 C 5.097 10  m .
2

A A Tα π− − −
  ∆ = ∆ = ⋅ ° ° = ⋅     
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17.80. From Equation 17.6, 

( )

3 2
6 1

2

2

4.253 10  m 3.769 10  C .
2 4.553 m2 34.65 C

2

A A T

A
A T

α

α

π

−
− −

∆ = ∆

∆ ⋅
= = = ⋅ °

∆    °       

17.81. By virtue of Equation 17.6, 

( )

3 2

2
6 1

2

4.750 10  m 35.93 C.
2 4.713 m2 3.789 10  C

2

A A T

AT
A

α

α
π

−

− −

∆ = ∆

∆ ⋅
∆ = = = °

  ⋅ °        

17.82. Apply Equation 17.5: 

 ( )( )( )6 1501.9 m 13.89 10  C 15.91 C 28.09 C 0.3067 m.L L Tα − −∆ = ∆ = ⋅ ° − ° − ° = −
 

 The bar is 0.3067 m shorter. 

17.83. By Equation 17.5, 

 ( )( )
5 10.4084 m 1.441 10  C .

599.7 m 18.95 C 28.31 C

L L T
L

L T

α

α − −

∆ = ∆
∆ −

= = = ⋅ °
∆ − ° − °

 

17.84. From Equation 17.5, 

 ( )( ) ( )

winter summer

winter summer 6 1

0.3903 m28.51 C 28.51 C 40.499 C 11.99 C
645.5 m 14.93 10  C

L L T
LT T T

L
LT T

L

α

α

α − −

∆ = ∆
∆

∆ = − =

∆ −
= + = ° + = ° + − ° = − °

⋅ °
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Chapter 18:  Heat and the First Law of Thermodynamics 
 

Concept Checks 

18.1. d  18.2. c  18.3. b  18.4. e  18.5. c  18.6. e  18.7. (1) False (2) False (3) False (4) True   
 

Multiple-Choice Questions 

18.1. d  18.2. b  18.3. b  18.4. d  18.5. c  18.6. b  18.7. b  18.8. d  18.9. f  18.10. e  18.11. a  18.12. d  18.13. b  18.14. a   
 

Conceptual Questions 

18.15. The average human, approximated as a cylinder, has a radius of about =16.0 cmR  to about = 30.0 cmR  
(upper and lower limit) with a minimum height of 150 cmh =  to maximum 200 cm.h =  The surface area 
of a cylinder of radius R and height h is A 2 .Rhπ=  The temperature of a healthy human is 37.0 CT = °  or 

310. K.T =  Since we are assuming the person is black body, they will have an emissivity of 1.ε =  The 
power radiated is given by the Stefan-Boltzmann equation, 4A ;P Tσε=  therefore,  the range of power 
emitted by an average person is given by: 

( )( )( )( )( )( )( )
( )( )( )( )( )( )( )

π

π

−

−

= ⋅ =

= ⋅ =

48 2 4
min

48 2 4
max

5.67 10  W/ m  K 1 2 0.160 m 1.5 m 310. K 789.6 W

5.67 10  W/ m  K 1 2 0.300 m 2.00 m 310. K 1974.1 W

P

P
 

The average person radiates between 800 W and 2000 W.  

18.16. The house that has snow on the roof is releasing less heat to the atmosphere; hence less snow is melting 
and therefore, the house would be better insulated.  

18.17. A bathmat (most likely cotton or wool) would have a much lower thermal conductivity than the tile.  
Assuming the bathmat and tile are the same temperature (room temperature) then the tile will feel colder 
since its higher thermal conductivity takes thermal energy from your feet faster than a mat would, and 
hence feels colder.  Even though the thermal energy flow is proportional to the temperature difference, 
when your feet are colder, the thermal energy flow would be more noticeable to you and hence seem 
colder. 

18.18. A blackbody can be constructed by making a cavity out of this material designed such that any 
electromagnetic radiation that enters the cavity cannot escape (at least not until after many bounces off the 
walls of the cavity).  After every bounce, half the energy is deposited.  So after many bounces nearly all of 
the original energy has been deposited, giving the impression that it is an ideal black body since virtually 
no light is reflected.  

18.19. After the eruption, the atmosphere was filled with increased amounts of ash and dust.  This blocks out 
some sunlight and prevents the Earth from heating. As a result the temperature decreases until after many 
years the particles settle and the normal amount of sunlight makes it through to return the temperature to 
normal. 

18.20. Even though the hot coals have a large temperature, they also have a very small thermal conductivity.  This 
means that as long as the contact time between the coals and the person’s feet is small (which is true when 
walking a steady pace) then the coals will not transfer enough heat and the person will not feel it.   

18.21. When dry, the coat can be considered to be soaked in air.  Air has a much lower thermal conductivity than 
water, so when it is dry, the air will insulate better than water.  Also, when the coat is dry (and fluffy) it will 
be thicker; as opposed to when it is wet the fluffiness will disappear and flatten out.  When the overall 
thickness decreases, it allows more heat to escape. 
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18.22. With an increased amount of dust in the atmosphere, more sunlight would be reflected back to space and 
this would prevent the heating of the Earth’s atmosphere. This would overall drop the Earth’s temperature.  

18.23. (a)  In order to push the piston down, the person must apply a force.  This force applied to the area of the 
piston produces a pressure.  Therefore, as the piston is pushed down, the pressure of the gas increases. 
(b)  Since the gas is thermally insulted from the environment, there is no thermal energy flow ( )0 .Q =  
The increase in pressure is a result of work done on the system.  Since there is work done on the system 
and the volume decreases, the internal energy of the system increases ( )int .E W P V∆ = − = − ∆  If the energy 
increases in a thermally insulated region, its temperature must increase.  
(c)  Other than pressure and temperature increasing and the volume decreasing, no other changes occur. 

18.24. The thermal energy transferred per unit time is given by the equation ( )h c/ / .P Q t kA T T L= = −  Consider 
a 10 cm  long glass rod and a 10 m  long aluminum rod where the cross sectional area and temperature 
difference are the same.  The ratio of the thermal energy transferred is 

( )
( )

( )( )
( )( )

Al glassAl h c AlAl

glass glass h c glass glass Al

/ 220 W/(m K) 0.10 m
2.75.

/ 0.8 W/(m K) 10 m
k Lk A T T LP

P k A T T L k L
−

= = = =
−

 

Therefore, despite the length difference, the aluminum transfers heat better than the glass rod by a factor 
of 3.≈   

18.25. If the two canteens have a similar thickness, then the plastic bottle, which has a much lower thermal 
conductivity, will insulate the water better than the aluminum can.  

18.26. The mass of the penny (copper) is about 3.0 g,  while that of the silver dollar is about 8.0 g.  The 

temperature of the penny should be about ( )0 C 273 K°  since it was outside in the cold while the silver 

dollar should be ( )37 C 310 K°  since it was in the girl’s hand.  The specific heat of the penny and the 

dollar are ( )p 0.386 KJ / kg Kc =  and ( )s 0.235 KJ / kg K .c =  Since the two coins are on wood (an 
insulator) they only exchange heat between each other. The final temperature T  is then calculated using 

( ) ( )p p p s s s ,m c T T m c T T− = −  which can be rewritten as p p p s s sm c T m c T+  ( )p p s s ;m c m c T= +  therefore, 

( ) ( )p p p s s s p p s s/ .T m c T m c T m c m c= + +  Then,  

( ) ( )( )( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( )

0.0030 kg 0.386 kJ / kg K 273 K 0.0080 kg 0.235 kJ / kg K 310 K
296 K.

0.0030 kg 0.386 kJ / kg K 0.0080 kg 0.235 kJ / kg K
T

+
= =

+
 

The final temperature of both coins is about 23 C.°  
 
Exercises 

18.27. (a)  The work to lift the elephant is W mgh=  or ( )( )( )3 2 45.0 10  kg 2.0 m 9.81m/s 9.8 10  J.W = ⋅ = ⋅   

(b) A food calorie is equal to 34.1868 10  J.⋅  The task of lifting the elephant consumes 

( ) = ⋅ ⋅ = 
4 39.8 10  J 1 cal / 4.1868 10  J 23.4308W food calories.  Assuming that the body converts 100%  of 

food energy into mechanical energy then the number of doughnuts needed is 
( ) =23.4308 cal / 250 cal / doughnut 0.093723.  It takes less than one doughnut to power its consumer to 

lift an elephant.  The body usually converts only 30 %  of the energy consumed.  This corresponds to 0.31  
of a doughnut.  
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18.28. The work done to expand the gas is given by f

i
.V

VW pdV= ∫  The pressure is related to the volume by 

3 .P Vα=  The work is then ( ) ( )( )f
f

i
i

3 4 4 4
f i1/ 4 | / 4 .

VV
V V

W V dV V V Vα α α= = = −∫  If the final volume is 3 

times larger, then the work done is:  

( ) ( )( ) ( )( ) ( )( )( )44 4 4 11 3
i i i

4/ 4 3 / 4 3 1 4.00 N/m / 4 80 2.00 m 1280 J.W V V Vα α= − = − = =  

18.29. The work per cycle is given by the area enclosed by the pressure vs. volume graph.  For this case the area is 
given by ( )( )( )−= ⋅ ⋅ = =2 4 31/ 2 2 10  kPa 4 10  m 0.04 KJ 40 J.W   

18.30. The process is adiabatic; thus, the change in internal energy is equal to the work done on the gas. The final 
internal energy is int int, f int, i ,E W E E PdV∆ = − = − = −  or  

( ) ( )( )33
int, f int, i 500. J 3.00 atm 101325 Pa / atm 100. cm m /100. cm 470. J.E E PdV  = − = − =   

18.31. The temperature of the material will be ( )f iQ cm T cm T T= ∆ = −  or ( )f i i/ / .T T Q cm T Q cVρ= + = +  Since 
the final temperature is inversely proportional to the specific heat, ,c  and the density, the material with the 
largest final temperature will be lead. A large specific heat will give a lower final temperature. The material 
with the largest specific heat and density, in this case, water, has the smallest final temperature. An 
example of the calculation for aluminum: 

 ( ) ( )( )Al 3 3 3 3
f 22.0 C 1.00 J/ 1.00 cm 2.375 10  kg/cm 0.900 10  J/ kg K 22.4678 C.T − = ° + ⋅ ⋅ = °   

Note that we need the density of the material. 

Material Specific Heat 
( )KJ/kg K  

Density

( )3g/cm  
Final 
Temperature C°  

Lead 0.129  11.34  22.684  
Copper 0.386  8.94  22.290  
Steel 0.448  7.85  22.284  
Aluminum 0.900  2.375  22.468  
Glass 0.840  2.5  22.476  
Water 4.19  1.00  22.239  

18.32. The energy would only be transferred between the two bodies of water.  This implies 1 1 2 2m c T m c T∆ = ∆  
where 1 2,T T∆ ∆  indicate the water that starts at 20.0 C° and 32.0 C,°  respectively. Further manipulation 
gives ρ ρ∆ = ∆ = ∆ = ∆1 1 1 1 2 2 2 2m c T V c T m c T V c T  or 1 1 2 2 .V T V T∆ = ∆  The first volume of water will have a 
temperature increase but the temperature of the second volume of water decreases.  Solving for the final 
temperature:  

( ) ( )
( ) ( ) ( ) ( )( ) ( )

1 f 1 2 f 2 1 f 2 f 1 1 2 2

f 1 1 2 2 1 2

  

 / 7.00 L 20.0 C 3.00 L 32.0 C / 7.00 L 3.00 L 23.6 C.

V T T V T T V T V T V T V T

T V T V T V V

− = − − ⇒ + = +

⇒ = + + = ° + ° + = °
 

The final temperature of the water is 23.6 C.°  

18.33. The heat transfer is equal for the aluminum and the water. The aluminum’s temperature will decrease, but 
the water’s temperature will increase. The temperature of the water is = °10.0 C,wT  and the temperature 
of the aluminum is = °Al 85.0 C.T  The energy lost by the aluminum is transferred to the water.  So we can 
write 
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( ) ( )− = −
− = −
+ = +

+
=

+

Al Al AL f w w f w

Al Al AL Al Al f w w f w w w

Al Al AL w w w w w f Al Al f

Al Al AL w w w
f

w w Al Al

.

m c T T m c T T
m c T m c T m c T m c T
m c T m c T m c T m c T

m c T m c T
T

m c m c

  

The mass of one liter of water is 1.00 kg. 

( ) ( )( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )
−

−

+
=

+

+⋅ ⋅⋅ ° °
=

+⋅ ⋅⋅
= °

Al Al Al w w w
f

Al Al w w
3 33

3 33

 

1.00 kg0.900 10  J/ kg K 4.19 10  J/ kg K25.0 10  kg 85.0 C 10.0 C
1.00 kg0.900 10  J/ kg K 4.19 10  J/ kg K25.0 10  kg

10.4 C

m c T m c T
T

m c m c

 

The equilibrium temperature is °10.4 C.  

18.34. The kinetic energy of the bullet is ( ) 21/2 .K mv=  If 75.0%  of this energy is converted to heat then 

( )( )= = = ∆20.750 3/4 1/2 .Q K mv mc T  The change in temperature is:  

( )

( )

 
     ∆ = = = °   ⋅  

2

2

3

3 250. m/s
3 8 181.69 C.
8 0.129 10  J/ kg K

vT
c

 

 Assuming the bullet is initially at room temperature of °20.0 C,  the final temperature of the bullet is 
= + ∆ = ° + ° = ° = °f i 20.0 C 181.67 C 201.67 C 202 C.T T T  

18.35. THINK:  The problem calls for calculating the change in energy for the copper and the water.  The volume 
of the materials does not change, so the process is isochoric.  An isochoric process implies the change in 
internal energy is equal to the heat transferred. Therefore, to calculate the energies of the materials the 
final temperatures of the samples are needed.  The magnitude of the heat transferred will be equal for both 
materials.  Knowing this and the mass, initial temperatures and the specific heat it is possible to calculate 
the final temperature.  Copper has a mass of c 1.00 kg,m =  an initial temperature of c 80.0 C,T = °  and a 

specific heat of ( )c 386 J/ kg K .c =  The volume of water is 2.00 L  which is equal to a mass of 

w 2.00 kg,m =  an initial temperature of w 10.0 C,T = °  and a specific heat of ( )w 4190 J/ kg K .c =  
SKETCH:   

 
 

RESEARCH:  The heat transferred is equal to .Q mc T= ∆  
SIMPLIFY: The temperature change for the water and the copper will be positive and negative, 
respectively. The heat lost by the copper plus the heat gained by the water equals zero, so 

( ) ( )C W c c f c w f w0 .wQ Q m c T T m c T T+ = = − + −  Solving this equation for fT  yields  

( ) ( )f c c c w w w w c c/ .wT m c T m c T m c m c= + +  The magnitude of the change in energy is given by 

int .E Q mc T∆ = = ∆  
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CALCULATE: 
( )( )( ) ( )( )( )

( )( ) ( )( )f

1.00 kg 386 J/kgK 80.0 C 2.00 kg 4190 J/kgK 10.0 C
13.0824 C

1.00 kg 386 J/kgK 2.00 kg 4190 J/kgK
T

° + °
= = °

+
 

( )( )( )
( )( )( )

int,w

int,Cu

2.00 kg 4190 J/kgK 13.0824 C 10.0 C 25830 J
1.00 kg 386 J/kgK 13.0824 C 80.0 C 25830 J

E
E

∆ = ° − ° =

∆ = ° − ° = −
 

ROUND:  The energy should be rounded to three significant figures: int 25800 J.E∆ =   
DOUBLE-CHECK:  The magnitude of the change in energy for the water and copper must be equal since 
there are no other sources of change in energy. The signs must be opposite so energy is conserved. This is a 
reasonable amount of heat for a system of this size.  Because copper has a much lower specific heat than 
water, it is expected that the copper will undergo a larger change in temperature. 

18.36. THINK: The question asks how much heat must be added to bring an aluminum pot and water to 
95.0 C.°  The masses of the aluminum and water are 1.19 kg and 2.31 kg, respectively.  Both materials 
start at a temperature of 19.7 C° and the temperature is kept uniform during the process.   
SKETCH:   

 
RESEARCH:  The heat is given by .Q mc T= ∆  
SIMPLIFY:  The total heat needed is the sum of the heat needed for each material respectively. 

( ) ( )( )tot Al w Al Al w w Al Al w w Al Al w w f iQ Q Q m c T m c T m c m c T m c m c T T= + = ∆ + ∆ = + ∆ = + −  
CALCULATE:  

( )( ) ( )( ) ( ) = + ° − ° = tot 1.19 kg 0.900 kJ/ kg K 2.31 kg 4.19 kJ/ kg K 95.0 C 19.7 C 809.5 kJ.Q  

ROUND:  The heat is reported to 3 significant figures.  The heat needed to bring the kettle and water is 
810. kJ.   
DOUBLE-CHECK: One calorie is defined as the energy required to heat one gram of water by one degree.  

( )( )32.31 10  g 95 C 19.7 C 173943 cal 730 kJ.⋅ ° − ° = ≈  The low specific heat of aluminum ensures that the 

bulk of the energy goes toward heating the water.  This is a reasonable answer. 

18.37. THINK:  Using a calorimeter, the type of material can be determined by calculating its specific heat.  The 
heat transferred from brick is equal to the heat increase of the copper and water. The material has a mass 
of = 3.00 kgm and an initial temperature of = °300. C.T  The copper and water have masses of 
1.50 kg and 2.00 kg respectively and initial temperature of 20.0 C.°  The equilibrium temperature of 

31.7 C.T = °  
SKETCH:   
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RESEARCH:  The heat is given by .Q mc T= ∆  
SIMPLIFY:  ( )? w Cu w w Cu Cu Cu w w Cu Cu .w wQ Q Q mc T m c T m c T m c m c T= + = ∆ = ∆ + ∆ = + ∆  Solving for ,c  the 
specific heat of the unknown material: 

( ) ( )( ) ( )w w Cu Cu w w Cu Cu/ / .w eq w eqc m c m c T m T m c m c T T m T T = + ∆ ∆ = + − − −   

CALCULATE:   

( ) ( )( ) ( ) ( )( ) ( )
( ) ( )

 + ° − ° = =
− ° − °

2.00 kg 4190 J/ kg K 1.50 kg 386 J/ kg K 31.7 C 20.0 C
130.228 J/ kg K

3.00 kg 31.7 C 300. C
c  

ROUND: The specific heat of the unknown material is reported to 3 significant figures: ( )=130. J/ kg K ,c  
which is very close to the specific heat of lead.  The conclusion is that the material is lead. 
DOUBLE-CHECK:  The mass of the brick is similar to the combined mass of the calorimeter and water.  
The large change in temperature of the object compared to the small change in temperature of the 
calorimeter and water points to a material of low specific heat.  The calculated value and conclusion are 
reasonable. 

18.38. THINK:  The equilibrium temperature of the three materials is desired after they are placed in thermal 
contact.  The copper has a mass of = ⋅Cu

22.00 10  gm and an initial temperature of =Cu 450. K.T  The 

aluminum has a mass of = ⋅Al
21.00 10  gm and an initial temperature of = ⋅Al

22.00 10  K.T  The water has a 

mass of = ⋅w
25.00 10  gm and an initial temperature of =w 280. K.T The values are given to three 

significant figures. 
SKETCH:   

 
 

RESEARCH:  The heat is given by .Q mc T= ∆  The copper will most likely decrease its temperature and 
the other two materials will increase their temperatures.  

SIMPLIFY:  ( ) ( ) ( )Cu w Al Cu Cu Cu eq w w eq w Al Al eq Al  Q Q Q m c T T m c T T m c T T= + ⇒ − = − + −  

Solving for eq :T  ( )eq w w Al Al Cu Cu Cu Cu Cu w w w Al Al Al ,T m c m c m c m c T m c T m c T+ + = + + or, 

Cu Cu Cu w w w Al Al Al
eq

w w Al Al Cu Cu

.
m c T m c T m c T

T
m c m c m c

+ +
=

+ +
 

CALCULATE:  Without units,  

( )( )( ) ( )( )( ) ( )( )( )
( )( ) ( )( ) ( )( )

⋅ + ⋅ + ⋅
=

⋅ + ⋅ + ⋅

=

2 2 2

2e 2q 2

2.00 10 0.386 450. 5.00 10 4.19 280. 1.00 10 0.900 200.

2.00 10 0.386 5.00 10 4.19 1.00 10 0.900

282.619.

T  

The units are: 

( )( )( ) ( )( )( ) ( )( )( )
( )( ) ( )( ) ( )( )eq

g kJ/kg K K g kJ/kg K K g kJ/kg K K
g kJ/kg K g kJ/kg K g kJ/kg K

K

T
+ +

  =  + +
=

 

Altogether, eq 282.619 K.T =  

ROUND:  The equilibrium temperature is reported to 3 significant figures, =eq 283 K.T  
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DOUBLE-CHECK:  This value is between the lowest and highest temperature. This value is also below the 
melting point of the metals and below the boiling point of water, so there is no need to worry about phase 
changes. 

18.39. THINK:  I want to find the original temperature of the water before the thermometer was placed in the 
water.  The vial has a mass of 5.00 g and there is a volume of 6.00 mL of water.  The thermometer is 
composed of 15.0 g of Pyrex and 4.00 g of mercury at a temperature of = °0 20.0 C.T  The thermometer 

reads = °eq 29.0 CT  when the thermometer is added to the water. The specific heat of Pyrex is given as  
800. J/(kg K), and the specific heat of mercury is given as 140. J/(kg K).  The mass of 6.00 mL of water is 
6.00 g.  The specific heat of water is 4190 J/(kg K). 
SKETCH:   

 
RESEARCH:  The heat is given by .Q mc T= ∆  
SIMPLIFY:  The water will decrease its temperature while the other materials increase their temperature.  
The heat transfer from the water and the vial must equal the heat transferred to the thermometer 

+ = +water vial pyrex mercury .Q Q Q Q  
We can write this as 

( ) ( ) ( ) ( )− + − = − + −water water eq vial vial eq pyrex pyrex 0 mercury mercury 0 ,m c T T m c T T m c T T m c T T  

where T is the temperature of the water in the vial before the thermometer is inserted. Solving for T: 

 

( ) ( )
( ) ( ) ( ) ( )

− + − = − + −

+ − + = − + −

=

water water water water eq vial vial vial vial eq pyrex pyrex eq 0 mercury mercury eq 0

water water vial vial eq water water vial vial pyrex pyrex eq 0 mercury mercury eq 0

pyrex p

m c T m c T m c T m c T m c T T m c T T

T m c m c T m c m c m c T T m c T T

m c
T

( ) ( ) ( )− + − + +

+
yrex eq 0 mercury mercury eq 0 eq water water vial vial

water water vial vial

.
T T m c T T T m c m c

m c m c

 

CALCULATE: Putting in our numerical values gives us 

( ) ( )( )( )
( ) ( )( )( )

( ) ( ) ( )( )

− = ° ° − ° =

− = ° ° − ° =

+ = ° ° +

pyrex pyrex eq 0

mercury mercury eq 0

eq water water vial vial

0.0150 kg 800. J/(kg C) 29.0 C 20.0 C 108 J

0.00400 kg 140. J/(kg C) 29.0 C 20.0 C 5.04 J

29.0 C 0.00600 kg 4190. J/(kg C) 0.00500 

m c T T

m c T T

T m c m c ( )( )( )
( )( ) ( )( )

° =

+ = ° + ° = °water water vial vial

kg 800. J/(kg C) 845.06 J

0.00600 kg 4190. J/(kg C) 0.00500 kg 800. J/(kg C) 29.14 J/ Cm c m c
+ +

°
°= =

108 J 5.04 J 845.06 J 32 .
29.1

.879
4 J/ C

 
 

CT  

ROUND:  The temperature is reported to three significant figures.  The initial temperature of the water is 
°32.9 C.  

DOUBLE-CHECK:  This is a reasonable answer. 

18.40. THINK:  When the water is poured on the ice, the heat transferred to the ice will warm it until it reaches a 
temperature of 0 C° (the melting point of ice).  If there is still heat left for transfer, it will start to convert 
the ice to water.  Once all the ice melts into water, if there remains heat to be transferred than the melted 
water will increase its temperature from m 0 C.T = °  The water has a mass of 1 400. gm = and an initial 
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temperature of 1 30.0 C.T = °  The ice has a mass if 2 60.0 gm = and an initial temperature of 
= − °2 5.00 C.T  

SKETCH:   

 
 

RESEARCH:  First, check the heat required to bring water from 30.0 C°  to 0 C,°  1 ,Q  and compare it to 
the heat required to bring ice from 5.00 C− ° to 0 C° and melt the ice completely, 2 .Q  If 1Q is less than 

2 ,Q  the ice will only partially melt. If 1Q is greater than or equal to 2Q , then the water will totally melt the 

ice.  ( )1 1 w 1 mQ m c T T= − and ( )2 2 2 m 2 2 .mQ m c T T m L= − +  If 1 2 ,Q Q< the ice left, ,ζ must be calculated. 

Setting the transfer of heat of the water and ice equal gives ( ) ( ) ( )1 w 1 m 2 2 m 2 2 m .m c T T m c T T m Lζ− = − + −  

The heating is given by Q mc T= ∆ or .Q mL=  If 1 2Q Q≥ then the temperature of the water is desired. 
SIMPLIFY: Solving the equation for the transfer of heat for ζ  gives  

( ) ( )m 2 2 m 2 2 1 w 1 m 2 1 2 1 m  / .mL m c T T m L m c T T Q Q Q Q Lζ ζ= − + − − = − ⇒ = −   Solve the following equation 

for the equilibrium temperature eq :T  

( ) ( ) ( )
( )

( )( ) ( )

1 w 1 eq 2 i m 2 2 m 2 w eq m

2 w eq 1 w eq 1 w 1 2 i m 2 2 m 2 w m

eq 1 w 1 2 i m 2 2 m 2 w m 2 1 w

 

 / .

m c T T m c T T m L m c T T

m c T m c T m c T m c T T m L m c T

T m c T m c T T m L m c T m m c

− = − + + −

⇒ + = − − − +

⇒ = − − − + +

 

CALCULATE:  ( ) ( )( )( )1 0.400 kg 4190 J/ kg K 30.0 C 0 C 50280 JQ = ° − ° =  

( ) ( )( ) ( )( ) ( )( )= ° − − ° + ⋅ =3
2 0.0600 kg 2060 J/ kg K 0 C 5.00 C 0.0600 kg 334 10  J/kg 26220 JQ  

Since 1 2Q Q> the equilibrium temperature is calculated as follows. Without units, 

( )( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )
( )( )

     − − − − +    = =
+eq

400. 4.19 30.0 60.0 2.06 0 5.00 60.0 334 60.0 4.19 0
15.369.

400. 60.0 4.19
T The 

units for eqT are: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )( )

        
 ° − ° − ° − + °                           = = °  +eq

kJ kJ kJg C g C C g kJ/kg g C
kg K kg K kg K

C
g g kJ/ kg K

T  

Altogether, = °eq 15.369 C.T  

ROUND:  The temperature is reported to three significant figures.  The water reaches °15.4 C.  
DOUBLE-CHECK:  This temperature is in between 5.00 C− °  and 30.0 C°  which makes sense. 

18.41. The heat given off by the person is 180. kcal.  This energy is consumed by converting water into steam. 
The amount of water is given by ( ) ( )vap/ 180. kcal / 539 cal/g 0.33395 kg 334 g.m Q L= = = =  The amount 
of water converted to steam is 334 g.  
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18.42. A block of aluminum of mass =Al 1.30 kgm and temperature of °21.0 C.  The aluminum must be brought 
to a temperature of 932 K or 659 C°  before it will melt. The heat required to bring the aluminum to this 
point is ( )1 m i .Q mc T T= −   At this temperature, more heat is needed to melt the aluminum equal to 

2 fus .Q mL=  The total energy is then: 

( ) ( )( )
( )( )

= + = − + = − +

 = − + 
=

tot 1 2 m i fus m i fus

1.30 kg 0.900 kJ/kgK 932 K 294 K 396 kJ/kg
1261.26 kJ.

Q Q Q mc T T mL m c T T L

 

The heat required to melt1.30 kg at a temperature of °21.0 C is 1260 kJ.  

18.43. The time needed to vaporize the liquid is given by vap/ / .t Q P mL P= =  For liquid nitrogen the time of 

vaporization is calculated to be ( )( ) ( )5 41.00 kg 2.00 10  J/kg / 10.0 W 2.00 10  s.t = ⋅ = ⋅  The time liquid 

helium takes to vaporize is given by ( )( ) ( )41.00 kg 2.09 10  J/kg / 10.0 W 2090 s.t = ⋅ =  Thus it takes about 

10 times longer to vaporize liquid nitrogen than liquid helium. 

18.44. THINK: The question asks for the equilibrium temperature inside the calorimeter after the steam is 
added.  The steam will be converted to water and then the temperature will change to the equilibrium 
temperature.  The steam has a mass of =s 10.0 gm  at a temperature of s 100.00 C,T = °  and has the same 
mass after it has been converted to water at w 19.0 C.T = ° The water in the cup has a mass of w 100. g,m =  
and the aluminum has a mass of 35.0 g , both at w 19.0 C.T = °  
SKETCH:   

 
RESEARCH:  The heat from the change of temperature is .Q cm T= ∆  The heat from the change of state is 

vap .Q mL=  

SIMPLIFY:  The heat lost by the steam is equal to the heat gained by the water and the aluminum. 

s w Al .Q Q Q− = +   

( )( ) ( ) ( ) ( )( )

( )

s vap s w eq s w w eq w Al Al eq w w w Al Al eq w

s vap s w eq s w s w w eq w w w Al Al eq Al Al w

s w eq w w eq Al Al eq s vap s w s w w w Al Al w

eq s w w w Al Al s vap s

m L m c T T m c T T m c T T m c m c T T

m L m c T m c T m c T m c T m c T m c T
m c T m c T m c T m L m c T m c T m c T

T m c m c m c m L m

− − + − = − + − = + −

− + = − + −

+ + = + + +

+ + = + w s w w w Al Al w

s vap s w s w w w Al Al w
eq

s w w w Al Al

c T m c T m c T
m L m c T m c T m c T

T
m c m c m c

+ +

+ + +
=

+ +

 

CALCULATE: 

( )( ) ( )( )( ) ( )( )( ) ( )( )( )
( )( ) ( )( ) ( )( )

+ + + + + +
=

+ +
=

eq

10.0 g 539 10.0 1.00 100.00 273 100. 1.00 19.0 273 35.0 .215 19.0 273
10.0 1.00 100. 1.00 35.0 .215

344.75

T

( )( ) ( )( )( ) ( )( )( ) ( )( )( )
( )( ) ( )( ) ( )( )eq

g cal/g g cal/g K K g cal/g K K g cal/g K K
g cal/g K g cal/g K g cal/g K

K

T
+ + +

  =  + +
=

 

eq 344.75 K 71.75 CT∴ = = °  
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ROUND:  The equilibrium temperature is reported to 3 significant figures since the masses are given to 
the least precise values (having three significant figures): = °eq 71.8 C.T  

DOUBLE-CHECK:  The condensation of the steam alone provides 5390 calories of heat energy to the 
system.  By definition, this is sufficient to raise the temperature of 100 g of water by about 54 C.°  The low 
specific heat of aluminum ensures that the bulk of the energy goes toward raising the temperature of the 
water.  The result is reasonable. 

18.45. THINK:  0.100 kg of molten aluminum is dropped into 1.00 L of water.  The temperatures of the 
aluminum and water are 932 K and 295 K, respectively.  I want to determine how much water will boil 
away, how much aluminum will solidify, and what the equilibrium temperature will be.  I also want to 
consider how the result would change if the temperature of the aluminum is increased to 1150 K.  In order 
to determine the final state, the heat to solidify the aluminum, Al, sQ the heat to bring the water to its 

boiling point, w,b ,Q and the heat to vaporize the water, w,vQ , are required. The aluminum has a mass of 

Al 0.100 kgm = at Al 932 K 659 C.T = = °  The water has mass of w 1.00 kgm =  at w 22 C.T = °   
SKETCH:   

 
 

RESEARCH:  The heat is given by Q mc T= ∆ and .Q mL=  

SIMPLIFY:  The heat required to solidify the aluminum is ( )Al, s Al fusion,Al .Q m L= −  The heat required to 

bring the water to its boiling point ( )w, b w w boiling w .Q m c T T= −  To find the equilibrium temperature use the 

following equation ( ) ( )Al Al, m Al Al Al eq w w eq w .m L m c T T m c T T+ − = −  The equilibrium temperature is then:  

( ) ( )eq Al Al, m Al Al Al w w w Al Al w w/ .T m L m c T m c T m c m c= + + +  

CALCULATE:  
(a,b) ( )( )Al, s 0.100 kg 396 kJ/kg 39.6 kJ.Q = − = −

( )( )( )w, b 4.19 kJ/kgK 1.00 kg 373 K 295 K 326.82 kJ.Q = − =   Because Al,s w,bQ Q< , the molten aluminum 

does not supply enough heat to boil the water. 

(c)
( ) ( ) ( ) ( ) ( )

( ) ( )

          
+ +          

          =
      

+      
      

= = °

eq

kJ kJ kJ.100 kg 396 .100 kg 0.900 932 K 1.00 kg 4.19 295 K
kg kgK kgK

kJ kJ.100 kg 0.900 1.00 kg 4.19 
kgK kgK

317.647 K 44.647 C

T  

ROUND:  The equilibrium temperature is reported to 2 significant figures.   
(a) None of the water boils away. 
(b) The aluminum will completely solidify. 
(c) The final temperature is °44.6 C.  
(d) No. It is not possible to complete without knowing the specific heat of aluminum in its liquid phase. 
DOUBLE-CHECK:  The large specific heat value of water makes it a very efficient coolant.  This is a 
reasonable answer.   
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18.46. THINK:  The question asks for the loss of internal energy during a rigorous work out.  The question also 
asks for the amount of nutritional calories required to replace the loss of internal energy.  The total work 
done is 51.80 10  J.W = ⋅  The heat required to evaporate 150. g of water can be found using the latent heat 

of vaporization 6
vap 2.42 10  J/kg.L = ⋅  A nutritional calorie is equal to 4186 J.   

SKETCH:  A sketch is not needed to solve the problem. 
RESEARCH:  The first law of thermodynamics states int .Q E W= ∆ +  The heat loss is vap .Q mL= −  

SIMPLIFY:  int vap .E Q W mL W∆ = − = − −  

CALCULATE: The change in internal energy is:  

( )( ) ( )6 5 5
int 0.150 kg 2.42 10  J/kg 1.80 10  J 5.4300 10  J.E  ∆ = − ⋅ − ⋅ = − ⋅    

This energy is equivalent to the number of nutritional calories  ( ) ( )55.4300 10  J / 4186 J/kcal 129.72 kcal.⋅ =  

ROUND:  The values will be reported to 3 significant figures. 
(a) The internal energy loses ⋅ 55.43 10  J.  
(b) You should consume 130.  nutritional calories to compensate for this loss. 

 DOUBLE-CHECK:  This is a reasonable number of calories to burn in a light workout.   

18.47. THINK:  The question asks for the amount of water necessary to cool the carbon steel. The steel has a 
mass of 0.500 kg  and must go from a temperature of 1346 F°  to 500. F.°  These temperatures in Celsius 

are ( )( )h 5/9 1346 F 32 F 730. CT = ° − ° = ° and ( )( )c 5/9 500. F 32 F 260. C.T = ° − ° = °  The blade will be 

surrounded by an unknown quantity of water and 2.000 kg  of copper both at room temperature 20.0 C.°  

The specific heat of copper is ( )386 J/ kg K .  The table associated with the problem gives the specific heat 
of carbon steel at various temperature ranges. 
SKETCH:   

 
 

RESEARCH:  The heat loss by the carbon steel is equal to the heat gained by the copper and water.  The 
heat is given by .Q mc T= ∆  
SIMPLIFY:  The heat loss by the carbon steel is:  

cs cs i i
i

,Q m c T= ∆∑  

where the summation goes over the different temperature ranges. The heat transferred to the copper is 

Cu Cu Cu b .Q m c T= ∆  The water will be brought to its boiling point w w w b .Q m c T= ∆ The water and the copper 
will reach a temperature of 100. C.°  Equating the heat loss of the carbon steel to the heat gain of the water 
and copper: 
 cs cs Cu w Cu Cu b w w b .i i

i

Q m c T Q Q m c T m c T= ∆ = + = ∆ + ∆∑  Solving for the mass of the water: 

( )w cs i i Cu Cu b w b
i

.m m c T m c T c T 
= ∆ − ∆ ∆ 
 
∑  
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CALCULATE:   

( )( ) ( ) ( ) ( )( )
( )

 − + + + + − − − =
−

=

w

0.500 846 730. 650. 754 662 595 100. 553 350. 260. 2.000 386 100. 20.0

4190 1
0

00
.2

. 20
90

.0 
,916

m  

with units of  

( )( )( ) ( )( )( ) ( )( )( ) ( )( )( )
( )( )( )w

kg J/ kg K C J/ kg K C J/ kg K C kg J/ kg K C
kg.

J/ kg K C
m

 ° + ° + ° − ° = =   °
 

Hence, w 0.290916 g. km =  
ROUND:  The least precise value is given to three significant figures.  If the water does not convert to 
steam, it takes 291 g of water to cool off the carbon steel. 
DOUBLE-CHECK:  This is a reasonable answer.  It takes relatively little water to accomplish the cooling 
due to the high specific heat of water.  Note that the strength of the carbon steel also depends on the speed 
at which the steel hardens.  

18.48. THINK:  The question asks for the power dissipated in one Earth day by ethanol snowfall on Uranus. The 
polar regions are north of latitude °75.0  and south of latitude − °75.0 .   In the polar regions, the amount of 
snow fall is = =1.00 ft 0.3048 m.d  The thermodynamic variables of the ethanol are ( )=v 1.70 J/ g K ,c  

( )=l 2.44 J/ g K ,c  and ( )=s 2.42 J/ g K .c     
SKETCH:   

 
 

RESEARCH:  Since the minimum amount of energy that is lost to the atmosphere is required, assume that 
the ethanol starts at its boiling point, condenses to a liquid and then the liquid cools to the melting point 
and just freezes to become snow.  The heat for a change in temperature is given by = ∆Q cm T  and the heat 

for a change in phase is given by = .Q mL  The area is given by = Ω∫ 2 ,A r d  where Ωd  is the solid angle. 

SIMPLIFY:  The minimum amount of energy lost to the atmosphere is  
( )= + ∆ + = + ∆ +v l f v l f .Q mL mc T mL m L c T L  

In terms of the volume and density of the ethanol snow,  
( ) ( )( ) ( )ρ ρ= + ∆ + = − + ∆ +v l f v l f1 0.9 .Q V L c T L Ad L c T L  

The area covered by one pole is given by  

( )π θ θ π θ π°
°= Ω = = = −∫ ∫2 2 2 0 2 o

252 sin 2 cos | 2 1 cos25 .A r d r d r r  

The minimum amount of energy lost to the atmosphere for both poles is  
( ) ( ) ( )π ρ= − ° − + ∆ +2

v l f4 1 cos25.0 1 0.9 .Q r d L c T L  
The power dissipated is = / .P Q t  
CALCULATE:   

( ) ( )( )( )( )
( )( )( )( )

π= ⋅ − ° ⋅

⋅ ⋅ + ⋅ − + ⋅

= ⋅

23 3 3

3 3 3

22

4 25559 10 m 1 cos25.0 0.100 0.3048 m 1.00 10 kg/m

858 10 J/kg 2.44 10 J/ kg K 351 K 156 K 104 10 J/kg

3.3707 10  J

Q  
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( )
( )

⋅
= = ⋅

22
17

3.3707 10  J
3.901 10  W

86400 s
P  

ROUND:  To three significant figures, the minimum amount of energy lost to the atmosphere is 
223.37 10 J,Q = ⋅  and the power dissipated in one Earth day is 173.90 10  W.P = ⋅   

DOUBLE-CHECK: These large answers are reasonable for a planet like Uranus.  

18.49. By finding the thermal conductivity of the metal, it is possible to identify it.  The ice has a volume of 

( )( )100. mm 100. mm 5.00 mm ,V =  a density of 3920. kg/m ,  starts at a temperature of 0 C° and melts in 
0.400 s.  The metal disk is 10.0 mm thick.  The temperature on the other side of the disk is 100. C,°  the 
boiling point of water. The power of heat transfer is given by ( )/ / .P Q t kA T d= = ∆  The heat required to 

melt the ice is ,Q mL= or in terms of volume and density .Q mL VLρ= = ( )/ / / .P Q t VL t kA T dρ= = = ∆  

Solving for the thermal conductivity gives: / .k VLd tA Tρ= ∆  

( )( ) ( )( )
( ) ( )

( )
3 3 3920. kg/m 0.100 m 0.100 m 5.00 10  m 334 10  J/kg 0.0100 m

384.1 W/ m K .
0.400 s 0.100 m 0.100 m 100. C 0 C

k
− ⋅ ⋅ = =

  ° − ° 
 

Rounding to three significant figures, the thermal conductivity of the metal is ( )384 W/ m K which is close 
to copper. 

18.50. (a) The temperature at the copper-steel aluminum interface and the power flowing through the materials 
is desired. If the areas is a meter cubed, the copper has a thickness of 2.00 mm and one side is kept at a 
temperature of Cu 100.0 C.T = °  The steel on the other hand is 1.00 mm thick and is kept at S 25.0 C.T = °  
Let S 1.00 mmL = be the width of the steel, and Cu 2.00 mmL = be the width of the copper. 

 
 

The power of heat transfer is given by ( )/ / .P Q t kA T L= = ∆  At the interface, the power must be the 

same for both surfaces. Thus, ( ) ( )Cu Cu int Cu S int S S/ / .P k A T T L k A T T L= − = −  Solving for the interface 

temperature, intT  gives:  

( ) ( )
( )( )( ) ( )( )( )

( )( ) ( )( )

int Cu S Cu S Cu S S Cu Cu S/
386 W/m K 0.00100 m 100.0 C 220. W/m K 0.00200 m 25.0 C

386 W/m K 0.00100 m 220. W/m K 0.00200 m
60.048 C 60.0 C

T k L T k L T k L k L= + +

° + °
=

+
= ° ≈ °

 

(b) The result of part (a) can be used to calculate the power, ( )( )Cu Cu int Cu/ .P k A T T L= −  

( )( ) ( ) ( )2 6386 W/mK 1.00 m 100. C 60.048 C / 0.00200 m 7710736 W 7.71 10  WP  = ° − ° = ≈ ⋅   

18.51. The question asks for the surface temperature of the Sun. This temperature can be determined by equating 
the power of a black body to the power reaching the Earth. 4

s Earth's orbitA .P A T Id I Aσε= = =∫  The sun is 

modeled as a black body, so 1.ε =  The area of a sphere is 24 .rπ  Using these facts 2 4 2
s ES4 4 .r T I rσ π π=  
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Solving for the temperature gives ( )σ=
1/42 2

ES s/ .T Ir r  Inputting the given values yields: 

( )( ) ( )( ) = ⋅ ⋅ =  

1/42 22 8 -8 4 2 51370. W / m 1.496 10  km / 5.67 10  W / K m 6.963·10  km 5778.99 KT  or 5506 C.°  

The surface temperature of the Sun is 5780 K, or 5510 C.°  

18.52. THINK: What is the equilibrium temperature of black and shiny engines?  Then engine generates 
11 kWP = and has an area of 2A 0.50 m= and a temperature of 0 27 CT = °  or 300. K.  The emissivity of 

the shiny engine is s 0.050ε =  and the black engine has b 0.95.ε =  
SKETCH: A sketch is not needed to solve the problem. 
RESEARCH: The power of the radiation is 4 .P ATσε=  
SIMPLIFY: If the engines can only dissipate heat via thermal radiation, the power is given by 

( )4 4
0AP T Tσε= − or ( )4 4

0/ .P A T Tσε = −  Solving for T  gives ( )1/44
0/ + .T P A Tσε=  

CALCULATE:  The shiny engine has a equilibrium temperature of:  

( )
( )( )( ) ( )
 ⋅
 = + =
 ⋅ 

1/4
3

4

-8 4 2 2

11 10  W
300. K 1669.478 K.

5.67 10  W / K  m 0.050 0.50 m
T  

The black engine’s temperature is:  

( )
( )( )( )

( )
 ⋅
 = + =
 ⋅ 

1/4
3

4

-8 4 2 2

11 10  W
300. K 803.362 K.

5.67 10  W / K  m 0.50 m 0.95
T  

ROUND: The values will be reported to 2 significant figures.  The shiny and black engine have 
temperature of 1400  C° and 530  C° respectively. 
DOUBLE-CHECK: These temperatures are very high, which is expected.  Other sources of heat 
dissipation will cool these engines further.  

18.53. THINK:  I want to know how long it will take to freeze the Popsicle.  The values are not given in  
SI units.  The volume of the juice is 8.00 oz  = ( ) =8.00 oz 0.0295735296 0.23658 L/oz 8 L.  The 

temperature of the juice is = °j 71.0 FT  or ( )( )° − = °5 / 9 71.0 F 32 21.667 C.  The cooling power is: 

( ) ( )( )= =4000 BTU/hr 1055.06 J/BTU / 3600 s/hr 1172.3 W.P  Assume that the juice is similar to water. 

SKETCH:  A sketch is not needed to solve the problem. 
RESEARCH:  The power is given by = / .P Q t  The heat is given by = ∆Q mc T + fusion .mL  The mass is 
equal to the volume. 
SIMPLIFY:  The time is given by = / .t Q P  The juice must first reach °0 C  before it can freeze.  

( ) ( )( )  = − + = − +   j f fusion j f fusion/ / .t mc T T mL P m c T T L P  The mass is given by the density times volume  

( )( )ρ  = − + j f / .t V c T T L P  

CALCULATE:  

( )( ) ( )( ) ° − ° + ⋅
= =  

 

34190 J/kg K 21.667 C 0 C 334 10  J/kg
1.00 kg/L  L 85.728 s.

11
0.23

72.3 W
6588t  

ROUND:  The time is reported to 3 significant figures.  It will take the juice 85.7 s to freeze. 
DOUBLE-CHECK:  This is an unusually brief time to freeze an 8.00 oz Popsicle. The reasoning for this 
short time may be part of a classroom discussion: How efficient are freezers? 

18.54. THINK:  How long does it take for the ice to melt?  The copper rod will transmit heat from the °90.0 C  
water to the ice cube, melting it.  The ice cube has dimensions =10.0 cm,s with a density of 
ρ = =3 30.917 g/cm 917 kg/m  and its temperature is = °i 0 CT , its melting point.  The area of the copper 
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rod had a cross section of 10.0 cm  and has a length of = 20.0 cm.  The other end of the copper rod is at 
= °w 90.0 C.T  

SKETCH:   

 
 

RESEARCH:  The heat required to melt the ice cube is = fusionQ mL  or ρ fusion .VL  The rate of heat transfer 

of the rod is ( )= − =W I / / .P kA T T Q t   

SIMPLIFY:  Solving for the time gives 
( ) ( ) ( )

ρ
= = =

− − −
  fusion fusion

w i w i w i

.
mL VLQt

kA T T kA T T kA T T
  

CALCULATE:  The time to melt the ice cube is: 

( )( )( )( )
( )( ) ( )

−⋅ ⋅
= =

−

3 3 3 3

2

917 kg/m 1.00 10  m 334 10  J/kg 0.200 m
174.52 s.

390. W/m K 0.100 m 363 K 273 K
t  

ROUND:  The values are reported to three significant figures.  It takes 175 seconds to melt the ice. 
DOUBLE-CHECK:  Because the copper rod is immersed in a large pool of water, it has an effectively 
infinite heat reservoir to draw on, so it will maintain its temperature of °90.0 C.  

18.55. THINK:  I want to find the rate of heat flow through a window, which is 0.32 cm  thick, and has an area of 
1.2 m by 1.4 m.  The inside and outside temperatures of the window are 8.5 C°  and 4.1 C° , respectively. 
SKETCH:   

 
RESEARCH:  The power is ( )h c / .P kA T T L= −  
SIMPLIFY:  Not required. 

CALCULATE:  
( )( )( )( )

2

0.8 W/m K 1.2 m 1.4 m 281.5 K 277.1 K
1848 W

0.32 10 m
P

−

−
= =

⋅
= 1.848 kW  

ROUND:  The heat loss rate is reported to 2 significant figures, so 1.8 kW.P =  
DOUBLE-CHECK:  This is a fairly large amount of power being transmitted through the window, which 
would lead to significant heating costs.  To reduce this power loss, double-pane windows with inert gas 
between the two panes are used rather than a single-pane window as in this example. 

18.56. THINK:  The rate of heat loss due to radiation and the boil-off rate are desired.  The temperatures are 
= ⋅h

23.00 10  KT  and =c 4.22 K.T  The area is = 20.500 m .A  The latent heat of vaporization of liquid 
helium is v 20.9 kJ/kg,L =  and its density is 0.125 kg/L.ρ =  
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SKETCH:  A sketch is not needed to solve the problem. 
RESEARCH:  The heat loss due to radiation is given by 4 ,P ATσε=  where 1,ε =  since the dewar is 
treated as a black body.  The net rate of heat transfer is the difference between the heat radiated by the 
black-body dewar, and the heat absorbed by it.  The heat radiated is given by 4

rad ,DP ATσε=  and the heat 

absorbed is given by 4
abs .HP ATσε=  The boil-off rate will be given by the equation / /P Q t dQ dt= =  

( )vap vap/ / .dmL dt dm dt L= =    The volume is related to the mass by V.m ρ=   

SIMPLIFY:   
(a) ( )4 4 4 4

h cD HP AT AT A T Tσε σε σε= − = −  

(b) The boil-off rate is ( )/P dm dt L= ( )/d V dt Lρ=  ( )/dV dt Lρ= .  Solving for the rate of volume boil-

off, /dV dt , gives / / .dV dt P Lρ=  
CALCULATE:   

(a) ( )( )( ) ( ) ( ) = ⋅ − = 
4 4-8 4 2 25.67 10  W / K m 1 0.500 m 300. K 4.22 K 229.635 WP    

(b) 
( )( )

229.635 W/ 0.087899 L/s
0.125 kg/L 20.9 kJ/kg

dV dt = =  

ROUND:  The values will be reported to 3 significant figures.  
(a)  The rate of heat loss due to radiation is 0.230 kW.  
(b)  The volume boil-off rate of the dewar is 0.0879 L/s.  
DOUBLE-CHECK:  The dewar loses heat at a rapid rate.  This heat is transferred to the liquid helium 
contained in the dewar, causing a rapid boil-off rate.  It is for this reason that cryogenic dewars are 
manufactured of reflective materials.  

18.57. THINK:  The solar irradiance on the surface of Mars and its temperature are desired.  Mars is 1.52 times 
farther from the Sun than the Earth.  Mars has a diameter of 0.532 times that of Earth. 
SKETCH:   

 

RESEARCH:  The solar irradiance on the surface of Earth is approximately 2
.1400 W/m   The average 

surface temperature on Earth is approximately 288 K.  The intensity of the light reaching the planets is 
given by the equation 24 .P I dA I rπ= =∫  The temperature can be found using the rate of heat loss for 

radiation 4/ .P Q t ATσε= =  
SIMPLIFY:  To find the irradiance note that the power of the Sun is equal for both Earth and Mars:   

2 2
M MS E ES4 4I r I rπ π=  or 2 2

M E ES MS/ .I I r r=  Using this irradiance, the temperature of Mars can be calculated 

assuming it is a blackbody, 2 2 4
M M M M4 .I r r Tπ σε π=  Solving for the temperature of the surface of Mars: 

M4
M .

4
I

T
σ

=
 

CALCULATE:  ( )( ) ( ) ( ) ( )2 22 2 2 2
M ES ES1368 W/m / 1.52 1368 W/m / 1.52 592.105 W/mI r r= = =

 

( )
2

4M 8 4 2

592.105 W/m 226.04 K.
4 5.67 10  W/K m

T
−

= =
⋅  

ROUND:  The values are given to 3 significant figures. 
(a) The solar irradiance is 2592 W / m at the surface of Mars. 
(b) The temperature on the surface of Mars is 226 K.  
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DOUBLE-CHECK:  The published value for the solar irradiance on the surface of Mars is 2590 W / m .  
The temperature on the surface of Mars is around 210 K .  Our answers are reasonable. 

18.58. THINK:   
(a)  The question asks for the rate of heat flow if the copper bar has a length of = 2.00 m,L a square cross 
section with sides = 0.100 ms and is bordered by reservoirs °80.0 C and °20.0 C.    
(b) If the bar from part (a) has an area that varies as ( ) ( )( )= +20.0100 m 1 / 2.00 mA x where x  is the 

distance along the bar from the warm end to the cold end, what is the rate of heat flow?  What is the rate of 
change of the temperature with distance at hot end, the middle and the cool end? 
SKETCH:   

 
RESEARCH:   
(a)  The rate is given by ( )= = −h c/ / .P Q t kA T T L   
(b) The heat flow through the bar will be the same everywhere in the bar independent of the area of the bar 
and is a constant .P  The rate of change of temperature will depend on the distance.  We start by 
generalizing equation 18.15 to state 

 ( )= − ,dTP kA x
dx

 

where ( )A x  is the cross sectional area of the bar at position .x   We can rewrite this equation as 

 ( )
( )

= − ⇒ = −    .dxPdx kA x dT P kdT
A x

 

We can integrate between = 1x x  and = 2x x  for the left side of the equation and between = 1T T  and 
= 2T T  on the right side of the equation to obtain 

 
( )

= −∫ ∫
2 2

1 1

.
x T

x T

dxP k dT
A x

 

In this case, the area as a function of distance is given by ( )  = + 
 
1 xA x a

b
 where = 20.0100 ma  and 

= 2.00 m.b  
 
SIMPLIFY:   

(a) The area of the bar is = 2A s  so 
( )−

= =
2

h c .
ks T TQP

t L
 

(b) Inserting our definition of ( )A x  into the integral gives us 

 = −
 + 
 

∫ ∫
2 2

1 1

.
1

x T

x T

dxP k dT
xa
b
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Carrying out the integrals we get 

 ( )( ) ( ) ( )( ) ( )+ = − ⇒ + − + = − −
2

2

1
1

2 1 2 1ln     ln ln .
x

T

T
x

Pb Pbb x kT b x b x k T T
a a

 

We can determine P  

 
( )

( ) ( )
−

=
+ − +

1 2

2 1

.
ln ln

T TkaP
b b x b x

 

The rate of change of the temperature is 

 
( )

= − = −
 + 
 

.
1

dT P P
xdx kA x ka
b

 

CALCULATE:   

(a) ( )( ) ( ) = ° − ° = 
2390. W / m K 0.100 m 80.0 C 20.0 C / 2.00 m 117 WP  

(b) The heat flow is 

( )( )( ) ( )
( ) ( )

° − °
= =

+ −

2390 W/ m K 0.0100 m 80.0 C 20.0 C
W.

2.00 m ln 2.00 m 2.00 m ln
168.79

2.00 
5 

m
P  

The rate of change of the temperature at = 0x  is 

( )( )( )( )
= − = −

+2

W 43.281 K/m.
390 W/ m K 0

168.795 
.0100 m 1 0

dT
dx

 

The rate of change of the temperature at =x L  is 

( )( )( )
= − = −

 + 
 

2

W 21.640 K/m.
2.00 m390 W/ m K 0.0100 m 1

168.79

2.00

5 

 m

dT
dx

 

The rate of change of the temperature at = / 2x L  is 

( )( )( )
= − = −

 + 
 

2

W 28.853 K/m.
1.00 m390 W/ m K 0.010 m 1

168.79

2.00

5 

 m

dT
dx

 

ROUND:   
(a)  The rate is reported to 3 significant figures.  The rate of heat transfer is =117 W.P  
(b) The values are reported to 3 significant figures.  The rate of heat flow is the same throughout the bar 
and is 169 W.  At the warm end, the middle and the cool end the rate of temperature change with distance 
is − °43.3 C/m, − °21.6 C/m,  and − °28.8 C/m,  respectively. 
DOUBLE-CHECK:   
(a)  This value of a reasonable order of magnitude. 
(b)  The rate of heat flow is higher for the larger bar, as expected.  The change in temperature per unit 
length is larger for the smaller cross sectional area.  That makes sense because the rate of heat transfer is 
constant everywhere in the bar. 

18.59. THINK: The Planck spectrum distribution is given by ( ) ( )( )ε π= −B/2 3
T 2 / / ( 1) ,hf k Tf h c f e where h  is 

Planck’s constant and c  is the speed of light.  The frequency of the peak of this distribution is needed. The 
Boltzmann constant is 23 2 2 1

B 1.38 10  m kg   s K .k − − −= ⋅  
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SKETCH:   

 
RESEARCH:  The frequency of the peak of the Planck distribution is determined from solving / 0.d dfε =  
The derivative of the Planck distribution is given by:  

( ) ( )ε π − −   = − − −        
B B

1 2/ /2 3
2

B

2 3 1 1 .hf k T hf k Td h hf e f e
df k Tc

 

SIMPLIFY:  Solving / 0,d dfε =  it is found that: 

( ) ( )( ) ( ) ( ) ( )B B B B B
1 2 2/ / / / /2 3 2

B B3 1 / 1 0  1 3 1 / 0.hf k T hf k T hf k T hf k T hf k Tf e f h k T e f e e hf k T e
− − −  − − − = ⇒ − − − =   

This leads to 3 3 0,x xe xe− − =  where Bf / .x h k T=  Simplifying yields 3 3 xx e−− =  or 

( )3 3 3 1 .x xx e e− −= − = −  Solving x  iteratively with a starting value 0 3,x =  it is found that 

( ) ( ) ( ) ( )0 13 2.8506
0 1 23,  3 1 3 1 2.8506,  3 1 3 1 2.8266x xx x e e x e e− −− −= = − = − = = − = − =  and after few 

iterations, the most is 2.8215.x =  This means that B/ 2.8215hf k T =  or ( )B2.8215 / .f k h T=  
CALCULATE:   
(a) Substituting 23 2 -2 -1

B 1.38 10    kg sm Kk −= ⋅  and 346.626 10  J sh −= ⋅  gives ( )= ⋅ 105.8792 10  Hz/K  .f T  

(b) At 36.00 10  K,T = ⋅ the frequency of the peak is: 

( )( )10 3 145.8792 10  Hz/K 6.00 10  K 3.5275 10  Hz.f = ⋅ ⋅ = ⋅  

(c) At 2.735 K,T =  the frequency of the peak is:  

 ( )( )10 115.8792 10  Hz/K 2.735 K 1.60796 10  Hz.f = ⋅ = ⋅  

(d) At = 300. K,T the frequency of the peak is: 

( )( )10 13 135.8792 10  Hz/K 300. K 1.7638 10  Hz 1.76 10  Hz.f = ⋅ = ⋅ ≈ ⋅  

ROUND:   
(a) ( )= ⋅ 105.88 10  Hz/K  .f T   

 (b) The temperature of the Sun is given to three significant figures in the question: 143.53 10  Hz.f = ⋅   

(c) Boltzmann’s constant is given to three significant figures: = ⋅ 111.61 10  Hz.f  (d) The Earth’s 

temperature is given only to three significant figures in the question: 131.76 10  Hz..f = ⋅  
DOUBLE-CHECK:  The result in (a), where ( )constantf T=  is known as Wien’s displacement law. The 
rest of the calculated frequencies have Hertz as their units, which is appropriate. As one might expect, the 
frequencies increase with the temperatures. 

18.60. Energy required to raise the temperature of an object by T∆ is given by .Q mc T= ∆  Substituting the 
specific heat of aluminum, ( )= 900. J/ kg K ,c  the mass 0.300 kgm =  and 

( ) ( )( )∆ = + − + =100.0 273 20.0 273  K 80.0 KT , hence,  

( )( )( )= = =900. J/kg K 0.300 kg 80.0 K 21600 J 21.6 kJ.Q  
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18.61. The R  value of an object is equal to / ,R L k=  where L is the thickness of the object and k is its thermal 

conductivity.  Inserting the thermal conductivity of fiberglass batting ( )−= ⋅ °68.00 10  BTU/ ft F sk  and its 

thickness = 4.00 inL  or = 0.333 ftL  yields: 

( )−

  = = ° ≈ °   ⋅ °   

2 2
6

0.3333 ft 1 hr 11.574 ft  F hr/BTU 11.6 ft  F hr/BTU.
3600. s8.00 10  BTU/ ft F s

R  

18.62. The amount of heat required to change the temperature of 10.0 kg  of water by 10.0 K  is 

( )( )( ) 54190 J/kg K 10.0 kg 10.0 K 4.19 10  J.Q cm T= ∆ = = ⋅  The kinetic energy of a car with 
31.00 10  kgm = ⋅  and a speed of 27.0 m/s  is:  

( ) ( )( )( )22 3 5 51/2 1/2 1.00 10  kg 27.0 m/s 3.645 10  J 3.65 10  J.K mv= = ⋅ = ⋅ ≈ ⋅  

 It should be noted that Q and K are about the same.  

18.63. The conduction rate through a spherical glass is given by ( )= ∆cond /P kA T L where ∆T is the temperature 

difference, k is the thermal conductivity of the glass and A  and L  are the area and thickness of the glass.  

Simplifying gives ∆ = cond / .T P L kA  Using the area of sphere, it is found that ( )π∆ = 2
cond / 4 .T P L k r  

Substituting ( )= =cond 0.95 100.0 W 95 W,P  −= ⋅ 30.50 10  m,L  
−= ⋅ 23.0 10  mr  and ( )= 0.80 W/ m Kk  gives 

( )( )
( )( )( )π

−

−

⋅
∆ = =

⋅

3

22

95 W 0.50 10  m
5.2 K.

0.80 W/mK 4 3.0 10  m
T  

18.64.  “Calories” here refers to food calories. The amount of heat transferred to the soft drink is .Q cm T= ∆  
Inserting ( )4190 J/ kg K ,c =  0.355 kgm =  and ( )∆ = − =37.0 10.0  K 27.0 KT  yields the expression 

( )( )( )( )= = ⋅ =34190 J/ kg K 0.355 kg 27.0 K 40.16 10  J 9594 cal.Q  Recall that the energy content of food 

given in calories on the label is actually in food calories.  The net energy content is 
= = + =0 150. kcal 9594 cal 159,594 cal.E E  Rounding the value of E to 3 significant figures gives 

= ⋅ 51.60 10  food calories.E  

18.65. The conduction rate of the skin is given by ( )cond / .P kA T L= ∆  After rearrangement, cond / .k P L A T= ∆  

Substituting −= ⋅ 33.00 10  m,L  cond 100. W,P =  = 21.50 mA  and ( )37.0 27.0  K 10.0 KT∆ = − =  gives the 

thermal conductivity, 
( )( )
( )( )

( )
−

−
⋅

= = ⋅
3

2
2

100. W 3.00 10  m
2.00 10  W/ m K .

1.50 m 10.0 K
k  

18.66. THINK:  A lead bullet is fired at a wall.  It is assumed that the bullet receives 75.0% of the work done on it 
by the wall as it stops.  It is assumed the bullet has an initial temperature of 293 K  (room temperature).   
Before the bullet starts to melt, the bullet’s temperature needs to be increased to the melting point which is 
601 K.  The heat of fusion for lead is 23.2 kJ/kg,L =  and the specific heat of lead is ( )Pb 0.129 kJ/ kg K .c =  
SKETCH:   
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RESEARCH:  The amount of energy absorbed by the bullet is given by the work done by the wall times 
0.75.  Therefore, ( )( ) ( )( )( ) ( )( )= ∆ = − =2 2

absorbed 0 00.750 0.750 1/ 2 0 0.375 .Q K mv mv  Before the bullet begins 

to melt, its temperature must be raised to the melting point of 601 K.  The heat needed for this is given by 
( )1 f i .Q cm T T= −  After the melting point has been reached, the heat needed to completely melt the bullet 

is 2 fusion .Q mL=  
SIMPLIFY:   
(a) Thus, the minimum speed needed to start melting the bullet is found by equating the heat absorbed 
with the heat required to raise the temperature of the bullet 1.Q  

( )( ) ( )2
absorbed 1 0 f i  0.375 ,Q Q mv cm T T= ⇒ = −  which implies that ( )0 f i / 0.375.v c T T= −   

(b) In order to completely melt the bullet, the heat absorbed must be equal to the heat required to raise 
the temperature and to melt the bullet, that is ( )( ) ( )2

absorbed 1 2 0 f i fusion  0.375 .Q Q Q mv cm T T mL= + ⇒ = − +  

Thus, the speed required is ( )( )= − +0 f i fusion / 0.375.v c T T L   

CALCULATE:   

(a)  ( )( )0 129 J/ kg K 601 K 293 K / 0.375 325.5 m/sv = − =   

(b) ( )( )0 129 J/ kg K 601 K 293 K 23200 J/kg / 0.375 409.7 m/sv  = − + =    

ROUND: Rounding to three significant figures, (a) =0 326 m/sv   and (b)  =0 410. m/s.v  
DOUBLE-CHECK:  The results in (a) and (b) are typical speeds of bullets. 

18.67. THINK:  Solar radiation reaches the Earth’s surface at about 21.4 kW/m .  It is assumed here that the Earth 
is a black body.  This means that there is no reflection due to Earth’s atmosphere, and all solar radiation 
that reaches the Earth is absorbed by the Earth’s surface. 
SKETCH:   

 
RESEARCH:  The Sun emits radiation uniformly in all directions.  This means that if the total power of 
solar radiation is ,P  then the intensity of radiation at a distance r  from the Sun is distributed uniformly 

over a spherical surface area.  Thus, 2 .
Spherical Area 4

P PI
rπ

= =  Therefore, the intensity of radiation that 

reaches the Earth is 2
E SE/ 4 .I P rπ=  Similarly for Mars, the intensity that reaches Mars is 2

M SM/ 4 .I P rπ=  
SIMPLIFY:  Since EI  is known, the power of radiation P  can be eliminated from the above equations 

giving the intensity on Mars as ( ) ( )2 2 2 2
M SE SM E SE SM E4 / 4 / .I r r I r r Iπ π= =  

CALCULATE: Substituting 2
E 1.4 kW/m ,I =  11

SE 1.496 10  mR = ⋅  and 11
M 2.28 10  mR = ⋅  yields:  

211
3 2 2 2

M 11

1.496 10  m 1.4 10  W/m 6.03 10  W/m .
2.28 10  m

I
 ⋅

= ⋅ = ⋅ 
⋅ 

 

ROUND:  Keeping only two significant figures gives 2 2
M 6.0 10  W/m .I = ⋅  

DOUBLE-CHECK:  Since SMR  is larger than SER  it is expected that MI  is less than E .I   
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18.68. THINK:  The radiated power of a body depends on its surface area, temperature and emissivity. Assume 
that your body has an emissivity of 1.00,ε =  that is, that you are a black body. 
SKETCH:   

 
RESEARCH:  The radiated power of an object is given by 4

b .P ATσε=  The power radiated by my body is 
4

rad b .P ATσε=  If the surrounding environment has a temperature env ,T  the power absorbed by my body is 
4

abs env .P ATσε=  Since my body radiates energy to the environment and at the same time absorbs energy, 
the net power is net rad abs+ .P P P=  

SIMPLIFY:  ( )4 4
net b envP A T Tσε= −  

CALCULATE:  
(a)  The radiated power from my body is: 

( )( )( ) ( )( )44 8 2 4 2
rod b 5.6703 10  W/m  K 1.00 2.00 m 273 33.0  K 994.3 W.P ATσε −= = ⋅ + =  

(b)  The net body radiated power is: 

( )( )( ) ( ) ( )( )( )4 4 48 2 4 2
net 5.6703 10  W/m  K 1.00 2.00 m 273 33.0 273 20.0 K 158.5 W.P −  = ⋅ + − + =  

  

(c)  The net body radiated power is: 

( )( )( ) ( ) ( )( )( )4 4 48 2 4 2
net 5.6703 10  W/m  K 1.00 2.00 m 273 27.0 273 20.0 K 82.8 W.P −  = ⋅ + − + =  

 

ROUND: The final answers should be rounded to three significant figures. 
(a) rod 994 WP =    
(b) net 159 WP =    
(c) net 82.8 WP =  
DOUBLE-CHECK:  The answers are reasonable.  It is expected that the body radiates less heat when its 
surface temperature is lower.  

18.69. THINK:  A 10.0 g  ice cube has an initial temperature of − °10.0 C.  The ice cube is dropped into 40.0 g  
of water at °30.0 C.  The equilibrium temperature of the water must be calculated.  Then, a second similar 
ice cube is added.  The new equilibrium temperature is required. 
SKETCH:   

 
RESEARCH:  It is noted that the ice temperature is below the freezing point.  Therefore, any heat 
transferred to the ice initially can only increase the temperature of the ice.  The heat 1Q required to raise 
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the temperature of the ice is ( )= ∆ = ° −1 I I 1 I I I0 C .Q c m T c m T  After the temperature of the ice reaches 

°0 C, the heat 2Q  needed to melt the ice is =2 F I .Q L m  Then, after all ice has melted, the heat 3Q needed to 

increase the temperature by ∆ 2T  is ( )= ∆ = − °3 W I 2 W I f 0 C .Q c m T c m T  The amount of heat 4Q  transferred 

from the water to the ice is ( )= ∆ = −4 W W 3 W W f W .Q c m T c m T T  Since the system is isolated, the net heat 

must be zero. + + + =1 2 3 4 0.Q Q Q Q   When a second ice cube is added to the system, the process must be 
repeated with the new starting temperature, and taking into account the added mass of the first ice cube. 
SIMPLIFY:  Adding all heats, it is found that: 

( ) ( ) ( )° − + + − ° + − =I I I F I W I f W W f W0 C 0 C 0.c m T L m c m T c m T T  

Solving for fT  gives:  

( )
+ −

=
+

W W W I I I F I
f

W W I

.
c m T c m T L m

T
c m m

 

CALCULATE:   
(a) The final temperature of the water is: 

( )( ) ( )( ) ( )

( )( )

     
° + − ° − ⋅     ° °     =

° +
= °

3

f

J J J4190 0.0400 kg 30.0 C 2060 0.0100 kg 10.0 C 334 10  0.0100 kg
kg C kg C kg

4190 J/kg C 0.0400 kg 0.0100 kg
7.074 C.

T

 
(b) The final temperature using =w 50.0 gm  and = °w 7.074 CT  is:  

( )( ) ( )( ) ( )

( )( )( )

     
° − ° − ⋅     ° °     =

° +

= − °

3

f

f

J J J4190 0.0500 kg 7.074 C 2060 0.0100 kg 10.0 C 334 10 0.0100 kg
kg C kg C kg

4190 J/ kg C 0.0500 kg 0.0100 kg
8.210 C.

T

T
Since fT is negative, this means that the ice has not melted completely or has not reached the melting 
point.  Let us calculate the value of 1 ,Q  2Q  and 4Q  assuming =f 0T  in order to determine the state of the 
ice.  The heat is: 

( )( )( ) ( )( )
( )( )

( )( )( )( )

= ° ° − − ° =

= ⋅ =

= ° ° − ° = −

1

3
2

4

2060 J/ kg C 0.0200 kg 0 C 10 C 412 J

334 10  J/kg 0.0200 kg 6680 J

4190 J/ kg C 0.0400 kg 0 C 30 C 5028 J.

Q

Q

Q

 

Since +1 2Q Q  is larger than the magnitude of 4Q  and 1Q  is less than the magnitude of 4 ,Q  this means 
that the ice has not melted completely and the final temperature is therefore, = °f 0 C.T  
ROUND:  Rounding to three significant figures, (a) = °f 7.07  CT .  (b) = °f 0.00 CT . 
DOUBLE-CHECK:  The largest part of the heat required for the process is that which causes the phase 
change from solid to liquid.  Doubling the mass of the ice effectively doubles this heat requirement.  It is 
not surprising that the system does not contain sufficient heat to complete the process. 

18.70. THINK: The mass of water is 60.0 kg and the temperature is 35.0 C.°  It is assumed the Sun gives out 
3 21.00 10  W/m⋅  and the dimension of a mirror is 25.0 cm by 25.0 cm.  The mirrors are held at an angle of 

45.0 .°  The total power received by the cylinder of water depends on the amount of power reflected by the 
mirrors. 
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SKETCH:   

 
RESEARCH:  The amount of power reflected by a mirror is given by ( )1 Effective Area ,P I= I is intensity 

of solar radiation. 1 cos .P IA θ=  The total power reflected is 1 cos .P NP NIA θ= =  For an interval of time t, 
the energy absorbed by the water is cos .E Pt NIA tθ= =  The amount of heat to raise the temperature of the 
water is ( )f i .Q cm T T= −  

SIMPLIFY:  Equating E  with Q gives the time required is 
( )f i .

cos
cm T T

t
NIA θ

−
=  

CALCULATE:  Substituting 3 21.00 10  W/m ,I = ⋅ 34.20 10  J/kg C,c = ⋅ ° 60.0 kg,m = f 100. C,T = °  

iT 35.0 C,= °  

( )( ) 2 2A 0.250 0.250  m 0.0625 m= = and 45.0θ = ° yields: 

( )( )( )
( )( )( ) ( )

3

3 2 2

4.20 10  J/kg C 60.0 kg 100. C 35.0 C
7.41 s.

50000 1.00 10  W/m 0.0625 m cos 45.0
t

⋅ ° ° − °
= =

⋅ °
 

ROUND:  Using three significant figures gives 7.41 s.t =  
DOUBLE-CHECK:  50,000 mirrors each with an area of  20.0625 m is equivalent to a single mirror with 
an area of more than 23 km .  Considering the fact that all of the power reflected by this massive mirror is 
focused on a single point, the result is not surprising. 

18.71. THINK:  Assume the Gulf Stream is a box shaped object with a length of ⋅ 38.00 10  km, a width of 
100. km and a depth of 500. m.  Assume also that the temperature inside the box is uniform. 
SKETCH:   

 
RESEARCH:  The power radiated by an object is σε= 4 .P AT  The surface area of the Gulf Stream is equal 
to = + +2 2 2 .A LW Ld Wd  Here L, W and D are the length, width and depth of the Gulf Stream.  The 
absorbed power is from the Sun, which corresponds to receiving 1400. W/m2 for half the day on the 
surface of the water, ( )( ) ( )= =2 2

abs 1/ 2 1400. W/m ( ) 700.0 W/m ( ).P LW LW  

SIMPLIFY: ( )σε= − = −4 2
net rad abs 700.0 W/m ( ).P P P AT LW  

CALCULATE: To make the equation fit on the page, compute radP   first without units: 

 ( )( )( ) ( )( ) ( )( ) ( )( ) ( )−  = ⋅ ⋅ ⋅ + ⋅ + ⋅ 
= ⋅

48 6 5 6 5
rad

14

5.6703 10 0.930 2 8.00 10 1.00 10 8.00 10 500. 1.00 10 500. 290

5.9978 10 .

P  
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Then, the units of radP  are: [ ] ( )( ) ( )( ) ( )( ) ( )( ) ( )= + + =  
44 2

rad W/ K  m m m m m m m K W,P  so altogether 

= ⋅ 14
rad 5.9978 10  W.P  

( ) ( )( ) = ⋅ ⋅ 
= ⋅

2 6 5
abs

14

700. W/m 8.00 10  m 1.00 10  m

5.60 10  W.

P  

= ⋅ − ⋅ ⋅14 14 14
net 5.9978 10  W 5.60 10  W=3.978 10  W.P  

ROUND:  Rounding to three significant figures gives = ⋅ 13
net 3.98 10  W.P  

DOUBLE-CHECK:  It is well known that the Gulf Stream is responsible for significantly warming the 
waters in the North Atlantic, so one would expect its radiated power to be very large. 

18.72. THINK: 1.00 kg of steam at 100.0 C° is poured over a 4.00 kg block of ice at 0.00 C.°   After the system 
reaches equilibrium, the final temperature is needed.  
SKETCH:   

 
 
RESEARCH:  Since the ice is already at the freezing point, the heat needed to raise the ice to a final 
temperature fT is equal to the heat needed to melt the ice and the heat needed to increase the temperature 

of the ice, that is, ( )1 I I W I f 0 C .Q L m c m T= + − °  The heat released from the steam to decrease its 
temperature to the equilibrium temperature is equal to the heat released during condensation and the heat 
released when its temperature is reduced, that is, ( )2 S S W S f S .Q L m c m T T= − + −  Since the system is isolated, 

this means there is no heat entering or leaving the system.  Therefore, 1 2 0.Q Q+ =  

SIMPLIFY: ( ) ( )I I W I f S S W S f s0 C 0.L m c m T L m c m T T+ − ° − + − =  Solving for fT  yields: 

( ) ( )= + − +f S S W S S I I W I S/ .T L m c m T L m c m m  
CALCULATE:  The final temperature is:  

( )( ) ( )( )( )( ) ( )( )
( )( )( )

6 5

f

2.26 10  J/kg 1.00 kg 4186 J/ kg C 1.00 kg 100.0 C 3.33 10  J/kg 4.00 kg
64.338 C.

4186 J/ kg C 1.00 kg 4.00 kg
T

⋅ + ° ° − ⋅
= = °

° +

ROUND:  f 64.3 CT = °  
DOUBLE-CHECK:  Because S IL L>  by a factor of 10, it is reasonable that the equilibrium temperature is 
slightly closer to the initial temperature of the steam. 

18.73. THINK:  The heat transfer through an object depends on its thermal conductivity, surface area and 
thickness, and the temperature difference between the heat reservoirs (in this case, the environment and 
the soda).  
SKETCH:   
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RESEARCH:  First, the surface area of the soda cans and the plastic bottle are needed.  The surface area of 

a cylindrical object is ( ) ( )2 2A 2 / 2 1/ 2 ,D Dh D Dhπ π π π= + = +  where D is the diameter and h is the 

height. The heat transfer for the 6 soda cans is c c c c6 A / .cP k T L= ∆  For the plastic bottle, the heat transfer is 

B B B B BA / .P k T L= ∆  
SIMPLIFY:  The ratio of the initial heat current into all six cans to the initial heat current into the bottle is: 

( ) ( )B c c c c B B B Bratio / 6 A / / A / .cP P k T L k T L= = ∆ ∆  Since p cT T∆ = ∆  and c B ,L L=  the ratio becomes: 

( ) ( )c c B Bratio 6 A / A .k k=  Substituting ( ) 2
c c c c1/ 2A D D hπ π= +  and ( ) 2

B B B B1/ 2A D D hπ π= +  gives:  

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

π π

π π

+ +
= =

+ +

2 2
c c c c c c c c

2 2
B B B B B B B B

6 1/ 2 6 1/ 2
ratio .

1/ 2 1/ 2

k D D h k D D h

k D D h k D D h
 

CALCULATE:  Putting in the numerical values yields: 

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

2

2

6 205 W/ m K 1/ 2 0.0600 m 0.0600 m 0.120 m
ratio 3690.

0.100 W/ m K 1/ 2 0.100 m 0.100 m 0.250 m

 + = =
 + 

 

ROUND:  To three significant figures, the ratio is 3690:1. 
DOUBLE-CHECK:  The cans have a larger combined surface area than the bottle.  This, in combination 
with the larger thermal conductivity of aluminum leads to the expected result that the cans warm up more 
quickly than the bottle. 

18.74. THINK:  A 10.0 in. thick piece of fiberglass has an R-factor of ( )° ⋅240.0 ft F hr/BTU .  I want to convert 
this value to SI units.  I also want to determine the heat transfer through a wall that is insulated with this 
fiberglass, when the outdoor and indoor temperatures are 22.0  C and 23.0  C− ° ° , respectively.  
SKETCH:   

 
RESEARCH:  The conversion values for the units are 1 ft 0.3048 m,= ° =1 F 5/9 K, 31 h 3.60 10  s= ⋅  and 

31 Btu 1.055 10  J.= ⋅  The heat transfer is given by : ( )cond i 0 / .P kA T T L= −  

SIMPLIFY:  Therefore, the heat transfer is ( ) ( )cond i 0 i 0/ / ,P kA T T L A T T R= − = −  since / .R L k=   The heat 

transfer per 2m  is ( )2
cond i 0/ m / .P T T R= −  

CALCULATE:   
(a) The thermal resistance R in SI unit is:  

( ) ( )( )( ) ( )22 3 3

2

40.0 ft  F h/BTU 0.3048 m/ft 5/9  K/ F 3.60 10  s/h / 1.055 10  J/BTU

7.045 m  K/W.

R = ° ⋅ ° ⋅ ⋅

=
 

(b) The heat transfer per 2m  is 
( ) ( )2 2

cond 2

273 23.0 K 273 22.0 K
/ m 6.388 W/m .

7.045 m  K/W
P

+ − −
= =  

ROUND:  Rounding to three significant figures, 2 2 2
 cond cond7.05 m K/W,  / m 6.39 W/mP P= = . 

DOUBLE-CHECK:  This is within the range of R-values for commercial fiberglass insulation.  
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18.75. THINK:  The conduction rate of insulation, condP , depends on the area and the R value of the material, 
and the temperature difference on either side of the insulation. Let H 294 K,T = and C 277 K.T =  
SKETCH:   

 
 

RESEARCH:  The conduction rate is given by ( )cond H C / .P A T T R= −  The increase in the conduction rate 

due to the change in the R value is ( ) ( )cond1 cond2 H C 1 H C 2/ / .P P P A T T R A T T R   ∆ = − = − − −     

SIMPLIFY:  ( ) ( ) ( )H C 1 21/ 1/P A T T R R ∆ = − −   

(a)  The change in heat that exits the room in an interval of time is: 

( ) ( ) ( )H C 1 21/ 1/ .Q t P tA T T R R = ∆ = − −   

(b) In three months, the extra heat that exits the room is 90Q. 
CALCULATE:   
(a)  Substituting ( )( ) 25.0 m 5.0 m 25 m ,A = =   

( )2 2
1 19 0.176 m  K/W 3.344 m  K/W,R = =  ( )2 2

2 30 0.176 m  K/W 5.28 m  K/WR = =  and 

( )24 3600 s 86400 st = = : 

( )( ) ( )( ) ( )( ) = − − = ⋅ 
2 2 2 686400 s 25 m 294 K 277 K 1/ 3.344 m  K/W 1/ 5.28 m  K/W 4.03 10  J.Q  

(b) ( )6 890 4.03 10  J 3.62 10  J.Q = ⋅ = ⋅  Since the electrical energy for heating costs 12 cents/kWh  or 
63.33 10  cents/J,−⋅  the increase in cost of electrical heating is ( )−= ⋅ ⋅8 6cost 3.62 10  J 3.33 10  cents/J  

1206.7 cents.=  
ROUND:  Keep only two significant figures. 
(a) 64.0 10  JQ = ⋅   
(b) The extra cost is 1200 cents, or 12 dollars. 
DOUBLE-CHECK:  The units of Q are Joules, and the cost is in cents. These units are expected units for 
these values. 4 million Joules is a reasonable amount of energy, corresponding to a cost of $12 dollars. 

18.76. THINK:  This is a problem of heat flow through three layers of material; two panes of glass and an air gap.  
Each glass pane has a thickness of 3.00 mm  and the air gap is 1.00 cm  thick. The thermal conductivities 
of glass and air are 1.00 W/m K  and 0.0260 W/m K,  respectively.  
SKETCH:   
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RESEARCH:  The heat flow through all three layers must be the same.  The conduction rate condP  is given 

by ( )cond H C / .P kA T T L= −  Therefore, the conduction rate through the layers is 

( ) ( ) ( )cond G 0 1 G A 1 2 A G 2 3 G/ / / .P k A T T L k A T T L k A T T L= − = − = −  The rate of heat energy lost through the 

window per 2m  is ( )cond G 0 1 G/ /P A k T T L= − .  If the window had no air layer between the panes, the rate of 

heat loss will become ( )= −cond G 0 3 G/ /P A k T T L  
SIMPLIFY:  Therefore, two equations are obtained:  

(1) ( ) ( )0 1 2 3T T T T− = −  and (2) ( ) ( )( )1 2 G A A G 2 3/ .T T k L k L T T− = −  

Adding (1) and (2) yields ( ) ( )( )0 2 G A A G 2 31 / .T T k L k L T T− = + −  Solving for 2T  gives  

3
2

0 3

2
A G A G G A

A G G A

k L T k L T k L
k

T
k L

T
L

+ +
+

=  

The temperature 1T  is calculated using 1 0 2 3 .T T T T= − +  
CALCULATE:   
(a)  Substituting the numerical values gives:  

( )( )( ) ( )( )( ) ( )( )( )
( )( ) ( )( )

3 3 2

2 3 2

293 0.0260 3.00 10 273 0.0260 3.00 10 273 1.00 1.00 10

0.0260 3.00 10 1.00 1.00
273.154

10
,  

2
T

− − −

− −

⋅ + ⋅ + ⋅

⋅ + ⋅
= =  

with units of 
( )( )( ) ( )( )( ) ( )( )( )

( )( ) ( )( )2

K W/m K m K W/m K m K W/m K m
W/m K m W/

 
m m

K.
K

T = =  
+ +

+
 Therefore 

2 273.154 K.T =  1 293.0 K 273.154 K 273.0 K 292.846 K 19.846 C.T = − + = = °  So, the temperatures of the 
four air-glass interfaces are 0 20.00 C,T = ° 1 19.846 C,T = ° 2 0.154 C,T = ° and 3 0.00 C.T = °  

(b) ( ) 3 2
cond / 1.00 W/mK 20.00 C 19.846 C / 3.00 10  m 51.33 W/mP A −= ° − ° ⋅ =  

(c)  ( ) 3 2
cond / 1.00 W/mK 20.00 C 0.00 C / 6.00 10  m 3333 W/mP A −= ° − ° ⋅ =   

(d) Window glass is not manufactured in this way because there is a pressure difference between the 
vacuum and the outside air.  This pressure difference produces enough force to break the glass. If the glass 
can withstand the pressure difference, the glass must be very thick and the production of the glass with the 
vacuum gap would be very expensive 
ROUND:  Keeping three significant figures;  
(a) 0 20.0 C,T = °  1 19.8 C,T = °  2 0.154 C,T = °  3 0.00 CT = °  

(b) 2
cond / 51.3 W/mP A =  

(c) 2
cond / 3330 W/mP A =  

DOUBLE-CHECK:  The temperatures decrease with each interface, as expected. 
 

Multi-Version Exercises 

18.77. Power = heat /time; solve this for the time: 

granite granite granite granite granite

/ /P Q t t Q P
Q c m T c V Tρ
= ⇒ =
= ∆ = ∆

 

granite granite granite

9 3 3

6

9

/

(790 J/kg/°C)(0.669 10  m )(2750 kg/m )(64.8°C)
13.9 10  W

6.78 10  s 215 years

t c V T Pρ= ∆

⋅
=

⋅
= ⋅ =
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18.78. By reasoning similar to that in the preceding problem, 

( )
( )

granite granite granite granite granite granite f i

granite granite granite i f

i f
granite granite granite

6 9

9 3

/

(15.7 10  W)(5.194 10  s)104.5°C
(790 J/kg/°C)(0.581 10  m )(2750 k

P Q t Q Pt

Q c V T c V T T

Pt c V T T
PtT T

c V

ρ ρ

ρ

ρ

= ⇒ =

= ∆ = −

= −

= +

⋅ ⋅
= +

⋅ 3g/m )
169.1°C=

 

18.79. /P Q t=  

 

( )
( )

granite granite granite granite granite granite f i

granite granite granite i f

9 3 3

9

(790 J/kg/ C)(0.493 10  m )(2750 kg/m )(64.4 )
3.942 10  s

17.5 MW

Q c V T c V T T

c V T T
P

t

ρ ρ

ρ

= ∆ = −

−
=

° ⋅ °
=

⋅
=

 

18.80. h c

SI

T T
P A

R
−

=  

( ) ( )( ) ( )( )( )
SI

h c h c

/ 5.678

5.678 5.678 5.183 m 3.269 m 23.37 C 1.073 C
74 W.

/ 5.678 29

A LW
R R

LW T T LW T T
P

R R

=
=

− − ° − °
= = = =

 

18.81. h c

SI

T T
P A

R
−

=  

( ) ( )( )

( )( ) ( )( )( )

SI

h c h c

h c

/ 5.678

5.678
/ 5.678

5.678 5.678 5.869 m 3.289 m 24.21 C 3.857 C
32

69.71 W
The insulation has a rating of R-32.

A LW
R R

LW T T LW T T
P

R R
LW T T

R
P

=
=

− −
= =

− ° − °
= = =

 

18.82. h c

SI

T T
P A

R
−

=  

( ) ( )( )

( )

( ) ( )
( )( )
( )( )

SI

h c h c

h c

h c c

/ 5.678

5.678
/ 5.678

5.678

63.10 W 34
2.641 C 20 C.

5.678 5.678 5.678 6.555 m 3.311 m

A LW
R R

LW T T LW T T
P

R R
PRT T

LW

PR PRT T T
LW LW

=
=

− −
= =

− =

= + = + = + ° = °

 

Note that the R factor is known only to two significant figures, and with typical wall insulation greater 
precision would be unrealistic. 
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Chapter 19: Ideal Gases  
 
Concept Checks 

19.1. b  19.2. c  19.3. c  19.4. b  19.5. a  19.6. c  19.7. c  19.8. a  19.9. a 
 
Multiple-Choice Questions 

19.1. a 19.2. a 19.3. c 19.4. c 19.5. a 19.6. c 19.7. b 19.8. d 19.9. d 19.10. b 19.11. e 19.12. c 19.13. b 19.14. e 
 
Conceptual Questions 

19.15 As the hot air rises, its volume expands due to a decrease in pressure. If we assume that there is no heat 
exchanged between the hot air and the environment (an adiabatic process) then the temperature of the hot 
air decreases since the air molecules do work to expand its volume. From the First Law of 
Thermodynamics, it is known that for an adiabatic process, int .E W∆ = −  Since the work done is positive, 
the change in the internal energy, and consequently its temperature, is negative. This is known as adiabatic 
cooling. 

19.16 If the gas molecules do not exchange energy with the walls of their container or with each other, then they 
will never reach equilibrium, unless they are already in equilibrium. In the kinetic theory derivations in the 
text, it is assumed that the gas is already in equilibrium; that is, the speeds of the gas molecules are already 
distributed according to the Maxwell speed distribution. Yes, it is true that if all gas molecules had the 
same speed initially, then due to collisions and interactions between the molecules, the speed would be 
redistributed according to the Maxwell speed distribution to put the gas in equilibrium. 

19.17 The surface of our skin loses heat mostly by evaporative cooling and convection. The rate of heat loss of 
the surface depends on the speed of the air passing over the surface. This means that as you blow hard on 
your skin, the evaporation from your skin increases and therefore the rate of heat loss also increases. This 
is why you feel a cool sensation. When you breathe softly, you feel a warm sensation because the rate of 
heat loss is reduced and because your breath is also warmer than your skin. 

19.18 The velocity of an air molecule has a magnitude and a direction. The auditorium is closed, so there is no 
net flow of molecules into or out of the room. For a molecule moving with a certain speed in a certain 
direction in the auditorium, there is another molecule moving with the same speed in the opposite 
direction.  In this way, the average velocity is zero.  However, since the root-mean-square speed is a scalar, 
the direction of the molecules is not considered.  Therefore, the average speed is greater than zero since all 
of the molecules are in motion.  

19.19 This is an adiabatic process ( 0),Q =  so int ,E W∆ = −  where W represents the work done by the system.  
Since the fuel-air mixture is compressed, there is work done on the system, so the work done by the system 
is negative: ( )int .E W W W∆ = − = − − =  Thus, the internal energy, or temperature, of the mixture increases 
causing the fuel to ignite. The speed of this compression is irrelevant since no heat flows into or out of the 
system. 

19.20 By the First Law of Thermodynamics, the change in internal energy is ,E Q W∆ = −  where Q is the heat 
flow into the gas and W  is the work done by the gas.  Under condition 1, the piston is blocked to prevent 
it from moving. Therefore, no work is done by the gas and the change in internal energy is due only to the 
heat added, .E Q∆ =  As a result the temperature of the gas increases.  Under condition 2, some of the heat 
energy transferred to the gas is used to move the piston (e.g. work is done by the gas on the piston).  
Therefore, the change in internal energy is .E Q W∆ = −  Since the change in temperature is proportional 
to the change in internal energy, the final temperature of the gas under condition 1 is larger.  The only way 
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for the final temperature to be the same is if the space behind the piston head is under vacuum.  Then the 
gas under condition 2 undergoes a free expansion and no work is done by the gas to move the piston. 

19.21 The adiabatic bulk modulus is defined as ( )/ .B V dp dV= −   For an adiabatic process, constant.pV γ =  
Taking the full derivative of both sides of this equation gives: 

1
1 0 .

dp p V p
V dp p V dV

dV VV

γ
γ γ

γ

γ γ
γ

−
−+ = ⇒ = − = −  

Therefore, the adiabatic bulk modulus for an ideal gas is given by:  

,
dp p

B V V p
dV V

γ
γ 

= − = − − = 
 

 

as required. 

19.22 (a) The monatomic ideal gas undergoes three processes:  (1) 1 1 1( ,  ,  )p V T  to 2 2 1( ,  ,  ),p V T  (2) 2 2 1( ,  ,  )p V T  
to 1 2 2( ,  ,  )p V T  and (3) 1 2 2( ,  ,  )p V T  to 1 1 1( ,  ,  ).p V T  The First Law of Thermodynamics states that the 
change in internal energy is ,E Q W∆ = −  where Q  is the heat flow into the gas and W  is the work done 
by the gas. In process (1), the pressure and volume change but the temperature stays the same.  Since this 

step is isothermal, 1 0,E∆ =  so 2

1
1 1 .

V

V
Q W pdV= = ∫   Using the Ideal Gas Law, the integral can be written as  

2

1

1 2
1 1

1

ln .
V

V

nRT V
W dV nRT

V V
 

= =  
 

∫  

However, the answer can be simplified further by noting that  1 1 1 2 2 .nRT p V p V= =  Therefore, the heat flow 
into the gas during process (1) is  

2
1 1 1 1

1

ln .
V

Q W p V
V

 
= =  

 
 

In process (2), the volume is constant so no work is done and the heat flow is 

( )2 2 2 1
3 3 .
2 2

Q E nR T nR T T= ∆ = ∆ = −   

Since 2 2
1

p V
T

nR
=  and 1 2

2 ,
p V

T
nR

=  the heat flow into the gas during process (2) is 

( )1 2 2 2
2 2 1 2

3 3 .
2 2

p V p V
Q nR V p p

nR nR
 

= − = − 
 

 

In process (3) the pressure remains constant so, 

( ) ( ) ( )1

2
3 3 3 3 3 3 1 2 1 1 2 1 1 2

3 3  .
2 2

V

V
E Q W Q E W nR T T p dV nR T T p V V∆ = − ⇒ = ∆ + = − + = − + −∫  

Substituting 1 1 1nRT p V=  and 2 1 2nRT p V=  gives: 

( ) ( ) ( )3 1 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2
3 3 3 5 .
2 2 2 2

Q p V p V p V V p V p V p V p V p V p V= − + − = − + − = −  

(b)  The total heat flow into the gas is 

2 2
total 1 2 3 1 1 1 2 2 2 1 1 1 2 total 1 1 1 2

1 1

3 3 5 5ln   1 ln ,
2 2 2 2

V V
Q Q Q Q p V p V p V p V p V Q p V p V

V V

    
= + + = + − + − ⇒ = + −         

 

using 2 2 1 1.p V p V=   

19.23 Consider two atomic gasses reacting to form a diatomic gas that proceeds as A B AB+ → , where A  is one 
of the atomic gases and B  is the other. There is 1 mole of each gas and the reaction happens in a thermally 
isolated chamber. Conservation of energy can be applied to solve this problem. Initially the chamber is at 
temperature i ,T  so the sum of the initial energies iE of the two monatomic gases is 
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i A B i i i
3 3 3
2 2

E E E RT RT RT= + = + =   (with 1n =  for each gas). 

The energy fE  of the diatomic gas at temperature fT  is f f(5/2) ,E RT=  using 1n = and = (5/2)VC R  for a 
diatomic gas. By conservation of energy,  

i f i f f i
5 63 .
2 5

E E RT RT T T= ⇒ = ⇒ =  

Therefore, the temperature of the system increases since f i .T T>  

19.24 The Ideal Gas Law is = ,pV nRT  where p  is the pressure, V  is the volume, n is the number of moles, R  
is the gas constant and T  is the temperature. Rearranging to solve for p  gives = / .p nRT V  The number 
of moles, ,n  is equal to the mass of the gas, ,m  divided by the molar mass, :M  = / .n m M   The mass of 
the gas can be written as ρ= ,m V  where ρ  is the density, so ρ= / .n V M  Therefore, the equation of state 
form of the Ideal Gas Law is ρ= / .p RT M  

19.25 The compression and rarefaction of a sound wave in gas can be treated as an adiabatic process. 

(a) The speed of sound Sv  in an ideal gas of molar mass M is S / ,v B ρ=  where B  is the bulk modulus 

and ρ is the density. For an ideal gas, the adiabatic bulk modulus is defined as ( )/ .B V dp dV= −  In an 

adiabatic process, constant.pV γ =  Taking the full derivative of this equation on both sides gives:
 
 

( ) ( ) 10   0 .
dp pd dpV dp pV dV V dp p V dV

dp dV dV V
γ γ γ γ γ

γ −+ = ⇒ + = ⇒ = −
 

Substituting this into the equation for the bulk modulus gives ( )/ .B V p V pγ γ= − − =   For an ideal gas 
with density ρ  where the number of moles can be expressed as / ,n V Mρ=   

.
pMVRTpV nRT

M RT
ρ ρ= = ⇒ =  

Therefore, the speed of sound is 

S .
pRT RTv
pM M

γ γ
= =  

(b) The speed of sound cannot exceed the speed of light: Sv c≤ . Since the speed of sound is directly 
proportional to the temperature, the maximum temperature occurs at the maximum sound speed, c.  
Therefore,  

2
max

S,max max .
RT Mcv c T
M R

γ
γ

= = ⇒ =  

(c) For a monatomic gas, the ratio of the molar specific heats is 5 / 3.γ =  Therefore, the maximum 
temperature is 

( )( )
( )( )

23 8
12

max

1.008 10 kg/mol 2.998 10  m/s
6.538 10  K.

5 8.314 J/ mol K
3

T
−⋅ ⋅

= = ⋅  

(d) At this maximum temperature, the equations used would not properly describe the situation. As a 
particle approaches the speed of light, Newtonian mechanics no longer applies and this situation requires 
quantum mechanics for an accurate description. 

19.26 For a monatomic gas, the internal energy is ( )m B m3 / 2 ,E k T=  where Bk  is Boltzmann’s constant. The 
factor of three corresponds to the translational degrees of freedom the monatomic gas has. Monatomic 
species do not undergo rotational motion. A diatomic gas has three translational degrees of freedom and 
two rotational degrees of freedom. The internal energy for a diatomic gas is 

( )( ) ( )d B d B d3 2 / 2 5 / 2 .E k T k T= + =  If the same energy is added to the monatomic gas and the diatomic gas 
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then: ( ) ( ) ( )B m B d d m3 / 2 5 / 2   3 / 5 .k T k T T T= ⇒ =  Therefore, the temperature increase for the diatomic gas 
is less than the temperature increase for the monatomic gas.  This is logical since temperature is a measure 
of the translational motion of atoms or molecules and some of the energy added to a diatomic gas is used 
for rotational motion.   

19.27 Since the temperature in the thermosphere is high at o1500 C,  the speed of the molecules is high.  
However, at such an extremely high altitude the atmospheric pressure is very low, and so there would not 
be very many gas molecules in this region. Because there are a low number of gas molecules, the frequency 
of molecule collisions with the skin would be small.  Therefore, the transfer of energy to one’s skin would 
be very small and the skin would feel very cold. 

19.28 The speed distribution of the water molecules is similar to the Maxwell speed distribution for a gas.  Most 
of the molecules are unable to escape through the surface of the water because they have insufficient speed.  
However, some very fast molecules in the high speed tail of the distribution are able to do so.  This is the 
process that allows evaporation.  As fast molecules escape, the speed distribution is maintained by heat 
from the surroundings and collisions that lead to other fast molecules. 

 
Exercises 

19.29 A tire has an initial gauge pressure of ig 300. kPap = , an initial temperature of = ° =i 15.0 C 288 K,T  and a 

final temperature of = ° =f 45.0 C 318 K.T   The volume change of the tire is negligible, so i f .V V V= =   

The number of moles of gas in the tire is constant as well: i f .n n n= =   The final gauge pressure fgp  can be 

found by using Gay-Lussac’s Law, i i f f/ / ,p T p T=  with i ig atmp p p= +  and f fg atm .p p p= +   Rearranging to 

solve for fgp  gives  

( ) ( ) ( )
( )

f
fg ig atm atm

i

318 K
300. kPa 101.3 kPa 101.3 kPa 342 kPa.

288 K
T

p p p p
T

= + − = + − =  

19.30 The given quantities are the helium tank gauge pressure, =T 2400. psip  and the volume the gas would 

occupy at atmospheric pressure 3
atm 244 ft .V =  Atmospheric pressure is atm 101.3 kPa 14.7 psi.p = =  For a 

constant temperature, Boyle’s law can be used to calculate the tank volume, T .V  Boyle’s Law gives: 

( )T atm T atm atm .p p V p V+ =  Solving for T :V  

( )
( ) ( ) ( )= = =

+ +
3 3atm

T atm
T atm

14.7 psi
244 ft 1.49 ft .

2400. psi 14.7 psi
p

V V
p p

 

19.31 THINK:  Initially, the gas inside the tires is at a pressure of =i 33.0 psip  and a temperature of 
= °i 25.0 F.T  The final temperature is = °f 72.0 F.T  The valve caps are airtight so it can be assumed that 

no air leaked out of the tires during the trip.  Since it can be assumed that the volume of the tires stays 
constant, the final tire pressure can be calculated by using Gay-Lussac’s Law.  Since the mass of the gas is 
directly proportional to the number of moles, the Ideal Gas Law can be used to find the percentage of the 
original mass that is released.   
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SKETCH:  

 
 

RESEARCH:  
(a)  Gay-Lussac’s law applies, so i i f f/ / .p T p T=  The number of moles of gas, n, in the tire will not change 
during the trip assuming the tires are airtight.  Note that the tire pressure is a gauge pressure rather than 
an absolute pressure.  The absolute pressure is given by g atm ,p p p= +  where gp  is the gauge pressure and 

atmp  is atmospheric pressure.  
(b)  The number of moles of gas in the tire is given by / ,n m M=  where M is the molar mass and m is the 
total mass of the gas. The initial number of moles, i ,n  and number of moles after releasing air from the 
tire, f ,n  can be found by using the Ideal Gas Law: / .n pV RT=  In general, the percentage of a final value, 

fX  with respect to an initial value, iX  can be evaluated using the formula: 

f i

i

100%.
X X

X
 −
 
 

 

The SI unit for pressure is the Pascal (Pa). The conversion from psi to (kilo) Pa is 6.89473 kPa/psi.  
SIMPLIFY:  

(a) ( ) f
fg ig atm atm

i

T
p p p p

T
= + −  

(b) Since the volume is constant:  
( )i i

i

/m M RT
V

p
=  and 

( )f f

i

/
.

m M RT
V

p
=  

Note that ip  is used in the second equation because it is the pressure of the tire in Florida after it is 
deflated back to the original pressure.  Equating these two expressions gives:  

i i f f i
i i f f f i

i i f

    .
m RT m RT T

m T m T m m
Mp Mp T

= ⇒ = ⇒ =  

The percentage of the original mass of gas that is released is: 

( ) ( ) ( )
i

i
ff i i f

i i f

1
100% 100% 100% .

T
m

Tm m T T
m m T

 
− 

 − − = =  
 

 

CALCULATE:  

( ) ( )= ° − ° + ° = = ° − ° + ° =i f
5 525.0 F 32.0 F 273.15 C 269.26 K  and  72.0 F 32.0 F 273.15 C 295.37 K
9 9

T T  

(a)  ( )( ) ( )( ) ( ) 
= + − = 

 
fg

295.37 K33.0 psi 6.89473 kPa/psi 101.3 kPa 101.3 kPa 259.41 kPa
269.26 K

p  

(b)  
( ) ( )

( ) ( )
269.26 K 295.37 K

100% 8.84%
295.37 K

 −
= −  

 
 

The negative sign denotes that the final mass of air is less than the initial mass of air. 
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ROUND:  The answers should be given to three significant figures.  
(a) =fg 259 kPap  

(b) 8.84% of the original mass was released. 
DOUBLE-CHECK:  (a) It is known from the Ideal Gas Law that pressure is proportional to temperature.  
Since the temperature of the air inside the tires increases in the trip from Michigan to Florida, it is 
reasonable for the pressure to increase. (b) It is known from the Ideal Gas Law that pressure is 
proportional to the amount of gas enclosed.  Since the pressure must decrease, air must be released, as 
indicated by the negative sign.    

19.32 THINK: A gas with volume =1 1.00 LV  undergoes an isochoric (or constant volume) process until its 
pressure doubles: 2 12 .p p=  This process is followed by an isothermal (or constant temperature) process 
until the original pressure 1p  has been reached. Boyle’s Law can be used for the constant temperature 
process to find the final volume.   
SKETCH:  

 
RESEARCH:  In the second process, the temperature is constant so Boyle’s Law is used: 2 1 1 2 .p V p V=  
SIMPLIFY:   The final volume is 

( )12
2 1 1 1

1 1

2
2 .

pp
V V V V

p p
= = =  

CALCULATE: ( )= =2 2 1.00 L 2.00 LV  

ROUND:  To three significant figures, the final volume is =2 2.00 L.V  
DOUBLE-CHECK:  For an isothermal expansion it is reasonable for the volume to double as the pressure 
is halved. 

19.33  THINK: The pot is filled with steam at a pressure of =i 1.00 atmp and a temperature of 

i 100.0 C 373.2 K.T = ° =  The mass of the pot’s lid is 0.500 kg.m =  The pot’s diameter is 0.150 md =  and 
its height is 0.100 m.h =  In order for the lid to off of the pot, the force upward from the pressure created 
by the steam must be greater than the force downward from the weight of the lid.  Gay-Lussac’s Law can 
be used to relate the initial and final states of the steam under constant volume.  
SKETCH:  

 
 

RESEARCH: Pressure is defined as force per unit area: / .p F A=  The minimum force required to lift the 
lid off of the pot can be found when the sum of the forces in the y-direction equals zero:  

,j
1

0.
n

y
j

F
=

=∑  
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Up until the moment when the lid lifts, the volume that the steam occupies is constant.  Thus, pressure 
and temperature can be related using Gay-Lussac’s Law: i i f f/ /p T p T= . The area of the lid is 

( )2
/ 2 .A dπ=  

SIMPLIFY:  , f atm f atm
1

0   
n

y j
j

mg
F p A p A mg p p

A=

= − − = ⇒ = +∑  

atmi f f
f i i

i f i i

/
   

p mg Ap p p
T T T

T T p p
+

= ⇒ = =  

CALCULATE: 

( ) ( )( ) ( )( )( )
( ) ( )

23 2

f 3

101.3 10  Pa 0.500 kg 9.81 m/s / 0.150 m / 2
373.2 K 374.22 K 101.02 C

101.3 10  Pa
T

π⋅ +
= = = °

⋅
 

ROUND:  Rounding to three significant figures, f 374 K 101 C.T = = °   
DOUBLE-CHECK: It is reasonable that heating the steam slightly above the boiling temperature of water 
would cause the lid to be lifted off of the pot.  You have probably noticed before that a lid on top of a pot 
rattles as water boils inside.   

19.34 THINK: The water tends to evaporate at a rate eR  and the vapor tends to condense back to its liquid form 
at a rate c .R  The vapor pressure of a liquid varies with temperature and occurs when e c .R R=  The vapor 
pressure of water at temperature 25.0 CT = °  is =V 3.1690 kPa.p  The Ideal Gas Law can be used to find 
the number of moles. Then the mass can be found by using the molar mass of water.   
SKETCH:   

 
 

RESEARCH:  The Ideal Gas Law is ,pV nRT=  where p  is the pressure, V  is the volume, n  is the 
number of moles of gas, R  is the gas constant and T  is the temperature. For this problem, it is convenient 
to write the Ideal Gas Law in terms of density. The number of moles is / ,n m M=  where the molar mass 
of water is 18.0153 g/mol.M =  
SIMPLIFY:   

V
V

p MVnRT mRTp m
V MV RT

= = ⇒ =  

CALCULATE:  25.0 C 298.15 KT = ° =  

( )( )( )( )
( )( )( )

3 3 3 3
2

3.1690 10  Pa 18.0153 10  kg/mol 1 L 1 10 m /L
2.3030 10  g

8.3145 J/ mol K 298.15 K
m

− −

−
⋅ ⋅ ⋅

= = ⋅  

ROUND:  To three significant figures, the mass of the vapor is 0.0230 g.m =  
DOUBLE-CHECK:  Water vapor is not very dense.  Therefore, a small amount of mass in a one liter 
volume is a reasonable result.  
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19.35 THINK:  Given the equation consant,Tρ =  results of Chapter 16 can be used to estimate the speed of 
sound S,2v  in air at 40.0 C,°  knowing that the speed at 0.00 C°  is S,1 331 m/s.v =   
SKETCH:  A sketch is not needed to solve the problem. 

RESEARCH: From Chapter 16, the equation for the speed of sound in a gas is ρ=S / ,v B  where B  is 

the bulk modulus and ρ  is the density of the air. Let 1ρ  be the density at temperature 1 0.00 CT = °  and 

2ρ  be the density at 2 40.0 C.T = °  

SIMPLIFY: 
 

2 2
S,1 S,1 1 S,2 S,2 2

1 2

,    .B Bv B v v B vρ ρ
ρ ρ

= ⇒ = = ⇒ =
 
Therefore, the speeds are related by,  

2 2 1
S,2 2 S,1 1 S,2 S,1

2

  .v v v v
ρ

ρ ρ
ρ

= ⇒ =  

Since constant,Tρ =   

1 1 2 2T Tρ ρ=  or 1 2

2 1

.
T
T

ρ
ρ

=  

Substituting this into the above expression gives  

2
S,2 S,1

1

.
T

v v
T

=
 

CALCULATE:  
( )
( ) ( )S,2

40.0 C 273.15 C
331 m/s 354.41 m/s

0.00 C 273.15 C
v

° + °
= =

° + °
 

ROUND:  Rounding to three significant figures, the speed of sound in air at 40.0 C°  is 354 m/s.   
DOUBLE-CHECK:  Molecules move faster in air that is at a higher temperature since the molecules have 
a higher kinetic energy.  Since sound is carried through the air by the motion of air molecules, it is 
reasonable that the speed is greater for a higher temperature.  

19.36 There are = 2.00n  moles of an ideal gas enclosed in a container of volume −= ⋅ 4 31.00 10  m .V  The 
container is heated to a temperature of = 400. K.T  It can be assumed that the volume of the container 
remains constant.  The Ideal Gas Law can be used to find the pressure of the gas after the increase in 
temperature. 

( ) ( )( )( )
( )−

= ⇒ = = = ⋅
⋅

4
4 3

2.00 mol 8.314 J/ mol K 400. K
6.65 10  kPa

1.00 10  m
nRTpV nRT p

V
 

19.37 The given quantities are the number of moles, =1.00 mol,n  the volume, −= = ⋅ 3 32.00 L 2.00 10  mV  and 
the temperature change, ∆ = ° =100. C 100. K.T  The Ideal Gas Law can be used to find the change in 
pressure.  Since the volume is constant, a change in temperature must cause a change in pressure.   

( ) ( )( )( )
( )−

∆
∆ = ∆ ⇒ ∆ = = =

⋅ 3 3

1.00 mol 8.314 J/ mol K 100. K
416 kPa

2.00 10  m
nR TpV nR T p

V
 

19.38 Work, = 2.00 kJ,W  is performed by an ideal gas in an isothermal process. There is no change in internal 
energy when a gas undergoes an isothermal process; that is, int 0.E∆ =  The First Law of Thermodynamics 
states int ,E Q W∆ = −  so for an isothermal process, ,Q W=  where Q is the heat added to the gas.  
Therefore, if the work performed by the ideal gas is = 2.00 kJW  then the heat added is = 2.00 kJ.Q  
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19.39 THINK: A quantity of liquid nitrogen of density 3808 kg/mρ =  and volume 3 3
L 1.00 L 1.00 10  mV −= = ⋅  

evaporates and comes into equilibrium with air at a temperature 21.0 C 294.2 KT = ° =  and pressure 
101 kPap = . The volume V  that the evaporated nitrogen occupies can be calculated with the Ideal Gas 

Law. 
SKETCH: 

 
 

RESEARCH: The number of moles of 2N  is L( ) / ,n V Mρ=  where 328.0 10  kg/molM −= ⋅ is the molar 
mass of 2N .  To find the volume that the evaporated nitrogen occupies, use the Ideal Gas Law: .pV nRT=  

SIMPLIFY:  L
nRT RTV V

p pM
ρ

= =  

CALCULATE: 
( ) ( )( )( )

( )( ) ( )
3

3 3

808 kg/m 8.314 J/ mol K 294.2 K
1.00 L 698.85 L

28.0 10  kg/mol 101 10  Pa
V

−
= =

⋅ ⋅
 

ROUND:   To three significant figures, the volume occupied is 699 L.V =  
DOUBLE-CHECK:  It is reasonable that the volume of the gas is much greater than the volume of the 
liquid since the density of the gas is much less than the density of the liquid. 

19.40 THINK: A quantity of liquid bromine has evaporated in a laboratory. Assuming that the vapor behaves 
like an ideal gas with temperature 20.0 C 293.2 KT = ° =  and pressure 101.0 kPa,p =  the Ideal Gas Law 
can be used to find the density, ,ρ  of the vapor. 
SKETCH: 

 
 

RESEARCH: The number of moles of bromine is / ,n V Mρ=  where V is the volume of the gas and M is 

the molar mass.  Because bromine occurs as 2Br ,  the molar mass of the gas is 3159.81 10  kg/mol.M −= ⋅  
To find the density of the evaporated bromine, use the Ideal Gas Law: .pV nRT=  

SIMPLIFY: 
pMVRTpV nRT

M RT
ρ ρ= = ⇒ =  

CALCULATE: 
( )( )

( )( )( )

3 3
3

101.0 10  Pa 159.81 10  kg/mol
6.6214 kg/m

8.314 J/ mol K 293.2 K
ρ

−⋅ ⋅
= =  

ROUND:  Rounding to three significant figures, the density of the evaporated bromine is ρ = 36.62 kg/m .  
DOUBLE-CHECK:  It is reasonable that the density of the evaporated bromine is greater than the density 
of air ( )31.2 kg/m  because it has a higher molar mass than the constituent gases that make up air (mainly 

nitrogen and oxygen). 
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19.41 THINK:  Two containers with the volumes, temperatures and pressures shown in the sketch are 
connected by a tube and allowed to come to equilibrium at pressure f .p  At equilibrium, the final 
temperature of the system is =f 300. K.T  The tube that connects the two containers has a negligible 
volume so the final volume is f 1 2 .V V V= +  The total number of moles in the system remains constant so 

f 1 2 .n n n= +   The Ideal Gas Law can be used to find the final temperature.   
SKETCH:   

 
 

RESEARCH:  Ideal Gas Law: pV nRT=  
SIMPLIFY:  The number of moles in the system at equilibrium is: 

1 1 2 2 1 1 2 2
1 2 f 1 2

1 2 1 2

1, .
p V p V p V p V

n n n n n
RT RT R T T

 
= = ⇒ = + = + 

 
 

Therefore, the final pressure is: 

f f 1 1 2 2 f 1 1 2 2 f
f f

f 1 2 1 2 1 2 1 2

1   .
n RT p V p V RT p V p V T

p p
V R T T V V T T V V

     
= = + ⇒ = +     

+ +     
 

CALCULATE:  

( )( )
( )

( )( )
( )

( )
( )

− −

−

  ⋅ ⋅ ⋅ ⋅
  = + = ⋅
  ⋅  

5 3 3 5 3 3
5

f 3 3

3.00 10  Pa 2.00 10  m 2.00 10  Pa 1.00 10  m 300. K
2.00 10  Pa

600. K 200. K 3.00 10  m
p  

ROUND:   f 200. kPap =  

DOUBLE-CHECK:  Since initially 1 1 1 2 2 2/ / ,p V T p V T=  the two containers start out with the same number 
of gas molecules. Therefore, the average initial kinetic energy per molecule corresponds to an average 
temperature of (600 200) / 2 400 K.+ =  Because of higher initial pressure in container 1, gas at first flows 
from left to right. However, as the temperatures equalize the flow reverses, so that in the end container 1, 
being twice as large as container 2, holds twice as many molecules. Since the final temperature is less than 
400 K, heat has been dissipated into the surrounding environment during the process.  

19.42 THINK: The sample of gas confined in a cylinder is initially at pressure =1000. Pa,p  

volume −= = ⋅ 3 31.00 L 1.00 10  mV  and temperature = 300. K.T  The Ideal Gas Law can be used to find the 
new pressure when (a) the volume is reduced to ( )a 1/ 2 ,V V=  (b) the volume is reduced to ( )b 1/ 2V V=  

and the temperature is increased to =b 400. K,T  and it can be used to (c) find the new volume if the gas is 
at a temperature of =c 600. KT  and pressure of =c 3000. Pa.p  The number of moles remains constant for 
each process since gas does not enter or exit the cylinder. 
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SKETCH: 
 

 
 
RESEARCH:   Ideal Gas Law: pV nRT=  
SIMPLIFY:  

(a)  If the temperature remains the same, 
( )a a a 2 .
1/ 2a

pV pV
pV nRT p V p p

V V
= = ⇒ = = =  

(b)  If the temperature and volume change, 
( )

b b b b b
b

b b

2 .
1/ 2

p V pVT pVT TpV
nR p p

T T TV TT V
= = ⇒ = = =  

(c)  If the temperature and pressure change, c c c
c

c c

  .
p V pTpV

nR V V
T T p T

= = ⇒ =  

CALCULATE:  
(a) ( )= =a 2 1000. Pa 2000. Pap  

(b) ( ) 
= = 

 
b

400. K2 1000. Pa 2667 Pa
300. K

p  

(c)
( )( )
( )( ) ( )= =c

1000. Pa 600. K
1.00 L 0.6667 L

3000. Pa 300. K
V  

ROUND: The answers to three significant figures are:  
(a) 3

a 2.00 10  Pap = ⋅  
(b) b 2670 Pap =   
(c) =c 0.667 LV  
DOUBLE-CHECK: (a) The volume decreased so the pressure is expected to increase. (b) The volume 
decreased and the temperature increased so it is expected that b a .p p>  (c) Since the increase in pressure is 
greater than the increase in temperature (the pressure triples and the temperature doubles) and / ,V T p∝  
the volume is expected to decrease. 

19.43 THINK:  Assumes that the gas behind the cylinder head is initially at atmospheric pressure, and that it 
stays at atmospheric pressure as the other gas is heated. The cylinder has cross-sectional area of 

−= = ⋅2 3 212.0 cm 1.20 10  m .A  The piston is connected to a spring of spring constant =1000. N/m.k  The 
cylinder is filled with = 0.005000n  moles of gas that occupies a length 0L  of the cylinder. When the gas is 
at temperature = ° =i 23.0 C 296 K,T  the spring is at its equilibrium position. If the temperature of the gas 
is raised to = ° =f 150. C 423 K,T  the higher pressure fp  can be determined with the Ideal Gas Law.  There 
are three forces acting on the piston after the temperature increase: the force gF  due to the pressure gp  of 

the gas, the force atmF  due to atmospheric pressure atm ,p  and the spring force s .F  The spring force is given 
by Hooke’s Law.  Newton’s Second Law can be used to relate these forces. 
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SKETCH: 

 
 

RESEARCH:   When the spring is compressed, the sum of the forces in the y-direction are zero: 

i
i 1

0.
n

yF
=

=∑  

The force on the piston due to an applied pressure is .F pA=  The initial volume that the gas occupies is 

i 0V AL=  and the final volume the gas occupied is ( )f 0 .V A L d= +  The Ideal Gas Law is .pV nRT=  The 

force of the spring obeys Hooke’s law: s .F kd=  
SIMPLIFY:   Using Newton’s Second Law, the pressure of the gas is: 

,i g s atm g atm g atm
i 1

0 .
n

y
kdF F F F p A kd p A p p
A=

= − − = − − = ⇒ = +∑  

By the Ideal Gas Law, the pressure of the gas is  

f f
g

f 0( )
nRT nRT

p
V A L d

= =
+

. 

Substituting for gp  gives:  

( )
( )( )

( )

f
atm

0

atm 0 f
2

0 atm atm 0 f
2

0 atm atm 0 f

0

0

nRTkd p
A A L d

kd p A L d nRT

kd kdL p Ad p AL nRT

kd kL p A d p AL nRT

+ =
+

+ + =

+ + + − =

+ + + − =

 

To solve for 0 ,L  use the Ideal Gas Law for the initial conditions:  

( ) i
atm i atm 0 i 0

atm

.
nRT

p V p AL nRT L
p A

= = ⇒ =  

Substituting this into the quadratic equation above gives: 

( )

2 i i
atm atm f

atm atm

2 i
atm i f

atm

0

0.

knRT nRT
kd p A d p A nRT

p A p A

knRT
kd p A d nR T T

p A

 
+ + + − = 
 

 
+ + + − = 
 

 

Let ( )i
atm i f

atm

,  and .
knRT

a k b p A c nR T T
p A

 
= = + = − 

 
 Then the quadratic formula can be used to solve for 

the amount of compression: 
2 4 .

2
b b acd

a
− ± −

=   
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CALCULATE: =1000. N/ma  

( )( ) ( )( )( )
( )( ) ( )( )−

−
= + ⋅ ⋅ =

⋅ ⋅
3 3 2

3 3 2

1000. N/m 0.005000 mol 8.314 J/ mol K 296 K
101.3 10  Pa 1.20 10  m 222.78 N

101.3 10  Pa 1.20 10  m
b  

( ) ( )( ) ( ) ( )( )= − = −0.005000 mol 8.314 J/ mol K 296 K 423 K 5.2794 N mc

 

( ) ( ) ( )( )
( )

− ± − − ⋅
= = −

2
222.78 N 222.78 N 4 1000. N/m 5.2794 N m

0.02160 m or 0.2444 m
2 1000. N/m

d  

The correct answer is 0.02160 m,d =  as the negative sign on the other value obtained from the quadratic 
formula indicates that the spring would have been stretched which is not consistent with the physical 
situation. 

 ROUND:   To three significant figure, the spring is compressed by = 2.16 cm.d  
DOUBLE-CHECK:  Since the spring is rather stiff with a spring constant of 1000 N/m a small amount of 
compression might have been expected for the given temperature increase. 

19.44 THINK: The cylinder of air with radius = 0.200 mr  and length = 0.200 ml is at a pressure of 
= = ⋅ 3

i 1.00 atm 101.3 10  Pa.p  A block of mass = 20.0 kgm  is dropped onto the piston. The principle of 
conservation of energy and the Ideal Gas Law can be used to calculate the height, ,h  from which the block 
must be dropped to compress the piston by −= = ⋅ 3

1 1.00 mm 1.00 10  m,y  −= = ⋅ 3
2 2.00 mm 2.00 10  my  

and  −= = ⋅ 2
3 1.00 cm 1.00 10  m.y  

SKETCH: 

 
 

RESEARCH:  The initial energy is the gravitational potential energy of the block, ( )i .E mg h l= +  The 
reference point for the gravitational potential energy is the table top, at 0.y =  The final energy of the 

system is ( )f int ,E mg l y E= − + ∆  where intE∆  is the increase in internal energy of the air. Assuming that 

the compression is rapid so that there is no heat flow out of the cylinder, intE∆  is due to the work the block 
does in compressing the air and is given by:  

i
int i

f

ln ,
V

E W nRT
V
 

∆ = − =  
 

 

where the negative sign is used because work is done on the air.  The Ideal Gas Law can be used to relate 
the initial temperature, i ,T  to the initial pressure, i ,p  and volume, 2

i .V r lπ=  The final volume of the 

cylinder is ( )2
f .V r l yπ= −  

SIMPLIFY:   Conservation of energy gives: 

( ) ( ) i i i
i f i

f f

  ln   ln .
V nRT V

E E mg h l mg l y nRT h y
V mg V
   

= ⇒ + = − + ⇒ = −   
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The Ideal Gas Law gives i i i .nRT p V=  Substituting this and the equations for the initial and final volumes 
into the equation for h gives: 

2 22
i i

2ln ln .
( )

p r l p r lr l lh y y
mg mg l yr l y

   
= − = −   −−   

π ππ
π

 

CALCULATE:  For −= ⋅ 3
1 1.00 10  m,y   

( ) ( ) ( )
( )( )

( )
( ) ( ) ( )

π
−

−

 ⋅
 = − ⋅ =
 − ⋅ 

23
3

1 2 3

101.3 10  Pa 0.200 m 0.200 m 0.200 m
ln 1.00 10  m 0.0640 m

20.0 kg 9.81 m/s 0.200 m 1.00 10  m
h  

Similarly, for −= ⋅ =3
2 22.00 10  m, 0.1284 my h  and for −= ⋅ =2

3 31.00 10  m, 0.6556 m.y h  
ROUND:   To three significant figures the answers are: = = =1 2 36.40 cm, 12.8 cm and 65.6 cm.h h h  
DOUBLE-CHECK:  It is expected that the block must be dropped from a greater height 3 2 1( )h h h> >  in 
order for the piston to be compressed by a larger amount 3 2 1( ).y y y> >   

19.45 The number density of atomic hydrogen (H) is 

 
= = ⋅ 

 

3
6 3

3

1.00 atom 100 cm 1 10  atoms / m .
1 mcm

N
V

 

The temperature is 2.73 K.T =  
(a) The pressure can be found with the Ideal Gas Law:  B .pV Nk T=  

( )( )( )− − −= = ⋅ ⋅ = ⋅6 3 23 17
B 1.00 10  m 1.381 10  J/K 2.73 K 3.77 10  PaNp k T

V
 

This is a very high vacuum! 

(b) The rms speed is rms B H3 /v k T m=  and H 1.008 u,m =  where 27u 1.661 10  kg.−= ⋅  

( )( )
( )( )

23

rms 27

3 1.381 10  J/K 2.73 K
260. m/s.

1.008 1.661 10  kg
v

−

−

⋅
= =

⋅
 

(c) The energy of a monatomic gas is ( )tot ave B .3 / 2E NK Nk T= =  Given that the number density is 
6 3/ 10  atoms/m ,N V =  the energy density is:  

( )( )( )− −= ⇒ = ⋅ ⋅ = ⋅6 -3 23 17 3tot tot
B

3 3  1.00 10 m 1.381 10  J/K 2.73 K 5.6552 10  J/m .
2 2

E EN k T
V V V

 

An energy of =1.00 JE  would require a cube edge length of: 

−

   
= = = =   ⋅  

1/3 1/3

17
tot

3

1.00 J 260,525.76 m 261 km.
/ 5.6552 10  J/m

EL
E V

 

19.46 The rms speed is given by B
rms

3
.

k T
v

m
=  

(a) The mass of 4 He is ( )( )274.003 u 4.003 1.661 10  kg .m −= = ⋅ At = 300. K,T   

( )( )
( )( )

−

−

⋅
= =

⋅
4

23

rms, He 27

3 1.381 10  J/K 300. K
1.37 km/s.

4.003 1.661 10  kg
v  

(b) The mass of 3 He is ( )( )273.016 u 3.016 1.661 10  kg .m −= = ⋅ At = 300. K,T   

( )( )
( )( )3

23

rms, He 27

3 1.381 10  J/K 300. K
1.58 km/s.

3.016 1.661 10  kg
v

−

−

⋅
= =

⋅
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It is reasonable that 3 He  has a greater rmsv than 4 He  at the same temperature because it has less mass. 

19.47 The mass of 235
6UF  is 235 349.03 amu.m =  The mass of 238

6UF  is 238 352.04 amu.m =  The ratio of rms 
speeds for these molecules is: 

B

235rms,235 238

rms,238 235B

238

1.004302

3
352.04 amu .
349.03 amu

69
3

4

k T
mv m

v mk T
m

= = = =

 
Therefore, the rms speed of 235

6UF  is 1.0043 times that of 238
6UF .  

19.48 The electrons are like an ideal gas, so their rms speed is B
rms

e

3k T
v

m
=  with 31

e 9.109 10  kgm −= ⋅  and 

300.0 K.T =   The rms speed is: 
( )( )

( )
23

5
rms 31

3 1.381 10  J/K 300.0 K
1.168 10  m/s.

9.109 10  kg
v

−

−

⋅
= = ⋅

⋅
 

19.49 THINK: In a period of 6.00 s,t∆ =  239.00 10N = ⋅  nitrogen molecules strike a wall with an area of 
4 22.00 10 m .A −= ⋅  The molecules move with a speed of 400.0 m/sv =  and strike the wall head-on in 

elastic collisions. Find the pressure p  exerted on the wall.  Using the principle of conservation of linear 
momentum for elastic collisions, the pressure on the wall can be calculated. 
SKETCH:   

 
RESEARCH:  The pressure is ave /p F A= , where ave tot /F p t= ∆ ∆



 is the average force that acts on the wall, 

totp∆


 is the absolute value of the change in the linear momentum of all of the molecules, and A  is the 
area over which the force is acting.  In the head-on elastic collisions that the nitrogen molecules undergo, 
the final velocity has reversed direction with respect to the initial velocity, so 

( ) ( )( )f i 2 .p m v m v v m v v mv∆ = ∆ = − = − − =


 

For the total change in linear momentum of N particles, tot .p N p∆ = ∆


 The mass of one 2N molecule is 
264.65 10  kg.m −= ⋅  

SIMPLIFY:  totave 2pF Nmvp
A A t A t

∆
= = =

∆ ∆



 

CALCULATE: 
( )( )( )

( )( )

23 26
4

4 2

2 9.00 10 4.65 10  kg 400.0 m/s
2.790 10  Pa

2.00 10  m 6.00 s
p

−

−

⋅ ⋅
= = ⋅

⋅
 

ROUND:  To three significant figures, the pressure on the wall is 27.9 kPa.p =  
DOUBLE-CHECK: This pressure is about one quarter of atmospheric pressure so it is reasonable 
considering the momentum of the 2N  molecules. 

19.50 THINK:  The equation for rms speed can be used to find the temperature HeT  at which the rms speed of a 
helium atom is equal to the rms speed of an air molecule at 273.15 K.T =  
SKETCH:   A sketch is not needed to solve the problem. 
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RESEARCH: The rms speed for an ideal gas is given by rms B3 / .v k T m=   The molar masses of helium 

and air are He air4.00 g/mol and 28.97 g/mol.M M= =  

SIMPLIFY: B He He HeB
rms,He rms,air He

He air air air

3 3
    

k T m Mk T
v v T T T

m m m M
= ⇒ = ⇒ = =   

CALCULATE: ( ) ( )
( )He

4.00 g/mol
273.15 K 37.715 K

28.97 g/mol
T = =  

ROUND:   To three significant figures the helium temperature needs to be He 37.7 K.T =  
DOUBLE-CHECK: The temperature at which rms,He rms,airv v=  (with rms,airv  at STP) is greater than the 
boiling point of He ( 4 K ), so this is possible.  It is expected that the temperature of helium will be much 
lower to have the same rms speed since helium is lighter than an air molecule (mainly oxygen and 
nitrogen). 

19.51 The cylinders are made of copper, which has a high thermal conductivity, so the temperature of the gases 
is equal to the temperature of the water, = ° =50.0 C 323 K.T   The fact that the volume of He is twice the 
volume of 2N  is irrelevant. 

(a)  Helium is monatomic.  The average kinetic energy aveK  of a monatomic gas is ave B3 / 2K k T= : 

( )( )− −= ⋅ = ⋅23 21
ave, He

3 1.381 10  J/K 323 K 6.69 10  J.
2

K  

Nitrogen is diatomic. The average kinetic energy aveK  of a diatomic gas is ave B5 / 2K k T= : 

( )( )− −= ⋅ = ⋅
2

23 20
ave, N

5 1.381 10  J/K 323 K 1.12 10  J.
2

K  

(b)  The molar specific heats at constant volume and constant pressure for helium (a monatomic gas) are:  

( )( ) ( )

( )( ) ( )

, He

, He , He

3 3 8.31 J/ mol K 12.5 J/ mol K
2 2

5 5 8.31 J/ mol K 20.8 J/ mol K
2 2

V

p V

C R

C C R R

= = =

= + = = =
 

The molar specific heats at constant volume and constant pressure for nitrogen (a diatomic gas) are: 

( )( ) ( )

( )( ) ( )
2

2 2

,N

,N ,N

5 5 8.31 J/ mol K 20.8 J/ mol K
2 2

7 7 8.31 J/ mol K 29.1 J/ mol K
2 2

V

p V

C R

C C R R

= = =

= + = = =
 

(c)  The adiabatic coefficient is / .P VC Cγ =  Therefore,  

2

2

2

, N, He
He N

, He , N

5 7 and .
3 5

pp

V V

CC

C C
γ γ= = = =  

19.52 Room temperature is 293 K.T =   One cylinder contains 
2N 10 moln =  of 2N  gas and the other contains 

Ar 10 moln =  of argon gas.  For an ideal monatomic gas, the internal energy is ( )int ,3 / 2E nRT=  while for  
an ideal diatomic gas, the internal energy is ( )int .5 / 2E nRT=  The ratio of energies is then 

2
2 2

NN N

Ar Ar
Ar

5
5 52 ,

3 3 3
2

n RTE n

E nn RT
= = =  since 

2N Ar .n n=  
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19.53 The temperature of 1.00 moln =  of a diatomic ideal gas is increased by 2.00 K.T∆ =  Assuming a 
constant volume, the change in internal energy is

 
int VE nC T∆ = ∆

 
where ( )5 / 2VC R=  for a diatomic gas:  

( ) ( )( )( )int
5 5 1.00 mol 8.314 J/ mol K 2.00 K 41.6 J.
2 2

E nR T∆ = ∆ = =  

19.54 Assume air is an ideal gas of diatomic molecules. The volume of the room does not change, the initial 
temperature is i 293 K,T =  the final temperature is f 295 K,T =  and the initial pressure is i 101 kPa.p =  
The number of moles of air in the room does not change.  The heat required to raise the temperature of 
the air in the room is ( )5 / 2VQ nC T nR T= ∆ = ∆  for a diatomic gas at constant volume. By the Ideal Gas 

Law, the number of moles is ( )i i/ .n p V RT=   The amount of heat required is 

( ) ( )( )( )( )( )
( )

⋅ −
= ∆ = − = =

5

i i
f i

i i

1.01 10  Pa 8.00 m 10.0 m 3.00 m 295 K 293 K5 5 5 414 kJ.
2 2 2 293 K

p V p V
Q R T T T

RT T  

19.55 THINK:  A volume =1.00 LV  of air is heated by ∆ =100. K.T  The process is isochoric (volume is 
constant). The amount of heat energy required can be calculated by determining the number of moles of 
each major constituent in the air and using the Ideal Gas Law. 

SKETCH:   A sketch is not needed to solve the problem. 
RESEARCH:  Air is composed approximately of 2 278.08% N ,  20.95% O  and 0.93% Ar.  The number of 
moles of each constituent can be found from the Ideal Gas Law.  The total energy required to raise the 
temperature of the air will be the sum of the energies required to raise the temperature of each constituent, 
where the energy is the heat that is required:

 
.VQ nC T= ∆   The molar specific heats at constant volume are:  

( )
2, N 20.7 J/ mol KVC = , ( )

2, O 21.0 J/ mol KVC = , and ( ), Ar 12.5 J/ mol K .VC =   Assume the air is initially at 

STP.  

SIMPLIFY: tot ,
pV

n
RT

=

 

2N tot0.7808 ,n n=

 

2O tot0.2095 ,n n=

 

Ar tot0.0093 ,n n=

 

2 2 2N N , N ,VQ n C T= ∆

 
2 2 2O O , O ,VQ n C T= ∆

 

Ar Ar , Ar ,VQ n C T= ∆

  

2 2tot N O Ar .Q Q Q Q= + +  

CALCULATE:  

( )( )
( )( )( )

−⋅ ⋅
= =

5 3 3

tot

1.013 10  Pa 1.00 10 m
0.04463 mol

8.314 J/ mol K 273 K
n

( ) ( )( )( )
2N 0.7808 0.04463 mol 20.7 J/ mol K 100 K 72.14 JQ = =

 

( ) ( )( )( )
2O 0.2095 0.04463 mol 21.0 J/ mol K 100 K 19.64 JQ = =

 

( ) ( )( )( )Ar 0.0093 0.04463 mol 12.5 J/ mol K 100 K 0.5188 JQ = =

 

tot 92.29 JQ =  
ROUND:   To three significant figures, the approximate energy required to heat the air is =tot 92.3 J.Q  
DOUBLE-CHECK: Since 

2 2N O Ar ,n n n> >  it is reasonable that 
2 2N O Ar .Q Q Q> >  The value for totQ  is 

reasonable for 1.00 L of air.
 

19.56 THINK:  The ratio of the molar specific heats of the gas that is to be made is 1.60.γ =  No pure gas has 
such a γ  value, but by mixing monatomic and diatomic gases one can obtain a gas with such a γ  value. 
The fraction of diatomic molecules in the mixture is just the number of diatomic moles divided by the 
total number of moles.    
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SKETCH:  

 
 

RESEARCH:  The change in internal energy of a monatomic gas is ( )int,m m3 / 2 ,E n R T∆ = ∆  where mn is 
the number of moles of the monatomic gas. The change in internal energy of a diatomic gas is 

( )∆ = ∆int,d d5 / 2 ,E n R T  where dn  is the number of moles of the diatomic gas. The total change in thermal 

energy of the mixture is ∆ = ∆ + ∆int int,m int,d .E E E  The total thermal energy is also given by 

( )int m d .VE n n C T∆ = + ∆   The problem requires that ( )/ / 1.60,p V V VC C C R Cγ = = + =  or / 0.60.VR C =  

SIMPLIFY:  ( )
( ) ( )
( )( )
( )( ) ( )( )

( )
( )

∆ = ∆ + ∆ = + ∆

+ ∆ = + ∆

+ = +

− = −

−
=

−

int int,m int,d m d

m d m d

m d m d

m d

m d

1 3 5
2

3 5 / 2 2

3 / 2 2 5 /

2 5 /
3 / 2

V

V

V

V V

V

V

E E E n n C T

n n R T n n C T

n n R C n n

R C n R C n

R C
n n

R C

 

Therefore, 
( )

( )
( )

( )

d d

d m
d d

1 .
2 5 / 2 5 /

1
3 / 2 3 / 2

V V

V V

n n
R C R Cn n

n n
R C R C

= =
− −+

+ +
− −

 

CALCULATE:  
( )

( )

d

d m

1 0.16667
2 5 0.60

1
3 0.60 2

n
n n

= =
+ −

+
−

 

ROUND:  To two significant figures, the fraction of diatomic molecules required for this mixture is 0.17. 
DOUBLE-CHECK:  Since the given γ  value is closer to that for monatomic gases, it is reasonable that a 
smaller fraction of diatomic molecules is required. 

19.57 An initial volume i 15.0 LV =  of an ideal monatomic gas at a pressure of = ⋅ 5
i 1.50 10  kPap  is expanded 

adiabatically until the volume is doubled, f i2 .V V=  The ratio of the molar specific heats for a monatomic 
gas is 5 / 3.γ =  

(a) For an adiabatic gas, pV γ  is constant. The pressure of the gas after the adiabatic expansion is: 

( ) ( )
γ

γ γ      
= ⇒ = = ⋅ = ⋅ = ⋅     

    

5/3 5/3
5 5i i

f f i i f i
f i

41  1.50 10  kPa 1.50 10  kPa 4.72 10 kPa.
2 2

V V
p V p V p p

V V
 

(b) Suppose the initial temperature of the gas was =i 300. K.T   For an adiabatic expansion, 1TV γ −  is 
constant.  The temperature of the gas after the adiabatic expansion is:  

( )
( )γ γ

γ γ

− − −
− −      
= ⇒ = = = =     

    

1 1 5/3 1
1 1 i i

f f i i f i i
f i

1  300. K 189 K.
2 2

V V
T V TV T T T

V V  

19.58 The compression ratio (ratio of volumes) of a specific diesel engine is 20.0 to 1.00. Air enters a cylinder at 
pressure =i 1.00 atmp  and temperature i 298 K,T =  and it is compressed adiabatically. The final pressure 
is =f 66.0 atm.p  Air is dominantly a diatomic molecule, so a good approximation of the ratio of molar 
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specific heats is 7 / 5.γ =  Assuming the air acts like an ideal gas, the final temperature of the compressed 
air is: 

( )( )( )
γ

γ γ

−
−− −  

= ⇒ = = = 
 

1
7/5 11 1 i

f f i i f i
f

  298 K 20.0 988 K.
V

T V TV T T
V

 

19.59 Air in an engine cylinder is quickly compressed from initial temperature i 293 K,T =  pressure 

=i 1.00 atmp  and volume of = 3
i 600. cmV  to a final volume of = 3

f 45.0 cm .V  Since the compression is 
rapid, it can be assumed that no heat flow takes place such that the process is adiabatic. For an adiabatic 
process  pV γ  and 1TV γ −  are constant. For an ideal diatomic gas, the ratio of molar specific heats is 

7 / 5.γ =  The final pressure and temperature are 

( )
γ

γ γ    
= ⇒ = = =   

  

7/53
i

f f i i f i 3
f

600. cm  1.00 atm 37.6 atm,
45.0 cm

V
p V p V p p

V
  

and 

( )
( )γ

γ γ

− −

− −    
= ⇒ = = =   

  

1 7/5 13
1 1 i

f f i i f i 3
f

600. cm  293 K 826 K.
45.0 cm

V
T V TV T T

V
 

19.60 THINK:  The initial volume of the monatomic ideal gas is =1 6.00 L,V  the initial temperature is 
=1 400. K,T   and the initial pressure is =1 3.00 atm.p  The gas undergoes an isothermal (constant 

temperature) expansion to 2 14 ,V V=  then an isobaric (constant pressure) compression to pressure 2p  and 
volume 2 ,V  then an adiabatic compression (no heat transfer) to its original state. Since the gas undergoes 
an isothermal expansion from state 1 to state 2, 2 1 ,T T=  and since the gas undergoes an isobaric 
compression from state 2 to state 3, 3 2 .p p=  The values 2 3 3, , ,p V T  and the number of moles n can be 
found by using the Ideal Gas Law and the equation for an adiabatic process.  
SKETCH:   
 

 

 
RESEARCH:  To find the values at state 2 following an isothermal process, the Ideal Gas Law can be used:  

1 1 1 2 2 2 .p V nRT nRT p V= = =  
To find the values at state 3 following an isobaric process, the Ideal Gas Law can be used:  

32

2 2 3 3

.
VV nR nR

T p p T
= = =  

Here, since both fV  and fT  are unknown, another equation is needed. It is provided by the adiabatic 

process where pV γ  is constant, so 3 3 1 1 .p V p Vγ γ=  For a monatomic ideal gas, 5 / 3.γ =  The number of 

moles n is found by using the Ideal Gas Law: ( )/ .n pV RT=   
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SIMPLIFY:  State 2:  1 1 1
1 1 2 2 2 1 1

2 1

  
4 4

V V p
p V p V p p p

V V
   

= ⇒ = = =   
   

  

State 3:  From above, 1 2/ 4.p p =  From the adiabatic process back to state 1, the volume is:  
1/ 1/

1/1 1
3 3 1 1 3 1 1 1

3 2

4
p p

p V p V V V V V
p p

γ γ

γ γ γ   
= ⇒ = = =   

    

The temperature is:  

( )
( )

γ
γγ −= = = =

1/
1/ 11/3 1 1

3 2 2 1 1
2 2 1

4
4 4 .

4
V V V

T T T T T
V V V

  

To find the number of moles, the values for state 1 can be used,  

1 1

1

.
p V

n
RT

=  

CALCULATE:  
( )

= =2

3.00 atm
0.750 atm

4
p

  

( )= =2 4 6.00 L 24.0 LV

  

( )= =3/5
3 4 6.00 L 13.78 LV

 

( ) ( )−= =3/5 1
3 4 400. K 229.7 KT

     

( )( )( )
( )( )( )

−⋅ ⋅
= =

5 3 33.00 atm 1.013 10  Pa/atm 6.00 10  m
0.5483 mol

8.314 J/ mol K 400. K
n  

ROUND: To three significant figures the answers are: =2 0.750 atm,p  =2 24.0 L,V  =2 400. K,T  

=3 0.750 atm,p  =3 13.8 L,V =3 230. K,T  and = 0.548 mol.n  

DOUBLE-CHECK:  In the isothermal expansion (state 1 to state 2), 2p  should be less than 1p  since 2V  is 
greater than 1.V  In the isobaric compression (state 2 to state 3), 3V  should be less than 2V  since the 
compression must lead to a smaller volume. In an adiabatic compression (state 3 to state 1), the 
temperature always increases, so it is expected that 1T  is greater than 3 .T  

19.61 THINK: In problem 19.60, the initial volume of the monatomic ideal gas was =1 6.00 L,V  the initial 
temperature was =1 400. KT  and the initial pressure was =1 3.00 atm.p  The gas underwent an isothermal 
(constant temperature) expansion to 2 14 ,V V=  then an isobaric (constant pressure) compression, and then 
an adiabatic compression (no heat transfer) back to its original state. The number of moles of gas was 

0.5483 moln =  and the pressure, volume and temperature of state 2 and state 3 were found to be: 

=2 0.750 atm,p  =2 24.0 L,V  =2 400. K,T  =3 0.750 atm,p  3 13.78 L,V = 3 229.7 KT =  (all accurate to three 
significant figures).   
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SKETCH:   

 
RESEARCH: For an isothermal process, the work done by the gas and the heat flow into the gas is 

( )f iln / .Q W nRT V V= =  For an isobaric process, the work done by the gas is W p V= ∆  and the heat flow 

into the gas is .pQ nC T= ∆  For an adiabatic process, the work done is ( )/ 1W nR T γ= ∆ −  and the heat 

flow into the gas is 0.Q =  For a monatomic ideal gas, ( )5 / 2pC R=  and the ratio of the molar specific 

heats is 5 / 3.γ =  To find the number of moles n, use the Ideal Gas Law: .pV nRT=   
SIMPLIFY:   For the isothermal process (state 1 to state 2),  

2
12 12 1

1

ln .
V

Q W nRT
V

 
= =  

 
 

For the isobaric process (state 2 to state 3), 

( )23 2 3 2W p V V= −  and 
 

( )23 3 2
5 .
2

Q nR T T= −  

For the adiabatic process (state 3 to state 1), 
( )1 3

31 1
nR T T

W
γ
−

=
−

 and

 

31 0.Q =  

CALCULATE:  For the isothermal process (state 1 to state 2),  

 ( ) ( )( )( ) ( )
( )

 
 = = =
 
 

12 12

24.0 L
0.5483 mol 8.314 J/ mol K 400. K ln 2.5278 kJ.

6.00 L
Q W  

For the isobaric process (state 2 to state 3), 

( )( )( )

( ) ( )( )( )

 
= ⋅ − = − 

 

= − = −

3
5

23

23

1 m0.750 atm 1.013 10  Pa/atm 13.78 L 24.0 L 0.7765 kJ, and
1000 L

5 0.5483 mol 8.314 J/ mol K 229.7 K 400. K 1.9408 kJ.
2

W

Q

 

For the adiabatic process (state 3 to state 1),  

( ) ( )( )( )
( )

−
= = −

−
=

31

31

0.5483 mol 8.314 J/ mol K 400. K 229.7 K
1.1645 kJ, and

1 5 / 3
0.

W

Q

 

ROUND: To three significant figures the answers are: = =12 12 2.53 kJ,Q W  = −23 0.776 kJ,W  
= −23 1.94 kJ,Q  = −31 1.16 kJW  and 31 0.Q =  
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DOUBLE-CHECK:  The First Law of Thermodynamics is int .E Q W∆ = −  Since the total process is cyclical 
(starts and ends at state 1), the total change in internal energy must be zero: 

( ) ( ) ( )
( ) ( )( ) ( )( )

int,12 int,23 int,31 12 12 23 23 31 31

2.5278 kJ 2.5278 kJ 1.9408 kJ 0.7765 kJ 0 1.1645 kJ 0.

E E E Q W Q W Q W∆ + ∆ + ∆ = − + − + −

= − + − − − + − − =  

Since the total change in internal energy is zero, the answers are reasonable. 

19.62 THINK: Two geometrically identical cylinders, one made of copper and the other made of Teflon, are 
immersed in a large-volume water tank at temperature 20.0 C.T = °  The diameter of each cylinder is 

0.0500 m.d =  The mass of the piston-rod-platter assembly is 0.500 kg.m =  The cylinders are filled with 
helium gas such that in their initial state, both pistons are at equilibrium at 0 0.200 mh = from the bottom 
of their respective cylinders.   
(a) A block of mass 5.00 kgM =  is placed gently on each platter and the pistons are allowed to slowly 
reach their equilibrium positions.  Since copper has a high thermal conductivity, the helium will stay in 
thermal equilibrium with the water in the tank and the compression of the helium is an isothermal process.  
On the other hand, since Teflon has a low thermal conductivity (good insulator) it can be assumed that the 
compression of the helium is an adiabatic process since there is no heat flow.  The change in height can be 
calculated by using Newton’s Second Law and the Ideal Gas Law.  The initial and final pressures will be the 
same in each cylinder at equilibrium since the pressure of the helium gas in each cylinder is supporting the 
same weight.   
(b) When the lead block is dropped suddenly on the platters, the compression of the helium in the copper 
cylinder will no longer be an isothermal process since there is not time for heat to flow into the helium gas.  
So the process in both cases is adiabatic. 
SKETCH: 

 
 

RESEARCH:  
Initially the three forces acting on each piston are the downward force atmF  due to atmospheric pressure 

atm ,p  the downward force gF  due to the weight of the piston-rod-platter assembly, and the upward force 

ipF  due to the initial pressure ip  of the compressed helium.  The net force on the piston is zero, so by 
Newton’s Second Law:  



Chapter 19: Ideal Gases 
 

857 
 

i atm i atm i atm0 .p g
mg

F F F p A mg p A p p
A

− − = − − = ⇒ = +  

At equilibrium after the lead block is placed on the platter, there are three forces acting on each piston: the 
force atmF  due to atmospheric pressure atm ,p  the force gF  due to the weight of the lead block and the 

piston-rod-platter assembly, and the force 
fpF  due to the final pressure fp  of the compressed helium.  The 

net force on the piston is zero, so by Newton’s Second Law:  

( ) ( )
f atm f atm f atm0 .p g

m M g
F F F p A m M g p A p p

A
+

− − = − + − = ⇒ = +  

For the copper cylinder in part (a), the process is isothermal, so the Ideal Gas Law gives: 

i i f f .p V nRT p V= =  For the Teflon cylinder, the process is adiabatic so: i i f f .p V p Vγ γ=  Helium is a 
monatomic gas, so the ratio of molar specific heats is 5 / 3.γ =   
SIMPLIFY:  

(a) For each cylinder, 
( )i atm 2/ 2
mg

p p
dπ

= +  and 
( )
( )f atm 2 .

/ 2

m M g
p p

dπ

+
= +   

Copper: ( ) ( ) i
i i f f i 0 f 0

f

    
p

p V p V p Ah p Ah h h
p

= ⇒ = ⇒ =  

Teflon: ( ) ( )
1/

i
i i f f i 0 f 0

f

    
p

p V p V p Ah p Ah h h
p

γ
γ γγ γ  

= ⇒ = ⇒ =  
 

 

CALCULATE:  

(a) ( ) ( )( )
( )( )

2
5 5

i 2

0.500 kg 9.81 m/s
1.013 10  Pa 1.03798 10  Pa

0.0500 m / 2
p

π
= ⋅ + = ⋅

 ( ) ( ) ( )( )( )
( )( )

2
5 5

f 2

0.500 kg 5.00 kg 9.81 m/s
1.013 10  Pa 1.28779 10  Pa

0.0500 m / 2
p

π

+
= ⋅ + = ⋅  

Copper:  
( )
( ) ( )

5

5

1.03798 10  Pa
0.200 m 0.1612 m,

1.28779 10  Pa
h

⋅
= =

⋅
  

Teflon:  
( )
( ) ( )

3/5
5

5

1.03798 10  Pa
0.200 m 0.1757 m

1.28779 10  Pa
h

 ⋅
 = =
 ⋅ 

 

(b) If the blocks are dropped suddenly on their platters, the change undergone by the helium in both the 
copper and Teflon cylinders is adiabatic. Therefore, the final equilibrium heights will be the same as that 
calculated in part (a) for the Teflon cylinder. 
ROUND:  (a) To three significant figures, the final height of the piston in the copper cylinder is 
16.1 cm and the final height of the piston in the Teflon cylinder is 17.6 cm. 
(b) To three significant figures, the final height of the piston in the copper cylinder is 
17.6 cm and the final height of the piston in the Teflon cylinder is 17.6 cm. 
DOUBLE-CHECK:  It is reasonable that the final height of the piston in the Teflon cylinder is larger since 
the helium gas in the Teflon cylinder retains all of the energy from the compression.  On the other hand, 
the helium gas in the copper cylinder loses energy in the form of heat to the water reservoir, so its piston 
falls farther.  

19.63 THINK:  To a good approximation, the pressure variation with altitude in the Earth’s atmosphere can be 
treated as adiabatic. Air has an effective molar mass of air 0.02897 kg/mol.M =  The pressure at sea level is 

0 101.0 kPap =  and the temperature at sea level is 0 293.2 K.T =  
(a)  Find the air pressure and temperature as functions of altitude: ( )p h  and ( ).T h  
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(b) Find the altitude at which the air pressure and the density are half their sea-level values, and the 
corresponding temperature.  
(c)  Compare the results with the isothermal model of Chapter 13. 
SKETCH:  

 
 

RESEARCH:  The Ideal Gas Law will be useful: .pV nRT=  Since / / ,n m M V Mρ= =  the pressure can 
be expressed as / ,p RT Mρ=  where ρ  is the density of the air and M  is the effective molar mass of the 

air.  Since V is inversely proportional to ρ  and, for an adiabatic process, pV γ  is constant, the density ρ  

is proportional to ( )1/1/
0 0: / / .p p p

γγ ρ ρ =  Since air can be treated as a diatomic gas, 7 / 5.γ =  The 

variation of pressure with altitude h is determined by the equation of hydrostatic equilibrium, 
/ ,dp dh gρ= −  where g is taken to be constant within the Earth’s atmosphere. From this, the pressure 

variation with altitude ( )p h  can be found. The isothermal model has pressure and density varying 
exponentially with altitude as the temperature remains constant:  

( ) ( )iso 0 iso 0 iso 0
0 0

exp ,   exp ,   and  .
Mgh Mgh

p h p h T T
RT RT

ρ ρ
   

= − = − =   
   

 

SIMPLIFY:  

(a) Since
1/

0
0

 ,
p
p

γ

ρ ρ
 

=  
 

,
dp

g
dh

ρ= −  and from the Ideal Gas Law 0

0 0

:M
p RT
ρ

=    

( ) 1/
0

0 0

/
.

d p p pM g
dh RT p

γ
 

= −  
 

 

Hence,  

( )
( )

0
1/

0
1/

0 01 00 0

/
.11/

p p hd p p Mg Mghpdh
RT RTp p p

γ
γ

γ

γ
γ

− ′   ′= − ⇒ = −− −  ′   
∫ ∫  

Therefore, the pressure as a function of altitude is: 

( )
1

0
0

11 .
Mgh

p h p
RT

γ
γγ

γ

−  −
= −     

 

Since 
1/

0
0

 ,
p
p

γ

ρ ρ
 

=  
 

 the air density as a function of altitude is: 

( )
1

1

0
0

11 .
Mgh

h
RT

γγρ ρ
γ

−  −
= −     

 

To find the temperature as a function of altitude, the Ideal Gas Law can be applied: 

( )

0

0 0

0

/
/

1 .

p pMpRT Tp T
M R T

Mgh
T h T

R

ρ
ρ ρ ρ
γ
γ

= ⇒ = ⇒ =

 −
= −  
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(b)  When ( ) 0/ 1/ 2p h p =  and since 7 / 5 :γ =    

7/2 2/71
/2 /2 0

/2
0 0

1 1 2 7 11 1 1 .
2 7 2 2

p p
p

Mgh Mgh RT
h

RT RT Mg

γ
γγ

γ

−      −     = − = − ⇒ = −                      
 

When ( ) 0/ 1/ 2hρ ρ =  and since 7 / 5 :γ =   
1 5/2 2/51

/2 /2 0
/2

0 0

1 1 2 7 11 1 1 .
2 7 2 2

Mgh Mgh RT
h

RT RT Mg

γ
ρ ρ

ρ
γ
γ

−      −     = − = − ⇒ = −                      
   

(c)  In the isothermal model, the altitude iso,1/2h  at which ( )iso 0/ 1/ 2p h p =  and ( )iso 0/ 1/ 2hρ ρ =  is: 

0 iso 0 iso 0
iso,1/2

0 0

ln ln ln2.
RT p RT RT

h
Mg p Mg Mg

ρ
ρ

   
= − = − =   

   
 

CALCULATE:  

(b)   
( )( )( )

( )( )
2/7

/2 2

8.314 J/ mol K 293.2 K7 11 5393.7 m
2 2 0.02897 kg/mol 9.81 m/sph
   = − =    

 

( )
( )( )
( )

( )( )( )
( )( )

2

/2

0.02897 kg/mol 9.81 m/s 5393.7 m7 / 5 1
293.2 K 240.52 K

7 / 5 8.314 J/ mol K
pT

−
= − =  

( )( )( )
( )( )

2/5

/2 2

8.314 J/ mol K 293.2 K7 11 7269.3 m
2 2 0.02897 kg/mol 9.81 m/s

hρ

   = − =    
 

( )
( )( )
( )

( )( )( )
( )( )

2

/2

0.02897 kg/mol 9.81 m/s 7269.3 m7 / 5 1
293.2 K 222.20 K

7 / 5 8.314 J/ mol K
Tρ

−
= − =  

(c)  
( )( )( )

( )( )iso,1/2 2

8.314 J/ mol K 293.2 K
ln2 5945.4 m

0.02897 kg/mol 9.81 m/s
h = =

 
iso,1/2 0 293.2 KT T= =  

ROUND:   
(b) The answers for the adiabatic model are:  

/2 5.39 km,ph =  /2 241 K,pT =   /2 7.27 km,hρ =  and /2 222 K.Tρ =  

(c) The answers for the isothermal model are:  

iso,1/2 5950 mh =  and =iso,1/2 293 K.T   
DOUBLE-CHECK:  It is expected that the temperature, pressure, and density decrease with increasing 
height.   

19.64 The mass of the nitrogen molecule is 28.0 amu.m =   The root-mean-square speed is: rms B3 / .v k T m=  

The most probable speed is: mp B2 / .v k T m=   At temperature 293 K,T =   

( )( )
( )( )

23

rms 27

3 1.381 10 J/K 293 K
511 m/s

28.0 1.661 10 kg
v

−

−

⋅
= =

⋅
 and 

( )( )
( )( )

23

mp 27

2 1.381 10 J/K 293 K
417 m/s

28.0 1.661 10 kg
v

−

−

⋅
= =

⋅
. 

For the most probable speed, the Maxwell speed distribution is given by 

( )
2
mp

B

3/2

22 1
mp mp

B B

4 4 .
2 2

mv

k Tm mf v v e e
k T k T

π
π π

−
− 

= = 
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The probability that a molecule has a most probable speed between mpv  and mpv dv+  is given by 

( )mp .f v dv  For a speed within 1.00 m/s, the variation in the speed is ∆ = 2.00 m/sv  (plus or minus one 

meter per second).  Since 2.00 m/s is small, the approximation ≈ ∆ = 2.00 m/sdv v  is valid.  Therefore, the 
percentage of 2N  molecules within 1.00 m/s of the most probable speed is: 

( ) ( )( )
( )( )

( )
π

−

−

−

⋅
∆ = =

⋅

27
1

mp 23

28.0 1.661 10  kg
4 0.398%2.00 m/s

2 1.381 10  J/K 293 K
f v v e  

19.65 In general, the average speed is B
ave

8
,

k T
v

mπ
=  and does not depend on the pressure. 

(a)   The mass of an 2N  molecule is 28.01 amu.  At = 291 K,T  the average speed is:  

( )( )
( )( )π

−

−

⋅
= =

⋅2

23

ave, N 27

8 1.381 10  J/K 291 K
469 m/s.

28.01 1.661 10  kg
v  

(b) The mass of an 2H molecule is 2.016 amu. At = 291 K,T  the average speed is:  

( )( )
( )( )π

−

−

⋅
= =

⋅2

23

ave, H 27

8 1.381 10  J/K 291 K
1750 m/s.

2.016 1.661 10  kg
v  

19.66 One mole of neon gas is at STP.  The mass of a neon atom is 20.2 amu.   The Maxwell speed distribution is:  

( )
2

B

3/2

22

B

4 .
2

mv
k Tmf v v e

k T
π

π

− 
=  

 
 

Take the speed to be the average speed, = 201.00 m/s.v  The probability that an atom has a speed between 

v  and v dv+  is given by ( ) .f v dv  Since the probability of finding the neon atoms with a speed between 

200.00 m/s  and 202.00 m/s  is constant, the approximation ≈ ∆ = 2.00 m/sdv v  is valid.  The fraction of 
neon atoms having a speed between v v+ ∆  for = 201.00 m/sv  is: 

( )
( )( )
( )( )

( )
( )( )( )

( )( ) ( )

227

23
27

23

20.2 1.661 10  kg 201.00 m/s3/2

2 1.381 10  J/K 293.15 K2

3

20.2 1.661 10  kg
201.00 m/s 2.00 m/s

2 1.381 10  J/K 293.15 K
201.00 m/s 4

1.3011 10

f v e
π

π

−

−
−

−

 ⋅ 
− 

⋅ 
 

−

⋅

⋅

 
 ∆ =
 
 

= ⋅

 

Therefore, the number of neon atoms with speeds between 200.00 m/s and 202.00 m/s is then: 

( ) ( )( )( )−= ∆ = ⋅ ⋅ = ⋅3 23 20
Ne A201.00 m/s 1.3011 10 1.00 mol 6.02 10 atoms/mol 7.83 10 .N f vnN  

19.67 THINK:  The temperature and pressure of air in a room are 294 KT =  and =1.00 atm.p  The Maxwell 
speed distribution can be used to find an expression for the fraction of molecules having speeds greater 
than the speed of sound. The equations for the average speed and rms speed will be used as well.  The gas 
consists of uniform particles with a mass of 15.0 amu.  
SKETCH:   
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RESEARCH:  The Maxwell speed distribution is:  

( )
2

B

3/2

22

B

4 .
2

mv
k Tmf v v e

k T
π

π

− 
=  

 
 

The fraction of molecules with a speed greater than the speed of sound Sv  is given by: 

( )

( )
( ) ( )( )S

S 0

0

      Recall 1 .v

v

f v dv
F f v dv f v dv

f v dv

∞

∞ ∞

∞
= = =
∫

∫ ∫
∫

 

The average speed of the molecules is:  

B
ave

8
.

k T
v

mπ
=  

The rms speed of the molecules is: 

B
rms

3
.

k T
v

m
=  

SIMPLIFY:  The expression for the fraction of air molecules having speeds greater than the speed of 
sound is 

( )
2

B

S S

3/2

22

B

4 .
2

mv
k T

v v

mF f v dv v e dv
k T

π
π

−∞ ∞ 
= =  

 
∫ ∫

 

CALCULATE:  
( )( )
( )( )π

−

−

⋅
= =

⋅

23

ave 27

8 1.381 10  J/K 294 K
644.2 m/s

15.0 1.661 10  kg
v  

( )( )
( )

−

−

⋅
= =

⋅

23

rms 27

3 1.381 10  J/K 294 K
699.2 m/s

15.0 1.661 10  kg
v  

ROUND:  To three significant figures, =ave 644 m/sv  and =rms 699 m/s.v  
DOUBLE-CHECK:  These are reasonable speeds for gas molecules. 

19.68 THINK: The volume of the cabin is ( )3 35.00 m =125 m ,V =  the temperature in the cabin remains 

constant at 294 K,T =  and the initial pressure is =i 1.00 atm.p  The mass of each diatomic molecule of air 

is 15 amu.m =  The radius of the hole created by the meteor is −= ⋅ 35.00 10 m.r  To find the time t  it takes 

for the cabin’s pressure to become f i / 2,p p=  it can be assumed that only the molecules moving in the 
direction that is perpendicular to the plane of the hole exit through the hole – call this the z direction.  
Assume that once a molecule leaves the hole, it never returns.  
SKETCH: 

 
 

RESEARCH: In one dimension, ( ) ( ){ }2
Bexp / .2f v mv k T∝ −   Take the average speed of the molecules as 

an estimate of the rate at which molecules are leaving. The average speed v is given by:

 

 

( )
( )

0
ave

0

.
vf v dv

v
f v dv

∞

∞
= ∫
∫  
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Consider the number of molecules dN leaving a hole of cross-sectional area A  in a given time dt  and 
define the rate at which particles are leaving in terms of ave, :zv  

( )
ave,

/
.z

d NAz VdN N dz NA Av
dt dt V dt V

= = =  

The rate of change in pressure is found from the Ideal Gas Law, B .pV Nk T=  Specifically,  

,B BNk T k Tdp d dN
dt dt V V dt

 
= = 

 
 

since the volume of the shuttle and the temperature inside the shuttle are constant. 
SIMPLIFY:  The average speed ave, zv  is:  

2

B
0

B B
ave, 2

B

0
B

exp
2 2

,
21exp

2 2

z
z z

z
z

z

mv k Tv dv
k T k Tmv

mmv k T
dv

k T m
ππ

∞

∞

 − 
 
  = = =
 − 
 
  

∫

∫
 

where the following integral identities were used:  
2

0

1
2

axe dx
a
π∞ − =∫  and 

2

0

1 .
2

axxe dx
a

∞ − =∫  

Next,   

B
ave,

2
.z

k TdN N NAv A
dt V V mπ

= =  

Therefore,  

B
2

2
.BNk T k Tdp

A
dt mV π

=  

Since / ,Bp Nk T V=  this becomes  

B B2 2
.

k T k Tdp p dp AA dt
dt V m p V mπ π

= ⇒ =  

The change in pressure over time is: 

( )f f

ii

f B

i

2
ln ln .

p p

pp

p k Tdp Ap t
p p V mπ

 
= = = 

 
∫  

Therefore, the time taken is given by:  

f
2

i B

ln .
2

p V mt
p k Tr π

 
=  

 
  

CALCULATE:  The time taken for the cabin’s pressure to become f i / 2p p=  is:   

( )
( )

( )( )
( )( )π

−

−−

⋅ 
= = = 

⋅  ⋅

3 27

2 233

125 m 15 1.661 10  kg1ln 3425 s 57.1 min.
2 2 1.381 10  J/K 294 K5.00 10 m

t  

ROUND:  To two significant figures, it takes 57 minutes for the pressure inside the cabin of the shuttle to 
be reduced to half its original value. 
DOUBLE-CHECK:  This time is reasonable for the pressure to come to half its original value, considering 
the small size of the hole and the large volume of the cabin. 
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19.69 This is an adiabatic process since no heat flow occurs. The temperature of the =1.00 moln  of gas drops 
from 1 295 KT =  to 2 291 K.T =  For a diatomic molecule 7 / 5,γ =  so the work done on the environment 
is: 

( ) ( )( )
( ) ( )

γ
= − ⇒ = − =

− −f i

1.00 mol 8.314 J/mol K
291 K 295 K 83.1 J

1 1 7 / 5
nRW T T W  

19.70 Since B A/k R N=  and A ,M mN=  the root-mean-square speed is given by: 

B
rms

3 3 .
k T RTv
m M

= =  

Using an effective molar mass for air of 28.97 g/mol,M =  the root-mean-square speed is: 

( )( )( )
( )

= =rms

3 8.314 J/ mol K 295 K
504 m/s.

0.02897 kg/mol
v  

19.71 The balloon is at temperature 293 KT =  and pressure 51.013 10  Pa.p = ⋅  Assume the balloon is spherical. 

Its radius is 0.200 mr =  and its volume is ( ) 34 / 3 .V rπ=  

(a)  The number of helium atoms N  in the balloon is  

( ) ( ) ( )
( )( )( )

35 23

23A

A

41.013 10  Pa 0.200 m 6.02 10 atoms/mol
3

  8.39 10 atoms.
8.314 J/ mol K 293 K

pVNpVN n N
N RT RT

π ⋅ ⋅ 
 = = ⇒ = = = ⋅

 
(b)  For a monatomic gas, the kinetic energy of the atoms is:  

( )( )23 21
ave B

3 3 1.381 10  J/K 293 K 6.07 10  J.
2 2

K k T − −= = ⋅ = ⋅  

(c) Since B A/k R N=  and A ,M mN=  the root-mean-square speed is given by: 

B
rms

3 3 .
k T RTv
m M

= =  

The molar mass of a helium atom is 4.00 g/mol.M =  Then, 

( )( )( )
( )rms

3 8.314 J/ mol K 293 K
1350 m/s.

0.00400 kg/mol
v = =  

19.72 Air is about 20.9% 2O .  In a volume 31.00 m ,V =  at a temperature 298 KT =  and pressure 
51.01 10  Pa,p = ⋅  the number of moles of oxygen is approximately:  

( ) ( ) ( )( )
( )( )( )

⋅
= = =

2

5 3

O

1.01 10  Pa 1.00 m
0.209 0.209 8.5200 mol.

8.314 J/ mol K 298 K
pV

n
RT

 

The molecular mass of 2O  is 
2O 32.0 g/mol,M =  so the actual mass of 2O  in one cubic meter of air is: 

( )( )= = =
2 2O O 8.5200 mol 32.0 g/mol 273 g.m n M  
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19.73 The tires of the 33.00 10  lb⋅  car on a lift have a pressure 2
i 1atm 32.0 lb/in .p = +  The car is then lowered 

to the ground.  

(a) If the volume of the tires does not change appreciably, the weight of the car may deform the tires, but it 
cannot change the pressure inside the tires. Pressure must vary with either volume or temperature. The 
pressure in pascals inside the tires after the car has been lowered to the ground is then 

 

3
2 5 2 5

i 2

5
i

6.894 10 Pa
1atm 32.0 lb/in 1.013 10  Pa 32.0 lb/in 3.219 10 Pa

lb/in

3.22 10 Pa.

p

p

 ⋅
= + = ⋅ + = ⋅  

 
= ⋅

 

(b) The force that supports the weight of the car comes from the tire pressure acting against the ground.  
The gauge pressure supports the weight of the car.  The gauge pressure is 

 
3

2
2

56.894 10 Pa
32.0 lb/in

lb/
2.206 10

i
 Pa.

n
p

 ⋅
= =  ⋅

 
 

The contact area is: 

 
( )( )

( )
3

2

2

5
0.06049229 

2.206
4.4482 N/lb3.00 10  lb/ m

 Pa

605 c

10

m .

A F p

A

=

=

⋅
⋅= =

 

19.74 The gas expands from =i 3.00 LV  at i 288 KT =  to =f 4.00 L,V  at constant pressure. Assume the number 
of moles remains constant.  By the Ideal Gas Law, i i f f/ / / :V T nR p V T= =   

( )
( ) ( )= = =f

f i
i

4.00 L
288 K 384 K.

3.00 L
V

T T
V

 

19.75 At = 273.15 KT  and 51.01325 10  Pa,p = ⋅  the unknown gas has a density of 

( ) 3
3

1 kg 1000 L0.0899 g/L 0.0899 kg/m .
1000 g m

ρ
  = =    

 

The number of moles is / ,n m M=  where m is the total mass of the gas and M is the molar mass. From the 

Ideal Gas Law,      .mRT mRT RTpV nRT pV M
M pV p

ρ
= ⇒ = ⇒ = =  

( ) ( )( )( )
( )

3

5

0.0899 kg/m 8.314462 J/ mol K 273.15 K
 kg/mol 2.02 g/mol.

1.01
0

325
.002015 2

10  Pa
0M = = =

⋅

 Since the gas has a molar mass of 2.02 g/mol,  the gas is most likely hydrogen ( )2H .  

19.76 The tank has 30.0% 2O  and 70.0% Ar  in a volume = 31.00 m .V  The initial temperature is i 293 K,T =  
the initial gauge pressure is =ig 1000. psi,p  and the final gauge pressure is =fg 1500. psi.p   Recall that the 

absolute pressure is the sum of the gauge pressure and the atmospheric pressure, atm 14.7 psi.p =  From the 
Ideal Gas Law for constant volume, i i f f/ / / .p T nR V p T= =  Then,  

( ) ( )
( ) ( ) ( )

+ +
= = = =

+ +
fg atmf

f i i
i ig atm

1500. psi 14.7 psi
293 K 437 K.

1000. psi 14.7 psi

p pp
T T T

p p p
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19.77 At constant temperature of  295 K,T =  = 5.00 moln  of an ideal monatomic gas expands from 

= 3
i 2.00 mV  to = 3

f 8.00 m .V  

(a)  For an isothermal process (at constant temperature), the work done by the gas is:  

( ) ( )( )( ) ( )
( )

    = = =      

3

f
3

i

8.00 m
ln 5.00 mol 8.314 J/ mol K 295 K ln 17.0 kJ.

2.00 m
V

W nRT
V

 

(b)  The final pressure is found from the Ideal Gas Law:  

( ) ( )( )( )
( )

= ⇒ = = =f f f 3
f

5.00 mol 8.314 J/ mol K 295 K
  1.53 kPa.

8.00 m
nRTp V nRT p
V

 

19.78 THINK: A cylinder with radius = 0.0350 mr  contains = 0.120 moln  of an ideal gas. The piston at the 
top of the cylinder has a mass = 0.450 kg.m  The temperature of the gas cools by ∆ = −15.0 K,T  while the 
pressure and the number of moles of the gas stay constant. The Ideal Gas Law and Newton`s Second Law 
can be used to find the change in the piston’s height.  
 SKETCH: 

 
 

RESEARCH: The change in the enclosed cylindrical volume is a function of the change in height y of the 
piston: 2 .V r yπ∆ = ∆  The Ideal Gas Law is .pV nRT=  The pressure p  can be determined by using 
Newton’s Second Law. When the piston comes to rest, the net force on the piston is zero.   
SIMPLIFY:  Since the number of moles n and the pressure p remain constant, a change in volume must be 
due to a change in temperature:  

.nR Tp V nR T V
p
∆

∆ = ∆ ⇒ ∆ =  

There are three forces acting on the piston: the downward force atmF  on the piston due to atmospheric 
pressure atm ,p  the downward force gF  of gravity due to the mass m of the piston, and the upward force pF  

due to the pressure p of the gas.  By Newton’s Second Law, 

atm atm atm 20p g

mg
F F F pA mg p A p p

rπ
− − = − − = ⇒ = +  

Therefore, the change in height of the piston is: 

2 2 2
2 atm

atm 2

.V nR T nR T nR Ty
mgr r p r p mgr p

r
π π ππ

π

∆ ∆ ∆ ∆
∆ = = = =

+ + 
 

 

CALCULATE: 
( ) ( )( )( )

( ) ( ) ( )( )π

−
∆ = = −

⋅ +
2 5 2

0.120 mol 8.314 J/ mol K 15.0 K
0.03796 m,

0.0350 m 1.013 10 Pa 0.450 kg 9.81 m/s
y where the 

negative sign indicates that the piston falls to a lower height.

 

ROUND:  To three significant figures, the piston ends up ∆ = 3.80 cmy  below its initial position. 
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DOUBLE-CHECK: Since the gas is cooling, the piston should fall to reduce the volume.  

19.79 THINK: Find the most probable kinetic energy for a molecule of gas at temperature 300. K.T =  The 
Maxwell kinetic energy distribution for a gas can be used to find the most probable kinetic energy for a 
molecule at this temperature. 
SKETCH: 

 
RESEARCH: The Maxwell kinetic energy distribution is  

B

3/2

B

2 1( )
K

k Tg K K e
k Tπ

− 
=  

 
 

The most probable kinetic energy mpK  occurs at the maximum value of ( ),g K  and is found by taking the 

derivative of ( )g K  with respect to K and setting it to zero. 
SIMPLIFY: 

B B

mp

3/2
mp B

mp
B B Bmp

2 1 1 1 1( ) 0    
2 22

K K
k T k T

K K

K k Td Kg K e e K
dK k T k T k TK Kπ

− −

=

  
= − = ⇒ = ⇒ =  

    

 
CALCULATE:  

( )( )23
21

mp

1.381 10  J/K 300. K
2.072 10  J.

2
K

−

−
⋅

= = ⋅   

ROUND:  To three significant figures, the most probably kinetic energy is 21
mp 2.07 10  J.K −= ⋅  

DOUBLE-CHECK:  It is reasonable that the energy depends only on temperature.  The answer contains 
the proper units. 

19.80 THINK: The auditorium has volume = ⋅ 4 32.50 10  m ,V  temperature i 293 K,T =  and pressure 
5

i 1.013 10  Pa.p = ⋅  It contains 2000 people who have an average metabolism of 70.0 W  each. Find the 
change in temperature after two hours have passed. 
SKETCH:  A sketch is not needed to solve the problem. 
RESEARCH:  The amount of heat added to the auditorium due to the audience’s collective metabolism 
can be determined from PQ N P t= ∆  where P  is the average metabolic rate and PN  is the number of 
people. The temperature increase can be found from VQ nC T= ∆  (since the volume does not change). The 
number of moles of air can be found from the Ideal Gas Law: .pV nRT=  
SIMPLIFY:  Since it is a closed auditorium, the number of moles of air is constant: i i/ .n p V RT=  The 
change in temperature is given by:  

i P i

V i i

.
V V

QRT N P tRTQT
nC p VC p VC

∆
∆ = = =  

CALCULATE: Air is predominantly composed of 2N ,  so use ( )20.7 J/ mol KVC =  for 

2N .
( )( )( ) ( )( )( )

( )( ) ( )( )
∆ = =

⋅ ⋅5 4 3

2000 people 70.0 W/person 7200. s 8.314 J/ mol K 293 K
46.84016 K

1.013 10  Pa 2.50 10  m 20.7 J/ mol K
T  

ROUND:  To three significant figures, the temperature increase in the auditorium will be ∆ = 46.8 K.T  
DOUBLE-CHECK:  This is a reasonable temperature increase for a closed room with 2000 people in it. 
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19.81 THINK: Gaseous pentane turns to vapor when the pressure increases to f 60.7 kPa.p =  The temperature 
of the pentane of mass 1.000 gm =  is constant at 295 K,T =  while the volume is isothermally reduced 
from i 1.000 L.V =  The first drop of liquid pentane will appear when the pressure of liquid pentane in the 
cylinder is equal to its vapor pressure at the given temperature. By using the Ideal Gas Law, the volume fV  
for which liquid pentane first appears can be found. 
SKETCH:   

 
RESEARCH:  The Ideal Gas Law is given by: .pV nRT=   For pentane, the molar mass is 

72.15 g/mol.M =  

SIMPLIFY:  f f f
f

  m mRTp V nRT RT V
M Mp

= = ⇒ =  

CALCULATE:  
( ) ( )( )( )

( )( )
4 3

f 3

1.000 g 8.314 J/ mol K 295 K
5.6002 10  m

72.15 g/mol 60.7 10  Pa
V −= = ⋅

⋅
 

ROUND:  To three significant figures, the volume at which liquid pentane occurs is f 0.560 L.V =  
DOUBLE-CHECK:  It is expected that the final volume is less than the initial volume since the pressure 
must increase in order for the gaseous pentane to condense into a liquid. 

19.82 THINK: Helium gas is in a well-insulated cylinder, at a temperature of i 295 KT =  and a pressure of 
=i 1.00 atm.p  Under adiabatic expansion, the volume increases to four time its original volume: f i4 .V V=  

The equations for adiabatic processes can be used to find (a) the final pressure f ,p  and (b) the final 
temperature, fT . 
SKETCH:   

 
RESEARCH: For an adiabatic process, i i f fp V p Vγ γ=  and 1 1

i i f f .TV T Vγ γ− −=  Since helium is a monatomic 
gas, 5 / 3.γ =  
SIMPLIFY:   

(a) i
f i i

f

4
V

p p p
V

γ

γ− 
= = 
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(b) 
1

1i
f i i

f

4
V

T T T
V

γ

γ

−

− 
= = 

 
 

CALCULATE:   

(a)  ( ) ( )−= =5/3
f 4 1.00 atm 0.099213 atmp  

(b)  ( ) ( )1 5/3
f 4 295 K 117.07 KT −= =  

ROUND:   
(a)  To three significant figures, the final pressure is =f 0.0992 atm.p    

(b)  To three significant figures, the final temperature is f 117 K.T =   
DOUBLE-CHECK:  Since the volume increased adiabatically, there was no heat flow.  Since the helium 
gas did work as the volume increased, the internal energy of the gas must decrease (since 0,Q =  the First 
Law of Thermodynamics gives int ).E W∆ = −  Therefore, it is expected that f i .T T<  This is known as 
adiabatic cooling.  Since the volume increases and the temperature decreases, it is expected that f i .p p<  
 

Multi-Version Exercises 

 Exercises 19.83–19.85   At constant pressure p, the work done is 

( ) ( )f i i i i1 .W p V p V V p f V V fpV = ∆ = − = − − = −   

 
From the Ideal Gas Law, i i / .V nRT p=  Therefore, the work done by the gas is: i

i .
nRT

W fp fnRT
p

 
= − = − 

 
 

19.83 ( )( )( )( )i 0.4711 0.05839 mol 8.314 J/mol/K 273.15 K 62.47 J.W fnRT= − = − = −  

19.84 iW fnRT= −  

 
( )( )( )i

75.40 J 0.06985 mol.
0.4753 8.314 J/mol/K 273.15 K

Wn
fRT

−
= − = − =

 
19.85 iW fnRT= −  

 
( )( )( )i

34.04 J 0.4793 47.93%
0.03127 mol 8.314 J/mol/K 273.15 K

Wf
nRT

−
= − = − = =  

19.86 The volume and temperature remain constant.  The Ideal Gas Law gives us 

f i

f i

f
f i

i

constant

.

pV nRT
p RT
n V
p p
n n

n
p p

n

=

= =

=

=

 

 Initially there is only air in the bottle, so 1
i / 22.414 L mol .n V −=  After the reaction, there is 1.393 mole of 

CO2, so the final number of moles is 
2f i CO .n n n= +  So the final pressure is 

( ) 2i CO5
f

i

1.013 10  Pa .
n n

p
n
+

= ⋅ The initial number of moles is ( ) 1
i 2.869 L / 22.414 L 0.12 mo 80 ml .oln −= =  

The final number of moles is 

( )5 6
f

1.393 mo0.1280 mol
0.1280 mol

l
1.013 10  Pa 1.204 10  Pa.p

+
= ⋅ = ⋅  
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 (Note that we assumed STP and, to attain four significant figures as suggested by the problem data, used 
22.414 L/mol rather than 22.4 L/mol.) 

19.87 As noted in the preceding problem, 2i CO
f i

i

.
n n

p p
n
+

=  

( )

( ) ( )

( )( )( )
( )

2

2

2

f i i CO i

i f i CO i

CO i
i

f i

5

6 5

/ 22.414 L/mol

22.414 L/mol 1.413 mol 1.013 10  Pa
3.333 L

1.064 10  Pa 1.013 10  Pa

in p n p n p

n p p n p
n p

n V
p p

V

= +

− =

= =
−

⋅
= =

⋅ − ⋅

 

19.88 As noted in the preceding problems, 2i CO
f i

i

.
n n

p p
n
+

=  

( )
( )

( ) ( )
( )( )

2

2

2

2

f i i CO i

i f i CO i

i f i
CO

i

i

5 5

CO 5

3.787 L / 22.414 L/mol 0.1690 mol

0.1690 mol 9.599 10  Pa 1.013 10  Pa
1.433 mol

1.013 10  Pa

in p n p n p

n p p n p

n p p
n

p
n

n

= +

− =

−
=

= =

⋅ − ⋅
= =

⋅
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Chapter 20:  The Second Law of Thermodynamics 
 

Concept Checks 

20.1. e  20.2. e 20.3. c  20.4. c  20.5. b  20.6. e 
 
Multiple-Choice Questions 

20.1. d  20.2. c  20.3. a  20.4. a  20.5. c  20.6. e  20.7. d  20.8. b  20.9. a  20.10. b  e  20.11. a  20.12. c   
20.13. c  20.14. a   
 
Conceptual Questions 

20.15. One possible reason why the Second Law of Thermodynamics is a benefit is a scenario that is best 
described by the ideal gas in a box scenario as explained on page 635.  If the Second Law did not exist, it 
would be possible for all of the particles to migrate to a small corner of the box.  Therefore, a person sitting 
in a room could find all of the oxygen collecting in a corner, and thus suffocate.   

20.16. It is not a Nobel-winning discovery.  Even though the scientist is looking at a very small system, there is 
the possibility that it is an open system. For an open system, a decrease in entropy is perfectly reasonable. 

20.17. Typical heat pumps have a coefficient of performance greater than 1.  This means that for every unit of 
electrical power that it uses, more than one unit of power in the form of heat is produced.  This is done by 
extracting energy from the environment.  An electric heater uses the current supplied to produce heat and 
the coefficient of performance is typically 1.  Therefore, the heat pump has a higher rate of heat produced 
per unit electrical energy.  

20.18. The most likely arrangement of the 4 particles is 2 particles in each partition.  If particle 1 is in partition A, 
then there are 3 possible cases where only one particle (2, 3 or 4) is with particle 1 and the remaining two 
are in partition B.  If particle 2 is in partition A, then there are 2 new possible cases where only one particle 
(3 or 4) is with particle 2 and the remaining two are in partition B.  A similar argument for putting particle 
3 in partition A gives only 1 new configuration for a total of 6 possible ways to place the four particles in a 
box with 2 in each partition.   The entropy of this system is then given as B ln( )S k w=  where 6,w =  so 

( ) ( )231.38 10  J/K ln 6S −= ⋅  232.47 10  J/K.−= ⋅  The next most likely arrangement is when 1 particle is in one 

partition and the remaining 3 are in the other.  If only 1 particle can be in a partition than there are 4 
possible configurations, one for each particle.  Using 4w =  to find the entropy of this system: 

( ) ( )23 231.38 10  J/K ln 4 1.91 10  J/K.S − −= ⋅ = ⋅  

20.19. The equations under consideration are int ,dE TdS pdV= − int / / .dS dE T pdV T= +  From the first 

equation, it is clear intE is a function of both S and V ( )( )int int ,E E S V→ and from the second equation, 

S is a function of intE  and V ( )( )int , .S S E V→  This means a partial differential can be taken of each 

variable so that int / ,E S T∂ ∂ = int / ,E V p∂ ∂ = − int/ 1/ ,S E T∂ ∂ = / / .S V p T∂ ∂ =  In general, the mixed second 

partial differentials of a continuous function are equal, i.e. 
( ) ( )2 2, ,

.
f x y f x y
x y y x

∂ ∂
=

∂ ∂ ∂ ∂
 This means then that 

2
intE pT

V S V S
∂ ∂∂

= = −
∂ ∂ ∂ ∂

and 
( ) ( )2

int int

1/ p/S .
T T

V E V E
∂ ∂∂

= =
∂ ∂ ∂ ∂

 Relationships such as these are known as Maxwell 

relations.  Note that in each case a partial derivative is taken with its companion independent variable 
fixed.  Hence, e.g., / V∂ ∂ in the first Maxwell relation is not the same as / V∂ ∂ in the second. 
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20.20. (a) The equations under consideration are int ,H E pV= + intA E TS= −  and int .G E pV TS= + −  After 
taking the differential of each equation, keeping in mind that no variable is always constant and using the 
First Law of Thermodynamics, int ,dE TdS pdV= −  three equations arise. 

int

int

int

(1)
(2)
(3)

dH dE pdV Vdp TdS Vdp
dA dE TdS SdT pdV SdT
dG dE pdV Vdp TdS SdT Vdp SdT

= + + = +
= − − = − −
= + + − − = −

 

(b) From the three equations, it is clear that each energy ( ), ,  H A G are actually functions of other variables 

whereby ( ) ( ) ( ), , , , , .H H S p A A V T G G p T→ → →  This means a partial differential can be taken of each 

variable so that / ,H S T∂ ∂ = / ,H p V∂ ∂ = / ,A V p∂ ∂ = − / ,A T S∂ ∂ = − /G p V∂ ∂ = and / .G T S∂ ∂ = −  In 
general, if the mixed second-order partial derivatives are continuous, then they are equal, i.e. 

( ) ( )2 2, ,
.

f x y f x y
x y y x

∂ ∂
=

∂ ∂ ∂ ∂
 This yields three further Maxwell relations: 

2

,H T V
S p p S
∂ ∂ ∂

= =
∂ ∂ ∂ ∂

 

∂∂ ∂
= − = −

∂ ∂ ∂ ∂

2 pA S
V T T V

 and 
2G ,V S

p T T p
∂ ∂ ∂

= = −
∂ ∂ ∂ ∂

 where again each partial derivative is taken with its 

companion independent variable fixed.   

20.21. In general, the Boltzmann definition of entropy is given as ( )B ln .S k w=  If there are two systems, A and B, 

it can be seen that the system A has Aw possible states and system B has Bw possible states.  Therefore, for 
the given system A and B, the total number of possible states is A B ,w w w= ⋅  so then the entropy is 
separable by logarithm rules:  

( ) ( ) ( ) ( )B B A B B A B B A Bln ln ln ln .S k w k w w k w k w S S= = ⋅ = + = +  

20.22. The heat pump is doing work to move heat energy from the cold outside into the warm house.  For each 
6.28 kJ of electricity used by the heat pump, 21.98 kJ of heat is moved from the outside to the inside.  
Adding the heat energy from the heat pump to the heat energy extracted from the cold reservoir gives the 
total heat energy released to the hot reservoir.   

20.23. The wind chill factor from Canada is given by 0.16 0.16
wc 13.12 0.6215 11.37 0.3965T T v Tv= + − +  where T  is 

the surface temperature in °C  and v  is the wind speed in km/h at a point 10 m above the ground.  Of 
course, this formula for wind chill was never intended to be applied for the temperatures and wind speed 
present in the clouds of Saturn. But supposing a temperature of 150 K ( 123 C),− °  and a wind speed of 
600. km/h, the wind chill is 42 K ( 231 C),− °  which is still above absolute zero.  The definition of absolute 
zero is when a particle is completely without motion.  As long as the particle is moving in the wind, it will 
have some kinetic energy and thus the temperature is greater than absolute zero. 

20.24. The process of turning water into steam is an irreversible process.  The Second Law of Thermodynamics 
states that entropy must increase in an irreversible process, so it would require energy to convert the steam 
back into water to use over again, resulting in a net energy loss.  Eventually, the engine will not have 
enough energy to convert the steam back to water. 

20.25. To increase the entropy, heat the water up.  To decrease the entropy, cool the water down.  As long as the 
water is not a closed system, the entropy can decrease.   
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Exercises 

20.26. The hot reservoir has H 2100. JQ = extracted from it while the cold reservoir has C 1500. JQ = put into it.  
The work done by this engine is then H C 2100. J 1500. J 600. J.W Q Q= − = − =  The efficiency of the engine 
is H/ 600. J / 2100. J 0.300.W Qε = = =  If the engine does 600. J of work in one cycle and operates at a 
power of 2500. W,P =  the time taken for one cycle is / 600. J/2500. W 0.200 s.W P = ≈  

20.27. THINK: As the water (specific heat 4.19 kJ/(kg K),c = ⋅  density 31.00 g/cm 1.00 kg/L,ρ = =  and volume 
2.00 LV = ) is cooled from H 25.0 CT = °  to L 4.00 C,T = ° a quantity of heat, L ,Q  is extracted from it by 

the refrigerator of power 480. W.P =  The coefficient of performance, 3.80,K =  relates the heat extracted 
to the work, ,W  done by the fridge.   
SKETCH:   

 
RESEARCH:  The mass of the water is .m Vρ=  The heat then extracted from the water is L .Q mc T= ∆  
The coefficient of performance of the fridge is /LK Q W=  and the work done by the fridge to cool the 
water is .W P t= ∆   
SIMPLIFY:  The heat extracted from water is ( )L f i .Q V c T Tρ= −  The work done by the fridge is 

L / ;W Q K P t= = ∆  therefore, ( )L f i/ ( ) / ( ).t Q PK V c T T PKρ∆ = = −  

CALCULATE:  ( )( )( )( ) ( )( )( )31.00 kg/L 2.00 L 4.19 10 J/kg K 25.0 C 4.00 C 480. W 3.80 96.48 st∆ = ⋅ ° − ° =  

ROUND:  Three significant figures: 96.5 s.t∆ =  
DOUBLE-CHECK:  A K-value of 3.80 is a bit higher than most conventional fridges, so a relatively short 
time of cooling is reasonable.   

20.28. THINK:  The efficiency ( )0.250ε =  is the ratio of work the engine does to the energy (heat) supplied to it.  
Given an interval of 5.00 s,t =  the energy supplied to the engine is related to the power supplied to the 
engine, 54.00 10  W.P = ⋅  The change in kinetic energy of the car, whose mass is 2000. kg,M =  should be 
equal to the work done by the engine. 
SKETCH:   

 
 

RESEARCH:  The efficiency of the engine is / ,HW Qε =  where W is the work done by the engine and 

HQ is the energy supplied to the engine. The power supplied to the engine is / .HP Q t=  The power the 
engine uses to increase the vehicle’s velocity is / .W t  It is assumed that the work the engine does is 

transformed entirely into kinetic energy ( )2 2
f(1/2) .iW K M v v= ∆ = −   
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SIMPLIFY: ( ) ( ) ( )H H/ / / / / /   .W Q W t Q t W t P W Ptε ε= = = ⇒ =  The velocity is then 

( )2 2
f f

1 0   2 / .
2

W K M v Pt v Pt Mε ε= ∆ = − = ⇒ =  

CALCULATE:  ( )( )( )5
f 2 0.250 4.00 10  W 5.00 s /2000. kg 22.36 m/sv = ⋅ =  

ROUND:  Three significant figures: f 22.4 m/s.v =  
DOUBLE-CHECK:  Most car companies boast about their cars being able to go from 0 mph  to 

60 mph in a few seconds.  This vehicle goes to about 50 mph in 5 seconds, which is very reasonable.   

20.29. THINK:  Initially, the pressure, volume and temperature are 1 300. kPa,p = 3
1 150. cmV = and 

1 20.0 C.T = °  An isobaric expansion causes the gas to do work, 12 ,W  by absorbing heat, 12 ,Q  so that the 

gas now has volume, 3
2 450. cm ,V =  and temperature, 2 .T  It then isochorically reduces its pressure and 

temperature to 3p  and 3 1T T=  by expelling heat, 23 .Q  It then returns to its original pressure and volume 
isothermally by having work, 23 ,W  done on it by the piston as the system relaxes back to its original state. 

Since the gas is monatomic, ( )3/2VC R=  and ( )5/2 .pC R=  

SKETCH:  
(a) 

 
RESEARCH:  For the first step, the work done on the gas is ( )12 1 2 1W p V V= − −  and the heat flow out of 

the gas is ( )12 2 1 .pQ nC T T= − −  During the isobaric process 1 2 1 2/ /T T V V=  (from ideal gas law, 

,pV nRT=  where p is constant). For the second step, the work on the gas and the heat flow out of the gas 

are 23 0W =  and ( )23 1 2 .VQ nC T T= − −  For the third step, 0;E∆ =  therefore, 31 31W Q=  where 

( )31 1 1 2ln / .W nRT V V= −  A negative sign is used here because the work done on a gas undergoing 

compression ( ( )1 2ln / 0V V < ) must be positive.  Similarly, 31Q  must also be positive since 31 31.W Q=  The 

efficiency is given by H/ ,W Qε =  where W is the useful work extracted done by the piston, and HQ is the 
heat absorbed by the gas. 
SIMPLIFY:  

(b) Determine 2T first: 
( )2 11 1 2 1 2

2 2 1 1 1
2 2 1 1 1

    1 ;
V VT V V T V

T T T T T
T V V V V

 − 
= ⇒ = ⇒ − = − =   

    
 therefore, 

( )2 1
2 1 1

1

V V
T T T

V

 −
− =   

 
 and ( ) ( )1

12 2 1 2 1
1

5 .
2p

nRT
Q nC T T V V

V
  

= − − = − −  
  

 From the ideal gas law, 

1
1 1 1 1

1

  ;
nRT

p V nRT p
V

= ⇒ =  so, for the first leg ( )12 1 2 1W p V V= − −  and ( )12 1 2 1
5 .
2

Q p V V 
= − − 

 
 For the 

second leg of the cycle ( ) ( ) ( )1
23 1 2 2 1 1 2 1

1

3 3
2 2V

nRT
Q nC T T V V p V V

V
    

= − − = − = −    
    

 and 23 0 J.W =  For 
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the third leg of the cycle 1 1
31 1 1 1 31

2 2

ln ln .
V V

W nRT p V Q
V V
   

= − = − =   
   

 

(c)  The total work on the system is 12 23 31.W W W W= + +  The only time heat was added to the system 

from the hot reservoir was during the isobaric process; therefore, H 12Q Q= and 
( )12 23 31

12

.
W W W

Q
ε

+ +
=  

CALCULATE:  

 (b)  Leg 1: ( )( )( )33 3 3
12 300. 10 Pa 450. cm 150. cm 1 m/100 cm 90.00 JW = − ⋅ − = −  

( )( )
3

3 3 3
12

5 1 m300. 10 Pa 450. cm 150. cm 225.0 J
2 100 cm

Q    
= − ⋅ − = −   

   
 

Leg 2: 23 0 J,W = ( )( )
3

3 3 3
23

3 1 m300. 10 Pa 450. cm 150. cm 135.0 J
2 100 cm

Q    
= ⋅ − =   
   

 

Leg 3: ( )( )
33

3 3
31 31 3

150. cm 1 m300. 10 Pa 150. cm ln 49.44 J
100 cm450. cm

W Q
  

= = − ⋅ =  
  

 

(c) 
( )90 J 0 J 49.44 J

0.1803
( 225 J)

ε
− + +

= =
−

 

ROUND:  Three significant figures:  
(b) 12 90.0 J,W = −  12 225 J,Q = − 23 0 J,W = 23 135 J,Q = 31 49.4 JW = and 31 49.4 J.Q =  
(c)  0.180ε =  
DOUBLE-CHECK: The efficiency seems reasonable for an engine, and therefore the values of the work 
and the heat flow are also reasonable. They have appropriate units, which helps to support the calculations. 

20.30. THINK:  During the two adiabatic processes (points 1 2→ and 3 4→ ), the heat flow 12 34 0 J.Q Q= =  
Heat flows to and from the system, respectively, during the two isobaric processes (points 2 3→ and 
4 1→ ) where 23 HQ Q=  and 41 L .Q Q=  Since this a closed path process, the total work, ,W is equal to the 
total heat flow, .Q  The efficiency can then be calculated solely from the heat flow. 
SKETCH:  
(a)  

 
RESEARCH:  The heat flowing into the system is ( )H 23 3 2 .pQ Q nC T T= = − The heat flowing out of the 

system is ( )L 41 1 4 .pQ Q nC T T= = − −  Since it is a closed path H L .Q Q Q W= − =  The efficiency is 

H/ .W Qε =  
SIMPLIFY:  
(b) ( ) ( ) ( ) ( ) ( )H H L H L H 1 4 3 2 4 1 3 2/ / 1 / 1 / 1 /P PW Q Q Q Q Q Q nC T T nC T T T T T Tε = = − = − = + − − = − − −  
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CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK:  The efficiency should be a function of the temperatures at the vertices, as found. The 
efficiency will not have any units, since 1 has no units, and the units of the T will cancel. 

20.31. THINK: During the two adiabatic processes (points 4 3→ and 2 1→ ), the heat flow 43 21 0 J.Q Q= =  Heat 
flows to and from the system, respectively, during the two isobaric processes (points 1 4→ and 3 2→ ) 
where 14 LQ Q=  and 32 H .Q Q=  Since this a closed path process, the total work, ,W is equal to the total heat 
flow, .Q  The coefficient of performance can then be calculated solely from the heat flow. 
SKETCH:   
(a) 

 
RESEARCH:  The heat flowing into the system is ( )L 14 4 1 .pQ Q nC T T= = −  The heat flowing out of the 

system is ( )H 32 2 3 .pQ Q nC T T= = − −  Since it is a closed path H L .Q Q Q W= − =  The coefficient of 

performance is L / .K Q W=  
SIMPLIFY:  
(a) Not necessary. 

(b) ( ) ( ) ( ) ( )L L H L 4 1 2 3 4 1/ / /p p pK Q W Q Q Q nC T T nC T T nC T T = = − = − − − − −   

Therefore, ( ) ( )4 1 3 2 4 1/ .K T T T T T T= − − − +  
CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK:  The coefficient of performance will not have any units, since the units of the T values 
will cancel. The correct coefficient of performance has been derived. 

20.32. The coefficient of performance for a heat pump is given by equation H

H L

20.8 :  
T

K
T T

=
−

 where 

= ° =H 23.0 C 296.15 K.T  

(a)  L
296.15 K10.0 C 263.15 K  8.97

296.15 K 263.15 K
T K= − ° = ⇒ = =

−
  

(b)  = ° = ⇒ = =
−L

296.15 K9.00 C 282.15 K  21.2
296.15 K 282.15 K

T K  

20.33. For this Carnot engine, the temperature of the hot and cold reservoirs are H 1000.0 KT = and 

L 300.0 K,T =  respectively.   

(a) The efficiency of such an engine is ( ) ( )ε = − = − =L H1 / 1 300.0 K/1000.0 K 0.7000.T T     
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(b) The efficiency is also related to the work the engine does, 1.00 kJ,W =  and the heat, ,HQ  extracted 

from the hot reservoir: 3/   / 1.00 10  J / 0.7000 1430 J.H HW Q Q Wε ε= ⇒ = = ⋅ =   

(c) According to the First Law of Thermodynamics, H L ,Q Q W= +  so the heat delivered to the colder 

reservoir, ,LQ  is 3
L H 1430 J 1.00 10  J 430. J.Q Q W= − = − ⋅ =  

20.34. For the Carnot fridge, the hot and cold reservoirs are at a temperature of H 27.0 C 300.15 KT = ° = and  

L 0.00 C 273.15 K,T = ° =  respectively. 
(a)  The coefficient of performance of the fridge is related to both temperatures and the heat extracted 
from the cold reservoir, =L 10.0 J,Q and the work, ,W it does:  

( ) ( )L H L L L H L L/ /   / .K T T T Q W W Q T T T= − = ⇒ = −  

( )( )10.0 J 300.15 K 273.15 K / 273.15 K 0.988 JW = − =  

(b) If instead L 20.0 C 253.15 K,T = − ° =  the work needed is then calculated to be 

( )( )10.0 J 300.15 K 253.15 K / 253.15 K 1.86 J.W = − =  

20.35. If such a thermal-energy plant could be designed to operate at maximum efficiency, it would act as an ideal 
Carnot engine so that the efficiency would be ( )H L H/ .T T Tε = −  A reasonable values for the temperature 

at sea level would be ( )= °H 10.0 C 283 K ,T and the temperature at the bottom of sea would be 

( )= °L 4.00 C 277 K ,T  and since ( )− = °H L 6.00 C 6.00 K ,T T  the maximum efficiency of the plant would 
be ε = = =6.00 K / 283 K 0.0212 2.12 %.  

20.36. THINK:  The efficiency, ,ε  of the Carnot engine can be calculated by the temperatures of the hot and cold 
reservoirs, H 1000 C 1273.15 KT = ° = and L 10 C 283.15 K,T = ° = respectively.  The work is then 
determined by comparing this with the heat removed from the hot reservoir, H 100. J.Q =  
SKETCH:   

 
 

RESEARCH:  The efficiency of the engine is given by ( )ε = − L H1 /T T  and H/ .W Qε =  

SIMPLIFY:  L L
H

H H H

1   1
T TW W Q
T Q T

ε
 

= − = ⇒ = − 
 

 

CALCULATE:  ( )283.15 K1 100. J 77.7599 J
1273.15 K

W  
= − = 
 

 

ROUND:  Three significant figures: = 77.8 J.W  
DOUBLE-CHECK:  The efficiency of the engine is about 80% because the difference in the temperatures 
of the reservoirs is quite large.  Hence, the work obtained from this process is 80% of the heat that is input 
(80 J output from 100 J input).    

20.37. THINK:  This problem is essentially an exercise in algebra.   The efficiencies, 1 2and ,ε ε  are both related to 

the temperatures of the hot and cold reservoirs, 1T and 2 .T   When 1T is doubled, the efficiency is doubled.   
SKETCH:  Not required. 



Chapter 20: The Second Law of Thermodynamics 

 877 

RESEARCH:  The initial efficiency is ( )ε = −1 2 11 / .T T  The efficiency when 1 12T T→  is ( )ε = −2 2 11 / 2 .T T  

The efficiency is doubled for this temperature increase of the hot reservoir, 1 22 .ε ε= The ratio of the 
temperatures is 2 1/T T and the efficiency of the initial engine is 1ε  

SIMPLIFY:  Solve for the ratio of 2 1/ :T T  ( ) ( )ε ε= ⇒ − = −1 2 2 1 2 12   2 2 / 1 / 2 ;T T T T  therefore, 

( ) ( ) ( ) ( )2 1 2 1 2 1 2 1 2 11 / 2 2 / / 2 4 / 2 3 / 2T T T T T T T T T T= − + = − + =  and 2 1/ 2 / 3.T T =  
CALCULATE:  There are no values that need to be substituted. 
ROUND: The ratio of the temperatures is 2 1: 2 : 3.T T =  The efficiency of the engine is 1 0.33.ε =  
DOUBLE-CHECK:  These efficiencies are both less than 1 and are therefore reasonable. 

20.38. THINK:  A Carnot fridge has an ideal coefficient of performance, .K  This refrigerator operates with a 
coefficient that is 32.0% of an ideal refrigerator. The coefficient of performance of an ideal refrigerator can 
be calculated using the temperatures of the two reservoirs, H 22.0 C 295.15 KT = ° =  and 

L 0.00 C 273.15 K.T = ° =  The work is then determined by comparing this with the heat removed from the 
cold reservoir, L 100. J.Q =  
SKETCH:   

 
 

RESEARCH:  The ideal coefficient of performance of a refrigerator is ( )L H L/ .K T T T= −  The actual 

coefficient of performance the refrigerator is 0.320 K.K ′ =  The actual coefficient is also calculated as 

L / .K Q W′ =  

SIMPLIFY:  The actual coefficient of performance is ( )L H L0.320 / .K T T T′ = ⋅ −  The work done on the 

refrigerator is then ( ) ( )L L H L L/ / 0.320 .W Q K Q T T T′= = −  

CALCULATE:  ( )( ) ( )100. J 295.15 K 273.15 K / 0.320 273.15 K 25.169 JW = − ⋅ =  

ROUND:  Three significant figures: 25.2 J.W =  
DOUBLE-CHECK:  This is a reasonable value for the work needed to remove the heat, as you expect 

L .W Q<  

20.39. K = 5.00 and L 40.0 cal.Q =  In cooling mode: 

L L H H
H L

HH L L L

L

1 1 1 1  1   1  .1
1

Q Q Q Q
K Q Q

QW Q Q Q K Q K K
Q

 = = = ⇒ − = ⇒ = + ⇒ = + −  −
 

So,  = =+ 
 

H
140.0 cal 48.0 cal.1

5.00
Q  

20.40. K = 5.00 and L 40.0 cal.Q =  In heating mode: 

H H L L L
H

LH L H H

H

1 1 1  1   1   .
111

Q Q Q Q Q
K Q

QW Q Q K Q Q K
KQ

= = = ⇒ = − ⇒ = − ⇒ =
− −−

 

So, 
( )

 
= =  − 

H
140.0 cal 50.0 cal.

1 1/ 5.00
Q  
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20.41. For an Otto engine, the efficiency is given as: 11 .r γε −= −  For a diatomic gas 7 / 5 1.4.γ = =  The efficiency 

of this engine is 0.200.ε =  Therefore, ( ) ( ) ( ) ( )1/ 1 1/ 1 1.41 1   1 1 0.200 1.75.r r
γγ ε ε

− −− = − ⇒ = − = − =  

20.42. THINK:  From the given data, one can compute the efficiency of the Otto cycle.  The Carnot efficiency is 
given in terms of the temperatures. By comparing these two efficiencies the inequality for the engine 
temperature can be obtained since the Carnot efficiency is always greater than the Otto efficiency.   
SKETCH:  

 
RESEARCH:  ( )ε = −C L H1 / ,T T  1

O 1 ,r γε −= −  C O .ε ε>  The maximum temperature for HT is for C O :ε ε=  

( ) γ−− = − 1
L H, max1 / 1 .T T r  The temperature of the cool reservoir is L 15.0 C 288.15 KT = ° =  and the 

compression ratio is 10.0.r =  For a diatomic gas, 7 / 5.γ =  
SIMPLIFY:   
(a) 1

O 1 r γε −= −   

(b) ( )1 1
L H, max H,max/ 1 1  T /LT T r T rγ γ− −= − − ⇒ =  

CALCULATE:   

(a) ( )1 7/5
O 1 10.0 0.60189ε −= − =   

(b) 1 (7/5)
H =288.15 K /10 723.800 K 450.65 CT − = = °  

ROUND:  Three significant figures:  
(a) O 0.602ε =   
(b) H 451 CT = °  
DOUBLE-CHECK:  The efficiency has no units, and lies between zero and one. The temperatures are 
reasonable values for an outboard motor on a boat. 

20.43. THINK:  The thermal efficiency of an engine is the ratio of how much work is output each cycle to how 
much heat is input.  
(a) The pressure and volume can be read off the graph.  The temperature can be calculated using the ideal 
gas law.   
(b) The efficiency can be found by computing the total work done and the total heat.   
(c) In part (a) the maximum and minimum temperatures were calculated.  From this, the maximum 
efficiency can be computed.  
SKETCH:  

 
RESEARCH:  Ideal gas law: .pV nRT=  Work done by the gas: 0W =  if 0;V∆ =  ( )ln /f iW nRT V V=  if 

0;T∆ =  W p V= ∆  if 0.p∆ =  Helium is a monatomic gas, so (3 / 2)VC R=  and (5 / 2) .pC R=  Heat flow: 



Chapter 20: The Second Law of Thermodynamics 

 879 

(3 / 2)Q nR T= ∆  if 0;V∆ =  Q W=  if 0;T∆ =  (5 / 2)Q nR T= ∆  if 0.p∆ =  Thermal efficiency: 

net H/ .W Qε =  The maximum thermal efficiency can be calculated as: ( )ε = −max min max1 / .T T  
SIMPLIFY:   
(a) At point 1: 3

1 1200. cm ,V =  1 1 atm,p =  1 1 1 1 1 1 / .p V nRT T p V nR= ⇒ =  At point 2: 3
2 1200. cm ,V =  

2 5.00 atm,p =  and 2 2 2 / .T p V nR=   At point 3: 3 3 3 ,p V nRT= 3 1 atm.p =  Since 3 2T T= (isotherm), 

3 3 2 2 3 2 2 3  / .p V p V V p V p= ⇒ =   
(b) net H/ ,W Qε = net 12 23 31W W W W= + +  and H 12 23 31Q Q Q Q= + +  only for 0Q >  (only for heat input) 
since the thermal efficiency is being computed. 

( )
( )

( )

ε

= 


 =   
= −  + + = >

+ += −

=

= −


12

3
23 2

2

31 3 1 3 12 23 31

12 23 31
12 2 1

23 23

31 1 3

0

ln

, only for 03
2

5
2

W

V
W nRT

V

W p V V W W W
Q

Q Q QQ nR T T

Q W

Q nR T T

 

(c)  max min max1 /T Tε = −  
CALCULATE:   

(a) First, calculate the number of moles of helium present: 
0.100 g

0.02498 mol.
4.003 g/mol

n = =  

For point 1 the values are: ( )( )3 6 3 3 3 3
1 1200. cm 10  m cm 1.200 10  m ,V − − −= ⋅ = ⋅  5

1 1 atm 1.013 10  Pa,p = = ⋅  

( )( )
( )( )

5 3 3

1

1.013 10  Pa 1.200 10  m
585.59 K.

0.02498 mol 8.31 J/(mol K)
T

−⋅ ⋅
= =

⋅
 

For point 2 the values are: 3 3
2 1.200 10  m ,V −= ⋅  5

2 5.00 atm 5.065 10  Pa,p = = ⋅    

( )( )
( )( )

3 3 5

2

1.200 10  m 5.065 10  Pa
2927.97 K.

0.02498 mol 8.31 J/(mol K)
T

−⋅ ⋅
= =

⋅
 

For point 3 the values are: 5
3 1 atm 1.013 10  Pa,p = = ⋅  3 2 2927.97 K,T T= =   

( )( )3 3
3 32 2

3
3

5.00 atm 1.200 10  m
6.0000 10  m .

1atm
p V

V
p

−

−
⋅

= = = ⋅   

(b) The work done by the gas along each leg of the cycle is:  

12 0 J,W = ( )( )( )
−

−

 ⋅
= ⋅ = 

⋅ 

3 3

23 3 3

6.000 10  m0.02498 mol 8.31 J/(mol K) 2927.97 K ln 978.2150 J,
1.200 10  m

W and 

( )( )5 3 3 3 3
31 1.013 10  Pa 1.200 10 m 6.000 10 m 486.24 J.W − − − −= ⋅ ⋅ − ⋅ = −  The heat that provided to the engine 

(absorbed by the gas) along each leg of the cycle is: 

( )( )( )12
3 0.02498 mol 8.31 J/(mol K) 2927.97 K 585.59 K 729.36 J,
2

Q = ⋅ − =  = =23 23 978.2150 J,Q W  and 

( )( )( )31
5 0.02498 mol 8.31 J/(mol K) 585.59 K 2927.97 K 1215.60 J.
2

Q = ⋅ − = −  
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Since 31 0Q < , ignore it, because this is heat that is taken from the engine.  The efficiency only depends on 

the heat input to the gas in the engine. Therefore, ε
+ −

= =
+

0 J 978.2150 J 486.24 J
0.288113.

729.36 J 978.2149 J
 

(c)  min
max

max

585.591 1 0.8000
2927.97

T
T

ε = − = − =  

ROUND:  Three significant figures: 
(a) 1 101 kPa,p =  3 3

1 1.20 10  m ,V −= ⋅  1 586 K,T =  2 507 kPa,p =  3 3
2 1.20 10  m ,V −= ⋅  2 2930 K,T =   

3 101 kPa,p =  3 3
3 6.00 10  m ,V −= ⋅  3 2930 KT =  

(b)  0.288ε =  
(c)  max 0.800ε =  
DOUBLE-CHECK:  Of course, it must be that maxε ε<  and this is true here. These are reasonable results 
for the given system 

20.44. THINK:  The efficiency can be expressed in terms of the heat transfers HQ and L .Q  These heat transfers 
can be expressed in terms of temperatures.  Using the ideal gas law and the fact that this is an adiabatic 
process, the temperatures can be related to the processes. 
SKETCH:   

 
 

RESEARCH: net H L L

H H H

1 ,
W Q Q Q
Q Q Q

ε
−

= = = −  isobaric process: ,pQ nC T= ∆  adiabatic process: 

constant,pV γ =  and ideal gas law: .pV nRT=  For a diatomic gas 7 1.4.
5

γ = =   

SIMPLIFY:   

(a)  L

H

1 ,
Q
Q

ε = −  heat flow into the engine: ( )H 3 2 ,pQ nC T T= −  heat flow out of the engine 

( )L 1 4 ,pQ nC T T= − −   4 1

3 2

1 .
T T
T T

ε
−

= −
−

  Next, express ε  in terms of pressure.   / ,pV nRT V nRT p= ⇒ =  

( )/  V nRT p
γγ = ⇒  adiabatic: 

( )
1 constant.

nRTnRTpV p
p p

γγ

γ
γ −

 
= = = 

 
 Since n  and R  are also constants 

1 constant.T pγ γ−⇒ =  

Process 1 2 :→  

11 1

1 1 2 2
1 1 2 2 1 2 1 2

1 1

    
p p

T p T p T T T T
p p

γ
γ

γ γ γ γ γ γ

 
− − 

 
− −    
= ⇒ = ⇒ =   
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Process 3 4 :→  

1 1 11 1 1

1 1 4 1 2
3 3 4 4 3 4 4 4 3

3 2 1

   
p p p

T p T p T T T T T
p p p

γ γ γ
γ γ γ γ

     
− − −     

     
− −      
= ⇒ = = ⇒ =     

    
 

Therefore, 

1 1

1 31 4 2
4

2 3 1 2

 .
T TT T p

T
T T p T

γ
 

− 
  

= = ⇒ = 
 

 

Efficiency: 4 1

3 2

1 ,
T T
T T

ε
−

= −
−

  

31 3 1 111
22 1 2

3 2 2 13
2

2

1
1 1 1 1 ,

1

TT T TT
TT T p

T T T pT
T

T

γ

ε

 
− 

 

   −−       = − = − = − = −   −    −   
   

 
1 1

2
p

1

  1 p

p
r r

p
γε

 
− 

 ≡ ⇒ = −  

(b)  
1 1

1 ,pr γε
 

− 
 = −  p 10.0r =   

CALCULATE:   

(a) The requested relation for the efficiency is given as: 
1 1

1 .pr γε
 

− 
 = −  

(b) ( )ε
 − 
 = − =

5 1
71 10.0 0.4821  

ROUND:  (b) Three significant figures: 0.482.ε =  
DOUBLE-CHECK:  It was shown that the efficiency of the Brayton cycle only depends on the pressure 
ratio, as requested.  An efficiency of approximately 50% is a reasonable value for part (b). 

20.45. (a)  H H/ 8500. J / 700. K 12.1 J/KS Q T∆ = = − = −  and / 8500. J /100. K 85.0 J/K.L LS Q T∆ = = =  

(b)  rod 0 J/K.S∆ =  There is no change in entropy for the rod since there is no net heat flow into or out of 
the rod.   
(c)  system H L rod 8500. J / 700. K 8500. J /100. K 0.00 J/K 72.9 J/KS S S S∆ = ∆ + ∆ + ∆ = − + + =  

20.46. To find the entropy change, examine the number of microstates of the system before and after the 
expansion. The number of gas molecules is ,AN nN= where n is the number of moles and AN  is 
Avogadro’s constant. Before the expansion there were iw  microstates for the gas molecules that were in 
half of the box.  After the barrier is removed the gas molecules are free to expand into the other half of the 
box. The number of microstates after the expansion is f i2 .Nw w=  The change in entropy is then 

( ) ( )B f i B Bln / ln 2 ln2 ln(2).NS k w w k Nk nR∆ = = = =   

20.47. (a) The theoretical maximum efficiency is provided by a Carnot engine, whose efficiency depends 
reservoir temperatures.  ( ) ( )ε = − = − =L H1 / 1 300. K / 400. K 0.250.T T  
(b)  A Carnot engine consists of two isothermal processes and two isentropic processes.  Therefore, after a 
cycle the total entropy change is zero.   

20.48. It is assumed that the block lost all of its kinetic energy to heat so that 2(1/ 2) .Q K mv= =  Then, 

( ) ( )( )( ) ( )∆ = = =
221/ 2 / 1/ 2 10.0 kg 10.0 m/s / 300.15 K 1.67 J/K.S mv T  

20.49. The initial number of states available is i / .Aw V V=  When the volume is doubled the final number of 
states available is f 2 / .Aw V V=  Therefore, the change in entropy is  

( ) ( ) ( )( )B f i B A Bln / ln 2 / / / ln2.AS k w w k V V V V k∆ = = =  
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20.50. THINK:  Due to the insulation, no heat is exchanged, 0,Q =  so the temperature of the gas remains 
constant.  Since the piston moves very quickly, no work is done by the gas.  Therefore, by the First Law of 
Thermodynamics the internal energy of the gas must remain the same as well.  The problem can be solved 
by using the ideal gas law and the definition of entropy. 
SKETCH:   

 
 

RESEARCH:  int ,E Q W∆ = −  0,Q =  int 2 10  0  0  .W E T T T= ⇒ ∆ = ⇒ ∆ = ⇒ =  Ideal gas law: 

2 2 2 ,p V nRT=  ,dQS
T

∆ = ∫  int 0 .E dQ dW pdV∆ = ⇒ = =  

SIMPLIFY: 2 1 ,T T= ( )2 2 2 2 1 1 1 1 2 1
1/   / 3 (1/ 3) /   
3

p nRT V p nRT V nRT V p p= ⇒ = = ⇒ =  1

1

3
.

V

V

pdV
S

T
∆ = ∫  

Since 
1  nRpV nRT
T pV

= ⇒ =  Therefore,  

1 1
1

11 1

3 3 3 1

1

3
ln | ln ln3

V V V
VV V

VnRpdV dVS nR nR V nR nR
pV V V

 
∆ = = = = =    

 
∫ ∫  

CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK:  It is logical that the pressure should decrease if the volume increases at a constant 
temperature.  Similarly, an increase of entropy is reasonable since the molecules of the gas now have a 
larger volume to occupy. 

20.51. THINK:  The entropy is related to the number of states shared by the specified property.  This problem 
can be solved by counting the possibilities.   
SKETCH:  Possible spin states (5 spins in total, “+”= spin-up, “-” = spin-down).  

 
RESEARCH:  B lnS k w=  
SIMPLIFY:  5-up: 1w = (there is only 1 way to put 5 up). 3-up: w can be determined by listing the 
possibilities: 

 
 

Alternate method: Choosing 3 of 5 spin-up: 5 3 10w C⇒ = =  (as before).  3 up B ln10.S k=  
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CALCULATE:  5 up B Bln ln1 0S k w k= = =  

( )23 23
3 up B Bln ln10 1.38 10  J/K ln10 3.178 10  J/KS k w k − −= = = ⋅ = ⋅  

ROUND: 5 up 0 (exactly).S =  For 3 upS , round to three significant figures: 23
3 up 3.18 10  J/K.S −= ⋅  

DOUBLE-CHECK:  By definition the entropy of one microstate is exactly 0.  As the number of states 
increase the entropy of the system increases so it must be that 3 up 5 up ,S S>  as it has been found.    

20.52. THINK:  The entropy change is the sum of the entropy changes for the water and for the iron.  The final 
temperature is the same for the both iron and water.  This temperature can be found by noting that the 
heat lost by the iron is the heat gained by the water. The question gives the values: i 0.545 kg,m =  

( )=i 448 J/ kg K ,c  = ° =i 1000.0 C 1273.2 K,T   =W 10.00 kg,m  ( )=W 4186 J/ kg K ,c  

= ° =W 22.0 C 295.2 K.T  
SKETCH:   

 
 

RESEARCH:  Both the iron and the water reach the same final temperature, f .T  The entropy change is 

W i ,S S S∆ = ∆ + ∆  
f

W Wi
/ ,S dQ T∆ = ∫  

f

i ii
/ ,S dQ T∆ = ∫  W i ,Q Q= −  W idQ dQ= −  where .dQ mcdT=  

SIMPLIFY: ( ) ( )f f

W i
W W i i W W f W i i f i/ / ln / ln / .

T T

T T
S m c dT T m c dT T m c T T m c T T∆ = + = +∫ ∫  In order to calculate 

the entropy change fT  needs to be obtained from: W i W W W i i i  ,Q Q m c T m c T= − ⇒ ∆ = − ∆  

( ) ( )W W f W i i f i ,m c T T m c T T− = − −   ( ) ( )
( )
i i i W W W

W W i i f i i i W W W f
W W i i

  .
m c T m c T

m c m c T m c T m c T T
m c m c

+
+ = + ⇒ =

+
 

CALCULATE: 

( ) ( )( )( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( )

+
= =

+
f

0.545 kg 448 J/ kg K 1273.2 K 10.00 kg 4186 J/ kg K 295.2 K
300.87 K

10.00 kg 4186 J/ kg K 0.545 kg 448 J/ kg K
T  

( ) ( )( ) ( ) ( ) ( )( ) ( )10.00 kg 4186 J/ kg K ln 300.7 K / 295.2 K 0.545 kg 448 J/ kg  K ln 300.7 K /1273.2 K

420.4 J/K

S∆ = +

=
 

ROUND:  The least precise value given in the question has three significant figures, so the final answer is 
rounded to three significant figures: ∆ = 420. J/K.S  
DOUBLE-CHECK:  The entropy change has the units of J/K, which is appropriate.  

20.53. THINK:  Consider the rate of change in entropy of the Earth as it absorbs energy from Sun and space, and 
as it radiates energy back into space.  The Earth’s entropy increases when it absorbs energy and decreases 
when it radiates energy. 
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SKETCH:   

 
 

RESEARCH:  The rate of change of entropy is given by: 1 .S Q
t T t

∆ ∆ 
=  ∆ ∆ 

 

SIMPLIFY:  The rate of change of Earth’s entropy is given by:  

S E sptot S E sp

1 1 1 .S Q Q Q
t T t T t T t

∆ ∆ ∆ ∆       
= + +       ∆ ∆ ∆ ∆       

 

The Earth absorbs radiation from the Sun at a rate of 2
E

S

,Q R K
t

∆ 
= ∆ 
π where K is the solar constant. The 

Earth radiates energy into space at a rate given by the Stefan-Boltzmann law:  

2 4
E E

E

4 ,Q R T
t

∆ 
= − ∆ 

π σ  

The Earth absorbs energy from space at a rate given by the Stefan-Boltzmann law:  

2 4
E sp

sp

4 .Q R T
t

∆ 
= ∆ 

π σ  

Therefore, the total rate of change of Earth’s entropy is given by: 

( )
2

2 3 2 3 2 3 3E
E E E sp E sp E

S Stot

4 4 4
R KS KR T R T R T T

t T T
 ∆ 

= − + = + −  ∆   

π
π σ π σ π σ  

CALCULATE:  

( ) ( )
( ) ( ) ( ) ( )( )

2
2 3 36 8 2 4

tot

14

1370. W/m
6.371 10 m 4 5.670 10  W m  K 50.0 K 278.9 K

5779 K

5.93569 10 W/K

S
t

π − − −
 ∆   = ⋅ + ⋅ −   ∆   

= − ⋅

 

ROUND:  To three significant figures: 14

tot

5.94 10  W/ K.S
t

∆ 
= − ⋅ ∆ 

 

DOUBLE-CHECK:  The negative sign indicates that the entropy of the Earth is decreasing.  At first, one 
may hesitate to accept this answer since the entropy of a system must never decrease. However, in this 
case, the system is the Sun, the Earth and space, so the entropy of Earth (only one part of the system) may 
decrease.  This result is justified because in order for Earth to have life, Earth must be organized (i.e. it 
must decrease its entropy).  Since the Earth uses the Sun’s energy to create and sustain life, the Sun acts to 
reduce the entropy of the Earth.       

20.54. THINK: Parts (a), (b) and (d) can be computed directly.  Part (c) can be calculated with the Stefan-
Boltzmann radiation law. For part (e), the lower-bound can be computed by considering the sum of the 
entropy production rates for the energy consumed and the amount lost to radiation and evaporation. 
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SKETCH:   

 
RESEARCH:  in / 2000. kcal/day,Q t∆ ∆ =  core 37.0 C,T = °  skin 27.0 C,T = °  2

skin 1.50 m ,A =  air 20.0 C,T = °  

0.600e = (emissivity), vap 575 cal/gL =  and 8 2 45.670 10  W m  K ,σ − − −= ⋅  specific heat for water is 

4186 J/kcal.  

(a) The efficiency of a Carnot engine operating between these temperatures would be: ( )ε = −max 1 / .L HT T   

(b) The rate of heat generated as waste would be: ( )ε∆ ∆ = − ∆ ∆waste max in/ 1 / .Q t Q t  

(c)  Stefan-Boltzmann yields: ( )4 4
rad skin air/ .Q t eA T Tσ∆ ∆ = −  

(d) The transpiration rate must be: ( )( ) ( )( )vap vap vap waste rad/ 1/ / 1/ / / .M t L Q t L Q t Q t∆ ∆ = ∆ ∆ = ∆ ∆ −∆ ∆  

(e)  The processes described are not reversible, but we can calculate the lower bound of the entropy rate: 

( )( ) ( ) ( )( )3 3
core in skin air core vap/ 1/ / 1/ / .S t T Q t eA T T T Q tσ∆ ∆ ≥ − ∆ ∆ + − + ∆ ∆  

SIMPLIFY:  Not required.  
CALCULATE:   
(a)  ( ) ( )max 1 20.0 C 273.15 C / 37.0 C 273.15 C 0.05481ε = − ° + ° ° + ° =   

(b)  ( )( )( ) ( )∆ ∆ = − =waste / 1 0.05481 2000. kcal/day 4186 J/kcal / 86400 s/day 91.59 WQ t  

(c) ( )( )( ) ( ) ( )( )4 48 2 4 2rad 5.670 10  W m  K 0.600 1.50 m 27.0 C 273.15 C 20.0 C 273.15 C

37.31 W

Q
t

− − −∆
= ⋅ ° + ° − ° + °

∆
=

 

(d)  
( )( )

( )( )
91.59 W 37.31 W 3600 s/h

/ 81.18 g/h
575 cal/g 4.186 J/cal

M t
−

∆ ∆ = =  

(e)  
( )( )

( )( )
( )( )( ) ( ) ( )( )
( )
( )

3 38 2 4 2

2000. kcal/day 4186 J/k cal
/

86400 s/day 37.0 C 273.15 C

5.670 10  Wm K 0.600 1.50 m 27.0 C 273.15 C 20.0 C 273.15 C

91.59 W 37.31 W

37.0 C 273.15 C

0.04310 W/K

S t

− − −

∆ ∆ ≥ −
° + °

+ ⋅ ° + ° − ° + °

−
+

° + °

≥ −

 

ROUND:  The values need to be rounded to three significant figures. 
(a)  max 0.0548ε =   
(b)  ∆ ∆ =waste / 91.6 WQ t  
(c)  rad / 37.3 WQ t∆ ∆ =  
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(d)  / 81.2 g/hM t∆ ∆ =  
(e)  / 0.0431 W/KS t∆ ∆ ≥ −  
DOUBLE-CHECK:  These are all reasonable values for this particular person.  The fact that the entropy 
production rate is close to zero is consistent with the fact that the person is working with Carnot 
efficiency, as the net entropy production rate for a Carnot engine is zero. 

20.55. ε = − = − =L

H

288 K
1 1 0.95.

5700 K
T
T

 

20.56. For an isothermal process, constant.pV =  For an adiabatic process, constant.pV γ =  Differentiate both 
sides of both equations with respect to .V  

Isothermal process: 0  
dp dp dp pdVV p V p
dV dV dV dV V

      
+ = + = ⇒ = −      

      
  

Adiabatic process: 
( ) 1

1 0  
d Vdp dp dp p V p

V p V p V
dV dV dV dV VV

γ γ
γ γ γ

γ

γ
γ γ

−
−

       + = + = ⇒ = − = −            
 

Therefore, 
adiabatic isotherm

.
dp dp
dV dV

γ   
=   

   
 An adiabatic curve is steeper than an isotherm by a factor of .γ  

20.57. Gasoline in vapor form when ignited is diatomic with 7 / 5 1.4.γ = =  

1 1 1.4
max, 91 max, 911 1 8.5 0.5752r γε − −= − = − =  

1 1 1.4
max, 93 max, 931 1 9.0 0.5848r γε − −= − = − =  

1 1 1.4
max, 95 max, 951 1 9.8 0.5987r γε − −= − = − =  

1 1 1.4
max, 97 max, 971 1 10.5 0.6096r γε − −= − = − =  

So, in going from a gasoline with octane number 91  (in an engine with 8.5  compression ratio) to a 
gasoline with octane number 97 (in an engine with compression ratio 10.5),  the percentage increase in 
efficiency is: (0.6096 0.5752) / 0.5752 6.0%.− =  

20.58. (a) The reservoir temperatures are H 35 C 273 C 308 KT = ° + ° =  and  L 18 C 273 C 291 K.T = ° + ° =  The 

coefficient of performance of the air conditioner is L /K Q W=  and the for an ideal engine: 

( )max L H L/ .K T T T= −  Solving these equations for ( )H L L L: /W W T T T Q = −  and using the First Law of 

Thermodynamics gives, ( )H L
H L L

L

308 K 291 K
1 1.00 J 1 1.06 J.

291 K
T T

Q W Q Q
T

 − −
= + = + = + =       

  

(b) Since 1.00 J of heat flows out of the room (negative Q with respect to the indoors) and the heat 

transfers are isothermal, 31.00 J 3.44 10  J/K.
291 K

QS
T

−∆ = = − = − ⋅  

(c) Since 1.06 J of heat flows into the outdoors (positive Q with respect to the outdoors) and the heat 

transfers are isothermal, 31.06 J 3.44 10  J/K.
308 K

QS
T

−∆ = = = ⋅  
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20.59. Heat capacity: / .C E T= ∆ ∆  Entropy:  

 f

i

f

i

0.0700 J 100. C 273.15 C
ln ln 0.0386 J/K.

0.500 K 10. C 273.15 C
f T

i T

TdQ dT ES C
T T T T

 ° + ° ∆
∆ = = = = =    ∆ ° + °   

∫ ∫  

20.60. A Carnot engine is the most efficient engine possible that operates between two temperature reservoirs. 
The efficiency of the Carnot cycle between these two temperature reservoirs would be  

( ) ( ) ( )ε = − = − ° + ° ° + ° =L H1 / 1 4.0 C 273.15 C / 20.0 C 273.15 C 0.055.T T  

Therefore, the claim of a water-driven engine with an efficiency of 0.200 is invalid since 0.0546 is the 
maximum efficiency possible.  

20.61. The entropy of the system of dice will increase if more dice are added.  The entropy can be calculated by 
the formula B ln ,S k w=  where w is the number of available states.  For one six-sided dice 6w =  so 

1 B ln6.S k=  For n six-sided die, 6nw =  so ( )B B 1ln 6 ln6 / .n
n nS k nk S S n= = ⇒ =  Therefore, for n dice, 

the entropy increases by a factor of .n  This means that for two dice the entropy is doubled and for three 
dice the entropy is tripled.  

20.62. The change in entropy is / .S Q T∆ = ∆  By the First Law of Thermodynamics, int .Q E W∆ = ∆ + ∆  When the 
moving car hits the wall all of the kinetic energy K is converted into work (the car destroys the wall and the 
wall twists the metal of the car), that is .K W∆ = ∆  For the purpose of answering the question, it can be 
said that the internal energy of the car does not change int( 0)E∆ = , since a temperature increase is only 
generated from the work that is being done.  Therefore, Q K∆ = ∆  and the change in entropy of the car is:  

( )( )221 1 1200 kg 30.0 m/s
2 2 1800 J/K.

27 C 273 C

mvQ KS
T T T
∆ ∆

∆ = = = = =
° + °

 

20.63. The entropy change for this process is given by / .S Q T∆ = ∆  Dividing both sides by the number of moles, 
n, yields ( ) ( ) vap/ / / / .S n Q n T L T∆ = ∆ =  So, at a pressure of 100.0 kPa, the boiling temperature is 

( ) ( ) ( )( )3
vap / / 5.568 10  J/mol / 72.1 J/ mol K 77.2 K.T L S n= ∆ = ⋅ =  

20.64. THINK:  If heat cannot escape, then the final equilibrium temperature is °50.0 C since there are equal 
amounts of water at 0 C°  and at 100. C.°  The cold water increases its entropy and the hot water decreases 
its entropy. 
SKETCH:   

 
RESEARCH:  /S dQ T∆ = ∫  and dQ mcdT=  

SIMPLIFY:  f f

L H

2
f f f

L H
L H L H

ln ln ln
T T

T T

T T TdT dTS S S mc mc mc mc
T T T T T T

      
∆ = ∆ + ∆ = + = + =               

∫ ∫  

CALCULATE:  ( )( ) ( )−
 ° + ° ∆ = ⋅ =
 ° ° + °
 

2

3
50.0 C 273.15 C

100. 10  kg 4186 J/(kg K) ln 10.14 J/K
(273.15 C)(100. C 273.15 C)

S  

ROUND:  Three significant figures: 10.1 J/K.S∆ =  
DOUBLE-CHECK:  The change in entropy for 100 g of water going from 0 C°  to 50 C° is 

( ) ( )1 f iln / ln 323 K / 273 K 70.40 J/K.S cm T T cm∆ = = =  Similarly, the change in entropy for 100 g of water 

going from 100 C° to 50 C° is ( )2 ln 323 K / 373 K 60.25 J/K.S cm∆ = = −  1 2 10.15 J/K.S S∆ + ∆ =  
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20.65. THINK:  A Carnot engine is the most efficient engine possible that operates between two temperature 
reservoirs.  The efficiency of the Carnot cycle between these two temperature reservoirs depends on the 
ratio of the temperatures. The question gives the power input and the power output; a ratio of the two will 
provide the actual efficiency. The unit gal is taken to be American gallons (1 gal = 3.785 L). 
SKETCH:   

 
RESEARCH:   
(a) The maximum thermal efficiency of an engine (Carnot) is ( )ε = −max out in1 / .T T  

(b) The actual efficiency is simply act out in/ .P Pε =  

(c) The heat given to the river water during condensation of the steam is ( )in outQ P P t Pt= − = ∆  over time 

t and .Q mc T= ∆  The volumetric flow rate of the water can be written as ( / ) / ,f m tρ=  where m is the 
mass, ρ  is the density and t is time.  Therefore, .m f tρ=   
SIMPLIFY:   
(a)  Already in simplified form. 
(b)  Already in simplified form. 

(c)  f i
P PQ mc T Pt f tc T T T T

f c f c
ρ

ρ ρ
∆ ∆

= ∆ = ∆ = ∆ ⇒ ∆ = ⇒ = +  

CALCULATE:  

(a)  max

30.0 C 273.15 C
1 0.47108

300. C 273.15 C
ε

° + °
= − =

° + °
 

(b) 
1000. MW

0.3333
3000. MW

ε = =  

(c)  
( )( )

( )( )( )( ) ( )( )
6

f 7

3000. MW 1000. MW 10  W/MW
20.0 C 31.361 C

4.00 10  gal/h 1 h/3600 s 3.785 L/gal 1 kg/L 4186 J/ kg C
T

−
= ° + = °

⋅ °
 

ROUND:   Three significant figures: 
(a)  max 0.471ε =  
(b)  0.333ε =  
(c)  f 31.4 CT = °  
DOUBLE-CHECK:  These are reasonable results for the parameters given. 

20.66. THINK:  When the two systems are allowed to combine, the combined system will be under constant 
pressure due to the force of the piston.  Heat will be transferred from System 1 to System 2 since System 1 
is at a higher temperature, but the net heat flow will be zero. 
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SKETCH:   

 
RESEARCH:   
(a)  1 2 0,Q Q+ =  1 1 1pQ n C T= ∆  and 2 2 2 .pQ n C T= ∆  

(b)  2 2 2pQ n C T= ∆  

(c)  To determine the displacement of the piston we need to find the amount of work that System 1 does 
on the piston.  By the First Law of Thermodynamics, int .W Q E= − ∆  The work done by the heat transfer 
pushes on the piston with force F, moving it by :x∆  .W F x= ∆  The change in internal energy is 

int 2
3 .
2

E nR T∆ = ∆  

(d)  The work required to move the piston must come from the heat transfer within the system. The 
fraction of the heat transferred that is converted into work is given by 2/ .W Q  
SIMPLIFY:   
(a)  ( ) ( )− − = − ⇒ + = +1 f 1 2 f 2 1 f 2 f 1 1 2 2p pn C T T n C T T n T n T n T n T   

( ) 1 1 2 2
1 2 f 1 1 2 2 f

1 2

n T n T
n n T n T n T T

n n
+

+ = + ⇒ =
+

 

(b)  ( )2 2 f 2pQ n C T T= −  

(c)  ( )
( ) ( ) ( )2 f 2 2 f 2

2 f 2
2 2 f 2

3
3 32  
2 2

p

p

n C T T Rn T T n T T
F x Q Rn T T x C R

F F

− − − − ∆ = − − ⇒ ∆ = = − 
 

  

(d)  
( )2

2 2

f 2

2

3
2pC R n T T

F xW
Q Q Q

 − − ∆  = =  

CALCULATE:   

(a) f

(0.0500 mol)(500. K) (0.0250 mol)(250. K)
416.7 K

0.0500 mol 0.0250 mol
T

+
= =

+
  

(b) ( ) ( )( )2
50.0250 mol 8.31 J/(mol K) 416.7 K 250. K 86.5798 J
2

Q  
= − = 

 
  

(c) ( ) ( )( )0.0250 mol 416.7 K 250. K
8.31 J/(mol K) 1.732 m

20.0 N
x

−
∆ = =  

(d) 
( )( )( )

2

8.31 J/(mol K) 0.0250 mol 416.7 K 250. K
0.40000

86.5798 J
W
Q

−
= =  

ROUND:  Three significant figures:  
(a) f 417 KT =   
(b) 2 86.6 JQ =  
(c) 1.73 mx∆ =  
(d) The fraction of the heat transferred that is converted to heat is 40.0%. 
DOUBLE-CHECK:  The final temperature is an increase from the average temperature of 375 K, as would 
be expected from the average force. The change of 86.6 J is of an appropriate value for the system. The 
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piston being displaced by 1.73 meters is realistic. If the engine had been an ideal Carnot engine, it would 

have a work to heat ratio of 500 250 1 .
500 2
−

= The calculated ratio is lower than the ideal value, as would be 

expected. 

20.67. THINK:  For reversible processes, the entropy changes can be computed directly from the defining 
equations.  The net change is entropy is zero for the full cycle.   
SKETCH:   

 
RESEARCH:  1 2T T=  and 2 14 .V V=  The entropy change is given by / .dS dQ T=  For an adiabatic process: 

0,dQ =  constantpV γ =  with γ = 5 / 3  for a monatomic gas. For an isobaric process: .pdQ nC dT=  For an 

ideal gas: .pV nRT=  
SIMPLIFY:  An adiabatic curve is a curve of constant entropy since there is not heat flow ( 0),dQ =  so  

adrabatic 0.S∆ =  3

2

3
isobar P P

2

ln .
T

T

TdTS nC nC
T T

 
∆ = =  

 
∫  By the ideal gas law, 3 3 3 3

2 2 2 2

T p V V
T p V V

= =  since 3 2 .p p=  

Finding, 3

2

:
V
V

constantpV γ = along 3 1→  (the adiabatic process), so 3 3 1 1 ,p V p Vγ γ=  but 3 2p p=  and 

2
1 ,

4
V

V = so 2
2 3 1 .

4
V

p V p
γ

γ  
=  

 
 Using the ideal gas law, since 1 2 :T T=  1 1 2 2 .p V p V=  Since 

( )2 1 1 1 2 1 1 24 : 4  4 .V V p V p V p p= = ⇒ =  Back to the adiabatic process: 

( )
1 1

3 32 2
2 3 1 2 3 2

2 2

 4   4 .
4 4

V TV V
p V p p V p

V T

γ γ
γ γ γ

−   
= ⇒ = ⇒ = =   

   
  

1 1
3

isobar
2

1ln ln 4 1 ln4.p p p

T
S nC nC nC

T
γ

γ

−    
∆ = = = −          

  To find isothermS∆ , use the fact that the sum of the 

entropy changes is zero:  tot isotherm isobar adiabatic isotherm isobar0   .S S S S S S∆ = = ∆ + ∆ + ∆ ⇒ ∆ = −∆  
CALCULATE:  

( )( )( )( )5 3 3

1 1

1

3.00 atm 1.013 10  Pa/atm 6.00 L 10  m / L
4.559 J/K

400. K
PV

nR
T

−⋅
= = =  

adiabatic 0S∆ =  

( )   
∆ = − = − = − = −   

   
isobar

3 51 ln4 2 ln2 2 4.559 J/K ln2 6.320 J/K
5 2

S n R nR  

( )∆ = = =isotherm 2 ln2 2 4.559 J/K ln2 6.320 J/KS nR    
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ROUND:  Three significant figures: 

adiabatic 0S∆ =  (exact) 
∆ = −isobar 6.32 J/KS  

∆ =isotherm 6.32 J/KS  
DOUBLE-CHECK:  The entropy changes are reasonable for the values that are given.  These results are 
expected for a reversible cycle. 

20.68. THINK:  To compute the heat input, use the First Law of Thermodynamics and calculate the work done 
and the change in internal energy of the gas. 
SKETCH:   

 

RESEARCH:  Use the values: 2 3
i 1.00 10  m ,V −= ⋅ 2 3

f 5.00 10  m ,V −= ⋅  3.00 mol,n = 5
i 3.00 10  Pap = ⋅ and 

2
f 9.00 10  Pa.p −= ⋅  The ideal gas law is: ,pV nRT= and the First Law of Thermodynamics is: 

int ,Q W E= + ∆  f

i

V

V
W pdV= ∫  and ( )int f i

3 .
2VE nC T nR T T∆ = ∆ = −  

SIMPLIFY:  First, find an equation for the work: 

( )( ) ( )

( ) ( ) ( )( )

f

i
f i f i i f i

f i f i i f i f i

1area under the curve on the graph
2

1 1 .
2 2

V

V
W PdV V V p p p V V

V V p p p p p V V

= = = − − + −

 = − − + = + − 
 

∫  

Next, find an equation for the change in internal energy: 

f f
f ,

p V
T

nR
=  i i

i

p V
T

nR
= ⇒  f f i i

f i

p V p V
T T

nR
−

− = , ( )− 
∆ = = − 

 
f f i i

int f f i i
3 3
2 2

p V p V
E nR p V p V

nR
  

Therefore, ( )( ) ( )( )int f i f i f f i i
1 3 .
2

Q W E p p V V p V p V= + ∆ = + − + −  

CALCULATE:  

( )( ) ( )( ) ( )( )( )− − − = ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅  
= ⋅

5 2 3 5 2 3 5 2 3

4

1 12.0 10  Pa 4.00 10  m 3 9.00 10  Pa 5.00 10  m 3.00 10  Pa 1.00 10  m
2

8.7000 10  J

Q  

ROUND:  Three significant figures: 48.70 10  J.Q = ⋅  
DOUBLE-CHECK:  This is a reasonable result.  Note that the result is independent of the number of 
moles. 

20.69. THINK:   Since there is no internal energy change during isothermal expansion, the heat absorbed is equal 
to the work done.  Along the isobar, it is only necessary to compute the work done.  During the constant 
volume process, the work is zero, and the heat is equal to the change in internal energy.   
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SKETCH:   

 
RESEARCH:  The ideal gas law: .pV nRT=  For an isothermal process there is no change in internal 

energy so the work done by the gas is equal to the heat flow into the gas: ( )2 2 1 Tln / .HW Q nRT V V W= = ≡  

For an isobaric process: 2 P .W p V W= ∆ ≡  For a constant-volume process: int V V .E nC T Q∆ = ∆ ≡  The 
efficiency of the engine is equal to the ratio of the net work done by the gas to the heat that is input:  

net in/ .W Qε =  
SIMPLIFY:  The efficiency of the engine in terms of the work and heat flow over the cycle is: 

T P T P

V T V

.
H

W W W W
Q Q W Q

ε
+ +

= =
+ +

  

2 2 2 2
2 T 2 2 2

1 1

ln ln
p V V V

T W nRT p V
nR V V

   
= ⇒ = =   

   
 

( )p 2 1 2W p V V= −  

( ) ( )1 1 2 1
V 1 3 1 1 2

3 3 3
2 2 2

p V p V
Q nR T T nR V p p

nR nR
 

= − = − = − 
 

 

CALCULATE:   

( )( )( )( )5 3 3
T

120.0 L
1.00 atm 1.013 10 Pa/atm 120.0 L 10 m /L ln 16852 J

30.0 L
W −

 
= ⋅ =  

 
 

( )( )( )( )5 3 3
P 1.00 atm 1.013 10 Pa/atm 30.0 L 120.0 L 10 m /L 9117 JW −= ⋅ − = −   

( )( )( )( )3 3 5
V

3 30.0 L 10 m /L 4.00 atm 1.00 atm 1.013 10 Pa/atm 13676 J
2

Q −= − ⋅ =  

Therefore the efficiency is 16852 J 9117 J 0.2534.
16852 J 13676 J

ε −
= =

+
 

ROUND:  Three significant figures: 0.253.ε =  
DOUBLE-CHECK:  This is a reasonable efficiency for an engine. 

20.70. THINK:  Cylinder A is at a higher pressure than cylinder B. When the piston is released the argon will 
expand and move the piston. This will in turn compress the oxygen in cylinder B since the pistons are 
connected by a rigid rod.  Cylinder A is insulated and so processes occurring are adiabatic. Cylinder B is in 
contact with a thermostat that maintains the cylinder at a constant temperature and so the oxygen in this 
cylinder therefore expands or contracts isothermally. (Assuming the cylinders are thermally isolated 
initially.) The cylinders have the same internal diameters and their pistons are connected by a rigid rod so, 
when free to move, the pistons will move until the pressures are equal in each cylinder. Also, since the 
pistons are connected by a rigid rod, the total volume in the two cylinders must remain constant. In the 
final part of the question, if the valve is opened, the gases will mix and heat will flow from the hotter 
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cylinder to the cooler one (2nd Law Thermodynamics) until the equilibrium temperature is reached. The 
piston will move to maintain equal pressure in each cylinder. When the valve is opened to connect the two 
cylinders, the equilibrium temperature will be 300. K since the thermostat will maintain the now 
connected cylinders at this temperature. 
SKETCH:  

 
RESEARCH: 
(a) For cylinder A changes are adiabatic (Q = 0) and so (by the First Law Thermodynamics) int .E W∆ = −  

For adiabatic process:  
pVγ = constant                                                             (1) 

or equivalently   
TVγ−1 = constant                                                              (2) 

Work, W, done by the argon is at the expense of its internal energy. Work done during an adiabatic 
expansion as temperature changes from TAi to TAf is:  

( ) γ= −A Af Ai  –  / (1 ).W n R T T                                                         (3) 
Argon is a monotonic gas. According to kinetic theory of gases considering the elastic collisions of 
molecules with the walls of the container (see Chapter 19 for details) it can be shown that for a monotonic 
gas:   γ = 5/3. 
(b) For cylinder B changes occur isothermally so (by the First Law Thermodynamics) int  0E∆ =  and 

.Q W= For a gas undergoing compression isothermally: 
pV = constant.                                                                           (4) 

Work done on the gas during an isothermal compression as volume changes from VBi to VBf  is:  

B Bf Bi  ln( / )W n RT V V= ,                                                            (5) 

and this is expelled as heat to the thermostat to maintain the temperature.  
(c) After the piston is released, the connected pistons move so that the argon expands, while the oxygen 
contracts until the pressures are equal in each cylinder: 

=Af Bfp p  .                                                                   (6) 

For cylinder A using equation (1): γ γ=Ai Ai Af Af p V p V  so that  
γ γ=Af Ai Ai Af / .p p V V                                                                             (7) 

For cylinder B using equation (4):  Bi Bi Bf Bf p V p V= so that  

Bf Bi Bi Bf / .p p V V=                                                                        (8) 
SIMPLIFY:   
(a) For cylinder A using equation (2): TVγ-1 = constant and γ = 5/3 for argon. Therefore  γ − 1 = 2/3, and 

1 2/3 TV TVγ − = , as required. For cylinder A it is given that when the piston is released the volume expands 

from VAi to VAf = 8VAi . This means that ( )2/32/3 2/3
Ai Ai Af Af Af Ai  8T V T V T V= = or equivalently (since 82/3 = 4) 

that  

=Af Ai
1 
4

T T .                                                                      (9)  

(b) For cylinder B it is given that the density, ρBf, of the oxygen after the compression is twice the original 
density, ρBi. Density is /m Vρ =  and this means that the volume of oxygen in cylinder B after the 
compression is ρ ρ= =Bf Bf Bi /  / 2 .V m m That is,  
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=Bf Bi
1 .
2

V V                                                                                                                 (10) 

CALCULATE:  
(a) For cylinder A: Mass of Argon = 0.320 kg = 320. g. Number of moles of Argon nA = mass in 
grams/molar mass = 320./39.95 = 8.0100. 
(b) Using equations (6), (7) and (8):  

γ γ= ⇒ = 
Af   Bf   Ai Ai Af Bi Bi Bf/  /p p p V V p V V    (11) 

Now using result (10) and the given fact that for cylinder A the volume increases from VAi  to VAf = 8VAi 

implies that in equation (11):  ( )= = = = =
5/3

Af   Ai Bf   Bi1/ 8 2 2 atm 202.65 kPap p p p , since it is given that the 

original pressure in cylinder B is normal atmospheric pressure (101.325 kPa). Therefore the original 

pressure of the argon in cylinder A is ( )= ⋅ = =5/3
Ai 8 2 atm 64 atm 6484.8 kPa.p  The final pressure after 

expansion is pAf = 2 atm = 202.65 kPa.  
(c) Work done during the adiabatic expansion using equations (3) and (9) is: 

( ) ( ) ( )γ    
= − − = − −   

   
-1 -1 -1

A Af Ai Ai Ai Ai 
1 5n /(1 ) 8.0100 mol  8.31 J mol K / 1  = 74.88 JK
4 3

W R T T T T T  

This can be equated to the heat received by the thermostat 47.479 10  J.⋅  This means that for the argon:    
TAi = 1000. K. Using equation (9):  TAf = ¼TAi = 250. K.  

(d) For an ideal gas pV = nRT and so for the argon, using the above results for TAi, TAf, pAi, pAf : 

 ( )( )( ) ( )− −= = ⋅ ⋅ =1 1 3 3
Ai A Ai Ai/ 8.00 mol 8.31 mol  J K 1000. K / 64 101.325 10  Pa 0.01025 mV n RT p  

( )( )( ) ( )− −= = ⋅ ⋅ =1 1 3 3
Af A Af Af/ 8.01 mol 8.31 mol  J K 250. K / 2 101.325 10 Pa   0.08201 mV n RT p  

(check: = = = ⋅3  3
Af Ai 0.08201 m  8  8 0.01025 mV V )  

(e)  Since the total volumes of cylinders A and B must remain constant it follows that:  

( )+ = + = + = = = =3 3
Ai Bi Af Bf Ai Bi Bi Ai Bi Ai

1 1    8  ;  7 ;  14  14 0.01025 m 0.1435 m .
2 2

V V V V V V V V V V  

So the total volume at any time is: 
0.01025 + 0.1435 = 0.15375 m3.                                                                                         (12) 

(check: VAf + VBf = 0.08201 m3 + (0.1435/2) m3 = 0.15375 m3).  
(f)  For cylinder B: It is in contact with a thermostat that maintains the cylinder at a constant temperature 
of 27oC = 273 + 27 = 300. K. Work done during an isothermal compression using equation (5) is:  

( )( ) ( ) ( )− − −= = = −1 1 1
B Bf Bi B Bi Bi B  ln( / )  8.31 mol  J K 300. K ln ½ / 1728 J molW n RT V V n V V n        (13) 

where nB is the number of moles of oxygen in cylinder B.  
(g) The oxygen, maintained at 300. K by the thermostat, is warmer than the argon (250. K) after the 
pressures equal in the cylinders. When the valve is opened to connect the two cylinders, the equilibrium 
temperature will be 300. K since the thermostat will maintain the now connected cylinders at this 
temperature. The final pressure in the connected cylinders can be found using pV = nRT with T = 300. K 
and the known n, the total number of moles of oxygen and argon.  Additionally, equation (13) can be used 

to find the number of moles of oxygen: 4
B1728  7.479 1  0n = ⋅ ; nB = 43.28. The total number of moles of gas 

is: 8.010 + 43.28 = 51.29, so that the pressure in the connected cylinders is: 

( )( )( ) ( )− −= =

= =

1 1 3  /   51.29 mol 8.31 mol  J K 300. K  / 0.15375 m

 831.648 kPa  8.208 atm 

p nRT V  

 



Chapter 20: The Second Law of Thermodynamics 

 895 

ROUND:  Quote all values to three significant figures:  
pAi =  64.0 atm = 6.48 MPa 
pAf = 2.00 atm = 0.203 MPa 
TAi = 31.00 10  K⋅  
TAf = 250. K  
VAi = 0.0103 m3 

VAf = 0.0820 m3 

Final pressure when connected is: p = 0.831 MPa = 8.21 atm.   
DOUBLE CHECK: The final pressure when pistons were connected, after the valve was opened is more 
than it was when they were not connected.  This is as expected since heat flows into the cylinders to heat 
the argon to 300 K. The final pressure is less than it initially was when the piston was fixed, again this 
seems reasonable as at that time the argon was much hotter. 
 

Multi-Version Exercises 

 Exercises 20.71–20.73   The work that the air conditioner is required to do is 
L

air conditioner

.
Q

W
K

=
 

 We can relate the coefficient of performance to the energy efficiency rating by 

air conditioner
air conditoner

EER
.

3.41
K =

 
 So the power required to cool the house is 

( )LL

air conditioner air conditioner

3.41 //
.

EER
Q tQ tWP

t K
= = =  

 The cost to cool the house for a day is 

( ) ( )( )( )L

air conditioner

3.41 24 hr / hourly rate
cost hourly rate 24 hr .

EER
Q t

P= ⋅ ⋅ =  

20.71. From the above, 

 
( )( ) ( )( )3.41 24 hr 5.375 kW 0.1285 $/ kW hr

daily cost $5.399.
10.47

⋅
= =  

20.72. From the above,
 

( )( )( )L

air conditioner

3.41 24 hr / hourly rate
daily cost .

EER
Q t

=  

( )
( )( )

( )
( )( )

( )

air conditioner

L

daily cost EER
hourly rate

3.41 24 hr /

$5.605 10.71
3.41 24 hr 5.437 kW

13.49 cents/ kW hr .

Q t
=

=

=
 

20.73. From the above, 

 
( )( )( ) ( )( ) ( )( )L

air conditioner

3.41 24 hr 5.499 kW 0.1413 dollars/ kW hr3.41 24 hr / rate
EER 10.93.

 cost  5.818 dollars
Q t

= = =  

 Exercises 20.74–20.76   This system acts like a refrigerator.  The maximum coefficient of performance of a 
refrigerator is 

L
max

H L

.
T

K
T T

=
−
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 The minimum work that must be done is then 
( )L H LL

min
max L

.
Q T TQ

W
K T

−
= =  

20.74. From the above, 

 

( ) ( )( )L H L
min

L

288.1 J 195.3 C 24.93 C
164.7 J.

24.93 C 273.15 C
Q T T

W
T
− ° − °

= = =
° + °  

20.75. From the above, 

 

( )

( ) ( ) ( )
( )

L H L
min

L

min L L H L L

min L L L
H

L

min L
L

L

118.5 J 425.5 J
25.05 C 273.15 C

425.5 J
381.25 K 108.1 C.

Q T T
W

T
W T Q T Q T

W T Q T
T

Q
W Q

T
Q

−
=

= −
+

=

++
= = ° + °

= = °

 

20.76. From the above, 

 

( )

( )

L H L
min

L

min L L H L L

min L L L L H

L
L H

min L

562.9 J120.9 C 273.15 C
180.7 J 562.9 J

298.29K 25.14 C

Q T T
W

T
W T Q T Q T
W T Q T Q T

Q
T T

W Q

−
=

= −
+ =

=
+

= ° + °
+

= = °

 

 Exercises 20.77–20.79   The efficiency is given by H/ .W Qε =  The first law of thermodynamics tells us 
that H L .Q W Q= + We can relate LQ  to the change in temperature of the water L .Q mc T= ∆ The flow rate 
in terms of volume is 

( )/
.

mVf
t t

ρ
= =  

 So we can write the mass as .m f tρ=  So the efficiency is 

H L

.W W W W
Q W Q W mc T W f tc T

ε
ρ

= = = =
+ + ∆ + ∆

 

 We can write ,W Pt=  so 

.Pt P
Pt f tc T P f c T

ε
ρ ρ

= =
+ ∆ + ∆

 

20.77. From the above, 

 ( )( ) ( ) ( )( )( )3 3 3

1833 W
1 h1833 W 132.3 L/h 10  m /L 1000 kg/m 4186 J/ kg C 26.69 C 11.25 C

3600 s
0.4356.

ε
−

=
 + ° ° − ° 
 

=
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20.78. From the preceding, 

 

P
P f c T

PP f c T

ε
ρ

ρ
ε

=
+ ∆

+ ∆ =
 

 

( ) ( )( )
( )( ) ( )( )( )3

5 3

3
5

3 3

/

1061 W 0.3591 1061 W

0.3591 1000 kg/m 4186 J/ kg C 27.33 C 11.35 C

2.8308 10  m /s

m 3600 s2.8308 10  101.9 L/h.
s 1.0 10  m 1 h

P P P Pf
c T c T

Lf

ε ε
ρ ερ

−

−
−

− −
= =

∆ ∆
−

=
° ° − °

= ⋅

   = ⋅ =   ⋅   

 

20.79. From the above, 

 

( )

( )( ) ( ) ( )( )( )
3 3

3

1
1.0 10  m 1 h0.2815 171.5 L/h 1000 kg/m 4186 J/ kg C 27.97 C 11.45 C

1 L 3600 s
1 0.2815

1291 W.

P
P f c T

P f c T P
P f c T P

f c T
P

ε
ρ

ε ρ
ε ε ρ

ε ρ
ε

−

=
+ ∆

+ ∆ =
+ ∆ =

∆
=

−
 ⋅   ° ° − °  

  =
−

=
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Chapter 21: Electrostatics  
 
Concept Checks 

21.1. d  21.2. a  21.3. e  21.4. e  21.5. c  21.6. b  21.7. a  21.8. a  21.9. c  21.10. b  21.11. a 
 
Multiple-Choice Questions 

21.1. b  21.2. b  21.3. b  21.4. d  21.5. b  21.6. b  21.7. a  21.8. a  21.9. c  21.10. b  21.11. a  21.12. b  21.13. a  21.14. e 
 
Conceptual Questions 

21.15. The given quantities are the charge of the two particles, 1Q Q=  and 2 .Q Q=  They are separated by a 

distance .d  The Coulomb force between the changed particles is 
2

1 2
2 2

Q Q QF k k
d d

= = . If the charge on each 

particle is doubled so that 1 22Q Q Q′ ′= =  and the separation distance is 2d d′ =  the then the Coulomb 

Force is given by: 
2 2

2 2

4
4
Q QF k k
d d

′ = =  so the force is the same as it was in the initial situation. 

21.16. The gravitational force between the Sun and the Earth is S E
g 2

M M
F G

r
=  where G  is the gravitational 

constant and is equal to 11 2 26.67 10  N m / kg ,−⋅  SM  is the mass of the Sun ( 301.989 10  kg⋅ ) and EM  is the 

mass of the Earth ( 245.974 10  kg⋅ ). The Coulomb force is given by the equation 1 2
C 2

Q Q
F k

r
=  where k is 

Coulomb’s constant (k = 9 2 28.99 10  N m / C⋅ ). In this question 1 2Q Q Q= =  and is the charge given to the 
Earth and Sun to cancel out the gravitational force. 

2
S E S E

C g 2 2    
GM M GM MkQF F Q

r r k
= ⇒ = ⇒ =  

Therefore,   

( ) 30 2411 2 2
17

9 2 2

(1.989 10  kg)(5.974 10  kg)6.67 10  N m / kg
2.97 10  C.

8.99 10  N m / C
Q

− ⋅ ⋅⋅
= = ⋅

⋅
 

I can get the number of elementary charges, ,n by dividing Q  by 191.602 10  C−⋅ (the charge of one 
electron): 

17
36

19

2.97 10 C 1.85 10 .
1.602 10  C

n
−

⋅
= = ⋅

⋅
 

To estimate the number of elementary change of either sign for the Earth I can assume the mass of the 
Earth is due to the mass of the protons, neutrons and electrons of which it is primarily composed. If I 
assume that the Earth’s mass is due to the proton and neutron masses primarily (became an electrons mass 
is much smaller than a protons) and I assume that there are an equal number of protons and neutrons 
than I can get the number of protons by dividing the Earth’s mass by two times the mass of a proton. The 
mass of a proton is 27

P 1.6726 10  kg,m −≈ ⋅  so you can estimate the number of elementary charges on the 

Earth, En by: 
24

51E
E 27

P

5.97 10  kg
3.57 10 .

1.67 10  kg
m

n
m −

⋅
= = = ⋅

⋅  
So the percentage of the Earth’s changes that would be 

required to cancel out the gravitational force is ( ) 14
E/ 100% 5.18 10 %,n n −⋅ = ⋅  a very small percentage.
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21.17. One reason that it took such a long time to understand the electrostatic force may have been because it was 
not observed as frequently as the gravitational force. All massive objects are acted on by the gravitational 
force; however, only objects with a net charge will experience an electrostatic force. 

21.18. The accumulation of static charge gives the individual hairs a charge. Since like charges repel and because 
the electrostatic force is inversely proportional to the charges separation distance squared, the hairs 
arrange themselves in a manner in which they are as far away from each other as possible. In this case that 
configuration is when the hairs are standing on end. 

21.19. The given quantities are the charge which is 1 2Q Q Q= =  and the separation distance of 2 .d  The third 
charge is 3 0.2Q Q= −  and it is positioned at .d  Charge 3Q  is then displaced a distance x perpendicular to 
the line connecting the positive charges. The displacement .x d  The question asks for the force, ,F  on 
charge 3 .Q  For x d  the question also asks for the approximate motion of the negative charge. 

 
13 23 ,F F F= +


 

 where 13F


 is the force 3Q  feels due to 1Q  and 23F


 is the force 3Q  feels due to charge 2 .Q  
Because 1Q  and 2Q  have the same sign and are of equal charge there is no net force in the horizontal 
direction. The forces due to 1Q  and 2Q  in the vertical direction are given by:

 
 

1 3
13 2

1

sin
Q Q

F k
r

θ= and 2 3
23 2

2

sin ,
Q Q

F k
r

θ=  

where 2 2
1r d x= + and 2 2

2 .r d x= +  To simplify we can substitute 1 1sin /x rθ =  and 2 2sin /x rθ =  into 
force equations. So we can write the force equation as: 

( ) ( ) ( )
( )

1 3 32 3
213 23 1 22 2 22 2 2 2 2 22 3/

kQ Q kQ Q kxQx xF F F Q Q
d x d xd x d x d x

   
= + = + = +      + ++ + +   

 

Substituting 1 2Q Q Q= =  and 3 0.2Q Q= −  gives: 

( ) ( )
( )

( )
( ) ( )

2 2

3/2 3/22 2 3/2 2 2 2 2

2 0.20.2 0.4k Q xkx Q kQ xF Q Q
d x d x d x

−
= + = − = −

+ + +
 

The negative sign indicates that the force is downward. Since ,x d it is reasonable to use the 

approximation 2 2 3/2 2 3/2 3) (( .) dx dd + == Hence, 
2

3

0.4kQ xF
d

≈ − . This solution is similar in form to 

Hooke’s law which describes the restoring force due to the compression or expansion of a spring, 

springF kx= −  where k  is the spring constant. The motion of the negative charge can therefore be 

approximated using simple harmonic motion. 

21.20. As the garment is dried it acquires a charge from tumbling in the dryer and rubbing against other clothing. 
When I put the charged garment on it causes a redistribution of the charge on my skin and this causes the 
attractive electric force between the garment and my skin. 



Bauer/Westfall: University Physics, 2E 

900 

 

21.21. The initial separation of the spheres is 1x . The magnitude of the force on each of the spheres at separation 

1x  is
1 2

1 2
1

Q Q
F k

x
= . The force after the distance change is 1 2

2 2
2

,
Q Q

F k
x

= where the new distance is 2x .  

Because the charge is conserved I can equate the forces 1F  and 2 .F  
1 2

1 2
1

Q Q
F k

x
=  and 1 2

2 2
2

,
Q Q

F k
x

=  so 

2 2
1 2 1 1 2 2 ,kQ Q F x F x= = or ( )2 2

2 1 2 1/ .x F F x= Substituting 2 19F F=  into the equation gives:  

2 2 21
2 1 2 1 1

1

1 1  .
9 9 3
F

x x x x x
F

= ⇒ = =  Therefore the distance would have to decrease to a factor of a third of 

its original value to achieve nine times the original force. 

21.22. An electrically neutral atom can exert electrostatic force on another electrically neutral atom if they do not 
have symmetric charge distribution. In the case of two atoms where one atoms electron or electrons were 
closer to the proton of the other atom. This type of situation can occur when atoms undergo polar 
bonding to form a molecule.  

21.23. The scientist could convince themselves that the electrostatic force was not a variant of the gravitational 
force in various ways. One distinction is that gravitating objects attract but in the electric force like 
charged objects repel. For Earth bound experiments the scientists may observe that massive objects are 
pulled towards the ground by the gravitational force at a constant acceleration. If they performed careful 
experiments with objects of the same charge they would observe that the gravitational force downward on 
one of the charged objects could be diminished or balanced by the electrostatic force that object felt due to 
the second like charged object that was placed underneath it. 

21.24. The electrostatic force is an inverse square force, of the same form as the Newtonian gravitational force. As 
long as the bodies are not moving too rapidly (i.e., not at speeds near the speed of light), the problem of 
determining their motion is the same as the Kepler problem. The motion of the two particles decomposes 
into a center of mass motion with constant velocity, and a relative motion which traces out a trajectory 
which can be either a portion of a straight line (for zero angular momentum, i.e., head on collisions) or a 
Keplerian ellipse (including a circle), parabola, or hyperbola, in the case of opposite charges. For charges of 
the same sign, for which the force is repulsive, the relative motion must be either a straight line or a 
hyperbola, an open orbit. 

21.25. The wall does not have to be positively charged. The negatively charged balloon induces charges on the 
wall. The repulsive force between electrons in the balloon and those in the wall cause the electrons in the 
wall to redistribute. This leaves the portion of the wall that is closest to the balloon with a positive charge. 
The negatively charged balloon will be attached to the positively charged region of the wall even though 
the net charge of the wall is neutral.  

 
21.26.  
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The electric lines flow from the positive charge to the negative charge as is shown in the sketch below. 

 
 

There is nowhere on the line between the charged particles that I could place a test charge without it 
moving. This is due to the electric charges on the line having opposite charge, so a test charge (of either 
sign) that is placed between these two charges would be attracted by one and repelled by the other.  

21.27.  

 
  In order for the test charge to feel no net force it would have to be at a location where the force it felt due 

to the charge 2 4 CQ =  is equal and opposite to the force felt due to the charge 1 2 CQ = . For convenience 
I can say that the charge 1 2 CQ =  is located at 1 0x = , and charge 2 4 CQ =  is located at 2x L=  and 
charge 3Q  is located at a position, 3x  which is between 0 and L . I can equate the expressions for the 
electric force on 3Q  due to 1Q  and the electric force on 3Q  due to 2Q  to solve for 3x  as these forces would 
have to balance for the charge 3Q to feel no net force. 

13 23

1 3 2 3
2 2

3 3
2 2

1 3 2 3
2 2 2

1 3 3 2 3
2 2

1 2 3 1 3 1

( )
( )

( 2 ) 0

( ) 2 0

F F
kQ Q kQ Q

x L x
Q L x Q x

Q x x L L Q x

Q Q x Q x L Q L

=

=
−

− =

− + − =

− − + =

 Note that in the second step of the calculation above, it is shown that the sign and magnitude of 3Q  will 
not impact the answer. I can solve using the quadratic equation:  

2 2 2 2 2 2 2
1 1 1 2 1

3
1 2

2 4 4( )( ) 2(2 C) 4(2 C) 4(4C )
0.414 , 2.414

2( ) 4C
Q L Q L Q Q Q L L L L

x L L
Q Q

± − − ± +
= = = −

− −
 

The correct answer is 3 0.414x L=  because this point is between 1Q  and 2 .Q One can also see from the 
second step of the algebraic manipulation that the magnitude and charge of 3Q  is irrelevant to the position 
of 3x , as it drops out of the equation. Intuitively, this makes sense, since whatever magnitude and charge 
of 3Q  is placed between the two existing charges, it will experience opposite forces from 1Q  and 2Q , since 
they have the same sign. 

21.28. When a positively charged rod is brought near to an isolated neutral conductor without touching it the rod 
will experience an attractive force. The electric charge on the rod induces a redistribution of charge in the 
conductor.  
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The net effect of this distribution is that electrons move to the side of the conductor nearest to the rod. The 
positively charged rod is attracted to this region. 

 
21.29. Using a metal key to touch a metal surface before exiting the car will discharge any charge I carry. When I 

begin to fuel a car, I can touch the gas pump and the car before pumping the gas, discharging myself. If I 
get back into the car, I can re-charge myself, and when I again get out of the car and touch the fuel nozzle 
without grounding myself first, I can get a spark, which might ignite the gasoline.  

 
Exercises 

21.30. Since charge is quantized, the number of electrons, when summed, yields the given charge: n e Q⋅ = . The 

charge of each electron is 191.602 10 C.−⋅  The total number n of electrons required to give a total charge of 
1.00 C is obtained by dividing the total charge by the charge per electron: 

( )
( )

18
19

1.00 C
6.18 10  electrons.

1.602 10  C/electron
Qn
e −

= = = ⋅
⋅

 

21.31. The number of atoms or molecules in one mole of a substance is given by Avogadro’s number, 
23 1

A 6.022 10  mol .N −= ⋅  The faraday unit is A ,F N e=  where e  is the elementary charge of an electron or 

proton and is equal to 191.602 10  C.−⋅  To calculate the number of coulombs in 1.000 faraday you can 
multiply AN  by the elementary charge:  

23 19
A1.000 F (6.022 10  atoms/mol)(1.602 10  C) 96470 C.N e −= = ⋅ ⋅ =  

21.32. 2 51 dyne 1 g cm / s 1 10  N−= = ⋅  and it is a unit of force. An electrostatic unit or esu is defined as follows: 
Two point charges, each of 1 esu and separated by one centimeter exert a force of exactly one dyne on each 
other. Coulomb’s law gives the magnitude of the force on one charge due to another, which 
is 2

1 2 /F k q q r=  (where 9 2 28.99 10  N m / C ,k = ⋅  1q  and 2q  are electric charges and r  is the separation 
distance between charges.) 
(a) By substituting the values given in the question into Coulomb’s law, the relationship between the esu 
and the Coulomb can be determined: 

2 2 5
5 10

2 9 2 2

(1 esu) (0.01 m) (1 10  N)1 10  N   1 esu 3.34 10  C
(0.01 m) 8.99 10  N m / C
k −

− −⋅
⋅ = ⇒ = = ⋅

⋅
 

(b) The result of part (a) shows that 101 esu 3.34 10  C.−= ⋅  The elementary charge on an electron or proton 
is 191.602 10  C.e −= ⋅  To get the relationship between the esu and elementary charge, divide 1 esu by the 
charge per electron (or proton).  

10
9

19

3.34 10  C1 esu 2.08 10
1.602 10  C/

e
e

−

−

⋅
= = ⋅

⋅
 

21.33. The given quantities are the current, 35.00 10  AI −= ⋅ and the exposure time, 10.0 st = . One coulomb is 
equal to1 A s.  To calculate the number of electrons that flow through your skin at this current and during 
this time, multiply I  by t to yield the quantity of charge in coulombs. Then divide by the elementary 
charge per electron, which is 191.602 10 .C−⋅  
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( )( )3

17
19

5.00 10  A 10.0 s 0.0500 A s 0.0500 C;

0.0500 C 3.12 10  electrons.
1.602 10  C /

I t

e

−

−

⋅ = ⋅ = =

= ⋅
⋅

 

21.34. THINK: Consider a mass, 1.00 kgm =  of water.  To calculate how many electrons are in this mass, a 
relationship must be found between mass, the number of water atoms presents and their charge. Let 
η denote the number of electrons. 
SKETCH:  

 
 RESEARCH:  The molecular mass of water ( 2H O ), W 18.015 g/mol.m =  The number of moles of water 

can be found by dividing the mass of water by its molecular mass. The number of electrons present in the 
water can be found from the atomic numbers, ,Z for hydrogen and oxygen ( 1Z =  and 8Z =  respectively). 
The total number of water molecules can be found by multiplying the number of moles of water present by 
Avogadro’s number, 23 1

A 6.022 10  mol .N −= ⋅  

SIMPLIFY: A
W 2

10 electrons
H O atom

m N
m

η = ⋅ ⋅  

CALCULATE: ( )( )
3

23 1 261.00 10  g 6.022 10  mol 10 electrons 3.34277 10  electrons
18.015 g/mol

η − ⋅
= ⋅ = ⋅ 
 

 

ROUND: The values in the question were provided to 3 significant figures, so the answer is 
263.34 10  electrons.⋅  

DOUBLE-CHECK: Considering that there are approximately 55 moles of 2H O per kilogram of water and 
there are 10 electrons per 2H O  atom, it makes sense that the answer is approximately 550 times greater 
than Avogadro’s number.  

21.35. THINK:  Protons are incident on the Earth from all directions at a rate of ( )21245.0 protons / m  s .n =   

Assuming that the depth of the atmosphere is 120 km 120,000 md = =  and that the radius of the Earth is 
6378 km 6,378,000 m,r = =  I want to determine the total charge incident upon the Earth’s atmosphere in 

5.00 minutes. 
SKETCH:  

 
 

RESEARCH:  Modeling the Earth like a sphere, the surface area A can be approximated as  24 .A rπ=   
The total number of protons incident on the Earth in the time t  can be found by multiplying the rate, n  
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by the surface area of the Earth and the time, .t  The total charge Q  can be found by multiplying the total 

number of protons, P  by the charge per proton. The elementary charge of a proton is 191.602 10  C.−⋅   

SIMPLIFY:  24 ,P nAT n r tπ= =
  

( )191.602 10  C /Q P P−= ⋅  

CALCULATE: 
2 2 201245.0 protons / (m s) 4 (6,378,000 m +120,000 m) (300. s) 1.981800 10  protons,P π = = ⋅ 

 ( )20 191.981800 10  protons 1.602 10  C / protons 31.74844 CQ −= ⋅ ⋅ ⋅ =  

ROUND: To three significant figures  31.7 C 
DOUBLE-CHECK: The calculated answer has the correct units of charge. The value seems reasonable 
considering the values that were provided in the question.  

21.36. The charges obtained by the student performing the experiment are listed here: 193.26 10  C,−⋅  
196.39 10  C,−⋅  

195.09 10  C,−⋅  
194.66 10  C,−⋅  

191.53 10  C.−⋅  Dividing the above values by the smallest 
measured value will give the number of electrons, en found in each measurement. 

 

 

 

 

 

 

 

 
  

The number of electrons, ,en must be rounded to their closest integer value because charge is quantized. 
Dividing the observed charge by the integer number of electrons gives the charge per electron. Taking the 
average of the observed charge/integer value data the average charge on an electron is calculated to 
be 19(1.60 0.03) 10  C.−± ⋅  

 
 Optional Error analysis: Given a set of n  measured values ia , there exists a mean value, µ . Then the 

standard deviation σ  of the data is given by the relation: 

 

2

2 21

1

n

i
i

a
n

n n
σ µ== −

−

∑
 

 

 
( )2 2 2 2 2 21.63 1.60 1.69 1.55 1.53 5 1.63 1.60 1.69 1.55 1.53 0.06403

5 4 5
σ

+ + + + + + + + = − = 
 

 

 
  The error in a repeated measurement of the same quantity is: 
 

standard deviationError .
number of measurements n

σ
= =

 

Observed charge 
en  Integer value                 Observed charge 

(integer value) 

193.26 10  C−⋅  2.13 2 191.63 10  C−⋅  
196.39 10  C−⋅  4.17 4 191.60 10  C−⋅  
195.09 10  C−⋅  3.32 3 191.69 10  C−⋅  
194.66 10  C−⋅  3.04 3 191.55 10  C−⋅  
191.53 10  C−⋅  1 1 191.53 10  C−⋅  
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0.06403Error 0.0286
5

= =  

The measurements have an error of 2.8%. 

21.37. THINK: An intrinsic silicon sample is doped with phosphorous. The level of doping is 1 phosphorous 
atom per one million silicon atoms. The density of silicon is 3

S 2.33 g/cmρ =  and its atomic mass is   

S 28.09 g/mol.m =  The phosphorous atoms act as electron donors. The density of copper is 
3

C 8.96 g/cmρ =   and its atomic mass is C 63.54 g/mol.m =  
SKETCH:    

 
 

 RESEARCH:  Avogadro’s number is 23 1
A 6.022 10  mol .N −= ⋅  It gives the number of atoms or molecules 

per mole of a substance. Density, / ,m Vρ =  where massm =  and volumeV = . 
SIMPLIFY:  
(a) There will be 1 conduction electron per 61.00 10  silicon atoms.⋅  The number of silicon atoms per 3cm is 

( )S S S A/n m Nρ= ⋅ .  The number of conduction electrons per 3cm is 6
e S / (1.00 10 )n n= ⋅ .  

(b) The number of copper atoms is ( )C C C A/n m Nρ= ⋅ . The number of conduction electrons in the 

copper is Cn . The ratio of conduction electrons in silicon to conduction electrons in copper is e C/n n . 
CALCULATE:  

(a) 
3

23 1 22 3
C

2.33 g/cm
6.022 10  mol 4.995 10  /cm  

28.09 g/mol
n − 

= ⋅ = ⋅ 
   

22
16 3

e 6

4.995 10 4.995 10  conduction electrons / cm
1.00 10

n ⋅
= = ⋅

⋅
 

(b) 
3

23 1 22 3
C

8.96 g/cm
6.022 10  mol 8.4918 10  /cm  

63.54 g/mol
n − 

= ⋅ = ⋅ 
 

 

16
7e

22
C

4.995 10 5.88215 10
8.4918 10

n
n

−⋅
= = ⋅

⋅
 

ROUND: There were three significant figures provided in the question so the answers should be:  
(a) 16 3

e 5.00 10  conduction electrons / cmn = ⋅   

(b) There are 75.88 10−⋅  conduction electrons in the doped silicon sample for every conduction electron in 
the copper sample. 

 DOUBLE-CHECK: It is reasonable that there are approximately 75 10−⋅  less conduction electrons in the 
doped silicon sample compared to the copper sample. 
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21.38. The force between the two charged spheres is 
  
F1 = k

qaqb

d1
2 initially.  After the spheres are moved the force is 

2 2
2

.a bq q
F k

d
=  Taking the ratio of the force after to the force before gives: 

  
F2 / F1 = k

qaqb

d2
2







/ k

qaqb

d1
2







= d1

2 / d2
2 = 4 .  The new distance is then   d2 = d1

2 / 4 = d1 / 2= 4 cm . 

21.39. The charge on each particle is q . When the separation distance is 1.00 m,d =  the electrostatic force is 

1.00 N.F =  The charge q  is found from 2 2 2
1 2 / / .F kq q d kq d= =  Then, 

2 2
5

9 2 2

(1.00 N)(1.00 m) 1.05 10  C.
8.99 10  N m / C

Fdq
k

−= = = ⋅
⋅

 

The sign does not matter, so long as each particle has a charge of the same sign, so that they repel. 

21.40. In order for two electrons to experience an electrical force between them equal to the weight of one of the 
electrons, the distance d separating them must be such that. 2 2

g Coulomb   / .eF F m g ke d= ⇒ = Then, 

( )( )29 2 2 192

31 2

8.99 10  N m / C 1.602 10  C
5.08 m

(9.109 10  kg)(9.81 m/s )e

ked
m g

−

−

⋅ ⋅
= = =

⋅
 

21.41. In solid sodium chloride, chloride ions have a charge 19
Cl 1.602 10  C,q e −= − = − ⋅  while sodium ions have a 

charge 19
Na 1.602 10  C.q e −= = ⋅  These ions are separated by about 0.28 nm.d =  The Coulomb force 

between the ions is   

( )9 2 2 19 2
9 9Cl Na

2 9 2

8.99 10  N m / C (1.602 10  C)
2.94285 10  N 2.9 10  N.

(0.28 10  m)
kq q

F
d

−

− −
−

− ⋅ ⋅
= = = − ⋅ ≈ − ⋅

⋅
 

The negative sign indicates that the force is attractive. 

21.42. In gaseous sodium chloride, chloride ions have a charge 19
Cl 1.602 10  C,q e −= − = − ⋅  while sodium ions 

have a charge 19
Na 1.602 10  C.q e −= = ⋅  These ions are separated by about 0.24 nm.d =  Another electron is 

located 0.48 nmy =  above the midpoint of the sodium chloride molecule. Find the magnitude and the 
direction of the Coulomb force it experiences.  
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 The x-component of the force is  

( )

- -Cl, e Na, e
2 2 2 2 2

2 2 2 2 3/22 22 2 22 2 2

9 2 2 19 2 9

3
9 2 2

9 2

cos cos 2 cos 2 / 2

4 4 42 4 4

8.99 10  N m / C (1.602 10  C) (0.24 10  m)

(0.24 10  m) (0.48 10  m)
4

x x x
F F F

ke ke ke ke d ke d
d d dd d dy y yy y y

θ θ θ

− −

−
−

= +

−
= − = − = − ⋅ = −
   + + ++ + +      

⋅ ⋅ ⋅
= −

 ⋅
+ ⋅ 

 
= 10 104.5717 10  N -4.6 10  N− −− ⋅ ≈ ⋅

 

By symmetry, the y-components cancel; that is - -Cl, e Na, e
.

y y
F F=  The magnitude is therefore 104.6 10  NF −= ⋅ ; 

The electron is pulled in the x̂− direction (in this coordinate system).    

21.43. The two up quarks have identical charge ( )19(2 / 3) (2 / 3) 1.602 10  C .q e −= = ⋅  They are 
150.900 10  md −= ⋅ apart. The magnitude of the electrostatic force between them is 

( )
2

9 2 2 19
2

2 15 2

28.99 10  N m / C (1.602 10  C)
3

127 N.
(0.900 10  m)

kq
F

d

−

−

 ⋅ ⋅  = = =
⋅

 

This is large, however the proton does not ‘break apart’ because of the strength of the strong nuclear force 
which binds the quarts together to form the proton. A proton is made of 2 up quarks, each with charge 
(2 / 3) ,e  and one down quark with charge (1/ 3)e− . The net charge of the proton is e . 

21.44. Coulomb’s Law can be used to find the force on 1 2.0 μCq =  due to 2 4.0 μC,q = −  where 2q  is 
0.200 mr =  to the right of 1.q  

 

 
 

 ( ) ( )( )
( )

 

9 2 21 2 1 2
212 1 2 2 2

2.0 μC 4.0 μC
8.99 10  N m /C 1.8 N

0.200 m

q q q q
F k r k x x x

r r→

−
= − = − = − ⋅ =



  

The 4.0 μC−  charge pulls the 2.0 μC  charge to the right. 

21.45. THINK: The two identical spheres are initially uncharged. They are connected by an insulating spring of 
equilibrium length 0 1.00 mL =  and spring constant 25.0 N/mk = . Charges q+  and q−  are then placed 
on metal spheres 1 and 2, respectively. Because the spring is insulating, the charges cannot neutralize 
across the spring. The spring contracts to new length 0.635 m,L′ =  due to the attractive force between the 
charges spheres.  Determine the charge .q  If someone coats the spring with metal to make it conducting, 
find the new length of the spring.  
SKETCH:   
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 RESEARCH:  The magnitude of the spring force is S SF k x= ∆ . The magnitude of the electrostatic force 

is 2
1 2 /F kq q r= . For this isolated system, the two forces must be in balance, that is SF F= . From this 

balance, the charge q can be determined.  The spring constant is denoted by Sk  to avoid confusion with 
the Coulomb constant, k. 

SIMPLIFY: 
( )

( )22
S 01 2

S S S 02 2

( )
    ( )    

k L L Lkq q kq
F F k x k L L q

kr L

′ ′−
′= ⇒ ∆ = ⇒ − = ⇒ =

′
 

CALCULATE:  
( )( )

( )
2

5
9 2 2

25.0 N/m 0.635 m (1.00 m 0.635 m)
2.02307 10  C

8.99 10  N m / C
q −−
= = ⋅

⋅
 

 If someone were to coat the spring such that it conducted electricity, the charge on the two spheres would 
distribute themselves evenly about the system. If the charges are equal in magnitude and opposite in sign, 
as they are in this case, the net charge in the system would be zero. Then the electrostatic force between the 
two spheres would be zero, and the spring would return to its equilibrium length of 1.00 m. 
ROUND: To three significant figures, 52.02 10  C.q −= ⋅  

 DOUBLE-CHECK: Dimensional analysis confirms that the answer is in coulombs, the appropriate unit 
for charge. 

21.46. THINK: A point-like charge of 1 3q q= +  is located at 1 0,x =  and a point-like charge of 2q q= −  is located 
on the x-axis at 2 ,x D=  where 0.500 m.D =  Find the location on the x-axis 3x  where will a third charge  

3 0q q=  experiences no net force from the other two charges. 
SKETCH:  

 
 

 RESEARCH:  The magnitude of the electrostatic force is 2
1 2 /F kq q r= . The net force on the third charge 

3q  is zero when the sum of the forces from the other two charges is zero: net,3 13 23 13 230  .F F F F F= + = ⇒ = −  
The two forces 13F  and 23F  must be equal in magnitude, but opposite in direction. Consider the following 
three possible locations for the charge 3q . Note that this analysis is independent of the charge of 3q . In the 
case 3 1 0,x x< =  the two forces 13F and 23F will be opposite in direction but they cannot be equal in 
magnitude: the charge 1q at 1x is greater in magnitude than the charge 2q at 2x and 3x would be closer to 1x . 
(Remember that the electrostatic force increases as the distance between the charges decreases.) This 
makes the magnitude of 13F greater than that of 23F . In the case 30 m x D< < , the two forces are in the 
same direction and therefore cannot balance. In the case 3 2x x D> = , the two forces are opposite in 
direction, and in direct opposition to the first situation, the force 13F and 23F can now be balanced. The 
solution will have a positive x position, or more accurately, the third charge 3q must be placed near the 
smaller fixed charge, 2q , without being between the two fixed charges 1q and 2q  
SIMPLIFY:  
Since 3 2x x> , consider only the magnitudes of the forces. Since only the magnitudes of the forces are 
compared, only the magnitudes of the charges need be considered. 

( )
( ) ( )2 22 21 3 2 3

13 23 1 3 2 2 3 3 32 2
3 3 2

      3
kq q kq q

F F q x x q x q x D qx
x x x

= ⇒ = ⇒ − = ⇒ − =
−

 

( )2 2 2 2
3 3 3 33 0  2 6 3 0x D x x x D D− − = ⇒ − + =  
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Solving for 3x :
2 2

3

6 36 4(2)(3 )
4

D D D
x

± −
=  

CALCULATE: 
2 2

3

6(0.500 m) 36(0.500 m) 24(0.500 m)
1.1830 m, 0.3170 m

4
x

± −
= =  

ROUND: Since 3 2x x> , 3 1.18 m.x =  
DOUBLE-CHECK: The solution fits the expected location that was determined above (where 3 2x x> ). 

21.47. THINK: Identical point charges 632 10Q C−= ⋅  are placed at each of the four corners of a rectangle of 
dimensions 2.0 mL = by 3.0 m.W =  Find the magnitude of the electrostatic force on any one of the 
charges. Note that by symmetry the magnitude of the net force on each charge is equal. Choose to 
compute the net electrostatic force on 4 .Q  
SKETCH:  

 
 

 RESEARCH:  The magnitude of the force between two charges is 
2

2112 1 2 21/ .F kq q r r =  
 

 



 
The total force 

on a charge is the sum of all the forces acting on that charge. The magnitude of the force is found from 

( )1/22 2 ,x yF F F= +  where the components xF  and  yF  can be considered one at a time.  

SIMPLIFY:  
( )

2 2
2

14, 24, 34, 2 2 2 2 3/22 2

1-component: cos 0x x x x
kQ kQ Wx F F F F kQ
W W L W W L

θ
 
 = + + = + + = + +  +   

( )
2 2

2
14, 24, 34, 2 2 2 3/2 22 2

2 2
net

1-component: 0 siny y y y

x y

kQ kQ Wy F F F F kQ
W L L LW L

F F F

θ
 
 = + + = + + = + +  + 

= +

 

CALCULATE: ( )
( ) ( ) ( )

9 2 2 6 2
2 3/22 2

1 3.0 m8.99 10  N m / (32 10  C) 1.612 N
3.0 m 3.0 m 2.0 m

xF C −

 
 

= ⋅ ⋅ + = 
  +    

 

( )
( ) ( ) ( )

( ) ( )

9 2 2 6 2
3/2 22 2

2 2

net

2.0 m 18.99 10  N m / (32 10  C) 2.694 N
2.0 m3.0 m 2.0 m

1.612 N 2.694 N 3.1397 N

yF C

F

−

 
 

= ⋅ ⋅ + = 
  +    

= + =

 

ROUND: Since each given value has 2 significant figures, net 3.1 NF =  
 DOUBLE-CHECK: Since L  is less than ,W  the y-component of netF  should be greater than the x-

component. 
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21.48. THINK: Charge 8
1 1.4 10q C−= ⋅  is at 1 (0,0).r =  Charge 8

2 1.8 10q C−= − ⋅  is at 2 (0.18 m,0 m),r =  and 

charge 8
3 2.1 10q C−= ⋅  is at 3 (0 m,0.24 m).r =  Determine the net force (magnitude and direction) 3F  on 

charge 3q . 
SKETCH:  

 

 RESEARCH:  The magnitude of the force between two charges is 
2

3
1212 1 2 12 1 2 12 12/ / .F kq q r r kq q r r= =

  



 
The 

total force on charge 3q  is the sum of all the forces acting on it. The magnitude of 3F  is found from 

( )1/22 2
3 1 2 ,F F F= +  and the direction θ  is found from ( )1tan / .y xF Fθ −=   

SIMPLIFY: 

( ) ( )

net, 3 13 23

1 3 13 2 3 23
3 3

13 23

1 3 3 1 3 1 2 3 3 2 3 2
3/2 3/22 2 2 2

3 1 3 1 3 2 3 2

1 3 2 3
3 2 33 2 2 3/2

3 2 3

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ˆ ˆ ˆ
( )

F F F

kq q r kq q r
r r

kq q x x x y y y kq q x x x y y y

x x y y x x y y

kq q kq q
y y x x y y

y x y

= +

= +

− + − − + −      = +
   − + − − + −   

= + − +
+

  

 

 

CALCULATE: 
( ) ( )

( )
( ) ( )

( ) ( )

9 2 2 8 8

net, 3 3

9 2 2 8 8

3/22 2

5 5 5

8.99 10  N m / C (1.4 10  C)(2.1 10  C) 0.24 m
ˆ

0.24 m

ˆ ˆ8.99 10  N m / C ( 1.8 10  C)(2.1 10  C) 0.18  m 0.24  m

0.18 m 0.24 m

ˆ ˆ(4.5886 10  N) (2.265 10  N) (3.0206 10  N)

F y

x y

y x

− −

− −

− − −

⋅ ⋅ ⋅
=

⋅ − ⋅ ⋅ − +
+

 +  
= ⋅ + ⋅ − ⋅



( ) ( )5 5

ˆ

ˆ ˆ2.265 10  N 1.568 10  N

y

x y− −= ⋅ + ⋅

 

2 2 5 2 5 2 5
net, 3

5
1 1

5

(2.265 10  N) (1.568 10  N) 2.755 10  N

1.568 10  Ntan tan 34.69  above the horizontal
2.265 10  N

x y

y

x

F F F

F

F
θ

− − −

−
− −

−

= + = ⋅ + ⋅ = ⋅

   ⋅
= = = °     ⋅  
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ROUND: With 2 significant figures in each given value, the final answers should be rounded to 

( ) ( )5 5 5
net, 3 ˆ ˆ2.265 10  N 1.568 10  N 2.8 10  NF x y− − −= ⋅ + ⋅ = ⋅


 and  35 .θ = °  

 DOUBLE-CHECK: Due to the attraction between 2q  and 3q  and that 1q  is directly underneath 3q , the x 

component of net, 3F


 has to be positive. 

21.49. THINK: A positive charge Q is on the y-axis at a distance a from the origin and another positive charge 
q is on the x-axis at a distance b from the origin. (a) Find the value(s) of b for which the x-component of 
the force on q is a minimum. (b) Find the value(s) of b for which the x-component of the force on q is a 
maximum. 
SKETCH:  

 
 

 RESEARCH: The electrostatic force is
2

/ .F kqQr r=  The x-component of this force 

is 2( / )cos .xF kqQ r θ=  The values of b for which xF  is a minimum can be determined by inspection; the 
values of b for which xF  is a maximum can be found by calculating the extrema of xF , that is, taking the 
derivative of xF  with respect to b , setting it to zero, and solving for b .  

SIMPLIFY: 
( )2 3 3/22 2

cosx

kqQ kqQb kqQb
F

r r a b
θ= = =

+
 

a) Minima: By inspection, the least possible value of xF  is zero, and this is attained only when 0.b =  

b)   Maxima: 0xdF
db

=

 ( )
( ) ( )

( )
( )

2 2 2
5/22 2

3/2 5/22 2 2 2

2 2 2

33 2 0  0
2

 3 0  
2

kqQ a b kqQbkqQ
kqQ a b b

a b a b

aa b b b

− + −
⇒ − + = ⇒ =

+ +

⇒ + − = ⇒ = ±

 

 

CALCULATE: Reject the negative solution, since distances have to be positive: .
2

ab =  
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ROUND: Not applicable 
 DOUBLE-CHECK: It makes sense that the possible values of b  should be symmetrically distributed about 

the origin (above which lies the charge Q ). 

21.50. THINK: Two protons are placed near one electron as shown in the figure provided. Determine the 
electrostatic force on the electron.  The charge of the electron is eq e= −  and the charge of each proton is 

pq e= , where 191.602 10  C.e −= ⋅  

SKETCH:  

 
 

 RESEARCH: By symmetry the forces in the vertical direction cancel. The force is therefore due solely to 
the horizontal contribution cosF θ in the x̂ direction: the Coulomb force is 2

21 1 2 21/ .F kq q r=  

SIMPLIFY: By symmetry, and with the two protons,  
( )

2 2

pe 2 3/22 2
ˆ ˆ ˆ2 cos 2 2 .ke x ke xF F x x x

rr x d
θ= = − = −

+



 

CALCULATE: 
( )( ) ( )

( ) ( )

29 2 2 19
26

3/22 2

8.99 10  N m /C 1.602 10  C 0.0700 m
ˆ ˆ2 ( 5.0742 10  N)

0.0700 m 0.0500 m
F x x

−

−
⋅ ⋅

= − = − ⋅
 +  



 

ROUND:

 

( )26 ˆ5.07 10  NF x−= − ⋅


 

 DOUBLE-CHECK: This is a reasonable force as the charges are as small as they can possibly be and the 
separation is large. 

21.51. THINK: The positions of the three fixed charges are 1 1.00 mCq = at 1 (0,0),r =  2 2.00 mCq = −  at 

2 (17.0 mm, 5.00 mm),r = −  and 3 3.00 mCq = +  at 3 ( 2.00 mm,11.0 mm).r = −  Find the net force on the 
charge 2 .q  
SKETCH:  

 
 

 RESEARCH:  The magnitude force is 
2

3
1212 1 2 12 1 2 12 12/ / .F kq q r r kq q r r= =

  

  The net force on 2q is the sum of 

all the forces acting on 2 .q   

SIMPLIFY:  1 2 1 2 1 3 2 3 2 3
net, 2 12 32 2 3/2 3/22 2 2 2

2 1 2 1 2 3 2 3

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

q x x x y y y q x x x y y y
F F F kq

x x y y x x y y

 − + − − + −       = + = +     − + − − + −    
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CALCULATE: Without units, 

( ) ( )
( ) ( ) ( ) ( )

9
net, 2 3/2 3/22 2 2 2

8 7

ˆ ˆ(1.00) 17.0 5.00 ˆ ˆ(3.00)(19.0 16.0 )
8.99 10 ( 2.00)

17.0 5.00 19.0 16.0

ˆ ˆ1.2181 10 7.2469 10 .

x y x y
F

x y

 
− −

= ⋅ − + 
    + − + −       

= − ⋅ + ⋅



 

Then, the units of net, 2F


 are: 

( )
( ) ( ) ( ) ( )

2 2
net, 2 3/2 3/22 2 2 2

(mC)(mm mm) (mC)(mm mm)N m / C (mC) N
mm mm mm mm

F

 
 − −  = + =       + +       



 

Altogether , ( ) ( )8 7
net, 2 ˆ ˆ1.2181 10  N 7.2469 10  N .F x y= − ⋅ + ⋅


 The magnitude of the force is

  

( ) ( )2 22 2 8 7 8
net, 2 1.2181 10  N 7.2469 10  N 1.4174 10  Nx yF F F= + = − ⋅ + ⋅ = ⋅  

ROUND:  ( ) ( )8 7 8
net, 2 net, 2ˆ ˆ1.22 10  N 7.25 10  N   and  1.42 10  N.F x y F= − ⋅ + ⋅ = ⋅
 

 

 DOUBLE-CHECK: The charges are large and the separation distance are small, so net, 2F  should be very 
strong. 

21.52. THINK: the masses of the beads are 510.0 mg 1.00 10  kgm −= = ⋅  and they have identical charge. They are 
a distance 0.0200 md =  apart. The coefficient of static friction between the beads and the surface is 

0.200.µ =  Find the minimum charge q needed for the beads to start moving. 
SKETCH:  

 
 

 RESEARCH: Assume the surface is parallel to the surface of the Earth. The frictional force is ,f Nµ=  

where .N mg=  The electrostatic force is 2 2/ .F kq d=  The beads will start to move as soon as F  is greater 
than ,f  enabling one bead to move away from the other. Then the minimum charge q can be found by 
equating f  and .F  

SIMPLIFY:  
2

2
2    /

kq
F f mg q d mg k

d
µ µ= ⇒ = ⇒ =  

CALCULATE: 
( )

( )
2 5 2

10
9 2 2

0.0200 m (0.200)(1.00 10  kg)(9.81 m / s )
9.3433 10  C

8.99 10  N m / C
q

−
−⋅

= = ⋅
⋅

 

ROUND: All of the given values have three significant figures, so

 

109.34 10  C.q −= ⋅  
 DOUBLE-CHECK: The units of the solution are those of charge. This is a reasonable charge required to 

overcome the frictional force. 

21.53. THINK: The ball’s mass is 1 0.0300 kg;m =  its charge is 1 0.200 μ .q C= −  The ball is suspended a distance 
of 0.0500 md = above an insulating floor. The second small ball has mass 2 0.0500 kgm = and a charge 

2 0.400 μC.q =  Determine if the second ball leaves the floor. Find the tension T  in the string when the 
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second ball is directly beneath the first ball. Because the balls are small, we will treat them as point charges 
with radius zero. 
SKETCH:  

 

 RESEARCH:  The electrostatic force between two charges is 2
1 2 / .F kq q r=   The force of gravity is 

g .F mg= The ball will leave the floor if the electrostatic force between the two balls is greater that the force 

of gravity, that is if gF F> ,  and if the charges are opposite. The tension in the rope can be found by 

considering all of the vertical forces acting on the first ball. 
SIMPLIFY:  The electrostatic force is: 2

1 2 / .F kq q d=  The gravitational force is: ( )g 2F m g= − . The forces 

acting on 1m  in the y-direction sum to: coulomb 10 .T F m g= − −  So the tension is coulomb 1 .T F m g= +  

CALCULATE:  
( )9 2 2 6 6

2

8.99 10  N m / C ( 0.200 10  C)(0.400 10  C)
0.28768 N,

(0.0500 m)
F

− −⋅ − ⋅ ⋅
= = −

   

2
g (0.0500 kg)( 9.81 m/s ) 0.4905 N,F = − = −

    

20.28768 N (0.0300 kg)( 9.81 m/s ) 0.58198 N.T = − + − = −  

Since g ,F F>  the second ball does not leave the ground. 

ROUND: With all given values containing three significant figures, round the tension to 0.582 N.T = −  
 DOUBLE-CHECK: The balls are not quite close enough to overcome the force of gravity, but the 

magnitude of coulombF is comparable to gF , despite the small charges (on the order of 710  C− ). 

21.54. THINK: A 1 3.00 mCq = +  charge and a 2 4.00 mCq = −  charge are fixed in position and separated by 
5.00 m.d =  Take the position of 1q  to be at 1 0,x =  and position of 2q  to be at 2 5.00 m.x =  (a) Find the 

location, 3 ,x  of a 3 7.00 mCq = +  charge so that the net force on it is zero. (b) Find the location, 3 ,x ′  of a 

3 7.00 mCq = −  charge so that the net force on it is zero. 
SKETCH:  

 
 

 RESEARCH:  The electrostatic force between two charges is 2
1 2 /F kq q r= . The net force on a third charge 

is zero: net,3 13 23 13 230  .F F F F F= + = ⇒ = −  The two forces must be equal in magnitude, but opposite in 

direction. Consider the following three possible locations for the charge 3q . Note that this analysis is 
independent of the charge of 3q : At 3 5.00 m,x >  the two forces 13F  and 23F  will be opposite in direction 
but they cannot be equal in magnitude: the charge 2q  at 2 5.00 mx =  is greater in magnitude than the 
charge 1q  at 1 0x =  and 3x  would be closer to 2x . (Remember that the electrostatic force increases as the 
distance between the charges decreases.) This makes the magnitude of 23F  greater than that of 13F . Next, 
consider values of 3x satisfying: 30 m 5.00 m.x< <  The two forces are in the same direction and therefore 
cannot balance. At 3 0 m,x <  the two forces are opposite in direction, and in direct opposition to the first 
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situation, the force 13F  and 23F  can now be balanced. The solution will have a negative position, or more 
accurately, the third charge 3q  must be placed near the smaller fixed charge, 1 ,q  without being between 
the two fixed charges 1q  and 2 .q  This answer is independent of the charge of 3 ,q therefore the numeric 
answer to parts a and b is the same.  

SIMPLIFY:  With 3 0,x <  and 13F  opposite in direction to  23 ,F  the force are balanced when 

( )
( ) ( )2 2 2 21 3 2 3

13 23 1 2 3 2 3 1 2 3 1 2 3 1 22 2

2 33

      2 0.
kq q kq q

F F q x x q x q q x q x x q x
x xx

= − ⇒ = − ⇒ − = − ⇒ + − + =
−

 

 Solving for 3x : 
2 2 2

1 2 1 2 1 2 1 2
3

1 2

2 4 4( )
.

2( )
q x q x q q q x

x
q q

± − +
=

+
 

CALCULATE:  
2 2 2

3

2(3.00 mC)(5.00 m) mC m 4(3.00) (5.00) 4(3.00 4.00)(3.00)(5.00)
32.321 m, 2.305 m

2(3.00 mC 4.00 mC)
x

± − −
= = −

−
 

 By the convention established in this solution, 3x is negative. (The second solution places 3q  a between 1q  
and 2q , a possibility which has been ruled out.)  
ROUND: All given values have three significant figures, so 3 32.3 m.x = −  
DOUBLE-CHECK: Inserting the calculated value of 3x  back into the expressions for the Coulomb force: 

( )( )
( )

1 3
13 2 2

3

3.00 mC 7.00 mC
181 N

32.3 m

kkq q
F

x
= = =

−
 and 

( )
( )( )
( )

2 3
23 2 2

2 3

4.00 mC 7.00 mC
181 N.

5.00 m 32.3 m

kkq q
F

x x

−
= = = −

− +
 

21.55. THINK: Four point charges, each with charge ,q  are fixed to the four corners of a square with a sides of 
length =1.00 cm.d  An electron is suspended above a point at which its weight is balanced by the 
electrostatic force due to the four electrons: ′ =15.0 nmz  above the center of the square. The mass of an 
electron is −= ⋅ 319.109 10  kgem , and the charge is −= − = − ⋅ 191.602 10  C.eq e  Find the value of q  of the 
fixed charges, in Coulombs and as a multiple of the electron charge.  
SKETCH:  

 
 RESEARCH:  The electrostatic force between two charges is = 2

1 2 / .F kq q r  By symmetry, the net force in 
the horizontal direction is zero, and the problem reduces to a balance of the forces in the vertical direction, 
with one fixed charge balancing a quarter of the electron’s weight. The vertical component of the 
electrostatic force is sinF θ . The weight of the electron is = eW m g .  

SIMPLIFY:  Balancing the forces in the vertical (z) direction yields θ= ⇒ =coulomb 2

1 1  sin .
4 4

e
e

kqq
F W m g

r
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Solving for q:  
θ

 
′− + ′+  = = = =

′ ′ ′

3/22
2

2 3 2 2 3/2 2( )1 .
4 sin 4 4 4

e
e e e

e e e

dm g z
m gr m gr m g L z

q
kq kq z kq z kez

 

CALCULATE:  
( )

( )

3/22
31 2 9 2

9 2 2 19 9

17

(0.100 m)9.109 10  kg (9.81 m / s ) (15.0 10  m)
2

4 8.99 10  N m / C (1.602 10  C)(15.0 10  m)

3.6561 10  C,  or 228.22 .

q

e

− −

− −

−

 
− ⋅ + ⋅ 

 =
⋅ ⋅ ⋅

= − ⋅ −

 

ROUND: With three significant figures in ′,z  173.66 10  C 228 .q e−= − ⋅ = −  
 DOUBLE-CHECK: The gravitational force on an electron is small.  Each charge q  needs to be a few 

hundred electron charges to balance the gravitational force on the electron. 

21.56. THINK: A uniformly charged thin rod of length L  has a total charge .Q  Find an expression for the 
electrostatic force strength acting on an electron, whose magnitude of charge is e, is positioned on the axis 
of the rod at distance d  from the center. 
SKETCH:  

 
 

 RESEARCH: The electrostatic force between two charges is 2/F kqQ r= . The net electrostatic force acting 
on a charge q  is the sum of all the electrostatic forces acting on q . In the event of a continuous and linear 
distribution of charge of length L and total charge Q , the force due to an infinitesimal amount of charge 
dq′  from the distribution acting on the charge q is: 2/ ,dF kq dq x′=  where ( / ) .dq Q L dx dxλ′ = =  (λ is the 
linear charge density.) In this case, the total force on the electron is then  

/2

2/2
,

d L

d L

keF dx
x
λ+

−
= ∫

 
where the integration runs over the length of the rod, starting from the point closest to the electron 
( )/ 2d L−

 
and ending with the point farthest from the electron ( )/ 2 .d L+  

SIMPLIFY:  

( )/2

2 2 2 2 2 2/2

/2 /2

/2 /2

1 1 1 4 42
2 2 4 4

d
d L d

d
L d

L
L

L
d L

ke ke L keQF dx ke dx ke x ke
d L d Lx x d dL L

λ λλ λ λ
−

+
+

−
−

+  
= = = − = − = = − +  − −∫ ∫  

CALCULATE: Not applicable. 
ROUND: Not applicable. 

 DOUBLE-CHECK:  The answer is in the correct units of force:
( )( )

2

2

2

N m C C
C

N.
m

F

 
 
 = =    

21.57. THINK: A negative charge q−  is located and fixed at (0,  0) . A positive charge q+  is initially at ( ,  0).x  
The positive charge will accelerate towards the negative charge. Use the binomial expansion to show that 
when the positive charge moves a distance xδ   closer to the negative charge, the force on it increases by 

2 32 / .F kq xδ∆ =  
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SKETCH:  

 
 

 RESEARCH:  The Coulomb force is 2
2121 1 2 21/ ,F kq q r r=





 where 21r  is the unit vector that points from 

charge 2 to charge 1. To first order, the binomial expansion is (1 ) 1nx nx+ ≈ +  for 1.x <<  

SIMPLIFY: The initial force on q+  (when it was at ( ,  0)x was 

2

2 .
kq

F x
x

= −


 After moving closer to q−  by 

1δ  the new force on q+  is 
( )

  

22 2 2

2 2 2
2

1 .

1

kq kq kq
F x x x

xxx x
x

δ

δ δ

−
 ′ = − = − = − − 
 −  − 

 



Using the binomial 

expansion,  

2 2

2 21 ( 2) ... 1 2
kq kq

F x x
x xx x
δ δ   ′ = − − − + ≈ − +   

   



(to first order in δ). Then, 



2

3

2kq
F F F x

x
δ′∆ = − ≈ −

  

 
and 

2

3

2
,

kq
F

x
δ

∆ =   as desired. 

CALCULATE: Not applicable. 
ROUND: Not applicable. 

 DOUBLE-CHECK: The charge in force has the correct units for force: 

2

2

2

N m CC m
mC N.

m
F∆ = =    

21.58. THINK: Two charges, both q− , are located and fixed at coordinates ( ,0)d−  and ( ,0)d  in the x-y plane. A 
positive charge of the same magnitude q and of mass m is placed at coordinate (0,0) . The positive charge is 
then moved a distance dδ  along the +y direction and then released. It will oscillate between co-
ordinates (0, )δ and (0, )δ− . Find the net force netF acting on the positive charge when it is moved 
to (0, )δ and use the binomial expansion to find an expression for the frequency of the resulting oscillation. 
SKETCH:  

 
 

 RESEARCH:  The Coulomb force is 2
2121 1 2 21/ ,F kq q r r=



  where 21F


 is the force on the charge 1 by charge 2, 

and 21r  points from charge 2 to charge 1. To first order, the binomial expansion is, in general, 
(1 ) 1nx nx+ ≈ +  for 1.x  The restoring force of a simple harmonic oscillator obeys Hooke’s Law, 

2 ,F mxω= −   where ω is the characteristic angular frequency, and / (2 ).f ω π=  
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SIMPLIFY:  
2 2 2

3121 1 31 2
net 3 3 2 2 3/2 2 2 3/2 2 2 3/2

21 31
3/22 2 2

3/2 3 22
3

2

2ˆ ˆ ˆ ˆ ˆ( ) ( )
( ) ( ) ( )

2 2ˆ ˆ1

1

kq q rkq q r kq kq kq
F dx y dx y y

r r d d d

kq kq
y y

d d
d

d

δ
δ δ

δ δ δ

δ δ δ

δ

−

− −
= + = + − − + =

+ + +

 
= − = − + 

   
+ 

 





 

Note the binomial expansion of ( ) ( )( )
3

222 2 21 / 1 3 / 2 / .d dδ δ
−

+ ≈ −  Neglecting the term 2 2/ dδ  (keeping 

only terms linear inδ ), the net force is ( )2 3
net ˆ2 / .F kq d yδ≈ −


 Then from 2 ,F mxω= −  ( )/F mxω = −
 

with ,x δ=  the angular frequency is ( ) ( )2 3 2 3 22 / 2 /
q kkq md kq md
d md

ω δ δ= = = and the frequency 

is 2 .
2 2

q qk kf
d md d mdπ π

= =  

CALCULATE: Not applicable. 
ROUND: Not applicable. 

 DOUBLE-CHECK: The frequency of oscillation should depend directly on the magnitude of the charges 
and inverse on the distance separating the charges. This lends support to the formulas found above. 

21.59. The gravitational force between the Earth and Moon is given by 2
g Earth Moon EM/ .F GM m r=  The static 

electrical force between the Earth and the Moon is 2 2
EM/ ,F kQ r=  where Q  is the magnitude of the charge 

on each the Earth and the Moon. If the static electrical force is 1.00% that of the force of gravity, then the 
charge Q  would be: 

2
Earth Moon Earth Moon

g 2 2
EM EM

0.0100 0.0100
0.01     .

GM m GM mkQF F Q
kr r

= ⇒ = ⇒ =

 

This gives 
( )

11 2 24 22
12

9 2 2

0.0100(6.67 10  N m / kg)(5.97 10  kg)(7.36 10  kg)
5.71 10  C.

8.99 10   N m / C
Q

−⋅ ⋅ ⋅
= = ⋅

⋅
 

21.60. The gravitational force between the Earth and Moon is given by 2
g Earth moon EM/ .F GM m r=  If this is due 

solely to static electrical force between the Earth and Moon, the magnitude of Q  would be: 
2

Earth Moon Earth Moon
g 2 2

EM EM

  .
M m GM mQF G k Q

kr r
= − = − ⇒ =

 So, 
( )

11 2 24 22
13

9 2 2

(6.67 10  N m / kg)(5.97 10  kg)(7.36 10  kg)
5.71 10  C.

8.99 10   N m / C
Q

−⋅ ⋅ ⋅
= = ⋅

⋅
 

This is a large amount of charge, on the order of 3110  electrons worth of charge. This is equivalent to 
about 60 million moles of electrons.  

21.61. THINK: The radii of the electron orbits are 2
n Br n a= , where n is an integer (not 0) and 11

B 5.29 10  m.a −= ⋅  

Calculate the electrostatic force between the electron (charge e− and mass 31
e 9.109 10  kgm −= ⋅ ) and the 

proton (charge e  and mass 27
p 1.673 10  kgm −= ⋅  ) for the first 4 orbits and compare them to the 

gravitational interaction between the two.  Note 191.602 10 .e C−= ⋅  
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SKETCH:  

 
 

 RESEARCH:  The Coulomb force is 2
1 2 / ,F k q q r=  or 2 2

n n/F ke r=  in this case. The gravitational force 

is 2
g 1 2 / ,F Gm m r=  or 2

g, n e p n/ .F Gm m r=  

SIMPLIFY:   
2 2

e p e p
1 g, 1 2 g, 22 2 2 2

B B B B

1:  ;  , 2 :  ;  
(4 ) (4 )

Gm m Gm mke ken F F n F F
a a a a

= = = = = =  

2 2
e p e p

3 g, 3 4 g, 42 2 2 2
B B B B

3 :  ;  , 4 :  ;  
(9 ) (9 ) (16 ) (16 )

Gm m Gm mke ken F F n F F
a a a a

= = = = = =  

CALCULATE: Note that:
( )

( )

9 2 2 19 22
8

2 211
B

8.99 10  N m /C (1.602 10  C)
8.2465 10 N

5.29 10  m

ke
a

−

−

−

⋅ ⋅
= = ⋅

⋅
 and  

( )
11 2 31 27

e p 47
2 211

B

(6.67 10  N m / kg)(9.109 10  kg)(1.673 10  kg)
3.632 10 N.

5.29 10  m

Gm m

a

− − −
−

−

⋅ ⋅ ⋅
= = ⋅

⋅

 

( ) ( )

( ) ( )

( )

2
e p8 47

1 g, 12 2
B B

2
e p9 48

2 g, 22 2

B B

2
e p9 49

3 g, 32 2

B B

2

4 2

B

Then for 1 :  8.2465 10 N;  3.6342 10 N

2 :  5.1515 10 N;  2.2712 10 N
4 4

3 :  1.1081 10 N;  4.4863 10 N
9 9

4 :  
16

Gm mken F F
a a

Gm mken F F
a a

Gm mken F F
a a

ken F
a

− −

− −

− −

= = = ⋅ = = ⋅

= = = ⋅ = = ⋅

= = = ⋅ = = ⋅

= =
( )

e p10 49
g, 4 2

B

3.2213 10 N;  1.4195 10 N
16

Gm m
F

a
− −= ⋅ = = ⋅

 

ROUND: Since Ba  has three significant figures, 8
1 8.25 10 N,F −= ⋅

 

47
g, 1 3.63 10 N,F −= ⋅

 

9
2 5.15 10 N,F −= ⋅

 

48
g, 2 2.27 10 N,F −= ⋅

 

9
3 1.12 10 N,F −= ⋅

 

49
g, 3 4.49 10 N,F −= ⋅

 

10
4 3.22 10 N,F −= ⋅

 

49
g, 4and  1.42 10 N.F −= ⋅ In 

every case the gravitational force between the proton and the electron is almost forty orders of magnitude 
smaller than the electrostatic force between them.

 

 DOUBLE-CHECK: As n increases, the distance between the proton and the electron increases. Since each 
force follows an inverse-square law with respect to the distance, the forces decrease as n increases 

21.62. THINK: The net force on the orbiting electron is the centripetal force, CF . This is due to the electrostatic 

force between the electron and the proton, F . The radius of the hydrogen atom is 115.29 10  mr −= ⋅ . The 
charge of an electron is 19

e 1.602 10  Cq e −= − = − ⋅ , and the charge of a proton is 19
p 1.602 10  Cq e −= = ⋅ . 
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Find the velocity v and the kinetic energy K of the electron orbital. The mass of an electron is 
31

e 9.109 10  kg.m −= ⋅   
SKETCH:  

 
 

 RESEARCH:  The centripetal force is 2
C e / .F m v r=  The electrostatic force is 2

1 2 / .F k q q r=  The kinetic 

energy is 2 / 2.K mv=   
SIMPLIFY: Solve for 2v : 

2 2 2
1 2 2e

C 2 2
e

   
k q qm v ke keF F v

r r r rm
= ⇒ = = ⇒ =  

Find K: 
2 2

2
e e

e

1 1 .
2 2 2

ke keK m v m
rm r

 
= = = 

 
 

CALCULATE:  
( )9 2 2 19 2

18
11

8.99 10  N m / C (1.602 10  C)
2.1807 10  J 13.6077 eV

2(5.29 10  m)
K

−
−

−

⋅ ⋅
= = ⋅ =

⋅
 

ROUND: 13.6 eVK =  
 DOUBLE-CHECK: Because the electron has very little mass, it is capable of approaching speeds on the 

order of 0.01c  or 0.1c (where c is the speed of light). For the same reason, its kinetic energy is small (on 
the order of a few electron volts, in the case of the hydrogen atom). 

21.63. For the atom described in the previous question, the ratio of the gravitational force between the electron 
and proton to the electrostatic force is:  

( )
( )

e p
2 e p

g 2
1 2

2

11 3 2 31 27

9 2 2 19 2

40

/

6.6742 10 m / (kg s ) (9.109 10  kg)(1.673 10  kg)

8.99 10  N m / C (1.602 10  C)

4.41 10

Gm m
Gm mrF F

k q q ke
r

− − −

−

−

= =

⋅ ⋅ ⋅
=

⋅ ⋅

= ⋅

 

This value is independent of the radius; if this radius is doubled, the ratio does not change. 

21.64. THINK: The Earth and the Moon each have a charge 61.00 10  C.q = − ⋅  Their masses are 
24

E 5.97 10  kgm = ⋅  and 2
M

27.36 10  kgm = ⋅ , respectively.  The distance between them is 384,403 km,r =  
center-to-center. (a) Compare their electrostatic repulsion, F , with their gravitational attraction, gF .         

(b) Discuss the effects of the electrostatic force on the size, shape and stability of the Moon’s orbit around 
the Earth. 

 

 
SKETCH:  
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 RESEARCH: Treat each object as a point particle. The electrostatic force is 2
1 2 /F k q q r= , and the 

gravitational force is 2
g / .F GMm r=   

SIMPLIFY:  
(a) 2 2

E M
2

g/ ;  /F kq r F GM m r= =  

(b) Not applicable. 
CALCULATE:  

(a) 
( )

( )

9 2 2 6 2

28

8.99 10  N m / C ( 1.00 10  C)
60839.6 N

3.84403 10  m
F

⋅ − ⋅
= =

⋅

 ( )( )( )( )
( )

11 3 2 24 22

20
g 28

6.6742 10  m / kg s 5.9742 10  kg 7.36 10  kg
1.986 10  N

3.84403 10  m
F

−⋅ ⋅ ⋅
= = ⋅

⋅
 

(b) The force of gravity is about 16 orders of magnitude greater than the electrostatic repulsion. The 
electrostatic force is an inverse-square central force. It therefore has no effect on the shape or stability of 
the Moon’s orbit. It could only affect the size of the orbit, but given the orders of magnitude in difference 
between this and gF , the effect is probably undetectable. 

ROUND:  
(a) 46.08 10  NF = ⋅ and  Fg =1.99 ⋅1020  N  

 DOUBLE-CHECK: gF
 
should greater than ,F  otherwise the Moon would not remain in the Earth’s orbit. 

21.65. Eight 1.00-μC+ charges are aligned on the y-axis with a distance 2.00 cmy∆ =  between each closest pair:  

 
 

The force on the charge at 4.00 cm,y =  3 ,q  is: 



8

tot, 3 , 3 13 23 43 53 63 73 83 13 23 43 53 63 73 83
1, 3

( )n
n n

F F F F F F F F F F F F F F F F y
= ≠

= = + + + + + + = + − − − − −∑
        

 

All terms have in common the factor 3k q . Then, 

1 2 4 5 6 7 8
tot, 3 3 2 2 2 2 2 2 2

1 3 2 3 4 3 5 3 6 3 7 3 8 3

q q q q q q q
F k q

y y y y y y y y y y y y y y

 
 = + − − − − − 
 − − − − − − −
 

             

 

Since 1 2 8...q q q q= = = = , 



( )( )
( )



2
tot, 3 2 2 2 2 2 2 2

2

tot, 3 2 2 2 2 2 2

9 2 2 6

2

2

1 1 1 1 1 1 1
(2 ) ( ) ( ) (2 ) (3 ) (4 ) (5 )

1 1 1 1 11 1
( ) 2 2 3 4 5

8.99 10  N m / C 1.00 10  C 769
36000.0200 m

ˆ4.80 N 

F kq
y y y y y y y

kq
F y

y

y

y

−

 
= + − − − − − 

∆ ∆ ∆ ∆ ∆ ∆ ∆ 
 

= + − − − − − ∆  

⋅ ⋅  
= − 

 

= −
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21.66. The distance between the electron (charge eq e= − ) and the proton (charge pq e= ) is 115.29 10  m.r −= ⋅  

The net force on the electron is the centripetal force, 2
c e c e /F m a m v r= = . This is due to the Coulomb 

force, 
2

1 2 / .F k q q r=   That is, 2 2
c e 1 2  / / .F F m v r k q q r= ⇒ =  The speed of the electron is: 

( )9 2 2 19 22 2
2 6 6

e 31 11
e

8.99 10  N m / C (1.602 10  C)
  2.18816 10  m/s 2.19 10  m/s.

(9.109 10  kg)(5.29 10  m)
ke kem v v
r m r

−

− −

⋅ ⋅
= ⇒ = = = ⋅ ≈ ⋅

⋅ ⋅
 

21.67. The radius of the nucleus of 14 C is 0 1.505 fm.r =  The nucleus has charge 0 6 .q e= +   
(a) A proton (charge q e= ) is placed 3.00 fmd = from the surface of the nucleus. Treating the nucleus as a 
point charge, the distance between the proton and the charge of the nucleus is 0 .r d r= +  The force is 
repulsive due to the like charges. The magnitude of this force is  

( )
( )

( )

9 2 2 19 22
0

2 22 15 15
0

8.99 10  N m / C 6(1.602 10  C)6 68.2097 N 68.2 N
3.00 10  m 1.505 10  m

k q q k eF
r d r

−

− −

⋅ ⋅
= = = = ≈

+ ⋅ + ⋅
 

(b) The proton’s acceleration is: 

 

28 2
2

p

282
7

68.210 N 4.077 10  m/s 4.08 10  m/s
1.673 10  kgp

FF m a a
m −= ⇒ = = = ⋅ ≈ ⋅

⋅
 

21.68. The original force is 2
1 2 / 0.100 N.F k q q r= =  Now 1q becomes 1(1/ 2) ,q  while r  becomes 2 .r  The new 

force is: 

( )

1 2
1 2

2 2

1
1 1 12 = (0.100 N) 0.0125 N
8 8 82

k q q k q q
F F

rr
′ = = = =  

21.69. The charge and position of three point charges on the x-axis are: 

11

22

33

19.0 μC;  10.0 cm

57.0 μC;  20.0 cm

3.80 μC;  0

q x

q x

q x

= + = −

= − = +

= − =







   

 

The magnitude of the total electrostatic force on 3q  is: 

( )
( ) ( )

( )( )
( ) ( )

3 1 3 2 1 2
13 23tot, 3 13 23 13 23 32 2 2 2

1 21 3 2 3

9 2 2
2 2

19.0 μ 57.0 μ
8.99 10  N m / C 3.80 μ 113.59 N 114 N

0.100 m 0.200 m

k q q k q q q q
F F F F F F F k q

x xx x x x

C C
C

 
 = + = − − = + = + = +
 − −  

 −
 = ⋅ − + = ≈
 
 

 

   

 

21.70. The charge and position of three point charges on the x-axis are:  
 

11

22

33

64.0 μC;  0.00 cm

80.0 μC;  25.0 cm

160.0 μC;  50.0 cm

q x

q x

q x

= + =

= + =

= − =
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The magnitude of the total electrostatic force on 1q is: 

( ) ( )

( )( )
( ) ( )

3 1 32 1 2
21 31tot, 1 21 31 12 2 2 2

3 22 1 3 1

9 2 2
2 2

160.0 μC 80.0 μC
8.99 10  N m / C 64.0 μC 368.23 N 368 N.

0.500 m 0.250 m

k q q qk q q q
F F F F F k q

x xx x x x

−
= + = − + = + = −

− −

 
 = ⋅ − = ≈
 
 

 

   

 

21.71. The charge of the Earth is 56.8 10  C.Q = − ⋅  The mass of the object is 1.0 g.m =  For this object to be 
levitated near the Earth’s surface ( E 6378 kmr = ), the Coulomb force and the force of gravity must be the 
same. The charge q  of the object can be found from balancing these forces: 

( )
( )

2
E

g Coulomb 2
E

2 6 2
5

9 2 2 5

    

0.0010 kg (9.81 m / s )(6.378 10  m)
6.5278 10  C 65 μC.

8.99 10  N m /C 6.8 10  C

k Qq mgr
F F mg q

k Qr

q −

= ⇒ = ⇒ =

⋅
= = ⋅ ≈

⋅ − ⋅

 

Since Q  is negative, and the object is levitated by the repulsion of like charges, it must be that 65 μCq ≈ − . 

21.72. The mass of the cat is 7.00 kg. The distance between the cat and the metal plate is 2.00 m. The cat is 
suspended due to attractive electric force between the cat and the metal plate.  

 
 

The attractive force between the cat and the metal plate is 2/ .F kQQ d=  Since the cat is suspended in the 

air, this means that .F mg=  Therefore 2 2/ .mg kQ d=  Solving for Q  gives 2 / / .Q mgd k d mg k= =  

Substituting 7.00 kgm = , 29.81 m / sg = , 9 2 28.99 10  N m /k C= ⋅  and 2.00 md =  yields 
2

4
9 2 2

7.00 kg 9.81 m / s
2.00 m 1.748 10 C.

8.99 10  N m / C
Q −⋅
= = ⋅

⋅
 

The number of electrons that must be extracted is 
4

15
19

e

1.748 10  C 1.09 10  electrons.
1.602 10  C

QN
q

−

−

⋅
= = = ⋅

⋅  
 

 

 

 
 



Bauer/Westfall: University Physics, 2E 

924 

 

21.73. THINK:  A 10.0 g mass is suspended 5.00 cm above a non-conducting flat plate. The mass and the plate 
have the same charge .q  The gravitational force on the mass is balanced by the electrostatic force.  
SKETCH:  

 
 

 RESEARCH: The electrostatic force on the mass m  is 2 2
E / .F kq d=  This force is balanced by the 

gravitational force gF mg= . Therefore, E gF F= or 2 2/ .kq d mg=  

SIMPLIFY: The charge on the mass m  that satisfies the balanced condition is / .q d mg k=  
CALCULATE: Putting in the numerical values gives:  

 

( )( )3 2
7

9 2 2

10.0 10  kg 9.81 m / s
0.0500 m 1.6517 10 C.

8.99 10  N m / C
q

−
−

⋅
= = ⋅

⋅  

 
The number of electrons on the mass m  is: 

 
7

12
19

1.6517 10 C 1.0310 10  electrons.
1.602 10 C / electron

q
N

e

−

−

⋅
= = = ⋅

⋅
 

The additional mass of electrons is ( )( )12 31 191.0310 10 9.11 10  kg 9.39263 10  kg.m − −∆ = ⋅ ⋅ = ⋅  

ROUND: Rounding to three significant figures gives 71.65 10 ,q e−= ⋅  and 199.39 10  kg.m −∆ = ⋅  
 DOUBLE-CHECK:  It is expected that m∆  is negligible since the mass of electron is very small. 

21.74. THINK: This problem involves superposition of forces.  Since there are three forces on 4 ,Q  the net force 
is the vector sum of three forces. 
SKETCH:  
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 RESEARCH: The magnitude of the forces between two charges, 1q  and 2 ,q  is 2
1 2 / .F kq q r= The forces 

on 4Q  are 

( ) ( ) ( )3 41 4 2 4
1 2 32 2 2

14 24 34

ˆ ˆ ˆ ˆ ˆsin cos ,    sin cos ,    and   .
Q QQ Q Q Q

F k x y F k x y F k y
r r r

θ θ θ θ= − + = + = −
  

 

SIMPLIFY: By symmetry, the horizontal components of 1F  and 2F  cancel, and 3F  has no horizontal 
component.  The net force is 

31 2
1 2 3 4 2 2 2

14 24 34

ˆcos .
QQ Q

F F F F kQ y
r r r

θ
  

= + + = + −      

   

 

Since 1 2Q Q= and 14 24r r= , the above equation simplifies to 

31
4 2 2

14 34

2 cos ˆ.
QQ

F kQ y
r r

θ 
= − 

 



 

CALCULATE: The distance 14r  and 34r  are ( ) ( )2 2

14 343 cm 4 cm 5 cm;  4 cm.r r= + = =  Therefore 

cos 4 / 5.θ =  Substituting the numerical values yields: 

( )( )
( ) ( )

3 3
9 2 2 3

2 22 2

2 1 10  C 4 1.024 10  C8.99 10  N m / C 2 10  C 0 N.
55 10  m 4 10  m

F
− −

−

− −

  
⋅ ⋅ ⋅   = ⋅ ⋅ − =     ⋅ ⋅   

 

ROUND: Not needed 
 DOUBLE-CHECK:  It is clear from the symmetry of the problem that this is a reasonable outcome. 

21.75. THINK: Three 5.00-g Styrofoam balls of radius 2.00 cm are tied to 1.00 m long threads and suspended 
freely from a common point. The charge of each ball is q  and the balls form an equilateral triangle with 
sides of 25.0 cm.   
SKETCH:  

 

 RESEARCH: The magnitude of the force between two charges, 1q and 2 ,q  is 2
12 1 2 / .F kq q r=  The 

magnitude of F  in the above figure is 2 2/ .F kq r=  Using Newton’s Second Law, it is found that 
sinyT T mgα= =   and cos 2 cos .xT T Fα θ= =  
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SIMPLIFY: Eliminating T  in the above equations yields ( )tan / 2 cos .mg Fα θ=  Rearranging gives, 

( ) 2 2/ 2tan cos / .F mg kq rα θ= = Therefore, the charge q  is 
2

.
2 tan cos

mgr
q

k α θ
=  

From the sketch, it is clear that the distance of the ball to the center of the triangle is ( )/ 2cos .d r θ=  

Therefore 2 2tan / .L d dθ = −   
CALCULATE: Substituting the numerical values, 0.250 m,r =  35.00 10  kg,m −= ⋅  29.81 m/s ,g =  

1.00 mL =  and 30θ = ° (exact) gives 
0.250 m 0.1443 m

2cos(30 )
d = =

°

 

( ) ( )2 2
1.00 m 0.1443 m

tan 6.856
0.1443 m

α
−

= =

 

( )( )
( )

23 2
7

9 2 2

5.00 10  kg 9.81 m / s 0.250 m
1.69463 10  C

2 8.99 10  N m / C 6.856cos(30 )
q

−

−
⋅

= = ⋅
⋅ ⋅ °

 

ROUND: 0.169 μCq =  
 DOUBLE-CHECK:  This charge is approximately 11 orders of magnitude larger than the elementary 

charge e.  The charge required to deflect 5.00 g balls by a distance of 25.0 cm would need to be fairly large. 

21.76. THINK:  Two point charges lie on the x-axis. A third point charge needs to be placed on the x-axis such 
that it is in equilibrium. This means that the net force on the third charge due to the other charges is zero. 
SKETCH:  

 
 RESEARCH: In order for the third charge to be in equilibrium, the force on it due to 1,q  1 ,F



  must be 

equal in magnitude and opposite in direction to 2F


 the force due to 2 .q  Note that the sign of the third 

charge is irrelevant, so I can arbitrarily assume it is positive.  Since 1 2 ,q q>  the third charge must be 

closer to 2q  than to  1q . Also, since 1q  and 2q  are oppositely charged, the forces on a particle between 
them will be in the same direction and hence cannot cancel. The third charge must be in the 

region 20.0 cm.x > The net force on 3q  is 
( )

1 3 2 3
net 2 2

3 3 2

.
k q q k q q

F
x x x

= −
−

 

SIMPLIFY: Solving net 0F =  for 3x  yields ( ) ( )22
2 3 1 3 2 2 3 2 or  .q x q x x q x x= − −  Therefore the position 

of 3q  is 1 2
3

1 2

.
q x

x
q q

=
−

 

CALCULATE: Putting in the numerical values yields
( )( )

3

6.0 μC 20.0 cm
47.32 cm.

6.0 μC 2.0 μC
x = =

−
  

ROUND: Using only two significant digits, the position 3x is 3 47 cmx =  
 DOUBLE-CHECK:  This is correct since 3 2x x> . 
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21.77. THINK: In this problem, a gravitational force on an object is balanced by an electrostatic force on the 
object. 
SKETCH:  

 
 RESEARCH: The electric force on 2q  is given by 2

1 2 / .EF kq q d=   The gravitational force on 2m  is 

g 2F m g= . 

SIMPLIFY: 
2 2

1 2
2 22 2 2  .

kq q kq kq
m g m

d d gd
→ = ⇒ =  

CALCULATE: Substituting the numerical values, 1 2 2.67 μe, 0.360 mq q d= = + = produces  

( )( )
( )( )

29 2 2 6

2 22

8.99 10  N m / C 2.67 10  C
0.05041 kg.

9.81 m / s 0.360 m
m

−⋅ ⋅
= =  

ROUND: Keeping only three significant digits gives 2 50.4 g.m =  
 DOUBLE-CHECK:  This makes sense since EF  is small. 

21.78. THINK: Because this is a two-dimensional problem, the directions of forces are important for 
determining a net force. 
SKETCH:  

 
 RESEARCH: The magnitude of the force between two charges is 2

1 2 / .F k q q r=  The net force on 1q  is 

1 2 1 3
12 13net 2 2

1 2

ˆ ˆ.
k q q k q q

F F F x y
r r

= + = − −
 



 The direction of the net force is 
  
θ = tan−1 Fy

Fx







.  

SIMPLIFY: Not needed 

CALCULATE: 
( )

( )
( )

( )
( ) ( )

9 2 2 9 2 2

net 2 2

9 9

8.99 10  N m / C (2.00 C)(5.00 C) 8.99 10  N m / C (2.00 C)(3.00 C)
ˆ ˆ

3.00 m 4.00 m

ˆ ˆ9.998 10  N 3.371 10  N

F x y

x y

− ⋅ ⋅
= +

= − ⋅ + ⋅
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The magnitude of netF


 is 2 2 9 9
net 9.99 3.37 10  N 10.551 10  N.F = + ⋅ = ⋅ The direction of netF



 is 

 
θ = tan−1 3.37 ⋅109  N

−9.99 ⋅109  N





=161.36° with respect to the positive x-axis, or  18.64°  above the negative x-axis 

(the net force points up and to the left, in quadrant II). 
ROUND: Keeping only  three significant digits yields ( ) ( )8 9

net ˆ ˆ1.00 10  N 3.4 10  NF x y= − ⋅ + ⋅  and 
9

net 10.6 10  NF = ⋅  at 18.6°  above the negative x-axis. 

21.79. THINK: To solve this problem, the force due to the charges and the tension in the string must balance the 
gravitational force on the spheres. 
SKETCH:  

 
 RESEARCH: The force due to electrostatic repulsion of the two spheres is 2 2 2

E 1 2 / / .F kq q d kq d= =  
Applying Newton’s Second Law yields (I) EsinxT T Fθ= =  and (II) cos .yT T mgθ= =  

30.45 m,  2.33 10  kg,  10.0 .L m θ−= = ⋅ = °  

SIMPLIFY:  Dividing (I) by (II) gives ( ) ( )2 2
Etan / / .F mg kq d mgθ = =  After simple manipulation, it is 

found that the charge on each sphere is   q = d2mg tanθ / k = 2L sinθ mg tanθ / k   using 2 sin .d L θ=  
CALCULATE: Substituting the numerical values, it is found that 

( )( )( )
( ) ( )3 2

7
9 2 2

2.33 10  kg 9.81 m / s tan 10.0
2 0.450 m sin10.0 1.0464 10  C.

8.99 10  N m / C
q

−
−

⋅ °
= ° = ⋅

⋅
 

ROUND: Keeping only three significant digits gives 0.105 C.q µ=  
 DOUBLE-CHECK:  This is reasonable. The relatively small spheres and small distance will mean the 

charge is small. 
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21.80. THINK:   I want to find the magnitude and direction of the net force on a point charge 1q  due to point 
charges 2q  and 3 .q  The charges 1 ,q 2 ,q  and 3q  are located at (0,0), (2.0,0.0),  and (0, 2.00),− respectively.  
SKETCH:  

 
 

 RESEARCH: The magnitude of the force between two charges is 2
1 2 / .F k q q r=  The net force on 1q  is 

1 2 1 3
net 12 13 2 2

1 2

ˆ ˆ.
k q q k q q

F F F x y
r r

= + = − −
  

 

SIMPLIFY: Not needed  
CALCULATE: Putting in the numerical values yields 

( )
( )

( )
( )

9 2 2 9 9 9 2 2 9 9

net 2 2

5 5

8.99 10  N m / C (100. 10  C)(80.0 10  C) 8.99 10  N m / C (100. 10  C)(60.0 10  C)
ˆ ˆ

2.00 m 2.00 m
ˆ ˆ1.798 10  N 1.348 10  N

F x y

x y

− − − −

− −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= −

= ⋅ − ⋅



The magnitude of netF


 is 2 2 5 5
net 1.798 1.348 10  N 2.247 10  N.F − −= + ⋅ = ⋅


The direction of netF


 is 

1 1.348tan 36.860 .
1.798

θ −  
= = − ° 

 
 

ROUND: Rounding to three significant digits, it is found that 5
net 2.25 10  NF −= ⋅


 and 36.9θ = °  below the 

horizontal. 
DOUBLE-CHECK:  Since both forces acting on 1q  are attractive, it is expected that the direction of the 
net force would be between the two contributing force vectors. 

21.81. THINK: If it is assumed that the third charge is positive, then the third charge experiences a repulsive 
force with 1q  and an attractive force with 2 .q  
SKETCH:  

 
 RESEARCH: Because 1 2q q> and the force between 1q and 3q is attractive, the possible region 

where 3q can experience zero net force is in the region 0x < . The net force on 3q  is 

( ) ( )
1 3 2 3

net 2 2

3 2 3

.
0

k q q k q q
F

x x x
= − +

− −
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SIMPLIFY:  Solving net 0F =  for 3x  yields ( )22
3 2 1 2 3  implies:  x q q x x= −

 ( ) ( )3 2 1 2 3 3 2 1 2 3(I)         or  (II)  x q q x x x q q x x= − − = −  

Equation (I) gives 3 0x > and equation (II) gives 3 0.x <  Therefore the correct solution is the solution of 

Equation (II). Solving (II) yields 1 2
3

2 1

.
q x

x
q q

−
=

−
 

CALCULATE: Substituting 1 1.00 μC,q =   2 2.00 μCq = −  and 2 10.0 cmx =  into above equation gives  

3

1.00 μC 10.0 cm
24.142 cm

2.00 μC 1.00 μC
x

− ⋅
= = −

−
 

ROUND: To three significant figures: 3 24.1 cm.x = −   
 DOUBLE-CHECK:  The negative value of x indicates that 3q  is located in the region 0x < , as expected.  

21.82. THINK: The electrostatic force on a bead is balanced by its gravitational weight. 
SKETCH:  

 
 

 RESEARCH: The repulsive force between two charged beads is 1 2
E 2 .

q q
F k

d
=

 
Using Newton’s Second Law, 

1 2
E 22 sin

q q
F k m g

d
θ= = . 

SIMPLIFY: Therefore the distance d  is 1 2

2

.
sin

kq q
d

m g θ
=   

CALCULATE: Substituting the numerical values into the above equation gives 

( )
( ) ( )

9 2 2 6 6

3 2

8.99 10  N m / C (1.27 10  C)(6.79 10  C)
1.638 m.

3.77 10  kg 9.81 m/s sin 51.3
d

− −

−

⋅ ⋅ ⋅
= =

⋅ °
 

ROUND: Keeping only three significant digits gives 1.64 m.d =  
 DOUBLE-CHECK:  The beads are very light, so a small charge is sufficient to cause a relatively large 

separation. 
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21.83. THINK: Since this is a two dimensional problem, electrostatic forces are added as vectors. It is assumed 
that AQ  is a positive charge.  
SKETCH:  

 
 

 RESEARCH: To balance the forces 1F  and 2F , the charge on 0Q  must be positive. The electrostatic forces 

on AQ  are A A 0 A
1 2 02 2 2

1 2 0

,  , and .
k q Q k q Q kQ Q

F F F
r r r

= = =  Applying Newton’s Second Law, it is found that 

0 1 2x xF F F= +  or 2
0 A 0 1 2/ cos cos .kQ Q r F Fθ θ= +   Using 1 2r r=  this becomes A0 A

2 2
0 1

2cos .
k q QkQ Q

r r
θ=  

SIMPLIFY: Solving the above equation for 0Q  gives the charge 0 ,Q  ( )2

0 0 1/ 2cos .Q r r q θ=  From the above 

figure, it is noted that ( ) ( )2 2

0 2 2 2 2,r a a a= + =   ( )2 2
1 2 5,r a a a= + =  and  

2 2 2 3 2 3cos cos(45 ) cos45 cos sin45 sin   cos 10.
2 2 2 5 105  5  

a a
a a

θ α α α θ= °− = ° + ° ⇒ = + = =  

Therefore the magnitude of charge 0Q is
2

0 2

8 3 482 10 10 .
10 505

aQ q q
a

= =   

CALCULATE: Substituting 1.00 nCq = −  yields 0
48 10 1.00 nC 3.036 nC.
50

Q = ⋅ − =   

ROUND: Rounding to three significant figures gives 0 3.04 nC.Q =  

 DOUBLE-CHECK:  Since 0r  is larger than 1 ,r  it is expected that 0Q  is larger than 2 2 nC.q =   
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Multi-Version Exercises 

 Exercises 21.84–21.86   The components of the forces in the x-direction give us 
2

2sin .
kq

T
d

θ =  

 The components of the forces in the y-direction give us cos .T mgθ =  

 We can divide these two equations to get 
2 2

2tan      .
tan

kq kq
d

mgd mg
θ

θ
= ⇒ =  

 From the figure we can see that 
/ 2sin     .

2sin
d dθ

θ
= ⇒ =


 

 Combining these two equations gives us 
2

2

2

 
tan

.
2sin 2sin 4 sin tan

kq
mg kqd

mg
θ

θ θ θ θ
= = =  

21.84. 
( )( )

( )( )

29 2 2 6

2 2

8.99 10  N m /C 29.59 10 C
1.211 m.

4 0.9860 kg 9.81m/s sin 29.79 tan29.79

−⋅ ⋅
= =

° °
  

21.85. 
2

24 sin tan
kq

mg θ θ
=  

 ( )( )
( ) ( )

2
2

2

29 2 2 62

22 2 2 2

4 sin tan

8.99 10  N m /C 15.71 10 C
0.7592 kg.

4 sin tan 4 1.223 m 9.81m/s sin 21.07 tan21.07

kq
mg

kq
m

g

θ θ

θ θ

−

=

⋅ ⋅
= = =

° °





 

21.86. 
2

24 sin tan
kq

mg θ θ
=  

 
( ) ( )( )

2
2

2

2 2 22 2

9 2 2

5

4 sin tan

4 1.235 m 0.9935 kg 9.81m/s sin 22.35 tan22.354 sin tan
8.99 10  N m /C

1.989 10  C 19.89 C.

kq
mg

mg
q

k
q

θ θ

θ θ

µ−

=

° °
= =

⋅
= ⋅ =





 

 Exercises 21.87–21.89  

 

( ) ( )
( ) ( )
( ) ( )

1 3 2 3
net 13 23 2 2

3 1 2 3

2 2
3 1 2 2 3 1

3 1 2 2 3 1

0

.

kq q kq q
F F F

x x x x

x x q x x q

x x q x x q

= − = − =
− −

− = −

− = ± −
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 We choose the + sign since we know that the force can only balance when 1 3 2 .x x x< <  

 So we can write 

 

1 2 2 1
3

1 2

.
q x q x

x
q q

+
=

+
 

21.87. ( ) ( )6 6

3 6 6

3.979 10  C 14.13 m 8.669 10  C 5.689 m
2.315 m

3.979 10  C 8.669 10  C
x

− −

− −

⋅ + ⋅ −
= =

⋅ + ⋅
 

21.88. 
( )3 1 2 1 2

1
2

x q q q x
x

q

+ −
=  

 
( )( ) ( )6 6 6

1 6

2.358 m 4.325 10  C 7.757 10  C 4.325 10  C 14.33 m

7.757 10  C
6.581 m

x
− − −

−

⋅ + ⋅ − ⋅
=

⋅
= −

 

21.89. 1 2 2 1
3

1 2

q x q x
x

q q

+
=

+
 

 

( )

( )( ) ( )

3 1 2 2 1

2
1

6 6 6

6

4.625 m 4.671 10  C 6.845 10  C 6.845 10  C 3.573 m

4.671 10  C
14.55 m

x q q q x
x

q
− − −

−

+ −
=

⋅ + ⋅ − ⋅ −
=

⋅
=
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Chapter	22:		Electric	Fields	and	Gauss’s	Law		
	
Concept	Checks	

22.1.	b		22.2.	b		22.3.	a		22.4.	c		22.5.	c		22.6.	e		22.7.	c		22.8.	c		22.9.	e		22.10.	e		22.11.	a		22.12.	a		22.13.	c		22.14.	d	
	

Multiple‐Choice	Questions	

22.1.	e		22.2.	d		22.3.	a		22.4.	a		22.5.	d		22.6.	c		22.7.	c		22.8.	c		22.9.	a		22.10.	a	&	d		22.11.	a		22.12.	a,	d	and	e		
	

Conceptual	Questions	

22.13. The	 metal	 frame	 and	 sheet	 metal	 of	 the	 car	 form	 a	 Faraday	 cage,	 excluding	 the	 electric	 fields	
induced	by	the	lightning.		The	current	in	the	lightning	strike	flows	around	the	outside	of	the	car	to	
ground.		The	passengers	inside	the	car	can	be	in	contact	with	the	inside	of	the	car	with	no	ill	effects,	
but	should	not	stick	their	hands	out	an	open	window.		

22.14. Since	lightning	can	strike	the	tree	and	have	the	current	flow	through	the	wet	tree,	the	current	would	
jump	to	any	object	near	the	tree.		To	avoid	lightning,	go	inside	the	house	or	a	car.		If	I	were	outside,	I	
would	go	to	a	low	place	and	avoid	trees	or	tall	buildings.		I	should	not	lie	down	on	the	ground	since	
the	current	can	flow	along	the	surface	of	the	Earth.		

22.15. If	 electric	 field	 lines	 crossed,	 there	would	be	a	 charge	at	 the	 crossing	point.	 	 It	 is	known	 that	 the	
electric	field	lines	extend	away	from	a	positive	change	and	the	lines	terminate	at	a	negative	charge.		
If	in	the	vicinity	of	the	crossing	point	there	is	no	charge,	then	the	lines	cannot	cross.		Moreover,	if	we	
put	 a	 test	 charge	 on	 the	 crossing	 point,	 there	 would	 be	 two	 directions	 of	 the	 force;	 this	 is	 not	
possible;	therefore	the	lines	cannot	cross.	

22.16. The	net	flux	through	a	closed	surface	is	proportional	to	the	net	flux	penetrating	the	surface,	that	is,	
the	flux	leaving	the	volume	minus	the	flux	entering	the	volume.	This	means	that	if	there	is	a	charge	
within	a	surface,	the	flux	due	to	the	charge	will	only	exit	through	the	surface	creating	a	net	flux	no	
matter	where	the	charge	 is	 located	within	the	surface.	 	 If	a	charge	moves	 just	outside	the	surface,	
then	 the	 net	 flux	 crossing	 the	 surface	would	 be	 zero	 since	 the	 flux	 entering	 the	 volume	must	 be	
equal	to	the	flux	leaving	the	volume	as	shown	in	the	figure:		

	
	
	
	

22.17. Because	of	the	spherical	symmetry	of	this	problem,		Gauss’s	Law	can	be	used	to	determine	electric	
fields.	The	image	below	shows	a	cross‐section	of	the	nested	spheres:	
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	 Gauss’s	Law	is	applied	on	four	surfaces,	G1 , G2 , G3 	and	G4 	as	shown	in	the	figure.	

	 a 	In	the	region	 1 < ,r r the	electric	field	is	zero	because	it	is	inside	the	conducting	sphere.		

b 	 Applying	 Gauss’s	 Law	 on	 the	 surface	 G2 	 gives	 the	 electric	 field	 in	 the	 region	 1 2 ,r r r  	 i.e.,	

 2
04 3 /E r Q  	or	  E 3Q / 40r

2 . 	

c 	In	the	region	 r2 r  r3 , 	the	electric	field	is	zero	since	it	is	inside	a	conductor.	

d 	 In	 the	 region	   r  r3 , 	 using	Gauss’s	Law	yields	  2
04 3 / .E r Q  	Therefore,	 the	electric	 field	 is	

  E 3Q / 40r
2 . 	

22.18. 	

	

a 	If	you	are	very	close	to	the	rod,	the	electric	field	can	be	approximated	by	the	field	produced	by	a	
very	long	rod.	Then	 E 	is	proportional	to	the	linear	charge	density	and	to	1/ .r 	
b 	If	you	are	a	few	centimeters	away	from	the	center,	the	rod’s	finite	length	becomes	relevant	and	
the	rod	can	be	treated	as	a	line	of	charge	with	finite	length,	as	in	Example	22.3.		
c 	If	you	are	very	far	away,	then	the	electric	field	behaves	like	that	of	a	point	charge.	Therefore,	the	
field	is	proportional	to	the	total	charge	and	to	 21/ .r 	

22.19. 	

	
	

The	 total	 electric	 flux	 through	 a	 closed	 surface	 is	 equal	 to	 the	 net	 charge,	 encq ,	 divided	 by	 the	

constant 0 	 or	 enc 0net
 / .q  	 This	 is	 known	 as	 Gauss’s	 Law.	 	 The	 strength	 of	 a	 dipole	 is	 p qd. 	

Because	 the	 dipole	 is	 completely	 enclosed	 by	 the	 spherical	 surface,	 the	 enclosed	 charge	 will	 be	

  
qenc  q q  0. 		Thus	the	net	flux	through	the	closed	surface	will	be	zero.	

	

22.20. 	
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Consider	two	small	elements	 dx 	at	 x 	and	 x 	as	shown	in	the	above	figure.		Due	to	the	symmetry	of	
the	problem,	it	is	found	that	the	component	of	 1E 	in	the	y‐direction,	 1y ,E 	is	equal	in	magnitude,	but	

in	 the	opposite	direction,	 to	 the	y‐component	of	 2 .E 	Therefore,	only	 the	x‐components	of	electric	

fields	 contribute	 to	 the	 net	 field.	 	 Integrating	 over	 the	 length	 of	 wire	 yields	  a

20
0

2sin ˆ .
4

dq
E x

r




 


	

Using	 ,dq dx 	 it	 simplifies	 to	


 a

20
0

sin
.

2

x
E dq

r




 
   
 




	 Substituting	 2 2r x y  and	 sin /x r  	

yields	
 

a

3/20 2 2
0

ˆ
.

2

x xdx
E

x y




 
  
  




	Using	the	substitution	 2z x 	yields:	

     

   

2 2
2 1/2 1/2a 2 2

20
0 00 0 0

2 2

0

ˆ ˆ ˆ1
2 / 2 /

2 2 2 2

ˆ 1/ 1/ .
2

a ax dz x x
E z y z y

z y

x y a y

  
  




                                     

         




	

22.21. Since	 the	 conductor	has	 a	negative	 charge,	 this	means	 that	 the	 electric	 field	 lines	 are	 toward	 the	
conductor.	 	Electrons	 inside	 the	conductor	can	move	 freely	and	redistribute	 themselves	such	that	
the	repulsion	forces	between	electrons	are	minimized.	As	a	consequence	of	 this,	 the	electrons	are	
distributed	on	the	surface	of	the	conductor.			

	

22.22. St.	Elmo’s	Fire	is	a	form	of	corona	discharge;	the	same	phenomenon	whereby	lightning	rods	bleed	
off	accumulated	ground	charge	to	prevent	 lightening	strokes.	 	Lightning	rods	are	not	supposed	to	
conduct	a	lightning	strike	to	ground	except	as	a	last	resort.		In	stormy	weather,	a	ship	or	aircraft	can	
become	electrically	charged	by	air	friction.		The	charge	will	collect	at	the	sharp	edges	or	points	on	
the	 structure	 of	 the	 ship	 or	 plane	 because	 the	 electric	 field	 is	 concentrated	 in	 areas	 of	 high	
curvature.	 	 Sufficiently	 large	 fields	 ionize	 the	 air	 at	 these	 areas,	 as	 the	molecules	of	nitrogen	and	
oxygen	de‐ionize	they	give	off	energy	in	the	form	of	visible	light.		The	ghostly	glow	known	since	the	
days	of	“wooden	ships	and	iron	men”	is	St.	Elmo’s	Fire.			

22.23. Consider	the	surface	layer	of	charge	to	be	divided	into	two	component;	a	‘tile’	in	the	vicinity	of	some	
point,	and	the	‘rest’	of	the	charge	on	the	surface.		Seen	from	close	enough	to	the	given	point	on	the	
surface,	 the	 ‘tile’	 appears	as	a	 flat	plane	of	 charge.	 	Gauss’s	Law	applied	 to	 the	cylindrical	 surface	
pierced	 symmetrically	 by	 such	 a	 plane,	 implies	 that	 the	 ‘tile’	 produces	 an	 electric	 field	 with	 the	
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component	 0/ 2  perpendicularly	outward	from	the	surface	on	the	outside,	 inward	on	the	inside.		
But	Gauss’s	Law	applied	to	a	short	cylinder	 ‘pillbox’ 	partially	embedded	in	the	conductor,	implies	
that	 the	 entire	 charge	 layer	 produces	 an	 electric	 field	 with	 component	 /  	 perpendicularly	
outward	outside	the	surface,	and	zero	 inside.	 	To	yield	this	result,	 the	 ‘rest’	must	produce	electric	
field	 0/ 2 ,  	outward,	in	the	vicinity	of	the	‘tile’	inside	and	out.		It	is	this	electric	field	which	exerts	
force	 on	 the	 ‘tile’,	 carries	 charge	 per	 unit	 area	 . 	 Hence,	 every	 portion	 of	 the	 charge	 layer	

experiences	 outward	 force	per	unit	 area	 stress	 of	magnitude	 2
0/ 2 .   	Note	 that	 the	 outward	

direction	of	the	stress	is	independent	of	sign	of	 . 	

22.24. The	 net	 force	 on	 the	 dipole	 is	 zero,	 so	 there	 will	 be	 no	 translational	motion	 of	 dipole.	 	 The	 net	
torque;	however,	is	not	zero,	so	the	dipole	will	rotate.		With	the	force	on	the	positive	charge	to	the	
right	and	the	force	on	the	negative	charge	to	the	left,	the	dipole	will	rotate	counter‐clockwise.			
	

Exercises	

22.25. The	electric	field	produced	by	the	charge	is:		

  
 

9 2 2 9

22

8.99 10  N m /C 4.00 10  C
575.36 N/C 575 N/C.

0.250 m

kq
E

r

 
    	

22.26. 	

	
	The	electric	field	vector	will	be	         i

2 2 2
1 2 1 2

i

/ / / .E E kq r x kq r y k r q x q y    
 

	The	magnitude	

of	the	vector	is:		

 
   

9 2 2 2 2
2 2 2 2 9 9

2 2

8.99 10  N m /C
1.6 10  C 2.410 C 25.931 N/C 26 N/C.

1.0 m
x y x y

k
E E E q q

r
 

         


	

22.27. 	

	

	The	 electric	 field	 at	 the	 origin	 is	         


2 2
i 1 1 2 2

i

ˆ ˆ/ / .E E k q r x k q r y 	 The	 direction	 is	

 tan / .y xE E 		
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22 2
2 2 1 21 1 1 1

0 2 2 2
1 1 2 1

4.000 m 24.00 nC/
tan tan tan tan 12.53 .

/ 6.000 m 48.00 nC

y

x

E k q r r q

E k q r r q
	

The	electric	field	lies	in	the	3rd	quadrant	so	       0180.00 12.53 192.53 . 		Rounding	to	four	
significant	figures	gives	us  192.5 . 		

22.28. THINK:		The	electric	field	is	the	sum	of	the	fields	generated	by	the	two	charges	of	the	corner	triangle.		

The	 first	 charge	 is	 5
1 1.0 10  Cq    	 and	 is	 located	 at	   1 0.10 m .r y



	 The	 second	 charge	 is	
5

2 1.5 10  Cq   	located	at	   2 0.20 m .r x


		

SKETCH:			

	
RESEARCH:		The	electric	field	is	given	by	the	equation	  2/ .E kq r r



 	

SIMPLIFY:		      2 2
1 1 2 2/ / .E kq r y kq r x 



	The	magnitude	of	the	field	is		

2 2

2 2 1 2
2 2

1 2

,x y

q q
E E E k

r r

   
         

   



	

and	 has	 a	 direction	 	
2 2

1 1 11 2 2 1
2 2

1 2 1 2

tan tan tany

x

E q r r q

E r q r q
   

        
                    

	 where	  	 is	 in	 the	 second	

quadrant.	

CALCULATE:		  
   

2 2
5 5

9 2 2 6

2 2

1.0 10  C 1.5 10  C
8.99 10  N m /C 9.6013 10  N/C

0.100 m 0.200 m
E

             
   
   

	

   
   

2 5

1

2 5

0.200 m 1.0 10  C
tan 69.444

0.100 m 1.5 10  C









  


	or	 110.56 .   	

ROUND:	 	 The	 least	 precise	 value	 given	 in	 the	 question	 has	 two	 significant	 figures,	 so	 the	 answer	
should	 also	 be	 reported	 to	 two	 significant	 figures.	 	 The	 electric	 field	 produced	 at	 the	 corner	 is	

69.6 10  N/CE   	at	110 	from	the	x‐axis.		
DOUBLE‐CHECK:		Dimensional	analysis	confirms	the	answer	is	in	the	correct	units.	

22.29. THINK:		We	want	to	find	out	where	the	combined	electric	field	from	two	point	charges	can	be	zero.	
Since	the	electric	field	falls	off	as	the	inverse	second	power	of	the	distance	to	the	charge,	and	since	
both	charges	are	on	the	x‐axis,	only	points	on	the	same	line	have	any	chance	of	canceling	the	electric	
field	from	these	two	charges,	resulting	in	a	net	zero	electric	field.	The	first	charge,	 1 5.0 Cq  ,	 is	at	

the	 origin.	 The	 second	 charge,	 2 3.0 Cq   ,	 is	 at	 1.0 m.x  Consider	 where	 along	 the	 x‐axis	 it	 is	
possible	to	have	zero	electric	field.	On	the	sketch	we	have	marked	three	regions	 I,	II,	and	III .		If	we	
place	a	positive	charge	anywhere	in	region	II,	the	5	C	will	repel	it	and	the	–3	C	will	attract	it,	so	that	
the	positive	charge	moves	to	the	right.		If	we	place	a	negative	charge	in	the	same	region,	it	will	move	
to	the	left.	So	we	know	that	the	electric	field	cannot	be	zero	anywhere	in	region	II.	Region	I	is	closer	
to	 the	 5	 C	 charge.	 Since	 this	 is	 also	 the	 charge	 with	 the	 larger	 magnitude,	 its	 electric	 field	 will	
dominate	 region	 I,	 and	 thus	 there	 is	no	place	 in	 region	 I	where	 the	electric	 field	 is	0.	This	 leaves	
region	III,	where	the	two	electric	fields	from	the	point	charges	can	cancel.	
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SKETCH:			

	
	

RESEARCH:	 	 The	 electric	 field	 due	 to	 the	 charge	 at	 the	 origin	 is	 E0  kq0 /x 2 . 	 The	 other	 charge	

produces	a	field	of	
  
E1  kq1 / x  x1 2 . 		

SIMPLIFY:	The	combined	electric	field	is	 E  kq0 /x 2  kq1 / x  x1 2 . 	Setting	the	electric	field	to	zero,	

solve	for	 :x 	

	

  

kq0

x 2 
kq1

x  x1 2
 0   

kq0

x 2  
kq1

x  x1 2
   x  x1 2 q0  x 2q1    x  x1 2 q0  x 2 q1 	

We	could	now	solve	the	resulting	quadratic	equation	blindly	and	would	obtain	two	solutions,	each	
of	which	we	would	have	to	evaluate	for	validity.	Instead,	we	can	make	use	of	the	thinking	we	have	
done	above.	In	the	last	step	we	used	the	fact	that	the	charge	at	the	origin	is	positive	and	the	other	is	
negative,	replacing	them	with	their	absolute	values.	Now	we	can	take	the	square	root	on	both	sides	
and	choose	the	positive	root,	leaving	us	with	

  1 0

1 0 1

0 1

 
x q

x x q x q x
q q

   


	

CALCULATE:		
 1.00 m 5.00 C

4.43649 m
5.00 C 3.00 C

x  


	

ROUND:	 	 The	 positions	 are	 reported	 to	 three	 significant	 figures.	 	 The	 electric	 field	 is	 zero	 at	
4.44 m.x  	

DOUBLE‐CHECK:		This	is	a	case	where	we	can	simply	insert	our	result	and	verify	that	it	does	what	it	
is	supposed	to:	  E(x=4.4 m)  k(5 C)/(4.4 m)2  k(3 C)/(4.4 m 1 m)2  0 .	

22.30. THINK:	Let’s	fix	the	coordinate	notation	first.		The	charges	are	located	at	points	 0,d ,	 0,0 ,	and	 0,‐
d 	on	the	y‐axis,	and	the	point	P	is	P	 	 x,0 .	In	order	to	specify	the	electric	field	at	a	point	in	space,	
we	 need	 to	 specify	 the	 magnitude	 and	 the	 direction.	 Lets	 first	 think	 about	 the	 direction.	 The	
distribution	 of	 the	 charges	 is	 symmetric	 with	 respect	 to	 the	 x‐axis.	 Thus	 if	 we	 flip	 the	 charge	
distribution	 upside	 down,	we	 see	 the	 same	picture.	 	 This	means	 also	 that	we	 can	 do	 this	 for	 the	
electric	field	generated	by	these	charges.		Right	away	this	means	that	the	electric	field	anywhere	on	
the	x‐axis	cannot	have	a	y‐component	and	can	only	have	an	x‐component.	
SKETCH:	

	
RESEARCH:		The	electric	field	strength	is	given	by	 2/E kQ r ,	and	the	electric	fields	from	different	
charges	add	as	vectors.		We	need	to	add	the	x‐components	of	the	electric	fields	from	all	charges.		
They	are	 from	top	to	bottom	along	the	y‐axis :	
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1 2 2

1, 3/22 2 2 2 2 2

2, 2

3 1 2 2

3, 1, 3/22 2

cos

2

x

x

x x

kq
E

d x
kq kqxx

E E
d x d x d x

kq
E

x
kq

E E
d x

kqx
E E

d x







 

  
  




 




 


	

SIMPLIFY:	All	we	have	to	do	is	add	the	individual	x‐components	to	find	our	expression	for	the	x‐
component	of	the	electric	field	along	the	x‐axis:	

   1, 2, 3, 3/2 3/22 22 2 2 2

2 2 1
( ,0) 2x x x x

kq kqx x
E x E E E kq

x xd x d x

 
       
    

	

This	is	the	expression	for	x 0;	for	x 0	it	has	the	opposite	sign	so	that	it	always	points	away	from	
the	origin. 	

	 CALCULATE:	Not	applicable.	
ROUND:	Not	applicable.	
DOUBLE‐CHECK:	For	 0x  	we	see	that	the	first	term	diverges	as	we	get	very	close	to	the	positive	
charge	at	the	origin,	which	is	as	expected.	
For	large	distances,	 ,  / 0,x d x  	we	expect	at	most	a	very	weak	electric	field	because	the	net	

charge	of	our	configuration	is	0.	We	can	factor	out	the	 21/x 	term	to	get	

 

3/223

3/2 3/22 2 222 2

2 2 21
( ,0) 1 1 1 1 .

1

x

kq kq kqx d
E x

x x x xd x d

x



 
 

                                            

For	

 2 2/ 1,d x  the	binomial	expansion	gives	us

	3/22 2

2 2

3
1 1 .

2

d d

x x


 

   
  	

The	electric	field	then	simplifies	to	
22 2

2 2 2 2 4

2 2 33 3
( ,0) 1 1 .

2 2x

kq kq kqdd d
E x d

x x x x x

  
         

 	

Thus	the	electric	field	strength	of	this	configuration,	called	a	“quadrupole”,	falls	with	the	inverse	
fourth	power	of	the	distance	to	the	origin	for	large	distances.		 …	as	compared	to	the	electric	field	
from	a	dipole,	which	falls	with	the	inverse	third	power .	

22.31. The	dipole	is	just	two	charges	fixed	together	of	opposite	sign.		The	electric	field	at	a	point	is	the	sum	
of	the	fields	produced	by	each	charge.		The	figure	indicates	that	the	electric	field	produced	is	created	
by	the	component	of	the	field	perpendicular	to	line	x.	
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iy 2y 1 2 22 2
22 2

2 sin
+ sin sin sin sin

22 2

kq kq kq
E E E E E

dd d xx x


   

  
     

                             

		

Note	that	
 2 2

sin .
2 / 2

d

d x
 


	This	means	the	field	is:		

        3/2 3/2 3/22 2 22 2 2

2
.

2 / 2 / 2 / 2

kqd kqd kp
E

d x d x d x

  
  

  
	

If	 x d 	then	 3/E kp x  .		The	field	along	the	axis	of	the	dipole	is	 32 / ,E kp x  	indicating	that	the	
field	strength	falls	off	more	rapidly	perpendicular	to	the	dipole	axis.	

22.32. THINK:		The	field	due	to	a	dipole	moment	at	a	point	h	along	the	x‐axis	is	 3( ) 2 /E h k qd h .		I	want	to	
find	the	point	perpendicular	to	the	x‐axis	as	measured	from	the	origin	 i.e.,	along	the	y‐axis ,	where	
the	electric	field	has	this	same	value.	
SKETCH:		

	

RESEARCH:	 	From	the	previous	problem,	the	electric	 field	along	the	y‐axis	 is	 	
 2

3/2
2

( ) .
/ 4

kqd
E l

d l



		

Set	 ( ) ( )E l E h 	and	solve	for	 l .	

SIMPLIFY:		
   

 2

2 2

2 2
3/2

2 3
43/2 3/23 3 32 2

4 4

(2 ) 2 1
    2   .

22
d

d d

k qd kqd h d
l h l

h hl l

              
   

	

CALCULATE:		Not	applicable.	

ROUND:		Not	applicable.	

DOUBLE‐CHECK:		According	to	this	expression,	l	will	always	be	less	than	h.		This	is	consistent	with	
the	previous	result	that	the	electric	field	strength	along	a	line	perpendicular	to	the	dipole	axis	falls	
off	more	rapidly	than	the	field	strength	along	the	dipole	axis.	

22.33. THINK:	 	 As	 the	 4.0 gm  	 ball	 falls	 the	 force	 of	 gravity	 acting	 on	 it	 will	 cause	 it	 to	 accelerate	
downwards.	 	 At	 the	 same	 time,	 the	 force	 due	 to	 the	 electric	 field	 acts	 on	 the	 ball	 causing	 it	 to	
accelerate	towards	the	east.		The	forces	act	perpendicular	to	each	other.		The	problem	is	solved	by	
finding	each	 component	of	 the	velocity.	 	 In	order	 to	 find	 the	velocity	due	 to	 the	electric	 field,	 the	
time	required	for	the	ball	to	travel	 30.0 cm 	downwards	is	needed.			
SKETCH:			
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RESEARCH:		The	velocity	in	the	downward	direction	is	found	using	 2 2
0 2 .y yv v gdy  	The	time	it	takes	

to	 reach	 this	 velocity	 / .yt v g 	 The	 acceleration	 eastward	 is	 calculated	 using	 .F ma qE  	 The	

velocity	is	then	 .x xv a t 	

SIMPLIFY:	 	The	y‐component	of	 the	velocity	 is	 2yv gdy 	 because	 the	ball	 starts	 from	rest.	 	The	

time	it	takes	for	the	ball	to	fall	 30.0 cm 	is	 2 / .t gdy g 	The	acceleration	eastward	is	 / .a qE m 	The	

velocity	eastward	is	
2 2

.x x x

gdyqE qE dy
v a t v

m g m g
     
 

	

CALCULATE:		
  
vy  2 9.81 m/s2  0.300 m  2.4261 m/s 	downward	

3

2

12 N/C 0.300 m
5.0 10  C 2 3.7096 m/s

0.0040 kg 9.81 m/s
xv         

  
	eastward	

ROUND:	 The	 velocity	 is	 report	 to	 three	 significant	 figures.	 The	 ball	 reaches	 a	 velocity	 of	
   ˆ ˆ3.71 m/s 2.43 m/s .x y 	

DOUBLE‐CHECK:		This	is	a	reasonable	answer	considering	the	size	of	the	values	given	in	the	
question.	

22.34. THINK:	A	line	of	charge	along	the	y‐axis	has	linear	charge	density	  	from	 0 to y y a   ,	and	  	
from	 0 to .y y a   	 I	want	to	 find	an	expression	for	 the	electric	 field	at	any	point	 x 	along	the	x‐
axis.		It	is	noted	that	the	charge	configuration	is	similar	in	structure	to	a	dipole.		By	symmetry,	the	x‐
components	of	the	field	cancel	out,	and	the	net	field	is	in	the	y‐direction.			
SKETCH:			

	
RESEARCH:		The	electric	field	resulting	from	a	charge	distribution	is	the	integral	over	the	differential	
charge:	 2/ .dE kdq r 	 The	 y‐component	 of	 the	 field	 is	 2sin / ,ydE kdq r 	 where	  	 is	 the	 angle	

between	 the	 electric	 field	 produced	 by	 dq 	 and	 the	 y‐axis.	 	 Also,	 2 2 ,r x y  	 sin / .y r  	 From	

0 to ,  ,a dq dy and	from	 0 to ,  .a dq dy   	

SIMPLIFY:		
 , 2 2 2 3/22 2 2 2

siny

kdq k dy y k ydy
dE dE

r x y x y x y
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 , 2 2 2 3/22 2 2 2

siny

kdq k dy y k ydy
dE dE

r x y x y x y

 
 

               
	

The	field	due	to	the	positive	charge	distribution	is:	
   + 3/2 3/20 02 2 2 2

.
a ak ydy ydy

E k
x y x y


 

 
  	Similarly,	

the	field	due	to	the	negative	charge	distribution	is:		
   3/2 3/20 02 2 2 2

.
a ak ydy ydy

E k
x y x y




 

  
 

  			

	 CALCULATE:		Let	 2 2u x y  	then	 2du ydy 	then:	

	    
1/2

2 23/2 1/2 1/2 1/20 2 2
00 0

2 1 1
,

2 2

aa a
a kk du k k

E k
x y xu u u x a

   

                          
 	and	

    
1/22 23/2 1/2 1/2 1/20 220 0

2 1 1
.

2 2

aa
a kk du k k

E k
x y xu u u x a

   






 
                          

 

 	 The	 total	

electric	field	at	 x 	is:		
 + - 1/22 2

1 1
+ 2 .E E E k

xx a

 
      

	

ROUND:		Not	applicable.	
DOUBLE	CHECK:		The	electric	field	decreases	inversely	proportionally	to	the	distance	from	the	wire,	
as	expected.	

22.35. THINK:	 	A	semicircular	 rod	carries	a	uniform	charge	of	 Q	along	 its	upper	half,	 and	–Q	along	 it’s	
lower	half.		I	want	to	determine	the	magnitude	and	direction	of	the	electric	field	at	the	center	of	the	
semicircle.	 	 The	 rod	 has	 a	 length	 of	 .L R 	 The	 charge	 density	 of	 the	 upper	 half	 of	 the	 rod	 is	

 / / 1/ 2 2 / .Q L Q R Q R     	Similarly,	the	lower	half	of	the	rod	is	 2 / .Q R   	

SKETCH:	

	
RESEARCH:	 From	 the	 symmetry	 of	 the	 semi‐circle,	 the	 x‐components	 of	 the	 field	 cancel,	 and	 the		
resulting	electric	field	only	has	a	y‐component.		The	y‐component	of	the	electric	field	for	the	upper	
segment	of	the	rod	is	given	by		

   2 2
+y cos / cos / cosdE dE kdq R k dx R        ,	

where	 .dx Rd 		Therefore,	  2
, / cos cos / .ydE k Rd R k d R          	



Bauer/Westfall:	University	Physics,	2E	
	

  944

SIMPLIFY:		Integrating	both	sides	with	respect	to	θ	gives:	

        /2 /2 2
+y 00

/ cos / sin | / 1 0 / 2 / .dE k R d k R k R k R k Q R
                   	

The	lower	half	of	the	semicircle	also	contributes	the	same	y‐component.	 	The	total	electric	field	at	
the	origin	is		

  

  

2 2 2 2+ -
0 0

4 4
+ 2 .

4y y y y y y

kQ Q Q
E E E E y y y

R R R    
                    



		

	 CALCULATE:		Not	applicable.	
	 ROUND:		Not	applicable.		
	 DOUBLE	CHECK:		The	resulting	field	points	in	the	direction	from	the	positive	charge	to	the	negative	

charge,	as	required.	

22.36. THINK:	 Two	 semicircular	 rods,	 with	 uniformly	 distributed	 charges	 of	 1.00 μC  and 1.00 μC,  	
respectively,	form	a	circle	of	radius	 10.0 cm.r  	 	 I	want	to	determine	the	magnitude	and	direction	
on	the	electric	field	at	the	center	of	the	circle.	
SKETCH:			

	
RESEARCH:	 The	 charge	 densities	 of	 the	 positively	 charged	 and	 negatively	 charged	 rods	 are	

/  and - / ,Q R Q R       	 respectively.	The	differential	element	of	 the	electric	 field	 is	given	by	
2/ ,dE kdq R 	where	the	differential	element	of	charge	along	the	line	is	 .dq dx Rd    	 	It	is	also	

necessary	to	consider	the	x‐	and	y‐components	of	the	differential	elements.	

SIMPLIFY:	 , 2 2 3 2

sin sin sin sin
x

k dx k d kQRd kQ d
dE

R R R R

        
      .	 Similarly,	 , 2

cos
;y

kQ d
dE

R

 
  	

, ,2 2

sin cos
;  .x y

kQ d kQ d
dE dE

R R

   
  

 
  	Integrating	both	sides	of	each	expression	gives:	

 

 

 

 

, 2 2 200

, 2 2 00

2 2

, 2 2 2

2 2

, 2 2

2
sin cos

cos sin 0

2
sin cos

cos sin 0

x

y

x

y

kQ kQ kQ
E d

R R R
kQ kQ

E d
R R
kQ kQ kQ

E d
R R R

kQ kQ
E d

R R

 

 

 



 



  
  

  
 

  
  

  
 









   

  

     

    









	

The	total	electric	field	at	the	center	is	given	by:	 , , , , 2 2 2

2 2 4
0 0 .x y x y

kQ kQ kQ
E E E E E

R R R              	
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CALCULATE:		
  

 

9 2 2 6

6

2

4 8.99 10  N m /C 1.00 10  C
1.1446 10  N/C

0.100 m
E



 
   	

ROUND:	The	electric	field	is	reported	to	three	significant	figures:	 	 61.14 10  N/C.E   	Because	all	of	
the	y‐	components	are	zero,	the	resultant	field	is	in	the	positive	x‐direction.	
DOUBLE‐CHECK:		Given	the	symmetry	of	the	charge	configuration,	this	is	a	reasonable	result.			

22.37. THINK:		The	charge	Q	is	uniformly	distributed	along	the	rod	of	length	L.		The	rod	has	linear	charge	
density	 / .Q L  	 	 The	 electric	 field	 at	 a	position	x	 	 d	 can	be	 calculated	by	 integrating	over	 the	
differential	 electric	 field	 due	 to	 the	 differential	 charge	 on	 the	 rod.	 	 The	 electric	 field	 differential	

2/ ,dE kdq r 	where		the	differential	is	along	the	y‐axis,	and	 2 2 .R d y  		The	x‐	and	y‐components	
of	 the	 field	must	be	 considered	 individually.	The	x‐component	of	 the	 field	differential	 is	 given	by	

cos ,xdE dE  	and	the	y‐component	is	given	by	 sin .ydE dE  	

SKETCH:	

	

SIMPLIFY:		
 2 2 2 2

2 2
cos cos cos cosx

k dy kQdy kQdykdQ
dE

R R LR L d y


      


	

   

   

2 3/22 2 2 22 2 2 2

2 3/22 22 2 2 2

cos   

sin ;  sin   

x

y y

kQdy kdQdyd d d
dE

R d y d yL d y L d y

kQdy y y ykQdy
dE dE

R d yL d y L d y



 

  
      
       

    
 

	

Integrate	both	expressions.	

   

   

3/2 3/2 2 2 20 02 2 2 2
0

2 23/2 3/20 02 2 2 2
0

1

1

L
L L

x

L
L L

y

ydkQdy dkQ kQd
E dy

L L d d yL d y d y

ykQdy ykQ kQ
E dy

L L d yL d y d y

 
    

    

 
    

    

 

 
	

ˆ ˆ( ) x yE d E x E y 


	

CALCULATE:		
2 2 2 2 2 2 2 2

0

0

L

x

ykQd kQd L kQ
E

L Ld d y d d L d d L
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2 2 2 2 2 2
0

1 1 1
L

y

kQ kQ kQ kQ
E

L L d dLd y d L L d L

    
             

2 2 2 2
ˆ ˆ( )

kQ kQ kQ
E d x y

dLd d L L d L

   
            



	

ROUND:		Not	applicable.	
DOUBLE	CHECK:		The	magnitude	of	the	electric	field	decreases	as	d	increases,	as	expected.	

22.38. THINK:	A	wire	bent	into	an	arc	of	radius	R	and	carrying	a	uniformly	distributed	charge	Q	will	have	a	
linear	charge	density	of	 / 2 .Q R  	By	the	symmetry	of	the	charge	distribution,	the	y‐components	
cancel,	and	only	the	x‐component	of	the	charge	contributes	to	the	electric	field.	
SKETCH:	

	
RESEARCH:	 An	 electric	 field	 produced	 by	 an	 infinitesimal	 segment	 of	 the	 arc	 is	

2 2 2/ / / / .dE k dq R k dx R k Rd R k d R        	 The	 total	 electric	 field	 can	 be	 calculated	 by	

integrating	over	 the	differential	 elements	of	 the	 field.	 	 Since	 the	 y‐component	of	 the	 field	 is	 zero,	

cos .x

k d
E E

R









   	

SIMPLIFY:		

  

  

2

2

2 2

2

cos cos cos sin sin sin
2 2 2

sin
sin sin

2

k k kQ kQ kQ
E d d d

R R R R R

kQ kQ

R R


  

  


   
  

 
 

  


 
              

 

  

  
	

CALCULATE:			

	
ROUND:		Not	applicable.	
DOUBLE	 CHECK:	 	 As	 0  	 the	 field	 is	 the	 same	 as	 that	 of	 a	 point	 charge,	 because	

0 2 2 0 2

sin sin
lim lim .

kQ kQ kQ

R R R 

 
 

  The	field	becomes	zero	as	the	point	is	symmetrically	enclosed	by	a	

ring	of	charge.			

22.39. THINK:		The	washer	will	create	an	electric	field	that	should	be	not	to	different	from	the	electric	field	
of	the	thin	ring	of	charge	we	encountered	 in	Solved	Problem	22.1.	 	The	washer	has	a	total	charge	

7.00 nC,Q  	with	inner	and	outer	radius	of	the	washer	are	 ri  2.00 cm 	and	  ro  5.0 cm. 	The	electric	

field	at	 o 30.0 cmz  	away	from	the	center	of	the	washers	is	desired.		
SKETCH:			
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RESEARCH:		The	surface	density	is	 /Q A  	where	the	area	is	  2 2

o i .A r r  	The	field	will	point	in	

along	the	z‐axis	due	to	symmetry.		The	field	due	to	a	segment	is	 2/ .dE kdq R 	The	distance	from	the	

segment	of	charges	is	 2 2
oR x z  	and	 2 2

o ocos / .z x z   	

SIMPLIFY:		
     

o o o

i i i

2 2 oo o
2 3 3/23 2 2 2 2o o 2 2

o i o i o

2
cos .

r r r

r r r

kQz x dxd x dxk dAz kQzkdq
E

R R R r r r r x z

   


 
   

  
      		Evaluating	

the	single	integral	gives:		

         
o

i

o o o
2 2 1/2 1/22 2 2 2 2 2 2 2 2 22 2 2 2

oo i o i o i i o o oo o i o

12 2 21 1 1 1
.

r

r

kQz kQz kQz
E

x zr r r r r r r z r zr z r z

                             

	

CALCULATE:		

   
           

9 2 9

2 2

2

2 2 2 2

2 8.99 10  N m /C 7.00 10  C 0.300 m 1 1 1

m0.0500 m 0.0200 m 0.0200 0.300 0.0500 0.300

682.715 N / C

E
           



	

ROUND:	 The	 values	 are	 given	 to	 three	 significant	 figures.	 	 The	 electric	 field	 is	   E  6.83102  N / C 	
pointing	towards	the	positive	z‐axis.			

DOUBLE‐CHECK:		In	Solved	Problem	22.1	we	found	for	the	thin	ring:	  3/22 2
o 0/E kQz r z  .	Using	the	

average	of	our	outer	and	inner	radius	we	then	find	from	this	formula:	

   
   

29 2 9

2 2 3/2

8.99 10  N m /C 7.00 10  C 0.300 m
685.2 N / C

( 0.0350 m 0.300 m )
E

 
 


	

Since	this	 is	 fairly	close	to	our	result	 for	a	ring	with	finite	thickness,	we	have	added	confidence	in	
our	result.	

22.40. The	force	on	the	particle	is	 .F qE 	The	charge	is	 2q e  	so	the	force	is		

  19 3 152 2 1.60 10  C 10.0 10  N / C 3.20 10  N.F qE eE            	

22.41. The	torque	due	to	the	field	is		

    15 3 3

15

sin sin 5.00 10  C 0.400 10  m 2.00 10  N / C sin60.0

3.46 10  N m.

p E pE qdE    



        

 

  

	

22.42. The	maximum	 torque	 occurs	 when	 the	 dipole	 is	 perpendicular	 to	 the	 field.	 	 The	 electric	 field	 is	

    30 28sin 1.05 D 3.34 10  C m/D 160.0 N/C sin90 5.61 10  N m.p E pE          
 

	

	

22.43. The	force	acting	on	the	electron	is	 .F ma qE  	The	acceleration	is	then	 / .a qE m 	Assuming	the	
electron	is	moving	in	the	same	direction	as	the	electric	field,	the	acceleration	will	oppose	the	
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motion.		The	velocity	is	given	by	 2 2 2 2
0 0 0

2
2 2 .

qE eEx
v v ax v x v

m m
       
 

	Solving	this	equation	for	x:	

2 2
0

2
and 0

eE
x v v v

m
     
 

,	therefore		
2
0 .

2

mv
x

eE
 	The	distance	traveled	is	

  
  

231 6

19

9.109 10  kg 27.5 10  m / s
0.1885 m.

2 1.602 10  C 11,400 N / C
x





 
 


	

To	three	significant	figures,	the	electron	travels	0.189	m	before	it	stops.			

22.44. The	 dipole	 moment	 is	 19 9 28 28(1.602 10 C)(0.680 10 m) 1.089 10 C m 1.09 10 C m.p qd ed             	

The	torque	experienced	by	the	dipole	is		

   28 3 25E Esin Esin 1.089 10 Cm 4.40 10  N / C sin 45 3.39 10  N m.p p ed             
 

	

22.45. THINK:		The	net	force	on	falling	object	in	an	electric	field	is	the	sum	of	the	force	due	to	gravity	and	
the	force	due	to	the	electric	field.		If	the	falling	object	carries	a	positive	charge,	then	the	force	on	the	
object	due	to	the	electric	field	acts	in	the	direction	opposite	to	the	force	of	gravity.	
SKETCH:	

	

RESEARCH:	 	 The	 net	 upward	 force	 acting	 on	 the	 object	 is	 g .eF F F QE Mg Ma     This	

corresponds	to	a	downward	acceleration	of	 .
QE

a g
M

  	Recall	that	the	speed	of	an	object	in	free	fall	

is	given	by	 2 2
0 2 2 .fv v a y v ah     		

SIMPLIFY:			

a 	  
2

2     2 /
2

v QE
v ah a g v h g QE M

h M
        	

b 		If	the	value	 /g QE M 	is	less	than	zero,	then	the	argument	of	the	square	root	is	negative.		This	
means	the	value	is	non‐real	and	the	body	does	not	fall.			
CALCULATE:		Not	applicable.	
ROUND:		Not	applicable.	
DOUBLE	CHECK:		Dimensional	analysis	confirms	that	the	units	of	the	expression	reduce	to	m/s,	the	
correct	units	for	velocity.	

22.46. THINK:		The	force	in	between	the	charge	and	the	dipole	moment	is	equal	to	the	force	acting	on	each	
pole	 of	 the	 dipole.	 	 The	 dipole	moment	 is	 306.20 10  C mp   	 and	 is	 1.00 cmr  	 from	 the	 charge	

1.00 μC.Q  		
SKETCH:			

	
	

RESEARCH:	 	 The	 force	 due	 to	 an	 electric	 field	 is	  ,F qE r
 

	 where	 the	 electric	 field	 is	

   2/ .E r kQ r r  	
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SIMPLIFY:		The	total	force	is	    .F qE r r qE r  
  

	From	the	fundamental	theorem	of	calculus,	

2 3 3

22ˆ ˆ ˆ( )
kpQd d kQ

F q r E r p r pkQ r r
dr dr r r r


     

 



	

CALCULATE:		
   

 

9 2 30 6

19

3

2 8.99 10  N m / C 6.2 10  C m 1.00 10  C
ˆ 1.11476 10  N

0.0100 m
F r

 


   

   	

ROUND:		The	force	is	reported	to	3	significant	figures.	
a 		The	force	between	the	dipole	and	the	charge	is	 191.11 10  N. 	
b 	The	molecule	is	attracted	to	the	charge	regardless	of	the	sign	of	the	charge.		This	occurs	because	
the	charge	of	opposite	sign	on	the	dipole	will	move	closer	to	the	charge	creating	an	attractive	force.	
DOUBLE‐CHECK:	 	 The	mass	 of	 a	 water	molecule	 is	 263.01 10  kg, 	 meaning	 the	 force	 is	 relatively	
large.		To	view	a	dipole	attracted	to	a	charge,	place	a	charged	rod	or	comb	near	running	water	from	
a	faucet.		

22.47. THINK:	 Assuming	 that	 the	 wire	 is	 made	 of	 a	 conducting	material,	 the	 charges	will	 be	 uniformly	
distributed	over	 its	 length.	 	The	wire	will	produce	an	electric	 field.	 	This	 field	 in	 turn	produces	a	
force	on	a	proton,	causing	the	proton	to	accelerate.		The	wire	has	a	length	of	 1.33 mL  	and	a	total	

charge	of	 63.05 10 .Q e   	The	proton	is	 0.401 mx  	away	from	the	center	of	the	wire.		
SKETCH:			

	
RESEARCH:	 	The	linear	density	of	the	wire	is	 / .Q L  	Due	to	the	symmetry	around	the	center	of	
the	wire	the	field	produced	is	only	along	the	x‐axis.		The	electric	field	due	to	a	segment	of	charge	is	

 2/ cos .dE kdq R  	The	distance	from	the	charge	to	the	segment	of	 the	wire	 is	 2 2 .R x y  	The	

force	on	the	proton	is	  .F ma qE r  	

SIMPLIFY:		The	electric	field	is:	

 

       

/2
/2 /2

2 2 23/22 2/2 /2 2 2
/2

1/2 1/2 1/2 1/22 2 2 2 2 2 2 2

cos

/ 2 / 2

/ 4 / 4 / 4 / 4

L
L L

L L
L

yk dq k dy dyx
E k x k x

x x yR R R x y

k k L k QL L

x x L x L x x L x x L


  

 

 


              

               

  
	

The	acceleration	of	the	proton	is	
 1/2

2 2

E
.

/ 4

q k q Q
a

m mx x L
 


	

CALCULATE:	
    

   

9 2 6 19

1/22 2

8.99 10  N m / C 3.05 10 1.602 10  C
0.0141062 N/C

0.401 m 0.401 m 1.33 / 4
E

   
 

   

	

 
19

2
27

1.602 10  C
0.0141062 N/C 1,351,561 m/s

1.672 10  kg
a
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ROUND:		The	values	are	reported	to	3	significant	figures.		
a  The	electric	field	produced	by	the	wire	at	 0.401 m 	from	its	center	is	0.0141 N/C. 	

b  The	acceleration	of	the	proton	is	 6 21.35 10  m/s . 	
c  The	force	is	attractive	since	the	wire	is	negatively	charged	and	the	proton	is	positively	charged.		
The	force	points	towards	the	wire.	
DOUBLE‐CHECK:		These	are	reasonable	answers	with	appropriate	units.			

22.48. The	flux	through	a	Gaussian	surface	is	the	sum	of	the	total	charges	within	the	surface	divided	by	the	
permittivity	of	free	space	 0 . 	        i 0 03 2 7 / 3 / .Q q q q q q



           	

22.49. The	sum	of	the	flux	through	each	surface	is	equal	to	the	charge	enclose	divided	by	 0 . 	 0/ .i
i

Q   	

The	charge	is	then		

   12 2 2 2
0

8 8

8.85 10  C / N m 70.0 300.0 300.0 300.0 400.0 500.0  N m

1.124 10  C 1.12 10  C.

i
i

Q  

 

         

     


	

22.50. THINK:	 	The	first	Gaussian	surface	 is	a	sphere	with	radius	r	 	R	 	0.00.0000010	m.	 	This	surface	
encloses	all	the	charge	on	the	sphere.		The	second	Gaussian	surface	is	a	small,	right	cylinder,	whose	
axis	is	perpendicular	to	the	surface	of	the	sphere	and	penetrates	the	surface.		Taking	the	cylinder	to	
be	small	compared	to	the	sphere,	we	can	consider	the	surface	of	the	sphere	to	be	locally	flat.	 	The	
charge	density	on	the	surface	of	the	sphere	will	be	the	total	charge	divided	by	the	surface	area	of	the	
sphere.		For	this	case,	the	electric	field	is	constant	outside	the	sphere	and	zero	inside	the	sphere.	

	 SKETCH:		The	sketch	shows	the	two	Gaussian	surfaces.		 	
a 	shows	the	spherical	surface	 	
b 	shows	the	small,	right	cylindrical	surface.	

	
	
	 RESEARCH:	 	 For	 the	 spherical	 Gaussian	 surface,	 the	 electric	 field	 just	 outside	 the	 surface	 of	 the	

sphere	is	the	same	as	a	point	charge,	so	the	electric	field	is	radial	and	perpendicular	to	the	Gaussian	

surface.	So	we	have	  2

0

4 .
q

E dA E r


   






We	choose	a	very	small	right	cylinder	so	that	

the	 surface	 of	 the	 sphere	 is	 locally	 flat	 as	 show	 in	 the	 sketch.	 	 In	 this	 case,	 the	 electric	 field	 is	

perpendicular	 to	 surface.	 	 The	 charge	 density	 is	
2

.
4

q

R



 	 The	 electric	 field	 is	 parallel	 to	 the	

sides	 of	 the	 cylinder	 and	 perpendicular	 to	 the	 ends	 of	 the	 cylinder.	 	 So	 we	 have	

inside outside
0 0

.
q A

E dA E A E A


 
     







	The	electric	field	inside	the	sphere	is	zero.	
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	 SIMPLIFY:	 	 For	 the	 spherical	 surface,	 the	 electric	 field	 is	
  22

0

.
4

q q
E k

rr 
  	

For	the	cylindrical	surface,	the	electric	field	is	 E
outside





0



q

4R2


0

 k
q

R2
.	

	
CALCULATE:	 	 In	 this	 case,	 	 	 is	 very	 close	 to	 ,	 so	 the	 answer	 for	 both	 cases	 is	

 
 

6
9 2 2 6

22

6.1 10  C
8.99 10  N m / C 2.44373 10  N/C.

0.15 m

q
E k

R


      The	 charge	 is	 positive	 so	

the	field	points	outward	from	the	surface	of	the	sphere.	

ROUND:		We	round	the	magnitude	of	the	electric	field	to	two	significant	figures	 E  2.4 106 N/C. 
DOUBLE‐CHECK:	The	units	are	correct	for	an	electric	field.		The	rather	high	magnitude	results	from	
the	 fact	 that	 field	 is	calculated	very	close	 to	 the	surface	of	 the	charged	sphere.	 	Our	result	 for	 the	
small	 right	 cylindrical	Gaussian	 surface	 in	only	 correct	very	 close	 to	 the	surface	of	 the	 sphere,	 so	
that	the	surface	can	considered	locally	flat.	

22.51. The	cube	does	not	contain	any	charges,	thus	the	total	flux	must	be	zero.		
  0,A B C D E F i

i

A E E E E E E        	and	therefore,		

 
 15.0 N/C 20.0 N/C 10.0 N/C 25.0 N/C 20.0 N/C

60 N/C.

F A B C D EE E E E E E     

      

 

	

The	field	on	the	face	F	is	 60.0 N/C 	into	the	face	of	the	cube.	

22.52. 	

	

The	charge	inside	the	sphere	induces	a	charge	of	 3e 	on	the	inside	surface	of	the	sphere.		The	 3e 	
charge	must	come	from	somewhere.		In	this	case	the	 3e 	charge	is	removed	from	the	outer	surface	
charge.		The	outer	surface	charge	is	then	 2 .e 	The	total	charge	within	the	material	of	the	sphere	is	

5 .e 	

22.53. Gauss’s	 Law	 states	 that	
0

.encq
E dA


  	 The	 integral	 over	 the	 sphere	 gives	

2 enc
2

0 0

4 .
4

encq q
E dA EA E R E

R


  
        	 The	 electric	 field	 outside	 a	 uniform	 distribution	 of	

charge	is	identical	to	the	field	created	by	a	point	charge	of	the	same	magnitude,	located	at	the	center	
of	the	distribution.		Since	the	radius	of	the	balloon	never	reaches	 ,R 	the	charge	enclosed	is	constant	
and	the	electric	field	does	not	change.		

22.54. THINK:	The	charges	on	the	surface	of	the	shell	may	be	found	using	Gauss’s	Law.		The	inner	and	outer	
radii	of	the	shell	are	 i 8.00 cmr  	and	 o 10.0 cmr  	respectively.	The	electric	field	at	the	surface	of	the	
outer	 radius	 is	 80.0 N/C 	 pointing	 away	 from	 the	 center	 of	 the	 sphere.	 The	 electric	 field	 at	 the	
surface	 of	 the	 inner	 radius	 is	 80.0 N/C 	 and	 points	 towards	 the	 center	 of	 the	 sphere.	 	 Since	 the	
spherical	shell	does	not	produce	any	field	in	its	interior,	we	can	infer	that	there	is	a	negative	charge	
inside	the	hollow	portion,	equivalent	to	a	point	charge	at	the	center.	
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SKETCH:			

	
	

RESEARCH:		Gauss’s	Law	states	that enc

0

.e

q
E dA


    	

SIMPLIFY:	For	a	spherically	symmetric	electric	field,	the	charge	enclosed	within	a	Gaussian	sphere	

of	 radius	 R	 is	 given	 by	  2enc
0

0

4 .enc

q
E dA q E R 


    This	 gives	 the	 negative 	 charge	 at	 the	

center	of	the	sphere.		Since	the	field	between	the	inner	and	outer	surfaces	of	the	shell	is	zero,	this	is	
also	equal	to	the	total	 positive 	surface	charge	at	the	inner	radius	of	the	conductor:	  2

i o i i4 .q E r  	

The	Gaussian	surface	around	the	whole	sphere	contains	the	charge	at	the	center	and	the	charge	of	
the	 shell.	 Since	 the	 charges	 at	 the	 center	 and	 on	 the	 inner	 surface	 are	 equal	 and	 opposite	 and	
therefore	cancel,	the	field	at	the	outer	surface	can	be	calculated	as	being	due	solely	to	the	charge	on	
the	outer	surface:	  2

o o o o4 .q E r  	

CALCULATE:		     
    

212 2 2 11
i

212 2 2 11
o

8.854 10  C / N m 80.0 N/C 4 0.0800 m 5.6966 10  C

8.854 10  C / N m 80.0 N/C 4 0.100 m 8.9010 10  C

q

q





 

 

   

   

	

ROUND:		Rounding	to	three	significant	figures,	the	inside	and	outside	total	charges	over	the	surface	
of	the	sphere	are	 115.70 10  C 	and	 118.90 10  C, 	respectively.	
DOUBLE‐CHECK:		These	are	reasonable	answers	with	appropriate	units.	As	you	would	expect,	given	
that	the	field	strength	is	the	same	inside	and	out,	the	ratio	of	the	charges	is	the	ratio	of	the	square	of	
the	radii:	 2 28 5.70 :81 .: 0 .90 	

22.55. THINK:	 	The	electric	 field	at	various	points	can	be	 found	using	Gauss’s	Law.	 	This	 law	can	also	be	
used	to	find	the	charge	on	the	outside	surface	of	the	conductor.	 	There	is	a	 6.00 nCq   	charge	at	

the	 center	 of	 the	 sphere.	 	 The	 shell	 has	 inner	 and	 outer	 radii	 of	 i 2.00 mr  	 and	 o 4.00 mr  	
respectively.		The	shell	has	a	total	charge	of	 7.00 nC.Q   	
	
	
	
SKETCH:			

	
	

RESEARCH:		Gauss’s	Law	states	that	 enc 0/ .EdA q 
 



	

SIMPLIFY:		The	electric	field	of	charges	with	spherical	symmetry	are	given	by	Gauss’	Law,	where	we	

take	spherical	Gaussian	surfaces:	  2 enc

0

4
q

E dA EA E r


   
 



	or	 enc
2

0

( ) .
4

q
E r

r




	The	electric	field	
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at	 1 ir r is	   enc
1 2

0 1

.
4

q
E r

r
 	 The	 electric	 field	 inside	 any	 conductor	 is	 always	 zero:	  2 0E r  	where	

i 2 o .r r r  	The	electric	field	outside	of	the	conductor	is	 3 o .r r 	   enc
3 2 2

0 3 0 3

.
4 4

q Q q
E r

r r 


  	Because	the	

field	inside	the	conductor	must	be	zero,	Gauss’s	Law	indicates	that	the	charge	at	the	center	of	the	

shell	is	equal	and	oppposite	to	the	charge	on	the	inside	of	the	shell:	   enc i
2 2 2

0 2 0 2

0
4 4 


  

q q q
E r

r r
	or	

i .q q  	The	charge	on	the	sphere	is	equal	to	the	sum	of	charges	on	the	inner	and	outer	surfaces	of	

the	shell	 i o .q q Q  	Thus,	the	outer	surface	charge	is	    2 2 2
o o i o o/ 4 / 4 / 4 .q r Q q r Q q r        		

CALCULATE:			

a 	The	electric	field	at	 1 1.00 mr  	is	
   

9

1 212 2 2

6.00 10  C
53.951 N/C.

4 8.85 10  C / N m 1.00 m
E







 
  


			

b 	The	electric	field	at	 2 3.00 mr  	is	 2 0 N/C.E  		

c 	The	electric	field	at	 3 5.00 mr  	is	
 

   

9 9

212 2 2

7.00 10  C 6.00 10  C
0.3597 N/C.

4 8.85 10  C / N m 5.00 m
E



 



  
 


		

d 	The	surface	charge	on	the	outside	part	of	the	shell	is		

 
 

9 9

12 2

2

7.00 10  C 6.00 10  C
4.974 10  C/m .

4 4.00 m




 


  

   	

ROUND:		All	the	values	have	an	accuracy	of		three	significant	figures.		
a  The	electric	field	at	 1 1.00 mr  	is	 54.0 N/C. 	

b  The	electric	field	at	 2 3.00 mr  	is	 0 N/C. 	

c  The	electric	field	at	 3 5.00 mr  	is	 0.360 N/C. 	

d  The	surface	density	on	the	outside	surface	is	 12 24.97 10  C/m . 	
DOUBLE‐CHECK:		These	are	reasonable	results.		

22.56. Inside	the	sphere	of	radius	 ,a the	charge	density	is	
 

tot tot
34 / 3

Q Q

V a



  and	is	zero	anywhere	else.		

Gauss’s	 Law	 states	 enc

0

.
q

E dA


 
 



	 The	 area	 of	 the	 Gaussian	 surface	 is	 always	 taken	 to	 be	

24A r and	 by	 spherical	 symmetry,	 the	 E‐field	 points	 radially.	 	 Thus,	 enc

0

q
E dA


 
 



	 gives	

enc enc enc
2 2

0 0

.
(4 )

q q kq
E r r r

A r r 
            

    
   	 If	 r a ,	 the	 enclosed	 charge	 is	 then	

3
3

enc 3 3

4

(4 / 3) 3

Q Qr
q V r

a a
 


    
 

	 and	
3

enc
2 3 2 3

kq kQr kQr
E r

r a r a
           

 .	 Otherwise,	 the	 surface	

encloses	 the	whole	charge	 .Q 	The	electric	 field	 is	 then
2

kQ
E r

r
   
 

 	 if	 .r a 	Note	 that	 this	behaves	

like	a	point	charge,	as	would	be	expected	once	outside	the	radius.	Below	is	a	graph	of  E r


.	
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22.57. Using	Gauss’s	Law	  2 Earth
E

0

4 .
q

E dA EA E r


    	Solving	for	the	charge	gives		

      22 12 2 2 3 5
Earth 0 Earth

5

4 8.85 10  C / N m 150. N/C 4 6371 10  m 6.7711 10  C

6.77 10  C.

q E r         

  
	

22.58. Let	 10.0 cm  be	 the	 radius	 of	 the	 solid	 sphere,	 the	 distance	 between	 the	 solid	 sphere	 and	 the	
inner	 part	 of	 the	 hollow	 sphere,	 and	 the	 thickness	 of	 the	 hollow	 sphere.	 Let	 15.0 cmPr  	 be	 the	

distance	from	the	center	to	the	point	P,	and	let	 35.0 cmQr  be	the	distance	from	the	center	to	the	

point	Q.	

	

a  The	Gaussian	surface	at	 pr 	encloses	the	charge	on	the	inner	sphere.		   e2
1

0

nc4 .p

q
E r


 	The	charge	

on	the	inner	sphere	is		

    22 12 2 2 8
0 14 8.85 10  C / N m 4 10000 N/C 0.150 m 2.50 10  C 25.0 nC.pq E r            	

b  For	the	electric	field	inside	the	shell	to	be	zero,	the	charge	on	the	inner	surface	of	the	shell	

must	be	equal	to	the	negative	of	the	charge	on	the	inner	sphere.		
 ienc

2 2
0 0

0
4 4

q qq
E

r r 


   	or	 i .q q  	

The	charge	on	the	inner	surface	of	the	shell	is	then	  i 25.0 nC 25.0 nC.q q      	

c 	The	Gaussian	surface	at	 35.0 cmQr  	 from	the	center	encloses	the	inner	charge	and	the	charge	

on	the	shell:	    shell2 enc
2

0 0

4 Q

q qq
E r

 


  	or	 2
shell 0 24 .Qq q E r   	The	charge	on	the	shell	is	the	sum	of	

the	 charge	 on	 the	 inner	 and	 outer	 surfaces	 of	 the	 shell:	 shell i o .q q q  	 The	 charge	 on	 the	 outer	
surface	of	the	shell	is		

    

2
o shell i 0 2

21 2 742 2

( ) 4

8.85 10  C / N m 4 1.00 10  N/C 0.350 m 1.36 10  C= 0.136μC.

shell shell Qq q q q q q q E r 

 

       

    
	

22.59. 	
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The	 field	 due	 to	 either	 of	 the	 two	 sheets	 is	 found	 by	 taking	 a	 Gaussian	 cylinder	with	 top‐area	 A	

through	either	plane.	Then	
0 0 0

2 .
2

encQ A
E dA EA E

 
  

       	For	the	positively	charged	plate	

the	field	points	normally	away	from	it.		The	negatively	charged	plate	has	field	lines	pointing	towards	
it.	 	 Adding	 these	 fields	 together	 gives	 zero	 on	 the	 outside	 of	 the	 two	 plates,	 and	

0
0 0

2 2
2

E E
 
 

 
   

 
	within	the	two	plates,	directed	towards	the	negative	plate.		The	field	is		

 
  

6 2 2

5

12 2 2

1.00 10  C / m
1.13 10  N/C,

8.85 10  C / N m
E






  


	

and	 points	 from	 the	 positive	 plate	 to	 the	 negative	 plate.	 Therefore,	 the	 force	 an	 electron	 will	
experience	between	the	two	plates	is	given	by	

   
  

6 2 2

19 14 14

12 2 2

1.00 10  C / m
1.602 10  C 1.8107 10  N 1.81 10  N

8.85 10  C / N m
F qE eE


  




       


	

Since	the	E‐field	outside	the	plates	is	0,	the	electron	will	experience	no	force	outside	of	the	two	
plates.	

22.60. The	magnitude	of	an	electric	field	is	 31.23 10  N/C 	at	a	distance	 50.0 cm 	perpendicular	to	the	wire.		
The	direction	of	the	electric	field	is	pointing	toward	the	wire.		

	

Applying	Gauss’s	Law	on	the	surface	shown	above	gives:		

Noting	that enc
enc

Q
Q L

L
    ,		 0

0

(2 ) 2 .
L

E dA EA E rL Er
   


      Observing	the	E‐field’s	

inward	direction	as	negative,	the	charge	density	of	the	wire	is		

     12 2 2 3
0

8 8

2 2 0.500 m 8.85 10  C / N m 1.23 10  N/C

3.4204 10  C / m 3.42 10  C / m.

r E    

 

    

     
	

	
	
The	number	of	electrons	per	meter	is		

 
 

8

11

19

11

3.42 10  C / m
2.135 10  electrons/m

1.602 10  C

2.14 10  electrons per meter.

N

N





 
  

 

 

	

22.61. THINK:		A	solid	sphere	of	radius	R 	has	a	non‐uniform	charge	density	 2 .Ar  	Integrate	the	sphere.	
SKETCH:		Not	required.	
RESEARCH:		The	total	charge	is	given	by	

Sphere

.Q dV  		

SIMPLIFY:		Integrating	in	the	spherical	polar	coordinate	yields:	
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2 2

2 2 2 4

0 0
0 0 0 0 0

5 5
5

sin sin 4

4
4 4 .

5 5 5

R
R R

r R

r o

Q r r d d dr d d Ar r dr A r dr

r R
A A AR

   

       

  




  

 
   

 

      
	

CALCULATE:		Not	required.	
ROUND:		Not	required.	
DOUBLE‐CHECK:		One	can	check	the	result	by	single‐variable	integration,	using	spherical	shells:	

 

  

2

2 2 4 5

00 0

4

4
4 4 4

5 5

shell

RR R

dV A dr r dr

r
Q dV Ar r dr A r dr A AR



    

 

         
		

Which	agrees	with	the	previous	answer.	

22.62. THINK:		This	is	a	superposition	of	two	electric	fields.			
SKETCH:			

	
	

RESEARCH:		The	magnitude	of	the	electric	field	of	a	charged	wire	at	a	distance	 r 	from	the	wire	is,	by	
simple	application	of	Gauss’	Law,	 0/ 2 ,E r  	where	  	 is	 the	 linear	 charge	density	of	 the	wire.		

The	net	electric	field	at	 P 	is	given	by	    net

0 0

ˆ ˆ ˆ ˆsin cos sin cos
2 2

E x y x y
r r

    
 

   


	

SIMPLIFY:		By	symmetry, net

0

ˆsin .
2

xE E x
r

 


 
   

 

 

	

CALCULATE:	 1.00 μC/m,  	 2 23.00 40.0  cm 40.11 cm,r    	
3.00 cm

sin 0.07479
40.11 cm

   	 and	

  
   

 
6

net
12 2 2

1.00 10  C / m 0.07479
ˆ ˆ6707 N/C .

2 8.85 10  C / N m 0.4011 m
E x x








 





	

ROUND:		Keeping	three	significant	figures	yields	  net ˆ6.71 kN/C .E x


	

DOUBLE‐CHECK:		Since	the	vertical	components	cancel	out,	it	makes	sense	that	the	answer	is	in	the	
x‐direction.	

22.63. THINK:		Since	this	problem	has	a	spherical	symmetry,	it	is	possible	to	apply	Gauss’s	Law.		
SKETCH:			
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1r 	 is	 the	 radius	 of	 a	 sphere	 with	 a	 charge	 density	
3120 nC/cm .  	 2r 	 is	 the	 inner	 radius	 of	 a	

conducting	shell.		 3r 	is	the	outer	radius	of	the	conducting	shell.		The	shell	has	a	net	charge	 s .q 	

RESEARCH:	For	this	problem,	four	Gaussian	surfaces,	 1 (within the sphere),G 	 2G between	the	sphere	

and	the	shell ,	 3  (within the shell),G 	and	 4 (outside the shell)G 	are	used.		By	applying	Gauss’s	Law	on	
each	surface,	the	electric	field	can	be	determined.	
SIMPLIFY:		For	the	Gaussian	surface	 1,G applying	Gauss’s	Law	gives		

enc enc enc

0 0 0

 .
q q V

EdA E dA


  
     

 

 

	

a 	Using	 3
enc

4
,

3 aV r 	the	electric	field	is	  
3

2
1

0

4

3
4 ,

a

a

r
E r

 




 
 
 

0

.
3

arE



 		

b 	For	the	Gaussian	surface	 2 ,G 	applying	Gauss’s	Law	yields:		

 
3

1 3 3
2enc 1 1

2
0 0 0 0

4
43

4 .
3 3b

b

r
q r r

E dA E r E
r

 
 


   

 
 
        		

c 	For	the	Gaussian	surface	 3 ,G 	the	electric	field	is	zero	since	the	surface	is	in	a	conductor.			

d 	For	the	Gaussian	surface	 4 ,G 	applying	Gauss’s	Law	gives		

 
3 3

2enc shell1 1
2 2

0 0 0 0 0 0

3
1

2
0

4
  4

3 3 4

1
.

3 4

sphere shell shell
d

d d

shell

d

q qq q qr r
E dA E r E

r r

qr
E

r

 
     


 


        

 
  

 


	

CALCULATE:	 Substituting	 the	 numerical	 values,	   3 3120 nC/cm 0.12 C/m , 	 1 0.12 m,r  		

2 0.300 m,r  		 3 0.500 m,r  	 0.100 m,ar  	 0.200 mbr  	and	 0.800 mdr  	yields	the	electric	fields:		

a 	
  
 

3

8

12 2 2
0

0.12 C/m 0.100 m
4.518 10  N/C

3 3 8.85 10  C / Nm
arE


 

   


	

b  
  

  

 

   


333
81

2 212 2 2
0

0.12 C/m 0.12 m
1.953 10  N/C

3 3 8.85 10  C / Nm 0.200 mb

r
E

r
	

c  0E  	since	it	is	in	the	conducting	shell.	
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d 	
  

  33 33
1

22 12 2 2
0

0.12 C/m 0.12 m 2.00 10 C1 1

3 4 3 48.85 10  C / Nm 0.800 m
shell

d

qr
E

r


  





              
	

															 71.589 10  N/C   	
ROUND:		Rounding	to	three	significant	figures:	
a  84.52 10  N/CE   	
b  81.95 10  N/CE   	
c  0E  	since	it	is	in	the	conducting	shell.	
d  71.59 10  N/CE    	
DOUBLE‐CHECK:		The	values	of	electric	fields	have	the	correct	units	and	are	of	reasonable	orders	of	
magnitude.	

22.64. THINK:		Using	the	symmetry	of	a	cylinder,	Gauss’s	Law	can	be	applied.	
SKETCH:			

	
	

Note	that	the	Gaussian	surfaces	 1G 	and	 2G 	are	cylindrical	surfaces	with	radii	 1r 	and	 2r 	and	a	length	
.L 	

RESEARCH:		The	electric	field	can	be	determined	by	applying	Gauss’s	Law	on	the	Gaussian	surfaces	

1G 	and	 2 .G 	

SIMPLIFY:		For	the	Gaussian	surface	 1,G 	applying	Gauss’s	Law	produces	

     enc
1 1 1 1

0 0 0 0 1

/ 2 / 2
ˆ ˆ 2   .

4

L Lq
E dA E r L r E r

r

  
   

     
  



	

Similarly	for	the	Gaussian	surface	 2 ,G 	using	Gauss’s	Law	gives		

         enc
22 2 2

0 0 0 0 2

/ 2 2 / 2 2 4ˆ 2   .
4

L RL L RLq R
E dA E r L r E

r

        
   

  
     

  



	

Therefore,	the	expressions	of	the	electric	fields	are:	

a 		For	 ,r R 	the	electric	field	is	
0

ˆ.
4

E r
r







	

b 		For	 ,r R 	the	electric	field	is	
0 2

4 ˆ.
4

R
E r

r

  






	

CALCULATE:		Not	required.	
ROUND:		Not	required.	
DOUBLE‐CHECK:		Since	the	metal	cylinder	is	a	conductor,	all	its	charge	resides	on	its	outer	surface.		
This	means	that	the	field	inside	the	cylinder	is	not	affected	by	the	charge	on	the	cylinder.		Therefore,	
for	 ,r R 	the	electric	field	is	only	due	to	the	wire.		For	 ,r R 	the	charge	on	the	cylinder	produces	an	
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electric	field	as	if	all	its	charge	was	concentrated	in	the	center	of	the	cylinder.		Therefore,	the	electric	
field	can	be	found	by	replacing	 / 2 	with	  / 2 2 R   	as	the	new	linear	density	of	a	wire.	

22.65. THINK:		Use	the	values	from	the	question:	 2
1 3.00 μC/m ,  	and	 2

2 5.00 μC/m .   	
a 	 The	 total	 field	 can	 be	 determined	 by	 superposition	 of	 the	 fields	 from	 both	 plates.	 	 The	 field	
contributions	from	the	two	charged	sheets	are	opposing	each	other	at	point	P,	to	the	left	of	the	first	
sheet.	
b 	The	situation	is	similar	to	a 	except	that	the	fields	due	to	both	charged	sheets	point	in	the	same	
direction	at	point	 .P 	
SKETCH:			

	
RESEARCH:			

a 	At	point	 ,P 	the	field	due	to	sheet	#1	is	given	by	   1 1 0/ 2 ,E x   	and	the	field	due	to	sheet	#2	is	

given	by	   2 2 0/ 2 .E x   	Note	that	 total 1 2 .E E E  	

b 	At	point	 ,P 	the	field	due	to	sheet	#1	is	given	by	   1 1 0/ 2 ,E x   	and	the	field	due	to	sheet	#2	is	

given	by	   2 2 0/ 2 .E x    		Again, total 1 2 .E E E    	 	

SIMPLIFY:			

a 		  

 1 21 2

0 0 02 2 2
E x x

  
  

     
     
   

	

b 		  

 1 21 2

0 0 02 2 2
E x x

  
  

         
   

	

CALCULATE:			

a 		
 

    
6 2

5
total 12 2 2

3.00 5.00 10  C/m
ˆ ˆ1.130 10  N/C

2 8.85 10  C / N m
E x x





  
  


	

b 		
  

    
6

5
total 12 2 2

3.00 5.00 10  N/C
ˆ ˆ4.520 10  N/C

2 8.85 10  C / N m
E x x





  
  


	

ROUND:	
a 		 5

total 1.13 10  N/CE   	in	the	positive	x‐direction	

b 		 5
total 4.52 10  N/CE   	in	the	positive	x‐direction	

DOUBLE‐CHECK:	The	results	are	reasonable	because	the	answer	in	 b 	is	four	times	larger	than	that	
found	 in	 a 	 since	 in	 a 	 the	 fields	 are	 opposing	 each	 other	 and	 in	 b 	 the	 fields	 are	 in	 same	
direction.	

22.66. THINK:			
a  The	field	due	to	a	charged	sphere	outside	the	radius	of	the	sphere	is	equivalent	to	the	field	due	to	
a	point	charge	of	equal	magnitude	at	the	center	of	the	sphere.	
b  The	electric	field	radiates	outward,	perpendicular	to	the	surface	of	the	sphere.	
c  The	field	inside	a	conductor	is	zero.	
SKETCH:			
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RESEARCH:			

a  The	field	is	given	by:		 0.271nCq  	and	      2 2 22 23.1 cm 1.10 cm 0 cm .r    	

b  The	angle	is	given	by	    tan 1.10 cm / 23.1 cm  	or	    1tan 1.10 cm / 23.1 cm .  	

c  The	field	is	zero	inside	a	conductor.		
SIMPLIFY:		Not	required.	
CALCULATE:			

a  
  

      
9

2 212 2 2

0.271 nC 10  C/nC
45.56 N/C

4 8.85 10  C / N m 0.231 0.0110  N/C
E






 

 
		

b  1 1.10 cm
tan 2.7263

23.1 cm
      

 
	

c  0 N/C 		 	
ROUND:			
Rounding	to	three	significant	figures:	
a  45.6 N/CE  	
b  2.73   	
c  0 N/C 	
DOUBLE‐CHECK:			
a  Not	required.	
b  Since	the	y‐component	is	much	less	than	the	x‐component	I	expected	the	angle	to	be	small,	
which	it	is.	
c  Not	required.	

22.67. THINK:		The	spherical	symmetry	of	the	charged	object	allows	the	use	of	Gauss’s	Law	to	calculate	the	
electric	field.		To	do	this,	separate	Gaussian	surfaces	must	be	considered	for	 r a 	and	 r a .	
SKETCH:		
a 			

	
b 			
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RESEARCH:		

a  The	total	charge	inside	the	Gaussian	surface	is	given	by	 2 1
00
4 .

r
q r dr   	The	charge	density	is	

0 sphere/Q V  ,	and	the	volume	is	   3
sphere 4/3 .V a 	

b  The	total	charge	is	simply	the	charge	of	the	non‐conducting	layer	and	the	gold	layer:	
Total Charge 2 .q Q Q Q     	

Gauss’s	Law	states	 enc 0/ .E dA q  
 



	Since	the	Gaussian	surface	in	this	case	is	a	sphere,	Gauss’s	Law	

simplifies	to	  2
04 / .E r q  	

SIMPLIFY:			

a 		    
2 1 2 1 3 3

0 0 0 30 0

2
4 4 4/3 .

4/3 3

r r Q
q r dr r dr r r

a
      


           

  	Substituting		

 0 3
,

4/3

Q

a





3

3
.

Qr
q

a
 	    

3
2

3 3
0 0 0

4   ,
4

encq Qr Qr
E r E r r

a a


   
 

     
 

 

 	 < .r a 	The	direction	is	radially	

outward.		

b 	  2
2 2

0 0 0 0 0

2
4    for   .

4 4
encq Q Q Q Q Q

E r E r a E r
r r


    

    
            

   



 	The	direction	is	

towards	the	center	of	the	sphere.		
c 			

	
	

The	discontinuity	at	 r a 	is	due	to	the	surface	charge	density	of	the	gold.		The	charge	on	the	gold	
layer	causes	a	sudden	spike	in	the	total	charge	resulting	in	a	discontinuity	in	the	electric	fields.		
CALCULATE:		Not	applicable.	
ROUND:		Not	applicable.	
DOUBLE‐CHECK:	
a 	The	electric	field	increases	 r 	gets	larger	since	the	charge	inside	the	Gaussian	surface	increases	
as	 a	 function	 of	 3r 	 while	 the	 area	 increases	 as	 a	 function	 of	 2 .r 	 Since	 the	 increase	 of	 the	 area	

decreases	the	field	by	a	function	of	 2r 	and	the	charge	increases	the	field	by	 3r 	it	is	reasonable	that	
the	field	increases,	as	a	function	of	 .r 	
b 	The	sphere	acts	like	a	point	source	is	as	expected.	
c 	There	is	a	discontinuity	in	the	 v. E r 	graph	due	to	the	presence	of	a	surface	charge	density	on	
the	gold	layer,	which	is	expected.	

22.68. THINK:		By	constructing	Gaussian	surfaces	in	both	regions	 r R and	 ,r R 	the	electric	field	can	be	
calculated	using	Gauss’s	Law.	
SKETCH:			
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RESEARCH:	 	The	 total	 charge	 inside	 the	Gaussian	 surface	 is	 given	by	 2
00
4 .

r
q r dr    	 The	 charge	

density	 is	 given	 by	      / sin / 2 .r r r R   	 For	 the	 Gaussian	 surface	 outside	 the	 sphere	

 ,r R the	total	charge	is	given	by	 2
00
4 .

r
q r dr    	The	electric	field	can	be	calculate	using	Gauss’s	

Law:	 enc 0/ ,E dA q 
 



	which	for	a	spherical	Gaussian	surface	is	  2
04 / .E r q   	

SIMPLIFY:		For	the	case	 ,r R  2

0 0

0
0

sin 4 4 sin
2 2

2 2
4 cos cos

2 2

r r

r
r

r r
q r dr r dr

r R R

Rr r R r
dr

R R

   

 
 

                    
                  
         

 



	

Integration	by	parts:	
2

0

2 2
4 cos sin

2 2

8
cos 2 sin .

2 2

r

Rr r R r
q

R R

R r r
r R

R R

 
 

  


                 
         
           

    

	

For	the	case	 ,r R q is	given	by		

    

     

2
2

0

0

2 2 2 2 2

2 2

2 2
4 4 cos sin

2 2

2 4 2 4 16
4 0 sin 4 0 1 .

2

R

R R R R R R
q r r dr

R R

R R R R R

   
 

  
    

                              
                           

              


	

The	electric	field	is	given	by	  2
2

0 0

4   .
4  

q q
E r E

r


  
   	

	For	the	case	 ,r R 	

 2 2
0

1 8 8
cos 2 sin cos 2 sin              1

4 2 2 2 2

R r r Rk r r
E r R r R

r R R r R R

      
   

                               
           

	

For	 ,r R 	
2 2

2 2 2
0 0

16 1 4
.

4

R
q

r r

 
    

    
     
    

										 2 	

For ,r R 	

   2

8 8 8 16
1 cos 2 sin  = cos 2sin 0 2 1

2 2 2 2

Rk R R k k k
R R

R R R

        
   

                                            	

 

   

2

2 2
0 0

4 4 16
2

1 2

R k

R

  
    

   
     
   

 

	

The	expressions	are	equal	when	 .r R 		
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CALCULATE:		Not	applicable.	
ROUND:		Not	applicable.	
DOUBLE‐CHECK:		The	two	expressions	are	equal	at	 ,r R 	which	should	be	the	case	since	there	are	
no	 surface	 charge	 densities	 present	 cause	 discontinuities	 for	 ,r R 	 the	 objects	 act	 like	 a	 point	
source,	which	is	expected	from	a	charged	sphere.	

22.69. THINK:	The	principle	of	 superposition	can	be	used	 to	 find	 the	electric	 field	at	 the	specified	point.		
The	electric	field	at	the	point	  2.00,1.00 	 is	modeled	as	the	sum	of	a	positively	charged	cylindrical	

rod	with	no	hole	and	a	negatively	charged	cylindrical	rod	whose	size	and	 location	are	 identical	to	
those	of	the	cavity.	Let’s	first	think	about	the	case	of	the	positively	charged	cylindrical	rod	without	a	
hole.	 Since	 the	point	of	 interest	 is	 inside	 the	 rod,	 the	entire	charge	distribution	of	 the	 rod	cannot	
contribute.		Instead	we	draw	our	Gaussian	surface	as	a	cylinder	with	our	point	of	interest	on	its	rim	
see	 sketch	 below,	 where	 the	 dashed	 circle	 in	 the	 cross‐sectional	 view	 represents	 the	 Gaussian	
cylinder .	
SKETCH:	

	
	

RESEARCH:		In	section	22.9	of	the	textbook	it	was	shown	that	for	cylindrical	symmetry	of	the	charge	
distribution	the	electric	field	outside	the	charge	distribution	can	be	written	as	  E  2k / r ,	where	r	is	
the	distance	to	the	central	axis	of	the	charge	distribution	and	  	is	the	charge	per	unit	length.		
In	 the	problem	here	 the	charge	was	 initially	uniformly	distributed	over	 the	entire	cross‐sectional	
area,	which	means	that	the	value	of	  	for	the	Gaussian	surface	and	for	the	hole	are	proportional	to	
their	cross‐sectional	area:	  Gauss  rod (r / R)2 , and	 hole  rod (rhole / R)2 .	
Now	we	have	the	tools	to	calculate	the	magnitudes	of	the	individual	electric	fields	of	the	rod	and	of	
the	hole.	What	is	left	is	to	add	the	two,	which	is	a	vector	addition.		So	we	have	to	determine	the	x‐	
and	y‐components	of	the	fields	individually	and	the	combine	them.			
If	 1E 	 is	 the	 field	 from	the	dashed	cylinder	and	 2E 	 is	 that	of	 the	cavity	 then	 from	considering	 the	

geometry	the	relation	are	given	by:	  1/22 2
1 12 / 2 1 ,xE E  	  1/22 2

2 2 2 / 2 1 ,xE E  	  1/22 2
1 1 / 2 1yE E  	

and	  1/22 2
2 20.5 / 2 0.5 .yE E  		

The	net	electric	field	is	given	by	the	following	relations	 1 2x x xE E E  	and	 1 2 .y y yE E E  	

SIMPLIFY:	
2 2

1 Gauss rod rod2 / 2 ( / ) / 2 /E k r k r R r k r R     	
2

2 hole 2 rod hole 22 / 2 ( / ) /E k r k r R r    	

where	 2r 	is	the	distance	between	our	point	of	interest	and	the	center	of	the	hole.	

   1 21/2 1/22 2 2 2

2 2
,

2 1 2 0.5
xE E E 

 
	and	

   1 2 1/22 2 2 2

1 0.5
.

2 1 2 0.5
yE E E 

 
				

CALCULATE:		     1/22 2
0.01 m 0.0200 m 0.02236 mr    	

    1/22 2

2 0.00500 m 0.0200 m 0.02062 mr    	
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9 2 2 7
5

1 2

2(8.99 10 Nm /C )(6.00 10 C/m) 0.02236 m
2.680 10  N/C

0.0300 m
E

 
  

 

29 2 2 7
5

21

2(8.99 10 Nm /C )(6.00 10 C/m) 0.0100 m
0.581 10  N/C

0.02062 m 0.0300 m
E

        
 

		

  Ex 1.833105  N/C, 	
  
Ey 1.339 105  N/C 	

ROUND:	  Ex 183 kN/C, 	
  
Ey 134 kN/C 	

DOUBLE‐CHECK:	 	We	can	calculate	the	magnitude	and	direction	of	the	combined	electric	field	and	

find:	
  
E  Ex

2  Ey
2  227 kN/C, 	and	  tan1(Ey / Ex ) 36.1 .	If	the	hole	would	not	have	been	drilled,	

the	magnitude	would	have	been	 the	magnitude	we	 calculated	 above	 for	   E1 ,  E1  268 kN/C ,	 and	 it	

would	have	pointed	along	the	
 
r
r 	vector	with	an	angle	of	26.6°.		This	means	that	our	result	states	that	

the	magnitude	of	the	electric	field	is	weakened	due	to	the	presence	of	the	hole,	and	that	it	does	not	
point	 radial	 outward	 any	 more,	 but	 further	 away	 from	 the	 x‐axis.	 	 Both	 of	 these	 results	 are	 in	
accordance	with	expectations	and	add	confidence	to	our	result:	the	hole	modifies	the	electric	field	
somewhat,	but	does	not	do	so	radically.	

22.70. THINK:		Use	the	principle	of	superposition	and	model	the	problem	as	a	positive	infinite	plane	and	a	
negative	circular	disc.	
SKETCH:			

	
	

RESEARCH:		The	electric	field	contributed	by	the	plane	is	given	by:	 plane 0/ 2 .E   	One	can	find	the	

electric	field	of	a	disc	by	adding	up	the	contributions	from	each	small	area.		From	the	symmetry	one	
many	conclude	that	the	field	points	vertically.		The	contribution	of	each	small	area	to	the	field	in	the	
y‐direction	 is	 given	 by:	

      2
0/ 4 cos / ,dE dA r cos / ,h r  2 2 2 ,r h   disc .E dE total plane disc .E E E  	

20.200 m, 0.050 m, 1.3 C/m .h R    	

SIMPLIFY:		
 

 3/22 22
0 0

cos
 4 4

hd dedA
dE

hr

   
 

            
	

 
     

2 1/2
2 2

disc 3/2 1/20 0 2 2 2 200 0 0

1 1
2  

4 4 2 

RRh h h
E d d h

hh h R

      
  


                          

 

   total disc plane 1/2 1/22 2 2 2
0 0 0

1 1

2 2 2

h h
E E E

h h R h R
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CALCULATE:		
      

2
10

total 1/212 2 2 2 2

1.30 C/m 0.200 m
7.125 10  N/C

2 8.85 10 C / N m 0.200 m 0.0500 m
E


   

 
	

ROUND:		 10
total 7.13 10  N/CE   	

	
	

DOUBLE‐CHECK:		The	plot	shows	that	for	large	 h 	the	result	is	the	same	as	that	of	an	infinite	plane	
without	a	hole	as	one	would	expect.	

22.71. Regardless	of	what	orientation	the	cube	is	in,	we	can	always	enclose	it	in	a	Gaussian	surface	that	just	
covers	the	cube.		Gauss’s	Law	states	that	 enc 0/ .EdA q 

 



	

	

Now	 consider	 the	 flux	 through	one	particular	 face	 given	by	 1.EA


	 There	 exists	 a	 flux	 through	 the	

opposite	face	given	by	 2EA


	with	the	relation	 1 2EA EA 
 

	since	 1A


	and	 2A


	point	the	opposite	way.		

The	sum	of	the	flux	contributed	between	the	two	opposite	sides	is	 1 2 0.EA EA 
 

	If	this	calculation	
is	done	for	each	side	then	the	total	flux	is	 0 and	hence	the	total	charge	must	be	 0 	by	Gauss’s	Law.			

22.72. The	dipole	moment	is	given	by	 p qd 	where	 d 	is	the	distance	between	the	charges.	The	maximum	
torque	is	when	the	field	is	perpendicular	to	the	dipole	moment.		

	

The	torque	is	then	   30 278.0 10  C m 500.0 N/C 4.0 10  N m.qEd pE        		

22.73. 	
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Consider	a	cylindrical	Gaussian	surface	with	a	radius	of	 4.00 cm .		By	Gauss’s	Law,	 enc 0/ .EdA q 
 



	

The	charge	inside	the	cylinder	is	 2 ,q r l 	so	the	field	is	given	by	

    
 

8 32
2

12 3 1 4 2
0 0

6.40 10  C/m 0.0400 m
2   1.45 10  N / C

2 2 8.854 10  m  kg  s  A

r l r
E rl E

 
 



  


     


	

away	from	the	y‐axis.		The	information	concerning	the	radius	of	the	cylinder	is	irrelevant.		

22.74. The	electric	force	and	the	gravitational	force	must	balance.					

	

	 0  / ,qE mg E mg q    	 29.81 m/sg  	

a 	 31
electron 9.109 10  kg,m   	 191.602 10  C,q    	

  





   

 

31 2

11

19

9.109 10  kg 9.81 m/s
5.58 10  N/C

1.602 10  C
E 	

with	the	field	directed	down.		

b 		 27
proton 1.672 10  kg,m   	 191.602 10  C,q   	

  





  



27 2

7

19

1.672 10  kg 9.81 m/s
1.02 10  N/C

1.602 10  C
E 	with	

the	field	directed	up.	

22.75. 	

	

a 	Construct	a	Gaussian	surface	 spherical 	with	radius	between	 20.0 cm 	and	 24.0 cm. 	Gauss’s	
Law	states	that	the	total	flux	is	equal	to	 0/ ,q  	since	the	electric	field	inside	the	last	metallic	shell	is	
zero,	the	flux	must	be	zero	and	hence	the	total	charge	must	be	zero.		Since	the	total	charge	to	be	
zero:		

inside wall inside wall10.00 μC 5.00 μC 0  5.00 μC.q q      	
b 	Constructing	a	Gaussian	sphere	that	contains	all	the	shells,	it	can	be	determined	that	since	the	
electric	field	is	zero,	outside	the	largest	shell	the	flux	is	also	zero	and	hence	the	total	charge	must	be	
zero.	 outside wall inside wall outside wall10.00 μC 5.00 μC 0  5.00 μC 5.00 μC 10.00 μC 0q q q         ,	 which	

then	implies	 outside wall 0.q  	

22.76. 	
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The	 fields	 from	 both	 plates	 are	 always	 perpendicular	 to	 each	 other.	 	 The	 field	   E1 	 from	 plane	 1	

always	points	away	 from	plane	1.	 	The	 field	 E2 	 from	plane	2	always	points	 toward	plane	2.	 	The	
combined	 field	 E 	 points	 in	 different	 directions	 depending	 on	 where	 you	 measure	 it,	 but	 the	
magnitude	of	the	field	is	the	same	everywhere.	

   
 

2 2

2 2 1 2
1 2

0 0

2 22 22 2
1 2

12 3 1 4 2
0

2 2

30.0 pC/m 40.0 pC/m
2.82 N/C

2 2 8.85 10  m  kg  s  A

E E E

E

 
 

 
   

   
      

   

 
  



	

22.77. The	 sum	 of	 the	 forces	 on	 the	 electron	 is	 given	 by	 total gravity coulomb+ .F F F mg qE    	  150. N/C,E 	
191.602 10  C,q    	

319.11 10  kg.m   Thus, .net e
e

eE
F qE mg ma a g

m
     

  
   

19

2 13 2

31

1.602 10 C 150. N/C
9.81m/s 2.64 10  m/s .

9.11 10  kg
ea






   


	

22.78. This	problem	can	be	solved	using	Gauss’s	Law.	 2total

0

Flux 10 N m / C.n

q
E da E da


      

 

 

 

	Since	

,nEda E da      2 12 12 2 2 1
total 0 10.0 N m /C 8.85 10  C 10.0 N m /C 8.85 10 C/ N m . q        	

22.79. This	problem	can	be	solved	using	Gauss’s	Law.		 total 0Flux / .q  	The	approximation	can	be	made	that	

the	flux	leaving	the	ends	of	the	rod	are	negligible,	so	 total 0 0Flux / /q l    	where	 l 	is	the	length	of	
the	rod.		

  12 6 2

50
8.85 10 1.46 10  N m /C

4.31 10  C/m
0.300 ml







 
    	

	

22.80. THINK:		I	first	need	to	find	the	relationship	between	the	first	wire	and	the	second	wire.	
SKETCH:		Not	required.	

RESEARCH:	 	The	 field	due	 to	 the	 first	wire	 is	 given	by:	 1

2
2.73 N / C.

k
E

r


  	The	 field	due	 to	 the	

second	wire	is	given	by	    2 2 0.81 / 6.5 .E k r 	
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SIMPLIFY:		
          

   2 1

2 0.81 20.81 0.81
6.5 6.5 6.5

k k
E E

r r
	

CALCULATE:		          
   

2 1

0.81 0.81
2.73 N/C 0.3402 N/C

6.5 6.5
E E 	

ROUND:		 0.340 N/C 	
DOUBLE‐CHECK:		The	answer	is	comparable	to	the	electric	field	of	the	original	wire	which	makes	it	
reasonable.		

22.81. THINK:		I	want	to	find	the	charge,	 1q needed	to	balance	out	the	force	of	gravity.	 	After	finding	 ,q 	 I	
can	determine	the	number	of	electrons	based	on	the	charge	of	a	single	electron.	
SKETCH:			

	
	

RESEARCH:		The	net	force	on	the	object	must	equal	zero	in	order	for	the	object	to	remain	
motionless.	 total gravity coulomb+ 0,F F F  	 gravity g,F m  	 coulomb ,F Eq 	 0/2E   	for	an	infinite	plane.		The	

number	of	electrons	is	 electron/ .q q 	

SIMPLIFY:		 total gravity coulomb total+ 0  0,F F F F mg Eq       	 0

0

2
   .
2

mg
Eq mg q mg q


 

     		

Number	of	electrons 0

electron

2
.

mg

q




 	 29.81 m/s ,g  	 5 23.50 10  C/m ,    	 1.00 g.m  	

CALCULATE:			

Number	of	electrons	
   

  
3 2 12 3 1 4 2

10

5 2 19

2 1.00 10  kg 9.81 m/s 8.85 10  m  kg  s  A
3.097 10  electrons

3.50 10  C/m 1.602 10  C

   

 

 
  

   
	

ROUND:		 103.10 10  electrons 	
DOUBLE‐CHECK:	 	 This	 number,	 though	 large,	 is	 reasonable	 since	 the	 amount	 of	 charge	 on	 each	
electron	is	tiny.	

22.82. THINK:			
a 	The	necessary	electric	field	strength	can	be	determined	by	finding	the	acceleration	required	to	
achieve	 the	 desired	 deflection.	 	 The	 final	 speed	 of	 the	 proton	 can	 be	 found	 through	 the	 relation	
between	the	proton’s	initial	velocity	and	its	angle	of	deflection.	
b 	 The	 electric	 field	 strength	 required	 to	 give	 the	 protons	 a	 specific	 acceleration	 will	 impart	 a	
different	acceleration	to	the	kaons	due	to	difference	in	mass.	
	
	
	
SKETCH:			
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RESEARCH:			
a,b 	Initially	the	velocity	in	the	y‐direction,	 ,yv 	is	zero.		The	only	part	of	the	velocity	affected	by	the	

electric	field	is	 ,yv 	 xv 	is	the	same	before	and	after	the	deflection.		 ,yv at 	 t 	is	the	time	the	proton	

spends	in	between	the	plates.		 0 ,F m a Eq  	 tan / ,y xv v  	 2 2 2
x yv v v  ,	where	 v 	is	the	new	speed.		

/ ,xt l v 	 l 	 is	 the	 distance	 the	 proton	 has	 to	 traverse	 between	 the	 plates.	 	 31.50 10  rad,   	

15.0 cm,l  	 15.0 km/s.xv  	

c 	The	mass	of	a	proton	 1.67 1027  kg. 	The	mass	of	a	kaon	is	  8.811028  kg. 	The	speed	of	the	kaon	
is	given	by	setting	the	momentum	of	a	kaon	equal	to	the	momentum	of	a	proton:	

kaon kaon proton proton .m v m v 	

SIMPLIFY:			
a,b 	

  
vy  vx tan  at    vy / t  a 	

  
Eqma 

mvy

t


mvx tan
t


mvx tan

l / vx


mvx

2 tan
l

   E
mvx

2 tan
lq

	

  
v2  vx

2  vy
2  vx

2  vx tan 2  vx
2 1 tan2 	

c 	Take	the	result	from	part	 a 	to	find	 . 	

  

E
mvx

2 tan
lq

   tan  qEl

mvx
2      tan1 qEl

mvx
2







	

CALCULATE:		

a 	

  

E
1.67 1027  kg 15.0 103  m / s 2 tan 1.50 103  rad 

0.150 m  1.6021019  C   0.023455 N/C 	

b
  
v  15.0 103  m / s  1 tan2 1.50 103  rad  

1/2

15.000017 km/s 	

c 	
  
vkaon 

1.67 1027  kg

8.811028  kg
15.0 103  m/s  28434 m/s 		

With	the	results	from	part	 a ,	the	electric	field	is	 Emvx
2 tan / lq . 		

   31.50 10 rad, 	
    

  
 



  
 



2
27 3 3

19

1.67 10  kg 15.0 10  m/s tan 1.50 10  rad
0.02345507 N/C

0.150 m 1.602 10  C
E 	

   
  




  



              

19

1 1 4

2 228

1.602 10 C 0.02345507 N/C 0.150 mE
tan tan 7.91295 10 rad

8.81 10 kg 28434 m/sx

q l

mv
	

ROUND:			
a 	  0.0235 N/CE 	

b 	   41.50 10  km/sv 	

c 	 47.91 10  rad   	
DOUBLE‐CHECK:			
The	change	in	speed	is	small	compared	to	the	magnitude	of	the	speed,	which	is	expected	since	the	
deflection	was	also	small.	The	deflection	of	the	kaon	is	less	that	the	deflection	of	a	proton	with	the	
same	momentum	because	the	kaon	has	a	higher	speed.	

22.83. THINK:	Using	the	charge	density,	Gauss’s	Law	can	be	used	to	find	the	electric	field	as	a	function	of	
the	radius.	
SKETCH:		Not	required.	
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RESEARCH:	The	charge	inside	a	spherical	Gaussian	surface	is	given	by	 sphere .q V 	   3
sphere 4 / 3 ,V r 	

6 33.57 10  C / m   	and	  0.530 m.r 		Gauss’s	Law	gives	the	field	  2
04 / .EdA E r q  

 



	

SIMPLIFY:		     3
2

2 2 2
0 0 0 0 0

4 / 31 1 1
4   

34 4 4

rq q V r
E r E

r r r

  
      

    
                

	

CALCULATE:		
  

 





  



6

4

12

3.57 10 0.530
N/C 7.127 10  N/C

3 8.85 10
E 	

ROUND:		 47.13 10  N/CE   	
DOUBLE‐CHECK:		The	result	was	independent	of	the	actual	radius	of	the	sphere	as	it	should	be.	

22.84. THINK:		Gauss’s	Law	can	be	used	to	determine	the	electric	field	as	a	function	of	radius	for	the	three	
cases	 ,r R 	 2R r R  	and	 2 .r R 	
SKETCH:			

	
RESEARCH:		The	electric	field	through	the	surface	of	a	sphere	of	radius	r	is	given	by	Gauss’s	Law:		

 2
04 / .E dA E r q   

 



	

For	 ,r R 	the	enclosed	charge	is	given	by:	

 2
1 10

4 ,
r

q r dr     	

where		

 1 3
.

4 / 3

Q

R



 	

For	 2 ,R r R  	the	enclosed	charge	is	given	by:		

 2
2 2 4 ,

r

R
q Q r dr      	

where		

    2 3 3
.

4 / 3 2

Q

R R








	

For	 2 ,r R 	the	enclosed	charge	is	 3 0.q Q Q   	
SIMPLIFY:				
For	 :r R 		

 
3

2 2 3
1 3 3 3 30 0

3 3 3
4

34

r rQ Q Q r Q
q r dr r dr r

R R R R



            

  
  	

 2 31
3 3

0 0 0

4   
4r R r R

q Q Qr
E r r E

R R


   

 
     

 
	

For	 2 ,R r R  	
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     2 2 2 3 3
2 2 3 3 3

3 3
4 4

28 7 7

r r r

R R R

Q Q Q
q Q r dr Q r dr Q r dr Q r R

R R R
  


               

    	

 3 3
2 2 3 2 3 2 3

00 0

31 1 8
1

7 284 7 4 7R r R

Q Q r Q r
E Q r R

r R r R r R  

          
                               

	

For	 2 :r R 	Since	the	total	charge	is	zero,	by	Gauss’s	Law	 2 0.r RE   	
CALCULATE:		Not	applicable.	
ROUND:		Not	applicable.	
DOUBLE‐CHECK:		It	is	expected	that	the	expression	for	 r R 	and	 2R r R  	are	equal	at	 r R 	and	
the	expressions	for	 2r R 	and	 2 ,R r R  	are	equal	at	 2 .r R 		For	 :r R 		

3 2
0 04 4r R

Qr Q
E

R R    	

2 2 3 2 3 2
0 0 0

8 8

28 28 4R r R r R

Q r Q R Q
E E

r R R R R    

      
           

      
	

For	 2 :r R 		

2 >22 3 2 3 2 2
0 0 0

8 8 2 2 2
0

28 28 284R r R r R

Q r Q R Q
E E

r R R R R R   

          
                 

          
	

The	expressions	are	equal,	so	the	solution	is	reasonable.	

22.85. THINK:		The	electric	field	due	to	the	charge	induces	a	charge	distribution	on	the	floor	below	it.		As	a	
result,	 the	 charge	experiences	a	 force	directed	 toward	 the	 floor.	 	 Since	 the	 charge	and	 its	 ‘mirror	
image”	describe	a	dipole,	the	electric	field	lines	are	perpendicular	to	the	floor.		I	want	to	determine	
the	force	acting	on	the	charge,	the	electric	field	just	above	the	floor,	the	surface	charge	density	and	
the	total	surface	charge	induced	on	the	floor.			
SKETCH:			

	
A	Gaussian	pill	box	may	be	drawn	along	an	infinitesimally	small	area	as	follows:		

	
	

RESEARCH:		The	electric	field	due	to	the	charge	is	given	by	 2/ ,E kq r 	where	q	is	the	magnitude	of	
the	charge	and	r	is	the	distance	from	the	charge	to	the	floor.		The	force	experienced	by	the	charge	is	
given	by	Coulomb’s	law;	   2

0 1 21/ 4 / .F q q r 	Since	the	electric	field	points	in	the	negative	y‐

direction,	only	the	y‐contribution	from	each	charge	need	be	found.		The	y‐contribution	is	given	by		
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2
0

1
cos ,

4

q
E

r



 

  
 

cos
a

r
  ,	and	  1/22 2 .r a   	

Since	the	y‐component	from	both	charges	is	the	same	 i.e.	since	the	charges	are	equal	in	magnitude ,	

the	total	electric	field	is	then:	 total 2
0

2
cos .

4

q
E

r



 

  
 

		Using	Gauss’s	Law	on	the	pillbox,	

0/   .EdA dq dq dA    	The	total	charge	is	given	by	 infinite
plane

.q dA  	

SIMPLIFY:			

b 	
 

1 2
2

04 2

q q
F

a

 
 
 
 

	

c 	
 total 2 3 3/22 2

0 0 0

2 2 1
cos

4 4 2

Q Qa Qa
E

r r a


   

 
                  

	

d 	
0 0

,
dq dA

EdA


 
  	

0

E



 	and		
 0 3/22 2

1

2

Qa
E

a
 

 

 
  
   

	

e 	
   

    1/2
2 2

3/2 3/20 02 2 2 2 0
2 2

2 2 2

Qa Qa aQ
q dA dp d Qa

a a

    
  

  
   

                                
   	

CALCULATE:			

b 	
  
  

6 6

3
212 2 2

1.00 10  C 1.00 10  C
8.9918 10  N

4 8.85 10 C / N m 1.00 m
F



 




  
   


	

c 	Not	applicable.	
d 	Not	applicable.	
e 	Not	applicable.	
ROUND:			
To	three	significant	figures:	
b 	 38.99 10  N downwardF   	
DOUBLE‐CHECK:			
a 	The	sketch	is	symmetric	as	it	should	be.	
b 	 The	 force	 is	 downward	 as	 it	 should	 be	 since	 the	 positive	 charge	 is	 attracted	 to	 the	 negative	
charge.	
c 	 The	 field	 gets	 weaker	 as	  	 gets	 larger	 as	 expected	 since	 the	 source	 is	 farther	 away	 with	
increasing . 	
d 	The	surface	charge	density	gets	smaller	as	  	gets	larger	since	the	source	is	farther	away	with	
increasing	 . 	
e 	Since	all	the	field	lines	coming	from	the	charge	go	onto	the	top	of	the	slab	it	is	not	unreasonable	
that	the	total	charge	induced	is	equal	to	the	charge	in	magnitude.		
	
	
	
	

Multi‐Version	Exercises	
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	 Exercises	22.86–22.88			The	electric	field	a	distance	d	from	the	wire	is
2

.
k

E
d


 	The	force	is	

then
2

.
e k

F qE
d


 

	
From	Newton’s	Second	Law	we	have

2
.

e k
F ma

d


 

	
So	the	acceleration	is	

2
.

e k
a

md


 	

22.86. 
   

  

19 9 2 2 12

6 2

27

2 1.602 10  C 8.99 10  N m /C 2.849 10  C/m2
7.198 10  m/s

1.673 10  kg 0.6815 m

e k
a

md


 



  
   


	

22.87. 
2e k

a
md


 	

	
   

  
7 2 27

12

19 9 2 2

1.111 10  m/s 1.673 10  kg 0.6897 m
4.451 10  C/m

2 2 1.602 10  C 8.99 10  N m /C

amd

ek







 
   

 
	

22.88. 
2e k

a
md


 	

	

   
  
19 9 2 2 12

27 7 2

2 1.602 10  C 8.99 10  N m /C 6.055 10  C/m2
0.6978 m.

1.673 10  kg 1.494 10  m/s

ek
d

ma


 



  
  

 

		 Exercises	22.89–22.91			The	magnitude	of	the	electric	field	at	the	center	due	to	a	differential	element	

d 	is	
2

.
k d

dE
R






	The	x‐components	add	to	zero,	leaving	only	a	field	in	the	y‐direction.	The	y‐

component	is	
2

sin .y

k d
dE

R

 


	Taking	d Rd 	we	have	
2

sin sin .y

k R k
dE d d

R R

      	We	

integrate	from	0	to	 	to	get	the	magnitude	of	the	electric	field:	

 00

2
sin cos 2 .

k k k k
d

R R R L

           	

	 So	
2

.
k

E
L

 
 	

22.89. 
  

 

9 2 2 8

4
2 8.99 10  N m /C 5.635 10  C/m2

1.438 10  N/C
0.2213 m

k
E

L

 
 

    	

22.90. 
2 k

E
L

 
 	

	
  

 
4

8

9 2 2

3.117 10 N/C 0.1055 m
5.822 10  C/m

2 2 8.99 10  N m /C

EL

k


 



   


	

22.91. 
2 k

E
L

 
 	

	
  9 2 2 8

4

2 8.99 10  N m /C 6.005 10  C/m2
0.1399 m 13.99 cm

2.425 10  N/C

k
L

E
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Chapter 23:  Electric Potential 
 

Concept Checks 

23.1. e  23.2. e  23.3. a  23.4. a  23.5. b  23.6. e  23.7. d  23.8. e  23.9. b  23.10. a  23.11 e 
 
Multiple-Choice Questions 

23.1. a  23.2 c  23.3. c  23.4. c  23.5. a  23.6. d  23.7. a  23.8. d  23.9. a  23.10. c  23.11. c  23.12. b  23.13. a  23.14. d 
 

Conceptual Questions 

23.15. Birds are safe on a power line because there is no current flowing through the birds. A potential difference 
is needed in order for a current to flow. Since the potential in the bird is the same as the high voltage wire, 
the potential difference is zero. Therefore, the birds are safe resting on the wire.   

23.16. It is unsafe to stand under a tree during an electrical storm because lightning is more likely to strike trees. 
This is due to the trees being made of materials making the tree a better conductor then air, which provide 
an easy path of least resistance for the electricity to the ground. After a strike trees have a high electric field 
in their vicinity, which helps initiate and guide lightning to the ground.  The electricity can travel through 
the ground to inflict damage or even strike directly from the trees outer surface.    

23.17. An equipotential line is defined as a line connecting points of the same potential. This means that if two 
equipotential lines were to cross, at the cross point, the potential would have two values at the same point. 
The equipotential lines are also always perpendicular to the electric field.  If they were to cross, then there 
would have to be two different electric fields acting at the same point.  If a point charge were put at this 
point where the electric fields crossed, there would be two separate forces acting from the two different 
electric fields.  Both of these situations are not possible. Therefore two equipotential lines cannot cross.    

23.18. In the vicinity of a pointy protrusion, the electric field can be very high. This can lead to a spark inside an 
electronic device which can make the device to stop functioning.   

23.19.  

 
Applying Gauss’s law on a spherical Gaussian surfaces as shown above gives: 

0

.
q

dAE =⋅∫∫


 
 

Since the spherical symmetry of the Gaussian surface, the above equation simplifies to:  

( )2

0 0

  4 .
q q

E dA E rπ= ⇒ =∫∫  
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Thus, the electric field is 
π

= 2
04

.qE
r

 This is exactly the field of a point change with the same charge, q, 

located at the center of the spherical uniform charge. Using the relation between potential and field, 
f

f
i

i ,V V E d s− = − ⋅∫
 

 yields: 2
0

0 .
4i

r r

q
dr dr

r
EV

π

∞∞

− = − = −∫ ∫ 
 Thus,  

0 0 0 0

1 1 1 1
4 4 4 4i

r

q q
V

r
q q

r r rπ π π π

∞         − − − − = =        ∞        
= =

   
. 

This potential is identical to the potential of a point change. Substituting r = R gives the potential at R: 

0

.
4

q
V

Rπ
=


 

Changing the charge distribution to non-uniform but spherical (radial) symmetry yields the same result as 
above. That is, its potential is the same as the potential produced by a point change in the center of 
spherical charge.  

23.20. Since the distances of all points in the ring to the center of the ring are the same, the potential is 

04
q

V
Rπ

=


. The electric field is zero since electric field lines cannot cross where they would converge at 

the center of the ring. 

23.21.  

 

The potential due to a small element dA is given by: 
04

dA
r

dV σ
π

=


, where .dA ad daθ=  Integrating over the 

area of a half disk gives: 
0 0

0

.
4

R

r
V ad da

π σ θ
π

= ∫ ∫ 
 Substituting 2 2r aH= +  yields: 

0 0 02 2 2 2
00

.
44

R Ra adaV d d
a

a
HaH

π σ σθ
π +

=
+

= ∫ ∫ ∫
 Now, for integration by substitution, let 2 2 ,z H a= +  

which makes 2 .dz a da=  Then the previous integral becomes 

( )2 2 2 2

0 0 00 0 0 0

1 .
4 2 4 4 4

a Ra Ra R

a a a

dz z H a H R H
z

σ σ σ σ===

= = =
= = + = + −∫   

 

23.22. As an electron moves away from a proton, it encounters a decreasing potential. Since the electron has a 
negative charge and the potential energy is defined as U = qV, then the potential energy increases as the 
electron moves away.  
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23.23.  

 
The sphere is divided into many spherical shells. Consider two shells with radii 1r  and 2 .r  The potential 

energy of the two shells is: 1 2
12

0 24
U

QQ
rπ

=


, where 1Q  and 2Q  are the total changes of shells of radii 1r  and 

2 .r  The total charges are  ( )2
11 1 14Q r r drπ ρ=  and ( )2

2 2 2 24Q r r drπ ρ= . Therefore,  

( ) ( )ρ ρ= 2
12 11 2

0
2 12

1 .U r r drr drr


 

The total potential energy is obtained by integrating over an interval (0, ∞ ) for the variable 2r  and an 
interval (0, 2r ) for 1.r  Thus, 

( ) ( )ρ ρ
∞ ∞

= =∫ ∫ ∫ ∫
2 2

2 1
2

12 2 2 20 0 1 10
0

0 1 .1r r
U dr dr r r dr rr drU


 

 
Exercises 

23.24. The work required to increase the distance between these ions is given by: 

π π π
     

− =            
− = ∆ = − =


−



1 2 1 2
f i 1 2

0 0 i 0 f i

1 1 1 1 1
4 4 4

.
f

q q
W U U q

r r r r
q q

U q
  

 

Substituting 19
1 1.602 0  C,1eq −= − ⋅=  1

2
91.602 0 C,1eq −= = ⋅  2

f 1.0  m10r −⋅=  and 9
i 0.24  m10r −⋅=  yields: 

( ) ( )( )9 2 2 19 19
2 9

19

1 110 10 10
1.0 10

8.99  N 
0.24 1

m /C 1.602 C 1.6
0

10

02 C
 m  m

  9.6  J.

W

W

− −
− −

−

 − = ⋅ ⋅ − ⋅ ⋅ ⋅  
 

⇒ =

−
⋅ ⋅

⋅
 

23.25. THINK:  As the positively charged ball approaches the positively charged plane, its potential energy will 
increase and its kinetic energy will decrease.  At the point when the ball stops, all its initial kinetic energy 
will have been converted into potential energy.  Work must be done on the ball to accomplish this change.  
The force necessary to do this work is supplied by the electric field created by the charged plane. 
SKETCH:   

 
 

RESEARCH:  Since work is force times distance, the stopping distance can be calculated by exploiting the 
relationship between the work done on the ball, and the force exerted on the ball by the electric field.  The 
electric field due to the charged plane is given by σ= 0 ./E   The net force acting on the ball is given by 
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σ= = 0/ .qF qE   The work done on the ball is equal to the change in kinetic energy, ∆ = −f i .K K K   The 

work-energy relation states = − ⋅ .W F d  
σ
ε

−
= ∆ = − = − ⋅ = − ⋅ =f i

0
.

q d
W K K K F d qE d  

SIMPLIFY:   
( )εσ

ε σ
−−

− = ⇒ = − 0 f i
f i

0
  .

K Kq d
K K d

q
 Since =f 0,K  

σ
=

i 0 .d
q

K
 

CALCULATE:  
( )( )

( )( )
−

−

⋅
= =

⋅

⋅

8 12 2 2

3 2

6.00  J  C /N m
0.2655 m;

5

10 8.85 10

10 4.00 C/m.00  C
d  Therefore, the final distance from the 

plane is = − =1 m 0.2655 m 0.7345 m.x  
ROUND:  Keeping three significant figures gives x = 0.734 m.  
DOUBLE-CHECK:  This is a reasonable distance and less than the initial distance of 1 m. 

23.26.  

 
The change in potential energy, ∆ = ∆ .U Vq   From the conservation of energy, ∆ = −∆ .U K   So 

( )  ∆ = −∆ = − − = − − 
 

2 2
f i f i

1 1 .
2 2

Vq K K K mv mv   Since i 0v = ,  

( )( )19
7

31
2 7
f f

2  C1 2  1.1407  m/s 1.14  m/s.
2 9.11

370. V 1.602 10
10 10

1  kg0
VqVq mv v

m

−

−

− ⋅
⋅ ⋅

−− ∆
∆ = − = = = ≈

⋅
⇒                             

23.27. The work done by the electric field on a proton is given by ( )f i .W U q V q V V= −∆ = − ∆ = − −  Substituting 

f 60.0 V,V = −  i 180. VV = +  and 191.602 10q −⋅=  C  yields: 
 

( )19 1710 60.0 V 180. V( 1.602  C 3.84 10)  J.W − −− − == ⋅− ⋅  

23.28. The work done by an electric field is given by .W K q V= ∆ = − ∆  This means that the potential difference is 

/ .V W q∆ = −  Putting in ( )192 1.602 C10  q −= ⋅  and ( )3 1910 1.200 k 602eV 200  J10W −⋅= = ⋅  yields: 

( )
( )

3 19
3

19

200  J
100  V or 100 kV.

2 1.602

10 1.602 10
10

 C10
V

−

−
∆ = − = − ⋅ −

⋅

⋅ ⋅
 

23.29. Using the work-energy relation and ,W q V= − ∆  it is found that:  

2 2
f i

1 1  .
2 2

W K q V mv mv q V= ∆ = − ∆ ⇒ − = − ∆  Since the proton is initially at rest, i 0v = : 

2
f f

1 2  .
2

q Vmv q V v
m

− ∆
= − ∆ ⇒ =  19101.602  C,q −= ⋅  500. VV∆ = − , and 27167  kg01.m −= ⋅ , and this 

means that:  
( )( )

( )
1

f 7
5

9

2

2 1.602 10  C 500. V
3.10  m/s.

1.67 10 g
10

 k
v

−

−
⋅

− ⋅ −
= =

⋅
 

23.30. The kinetic energy is calculated using the work-energy relation and ,W q V= − ∆  that is: 

f i  .W K q V K K q V= ∆ = − ∆ ⇒ − = − ∆  
Since the initial kinetic energy is zero, the find kinetic energy is f .K q V= − ∆  
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(a) Inserting 191.602  C10q −= − ⋅  and 10 VV∆ =  yields the final kinetic energy: 

( )19 18
f (1.602  C) 10.0 V 1.610 10  J.0K − −= ⋅ = ⋅  

(b) The final velocity of the electron is: 

( )18
6f

f f 31
2
f

2 1.602  J21   1.88  m/s.
2 9.11  kg

10
10

10
K

mv K v
m

−

−
= ⇒ = = ⋅

⋅
=

⋅
 

23.31. THINK:  The force due to the electric field opposes the motion of the proton.  Work must be done on the 
proton to move it toward the plate of higher potential.  This work must come from the initial kinetic 
energy of the proton.  If the proton has sufficient kinetic energy to provide the necessary work, the proton 
will reach plate B.  
SKETCH:   

 
 

RESEARCH:  The work done is equal to the change in kinetic energy.  The work is also equal to the scalar 
product of the force and the distance over which the force acts.  So, W F dK= ∆ = − ⋅ . The force on the 
proton due to the electric field is ,F qE=  and electric field due to the two plates, separarated a distance L, 

is and .U VU qEL V E
q L
∆ ∆

∆ = = ∆ ⇒ =  So .K K KLd
F qE q V

∆ ∆ ∆
= = = −
− − ∆

 

SIMPLIFY:   

(a) 
( )
( )

−
= −

−
f i

B
;

A

K K L
d

q V V
  Since =f 0K   and = 0,AV  the distance is: = =

2
f

B B
.

2
K L mv Ld
qV qV

 

(b) If d is less than 5.0 cm, then the proton will turn around at x = 5.0 cm + d. If d is greater than 5.0 cm, 
the proton will reach plate B.   

(c) The proton will reach the plate A with speed determined from the work-energy relation: 

( ) −
= − = − = ⇒ 

 
2 2
f i

B A
f i   

2
1 1 .
2 2 2

q V V LLW K K F mv mv
L

  Thus, 
− = +  

 
B2 A

f i .
V V

v v q
m

 

CALCULATE:  

(a) This distance, d, is:  
( )( ) ( )

( )( )

−

−

⋅ ⋅
=

−⋅
=

227 3

19

kg 150.0  m/s
0.029319

1.602  C 400.0 V 0 

1.67 10 10 0.100 m
.

2 10 V
 md  Therefore the 

proton will not reach the plate B.   
(b) The proton will turn around at a distance x = (10.0/2) cm + 2.9319 cm = 7.9319 cm from the plate A. 
(c) The speed of the proton when it reaches the plate A is: 

( ) −
−

 −
= ⋅ + = 


⋅

⋅ 
23 19

f 27
400.0 V 0 V150.0  m/s 1.602  C 246721 m/s.

k
10 10

1.67 1 g0
v  
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ROUND:   
(a) no 
(b) 7.93 cm 
(c) =f  247 km/sv  
DOUBLE-CHECK:  The work required to move the proton all the way to plate B is 

−= = ⋅ 173.2 10  J.W qEd  The initial kinetic energy of the proton is ( ) −= = ⋅2 171/ 2 1.9 10  J.K mv  This is not 
enough energy to provide the work required.  The proton experiences constant acceleration in the electric 
field.  The proton moves toward plate B, stops, and then moves back toward plate A, passing through its 
original position where it has the same speed as it had initially.  The proton continues to accelerate until it 
strikes plate A.  Thus it makes sense that the magnitude of its final velocity is greater than the initial 
velocity. 

23.32. THINK:  32S ions are accelerated from rest using a total voltage of 91.00 10 V⋅ . 32S has 16 protons and 16 
neutrons. The accelerator produces a beam of 126.61  ion .10 s/s⋅  Note that the total power is the total 
energy absorbed per second.  
SKETCH:   

 
RESEARCH:  The kinetic energy of each ion is determined from the work-energy relation, that is, 

.W K q V= ∆ = − ∆  Since i 0,K =  the final kinetic energy of the ion is f .K q V= ∆  
SIMPLIFY:  The total power is equal to f ,NKP Nq V= = ∆  where N is the number of ions per second.  
CALCULATE:  Substituting the numerical values yields:  

( )( )( )( )12 19 910 16 16.61  ions/s 1.602  C  V 16.94 k0 1.00 10 W.P −= =⋅⋅ ⋅  

ROUND:  16.9 kWP = (keeping three significant digits). 
DOUBLE-CHECK:  Watts are an appropriate unit of power. 

23.33.  

 
 

(a) The potential at the point A is given by: 

( )
6 6

9 2 22 2

1 2

41 1
A

2 1

1.00  C 3.00  C8.99  10N m /C 1.798 V 1.80 kV.
0.250 m 0.500

1010 1
m

0
 

kq kq q q
V k

r r r r

− −   −
= + = + = + = ≈       

⋅ ⋅
⋅ ⋅
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(b) The potential difference between points A and B is:  

( )

( )( )

1 1
1

1 1

9 2 2 6 6 4

2 2
2

2 2 1 2

1 1

1 18.99  N m /C 1.00  C 3.010 10 10 10  C 7.192  V 7.19 kV.
0.250 

0
m 0.500 m

BAB A
q q q q

V V V k k k q q
r r r r r r

− −

     
= − = + − + = − −     

     
 = − − − = − ≈ − 
 

⋅ ⋅ ⋅ ⋅

 

23.34. Each charge, q = 1.61 nC, is the same distance from the center of the rectangle, ( ) ( )2 2/ 2 / 2 .r a b= +  

Since there are four point charges, the total electric potential is sum of four individual electric potentials: 

( )
( )( )

( ) ( )

−

=

⋅
= = = =

+ +

⋅
∑

9 2 94

1

2

2 2 2 2

8 8.9875  N m /C 1.61 10  C4 19.9 V.
1/ 2 3.00 m 5.00 m

10

i

kq kqV
r a b

 

23.35. For the van de Graff generator, all the excess charge is on the surface, so the electric potential is: 

51.00 10  V,kQV
r

= = ⋅  where r = d/2 is the radius. 

The total charge, Q, is: = = .
2

Vr VdQ
k k

 The total charge is a result of the number of electrons, ,Q n e=  

where n is given by:  

( )( )
( )( )

5
12

9 2 2 19

1.00 10  V 0.200 m
6.95  electrons.

2 2 8.9875  N m
10

/c10 101.602  C
Vdn
k e −

⋅
⋅ ⋅

⋅
= = =  

23.36. The electric potential of a charged uniform sphere is = / ,V kq r  where V = 100 V and r = 1.0 m, so the total 
charge is:  

( )( )
9 2 2

100. V 1.00 m
11.1 nC.

8.987 15  N m /C0k
Vrq = = =

⋅
 

23.37. All the charge, µ = 5.60 C ,Q  is equidistant from the center, R = 4.50 cm, so the electric potential at the 
center is:  

( )( )
( )

−⋅⋅
= ==

9 2 2 68.9875  N m /C 5.60 10
1

10
11

 C
= 1.12 MV.8444 V

0.0450 m
kQV
r

 

23.38. When considering a charged conducting sphere, the sphere can be considered to be a point charge Q = 8.0 
nC for any distance r > R, where R is radius of sphere and R = 5.0 cm. Since all the charge is spread out 
evenly across the surface of the sphere, every point inside the sphere has the same electric potential. 

(a) 
( )( )99 2

2
2

1

2
8.9875  N m /C 8.00 10  C

= 8.987
10

10  V 8.99 10  V
0.0800 m

kQV
r

−⋅
= = ⋅ ≈ ⋅

⋅
 

(b) 
( )( )9

2

9 2 28.9875  N m /C 8.00 10  C
= 1438 V 144 V

0.0500 m

10kQ kQV
r R

−⋅
= = =

⋅
≈  

(c) = =
3

= 1400 VkQ kQV
r R
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23.39.  

 
Since the wire is a half circle of radius, = 8.00 cm,R  the length of the wire is θ= .L R  The total charge of 

the wire is λ= ,q L  where 83.00 10  C/m.λ −= ⋅  The charge for a small length of the wire is λ=  .dq dL   For 
constant R,  .dq R dλ θ=  The electric potential is then: 

( )( )
0

9 2 2 8

0
8.9  10875  N m /C 3.00 1  C/m 847 V.0

dq RV k k d
r R

k d k V
π πλ θ λ θ λπ π−= = ⇒ = ⋅ ⋅= = =∫ ∫ ∫  

23.40. THINK:  To find the electric potential, consider the dipole as a system of two point charges, +q and –q. 
The two charges are a distance d away from each other. The potential as a function of θ  and x  can be 
found by summing the potentials due to each charge. 
SKETCH:   

 
 

RESEARCH:  Using the law of cosines, the two distances can be determined: 
2

2 2
1 os2 c

24
d dr x x = + −  

 
θ  and 2

2

2
2 2

2
cos(180 ).

4
d dr x x = + −   ° −

 
θ  

The electric potential is: 
=

=∑
2

1

.i

i i

V
r
qk

 

SIMPLIFY: 21 2

1

1

2 1 2 1 2

1 1 .
kq q r r

q q
r r

k
V k k

r r r r
   −

− =   
  

=


= +  Since ( )cos(180 ) cos ,° − = −θ θ  the electric 

potential is 
2 2

2 2

2 2
2 2

cos cos
4 4

cos cos
4 4

.

d dx xd x xd
V q

d dx xd x x

k

d

+ − + −
=

+ −

+

+ +

θ θ

θ θ

 

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  In the case when x = 0 it is seen that V = 0, which is expected for the point between 
two opposite charges. Then consider next the limit .x d>>  For this limit, the denominator simplifies to: 

2 2 2cos coscos co 1 1s .d dx xd x xd x x x
x x

  
− + = − + ≈    

  

θ θθ θ  
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The numerator is simplified to (using series expansion): 
1/2 1/2

2 2 cos coscos cos

cos cos c

  1 1

1 11 1 s
2

o
2

.

d dx xd x xd x x
x x

d dx x d
x x

θ θθ θ

θ θ θ

   + − − = + − −   
   
   ≈ + − − =   
   

 

The potential simplifies to: 2 2

coscos ,
kpdkq

x x
V  = = 

 

θθ  where p = qd  is the electric dipole moment of two 

point charges.  These two cases confirm that our answer is correct. 

23.41. THINK:  The water droplet can be thought of as a solid insulating sphere of diameter 50. μm0 d =  and a 
total charge of 20.0 pC.q =  The potential is then found by integrating the electric field it produces from 
infinity to the  center. The electric fields inside and outside the sphere are different.  
SKETCH:   

 
RESEARCH:  The electric potential is found by: ( ) ( ) ( ) .

r
V r V E r dr

∞
− ∞ = −∫  Since the water droplet is a 

non-conducting sphere, the electric field outside the sphere is = 2
1 / ,kq rE  while inside the sphere is 

3
2 /kqrE R= by Gauss’ Law, where / 2R d=  is the radius of the sphere. 

SIMPLIFY:  

(a)  The potential on its surface, ,r R=  is: 
∞ ∞

∞

 − = − = 
− −


= = −∫ ∫2 2

1( ) 0 .
R

R R drdkq kqV R kr q kq
r Rr r

 

(b)  The potential inside the sphere at center, 0,r =  must be broken into 2 parts. 

0 0 0
0

2 3 3

3

2
1 2 2

2

1(0) 0
2

1 3 30   (0) ( ).
2 2 2 2

R

R R

R R R

k k k k k k
E dr E dr dr dr rd

q qr
r

k k k k k

q q q q
V r

R Rr R R R
q q q q q

R V V R
R R R RR

∞ ∞

 − = = − −   
 = − − = + ⇒ =

− − = − − =

  = 
 




∫ ∫ ∫ ∫ ∫  

CALCULATE:   

(a)  
( )( )9 2 28.9875  N m /C 20.0 pC

( ) 7190 V
50

10

μm / 2.0 
V R

⋅
= =  

(b)  ( )= =
3(0) 7190 V 10785 V
2

V  

ROUND:   
(a)  ( ) 7.19 kVV R =  
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(b)  (0) 10.8 kVV =  

DOUBLE-CHECK:  Though these values seem large, the droplet has a charge density of 3300 C/m ,  which 
is quite large for an object. Therefore, the values seem reasonable. 

23.42. THINK:  Both a proton and electron of a Hydrogen atom have a charge of .q e= ±  If the electron orbits the 

proton at a distance of 10100.529  m,a −= ⋅  then the electric force is the same as the centripetal force. The 
escape speed of an object is the speed needed for its kinetic energy to equal its potential energy. The kinetic 
energy the electron needs to escape minus the potential energy it has in orbit is then the energy needed to 
remove the electron from orbit. 
SKETCH:   

 
 

RESEARCH:  The electric force the electron feels is = 2 2
e / .F ke a  The centripetal force to keep electron in 

orbit is = 2
c e / .F m v a  The potential energy of electron in orbit is = 2 / .U ke a  The kinetic energy it has for 

escape speed is = 2
2 ee / 2.K m v  The kinetic energy the electron has in orbit is = 2

e1 / 2.K m v . 
SIMPLIFY:   
(a) Since the electric force is the only force acting on the electron: 

= ⇒ = ⇒ =
22 2

e
ce 2

e

    .
m vke keF F v

a m aa
 

(b) If electron escapes its orbit, it needs enough kinetic energy to counter its potential energy: 

= ⇒ = ⇒ = =
2 2

2
2 e e e

e

1 2    2 .
2

ke keK U m v v v
a m a

 

(c) The additional energy the electron needs to escape is equal in the change in kinetic energy: 

( )  
= ∆ = − = − = − = − = 

 

2 2 2
2 2 2 2

2 1 e e e e e e
e e

1 1 1 1 2 1 .
2 2 2 2 2

ke ke keE K K K m v m v m v v m
m a m a a

 

CALCULATE:   

(a) 
( )( )

( )( )

29 2 2 19
6

31 10

8.9875  N m /C 1.602 C
2.188  m/s

9.109  kg 0.529  

10

m

10
10

10 10
v

−

− −

⋅
= ⋅

⋅ ⋅

⋅
=  

(b) ( )⋅ ⋅= =6 6
e 2 2.188  m/10 10s 3.094  m/sv  

(c) 
( )( )

( )

29 2 2 19
18

10

8.9875  N m /C 1.602  C
2.18  J 13.6 eV

2 0.5

·10 10
10

29  m10
E

−

−

−
=

⋅
⋅

⋅
= =  

ROUND:   
(a) ⋅= 612.1 s09  m/v  
(b) ⋅= 6

e 13.0 s09  m/v  
(c) 13.6 eVE =  
DOUBLE-CHECK:  Both velocities are less than speed of light, so they make sense. Also, 13.6 eV is the 
experimentally found energy of an electron in a ground state of a hydrogen atom, so it makes sense too.  
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23.43. THINK:  Each charge, three at q = 1.50 nC and one at –q, are placed the corners of a square of sides l = 2a 
= 5.40 cm. Since the point P  in space is located above the very center of the square, each charge is the exact 
same distance from P. The point P is a distance c = 4.10 cm above the center of the square. The electric 
potential can be determined as the sum of the four individual point charges, taking the zero of electrical 
potential to be at an infinite distance.  
SKETCH:   

 

RESEARCH:  The distance from each charge to point P is: 
2 2 2

2 2 .
2 2 2
l l lr c c   = + + = +   

   
 The electric 

potential at this point is 
=

=∑
4

1

.i

ii

kq
V

r
 

SIMPLIFY:  − = + + + = = 
 

+
2

2

2

2 2q q q q q qV
r r r r r l

kk

c

k  

CALCULATE:  
( )( )

( ) ( )

−⋅ ⋅
= =

+

9 2 2

2
2

92 8.9875  N m /c 1.50 10  nC
481.2 V

0.0540 cm
0.0410 c

0

m

1

2

V  

ROUND:  = 481 VV  
DOUBLE-CHECK:  Given the charges and distances involved, this value seems reasonable.  

23.44. THINK:  The electric potential at a point P, a distance y above the end of a rod, can be derived by simply 
integrating the charge over the length of the rod, L. The distance to the point P, from a point on the rod is 
found by using the Pythagorean theorem. The charge distribution of the road is .cxλ =  
SKETCH:   

 
 

RESEARCH:  The total charge of the rod is q Lλ= , so a small element of length dx has a charge 

.dq dxλ=  At any given point along the rod, the distance from it to P is 2 2 .r x y= +  The electric 

potential at point P is = ∫0
/ .

L
qV d rk  
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SIMPLIFY:      

( )λ  + += = = =  +
= −

+
∫ ∫ ∫ ∫ 2 2 2 2

0 0 0 02 2 2 02
 =

L L L LLkdq dx cxdx xV y y y
r r y

dxk k kc kc x kc
y

L
x x

 

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  From the expression, if y L>> (far away point) then V = 0, which would be expected. 
Likewise, if ,L y>> the potential becomes e ,V K cL=  which is constant. This is expected for an infinite 
distance, so it makes sense.  

23.45. THINK:  The electric field, 0 ˆ,xE E xe x−=


 has a maximum when its derivative with respect to x is zero. The 
electric potential is found by integrating the electric field between the two points 0 and max .x  
SKETCH:   

 
 

RESEARCH: Electric field is at maximum when / 0.dE dx =  The potential difference between 0 and maxx  

is max

0
.

x
dxV E= −∫ 



 

SIMPLIFY:   

(a)  ( ) ( ) ( ) ( )0 0 0 .
x

x x x x
d ed xdE d E xe E e x E e xe

dx dx dx dx

−

− − − −
 
 = = + = −
  

  If max0 :    1x xdE e xe x
dx

− −= = ⇒ =  

(b)  ( ) ( ) ( )1 1 1 1
0 0 0 0 0

1

0 00 0
1 1 2 1x x x xV E xe E xe E x e E x e Ed edx x− − − − −   = − = − = − − + = + = −   ∫ ∫  

CALCULATE:  There is no need to calculate.  
ROUND:  There is no need to round.  
DOUBLE-CHECK:  The answer is reasonable.  

23.46. THINK:  The electric potential at a point a distance x from the center of a disk with inner radius 1R and 
outer radius 2R is found by integrating the charge over the radius of the disk and considering a ring of 
charge for a given radius. The distance to the point of interest and any point along a ring of given radius is 
found using the Pythagorean theorem.  
SKETCH:   
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RESEARCH:  Assuming the disk has a uniform charge distribution, the total charge is ,q Aσ=  where A is 
the area of the disk and σ is area charge density. The area of a thin ring along disk is 2 .dA rdrπ=  The 

distance from a point along the disk to a point x along the central axis of the disk is 2 2 .l r x= +  A small 
element of charge along the disk is written as 2 .dq dA rdrσ πσ= =  The potential then at a point along the 

x-axis is = ∫ / .k dq lV  

SIMPLIFY:  

( )πσ πσ πσ πσ = = = + = + +  +
−

+
∫ ∫

22 2

2 2 1

2 2 2 2 2 2
22 2 2 2 1 2 2 2 2

RR R

R R R
V k k k xrdr rdr r R

rx
Rx

r
k x

x
 

If 1 0R = , then ( )2

0

2 2 2 2
22 2

R

V k x xr xk Rπσ πσ = + = + − , as we would expect for the potential due to 

a charged disk (compare with Solved Problem 23.4). 
CALCULATE:  Not applicable.  
ROUND:  Not applicable. 
DOUBLE-CHECK:  To determine if this value is reasonable, determine the electric field it produces:  

2 2 2
1

2
0 2

.
2x

dV X XE
dx xR R x

σ  
 = − = −
 + + 

 

If 1R →∞  and 2 0R → , the disk is an infinite plane and the electric field is 0/ 2 ,xE σ=   so it makes sense.  

23.47. The electric field is related to the potential difference by .VE
x

∆
= −

∆
 So, when = 2

0 ,V V x  where 

= 2
0 270. V/m ,V  the x-component of the electric field at x = 13.0 cm is then: 

[ ] ( )( )=
=

 = − = − = − =  
2

0 13.0 cm
13.0 cm

2 2 270. V/m 0.130 m 70.2 V/m.x x
x

dVE V x
dx

 

23.48.  

 
 

(a) The left plate has a potential of = +1 200.0 VV  and the right plate has a potential of = −2 100.0 V,V  so 
the potential difference across the plates is ∆ = − =1 2 300.0 V.V V V  The electric field from plate to plate is: 

,dV VE
dx x

∆
= − ≈

∆
 where 1.00 cm.x∆ =  Therefore, = = ⋅ 4300.0 V 3.00 10  V/m.

0.0100 m
E  

(b) If the electron only travels / 2,d x= ∆  the change in electric potential is 
2

E xV Ed ∆′∆ = = . Since all its 

initial potential energy becomes kinetic energy: 

( )( )( )19 4 171 1 1.602 10 C 3.00 10 V/m 0.0100 m 2.40 10 J
2 2iK U e V eE x − −′= = ∆ = ∆ = ⋅ ⋅ = ⋅   

23.49. The electric field from an electric potential, ( ) 2 3
1 2 ,V x V x V x= −  where 2

1 2.00 V/mV =  and 
3

2 3.00 V/mV =  is found by: 

( )2 3 2
1 2 2 13 2 .dV dE V x V x V x V x

dx dx
= − = − − = −  
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This field produces a force on a charge, 1.00 μC,q =  of .F qE=  The acceleration of the charge is 

,
qEFa

m m
= =  where 2.50 mg.m =  Therefore, 

( ) ( ) ( )( ) ( )( )
( )

26 3 22
2 1 2

6

1.00 10 C 3 3.00 V/m 2.00 m 2 2.00 V/m 2.00 m3 2
11.2 m/s .

2.50 10  kg

q V x V x
a

m

−

−

 ⋅ −−  = = =
⋅

 

23.50. In three dimensions, the electric field is: 

( ) ˆ ˆ ˆ, , .V V VE x y z V x y z
x y z

 ∂ ∂ ∂
= −∇ = − + + ∂ ∂ ∂ 



 

Therefore, if ( ) 2 2, , ,V x y z x xy yz= + +  22 ,V x y
x

∂
= +

∂
 2V xy z

y
∂

= +
∂

 and :V y
z

∂
=

∂
 

( ) ( ) ( )
( ) ( ) ( )( ) ( )( ) ( )( ) ( )

2

2

ˆ ˆ ˆ, , 2 2

ˆ ˆ ˆ ˆ ˆ ˆ3, 4, 5 2 3 4 2 3 4 5 4 22 29 4

E x y z x y x xy z y yz

E x y z x y z

= − + − + −

= − + − + − = − − −





 

23.51. THINK:  The electric potential, ( )2 23000 5 / m  V,V x= −  is a function of x and thus acts only in one 

dimension. The electric field is found by differentiating the electric potential. The acceleration of a proton 
(q = +e, x = 4 m and 27

p 1.673 10  kg)m −= ⋅  is then found by relating the electric field to the force on the 

proton. Since the electric field is not constant, kinematics cannot be used to determine the final speed. 
Conservation of energy must then be used to relate its final kinetic energy to the initial potential energy it 
has.  
SKETCH:   

 
 

RESEARCH:  The electric field is determined by ( ) ( ) / .E x dV x dx= −  The force on the proton is given by 

( ) ( ),F x qE x=  and this force is also related to acceleration by ( ) ( )p .F x m a x=  The change in electric 

potential from 1x  and 2x  is ( ) ( )2 1 ,V V x V x∆ = −  so the change in potential energy is .U q V∆ = ∆  From 
conservation of energy: .U K∆ = −∆  
SIMPLIFY:   

(a)  ( )
2

2
2

53000  V 10  V/m
m

d xE x x
dx

 
= − − = 

 
 

(b)  ( ) ( ) ( ) ( ) ( ) 2

p
p p p

10  V/m  
F x qE x qxF x m a x a x
m m m

= ⇒ = = =  

(c)  ( ) ( ) ( )2 2
2 1 2 12

5 V
m

V V x V x x x∆ = − = − −  

Therefore, ( )2 2
2 12

V5 .
m

U q x x∆ = − − Use the equation: ( )2 2 2
p f i p f

1 1
2 2

K m v v m v∆ = − = , when 

( ) ( )2 2 2 2 2 2 2
p f 2 1 f 2 1

p

1 10  5  V/m    V/m .
2

qK U m v q x x v x x
m

∆ = −∆ ⇒ = − ⇒ = −  
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CALCULATE:   
(a) Not applicable. 

(b) ( ) ( )( )19 2
9 2

27

10 1.602 10  C 4.00 m  V/m
4.00 m 3.8302 10  m/s

1.673 10  kg
a

−

−

⋅
= = ⋅

⋅
 

(c) 
( ) ( ) ( )

19
2 2 2 5

f 27

10 1.602 10  C
10.0 m 4.00 m  V/m 2.836 10  m/s

1.673 10  kg
v

−⋅
 = − = ⋅ ⋅

 

ROUND:   
(a) ( ) 210  V/mE x x=  

(b) 9 23.83 10  m/sa = ⋅  
(c) 5

f 2.84 10  m/sv = ⋅  

DOUBLE-CHECK:  The units for the ( )E x  expression are valid. The final velocity is lower than the 
speed of light, so it is reasonable. The acceleration is high; however, the purpose of the device is to 
accelerate particles to large speeds over short distances. 

23.52. THINK:  All points in space will be influenced by the infinite plane of charge with surface charge density, 
24.00 nC/m ,σ =  and a point charge, q = 11.0 nC, located 0 2.00 mx =  in a perpendicular direction from 

the plane. The plane produces a constant electric field. The overall potential at any point between the two 
will be the sum of the two individual potentials. The minimum is found by differentiating the potential in 
one dimension and setting it to zero. The derivative of the potential with respect to position is also the 
electric field. Therefore, when the potential is a minimum, the electric field is zero. 
SKETCH:   

 
 

RESEARCH:  The electric field produced by the plane of charge is p 0/ 2 .E σ ε=  The electric potential 

from a constant electric field is Ex = V. The electric potential from a point charge is = / ,V kq r  where 

0 .r x x= −  The electric potential is at a minimum when / 0.dV dx E= =  
SIMPLIFY:   
(a) The electric potential from the plane along the x-axis is σ ε π σ= = =1 p 0/ 2 2 .V E x x k x  The electric 

potential from the charge, q, is ( )= −2 0/ .V kq x x  The total electric potential is:  

πσ
 

= + = + 
− 

tot 1 2
0

2 .qV V V k x
x x

 

(b) ( )
( )

π σ π σ−
= + − = − =

−

1
0 2

0

2 2 0dV dx d kqk kq x x k
dx dx dx x x

 

( )2 2 2 2 2
0 0 0 0 02   2 0

2 2
q qx x x x x x x x x x
πσ πσ

⇒ − = − + = ⇒ − + − =  
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( )
( )

2 2
0 0 0

0 0 0

2 4 4 / 2
 / 2 / 2    .

2

x x x q
x x q x q x x

πσ
πσ πσ

± − −
⇒ = = ± = − <  

(c) E is zero at the same position of minimum in V. 
CALCULATE:   
(a) Not applicable. 

(b) 
( )2

11.0 nC2.00 m 1.338 m
2 4.00 nC/m

x
π

= − =  

(c)   1.338 mx =  
ROUND:   
(a) Not applicable. 
(b)   1.34 mx =  
(c)   1.34 mx =  
DOUBLE-CHECK:  The minimum is located closer to the point charge than it is to the plane of charge, as 
it should be. 

23.53. THINK:  The position, r, must be defined for three-dimensional space so that each derivative has a non-
zero answer. While the potential is a scalar, each derivative is actually a vector that points in that direction, 
i.e. xE  points in the x-direction. 
SKETCH:  Not applicable. 

RESEARCH:  The position in three-dimensional space is given by 2 2 2 .r x y z= + +  The electric field in 

direction α̂  is δ α δα= −


i
ˆ / ,E V  where , , .x y zα =  

SIMPLIFY:  ( ) ( ) ( )δ δ
δ δ

−
= − = − + + = + + =

 3/22 2 2 2 2 2
3

ˆ ˆ ˆ ˆ2 .
2x

V kq kqE x kq x y z x x y z x x xx
x x r

 Likewise, 

=


3
ˆy

kqE yy
r

 and =


3
ˆ.z

kqE zz
r

 Therefore, ( ) ( )= + +




3
ˆˆ ˆ .kqE r xx yy zz

r
 

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  In vector notation, ˆˆ ˆxx yy zz+ +  can be written as ˆ.r rr=

  This is evident if you let 
2 .r r r=
 

  Therefore, the expression for electric field for a point charge can be written as: 

( ) = =




3 2
ˆ ˆ.kq kqE r rr r

r r
 

Since the potential was for a point charge, this makes sense. 

23.54. THINK:  Given the electric potential, ( ) 2 ,V x Ax=  the potential energy can be determined. The force a 
particle feels is related to the derivative of the potential energy of a particle. If the particle is to behave like 
a harmonic oscillator, then the force needs to be related to a force resulting from a spring. This will yield a 
spring constant, k, which is then related to the period of the motion. The units of A are 2V/m .  To avoid 
confusing the spring constant with the Coulomb constant, the spring constant will be denoted K here. 
SKETCH:   
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RESEARCH:  Given an electric potential, ( ),V x  the potential for an electron is ( ).eV x  The force such a 

potential causes is ( ) ( ) / .F x dU x dx= −  If this force causes simple harmonic motion, it should resemble 

the force of a spring, = − .F Kx  The period of an oscillating spring is given by π= 2 / .T m K  

SIMPLIFY:  The force of this potential is ( ) ( )2 2 .dF x eAx Aex
dx

= − = −  Relating this force to = − :F Kx  

= − = − ⇒ =2   2 .F Aex Kx K Ae  

The period of this oscillation is then: e2 .
2
m

T
Ae

π=  

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  Checking the units in the expression for the period: 

( )2 2 2

kg kg kg kg 1 s.
N/C C/m N/mV/m  C kg m/s /m 1/s

T = = = = = =    

Units of time are necessary for the period. 

23.55. THINK:  The electric potential is given as ( ) 2 2/
0 .r aV r V e −=  The electric field and charge density are 

related to the first and second derivative of the electric potential. The total charge is the charge density 
integrated over all space. Rather than work in Cartesian coordinates, remain in r-space. 
SKETCH:   

 

RESEARCH:  Given an electric potential ( ),V r  the electric field it produces is ( )( ).r
dE V r
dr

= −  The 

charge distribution is given by an electric field, ( ),E r  as ( ) ( )0 .dr E r
dr

ρ ε=  The total charge is then: 

( )
0

.Q p r dr
∞

= ∫  

SIMPLIFY:   

(a) The electric field is: ( ) ( ) ( )2 2 2 2 2 2/ / /0
0 0 2 2

22 .r a r a r adV r V rd rE r V e V e e
dr dr a a

− − − = − = − = − − = 
 

 

(b) The charge distribution is then: ( ) ( ) 2 2 2 2
2

/ /0 0 0
0 0 2 2 2

2 2
1 2 .r a r adE r V r Vd rp r e e

dr dr a a a
ε

ε ε − −   
= = = −   

     
 

(c) The total charge is: 
2 2

2
/0 0

2 20

2
1 2 .r aV rQ e dr

a a
ε ∞ −   

= −  
   

∫ Let 0 0
2

2
,

V
A

a
ε

=    r drx dx
a a

= ⇒ =  and the 

above equation becomes ( )2 22

0
2 .x xQ Aa e x e dx

∞ − −= −∫  Referring to a table of definite integrals: 

2

0 2
xe dx π∞ − =∫  and 

22

0
2 .

2
xx e dx π∞ − =∫  Therefore, ( )/ 2 / 2 0.Q Aa π π= − =  The total net charge is 

zero, i.e. there is equal negative charge and is positive charge. A plot of ( )p r  vs. r is below.  
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Notice that the area above the r-axis (positive charge) is equal to the area below the r-axis (negative 
charge). 
CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  Given that the electric potential is a Gaussian distribution, which shows symmetry, 
then symmetry in charge is expected. Such symmetry in charge would mean equal negative and positive 
charge, resulting in a zero net charge. 

23.56. THINK:  For this problem, assume the directions of the electric fields across the plates are appropriate to 
cause the necessary deflection, so only the magnitudes must be considered. The electron, 

31
e 9.109 10  kgm −= ⋅  and ,q e=  is deflected from ( )0,0  to ( )0,8.00 cm .  Since the deflection is only in 

the y-direction, the second pair of plates ( )= =5 cm, 4 cmd D  that cause horizontal deflection must have 
no potential across them, so only the first set of plates cause deflection. The voltage across the plates causes 
an electric field and then in turn a force that causes the electron to accelerate vertically in this area. Once 
out of this field, the electron is moving with constant velocity. Kinematics can then be used to determine 
what voltage is needed to cause the proper deflection. L = 40.0 cm and 7

i 2.00 10  m/s.v = ⋅  
SKETCH:   

 
 

RESEARCH:  The electric potential across the second set of plates is V 0,V =  while across the first set the 
potential is H H .V E D=  The force that the horizontal plates cause is H e .yF qE m a= =  During the whole 

trajectory, the horizontal velocity, i ,v  is constant. The time it take to cross the first set of plates is 

1 i/ ,t d v=  while its vertical displacement is 2
1 1 / 2.yy a t∆ =  After the first plate, its vertical velocity remains 

constant as 0 12 .yv a y= ∆  The time after the first plate is ( )2 i/ .t d L v= +  Then the vertical displacement 

is 2 0 2 .y v t∆ =  The total y-displacement is then 1 2 .y y y∆ = ∆ + ∆  

SIMPLIFY:  The vertical acceleration is: HH

e e

.y

e VqE
a

m m D
= =  The total y-displacement is then: 

( ) ( )

2 2
2 2 2

1 2 1 0 2 12 2
i i1 1

22 2
H

12 2 2 2
i ei i i i

1 2
2 2 2

2 2
.

2 2 2 2

y y
y y y

y y

a d a dd L d Ly y y a t v t a y a t
v vv v

e Vd d L d d d Ld d L da t a
v m Dv v v v

   + +
∆ = ∆ + ∆ = + = + ∆ = +   

   
    + + + +

= + = + =      
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The potential across the plates is then: 
( ) 12

e
H 2

i

2
.

2
d d d Lm D y

V
e v

−
 + +∆

=  
  

 

CALCULATE: 

( )( )( ) ( ) ( ) ( ) ( )( )
( )

1
231

H 19 27

9.109 10  kg 4.00 cm 8.00 cm 5.00 cm 2 5.00 cm 5.00 cm 40.0 cm

1.602 10  C 2 2.00 10  m/s

306.45 V

V

−
−

−

 ⋅ + + =
 ⋅ ⋅  

=

 

ROUND:  H 306 VV =  
DOUBLE-CHECK:  This is the same principle that a TV works by and 300 V is within the range of electric 
potentials that a TV can produce. 

23.57. If the proton comes to a complete stop at 151.00 10  m,r −= ⋅  then all of its initial kinetic energy is converted 
to potential energy: 

( )( )22 9 2 2 19
13

15

8.9875 10  N m /C 1.602 10  C
2.31 10  J or 1.44 MeV.

1.00 10  m
k e

U
r

−

−
−

⋅ ⋅
= = = ⋅

⋅
 

23.58. The barium nucleus has a charge of 1 56q e=  and the krypton nucleus has a charge of 2 36 .q e=  Their 

combined kinetic energy is =f 200. MeV,K  which is equal to their initial potential energy, =i 1 2 / .U kq q r  
r is the separation of the two atoms, assumed to be the average size of the uranium atom, so: 

( )( ) ( )( )( )
( ) ( )( )

22 9 2 2 19
141 2

i f 196
f

8.9875 10  N m /C 2016 1.602 10  C36 56
  1.45 10  m.

1.602 10  J/ 1 eV200 10  eV

k ekq q
U K r

r K

−
−

−

⋅ ⋅
= = ⇒ = = = ⋅

⋅⋅
 

23.59. Assuming the first ion is brought in from an infinite distance, then the work needed to bring it a distance 
of −= 1410  mr  to the other ion is the potential energy of the two ions: 

( )( )22 9 2 2 19

14 19

8.9875 10  N m /C 1.602 10  C 1 eV 143,980 eV 144 keV.
10  m 1.602 10  J

k e
U

r

−

− −

⋅ ⋅  = = = ≈ ⋅ 
       

23.60. THINK:  If each charge initially starts at an infinite distance, then the work done to move each charge to 
its final position is simply the potential energy of each charge in that position (the potential energy at 
infinity is zero). The charges are 1 1.0 pC,q =  2 2.0 pCq =  and 3 3.0 pC.q =  Since they are on the corners 
of an equilateral triangle, each charge is the same distance, l = 1.2 m, from the others. 
SKETCH:   
(a)       (b)      
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(d)  

    

RESEARCH:  In general, the potential for point charges is: =∑ i j

i,j ij

,
kq q

U
r

 where ijr l=   for all i and j. 

SIMPLIFY:  The work done to bring all the charges together is i j

i,j ij

,
kq q

W
r

=∑  where each pair of charges  

i, j is counted exactly once.  
(a)  Since there is no charge for 1q  to interact with, 1 1 0 J.U W= =  

(b)  Charge 1q  is present as 2q  is moved to its corner, so 1 2
2 2 .

kq q
U W

l
= =  

(c)  Charges 1q  and 2q  are present as 3q  is moved to its corner, so 

( )1 3 2 3
3 3 1 3 2 3 .

kq q kq q kU W q q q q
l l l

= = + = +  

(d)  The total energy is tot 1 2 3 .U U U U= + +  
CALCULATE:   
(a)  1 0 JW =  

(b)  
( )( )( )

( )

9 2 2 12 12
14

2

8.99 10  N m /C 1.0 10 C 2.0 10 C
1.498 10  J

1.20 m
W

− −
−

⋅ ⋅ ⋅
= = ⋅  

(c)  
( ) ( )( ) ( )( )

9 2 2
12 12 12 12

3

14

8.99 10  N m /C
1.0 10 C 3.0 10 C 2.0 10 C 3.0 10 C

1.20 m
6.743 10  J

W − − − −

−

⋅
 = ⋅ ⋅ + ⋅ ⋅ 

= ⋅

 

(d)  ( ) ( ) ( )14 14 14
tot 0 J 1.498 10  J 6.743 10  J 8.241 10  JU − − −= + ⋅ + ⋅ = ⋅  

ROUND:   
To three significant figures: 
(a)  1 0 JW =  

(b)  14
2 1.50 10  JW −= ⋅  

(c)  14
3 6.74 10  JW −= ⋅  

(d)  14
tot 8.24 10  JU −= ⋅  

DOUBLE-CHECK:  These small energy values are reasonable for such small amounts of charge. 

23.61. THINK: Two balls have masses, 1 5.00 gm =  and 2 8.00 g,m =  and charges, 1 5.00 nCq =  and 

2 8.00 nC.q =  Their center separation is l = 8.00 mm, and although the balls are not point charges, use the 
center separation to determine the potential energy stored in the two. Conservation of momentum and 
energy will allow the velocities of each to be determined. Since they are like charges, they repel and so the 
velocities will be in different directions.  
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SKETCH:   

 
 

RESEARCH:  The balls have no initial momentum, so by the conservation of momentum: 1 1 2 2 .m v m v=  
The initial potential energy of the two balls is given by =i 1 2 / .U kq q l  The final kinetic energy of the balls is 

given by ( ) ( )2 2
f 1 1 2 2/ 2 / 2 .K m v m v= +  

SIMPLIFY:  From the conservation of momentum: 2 1 1 2/ .v m v m=  Conservation of energy then requires: 

  
 = ⇒ = + = +  
   

2

2 2 21 2 1 1
i f 1 1 2 2 1 1 2

2

 1 1 1  .
2 2 2

kq q m v
U K m v m v m v m

l m
 

Therefore, 
   

= + ⇒ =    +   

2
21 2 1 1 2 2

1 1 1 2
2 1 2 1

2  2  
  .

kq q m kq q m
m v v

l m l m m m
 

CALCULATE:  

( )( )( )
( ) ( )

9 2 2

1 2

2 8.9875 10  N m /C 5.00 nC 8.00 nC  0.00800 kg
0.008.00 m 0.00500 kg 0.00800 kg 0.00500 kg

0.1052 m/s

v
 ⋅
 =
 + 

=

 

( )
2

5.00 g 0.1052 m/s
0.06575 m/s

8.00 g
v = =  

ROUND:  1 0.105 m/sv =  and 2 0.0658 m/sv =  
DOUBLE-CHECK:  The charges are small and the masses relatively large, so the velocities obtained for 
the masses should be small. 

23.62. Conservation of energy can be considered to relate the change in kinetic energy to the change in potential 
energy by: f i i f f i f  .K U K K U U K U U∆ = −∆ = − = − ⇒ = −  Each proton has the same mass, 

27
p 1.673 10  kg,m −= ⋅  and thus has the same kinetic energy, so the total kinetic energy is 

2 2 2
f p

1 1 .
2 2p pK m v m v m v= + =  Therefore, 

( )( )
( )

2
2 22 f i f i

f i f p
i f i f p i f

29 2 2 19 3 3

27 3 3

1 1    

8.9875 10  N m /C 1.602 10  C 10.0 10  m 1.00 10  m 11.1 m/s.
1.673 10  kg 10.0 10  m 1.00 10  m

k er r r r
K U U m v k e k e v

r r r r m r r

− − −

− − −

     − −
= − ⇒ = − = ⇒ =     

     

 ⋅ ⋅ ⋅ − ⋅ = =
 ⋅ ⋅ ⋅ 
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23.63. The battery places an electric potential of 12 V on the entire conducting surface of the hollow metal 
sphere. Inside the conducting shell, the electric field is zero and the electric potential remains at 12 V. 

23.64.  

 
 

Since the object is a solid conducting sphere, the electric potential is uniform throughout the sphere, so it 
is the same at 1 0 mr =  and 2 3 mr =  by = / ,V kq R  where 4 mCq =  and R = 3 m. Outside the sphere, the 
distribution acts like a point charge, so the electric potential is = 3/ .V kq r  

(a) 
( )( )9 2 2 3

4
8.9875 10  N m / C 4.00 10  C

1.20 10  kV
3.00 m

kq
V

R

−⋅ ⋅
= = = ⋅  

(b) 
( )( )9 2 2 3

4
8.9875 10  N m / C 4.00 10  C

1.20 10  kV
3.00 m

kq
V

R

−⋅ ⋅
= = = ⋅  

(c) 
( )( )9 2 2 3

3

3
8.9875 10  N m / C 4.00 10  C

7.19 10  kV
5.00 m

kq
V

r

−⋅ ⋅
= = = ⋅  

23.65. The infinite plate of surface charge density, σ −= ⋅ 6 23.5 10  C/m ,  produces a constant electric field, 
σ ε= 0/ 2 .E  In going from point A to B, any movement perpendicular to the electric field results in no 

change in electric potential. Therefore, the only displacement of importance is ∆ = −1.0 m.y  The change 
in potential is independent of the charge Q, and since the electric field is constant, it is the product of the 
electric field times the displacement: 

( )
( )( ) ( )σ

ε

−

−

⋅
∆ = − ∆ = − ∆ = − − = ⋅

⋅

6 2
5

12 2 20

3.50 10  C/m
1.00 m 1.98 10  V.

2 2 8.854 10  C / N m
V E y y  

23.66. Conservation of energy means the change in kinetic energy is equal to the magnitude of change in 
potential energy, .K U∆ = ∆  The change in potential is ,U q V∆ = ∆  where q = +e and 21.9 kV.V∆ =  

The initial velocity is zero, so the change in kinetic energy is 2
e f / 2,K m v∆ =  where 31

e 9.11 10  kg.m −= ⋅  

Therefore,  
( )( )−

−

⋅∆
∆ = ∆ = = ∆ ⇒ = = = ⋅

⋅

19
2 4

e f f 31
e

2 1.602 10  C 21.9 kV1 2  8.78 10  km/s.
2 9.11 10  kg

e VK U m v e V v
m

 

 

 

 

 

 

 



Chapter 23: Electric Potential 

 995 

23.67.  

 
 

Since the object is a solid conducting sphere, the electric potential is distributed evenly through the sphere, 
so it is the same at points B and C and is given by = / ,V kq R  where −= ⋅ 66.10 10  Cq  and R = 18.0 cm. 

Therefore, 
( )( )−⋅ ⋅

= = = ⋅
9 2 2 6

5
B C

8.9875 10  N m / C 6.10 10  C
3.05 10  V.

0.180 m
V V  Outside the sphere, at 

=A 24 cm,r  the electric potential is that of a point charge, so: 

( )( )−⋅ ⋅
= = = ⋅

9 2 2 6
5

A
A

8.9875 10  N m / C 6.10 10  C
2.28 10  V.

0.240 m
kq

V
r

 

23.68. The electric field of a spherical conductor is the same as that of a point charge at the center of the sphere 
with a charge equal to that of the spherical conductor. The potential outside the sphere is therefore also the 
same as a point charge: 

( )
πε

−

−

 ⋅ = = ⋅ = ⋅   ⋅   

6
9 2 2 4

surface 1
0

1 1.00 10  C8.99 10  N m / C 8.99 10  V.
4 1.00 10  m

qV
r

 

23.69. First, determine the relationship between the electric field and the potential. The electric field is given by 
2/ .E kq r=  The potential is given by / .V kq r=  Therefore, the maximum voltage is 

( )( )6 5
max max 2.00 10  V/m 0.250 m 5.00 10  V.V E r= = ⋅ = ⋅  

The maximum charge that it can hold is 

( ) ( )
( )

2 62
5max

max 9 2 2

0.250 m 2.00 10  V/m
1.39 10 C.

8.99 10  N m / C
r E

q
k

−
⋅

= = = ⋅
⋅

 

23.70. Consider the conservation of energy to solve the problem. The potential energy is given by .U qV=  
2

  
kq kq

V U
r r

= ⇒ =  

The moving proton will stop a distance r from the stationary proton, where the electric potential energy is 
equal to the initial kinetic energy: 

( )( )
( )( )

2
2

p

29 2 2 192
9

2 227 4
p

1   
2

2 8.99 10  Nm / C 1.602 10  C2
1.82 10  m.

1.673 10  kg 1.23 10  m/s

kq
K U m v

r

kq
r

m v

−

−

−

= ⇒ =

⋅ ⋅
= = = ⋅

⋅ ⋅

 

23.71.  (a)  First an expression must be determined for the surface charge on each sphere. The surface area of a 
sphere is 24 .rπ  The surface charge density is given by: 

1
1 2

14
q

r
σ

π
=  for the first sphere,  and 2

2 2
24

q
r

σ
π

=  for the second sphere. 
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2 2
1 1 2

2 2 1

20.0 cm 4 :1
10.0 cm

q r
q r

σ
σ

   = = =   
  

 

(b)  The charge flow stops when the potential is equal. If 1q  and 2q  are the final charge distributions after 
the potential of the two spheres are equal, then the following equations describe the potentials: 

1
1

0 1

1 ,
4

q
V

rπε
 

=  
 

 2
2

0 2

1 .
4

q
V

rπε
 

=  
 

 

1 2 1
1 2 1 2 2 2

1 2 2

10.0 cm 1    .
20.0 cm 2

q q r
V V q q q q

r r r
   = ⇒ = ⇒ = = =   

  
 

Also, 1 2 200. μC.q q+ =  Solving the two equations yields 1 200. / 3 μC 66.7 μCq = =  and 

2 400. / 3 μC 133.3 μC.q = =  The amount of charge that flows through the wire is then 

1 2 / 2 66.7 μC 133.3 μC / 2 33.3 μC.q q− = − =  

23.72. The potential of a sphere is given by ( ) 0/ 4 ,V r q rπε=  where q is the total charge of the sphere. The total 

charge is given by 2
s4 ,q rπ σ=  where sr  is the radius of the sphere. The potential difference between the 

surface of the sphere and the point, P, is then given by: 

( ) ( )

( )
( )

1
2

s 0
s p 2

0 s p 0 s p s s p

112
10 2

2 3

41 1 1 1 1 1V  
4 4

8.85 10   F/m 1 1 12.566 V 9.27 10  C/m .
0.200 m 0.500 m0.200 m m

rq
V r V r V

r r r r r r r
π ε

σ σ
πε πε

−

−−
−

     
− = − = − = ∆ ⇒ = − ∆     

          
⋅  = − = ⋅  

 

23.73. Consider the conservation of energy to determine the final kinetic energy: 

πε πε πε

∆ = −∆ ⇒ − = − ⇒

     
= − = −     

     

final initial initial final

1 2 1 2 1 2
final

0 initial 0 final 0 initial final

    

1 1 1 1 .
4 4 4

K U K K U U

q q q q q q
K

r r r r
 

 Thus, 

( )( )( )− −  = ⋅ ⋅ ⋅ −  
= ≈

9 2 2 6 6
final

final

1 18.99 10  N m / C 5.00 10  C 9.00 10  C
0.100 m 0.200 m

2.02275 J 2.02 J.

K

K
 

23.74. The potential of a spherical object with a uniform charge distribution is the same as that of a point charge 

at the center of the sphere: ( )
6

0 3
0

9 2 2 61 2.00 10  C/ 4 8.99 10  N m /C 8.99 10  V.
4 2.00 10   m

q
V q r

r
πε

πε

−

−

 ⋅ = = = ⋅ = ⋅   ⋅   
 

The potential difference has no angular dependence. If the potential in defined in terms of a charge 
distribution that depends on  θ ,  

( )
0

1 ,
4

V dV
r

ρ θ
πε

= ∫  

the potential difference will have an angular dependence.  Note that  dV  in the integral stands for 
differential volume. 
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23.75. THINK:  First determine the total charge in each sphere based on the field. The charge from one sphere 
will flow into the other after they are connected until the potential of the two spheres are equal. 
SKETCH:   

 
RESEARCH:  The electric fields of the two spheres are given by:  

1
1 2

1

kq
E

r
=  and 2

2 2
2

.
kq

E
r

=  

The potentials are given by:  

1
1

1

kq
V

r
′

=  and 2
2

2

,
kq

V
r
′

=  

where 1q ′  and 2q ′  are the charges of the first and second sphere after they reach the same potential (when 

1 2 ).V V=  Conservation of charges requires that, 1 2 1 2 .q q q q′ ′+ = +  The final field strengths are given by: 

1
1 2

1

kq
E

r
′

′ =  and 2
2 2

2

.
kq

E
r
′

′ =  

The given values are 1 10 cm,r =  =2 5 cmr  and 1 2 3600. V/m.E E E= ≡ =  

SIMPLIFY:  The charge on each sphere before the two are connected is 2
1 1 /q Er k=  and 2

2 2 / .q Er k=   
Once the spheres are connected, their potentials are equal:  

1 2 2
1 2 2 1

1 2 1

    .
q q r

V V q q
r r r
′ ′

′ ′= ⇒ = ⇒ =  

( ) ( )
( )

( )
( )

2 2
1 22 22

1 2 1 2 1 1 2 1
1 2 1

2 2 2 2
1 2 1 2

1 2 2
2 1 1 1 1 2

    1   
1 /

1 
1 /

E r rr Eq q q q q r r q
r k k r r

E r r r r
E k E

k r r r r r r

+ 
′ ′ ′ ′+ = + ⇒ + = + ⇒ =  + 

 + + ′⇒ = =
 + + 

 

Using 2
2 1

1

r
q q

r
′ ′=  and 2

2 2 2/E kq r′ ′=  gives  

2 1 1 1 1
2 12 2

1 2 22 1

.
r kq r kq r

E E
r r rr r

′ ′
′ ′= = =  
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CALCULATE:  
( ) ( )

( ) ( )( )
( )

2 2

1 2

10.0 cm 5.00 cm
3600. V/m 3000. V/m

10.0 cm 10.0 cm 5.00 cm
E

+
′ = =

+
  

( )
( ) ( )2

10.0 cm
3000. V/m 6000. V/m

5.00 cm
E′ = =  

ROUND:  3
1 3.00 10  V/mE′ = ⋅  and 3

2 6.00 10  V/mE′ = ⋅  
DOUBLE-CHECK:  Since 1 2r r>  it is expected that 2 1E E′ ′>  for the electric fields at the surfaces of the 
spheres. 

23.76. THINK:  First determine the potential for each infinitesimal part of the ring and then sum over the whole 
ring. Using the relationship between the potential field and the electric field, E can be determined. 
SKETCH:   

 
RESEARCH:  The potential of each small dQ is given by dQ dLλ=   The total potential is then 

2

2 2 2 2
0

2 .kdQ k dL k Rd RkV
r r x R x R

πλ λ θ π λ
= = = =

+ +
∫ ∫ ∫ Since 

2
Q Q
L R

λ
π

= = , 
2 2

0

,
4

kQ kQ QV
r rx R πε

= = =
+

 where 

2 2 .r x R= +  From the symmetry, it can be inferred that E


 is pointing in the x-direction. The relation 

xE  and x is given by / .xE V x= −∂ ∂  

SIMPLIFY:  
2 2

0 0

1 1
4 4

Q QV
r x Rπε πε

  = =       + 
 

( ) ( )3/2 3/22 2 2 2
0 0

1 2
4 2 4x

V Q x Q xE
x x R x Rπε πε

   
∂     = − = − − =    ∂   + +      

 

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  Check if E is truly zero in the y- and z-directions: 

0y
VE
y

∂
= − =

∂
 and 0,z

VE
z

∂
= − =

∂
 which confirms the result. 

23.77. THINK: 
(a) First determine an expression for the total potential from both charges. After finding the expression, 
the potential can be determined. 
(b) The derivative of the expression determined in part (a) can be used to determine the minimum point.    
SKETCH:  A sketch is not necessary. 
RESEARCH:   
(a) Let 1 0.681 nCq =  and 2 0.167 nCq =  be the two charges with positions 1 0r =  and 2 10.9 cm,r =  
respectively. The total potential is given by: 

1 2
tot

0 1 0 2

1 1 .
4 4

q q
V

r r r rπε πε
= +

− −
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There are three cases, depending on the value of r: 

1 2
tot

0 1 2

1
4

q q
V

r r r rπε
 

= + − − 
 for 1 2, ,r r r>  1 2

tot
0 1 2

1
4

q q
V

r r r rπε
 

= − − − 
 for 1 2r r r< <  and 

1 2
tot

0 1 2

1
4

q q
V

r r r rπε
 

= − − − − 
 for 1 2, .r r r<  

(b) The minima occur each time the derivative is equal to zero: tot / 0.V r∂ ∂ =  
SIMPLIFY:   
(a) There is nothing to simplify. 
(b) Take the derivative for all three cases. 

1 2, :r r r>  
( ) ( )

tot 1 2
2 2

0 1 1 2

1 .
4

V q q
r r r r rπε

 ∂
 = − −

∂  − − 
 The expression is equal to zero at infinity. 

1 2 :r r r< <  
( ) ( )

tot 1 2
2 2

0 1 2

1 .
4

V q q
r r r r rπε

 ∂
 = − +

∂  − − 
 The expression is zero when: 

( ) ( ) ( )
( )1 2 1 2

12 2 2 2
1 2 2

    0 cm
q q q q

r
rr r r r r r

= ⇒ = =
− − −

 

( )2 2
2 2 2 2 2 2 2 2 2

2
1 1 1 1 2 1

   1   1   1   .
/ 1

r r q r q r q r q r
r

q r q r q r qr q q

−  
⇒ = ⇒ − = ⇒ − = ⇒ − = ⇒ = 

+ 
 

CALCULATE:   

(a)  ( )9 2 2
tot

0.681 nC 0.167 nC8.99 10  N m / C 46.78 V
20.1 cm 0 20.1 cm 10.9 cm

V  = ⋅ + = − − 
 

(b)  
( )

10.9 cm 7.28997 cm
0.167 nC / 0.681 nC 1

r = =
+

 

ROUND:   
(a) 46.8 V  
(b) 7.29 cm  
DOUBLE-CHECK:   
(a) The potential is positive and the potential from both charges is the sign that one would expect. This 
makes sense, since if a test charge was placed at 20.1 cm, it would move away from either one of the 
charges. 
(b) An equilibrium point will exist between the two charges, where the force from one is balanced by the 
other. Note that 0 7.29 cm 10.9 cm.< <  

23.78. THINK:   
(a) The total potential of the origin can be determined using superposition. 
(b) The expression for the potential determined in part (a) can be used to find the point where the 
potential is zero. 
SKETCH:  A sketch is not necessary. 
RESEARCH:   

(a)  1 2
tot

0 1 2

1 ,
4

q q
V

r rπε
 

= + 
 

 ( ) ( )2 22 2 2
1 1 1 2.5 m 3.2 m ,r x y= + = +  ( ) ( )2 22 2 2

2 2 2 2.1 m 1.0 mr x y= + = − +   

1 22.0 μC and 3.1 μC.q q= = −  
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(b) Think of this as a one-dimensional problem with 1q  at the origin. The distance between 1q  and 2q  is 

given by ( ) ( )2 2
1 2 1 2 1 2 .d r r x x y y= − = − + −
   If r is the distance from 1q  to the point where tot 0,V =  

then: 

  
Vtot = k

q1

r
+

q2

d − r





= 0  for .r d>  

To determine the new point, simply switch to Cartesian coordinates: 

2 1
zero

2 1

,
r r

r r
r r

 −
=   − 

 



 

  
  
xzero = x1 +

x2 − x1

d
r   and 

  
yzero = y1 +

y2 − y1

d
r.  

SIMPLIFY:   
(a) Nothing to simplify. 

(b) 

  

Vtot = k
q1

r
+

q2

d − r





= 0 ⇒  

q1

r
+

q2

d − r
= 0 ⇒  

q1

r
= −

q2

d − r
 ⇒  

d − r
r

= −
q2

q1

 ⇒  
d
r
−1= −

q2

q1

⇒  r =
d

1− q2 / q1

 

CALCULATE:   

(a) ( )
( ) ( ) ( ) ( )

9 2 2 3
tot 2 2 2 2

2.0 μC 3.1 μC
8.99 10  N m / C 7.554 10  V

2.5 m 3.2 m 2.1 m 1.0 m
V

 
− = ⋅ + = − ⋅  + − + 

 

(b) ( ) ( )2 22.5 m 2.1 m 3.2 m 1.0 m 5.099 m,d = + + − =  
( )

5.099 m 2.000 m
1 3.1 μC/2.0 μC

r = =
− −

 

  
xzero = 2.5 m+

−2.1 m- 2.5 m
5.099 m







2.000 m( )= 0.6957 m,  
  
yzero = 3.2 m+

1.0 m− 3.2 m
5.099 m

2.000 m( )= 2.337 m  

ROUND:   
(a) 37.6 10  V− ⋅  
(b) ( )0.70 m,2.3 m  
DOUBLE-CHECK:   
(a) The total voltage has appropriate units: volts. 
(b) The point is between the two points, as one would expect because when going from a negative 
potential to a positive potential, the zero point is expected to be between the negative and positive charges. 

23.79. THINK:   
(a) Since the electric field of a conducting sphere is the same as that of a point charge its center, the 
expression for the potential is the same. 
(b) The charge flow will stop when the potential of the two surfaces is equal. 
SKETCH:  A sketch is not necessary. 
RESEARCH:   

(a) 
πε

 =  
 

sphere
0

1 ,
4

QV
R

 −= ⋅ 64.20 10  C,Q  R = 0.400 m. 

(b) 
πε πε

   
= = =   

   
1 2

1 2
0 1 0 2

1 1 ,
4 4

Q Q
V V

R R
 −+ = = ⋅ 6

1 2 4.20 10  C,Q Q Q  =1 0.400 m,R  =2 0.100 mR  

SIMPLIFY:   
(a) Nothing to simplify. 

(b) = ⇒ =1 2 1
1 2

1 2 2
  

Q Q R
Q Q

R R R
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Substitute this expression into + =1 2Q Q Q  to get: 

( )
+ = ⇒ =

+
1

2 2 2
2 1 2

  ,
1 /

R QQ Q Q Q
R R R

 = −1 2 .Q Q Q  

Charge flow is 2 .Q  
πε

 
=   

 

1
1 2

0 1

1
4
Q

E
R

 and 
πε

 
=   

 

2
2 2

0 2

1 .
4
Q

E
R

 

CALCULATE:   

(a) ( )
− ⋅

= ⋅ = ⋅  
 

6
9 2 2 4

sphere
4.20 10  C8.99 10  N m / C 9.44 10  V

0.400 m
V  

(b) 
( )

−
−⋅

= = ⋅
+

6
6

2
4.20 10  C 0.840 10  C,

1 0.400 m / 0.100 m
Q  − − −= ⋅ − ⋅ = ⋅6 6 6

1 4.20 10  C 0.840 10  C 3.36 10  CQ  

( )( )

( )( )

−

−

⋅ 
= = =   ⋅ 

262
2 2 1

2 26
1 12

0.840 10  C 0.400 m
4

3.36 10  C 0.100 m

E Q R
E QR

 

The electric field on the surface of the second sphere is four times larger than the first sphere. This is the 
inverse of the ratio of their radii. 
The electric field at the surface of sphere 1 is 

( )
( )πε

−   ⋅ = = ⋅ = ⋅       

6
9 2 2 51

1 2 2
0 1

1 3.36 10  C8.99 10  N m / C 10  V/m.
4 0.

1.
400 m

8879
Q

E
R  

( )
( )πε

−   ⋅ = = ⋅ = ⋅       

6
9 2 2 52

2 2 2
0 2

1 0.840 10  C8.99 10  N m / C 10  V/m.
4 0.

7.
100 m

5516
Q

E
R

 

ROUND:   
(a) = ⋅ 4

sphere 9.44 10  VV  

(b) −= ⋅ = ⋅ = ⋅6 5 5
2 1 20.840 10  C, 1.89 10  V/m, 7.55 10  V/m.Q E E  

DOUBLE-CHECK:   
(a) The correct units of a voltage are volts. 
(b) The charge flow is non-zero and comparable to the total charge, as one would expect. 

23.80. THINK:  Determine the potential of an infinitesimally small piece dy along the y-axis on the x-axis. Then 
integrate to determine the potential. 
SKETCH:   

 

RESEARCH:  
0

1 ,
4

dy
dV

r
λ
πε

=  
0

,
L

V dV= ∫  2 2 ,r x y= +  ,Ayλ =  3.06 m,x =  4.0 cm,L =  

7 28.0 10  C/mA −= ⋅   
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SIMPLIFY:  ( )2 2 2 2

0 0 2 2 00 0 0 0

1
4 4 4 4

LL Ldy dy Ay A AV dV x y x L x
r x y

λ
πε πε πε πε

 = = = = + = + −  +
∫ ∫ ∫  

CALCULATE:

( )( ) ( ) ( )−  = ⋅ ⋅ + − = ⋅  
2 27 9 2 2 28.0 10  C/m 8.99 10  N m / C 0.03 m 0.04 m 0.03 m 1.438 10  VV  

ROUND:  = ⋅ 21.4 10  VV  

DOUBLE-CHECK:  As x gets larger, 2 2 0,x y x+ − ≈  as expected. 

23.81. (a) Let 1 3.00 mCq = −  and 2 5.00 mCq =  be located at 1 2.00 mx =  and 2 4.00 m,x = −  respectively. There 
are three cases: 

1 2

0 1 2

1( )
4

q q
V x

x x x xπε
 

= + − − 
 for > 1 2,  ,x x x  1 2

0 1 2

1( )
4

q q
V x

x x x xπε
 

= + − − 
 for 1 2x x x< <  and  

1 2

0 1 2

1( )
4

q q
V x

x x x xπε
 

= + − − 
 for < 1 2,  .x x x   

The three cases stem from − − >1 2,  0.x x x x  

(b)  Case 1 2, :x x x>  1 2 1 2 2 1
tot

1 2 1 2

0    .
q q q x q x

V x
x x x x q q

+
= ⇒ = − ⇒ =

− − +
  Case 1 2 :x x x< <  

1 2 1 2 2 1

1 2 1 2

  .
q q q x q x

x
x x x x q q

−
= − ⇒ =

− − −
  Case 1 2, :x x x<  This case yields the same results as the first case. 

Zeroes occur at the following points: 

( )( ) ( )( )1 2 2 1

1 2

3.00 mC 4.00 m 5.00 mC 2.00 m
11.0 m,

3.00 mC 5.00 mC
q x q x

x
q q

− − ++
= = =

+ − +
 

( )( ) ( )( )1 2 2 1

1 2

3.00 mC 4.00 m 5.00 mC 2.00 m
0.250 m.

3.00 mC 5.00 mC
q x q x

x
q q

− − −−
= = = −

− − −
 

(c)   .VE
x

∂
= −

∂
 

( ) ( )
1 2

2 2
0 1 2

1
4

q q
E

x x x xπε

 
 = +
 − − 

 for > 1 2,  ,x x x  
( ) ( )

1 2
2 2

0 1 2

1
4

q q
E

x x x xπε

 
 = − +
 − − 

 for 

1 2x x x< <  and 

( ) ( )
1 2

2 2
0 1 2

1
4

q q
E

x x x xπε

 
 = − −
 − − 

 for < 1 2,  .x x x  

23.82. THINK:  The forces acting on the charge are the coulomb and gravitational forces. For equilibrium, the 
total force must be zero. 
SKETCH:   

 
 

RESEARCH:  gravity ,F Mg= −  coulomb ,F nqE=  VE
d

= , total gravity coulombF F F= +  
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SIMPLIFY:  For equilibrium: 

tot 0    .
nqV Mgd

F Mg nqE V
d nq

= ⇒ = = ⇒ =  

If the voltage is halved: 
1 .
2

Mgd
V

nq
=  The total force is then:  

tot
1 1   .
2 2 2

nqV Mgd Mg g
Ma F Mg nq Mg a

d nq d
 

= = − = − = − ⇒ = − 
 

 

If the voltage is doubled: 2 .
Mgd

V
nq

=  The total force is then:  

tot
12   .

nqV Mgd
Ma F Mg nq Mg Mg a g

d nq d
 

= = − = − = ⇒ = 
 

 

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  If the voltage is halved, the particle goes down. If the voltage is doubled, the particle 
goes up. In both cases, the result makes sense. 

23.83. THINK:   
(a)  The potential is a function of distance but not direction. Since every segment, dq, is the same distance, 
R, from the origin, they have the same potential. 
(b)  Same as part (a). 
(c) The charge distribution is symmetric with respect to reflection on the y-axis.  This means that the E-
field cannot have an x-component at the point O. In Chapter 22 we learned that the electric field points 
away from positive charges (and towards negative ones).  Therefore we predict that the electric field at 
point O points in the negative x-direction. We can also make a prediction for the magnitude of the electric 
field.  If the entire charge Q were all concentrated at the point (0,R), then the electric field would be that of 
a point charge, E = V/R, where V is the answer obtained in parts a) and b).  This means that we predict that 
|E| < V/R. 
SKETCH:  A sketch is not necessary. 
RESEARCH:   

(a)  
0

1
4

qV
Rπε

 =  
 

 

(b)  
0

1 ,
4
dqdV

Rπε
 =  
 

 V dV= ∫  

(c)  Nothing to research. 
SIMPLIFY:   
(a)  Nothing to simplify. 

(b)  
0

0 0

1 1 ,
4 4

q dq qV
R Rπε πε

   = =   
   ∫  which is the same result as part (a). 

(c)  2
0

1
4

q
E

Rπε
 <  
 

 

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  The fact that the result from (b) matches the prediction made in (a) supports the 
prediction. 
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23.84. THINK:   
(a) First determine the expression for the potential contribution. 
(b,c) Can be determined after determining the expression for part (a). 
SKETCH:   

 
RESEARCH:   
(a) Let the center of the sphere be at the origin of coordinates, with the exterior charge at z R−  on the 
positive z-axis. Let the image charge be at a coordinate z on that axis, with .z a<  The requirement that 
the surface of the charge be equipotential with potential zero takes the form: 

( ) ( )2 2 2 2 2 22 2 2 2
0   (1).

2 cos 2 cos

Q q Q q

R a aR Z a azx y R z x y z Z θ θ
= + = +

+ − + −+ + − + + −
 

( ), ,x y z  is any point on the surface of the sphere (so 2 2 2 2x y z a+ + = ) with cos .z a θ=   
(b) Since the electric field at the exterior charge is the same whether the sphere or the image charge is 
present, the force on the exterior charge toward the sphere is the same as the image charge would exert. 

( )

2

2 2 2
0 0

1 1
4 4z z

qQ Q aRF e e
R aR zπε πε

   
 = = −  − −   

 

ze  is the unit vector in the positive z-direction, as defined above. 

(c) The surface charge density, ( ),σ θ on the sphere is given by Gauss’ law applied to a “pillbox” partially 

embedded at any point in the surface of the sphere: ( ) 0 ,rEσ θ ε=  where rE  is the radial component of the 
net electric field at the surface of the sphere. This can be determined from the contributions of the exterior 
and image charges via Coulomb’s law: 

( )
( )

( )
( )

( )
( )

( )
( ) ( )

( )

3/2 3/22 2 2 2
0

2 2 2 2

3/2 3/22 2 2 2
0 0

1
4 2 cos 2 cos

1 / / 11 1 .
4 42 cos 2 cos

x y z x y z

x y z r

Q xe ye z R e q xe ye z Z e
E

R a aR Z a aZ

Q R a Qa R a
xe ye ze e

R a aR R a aR

θ
πε θ θ

πε πεθ θ

    + + − + + −    = + 
+ − + −  

    − −    = + + =
 + − + −  

 

SIMPLIFY:   
(a) Rearranging yields: 

( ) ( )
2 2

2 2 2 2
2 22 cos .q qR a z a a R z

Q Q
θ

  
+ − + = −  

   
 

Since the right side of this equation depends on ,θ  while the left side does not, they are equal for all θ  if 

and only if both are zero. This implies 2 2/ / .q Q z R=  Therefore, ( ) ( )2 2 2 2 0.z R a R z a+ − + =  The 
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quadratic formula gives two solutions for this .z R=  Hence, ,q Q= −  which is trivial and 2 /z a R=  and 
/ ,q Qa R= −  the desired solution. Equation (1) requires that q be opposite in sign to Q.  

(c) Using the coordinate and result of part (a), and the radial unit vector, ,re  which is equal to 

( ) /x y zxe ye ze a+ +  at the surface of the sphere. Note that, as expected, the net electric field is in the radial 

(normal) direction at the spherical surface. The surface charge density is therefore given by: 

( )
( )

( )

2 2

3/22 2

/ 1
.

4 2 cos

Qa R a

R a aR
σ θ

π θ

 − =
+ −

 

The total induced charge on the sphere can be determined by integrating this over the surface.  
CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  Gauss’ law applied to a spherical “skin” around the conductor implies that the total 
surface charge is equal to the imagine charge, / .Qa R−  
 

Multi-Version Exercises 

 Exercises 23.85–23.87   When a wire connects the two spheres, they have the same potential at the surface 
of both spheres: 

1 2 1 2

1 2 1 2

    
kQ kQ Q Q
R R R R

= ⇒ =  

 The charge on the two spheres must sum to the original charge on the first sphere, 1 2 .Q Q Q= +  We can 
write the charge on the first sphere as 1 2 .Q Q Q= −  Now we can write 

2 2

1 2

.
Q Q Q

R R
−

=  

 Solving for 2 ,Q   

2 2

1 1 2

2 2 1 2
2

1 2 1 2 1

1 2
2

2

2
2

1 2

.

Q QQ
R R R

Q Q R R QQ
R R R R R

R R
Q Q

R
R

Q Q
R R

− =

 +
+ = = 

 
 +

= 
 

=
+

 

23.85. ( ) ( )6 72
2

1 2

0.6115 m
1.953 10  C 6.571 10  C

1.206 m 0.6115 m
R

Q Q
R R

− −= = ⋅ = ⋅
+ +

 

23.86. 2
2

1 2

R
Q Q

R R
=

+
 

 ( )6 61 2
2

2

1.435 m 0.6177 m0.9356 10  C 3.109 10  C
0.6177 m

R R
Q Q

R
− −+ +

= = ⋅ = ⋅  
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23.87. 2
2

1 2

R
Q Q

R R
=

+
 

 
( )

1 2 2
2

6

1 2 6
2

4.263 10  C1 0.6239 m 1 1.665 m.
1.162 10 C

QR R R
Q

QR R
Q

−

−

+ =

   ⋅
= − = − =    ⋅   

 

 Exercises 23.88–23.90   The electric field at the surface of the sphere is given by 2 .kQE
R

=
 
The potential a 

distance d  from the surface is .kQV
R d

=
+  

The charge on the sphere is 
2

.ERQ
k

=
 
So we can express the 

potential a distance d  from the surface as 

( )2 2/
.

k ER kkQ ERV
R d R d R d

= = =
+ + +

 

23.88. 
( )( )252

5
3.165 10  V/m 1.895 m

5.182 10  V
1.895 m 0.2981 m

ERV
R d

⋅
= = = ⋅

+ +
  

23.89. 
2ERV

R d
=

+
 

 

( )

( ) ( )( )( )
( )

2

2

2

2

25 5 5 5

5

0

4
2

2.843 10  V 2.843 10  V 4 3.269 10  V/m 2.843 10  V 0.3237 m

2 3.269 10  V/m

1.121 m

V R d ER

VR Vd ER

ER VR Vd

V V EVdR
E

+ =

+ =

− − =

± +
=

⋅ ± ⋅ + ⋅ ⋅
=

⋅

=

 

 (The other solution would have yielded a negative radius.) 

23.90. 
2ERV

R d
=

+
 

 
( ) ( )( )

( )

5
5

22

3.618 10  V 1.351 m 0.3495 m
3.371 10  V/m

1.351 m

V R d
E

R

⋅ ++
= = = ⋅  
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Chapter 24:  Capacitors 
 

Concept Checks 

24.1. a  24.2. a  24.3. a  24.4. d  24.5. d  24.6. c  24.7. a  24.8. b  24.9. a  24.10. b  24.11. a  24.12. a  24.13.  (a) True 
(b) False (c) True (d) False (e) False 
 
Multiple-Choice Questions 

24.1. b  24.2. c  24.3. c  24.4. d  24.5. c  24.6. a  24.7. d  24.8. c  24.9. a  24.10. (a) F  (b) F  (c) T  (d) F  (e) T  24.11 b  
24.12 a  24.13 b  24.14 a   
 
Conceptual Questions 

24.15.  

 
 

If two insulators were used the charge would not be able to flow into the insulators and no charge would 
be stored; thus, conductors must be used.  

24.16. Work has to be done to separate a positively charged plate from a negatively charged plate.  When the 
battery is disconnected, the charge on the plates has nowhere to go and must remain the same.  The 
electric field from a plane of charge depends only on the charge, not upon the distance from the plane 
(ignoring edge effects) so the electric field will remain the same.  The voltage difference between the plates 
will just be the product of the electric field with the separation distance (since the electric field is constant), 
so as you pull the plates apart you’ll be moving the same charge against an even voltage.  When the battery 
remains connected, the voltage remains the same as the battery voltage.  So as the plates are pulled apart, 
the electric field must decrease to make up for the increase in separation, which means the charge must 
flow off the plates (which it can do, because there’s a path to the battery).  Thus the force becomes less and 
less with greater separation; a smaller charge against a smaller field.  The work done in increasing the 
separation is less.  Therefore, the work done is greater when the capacitor is disconnected from the battery.   

24.17. Since capacitors can store charge and are found in a lot of electrical equipment, grounding is done to 
ensure the excess charge can be discharged safely.  

24.18. Imagine a conductor inserted into a parallel-plate capacitor, with ideally thin insulating sheets on each side 
to prevent charge transfer between the conductor and the capacitor plates. As current flows through the 
capacitor, charge will build up on the capacitor plates, but there will be an equal and opposite charge 
separation on the conductor between them, so that E between the plates will remain 0 and ∆V for the 
capacitor will remain zero. This corresponds to an infinitely large dielectric constant. 

24.19. 
22

,
2 2

qC VU
C

∆
= =  

2

old
old

,
2

q
U

C
=  

2

new
new

,
2

q
U

C
=  0

old ,
A

C
d
ε

=  
( ) ( )

0 old
new .

A C d
C

d d d d

ε
= =

′ ′+ +
 The separation 

distance is increased by .d′   
2

new old
new

1 1
2

q d d dU U
C d d

  ′ ′+   
= = +    

    
 

The energy stored has increased from the work in pulling the charges apart.  
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24.20. In order to increase the capacitance from 10.0 μF  to 18.0 μF  in a capacitor, you could add a dielectric in 
the capacitor with a dielectric constant of 1.80.  The alternative would be to change the capacitor geometry 
by narrowing the plate separation or increasing the plate area.  

24.21. For two capacitors 
( )

1

1 2
series

1 2 1 2

1 1 ,
C C

C
C C C C

−
 

= + = 
+ 

 then  

( )
1 2 2

series 2
1 2 2 1

,
1 /

C C C
C C

C C C C
= = <

+ +
 and 

( )
1 2 1

series 1
1 2 1 2

.
1 /

C C C
C C

C C C C
= = <

+ +
 

The resultant capacitance is always smaller than the smaller of the two values. In particular, if the 
difference between the two value is large (an order of magnitude or more), the resultant capacitance is less 
than but very close to the smaller of the two.  For example, if we connect in series a capacitor 

1 1 μFC = with a capacitor 2 10 μF,C =  we get a capacitance of 0.91 μF.   

24.22. Two capacitors are connected in series.  Assume the potential difference 0V  is due to a battery.  The circuit 
is:  

 
 

In series, the equivalent capacitance is 
eq 1 2

11 1 .
C C C

= +  The potential difference supplied by the battery is 

0
eq 1 2 1 2

1 1 ,
q q q

V q
C C C C C

 
= = + = + 

 
 where 1

1

q
V

C
=  and 2

2

.
q

V
C

=  Solving for 1V in the above yields: 

0 1 1 0
2 2

  .
q q

V V V V
C C

= + ⇒ = −  Note that since 0
1 2

1 1 ,V q
C C

 
= + 

 
  

( ) ( )
0 0 1 2

1 21 2

.
1/ 1/

V V C C
q

C CC C
= =

++
 

Then  

( )0 1 2 0 10 1 2 0 1 0 2
1 0 0

1 2 2 1 2 1 2 1 2

1 .
V C C V CV C C V C V C

V V V
C C C C C C C C C

+ −    
= − = − = =       + + + +    

 

Similarly for 2 ,V    

( )0 1 2 0 20 1 2 0 2 0 1
2 0 0

1 2 1 1 2 1 2 1 2

1 .
V C C V CV C C V C V C

V V V
C C C C C C C C C

+ −    
= − = − = =       + + + +    

 

24.23. (a)  The limit is when the field reaches the dielectric strength of the material.  The dielectric strength of air 
is given as 62.5 kV / mm 2.5 10  V/m.= ⋅  2/E kq r=  for a sphere, so  

( )
( )

− −
⋅

⋅ = ⇒ = ⋅ ≈ ⋅
9 2 2

6 7 7
2

8.99 10  N m /C
2.5 10  V/m   6.952 10  C 7.0 10  C.

0.0500 m

q
q  

(b)  When the charge in the sphere exceeds the limit specified in (a), the charge on the sphere will create a 
strong enough electric field to create an ionized conductive channel of air.  The charge will spark though 
the air discharging the sphere slightly.   
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24.24. (a)  The energy stored on the capacitor is 
2

0 .
2

C V
U =  

(b)  Due to the power supply, the potential difference across the capacitors’ plates remains constant as V   
when the dielectric material is inserted.  To maintain this constant ,V  the power supply must supply 
additional charge to the plates.  The capacitance becomes 0 ,C Cκ=  and the energy becomes 

22
0 .

2 2
C VCVU

κ
= =   

(c)  The dielectric is pulled into the space between the plates.  There is an applied electric field 0E


 between 
the plates.  When the dielectric is inserted, the molecules of the dielectric align with the field:  

 
Then on each surface of the dielectric, there is an induced charge opposite to the charge on the adjacent 
plate.  Since unlike charges attract, the dielectric is pulled into the space between the plates.   

24.25. The capacitor is disconnected from the power supply; the charge Q  on each plate remains constant while 
the dielectric is inserted, while the potential difference across the plates is reduced by a factor of .κ  The 

force with which the slab is pulled into the capacitor is 
2

,
2

d d QF U
dx dx C

    
= − = −     

    
 Q  is constant.  

Consider two regions of the capacitor, one which is empty and one which contains dielectric material.  

These two “pieces” are in parallel, so 
( ) ( )0 0

empty dielectric ,
L L x L x

C C C
d d

ε κε−
= + = +  where x  is the depth 

that the dielectric is inserted.  

 
 

Then 
2 2

2

1 .
2 2

d Q Q dCF
dx C dxC

    
= − = − −    

    
 Now  

( ) ( ) ( )0 0 0 0 0 1 .
L L x L x L L LdC d

dx dx d d d d d
ε κε ε κε ε

κ
 −

= + = − + = − 
  

 

( ) ( )
22

0 0
2 1 1

22
L V LQF

d dC
ε ε

κ κ
  

= − = −  
  

 

It turns out that the force is constant; it does not depend on x. 
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24.26. Assume the coaxial capacitor contains a dielectric material of dielectric material of dielectric constant 
κ (as opposed to air).  The capacitance of a cylindrical capacitor is:  

( ) ( )( ) ( ) ( )

( )

0 0 0 0

2 1

0 0

2 2 2 2
ln / ln / ln ln ln ln (1 /

2 2
ln(1 / )ln ln ln(1 / )

L L L L
C

r r R R R d R R d RR d
L L

d RR R d R

πκε πκε πκε πκε

πκε πκε

= = = =
− − − −−

= = −
−− + −

 

Consider the series expansion for ( )ln 1 ,x−  where 1,x ≤ 1:x ≠  ( )
2 3

ln 1 ...
2 3
x xx x− = − − − − , which can 

be approximated as ( )ln 1 x x− ≈ − for x close to zero. This approximation is valid, since the question states 
that d << R, so d / R is close to zero. Then:  

( )
0 02 2

.
ln 1 /R

L LR
C

dd
πκε πκε

= − ≈
−

 

Now consider the surface area of the cylinder: 2 .A LRπ=  In the limit of small distance ,d  this is the area 

of both cylinders.  Then we can make the replacement: 0 .
d

A
C

κε
=  This result is the formula for a parallel 

plate capacitor, and in the limit of /d R  approaching zero, this makes a great deal of sense. 

24.27. The charge on each plate will be same.  The battery will move charge from one plate to the other, keeping 
the overall charge on the device neutral. 

24.28. The parallel plate capacitor is connected to a battery.  As the plates are pulled apart: 
(a) The electrical potential on the plates does not change; therefore the charge on the plates would have to 
decrease. 
(b) The capacitance for the parallel plate capacitor is 0 / .C A dε=  As the distance between the plates 
increases, C  must decrease.  By definition / ;C q V=  since V remains the same, it must be that the charge 
on the plates decreases as they are pull apart. 
(c) The electric field between the plates of a parallel capacitor is uniform, and is equal to = /d.E V  As the 
plates are pulled apart the electric field must decrease.  

 
Exercises 

24.29. Assume the supercapacitor is made from parallel plates.  The capacitance is 0 .
A

C
d
ε

=  Rearranging for A  

yields: 
0

.CdA
ε

=  With 1.00 F,C =  31.00 mm 1.00 10  md −= = ⋅  and 12
0 8.85 10  F/m,ε −= ⋅  the area is 

( )( )3
2

12

1.00 F 1.00 10  m
1.13 km .

8.85 10  F/m
A

−

−

⋅
= =

⋅
 

24.30. The potential difference across the collinear cylinders is 100. V.V =  The inner radius is 

1 10.0 cm 0.100 m.r = =  The outer radius is 2 15.0 cm 0.150 m.r = =  The length of both cylinders is 

40.0 cm 0.400 m.L = =  By definition, .q CV=  For a cylindrical capacitor, ( )0 2 12 / ln /r .C L rπε=  For this 
system,  

( )( )
( )

12
11

2 8.85 10  F/m 0.400 m
5.486 10  F 54.9 pF.

ln 0.150/0.100
C

π −
−

⋅
= = ⋅ ≈  

Then ( )( )11 95.488 10  F 100. V 5.488 10  F 5.49 nC.q − −= ⋅ = ⋅ ≈  The electric field between the plates of a 

cylindrical capacitor is 0/ 2 .E q rLπε=   
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The magnitude of the electric field just outside the inner surface is:  

( )( )( )
9

1 12
0 1

5.488 10  F 2466 V/m 2470 V/m.
2 2 8.85 10  F/m 0.100 m 0.400 m

qE
r Lπε π

−

−

⋅
= = = ≈

⋅
 

Its magnitude just inside the outer surface is:  

( )( )( )
9

2 12
0 2

5.488 10  F 1644 V/m 1640 V/m.
2 2 8.85 10  F/m 0.150 m 0.400 m

qE
r Lπε π

−

−

⋅
= = = ≈

⋅
 

24.31. For a spherical conductor, the capacitance is 04 .C Rπε=  With 1.00 F,C =  the radius must be  

( )
9 9

12
0

1.00 F 8.988 10  m 8.99 10  m.
4 4 8.85 10  F/m

CR
πε π −

= = = ⋅ ≈ ⋅
⋅

 

24.32. The capacitance of a spherical capacitor made from two concentric conducting shells is: 
( )πε= −s 0 1 2 2 14 / r .C r r r  The capacitance of a parallel plate capacitor is: p 0 / .C A dε=  The area A  of the 

parallel plate capacitor is equal to the area of the inner sphere in the spherical capacitor: 14 r .A π=  With 

( )= −2 1 ,d r r  the fractional difference in capacitance between the two geometries is  

( ) ( )
( )

πε πε

πε

 −−  = = −
 
 

2
0 1 2 0 1s p 2

2
p 10 1

4 /d 4 /d
1.

4 /d

r r rC C r
C rr

 

The capacitance of the parallel plate capacitor is ( )−2 1/ 1 100%r r  smaller than that of the spherical 
capacitor.   

24.33. The capacitance of a spherical conductor is: πε= 04 .C R  With the radius of the Earth being 

= = ⋅ 66371 km 6.371 10  m,R  the Earth’s capacitance is:  

( )( )12 6 4 44 8.85 10  F/m 6.371 10  m 7.0887 10  F 7.089 10  F.C π − − −= ⋅ ⋅ = ⋅ ≈ ⋅  

24.34. By definition, capacitance is / .C q V=  The capacitance of the spherical conductor is  

( )
1 2

0
2 1

4 .
r

r r
C

r
=

−
πε  

The potential difference across the inner and outer spheres is 900. VV = when a charge of 
86.726 10  Cq −= ⋅ is applied to them.  The radius of the outer sphere is 2 0.210 m.r =  The radius of the 

inner sphere is:  

( ) ( )1 2
0 2 1 0 1 2 2 1 0 2

2 1

2 2
1

0 20 2

4   4   4

44 1

r r
C C r r r r Cr r C r

r r
Cr r

r
r VC r

q

= ⇒ − = ⇒ = +
−

= =
+ +

πε πε πε

πεπε
 

( )
( )( )( )

( )

1 12

8

0.210 m
0.160 m.

4 8.85 10  F/m 0.210 m 900. V
1

6.726 10  C

r
π −

−

= ≈
⋅

+
⋅

 

24.35. THINK:  The capacitor is a parallel plate capacitor of variable separation distance. The material between 
the two plates is air.  When the initial separation is = =0 0.500 cm 0.00500 md , the initial capacitance is 

=0 32.0 pF.C  
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(a) A battery is connected with a potential difference = 9.00 V.V  Find the charge density σ  on the left 
plate.  When the separation is changed to = =' 0.250 cm 0.00250 m,d  find the new capacitance 'C  and 
charge density, σ '.   
(b) The separation between the plates is again =0 0.00500 md  and the battery is disconnected.  The plates 
are moved to a separation of =' 0.00250 m.d  Find the new potential difference 'V  between the plates. 
SKETCH:   

 
 

RESEARCH:  By definition capacitance is = / .C q V  Charge density is σ = / .q A  Note that as long as the 
battery is connected, the potential difference across the plates is constant.  When the battery is 
disconnected, the total charge in the system must remain constant. 
SIMPLIFY:   

(a) When the battery is first hooked up, the charge density is 
ε

σ = = =0 0

0

C V Vq
A A d

 (for a parallel plate 

capacitor).  When the separation is decreased from 0d  to ',d  the new capacitance is  

0 0 0 0 0 0

0 0

.
A d A d C d

C
d d d d d
ε ε′ = ⋅ = ⋅ =
′ ′ ′

 

The new charge density is: 0 0 0 0 0

0

'
'

C d A d VC V V V
A d A d d A d

ε ε
σ

′
= = ⋅ = ⋅ ⋅ =

′ ′
 where V  is the battery voltage.   

(b) Now that the battery is disconnected, q  remains constant, assuming ideal conditions, but  the 
potential difference between the plates can change.  When the plates are moved to a separation of ′d  the 
new capacitance is ε ′0 / ,A d  which is ′C  from above.  The new potential difference is then 

0 .
C Vq

V
C C

′ = =
′ ′

 

CALCULATE:   

(a)  
( )( )

σ
−

−
⋅

= = ⋅
12

8 2
8.85 10  F/m 9.00 V

1.593 10  C/m ,
0.00500 m

   
( )( )

′ = =
32.0 pF 0.00500 m

64.0 pF,
0.00250 m

C  

( )( )
σ

−
−

⋅
′ = = ⋅

12
8 2

8.85 10  F/m 9.00 V
3.186 10  C/m

0.00250 m
 

(b)  
( )( )32.0 pF 9.00 V

4.50 V
64.0 pF

V ′ = =  

ROUND:  For σ ,  σ ′  and ′V  the precision is limited to two significant figures from .V  'C has three 
significant figures.  
(a)  σ −= ⋅ 8 21.59 10  C/m ,  ′ = 64.0 pF,C  σ −′ = ⋅ 8 23.19 10  C/m  
(b)  ′ = 4.50 VV  
DOUBLE-CHECK:  C is proportional to 1/ d for parallel plates; as d  decreases C must increase.  When q 
is constant C is proportional to 1/V, so as C increases, V decreases. 
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24.36. For equivalent capacitors of capacitance C  in parallel, the equivalent capacitance is  

eq
1

.
n

i
i

C C nC
=

= =∑  

For a single capacitor, eq .C C=  For two capacitors in parallel, eq 2 .C C=  For for three capacitors in 

parallel, eq 3 .C C=   For equivalent capacitors of capacitance C  in series, the equivalent capacitance is  

eq
1eq

1 1 .
n

i i

n CC
C C C n=

= = ⇒ =∑  

For two capacitors in series eq / 2.C C=   For three capacitors in series, eq / 3.C C=  Another combination is 

to have two capacitors in parallel and add the third in series with the first two, as shown:  

 

In this case, the equivalent capacitance is eq
eq

1 1 1 3 2  .
2 2 3

C C
C C C C

= + = ⇒ =  Lastly, there can be two 

capacitors in series, with the third added in parallel with the first two, as shown:  

 

In this case, the equivalent capacitance is eq
3 .

2 2
CC C C= + =  

24.37. The capacitor can be treated like two capacitors in parallel where each has an area equal to half that of the 
original.  One capacitor has the original plate spacing 1 1.00 mm 0.00100 m,d = =  and the other has a plate 

spacing 2 0.500 mm 0.000500 m.d = =  The original area was 2 4 21.00 cm 1.00 10  m .A −= = ⋅   For capacitors 
in parallel, the equivalent capacitance is eq 1 2 .C C C= +  For this system,  

( )( )
( )

( )( )
( )

12 4 2 12 4 2

0 0
eq

1 2
12

8.85 10  F/m 1.00 10  m 8.85 10  F/m 1.00 10  m/ 2 / 2
2 0.00100 m 2 0.000500 m

1.3281 10  F 1.33 pF.

A A
C

d d
ε ε

− − − −

−

⋅ ⋅ ⋅ ⋅
= + = +

= ⋅ ≈

 

24.38. The capacitors have values 1 3.1 nF,C = 2 1.3 nFC =  and 3 3.7 nF.C =  The battery provides a voltage of 
14.9 V.V =  The circuit can be reduced to: 

 

where 23 2 3C C C= +  since 2C  and 3C  are in parallel.  Now 1C  and 23C  are in series, and the equivalent 
capacitance is:  

( )
( )1 2 31 2 3

eq
eq 1 23 1 2 3 1 2 31 2 3

1 1 1 1 1 .
C C CC C C

C
C C C C C C C C CC C C

++ +
= + = + = ⇒ =

+ + ++
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For capacitors in series, the charge on each capacitor is the total charge, eq .q C V=   So, the charge on 23C  is 

.q   For 2C  and 3C  in parallel, this means that 2 3 .q q q+ =  Also, the potential difference across 2C  and 3C  
is the same, so 2 3 .V V=  Then  

( )

( )( )
( ) ( ) ( )

eq 1
2 3 2 2 3 3 2 2 3 2 2 2 3 2

2 3 2 3 1 2 3

2

3.1 nF 14.9 V
5.702 V 5.70 V.

3.1 nF 1.3 nF 3.7 nF

C Vq C V
q q q C V C V C V C V V C C V

C C C C C C C

V

= + = + = + = + ⇒ = = =
+ + + +

= = ≈
+ +

 

24.39. The capacitors have values =1 3.50 nF,C =2 2.10 nF,C  =3 1.30 nFC  and =4 4.90 nF.C  The battery has 
voltage =10.3 V.V  First, 3C and 4C are in parallel.  Then = +34 3 4C C C  and the circuit becomes 

  

Next, 1C  and 34C  are in series. Then = + = +
+134 1 34 1 3 4

1 1 1 1 1 .
C C C C C C

 Then 
( )+

=
+ +

3 41
134

1 3 4

C CC
C

C C C
 and the 

circuit becomes 

 

Now 2C and 134C are in parallel.  The equivalent capacitance of the circuit is:  

( ) ( ) ( )( )+ +
= + = + = + = ≈

+ + + +
1 3 4

eq 2 134 2
1 3 4

3.50 nF 1.30 nF 4.90 nF
2.10 nF 4.337 nF 4.34 nF.

3.50 nF 1.30 nF 4.90 nF
C C C

C C C C
C C C

 

24.40. The capacitors have values 1 18.0 μF,C = 2 11.3 μF,C =  3 33.0 μFC =  and 4 44.0 μF.C =  The potential 
difference is 10.0 V.V =   Capacitors 1C  and 2C  are in parallel, as are 3C  and 4 .C  Write 12 1 2C C C= +  and 

34 3 4 .C C C= +  The circuit becomes  

 
with 34C  and 12C  in series, the equivalent capacitance is  

( )( )1 2 3 412 34
eq

eq 12 34 12 34 1 2 3 4

1 1 1   .
C C C CC C

C
C C C C C C C C C

+ +
= + ⇒ = =

+ + + +
 

The total charge required to charge the capacitors in the circuit is  

( )( ) ( )( )( )1 2 3 4 4
eq

1 2 3 4

18.0 μF 11.3 μF 33.0 μF 44.0 μF 10.0 V
2.12 10  C.

18.0 μF 11.3 μF 33.0 μF 44.0 μF
C C C C V

q C V
C C C C

−
+ ++ +

= = = = ⋅
+ + + + + +

 

24.41. THINK:  Six capacitors are arranged as shown in the question. 
(a) The capacitance of capacitor 3 is =3 2.300 nF.C  The equivalent capacitance of the combination of 
capacitors 2 and 3 is =23 5.000 nF.C  Find the capacitance of capacitor 2, 2 .C 3 2 and C C  are in parallel. 
Use the formula for parallel capacitance. 
(b) The equivalent capacitance of the combination of capacitors 1, 2, and 3 is =123 1.914 nF.C  Find the 
capacitance of capacitor 1, 1.C 1 23 and C C  are in series.  Use the formula for series capacitance. 
(c) The remaining capacitances are = =4 51.300 nF, 1.700 nF,C C and =6 4.700 nF.C  Find the equivalent 
capacitance of the whole system, eq .C  
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(d) A battery with a potential difference of =11.70 VV is connected as shown.  Find the total charge q 
deposited on this system of capacitors. 
(e) Find the potential drop across capacitor 5 in this case. 
SKETCH:  Consider the sketch in the question. Sketches of the simplified system are provided in the 
simplify step. 

RESEARCH:  For capacitors in series, the equivalent capacitance is 
=

=∑eq
1

1/ 1/ ,
n

i
i

C C  and the charge on 

each is the same.  For capacitors in parallel, the equivalent capacitance is 
=

=∑
1

,
n

eq i
i

C C  and the potential 

drop across each is the same.  By definition, capacitance is = ∆/ .C q V  
SIMPLIFY:    
(a) = + ⇒ = −23 2 3 2 23 3  C C C C C C  

(b) 
−

 
= + ⇒ = − 

 

1

1
123 1 23 123 23

1 1 1 1 1  C
C C C C C

 

 
(c) 4 5 6,  ,  and C C C  are in parallel.  The equivalent capacitance between these capacitors is 

= + +456 4 5 6 .C C C C   

 
Now, 123 456 and C C  are in series.  The equivalent capacitance of the entire circuit is 

−
 

= + 
 

1

eq
123 456

1 1 .C
C C

 

(d) The total charge required to charge the capacitors is = ∆eq .q C V  

(e) 4 5 6, ,  and C C C  are in parallel.  The voltage drop across each capacitor is the same: = =4 5 6 .V V V  The 
equivalent capacitors 123 456 and C C are in series.  The charge on each 123 456 and C C  is the same, and they 
are equal to the total charge in the system: = =123 456 .q q q  Since 4 5 6, ,  and C C C  are in parallel, 
= = + +456 4 5 6 .q q q q q  Then, 

( )= + + = + +4 4 5 5 6 6 5 4 5 6q C V C V C V V C C C , 
( )

=
+ +5

4 5 6
.

q
V

C C C
 

CALCULATE:   
(a) = − =2 5.000 nF 2.300 nF 2.700 nFC  

(b) 
−

 = − = 
 

1

1
1 1 3.1011 nF

1.914 nF 5.000 nF
C  

(c) 
−

 = + + = = + = 
 

1

456 eq
1 11.300 nF 1.700 nF 4.700 nF 7.700 nF,   1.533 nF

1.914 nF 7.700 nF
C C  

(d) ( )( )1.533 nF 11.70 V 17.94 nCq = =  
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(e) 
( )

( )5

17.94 nC
 V

1.300 nF 1.700 nF 4.700 n
2.32987

F
V = =

+ +
 

ROUND:   
(a) To 4 significant figures, =2 2.700 nF.C  
(b) To 4 significant figures, =1 3.101 nF.C   
(c) To 4 significant figures, =eq 1.533 nF.C  

(d) To 4 significant figures, 17.94 nC.q =  
(e) To 4 significant figures, =5 2.330 V.V  
DOUBLE-CHECK:  Note for equivalent capacitance 23 ,C  where 2C  and 3C  are in parallel, >23 2 3, .C C C  
Similarly, for equivalent capacitance 456 ,C  where 4 5, ,C C  and 6C  are in parallel, >456 4 5 6, , .C C C C  Finally, 
the equivalent capacitance of the entire circuit <eq 123 456, ,C C C  where the equivalent capacitances 123C  

and 456C  are in series. 

24.42. THINK:  The capacitance values are 1 15.0 nF,C =  2 7.00 nFC =  and 3 20.0 nF.C =  The potential 
difference provided by the battery is 80.0 V.V =  Note that 1C  and 2C  are in parallel with each other, 
while 3C is in series with the equivalent capacitor of 1C  and 2 .C  Find the magnitude and the sign of the 
charge 3lq  on the left plate of 3 ,C  the electric potential 3V  across 3 ,C  and the magnitude and sign of the 
charge 2rq  on the right plate of 2 .C  
SKETCH:   

 
RESEARCH:  Capacitors 1C and 2C are in parallel; their equivalent capacitance is 12 1 2 .C C C= +  Capacitor 

3C is in series with 12 ;C  the equivalent capacitance of the circuit is; therefore,  
1

3 12
eq

3 12 3 12

1 1 .
C C

C
C C C C

−
 

= + = 
+ 

 

Since 1C  and 2C  are in parallel the potential drop across them is equal, so 1 2 .V V=  The potential drop 
across 3C  and the equivalent capacitor 12C  must sum to the potential drop across battery, 3 12 ,V V V+ =  
since they are in series.  Finally, the total charge in the circuit is eq ,q C V=  while the charge on a specific 

capacitor iC  is i i i .q C V=  Since 3C  and 12C  are in series, the charges on these capacitors are equal to each 
other, and equal to the total charge in the circuit.  The charges on 1C  and 2C  must sum to the total charge 
on their equivalent capacitor 12 ,C  which is equal to the total charge in circuit .q   
SIMPLIFY:  As explained above, 

( )3 1 23 12
3 eq

3 12 1 2 3

.
C C CC C

q q C V V V
C C C C C

+
= = = =

+ + +
 

At point ,A 3q is negative: the battery sets up an electric field in the wires.  The field drives electrons from 
the negative end of the battery to the left of 3 .C  Then,  

( )3 1 2
3l

1 2 3

.
C C C

q V
C C C

+
= −

+ +
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3V  is then 3 3 3/V q C= and 2q  is  2 2 2 .q C V=  2V  is found from 3 12 ,V V V+ =  where 12 1 2 .V V V= =  Then 

2 3 ,V V V= −  and ( )2 2 3 .q C V V= −  At point ,B  2q  is negative.  The electric field pulls electrons from the 

left plate of 2C  to the positive end of the battery so the net charge on the left plate of 2C  is positive. The 

right plate must, therefore, be negatively charged. Then, ( )2, 2 3 .bq C V V= − −  

CALCULATE:  
( )( ) ( ) 7

3l

20.0 nF 15.0 nF 7.00 nF
80.0 V 8.381 10 C

15.0 nF 7.00 nF 20.0 nF
q −+

= − = − ⋅
+ +

 

7

3
8.381 10  C 41.905 V

20.0 nF
V

−− ⋅
= =   

( )( ) 7
2r 7.00 nF 80.0 V 41.905 V 2.6667 10  Cq −= − − = − ⋅  

ROUND:  To three significant figures, 7
3l 8.38 10 C,q −= − ⋅  3 41.9 V,V =  and 7

2r 2.67 10  C.q −= − ⋅  

DOUBLE-CHECK:  Note that 1 2 3 .q q q+ =  1q  is found from ( )1 1 1 1 2 1 3 ,q C V C V C V V= = = −   so  

( )( ) 7
1 15.0 nF 80.0 V 41.905 V 5.7143 10  C.q −= − = ⋅  

Then ( ) ( )7 7 7
1 2 5.7143 10  C 2.6667 10  C 8.381 10  C,q q − − −+ = ⋅ + ⋅ = ⋅   which is the magnitude of 3q  that was 

found above.  

24.43. THINK:  Fifty parallel plate capacitors are connected in series.  The distance between the plates of the first 
capacitor is ,d  between the plates of the second capacitor 2 ,d  the third capacitor 3 ,d  and so on.  The area 
of the plates remains the same for all capacitors.  Find the equivalent capacitance eqC  in terms of 1C  (the 

capacitance of the first capacitor). 
SKETCH:   

 
RESEARCH:  For capacitors in series, the equivalent capacitance is  

i=1eq 1 2 3 i

1 1 1 1 1... .
n

C C C C C
= + + + =∑  

The capacitance of a single parallel plate capacitor is: 0 / .C A dε=    
SIMPLIFY:  The equivalent capacitance is:  

( )3 501 2

eq 1 2 3 50 0 0 0 0 0

1 1 1 1 1... ... 1 2 3 ... 50 .
d dd d d

C C C C C A A A A Aε ε ε ε ε
= + + + + = + + + = + + + +  

Since 1 ,d d= 2 2 ,d d= …, ,nd nd=  it follows that: 
50

i=1eq 0

1 i.d
C Aε

= =∑  Note 0
1

A
C

d
ε

=  and 
( )50

i=1

1
i ,

2
n n+

=∑  

and therefore 
( )

( )
1

eq
eq 1

1 21 1   .
2 1

n n C
C

C C n n

 + 
= ⇒ =    +  

 

CALCULATE:  With 50,n =
( )

1 1
eq

2
.

127550 50 1
C C

C = =
+

 

ROUND:  The answer is precise. No rounding is required. 
DOUBLE-CHECK:  For capacitors in series, the equivalent capacitance must be less than the value of the 
largest capacitor, in this case 1.C  

24.44. THINK:  A 1 5.00 nFC =  capacitor initially charged to 1 60.0 VV =  and a 2 7.00 nFC =  capacitor charged 
to 2 40.0 VV =  are connected to each other with the negative plate of 1C  connected to the negative plate 

2 .C  Find the final charge on 2 .C  
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SKETCH:   

 
 

RESEARCH:  For capacitors connected in parallel, the potential drop across each capacitor is the same, 
that is 1 2 .V V=  In addition, charge must be conserved, that is the initial charge iq  before the capacitors are 
connected must equal the final charge fq  when the capacitors are connected.  Note 0 0 0/ .V q C=  In 
general, the charge q  on a capacitor is .q CV=   

SIMPLIFY: i 1i 2i 1 1 2 2 ,q q q C V C V= + = +  1 f 1
f 1 f 2 f 2 f 2,  f

2 f 2

1 1 .
C V C

q C V C V C V q
C V C

   
= + = + = +   

   
 Then, 

f i ,q q= ( )1 1 1 2 2
2, f 1 1 2 2 2, f

2 1 2

1   .
/ 1

C C V C V
q C V C V q

C C C
   +

+ = + ⇒ =   
+   

 

CALCULATE:  
( )( ) ( )( )

( ) ( )
7

2, f

5.00 nF 60.0 V 7.00 nF 40.0 V
 3.3833 10  C.

5.00 nF / 7.00 nF 1
q −

 +
= = ⋅  + 

 

ROUND:  Rounding to three significant figures, 7
2, f 3.38 10  C 0.338 μC.q −= ⋅ =  

DOUBLE-CHECK:  The solution is reasonable given the magnitudes of the capacitors. 

24.45. The charge on each plate has a magnitude of 60.0 μCq =  and potential difference of 12.0 V.V =  The 

capacitance is; therefore, 6/ 60.0 μC /12.0 V 5.00 10  F.C q V −= = = ⋅  When the potential difference is 
' 120. V,V =  the potential energy stored in the capacitor is  

( ) ( )( )2 261 1 5.00 10  F 120. V 0.0360 J.
2 2

U C V −′= = ⋅ =  

24.46. The potential difference across the defibrillator is 7500 V.V =  It stores 2400 J.U =  Generally 

( ) 21/ 2 .U CV=   Solving for C  yields 
( )

( )
5

22

2 2400 J2 8.533 10  F 85.3 μF.
7500 V

UC
V

−= = = ⋅ ≈  

24.47. The Earth has an electric field = =150 N/C 150 V/m.E  The electric energy density is 

( ) ( )( )( )22 12 8 3
0

8 3

1/ 2 1/ 2 8.85 10  F / m 150. V/m 9.956 10  J/m

9.96 10  J/m .

U E

U

ε − −

−

= = ⋅ = ⋅

≈ ⋅
 

24.48. THINK:  The battery potential difference across two capacitors in series is 120. V.V =  The capacitances 
are 3

1 1.00 10  μFC = ⋅ and 3
2 1.50 10  μF.C = ⋅  Find 

(a) The total capacitance eqC of this circuit. 

(b) The charge on each capacitor, 1q and 2 .q  
(c) The potential difference across each capacitor, 1V and 2 .V  
(d) The total energy stored in the circuit, .U  
SKETCH:   

 
RESEARCH:   
(a) For a circuit of two capacitors connected in series, the equivalent capacitance is eq 1 21/ 1/ 1/ .C C C= +   
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(b) For a circuit of two capacitors connected in series, the charge on each capacitor is the same, and equal 
to the charge on a capacitor plate in the equivalent, one-capacitor circuit, that is 1 2 .q q q= =  The total 
charge is found from  eq .q C V=  

(c) For a circuit of two capacitors connected in series, the sum of the potential differences across each 
capacitor must be equal to the potential difference across the leads of the battery, that is 1 2 .V V V+ =  In 
general, for each capacitor in series, i i i .q C V=   
(d) The total energy stored in the circuit will be the sum of the energy stored in each capacitor, 

1 2 .U U U= +  For each capacitor i ,C  2
i i i/2 .U q C=  

SIMPLIFY:   

(a) 1 2
eq

eq 1 2 1 2

1 1 1   
C C

C
C C C C C

= + ⇒ =
+

  

(b)  1 2 eqq q q C V= = =   

(c)  1
1

1 1

;
q q

V
C C

= =   2
2

2 2

q q
V

C C
= =  

(d)  
2 2 2
1 2

1 2
1 2 1 2

1 1 1 1
2 2 2

q q q
U U U

C C C C
 

= + = + = + 
 

 

CALCULATE:   

(a) 
( )( )3 3

-4
eq 3 3

1.00 10  μF 1.50 10  μF
600. μF = 6.00 10  F 0.600 mF

1.00 10  μF 1.50 10  μF
C

⋅ ⋅
= = ⋅ =

⋅ + ⋅
  

(b)  ( )( )1 2 0.600 mF 120. V 0.0720 Cq q q= = = =   

(c)  1 3

0.0720 C 72.0 V;
1.00 10  μF

V = =
⋅

 2 3

0.0720 C 48.0 V
1.50 10  μF

V = =
⋅

 

(d)  
( )2

3 3

0.0720 C 1 1 4.32 J
2 1.00 10  μF 1.50 10  μF

U
 

= + = 
⋅ ⋅ 

 

ROUND:  Since 1C and 2C   are given to three significant figures,  
(a) eq 0.600 mFC =   

(b)  1 2 0.0720 Cq q= =   
(c)  1 72.0 V;V = 2 48.0 VV =  
(d)  4.32 JU =  
DOUBLE-CHECK:  It should be the case that ( ) ( )1 2 72.0 V 48.0 V 120. V.V V+ = + =  This is correct.  In 
addition, the potential energy in the circuit be equal to 

( ) 2
eq1/ 2 :C V ( )( )( )2

1/ 2 0.600 mF 120. V 4.32 J.U = =  

24.49. THINK:  Treat the neutron star as a spherical capacitor.  The inner radius of the capacitor is the radius of 
the neutron star, = = ⋅ 4

1 10.0 km 1.00 10  m.r  The outer radius is the radius of the neutron star and the 

1.00 cm  dipole layer.  The charge density is ( )( )σ µ= =22 21.00 C/cm 100. cm/m 0.0100 C/m .  Find both 

the capacitance C  of the star and electrical energy U  stored in the star’s dipole layer. 
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SKETCH:   

 

RESEARCH:  The capacitance of a spherical capacitor is 1 2
0

2 1
4 .

r rC
r r

πε=
−

 The total charge on the dipole 

layer is σ σ π= = 2
14 .q A r  Note since ≈1 2 ,r r  assume the areas of the inner and outer shells are the same.  

The potential energy of a capacitor is ( )= 21/ 2 / .U q C  

SIMPLIFY:  πε=
−

1 2
0

2 1
4 ,

r r
C

r r
  

( )σ π
= =

222 141 .
2 2

rq
U

C C
 

CALCULATE:  
( )( )( )12 44 8.854 10  F / m 1.00 10 m 10,000.01 m

1.11263 F
0.0100 m

C
π −⋅ ⋅

= =  

( ) ( )
( )

222 4

13
0.0100 C/m 4 1.00 10  m

7.096 10  J.
2 1.11263 F

U
π ⋅ 

 = = ⋅  

ROUND:  To 3 significant figures due to the thickness of the dipole layer, =1.11 FC  and = ⋅ 137.10 10  J.U  

DOUBLE-CHECK:  There is an enormous amount of charge on the dipole layer, ≈ ⋅ 71.30 10  C.q  Since 

both C  and U  are proportional to ,q  they should also be large (especially U, where ∝ 2 ).U q  

24.50. THINK:  A 3
0 4.00 10 nFC = ⋅  parallel plate capacitor is connected to a 12.0 VV =  battery and charged.  

Use what you know about capacitors in series. 
(a) Find the charge Q  on the positive plate of the capacitor.   
(b) Find the electrical energy U  stored in the capacitor.  The capacitor is then disconnected from the 
12.0 V battery and used to charge 3 uncharged capacitors, a 1 100. nFC =  capacitor, a 2 200. nFC =  
capacitor, and a 3 300. nFC =  capacitor, arranged in series. 
(c) Find the potential difference across each of the 4 capacitors, 0 ,V  1 ,V  2 ,V  and 3 .V  The capacitors are in 
series.  
(d) Determine the amount of electrical energy stored in the 0C  capacitor that was transferred to the other 
3 capacitors. 
SKETCH:   

 

RESEARCH:  In general, ,q CV=  and for capacitors in series, 
1eq

1 1 .
n

i iC C=

=∑   

(a) From above, the charge Q  is 0 .Q C V=  

(b) The electrical energy U  is 2
0/ 2 .U Q C=  

(c) For capacitors in series, the charge on each plate is the same, that is 1 2 3 .q q q= =  The three capacitors 
can be replaced with an equivalent capacitor 123 ,C  where 123C  has a charge 123 1 2 3 .q q q q= = =  Note the 
first capacitor 0C  provides the voltage to charge the capacitors 1 ,C  2 ,C  and 3C  or rather 123 .C  Some of 



Chapter 24: Capacitors 

 1021 

the charge Q  originally on 0C  flows to the equivalent capacitor 123 .C  By conservation of charge, 

0 123 .Q q q= +  Once 0q  and 123q  are determined, 0 ,V  1 ,V  2 ,V  and 3V  can be determined from .q CV=  
(d) The energy transferred to the other 3 capacitors is the sum of the energy on each capacitor.  Use 

2 / 2U q C=  to determine the energy on each capacitor. 
SIMPLIFY:   
(a) 0Q C V=   

(b) 2
0/ 2U Q C=  

(c) From 0 123 ,V V=  

0 123 123
123 0

0 123 0

  
q q C

q q
C C C

 
= ⇒ =  

 
 where  

123 1 2 3

1 1 1 1 .
C C C C

= + +  

From 0 123 ,Q q q= +  

( )
123

0 0 0
0 123 0

  
1 /

C QQ q q q
C C C

= + ⇒ =
+

 with 123 1 2 3 ,q q q q= = =  

0
0

0

,
q

V
C

=  123
1

1

,
q

V
C

=  123
2

2

,
q

V
C

=  and 123
3

3

.
q

V
C

=  

(d) 
2 2

123 123
1 2 3

1 2 3 123

1 1 1
2 2

q q
U U U U

C C C C
 

∆ = + + = + + = 
 

 

CALCULATE:   

(a) ( )( )3 5
0 4.00 10  nF 12.0 V 4.80 10  CQ C V −= = ⋅ = ⋅   

(b) 
( )
( )

25
4

3

4.80 10  C
2.88 10  J

2 4.00 10  nF
U

−

−
⋅

= = ⋅
⋅

 

(c) 
1

123
1 1 1 54.5 nF;

100. nF 200. nF 300. nF
C

−
 = + + = 
 

 
( ) ( )( )

5
5

0 3

4.88 10  C 4.735 10  C
1 /54.5 nF 4.00 10  nF

q
−

−⋅
= = ⋅

+ ⋅
 

( )5 7
123 1 2 3 3

54.5 nF 4.735 10  C 6.46 10  C
4.00 10  nF

q q q q − − 
= = = = ⋅ = ⋅ ⋅ 

 

Then 
5

0 3

4.735 10  C 11.84 V,
4.00 10  nF

V
−⋅

= =
⋅

 
7

1
6.46 10  C 6.46 V,

100. nF
V

−⋅
= =  

7

2
6.46 10  C 3.23 V

200. nF
V

−⋅
= =  and 

7

3
6.46 10  C 2.15 V.

300. nF
V

−⋅
= =  

(d) The transferred energy is 
( )

( )

27
6

6.46 10  C
3.822 10 J.

2 54.5 nF
U

−

−
⋅

∆ = = ⋅  

ROUND:   
(a)  54.80 10  CQ −= ⋅  

(b)  42.88 10  J 0.288 mJU −= ⋅ =  
(c)  0 11.8 V,V =  1 6.46 V,V =  2 3.23 V,V =  3 2.15 VV =  

(d)  The energy transferred is 63.822 10  J 3.82 μJ.−⋅ =  
DOUBLE-CHECK:  Because 0C  acts like a battery for 1 ,C  2C  and 3C  (is series), 0 1 2 3 :V V V V= + +  

1 2 3 06.46 V 3.23 V+2.15 V 11.84 V .V V V V+ + = + = =  
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24.51. THINK:  The circuit has 12.0 V,V = 1 500. pFC =  and 2 500. pF.C =  
(a) Find the energy 0U  delivered by the battery while the switch is closed to A  and the capacitor 1C  is 
fully charged.  
(b) Find the energy stored on 1C  while the switch is closed to A  and the capacitor 1C  is fully charged. The 
potential difference across 1C is equal to the potential difference of the battery, .V  
(c) Find the total energy stored at 1C  and 2C  when the switch is thrown to .B  The first capacitor 1C  
provides the voltage to charge the capacitor 2 ,C  i.e. 1C  acts as a battery.   
(d) Explain the energy loss, if there is any. Energy lost is the difference between the initial and final 
energies of the system. 
SKETCH:   

 
 

RESEARCH:  In general q CV=  
(a) The energy provided by the battery is given by .U QV=  

(b) The energy stored in a capacitor is 2 / 2.U CV=   
(c) Then the new potential difference 1V  across 1C  must be equal to 2 ,V  the potential difference across 

2 ,C or 1 2 .V V=  This implies that 1 1 2 2/ /q C q C= (since /V q C= ). By conservation of charge, the original 
charge 0q  on 1C  (before the switch was thrown to point B ) is 0 1 2 .q q q= +  Each 1q  and 2q  can be 

determined.  Then the energy on each capacitor is ( )2 / 2 .U q C=   

(d) f iE E E∆ = −   
SIMPLIFY:   
(a) 2

1U QV C V= =  as 0 1 .Q q C V= =  

(b)  
2

1
0 2

C V
U =   

(c)  From 1 2 2
2 1

1 2 1

  .
q q C

q q
C C C

= ⇒ =  Then 2
0 1 2 1

1

1 .
C

q q q q
C

 
= + = + 

 
  Also 0 1 .q C V=  Then 1

1
2 1

.
1 /

C V
q

C C
=

+
 

2
1

1
1

,
2
q

U
C

=  
2
2

2
22

q
U

C
=  

(d)  f i 1 2 0E E E U U U∆ = − = + −   
CALCULATE:   

(a)  ( )( )2 8500. pF 12.0 V 7.20 10  JU −= = ⋅  

(b)  ( )( )2 8
0 500. pF 12.0 V / 2 3.60 10  JU −= = ⋅   

(c)  
( )( )
( ) ( )( )

9
1

500. pF 12.0 V
3.00 10  C,

1 500. pF / 500. pF
q −= = ⋅

+
  92

2 1 1
1

3.00 10  C
C

q q q
C

− 
= = = ⋅ 
 

   

 Then 
2
2

1 2
22

q
U U

C
= =  (since 1 2C C= and 1 2q q= ), 

( )
( )

29
9

1

3.00 10  C
9.00 10  J.

2 500. pF
U

−

−
⋅

= = ⋅  

(d)  ( )9 8 8
2 02 2 9.00 10  J 3.60 10  J 1.80 10  JE U U − − −∆ = − = ⋅ − ⋅ = ⋅   

Even though the battery supplies 87.20 10  J,−⋅  half of this is lost to heat in the system.  Again, when 1C  is 
connected to 2 ,C  half of the energy is lost to heat. 
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ROUND:  The capacitors have 3 significant figures.  The answers should be rounded to 3 significant 
figures as well. 
(a) 87.20 10  J 72.0 nJU −= ⋅ =  
(b) 0 36.0 nJU =  
(c) 1 2 9.00 nJU U= =  
(d) 18.0 nJE∆ =  
DOUBLE-CHECK:  These answers are reasonable considering the initial values given.  

24.52. THINK:   
(a) The energy density, which is related to the electric field, can be integrated to determine the total 
electrostatic potential energy.  
(b) The given formula can be integrated over the volume of the sphere to determine the gravitational 
potential energy. 
(c) The magnitudes of the values found in parts (a) and (b) can be used to determine what impact the 
electrostatic forces have on the structure of the Earth. 
SKETCH:  Not required. 
RESEARCH:   
(a) The energy density is given by ( ) 2

01/ 2 .U Eε=  For the Earth of radius R, the electric field as a function 
of the radial position r is given by: 

2
surface
2 .

R E
E

r
=  

The Earth can be treated as a conductor, so all excess charge resides at the surface of the Earth.  Therefore, 
by Gauss’s Law 0E =  for .r R<    
(b) As given in the question, the differential gravitational potential energy is ( )g / .dU Gm r dm= −  

SIMPLIFY:   
(a) The electrostatic potential energy of the Earth is given by:  

22 2 42 2 surface surface
e 0 02 20 0

2 4 2 2 4 2 3
0 surface 0 surface 0 surface

1 1sin 4
2 2

12 2 2 .

R R

R
R

E R E R
U d d r dr dr

r r

E R r dr E R E R
r

π π
ε ϕ θ θ ε π

πε πε πε

∞ ∞

∞
∞ −

    = =    
    

 = = − =  

∫ ∫ ∫ ∫

∫
 

(b) The gravitational potential energy of the Earth is given by: 

g
GmU dU dm

r
= = −∫ ∫  

The mass is a function of the radius, 

34 ,
3

m rπρ=  

and the differential mass element can be written as, 

( )3 3 24 4 4 .
3 3

dm dV d r d r r drρ ρ π πρ πρ 
= = = = 

 
 

Therefore,  

( ) ( ) ( )2 22 2
3 2 4 5 2 2 5

g 0 0
0

4 44 1 164 .
3 3 3 5 15

R
R RG GGU r r dr r dr r G R

r
π ρ π ρ

πρ πρ π ρ   
= − = − = − = −   

   ∫ ∫  

CALCULATE:  

(a) ( )( ) ( )3212 6 14
e 2 8.854 10  F/m 150. V/m 6.371 10  m 3.237 10  JU π −= ⋅ − ⋅ = ⋅  

(b) ( )( ) ( )2 52 11 3 2 3 3 6 32
g

16 6.6742 10  m /kg s 5.515 10 kg/m 6.371 10  m 2.243 10  J
15

U π −= − ⋅ ⋅ ⋅ = − ⋅  
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 (c) 
( )
( )

32
17

g e 14

2.243 10  J
/ 6.930 10

3.237 10  J
U U

− ⋅
= = ⋅

⋅
 

The effects of the electrostatic forces on the Earth’s structure are insignificant compared to the effects of 
gravity. 
ROUND: 
(a) To three significant figures, 14

e 3.24 10  J.U = ⋅  

(b) To four significant figures, 32
g 2.243 10  J.U = − ⋅  

(c) To three significant figures, 17
g e/ 6.93 10 .U U = ⋅  

DOUBLE-CHECK:  The gravitational potential energy greatly exceeds the electrostatic potential energy, 
which is reasonable since the gravitational potential energy is proportional to 5 ,R  while the electrostatic 

potential energy is proportional to 3 .R  

24.53. In general, the energy stored in a capacitor is ( ) 21/ 2 .U CV=  In terms of its dielectric strength max / mm,V  

which yields ( )( ) ( )2 220 0 0
max max

1 / mm / mm .
2 2 2

A A Ad
U V V d V

d d
κε κε κε 

= = = 
 

The ratio of MylarU  to airU  

is 
( )
( )

2

Mylar maxMylar Mylar
2

air air max air

/ mm
.

/ mm

VU

U V
=
κ

κ
 From Table 24.1, this becomes: 

( )( )
( )( )

2
Mylar 4

2
air

3.1 280 kV / mm
3.89 10 .

1 2.5 kV / mm

U

U
= = ⋅  

24.54. This set-up can be treated as two capacitors in parallel, one with the dielectric material and one with air.  
The total capacitance is dielectric air .C C C= +  With air 1,κ =  this becomes  

( ) ( ) ( )
2

0 0 0
/ 2 / 2

1 .
2

L L L L L
C

s s s
= + = +
κε ε ε

κ  

24.55. The dielectric constant of air is 1.00059.κ =  Its dielectric strength is / 2.5 kV / mm.V d =  Treating the 

surface as having area ,A  and assuming it is a plane, the charge is 0 air .
A

q CV V
d

ε κ = =  
 

 The charge 

density of the surface is 0 air .
Vq

A d
ε κ

σ = =  The maximum charge density is  

( )( )( )12 8 5
max 0 air

max

8.85 10  F / m 1.00059 2.5 kV/mm 2.2149 10  C / mm 2.2 10  C / m.V
d

σ ε κ − − − 
= = ⋅ = ⋅ ≈ ⋅ 

 
 

24.56. The Thermocoax cable can be modeled as a cylindrical capacitor with 1 0.085 mmr =  and 2 0.175 mm.r =  
With 9.7,k =  

( )
( )( )

( )( )
12

100

2 1

2 8.85 10  F / m 9.72
7.473 10  F/m 750 pF/m.

ln / ln 0.175 mm/ 0.085 mm
C
L r r

ππε κ
−

−
⋅

= = = ⋅ =  
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24.57. This system is treated as two capacitors in parallel, one with dimensions / 5L L⋅  and dielectric 1 ,κ  the 
other with dimensions 4 / 5L L⋅  and dielectric 2 .κ  Then  

( ) ( )

( )( ) ( )

2 2 2
0 1 0 20 1 1 0 2 2 0 1 2

eq 1 2

212
11

/ 5 4 / 5 4
5 5

8.85 10  F / m 0.100 m 4 5.0020.0 7.08310  F 70.8 pF.
0.0100 m 5 5

L LA A L
C C C

d d d d d

ε κ ε κε κ ε κ ε κ κ

−

−

 
= + = + = + = + 

 
⋅  

= + = ≈  
 

 

24.58. THINK:  The capacitor has capacitance 4.0 nFC =  and contains a sheet of Mylar with dielectric constant 
3.1.κ =  The capacitor is charged to 120 VV =  and the power supply is then disconnected. 

(a) Determine the work W required to completely remove the sheet of Mylar from the space between the 
two plates.  
(b) Determine the potential difference between the plates of the capacitor once the Mylar is completely 
removed.  
SKETCH:   

 
RESEARCH:   
(a) The work done is the change in potential energy: ,W U= ∆  where 2 / 2 .U q C=  Note that initially the 
capacitance is i air ,C Cκ=  while the final capacitance is f air .C C=  
(b) The final potential is f f/ .V q C=  Because the power supply is disconnected, the charge remains 
constant and is i i .q C V=   
SIMPLIFY:   

(a) 
2 2 2

f i
f i air

11 .
2 2 2
q q q

W U U
C C C

 
= − = − = − 

 κ
 Since q is conserved with the power supply being removed, 

i i ,q C V=  and 
2 2
i i

air

11 .
2
C V

W
C κ

 
= − 

 
 Since air i / ,C C κ=  ( )

2 2 2
i i i i

i

11 1 .
2 / 2
C V C V

W
C

  
= − = −       

κ
κ κ

 

(b) air ii i
f i

f f air

.
C VC Vq

V V
C C C

= = = =
κ

κ  

CALCULATE:   

(a) 
( )( ) ( )

2

54.0 nF 120 V
3.1 1 6.048 10  J

2
W −= − = ⋅  

(b) ( )( )f 3.1 120 V 372 VV = =  

ROUND:  To 2 significant figures, 56.0 10  JW −= ⋅  and f 370 V.V =  
DOUBLE-CHECK:  When the dielectric material is removed and the power supply is disconnected, the 
capacitance must decrease while the charge stays constant.  Since 1/ ,C V∝  the potential must increase. 

24.59. THINK:  A cylindrical capacitor is half-filled with a dielectric of constant .κ  This can be treated as two 
cylindrical capacitors in parallel.  It is connected with a battery of potential difference V  across its two 
electrodes.   Find the charge q  deposited on the capacitor, and find the ratio of this charge to the charge 

0q  deposited on a completely empty capacitor connected in the same way across the same potential drop. 
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SKETCH:   

 
 

RESEARCH:  The capacitance of a cylindrical capacitor is ( )0 2 12 / ln / .C L r rπε=  For capacitors in parallel, 

eq 1 2 .C C C= +  In general, for a given potential, .q CV=  

SIMPLIFY:  When the capacitor is half-full, 
( ) ( ) ( ) ( )0 0 0

eq
2 1 2 1 2 1

2 / 2 2 / 2
1 .

ln / ln / ln /
L L L

C
r r r r r r

πκε πε πε
κ= + = +  Then, 

( ) ( )0

2 1

/ 2
1 .

l /n
L

q V
r r

πε
κ= +  In the absence of a dielectric, ( ) ( )0 2 12 / ln / .C L r rπε=  This gives the result: 

( ) ( )0 0 2 12 / ln / .q LV r rπε=  The ratio is 
( ) ( )

( )
0 2 1

0 0 2 1

1 / ln / 1.
22 / ln /

LV r rq
q LV r r

πε κ κ
πε

 + +
= =  
 

 

CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK:  Since the power source supplies a constant ,V  the charge is not constant in the 
capacitor.  It should be greater with the dielectric since q C∝  and dielectrics increase capacitance. 

24.60. THINK:  The dielectric slab has thickness .d  The parallel plate capacitor with area 
2 2100. cm 0.0100 mA = =  is charged by a battery of 110. V.V =  The plate separation distance is 

250. cm 0.0250 m.d = =  The dielectric constant is 2.31.κ =   
(a) Find the capacitance ,C  the potential difference ,V the electric field ,E  the total charge stored on the 
plate ,Q  and electric energy stored U  in the capacitor before inserting the dielectric material. 
(b) Find the above physical quantities, when the dielectric slab is inserted while the battery is kept 
connected. 
(c) Find the above physical quantities, when the dielectric slab is inserted after the battery was 
disconnected. 
SKETCH:   

 
RESEARCH:   
(a) For a parallel plate capacitor, 0 / .C A dε=  While connected to a battery, V  across the capacitor is 
equal to that of the battery.  The electric field is / .E V d=  The total charge Q  can be found from .Q CV=  
The electrical energy of a capacitor is ( )1/ 2 .U QV=  

(b) When the dielectric inserted the capacitance becomes 0' / .C A d Cκε κ= =  With the battery still 
connected, the potential V stays constant but the charge changes; ' ' .Q C V=  The electric field is / ;E V d=  
it does not change.  The electrical energy becomes ( )' 1/ 2 ' .U Q V=  
(c) When the dielectric slab is inserted after the battery is disconnected the capacitance is still the same as 
in part (b).  Now the potential does not remain constant, but the charge does; the charge is the same Q  as 
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in part (a), and the potential becomes " / '.V Q V=  The electric field is " "/ ,E V d=  and the electrical 
energy is ( )" 1/ 2 ".U QV=  
SIMPLIFY:   
(a)  0 / ,C A dε=  batt ,V V=  / ,E V d=  battQ CV=   and ( )1/ 2 .U QV=  

(b)  ' ,C Cκ=  batt ,V V=  / ,E V d=  batt' 'Q C V=  and ( )1/ 2 ' .U Q V=  

(c)  ' ,C Cκ=  batt batt" / ' / ' / ,V Q C CV C V κ= = =  " "/ ,E V d=  battQ CV=  and ( )1/ 2 ".U QV=  
CALCULATE:   

(a)  
( )( )12 2

12
8.8542 10  F / m 0.0100 m

3.5417 10  F,
0.0250 m

C
−

−
⋅

= = ⋅    110. V,V =    

3110. V 4.40 10  V/m,
0.0250 m

E = = ⋅  ( )( )12 103.5417 10  F 110. V 3.896 10  FQ − −= ⋅ = ⋅   and 

( )( )( )10 81/ 2 3.896 10  J 110. V 2.143 10  J.U − −= ⋅ = ⋅  

(b)  ( )( )12 12' 2.31 3.5417 10  F 8.181 10  F,C − −= ⋅ = ⋅   110. V,V =   34.40 10  V/m,E = ⋅  

( )( )12 10' 8.181 10  F 110. V 8.999 10  CQ − −= ⋅ = ⋅   and  ( )( )( )10 81/ 2 8.999 10  C 110. V 4.949 10  J.U − −= ⋅ = ⋅  

(c)  12' 8.181 10  F,C −= ⋅  110. V" 47.62 V,
2.31

V = =  47.62 V" 1905 V/m,
0.0250 m

E = =  103.896 10  CQ −= ⋅  and 

( )( )( )10 91/ 2 3.896 10  C 47.62 V 9.276 10  J.U − −= ⋅ = ⋅  

ROUND:   Rounding to three significant figures: 
(a)  3.54 pF,C =  110. V,V =  34.40 10  V/m,E = ⋅  390. pFQ =  and 21.4 nJ.U =  

(b)  ' 8.18 pF,C =  110. V,V =  34.40 10  V/m,E = ⋅  ' 900. pCQ =  and 49.5 nJ.U =  

(c)  ' 8.18 pF,C =  " 47.6 V,V =  3" 1.90 10  V/m,E = ⋅  390. pCQ =  and 9.28 nJ.U =  
DOUBLE-CHECK:  Capacitance increases with a dielectric material, when the battery stays connected, q  
must increase.  When the battery is disconnected before the dielectric is inserted, V must decrease. 

24.61. THINK: A parallel plate capacitor has a capacitance of 120. pFC =  and plate area of 
2 2100. cm 0.0100 m .A = =  The space between the plates is filled with mica of dielectric constant 5.40.κ =  

The plates of the capacitor are kept at 50.0 V.V =   I want to find: 
(a) The strength of the electric field mica, .E  
(b) The amount of free charge on the plates, .Q  
(c) The amount of induced charge on mica, ind .Q  
SKETCH:   

 
 

RESEARCH:  For a parallel plate capacitor, 0 / .C A dε κ=  While connected to a battery, V across the 
capacitor is equal to that of the battery.  The field in the mica is; therefore, just the field between the plates, 

/ .E V d=  The charge Q  is .Q CV=  The induced charge in the mica is found by considering 

net 0 induced .E E E= −  
SIMPLIFY:   

(a)  0 0  
A A

C d
d C

ε κ ε κ
= ⇒ =  and 

0

.V VCE
d Aε κ

= =  
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(b)  Q CV=  

(c)  net ind ind net  ,E E E E E E= − ⇒ = −  ind net

0 0 0 0 0

.
Q QQ Q Q

A A A A Aε ε ε ε κε
= − = −  Then ind

11 .Q Q
κ

 = − 
 

 

CALCULATE:   

(a)  
( )( )

( )( )( )12 2

50.0 V 120. pF
12554.9 V / m

8.85 10  F / m 0.0100 m 5.40
E

−
= =

⋅
 

(b)  ( )( )120. pF 50.0 V 6.00 nCQ = =  

(c)  ( )ind
16.00 nC 1 4.8888 nC

5.40
Q  

= − = 
 

 

ROUND:  To three significant figures, 12.6 kV / m,E =  6.00 nCQ =  and ind 4.89 nC.Q =  
DOUBLE-CHECK:  The charge induced in the dielectric should be less than the charge on the capacitor 
plates.  

24.62. THINK:  Given a material with dielectric constant κ = 3.40 and dielectric strength 
= ⋅ 7

max / 3.00 10  V/m,V d I want to design a capacitor with capacitance = 47.0 pFC , which can hold a 
charge of = 7.50 nC.q  Let x and y be the dimensions of the parallel plates, and let z be the plate 
separation. 
SKETCH:   

 
RESEARCH:  κε= = 047.0 pF / ,C A z  = ,A xy  = = ∆7.50 nC ,q C V  = ∆ = ⋅ 7/ 3.00 10  V/m, E V z  
and κ = 3.40.  

SIMPLIFY:  ∆
= = .

qVz
E EC

 The dimensions are minimized when = ,x y   

ε ε
κ κ

κε
 

= = ⇒ = 
 

1/22
0 0

0
  .

A x zCz x
C C

 

CALCULATE:  
( )( )

−= = ⋅
⋅

6
7

7.50 nC 5.3191 10  m,
3.00 10  V / m 47.0 pF

z  

( )( )
( )( )

−
−

− −

 ⋅
 = = ⋅
  ⋅ 

1/2
6

3
12 3 -1 4 2

5.32 10  m 47.0 pF
2.8827 10  m

3.40 8.85 10  m  kg  s  A
x  

ROUND:  −= ⋅ 65.32 10  mz  and −= = ⋅ 32.88 10  m.x y  
DOUBLE-CHECK: Since the charge stored and the capacitance was very small, it is not surprising, 
though perhaps unrealistic, to have such small dimensions.  

24.63. THINK: The plates on the parallel plate capacitor have a width 1.00 cm 0.0100 mW = =  and a length 
10.0 cm 0.100 m,L = =  and therefore an area of 2 210.0 cm 0.00100 m .A = =  The separation between the 

plates is 0.100 mm 0.000100 m.d = =   It is charged by a power supply at a potential difference of  
31.00 10  V.V = ⋅   The power supply is then removed, and without being discharged, the capacitor is placed 

in a vertical position above a container holding de-ionized water, such that the short sides of the plates are 
in contact with the water.  Demonstrate that the water will rise between the plates, and determine the 
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system of equations that would allow one to calculate the height to which the water rises between the 
plates. 
SKETCH:   

 
 

RESEARCH:  The capacitance of a parallel plate capacitor with air between the plates is air 0 / .C A dε=  The 
capacitance of a parallel plate capacitor with de-ionized water between the plates is 

water 0 air/ ,C A d Cκε κ= =  where 80.4.κ =  The charge on a capacitor is .q CV=  The energy stored in a 

capacitor is ( )2 / 2 .U q C=  The potential energy of a column of water with height h inside the parallel plate 

capacitor is g CM ,U mgh=  where CMh  is the height of the center of mass of the column of water.  The mass 

of the water is ,m Vρ=  where 3 31.00 10  kg/m .ρ = ⋅  

SIMPLIFY:  With air, the capacitor has a capacitance of 0
air .

A
C

d
ε

=  The charge on the capacitor is 

air air .q C V=  The energy stored in the capacitor is 
2
air

air .
2
q

U
C

=  Once the capacitor is charged and the battery 

is removed, the charge on the capacitor stays the same.  Since de-ionized water does not conduct 
electricity, the charge on each plate will stay the same even after the capacitor touches the water.  By 
bringing the edge of the capacitor in contact with the free surface of the water in the tank, an upward force 
will act on the water.  This can be proven from energy considerations. Assume that the water is indeed 
pulled upward between the plates until it completely fills the space between the plates (the water column 
height equals the length of the plates, L).  The new capacitor with water as dielectric has a capacitance 

0
water air .

A
C C

d
κε

κ= =  The energy stored by this capacitor would be: 
2 2
water air

water air
water air

1 .
2 2
q q

U U
C Cκ κ

= = =  The 

energy stored by the capacitor with water as a dielectric is less than the energy stored by the capacitor with 

air:  water air air air air
1 1 .U U U U U Uκ
κ κ

−
∆ = − = − =   The change (final minus initial) in the energy of the 

system (capacitor) is negative, which means the system is doing work.  This work is done against the force 
of gravity to pull the water upward between the plates.  The potential energy of a column of water with 

height equal to the length of the capacitor plate would be 2
g CM

1 1 .
2 2

U mgh VgL gWL dρ ρ= = =   The work 

done by the electric field in the capacitor is not enough to pull the water all the way up to a height L, but is 
enough to pull the water to some height h between the plates.  The new capacitor is, in effect, a parallel 
combination of two capacitors: one with air, another with a dielectric (water). Their respective 

capacitances are: 0 1 0
1

A Wh
C

d d
κε κε

= =  and 
( )00 2

2 .
W L hA

C
d d

εε −
= =  The charge will no longer be 

uniformly distributed on the plates.  Rather, it will be redistributed such that the voltages on the parallel 

capacitors are the same: 1 2
1 2

1 2

  .
q q

V V
C C

= ⇒ =  In addition, the total charge remains 1 2 air .q q q+ =  The 

energies stored in the two capacitors are 
2
1

1
12

q
U

C
=  and 

2
2

2
2

.
2
q

U
C

=  By conservation of energy, i fU U= , or 
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more specifically, air 1 2 ,
2
hU U U mg= + +  where 

2
hmg represents the gravitational energy of the column of 

water that is sucked upward between the plates of the capacitor.  For a height h of the water between the 
plates, the mass of water is .m V dWhρ ρ= =  

CALCULATE:  
( )( )( )12 2 2

11
air 4

8.85 10  F/m 1.00 10  m 10.0 10  m
8.85 10  F,

1.00 10  m
C

− − −

−
−

⋅ ⋅ ⋅
= = ⋅

⋅
  

( )( )11 3 8
air 8.85 10  F 1.00 10  V 8.85 10  C,q − −= ⋅ ⋅ = ⋅  

( )
( )

28
5

air 11

8.85 10  C
4.425 10  J,

2 8.85 10  F
U

−

−

−

⋅
= = ⋅

⋅
  

5
7

water
4.425 10  J 5.51 10  J

80.4
U

−
−⋅

= = ⋅  

Recall that water air :U U U∆ = −  ( )5 51 80.4 4.425 10  J 4.372 10  J.
80.4

U − −− 
∆ = ⋅ − ⋅ 

 
  So water air ,U U<  and the 

capacitor is doing work against gravity to “suck” water up between the plates.  So it is true that the water is 
drawn up to some height h between the plates of the capacitor.  Note that if the water rose to height h L= , 
the gravitational potential energy stored in the system would be: 

( )( )( )( ) ( )23 3 2
5

g

1.00 10  kg/m 9.81 m/s 0.0100 m 0.100 m 0.000100 m
4.905 10  J.

2
U −

⋅
= = ⋅  

So the work done by the capacitor’s electric field is not enough to suck up the water to the full height of L, 
since g water .U U> The parallel combination of the two “new” capacitors with water and air, respectively, 

has capacitances  

 

( )( )( )

( )( )( ) ( )( )

12 2
8

1 4

12 2
10

2 4

80.4 8.85 10  F/m 1.00 10  m
7.12 10  F

1.00 10  m
8.85 10  F/m 1.00 10  m

8.85 10 0.100 m  F,
1.00 10  m

h
C h

L h
C h

− −

−
−

− −

−
−

⋅ ⋅
= = ⋅

⋅
⋅ ⋅ −

= = ⋅ −
⋅

 

 where h is measured in meters.  By considering the new charge distribution and equivalent voltages on each 

1C  and 2 ,C  there are two equations: 

 ( ) ( ) ( )( )10 81 2
1 28 10

8
1 2

 8.85 10 0.100 m 7.08 10  
7.08 10 8.85 10 0.100 m

8.85 10  C

q q
q h q h

h h

q q

− −
− −

−

= ⇒ ⋅ − = ⋅
⋅ ⋅ −

+ = ⋅

 

 In addition, the energies stored in each capacitor is 
2
1

1
12

q
U

C
=  and 

2
2

2
22

q
U

C
= , or 

2
1

1 71.424 10
q

U
h−

=
⋅

 and 

( )
2
2

2 9 .
1.771 10 0.100 m

q
U

h−
=

⋅ −
  The mass of the water between the parallel plates is 

( )( )( ) ( )3 31.00 10  kg/m 0.000100 m 0.0100 m 0.00100 kg .m dWh h hρ= = ⋅ =   The gravitational potential 

energy of this water is:  
( )( ) ( )

2
2 3 2

g

0.00100 kg 9.81 m/s
/ 2 4.91 10  J .

2
U mgh h h−= = = ⋅   By conservation 

of energy,   

( )

air 1 2

2 2
5 3 21 2

7 9

2

4.425 10 4.91 10
1.424 10 1.771 10 0.1 m

hU U U mg

q q
h

h h
− −

− −

= + +

⋅ = + + ⋅
⋅ ⋅ −
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 where the energies above are each measured in Joules.  This provides the third equation needed to 
determine the height h.  The system of equations contains the three unknowns, 1 2, , and q q h , where the 
charges are in Coulombs and the height in meters:  

 
( ) ( )( )

( )

2
1 2

8
1 2

2 2
5 3 21 2

7 9

8.85 10 0.100 m 7.08

8.85 10

4.425 10 4.91 10
1.424 10 1.771 10 0.100 m

q h q h

q q

q q
h

h h

−

−

− −
− −

⋅ − =

+ = ⋅

⋅ = + + ⋅
⋅ ⋅ −

 

ROUND: A computer algebra system can be used to solve the system. There are four solutions:  

( )8 9
1 20.0956 m,  9.08 10  C,  2.32 10  C ,h q q− −= − = ⋅ = − ⋅  

( )7 11 8
1 27.11 10  m,  5.04 10  C,  8.86 10  C ,h q q− − −= − ⋅ = − ⋅ = ⋅  

( )3 5 5
1 21.27 10  m,  1.76 10  C,  1.75 10  C ,h q q− − −= − ⋅ = ⋅ = − ⋅

( )2 8 11
1 29.43 10  m,  8.84 10  C,  6.67 10  C .h q q− − −= ⋅ = ⋅ = ⋅  

DOUBLE-CHECK:  Note that if the height of the water column h were to equal the length of the capacitor 
plate, L (where 0.100 mL = ), it would defy the first equation in the system of equations above.  This is 
consistent with an earlier finding, where it was shown that the final height of the water cannot be h L=  
since there is not enough energy stored in the capacitor’s electric field (with h L= ) to balance the 
gravitational potential energy in the water column of height h L= . 

24.64. This is like two parallel plate capacitors in parallel, each with an area ( ) 21/ 2 .A rπ=  In parallel,  

( ) ( )

( ) ( )
( ) ( )

2
0 0 0 0

eq 1 2

212
8

1 1
2

8.85 10  F/m 0.610 m
1 11.1 2.980 10  F 30.0 nF.

2 0.00210 m

A A A r
C C C

d d d d
ε ε κ ε ε π

κ κ

π−
−

= + = + = + = +

⋅
= + = ⋅ ≈

 

24.65. The largest potential difference that can be sustained without breakdown is 
about ( )( )2.5 kV/mm 15 mm 37.5 kV= .  Next, consider the relationship between charge deposited and 
change in potential:  

( ) ( )
2

12 2 1 2 4 80 0.0025 m8.85 10  C  N  m 3.75 10  V 5.5 10  C.
0.015 m

A
Q CV V

d
ε − − − − 

= = = ⋅ ⋅ = ⋅ 
 

 

24.66. The capacitances are given as 1 2.0 nFC =  and 2 3 4.0 nF.C C= =  The potential difference applied is 
1.5 V.V =  The potential difference on 1C  is equal to that of the battery.  Then 1 1 1q C V=  1C V=  

( )( )2.0 nF 1.5 V 3.0 nC.= =  Note 2C  and 3C  are in series.  Their equivalent capacitance 23C  is  

( )( )2 3
23

2 3

4.0 nF 4.0 nF
2.0 nF.

8.0 nF
C C

C
C C

= = =
+

 

With 1C  and 23C  in parallel, 1 23 .V V V= =  The charges for capacitors in series are equal; then 2 3 23q q q= =  

( )( )23 2.0 nF 1.5 V 3.0 nC.C V= = =  

24.67. The energy stored in a capacitor is ( ) 21/ 2 .U CV=  Putting a Mylar insulator between the plates of a 
vacuum gap capacitor will increase the capacitance C  by a factor of 3.1,κ =  which is Mylar’s dielectric 
constant.  Therefore, the percentage increase is 

( ) ( ) ( )( )
( ) ( ) ( )( )

2 2
f i

2
i

1/ 2 1/ 2
100% 100% 1 100% 3.1 1 100% 210%

1/ 2

CV CVU U
U CV

κ
κ

−−
⋅ = ⋅ = − ⋅ = − ⋅ =  
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24.68. The capacitance of a parallel plate capacitor in air is given by 0 / ,C A dε=  where A  is the area of the plates 
and d  is the separation between the plates. Increasing the distance between the plates reduces the 
capacitance and therefore, at constant voltage, reduces the charge on the plates. The lost charge backs up 
into the battery, and therefore a calculation of total energy must account for the battery energy, as well.  

Model the battery as a very large capacitance Cb which is in parallel  with the capacitor being manipulated 
(because the connection is positive-to-positive and negative-to-negative), which has capacitances before 
and after of Ci and Cf, respectively. The total charge (capacitor and battery combined) is q, the charge on 
the battery is qb, and since i f,bC C C  it follows that the bq q≈  and the voltage, / ,b bV q C=  is essentially 

constant. The energy stored in a capacitor is in general 
21 ,

2
q
C

 
 
 

 so here the change in total potential 

energy is  

( )( )

( )

( )

f i

2 2

f i

2

f i

2
i f

f i

2
i f

2
f i f i

2

i f i f2

2
i f

1 1
2 2

1 1
2

2

2

because ,
2
1 because 
2

b b

b b

b b

b b b

b
b

b

U U U

q q
C C C C

q
C C C C

q C C
C C C C

q C C
C C C C C C C

q
C C C C C

C

V C C q q

∆ = −

   
= −   + +   

 
= − + + 

 −
=   + + 

 −
=  + + + 

≈ −

≈ − ≈



 

Note that the capacitor being manipulated loses energy, since for the capacitor ( )2
f i

1 0.
2

U V C C∆ = − <  

Overall, however, the system gains energy, ( )2
i f

1 0,
2

U V C C∆ = − > which means the battery gains twice as 

much energy as the capacitor loses. Since work W done on the system equals ∆ U for the system, the work 
done is  

( )

( )( )( )
( ) ( )

2
i f

2 0 0

i f

2
0

i f

212 4 2

3 3

10

1
2
1
2

1 1
2

8.85 10  F/m 12.0 10  m 9.00 V 1 1
2 1.50 10 m 2.75 10 m

1.30 10 J

W V C C

A A
V

d d

AV
d d

ε ε

ε

− −

− −

−

= −

 
= − 

 
 

= − 
 

 ⋅ ⋅
 = −
 ⋅ ⋅ 

= ⋅
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24.69. The capacitance is =1.00 FC  for a square, parallel-plate capacitor. The separation is = 0.100 mmd  

= 0.000100 m,  and is filled with paper of κ = 5.00.  For a parallel plate capacitor 
2

0 0 .
A L

C
d d

κε κε
= =  Then 

( )( )
( )( )κε −

= = = ≈
⋅ 12

0

0.000100 m 1.00 F
1503 m 1.50 km.

5.00 8.85 10  F/m

dCL  

24.70. The capacitance is 4.00 pFC =  and the potential difference is 10.0 V.V =  The plate separation is 
3.00 mm.d =  

(a)  The charge is ( )( )4.00 pF 10.0 V 40.0 pC.Q CV= = =  

(b)  The energy stored is ( ) ( )( )( )221/ 2 1/ 2 4.00 pF 10.0 V 200. pJ.U CV= = =  

(c)  The area is ( )( ) ( )12 3 2
0/ 4.00 pF 0.00300 m / 8.85 10  F/m 1.36 10  m .A Cd ε − −= = ⋅ = ⋅  

(d)  The dielectric constant of polystyrene is 2.6.κ =   Then ( )air 2.6 4.00 pF 10. pF.C Cκ= = =  

24.71. First, simplify the circuit diagram to the following figure:  

 
with = +5 1 2C C C  and = +6 3 4 .C C C The total capacitance is given by ( )−= + 1

tot 5 61/ 1/ .C C C   

Since the capacitors are in series, the charge on each capacitor is = tot .Bq C V  The potential  

at point A  is then given by = + − 5/ .A D BV V V q C  Also, ( ) ( )= + =5 1.00 mF 2.00 mF 3.00 mF,C  

( ) ( )= + =6 3.00 mF 4.00 mF 7.00 mF,C  =tot 2.10 mF,C  and ( )( )= =2.10 mF 1.00 V 2.10 mC.q  

Therefore, the potential at point A is ( ) ( ) ( )= + − =0.00 V 1.00 V 2.10 mC / 3.00 mF 0.300 V.AV  

24.72. The energy is given by 2 / 2 ,U q C=  with 0 /C A d=κε  for a parallel-plate capacitor.  The energy stored is: 

( ) ( )
( )( )( )

24 32

12 3 2
0

4.20 10 C 1.30 10  m
289.19 J 289 J.

2 2 7.0 8.85 10 F/m 6.40 10  m
q d

U
Aκε

− −

− −

⋅ ⋅
= = = ≈

⋅ ⋅
 

24.73. The capacitance is given by 
( )( )( )

( )
κε

− −
−

−

⋅ ⋅
= = = ⋅

⋅

12 10 2
130

8

9.10 8.85 10  F/m 1.00 10  m
4.03 10  F.

2.00 10  m

A
C

d
 

24.74.  (a) Since the capacitors 1C  and 2C  have the same potential,  

( )1 2 1
1 2

1 2 2

6.00 μF
    40.0 μC 80.0 μC.

3.00 μF
Q Q CqV Q Q

C C C C
   

= ⇒ = ⇒ = = =   
  

 

(b) Since the total charge on 1C  and 2C  is equal to that on 3 ,C  it is required that: 3 1 2 120. μC.Q Q Q= + =  
(c) The total voltage applied is:  

31

1 3

80.0 μC 120. μC
37.3 V.

6.00 μF 5.00 μF
QQ

C C
+ = + =  
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24.75. The capacitance of a cylindrical capacitor is given by:  

( ) ( ) ( )( )
( )

12 3 -1 4 2

0

2 1

2 8.85 10  m  kg  s  A 0.0724 m2
63 0.792 nF.

ln / ln 4.16 cm / 3.02 cm
L

C
r r

πκ πε
− −⋅

= = =  

24.76. (a) The capacitance is given by: ( )( )12 6
04 4 8.85 10  F/m 6.328 10  m 704 μF.C Rπε π −= = ⋅ ⋅ =  

(b) 
( )
( )

252
14

7.8 10
4.32 10  J.

2 2 704 μF
QU

C

− ⋅
= = = ⋅  

24.77. THINK:  A parallel plate capacitor with an air gap is connected to a 6.00 V  battery.  The initial energy of 
the capacitor is =i 72.0 nJ.U  After a dielectric material is inserted, the capacitor has an additional energy 
of 317 nJ.  The final energy stored in the capacitor is = + =f 72.0 nJ 317 nJ 389 nJ.U  
SKETCH:   

 
RESEARCH:  The energy stored in a capacitor is given by ( )= 21/ 2 .U CV  The initial and final energy are 

( )= 2
i i1/ 2U C V  and ( )= 2

f f1/ 2 .U C V  
SIMPLIFY:   
(a) Taking a ratio of fU  and iU  yields =f i f i/ / .U U C C  Using κ=f i ,C C  the dielectric constant is found 
to be κ = f i/ .U U  

(b) The charge in the capacitor is given by = .Q CV  Using ( )= 21/ 2 ,U CV  it is found that the charge is 

( )= =22 / 2 / .Q U V V U V   

(c) The electric field inside a parallel plate capacitor is 
κε κε

= =
0 0

2 .Q UE
A AV

 

(d) The electric field inside the capacitor after the dielectric material is inserted is 
( )κ

κε ε
= = ff

f
0 0

2 /2
.

UU
E

AV AV
 Using the result in (a) κ=i f /U U  yields ( )ε= =0f i i2 / .AVE U E  This means 

that the field does not change.   
CALCULATE:   

(a) The dielectric constant is κ = =
389 nJ 5.403.
72.0 nJ

 

(b) The charge in the capacitor after the dielectric material has been inserted is  

( )
µ

−⋅
= = =

9
f

f

2 389 10  J2
0.129 C.

6.00 V
U

Q
V

 

(c) The electric field inside the capacitor before the dielectric material is inserted is  

( )
( )( )( )ε − −

= = = ⋅
⋅ ⋅

5i
i 12 2 2 3 2

0

2 72.0 nJ2
5.424 10  N/C.

8.85 10  C /N m 5.00 10  m 6.00 V

U
E

AV
 

(d) = = ⋅ 5
f i 5.424 10  N/CE E  
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ROUND: 
(a)  κ = 5.40.  
(b)  µ=f 0.130 C.Q  
(c)  =i 542 kV/m.E  
(d)  =f 542 kV/m.E  
DOUBLE-CHECK:  The numerical results are reasonable. 

24.78. THINK:  Since charge is conserved, the initial charge on the capacitor charged by the battery is equal to 
the total charge on the capacitors that are connected. 
SKETCH:   

 
 

RESEARCH:  Since the charge is conserved,  

i 1 2 1 i 1 f f .Q Q Q C V C V CV= + ⇒ = +  

The energy stored in a capacitor is ( ) 21/ 2 .U CV=   

SIMPLIFY:  Solving for C  in the above equation yields 
( )1 i f

f

.
C V V

C
V
−

=   The energy stored in the second 

capacitor is ( ) 2
f1/ 2 .U CV=   

CALCULATE:  
( )( )

( )
8.00 μF 240. V 80.0 V

16.0 μF
80.0 V

C
−

= =   

( )( )21 16.0 μF 80.0 V 51.2 mJ
2

U = =  

ROUND:  Keeping only three significant figures gives 16.0 μFC =  and 51.2 mJ.U =  
DOUBLE-CHECK:  The equivalent capacitance of the two capacitors is eq 1 24.0μF.C C C= + =  The 

charge on the equivalent capacitor is ( )( )eq f 24.0μF 80.0 V 1.92 mC.Q C V= = =  The initial charge on the 

first capacitor is ( )( )i 1 i 8.00μF 240. V 1.92 mC,Q C V= = =  so charge is conserved, as expected.  

24.79. THINK:  In this problem, the work-energy relation is used.  The dielectric constant of nylon is κ = 3.50.  
Use the work-energy relation, and think about the initial and final energies of the capacitor. 
SKETCH:   

 
 

RESEARCH:  From work-energy relation, it is found that = −∆ = −i f .W U U U The initial and final 

energies of the capacitor are 2
i i

1
2

U CV=  and  

( )
κκ

    
 = = =           

22 2
i ii i i

2
f i

1 1 1 .
2 2 2

C VQ C VU
C C
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SIMPLIFY:  Therefore, 2
i

1 11 .
2

W CV
κ

 = − 
 

 The work done by the electric field is ,W FL= where L  is the 

length of the square plate. Using the capacitances of a parallel plate, 0 ,
A

C
d
ε

= it is found that  

( )
2 2

20 0 i 02
i i

1 1 1 1 1 11   1 1 .
2 2 2

A L V L
FL V F V

d Ld d
ε ε ε

κ κ κ
        = − ⇒ = − = ⋅ −                

 

CALCULATE:  Thus the net force done by the electric field is  

( )( ) ( )
12 2 2

2 8

3

1 18.85 10  C /N m 0.0200 m 15.0 V 1 10  N.
2 3.501.00 10

1.4223
 m

F
−

−

−

 ⋅  = − = ⋅      ⋅ 
 

ROUND:  Keeping three significant figures gives  81.42 10  N.F −= ⋅ The positive sign of the force means 
that the direction of the force is the same direction as the motion of the dielectric material.   
DOUBLE-CHECK:  The magnitude and direction of the force make sense, considering the scale. Note 
also that although here the force was treated as an average force, the solution to Conceptual Question 
24.25 shows that the force is fact constant. 

24.80. THINK:  This problem is similar to the motion of a projectile under a gravitational force.  In this case the 
gravitational force is replaced by an electrostatic force. Let L be the length of the plates. 
SKETCH:   

 
 

RESEARCH:  The force acting on a proton is given by .F qE=  For a parallel plate, the electric field is 

0/ .E σ ε=  Thus, 0/ .F qσ ε=  The time required to reach the far edge of the capacitor is 0/ .t L V=  
Therefore, the deflection distance Y∆  is  

2 2
2

2
0 0 0

1 1 1 .
2 2 2

qF L LY at
m V m V

σ
ε

     
∆ = = =             

 

SIMPLIFY:  Not applicable. 
CALCULATE:  Putting in the numerical values gives:  

( )( )
( ) ( )( )

( )
( )

219 6 2 2

227 12 2 2 6

1.602 10  C 1.0 10  C / m 2.0 10  m1 0.002168 m.
2 1.67 10  kg 8.85 10  C / N m 1.0 10  m / s

Y
− − −

− −

  ⋅ ⋅ ⋅  ∆ = =  ⋅ ⋅  ⋅  

 

ROUND:  2.2 mm.Y∆ ≈  
DOUBLE-CHECK:  This is reasonable. 

24.81. THINK:  A parallel plate capacitor with a squared area of side =10.0 cmL  and separation distance 
= 2.50 mmd  is charged to a potential difference of =0 75.0 V,V  and then disconnected from the battery.  

I want to determine the capacitor’s capacitance, 0 ,C  and the energy, 0 ,U  stored in it at this point.  A 
dielectric with constant κ = 3.40 is then inserted into the capacitor such that it fills 2/3 of the volume 
between the plates.  I want to determine the new capacitance, new potential difference between the plates 
and energy of the capacitor, ′ ′,  C V  and ′.U   I want to determine how much work, if any, is required to 
insert the dielectric into the capacitor. 
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SKETCH:   

 
RESEARCH:   
(a) The capacitance of a parallel plate capacitor is given by ε=0 0 / .C A d  The energy stored in the capacitor 

is ( )= 2
0 0 01/2 .U C V  

(b) After a dielectric has been inserted, the capacitor can be treates as two capacitors in parallel, one with a 
dielectric, and one without.  The new capacitance is obtained by adding the contributions of the two parts 
of the capacitor, i.e., ′ = +1 2 .C C C  Since the charge on the capacitor is unchanged, and the potential is the 

same across both parts of the new capacitor, ( )′ ′ ′ ′= ⇒ =0 0 0 0  / .C V C V V C C V   The new energy stored on 

the capacitor is ( )′ ′ ′= 21/ 2 .U C V  
SIMPLIFY:   
(a) ε=0 0 / ;C A d   ( )= 2

0 0 01/2U C V  

(b) The new capacitance is ( ) ( ) κκ + ′ = + = + =  
 

1 2 0 0 0
1 21/3 2/3 .

3
C C C C C C  The new potential between 

the plates is  ( )′ ′= 0 0/V C C V . The new energy stored in the capacitor is  

( )

( ) ( )
κ κ

κ κ

 
+   +              ′ ′ ′= = = =    + +  

2
0 0

0
0 2

2 0 0
0

1 2 1 2
3 3 31 31/ 2

2 2 1 2 1 2

C V
C C

C V
U C V U .  

(c) By using the work energy relation, it is found that the applied work is  
( )κ

κκ
− ′= ∆ = − = =−  ++ 0 0 0

2 13 .1
1 21 2

W U U U U U  

Since κ  is larger than 1,  this means that the applied work is negative.  Therefore, the external agent does 
not need to do work to insert the dielectric slab.   
CALCULATE:  Substituting the numerical values yields, 

(a)  
( )( )−⋅

= =

212 2 2

0

8.85 10  C /N m 0.100 m
35.42 pF,

0.0025 m
C   ( )( )− −= ⋅ = ⋅212 8

0
1 35.42 10  F 75.0 V 9.961 10  J
2

U  

(b)  
( ) ( )

+
′ = =

1 2 3.4
35.42 pF 92.08 pF,

3
C   ( )′ = =

35.42 pF 75.0 V 28.85 V,
92.08 pF

V  

( ) ( ) −−′ = = ⋅⋅
+

883 3.83 10  J9.961 10  J1 2 3.4
U  

(c)  Not required. 
ROUND:  Rounding all results to three significant figures gives: 
(a)  =0 35.4 pFC and −= ⋅ 8

0 0.996 10  J.U  

(b)  ′ = 92.1 pF,C ′ = 28.9 VV  and −= ⋅ 83.83 10  J.U  
(c)  Not required. 
DOUBLE-CHECK:  The answers are of reasonable magnitudes and their respective units make sense.   
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24.82. THINK:  What would be the area of a parallel plate capacitor, with plate separation 1.0 mm,d =  capable 
of storing the same amount of energy as a AAA battery, or 3400 J ?  The potential difference of a AAA 
battery is 1.5 V.V =  What would be the area of such a capacitor be if the potential difference is to be the 
maximum that can be applied without dielectric breakdown of the air between the plates? 
SKETCH:   

 
 

RESEARCH:  The capacitance of the parallel plate capacitor is given by 0 / .C A dε=  The energy that can 

be stored in the capacitor is ( ) 21/ 2 .U CV=  The dielectric strength of air is 2.5 kV/mm.  

SIMPLIFY:  Substituting 0 /C A dε=  into the expression for U and solving for A :  

20
2

0

1 2  .
2

A dUU V A
d V
ε

ε
= ⇒ =  

CALCULATE:   
(a) Putting in the numerical values into the above expression gives  

( )( )
( )( )( )

3
11 2

212 2 2

2 1.0 10  m 3400 J
3.413 10  m .

8.85 10  C / N m 1.5 V
A

−

−

⋅
= = ⋅

⋅
 

(b) Replacing V  with the maximum voltage before dielectric breakdown occurs yields 

( )( )

( )( ) ( )( )( )
3

5 2
2

12 2 2 3

2 1.0 10  m 3400 J
1.229 10  m .

8.85 10  C / N m 2.5 10  V/mm 1.0 mm
A

−

−

⋅
= = ⋅

⋅ ⋅
 

Note that ( )( )max 2.5 kV/mm 1.0 mm 2.5 kV.V = =  
ROUND:  Rounding the results to three significant figures yields  
(a) 11 23.41 10  mA = ⋅  and (b) 5 21.23 10  m .A = ⋅  
(c)  These areas are in the order of many square km, making such a capacitor highly impractical.  
DOUBLE-CHECK:  This makes sense.  Capacitors are excellent devices for allowing access to small 
amounts of energy extremely quickly; they are not feasible for slow release of large amounts of energy. It 
makes sense that only a horrendously large capacitor would have the same physical capabilities as a 
battery. 

24.83. THINK:  Recall the equivalent capacitance of capacitors connected in series. The areas of the two 
capacitors in this question are the same. The charges are the same for both capacitors. 
SKETCH:   
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RESEARCH:  An equivalent capacitance of two capacitors connected in series is 
eq 1 2

1 1 1 .
C C C

= +  The 

capacitance of a parallel plate capacitor is given by 0 .
A

C
d
ε

=  Since 1C  and 2C  have the same area and the 

same plate separation, the capacitance of 2C  is equal to 2 1 ,C Cκ=  where κ  is the dielectric constant of 

material in 2 .C  The equivalent capacitance, 
1 1

1
eq

1 2 1 1

1 1 1 1 .
1

C
C

C C C C
κ

κ κ

− −
   

= + = + =    +   
  

(a) The charge on the capacitors is = .Q CV  

(b) The total energy stored in the capacitors is ( ) ( )= =2 21/ 2 1/ 2 / .U CV Q C  

(c) The electric field inside 2C is given by ( ) ( )κε= 02 2 / / ,E Q A  and = =2 1Q Q Q  
SIMPLIFY:   

(a) 
( )

01

1 1
AC

CV V V
d
κεκ

κ κ
= = =

+ +
Q  

(b) 
( ) ( )

( ) ( )

2
21

2 22 2 2
01 1

1 2 2
1 1

2
21

22 2
02 1

2 2 2
2 1

1
2 2 2 1 2 1

1
2 2 2 1 2 1

C V
AVQ C V

U
C C d

C V
AVQ C V

U
C C d

κ
κ εκκ

κ κ

κ
κεκκ

κ κ κ

 
 + = = = =

+ +

 
 + = = = =

+ +

 

(c) 
( ) ( )

κε
κε κε κ κ

= = =
+ +

0
2

0 0 1 1
AVQ VE

A d A d
 

CALCULATE:  Substituting the numerical values into the above equations yields 

(a) 
( )( )( )

( )( )

12 4
10

1 2 3

7.00 8.854 10  F/m 1.00 10  m 96.0 V
7.44 10  C

0.100 10  m 7.00 1
Q Q

− −
−

−

⋅ ⋅
= = = ⋅

⋅ +
  

(b) 

( ) ( )( )
( ) ( )

( )

12 4
2 2

3

9
1 2

8.854 10  F/m 1.00 10  m
7.00 96.0 V

0.100 10  m
31.24 10  J

2 7.00 1
U

− −

−

−

 ⋅ ⋅
 
 ⋅ = = ⋅

+
. 

( )( )
( ) ( )

( )

12 4
2

3

9
2 2

8.854 10  F/m 1.00 10  m
7.00 96.0 V

0.100 10  m
4.46 10  J

2 7.00 1
U

− −

−

−

 ⋅ ⋅
 
 ⋅ = = ⋅

+
  

The total energy is 1 2 31.24 nJ+4.456 nJ 35.70 nJ.U U U= + = =   

(c) 
( )( )2 3

96.0 V 120,000 V/m
0.100 10  m 7.00 1

E
−

= =
⋅ +

 

ROUND:  Rounding all results to three significant figures gives the following answers. 
(a) = 0.744 nCQ   
(b) = 35.7 nJU   

(c) = ⋅ 5
2 1.20 10  V/mE  

DOUBLE-CHECK:  Dimensional analysis confirms that all results are in the correct units. 
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24.84. THINK: The plates of the parallel plates capacitor consist of two metal discs of radius 

1 4.00 cm 0.0400 m.R = =  The separation between the plates is 2.00 mm 0.00200 m.d = =  In part a) the 
space between the plates is filled with air.  In part b) a dielectric of out radius 1 ,R inner radius 

2 2.00 cm 0.0200 m,R = =  thickness 2.00 mm 0.00200 md = =  and dielectric constant 2.00κ =  is placed 
between the plates.  In part B) the situation can be modeled as two capacitors in parallel.  In part c) a solid 
disc of radius 1 ,R made of dielectric material having the dielectric constant 2.00κ =  is placed between the 
plates.  This situation can be modeled as two capacitors in series.  The thickness of the dielectric layer is 

/ 2.d  
SKETCH:   

 
RESEARCH:   
(a)  The capacitance of the parallel plate capacitor in air is 1 0 / ,C A dε=  while 2

1 .A Rπ=  

(b) The equivalent capacitance of the capacitors in parallel is given by 2 i 2 ,C C C ′′′= +  where 

( )2 2
2 0 0 1 2/ /C A d R R dκε κε π′ ′= = −   and  2

2 0 0 2/ / .C A d R dε ε π′′ ′′= =  

(c) The equivalent capacitance 3C  of the capacitors in series is ( ) 1

3 3 31/ 1/ ,C C C
−

′′′= +  where 

( )2
3 0 1 / /2C R dκε π′ =  and ( )2

3 0 1 / /2 .C R dε π′′ =  
SIMPLIFY:   
(a) 2

1 0 1R / .C dε π=  

(b) ( )( )
22 2

2 2 20 2 01 2
2 0 1 2 2

RR R
C R R R

d d d
ε π ε π

κε π κ
−

= + = − +  

(c) Not necessary. 
CALCULATE:   

(a) 
( )( ) ( )212 2 2

11
1

8.85 10  C / N m 0.0400 m
2.224 10  F

0.00200 m
C

π−

−
⋅

= = ⋅  

(b) 
( )( )

( ) ( )( ) ( )( )
12 2 2

2 2 2
2

8.85 10  C / N m
2.00 0.0400 m 0.0200 m 0.0200 m

0.00200 m
C

π−⋅
= − +  
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  113.892 10  F−= ⋅  

(c) 
( )( ) ( )212 2 2

11
3

2.00 8.85 10  C / N m 0.0400 m
8.897 10  F

0.00100 m
C

π−

−
⋅

′ = = ⋅  

( )( ) ( )212 2 2

11
3

8.85 10  C / N m 0.0400 m
4.4485 10  F

0.00100 m
C

π−

−
⋅

′′ = = ⋅  

1
11

3 11 11

1 1 2.9657 10  
8.897 10  F 4.4485 10  F

C
−

−
− −

 = + = ⋅ ⋅ ⋅ 
 

ROUND:  To 3 significant figures, 
(a)  11

1 2.22 10  FC −= ⋅  

(b)  11
2 3.89 10  FC −= ⋅  

(c)  11
3 2.97 10  FC −= ⋅  

DOUBLE-CHECK:  The value of a capacitor with a dielectric medium is greater than the value of the 
capacitor without a dielectric medium.  

24.85. THINK:  Capacitor 1 1.00 μFC =  has an electric potential of 1 50.0 V.V∆ =  Capacitor 2 2.00 μFC =  has an 

electric potential of 2 20.0 V.V∆ =  The two capacitors are connected positive plate to negative plate.  
Calculate the final charge, 1, fQ  on capacitor 1C  after the two capacitors have come to equilibrium. 
SKETCH:   

 
 

RESEARCH:  Because the capacitors are connected in such a way that the positive plate of each is 
connected to the negative plate of the other, they must be in series.  Therefore the final charges on 1C  and 

2C  must be equal.  Because charge is conserved, the total initial charge must equal the total final charge.  
The initial charge of the system is i 1, i 2, iQ Q Q= +  where 1, i 1 1Q C V= ∆  and 2, i 2 2 .Q C V= ∆  

SIMPLIFY:  f i 1 1 2 2
i i1 i2 1 1 2 2 i f f1 f2 f1,  ,  ,  and  .

2 2 2
Q Q C V C V

Q Q Q C V C V Q Q Q Q Q
+

= + = + = = = = =  

CALCULATE:  
( )( ) ( )( )6 6

5
f1

1.00 10  F 50.0 V 2.00 10  F 20.0 V
4.50 10  C

2
Q

− −

−
⋅ + ⋅

= = ⋅  

ROUND:  There were three significant figures provided in the question so the answer should be written as 
5

1, f 4.50 10  CQ −= ⋅  or 45.0 μC.  

DOUBLE-CHECK:   It is reasonable that there is less charge stored on capacitor 1C  after it was connected 
to 2C  because the potential across capacitor 1C  would have to decrease in order for it to come into 
equilibrium with 2 .C   

24.86. THINK:  The spherical capacitor consists of two concentric conducting spheres of radius 1r  and 2 ,r  where 

2 1.r r>  The space between the spheres is filled with a dielectric material of electric permeability 010 .ε ε=  

The dielectric material starts at 1r  and extends to radius ( )1 2 .R r R r< <  The problem can be modeled as 
two spherical capacitors connected in series.  
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SKETCH:   

 
 

RESEARCH:  The equivalent capacitance for capacitors in series is eq 1 21/ 1/ 1/ .C C C= +  The equation for 

the first spherical capacitor is ( )( )1 1 14 / .C r R R rπε= −  

SIMPLIFY:  ( )eq 1 2 2 1 1 21/ 1/ 1/ / ,C C C C C C C= + = +  substituting the values for 1C  and 2C  into the 

equation gives:  

1 2

eq 1 2

1 .
4 4
R r r R

C r R r Rπε πε
− −

= +  

Recall that 010 ,ε ε=  substituting this value into the equation gives:  
2 2

21 2 2 1 2 1 2 1
2

1 2eq 0 1 0 2 0 0 1 2

1 22 1 2 1
eq 0

2 1 2 10 1 2

10 101 1 1
104 10 4 4 4 10

109 101   4 .
9 104 10

r RR rR r r R R r r r R r r R r R
r R r RC r R r R r r R

r r RRr r r r R
C

Rr r r r Rr r R

π ε πε πε πε

πε
πε

 − −− − − + −
+= + = =        

   + −
= ⇒ =   + −  

 

In the limit of 1 ,R r= ( ) ( )( )2 2
eq 0 1 2 1 2 1 0 1 2 2 14 10 / 10 10 4 / .C r r r r r r r r rπε πε = − = −   In the limit of 2 ,R r=  

( )eq 0 1 2 2 14 10 / .C r r r rπε  = −   

CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK:  It is reasonable that the equivalent capacitance is greater in the limit 2 ,R r=  because 
there would be more dielectric material present in the spherical capacitor. 

24.87. THINK:  This problem is similar to finding the maximum height in a projectile motion.  However, in this 
case, the acceleration is due to the electric field of a parallel plate capacitor. Use the conservation of energy. 
SKETCH:   
(a)          (b) 

       
 

 
 
 
 
 



Chapter 24: Capacitors 

 1043 

(c)   

   
 

RESEARCH:   
(a)  The energy required to reach the positive plate is given by .U q V∆ = ∆  The energy of a proton is 

2
i (1/ 2) .K mv=  In order for proton to reach the positive plate, the kinetic energy must be larger than ,U∆  

that is, i .K U> ∆  
(b) Not needed. 
(c) From conservation of energy, it is found that i i f f .K U K U+ = +  Since at the maximum x displacement, 
the kinetic energy is zero, f 0.K =   
(d)  Using conservation of energy, it is found that i i f f ,K U K U+ = +  but in this case i f .U U=   
SIMPLIFY:   
(c) Using 2

i (1/ 2) xK mv=  and ,U qV=  the above equation becomes 2(1/ 2) 0 0 .xmv qV+ = +  Using 

i sin ,xv v θ=  thus, the potential is ( )2 2sin / .2iV mv qθ=   

(d) It follows that i f .K K=  Therefore, the speed of the proton as it reaches the negative plate is the same as 

the initial speed, 52.00 10  m/s.⋅  
CALCULATE:   

(a) The kinetic energy of the proton is ( )( )2 1727 5(1/ 2) 3.34 10  J.1.67 10  kg 2.00 10  m/siK −−= = ⋅⋅ ⋅  The 

energy required to reach the positive plate is ( )( ) 1719 4.806 10  J.300. V1.602 10U −−∆ = = ⋅⋅  Thus iK  is less 
than .U∆  This means that the proton cannot reach the positive plate regardless of the angle .θ  
ROUND:  Not needed. 
DOUBLE-CHECK:  It is reasonable that the proton cannot reach the plate. Conservation of energy was 
used to balance the potential and kinetic energies, which is a key method of computing velocities. 

24.88. THINK:  The parallel plate capacitor has a dielectric, κ  that is positioned between the plates.  There is an 
air gap separating the dielectric material and the plates.  The thickness of the dielectric material is 2 .d  The 
thickness of the air gaps above and below the dielectric material are 1d  and 3d  respectively.  The overall 
distance between the plates is .d  
SKETCH:   

 
 

RESEARCH:  The parallel plate capacitor can be modeled as three parallel plate capacitors in series.  The 
equivalent capacitance of the capacitors in series is eq 1 2 31/ 1/ 1/ 1/ .C C C C= + +  Two of the capacitors are air 

filled and one has the material of dielectric, .κ  The capacitance, C  of each of the capacitors can be 
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determined using the equations 1 0 1/ ,C A dε= 2 0 2/C A dε κ=  and 3 0 3/ .C A dε=  All three capacitors have the 
same plate area .A  The total distance between the plates is 1 2 3 .d d d d= + +  

SIMPLIFY:  3 2 1 3 1 2

eq 1 2 3 1 2 3

1 1 1 1 .
C C C C C C

C C C C C C C
+ +

= + + =  Substituting in the values for 1 ,C  2C  and 3C gives  

( )

( )
( )

2

0
2 3 1 3 1 2 1 2 3

1 2 3
3 2 3 1 3 1 2eq 0 0

0
1 2 3

1
11 1 ,

A
d d d d d d d d d

d d d
d d d d d dC A A

A
d d d

κ κ
ε

κ κ
κ κ

ε κ ε κκ
ε

 + +     + += = = + +    
 
 

 

but 1 3 2 ,d d d d+ = −  substituting this into the equation gives:  

( )2 2
eq 0

1 1  d d d
C A

κ
ε κ

 = − + ⇒   
( )

0
eq

2 2

.
A

C
d d d

ε κ
κ

=
− +

 

CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK:  It seems reasonable that the overall capacitance depends on the distance between the 
plates and the thickness of the dielectric material and not on the position of the material between the 
plates.   
 

Multi-Version Exercises 

 Exercises 24.89–24.91   The energy stored in one supercapacitor is ( )2
1

1 .
2

U C V= ∆
 
The number of 

required supercapacitors is then 

( ) ( )22
1

2 .
1
2

U U Un
U C VC V

= = =
∆∆

 

24.89. 
( )

( )
( )( )

6

2 23

2 53.63 10  J2 7094.
3.361 10  F 2.121 V

Un
C V

⋅
= = =

∆ ⋅
 

24.90. 
( )2

2Un
C V

=
∆

 

 
( )

( )( )
6

3

2 60.51 10  J2 2.249 V
6990 3.423 10  F

UV
nC

⋅
∆ = = =

⋅
 

24.91. 
( )2

2Un
C V

=
∆

 

 
( )

( )
( )( )

6

2 2

2 67.39 10  J2 3485 F 3.485 kF
6845 2.377 V

UC
n V

⋅
= = = =

∆
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 Exercises 24.92–24.94   The energy stored in the capacitor with dielectric inserted is ( )2
in

1 .
2

U C Vκ= ∆
 

The energy stored in the capacitor with the dielectric removed is ( )2
in

1 .
2

U C V= ∆
 
The work required is 

equal to the change in the energy stored in the capacitor: 

( ) ( )

( ) ( )

2 2

2

1 1
2 2

1 1 .
2

W U C V C V

W C V

κ

κ

= ∆ = ∆ − ∆

= ∆ −
 

24.92. ( ) ( ) ( )( ) ( )2 26 41 11 3.547 10  F 10.03 V 4.617 1 6.453 10  J.
2 2

W C V κ − −= ∆ − = ⋅ − = ⋅  

24.93. ( ) ( )21 1
2

W C V κ= ∆ −  

 

( )
( )

( )( )

4

2 26

2 4.804 10  J2 1 1 3.075
3.607 10  F 11.33 V

W
C V

κ
−

−

⋅
= + = + =

∆ ⋅
 

24.94. ( ) ( )21 1
2

W C V κ= ∆ −  

 

( )
( )

( )( )

4

6

2 7.389 10  J2 12.61 V
1 3.669 10  F 3.533 1

WV
C κ

−

−

⋅
∆ = = =

− ⋅ −
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Chapter 25:  Current and Resistance 
 

Concept Checks 

25.1. e  25.2. a  25.3. a  25.4. a  25.5. a  25.6. e  25.7. c  25.8. b 
 
Multiple-Choice Questions 

25.1. d  25.2. d  25.3. c  25.4. c  25.5. c  25.6. a  25.7. c  25.8. a  25.9. c  25.10. a  25.11. c  25.12. d  25.13. d  25.14. a 
 
Conceptual Questions 

25.15. Subject to the applied potential and electric field ,E  the electrons will accelerate indefinitely due to the 
electric force .F qE ma= =  The drift velocity and current will increase indefinitely until some other effect 
takes over. 

25.16. The voltage across the light bulb is constant.  The resistance of a piece of metal (the filament in the bulb) is 
lower at low temperatures compared to higher temperatures.  Since V iR=  and V is constant, and the 
resistance is low, the current i must be large.  When the light bulb is first turned on, the filament is cold, 
so the current is large.  A large current increases the likelihood of the light bulb burning out.      

25.17. They will be brighter if they are connected in parallel.  In parallel, the light bulbs will pull twice the current 
from the battery, which is twice the power.  In series, the circuit has twice the resistance, as it draws only 
half the current.  

25.18. Resistors in parallel  

1 2 2
parallel 2

1 2 1 2 2 1

1 1
1 /

R R R
R R

R R R R R R
= + = = <

+ +  
and 1 2 1

parallel 1
1 2 1 2 1 2

1 1 .
1 /

R R R
R R

R R R R R R
= + = = <

+ +
 

The resultant resistance is always smaller than the smaller of the two values.  In particular, if the difference 
between the two values is large (an order of magnitude or more), the resultant resistance is less than but 
very close to the smaller of the two.  Example: if you connect in parallel a resistor 1 1 R = Ω  and 2 10 ,R = Ω  
you get a resistance of 0.91 Ω . If 1 1 OhmR =  and 2 1 k ,R = Ω  you get a resistance of 0.999 .Ω    

25.19. In calculating power, we can use any of the following three equivalent formulas: 
2

2 .VP iV Ri
R

= = =  For 

resistors in series, the current is the same through all the resistors, so it makes sense to use 2 ,P Ri= and it 
is thus apparent that the higher the resistance, R  of a resistor, the higher the power dissipated on that 
resistor.  For resistors in parallel, the voltage across all the resistors is the same, so it makes sense to use 

2

,VP
R

=  and it is thus apparent that the resistor with the lowest resistance will dissipate most power. 

25.20. Consider the following diagram. 

 
1 2

eq
eq 1 2 1 2

1 1 1   ,
R R

R
R R R R R

= + ⇒ =
+  

so
  

1 2 eq 1 1 2 2 eq   V V V iR i R i R iR= = = ⇒ = = ⇒ 1 2 2
1 1 1

1 2 1 2

   .
R R R

i R i i i
R R R R

= ⇒ =
+ +
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25.21. Since the resistors are in parallel, 
T

3
T 2 3

2
1

1 1 1 1 1 1 1 1... ...,
R R R R R R R R

= + + + = = + + + and 10 .R = Ω  Let 

1 1 .
10

x
R

= =
Ω  The series can be rewritten as: 

2 3 2 3

T T

1 1...  1 1 ...,x x x x x x
R R

= + + + ⇒ + = + + + +  but 

( )
2 3 11 ...

1
x x x

x
+ + + + =

−  for 1 ,x <  and 1 1,
10

<   so that means that 

T T T

1 1 1 1 1 1 11   1      
1 1 1 1

x x
R x R x x R x

− +
+ = ⇒ = − = ⇒ = ⇒

− − − − T
1 1 1,xR

x x
−

= = −  which then gives the 

formula T
1   1 10 1 9 .R R R
x
= ⇒ = − = Ω− Ω = Ω  

25.22. The black wire, having lower resistance, will draw more power than the red wire since  
2

2 ,VP iV i R
R

∆
= = = where V∆  is the battery voltage.  Since the wire converts this electrical energy to 

thermal energy, the black wire will get hotter.  Note that if the battery has significant internal resistance 
that will affect the temperature of the wires, but the black wire will still be hotter than the red wire. 

25.23. No, ordinary incandescent light bulbs are not actually Ohm resistors.  They can be operated over a wide 
enough range of currents, hence temperatures, that the temperature dependence of the filament resistance 
is significant.  The resistance of an ordinary light bulb measured with an Ohmmeter at room temperature 
is substantially lower, that its resistance at an operating temperature of order 2000 K.  By connecting light 
bulbs in series it is possible to operate them at a range of voltages, hence currents, wide enough to display 
this variation in resistance.  The experiment is quite pretty as the light bulbs can be made to glow colors 
ranging from red through orange and yellow to white.  A plot of V versus i  for the light bulbs is not the 
straight line of an Ohm resistor it steepens noticeably the resistance increases as i increases. 

25.24. (a)  No assumptions can be made about the geometry and this is certainly not a steady state of equilibrium 
situation.  However, if we consider a surface S surrounding the injection region as a Gaussian surface then 
the charge ( )Q t  is given by Gauss’ Law ( ) ,

S
Q t E dAε= ⋅∫



  
where the permittivity incorporates the 

dielectric properties of the material.  The material is ohmic so the electric field E  drives current density 
.J Eσ=  Hence, the above equation can be written ( )( ) / .

S
Q t e J dAσ= ⋅∫





 By the definition of J, the 

integral here is the net rate of charge transport out of the volume surrounded by S. Charge conservation 
requires that this be equal to the rate of decrease of the charge within that volume (no charge can be 
gained or lost): / .

S
J dA dQ dt⋅ = −∫





 This is the certainty equation for electric charge: it is similar to the 

continuity equation of field mechanics, which expresses the conservation of field mass for particle number.  

It has the advantage that it applies in every situation.  Here it implies ( )/dQ e Q
dt

σ= −  is the desired 

differential equation. 
(b)  Students at this level should recognize immediately that the solution of a differential equation of this 
form is an exponential function.  Explicitly, the equation implies  

0

( )

0
,

Q t t

Q

dQ dt
Q e

σ′
′= −

′∫ ∫    or  
0

( )ln ,Q t t
Q e

σ 
= − 

     i.e.  0( ) exp ,tQ t Q
e
σ = − 

 
 

for all 0.t ≥  The charge in the injection region decays exponentially rapidly for a good conductor slowly 
for a poor one and the injected charge moves to the outer surface of the conductor.  
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(c)  The proceeding result implies that the time required for the charge in the injection region to decrease 

by half is 1/2
2ln .t ε
σ
 

=  
 

 For copper, ( ) 181.678 10   mσ
−−= ⋅ Ω  at 20 C°  and 0ε ε−  by assumption 

yielding  

( )
( )

−

−
−

⋅
= = ⋅

⋅ Ω

12 2 2
Cu 19
1/2 17

8.85 10  C / N m ln2
1.03 10  s.

5.959 10   m
t  

This is less than the crossing time of light over a single atom so this calculation particularly the 
assumptions of Ohmic behavior and unit “dielectric constant” may not be very accurate in this case.  It 
does indicate; however, that the evacuation of free charge from the interior of a good conductor is very 
rapid.  For quartz the data is somewhat varied.  The Handbook of Chemistry and Physics gives 

( ) 131 10   mσ
−

= ⋅ Ω
 
at 20 C°  for SiO2 and ( ) 03.75 4.1ε ε= −  for fused quartz.  A typical value for 1/2t  

would be  

( )( )
( )

−

−−

⋅
= =

⋅ Ω
2

12 2 2

SiO
1/2 113

3.9 8.85 10  C / N m ln2
200 s

1 10   m
t

 

over three minutes, some twenty one orders of magnitude longer.  Reitz and Milford gives 

( ) 1177.5 10   mσ −= ⋅ Ω  for fused quartz. 

This implies a value 
( )( )

( )
2

12 2 2

SiO 7
1/2 118

3.9 8.854 10  C / N m ln2
1.8 10  s,

1.3 10   m
t

−

−−

⋅
= = ⋅

⋅ Ω
 or about 210 days.  

25.25. You can write the drift speed of electrons in a wire as 
( )

.iv
nqA

=  For a wire connected across a potential 

difference ,V  you can find the current i  in the wire by determining the resistance of the gold wire, which 
is just resisitivity, Au / ,R x Aρ= ∆  where x∆  is its length.  Therefore,  

( ) resisitivity, Auresisitivity, Au

.
/

i V V Vv
nqA nqAR nq xnqA x A ρρ

= = = =
∆∆

 

Thus, since none of the quantities in the equation above depend on ,A  it has been shown that the speed of 
electrons does not depend on the cross-sectional area of the wire.  

25.26. The brightness of a light bulb is proportional to its current, so to rank the brightness of the bulbs, you will 
need to find and rank the currents.  The currents can be found by calculating the equivalent resistance for 
the different circuit elements.  Bulbs 1 and 2 are in series, so 1 2 .i i=  The equivalent resistance for the 2 
bulbs is 2 .R  The current through bulbs 1 and 2 is ( )= =1 2 / .2i i V R  Bulbs 5 and 6 are in series, so 5 6 .i i=  
The equivalent resistance for the 2 bulbs is 2 .R  The equivalent resistance for bulbs 4, 5, and 6 is 

( )[ ] ( )−
= =+

1
456 2 / 3 .1/ 1/ 2R RR R  Adding bulb 3 in series gives: ( )3456 5 / 3R R=  and the current in bulb 3 

is: ( )3 3 / 5 .i V R=  The voltage across bulbs 4, 5 and 6 is then ( ) ( )3 / 5 2 / 5 .V V V− =  This makes the 

currents in bulbs 4, 5 and 6: ( )4 2 / 5i V R=  and ( )5 6 / 5 .i i V R= =  Ranking the bulbs from dimmest to 

brightest: ( ) ( )5 6 4 1 2 3 .i i i i i i= < < = <  

25.27. Conductor 1: length ,L=  Radius ,R=  Area ,A=  Resistance R=  and Voltage .V=  Conductor 2: 
length ,L=  Radius ,R=  Area ,A=  Resistance 2R=  and Voltage .V=  Power delivered is given as 

= = = =
2 2 2

1
1 2,   ,   .

2 2
PV V VP P P

R R R
 Therefore, the power delivered to the first would be twice that delivered 

to the second.  
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Exercises 

25.28. The total charge in the Tevatron is .Q i t= ∆  Now, / ,t L v∆ =  where L  is the beam circumference and v  is 

the speed of the protons.  311 10  A,i −= ⋅  
36.3 10  mL = ⋅  and 83.00 10  m/s.v c= = ⋅  This  charge is made up 

of n protons:  

( )( )
( )( )

2 3
12

19 8

1.10 10  A 6.30 10  m
  1.4 10 .

1.602 10  C 3.00 10  m/s
iL iLQ ne i t n
v e c

−

−

⋅ ⋅
= = ∆ = ⇒ = = = ⋅

⋅ ⋅ ⋅
 

25.29. The area A  is 2 6 23.14 10  m ,A rπ −= = ⋅  so the current density is 
3

2 2
6 2

1.00 10
318.3 A/m 318 A/m .

3.14 10  m
AiJ

A

−

−

⋅
= = = ≈

⋅  
 The density of electrons is  

623
28 3

3

2.700 10  g1 electron 6.02 10  atoms 6.02 10  electrons / m ,
atom 26.98 g m

n
   ⋅⋅ 

= = ⋅   
       

and the drift speed is  

( )( )
2

3
8

28 19

318.3 A/m 3.30 10  m / s.
6.02 10  electrons/m 1.602 10  A sd

Jv
ne

−

−
= = = ⋅

⋅ ⋅  

25.30. THINK:  The current is the same in both wires due to conservation of charge.  This can be used to 
compute the ratio of current densities.  The ratio of the drift velocities can then be computed by expressing 
the drift velocities in terms of the current density. The densities of charge carriers are charges per electron: 

28 3
Cu 8.50 10  mn −= ⋅  and  28 3

Al 6.02 10  m .n −= ⋅  The other values given in the question that will be needed 

are 4
Cu 5.00 10  m,d −= ⋅  and 4

Al 1.00 10  m.d −= ⋅  The lengths of the wires and the amount of current are not 
necessary to solve the question.  
SKETCH:   

 
 

RESEARCH:  / ,J i A= cross-sectional area,A =  dJ nev=  and 2 .A rπ=  
SIMPLIFY:   

(a) 
( )
( )

2
2

AlCu Cu Al Al
2 2

Al Al Cu CuCu

/ 2/
/ / 2

dJ i A A d
J i A A dd

π

π
= = = =  

(b) 
( )
( )

Cu Cud,Cu Cu Al
d

d,Al Al CuAl Al

/
  

/
J n ev J nJv

ne v J nJ n e
  

= ⇒ = =   
  

 

CALCULATE:   

(a)  
( )
( )

24

Cu
24

Al

1.00 10  m
0.040000

5.00 10  m

J
J

−

−

⋅
= =

⋅
 

(b)  ( )
28 3

d-Cu Cu Al
28 3

d-Al Al Cu

6.02 10  m0.0400 0.02833
8.50 10  m

v J n
v J n

−

−

    ⋅
= = =    

⋅   
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ROUND:   

(a)  Cu

Al

0.0400
J
J

=  

(b)  d-Cu

d-Al

0.0283
v
v

=  

DOUBLE-CHECK:  The answers are dimensionless since they are ratios.  

25.31. THINK:  From the atomic weight and density of silver, the conduction electron density can be computed.  
Since both the current and the cross-sectional area of the wire are given, the current density can be 
computed and, using the calculated quantities, the drift speed of the electrons can be computed.  Use the 
data: 20.923 mm ,A =  0.123 mA,i =  107.9 g/mol,M =  3

Ag 10.49 g/cm ,ρ =  23 1
A 6.02 10  mol ,N −= ⋅  

1 electron/atomN =  and 91.602 10  C.e −= ⋅  
SKETCH:   

 
RESEARCH:   

(a) Ag AN N
n

M
ρ

=  

(b) 
iJ
A

=  

(c) dJ nev=  
SIMPLIFY:   
(a) Not required. 
(b) Not required. 
(c) d /v J ne=  
CALCULATE:   

(a) 
( )( )3 23 1

22 3
1 10.49 g/cm 6.02 10  mol

5.853 10  cm
107.9 g/mol

n
−

−
⋅

= = ⋅  

(b)  
( )( )

3
2

22 3

0.123 10  A 133.3 A/m
0.923 mm 10 m/mm

J
−

−

⋅
= =  

(c) 
( )( ) ( )

2
8

d 322 3 2 19

133.3 A/m 1.421 10  m/s
5.853 10  cm 10  cm/m 1.602 10  C

v −

− −
= = ⋅

⋅ ⋅
 

ROUND:  Three significant figures:  
(a) 22 35.85 10  cmn −= ⋅  
(b) 2133 A/mJ =  

(c) 8
d 1.42 10  m/sv −= ⋅  

DOUBLE-CHECK:  These are reasonable values.  Note that for part (a), only the composition and not the 
dimensions of the wire are relevant.  
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25.32. ( )
( )

8
Cu 23

10.9 m1.72 10  m 0.141 
1.3 10  m / 2

LR
A

ρ
π

−

−
= = ⋅ Ω = Ω

⋅
 

25.33. The resistances will be the same when their cross-sectional areas are the same.  

( ) ( )

2 2
2 2 2

2 2
B

1
2 2 2

1 3.00 mm 2.00 mm 1.12 mm
2

o i
B B o i

d d
R R d d

R

π π π   = − ⇒ = −   
   

⇒ = − =

  

25.34. The copper coil’s resistance increases linearly with temperature.  At 0 20. C 293.15 K,T = ° =  it has 
resistance 0 0.10 .R = Ω  The temperature coefficient of copper is 3 13.9 10  K .α − −= ⋅  At 

100. C 173.15 K,T = − ° =  
( )( ) ( ) ( )( )( )3 1

0 01 0.10 1 3.9 10  K 173.15 K 293.15 K 0.053 . R R T Tα − −= + − = Ω + ⋅ − = Ω  

25.35. The area of 12 gauge copper wire is 2
Cu 3.308 mm .A =  The resistivity of copper and aluminum are, 

8
Cu 1.72 10   mρ −= ⋅ Ω  and 8

Al 2.82 10   m.ρ −= ⋅ Ω  In general the equation for resistance is / ,R L Aρ=  

meaning if the two wires have equal resistance per length ( ),L  then  

( )( )8 2

Cu Al CuAl
Al 8

Cu A Cu

2

l

2.82 10   m 3.308 mm
  5.42 mm .

1.72 10   m
A

A
A A
ρ ρρ

ρ

−

−

⋅ Ω
= ⇒ = = =

⋅ Ω  
This value corresponds to between 9 and 10 gauge wire. 

25.36. Since the resistance is given as / ,R L Aρ= then the setup that maximizes L and minimizes A will give the 
largest resistance. This corresponds to choosing 3.00 cmL =  and 

( )( )= = 22.00 cm 0.010 cm 0.020 cm .A The resistivity is 2300  m.ρ = Ω  Therefore, the maximum 
resistance is 

( )( )
( )

7
max 2

2300  m 3.00 cm 100 cm 3.5 10  35 M .
1 m0.020 cm

LR
A
ρ Ω  

= = ⋅ = ⋅ Ω = Ω 
 

 

25.37. THINK:  The copper wire, 1 1 mL =  and 1 0.5 mm,r =  has an area  of 1.A  The wire is then stretched to 

2 2 m.L =  Since the overall volume ( )V AL=  of the wire remains constant, if the wire doubles in length, 
the area must be halved. 
SKETCH:   

 
 

RESEARCH:  The resistance of the wire is i i i/ .R L Aρ=  From the conservation of volume, it follows that 

1 1 2 2 .V A L A L= =  The fractional change in resistance is ( )2 1 1/ / .R R R R R∆ = −  

SIMPLIFY:  Since 2 12 ,L L=  then ( )2 11/ 2 .A A=  The change in resistance is then 

( ) ( )
( )

( )2 1 2 2 1 1 1 1 1 1 1 1 1 1

1 1 1 1 11 1

/ / 2 / 1/ 2 / 4 / /
3.

/ //
R R L A L A L A L A L A L AR

R R L A L AL A
ρ

ρ
− − − −∆

= = = = =
 

It is the same for 

aluminum, independent of .ρ  
CALCULATE:  Not required. 
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ROUND:  Not required. 
DOUBLE-CHECK:  It would seem to make sense that the fractional change in resistance is the same for 
all materials, so having the equation independent of ρ makes sense.  

25.38. THINK:  The actual cross-sectional area of the resistor, 60 cmL =  and 0 1 Ohm,R =  is the difference in 
area from outer radius, 2.5 cm,b =  and inner radius, 1.5 cm.a =  The resistance of the resistor should vary 
linearly with temperature from 300 CT = °  to 0 20 CT = °  with 3 12.14 10  K .α − −= ⋅  
SKETCH:   

 
 

RESEARCH:  The resistivity of the wire is given by / ,RA Lρ =  where the area of interest is 

( )2 2 .A b aπ= −  The resistance varies with the temperature: ( )( )0 01 .R R T Tα= + −  The percentage 

change of resistance is found by ( )( )/ 100% .R R∆  
SIMPLIFY:   

(a)  The resistivity is 
( )2 2

0 .
R b aRA

L L

π
ρ

−
= =  

(b) The fractional change in resistance is:  

( ) ( )
( )( ) ( ) ( )( )0 0 00

0
0 0

1
% 100% 100% 100% .

R T T RR RR T T
R R R

α
α

+ − −−∆
= = = −  

CALCULATE:   

(a)  
( ) ( ) ( )( )2 21.00 2.50 cm 1.50 cm

0.20944  cm
60.0 cm

π
ρ

Ω −
= = Ω  

(b)  ( )( )( )3 1% 2.14 10  K 300. C 20. C 100% 59.92%R
R

− −∆
= ⋅ ° − ° =  

ROUND:   
(a)  0.209 cm,ρ = Ω  which is much higher than 61.7 10  cmρ −= ⋅ Ω  for copper. 

(b)  % 59.9%R
R
∆

=  

DOUBLE-CHECK:  It makes sense that a resistor would be made of material that has a much higher 
resistivity than the wiring it connects to but a much lower resistivity than insulating materials that block 
current altogether (such as glass, 710  cmρ > Ω ). 

25.39. THINK:  Since the current density across the junction is constant, ,J  and they share the same cross-
sectional area, they have the same current, .i  At the junction, a positive charge will build up, and this 
means both electric fields, 1E  and 2 ,E  are pointing towards the junction.  Gauss’s Law can then be used to 
determine the total charge built up on the interface.  The electric fields are also related to the 
conductivities, 1σ  and 2 .σ  
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SKETCH:   

 
 

RESEARCH:  The conductivity is the inverse of resistivity, 1/ .σ ρ=  The resistivity is related to electric 

field by / .E Jρ =  At the junction, Gauss’s law states 0/ .E dA q E=∫∫
 





 The current density ,J  is / .J i A=   

SIMPLIFY: From the conductivity and resistivity, the current density is 

( )1/ 1/ / /   ;E J J E J Eσ ρ σ= = = ⇒ =  therefore, 1 1 2 2E Eσ σ=  or ( )1 2 1 2/ .E Eσ σ=  Since 2E


 is parallel 

and 1E


 is antiparallel to ,dA


 ( )2 1 0/ .E dA E E A q ε= − =∫∫
 



  
Solving this expression for q yields the 

following. 

( ) σ σ σ
ε ε ε ε ε

σ σ σ σ σ σ

            
= − = − = − = − = −                           

2 2 2
2 2 2 2

1 1 1
0 2 1 0

2 2
0

2 1
0 0

1 11 1i iq E E A E E A E E i
J E  

This is what was required to be shown. 
CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK:  The equation was verified, so it makes sense.  

25.40. (a)   

 
 

Since the potential across wire is 12.0 VV∆ =  and the current is 33.20 10  A.i −= ⋅  Ohm’s Law states 

3

12.0 V  3750 .
3.20 10  A

VV iR R
i −

∆
∆ = ⇒ = = = Ω

⋅
 

(b)  Since the wire is 1000. kmL =  long and has area of 24.50 mm ,A =  the resistivity of it is 

( )( )
( )

6 2
8

3

3750 4.50 10  m
1.69 10   m,

1000 10  m
L RAR
A L

ρ ρ
−

−
Ω ⋅

= ⇒ = = = ⋅ Ω
⋅

 therefore, the wire is most likely copper 

( )6
C 1.72 10   m .ρ −= ⋅ Ω  

25.41. The current is 600. Ai =  and the potential difference is 12.0 V.V∆ =  Therefore, Ohm’s Law states 

( )  / 12.0 V / 600. A 0.0200 .V iR R V i∆ = ⇒ = ∆ = = Ω   

25.42. THINK:  The resistance of the wire of radius 0.0250 cmr = and length 3.00 mL = is found by using its 
resistivity 81.72 10   m.ρ −= ⋅ Ω  The potential drop is found using the current, 0.400 A,i = and Ohm’s Law.  
Assuming the electric field is constant, it is simply found through the potential drop over the length. 
SKETCH:   
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RESEARCH:  The resistance is / .R L Aρ=  The area of the wire is 2 .A rπ=  The potential difference 
across the wire is .V iR∆ =  The electric field across the wire is / .E V L= ∆  
SIMPLIFY:   

(a) The resistance is 
2 .L LR

A r
ρ ρ

π
= =  

(b)  The potential difference across the wire is .V iR∆ =  

(c)  The electric field across the wire is .VE
L
∆

=  

CALCULATE:   

(a) 
( )( )

( )

8

2

1.72 10   m 3.00 m
0.2628 

0.0250 cm
R

π

−⋅ Ω
= = Ω  

(b) ( )( )0.400 A 0.2628 0.10512 VV∆ = Ω =  

(c) 0.10512 V 0.03504 V/m 0.0350 V/m
3.00 m

E = = =  

ROUND:  Rounding to three significant figures; 
(a) 0.263 R = Ω  
(b) 0.105 VV∆ =  
(c) 0.0350 V/mE =  
DOUBLE-CHECK:  The wire loses very little potential over a long length.  This means that this wire used 
in a standard circuit which would only be a few centimeters in length would only lose about 1 or 2 mV, 
making it a suitable material for a circuit. 

25.43. THINK:  The length and resistivity of the wire are 1.0 mL =  and 81.72 10   m.ρ −= ⋅ Ω  The area of the wire 

is 20.0201 mm .A =  Since the resistance changes linearly with the temperature, 0 20. CT = °  and 

196 C,T = − °  the percentage change in resistance is proportional, by 3 13.9 10  K ,α − −= ⋅  to the temperature 
difference.  Since the current is directly related to the resistance, the percentage change in resistance is 
related to the resistances themselves.  Using the molar mass and density of copper, 0.06354 kgm =  and 

3 3
Cu 8.92 10  kg/m ,ρ = ⋅  the carrier density, ,n  can be determined, which in turn allows velocity to be 

found. Use the value 0.1 V.V∆ =  
SKETCH:   

 
 

RESEARCH:  The resistance of the wire is / .R L Aρ=  From Ohm’s Law, the potential drop across the 

wire is .V IR∆ =  The resistance changes linearly with temperature by ( )( )0 01 .R R T Tα= + −  For a given 

quantity, ,x  the percentage change in it is therefore, ( )( )( )0 0/ / 100% .x x x x x∆ = −  Current density is 

2 / .J nev i A= =  
SIMPLIFY:   

(a)  The original resistance is 0 / .R L Aρ=  The cooled resistance is ( )( )0 01 ;R R T Tα= + −  therefore,  

( )( ) ( )( )0 0 00
0

0 0

1
% 100% .

R T T RR RR T T
R R R

α
α

+ − −−∆
= = = − −

 
(b)  The percentage change in current is found using the following equations. 
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( )( )
( )( )

( )
( )( ) ( )

0 0 00 0 0 0 0
0

0 0 0 0 0 0

0

0

1/ / 1/ 1/
/ 1/ 1

100%
1

R R T Ti i V R V R R R R R R Ri R
i i V R R RR R R T T

T T

T T

α

α

α

α

− + −− ∆ −∆ − − −∆
= = = = = =

∆ + −

− −
=

+ −  
(c) Assume each copper atom contributes just 1 e .−  The molar volume of copper is Cu Cu / ;V mρ=  
therefore, A C / .n N mρ=  The drift velocity is then, in general,  

( )( )

( ) ( )( ) ( )( )

d

d
0 0

d
0 0

 

  
1

 .
/ 1 1

iJ nev
A

i V Vv
neA neAR neAR T T

V Vv
neA L A T T ne L T T

α

ρ α ρ α

= =

∆ ∆
⇒ = = =

+ −

∆ ∆
⇒ = =

+ − + −

 

At 0T T=  and d / .V V ne Lρ= ∆  
CALCULATE:   

(a) ( )( )( )3 1% / 3.9 10  K 196 C 20. C 100% 84.24%R R − −∆ = − ⋅ − ° − ° = −  

(b) 
( )( )
( )( )

( )
3 1

3 1

3.9 10  K 196 C 20. C
% / 100% 534.5%

1 3.9 10  K 196 C 20. C
i i

− −

− −

− ⋅ − ° − °
∆ = =

+ ⋅ − ° − °
 

(c) 
( )( )23 3 3

28 3
6.022 10  e 8.92 10  kg/m

8.4539 10  e / m
0.06354 kg

n
−

−
⋅ ⋅

= = ⋅
  

At room temperature,  
( )( )( )( )d 28 3 19 8

0.10 V 0.4293 mm/s.
8.4535 10  e / m 1.602 10  C 1.72 10  m 1.0 m

V
− − −

= =
⋅ ⋅ ⋅ Ω

  

At temperature, 196 C,T = − °  
( )( )d 3 1

0.4293 mm/s 2.724 mm/s.
1 3.9 10  K 196 C 20. C

V
− −

= =
+ ⋅ − ° − °

 

ROUND:   
(a)  % / 84%R R∆ = − (decrease in resistance) 
(b)  % / 530%I I∆ =  (increase in current) 
(c)  At room temperature,  d 0.43 mm/s.V =  At 77 K the speed is d 2.7 mm/s.V =  
DOUBLE-CHECK:  Supercooling a resistor should greatly reduce the resistance and increase the current 
and drift velocity, which it does, so it makes sense.   

25.44. If the current, 11 A,i = went entirely through the known resistor, 0 35 ,R = Ω  the potential drop across it 

would be ( )( )0 11 A 35 385 V,V iR∆ = = Ω = which is too large, so the other resistor must be parallel to 0 .R  

Therefore, by Ohm’s Law, 
1 1 1

0 0

1 1 1 11 A 1  15.849 .
120 V 35 

iV i R
R R V R

− − −     
∆ = + ⇒ = − = − = Ω     ∆ Ω    

 

Hence, ∆ = Ω15.8 .V  

25.45. When the external resistor, 17.91 R = Ω  is connected, the potential drop across it is 12.68 V,V∆ =  so the 
current through the circuit is, by Ohm’s Law, / 12.68 V/17.91 0.70798 A 0.7080 A.i V R= ∆ = Ω = =  This is 
the same current running through the internal resistor, i ,R  which is in series with ,R  so since the battery 
has a total emf of ∆ =emf 14.50 V,V  the internal resistance is found using the following 

calculation. ( ) ∆
∆ = + ⇒ = − = − Ω = Ω = Ωemf

emf i i
14.50 V  17.91 2.5702 2.570 
0.7080 A

V
V i R R R R

i
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25.46. The two resistors, 1 100. R = Ω  and 2 400. ,R = Ω  cause currents, 1 4.00 Ai =  and 2 1.01 A,i =  respectively.  
The currents they cause are the same through the internal resistor, i ,R  and in both cases the emf of the 
battery, ,V∆  is the same.  Since iR  is in series with each of the other resistors, Ohm’s Laws says:  

( ) ( ) ( )

( )( ) ( )( )
( )

2 2 1 1
1 1 i 2 2 i 2 2 1 1 i 1 2 i

1 2

i

  

1.01 A 400. 4.00 A 100. 
1.3378 1.34 .

4.00 A 1.01 A

i R i R
V i R R i R R i R i R R i i R

i i

R

−
∆ = + = + ⇒ − = − ⇒ =

−
Ω − Ω

⇒ = = Ω ≈ Ω
−

 

25.47. THINK:  The resistance in each bulb is directly calculated by Ohm’s Law.  Consider temperature effects 
on resistance to explain discrepancy with parts (a) and (b). Use the values: 1 6.20 V,V∆ =  1 4.1 A,i =  

2 2.9 Ai =  and 2 6.29 V.V∆ =  
SKETCH:   
(a)        (b)   

         
 

RESEARCH:  By Ohm’s Law, 1 1V i R∆ =  for one light bulb and ( )2 1V i R R∆ = +  for both light bulbs. 
SIMPLIFY:   

(a)  1
1 1

1

  
V

V i R R
i
∆

∆ = ⇒ =  

(b)  ( ) 2
2 2

2

  
2
V

V i R R R
i

∆
∆ = + ⇒ =  

CALCULATE:   

(a)  16.20 V
1.5122 

4.1 A
R = = Ω  

(b)  
( )
6.29 V 1.084 

2 2.9 A
R = = Ω  

ROUND:   
(a)  1.51 R = Ω  
(b)  1.08 .R = Ω  
(c)  When two bulbs are put in series, it is expected that they glow dimmer than only one bulb.  This would 
mean the one bulb would be hotter and thus have a larger resistance. 
DOUBLE-CHECK:  Answer to part (c) helps to verify that the answers to parts (a) and (b) are reasonable. 

25.48. Simplifying the circuit gives  

 
 

( ) ( ) 1

eq 10.0 1/ 20.0 1/ 20.0 20.0 .R
−

 = Ω + Ω + Ω = Ω   By Ohm’s Law, the current through eqR
 

is 

( )eq 60.0 V/ 20.0 3.00 A.i = Ω =  From the circuit setup, the current through eqR  is the same as that 

through the 10.0 Ω  resistor, which is 3.00 A.  
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25.49. THINK:  The circuit can be redrawn to have the 10.0 Ω  and 20.0 Ω  resistors in series, both of which are 
parallel to the 30.0 Ω  resistor, and then parallel again with the 40.0 Ω  resistor.  These resistors are then 
put in series with the 50.0 Ω  resistor and the 60.0 V battery. 
SKETCH:   

 

RESEARCH:  Resistors in series combine as eq
1

.
n

i
i

R R
=

=∑  Resistors in parallel combine as 
1eq

1 1 .
n

i iR R=

=∑  

SIMPLIFY:  The combined resistors in parallel become PR where  

( )
1

11 1 1
P 1 2 3 4 P

1 2 3 4

1 1 1  R .R R R R R
R R R R

−
−− − −  

= + + + ⇒ = + + 
+ 

 

The equivalent resistance is eq 5 P .R R R= +  

CALCULATE:  
1

P
1 1 1R 10.909091 

10.0 20.0 30.0 40.0 

−
 = + + = Ω Ω + Ω Ω Ω 

 

eq 50.0 10.909091 60.909091 R = Ω+ Ω = Ω  

ROUND:  The result should be rounded to three significant figures: eq 60.9 .R = Ω  

DOUBLE-CHECK:  If you add N equal resistors, R, in parallel, the equivalent resistance is R/N.  Since the 
resistors in parallel are all about 30 Ω  in each branch, the equivalent resistance should be about 10 Ω , 
which is close to the calculated answer of 11 .Ω .  Therefore, the values of PR and eqR are reasonable. 

25.50. THINK:  When the switch is open, the current clearly breaks up into paths and the two left resistors, 

1 3 3.00 ,R R= = Ω  are in parallel with the two resistors, 2 5.00 R = Ω  and 4 1.00 .R = Ω  When the switch is 
closed, it is not as obvious.  Consider the potential drop from before the current splits to the switch arm.  It 
should be the same regardless of which path is taken, likewise with the potential drop from the switch arm 
to after the current recombines.  This means that the pairs of resistors 1R  and 2 ,R  and 3R  and 4 ,R  are 
connected in parallel. The pairs are subsequently connected in series with each other. 
SKETCH:   
(a)        (b)   

       
 

RESEARCH:  Resistors in series combine as eq
1

.
n

i
i

R R
=

=∑  Resistors in parallel combine as 
1eq

1 1 .
n

i iR R=

=∑  

The current is given by Ohm’s Law eq/ .i V R= ∆  

SIMPLIFY:   

(a) Equivalent resistance is ( ) ( )( ) 1

eq 1 3 2 4 eq1/ 1/   / .R R R R R i V R
−

= + + + ⇒ = ∆  

(b) Equivalent resistance is ( )( ) ( )( )1 1

eq 1 2 3 4 eq1/ 1/   / .R R R R R i V R
− −

= + + + ⇒ = ∆  
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CALCULATE:   

(a) 
1

eq
1 1 3.00 ;

3.00 3.00 5.00 1.00 
R

−
 = + = Ω Ω + Ω Ω+ Ω   

therefore, 24.0 V 8.00 A.
3.00 

i = =
Ω

 

(b)  
1 1

eq
1 1 1 1 2.625 ;

3.00 5.00 3.00 1.00 
R

− −
   = + + + = Ω   Ω Ω Ω Ω     

therefore, 24 V 9.1429 A.
2.625 

i = =
Ω

  

ROUND:   
(a)  8.00 Ai =  
(b)  9.14 Ai =  
DOUBLE-CHECK:  Typically, when resistors are in parallel, they have a lower equivalent resistance than 
when in series and thus would yield a larger current, so it makes sense. 

25.51. THINK:  The circuit can be redrawn to have 3 2.00 R = Ω and 4 4.00 R = Ω in series, which are then 
parallel to 2 6.00 .R = Ω  These are then in series with 1 6.00 R = Ω , 5 3.00 R = Ω , and the battery 

12.0 V.V =  Since 5R is in series with the equivalent resistance, the current through it is the same as the 
current through the whole circuit.  Since 2 3 4 ,R R R= + the current through each branch is equal, and half 
of the total current. 
SKETCH:   

 
 

RESEARCH:  Resistors in series eq 1 2 .R R R= +  Resistors in parallel ( ) 1

eq 1 21/ 1/ .R R R
−

= +   The current is 

given by Ohm’s Law eq/ .i V R= ∆  

SIMPLIFY:   

(a) The resistors in parallel combine as 6 ,R where 
1

6
2 3 4

1 1R
R R R

−
 

= + 
+ 

.  

The total equivalent resistance is eq 1 6 5 .R R R R= + +  

(b) The current through 5R  is eq/ .i V R=  

(c) The current through each branch is / 2i , so potential across 3R is 3 3
1 .
2

V iR∆ =  

CALCULATE:   

(a) 
( )

1

6
1 1 3.00 .

6.00 2.00 4.00  
R

−
 

= + = Ω 
Ω + Ω    eq 6.00 3.00 3.00 12.00 R = Ω+ Ω+ Ω = Ω  

(b) ( ) ( )12.0 V / 12.0 1.00 Ai = Ω =  

(c) 
( )( )

3

1.00 A 2.00 
1.00 V

2
V V

Ω
∆ = ∆ = =  

ROUND:   
(a) eq 12.00 R = Ω  

(b) 1.00 Ai =  
(c) 3 1.00 VV∆ =  
DOUBLE-CHECK:  By considering the potential drop across 1 2 5, ,  and ,R R R  the values are: 

1 6 V,V∆ = 2 3 V,V∆ = and 5 3 V.V∆ =  Hence, 1 2 5 12 V.V V V∆ + ∆ + ∆ =  This value matches the total 
voltage provided by the battery.  Using 3 4V V∆ + ∆ instead of 2V∆ also gives 12 V, as expected. 
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25.52. THINK:  The circuit can be redrawn to have 0R and 1R in series, which are then parallel to 1R .  These are 
then in series with 1R . 
SKETCH:   
 

 
 

RESEARCH:  Resistors in series combine as eq
1

.
n

i
i

R R
=

=∑  Resistors in parallel combine as 
1eq

1 1 .
n

i iR R=

=∑  

SIMPLIFY:  Resistance 2R is 2 1 0 .R R R= +
 
Resistance 3R is 

1

3
1 1 0

1 1 .R
R R R

−
 

= + + 
 Equivalent resistance 

0R is 
1

0 1 3 1
1 1 0

1 1 .R R R R
R R R

−
 

= + = + + + 
Thus, 

( )

1

1 0 1
0 1

1 0 1 1 1 0

1 1 .
R R R

R R
R R R R R R

−
 + +

− = + =   + + 
 

( )( )
2

2 2 2 21 1 0
0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0

1 0

2 2 0
0 1 1

  2   2
2

3  .
3

R R R
R R R R R R R R R R R R R R R R

R R
R

R R R

+
− = ⇒ − + = + ⇒ + − = +

+

= ⇒ =
 

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  If 1 0 ,R R= the total equivalent résistance would be 05 / 3.R  If 1 0 / 2,R R= the total 
equivalent resistance would be 07 / 8.R  Therefore, for eq 0 ,R R= 0 1 0/ 2 .R R R< <  The answer satisfies this 

condition. 

25.53. THINK:  From the circuit, it is clear that resistors 1 5.00 R = Ω  and 2 10.00 R = Ω  are in series.  Resistors 

3 4 5.00 R R= = Ω  are in parallel, with equivalent resistance 34 .R  This is also true of resistors 

5 6 2.00 ,R R= = Ω  whose equivalent resistance is 56 .R This second pair of resistors are in turn connected in 
series with resistors 1R  and 2 .R  Ohm’s Law can be used to determine the current through the whole 
circuit which is the same as each resistor in series. 
SKETCH:   

 
RESEARCH:  Equivalent resistances if resistors are in parallel are ( ) 1

34 3 41/ 1/ .R R R
−

= −  Total current 

through 4 resistors in series is ( )1 2 34 56/ .i V R R R R= ∆ + + +  The potential drop across a resistor is 

i i .V iR∆ =  
SIMPLIFY:   
(a)  The total current is ( )1 2 34 56/ ,i V R R R R= ∆ + + +  1 1 ,V iR∆ =  2 2 ,V iR∆ =  3 4 34V V iR∆ = ∆ =  and 

5 6 56 .V V iR∆ = ∆ =   
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(b)  Current through 1R  and 2R  is .i  Since 3 4R R=  and 5 6 ,R R=  the current splits evenly among them so 
/ 2i i′ =  through each of them. 

CALCULATE:   

(a) ( ) ( )( ) 1

34 1/ 5.00 1/ 5.00 2.50 R
−

= Ω − Ω = Ω  ( ) ( )( ) 1

56 1/ 2.00 1/ 2.00 1.00 ,R
−

= Ω − Ω = Ω  

( )20.0 V / 5.00 10.00 2.50 1.00 1.08108 A,i = Ω+ Ω+ Ω+ Ω =  ( )( )1 1.08108 A 5.00 5.405 V,V∆ = Ω =  

( )( )2 1.08108 A 10.0 10.81 V,V∆ = Ω =  ( )( )3 4 1.08108 A 2.50 2.702 VV V∆ = ∆ = Ω = and 

( )( )5 6 1.08108 A 1.00 1.081 VV V∆ = ∆ = Ω =   

(b) 1 2 1.08108 A,i i= =  3 4 5 6 1.08108 / 2 0.5405 Ai i i i= = = = =  
ROUND:   
(a) 1 5.41 V,V∆ =  2 10.8 V,V∆ =  3 4 2.70 VV V∆ = ∆ = and 5 6 1.08 V.V V∆ = ∆ =   
(b) = =1 2 1.08 Ai i  and = = = =3 4 5 6 0.541 A.i i i i  
DOUBLE-CHECK: The sum of the four potential drops equals 20 V,  so energy is conserved, so the 
answers make sense. 

25.54. THINK:  Ohm’s law can be used to relate the potential drop, 40.0 V,V∆ =  to current 1 10.0 Ai =  when 
resistors 1R  and 2R  are in series and to current 2 50.0 Ai =  when the resistors are in parallel. This means 
there are two equations (the series and parallel configurations) and two unknowns (the resistors).  Let 1R  
be the one that is larger, since the choice is arbitrary, and solve for it. 
SKETCH:   

 
RESEARCH:  For the series setup, ( )1 1 2 .V i R R∆ = +  For the parallel setup, ( ) 1

2 1 21/ 1/ .V i R R
−

∆ = +  

SIMPLIFY: The second resistor is, from series setup, ( ) ( )1 1 2 2 1 1  /V i R R R V i R∆ = + ⇒ = ∆ −  and 

1 2 .V R R
i
∆

= +  From the parallel setup,  ( )1 2
2 1 2 1 1

1 2 2 2

.
R R V VV i R R R R

R R i i
   ∆ ∆

∆ = = + = −   
+     

Therefore,  

2
2 2

1 1 1 1
1 2 1

  .V V R R P SR R
i i i
∆ ∆

= − ⇒ = −  

With 

2

1 2

,VP
i i
∆

=  and 
  
S =

∆V
i1

,  
2
1 1 0R SR P− + =  

2

1
4 .

2
S S PR ± −

⇒ =  1R  must be positive to get the 

largest possible value, so 
2

1
4 .

2
S S PR + −

=  

CALCULATE:  
( )

( )( )
2

2
40.0 V

3.2 ,
10.0 A 50.0 A

P = = Ω  and 40.0 V 4 .
10.0 A

S = = Ω   Therefore, 

( ) ( ) ( )2

1

24 4 4 3.2 
2.8944 .

2
R

Ω + Ω − Ω
= = Ω  

ROUND:  1 2.89 R = Ω  
DOUBLE-CHECK:  The other value for 1 ,R  the negative in the quadratic, gives 1 1.11 ,R = Ω  so eqR in 

series and parallel is 4 Ω  and 0.8 ,Ω  respectively.  ( )( )4 10.0 A 40 VΩ =  and ( )( )0.8 50.0 A 40 V,Ω =  
which is consistent with emf voltage. 
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25.55. The voltage changes, from 0 110. VV∆ = to 1 150. V,V∆ = and the initial power is 0 100. W.P =  Since the 

resistance does not change, the power is, generally, 2 / ,P V R= ∆  so the fractional change in power is 

( )
( )

22 2 2
1 0 1 0 1

2 2 2
0 0 0

150 V/ /
% 1 1 0.8595.

/ 110 V

P P V R V R V
P

P V R V
− ∆ −∆ ∆

= = = − = − =
∆ ∆

 Therefore, % 86.0%P = (brighter). 

25.56. (a)  The average current, i, is simply the change in charge, 5.00 C,Q∆ =  over change in time, 

0.100 ms.t∆ =  
( )

( )−

∆
= = =
∆ ⋅ 3

5.00 C
50.0 kA.

0.100 10  s
Qi
t

 

(b) If over the lightning bolt there is a 70.0 MVV =  potential, the power is P iV=  

( )( ) 1250.0 kA 70.0 MV 3.50 10  W= = ⋅  

(c) The energy is the power times the change in time, ( )( )12 83.50 10  W 0.100 ms 3.50 10  J.E P t= ∆ = ⋅ = ⋅  

(d) Assuming the lightning obeys Ohm’s Law, the resistance is /R V i= ∆ =
70.0 MV
50.0 kA  

31.40 10  .= ⋅ Ω  

25.57. (a) If the hair dryer has power =1600. WP  and requires a potential of =110. V,V  the current supplied is 
then = = = =/ 1600. W /110. V 14.545 A 14.5 A.i P V i  does not exceed 15.0 A,  so it will not trip the 
circuit. 
(b) Assuming the hair dryer obeys Ohm’s Law, its effective resistance is given by 

( ) ( )= ∆ = = Ω/ 110. V / 14.545 A 7.56 .R V i   

25.58. For a year of use, the time it is active is ( )( )( )1 year 365 days / year 24 hours / day 8760 h.t∆ = =  The 

power of a regular light bulb is 100.00 W 0.10000 kW.P = =  The power of the fluorescent bulb is 

F 26.000 W 0.026000 kW.P = =  Since it costs $0.12 / kWh  to have each on, the cost of running each is: 

( )( )( )$0.12 / kWh 0.10000 kW 8760 h $105.12,C = = ( )( )( )FC $0.12 / kWh 0.026 kW 8760 h $27.33.= =  

25.59. To find the current through each, reduce circuit to  

 
 

(a) The two 192 Ω   resistors in parallel have an equivalent resistance given by 

= + = ⇒ = Ω
Ω Ω Ω 0

0

1 1 1 2     96.0 .
192 192 192 

R
R

  

The resistance 0R  is is series with another 192 Ω  resistor.  This system has the equivalent resistance given 
by 

= + Ω = Ω+ Ω = Ω1 0 192 96.0 192 288 .R R   
The total power in the circuit is given by 

( ) ( )∆
= = =

Ω

2 2

1

120. V
50.0W.

288 
V

P
R   

(b) The current supplied by the emf source is given by 
∆

∆ = ⇒ = = =
Ω1

1

120. V    0.4167 A.
288 

VV iR i
R   

This current flows through the first resistor.  So the potential drop across the first resistor is 

( )( )∆ = Ω =1 0.4167A 192 80.0 V.V  
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The remaining two resistors are in parallel, so the potential drop across each of these two resistors must 
sum to the potential difference of the source of emf 
∆ = ∆ = − =2 3 120. V 80.0 V 40.0 V.V V  

25.60. The current through the light bulb is / .i P V=  The charge through the bulb is ,q i t= ∆ so 

( ) ( )1 A 60 min625 mAh 1.5 V
1000 mA h

  t 11 min.
5.0 W

q VP tq i t
V P

  
    ∆∆  = ∆ = ⇒ ∆ = =

∆
 

25.61. THINK: The overall current through the resistor, ( ) which takes the values 1.00 , 2.00  and 3.00 ,R Ω Ω Ω  
is found using Ohm’s Law for when the load resistance is in series with the internal resistance, 

i 2.00 ,R = Ω  and the external emf, emf 12.0 V.V =  I will determine an expression for the power across the 
load resistor and differentiate with respect to R, and solve this derivative equal to zero, in order to find a 
maximum in power. 
SKETCH:   

 
RESEARCH:  With R and iR in series, current through circuit is ( )emf i/ .i V R R= +  Power through load 

resistor is 2 .P i R=  The power is maximized when / 0dP dR = and 2 2/ 0.d P dR <  

SIMPLIFY:  Power is  
( )

 
= = + + 

2

emf
2

emf
2

i i

.
V V

P R R
R R R R

Therefore,  

( ) ( ) ( )( )( )

( ) ( ) ( )

2 322 2
emf emf i ii

2 2i i
emf emf3 3 3

i i i

2

2 0,

dP dV V R R R R RR R R
dR dR

R R R RRV V
R R R R R R

− −− = = + − ++ 

   + −   = − = =
   + + +     

and hence iR R= is a critical point of P. The double-check step will verify that iR R= leads to a maximum. 

CALCULATE: 
( ) ( )
( )

2

1 2

12.0 V 1.00 
16.0 W,

1.00 2.00 
P

Ω
= =

Ω+ Ω  
( ) ( )
( )

2

2 2

12.0 V 2.00 
18.0 W

2.00 2.00 
P

Ω
= =

Ω+ Ω  and 

( ) ( )
( )

2

3 2

12.0 V 3.00 
17.28 W.

3.00 2.00 
P

Ω
= =

Ω+ Ω
 

ROUND:  The values should be rounded to three significant figures each: 1 16.0 W,P = 2 18.0 WP = and 

3 17.3 W.P =  

DOUBLE-CHECK: The second derivative of P, 
22

emf i
2 4

2
2

)
)

(
,

( i

V R Rd P
dR R R+

−
=

 

is clearly negative when 

i ,R R= which verifies that iR R= yields a maximum for P. 

25.62. THINK:  Using the density and volume of water, 31000 kg/mρ =  and 250 mL,V =  the mass of the water 

can be determined.  Along with the specific heat of water, ( )4.186 kJ/ kg K ,c = and the fact that the water 

goes from i 20 C 293 KT = ° =  to f 100 C 373 KT = ° = the energy gained by the water can be determined.  
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The change in energy over the time 45 st∆ =  is equal to the power that the coil, 15 V,V∆ =  dissipates. 
SKETCH:   

 
RESEARCH:  Power dissipated by coil is 2 / .P V R= ∆  The energy gained by heating water, .Q mc T∆ = ∆  
The rate of energy gained by water is / ,P Q t= ∆ ∆  mass of water is .m Vρ=  
SIMPLIFY:  Equating power dissipated by coil to energy rate gained by water gives the equation: 

( )2
f ic

.
V T TV Q mc TP

R t t t
ρ −∆ ∆ ∆

= = = =
∆ ∆ ∆

  

Therefore, 
( )

2

f i

.V tR
Vc T Tρ
∆ ∆

=
−

 

CALCULATE:  
( ) ( )

( )( )( )( )( )
2

3 3

15 V 45 s
0.1209 

1000 kg/m 0.25 L 4186 J/kg K 373 K 293 K 1 m /1000 L
R = = Ω

−
 

ROUND:  The values in the question have two significant figures, so round the answer to 1.2 m .R = Ω  
DOUBLE-CHECK:  Since power is inversely proportional to resistance, the optimal way to heat using it 
would be to make the resistance as small as possible, so it makes sense. 

25.63. THINK: Both the copper wire length ( 75.0 cm,l =  diameter 0.500 mmd =  and resistivity 
8

C 1.69 10   mρ −= ⋅ Ω ) and silicon block (length 15.0 cm,L =  width 2.00 mm,a =  thickness ,b  resistivity 
4

S 8.70 10   mρ −= ⋅ Ω  and resistance S 50.0 R = Ω ) can be thought of as resistors in series with a total 

potential drop of 0.500 VV∆ = and a density of charge carriers of 23 31.23 10  m .−⋅  The current density, ,J  
can be used to determine the velocity of the carriers through the silicon. 
SKETCH:   

 
 

RESEARCH:  The resistance of the material is in general / .R L Aρ=  The current through circuit is found 

by Ohm’s Law with copper wire and silicon block in series, ( )C S .V i R R∆ = −  Area of the silicon block is 

.A ab=  The current density is d/ .J i A nev= =  The time it takes to pass through silicon block is 

d/ .t L v∆ =  Power dissipated by silicon block is 2
S S .P i R=  

SIMPLIFY:   

(a) Resistance of wire is 
( )

C
C 2 .

1/ 4
l

R
d

ρ
π

=  

(b) Current through circuit is 
C S

.Vi
R R
∆

=
+

 

(c) Thickness of silicon block S S
S

S

  .
L L

R b
ab aR
ρ ρ

= ⇒ =  
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(d) Drift velocity of electrons   v .d d
i iJ nev
A abne

= = ⇒ =  So the time to cross the block is  

d

.L Labnet
v i

∆ = =  

(e) 2
S SP i R=  

(f)  Electric power is lost via heat. 
CALCULATE:   

(a)  
( )( )

( ) ( )

8

C 2

1.69 10   m 75.0 cm
0.064553 64.553 m 

1/ 4 0.500 mm
R

π

−⋅ Ω
= = Ω = Ω  

(b)  0.500 V 0.009987 A 9.987 mA
50.0 0.064533 

i = = =
Ω+ Ω

 

(c)  
( )( )

( )( )

48.70 10  m 15.0 cm
0.001305 m 1.305 mm

2.00 mm 50.0 
b

−⋅ Ω
= = =

Ω
 

(d)  
( )( )( )( )( )23 3 1915.0 cm 2.00 mm 1.305 mm 1.23 10  m 1.602 10  C

0.77243 s
9.987 mA

t
− −⋅ ⋅

∆ = =  

(e)  ( ) ( )2

S 9.987 mA 50.0 0.004987 W 4.987 mWP = Ω = =  
ROUND:   
(a)  C 64.6 m R = Ω  
(b)  9.99 mAi =  
(c)  1.31 mmb =  
(d)  0.772 st∆ =  
(e)  S 4.99 mWP =  
DOUBLE-CHECK:  Drift velocity is / 20 cm/sL t∆ ≈  which is reasonable for such a small resistance.  
Also, the power lost is small, which is desirable in silicon, which is used in many electronic devices, so it 
makes sense. 

25.64. Electrical power is defined as 2P i R=  or 2 /P V R= ∆  or .P i V= ∆  In the normal operation, the radio has 

a resistance of ( ) ( )22 / 10.0 V / 3.33 30.0 Wr V P= ∆ = = Ω  and the current flowing through the radio is 

= = =
∆

30.0 W 3.00 A.
10.0 V

Pi
V

 Now, if a 25.0 kV  power supply is used, the required total resistance, such 

that the current flowing through the radio is the same, is ∆
= = = ΩT

25.0 kV 8333.33 .
3.0 A

VR
i

 Thus, the 

external resistance required is T .R R r= −  The closest number of resistors is  
− Ω− Ω

= = = = ≈
Ω

T

1 1

8333.33 3.33 333.2 333 resistors.
25 

R rRN
R R

 

All resistors are connected in series, since the potential drop across the resistors makes up for the rest of 
the enormous potential drop provided by the power supply. 

25.65. It is given 120 V,V∆ =  2.0 min 120 st∆ = =  and 1 48 kJ.U =  The power needed to cook one hot dog is 

= ∆ = ⋅ = ⋅4 2
1 1 / 4.8 10  J /120 s 4.0 10  W.P U t  The current to produces this power is 

= ∆ = ⋅ =2
1 1 / 4.0 10  W /120 V 3.3 A.i P V  The current to cook three hot dogs is ( )= = =13 3 3.3 A 10. A.i i  
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25.66. The aluminum wire and the copper wire dissipate the same power.  Since the voltages across the wires are 

the same, this means that the resistances of the wires are the same.  That is Al Cu ,R R=  
ρρ

= Cu CuAl Al

Al Cu

.
LL

A A
 

Using the area of a circle 2 ,A rπ=  it is found that 
ρ
ρ

=
2

Al Al Al
2

Cu Cu Cu

.
r L
r L

 Thus, 
ρ
ρ

= Al Al
Al Cu

Cu Cu

.
L

r r
L

 Substituting the 

numerical values:  

( ) ( )( )
( )( )

8

Al 8

2.82 10   m 5.00 m
1.00 mm 0.905 mm.

1.72 10   m 10.0 m
r

−

−

⋅ Ω
= =

⋅ Ω
 

25.67. The resistance of a cylindrical wire is / .R L Aρ=  The length of the resistor is / .L RA ρ=  Substituting the 

numerical values yields ( )( ) ( )6 2 510.0 1.00 10  m / 1.00 10   m 1.00 m.L − −= Ω ⋅ ⋅ Ω =  

25.68. Two resistive cylindrical wires of identical length are made of copper and aluminum.  They carry the same 
current and have the same potential difference across their length.  This means that they have the same 

resistance, that is, Cu Al ,R R=
ρρ

= Cu CuAl Al

Al

.
LL

A v
 Since Al CuL L=  and 2

Al AlA rπ=  and 2
Cu Cu ,A rπ=  it becomes 

ρ
ρ

=
2

Cu Cu
2

Al Al

r
r  or 

ρ
ρ

=Cu Cu

Al Al

.
r
r

 Therefore, the ratio of their radii is  

8
Cu

8
Al

1.72 10   m 0.781.
2.82 10   m

r
r

−

−

⋅ Ω
= =

⋅ Ω
 

25.69. Consider a circuit with = Ω1 200. R  and = Ω2 400. .R   

(a)  What is the power dissipated in 1R  when the two resistors are connected in series? 

 
The current in the circuit is given by 

∆ ∆
∆ = ⇒ = =

+eq
eq 1 2

    .V VV iR i
R R R

  

The power dissipated in 1R   is then 

( )
( )

( )( )
( )

∆ Ω ∆
= = = = = + + Ω+ Ω 

2 2 2
12

1 1 2 2
1 2 1 2

200. 9.00 V
0.0450 W.

200. 400. 

R VVP i R R
R R R R

 

 
(b)  What is the power dissipated in 1R  when the two resistors are connected in parallel? 

 
The potential difference across 1R  is 9.00 V  so the power dissipated in this case is 

( ) ( )∆
= = =

Ω

2 2

1

9.00 V
0.405 W.

200. 
V

P
R
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The ratio of the power delivered to the Ω200.  resistor by the 9.00 V battery when the resistors are 
connected in parallel to the power delivered when connected in series is 

( )

( )
( )

( )
∆

+  + Ω+ Ω = = = = =   Ω ∆  

+

2

22 2
parallel 1 21 1 2

2 2
series 111

2
1 2

200. 400. 9.00.
200. 

V
P R RR R R
P RRR V

R R

  

25.70. The conductance of a wire is given by 
ρ

= =
1 .AG
R L

 

(a)  From the electrical power ∆
=

2

,VP
R  the conductance of the element is  

( )
−= = = Ω

∆
1

22

1500. W 0.124 .
110. V

PG
V

 

(b) Using 2 ,A rπ=  the radius of the wire is ρ
π

=2 LGr  or ρ
π

= .LGr  Substituting 89.7 10   m,ρ −= ⋅ Ω  

3.5 mL =  and 10.124 G −= Ω  gives  

( )( )( )
π

− −⋅ Ω Ω
= =

8 19.7 10   m 3.50 m 0.124 
0.116 mm.r  

25.71. The resistance of the light bulb is 2
1 1/ .R V P= ∆  Consider each value in the problem to have three 

significant figures. The power consumed by the bulb in a US household is  

( )
2 22

2 2
2 1

1

120. V 100. W 25.0  W.
240. V

V V
P P

R V
 ∆ ∆  

= = = =   ∆   
 

25.72. (a)  The minimum overall resistance is / 115 V / 200. A 0.575 .R V i= ∆ = = Ω   
(b)  The maximum electrical power is ( )( )200. A 115 V 23.0 kW.P i V= ∆ = =  

25.73. THINK:  A battery with emf 12.0 V  and internal resistance i 4.00 R = Ω   is attached across an external 
resistor of resistance .R  The maximum power that can be delivered to the resistor R  is required. 
SKETCH:   

 
 

RESEARCH:  The power delivered to the resistor R  is given by 2 .P i R=  The current flowing through the 

circuit is ( )i/ .i V R R= ∆ +  Therefore, the power is ( )2 2

i/ .P V R R R= ∆ + The maximum power delivered 

to the resistor R  is given when R  satisfies / 0.dP dR =  That is 

( )
( )

( )

22

2 3

i i

2
0.

V RdP V
dR R R R R

∆ −∆
= + =

+ +
 

SIMPLIFY:  Solving the above equation for R  yields i 2 0R R R+ − =  or i .R R=  Thus, the maximum 

power delivered to R  is  
( )
∆ ∆

= =
2 2

i
2

ii

.
42

V R VP
RR

 

CALCULATE:  Substituting the numerical values gives 
( )
( )

= =
Ω

212.0 V
9.00 W.

4 4.00 
P  
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ROUND:  9.00 WP =  
DOUBLE-CHECK:  This is a reasonable amount of power for a 12 V battery to supply.  

25.74. THINK:  Calculate the resistance of a 10.0 m length of multiclad wire consisting of a zinc core of radius 
1.00 mm surrounded by a copper sheath of thickness 1.00 mm.  The wire can be treated as two resistors in 
parallel. 
SKETCH:   

 
 

RESEARCH: The resistivity of zinc is 8
Zn 5.964 10   m,ρ −= ⋅ Ω  and the resistivity of copper is  

8
Cu 1.72 10   m.ρ −= ⋅ Ω  Resistance is given by ρ= .LR

A
 The resistance of the zinc wire is therefore  

ρ
π

= Zn
Zn 2

1

,
L

R
R

 and the resistance of the hollow copper wire is 
ρ

π π
=

−
Cu

Cu 2 2
2 1

.
L

R
R R

 The net resistance is 

Zn Cu1/ 1/ 1/ .R R R= +   

SIMPLIFY:  

ρ ρ

ρ ρ

− − ⋅
   +

= + = = =   
+    +

Cu Zn
1 1

Cu Zn Cu Zn Cu Zn
eq

Cu ZnZn Cu Zn Cu Cu Zn

Cu Zn

1 1
L L

R R R R A A
R

L LR R R R R R
A A

 

( )

( )

( )
( )( )

ρρ
π π ρ ρ
ρ ρ π ρ ρ

ππ

⋅
−

= =
+ −+

−

CuZn
2 2 2

1 2 1 Zn Cu
eq 2 2 2

Cu Zn Cu 1 Zn 2 1
22 2
12 1

LL
r R R L

R
L L r R R

RR R

 

CALCULATE: 

( )( )
( )( ) ( ) ( ) ( )( )

8 8

2 2e 28 3 3
q

8 3

10.0 m 1.72 10  m 5.964 10   m

1.72 10  m 1.00 10  m 5.964 10  m 2.00 10  m 1.00 10  m

0.01664925 

R
π

− −

− − − − −

⋅ Ω ⋅ Ω
=

 ⋅ ⋅ + ⋅ Ω ⋅ − ⋅ 
 

= Ω

 

 ROUND:  Keeping only three significant digits gives 0.0166 .R = Ω  
DOUBLE-CHECK: The combined resistance of the components of the wire is less than the resistance of 
either material alone, as expected for resistances in parallel.   

25.75. THINK:  The Stanford Linear Accelerator accelerated a beam of ⋅ 142.0 10  electrons  per second through a 
potential difference of ⋅ 102.0 10  V.  
SKETCH:  Not required. 
RESEARCH:  Electrical current is defined by = / ,i q t i.e. the amount of charging passing per unit of time.  
The power in the beam is calculated by = ∆P i V  and the effective ohmic resistance is = ∆ / .R V i  
SIMPLIFY:  
(a)  The electrical current in the beam is ( )= =/ / .i q t e n t  
(b) The power in the beam is = ∆ .P i V  
(c) The effective resistance is = ∆ / .R V i   
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CALCULATE:   

(a)  ( )( )− −= ⋅ ⋅ = ⋅19 14 51.602 10  C 2.0 10  electrons/second 3.204 10  A.i  

(b) ( )( )−= ⋅ ⋅ =5 103.204 10  A 2.0 10  V 640.8 kW.P  

(c) 
−

⋅
= = ⋅ Ω

⋅

10
14

5
2.0 10  V 6.2422 10  .

3.204 10  A
R   

ROUND:  Keeping only two significant digits, the results become,  
(a)  −= ⋅ 53.2 10  Ai  
(b) = 640 kWP  
(c)  = ⋅ Ω146.2 10  R   
DOUBLE-CHECK:  Such large values are reasonable for a device meant to accelerate particles to 
relativistic speeds. 

25.76. THINK:  To solve this problem, the circuit needs to be simplified by finding equivalent resistances. Use 
the relationships of parallel and series resistors. 
SKETCH:   

 
RESEARCH:  If two resistors in series, the equivalent resistance is eq A B ,R R R= + and if two resistors in 

parallel, the equivalent resistances is eq A B1/ 1/ 1/R R R= + or ( )eq A B A B/ .R R R R R= +  

SIMPLIFY:  The equivalent resistance of two resistors in the circuit 1C  is  ( )eq 1 2 1 2/ .R R R R R= +  The 

equivalent resistance of three resistors in the circuit 2C  is eq 3 eq eq 32R R R R R R= + + = +
 

( )1 2 1 2 32 / .R R R R R= + + Thus, the effective resistance is given by  

1 2
eff 3

eff 1 2

1 1 1 1 1  .
2 2

R R
R R R

R R R R R
= + ⇒ = = +

+
 

The current flowing through 3R is the same as current through .R  Therefore, emf emf

eff

.
2

V V
i

R R
= =  

CALCULATE:  

(a)  
( )( )

eff

3.00 6.00 20.0 10.0 
3.00 6.00 2

R
Ω Ω Ω

= + = Ω
Ω+ Ω

  

(b) 
( )
12.0 V 0.500 A

2 12.0 
i = =

Ω
 

ROUND:  Not required. 
DOUBLE-CHECK:  Both of the calculated values have appropriate units for what the values represent.  
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25.77. THINK:  For resistors connected in parallel, the potential differences across the resistors are the same.  
SKETCH:   

 
 

RESEARCH: The equivalent resistance of two resistors in parallel ( )2 3 and R R  is 

( )( ) ( )= +eq 2 3 2 3/ .R R R R R   

SIMPLIFY:   

(a)  The potential difference across 3R  is bc ac ab 1
1 eq

1 .
R

V V V V iR V
R R

 
= − = − =   +   

(b)  Since 1R and eqR are in series, the current flowing through 1R and eqR  is 
1 eq

.V Vi
R R R

= =
+  

(c)  The rate thermal energy dissipated from 2R is 
2

bc

2

.
V

P
R

=  

CALCULATE:  
( )( )

eq

3.00 6.00 
2.00 

3.00 6.00 
R

Ω Ω
= = Ω

Ω+ Ω
 

(a)  The potential difference across 3R  is bc
2.00 110. V 55.0 V.

2.00 2.00 
V Ω 

= = Ω + Ω 
 

(b) The current through 1R  is 110. V 27.5 A.
2.00 2.00 

i = =
Ω+ Ω

 

(c) The thermal energy dissipated from 2R  is 
( )2
55.0 V

1.008 kW.
3.00 

P = =
Ω

 

ROUND:  Keeping three significant digits gives: 
(a)  bc 55.0 VV =  
(b)  27.5 Ai =  
(c)  1.01 kWP =  
DOUBLE-CHECK:  Each value has appropriate units for what is being measured. 

25.78. THINK:  When a potential difference V  is applied across resistors connected in series, the resistors have 
identical currents. The potential difference across   R1  is   Vac =V .  
SKETCH:   
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RESEARCH:   

  Vac =Vab +Vbc ; The potential differences across   R1 ,    R2  and   R3  are = =
+

2
ab 2 2

2 3

VR
V i R

R R  and 

= =
+

3
bc 2 3

2 3

,
VR

V i R
R R

 respectively.  The currents are: =1
1

Vi
R

and = =
+2

2
3

3

.Vi i
R R

 

SIMPLIFY:  Not required. 
CALCULATE:  Substituting the values of the resistors and the potential difference across the battery yields  

(a)  ac 1.500 V,V =  
( )( )Ω

= =
Ω+ Ωab

1.500 V 4.00 
0.600 V,

4.00 6.00 
V  and 

 bc ac ab 1.500 V 0.600 V 0.900 V.V V V= − = − =  

(b) = =
Ω1

1.500 V 0.750 A
2.00 

i and = = =
Ω+ Ω2 3

1.500 V 0.150 A.
4.00 6.00 

i i  

ROUND:  Keeping three significant figures gives: 
(a)  ac 1.500 V,V =  ab 0.600 VV = and bc 0.900 V.V =  
(b)  1 0.750 Ai = and 2 3 0.150 A.i i= =  
DOUBLE-CHECK:  The resistance through the right path is five times larger than the resistance through 
the center path. Therefore the current should be five times smaller in the right path, which the calculation 
shows before rounding for significant figures. 

25.79. THINK:  In order for a copper cable to start melting, its temperature must be increased to a melting point 
temperature, which for copper is 1359 K (Table 18.2). Copper has a specific heat of 386 J/kg K (Table 18.1) 
and a mass density of 8960 kg/m3. The cable is insulated.  This means the energy dissipated by the cable is 
used to increase its temperature. Use 2.5 m,L = and 12 V.V =  
SKETCH:   

 
 

RESEARCH:  The resistance of the copper cable is ρ= .LR
A

 The energy dissipated by the cable is 

ρ
   

= ⋅∆ = ∆ = ∆   
   

2 2

.V V AE P t t t
R L

 This energy must be equal to the amount of heat required to increase 

the temperature of the cable from the room temperature to the melting point temperature, which is 
( )M R ,Q cm T T cm T= − = ∆  where c is the specific heat of copper. 

SIMPLIFY:  Using the mass of the copper cable given by D ,m ALρ= the time required to start melting the 

cable is 
22

D
D 2  .

c L TV A t c AL T t
L V

ρ ρ
ρ

ρ
  ∆

∆ = ∆ ⇒ ∆ = 
 

 

CALCULATE: 
( )( )( )( ) ( )

( )

23 8

2

386 J/kg K 8960 kg/m 1.72 10   m 2.5 m 1359 K 300 K
2.734 s

12.0 V
t

−⋅ Ω −
∆ = =  

ROUND:  Rounding t∆ to three significant digits produces 2.73 s.t∆ =  
DOUBLE-CHECK:  This is a short time interval, but the 12 V battery supplies a large voltage, and the 
insulation does not allow the heat of the wire to dissipate. 
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25.80. THINK:  A piece of copper wire is used to form a circular loop of radius 10 cm.  The cross-sectional area 
of the wire is 210 mm .  The resistance between two points on the wire is needed. 
SKETCH:   

 
 

RESEARCH:  The resistance of a wire is given by / .R L Aρ=  Thus, the resistances of each segment of the 
wire are 1 1 /R L Aρ= and 2 2 / .R L Aρ=   
SIMPLIFY:  Since 2 13 ,L L=  the resistance 2R is 2 1 13 / 3 .R L A Rρ= =  Because 1R and 2R are in parallel, the 

effective resistance is 
ρ

= = = =
+ +

2
1 2 1 1

1
1 2 1 1

3 3 3 .
3 4 4

R R R L
R R

R R R R A
 Putting in π= ⋅1

1 2
4

L r  gives 
ρπ

= ⋅
3 .
8

rR
A

 

CALCULATE:  ( ) ( )8 4
5 2

0.100 m3 1.72 10   m 2.03 10  
8 1.00 10  m

R
π− −

−
= ⋅ Ω = ⋅ Ω

⋅
 

ROUND:  42.03 10  R −= ⋅ Ω  
DOUBLE-CHECK:  The resistance of   L1  is 

( ) ( )
( )

2
8 4

1 1 6 2

2 10 10  m
/ 1.72 10   m 2.702 10  .

4 10 10  m
R L A

π
ρ

−
− −

−

⋅
= = ⋅ Ω = ⋅ Ω

⋅
 

The resistance of L2  is   R2 = 3R1 = 8.105 ⋅10−4  Ω.  Our result is less than R1  and R2 , because the two 
resistances are in parallel.  So our answer seems reasonable. 

25.81. THINK:  Two conducting wires have identical length and identical radii of circular cross-sections.  I want 
to calculate the ratio of the power dissipated by the two resistors (copper and steel). 
SKETCH:  Not required. 
RESEARCH: The resistance of a wire is given by / .R L Aρ=  The power dissipated by the wire is 

ρ
= =

2 2

.V V AP
R L

 

SIMPLIFY:  Therefore, the ratio of powers of two wires is  

ρ ρ

   
= ÷       

copper steel

copper copper steel

2 2
cop

steel

per

steel

.
P V A V A
P L L

 

Since copper steelL L=  and copper steel ,A A=  the ratio becomes 
ρ
ρ

=copper steel

steel copper

.
P
P

 

CALCULATE: copper

st

8

8
eel

40.0 10   m 23.8095
1.68 10  m

P

P

−

−

⋅ Ω
= =

⋅ Ω
 

ROUND:  Rounding the result to three significant digits yields a ratio of 23.8:1. This is because copper is a 
better conducting material than steel.  Moreover, the specific heat of copper is less than steel.  This means 
that copper is less susceptible to heat than steel. 
DOUBLE-CHECK:  Since the two wires have identical dimensions, and the power dissipated is inversely 
proportional to the resistivity of the wires, it is reasonable that the material with the higher resistivity 
dissipates the larger amount of power. 
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25.82. THINK:  The resistance of a wire increases or decreases linearly as a function of temperature. 
SKETCH:  Not required. 
RESEARCH: The resistance of the wire at temperature T  is given by 

  
R = R0 1+α T −T0( )( ).  The 

resistance at temperature T  is 2 / .R V P=  

SIMPLIFY:  The resistance at the temperature 0T  becomes ( ) ( ) 12
0 0/ 1 .R V P T Tα

−
 = + −    

CALCULATE:  Substituting 20 C,T = °  0 1800 C,T = °  4 15 10  C ,α − −= − ⋅ ° 110 VV = and 40.0 WP = gives 

( ) ( )( )( )−− −= − ⋅ ° ° − ° = Ω
2

1
4 1

0

110 V
1 5.0 10  C 1800 C 20 C 2750 .

40 W
R  

ROUND:  Rounding to  two significant figures yields = Ω = Ω0 2800 2.8 k .R  
DOUBLE-CHECK:  Ohms are appropriate units for resistance. The calculation can be checked by 

rounding the values to the nearest power of 10. 0
3 10 C,  T 1000 C, 10 CT α −−≈ ° ≈ ° ≈ − ° , 

100 V, and 100 WV P≈ ≈ (note that P was rounded to 100 since log 40 1.5)> . Then,  

( ) ( )( )3 1
0 100 V /100 W 1 10  C 1000 C 0 C 1000 .R − − = − ° ° − ° ≈ Ω   

The approximated value is the same 

order of magnitude as the calculated value. This lends support to the calculation.
 

25.83. THINK:  The energy dissipated in a resistor is equal to the energy required to move electrons along the 
direction of a current. The material may or may not be ohmic. The rate of energy dissipation in a resistor 
is equal to the amount of power required to push electrons.   
SKETCH:   

 
 

RESEARCH:  If the force on the electrons is F


 and the average velocity of the electrons is ,v


 the required 
power is .P Fv=  Since ,F qE=  the power becomes .P qEv=  
SIMPLIFY:  Using the charge ,q neV=  where V  is a small finite volume, the required power is 
P nevVE=  or .P E JV=  
(a)  Therefore, the power dissipated per unit volume is / .P V E J=  

(b)  For an ohmic material the current density J


 is related to E


 by .J Eσ=




 This equation yields the 

power dissipated per unit volume of ( ) 2/ EP V E Eσ σ= =  or ( )( ) ( ) 2 2/ / 1/ .P V J J J Jσ σ ρ= = =  
CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK:  Examine the two sides of the equation / .P V E J= The units of /P V are watts per 

cubic meter. The units of the product E J are ( )( )2 3 3V/m A/m =V A/m W/m .=  In (b), the units of 

/P V are still watts per cubic meter. Since ,J Eσ=




 the units of σ are 2A /  mW . Therefore, the units of 

( ) 2 21/ J Jσ ρ= are ( )( ) ( )( )22 2 2 2 4 3m W/A A/m = m W/A A /m  = W/m . Thus, by dimensional analysis, the 

computed equations are sensible. 
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Multi-Version Exercises 

 Exercises 25.84–25.86   Following Solved Problem 25.4, we find
( )

Cu
2 2

4
.

P L
f

V d
ρ

π
=

∆
 

25.84. 
( )

( )( )( )
( ) ( )

6 8 3

Cu
2 2 22 6

4 7935 10  W 1.72 10  m 643.1 10  m4
0.1457 14.6%.

1.177 10  V 0.02353 m

P L
f

V d
ρ

π π

−⋅ ⋅ Ω ⋅
= = = =

∆ ⋅
 

25.85. 
( )

Cu
2 2

4P L
f

V d
ρ

π
=

∆
 

 

( )( )( )
( )( )

6 8 3
6Cu

22

4 5319 10  W 1.72 10  m 411.7 10  m4
1.187 10  V 1.19 MV.

0.07538 0.02125 m

P L
V

fd
ρ

π π

−⋅ ⋅ Ω ⋅
∆ = = = ⋅ =

 

25.86. 
( )

Cu
2 2

4P L
f

V d
ρ

π
=

∆
 

 

( ) ( )( ) ( )
( )( )

2 22 62
5

6 8
Cu

0.1166 1.197 10  V 0.01895 m
4.804 10  m 480. km.

4 4 5703 10  W 1.72 10  m

f V d
L

P

ππ
ρ −

⋅∆
= = = ⋅ =

⋅ ⋅ Ω
 

 Exercises 25.87–25.88   The energy stored in the battery is equal to the power output of the battery 
multiplied by the time the battery delivers that power. The power delivered by the battery is .P i V= ∆ The 
energy stored in the battery is then .U Pt i Vt= = ∆  

25.87. The time is 
60 s110.0 min 6600 s.
min

t = =  

 ( )( )( )25.0 A 10.5 V 6600 s 1732500 J 1.73 MJ.U i Vt= ∆ = = =  

25.88. U i Vt= ∆  

 
( )( )

61.843 10  J 7020s 117 min
25.0A 10.5 V

Ut
i V

⋅
= = = =

∆
  RC = 117 

 Exercises 25.89–25.91   The temperature dependence of resistance is ( )0 0 0 .R R R T Tα− = −  The resistance 

at operating temperature is given by     .VV iR R
i
∆

∆ = ⇒ =
 
Combining these equations gives us 

( )0 0 0

0

0
0

.

V R R T T
i

V R
iT T
R

α

α

∆
− = −

∆
−

= +

 

25.89. 
( )( )3 1

3.907 V 1.347 
0.3743 A20.00 C 1520 C

1.347 4.5 10  C
T

− −

− Ω
= ° + = °

Ω ⋅ °
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25.90. ( )0 0 0
V R R T T
i

α∆
− = −  

 

( )

( ) ( ) ( ) ( )( )

0 0 0

0 3 1
0 0

3.949V/ 1.399 
1 1 0.4201 A 1 4.5 10  C 1291 C 20.00 C

V R R T T
i

V i VR
T T i T T

α

α α − −

∆
= + −

∆ ∆
= = = = Ω

+ −    + − + ⋅ ° ° − °   

 

25.91. ( )0 0 0
V R R T T
i

α∆
− = −  

 

( )

( ) ( ) ( )( )

0 0 0

3 1 3
0 0

3.991 V 0.4658 A 465.8 mA
1 1.451 1 4.5 10  C 1.110 10  C 20.00 C

V R R T T
i

Vi
R T T

α

α − −

∆
= + −

∆
= = = =

+ −   Ω + ⋅ ° ⋅ ° − °   
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Chapter 26:  Direct Current Circuits 
 
Concept Checks 

26.1. b  26.2. c  26.3. c  26.4. e  26.5. d  26.6. b  26.7. d   
 
Multiple-Choice Questions 

26.1. a  26.2. b  26.3. b  26.4. d  26.5. a  26.6. d  26.7. c  26.8. b  26.9. d, e & f  26.10. c  26.11. e  26.12. e  26.13. c 
 

Conceptual Questions 

26.14. In the first diagram, the voltmeter does not measure the voltage across the load resistor Load ,R  but it 
measures the voltage across the series Load Ammeter .R R+  As long as the internal resistance of the Ammeter is 
much less than Load ,R  the effect can be neglected.  Similarly, the Ammeter does not measure only the 
current through the load resistor Load ,R  but also the current through the Ammeter .R  This means that the 
current measurement is affected by the value of Ammeter .R  As long as AmmeterR  is much less than LoadR  the 
effect can be neglected. 

 In the second diagram, the voltmeter measures the voltage across the load resistor.  However, the current 
flowing through LoadR  is affected by the internal resistance of the voltmeter.  .As a result the measured 
voltage is altered from the original value.  As long as the load resistance of the voltmeter VoltmeterR  is much 
larger than the load resistance Load ,R  the effect can be neglected.  The ammeter measures the net current 
flowing through the resistors Ammeter ,R  LoadR  and Voltmeter .R  The effects of the internal resistors of the 
ammeter and the voltmeter are negligible if Load VoltmeterR R  and Ammeter Load .R R  

26.15. The capacitive time constant is given by τ =0 C.R  Since the equivalent of two identical capacitors 

connected in series is 
1

eq
1 1 1 ,

2
C C

C C

−
 = + = 
 

 the time constant is ( ) ( )τ τ= = =eq 0C 1/2 1/ 2 .R RC  

Therefore, the time constant decreases by a factor of 2. 

26.16. The resistance in the two-point probe measurement is given by the resistance of the device and the wires 
since they are in series.  The four-point measurement is designed such that the resistance of the wires is no 
longer a part of the measurement so the real potential drop measured is  that of the device. The four-point 
measurement, therefore, gives a better measurement of the real resistance.   

26.17. For a capacitor, the rate of which it discharges is based on the current.  If the resistance is high and the 
current is low then the discharge rate is slower.  If the  capacitance is large, then for a given voltage the 

amount of charge is higher, because ,
q

C
V

=
∆

and it will take a longer time for the capacitor to discharge.  

Hence, increasing R or C can increase the time constant.  

26.18. The charge builds up on the capacitor. Thus, the emf of the capacitor balances the emf of the batteries.  
Summing around the circuit balances the emf, which must be zero regardless of the resistor.  The current 
that satisfies this condition is zero.  

26.19. An appropriate resistor R may be connected in series with the bulb and the battery, the value of  
the resistor can be solved by applying Kirchoff’s loop rule for the circuit containing ε  (the voltage of  
the car battery), R  and the bulb. bulb bulb0  /iR iR R i Rε ε− − = ⇒ = −  where = /i P V and = 2

bulb / .R V P  
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Therefore, 

( ) ( )ε ε= − = − = − = Ω
2 1.5 V 12.0 V 1.5 V 16 .

1.0 W
V V VR V
P P P

 

26.20. If the emf’s are doubled then the currents will also double as Kirchoff’s junction rule will still be satisfied as 
long as all the currents are doubled.  Kirchoff’s Loop rule implies that if the potential drop across all the 
resistors is equal to the emf, then doubling the emf means that the currents must also double to account 
for the needed increases in the potential drop. 

26.21. With the capacitors uncharged at 0,t =  the potential difference across each capacitor at that instant is 
zero, just like the potential difference of a connecting wire.  After a long time, the capacitors will be fully 
charged, and the potential across the two points will be such that the charge cannot flow between the two 
points across the capacitor.  This has the same effect as open segments in the circuit.   

26.22. When using a voltmeter, I want to measure the potential difference across a device. To do this, I set it up 
parallel to the component, because the potential drop is the same for any two circuit elements in parallel.  
Ammeters are instruments with very low resistance designed to measure the current.  Think of this as a 
device submerged into a running stream. In order for the instrument to measure the flow, it has to be “in 
the stream”.  Similarly, ammeters are in series with the components they wish to measure.   

26.23. This question provides an example of meter loading. In connecting an ordinary voltmeter and ammeter 
simultaneously to some component of a circuit, only two possible orientations are available: one can 
connect the ammeter in series with the parallel combination of the voltmeter and the component, or one 
can connect the voltmeter in parallel with the series combination of the ammeter and the component.  In 
the first case, the ammeter measures not the current through the component but the current through the 
component and the voltmeter, which is slightly greater for any voltmeter with non-infinite resistance.  In 
the second case, the voltmeter measures not the potential difference across the component, but the 
potential difference across the component and the ammeter, which will be slightly greater for any ammeter 
with non zero resistance.  Simultaneous exact measurements of the current and voltage for the 
components alone are not possible with ordinary meters.  The restriction “with ordinary meters” is 
reiterated here because it is possible to measure the voltage across a component, for example, without 
drawing current.  This can be done via a “null measurement” such as is done with a potentiometer.    

26.24. 2 /P V R=  implies 2 / .R V P=  A larger power rating implies a smaller filament resistance.  Therefore, the 
answer is a 100 W  bulb.   

26.25. Since the constant is given by C,R  the ratio of the times is equal to the ratio of the capacitances. The 
capacitances in each case are: series: ( )series 1 2 1 2/ ,C C C C C= +  parallel: parallel 1 2 .C C C= +  The ratio is then:  

( )2 2 2
parallel 1 2 1 1 2 2 1 2

series 1

1

2

2

1 2

1 2

1 2 2 1

2
2.

C C CC C C C C C C
C C C C C C CC

C

C
C

C

+ + +
= = = = + +
 

 

+

+

 

The time to charge the capacitors in parallel is larger by a factor of 1 2

2 1

2
C C
C C

+ + (which is at least 2). 

26.26. (a)  The current at any time t  is given by: τ−= /
initiale

ti i  where =initial /i V R  and τ = .RC  
(b)  The power of the battery is = .P Vi  Integrated over all time, the power gives us the energy  

( )2 /( ) 2

0 0 0
t i t / e .t RCPd V d V R dt CV

∞ ∞ ∞ −= = =∫ ∫ ∫  

(c)  The power dissipation from R  is = i .P R  ( ) ( )2 2 /( ) 2

0 0
t / e t 1/2 .t RCiRd V R d CV

∞ ∞ −= =∫ ∫  

(d)  Note that the energy provided by the battery less the energy dissipated by the resistor is the energy 
stored in the capacitor satisfying the law of conservation of energy. 
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Exercises 

26.27. The total resistance of the circuit is given by: total 1 2 .R R R= +  The current is then total/ .I V R= ∆  The 
potential drop across each resistor is then:  

1 2
1 2

1 2 1 2

,     .
R R

V V V V
R R R R

   
= ∆ = ∆   

+ +   
 

The resistors in series construct a voltage divider.  The voltage V∆  is divided between the two resistors 
with potential drop proportional to their respective resistances.   

26.28. The current must be such that 2 10.0 W.P I R= =   

( )

( ) ( )( )

2
2 2 2emf emf

emf

2 2 2 2

    2  

 12.0 1.0 10.0 2 1.00 10.0 10.0   0 12.4 1.00.

V V
VI R P R r P rRP R P

r R r R
R R R R R

 = ⇒ = ⇒ = + + + + 
⇒ = + + ⇒ = − +

 

Solving this quadratic equation yields: 
212.4 12.4 4.00  0.0812 or 12.3 .

2.00
R ± −
= Ω = Ω Ω  Either of those 

two resistances will work.  

26.29. Kirchhoff’s Loop Rule around the upper loop and large loop yields  

( ) ( )( ) ( ) ( )emf emf emf2.00 A 2.00 A 20.0 0 and 3.00 A 0 3.00 A ,V R V R V R− − Ω = − = ⇒ =  

respectively.  Therefore, 

( ) ( ) ( )( ) ( ) ( )( )
( )( )emf

3.00 A 2.00 A 2.00 A 20.0 0 1.00 A 2.00 A 20.0 40.0

3.00 A 40.0 120. V.

R R R R

V

− − Ω = ⇒ = Ω ⇒ = Ω

= Ω =
 

26.30. THINK:  Close inspection of the diagram shows that there is no current flowing across the middle resistor 
is zero.  This is because there is nothing different between the point above and below the middle resistor.  
That resistor can therefore be removed while changing nothing. 
SKETCH:  The new diagram is then:  

 
RESEARCH:  The equivalent resistances of the top two resistors and the bottom two resistors are given by 

top 2 ,R R R R= + =  and bottom 2 ,R R R R= + =  respectively. The system’s total equivalent resistance is given 

by 
1

eq
1 1 .

2 2
R

R R

−
 = + 
 

 

SIMPLIFY:  
1 1

eq
1 1 2

2 2 2
R R

R R R

− −
   

= + = =   
   

 

CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK:  The total resistance is comparable to each of the individual resistors as one would 
expect. 
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26.31. THINK:   
(a)  The dead battery is parallel to the starter and the live battery. 
(b)  Kirchoff’s Laws can be used to find the currents.  Use the data: 

L D L S12.00 V, 9.950 V, 0.0100 ,  1.100 ,  0.0700 .DV V R R R= = = Ω = Ω = Ω  
SKETCH:   

 
 

RESEARCH:  Kirchoff’s Laws give:  

( )
( )

L D S

D L S

+                                                                                     1

                                                                                1.1

i i i

i i i

=

= −
 

 
( )
( )

L L L S S

D D D S S

0                                                                              2

0                                                                             3

V i R i R

V i R i R

− − =

+ − =
 

SIMPLIFY: Substitute (1) into (2) and solve for D .i  ( )L D S L S S+ 0V i i R i R− − =  implies 

( )L D L S L S 0,V i R i R R− − + =  which in turn implies  

( )L S L S
D

L

 V i R R
i

R
− +

=                                                                        (4) 

( ) ( ) SSubstitute 4  into 3  and solve for .i  
( )L s L S

D D S S
L

 
0

V i R R
V R i R

R

 − +
+ − =  
 

 implies  

D L L D
S

L D S D S L

V R V R
i

R R R R R R
+

=
+ +

                                                                   (5) 

( ) ( ) SSubstitute 1.1  into 3  and solve for .i  ( )D L S D S S 0V i i R i R+ − − =  implies  

D L D
S

D S

V i R
i

R R
+

=
+

                                                                            (6) 

( ) ( ) LSubstitute 6  into 2  and solve for .i  D L D
L L L S

D S

0
V i R

V i R R
R R

 +
− − = 

+ 
 implies 

L D L S D S
L

L D L S D S

V R V R V R
i

R R R R R R
+ −

=
+ +

                                                                  (7) 

Substitute (5) and (7) into (1) and solve for L .i  

CALCULATE:     
( )( ) ( )( )

( )( ) ( )( ) ( )( )S

9.950 V 0.0100 12.00 V 1.100 
149.938 A

0.0100 1.100 0.0700 1.100 0.0700 0.0100 
i

Ω + Ω
= =

Ω Ω + Ω Ω + Ω Ω
 

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )L

12.00 V 1.100 12.00 V 0.0700 9.950 V 0.0700 
150.434 A

0.0100 1.100 0.0100 0.0700 1.100 0.0700 
i

Ω + Ω − Ω
= =

Ω Ω + Ω Ω + Ω Ω
 

D D150.434 A 149.938 A  150.434 A 149.938 A 0.496 Ai i= + ⇒ = − =  
ROUND:  Three significant figures: S 150. A,i =   L 150. A,i =   D 0.496 A.i =  
DOUBLE-CHECK:  Inserting the calculated values back into the original Kirchoff’s equations;  

( ) ( )( ) ( )( )L L L S S 12 V 150 A 0.01 150 A 0.07 0,V i R i R− − = − Ω − Ω =  
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and  
( ) ( )( ) ( )( )D D D S S 9.95 V 0.496 A 1.1 150 A 0.07 0,V i R i R+ − = + Ω − Ω =   

as required. 

26.32. THINK:  There is only one unknown, so one equation is sufficient to solve the problem. Use Kirchoff’s 
Loop Law to obtain the answer. 
SKETCH:   

 
 

RESEARCH:  Kirchoff’s Loop Law gives 1 1 1 2 0V i R V− + =  for the first loop. 

SIMPLIFY:  2 1
1

1

V V
i

R
+

=  

CALCULATE:  1
2.5 V 1.5 V 1.0 A

4.0 
i +
= =

Ω
 

ROUND:  1 1.0 Ai =  
DOUBLE-CHECK:  Consider the outside loop: 1 1 1 2 2 0.V i R i R− − =   From the second loop, 

2 2 2 2 2 20  / .V i R i V R− − = ⇒ =   So, ( )1 1 1 2 2 1 1 1 2 2 20 /V i R i R V i R V R R= − − = − − ⇒ 1 1.0 A,i =  as before. 

26.33. THINK:  Kirchoff’s Laws can be used to determine the currents. Use the values: A 6.0 V,V =  B 12.0 V,V =  

1 10.0 ,R = Ω  = Ω2R 40.0 ,  and 3 10.0 .R = Ω  
SKETCH:  

 
RESEARCH: 3 1 2 ,i i i= +  A 1 1 3 3 ,V i R i R= +   B 2 2 3 3 ,V i R i R= +   − + − =A 1 1 2 2 B 0,V i R i R V  and .P iV=  

SIMPLIFY:  ( ) A 2 3
A 1 1 1 2 3 1

1 3

  
V i R

V i R i i R i
R R
−

= + + ⇒ =
+

 

( )
2

A 2 3 A 3 2 3
B 2 2 1 2 3 B 2 2 2 3 B 2 2 2 3

1 3 1 3 1 3

    
V i R V R i R

V i R i i R V i R i R V i R i R
R R R R R R

 −
= + + ⇒ = + + ⇒ = + − + + + + 

 

A 3
B

1 3
2 2

3
2 3

1 3

,

V R
V

R R
i

R
R R

R R

 
− + =

 
− + 

+ 

    A 2 3
1

1 3

,
V i R

i
R R
−

=
+

    3 1 2i i i= +  

=A 1 A ,P i V  B 2 BP i V=  

CALCULATE:  
( )( ) ( )2

2

6.0 V 10.0 10.0 
12.0 V / 40.0 10.0 0.20 A

10.0 10.0 10.0 10.0 
i

  Ω Ω
 = − Ω− + Ω =    Ω + Ω Ω+ Ω   
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( )( )
1 3

6.0 V 0.20 A 10.0 
0.20 A,   0.20 A 0.20 A 0.40 A

10.0 10.0 
i i

− Ω
= = = + =

Ω+ Ω
 

( )( )= =A 0.20 A 6.0 V 1.2 W,P ( )( )= =B 0.20 A 12.0 V 2.4 WP  

ROUND:  1 2 3 A B0.20A,  0.20A,  0.40A, 1.2 W,  and 2.4 W.i i i P P= = = = =  

DOUBLE-CHECK:  The direction of 1i  and 2i  makes sense since they are in the direction of the driving 
force of the battery. 

26.34. THINK:  The circuit has three branches.  Kirchoff’s Loop and junction laws can be used to find at least 
three linearly independent equations. Use the values: 1 5.00 ,R = Ω  2 10.0 ,R = Ω  3 15.0 ,R = Ω  

emf ,1 10.0 V,V =  and emf ,2 15.0 V.V =  
SKETCH:   

 
RESEARCH:  

emf ,1 emf ,2 2 2 1 1 0V V i R i R− + − =                                                                   (1) 

emf ,1 3 3 1 1 0V i R i R− − =                                                                        (2) 

1 2 3i i i+ =                                                                                 (3)     

SIMPLIFY:  ( ) ( ) 1Substitute 3  into 2  and solve for :i  ( )emf ,1 1 2 3 1 1 0V i i R i R− + − =  implies 

emf ,1 2 3
1

1 3

 
V i R

i
R R

−
=

+
                                                                          (4) 

( )( )
( )( ) ( )

2

emf ,2 emf ,1 emf ,1 1 1 3emf ,1 2 3
emf ,1 emf ,2 2 2 1 2

1 3 1 3 1 3 2

Substitute 4 into 1 and solve for :

/
0                                5

/

i

V V V R R RV i R
V V i R R i

R R R R R R R

− + + − 
− + − = ⇒ = 

+ + + 
 

CALCULATE:  
( )( ) ( )

( )( ) ( )2

15.0V 10.0V 10.0V 5.00 / 5.00 15.0 
0.54545 A

5.00 15.0 / 5.00 15.0 10.0 
i

− + Ω Ω+ Ω
= =

Ω Ω Ω+ Ω + Ω
   

( )2
1

10.0 V 15.0 
0.09091 A

5.00 15.0 
i

i
− Ω

= =
Ω+ Ω

   

3 1 2 0.636363 Ai i i= + =  

ROUND: To three significant figures: 1 0.0909 A,i =   2 0.545 A,i =   3 0.636 Ai =  
DOUBLE-CHECK:  The calculated values for the currents are all positive, which is consistent with the 
direction specified in the problem.  
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26.35. THINK:  Kirchhoff’s Laws can be applied to this circuit.  We must identify the junctions and the loops.  
We note that the currents through resistors 1 and 3 are the same and the currents through resistors 6 and 7 
are the same.  We have five unknowns, 1,i  2 ,i  4 ,i  5 ,i  and 6 .i   We need five equations for the solution. 
SKETCH: 

 
RESEARCH:  We have  and We take the directions of the currents as shown in the sketch.  
There are four junctions giving the following equations 

+ =
= +

5 6 1

1 2 4

:  
:  .

a i i i
b i i i

 

There are three loops that can be analyzed using Kirchoff’s loop rule.  Analyzing each loop in the clockwise 
direction: 

− − − − =
− − − + + =

+ − =

1 3 1 1 4 4 5 5

emf ,1 6 6 6 7 emf ,2 5 5

emf ,1 4 4 2 2

Starting at : 0
Starting at :  0
Starting at :   0.

a i R i R i R i R
d V i R i R V i R
c V i R i R

 

The power supplied by each battery is given by .P Vi=  
SIMPLIFY:  Cramer’s rule is the most efficient method for solving a system of five equations and five 
unknowns.  Rearranging the equations: 

( )
( )

− + + =
− − =

− + − − =

− + = −
− + = −

1 5 6

1 2 4

1 1 3 4 4 5 5

5 5 6 6 7 emf ,1 emf ,2

2 2 4 emf ,14

0
0

0

.

i i i
i i i

i R R i R i R

i R i R R V V
i R i R V

 

Taking the coefficients of the currents, we can write the matrix equation as: 

( )
( )

=     
−     

     − −
     
− + − −     
     − + −     
     − −     

1

2

1 3 4 5 4

5 6 7 5 emf,1 emf,2

2 4 6 emf,1

1 0 0 1 1 0
1 1 1 0 0 0

0 0 0
0 0 0
0 0 0

i
i

R R R R i
R R R i V V

R R i V

 

CALCULATE:  We can use Cramer’s rule to solve this system of five equations and five unknowns 
=     

−     
     − −
     
− − −     
     − −     

− −          

1

2

4

5

6

1 0 0 1 1 0
1 1 1 0 0 0

12.00 0 6.00 5.00 0 0
0 0 0 5.00 13.00 6.00
0 6.00 6.00 0 0 6.00

i
i
i
i
i
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The solution can be calculated by hand using Cramer’s rule or using a computer algebra system.   The 
matrix, when evaluated by such a program into reduced row echelon form, gives the numeric solution as: 

=     
      =     
     − =−= ⇒
     − =−     
      =     

1 1

2 2

4 4

5 5

6 6

1 0 0 0 0 0.250746 0.250746 A
0 1 0 0 0 0.625373 0.625373 A
0 0 1 0 0 0.374627 0.374627 A
0 0 0 1 0 0.152239 0.152239 A
0 0 0 0 1 0.402985 0.402985 A

i i
i i
i i
i i
i i

 

The current through resistors 1R  and 3R  is = =1 3 0.250746 Ai i  in the assumed direction.  The current 
through resistor 2R  is =2 0.625373 Ai  in the assumed direction.  The current through resistor 4R  
is 4 0.374627 Ai =  in a direction opposite to the assumed direction.  The current through resistor 5R  is 
=5 0.152239 Ai  in a direction opposite to the assumed direction.  The current through resistors 6R  and 

7R  is = =6 7 0.402985 Ai i  in the assumed direction. 
The current flowing through emf,1V  is given by 

+ = − =2 4 0.625373 A 0.3 0.274 50627 74A 6 A.i i  

( ) ( )( )= =emf,1 0.250746 A 1.56. 04476 W.00 VP V  

The current flowing through emf,2V  is given by 

+ + + + = ++ =1 2 3 6 7 0.250746 A 0.250.625373 A+ 0.402985 A 0.402985 0746 A+ 1.932835 A A.i i i i i

( ) ( )( )= =emf,2 1.932835 A 23.12 19402 W..0 VP V  

ROUND: Rounding to three significant digits and assigning the directions we have:  

1

2

3

4

5

6

7

Magnitude Direction
0.251 A to the right
0.625 A to the right
0.251 A upward
0.375 A upward
0.152 A to the right
0.403 A downward
0.403 A to the left

i
i
i
i
i
i
i

 

( ) =emf,1 1.50 W,P V ( ) =emf,2 23.2 W.P V  

DOUBLE-CHECK: We can substitute out results for the five currents back into our five equations and 
show that they are satisfied. 

26.36. THINK:  When the potential difference between a and b is zero, no current will flow.  The potential 
difference will be zero when the ratio of the resistances above the ammeter is equal to the ratio of the 
resistances below the ammeter. Use 1 25.0 cmL = and 2 75.0 cm.L =  
SKETCH:  
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RESEARCH:  The current is zero when 1

2 1

2

L1
1 L L

L

  ,x
x

RR
R R R R

R R
= ⇒ = 1 100. .R = Ω  

1

1
L

L
R

A
ρ=  and 

2

2 .L
L

R
A

ρ=  

SIMPLIFY:  2 1
1 ,x

L L
R R

A A
ρ ρ   =   
   

  2
1

1
x

L
R R

L
=  

CALCULATE:  ( ) = = ΩΩ  
 

75.0 cm 300. 100. 
25.0 cmxR  

ROUND:  300. xR = Ω  
DOUBLE-CHECK:  xR  is comparable to 1R  as one would expect. 

26.37. THINK:  Suppose the total equivalent resistance of the ladder up to some arbitrary point is given by L .R   
Since the ladder is infinite, it does not matter what point on the ladder is chosen for the analysis, and 
adding one more segment to the end will not change the equivalent resistance of the network.     
SKETCH:  

 
 

RESEARCH:  The ladder consists of the array with resistance LR  plus another segment with resistance .R′  
R′ contributes one resistor of resistance R, in parallel with the array, and two resistors of resistance, R, in 
series with the array.  The total resistance is now L L L2 .R R R R R′ = + =  

SIMPLIFY: 
1

L
L L

L L

1 12 2 2
RR

R R R R R R
R R R R

−
 

= + = + + = + 
+ 

  

( ) ( ) 2 2L
L L L L L L L

L

2   2   2 2 0
RR

R R R R R R R R RR R RR R
R R

= + ⇒ + = + + ⇒ − − =
+

 

CALCULATE:  Solving the quadratic equation for LR gives ( )L 1 3 .R R= +  

ROUND:  Since no values are given in the question, it is best to leave the answer in its precise form, 

( )L 1 3 .R R= +  

DOUBLE-CHECK: Consider the first rung of three resistors in series.  The equivalent resistance is 

eq 3 .R R=  Now, add another rung of three resistors.  One resistor is in parallel with the first rung, and two 

resistors are in series with the first rung.  The equivalent resistance is now  
1

eq,1
1 1 112 2.75 .

3 4
R R R R

R R

−
 

= + + = = 
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Adding another rung gives 
1

eq,2
4 1 412 2.7333 .

11 15
R R R R

R R

−
 = + + = = 
 

 Repeating the process, 

eq,3
153 2.7324 ,
56

R R R= =  eq,4
571 2.73206 ,
209

R R R= = …, ( )1 3 .nR R→ + This verifies the value found in the 

solution. 
26.38. THINK:  This is a very famous and very tricky problem.  Superposition can be used to find the answer.  I 

will inject 1 Amp into A as specified below and extract 1 Amp from B as specified below.  
SKETCH:   
1 Amp  injected into A: 

 
1 Amp  extracted from B:  

 
RESEARCH:  The superposition of the two cases has 1 Amp entering A and leaving B. The superposition 
of the currents indicates that ( )1/2 A  passes through the resistor ABR , showing the effective resistance 
between the two points is /2.R  
SIMPLIFY:  Not required. 
CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK:  It makes sense that the effective resistance is less than R  since there are other 
pathways for the current to flow.  
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26.39. Let Ai  be the maximum current (i.e. full scale value) the ammeter can measure without the shunt.  If the 
shunt is to extend the full scale value by a factor tot A/ ,N i i=  then  

shunt
A shunt A

A

1.
i

i i Ni N
i

+ = ⇒ = −  

Since the ammeter and shunt have the same voltage across them,  

i,AA
i,A A shunt shunt shunt i,A

shunt

.
1

Ri
R i R i R R

i N
= ⇒ = =

−
 

To allow a current of 100 A, the resistance of the shunt resistor must be 
( )

( )shunt

1.00 1.00
 10.1 m .

99.0100. A /1.00 A 1
R

Ω Ω
= = = Ω

−
 

The fraction of the total current flowing through the ammeter is 

( )
( )

A

tot

1.00 A
0.0100.

100. A
i
i

= =  

The fraction of the total current flowing through the shunt is 

( )
( )

shunt

tot

1.00 A
1 0.990.

100. A
i
i

= − =   

26.40. The voltage across the device must be smaller than the voltage across the device and the resistor by a factor 
of N.  ( ) = +1,V 1,V series .N V V V   Since =1,V series :i i    

( ) ( )
 

= ⇒ = + ⇒ = + ⇒ = −  
 

1,V series series series
1,V 1,V 1,V series 1,V

1,V series 1,V 1,V

    1   1
V V R R

N V V V N R N R
R R R R

 

Numerical Application: ( ) 6 6
series 100. 1 1.00 10  99.0 10  99.0 M .R = − ⋅ Ω = ⋅ Ω = Ω  The 1.00 V potential drop 

across the voltmeter is 1.00% of the total power.  The other 99.0 V potential drop occurs across the added 
series resistor and is 99.0% of the total.  

26.41. The sketch illustrates the case of measuring ab .V   

 
 

The total resistance is +
+

i

i

.
RR

R
R R

 The total current is  

( )( )
5

5 7
5i

5 7
i

6.0000 V 3.0149 10  A.
1.0000 10  1.00 10  1.0000 10  
1.0000 10  1.00 10  

Vi
RR

R
R R

−= = = ⋅
⋅ Ω ⋅ Ω+ + ⋅ Ω

+ ⋅ Ω + ⋅ Ω
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The potential across the voltmeter is  

( ) ( )( )5 7
5i

ab 5 7
i

1.0000 10  1.00 10  3.0149 10  A 2.985 V 2.99 V,
1.0000 10  1.00 10  

RR
V i

R R
− ⋅ Ω ⋅ Ω= = ⋅ = =

+ ⋅ Ω + ⋅ Ω
 

Increasing iR  will reduce the error since the voltmeter will draw less current. 

26.42. (a)  The current is to be 10.0 mA  for a voltage of 9.00 V.  ( )emf / 9.00 V/ 10.0 mA 900. R V i= = = Ω  

(b) The current is 2.50 mA.  The resistance is variable .R R+  The current is given by  

( )( )emf emf variable
variable emf

variable

9.00 V 2.50 mA 900. 
    2.70 k .

2.50 mA
V V iR

i iR iR V R
R R i

− Ω−
= ⇒ + = ⇒ = = = Ω

+
 

26.43. THINK:   
(a)  The total resistance must first be determined in order to find the current.  Since the resistors are in 
series, the same current flows through both of them. 
(b)  The current that flows through the circuit is the result of the equivalent resistance including the 
ammeter.  The same current flows through the 1.00 kΩ  resistor and the parallel combination of resistor 
and ammeter.  Of the current flowing through this combination, the majority will flow through the lower 
resistance, i.e., the ammeter. The fraction of the current that goes through the Ammeter can be calculated 
using the resistances. 
SKETCH:   
(a) (b) 

 

 
RESEARCH:   
(a)  eq 2 ,R R=   1.00 k ,R = Ω   a eq/ ,i V R=   V 12.0 V=  

(b)  The current that flows through the circuit is b
eq

,Vi
R

=  where A
eq

A

,
RR

R R
R R

 
= +  

+ 
 A 1.0 .R = Ω  The 

current flowing through the resistor/ammeter combination is split into two parts.  R 1 / ,i V R= ∆  and 

Amm 2 A/ .i V R= ∆  
SIMPLIFY:   

(a)  a 2
Vi
R

=  

(b)  
( ) ( )

b Amm2 Amm
Amm

Amm AmmAmm Amm Amm AmmAmm

Amm

2
i RRV RRV Vi

R R RR R R R R RRR
R

R R

 ∆
= = = ⋅ =   ++ +   +  + 

 

CALCULATE:   

(a) 
( )a 3

12.0 V 6.00 mA
2 1.00 10  

i = =
⋅ Ω
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(b)
( )( )

=
Ω + ⋅ Ω
12.0 V 0.01198 A

1.00 k 2 1.0 
 

ROUND:  
(a) a 6.00 mAi =   
(b) Amm 0.012 Ai =  
DOUBLE-CHECK:  The ammeter measures the current across the other resistor acting like a short across 
the first resistor, as would be expected.  

26.44. THINK:   
(a)  I need to find the total resistance and then find the potential drop in each resistor. 
(b)  When a voltmeter is connected across one of the resistors, the combination of the resistor and the 
voltmeter will have an equivalent resistance slightly different from that of the resistor alone.  This will 
cause a change in the potential drop across the resistor/voltmeter combination.  I need to calculate the new 
potential drop. 
SKETCH:   
(a) (b) 
 

 

 
RESEARCH:   
(a)  Since they are identical and in series, the resistors have the same potential drop of / 2.V  

(b)  The total resistance is now given by  
 

= +  + 
voltmeter

total
voltmeter

.
R R

R R
R R

The potential drop across the voltmeter 

is then 
  

= =   +  
voltmeter

voltmeter
total voltmeter

.
R RVV iR

R R R
 

SIMPLIFY:  Not required.  
CALCULATE:   

(a)  =
12.0V 6.00V

2
 

(b)  
( )( )
( )

Ω Ω
= Ω+ = Ω

Ω+ Ωtotal

10.0 M 100. k
100. k 199.009901 k

10.0 M 100. k
R  

( )( )
( )
 Ω Ω

= = 
Ω + Ω  

voltmeter

10.0 M 100. k12.0 V 5.97 V
199.009 kΩ 10.0 M 100. k

V  

The percentage change is −
=

6.00 V 5.97 V 0.500%.
6.00 V

 

ROUND:  The percentage change is 0.500%.  
DOUBLE-CHECK:  It make sense that the voltmeter will reduce the voltage since any voltmeter (with 
non-infinite resistance) will draw a small amount of current.  
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26.45. The equation for the charge of a capacitor in an RC  circuit over time is   ( ) τ−= / .t
initialQ t Q e Use the 

equations: ,RCτ =   100. 200. 300. ,R = Ω+ Ω = Ω   10.0 mF,C =   
( )

τ
 

= −  
 initial

ln / ,
Q t

t
Q

    

( )
τ

 
= −   

 initial

ln ,
Q t

t
Q

and ( )( ) 5.00 mC300. 10.0 mF ln 8.99 s.
100. mC

t  
= − Ω = 

 
 

26.46. The circuit can be easily simplified to  

  

where eq 2.00 k 6.00 k 8.00 kR = Ω+ Ω = Ω  and ( ) ( ) 1

eq 1/ 2.00 μF 1/ 6.00 μF 1.50 μF.C
−

 = + =   The time 

constant is then ( )( )eq eq 8.00 k 1.50 μF 12 ms.R Cτ = = Ω =  The initial charge of the 2.00 μF  capacitor, with 

initial potential 10.0 V,V =  is ( )( ) 5
0 2.00 μF 10.0 V 2.00 10  C.q CV −= = = ⋅  The charge decays as 

( ) /
0 .tq t q e τ−=  When 

τ
= ,

2
t  the charge left is  

( )1/2 5 5
0 00.6065 0.6065 2 10  C 1.213 10 C.

2
q q e qτ − − −  = = = ⋅ ⋅ = ⋅ 
 

 

26.47. Since the position of the resistor with respect to the capacitor is irrelevant, the circuit is simplified to:  

 
The maximum charge of the capacitor is ( )( ) 4

0 C 20.0 μF 12.0 V 2.40 10 C.q V −= ∆ = = ⋅  In general, the 

capacitor charges as ( ) 0 1 .
t

RCq t q e
− 

= −  
 

 When ( ) ( ) 0 :1/ 2q t q=   

( )0 0
1 1 11     ln ln 2 .
2 2 2

t t
RC RCq q e e t RC RC

− −   
= − ⇒ = ⇒ = − =       

 

Therefore, ( )( ) ( )3.00 20.0 μF ln 2 41.6 μs.t = Ω =  
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26.48. By Ohm’s law, the power, 1.21 GW,P =  is related to potential, 12.0 V,V =  and resistance, ,R  by  

( )22 2 12.0 V
  119 n .

1.21 GW
V VP R
R P

= ⇒ = = = Ω  

The time to charge the capacitor, 1.00 ,C F=  to 90.0%  is ( ) 0 01 0.900   0.100.
t t

RC RCq t q e q e
− − 

= − = ⇒ =  
 

 

Therefore, ( ) ( )( ) ( ) 9ln 0.100 119 n 1.00 F ln 0.100 274 10  s 274 ns.t RC −= − = − Ω = ⋅ =  

26.49. THINK:  The charge on the capacitor, 90.0 μF,C =  decays exponentially through the resistor, 
60.0 .R = Ω  The energy on the capacitor is proportional to the square of the charge, so the energy also 

decays exponentially.  If 80.0% of the energy is lost, then 20.0% is left on the capacitor. 
SKETCH:   

 
 

RESEARCH:  The charge on the capacitor is given by ( ) /
0 .t RCq t q e−=  The energy on the capacitor is given 

by  ( ) ( )
=

2
1 .
2

q t
E t

C
To determine the time when there is 20.0% energy remaining, consider the equation: 

( ) ( )0.200 0 .E t E=  
SIMPLIFY:  Determine time, t:  

( ) ( ) ( )

( ) ( )

2 2 /2 2
0 0

2 /

0.200 0 0.200  
2 2 2

2 0.200  ln 0.200   ln 0.200 .
2

t RC

t RC

q t q e q
E t E

C C C
t RCe t

RC

−

−

= = = =

−
⇒ = ⇒ = ⇒ = −

 

CALCULATE:  
( ) ( ) 360.0 90.0 μF

ln 0.200 4.3455 10  s
2

t −Ω
= − = ⋅  

ROUND:  To three significant figures, t = 4.35 ms 

DOUBLE-CHECK:  After t = 4.35 ms, the charge on the capacitor is 0.451 of the maximum charge. This 
value squared gives 0.203, which is 20.0% with rounding error considered. 

26.50. THINK: After sufficient time, the potential on both plates (area 2A 2.00 cm= and 
separation 0.100 mmd = ) will be 60.0 V.V∆ =  Since the capacitors are in series, the total charge on each 
will be the same.  The potential drop across a capacitor is needed to find its electric field.   The second 
capacitor has dielectric constant 7.00κ =  and dielectric strength S 5.70 kV/mm.=  
SKETCH:   
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RESEARCH:  The capacitance of the air filled capacitor is 0
1

A
,C

d
ε

=  an that with the dielectric is 

0
2

A
.C

d
κε

=  The charge on a capacitor is .Q C V= ∆  The energy stored in  a capacitor is 
2

.
2
QU

C
=  The 

electric field inside a capacitor is .VE
d

=  

SIMPLIFY:   
(a)  Equivalent capacitance is  

11 1
0 0

eq
1 2 0 0

A A1 1 11 .
A A 1

d dC
C C d d

ε ε κ
ε κε κ κ

−− −      
= + = + = + =      +      

 

Charge on the first capacitor is 1 eq .Q Q C V= = ∆  

(b)  Charge on the second capacitor is 2 eq .Q Q C V= = ∆  

(c)  The total energy on both plates is 
2 22
eq 2

eq
eq eq

1 .
2 2 2

C VQU C V
C C

∆
= = = ∆  

(d)  The potential drop across the second capacitor is 
κε

∆ = =2
2

2 0

.
A

Q QdV
C

 The electric field across it is then 

κε
∆

= =2
2

0

.
A

V QE
d

 

CALCULATE:   

(a)  
( )( )( )12 2 2 4 2

11
eq 4

8.854 10  C / N m 2.00 10  m7.00 1.54945 10  F
7.00 1 1.00 10  m

C
− −

−
−

 ⋅ ⋅
 = = ⋅ + ⋅
  

  

        ( )( )11 10
1 1.54945 10  F 60.0 V 9.2967 10  CQ − −= ⋅ = ⋅  

(b)  10
2 9.2967 10  CQ −= ⋅  

(c)  ( )( )211 81 1.54945 10  F 60.0 V 2.789 10  J
2

U − −= ⋅ = ⋅  

(d)  
( )( )( )

10

2 12 2 2 4 2

9.2967 10  C 75,000 V/m
7.00 8.854 10  C / N m 2.00 10  m

E
−

− −

⋅
= =

⋅ ⋅
 

ROUND:   
(a)  10

1 9.30 10  CQ −= ⋅  

(b)  10
2 9.30 10  CQ −= ⋅  

(c)  82.79 10  JU −= ⋅  
(d)  2 75.0 kV/mE =  
DOUBLE-CHECK:  Numerically, 2 7.5 VV∆ =  and 1 0/ 52.5 V,V Qd Aε∆ = =  so 1 2 60V ,V V V∆ + ∆ = = ∆  

which means energy was conserved.  Also, since 2E S<  (dielectric strength), this capacitor is clearly viable, 
so it makes sense. 

26.51. THINK:  Since the dielectric material ( 2.5,κ = 50.0 μmd =  and 124.0 10   mρ = ⋅ Ω ) acts as the resistor 
and it shares the same cross sectional area as the capacitor, 0.050 μF,C =  a time constant, ,τ  should be 
independent of the actual capacitance and resistance, and only depend on the material. 
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SKETCH:   

 
 

RESEARCH:  The capacitance is 0A / .C dκε=  The resistance is / A.R dρ=  The time constant is .RCτ =  

SIMPLIFY:  The time constant is 0
0 .

AdRC
A d

κερτ κρε
  

= = =  
  

 

CALCULATE:  ( ) ( )( )12 12 2 22.5 4.0 10   m 8.85 10  C / N m 88.5 sτ −= ⋅ Ω ⋅ =  

ROUND:  89 sτ =  
DOUBLE-CHECK:  While this value seems relatively high, it is nonetheless perfectly reasonable.  The 
high resistivity and greater than 1 dielectric material, both imply bigger R  and ,C  so a high τ  is 
reasonable. 

26.52. THINK:  Since the current varies with time due to the charging of the capacitor, 2.00 mF,C =  the energy 
lost due to heat from the resistor, 100. ,R = Ω  is found by integrating the power dissipation of the resistor 
over time.  When the capacitor is fully charged it has the same potential as the battery, 12.0 V.V∆ =  
SKETCH:  

 
RESEARCH:  When the capacitor is fully charged, the energy stored in it is ( ) 21/ 2 .U C V= ∆  The power 

across the resistor is 2 .P I R=  The current decreases exponentially by ( ) /
0 ,ti t i e τ−=  where RCτ =  and 

0 / .i V R=  

SIMPLIFY:  Energy across the capacitor: ( ) 21/2 .CU CV=   Energy dissipated through the resistor:  

( ) ( )( ) ( )
2 2

2 2 2 / 2 / 2 /

0 0 0 0 0
.t t t

R o
V VU P t dt I t Rdt R I e dt R e dt e dt
R R

τ τ τ∞ ∞ ∞ ∞ ∞− − − 
= = = = = 

 ∫ ∫ ∫ ∫ ∫  

Therefore, 
2 2 2

02 /

0

0 .
2 22

t
R

V V VU ee
R R R

τ τ ττ
∞

− −  = = − =−      
 

Therefore, ,RCτ =   
( )2

21
2 2R

V RC
U CV

R
= =  and .C RU U=   

CALCULATE:  ( )( )( )2
1/2 2.00 mF 12.0 V 0.144 JC RU U= = =  

ROUND:  0.144 J,C RU U= =  the same energy for both. 
DOUBLE-CHECK:  The energy stored in capacitor is same as energy lost to heat by the resistor.  This 
makes sense if I consider that the total internal energy should stay the same.  Therefore, energy lost by 
resistor is energy gained by capacitor, so energy is conserved.   
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26.53. THINK:  Normally, to be fully discharged the time needs to go to infinity.  After 2.0 ms,t∆ =  the 
capacitor should be as close to fully discharged as possible.  A good standard of discharge is when the final 
charge is less than 0.01%  which roughly corresponds to a time of 10 ,τ  where τ  is the time constant of 
the circuit.  From ,τ  the capacitance, ,C  can be determined and using 5.0 JE =  the potential difference 
on the plates is found.  10.0 k .R = Ω  
SKETCH:  Not required. 
RESEARCH:  The time constant is approximated as ( )1/10 ,tτ = ∆  an is also .RCτ =  The energy stored in 

the capacitor is ( ) 21/2 .E C V= ∆  

SIMPLIFY:  The capacitance is 
10

tC
R R
τ ∆

= =  the potential difference is then 2 .EV
C

∆ =  

CALCULATE:  82.0 ms 2.0 10  F 0.020 μF,
10 10.0 k

C −= = ⋅ =
⋅ Ω

   
( )2 5.0 J

22361 V
0.020 μF

V∆ = =  

ROUND:  = 0.0200 μF,C   ∆ = 22.4 kVV  
DOUBLE-CHECK:  If instead I chose the capacitor to be only 99% discharged, corresponding to only 

5 ,t τ∆ =  the potential across the capacitor would be about 16 kV,  which is also high, so our choice is 
reasonable.   

26.54. THINK:   
(a) When switch 1S  is closed, the current flows solely through resistors 1 100. R = Ω  and 3 300. R = Ω  
which are in series with a battery emf 6.00 V.V =  
(b)  When switch 2S  is closed, the current splits between 1 100. R = Ω  in one branch and 2 200. R = Ω  with 
a capacitor 4.00 mFC =  in the other branch.  Initially there is no charge on the capacitor so there is no 
potential drop across it, meaning it does not initially contribute to the current.  These branches are then in 
series with resistor 3 300. R = Ω  and battery emf 6.00 V.V =  
(c) The capacitor, 4.00 mF,C =  will charge but only through resistor 2 200. ,R = Ω  so as to give a time 
constant .τ  As it charges over 10.0 min 600. s,t = =  the current through that branch will decrease 
exponentially. 
(d)  When the capacitor, 4.00 mF,C =  is fully charged, no current flows through that branch.  This means 
that initially, the battery emf 6.00 V,V =  is in series with resistors 1 100. R = Ω  and 3 300. .R = Ω  The initial 
potential in the capacitor must still equal the potential drop across resistor 1.R  When switch 1S  is opened, 
the capacitor begins to discharge though resistors 1R  and 2 200. .R = Ω  As capacitor discharges, the 
current will decrease exponentially to f 1.00 mAi = . 
SKETCH:  
(a)             (b) 
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(c)       (d) 

     
RESEARCH:   
(a)  The equivalent resistance is eq 1 3 .R R R= +  By Ohm’s Law, the current through circuit is 1 emf eq/ .i V R=  

(b)  The equivalent resistance of resistors 1 and 2 is ( ) 1

12 1 21/R 1/ .R R
−

= +  The total equivalent resistance is 

then eq 3 12 .R R R= +  By Ohm’s law, the current through circuit is 2 emf eq/ .I V R=  

(c)  As the capacitor charges, the current through it decrease as ( ) /
0

t
Ci t i e τ−=  where, 2 .R Cτ =  The current 

through resistor 1R  is Ri  and the total current out of the battery is .R Ci i i= +  

(d)  Potential drop across 1R  initially is 1 1 1 .Ci R V V= ∆ = ∆  Current decays exponentially as ( ) /
0 ,ti t i e τ−=  

where ( )1 2R R Cτ = +   and by Ohm’s law, ( )0 1 2/ .Ci V R R= ∆ +  
SIMPLIFY:   

(a)  emf emf
1

eq 1 3

V V
i

R R R
= =

+
 

(b)  
1

1 2
12

1 2 1 2

1 1 ,
R R

R
R R R R

−
 

= + = 
+ 

 emf emf
2

eq 3 12

.
V V

i
R R R

= =
+

 

(c)  Calculate ( )Ci t  and infer i  from it. 

(d)  Initial current is 1 1
0

1 2 1 2

CV R i
i

R R R R
∆

= =
+ +

 when ( ) f .i t i=  Therefore,  

( ) ( )f 1 2 f 1 2/ /1 1
f

1 2 1 1 1 1

    ln .t ti R R i R RR i
i e e t

R R R i R i
τ τ τ− −

 + +
= ⇒ = ⇒ = −   +  

 

CALCULATE:   

(a)  1
6.00 V 0.0150 A 15.0 mA

100.  300. 
i = = =

Ω+ Ω
 

(b)  
( )( )

12

100. 200. 
66.67 ,

100. 200. 
R

Ω Ω
= = Ω

Ω+ Ω
  2

6.00 V 0.01636 A 16.36 mA
300. 66.67 

i = = =
Ω+ Ω

 

(c) ( )( )200. 4.00 mF 0.800 s.τ = Ω =  ( )
600. s

750.0.8 s
C 0 0 0 A.i t i e i e

−
−= = ≈  Regardless of what 0i  is after 

10.0 min,  the current through that branch is effectively 0.0 A.  Therefore, 15.0 mA.Ri i= =  Since there is 
no current through the capacitor, the circuit is equivalent to having switch 2S  open, as in part (a) so 
current through battery is then the same as in part (a). 

(d)  ( )( )100. 200. 4.0 mF 1.20 sτ = Ω+ Ω =  and ( ) ( )( )
( )( )

1.00 mA 100. 200. 
1.20 s ln 1.9313 s

100. 15.0 mA
t

 Ω + Ω
= − =  Ω 

 

ROUND:   
(a)  1 15.0 mAi =  
(b)  2 16.4 mAi =  
(c)  15.0 mAi =  
(d)  1.93 st =  
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DOUBLE-CHECK:   
(a) This is a reasonable value for current. 
(b) Since I added a resistor in parallel, the overall resistance is expected to decrease, and hence the current 
increase, so it makes sense. 
(c) From part (b), I saw the overall current was greater than in part (a).  If a piece of the current found in 
part (b) dies off, the final current should be smaller, so it makes sense. 
(d) Since I know the current should reduce to zero in 600. s,t =  then reducing by 80.0%  in only 1.93 s  is 
very reasonable so it makes sense. 

26.55. THINK: The capacitor, 2.00 μF,C =  charges via the battery, 10.0 V,V∆ =  through resistor, 1 10.0 ,R = Ω  
so the resistors, 2 4.00 R = Ω  and 3 10.0 ,R = Ω  can be simplified to be in parallel. After a long time, the 
capacitor becomes fully charged and no current goes through it. The potential drop across it is then the 
same as the drop across 2R  and 3 .R  The energy of the capacitor is proportional to the square of the 
potential drop across it. The total energy lost across 3R  is determined by integrating the power across it 
over time. 
SKETCH:  

 
RESEARCH:  The current through the circuit after  a long time is ( )emf 1 23/ .i V R R= +  Resistors in parallel 

add as ( ) 11 1
23 2 3 .R R R

−− −= +  The potential drop across the capacitor is C 23 .V iR∆ =  The energy in the 

capacitor is given by ( )2

C / 2.E C V= ∆  When the switch is open, the current through 3R  is 3 C 2/ .i V R= ∆  

The current across 3R  varies as ( ) 23/
3 3 .t R Ci t i e−=  The power across 3R  is given by ( )2

3 3 3 .P i t R=  The energy 

across 3R  is given by ( )3 30
.E P t dt

∞
= ∫  

SIMPLIFY:   

(a)  The potential drop across the capacitor is given by: emf 23
C 23

1 23

.
V R

V iR
R R

∆ = =
+

 

(b)  The energy in the capacitor is given by ( )2

C
1 .
2

E C V= ∆  
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(c)  The energy across 3R  is given by: ( ) 23 23

2
2 / 2 /2 C

3 3 3 30 0 0
3

t R C t R CV
E P t dt R i e dt e dt

R
∞ ∞ ∞− −∆

= = =∫ ∫ ∫  

23

2 2 2
2 /C 23 C 23 C 23

3 3 30

0 .
2 2 2

t
t R C

t

V R C V R C V R C
e

R R R

=∞
−

=

∆ ∆ ∆   
= − = + =   

   
 

CALCULATE:   

(a)  ( ) ( )( ) 11 1

23 10.0 4.00 2.86 ,R
−− −

= Ω + Ω = Ω  
( )( )

C

10.0 V 2.86 
2.22 V

10.0 2.86 
V

Ω
∆ = =

Ω+ Ω
 

(b)  ( )( )2 61 2.00 μF 2.22 V 4.938 10  J
2

E −= = ⋅  

(c)  
( ) ( )( )

( )

2

6
3

2.22 V 2.86 2.00 μF
1.411 10  J

2 10.0 
E −Ω

= = ⋅
Ω

 

ROUND:   
(a)  C 2.22 VV∆ =  
(b)  4.94 μJE =  
(c)  3 1.41 μJE =  

DOUBLE-CHECK:  The energy across 2R  is ( )2

2 C 23 2/ 2 3.527 μJ.E V R C R= ∆ =  The result makes sense 

because energy is conserved: 2 3 .E E E+ =  

26.56. THINK:   
(a)  The capacitor,  15μFC =  and 100.0 V,CV∆ =  is fully discharged when the charge is less than 0.01%,  
which roughly corresponds to a time of 10 ,τ  where τ  is the time constant of the circuit.  The resistor in 

question is a cube of gold of sides 2.5 mml =  and resistivity 82.44 10   m.Rρ
−= ⋅ Ω  

(b)  The capacitor, 15 μFC =  and 100.0 V,CV∆ =  is fully discharged so that all the initial stored energy 
has gone to heating the resistor.  The resistor in question is a cube of gold of size 2.5 mm,l =  density 

3 319.3 10  kg / mDρ = ⋅  and specific heat 129 J / kg C.c = °  Assume the cube is initially at room 
temperature, i 20.0 C.T = °  
SKETCH:   
(a) (b) 

 

 

                

RESEARCH:   
(a)  The resistance of the cube is / A.RR Lρ=  The time constant is 10 .t τ=  
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(b) The energy of the capacitor is ( ) 21/ 2 .C CU C V= ∆  The energy gained by the gold block increases its 

temperature as .Q mc T= ∆  Mass of gold is .Dm Vρ=  The energy the cube gains is same energy the 
capacitor dissipates, .CU Q=  
SIMPLIFY:   

(a)  The time for discharge is 
ρ ρ

τ ρ
  = = = = =       

2 10
10 10 10 10 .

A
R R

R
l CLt RC C C

l l
 

(b)  To find the final temperature: ( ) ( )2
  1/ 2 .CQ U mc T C V= ⇒ ∆ = ∆  Therefore,  

( ) 2
f i

1
2D cVc T T C Vρ − = ∆   

2

f i3 .
2

c

D

C V
T T

l cρ
∆

⇒ = +  

CALCULATE:   

(a)  
( )( )

( )

−
−

⋅ Ω
= = ⋅

8
9

10 2.44 10   m 15 μF
1.464 10  s

2.5 mm
t  

(b)  
( )( )

( )( ) ( )( )

2

f 34 3

15 μF 100.0 V
20.0 C 21.928 C

2 1.93 10  kg/m 2.5 mm 129 J/ kg C
T = + ° = °

⋅ °
 

ROUND:   
(a)  =1.46 nst  
(b)  = °f 21.9 CT  
DOUBLE-CHECK:   
(a)  The calculated value has appropriate units for time, and the magnitude of the value is reasonable for a 
discharge time.   
(b) The temperature of the gold cube does not change appreciable, which would be desirable for real 
circuits, so it makes sense. 

26.57. THINK:  Consider any given rung on the ladder to have a total equivalent capacitance of 0 .C  Next, 
determine the equivalent capacitance, 1 ,C  of 0C  with the next rung and two legs. Since the ladder is 
infinite, it should not matter where on the ladder the analysis is performed. If 0C  is the equivalent 
capacitance of all the capacitors beyond some point, then adding another set of capacitors to the mix 
should not affect anything and 1C  should equal 0 ,C  giving a recursive relation in C and thus the total 
equivalent capacitance, in terms of C, can be determined. 
SKETCH:   
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RESEARCH:  Capacitors add in series as 1 1 1
eq 1 2 .C C C− − −= +  Capacitors in parallel add as eq 1 2 .C C C= +  

SIMPLIFY:  0C  is parallel to C, which gives 0 .C C C′ = +  C′  is in series with 2 C’s, which gives: 

1 0 0

1 2 1 1 .
C C C C C

= + =
+

 

Therefore, ( ) ( ) 2 20
0 0 0 0 0 0 0 0 0

0

2   2   2 2
CC

C C C C C CC C C C C C C CC C CC
C C

+ = ⇒ + + = + ⇒ + + = +
+

 

2 2
0 0 2 2 0.C CC C⇒ + − =  

CALCULATE:  Using the quadratic equation: 
2 2

0
2 4 8 12 1 3 .

4 2 4 2
C C C CC C C

 − ± + − ±
= = − ± =   

 
 

0
3 1 ,
2

C C
 −

=   
 

 since 0C must be positive. 

ROUND:  Not necessary. 
DOUBLE-CHECK:  Consider the first rung of three capacitors in series. The equivalent of these is C/3. 
Adding another rung of three capacitors puts one capacitor in parallel with C/3 and then two capacitors in 
series with this to get: 

4
3 3
C CC + =  and then 

1
2 3 4 .

4 11
C

C C

−
 + = 
 

 

Adding another rung performs the same operation as before to get: 

4 15
11 11

C C C+ =  and then 
1

2 41 56 .
56 153

C
C C

−
 + = 
 

 

Continuing on gives: 
15 56
41 41

C C C+ =  and then 
1

2 153 209 ,
209 571

C
C C

−
 + = 
 

 209 780
571 571

C C C+ =  and then 

1
2 571 0.36602534 ,

780
C

C C

−
 

+ = 
 

 0.36602534 1.36602534C C C+ =  and therefore 

1
2 1 0.366025399 .

1.36602534
C

C C

−
 

+ = 
 

 The series converges around 0 0.366025 .C C=  The solution is 

( )0 3 1/ 2 0.366025 ,C C C= − =  which is the same as the above result. Therefore, by continuously adding 

rungs to the ladder, it converges to the previous result. 

26.58. (a)  If the switch is closed for a long time, the capacitor is fully charged and there is no current through 
that branch.  Therefore, the current through The 4.0 Ω  resistor is 0 A.i =  
(b)  With no current through 2 ,R  the potential drop across it is 2 0 V.V∆ = The two resistors, 1 6.0 R = Ω  
and 3 8.0 ,R = Ω  are in series with each other, so the current through them is 

( ) ( ) ( )1 3/ / 0.714 A.10.0 V 14.0 i V R R= ∆ + = =Ω  The potential drop across the 6.0 Ω resistor is 

( )( )1 1 0.714 A 6.0 4.286 V,V iR∆ = = Ω =  and across the 8.0 Ω  resistor is 3 3V iR∆ =  

( )( )0.714 A 8.0 5.714 V.= Ω =  Therefore, to three significant figures, ∆ =1 4.29 V,V  ∆ =2 0.00 VV  and 

∆ =3 5.71 V.V  
(c)  The potential on the capacitor is the same as the potential drop across the 8.0 Ω  resistor since they are 
parallel, so ∆ = ∆ =3 5.71 V.CV V   
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26.59. (a)  The maximum current through the ammeter is A 1.5 mA.i =  The ammeter has resistance = Ω1 75 .R  
The current through a resistor is given by = / ,i V R  where V is the potential difference across the resistor.  
Since current flows through the path of least resistance, when a shunt resistor of small resistance shuntR  is 
connected in parallel with the ammeter, most of the current flows through the shunt resistor.  The shunt 
resistor carries most of the load so that the ammeter is not damaged.     

 
From Kirchoff’s rules = +shunt Ai i i  and =shunt shunt A 1.i R i R  Therefore,  

 
= + = + 

 
A 1 1

A A
shunt shunt

1 .
i R R

i i i
R R

 

For known current Ai  (measured by ammeter) and known resistances 1R  and shunt ,R  the new maximum 
current i can be calculated.  Note that A .i i> A shunt resistor is added in parallel with an ammeter so the 
current can be increased without damaging the ammeter.    
(b)  From Kirchoff’s rules shown above,  

( )( ) −Ω
= = = = ⋅ Ω = Ω

− −
3A 1 A 1

shunt
shunt A

1.50 mA 75.0 
7.501 10  7.50 m .

15.0 A 1.50 mA
i R i R

R
i i i

 

26.60. The potential on the capacitor, 150. μF,C =  when it is fully charged is 200. V.V∆ =  The potential 

decreases exponentially as it discharges through 1.00 M ,R = Ω  by ( ) / .t RCV t Ve−∆ =  When 

( ) 50.0 V,V t∆ =  ( ) ( ) 150.0 V 200. V   .
4

t t
RC RCV t e e

− −
∆ = = ⇒ =   Therefore, the result is 

( )ln 4.00 207.94 s 208 st RC= = =  or 3.47 min.  

26.61. The capacitor, ,C  discharges through the bulb, f 2.5 k ,R = Ω  in 0.20 ms.Dt∆ =  The charging time 
is 0.80 ms.Ct∆ =  For simplicity assume the charging and discharging time are the time constants of the 

circuits. Therefore, τ −∆
∆ = = ⇒ = = = ⋅ =

Ω
8

f
f

0.20 ms  8.0 10  F 80. nF,
2.5 k

d
d d

t
t R C C

R
 and 

τ
∆

∆ = = ⇒ = = = Ω
0.80 ms  10. k .

C 80. nF
C

C C

t
t RC R  

26.62. The potential, emf ,V  of the battery is the same with ammeter, 0 53 ,R = Ω  as without.  The external 
resistance 1130 ,R = Ω  has a current of 5.25 mAI =  with ammeter, so by Ohm’s law 

( ) ( ) ( )( )0
emf 0

5.25 mA 53 1130 
  5.4962 mA 5.50 mA.

1130 
i R R

V i R R i R i
R
+ Ω+ Ω

′ ′= + = ⇒ = = = =
Ω

  

26.63. THINK:   When the switch is set to X for a long time, the capacitor, 10.0 μF,C =  charges fully so that it 
has the same potential as the battery, C emf 9.00 V.V V∆ = =  After placing the switch on Y, the capacitor 

discharges through resistor 2 40.0 R = Ω  and decreases exponentially for both immediately ( )0 st =  and 
1.00 mst =  after the switch. 
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SKETCH: 

 
 

RESEARCH:  By Ohm’s law, the current initially is 0 2/ ,Ci V R= ∆  where emf .CV V∆ =  Current decays 

exponentially as ( ) /
0 ,ti t i e τ−=  where .RCτ =  

SIMPLIFY:   
(a) Initial current is 0 2 emf 2/ / .Ci V R V R= ∆ =  

(b) After 1 ms,t =  current is ( ) /
0 0 .

t
t RCi t I e i eτ

−
−= =  

CALCULATE:  

(a)  0
9.00 V 0.225 A
40.0 

i = =
Ω

 

(b)  ( ) ( ) ( )( )
1.00 ms

40.0 10.0 μF1.00ms 0.225 A 0.01847 Ai e
−
Ω= =   

ROUND:   
(a)  0 225 mAi =  

(b)  ( )1.00 ms 18.5 mAi =  
DOUBLE-CHECK:  After only 1.00 ms, the current decreases by almost 90.0%,  which would make this a 
desirable circuit, so it makes sense. 

26.64. THINK: Since the two resistors, 2.2 k ,R = Ω  the two capacitors, 3.8 μF,C =  and the battery, 

emf 12.0 V,V =  are all in series, the order doesn’t matter, so equivalent resistance and capacitance are used 
to determine the time constant, .τ  The current then decreases exponentially from it’s initial current to 
=f 1.50 mAi  in time .t  

SKETCH:  

 
 

RESEARCH:  The equivalent resistance is 2 ,eqR R R R= + =  and the equivalent capacitance is 

( ) 1
1/C+1/ /2.eqC C C

−
= =  Initial potential in capacitor, emf .CV V∆ =  By Ohm’s law, the initial current is 

0 / .C eqi V R= ∆  
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SIMPLIFY:  The current at time t  is ( ) ( )( )/ C C C/22
0 .

2 2
eq eq

t t t
R Ct CR RC

eq

V V V
i t i e e e e

R R R
τ

− − −
− ∆ ∆ ∆

= = = =  

( ) C
f f  

2

t
RC

V
i t i i e

R

−∆
= ⇒ =  f

C

2
 

t
RCRi

e
V

−

⇒ =
∆

 f

C

2
 ln

Ri
t RC

V
 

⇒ = −  
∆ 

 

CALCULATE:  ( )( ) ( )( ) Ω
= − Ω =  

 

2 2.20 k 1.50 mA
2.20 k 3.80 μF ln 0.004998 s

12.0 V
t  

ROUND:  = 5.00 mst  
DOUBLE-CHECK:  The initial value of the current was about 2.7 mA.  The circuit decays to about half its 
original current in roughly 5 ms,  which makes this a desirable circuit, so it makes sense. 

26.65. The charge on the capacitor increases exponentially with a time constant, 3.1 s.τ =  Since the amount of 
energy in the capacitor is proportional to the square of the charge, the energy also increases exponentially. 

 

The charge on the capacitor is given by ( ) ( )/
0 1 .tq t q e τ−= −  The energy on the capacitor is given by 

( ) ( )2 / 2 .E t q t C=  The time to get to half of the maximum energy is given by ( ) max / 2,E t E=  where 
2

max 0 / 2 .E q C=  This gives: 

( ) ( ) ( )22 /22
0 /0

max

11 1   1  
2 4 2 2 2

1 1 ln 1 (3.1 s)ln 1 3.8 s.
2 2

t
t

q eq tq
E t E e

C C C

t

τ
τ

τ

−

−
−

= = = = ⇒ − = ⇒

   
= − − = − − =   

   

 

26.66. THINK:  When the switch is closed for a long time, the capacitors, 1 1.00 μFC =  and 2 2.00 μF,C =  are 
fully charged so no current flows through them, and thus the current only flows through the two resistors, 

1 1.00 kR = Ω  and 2 2.00 k ,R = Ω  driven by a battery emf 10.0 V.V =  At this point, the potential drop across 
each resistor is equal to the potential on its complementary capacitor.  Since the capacitors are in series, 
they have the same charge on them.   
SKETCH:  
(a)        (b) 

      
 

RESEARCH:  The current, by Ohm’s law is found in both cases as ( )emf 1 2/ .i V R R= +  When the switch is 

closed, the potential drop across capacitor jC  is /  (for 1,2).j j j jV Q C IR j∆ = = =  When switch is open, 

charge on each plate is emf .eqQ C V=  
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SIMPLIFY:   
(a)  The charges on the capacitor are given by: ( )emf 1 2/   / .j j j j j j j jQ C iR Q iR C V R C R R= ⇒ = = ∆ +  

( )1 emf 1 1 1 2/Q V R C R R= + and ( )2 emf 2 2 1 2/ .Q V R C R R= +  

(b)  The charge on each capacitor is ( ) ( )1

emf 1 2 emf 1 2 1 2 emf1/ 1/ / .eqQ C V C C V C C C C V
−

= = + = +  

CALCULATE:   

(a)  
( )( )( ) 6

1

10.0 V 1.00 k 1.00 μF
3.33 10  C

1.00 k 2.00 k
Q −Ω

= = ⋅
Ω + Ω

 and 
( )( )( ) 5

2

10.0 V 2.00 k 2.00 μF
1.33 10  C

1.00 k 2.00 k
Q −Ω

= = ⋅
Ω + Ω

 

(b)  
( )( )( ) 610.0 V 1.00 μF 2.00 μF

6.67 10  C
1.00 μF 2.00 μF

Q −= = ⋅
+

 

ROUND:   
(a)  1 3.33 μC,Q =  and 2 13.3 μCQ =  
(b)  6.67 μCQ =  
DOUBLE-CHECK:  More charge builds up when the capacitors have their own resistor than when they 
are paired together.  This is because even though the potential drop across them is the same in both cases, 
when the switch is open, the overall capacitance of the circuit is less than the sum of two.  So a smaller C  
gives a smaller ,Q  so it makes sense.   

26.67. THINK:  From Kirchoff’s rules, an equation can be obtained for the sum of the three currents, 1 ,i 2i  and 

3 ,i  and two equations for the two inner loops of the circuit.  This will yield 3 equations for 3 unknowns 
(the currents) and can be solved by simple substitution. Once the currents are known, the power over each 
resistor is found via Ohm’s law.  1 10.0 ,R = Ω  2 20.0 ,R = Ω  3 30.0 ,R = Ω  1 15.0 VV =  and 2 9.00 V.V =  
SKETCH: 

 
 

RESEARCH:  Looking at point A,  the three currents all flow into it, so 1 2 3 0.i i i+ + =  Going clockwise in 
each loop (upper and lower) yields two more equations: 1 1 2 2 2 0i R i R V− + − =  and 2 2 2 1 3 3 0.V i R V i R− + + =  

The power across a resistor is 2 .P i R=  
SIMPLIFY:  Since all resistances and all voltages are known, the first three equations can be solved for the 
three separate currents: 
 + + = ⇒ = − −1 2 3 3 1 20  ,i i i i i i and 1 1 2 2 2 0i R i R V− + − =  , then  

−
− + − = ⇒ = 2 2 2

1 1 2 2 2 1
1

0 .
i R V

i R i R V i
R
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( )
( )

− + + = ⇒ − + + − − =

  + + −
⇒ − + + − − = ⇒ =    + +  

2 2 2 1 3 3 2 2 2 1 1 2 3

1 1 2 1 32 2 2
2 2 2 1 2 3 2

1 1 2 1 3 2 3

0 0

0 .

V i R V i R V i R V i i R

R V V R Ri R V
V i R V i R i

R R R R R R R

 

= − −3 1 2 .i i i  

The power across each is then 2
1 1 1 ,P i R=  2

2 2 2P i R=  and 2
3 3 3 .P i R=  

CALCULATE: 

( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

Ω + Ω+ Ω+ +
= = =

+ + Ω Ω + Ω Ω + Ω Ω
1 1 2 1 3

2
1 2 1 3 2 3

10.0 15.0 V 9.00 V 10.0 30.0
0.4636 A

10.0 20.0 10.0 30.0 20.0 30.0

R V V R R
i

R R R R R R
 

( )( ) ( )Ω −−
= = =

Ω
2 2 2

1
1

0.4636 A 20.0 9.00 V
0.02727 A

10.0
i R V

i
R

 

( ) ( )= − − = − − = −3 1 2 0.4636A 0.02727A 0.49087Ai i i , or =3 0.49087Ai to the left. 

( ) ( )= Ω =2
1 0.02727 A 10.0 0.00744 W,P ( ) ( )= Ω =2

2 0.4636 A 20.0 4.299 WP , and 

( ) ( )= Ω =
2

3 0.49087A 30.0 7.230 W.P  

 ROUND:  1 7.44 mW,P =  2 4.30 WP =  and 3 7.23 W.P =  
DOUBLE-CHECK: Looking back at the values for current, it is found that  

+ + = + − =1 2 3 0.4636 A 0.02727 A 0.49087 A 0,i i i  
which is what would be expected.  Going from left to right on each branch gives  

1 1
3.00  V,
11.0

i R− = −  2 2 2
3.00  V
11.0

V i R− = −  and 3 3 1
3.00  V.
11.0

i R V− − = −  

So the potential drop across each branch in parallel is the same, so the answers make sense.  

26.68. THINK:  From Kirchhoff’s rules, an equation can be obtained for the sum of the three currents, 1 ,i 2i  and 

3 ,i  and two equations can be obtained for the two inner loops of the circuit.  This will yield 3 equations for 
3 unknowns (the currents) and can be solved by substitution. Once the currents are known, the voltage 
drop over resistor 2 is found via Ohm’s law.  1 30.0 ,R = Ω  2 40.0 ,R = Ω  3 20.0 ,R = Ω  enf,1 12.0 VV =  and 

emf,2 16.0 V.V =  
SKETCH:  

 
RESEARCH:  By the choice of directions of currents, at point A,  the currents sum as  
− − =1 2 3 0.i i i Going clockwise in the upper and lower loops gives 2 equations: 1 1 1 2 2 0V i R i R− + + =  and  

− + − =2 2 3 3 2 0.i R i R V Potential drop across resistor 2 is 2 2 .V i R∆ =  
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SIMPLIFY:    
− − = ⇒ = −1 2 3 3 1 20 .i i i i i i  

−
− + + = ⇒ = 1 2 2

1 1 1 2 2 1
1

0
V i R

V i R i R i
R

 

( )− + − = ⇒ − + − − =

  −
 ⇒ − + − − = ⇒ =    + +  

2 2 3 3 2 2 2 1 2 3 2

3 11 2 2
2 2 2 3 2 2

1 1 2 1 3 2 3

0 0

0

i R i R V i R i i R V

R VV i R
i R i R V i

R R R R R R R
 

The potential drop across it is 2 2 .V i R∆ =  
CALCULATE:   

( )( )
( )( ) ( )( ) ( )( )

Ω
= = =

+ + Ω Ω + Ω Ω + Ω Ω
3 1

2
1 2 1 3 2 3

20.0 12.0 V
0.092307 A

30.0 40.0 30.0 20.0 40.0 20.0
R V

i
R R R R R R

 

( )( )∆ = Ω =0.092307 A 40.0 3.6923 VV  
ROUND:  3.69 VV∆ =  
DOUBLE-CHECK:  Going back to equation for 1i  and 3 ,i  I get =1 0.2769 Ai  and = −3 0.18461 A,i  where 

=2 0.093207 A,i  so the currents are consistent.  Calculating the potential drop across the upper and lower 

branches gives 1 1 1 3.6923 VV i R− =  and 2 3 3 3.6923 V,V i R+ =  so each branch has the same potential drop 
across it, so it makes sense.  

26.69. (a) From equation 24.10 of the textbook, the capacitance of a spherical capacitor is 
πε

=
−

04
,

ab
C

b a
 where 

1.10 cmb =  and 1.00 cm.a =  Since it is connected in series with resistor 10.0 MR = Ω  and emf voltage, 

emf 10.0 V,V =  the time constant is  

( )
( )( )( )( )

( )

12 2 2
40

4 8.8542 10  N m /C 10.0 M 1.10 cm 1.00 cm4
1.22 10  s.

1.10 cm 1.00 cm
Rba

RC
b a

ππε
τ

−

−
⋅ Ω

= = = = ⋅
− −

 

(b) The charge on the capacitor still grows: ( ) ( )/
0 1 ,tq t q e τ−= −  where 0 emf .q CV=  Therefore,  

 

( ) ( )
( )

( )( )( )( )
( )

( )
( )

τπε

π −

−

−
−

⋅

 
= − 

−  
 ⋅
 = −
 −  

=

4

0.1 ms
0 emf

12 2 2 0.100 ms
1.22 10  s

4
0.100 ms 1

4 8.8542 10  N m /C 10.0 V 1.10 cm 1.00 cm
1

1.10 cm 1.00 cm

68.5 pC

V ba
q e

b a

e  

26.70. THINK:  Since the circuit has three branches, four equations (one for each branch and the equation for 
the current at a junction) can be written down simply by inspection. However, a deeper analysis is 
required to fully understand the evolution of the circuit. For example, as the capacitor, 30.0 μF,C =  

charges, the current through it, ( )1 ,i t  starts at some maximum and decays to zero. When this happens, the 

other currents, ( )2i t  and ( )3i t  must become equal. Even though there are two branches with batteries, 

emf,2 80.0 VV =  and emf,3 80.0 V,V =  and resistors, A 40.0 R = Ω  and B 1.0 ,R = Ω  and C 20.0 R = Ω  and 

D 1.0 ,R = Ω  respectively, the capacitor effectively sees two resistors in parallel to charge through.  All three 
currents and the potential across each branch are time dependent. 
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SKETCH:   

 
 

RESEARCH:  Starting at junction X and going clockwise around the three loops gives three equations for 
the potential along them. Also, junction X gives an equation relating the currents.  

( ) ( )C 3 3 emf,3 0V t R i t V−∆ + − =                                                                (1) 

( ) ( )C emf,2 2 2 0V t V R i t−∆ + − =                                                                (2) 

( ) ( )2 2 emf,2 3 3 emf,3 0R i t V R i t V− + − =                                                            (3) 

( ) ( ) ( )2 1 3i t i t i t= +                                                                          (4) 

where 2 A BR R R= +  and 3 C D .R R R= +  The charge on the capacitor is ( ) ( )/
max 1 ,tQ t Q e τ−= −  where 

e .qR Cτ =  The equivalent resistor is 2R  and 3R  in parallel. The current through the capacitor decays as 

( ) ( ) /
1 1 0 ,ti t i e τ−=  where ( )1 0i  is the initial current through the capacitor. 

SIMPLIFY:  The time constant is given by: 
1

2 3
e

2 3 2 3

1 1 .q

CR R
R C C

R R R R
τ

−
 

= = + = 
+ 

 Consider the voltage drop 

from junction X to Y. Along each branch it must be equal, so for the bottom two branches: 
( ) ( ) ( ) ( )2 2 emf,2 emf,3 3 3 emf,3 emf,2 2 2 3 3  .R i t V V R i t V V R i t R i t− = − ⇒ + = +  Using equation (4), and substituting 

in for ( )2i t  and ( )3i t  gives: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )emf,2 emf,3 2 1
emf,2 emf,3 2 1 3 3 3 2 1 2 3 3 3

2 3

  ,
V V R i t

V V R i t i t R i t R i t R R i t i t
R R

+ −
 + = + + = + + ⇒ =  +

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )emf,2 emf,3 3 1
emf,2 emf,3 2 2 3 2 1 3 1 2 3 2 2

2 3

  .
V V R i t

V V R i t R i t i t R i t R R i t i t
R R

+ +
 + = + − = − + + ⇒ =  +

 

When ,t →∞  ( )1 0,i t →  so the steady state current is given by: ( ) ( ) emf,2 emf,3
2 3 s

2 3

lim lim .
t t

V V
i t i t i

R R→∞ →∞

+
= = =

+
 

At all times, the voltage drop from X to Y is the same along any branch. Now that the steady state current 
is reached, the voltage drop across the capacitor can be determined and thus the maximum charge and 
initial current on the capacitor. Compare ( )CV t∆ = ∞  to both branches: 

( ) ( )C C,max 3 3 emf,3 3 s emf,3V t V R i t V R i V∆ = ∞ = ∆ = = ∞ − = −  or 

( )C,max emf,2 2 2 emf,2 2 s .V V R i t V R i∆ = − = ∞ = −  
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emf,2 emf,3 emf,2 emf,3
C,max 3 emf,3 emf,2 2

2 3 2 3

emf,2 emf,3 emf,2 emf,32 3 2 3
3 emf,3 emf,2 2

2 3 2 3 2 3 2 3

3 emf,2 2 emf,3

2

 

 

 

V V V V
V R V V R

R R R R

V V V VR R R R
R V V R

R R R R R R R R
R V R V

R

 +   + 
⇒ ∆ = − = −   

+ +   
 +       + + +

⇒ − = −       
+ + + +       
−

⇒
+

3 emf,2 2 emf,3

3 2 3

.
R V R V

R R R
−

=
+

 

The maximum charge is given by: 
( )3 emf,2 2 emf,3

max C,max
2 3

.
C R V R V

Q C V
R R

−
= ∆ =

+
 In general, ( )Q t  is related to 

( )1i t  by: ( ) ( ) ( )/ / /max
1 max max

11 0 .t t tdQ t Qdi t Q e Q e e
dt dt

τ τ τ

τ τ
− − − 

= = − = − − = 
 

 

( ) ( )3 emf,2 2 emf,3 emf,2 emf,3max 2 3
1

2 3 2 3 2 3

0
C R V R V V VQ R R

i
R R CR R R Rτ

−  +
= = = − 

+  
 

Now that ( )1 0i  is determined, ( )2i t  and ( )3i t  can be expressed in simpler terms: 

( ) ( ) ( )

( )

/
3 emf,2 2 emf,3 3emf,2 emf,3 3 1 emf,2 emf,3

2
2 3 2 3 2 3

3 2 emf,2 emf,3 /
s

2 3

/ /

/
.

t

t

R V R V R eV V R i t V V
i t

R R R R R R

R R V V
i e

R R

τ

τ

−

−

−+ + +
= = +

+ + +

 −
= +  

+  

 

( ) ( ) ( )

( )

/
2 emf,2 2 emf,3 3emf,2 emf,3 2 1 emf,2 emf,3

3
2 3 2 3 2 3

2 3 emf,3 emf,2 /
s

2 3

/ /

/

t

t

R V R V R eV V R i t V V
i t

R R R R R R

R R V V
i e

R R

τ

τ

−

−

−+ − +
= = −

+ + +

 −
= +  

+  

 

The potential across the capacitor for any given times is then given by: 

( ) ( ) ( ) ( )3 emf,2 2 emf,3/ /max
C

2 3

1 1 .t tQ t R V R VQ
V t e e

C C R R
τ τ− −−

∆ = = − = −
+

 

Therefore, in addition to the previous four equations, there are six additional ones.  

2 3

2 3

CR R
R R

τ =
+

                                                                              (5) 

emf,2 emf,3
s

2 3

V V
i

R R
+

=
+

                                                                          (6) 

  ( ) emf,2 emf,3 /
1

2 3

tV V
i t e

R R
τ− 

= − 
 

                                                                 (7) 

( ) ( )3 2 emf,2 emf,3 /
2 s

2 3

/ tR R V V
i t i e

R R
τ−

 −
= +  

+  
                                                       (8) 

 ( ) ( )2 3 emf,3 emf,2 /
3 s

2 3

/ tR R V V
i t i e

R R
τ−

 −
= +  

+  
                                                       (9) 

( ) ( )3 emf,2 2 emf,3 /
C

2 3

1 tR V R V
V t e

R R
τ−−

∆ = −
+

                                                     (10) 
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CALCULATE:  1 40.0 1.0 41.0 ,R = Ω+ Ω = Ω  2 20.0 1.0 21.0 R = Ω+ Ω = Ω  

( )( )( ) ( )
1

11 4 130.0 F 41.0 21.0 
4.16613 10  s 2400.31 s

41.0 21.0 
µ

τ
−

−− − −
 Ω Ω

= = ⋅ = 
Ω + Ω  

 

s
80.0 V 80.0 V 2.580645161 A,
41.0 21.0 

i +
= =

Ω+ Ω
  emf,2 emf,3

2 3

80.0 V 80.0 V 1.858304297 A
41.0 21.0 

V V
R R

− = − = −
Ω Ω

 

( ) ( )3 2 emf,2 emf,3

2 3

/ 21.0 / 41.0 80.0 V 80.0 V
0.6294256 A

21.0 41.0 
R R V V

R R
− Ω Ω −

= = −
+ Ω+ Ω

 

( ) ( )2 3 emf,3 emf,2

2 3

/ 41.0 / 21.0 80.0 V 80.0 V
1.228878648 A

21.0 41.0 
R R V V

R R
− Ω Ω −

= =
+ Ω+ Ω

 

( ) ( )3 emf,2 2 emf,3

2 3

21.0 80.0 V 41.0 80.0 V
25.8069516 V

21.0 41.0 
R V R V

R R
Ω − Ω−

= = −
+ Ω+ Ω

 

ROUND:  The initial four equations, rounded to three significant figures are:  

(1) ( ) ( )12400 s
79.98 V 0.03 V 80.0 V 0,

t
e

−−
+ − =  (2) ( ) ( )12400 s

80.0 V 79.98 V 0.011 V 0,
t

e
−− − + =  

 

(3) ( ) ( )12400 s
159.96 V 0.041 V 160.0 V 0

t
e

−−
+ − =   and 

( ) ( ) ( ) ( ) ( ) ( )1 1 12400 s 2400 s 2400 s
0.629 A 1.86 A 1.23 A .

t t t
e e e

− − −− − −
− = − +  

DOUBLE-CHECK:  The initial four equations within rounding are still valid, so the values of the 
coefficients are correct. Checking ( )2 0i  and ( )3 0i  using equations (8) and (9) gives: 

( ) ( ) ( )
( )

emf,2 emf,3 3 emf,2 2 emf,3 3 emf,2 3 2 emf,2
2

2 3 22 3 2

/ / 1 /
0

1 /

V V R V R V R V R R V
i

R R RR R R

+ + − +
= = =

+ +
 and 

( ) ( ) ( )
( )

emf,2 3 2 emf,2 2 emf,3 3 emf,3 2 3 emf,3
3

2 3 33 2 3

/ / 1 /
0 .

1 /

V V R V R V R V R R V
i

R R RR R R

+ ∆ − − +
= = =

+ +
 

These results satisfy ( ) ( ) ( ) ( ) ( )1 2 3 emf,2 2 emf,3 30 0 0 / / .i i i V R V R= − = − Also, consider that initially the emf,2V  

battery “sees” only 2R  first (likewise for battery emf,3V  and 3 ),R  so the initial current is simply emf,2 2/V R  

(or emf,3 3/ ),V R  so the equations for the currents make sense. 

26.71. THINK:  The capacitor of capacitance is 10.0 μF,C =  is charged through a resistor of resistance 
10.0 ,R = Ω  with a battery, emf 10.0 V.V =  It is discharged through a resistor, 1.00 .R ′ = Ω  For either 

charging or discharging, it takes the same number of time constants to get to half of the maximum value. 
The energy on the capacitor is proportional to the square of the charge. 
SKETCH:   

 
RESEARCH:  The capacitor’s charge is given by ( ) ( )/

0 1 .tq t q e τ−= −  In general, the energy on the 

capacitor is given by ( ) ( )2 / 2 .E t q t C=  The time constant is either RCτ =  or .R Cτ ′ ′=  
SIMPLIFY:   

(a)  When ( ) 0 / 2,q t q=  then: ( ) ( )/ /
0 0

1 1 11   1   ln ln2.
2 2 2

t tq t q q e e tτ τ τ τ− −  
= = − ⇒ = − ⇒ = − = 
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(b)  If ( ) 0
1 ,
2

q t q=  the energy is: ( ) ( ) ( )22 2
0 0

max

/ 2 1 1 .
2 2 4 2 4

q t q q
E t E

C C C
 

= = = =  
 

 

(c)  The time constant for discharging is .R Cτ ′ ′=  

(d)  The capacitor discharges to half the original charge in ( )ln 2 .t τ ′=  
CALCULATE:   
(a)  ( )ln2.00,  or 0.693t τ τ=  
(b)  1.00:4.00. 
(c)  ( )( )1.00 10.0 μF 10.0 μsτ ′ = Ω =  

(d)  ( ) ( )10.0 μs ln 2.00 6.93 μst = =  
ROUND:   
(a)  0.693τ  
(b)  1.00:4.00. 
(c)  10.0 μsτ ′ =  
(d)  6.93 μst =  

DOUBLE-CHECK:  In general, charge decreases exponentially as ( ) /
0 .tq t q e τ−=  For 10 μsτ ′ =  and 

6.93 μs,t =  the charge is ( ) 6.93/10
0 06.93 μs 0.497 ,q q e q−= =  which is about half the original charge. 

26.72. THINK:  From Kirchhoff’s rules, an equation can be obtained for the sum of the three currents, 1 ,i 2i  and 

3 ,i  and two equations can be obtained for the two inner loops of the circuit.  This will yield 3 equations for 
3 unknowns (the currents) and can be solved by simple substitution. Once the currents are known, the 
voltage drop over resistor 2 is found via Ohm’s law.  1 3.00 ,R = Ω 2 2.00 ,R = Ω 3 5.00 ,R = Ω emf,1 10.0 VV =  

and emf,2 6.00V.V =  
SKETCH:  

 
RESEARCH: By the choice of directions of currents, at point A,  the currents sum as 1 2 3 0.i i i− − =  Going 
clockwise in the upper and lower loops gives 2 equations: 1 1 emf,1 3 3 0i R V i R− + − =  and 

3 3 2 2 emf,2 0.i R i R V− + =  Potential drop across resistor 2 is 2 2 .V i R∆ =  The power across the third resistor is 
2
3 3 .P i R=   

SIMPLIFY:  From equation of currents: 1 2 3 3 1 2  .i i i i i i= + ⇒ = −  From the upper loop: 

( ) ( )emf,1 3 3 1 1 1 emf,1 1 3 3 1  / / .V i R i R i V R i R R− = ⇒ = −  From the lower loop: 

( ) ( )emf,2 3 3 2 2 2 emf,2 2 3 3 2  / / .V i R i R i V R i R R+ = ⇒ = +  Therefore,  
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emf,1 emf,2 emf,1 emf,23 3 3 3 3
3 1 2 3 3 3 3

1 1 2 2 3 1 2 1 2
1

emf,1 emf,2emf,1 emf,23 3 3 3 3 3
3 3

1 23 1 2 1 2 3 1 2

emf,1 e
3

1 3

 

  

 

V V V VR R R R R
i i i i i i i

R R R R R R R R R

V VV VR R R R R R
i i

R RR R R R R R R R

V V
i

R R

−

 
= − = − − − ⇒ = − − + 

 

    
−⇒ + + = − ⇒ = + +    

    

 
⇒ = − 

 

1

mf,2

2 3 3 1 2

1 1 1
R R R R R

−    
+ +    

     

 

CALCULATE:   

(a)  
( )( ) ( )( )

1

3
10.0 V 6.00 V 1 1 1 0.06452 A

5.00 3.00 2.00 3.00 5.00 2.00 5.00 
i

−  = − =+ +  Ω Ω Ω Ω Ω Ω Ω 
 

(b)  ( ) ( )2
0.06452 A 5.00 0.02081 WP = Ω =  

ROUND:  
(a)  64.5 mAi =  
(b)  20.8 mWP =   
DOUBLE-CHECK:  Going back to equation for 1i  and 2 ,i  the currents can be calculated as 1 3.2258 Ai =  
and 2 3.1613 A.i = Their difference is 1 2 0.0045 A,i i− =  which is also 3 ;i  therefore, the current is correct 
and it makes sense. 

26.73. THINK:  From Kirchhoff’s rules, an equation can be obtained for the sum of the five currents, 1 ,i  2 ,i  3 ,i  

4i  and 5 ,i  and two equations can be obtained for the two inner loops of the circuit.  Since the voltage drop 
across resistor 3 is zero, the current through that branch is also zero.  Ohm’s law allows an equation for the 
ratios of the resistors.  Once 2R  is known, the current through it is obtained by equation the potential 
drop across both 1R  and 2R  is equal to the emf voltage.  1 8.00 ,R = Ω 4 2.00 ,R = Ω 5 6.00 R = Ω  and 

emf 15.0 V.V =   
SKETCH:  

 
RESEARCH:  By the choice of directions of currents, two equations arise 1 2 3i i i= +  and 5 3 4 .i i i= +  Since 
the current through 3R  is zero, 3 3 3 0.V i R∆ = =  Then, two sets of potential drops are equal: 1 1 4 4i R i R=  and 

2 2 5 5 .i R i R=  The potential across 1R  and 2R  is emf 1 1 2 2 .V i R i R= +  
SIMPLIFY:  Since 3i  is zero, the current becomes 1 2i i=  and 4 5 .i i=  Dividing the potential drops across 
each resistors yields  

1 51 1 4 4 1 4
2

2 2 5 5 2 5 4

    .
R Ri R i R R R

R
i R i R R R R

= ⇒ = ⇒ =  

The current through it is 2 1 ;i i i= =  therefore, ( ) ( )emf 1 1 2 1 emf 1 2  / .V i R R i V R R= + ⇒ = +  
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CALCULATE:  
( )( )

2

8.00 6.00 
24.0 ,

2.00 
R

Ω Ω
= = Ω

Ω 12
15.0 V 0.46875 A

8.00 240 
i i= = =

Ω+ Ω
 

ROUND:  2 24.0 ,R = Ω    2 469 mAi =  

DOUBLE-CHECK:  Solving for ( )4 5 emp u s/ 1.875 Ai i V R R= = + =  for a total current of T 2.34375 Ai =  

coming out of the battery.   Since there is no current in 3 ,R  the circuit is just 1R  and 2R  in parallel with 

4R  and 5R  to gives ( ) ( ) 1

eq 1 2 4 51/ 1/ ,R R R R R
−

 = + + +   and produces a current of 

emp eq T/ 2.34375 ,i V R i= ∆ = =  so it makes sense.  

26.74. THINK:  From Kirchhoff’s rules, equations can be obtained for the sum of the five currents, 1 ,i  2 ,i  3 ,i  4i  
and 5 ,i  and three equations for the three inner loops of the circuit.  This will yield 5 equations and 4 
unknowns (the currents) and can be solved by simple substitution.  1 1.00 ,R = Ω 2 2.00 ,R = Ω  

3 3.00 ,R = Ω  4 4.00 ,R = Ω  5 5.00 ,R = Ω  emf,1 12.0 VV =  and emf,2 6.00 V.V =  
SKETCH:  

 
RESEARCH:  By the choice of directions of currents, at point A, 1 2 3 4 0,i i i i− − − =  and at point B,  

2 4 5 0.i i i+ − =  By going clockwise in each loop yields 3 equations: emf,1 1 1 3 3 0,V i R i R− − =  

2 2 emf,2 4 4 0i R V i R− − − =  and 4 4 emf,2 5 5 3 3 0.i R V i R i R− + − + =  Potential drop across resistor 2 is 2 2 .V i R∆ =  

The power across the third resistor is 2
3 3 .P i R=   

SIMPLIFY:   
(a) Using the equation 5 2 4 ,i i i= + the other 4 can be simplified to: 1) 1 2 3 4 0i i i i− − − = ;  2) 

1 1 3 3 emf,1R i R i V+ = ;   3) 2 2 4 4 emf,2R i R i V− + = ;   4) ( )5 2 3 3 4 5 4 emf,2 .R i R i R R i V− + + =  
(b)  Since the resistance are in Ω  and all voltages are in V,  the equations can be rewritten for simplicity 
with only the magnitude of the values, knowing that the final currents are in A,  which yields:  1) 

1 2 3 4 0i i i i− − − = ;  2) 1 33 12.0i i+ = ;   3) 2 42 4 6.00i i− + = ;   4) 2 3 45 3 9 6.00.i i i− + =  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )( ) ( ) ( ) ( )

2 3 4

3 4

3 4

4

2 1 : 4 12.0 2

2 2 3  :  8 6 30.0 3

5 2 4  :  23 4 54.0 4

23 / 8 2 4  :  85.0 / 4 32.25 4 .

i i i A

A i i A

A i i A

A A i B

− + + = ≡

+ + = ≡

− + − + = − ≡

+ = ≡

 

Therefore, ( ) 44   129 / 85.0,B i⇒ =  ( ) ( )3 43   30.0 6 / 8 222 / 85.0,A i I⇒ = − =  

( ) 2 3 42   12.0 4 3.00 / 85.0,A i i i⇒ = − − =  and ( ) 1 2 3 41   354 / 85.0.i i i i⇒ = + + =  

CALCULATE:   4
129  A 1.5176 A
85.0

i = =  

ROUND:  4 1.52 Ai =  
DOUBLE-CHECK:  If these currents are used to calculate the potential drop from ,A B→  you get 

3 3 5 5 0.071 V,i R i R− + =  4 4 2 0.071 V,i R V− + ∆ =  and 2 2 0.071 V,i R− =  so the potential drops are all the 
same, so it makes sense. 
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26.75. THINK:  Consider any square on the grid to have been reduced so that every side has a capacitance, ,C′  
which is the equivalent of all the capacitors above, below and along each side. Since the grid is infinite, 
then no side has more capacitors than any other, so all four are reduced to the same capacitance. Next, 
consider the same analysis except for only three sides, so that one side is still of capacitance, C, while the 
others are .C′   When those four sides are reduced to one equivalent capacitance, the result should be equal 
to the original value of .C′  This is because the grid is infinite and adding an extra square to the already 
reduced side should affect nothing, resulting in the same capacitance, giving a recursive relation in C, and 
thus the total equivalent capacitance, in terms of C, can be determined. 
SKETCH:   

 

RESEARCH:  Capacitors in series add as 1 1 1
eq 1 2 .C C C− − −= +  Capacitors in parallel add as eq 1 2 .C C C= +  

SIMPLIFY:  When all four sides are reduced to ,C′  the equivalent capacitance (across A to B) is: 
1

1 1 1 4 .
3
CC C

C C C

− ′ ′′ ′= + + + = ′ ′ ′ 
 

Looking at when one side is reduced using the other three reduced gives 0C  as: 
1

0
1 1 1 .

3
CC C C

C C C

− ′ = + + + = + ′ ′ ′ 
 

Since 0 :C C′=  2  
3 3

CC C C C
′

′ ′= + ⇒ =  and 3 .
2

C C′ =  Therefore, the total equivalent capacitance is: 

4 4 3 4 2 .
3 3 2 2
CC C C C
′  ′′ = = = = 

 
 

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  Consider an intersection on the grid. If a voltage was applied to this point, it  
would see equal capacitance (since it is infinite) in all four directions, meaning it would  
contribute an equal charge, q, to each direction. If the same voltage with opposite polarity was  
applied to any adjacent intersection, it would see a –q along each direction. This means the  
capacitor that joins the two intersections is actually double the charge on one, meaning the  
potential sees an effective capacitance twice the size of any one capacitor, so an equivalent  
capacitance of 2C is correct. ( )0 / 3  3 / 2 .C C C C C′ ′= + ⇒ =  Therefore the total equivalent capacitance is 

( ) ( )( )4 / 3 4 / 3 3 / 2 2 .C C C C′′ ′= = =  
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Multi-Version Exercises 

 Exercises 26.76–26.78   Using Kirchhoff’s Loop Rule we get i t e 0.iR V V− − + =  So the required battery 
charger emf is e i t .V iR V= +  

26.76. ( )( )e i t 9.759 A 0.1373 11.45 V 12.79 VV iR V= + = Ω + =  

26.77. The potential difference across the terminals during charging is equal to the charger emf, 14.51 V. To find 
the open-circuit potential difference across the terminals, with the charger removed and no voltage drop 
due to internal resistance, use e i t .V iR V= +  

( )( )t e i 14.51 V 5.399 A 0.1415 13.75 VV V iR= − = − Ω =  

26.78. e i tV iR V= +  

 

e t
i

16.93 V 16.05 V 0.15 
6.041 A

V V
R

i
− −

= = = Ω  

 Note that by the subtraction rule, the difference of the two voltages has only two significant figures. 

 Exercises 26.79–26.81   Kirchhoff’s Loop Rule gives us 

 emf,1 1 2 emf,2 emf,1 1 2 emf,2 0.V V V V V iR iR V− ∆ −∆ − = − − − =  
 We can rearrange this equation to get 

 
( )emf,1 1 2 emf,2

emf,1 emf,2

1 2

0

.

V i R R V
V V

i
R R

− + − =
−

=
+

 

26.79. emf,1 emf,2

1 2

21.01 V 10.75 V 0.2933 A
23.37 11.61 

V V
i

R R
− −

= = =
+ Ω+ Ω

 

26.80. emf,1 emf,2

1 2

V V
i

R R
−

=
+

 

 

emf,1 emf,2
2 1

16.37 V 10.81 V 24.65 10.10 .
0.1600 A

V V
R R

i
− −

= − = − Ω = Ω  

26.81. emf,1 emf,2

1 2

V V
i

R R
−

=
+

 

 

( )
( ) ( )( )

1 2 emf,1 emf,2

emf,2 emf,1 1 2 17.75 V 0.1740 A 25.95 13.59 10.87 V

i R R V V

V V i R R

+ = −

= − + = − Ω+ Ω =
  Exercises 26.82–26.84   When the resistor is connected to the charged capacitor, the initial current i0 

 will be given by emf
emf 0 0    .

V
V i R i

R
= ⇒ = The time constant is .RCτ = The current after time t is 

 
( )// emf

0 .t RCt V
i i e e

R
τ −−= =  

26.82. ( ) ( ) ( )( )( )33.871 s / 616.5 15.19 10  F/emf 131.1 V 0.1407 A
616.5 

t RCV
i e e

R

−− Ω ⋅−= = =
Ω
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26.83. ( )/emf t RCV
i e

R
−=  

 

( )

( )

( ) ( )( )

/

emf

emf

emf

ln /

1.743 s
0.1745 A 655.1 

ln 655.1 ln
133.1 V

0.01749 F 17.49 mF

t RCiR e
V

iR t RC
V

tC
iRR

V

−=

 
= − 

 

= − = − =
   Ω

Ω      

=



 

26.84. ( )/emf t RCV
i e

R
−=  

 ( ) ( )( ) ( ) ( )( )( )36.615 s / 693.5 19.79 10  F/
emf 0.1203 A 693.5 135.1 Vt RCV iRe e

−Ω ⋅
= = Ω =  
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Chapter 27:  Magnetism 
 

Concept Checks 

27.1.  a  27.2. a  27.3. c  27.4. a  27.5. a  
 
Multiple-Choice Questions 

27.1. b  27.2. c  27.3. e  27.4. b  27.5. a  27.6. a  27.7. a,c,d,e are true; b is false  27.8. b  27.9. e  27.10. d  27.11. d  
27.12. d   

 
Conceptual Questions 

27.13. (a)   

 
 
(b)   

 
 

(c)   

 
 

(d)   

 
 

27.14. Zero. The force acting on a charged particle in a magnetic field is .F qv B= ×
 

  By definition of the cross-
product (and confirmed by experiment), this force is always perpendicular to the velocity of the particle at 
any point in the magnetic field. Thus, the work done by the magnetic field on the charged particle is zero. 
The effect of this force on the particle is that it changes the direction of the particle’s velocity, but not its 
magnitude. Hence, the uniform circular motion the particle has in the magnetic field (the cyclotron 
motion). 

27.15. A = Parabolic (electric field). B = Circular (magnetic field). The forces acting on a charged particle under 
either an electric field or a magnetic field is F qE=

 

 or ,F qv B= ×
 

  respectively. 
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27.16.  

 
(a) The direction of the force acting on a charge moving in a magnetic field is given by the right-hand rule. 
If the fingers point in the direction of ,v then to produce a force in the negative x-direction, the magnetic 
field has to act out of the page, in positive z-direction. 
(b) Yes, it does change. For the negatively charged electron, the field must point into the page, in negative 
z-direction. The direction of the force depends on the charge. 

27.17. A magnetic potential is used to represent magnetic fields in regions of zero current density in some 
applications, but the construction is not as useful as its electrical counterpart. This is because the electric 
potential represents a potential energy (per unit charge), which is part of a conserved total energy. It keeps 
track of the work done by the electric field on a charge moving in that field, and can thus be used to 
analyze the dynamics of charged particles. But the magnetic field never does any work on a charged 
particle, as the magnetic force is perpendicular to the particle’s velocity. There is no work for a magnetic 
scalar potential energy to track. It represents no contribution to a conserved total energy, and hence, does 
not enter into any dynamics. It is more useful in advanced treatments of electromagnetic theory to 
represent the magnetic field as the curl of a vector potential: ,B A=∇×



 for a suitable vector field, .A


 

27.18. This is possible if the direction of the current is parallel or anti-parallel to that of the magnetic field. In 
such a case, 0.dF idL B= × =  

27.19. Yes, it is possible. In order for this to work, the force due to the electric field, ,F qE=
 

 has to be 
perpendicular to the velocity vector at all times. One way to achieve this is to have the electric field from a 
point particle, say a proton, for which the electric field points in radial outwards direction. An electron 
with suitable initial velocity can then make circular orbits around the proton. For these the speed does not 
change. If the electric field is replaced with a uniform magnetic field, the speed of a charged particle never 
changes.  Note that in both cases described here, only the speed is constant, but the direction of the velocity 
vector changes. (In the case that the initial velocity vector is parallel or anti-parallel to the magnetic field 
even the direction stays constant.) 

27.20. The charged particle will move in a helix around the magnetic field lines. Its motion in the z-direction is 
unaffected by the magnetic field, and therefore the time required involves determining the component of 
the initial velocity in the z-direction, which is simply v multiplied by the cosine of the angle. Thus, the time 

required is ,
cosz

z zt
v v θ
∆ ∆

∆ = = where z∆ is the extent of the region along the z-direction. 
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27.21.  

 
The magnetic force acts in a direction perpendicular to both the velocity and magnetic fields. Since these 
are both in the horizontal plane, the force acts into or out of the page. The right-hand rule shows that a 
positive charge experiences a net force outwards. Thus, for the negatively charged electron, the force is 
directed inwards. 

27.22. Recall that a velocity selector works with perpendicular magnetic and electric fields. At the Earth’s surface, 
there is an approximately perpendicular relation between the electric and magnetic fields. Thus, on a line 
perpendicular to E and B, charged particles will travel without deflection if they have the correct velocity. 
This velocity has a magnitude E/B. It is known that the Earth’s magnetic field is approximately 0.3 gauss or 

−⋅ 53 10  T.  Therefore, the value of E/B at the Earth’s surface is of the order: 

−
= ⋅

⋅
6

5

150 N 5 10  m/s.
3 10  T

 

When pointed west, magnetically speaking the beam would be un-deflected. Once you are facing West, 
North is on your right. 

 
27.23. A cyclotron has both electric and magnetic fields. It is the alternating electric field which does the work to 

increase the particle’s kinetic energy. Although the magnetic field does not do any work (it does not 
change the particle’s kinetic energy), it nevertheless plays an important role in keeping the particle in a 
circular orbit. As the electric field accelerates the particle, the radius of the circular orbit increases so that 
the particle follows a spiral trajectory. The alternating electric field and the static uniform magnetic are 
crucial for the operation of the cyclotron as a particle accelerator. 

 
Exercises 

27.24.  

 

B ,F qv B= ×
 

   B sin ,F q vB θ=  90θ = °  and ,q e=  so, B .F evB=  Inserting the values gives: 

( )( )( )19 5 14 14
B 1.602 10  C 4.00 10  m/s 0.400 T 2.563 10  N 2.56 10  N.F − − −= ⋅ ⋅ = ⋅ ≈ ⋅  
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27.25. B ,F qv B= ×
 



 B sin ,F q vB θ=  90θ = °,  2q e= −  B B 2F F evB⇒ = = + ⇒


 

( )
18

5 5B
19 5

3.00 10  N 9.363 10  T 9.36 10  T.
2 2 1.602 10  C 1.00 10  m/s
F

B
ev

−
− −

−

⋅
= = = ⋅ ≈ ⋅

⋅ ⋅
 

27.26. THINK:  The particle moves in a straight line at constant speed. Thus, the net force must be zero. The 
electric force is the negative of the magnetic force. Using the right-hand rule, the direction of the magnetic 
field can be determined. For the magnitude, set the magnitude of the net force to zero. 10.0 μC, q =  

 300. m/sv =  and E = 100. V/m. 
SKETCH:   
(a)        (b) 

      
 

RESEARCH:  ( ) 0F qE q v B= + × =
  

  

SIMPLIFY:  ( ) 0  q E v B v B E+ × = ⇒ × = −
   

   

(a)  ( )ˆˆ ˆ ˆ    Ev B Ey vz B Ey B x
v

× = − ⇒ × = − ⇒ = −
  

   (by the right-hand rule) 

(b)  ( )ˆ ˆ ˆ  v B Ez vz B Ez× = − ⇒ × = −
 

  

There is no solution. ẑ B×


is either zero, or a vector in the xy-plane. 
CALCULATE:   

(a)  100. V/m 1  T 0.3333 T;
300. m/s 3

B = − = − = −


so ˆ0.333  T.B x= −


 

(b)  No solution. No magnetic field will keep the particle moving at a constant speed in a straight line. 
ROUND:   
(a)  = −



ˆ0.333  TB x  
(b)  Not applicable. 
DOUBLE-CHECK:  No Lorenz force can counteract an electric force in z-direction, if the particle is also 
traveling in z-direction, because the Lorenz force is always perpendicular to the velocity vector.   

27.27. THINK:  First determine the components of the force. Once the components are determined, the 
magnitude and the direction of the force can be found. = 20.0 μC,q  v = 50.0 m/s, = 0.700 TzB  and 

= 0.300 T.yB  

SKETCH:   
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RESEARCH:  ,F qv B= ×
 

  ˆˆ ˆ ,x y z× =  ˆˆ ˆ,y z x× =  ˆ ˆ ˆ,z x y× =  A B B A× = − ×
  

 

SIMPLIFY:  ( ) ( ) ( )ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆz y z y z y y zF qvx B z B y qv B x z B x y qv B y B z F y F z= × + = × + × = − + = +


 

2 2 2 2
y z z yF F F qv B B= + = +



 

 

1 1 1tan tan tany yz

z zy

B BF
B BF

θ − − −
     
   = = =           

 

CALCULATE:  ( )( ) ( ) ( )2 26 420.0 10  C 50.0 m/s 0.700 T 0.300 T 7.616 10  NF − −= ⋅ + = ⋅


 

1 0.300 Ttan 23.20
0.700 T

θ −  = = ° 
 

 

ROUND:  47.62 10  NF −= ⋅


 and the direction of the force is in the yz-plane, 23.2θ = °  above the negative 

y-axis. 
DOUBLE-CHECK:  These results are reasonable.  The Right Hand Rule dictates that the direction of the 
magnetic force be in the -y, +z-plane. 

27.28. THINK:  The only force acting on the particle is the magnetic force. The components of this force can be 
determined, and then the points where all the components vanish can be determined 
SKETCH:   

 
 

RESEARCH:  ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0, , , ,F qv B x y z y z x z x y A B B A= × = × = × = × = × = − ×
    



 
SIMPLIFY:  

 
( ) ( ) ( )( ) ( )( )

( ) ( )
0 0

0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ0

ˆ ˆ 0

F qv x x az y xy b z qv x az x y xy b x z

qv x az z b xy y

  = = × − × − = − × + − ×   
 = − + − = 



 

 0  .x az x az⇒ − = ⇒ =  
⇒ − = ⇒ = 0  .b xy xy b  
The magnetic field will exert no force on the electron at all points satisfying the two equations, =x az  and 

= .xy b  The locus of these points in three dimensions is represented by the thick black line in the following 
figure. 
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CALCULATE:  Not necessary. 
ROUND:  Not necessary. 
DOUBLE-CHECK:  For the given field, the results are correct. We can check to see if the magnetic field in 
this problem is physical. The fundamental equations, which govern the behavior of all electric and 
magnetic fields are called Maxwell’s equations, named after James Clerk Maxwell, who first unified them. 
One of these equations states that: 

ˆ ˆ ˆ 0.yx z
BB B

B x y z
x y z

∂∂ ∂
∇ ⋅ = + + =

∂ ∂ ∂

 

 

This equation is satisfied by the given B


 field so the specified field can exist. Interestingly, 0B∇⋅ =
 

 exists 
because as far as is now known, magnetic monopoles do not exist, only magnetic dipoles. This is in 
contrast to electric fields where monopoles (isolated positive and negative charges) do exist. 

27.29. ∆ = ∆

= ⇒ = ⇒ =21 2    
2

K U

eVK eV mv eV v
m

 

( )( )−
−

−

⋅
= = = = = ⋅

⋅

27
2

19

2 1.67 10  kg 400. V2 1 2 1 10  T.
0.200 m 1.602 1

1.
0  

44
C

mv m eV mVB
er er m r e

 

27.30.  

 

35.0θ = °, 0.0400 T ,B B= =


 54.00 10  m/s ,v v= ⋅ =


 sinxv v vθ ⊥= =  (perpendicular to B


), 

cosyv v vθ= =


 (parallel to B


). 

(a)  
( )( )( )

( )( )

31 5
5

19

9.11 10  kg 4.00 10  m/s sin35.0
3.262 10  m

1.602 10  C 0.0400 T
mv

r
q B

−
−⊥

−

⋅ ⋅ °
= = = ⋅

⋅
 

(b)  The time it takes to travel 2π  radians around the circle is: 

2 2 2 .
mvr mt

v v q B q B
π π π⊥

⊥ ⊥

 
= = =  
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During this time it is moving forward with speed ,v


 and will move a distance, d, given by: 

( )( )
( )( )

31 5
4

19

2 9.11 10  kg 4.00 10  m/s cos35.02 2 cos 2.926 10  m.
1.602 10  C 0.0400 T

v m mvd v t
q B q B

ππ π θ
−

−
−

⋅ ⋅ °
= = = = = ⋅

⋅




 

ROUND:  
a) 53.26 10  m.r −= ⋅   
b) 42.93 10  m.d −= ⋅   

27.31. By Newton’s second law, the quantity /dp dt


 is equal to the net force on the particle, exerted by the electric 
and magnetic fields. By the Work Energy Theorem, the quantity dK/dt is the rate at which work is done on 
the particle by the electric field. The magnetic force is always perpendicular to the particle’s velocity and 
does no work. Hence, these quantities can be written: 

( ),dp q E v B
dt

= − + ×


 

   .dK qE v
dt

= −




  

Slightly modified, these relationships can be put into a form that transforms simply from one reference 
frame to another according to Einstein’s Special Theory of Relativity (see Chapter 35). They can be used to 
show that in a world governed by Einsteinian dynamics, the simplest force law that can be written is the 
combined electromagnetic force law above. 

27.32. 
( )

( )

28 6
3

19

1.88 10  kg 3.00 10  m/s
7.04 10  m 7.04 mm

1.602 10  C 0.500 T
mvr
q B

−
−

−

⋅ ⋅
= = = ⋅ =

⋅
 

27.33.  

 
The net force is directed toward the center of the circle. From the right-hand rule, a positive charge 
requires the magnetic field to be oriented into the plane, in the negative z-direction. Since an electron is 
negatively charged, it can be concluded that the field points out of the page, along the positive z-direction. 
The magnitude is given by: 

( )( )31 12 1

19

9.11 10  kg 1.20 10  s
ˆ  6.824 T  6.82  T.

1.602 10  C
q B mB B z
m q

ωω
− −

−

⋅ ⋅
= ⇒ = = = ⇒ =

⋅



 

27.34. ,mvr
q B

=  21 2  
2

KK mv v
m

= ⇒ =
2 2 m K Kmr

q B m q B
 

⇒ = =  
 

 

The mass, charge and fields are the same for the two particles. 
  ⋅ = = = =
  ⋅ 

2
11 1

2
2 22

2 4.00 10  eV 1.41
2.00 10  eV2

q BK mr K
r q B KK m

 

So, the 400 eV particle travels in an orbit of radius 1.41 times that of the radius of the 200 eV particle. 

27.35. THINK:  The proton moves through a magnetic field. The component of the velocity parallel to the field is 
unchanged. The component perpendicular, however, will create a circular motion. The velocity of the 
proton is ( ) 5ˆ ˆ ˆ1.00 2.00 3.00 10  m/sv x y z= + +  and the field is ˆ0.500  T.B z=  
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SKETCH:   

 
 

RESEARCH:  The radius of the circular motion in a magnetic field is: 

.mvr
q B

=  

SIMPLIFY:  The speed in the xy-plane is 2 2 .xy x yv v v= +  The radius of the circle is: 2 2 .x y
mr v v
q B

= +  

CALCULATE:  
( )( )

( ) ( )
27 2 25 5 3

19

1.6726 10  kg
1.00 10  m/s 2.00 10  m/s 4.6688 10  m

1.6022 10  C 0.50 T
r

−
−

−

⋅
= ⋅ + ⋅ = ⋅

⋅
 

( ) ( )2 25 5 51.00 10  m/s 2.00 10  m/s 2.23607 10  m/sxyv = ⋅ + ⋅ = ⋅  

ROUND:  The values are given to two significant figures. The proton will follow a helical path with a 
velocity of 53.00 10  m/s⋅  along the z-axis, with the circular motion in the xy-plane having a speed of 

52.24 10  m/s⋅  and a radius of 4.67 mm.  
DOUBLE-CHECK:  The angular velocity is on the same order of magnitude as the original velocity.  
Dimensional analysis confirms the units are correct.   

27.36. THINK:  The copper sphere accelerates in the region of the electric field, and gains an amount of kinetic 
energy equal to the potential difference times the charge on the sphere. At this speed, the sphere enters the 
magnetic field, which curves its path. The sphere has a mass of 63.00 10  kgm −= ⋅  and a charge of 

45.00 10  C.−⋅  The potential difference is V = 7000. V, and the magnetic field is B = 4.00 T, perpendicular to 
the direction of the particle’s initial velocity. 
SKETCH:   

 
 

RESEARCH:  The kinetic energy will be 2 / 2 .KE mv PE qV= = =  The radius of the path in the magnetic 
field is / .r mv qB=  

SIMPLIFY:  The velocity is 2 2 /v qV m=  or 2 / .v qV m=  The radius is then: 

2 1 2 .mv m qV mVr
qB qB m B q

= = =  
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CALCULATE:  
( )( )6

4

2 3.00 10  kg 7000. V1 2.29129 m
4.00 T 5.00 10  C

r
−

−

⋅
= =

⋅
 

ROUND:  The least precise values have three significant figures, so the radius of the copper’s path in the 
magnetic field is 2.29 m. 
DOUBLE-CHECK:  The very large potential difference accelerates the sphere to a high speed, therefore a 
large radius of curvature is reasonable. 

27.37. THINK:  The particles will move in circular, clockwise paths (in the direction of )v B×


  within the 
magnetic field. The radius of curvature of the path is proportional to the mass of the particle, and inversely 
proportional to the charge of the particle. Both particles move at the same speed within the same magnetic 
field. The radii, charges and masses of the particles can then be compared. 
SKETCH:   

 

RESEARCH:  The radius is related to the mass and charge of the particles by / .r mv q B=   At the instant 

that the particles enter the magnetic field, the magnetic force acting on them is .BF qv B= ×
 

  For the 
particles to travel in a straight line, the force on the particles due to the electric field must oppose the force 
due to the magnetic field: .E BF F qE qv B= − ⇒ = − ×

   

  

SIMPLIFY:  Since the velocity and the magnetic field is the same for both particles, 1 1 2 2

1 2

.
r q r qv

B m m
= =  The 

ratio of the masses is: 

( )
1 1 1

2 2 2

1 .
2 2 4

m r q Rq
m r q R q

= = =  

For the particles to travel in a straight line,   

( ) ( )ˆ ˆ ˆ

ˆ.

qE qv B qvB x z qvB y

E vBy

= − × = − × = − −

=

 




 

Therefore, the electric field must have magnitude E vB=  and point in the positive y-direction in order for 
the particles to move in a straight line.   
CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE CHECK:  Since the mass increases with radius and charge, it makes sense that the particle with 
the smaller charge and radius has the smaller mass. 

27.38. THINK:  The question goes through the elements of a mass spectrometer. A source of gold and 
molybdenum emits singly ionized atoms at various velocities toward the velocity filter. The velocity filter 
described in the diagram uses a magnetic field,



1B , and an electric field 


E  to select the velocity of the 
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exiting particles. It can be shown that the velocity of the ions must be = 1 / .v B E  If the velocities are 
smaller, the force due to the electric field will dominate pushing the particles off the path through the filter. 
If the velocity is greater than 1 /B E  then the force due to the magnetic field dominates and will also push 
the ion off its path. The particles exit the filter with the selected velocity and enter the mass spectrometer. 
The magnetic field inside the mass spectrometer curves the path of the entering particles based on their 
mass and charge. Thus, particles of different charges and masses can be separated. The gold and 
molybdenum have beams in the mass spectrometer with diameters of =2 40.00 cmd  and =1 19.81 cm,d  

respectively. The mass of the gold ion is −= ⋅ 25
gold 3.271 10  kg.m  Both ion types have charges of 

−= = ⋅ 191.602 10  C.q e  The electric and magnetic field within the velocity filter are = ⋅
 4 ˆ1.789 10 V/mE y  

and =


1 ˆ1.000  T,B z  respectively.  
SKETCH:   

 
 

RESEARCH:   
(a) 

 
(b) For the ions to pass through the velocity filter, the force due to the electric field must cancel the force 
due to the magnetic field: = =e 0 .F qE qv B The forces due to an electric and magnetic field are given by 

=
 

eF qE  and = ×
 



B 0 ,F qv B  respectively.  

(c) The radius of the ion’s path in a magnetic field is given by ( )= / .R mv q B  

(d) The mass of the molybdenum can be determined by setting the velocity, charge and magnetic field 
equal to each other for each ion and comparing. 
SIMPLIFY:   
(b) The velocity of the exiting particle is then =0 1/ .v E B  This velocity does not depend on any 
parameters of the ions.  
(c) The radius of the circular path is ( )= 0 2/ .r mv q B   

(d) = =0 Au+ Mo+

2 Au+ Mo+
.

v r r
q B m m

 Solving for the mass of the molybdenum gives: = Mo+
Mo+ Au+

Au+
.

r
m m

r
 

CALCULATE:   

(b) 
4

4
0

1.789 10  V/m 1.789 10  m/s
1.000 T

v ⋅
= = ⋅  

(d) ( )25 25
Mo+

19.81 cm/2 3.271 10  kg 1.6199 10  kg
40.00 cm/2

m − −= ⋅ = ⋅  
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ROUND:  The values are reported to four significant figures.  
(b)  The velocity filter allows particles traveling 41.789 10  m/s⋅  to exit the filter. This value does not 
depend on the type of ion. It is based on the fact that the particle is charged and only depends on the fields. 
(c)  The equation for the radius of the semi-circular path is / .r mv q B=  

(d)  The mass of the molybdenum ion is 251.620 10  kg.−⋅  
DOUBLE-CHECK:  The calculated velocity has appropriate units, and the actual mass of molybdenum is 
about 251.64 10  kg.−⋅  These facts help to support the answers as reasonable. 

27.39. THINK:  This question explores the function of an accelerator. The 3 +He  ion source ejects particles into 
region 1. The magnetic field in this region bends the path of the 3 +He  particle into a semicircular path. 
Particles then enter the 3rd region containing an electric field that accelerates the particles toward region 2. 
In region 2, the path of the particles is bent into a semicircle again. This time the particles do not pass 
through an electric field. The particle then enters region 1 again. The path is bent again and the particle 
accelerates once more before it exits the accelerator. The 3 +He  ions have a mass of 275.02 10  kgm −= ⋅  and 

a charge of 191.60 10  C.q e −= = ⋅  The ions start with a kinetic energy of: 

( )−

−
⋅ ⋅

= = = ⋅
3 19

16
4.00 10  eV 1.60 10  J

4.00 keV 6.40 10  J.
1.00 eV

K  

The magnetic field in region 1 is 1 1.00 T.B =  In region 2, the magnetic field, 2 ,B  is unknown. The 3rd 
region contains an electric field of E = 60.0 kV/m and has a length of l = 50.0 cm = 0.500 m. The distance 
between the source and the aperture is d = 7.00 cm = 0.0700 m. 
SKETCH:   

 
 

RESEARCH:  The kinetic energy is equal to 2 / 2.KE mv=  The radius of the path of a charged particle in 
a magnetic field is / .r mv q B=  The force on the particle in region 3 is e ,F qE=  which must equal            
F = ma. With the acceleration of this region, the velocity at which it exits region 3 can be determined from: 

2 2
f 0 2 .v v ad= +  

SIMPLIFY:  Let 0 ,v  1v  and 2v  be the velocity of the ion after it is ejected from the source, region 3 and 

region 3 the second time, respectively. The velocity after the source is given by 0 2 / .v KE m=  The 

acceleration of region 3 is ma = qE or a = qE/m. The velocity, 1 ,v  is then 2 2
1 0 02 2 / .v v al v qEl m= + = +  

Similarly, the velocity, 2 ,v  is given by: 
2 2 2 2

2 1 1 0 02 2 / 2 / 2 / 4 / .v v al v qEl m v qEl m qEl m v qEl m= + = + = + + = +  

The radius of the path, the first time the ion enters region 1 is 1 0 1/ .R mv qB=  The radius of the path in 
region 2 is 2 1 2/ .R mv qB=  The radius of the path the second time it goes through region 1 is 

3 1 1/ .R mv qB=  For the particle to exit the aperture, a distance d = 7 cm from the ion source: 
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0 0 11 1 1
1 2 3

1 2 1 1 2

2 2 2 2 2 .
mv v vmv mv vmR R R d
qB qB qB q B B

   +
− + = − + = − =   

   
 

Solve for 2B  to determine the magnetic field required in region 2: 

( ) ( ) ( )

0 1 0 11
2 1 2

1 2 1

0 1 1 1 1
2 1 2

1 0 1 1 0 1 1

   
2 2

2
   .

2 / / 2 2

v v v vv qd qdB v B
B B m B m

v v v mB vqdB v B
B m v v B qd m m v v qdB

 + +  − = ⇒ − =   
  

 +
⇒ − = ⇒ = =  + − + − 

 

Region 1 must have dimensions larger than 3 1 1/ .R mv qB=  The velocity of the ions as they exit the 

accelerator is ( )2
2 0 4 / .v v qEl m= +  

CALCULATE:  
( )−

−

⋅
= =

⋅

16

0 27

2 6.40 10  J
504995 m/s

5.02 10  kg
v  

( ) ( )( )( )− −

− −

⋅ ⋅ ⋅
= + =

⋅ ⋅

16 19 3

1 27 27

2 6.40 10  J 2 1.60 10  C 60.0 10  V/m 0.500 m
1472186 m/s

5.02 10  kg 5.02 10  kg
v  

( ) ( )( )( )− −

− −

⋅ ⋅ ⋅
= + =

⋅ ⋅

16 19 3

2 27 27

2 6.40 10  J 4 1.60 10  C 60.0 10  V/m 0.500 m
2019822 m/s

5.02 10  kg 5.02 10  kg
v  

( )( )( )
( )( ) ( )( )( )

27

2 27 19

2 5.02 10  kg 1.00 T 1472186 m/s
1.70866 T

2 5.02 10  kg 504955 m/s 1472186 m/s 1.60 10  C 0.0700 m 1.00 T
B

−

− −

⋅
= =

⋅ + − ⋅
 

( )( )
( )( )

27

1
3 19

1

5.02 10  kg 1472186 m/s
0.046190 m

1.60 10  C 1.00 T
mv

x R
qB

−

−

⋅
= = = =

⋅
 

ROUND:  The values are reported to three significant figures. 
(a)  The magnetic field of region 2 is 1.71 T. 
(b)  The region must have dimensions greater than 4.62 cm. 
(c)  The velocity the ions leave the accelerator is 62.02 10  m/s.⋅  
DOUBLE-CHECK:  Dimensional analysis confirms all the answers are in the correct units.  These results 
are reasonable. 

27.40. The force on a wire of length l and current i in a magnetic field B is given by sin .F li B liB θ= × =
 

 The 
magnitude of the magnetic field is: 

( )( )
0.500 N 0.02083 T 20.8 mT.

sin 2.00 m 24.0 A sin30.0
FB

li θ
= = = ≈

°
 

27.41. The force on the wire is ( )net B g
ˆ ˆ ˆ ˆ ˆ ˆ.F ma F F iL B mgy iLB x z mgy iLBy mgy= = + = × + = − ×− + = − +

    

  For the 

conductor to stay at rest, a = 0 or mg = iLB. The suspended mass is then: 
( )( )( )

( )2

20.0 A 0.200 m 1.00 T
0.408 kg.

9.81 m/s
iLBm

g
= = =  

27.42.  
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For the wire to levitate, the force of the magnetic field must equal the force of gravity on the wire: 
2 .iLB mg Vg r Lgρ ρπ= = =  

The current required to levitate the wire is: 

( ) ( ) ( )
( )( )

23 22
3

8940 kg/m 0.000500 m 9.81 m/s
1.38 10  A.

0.0001 T/G0.500 G
r g

i
B

πρπ
= = = ⋅  

27.43. THINK:  First, the relationship between the current in the sheet and the magnetic field must be 
established. The force on the sheet can then be determined. The sheet has length, L = 1.00 m, width, w = 
0.500 m, and thickness, t = 1.00 mm = 0.00100 m. The magnetic field, B = 5.00 T, is perpendicular to the 
sheet and the current flowing through it. The current is 3.00 A.i =  
SKETCH:   

 
RESEARCH:  The force on a wire carrying current in a magnetic field is .F iL B= ×

  

 
SIMPLIFY:  Imagine that the sheet is constructed of many wires of length, L, carrying a charge dq . The 

infinitesimal force on the sheet due to the wire is .dF dqL B= ×
  

 Since L is perpendicular to B, .dF dqLB=  
The infinitesimal current is equal to the current density times the differential area, .dq jdA=  The current 
density is equal to the total current divided by the cross sectional area, / / .j i A i wt= =  The infinitesimal 
force is then / .dF dqLB jdALB iLBdA wt= = =  Integrating over the area gives: 

0 0
.

w ti iF LB dx dy LBwt iLB
wt wt

= = =∫ ∫  

This is the same result as that for a wire. 
CALCULATE:  ( )( )( )3.00 A 1.00 m 5.00 T 15.0 NF = =  
ROUND:  The result is reported to two significant figures. The force on the sheet is 15.0 N. This is the 
same as the force on a wire of the same length with the same current and magnetic field. 
DOUBLE-CHECK:  The force on the sheet is the same as the force on a wire.  This is expected since only 
the magnitude of the current matters in a wire (the size of the wire is not relevant). 
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27.44. THINK:  For the rod to remain stationary, the forces of the magnetic field and gravity along the plane of 
the incline must cancel. 
SKETCH: 

 

RESEARCH:  The force due to the magnetic field is B .F iL B iLB= × =
  

 Along the plane of the incline, the 

force is B B cos cos .xF F iLBθ θ= =  The force due to gravity along the surface of the incline is g sin .xF mg θ=   

SIMPLIFY:  Equating these forces gives the current: 

cos siniLB mgθ θ=  or tan .
mg

i
LB

θ=  

The current must go out of the page in the side view of the system, by the right-hand rule. 
CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE CHECK:  According to the derived expression, the strength of the current required to hold the 
wire stationary decreases as the magnetic field increases, which is logical. 

27.45. THINK:  The loop will experience a torque in the presence of a magnetic field as discussed in the chapter. 
The torque is also equal to the moment of inertia of the loop times its angular acceleration. The loop is 
square with sides of length, d = 8.00 cm and current, i = 0.150 A. The wire has a diameter of 0.500 mm 
(which corresponds to a radius of r = 0.250 mm) and a density of 38960 kg/m .ρ =  The magnetic field is B 
= 1.00 T and points °35.0  away from the normal of the loop. 

 SKETCH:   

 
 

RESEARCH:  The torque on the loop is sin .iABτ θ=  The moment of inertia for a rod about its center is 
= 2 /12.I Md  The moment of a rod about an axis along its length is 4 / 4.I r Lρπ=  The parallel axis 

theorem states = + 2
off center cm .I I Md  

SIMPLIFY:  The moment of inertia of the loop is: 

( )

ρπ ρπ

ρπ ρπ ρπ ρπ ρπ ρπ

      = + + + + +      
         

 = + + = + + = + = + 
 

2 2
2 2 4 4

2 4 2 2 4 2 2 4 2 3 4

1 1 1 1
12 12 4 2 4 2

1 1 1 1 1 1 4 1 2 1 .
6 2 2 6 2 2 6 2 3 2

d dI Md Md r d M r d M

Md r d Md Md r d r d d r d r d r d

 

The angular acceleration is sinI iABτ α θ= =  or sin / .iAB Iα θ=  

( ) ( )
θ θα

ρπ ρπ
⇒ = =

+ +

2

2 2 2 2 2

sin sin 
2 / 3 / 2 2 / 3 / 2

id B iB
r d d r d r d r d

 



Bauer/Westfall: University Physics, 2E 

  1126 

CALCULATE: 
( )( )( )

( ) ( ) ( ) ( ) ( ){ }
2

2 23

0.150 A 1.00 T sin35.0 916.94 rad/s
8960 kg/m 0.000250 m 2 0.0800 m / 3 0.000250 m / 2 0.0800 m

α
π

°
= =

   +   

 

ROUND:  The values are given to two significant figures, thus the loop experiences an initial angular 
acceleration of 2917 rad/s .α =  
DOUBLE-CHECK: One Tesla represents a magnetic field of large magnitude, resulting in a 
correspondingly large acceleration.  This result is reasonable. 

27.46. THINK:  The rail-gun uses a magnetic force to accelerate a current carrying wire. The wire has a radius of 
45.10 10  mr −= ⋅  and a density of 38960 kg/m .ρ =  The current through the wire is 41.00 10  A⋅  and the 

magnetic field is B = 2.00 T. The wire travels a distance of L = 1.00 m before being ejected. 
SKETCH:   

 
 

RESEARCH:  The force on the wire is .F iLB=  The velocity of the wire is given by 2 2
0 2 .v v ad= +  

SIMPLIFY:  The wire accelerates at a rate of: 

2 2 .F iLB iLB iBa
m m r L rρπ ρπ

= = = =  

The ejected velocity is: 

ρπ
= =2

2

22 iBLv aL
r

 or 
ρπ

= 2

2 .iBLv
r

 

CALCULATE:  
( )( )( )

( ) ( )

4

23 4

2 1.00 10  A 2.00 T 1.00 m
2337 m/s

8960 kg/m 5.10 10  m
v

π −

⋅
= =

⋅
 

ROUND:  The velocity is reported to two significant figures, like the given values. The wire exits the rail-
gun at a speed of 2.34 km/s. 
DOUBLE-CHECK:  This result is very fast, about 7 times the speed of sound. This Navy has used this 
technology to accelerate 7 lb objects to this speed. As a comparison, this is double the speed of a bullet 
from a conventional rifle. A bullet weighs 55 g. 
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27.47. THINK:  Using integration, the force on each segment of the loop can be found.  From this, the net force 
can be found.  
SKETCH:   

 
RESEARCH:  In the differential limit, the magnetic force on current carrying wire in a magnetic field is: 

.BdF i dL B= ×
  

 
SIMPLIFY:  The force on wire 1 is: 

( )/2 /2 /2 /220 0 0
,1 /2/2 /2 /2

ˆ ˆ ˆ ˆ 0.
2

l l l l

B ll l l

iB iB iB
F i dx B dx zx xz xdxy x

a a a −− − −
 = × = × + = − = = ∫ ∫ ∫

 

  

The force on wire 2 is: 

( ) ( ) ( ) ( )/2 /2 /20 0 0 0
,2 /2/2 /2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ .
l l l

B ll l

iB iB iB iB l
F dy zx xz zz xx dy zz xx y zz xx

a a a a−− −
= × + = − + = − + = − +  ∫ ∫



 

Along wire 2, / 2x l=  and 0,z =  so  
2

0
,2

ˆ.
2B

iB l
F x

a
=



 

Wire 3 is similar to wire 1, so ,3 ,1 0.B BF F= =  The force on wire 4 is: 

( ) ( ) ( ) ( ) ( )
2

/2 /20 0 0 0 0
,4 /2/2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 / 2 .
2

l l
B ll

iB iB iB l iB l iB l
F dy zx xz zz xx y zz xx z l x x

a a a a a
− −  = − × + = − = − + = − + =    ∫



 

The net force is:  
2

0
net ,2 ,4

ˆ.B B

iB l
F F F x

a
= + =

  

 

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE CHECK:  It is reasonable that the force is directly proportional to the magnetic field strength 

0 ,B  the side length l of the loop, and the current i. 

27.48. The loop experiences a torque of: 

( )( )( )3 6 9sin 20.0 2.00 10  A 0.0800 m 0.0600 m 50.0 10  T 9.60 10  N m.NiABτ θ − − −= = ⋅ ⋅ = ⋅  

 By the right-hand rule, the torque is in the positive y-direction. To hold the loop steady, a torque of the 
same magnitude must be applied in the negative y-direction. 

27.49. The torque on the loop due to the magnetic field is sin .iAB NiABτ θ= Ν =  This is equal to the applied 
torque, .rFτ =  Equating the torques gives the magnetic field: 

( ) ( )2

1.2 N 0.1353358 T 0.135 T.
120. 0.490 A 0.0480 m

rF rF FB
NiA Ni r Ni rπ π π

= = = = = =  

27.50. The torque on the pencil is: 

( ) ( )τ θ π θ π −   = = = ° = ⋅   
   

2 2
30.00600 msin sin 20 3.00 A 5.00 T sin60.0 7.35 10  N m.

2 2
dNiAB Ni B  
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27.51. THINK:  The loop feels a torque if it carries a current in the presence of a uniform magnetic field. The 
maximum torque occurs when the magnetic moment of the loop is perpendicular to the magnetic field. 
The loop has a radius of rloop = 0.500 m, density of ρ = 8960 kg/m3, and the wire has a cross-sectional area 
of −= ⋅ 5 21.00 10  m .A  A potential difference of ∆ = 0.0120 VV  is applied to the wire. The loop is in a 
magnetic field of = 0.250 T.B  
SKETCH:   

 
 

RESEARCH:  The resistivity of the wire is given by ρ −= ⋅ Ω9
R 16.78 10   m.  The current is found using 

∆ = .V iR   The magnetic moment of the loop is given by .iAnµ =
 

 The torque is equal to τ = Iα, where I is 

the moment of inertia of the loop about its diameter. The moment of inertia is given by ⊥= ∫ 2 .I r dm  The 

torque due to the magnetic field is given by τ µ= ×


 

.B   
SIMPLIFY:  The mass of the loop is given by  

 ( )
π
ρ θ πρ= = =∫ ∫

2

loop loop
0

2 .m dm Ar d Ar  

The moment of inertia of one half of the loop is: 

 ( ) ( ) ( )
π π

π π

πθ ρ θ ρ θ θ ρ πρ⊥
− −

 = = = = = 
 ∫ ∫ ∫

/2 /22 22 3 3 3
1/2 loop loop loop loop loop

/2 /2

1cos cos .
2 2

I r dm r Ar d Ar d Ar Ar  

The total inertial moment is twice this magnitude: 

 πρ= =3 2
loop loop

1 .
2

I Ar mr   

The torque and thus the angular acceleration is maximized when the magnetic moment is perpendicular to 
the magnetic field. The torque is then given by 

 τ µ µ θ µ π= × = = = =


 2
max loopsin .B B B iAB i r B  

The angular acceleration is: 

 
πτ πα = = =

2
loopmax

max
2
loop

2 .
1
2

i r B iB
I mmr

 

The current is: 

  ∆
= .Vi

R
 

The resistance of the wire making up the loop is 

 
π ρ

= loop R2
.

r
R

A
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CALCULATE:  For this problem, it is instructive to calculate the various quantities separately and then 
combine the intermediate results to get the maximum angular acceleration of the loop.  The mass of the 
loop is 

( )( )( )πρ π −= = ⋅ =3 5 2
loop2 2 8960 kg/m 1.00 10  0.2814867 kgm 0.500 m .m Ar  

The resistance of the wire making up the loop is 

( )( )ππ ρ −

−

⋅ Ω
= = =

⋅
Ω

9
loop R

5 2

2 0.500 m 16.78 10   m2
.

1.0
0.005271

0 10  m
59 

r
R

A  

The current in the loop is 2.27635 A.
0.00527159 

0.0120 VVi
R
∆

= = =
Ω

 

The maximum angular acceleration is 
( )( ) 2

max
2.27635 A

12.702857  rad/s .
0.

2 0.250
28148

 T2
67 kg

iB
m

ππα −= = =  

ROUND:  The result is reported to three significant figures. The maximum angular acceleration is 
α = 2

max 12.7 rad/s .   
DOUBLE-CHECK:  The mass of the loop, the current in the loop, and the resistance of the loop are 
reasonable and all have the correct units. 

27.52.  

 
 

The torque on the coil as a function of θ  is ( )sin 90 cos .B B B= × = °− =


τ µ µ θ µ θ  The magnetic 

moment of the coil is .NiAµ =  Assume the coil contributes little to the inertial moment of the 
galvanometer. Assume the mass is distributed evenly through the rod. The torque on the rod due to 
gravity is: 

sin sin ,r F LF LMgτ θ θ= × = =


  

where r is the distance to the center of mass of the rod. Equating the two torques gives: 

1cos sin   tan   tan .B NiAB NIABB LMg
LMg LMg LMg
µµ θ θ θ θ −  

= ⇒ = = ⇒ =  
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27.53. Assume the electron orbits the hydrogen with speed, v. The current of the electron going around its orbit 
is: 

.
/ 2

q e ev evi
t d v d rπ

= = − = − = −  

The magnetic moment of the orbit is: ( )2 2 1 .
2 2
eviA i r r evr

r
µ π π

π
= = = − = −  Angular momentum is given 

by L = rp = rmv. Using the angular momentum, the moment is: 
1 1 / 2 .
2 2 2

m ermv eLerv e rv
m m m

µ  = − = − = − = − 
 





    

27.54. THINK:  The magnetic field produces a torque on the coil. This stretches the spring until it creates a 
torque equal but opposite to the torque due to the magnetic field. The ring has a diameter of d = 0.0800 m 
and carries a current of 1.00 A.i =  The spring constant is k = 100. N/m and the magnetic field is 
B = 2.00 T. 

 SKETCH:   

 
RESEARCH:  The torque due to the spring is s .r Fτ = ×



  The torque due to the magnetic field is 
sin .iABτ θ=  

SIMPLIFY: The angle θ  is given by: 2sin .
/ 2
L L

d d
θ ∆ ∆
= =  The torque due to the spring is 

s s sin / 2.r F dk Lτ θ= × = ∆


  Equating this to the torque due to the magnetic field gives: 

( )22 / 42cos / 2 sin   .
2

i d BiAB i dBdk L iAB L
dk dk k

π πθ θ∆ = ⇒ ∆ = = =  

CALCULATE:  
( ) ( )( )

( )
1.00 A 0.0800 m 2.00 T

0.002513274 m
2 100. N/m

L
π

∆ = =  

ROUND:  The values are given to three significant figures, thus the extension is 2.51 mm.L∆ =  
DOUBLE-CHECK:  This result is reasonable. 

27.55. THINK:  The coil experiences a torque due to the magnetic field. The coil, however, is hinged along one of 
its lengths. The torque then can be determined in the normal way. The force on each segment is calculated 
to determine the torque on the coil. The coil has N = 40, a width of w = 16.0 cm, a height of h = 30.0 cm 
and carries a current of 0.200 A. The magnetic field is ( )ˆ ˆ0.0650 0.250  T.B x z= +
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SKETCH:   

 
RESEARCH:  The force on a length of wire carrying current in a magnetic field is .F Nil B= ×


 

 The torque 
is given by .r Fτ = ×



  
SIMPLIFY:  The force on the segment a-b is ( )ab ab

ˆ ˆˆ ˆ ˆ ˆ.x z z zF Nil x B x B z NiwB x z NiwB y= × + = × = −  


 The 
force on the segment b-c is: 

( ) ( ) ( ) ( )bc bc
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ .x z x z x z x zF Nil y B x B z Nih B y x B y z Nih B z B x Nih B z B x   = × + = × + × = − + = − +         



 

The net force on the coil is zero since the magnetic field does no work. The coil is free to rotate about the 
y-axis. The only force that can contribute is bc :F  bc

ˆˆ ˆ ˆ ˆ.z x xr F wx F wx Nih B x B z wNihB yτ = × = × = × − =  
 

  
The door rotates counterclockwise when looking from the top. 
CALCULATE:  ( )( )( )( )ab ˆ ˆ40 0.200 A 0.160 m 0.250 T 0.320  NF y y= − = −



 

( )( )( ) ( ) ( ) ( ) ( )bc ˆ ˆ ˆ ˆ ˆ ˆ40 0.200 A 0.300 m 0.0650 T 0.250 T 0.156 0.600  N 0.600 0.156  NF z x z x x z = − + = − + = − 


( )( )( )( )( ) ˆ ˆ40 0.200 A 0.160 m 0.300 m 0.0650 T 0.02496  N my yτ = =  
ROUND: 
(a) The force on segment a-b is ab ˆ0.320  NF y= −



 

(b) The force on segment b-c is ( )bc ˆ ˆ0.600 0.156  NF x z= −


 or bc 0.620 NF =  directed 14.6°  from the  
x-axis toward the negative z-axis. 
(c) The total force is net 0.F =  

(d) The torque on the coil is 0.0250 N mτ =  and rotates along the y-axis in counterclockwise fashion.  
(e) The coil rotates in a counterclockwise fashion as seen from above. 
DOUBLE-CHECK:  This result is reasonable. 

( )( )( )sin 40 0.200 A 0.160 m 0.300 m ,NiABτ θ= =   ( ) ( ) ( )2 20.0650 T 0.250 T sin 14.6 0.0250 N m+ ° =  

27.56. The Hall voltage is given by: V .iB
neh

∆ =


 The carrier density of the electron sheet is: 

( )
( )( )( )

6
24 3

19 9 3

10.0 10 1.00 T
9.19 10  e/m .

V 1.60 10  C 10.0 10  m 0.680 10  V
iBn

eh

−

− − −

⋅
= = = ⋅

∆ ⋅ ⋅ ⋅


 

27.57. THINK:  The question asks for the carrier density of the thin film, and the nature of the carriers. The film 
has a thickness of 1.50 μm.h =  The current is i = 12.3 mA and the voltage reads V = -20.1 mV. The 
magnetic field is B = 0.900 T. 
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 SKETCH:   

 
 RESEARCH:   

(a) Due to the magnetic force, the charge carriers are accumulated on the visible edge of the sample. Since 
the polarity of the Hall potential is negative, the charge carriers are holes.   

 (b) The Hall voltage magnitude is given by H .iBV
neh

∆ =  

 SIMPLIFY:   

 (b) The charge carrier density is 
H

.iBn
he V

=
∆

 

 CALCULATE:  

 (b) 
( )

( )( )( )
3

24 3
6 19 3

12.3 10 0.900 T
2.2919 10  holes/m

1.50 10  m 1.602 10  C 20.1 10  V
n

−

− − −

⋅
= = ⋅

⋅ ⋅ ⋅
 

 ROUND:   
 (b) The values are given to three significant figures, so the carrier density of the film is 

24 32.29 10  holes/m .n = ⋅  
 DOUBLE-CHECK:  This is a reasonable value for a carrier density. 

27.58. The radius of the proton’s path is: 
22 2 .

1/
mrfmv m r m rr

qB qB T qB f qB
ππ π  = = = =  

   
 The radius of the path and 

its frequency are: 
mvr
qB

=  and ,
2
qB

f
mπ

=  respectively. In the cyclotron: 

( )( )
( )( )

27 8

19

1.67 10  kg 2.998 10  m/s / 2
0.1736 m 0.174 m,

1.602 10  C 9.00 T
r

−

−

⋅ ⋅
= = ≈

⋅
  

( )( )
( )

19

27

1.602 10  C 9.00 T
1.374 MHz 1.37 MHz.

2 1.67 10  kg
f

π

−

−

⋅
= = ≈

⋅
 

In the Earth’s magnetic field: 

( )( )
( )( )( )

27 8

19

1.67 10  kg 2.998 10  m/s / 2
31.25 km 31.3 km,

1.602 10  C 0.500 G 0.0001 T/G
r

−

−

⋅ ⋅
= = ≈

⋅

( )( )
( )

19 4

27

1.602 10  C 0.500 10  T
0.7634 kHz 0.763 kHz.

2 1.67 10  kg
f

π

− −

−

⋅ ⋅
= = ≈

⋅
 

27.59. The force on the wire is: 

( )( )( ) ( )θ −= × = = ° − ° = ≈ ⋅
 

2sin 3.41 A 0.100 m 0.220 T sin 90.0 10.0 0.07388 N 7.39 10  N.F iL B iLB  
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27.60. The radius of a charged particle’s path in a magnetic field is / .r mv q B=  For this electron, the radius of 
its path is: 

( )( )
( )( )

31 7

19 4

9.109 10  kg 6.00 10  m/s
6.82 m.

1.602 10  C 0.500 10  T
r

−

− −

⋅ ⋅
= =

⋅ ⋅
 

27.61. The force on a current carrying wire in a magnetic field is sin .F ilB θ=  To determine the minimum 
current, set 90 :θ = °  

( )
5

4

1.00 N 232,558 A 2.33 10  A.
0.100 m 0.430 10  T

Fi
lB −

= = = ≈ ⋅
⋅

 

The minimum current required for the wire to experience a force of 1.0 N is 52.33 10  A.i = ⋅  

27.62. The torque on a current carrying coil in a magnetic field is: 

( )( ) ( ) ( )( )23

3

sin

100 100. 10  A 0.100 m 0.0100 T sin30.0

0.0015707 N m 1.57 10  N m.

NiABτ θ

π−

−

=

= ⋅ °

= ≈ ⋅

 

 

 
27.63. (a)  The electron must travel in a circular path with a radius of 60.0 cm, as shown in the figure below. 

 
 By the right-hand rule, B must be in the negative z-direction. 

( )( )
( )( )

31 5
6

19
e

9.11 10  kg 2.00 10  m/s
1.89 10  T

1.60 10  C 0.600 m
mvB
q r

−

−

−

⋅ ⋅
= = = ⋅

⋅
 

(b)  The magnetic force is perpendicular to the motion and does no work. 
(c)  Since the speed of an electron does not change, the time the electron takes to travel a quarter-circle is 
given by: 

( )
( )

6
5

3.14159 0.600 m
 4.71 10  s.

2 2 2.00 10  m/s
rt
v
π −= = = ⋅

⋅
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27.64. THINK:  First, determine the current using Ohm’s law and then determine the force on the wire. 
SKETCH:   

 

RESEARCH:  Ohm’s law is V = iR. Use the values: V = 12.0 V, B = 5.00 T, and 3.00 .R = Ω  .F iL B= ×
  

In 
this case, since the top and bottom part of the loop have currents traveling in opposite directions, their 
forces will cancel. Only the right side of the loop will contribute to the force. 
SIMPLIFY:  F = ilB, to the right (from the right-hand rule),    / .V iR i V R= ⇒ =  Substitute the 
expression for I into the expression for F to get: / .F VlB R=  

CALCULATE:  ( )( )12.0 V 1.00 m 5.00 T 20.0 N
3.00 

F = =
Ω

 

ROUND:  F = 20.0 N to the right. 
DOUBLE-CHECK:  The final expression makes sense since it is expected that if a larger voltage is applied, 
a larger force is attained. 

27.65. THINK:  As the alpha particle enters the region of the magnetic field, its motion will be deflected into a 
curved path.  The radius of curvature is determined by the mass, charge, and initial velocity, and by the 
strength of the field.  All quantities are given except for the velocity.  The particle’s velocity can be 
determined by employing the law of conservation of energy.  The period of revolution can be determined 
from the particle’s radius of curvature and velocity. 276.64 10  kg,mα

−= ⋅ 2 ,q eα = +  0.340 T,B =


 and 
2700 V.V∆ =  

SKETCH:   

 

RESEARCH:  The radius of curvature is given by / .r mv q B=  By conservation of kinetic energy, 

21
2

q V mv= .  The period of revolution is given by 2 rT
v
π

= . 

SIMPLIFY:  2 21   
2

q V
q V mv v

m
= ⇒ =  

CALCULATE:  
( )( )27 5

19

6.64 10  kg 5.105 10  m/s
0.03111 m

2 1.602 10  C 0.340 T
r

−

−

⋅ ⋅
= =

⋅
 

( )19

5
27

2 2 1.602 10  C 2700
5.105 10  m/s

6.64 10  kg
v

−

−

⋅
= = ⋅

⋅
 

( ) 7
5

2 0.03111 m
3.829 10  s

5.105 10  m/s
T

π −= = ⋅
⋅

 

ROUND:  Rounding to three significant figures, 0.0311 mr =  and 73.83 10  s.T −= ⋅  
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DOUBLE CHECK:  All calculated values have the correct units.  The numerical values are appropriate to 
the scale of the particle. 

27.66. THINK:  The electric field component and the vertical component must cancel each other. 
SKETCH:  Not necessary. 
RESEARCH:  It is required that ( )    0v B E v B B E B E B× = − ⇒ × = − ⇒ =

       

 

    (since for any vector, 

( ) 0).A B B× =
  

  But since E


 is not perpendicular to ,B


 0.E B ≠
 

  Note that ˆ150.  N/CE z= −


 and 

( )ˆ ˆ50.0 20.0  μT.B y z= −


 This scenario cannot occur.  
SIMPLIFY:  Nothing to simplify. 
CALCULATE:  No calculations are necessary. 
ROUND:  There are no values to round. 
DOUBLE-CHECK:  No Lorenz force can counteract an electric force in z-direction, if the particle is also 
traveling in z-direction, because the Lorenz force is always perpendicular to the velocity vector.   

27.67. THINK:  Determine the velocity in terms of the mass and see how this changes the answer. 
SKETCH:  Not necessary. 
RESEARCH:  / ,v qBr m=  B = 0.150 T, r = 0.0500 m and 276.64 10  kg.m −= ⋅  
SIMPLIFY:  It is not necessary to simplify. 

CALCULATE:  
( )( )( )19

5
27

1.602 10  C 0.150 T 0.0500 m
1.809 10  m/s

6.64 10  kg
v

−

−

⋅
= = ⋅

⋅
 

Note that for 
3 ,
4

m m′ =  4 ;
3 / 4 3
qBr

v v
m

′ = =  the velocity increases by a factor of 4 / 3.  

ROUND:  51.81 10  m/sv = ⋅  
DOUBLE-CHECK:  Since there is an inverse relationship between v and m, it makes sense that decreasing 

m by a factor of 3/4 increases v by factor of ( ) 13 / 4 4 / 3.− =  

27.68. THINK:  First determine the radius of curvature and then determine the amount the electron deviates 
over a distance of 1.00 m.l =  Use 0.300 GB = as the Earth’s magnetic field. Convert the energy into Joules. 
SKETCH:   

 
 

The dashed line is the path of the electron.  

RESEARCH:  Geometry gives 2 2 .d r r l= − −  2 ,mv p mEr
qB qB qB

= = =   ( )197500 eV 1.609 10  J/eV .E −= ⋅  

SIMPLIFY:  It is not necessary to simplify. 

CALCULATE:  
( )( )( )

( )( )
31 3 19

19 4

2 9.11 10  kg 7.50 10 eV 1.602 10  J/eV
9.7354 m

1.602 10  C 0.300 10  T
r

− −

− −

⋅ ⋅ ⋅
= =

⋅ ⋅
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( ) ( ) ( )2 29.7354 m 9.7354 m 1.00 m 0.051495 m,d = − − =  upward from the ground. 

ROUND:  To three significant figures, the answer should be rounded to: d = 0.0515 m upward. 
DOUBLE-CHECK:  Note that d << 1.00 m, as is expected since the magnetic field of the Earth is fairly 
weak. 

27.69. THINK:  Since the electric field from the plates will cause the proton to move in the negative y-direction, 
the magnetic field must apply a force in the positive y-direction. It is determined from the right-hand rule 
that B



 must be in the negative z-direction. 
SKETCH:  

 
RESEARCH:  61.35 10  m/s,v = ⋅  V = 200. V, 335.0 10  md −= ⋅ , and / .E V d=  It is required that .vB E=   

SIMPLIFY:  E VB
v vd

= =  

CALCULATE:  
( )

( )( )
3

6 3

200. V
4.23 10  T

1.35 10  m/s 35.0 10  m
B −

−
= = ⋅

⋅ ⋅
 

ROUND:  To three significant figures, 3 ˆ4.23 10  TB z−= − ⋅  
DOUBLE-CHECK:  The final expression for B makes sense. If the applied voltage is larger, one needs a 
larger magnetic field. 

27.70. THINK:  Determine the radius of curvature. This distance will allow the electron to be trapped in the field. 
SKETCH:   

 
 

RESEARCH:  The magnitude is given by B 0 ,F qv B=  in the positive y-direction (by the right-hand rule). 

0mv
d r

q B
= =  

SIMPLIFY:  0
eBdv
m

=  

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  It makes sense that for larger magnetic fields and for larger widths, the escape 
velocity is larger. 
 
 
 
 
 



Chapter 27: Magnetism 

 1137 

27.71. THINK:  Equilibrium occurs when the net torque on the coil is zero. Use the values: 2 ,A d=  
0.200 m,d =  i= 5.00 A, m = 0.250 kg, B = 0.00500 T, and N = 30. 

SKETCH:   

 
RESEARCH:  ( )g sin / 2 ,mg dτ θ=  B cos .NiABτ θ=  It is required that g B .τ τ=  

SIMPLIFY:  2
g B

1  sin cos  
2

mgd Nid Bτ τ θ θ= ⇒ =  

1sin 2 2 2  tan   tan
cos

NdiB NdiB NdiB
mg mg mg

θ θ θ
θ

−  
= ⇒ = ⇒ =  

 
 

CALCULATE:  
( )( )( )( )

( )( )
1

2

2 30 0.200 m 5.00 A 0.00500 T
tan 6.9740

0.250 kg 9.81 m/s
−
 
 = = °
  

θ  

ROUND:  The number of turns is precise, so it does not limit the precision of the answer. The rest of the 
values are given to three significant figures of precision, so it is appropriate to round the final answer to: 

6.97θ = °.  
DOUBLE-CHECK:  It makes sense that θ  is inversely proportional to m, since the less the coil weighs, the 
more vertical it must be. 
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27.72. THINK:  It can be deduced from symmetry that the net force is in the negative y-direction. Therefore, 
.B yF F=  

SKETCH:   

 
RESEARCH:  From the book, sin .BF iLB θ=  The objective is to sum up the forces due to each point of the 
semi-circle. This means we will integrate BF  over the length of the wire. 

 SIMPLIFY:  ( )1

0 0 0
sin sin sin

l

y l
F iLB dL iLB Rd iLBR d

π π
θ θ θ θ θ= = =∫ ∫ ∫  in the negative y-direction. 

CALCULATE:  ( )0
cos 1 1 2yF iLRB iLRB iLRBπθ= = − − − = in the negative y-direction. 

ROUND:  Not applicable. 

DOUBLE-CHECK:  Note that 
0

cos 0.xF iR Bd
π

θ θ= =∫  This confirms the analysis based on symmetry. 

27.73. THINK: The magnetic force on the proton due to the presence of the magnetic field will affect only the 
component of the proton’s velocity that is perpendicular to the magnetic field.   
SKETCH: 

 
RESEARCH: 
(a)  When the proton enters the magnetic field, the component of its velocity that is parallel to the field 
will be unaffected, so the proton advances along the z-axis at a constant speed.  The component of the 
particle’s velocity that is perpendicular to the field will be forced into a circular path in the xy-plane.  Thus, 
the trajectory of the proton will be a helix, as shown in the figure.   The magnetic force on the proton is 
given by:  

( ) .BF qv B q v v B qv B qv B qv B⊥ ⊥ ⊥= × = + × = × + × = ×
 

     

       

(b)  The magnitude of the magnetic force is given by .BF qv B qv B⊥ ⊥= × =
 

   By Newton’s Second Law, 
2 / .BF ma qv B mv r⊥ ⊥= ⇒ =



  

(c)  The period of the circular motion in the xy-plane projection is given by 2 .rT
v
π

⊥

=   The frequency is 

given by 1/ .f T=  
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(d)  The pitch of the motion is .p v T=


 
SIMPLIFY:  
(b) The radius of the trajectory projected onto the xy-plane is given by  

( )osin 90 cos .
mvmv mvr

qB qB qB
⊥

+
= = =

θ θ  

(c) 2 2 .
mv mT

v qB qB
⊥

⊥

 
= = 

 

π π  

(d) ( )sin .p v Tθ=  
CALCULATE: 

(b) 
( )( ) ( )

( )( )

27 6

19

1.67 10  kg 1.00 10  m/s cos 60.0
10.44 mm.

1.60 10  C 0.500 T
r

−

−

⋅ ⋅ °
= =

⋅
 

(c) 
( )

( )( )

27
7

19

2 1.67 10  kg
1.312 10  s,

1.60 10  C 0.500 T
T

π −

−

−

⋅
= = ⋅

⋅
 

( )
6

7

1 7.624 10  Hz.
1.312 10  s

f
−

= = ⋅
⋅

 

(d) ( ) ( )( )6 71.00 10  m/s sin 60.0 1.312 10  s 113.6 mm.p −= ⋅ ° ⋅ =  

ROUND:  Rounding to three significant figures,  
(b) 10.4 mm  
(c) 71.31 10  s,T −= ⋅  67.62 10  Hzf = ⋅  
(d) 114 mm  
DOUBLE CHECK: All calculated values have correct units.  The magnitudes are appropriate for 
subatomic particles. 
 

Multi-Version Exercises 

 Exercises 27.74–27.76   For the ball to travel in a circle with radius r, we have .mvr
q B

=  

27.74.  mvr
q B

=  

 

( )( )
( )( )

35.063 10  kg 3079 m/s
0.6614 T

11.03 C 2.137 m
mvB
q r

−⋅
= = =

 

27.75. mvr
q B

=  

 

( )( )( )2.015 m 11.17 C 0.8000 T
0.005751 kg 5.751

3131 s
g

m/
 

r q B
m

v
== = =  

27.76. mvr
q B

=  

 

( )( )
( )( )

33.435 10  kg 3183 m/s
11.31 C

1.893 m 0.5107 T
mvq
rB

−⋅
= = =
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 Exercises 27.77–27.79   The electric force is given by .EF qE=  The magnetic force is given by .BF vBq=  
Setting these forces equal to each other gives us 

.

qE vBq
Ev
B

=

=
 

27.77. 
4

5
3

1.749 10  V/m 3.783 10  m/s.
46.23 10  T

Ev
B −

⋅
= = = ⋅

⋅
 

27.78. Ev
B

=  

 

4

5

2.207 10  V/m
4.713 10

0.04683 T 46.83 mT
 m/s

EB
v

⋅
= == =

⋅
 

27.79. Ev
B

=  

 

( )( )5 3 45.616 10  m/s 47.45 10  T 2.665 10  V/mE vB −= = ⋅ ⋅ = ⋅  
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Chapter 28: Magnetic Fields of Moving Charges  
 
Concept Checks 

28.1. c  28.2. a  28.3. a  28.4. b  28.5. e  28.6. d  28.7. d  28.8. d 
 
Multiple-Choice Questions 

28.1. b  28.2. c  28.3. c  28.4. a  28.5. d  28.6. a  28.7. c  28.8. c  28.9. a  28.10. d  28.11. a  28.12. a  28.13. d   

28.14. b 
 
Conceptual Questions 

28.15. The wires are twisted in order to cancel out the magnetic fields generated by these wires. 

28.16. Since the currents running through the wire generate magnetic fields, these fields may overpower the 
magnetic field of the Earth and make the compass give a false direction. 

28.17. No, an ideal solenoid cannot exist, since we cannot have an infinitely long solenoid. To a certain extent, 
yes, it renders the derivation void. However, the derivation is an approximation and is an important 
theoretical example. 

28.18. In Example 28.1, the right hand rule implies that the magnetic dipole of the loop points out of the page. 
Application of the right hand rule to the straight wire tells us that the magnetic field produced by wire 
points out of the page. Assume the angle between the dipole moment and the field remains fixed. Since the 
dipole strength is also constant, the only quantity left to vary is field strength. If the potential energy is to 
be reduced, the loop must move towards a region of smaller magnetic field strength. That is, the loop must 
move away from the straight current-carrying wire. 

28.19. By Coulomb’s Law, the electric force between the particles has magnitude ( )e
2 2

0/ 4 .F q dπε=  For the 

magnetic force, the version of the Biot-Savart Law given in the text can be adapted to describe the 
magnetic field produced by a moving particle via the replacement 

( ) ( ) s  /   /   Idl dq dt dl dq dl dt qv⇒ ⇒ ⇒  with q  charge and sv , the velocity of the source particle. The 

magnetic field produced by one particle at the location of the other can be written as ( )3
0 / 4B qvd dµ π=  

with ,v  common velocity and ,d  the separate of the particles. The magnitude of the magnetic force one 

particle is given by ( )( ) ( )3 2 2 2
e 0 0/ 4 ( ) / / 4 .F qvB qv qvd d q v dµ π µ π= = ⋅ =  Since the vectors ,v d  and 

v d⋅  are mutually perpendicular (the site of the angle between any two of them is unity) the ratio of forces 
is 2

m e 0 0/F F vµ ε=  which also 2 2
m e/ / ,F F v c=  where c  is the speed of light. 

28.20. The field is given by Ampere’s law ( )( ) 0 enc2 / 2 .B a b iπ µ+ =  Current density is then given by:  

( )( )2 2/J i b aπ= −  

The area of interest is: 

( )
( )

2

0

/ 2

(2 ) / 2

a b A

B a b AJ

π

π µ

 + = 
 + = 
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( )

( ) ( )

2
20

2 2

2
2

0
2 2

( ) 2

2
.

a b iB a
a b b a

a b a
i

a b b a

µ
π

π π

µ
π

 + 
= − ⋅  + −   

+  − 
 = ⋅

+ −

 

28.21. The magnetic field at point P would be zero. The contribution from part A would be zero since P lies along 
the axis of A. The currents through B and C points in opposite directions and yield magnetic fields that 
cancel out at P .  

28.22. Ampere’s law states that, 0 ,
C

Bdl iµ=∫  but since B  is constant the integral must be zero. If so, i  is zero 

everywhere and consequently 0J =  everywhere. 

28.23. (a) Since molecular hydrogen is diamagnetic, the molecules must have no intrinsic dipole moment. Since 
the nuclear spins cannot cancel the electron spins, the electron spins must be opposite to cancel each other. 
(b) With only a single electron, the hydrogen atoms must have an intrinsic magnetic moment. Atomic 
hydrogen gas, if it could be maintained, would have to exhibit paramagnetic or ferromagnetic behavior. 
But ferromagnetism would require inter atomic interactions strong enough to align the atoms in domains, 
which is not consistent with the gaseous state. Hence one would expect atomic hydrogen to be 
paramagnetic.  

28.24. The saturation of magnetizations for paramagnetic and ferromagnetic materials is of comparable 
magnitude. In both types of materials the intrinsic magnetic moments of the atoms arise from a few 
unpaired electron spins. Magnetization effects in ferromagnetic materials are more pronounced at low 
applied fields because the atoms come pre-aligned in their domains, but once both types of atoms have 
been forced into essentially uniform alignment, the magnetization they produce is comparable. For either 
type of material maximum magnetizations of order 2 66 310  A m / m 10  A/m=

 
magnetic dipole moment 

per unit volume are typical. 

28.25. The wire carries a current which produces a magnetic field. This magnetic field will deflect the electron by 
the Lorentz force in the left direction. 

28.26. Each side of the loop will create the same magnetic field at the center of the loop. The total field is 4 times 
the field of one side. The field at the center is given by the Biot-Savart Law: 

0 0
3 2 sin .

4 4
i ids rdB ds

r r
µ µ

θ
π π

×
= =

 



 

 
Since sin / ,d rθ = the differential element of magnetic field is  

0 0
3 2 2 3/2 .

4 4 ( )
i idd dsdB ds

r d s
µ µ
π π

= =
+

 

Integration gives 

0 0 0 0 0
2 2 3/2 2 2 3/2 2 2 20

0

2
.

4 4 2 2( ) ( ) 2 2 2

d
d d

d

sid id id i ids ds dB
dd s d s d dd d s

µ µ µ µ µ
π π π π π−

 
= = = = = + + + 

∫ ∫  
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The total field is then 0 0 0
tot

2 2 2 2
4 .

( / 2)
i i i

B B
d L L
µ µ µ

π π π
= = = =   

28.27.  

 

The current that flows through a ring of radius r  which lies in the region a r b< <  is given by 
2 2 2

0 0 0 02 | ( ).
r r

aa
i J dA J d J J r aπρ ρ πρ π= = = = −∫ ∫  To find the magnetic field employ Ampere’s Law

 0 enclosed .B ds iµ⋅ =∫






 For a cylinder this becomes ( ) 0 enc2B r iπ µ=  or 0 enc / (2 ).B i rµ π=  If r a<  then  

0r aB < = , thus  if a r b< <  then 2 2
enc 0 ( )i J r aπ= − and 

2 2 2 2
0 0 0 0( ) ( )

.
2 2a r b

J r a J r a
B

r r
µ π µ

π< <

− −
= =  If r b>  

then 2 2
enc 0 ( )i J b aπ= −  and 

2 2
0 0 ( )

.
2r b

J b a
B

r
µ

>

−
=  Note that if r b=  then 

2 2
0 0 ( )

.
2a r b r b

J b a
B B

b
µ

< < >

−
= =  

28.28. The loop creates a magnetic field of l 0 / (2 )B i Rµ=  at its center and is directed upwards. Out of the page. 
Both wires contribute a magnetic field of w 0 / (2 )B i Rµ π=  pointing out of the page. The total fields is then 

0
tot l w

22 (1 ),
2

i
B B B

R
µ

π
= + = +  and points out of the page. 

 
28.29. THINK:  Ampere’s Law can be used to determine the magnitude of the magnetic field in the two regions.  

SKETCH:  A sketch is included at the end of the SIMPLIFY step, once the two equations have been found. 
RESEARCH:  The current with the conductor is given by ( ) .i J r dA= ∫  The magnetic field is found using 

Ampere’s Law 0 enclosedB ds iµ=∫








or 0 enc

2
i

B
r

µ
π

= . 

SIMPLIFY:

 ( ) ( )( )
( )

/ /
0 0 00 0

/ 0/
0

2 / /
0

( ) 2 ( ) 2 2 ( ) |

( ) ( 0) 2

(1 ) 2

r r r R r R r

r R R

r R r R

i J r dA J r r dr J r e dr J R R r e

R R r e R R e J

R e Rre J

π π π

π

π

′ ′− −

− −

− −

 ′ ′ ′ ′ ′ ′= = = = − + 

= − + − − +

= − −

∫ ∫ ∫  

If r R<  then 2 / 2 /0 0 0
0( ) 2 [ ( ) ].

2
r R r R

r R

J
B R R R r e J R R R r e

r r
µ µ

π
π

− −
<

 = − + = − +   

If r R>  then 
2

2 / 2 2 1 2 10 0 0 0 0
0( ) 2 2 [1 2 ]

2
R R

r R

J J R
B R R R R e J R R e e

r r r
µ µ µ

π
π

− − −
>

   = − + = − = −    . 
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CALCULATE: There are no values to substitute. 
ROUND:  There are no values to round. 
DOUBLE-CHECK: Note that the two computed formulas agree when .r R=   

 
Exercises 

28.30. The force of wire 1 on wire 2 is ( ) ( )1 2 2 2 0 1 0 1 2/ 2 / 2 .F i LB i L i d i i L dµ π µ π→  = = =  Since 1 22 ,i i=  

( )2
1 2 0 1 / .F i L dµ π→ =  Solving for the current 1i  gives 

( )( )
( )( )

6

1 2
1 7

0

0.0030 m 7.0 10  N
0.23 A.

4 10  T m/A 1.0 m

dF
i

L

ππ
µ π

−

→
−

⋅
= = =

⋅
 

The current on the other wire is 2 0.46 A.i =  

28.31. The magnetic field created by the wire is given by the Biot-Savart Law ( )0 / 2B i rµ π= . The force on the 

electron is given by the Lorentz force ( )0 / 2 .F qvB qv i rµ π= =  The acceleration of the electron is  
19 5 7

12 20
31

(1.602 10  C)(4.0 10  m/s)(4 10 T m/A)(15 A)
4.2 10 m/s

2 2 (9.109 10  kg)(0.050 m)
qv iFa

m mr
πµ

π π

− −

−

⋅ ⋅ ⋅
= = = = ⋅

⋅
 

The direction of the acceleration is radially away from the wire. 

28.32. The magnitude of the magnetic field created by a moving charge along it is line of motion is zero. By the 
Biot-Savart Law,  

0 0
2 2

ˆˆ
0,

4 4
qdv rids rB

r r
µ µ
π π

××
= = =





 

since the angle between the angle between the velocity and the position vector r  is zero.  The situation is 
the same for an electron and a proton. 

28.33. The field along the axis of a current loop of radius R  as measured at a distance x  from the center of the 
loop is  

( )
2

0
3/22 2

.
2

i RB
x R

µ
=

+

 

The current of the loop must be

 

( ) ( ) ( )
( )( )

( )
3/22 23/2 6 62 2

5 9
2 27 6

0

2 2.00 10  m 6.38 10  m2
6.00 10  T 7.14 10  A.

4 10  T m/A 2.00 10  m

x R B
i

Rµ π
−

−

 ⋅ + ⋅+   = = ⋅ = ⋅
⋅ ⋅
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28.34. What does it mean to have an “average value of the magnetic field measured in the sides”? The answer is 
that the average value is: / .B B ds ds= ∫ ∫







 

 And ds∫  is just the total length of the closed path around the 

loop, in this case 4 .ds l=∫  For the integral above we can simple use Ampere’s Law and find (see equation 

28.10):  

0 encB ds iµ=∫








 

We found above that / / 4 .B B ds ds B ds l= =∫ ∫ ∫
 

 

 

  

 Inserting Ampere’s Law and solving for the enclosed 

current then yields: 

0 enc enc 0/ 4 4 /B i l i lBµ µ= ⇒ =  

Numerically we find 4 7
enc 4(0.0300 m)(3.00 10 T) / (4 10 ) 28.64789 A,i π− −= ⋅ ⋅ = which we round to 

enc 28.6 A.i =  

We can also see if our solution makes sense. We have calculated the magnetic field from a long straight 
wire as a function of the distance to the wire in equation 28.4 and found 0 / 2B i rµ π ⊥= .  With our value of 
the current computed above, we can calculate the value of the magnetic field at the corners of the loop 
(furthest from the wire) and middle of the sides (closest to the wire) and see that these two values of the 
magnetic field are below and above the average value of B that was given in the problem.  For the middle of 
the sides we find ( /2r l⊥ = ): 43.82 10 TB −= ⋅ , and for the corners we find ( / 2r l⊥ = ): 42.70 10 TB −= ⋅ . This 
gives us confidence that we have the right solution. 

28.35. THINK: A force due to the magnetic field generated by a current carrying wire acts on a moving particle.   
In order for the net force on the particle to be zero, a second force of equal magnitude and opposite 
direction must act on the particle.  Such a force can be generated by another current carrying wire placed 
near the first wire. Assume the second wire is to be parallel to the first and has the same magnitude of 
current. The wire along the x-axis has a current of 2 A oriented along the x-axis. The particle has a charge 
of 3 μCq = −  and travels parallel to the y-axis through point ( , , ) (0,2,0).x y z =  
SKETCH:   

 

RESEARCH: The magnetic field produced by the current is given by the ( )0 / 2 .B i rµ π=  The force on the 

particle is given by the Lorentz force, 0 .F qv B=  
SIMPLIFY: If the wires carry the same current then the new wire must be equidistant from the point that 
the particle passes through the xy-plane. Only then will the magnetic force on the particle due to each wire 
be equal.

 
By the right hand rule, the currents will be in the same direction.  This means that 1 2 .r r=   

CALCULATE: The requirement 1 2r r=  means that the second wire should be placed parallel to the first 
wire (parallel to the x-axis) so that it passes through the point ( , , ) (0,4,0).x y z =  
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ROUND: Not necessary.  
DOUBLE-CHECK: It is reasonable that two wires carrying the same current need to be equidistant from a 
point in order for the magnitude of the force to be the same.   

28.36. THINK: The current through the wire creates a magnetic field by the Biot-Savart Law. The straight part of 
the wire only creates a magnetic field at points perpendicular to it. Therefore this part of the wire can be 
ignored. The magnetic field at the center of the semicircle is created by the charge moving through the 
semicircle. 
SKETCH:   

 

RESEARCH: The Biot-Savart Law can be employed in the form  0
2

sin
4

idB ds
r

µ θ
π

= . Going around the 

semicircle, the angle φ  can be related to the current element by .ds rdφ=   
SIMPLIFY: Performing the integration gives 

0 0 00
20

0

sin sinsin sin .
4 4 44

i i iiB Rd
r rr r

π
πµ µ θπ µ θθ µ θφ φ

π ππ
 = = = =  ∫  

The angleθ between the current and the radial vector r̂  is 90°  for the loop, thus ( )0 / .4B i rµ=  

CALCULATE: 
( ) ( )

( )

7
5

4 10  T m/A  12.0 A
3.76991 10  T

4 0.100 m
B

π −

−
⋅

= = ⋅   

ROUND: The values are given to three significant figures, thus the magnetic field produced by the wire is 
53.77 10  TB −= ⋅  and points into the page.  

DOUBLE-CHECK: The magnetic field is very small, as would be expected from a real-world point of 
view.  

28.37. THINK: Each of the wires creates a magnetic field at the origin. The sum of these fields and the Earth’s 
magnetic field will produce a force on the compass, causing it to align with the total field. The wires carry a 
current of 1 2 25.0 A.i i= =  The Earth’s magnetic field is 5

E
ˆ2.6 10  T.B y−= ⋅



  
SKETCH:  

 
 

RESEARCH: The magnetic field produced by a wire is ( )0 / 2 .B i dµ π=  

SIMPLIFY: The magnetic field of wire 1 is ( )1 0 1 1
ˆ( ) / 2 .B i y dµ π= −



 Wire 2 produces a magnetic field 

of ( )2 0 2 2
ˆ / 2 .B i x dµ π=



 The sum of the magnetic fields is 0 1 0 2
net 1 2 E E

1 2

ˆ ˆ .
2 2

i i
B B B B y x B

d d
µ µ
π π

= + + = − + +


   

 

CALCULATE: 
( )( )

( )
( )( )

( )

7 7
5

net

5 6

4 10  T m/A 25.0 A 4 10  T m/A 25.0 A
ˆ ˆ ˆ2.6 10  T

2 0.15 m 2 0.090 m
ˆ ˆ5.5555 10  T 7.3333 10  T

B y x y

x y

π π

π π

− −

−

− −

⋅ ⋅
= − + + ⋅

= ⋅ − ⋅
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The direction of the field is 
6

1
5

7.3333 10  Ttan 7.5196 .
5.5555 10  T

θ
−

−
−

 − ⋅
= = − ° 

⋅ 
  

ROUND: The angle is accurate to two significant figures. The compass points 7.5°  below the x-axis.  
DOUBLE-CHECK: This is a reasonable answer. The compass points towards the east if ŷ is north.  

28.38. THINK: The coil will levitate if the force from the magnetic field cancels the force of gravity. The coils 
have radii of 20.0 cm.R =  The current of the bottom coil is i and travels in the clockwise direction. By the 
right hand rule the top coil has a current of the same magnitude, moving in a counter clockwise direction. 
The mass of the coils is 0.0500 kg.m =  The distance between the coils is 2.00 mm.d =  
SKETCH:   

 
RESEARCH: The force of gravity is g .F mg=  The magnetic force on the top coil due to the bottom coil is 

( ) ( )B 0 1 2 0 1 2/ 2 2 / 2 .F i i L d i i R dµ π µ π π= =    

SIMPLIFY: Equating the two forces give 
2

0 1 2 02
.

2
i i R i R

mg
d d

µ π µ
π

= =   The amount of current is 2

0

mgd
i

Rµ
=  or 

0

.
mgd

i
Rµ

=  

CALCULATE: 
( )( )( )

( )( )

2

7

0.0500 kg 9.81 m/s 0.00200 m
62.476 A

4 10  T m/A 0.200 m
i

π −
= =

⋅
  

ROUND: Reporting to 3 significant figures, the current in the coils is 62.5 A  and travel in opposite 
directions.  
DOUBLE-CHECK:   Dimensional analysis provides a check: 

( )

2 2

2 2

kg m/s m kg m m A A s mkg m m A
      A

m/A m N/ A m m m s kg m m m s
i

T

                                                   = = = =                                               
. 

28.39. THINK:  The current carrying wires along the x- and y-axes will each generate a magnetic field.  The 
superposition of these fields generates a net field.  The magnitude and direction of this net field at a point 
on the z-axis is to be determined.  
SKETCH: 

 
RESEARCH:  Both currents produce a magnetic field with magnitude ( )0 / 2 .B i rµ π=  The magnetic field 

produced by the wire along the x-axis gives ( ) ( )1 0 ˆ / 2 .B i y bµ π= −


 The wire along the y-axis creates a 

magnetic field of ( )2 0 ˆ / 2 .B ix bµ π=
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SIMPLIFY:  The total magnetic field is then 0 0
net 1 2 ˆ ˆ.

2 2
i i

B B B x y
b b

µ µ
π π

= + = −
  

  The magnitude of the field 

is ( )220 0 02
1 1 .

2 2 2
i i i

B
b b b

µ µ µ
π π π

= + − = =  The direction of the field is 1 0 0tan
2 2

i i
b b

µ µθ
π π

− − 
=  

 
 in the x-y 

plane at a height of b.  
 

CALCULATE:  ( )1tan 1 45− − = − ° in the x-y plane at point b. 

 
 ROUND:  Not applicable. 
DOUBLE CHECK:  Both the right hand rule and the symmetry of the problem indicates that the net field 
should be in the fourth quadrant. 

28.40. THINK: The loop creates a magnetic field at its center by the Biot-Savart Law. The loop has side length 
0.100 ml =  and carries a current of 0.300 A.i =    

SKETCH:   

 

 

 
 

RESEARCH: The Biot-Savart Law states 0
2

sin .
4

i dsdB
r

µ θ
π

= ⋅  The angle θ  is found by using the equations: 

sin / ,d rθ =  2 2 ,r s d= +  and / 2.d l=    

SIMPLIFY: The field due to one side of the loop is 
( )

0 0
2 3/22 2

.
4 4

i idd dsdB ds
r s d

µ µ
π π

= ⋅ =
+

 Since there are 

four sides, the total loop is four times this value. The total magnetic field is then 

( ) ( )
0 0

3/2 3/202 2 2 2

0 0 0 0
2 2 2 2 2

0

24 4
4 4

2 2 2 80
22

d d

d

d

id idds dsB dB
s d s d

sid i i id
d ldd s d d d

µ µ
π π

µ µ µ µ
π π ππ

−
= = ⋅ =

+ +

  
= = − = =    +   

∫ ∫ ∫

 

CALCULATE: 
( )( )

( )

7
6

8 4 10  T m/A 0.300 A
3.394 10  T

0.100 m
B

π

π

−

−
⋅

= = ⋅   

ROUND: To three significant figures, the magnetic field at the center of the loop is 63.39 10  T.B −= ⋅   
DOUBLE-CHECK: The current is small, so the magnetic field it generates is expected to be small.  This is 
a reasonable value. 

28.41. THINK: In order for wire 1 to levitate, the forces on it must cancel. Both wire 2 and 3 will create magnetic 
fields that will interact with wire 1. Both wires create forces with horizontal and vertical components. The 
horizontal components will add destructively. The vertical components however will add constructively. 
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Therefore, only the vertical components need be calculated. Wires 2 and 3 each carry a current of 
600. A.i =   All three wires have a linear mass density of 100. g/m.λ =  The wires are arranged as shown in 

the figure.  
SKETCH:   

 
 

RESEARCH: The force of gravity on the wire is g .F mg=  The force between two wires carrying current is 

( )21 0 1 2 / 2 .F i i L dµ π=       

SIMPLIFY: The vertical component of the magnetic force for one wire is 0 3 1 0 3 1
31 .

2 ( / 2)
i i L i i L

F
h h

µ µ
π π

= =  The 

total force due to the wires is then 0 3 1
B 31

2
2 .

i i L
F F

h
µ
π

= =  Equating this to the force of gravity gives: 

0 3 12
.

i i L
mg Lg

h
µ

λ
π

= =   Solving for the current 1i  gives: 1
0 3

.
2

h g
i

i
π λ
µ

=  

CALCULATE: 
( )

3 2

1 7

(0.100 m)(100. 10  kg/m)(9.81 m/s )
204.375 A

2 4 10  T m/A (600. A)
i

π
π

−

−

⋅
= =

⋅
  

ROUND: The current of wire 1 required to levitate is 1 204 A.i =  
DOUBLE-CHECK: The current in wire 1 is on the same order of magnitude as the other currents. This is 
a reasonable answer. 

28.42. THINK: The net field is a superposition of the fields created by the top wire, the bottom wire and the loop. 
The wires are 2.00 cm  apart and carry a current of 3.00 A.i =  The radius of the loop is 1.00 cm.r =   
SKETCH:   

 

RESEARCH: The magnetic field produced by an infinite wire is ( )0 / 2 .B i rµ π=  A semi-infinite wire is 

half this value, ( )0 / 4 .B i rµ π=  A full loop produces a magnetic field of ( )0 / 2 .B i rµ=  The half loop 

produces half of this, ( )0 / 4 .B i rµ=     
SIMPLIFY: By the right hand rule, the magnetic field points into the page. The magnetic field is the sum 
of all the fields.  

0 0 0 0
net top bottom loop

2 1
4 4 4 4

i i i i
B B B B

r r r r
µ µ µ µ
π π π

 
= + + = + + = + 

   

CALCULATE: 
( )( )

( )

7
4

net

4 10  T m/A 3.00 A 2 1 1.54 10  T.
4 0.0100 m

B
π

π

−
−

⋅  = + = ⋅ 
 

It is directed in the negative z 

direction. 
ROUND: To 3 significant figures, the magnetic field at the origin is 4 ˆ1.54 10  T .z−− ⋅  
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DOUBLE-CHECK: The field due to a single infinite wire similar to the wires in the problem would be  

( )( ) ( )( )7 54 10  T m/A 3.00 A / 2 0.0100 m 6.00 10  T,B π π− −= ⋅ = ⋅  which is similar to the result.  Therefore, 

the result is reasonable. 

28.43. THINK: The wire creates a magnetic field that produces a Lorentz force on the moving charged particle. 
The question asked for the force if the particle travels in various directions. The velocity is 3000 m/s in 
various directions. 
SKETCH: 

 
 

RESEARCH: The magnetic field produced by an infinite wire is ( )0 / 2 .B i dµ π=  By the right hand rule 

the field points in the positive z-direction. The force produced by the magnetic field is .F qv B= ×
 



     

SIMPLIFY: The force is given by ( )0 0ˆ ˆ ˆ
2 2
q i q i

F qv B v z v n z
d d

µ µ
π π

= × = × = ⋅ ×
 

  

 where n̂  is the direction of the 

particle.
  

CALCULATE: 
( )( )( )

( ) ( ) ( )
7

2
9.00 C 4 10  T m/A 7.00 A

ˆ ˆ ˆ ˆ3000. m/s 1.89 10  N
2 2.00 m

F n z n z
π

π

−

−
⋅

= ⋅ × = ⋅ ×


 
 
Note that ˆ ˆ ˆ,x z y× = −  ˆ ˆ ˆ,y z x× =  and ˆ ˆ 0.z z− × =  

ROUND: The force should be reported to 3 significant figures. 
(a) The force is 2 ˆ1.89 10  N F y−= − ⋅



if the particle travels in the positive x-direction.  

(b) The force is 2 ˆ1.89 10  N F x−= ⋅


 if the particle travels in the positive y-direction.  
(c) The force is 0F =  if the particle travels in the negative z-direction. 
DOUBLE-CHECK: The right hand rule confirms the directions of the forces for each direction of motion 
of the particle. 

28.44. THINK: The wire produces a magnetic field that creates a force on the loop. The wire has current of 

w 10.0 Ai =  and is 0.500 md =  away from the bottom wire of the loop. The loop carries a current of 

l 2.00 Ai =  and has sides of length a =1.00 m. 
SKETCH:   

 
 

RESEARCH: The force on two wires carrying a current is   F = µ0i1i2L / 2πd( ).  The torque is given by 

τ = ×


 

.r F    
SIMPLIFY: The forces on part ② and ④ cancel each other. The force on ① is   F1 = µ0iwila / 2πd( ) and 

points towards the long wire. The force on ③ is   F3 = µ0iwila / 2π(d + a)[ ] and points away from the long 
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wire. The total force is then 0 w l
1 3net

1 1
2
i i a

F F F
d d a

µ
π

 = + = − + 




 and points towards the long wire. Because 

the force and the length between the axis of rotation are parallel there is no torque on the loop.  
CALCULATE: 

( ) ( )


7
6

net

4 10  Tm/A (10.0 A)(2.00 A) 1.00 m 1 1 5.33333 10  N
2 0.500 m 1.50 m

F y
π

π

−
−

⋅  = − = − ⋅ 
 

 
ROUND: The force is reported to three significant figures. (a) The net force between the loop and the wire 
is 6 ˆ5.33 10  N.F y−= − ⋅  (b) There is no net torque on the loop.  
DOUBLE-CHECK: The force between the long wire and the lower arm of the loop is attractive, because 
the currents are in the same direction.  The currents of the long wire and the upper arm of the loop are in 
opposite directions, therefore the force is repulsive.  Since the lower arm is closer to the long wire, the 
attractive force dominates, and the net force is in the negative y direction, as calculated. 

28.45. The magnetic field at the center of the box is the sum of the fields produced by the coils. A coil produces a 

magnetic field of 
( )

2
0

3/22 2
.

2

NiR
B n

x R

µ
=

+
  

 
 

The magnetic field produced by the coil on the x z−  plane is  

( )
 

7 2
5

xz 3/22 2

4 10  T m/A (30.0)(5.00 A)(0.500 m)
( ) 6.66 10  T

2 (0.500 m) (0.500 m)
B y y

π −
−

⋅
= + = ⋅

 + 
 

The magnetic field produced by the other coil has the same magnitude but points in the negative x-
direction. Therefore  

5
tot 6.66 10  T[ - ].B x y−= ⋅ +  The magnitude of the field is 52 6.66 10  T,−⋅ ⋅  or 

59.42 10  T−⋅ .  The direction of the field is at an angle of 45°  from the negative x-direction towards the 
positive y-axis. 

28.46.  

 
The current within a loop of radius Rρ ≤   is given by 

33
20 0 0

00 0 0
0

2 2 2
( ) 2 ( ) 2 .

3 3

r
r r rJ J J rr ri J r dA J r r dr J r dr r dr

R R R R
π π π

π π
′ ′

′ ′ ′ ′ ′ ′ ′= = = = = =∫ ∫ ∫ ∫  

The magnetic field is given by Ampere’s Law  

( ) 0 enc
0 enc2 .

2
i

B ds B r i B
r

µ
π µ

π
⋅ = = ⇒ =∫
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The magnetic field in the region r R<  is 
3 2

0 0 0 02
.

2 3 3
J r J r

B
r R R

µ π µ
π

 
= =  

 
 The magnetic field in the region 

r R>  is 
3 2

0 0 0 02
.

2 3 3
J R J R

B
r R r

µ π µ
π

 
= =  

   

 

28.47. Using Ampere’s Law, the magnetic field at various points can be determined. 0 enclosed .B ds iµ=∫








 For the 

cylinder, assuming the current is distributed evenly, 0 enc2B r iπ µ=  or ( )0 enc / 2 .B i rµ π=  The field at 

a 0r r= =  is zero since is does not enclose any current a 0.B =  The field at br r R= <  is 

( )72
60 enc 0 b 0 b

b tot 2 2 2
b b

4 10  T m/A (1.35 A)(0.0400 m)
1.08 10  T.

2 2 2 2 (0.100 m)
i r ir

B i
r r R R

πµ µ π µ
π π π π π

−

−
⋅ 

= = = = = ⋅  
 

 Note that i  is 

equal to the fraction of total area of the conductor’s cross section and the total current. The field at

 cr R=  is 
( )( )

( )

7
60 enc 0 tot

c
c

4 10  T m/A 1.35 A
2.70 10  T.

2 2 2 0.100 m
i i

B
r R

πµ µ
π π π

−

−
⋅

= = = = ⋅  The field at dr R> is 

( )( )
( )

7
60 enc

d
d

4 10  T m/A 1.35 A
1.69 10  T.

2 2 0.160 m
i

B
r

πµ
π π

−

−
⋅

= = = ⋅  By inspection it can be seen that the magnetic field 

at br , cr  and dr the magnetic field will point to the right. 

28.48. THINK: The magnetic field is the sum of the field produced by the wire core CB  and the sheath S .B  The 
wire has a radius of 1.00 mm.a =  The sheath has an inner radius of 1.50 mmb =  and outer radius of 

2.00 mm.c =  The current of the outer sheath opposes the current in the core. 
SKETCH:  

 

RESEARCH: The current density of the core is 2
C / ( )J i aπ=  and the current density of the sheath is 

2 2
S /[ ( )].J i c bπ= − −  The enclosed current is calculated by enclosed .i JdA= ∫  

The magnetic field is derived 

using Ampere’s Law: 0 enclosed .B ds iµ⋅ =∫     

SIMPLIFY: When the radius is within the core , r a≤ , the magnetic field is  
2

0 enc 0 0 2 0 0

2 2
0

02 2

2

2
2

r

r a
iB ds B r i JdA rd dr
a

i r ri
a a

π
π µ µ µ θ

π
µ π µ
π

≤⋅ = = = =

= =

∫ ∫ ∫ ∫
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or 
2

0 0
2 2 .

2 2r a

i irrB
r a a

µ µ
π π≤ = =  If the radius is between the core and the sheath, ,a r b< <  

02a r bB ds B r iπ µ< ≤= =∫








 or 0 / (2 ).a r bB i rµ π< ≤ =  Within the sheath, ,b r c< <  the magnetic field is 
2 2 22

0 enc 0 02 2 2 2 2 20

22 | 1
2( ) ( )

r r
b r c C bb

i i r r bB ds B r i i rd dr i i
c b c b c b

π ππ µ µ θ µ µ
ππ< <

    − −
= = = + = − = −    − − −     

∫ ∫ ∫








   

2 2
0

2 21
2b r c

i r bB
r c b

µ
π< <

 −
= − − 

 

If the radius is outside of the cable, ,r c≥  then the magnetic field is 0 enc 02 ( ) 0r cB ds B r i i iπ µ µ≥⋅ = = = − =∫  

or 0.r cB ≥ =  In summary the magnetic fields of various regions are 
2 2

0 0 0
2 2 2,  ,  1 , 0.

2 22r a a r b b r c r c

ir i i r bB B B B
r ra c b

µ µ µ
π ππ≤ < ≤ < < ≥

 −
= = = − = − 

 

CALCULATE: In order to graph the behavior of the magnetic field as a function of the radius, set the 

magnetic field in units of 0 .
2
u i

aπ  

 
ROUND:  There is no need to round. 
DOUBLE-CHECK: Note that the magnetic field outside of the coaxial cable is zero. These cables are used 
when equipment that is sensitive to magnetic fields needs current.  

28.49. THINK: To find the magnetic field above the center of the surface of a current carrying sheet, use 
Ampere’s Law. The path taken should be far from the edges and should be rectangular as shown in the 
diagram. The current density of the sheet is 1.5 A/cm.J =  
SKETCH:  

 
RESEARCH: The direction of the magnetic field is found using the right hand rule to be +x above the 
surface of the conductor.  Ampere’s Law states 0 enclosed2 .B ds B r iπ µ= =∫









 

SIMPLIFY: Note that sections 1 and 3 are perpendicular the field. 0B ds⋅ = for these two sections. If the 
path of 4 and 2 has a length of L, then by Ampere’s Law, 1 2 0 enclosed 0 .B ds B L B L i JLµ µ⋅ = + = =∫  

By 

symmetry 1 2 .B B=  Thus, 1 02B Jµ=  or 1 0 / 2.B Jµ=
 

CALCULATE: 
( )7

5
1

4 10  T m/A (1.5 A/cm)(100 cm/m)
9.42478 10  T

2
B

π −

−
⋅

= = ⋅  

ROUND: The magnetic field is accurate to two significant figures. The magnetic field near the surface of 
the conductor is 5

1 9.4 10  T.B −= ⋅  
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DOUBLE-CHECK: The form for the magnetic field is similar to that of a solenoid. It is divided by a factor 
of 2, which makes sense when considering the setup of a solenoid.  The form of the equation is similar to 
that of question 28.12. This makes sense because the magnetic field inside a solenoid is generated by a 
current carrying wire on both sides of the Amperian loop, whereas the field generated by the flat 
conducting surface originates on one side of the Amperian loop only.  In effect, the flat conductor can be 
seen as similar to half a solenoid, flattened out.  See figure 28.21 in the text for a visual. 

28.50. The magnetic field in a solenoid is given by the equation: 

( ) ( )7 3
0

10004 10  T m/A 2.00 A 6.28 10  T.
0.400 m

B niµ π − − 
= = ⋅ = ⋅ 

   

28.51. The magnetic field in a solenoid is given by 0 .B inµ=  Let the magnetic field of solenoid B be 0 .BB inµ=  

The magnetic field of solenoid A is ( ) ( ) ( ) ( )0 04 / 3 4 / 3 4 / 3 .A BB i N L in Bµ µ= = =  The ratio of solenoid A 
magnetic field to that of solenoid B is 4:3. 

28.52. The magnetic field at a point 1.00 cmr =  from the axis of the solenoid will be the sum of the field due to 
the solenoid and the field produced by the wire. The solenoid has a magnetic field of S 0 SB i nµ=  along the 
axis of the solenoid.  

 

The wire produces a field which is perpendicular to the radial vector of ( )w 0 w / 2 .B i rµ π=  The magnitude 
of the field is then  

2 2 2 2
tot S w 0 S w( ) ( / 2 )B B B i n i rµ π= + = +  

( ) ( )( )( ) ( )
( )

2
2

7 -1 4
tot

10.0 A
4 10 T m/A 0.250 A 1000 m 3.72 10 T.

2 0.0100 m
B π

π
− −

 
 = ⋅ + = ⋅
 
 

 

28.53. (a) The magnetic field produced by the wire is 

( ) ( )( ) ( )( )7 5
0 / 2 4 10  T m/A 2.5 A / 2 0.039 m 1.3 10  T.B i rµ π π π− −= = ⋅ = ⋅

 (b) The magnetic field of the solenoid is 

( )( )7 2
0

324 10  T m/A 2.5 A 0.010 T 1.0 10  T.
0.01 m

B inµ π − − 
= = ⋅ = = ⋅ 

   
This field is much larger for the solenoid than the wire. 

28.54. The magnetic field of a loop is 
2

0
2 2 3/2 .

2 ( )
i RB

x R
µ

=
+
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Therefore a coil of N loops produces a field of
2

0
2 2 3/2 .

2 ( )
iN RB

x R
µ

=
+

 Let / 2x R=  gives

 
3/22 2

0 0 0
2 2 3/2 3 3/2

4 .
2 5 2( ) 2 (5 / 4)
iN iN iNR RB

Rx R R
µ µ µ 

= = =  +  
 The field at the center of the coils is then 

( )73/2 3/2
0 6

tot

4 10  T m/A (0.123 A)(15)4 42 2.21 10  T.
5 5 (0.750 m)

i N
B B

R

πµ −

−
⋅   

= = = = ⋅   
   

 

28.55. THINK: If the perpendicular momentum of a particle is not large enough, its radius of motion will not be 
large enough to enter the detector. The minimum momentum perpendicular to the axis of the solenoid is 
determined by a condition such that the centripetal force is equal to the force due to the magnetic field. 
SKETCH: 

 
 

RESEARCH: Since the particle originates from the axis of the detector, the minimum radius of the 
circular motion of the particle must be equal to the radius of the detector as shown above. The magnetic 
force on the particle is .F qvB=  Centripetal acceleration is 2 / .Ca v r=  The magnetic field due to the 
solenoid is 0 .B inµ=  

SIMPLIFY: Using Newton’s Second Law, the momentum is 2 / .qvB mv r mv p qrB= ⇒ = =  Therefore, 

the minimum momentum is 0 .p qrinµ=
 CALCULATE: Substituting the numerical values yields. 

( )( )( )( )( )7 19 2 1 194 10  T m/A 1.602 10 C 0.80 m 22 A 550 10  m 1.949 10  kg m/sp π − − − −= ⋅ ⋅ ⋅ = ⋅  

ROUND: Rounding the result to two significant figures gives 191.9 10  kg m/s.p −= ⋅  
DOUBLE-CHECK: This is a reasonable value. 

28.56. The magnetic potential energy of a magnetic dipole in an external magnetic field is given by .U Bµ= −




  
Therefore, the magnitude of the difference in energy for an electron “spin up” and “spin down” is 

up down 2 .U U U Bµ∆ = − =  This means the magnitude of the magnetic field is / 2 .B U µ= ∆  

( )
25

24 2

9.460 10  JPutting in the numerical values gives 0.05094 T.
2 9.285 10  A m

B
−

−

⋅
= =

⋅
  

28.57. The energy of a dipole in a magnetic field is .U Bµ= −




  The dipole has its lowest energy 

min ,U B Bµ µ= − = −




  and its highest energy max .U Bµ=  The energy required to rotate the dipole from its 
lowest energy to its highest energy is 2 .U Bµ∆ =  This means that the thermal energy needed is U∆  which 
corresponds to a temperature / 2 / .B BT U k B kµ= ∆ =  
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Substituting the numerical values of the dipole moment of hydrogen atom and 0.15 TB =  yields  

( )( )
( )

24

23

2 9.27 10  J/T 0.15 T
0.20 K.

1.38 10  J/K
T

−

−

⋅
= =

⋅
 

28.58.  

 

The magnetic permeability of aluminum is ( )Al 01 .µ χ µ= +  Applying Ampere’s Law around an Amperian 
loop of radius r  gives  

enc(2 ) .B ds B ds B r iπ µ= = =∫ ∫






 

 

The current enclosed by the Amperian loop is 
2

enc 2 .ri i
R

π
π

=  Therefore, the magnetic field inside a wire is 

given by 
2 .

2
irB
R

µ
π

=  This means the maximum magnetic field is located at the surface of the wire where 

the magnitude is .
2

iB
R

µ
π

=  Thus, the maximum current is 

( )
( )( )

( )( )( )
3

max
max 5 7

Al 0

2 1.0 10  m 0.0105 T2
52 A.

1 1 2.2 10 4 10  T m/A

RB
i

ππ
χ µ π

−

− −

⋅
= = =

+ + ⋅ ⋅
 

28.59. The magnitude of the magnetic field inside a solenoid is given by m 0 ( / ).B in i N Lµ κ µ= =  Thus the relative 
magnetic permeability mκ is given by the equation: 

( ) ( )
( ) ( ) ( )

2

m 7
0

2.96 T 3.50 10  m
54.96 55.0.

4 10  T m/A 3.00 A 500.
BL

iN
κ

µ π

−

−

⋅ ⋅
= = = ≈

⋅ ⋅ ⋅
 

28.60.  

 

The magnetic permeability of tungsten is ( )W 01 .µ χ µ= +  Applying Ampere’s Law around an Amperian 
loop of radius r  gives  

enc(2 ) .B ds B ds B r iπ µ= = =∫ ∫






 

 

The current enclosed by the Amperian loop is 
2

enc 2 .ri i
R

π
π

=  Therefore, the magnetic field is 

( ) ( )( )( )( )
( )

5 7 3
W 0 3

2 23

1 6.8 10 4 10  T m/A 3.5 A 0.60 10  m1
2.9 10  T.

2 2 1.2 10  m

i
B r

R

πχ µ
π π

− − −

−

−

+ ⋅ ⋅ ⋅ +
= = = ⋅   ⋅ 
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28.61. THINK: To determine the magnetic moment, the effective current of the system is needed. This implies 
the speed of the ball is required. 
SKETCH: 

 
RESEARCH: The ball travels in a circular orbit and it travels a distance of 2 Rπ  in time T , where T  is the 
time for one revolution. The effective current is given by / .i q T=  Since 2 / ,T R vπ=  this becomes 

( )/ 2 .i qv Rπ=  The effective magnetic moment is ( )2 / 2 / 2.iA qv R R qvRµ π π= = =  From the centripetal 

force, it is found that the speed is 2 /   / .mv R F v FR m= ⇒ =   

SIMPLIFY: Combining the above results yields 1 .
2

FRq R
m

µ =
 

CALCULATE: Putting in the numerical values gives 

( ) ( )( ) ( )6 5 225.0 N 1.00 m1 2.00 10  1.00 m 1.118 10  A m .
2 0.200 kg

Cµ − −= ⋅ = ⋅  

ROUND: Keeping 3 significant figures gives 5 21.12 10  A m .µ −= ⋅  
DOUBLE-CHECK: This magnetic moment is appropriately small for a small charge moving at a low 
velocity. 

28.62. THINK: The magnetic field due to a proton is modeled as a dipole field. Using the value of the magnetic 
field, the potential energy of an electron spin in the magnetic field is .U Bµ= − ⋅

 

  
SKETCH: 

 

RESEARCH:  The electron field due to an electric dipole is given by ( )3
0/ 2 .E P Rπε=

 

 The 

corresponding magnetic field is obtained by replacing ( )01/ 4πε  with ( )0 / 4µ π  and P


 with .µ


 

Thus, ( )3
0 / 2 .B Rµ µ π=

 

 

SIMPLIFY: The energy difference between two electron-spin configurations is  

anti parallel

0
3

0

0
3

0

( ) ( )

2 2
2

ee

P
e e

e P

U U U

B B

B
a

a

µ µ

µ µ
µ µ

π
µ µ µ
π

∆ = −

= − − − −

= =

=
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CALCULATE: Inserting all the numerical values yields 

( )( )( )
( )

7 24 26
25 6

311

4 10  T m/A 9.27 10  J/T 1.41 10  J/T
3.528 10  J 2.204 10  eV.

5.292 10  m
U

π

π

− − −

− −

−

⋅ ⋅ ⋅
∆ = = ⋅ = ⋅

⋅
 

ROUND: Rounding the result to three significant digits produces 62.20 10  eV.U −∆ = ⋅   
DOUBLE-CHECK: This is reasonable.  A small difference in potential is expected for these small particles. 

28.63. THINK: The classical angular momentum of rotating object is related to its moment of inertia. To get the 
magnetic dipole of a uniformly changed sphere, the spherical volume is divided into small elements. Each 
element produces a current and a magnetic dipole moment. The dipole moment of all elements is then 
added to get the net dipole moment. 
SKETCH:  

 
RESEARCH:  
(a) The classical angular momentum of the sphere is given by ( ) 22 / 5 .L I mRω ω= =   

(b) The current produced by a small volume element dV  is / (2 ).i dVρ ω π=  Thus the magnetic dipole 

moment of this element is 2( sin ) .
2

dVd rρωµ π θ
π

=  Integrating all the elements gives 

( )( )
22 2 2

0 0 0
sin sin .

2
R r r dr d d

π π ρωµ θ θ θ φ= ∫ ∫ ∫  

(c) The gyromagnetic ratio is simply the ratio of the results from parts (a) and (b): / .e Lγ µ=  
SIMPLIFY: 

(b) 4 3

0 0

3 4

0 0
15 3 5 5cos 2

cos 0
1

2 sin
2

sin

4(1 cos ) cos
5 3 5 3 5

R

R

r drd

d r dr

R x R Rd x

π

π

π

ρωµ π θ θ

ρπω θ θ

ρπω θ θ ρπω ρπω
−

= ⋅

= ⋅

    = − − = − + =        

∫ ∫

∫ ∫

∫

 

Since 34 ,
3

R qρ π =  the magnetic moment becomes 2 / 5.q Rµ ω=   

(c) Taking the ratio of the magnetic dipole moment and the angular momentum yields: 
2

2

5 .
2 2
5

e

q R
q

L mmR

ω
µγ

ω
= = =   Substituting q e= −  gives: ( )/ 2 .e e mγ = −   

CALCULATE: Not required 
ROUND: Not required 
DOUBLE-CHECK:  The magnetic dipole and the angular momentum should both be quadratic in R, so it 
is logical that the ratio of these two quantities is independent of R. 
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28.64.  

 

The magnitude of magnetic field due to one of the coils is 
2

0 1
1 2 2 3/2 .

2 ( )
iN RB

x R
µ

=
+

 Since 1 2 ,B B=  the net 

magnetic field is 
2

0
1 2 2 2 3/2 .

( )
iNR

B B B
x R
µ

= + =
+

 Putting in 0.500 m, 2.00 m, 7.00 Ax R i= = =  and 

50N = yields 
( )( )( )( )

( ) ( )

27
4

3/22 2

4 10  T m/A 7.00 A 50 2.00 m
2.01 10  T.

0.500 m 2.00 m
B

π −

−
⋅

= = ⋅
 +  

 

28.65.  

 
Since the horizontal distance between points A and B is large compared to d, the magnetic field at point B 
can be approximated by two parallel wires carrying opposite currents. By the right hand rule, the magnetic 
field at point B is directed into the page from both currents.  Since point B is a distance of d/2 away from 
each wire, the magnitude of magnetic field at point B is twice that at point A. So, the strength of the 
magnetic field at point B is ( )2 2.00 mT 4.00 mT.B = =   

28.66.  

 
Applying the right hand rule gives the direction of the magnetic field due to the wire at the compass needle 
in the westward direction. The magnitude of wireB  is  

( )7

0
4 10  T m/A 500.0 A

8.33 μT.
2 2 12.0 m

I
B

d

πµ
π π

−⋅ ⋅
= = =

⋅
 

The deflection of the compass needle is wire

Earth

8.33 μT
arctan arctan 11.8 .

40.0 μT
B
B

δθ
   

= = = °   
  

 The deflection is 

westward. 
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28.67. The magnetic dipole moment is defined as 2 .iA i Rµ π= =  This means the current that produces this 

magnetic dipole moment is ( )2/ .i Rµ π=  Substituting the numerical values gives the current of  
22 2

9 9
6 2

8.0 10  A m 4.07 10  A 4.1 10  A.
(2.5 10  m)

i
π

⋅
= = ⋅ ≈ ⋅

⋅
 

28.68. The potential energy of a current loop in a magnetic field is given by .U Bµ= −




  The magnitude of the 

magnetic dipole moment is 2 .iA i Rµ π= =  The direction of the magnetic dipole moment can be 
determined using the right hand rule. In this case, the magnetic dipole is in the positive z-direction. 

Therefore, it follows that ( )22 3 20.10 A 0.12 m 4.5 10  A m .i R z zµ π π −= = ⋅ ⋅ = ⋅


   The energy is given by 

( ) ( )3 2 34.5 10  A m 1.5  T 6.8 10  J.U B z zµ − −= − = ⋅ − = ⋅
 

 

   If the loop can move freely, the loop will rotate such 

that its magnetic dipole moment aligns with the direction of the magnetic field. This means the magnetic 

dipole moment is 3 24.5 10 ( ) A m .zµ −= ⋅ −


  Thus the minimum energy is 
3 2 34.5 10  A m ( ) ( 1.5  T) 6.8 10  J.U z z− −= − ⋅ − − = − ⋅ 

   

28.69. The magnitude of magnetic field inside a solenoid is given by ( )0 0 / .B in i N Lµ µ= =  Simplifying this, the 

number of turns of the wire is ( )0/ .N BL iµ=  Putting in the numerical values, 0.20 A, 0.90 mi L= = and 

35.0 10  TB −= ⋅ yields
( )( )

( )( )

3

7

5.0 10  T 0.90 m
17904 18000 turns.

4 10  T m/A 0.20 A
N

π

−

−

⋅
= = ≈

⋅
 

28.70.  

 

Applying Ampere’s Law around a loop as shown in the figure gives 0 enc .B ds B ds iµ= =∫ ∫






 

Thus, the 

magnetic field is ( )0 enc / 2 .B i rµ π=  The enclosed current is given by enc
enc

total

A i
i i

A
= −  when encA  is cross 

sectional area of the shield that is enclosed by the loop and totalA  is the cross sectional area shield. This 

means the areas are 2 2
enc ( )A r aπ= −  and 2 2

total ( ).A b aπ= − Thus the magnetic field inside the shield is 
2 2 2 2

0 0
2 2 2 21 .

2 2
i ir a b rB
r rb a b a

µ µ
π π

   − −
= − =   

− −   
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28.71. THINK: The torque due to the current in a loop of wire in a magnetic field must balance the torque due to 
weight.   
SKETCH: 

 
RESEARCH: The torque on a current loop in a uniform magnetic field is given by 

B ( ) .B iN A B iNA z Bτ µ= × = × = − ×
     

 Using Newton’s Second Law, the torque due to the weight is found to 

be  ( ) 

W
1 1 ( ).
2 2

r T ax mg z amg x zτ  = × = × − = − × 
 

 

   

SIMPLIFY: Since the system is in equilibrium, the net torque must be zero: B w 0.τ τ τ= + =∑   
Thus,   

 

B w

1 1( ) ( ).
2 2

iNAz B amg x z amg z x

τ τ= −

− × = × = − ×


  

 

This means that the magnetic field vector is in positive .x  Substituting B Bx=


 gives 
1 .
2

iNAB amg=  After 

simplifying and using A ab= ,   

1 1 .
2 2 ( ) 2

amg amg mg
B x x x

iNA iN ab iNb
= = =



 

CALCULATE: Substituting the numerical values produces 
( )( )



20.0500 kg 9.81 m/s
0.02453 T.

2(1.00 A) 50 (0.200 m)
B x= =

⋅ ⋅



 

ROUND: Three significant figures yields, 24.5 mT.B =


 
DOUBLE-CHECK: The magnetic force must be in the positive z-direction to balance gravity.  By the right 
hand rule, it can be seen that the magnetic field must point in the positive x-direction for this to occur.  
This is consistent with the result calculated above. The result is reasonable. 

28.72. THINK: In this problem, the net magnetic field due to two parallel wires is determined by adding the 
contributions from the wire.     
SKETCH: 
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RESEARCH: The magnitude of the magnetic field of a long wire is given by ( )0 / 2 .B i Rµ π=  The net 

magnetic field is net 1 2 .B B B= +
  

 Because of the symmetry of this problem, the y-component of the 
magnetic fields cancel out and only the x-component remains. Thus, the net magnetic field becomes 

0

ˆ ˆ ˆsin sin 2 sin

ˆsin

B B x B x B x
i

B x
R

θ θ θ
µ

θ
π

= − − = −
−

=




 

SIMPLIFY: Since 
2 2( / 2)

sin ,
R d

R
θ

−
=  the magnitude of the magnetic field simplifies to 

2
20

2 4
i dB R

R
µ
π

= −
 

CALCULATE: Inserting the numerical values of the parameters gives 

( )( )

( )
( ) ( )27 2

22 5
22

4 10  T m/A 10.0 A 20.0 10  m
12.0 10  m 1.843 10  T.

412.0 10  m
B

π

π

− −
− −

−

⋅ ⋅
= ⋅ − = ⋅

⋅
 

ROUND: Keeping three significant figures, 18.4 μT.B =  
DOUBLE-CHECK: The magnetic field due to one wire at the same position is 16.7μT.  It is therefore 
reasonable that the answer for two wires is slightly larger than this, considering that the y-components 
cancel out. 

28.73. THINK: In this problem the force on a particle due to a magnetic field must balance the force due to 
gravity.    
SKETCH: 

 
RESEARCH: The force acting on the particle due to the magnetic field is B sin .F qvB θ=  Since the angle 

between v


 and B


 is 90.0 ,°  the force due to the magnetic field becomes B .F qvB=  This force must 
balance the gravitational force which is given by g .F mg=  Therefore  B gF F=  or .qvB mg=  

SIMPLIFY: The magnetic field due to the current in the wire is ( )0 / 2 .B i dµ π=  The change of the particle 

is then found to be ( ) ( )0/ 2 / .q mg vB mg d v iπ µ= =  
 CALCULATE: Inserting the numerical values gives a charge of  

( )( )
( )( )

6 2
4

7

1.00 10  kg 9.81 m/s 2 (0.100 m)
4.905 10  C.

1000. m/s 4 10  T m/A (10.0 A)
q

π

π

−

−

−

⋅
= = ⋅

⋅
 

ROUND:  Rounding the result to 3 significant figures gives 44.91 10  C.q −= ⋅  
DOUBLE-CHECK:  Dimensional analysis confirms the calculation provided the answer in the correct 

units: 
( )

2 2kg m/s m kg m/s A m
      A s   C .

m/s T m/A A m/sm/s N/ A m
q

                        = = = = =                                  
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28.74. THINK: The torque on a loop of wire in a magnetic field is given by ,Bτ µ= ×


 

 where µ


 is the magnetic 
dipole moment of the wire.   
SKETCH: 

 
RESEARCH:  
(a) Using the right hand rule, the direction of current is counterclockwise as seen by an observer looking 
in the negative µ



 direction as shown in the above figure.  

(b) Using the magnetic dipole moment ˆ,iNAnµ =


 the torque on the wire is ˆ ,iNAn Bτ = ×




 where n̂  is a 

unit vector normal to the loop. Since ˆ sinn B B θ× =


 and 2A Rπ= , the magnitude of the torque is 
2 sin .iN R Bτ π θ=  

SIMPLIFY: From the equation, the number of turns needed to produce τ  is 
2 .

sin
N

iR B
τ

π θ
=  

 
CALCULATE:  
(b) Substituting the numerical values of the parameters yields   

( )
( )( ) ( ) ( )

1 22

3.40 N m
49.98 50. turns.

5.00 A 5.00 10  m 2.00 T sin 60.0
N

π −
= = =

⋅ °
 

(c) Replacing the values of the above R  with 22.5 10  mR −= ⋅  gives the number of turns 
( )

( )( ) ( ) ( )
2 22

3.40 Nm
100. turns.

5.00 A 2.50 10  m 2.00 T sin 60.0
N

π −
= =

⋅ °
 

ROUND: Not needed. 
DOUBLE-CHECK: Since N  is inversely proportional to 2R , the ratio of the results in (b) and (c) is 

( )22
11 2

2 2
2 1 1

/ 2 1 50 .
4 200

RN R
N R R

= = = =  

28.75. THINK:  Assuming the inner loop is sufficiently small such that the magnetic field due to the larger loop 
is same across the surface of the smaller loop, the torque on the small loop can be determined by its 
magnetic moment.   
SKETCH: 
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RESEARCH:  The torque experienced by the small loop is given by .Bτ µ= ×


 

 The magnetic field in the 

center of the loop is given by 0 1 ˆ.
2

i
B y

R
µ

=


 The magnetic dipole moment of the small loop is 

2
2 2 2

ˆ.i A i r xµ π= =




 
SIMPLIFY:  Combining all the above expressions yields the torque. 

( )
2 2

2 0 1 0 1 2 0 1 2
2

ˆ ˆ ˆ ˆ
2 2 2

i i i r i i r
i r x y x y

R R R
µ πµ πµ

τ τ π
 

= = × = × = 
 



 

CALCULATE: Putting in all the numerical values gives  

( )
( )

7 2
7

4 10  T m/A (14.0 A)(14.0 A)(0.00900 m)
1.254 10  N m.

2 0.250 m

π π
τ

−

−
⋅

= = ⋅  

ROUND:  Rounding to 3 significant figures gives, 71.25 10  N m.τ −= ⋅  

DOUBLE-CHECK:  The units are correct: 
2 2T m/A A A m N A m

    N m .
m A m

τ
                        = = =             

 

28.76. THINK: Two parallel wires carrying currents in the same direction have an attractive force. Two parallel 
wires carrying currents in opposite directions have a repulsive force.   
SKETCH:  

 
 

RESEARCH: By considering the direction of emf potentials, the currents in the wires have the same 
direction. Therefore the force between the wires is attractive. The force between the two wires is given by 

 0 1 2 .
2
i i L

F
a

µ
π

=  

SIMPLIFY: The currents through the wires are given by emf,1
1

1

V
i

R
=  and emf,2

2
2

.
V

i
R

=  Thus, the force 

becomes 0 emf,1 emf,2

1 2

.
2
V V L

F
aR R

µ
π

=   Solving for 2R  gives: 0 emf,1 emf,2
2

1

.
2

V V L
R

aR F
µ

π
=  

 CALCULATE: Substituting the numerical values gives  

( )( )( )( )
( )( )( )

7

2 5

4 10  T m/A 9.00 V 9.00 V 0.250 m
5.063 .

2 0.00400 m 5.00 4.00 10  N
R

π

π

−

−

⋅
= = Ω

Ω ⋅
 

ROUND: Rounding the result to 3 significant figures gives 2 5.06 .R = Ω  
DOUBLE-CHECK: To 1 significant figure, the value of 2R is the same as 1.R   This is reasonable. 
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28.77. THINK: To solve this problem, the forces due to an electric field and a magnetic field are computed 
separately. The forces are added as vectors to get a net force. 
SKETCH:   
(a)      (b) 

     
 

RESEARCH:  Using the right hand rule and since the charge of proton is positive, the directions of forces 
are shown above. The magnitude of the electric force on the proton is ,EF qE=  and the magnitude of the 
magnetic force is .BF qvB=  
SIMPLIFY:  

(a) The acceleration of the proton is net ( ).
F qvB qE q

a vB E
m m m

−
= = = −  

(b) The acceleration of the proton if the velocity is reversed is  

net ( ).B E

F qvB qE q
a F F vB E

m m m
− −

= = − − = = − +  

CALCULATE: Substituting the numerical values yields the acceleration  

(a) ( )( )( )
19

10 2
27

1.60 10  e 200. m/s 1.20 T 1000. V/m 7.28 10  m/s
1.67 10  kg

a
−

−

⋅
= − = − ⋅

⋅
 

(b) ( )( )( )
19

11 2
27

1.60 10  e 200. m/s 1.20 T +1000. V/m 1.19 10  m/s
1.67 10  kg

a
−

−

⋅
= − = − ⋅

⋅
 

ROUND:   
(a) 10 27.28 10  m/sa = − ⋅  
(b) 11 21.19 10  m/sa = − ⋅  
DOUBLE-CHECK: It is expected that the result in (b) is larger than in (a). This is consistent with the 
calculated values. 

28.78. THINK: The net acceleration of a toy airplane is due to the gravitational acceleration and the magnetic 
field of a wire. However for this problem, the gravitational force is ignored.   
SKETCH: 

 
RESEARCH: Using a right hand rule, the magnetic force on the plane is directed toward the wire. The net 
acceleration of the plane due to the magnetic field is / / .Ba F m qvB m= =   

SIMPLIFY: Substituting the magnetic field of the wire ( )0 / 2B i dµ π=  yields 0 .
2
qv i

a
md
µ

π
=    

CALCULATE: Putting in the numerical values gives the acceleration:
 ( ) ( )

( )( )

3 7
5 2

36 10  C (2.8 m/s) 4 10  T m/A (25 A)
1.674 10  m/s .

2 0.175 kg 0.172 m
a

π

π

− −

−
⋅ ⋅ ⋅ ⋅

= = ⋅  

ROUND: Rounding the result to two significant figures gives 5 21.7 10  m/s .a −= ⋅  
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DOUBLE-CHECK: It is expected that the result will be much less than the value of the gravitational 
acceleration. 

28.79. THINK: To do this problem, the inertia of a long thin rod is required. The torque on a wire is also needed. 
The measure of the angle θ  is 25.0 ,°  and the current is 2.00 A.i = Let 4 20.200 10  mA −= ⋅ and 

29.00 10  T.B −= ⋅  
SKETCH: 

 
 

RESEARCH: The magnetic dipole moment of the wire is given by ˆ.NiAnµ =


  

(a) The torque on the wire is .Bτ µ= ×


 

 The magnitude of this torque is sin sin .B NiABτ µ θ θ= =  
(b) The angular velocity of the rod when it strikes the bell is determined by using conservation of energy, 
that is, i fE E=  or i i f f .U K U K+ = +  
 SIMPLIFY:  
(a) sin sin .B NiABτ µ θ θ= =   
(b) Since i 0,K =  the final kinetic energy is  

( ) ( )
f i f

21 cos cos 0 cos 1 cos
2

K U U

I B B B B Bω µ θ µ µ θ µ µ θ

= −

= − + ° = − + = −
 

Thus the angular velocity is 
( ) 2

2 (1 cos ) 2 (1 cos ) ,
1/12

B NiAB
I mL

µ θ θω − −
= =  using 21 ,

12
I mL=  the inertia of a 

thin rod. 
CALCULATE: Putting in the numerical values gives the following values. 

 (a) ( )( )( )( ) ( )4 2 2 470 2.00 A 0.200 10  m 9.00 10  T sin 25.0 1.06 10  N mτ − − −= ⋅ ⋅ ° = ⋅  

(b) 
( )( )( )( )( )

( )( )( )

1/2
4 2 2

2

2 70 2.00 A 0.200 10  m 9.00 10  T 1 cos25.0
1.72 rad/s

1/12 0.0300 kg 0.0800 m
ω

− − ⋅ ⋅ − °
 = =
 
 

 

ROUND:  Rounding to 3 significant figures yields 41.06 10  N m,τ −= ⋅  1.72 rad/s.ω =  
DOUBLE-CHECK:  The torque should have units of Newton-meters, while the angular velocity should 
have units of radians per second. 

28.80. THINK: Using a right hand rule, the sum of the magnetic fields of two parallel wires carrying opposite 
currents cannot be zero between the two wires.   
SKETCH: 
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RESEARCH: The magnitude of the magnetic field of a long wire is ( )0 / 2 .B i Rµ π=  Since 1 2i i<  and 1i  is 

in an opposite direction to 2 ,i  using the right hand rule, it is found that the location of the zero magnetic 
field must be to the left of the left-hand wire, as shown in the figure. Assuming the location is a distance x 

to the left of the left-hand wire, then the net magnetic field is 0 2 0 1
net 2 1 0.

2 ( ) 2
i i

B B B
x d x
µ µ

π π
= − = − =

+
  

SIMPLIFY: Solving for x yields  

2 1 1
2 1 1

2 1

.
i i i d

xi i x i d x
x d x i i

= ⇒ = + ⇒ =
+ −

 

Since 2 12 ,i i=  

1

1 1

.
2

i d
x d

i i
= =

−  
CALCULATE: Not required. 
ROUND:  Not required. 
DOUBLE-CHECK: This result is expected since the ratio of 2 1/ 2.i i =  This means the ratio of distances is 

2

1

2 2
d d
d d

= =  also. 

28.81. THINK: In order for a coil to float in mid-air, the downward force of gravity must be balanced an upward 
force due to the current loop in the magnetic field. 
 SKETCH: 

 
RESEARCH: By using right-hand rule 1, the direction of the forces can be determined.  For the y-
component yB  of the magnetic field the force due to the current is in the radial direction of the coil.  

Therefore, this component cannot be responsible for levitating the coil.  For the x-component xB  of the 
magnetic field, with a counterclockwise current as viewed from the bar magnet, the resulting force is in the 
y-direction, towards the bar magnet (see figure on right).  This is the correct direction for balancing the 
weight of the coil.  The magnitude of the y-component of the force on an element dl  is 

sin sin .xydF Ni dl B NiB dlθ θ= × =
 

 Thus the total magnetic force on the current loop is 
2

0
sin .

R

yF NiB dl
π

θ= ∫  Newton’s Second Law requires that .yF mg=  

SIMPLIFY: The integral simplifies to: 2 sin .yF RNiBπ θ=  Therefore,  

2 sin .
2 sin

mg
RNiB mg i

RNB
π θ

π θ
= ⇒ =
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CALCULATE: Substituting in the numerical values yields  

( )
( )

3 2

2

10.0 10  kg (9.81 m/s )
4.416 A.

2 5.00 10  m 10.0(0.0100 T)sin(45.0 )
i

π

−

−

⋅
= =

⋅ °
 

ROUND:  To 3 significant figures, the current is 4.42 A,i =  counterclockwise as viewed from the bar 
magnet.  
DOUBLE-CHECK: It takes large currents to generate strong magnetic forces.  A current of 4 A is realistic 
to levitate a 10 g mass. 

28.82. THINK: In this problem, Ampere’s Law is applied on three different circular loops. 
SKETCH: 

 
RESEARCH:  Loops 1 ,L  2L  and 3L  are Amperian loops. 

(a) For distances ,r a<  applying Ampere’s Law on the loop 1 ,L  gives 0 enc(2 ) .B ds B r iπ µ⋅ = =∫
 



  Since 

enc 0,i =  the field is also zero, 0.B =   
(b) For distances r  between a  and ,b  applying Ampere’s law on the loop 2L  yields 

0 enc(2 ) .B ds B r iπ µ⋅ = =∫
 

  
The enclosed current is given by enc enc /i A i A= or

( )
( )

2 2 2 2

enc 2 22 2
.

r a r ai i i
b ab a

π

π

− −
= =

−−
   

(c) For distances ,r b>  applying Ampere’s Law on 3L  gives 0 enc 0 ,
2 2

i i
B

r r
µ µ
π π

= =  since enc .i i=  

SIMPLIFY: Thus, the magnetic field is 
( )
( )

2 2

0
2 2

.
2

r ai
B

r b a
µ
π

−
=

−  

CALCULATE: Putting in the numerical values gives  
(a) 0B =   

(b) 
( )

( )
( ) ( )
( ) ( )

2 27
7

2 22

4 10  T m/A (0.100 A) 6.50 cm 5.00 cm
2.212 10  T

2 6.50 10  m 7.00 cm 5.00 cm
B

π

π

−
−

−

 ⋅ ⋅ −
 = = ⋅

⋅  −   

 (c)
( )

( )
7

7
2

4 10  T m/A (0.100 A)
2.222 10  T

2 9.00 10  m
B

π

π

−
−

−

⋅ ⋅
= = ⋅

⋅
  

ROUND:  Keeping 3 significant figures yields the following results for (b) and (c). Note that the value 
found in (a) is precise. (a) 0B =  (b) 72.21 10  TB −= ⋅  (c) 72.22 10  TB −= ⋅  

 DOUBLE-CHECK: The units of the calculated values are T, which is appropriate for magnetic fields. 
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28.83. THINK: To solve this problem, the current enclosed by an Amperian loop must be determined. 
 SKETCH: 

 
RESEARCH: Applying Ampere’s Law on a loop as shown above gives 0 enc(2 ) .B ds B r iπ µ⋅ = =∫







 enci  is the 

current enclosed by the Amperian loop, that is 
2

enc 0 0
( ) ( ) .

r
i J r dA J r r dr d

π
θ′ ′ ′= =∫ ∫ ∫ ∫     

SIMPLIFY: Since ( )J r  is a function of r  only, the above integral becomes enc 0
2 ( ) .

r
i J r r drπ ′ ′ ′= ∫  

Substituting 0( ) (1 / )J r J r R= −  yields  
2 2 3 2 3

enc 0 0 00
0

2 2 2 .
2 3 2 3

r
r r r r r ri J r dr J J

R R R
π π π

     ′ ′ ′
′ ′= − = − = −     

     
∫  

Thus, the magnetic field is 
2 3 2

0 0
0 0

2
.

2 2 3 2 3
J r r r rB J

r R R
µ π

µ
π

   
= − = −   

   
    

CALCULATE: Not required.  
ROUND:  Not required. 
DOUBLE-CHECK: The form of the answer is reasonable. 

28.84. THINK: The maximum torque on a circular wire in a magnetic field is when its magnetic moment is 
perpendicular to the magnetic field vector.  
SKETCH: 

 
 

RESEARCH: The torque on the circular wire is given by .Bτ µ= ×
  

 The magnitude of the torque is 

sinBτ µ θ=  where θ  is the angle between µ


and B


.    
SIMPLIFY:  
(a) The maximum torque is when 90 ,θ = °  that is, .Bτ µ=  Using 2 ,iA i Rµ π= =  the torque becomes 

2 .i R Bτ π=   
(b) The magnetic potential energy is given by cos .U Bµ θ= −  The maximum and the minimum potential 
energies are when 180θ = °  and 0 ,θ = °  that is, maxU Bµ= + and min .U Bµ= −  
CALCULATE: (a) Inserting the numerical values gives the torque:  

( ) ( )22 3 4(3.0 A) 5.0 10  m 5.0 10  T 1.18 10  N m.τ π − − −= ⋅ ⋅ = ⋅
 

(b) Since the values of Bµ  is the same as in (a), the range of the potential energy is 
4 4

max min 2 2 1.2 10  J 2.4 10  J.U U U Bµ − −∆ = − = = ⋅ ⋅ = ⋅  

ROUND:  Keeping only two significant figures yields 
441.2 10  N m and 2.4 10  J.Uτ
−−= ⋅ ∆ = ⋅  

DOUBLE-CHECK: The change in potential is a change in energy, so it is appropriate that the final answer 
have joules as units. 
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Multi-Version Exercises 

 Exercises 28.85–28.87   The magnetic field at the center of an arc of radius R  subtended by an angle Φ  is 

0 0
20

.
4 4

iiRdB dB
R R

µ µφ
π π

Φ

Φ

Φ
= = =∫ ∫  

 In this loop we have three sections: 

 

1 :  ,  / 2
2 :  2 ,  / 2
3 :  3 ,  .

R r
R r
R r

π
π
π

= Φ =
= Φ =
= Φ =

 

 The segments running directly toward/away from point P have no effect. So the magnetic field at P is 

 

( ) ( )
( )
( )

0 0
0 0 0 0 0 0 0 0

1 2 3
6 3 4 132 2 .

4 4 2 4 3 8 16 12 48 48 48 48

i i i i i i i i i i
B B B B

r r r r r r r r r r

π πµ µ µ π µ µ µ µ µ µ µ
π π π

   
   
   = + + = + + = + + = + + =  

28.85. 
( )( )

( )

7
70

13 4 10  T m/A 3.857 A13
9.303 10  T

48 48 1.411 m
i

B
r

πµ
−

−
⋅

= = = ⋅  

28.86. 013
48

i
B

r
µ

=  

 

( )( )
( )

7

0
7

13 4 10  T m/A 3.961 A13
1.869 m

48 48 7.213 10  T
i

r
B

πµ
−

−

⋅
= = =

⋅
 

28.87. 013
48

i
B

r
µ

=  

 

( )( )
( )

7

7
0

48 2.329 m 5.937 10 T48 4.063 A
13 13 4 10  T m/A

rBi
µ π

−

−

⋅
= = =

⋅

 

 Exercises 28.88–28.90   The magnetic field inside a toroidal magnet is given by 0 .
2

Ni
B

r
µ
π

=  

28.88. 0

2
Ni

B
r

µ
π

=  

 

( )( )
( )( )

3

7
0

2 1.985 m 66.78 10  T2 19,814
4 10  T m/A 33.45 A

rBN
i

ππ
µ π

−

−

⋅
= = =

⋅
  

 To four significant figures, the toroid has 19,810 turns. 

28.89. 0

2
Ni

B
r

µ
π

=  

 

( )( )
( )( )

3

7
0

2 1.216 m 78.30 10  T2 21.27 A
4 10  T m/A 22,381

rBi
N

ππ
µ π

−

−

⋅
= = =

⋅

 

28.90. 
( )( )( )

( )

7

0
4 10  T m/A 24,945 49.13 A

0.1695 T 169.5 mT
2 2 1.446 m

Ni
B

r

πµ
π π

−⋅
= = = =  
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Chapter 29:  Electromagnetic Induction 
 

Concept Checks 

29.1. c  29.2. a  29.3. c  29.4. c  29.5. a  29.6. a  29.7. a  29.8. e   
 
Multiple-Choice Questions 

29.1. d  29.2. c  29.3. a  29.4. a  29.5. a  29.6. c  29.7. d  29.8. b  29.9. a  29.10. d  29.11. c  29.12. d  29.13. e  29.14. a   
 

Conceptual Questions 

29.15. A refrigerator’s electrical circuit contains a motor with a large number of winding coils, making it highly 
inductive. The electromagnetic induction due to the coil can create a large voltage, on the order of kV 
between the prongs. This voltage is great enough to ionize the air and the process of ionization produces 
light, creating a visible spark. 

29.16. Large machinery and motors often convert electrical energy to mechanical energy or vice-versa to 
complete a task. The conversion from electrical energy to mechanical energy requires the creation of 
magnetic fluxes. Changes in the magnetic flux reaching a pacemaker, due to movements of the machine or 
the person, will create currents in the circuitry of the pacemaker, changing its behavior; this can be 
dangerous. 

29.17. As the metal moves through the non-uniform magnetic field, it experiences a changing magnetic flux. The 
flux induces an emf in the metal, if it is a conductor, and produces eddy currents. Lenz’s law states that the 
induced currents create a force to oppose the movement of the metal through the field. This action is 
analogous to the drag force or force of friction used to create the damping of a harmonic oscillator. 

29.18. Lenz’s law requires that as the magnet moves down the cylinder, a current is produced in the aluminum 
cylinder, which in turn creates a magnetic field that opposes the magnet’s motion. The force of the 
currents on the magnet is proportional to the velocity of the magnet. Thus, the magnet will continue to 
accelerate until it reaches a terminal speed that creates a force equal and opposite to the force of gravity. 

29.19. (a)  The currents produced in the aluminum, by induction, create a force that opposes the motion of the 
magnet. The magnet falling in the glass tube does not create a current since glass is an insulator. Thus, the 
magnet in the glass tube falls faster since there is no magnetic field produced to oppose the force of gravity. 
(b)  Because the glass has nearly infinite resistance, no eddy currents are created as the magnet passes 
through it. The aluminum being a good conductor does produce eddy currents as the magnet falls through 
it. Thus, the aluminum tube has a larger eddy current. 

29.20. (a)  The B field inside the solenoid is uniform and equal to i 0 .B niµ=  Outside the solenoid, the field is 
zero, o 0.B =  The B field through the ring is only that of the field inside the solenoid of radius, a. The flux 

is then 2 2 2
0 0 .BA ni a n a Ctµ π µ πΦ = = =  Thus, the emf is µ πΦ

∆ = = 2
ind 02 .dV n a Ct

dt
 

(b)  The magnitude of the electric field is then  π µ π= ∆ = 2
02 2rE V n a Ct or 

µ
=

2
0 .
na Ct

E
r

 

(c)  The ring is not necessary for the induced electric field to exist. The solenoid will produce a magnetic 
field from the current being passed through the wire inducing an electric field on each concurrent loop of 
wire. 

29.21. Lenz’s law requires that the induced current opposes the change in the magnetic field. Therefore, the B 
field  created by the induced current is downward. To produce a magnetic field in this direction, the 
current must flow clockwise as seen from above. 
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29.22. The area of the loop perpendicular to the field is given by ( )2 cos .A L tω=  The potential difference is: 

( ) ( )( ) ( )( ) ( )2 2 2
in,L cos sin sin .

d ABd dA dV B B L t BL t BL t
dt dt dt dt

ω ω ω ω ωΦ
∆ = − = − = − = − = − − =  

29.23. The emf produced by a loop is given by ind ,V vBL∆ =  where L is the length of the moving conductor. By 
taking a differentially small element of the disk, we convert L into the differential, dr, and integrate from 

the center of the disk to the edge for the emf of the disk: ind 0
.

R
V vBdr∆ = ∫  The velocity of an element, dr, is 

given by .v rω=  The emf is then: 

2
ind 0

1 .
2

R
V r Bdr R Bω ω∆ = =∫  

29.24. Separation of charge due to the magnetic force, ,qv B×




 engenders a compensating electric field of 

magnitude .E v B vB= × =




 The corresponding potential difference across height, l, is: 
( )( )( )1.80 m 2.00 m/s 25.0 T 90.0 V.V lE lvB= = = =  In equilibrium this drives no current. However, such 

a large magnetic field offers further hazards due to any metal objects about the man’s body and to stress on 
blood vessels, which are carrying conducting fluids in motion like iron. 

29.25. The flux through the inside copper cylinder is constant during the process, so: 
2 2

i f i i f f i i f f    .B A B A B r B rπ πΦ =Φ ⇒ = ⇒ =  
The final magnetic field is given by: 

2

i
f i

f

.
r

B B
r

 
=  
 

 

If the initial B field is 1.0 T and the radius compresses by a factor of 14, then final field is given by: 

( ) ( ) ( ) 
= = = = ⋅ 
 

2
2 2 2i

f i i
i

14 14 1.0 T 2.0 10  T.
/14
r

B B B
r

 

Experimental magnetic fields are typically lower than 10 T. This is a huge magnetic field. 

29.26. Lenz’s law requires that the induced current opposes the change in the magnetic field. Therefore, the B 
field created by the induced current is downward. To produce a magnetic field in this direction, the 
current must flow clockwise as seen from above. 

29.27. The inductance of a solenoid is given by 2
0 .L n lAµ=  Let d denote the length of the wire. The number of 

turns in each case is / 2 .N d rπ=  The inductance is then: 

( )2 2
0 0 0 0 0

1 .
2 2

dL n lA n nl A nNA n r ndr
r

µ µ µ µ π µ
π

 
= = = = = 

 
 

For both solenoids, the number of turns per unit length is equal, and the distance of the wire is the same. 
Therefore, the ratio of the inductances is: 

01

2

/ 2 1 .
2 / 2 2

ndrL
L nd r

µ
µ

= =  

Thus, the inductance of the second solenoid is twice that of the first solenoid. 
 

Exercises 

29.28. The magnetic flux through the coil is given by:  

( ) ( ) ( )θ πΦ = = °− ° =
2 2cos 20 5.00 T 0.400 m cos 90 25.8 21.9 T mNBA  
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29.29. The potential difference around the loop is: 
( ) ( )π π −∆Φ ∆Φ ∆ ∆ − 

= − ≈ − = − = − = − = − = ⋅ ∆ ∆ ∆ ∆  

22 5
emf

0 T 1.20 T0.0100 m 1.89 10  V.
20.0 s

ABd B BV A r
dt t t t t

 

Note that the area of the ring is perpendicular to the field. Thus, the normal of the area is parallel to the 
field and cos 1.θ =  

29.30. If the angle between the B-field and the plane of the loop is 40°,  then the angle between the B-field and 
the normal to the loop is 90 40 50° − ° = °,  and so the voltage across the loop is given by: 

( )
( )

( )
3

2 2B
ind

1.50
cos cos cos cos50.0 4.50 .

d td d dBV NAB NA NA NL t
dt dt dt dt

θ θ θ
Φ

= − = − = − = − = − °  

The current induced if the loop has a resistance of 3.00 R = Ω  is: 

( ) ( )( ) ( ) ( )
( )

2 22 2
ind cos50.0 4.50 8 0.200 m cos50.0 4.50 2.00 s

1.23 A.
3.00 

V NL t
i

R R
° °

= = = =
Ω

 

29.31. Because the magnetic field is perpendicular to the normal of the loop, there is no flux through the loop: 
cos90 0.ABΦ = ° =  

Since there is no flux through the loop, there is no induced voltage: 
( )0

0.
ddV

dt dt
Φ

= − = − =  

29.32. THINK:  The change in the area of the loop creates a change in the magnetic flux through the loop. The 
change in flux produces a current. The loop has a resistance of 30.0 R = Ω  and a radius which changes 
from i 20.0 cmr =  to f 25.0 cmr =  in 1.00 s. The magnetic field of the Earth is about 54.26 10  T.−⋅  
SKETCH:   

 
 

RESEARCH:  The flux through the loop is B cosAB θΦ =  or B ,ABΦ =  since the B field is perpendicular 
to the surface of the loop. The induced potential difference is given by ind B / .V d dt= − Φ  This potential 
must also satisfy .V iR=  
SIMPLIFY:  The induced current in the loop is: 

2 22 2
ind B f i1 1 .

V d r rdAB B dA B d r B dr Bi
R R dt R dt R dt R dt R dt R t

π π π   Φ −     
= = − = − = − = − = − ≈ −          ∆        

 

CALCULATE:  
( ) ( ) ( )2 25

7
4.26 10  T 0.250 m 0.200 m

1.00374 10  A
30.0 1.00 s

i
π−

−
 ⋅ −
 = − = − ⋅
 Ω
 

 

ROUND:  The induced current in the loop is 71.00 10  A.i −= − ⋅  
DOUBLE-CHECK:  This current is very small, as one would expect.  The negative sign indicates that the 
direction of the induced current is such that the magnetic field due to the induced current opposes the 
change in magnetic flux that induces the current. 

29.33. THINK:  The current in the outer loop generates a magnetic field.  Because the magnitude of the current 
in the outer loop changes with time, the magnetic field it generates also changes.  The changing magnetic 
field, in turn, induces a potential difference and thus a current in the inner loop.  Let I  be the current in 
the outer loop and i  be the induced current in the inner loop. 
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SKETCH:  

 

RESEARCH:  The current through the large loop is 
ω

= 0

1

sin
.

V t
I

R
 This creates a magnetic field at the 

center of the loop of: 

 0
1 2

I
B

b
µ

=  

which is derived from the Biot-Savart Law. Since the radius of the inner loop is much smaller than the 
radius of the outer loop, the magnetic field through the inner loop is 1 0 0 1sin / 2 .B V t bRµ ω=  This magnetic 
field creates a flux of: 

2
2 0 0

1 1
1

sin .
2B

a V
B A B a t

bR
µ π

π ωΦ = = =  

The induced potential across the inner loop is then: 
2

0 0
ind

1

sin .
2

B a Vd dV t
dt dt bR

µ π
ω

 Φ
∆ = − = −   

 
 

This voltage corresponds to a current in the inner loop of: 
2

ind 0 0

2 2 1

1 sin .
2

V a Vdi t
R R dt bR

µ π
ω

 ∆
= = −   

 
 

SIMPLIFY:  The potential difference induced in the inner loop is:  

( )
2 2 2

0 0 0 0 0 0
ind

1 1 1

sin sin cos ,
2 2 2

a V a V a Vd dV t t t
dt bR bR dt bR

µ π µ π µ π ω
ω ω ω

 
∆ = − = − = −  

 
 

and the induced current in the inner loop is: 

( )
2 2 2

ind 0 0 0 0 0 0

2 2 1 1 2 1 2

1 sin sin cos .
2 2 2

V a V a V a Vd di t t t
R R dt bR bR R dt bR R

µ π µ π µ π ω
ω ω ω

 ∆
= = − = − = −  

 
 

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE CHECK:  The time dependence on the current for the outer loop and inner loop is shown in the 
plot below.  For example, for / 2tω π<  (taking positive values to be the counterclockwise direction) if the 
current in the outer loop is moving counterclockwise and increasing then the current in the inner loop is 
increasing in the clockwise direction. This is consistent with Lenz’s Law. 
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29.34. THINK:  The varying current, 1i , through the outer solenoid creates a varying magnetic field, 1 ,B  within 
the coil.  This varying B field creates a flux in the inner solenoid, which in turn creates an induced emf. 
SKETCH:   

 
RESEARCH:  The magnetic field generated by the outer solenoid is given by 1 0 1 0 0 cos .B ni ni tµ µ ω= = The 
flux generated in the inner solenoid is given by 2 1.A BΦ =  The induced emf in the inner solenoid is given 

by 1
ind 2 .

dBdV A
dt dt
Φ

∆ = − = −  

SIMPLIFY: ( ) ( )1
ind 2 2 0 0 2 0 0 2 0 0cos cos sin .

dB d dV A A ni t A ni t A ni t
dt dt dt

µ ω µ ω µ ω ω∆ = − = − = − =  This 

corresponds to a current of 
( )µ ω ω∆

= = 2 0 0
2

sin
,

A ni tVi
R R

 in the inner solenoid. The current of the inner 

solenoid induces a B field of: 
( ) 2 2

0 2 0 0 0 2 0
2 0 2

sin sin
.

n A ni t n A i t
B ni

R R
µ µ ω ω µ ω ω

µ= = =  

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE CHECK:  The induced magnetic field of the inner solenoid must oppose the change in flux of 
the outer solenoid. It can be seen from the expressions for 2B  and 1B  the two fields will always have 
opposite directions, satisfying this requirement. 

29.35. (a)  The decreasing B field creates a changing flux through the loop, confined to the area of the dotted 
circle of radius, r = 3.00 cm. The varying flux creates an emf of: 

( ) ( )2
2 2 2B f i

ind .
d r Bd ABd B BdB BV r r r

dt dt dt dt t t

π
π π π

Φ − ∆
∆ = − = − = − = − ≈ − = −  ∆ ∆ 

 

This corresponds to a current of: 

( )ππ −  − 
= = − = − = =   ∆ Ω   

22
f i

0.0300 m 1.00 T 2.00 T 0.00707 A 7.07 mA
0.200 2.00 s

B BV ri
R R t

 

(b)  The B field points into the page, thus a decrease in the B field will induce a current corresponding to a 
B field which points into the page. By the right-hand rule, the induced current flows clockwise. 

29.36. The airplane’s wings are approximated by a straight wire. The voltage across a wire moving in a B field is: 

( )( )( )4
mach3 3 340. m/s 10.0 m 0.500 10  T 0.510 V.V vLB v LB −= = = ⋅ =  

29.37. THINK:  As a conductor travels through a magnetic field, perpendicular to the ground, of intensity 
= 0.426  G,B it creates a voltage difference between its ends. The length of metal of interest is L = 5.00 m 

and rotates at 41.00 10  rpm.⋅  
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SKETCH:   

 
 

RESEARCH:  The potential difference across a wire moving in a magnetic field is ind .V vLB∆ =  Each 
element of the blade travels at a different speed, .v rω=  To calculate the potential difference, the length 
must be divided into pieces of length, dl, which travel at .v lω=  The value should be integrated over the 
total length, from 0 to L. 

SIMPLIFY:  2

0 0

1
2

L L
V vBdl l Bdl BLω ω∆ = = =∫ ∫ ∫  

In terms of the blade’s rpm, the potential difference is 
( ) 22 rpm1 .

2 60 s
V BL

π 
=   

 
 

CALCULATE:  
( ) ( )( )

π
− ≈

 ⋅
 = ⋅ =
 
 

24
41.00 10  rpm

0.426 10  T 5.00 m 0.557633 V
60.0 s/rpm

0.558 VV  

ROUND:  The potential difference from the hub of the helicopter’s blade to its far end is ind 0.558 V.V∆ =  
DOUBLE-CHECK:  We can double-check this result by assuming that the blade moves with a constant 

speed equal to the speed of the middle of the blade, 2 2 .
2 2
L Lv f Lfω π π   = = =   

   
  The induced potential 

difference would be ( ) 22 ,
2 2
L LV vB Lf B fBLπ π∆ = = =  which is the same answer we got by integrating 

over the length of the blade. 

29.38. THINK:  The expanding loop creates a changing flux through the loop. Lenz’s law implies that the 
changing flux induces a current in the loop. This is similar to increasing the magnetic field within the loop. 
To counteract the increase in flux, the current must create a magnetic field opposite to the B field. By the 
right-hand rule, the current must flow clockwise. The radius of the loop expands by 0 ,r r vt= +  where 

0 0.100 mr =  and v = 0.0150 m/s. The resistance of the wire is = Ω12.0 .R  The B field has a uniform value 
of 0 0.750 TB =  upward. The problem asks for the induced current at the time, t = 5.00 s. 
SKETCH:   

 
RESEARCH:  The flux through the loop is 2

B .AB r BπΦ = =  The induced current of the loop is / ,i V R=  
where the voltage is given by B / .V d dt= − Φ  
SIMPLIFY:  The induced current in the wire is: 

( ) ( ) ( ) ( )2 02B
0 0

21 1 2 .
B r vt vdV d B d Bi r r vt v r vt

R R dt R dt R dt R R
ππ π+Φ  

= = − = − = − + = − = − + 
 

 

CALCULATE:  The magnitude of the induced current at t = 5.00 s is: 
( ) ( ) ( )( )

π
 = − + = Ω

2 0.750 T
0.0150 m/s 0.100 m 0.0150 m/s 0.0010308 A.5.00 s

12.0 
i  
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ROUND:  =1.03 mAi  at 5.00 s, travelling clockwise through the loop. 

DOUBLE-CHECK:  ( )
2 2

2

T m V s m AT
m/s m  m/s s A

s m V s
i

                        = + = = =                      Ω Ω                     
 

29.39. THINK:  Terminal velocity will be reached when the force due to the changing magnetic flux cancels the 
weight of the bar.  
SKETCH:  A sketch is not necessary. 

RESEARCH:  B
ind term

d dydAV B Bw Bwv
dt dt dt
Φ

∆ = − = − == − =  

ind ,
V

i
R

∆
=  B ,F iLB iwB= =  B gravity .F F mg= =  

SIMPLIFY:  ind term
term 2 2      .

V Bwv mgR
iBw mg Bw mg Bw mg v

R R w B
∆

= ⇒ = ⇒ = ⇒ =  

CALCULATE:  No calculations are necessary. 
ROUND:  Rounding is not necessary. 
DOUBLE-CHECK:  It makes sense the larger m is, the higher termv has to be to compensate for the greater 
gravitational force. 

29.40. THINK:   
(a)  The change in area causes an induced voltage. 
(b)  After finding the induced voltage, the induced current can be determined. 
(c)  The induced current will cause a force opposite to the direction of motion (from Lenz’s law) which 
requires extF  compensating for it. 
(d)  Determine extW  and extP  from ext .F  
SKETCH:  Provided with the question. 
RESEARCH:   

(a)  B
ind

d dAV B BvL
dt dt
Φ

∆ = − = =  

(b)  ind ,Vi
R
∆

=  in the clockwise direction. 

(c)  B ind extF i LB F= =  
(d)  ext ext ,W F y= ∆  extP Fv=  

(e)  2
ext R indP P i R= =  

SIMPLIFY:   
(a)  indV BvL∆ =  

(b)  ind
BvLi

R
=  

(c)  
2 2

B ext
L B vF F

R
= =  

(d)  
2 2

ext ,L B vW y
R

= ∆  
2 2 2

ext
L B vP

R
=  

(e)  
2 2 2

R
L B vP

R
=   

CALCULATE:  Not necessary. 
ROUND:  Not necessary. 
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DOUBLE-CHECK:   
(e)  This is due to the law of conservation of energy. The work done has to go somewhere, and in this case 
is dissipated by the resistor as heat. 

29.41. THINK:  The current in the wire will cause a magnetic field. The changing current will cause a changing 
flux through the loop, inducing a potential.  
SKETCH:  Provided with question. 

RESEARCH:  For a wire: 0 2 .
4

iB
r

µ
π
 

=  
 

 B
ind ,

d
V

dt
Φ

∆ =  ( )= +2.00 A 0.300 A/s ,i t  A = 7.00 m by 5.00 m, 

B .B dAΦ = ∫∫






 

SIMPLIFY:  ( ) ( ) ( )
µ µ µ
π π π

      
Φ = = =      

      
∫

8 m 0 0 0
B 1 m

2 8.00 mln ln8.005.00 m 5.00 m 5.00 m
4 2 1.00 m 2

i ii dr
r

 

( ) ( ) ( ) ( )( )µ µ
π π

Φ     
∆ = = =    

    
0 0B

ind ln8.00 ln8.00 0.300 A/s5.00 m 5.00 m
2 2

d diV
dt dt

 

CALCULATE:  ( ) ( )( )π
π

−
− ⋅

∆ = = ⋅ 
 

7
7

ind
4 10  H/m ln8.00 0.300 A/s 6.238 10  V5.00 m

2
V  

ROUND:  −∆ = ⋅ 7
ind 6.24 10  VV  

DOUBLE-CHECK:  It makes sense that the larger the rate of change of the current, the larger the induced 
voltage. 

29.42. THINK:   
(a)  By the right-hand rule, the flux is into the page. Since the square is moving away from the wire, the 
flux is decreasing. Lenz’s law states that the current is moving clockwise. 
(c)  The top and bottom parts have the same contributions and cancel each other. 
SKETCH:   
(b) 

 
 

RESEARCH:  Use =2 20.0 cmx  and =1 10.0 cmx  as the end points. 0 2 ,
4

iB
r

µ
π
 

=  
 

 B ,B dAΦ = ∫∫






 

ind ,dV
dt
Φ

∆ = −  ind
ind ,

V
i

R
∆

=  r = 10.0 cm, i = 1.00 A, v = 10.0 cm/s, = Ω0.0200 ,R     L = 10.0 cm, 

left i 1nd ,F i LBx=  right i 2nd ,F i LBx=  and net right left .F F F= −
 

SIMPLIFY: ( ) ( )µ
π

µ
π

+

+

Φ =  + − + = ∫
2

1

00
2 1

2
4

ln ln
2

x vt

B
x vt

L i x vt x vr tiL d
r

 

2

0B
ind

12
Lid v vV

dt x vt x vt
µ
π

 Φ
∆ = − = − − 

+ + 
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( ) ( )

( )

( )

ind
net ind ind 1 ind 1 1

0

2 2 2

2
2

2

2

2

2

0
1

1

2 2
0 0 1

1

2 2 2
0

2
1

1 1 2
2 4

1 1
2 2

1 1

2

V
F i LBx i LBx i LB x x LB x x

R
Li iv L x x

R x vt x vt r

L i v x x
R x vt x vt r

L i v x x
x vt x vtR

µ µ
π π

µ µ
π π

µ

π

∆
= − = − = −

     
= − − −      + +     

  −  
= − −   + +    

  −
= − − 

+ + 
1

r
 
 
 

 

CALCULATE:  At time t = 0:  

( ) ( ) ( ) ( )
( )

2 2

2

16

27

net

0.100 m 1.00 A 4 10  H/m 0.100 m/s 20.0 cm 10.0 cm1 1
20.0 cm 10.0 cm 10.0 cm2 0.0200 

1.00 10  N

F
π

π

−

−

⋅ −  = − −   
 Ω  

= ⋅

 

ROUND:  −= ⋅ 16
net 1.00 10  NF  

DOUBLE-CHECK:  It makes sense that for larger velocities and currents through the wire, the induced 
force is larger. This is in some ways analogous to how a car traveling faster than another has a larger drag 
force.  

29.43. ( ) ( )cos 2 ,t BA ftπΦ =  ( )ind 2 sin 2 .dV fBA ft
dt

π πΦ
∆ = = −  The maximum occurs when ( )sin 2 1.ftπ =  

π∆ = =ind,max 2 110. V.V fBA  Substitute the values to obtain: 
( )( )π π

= = =
2

110. V 110. V 17.5 Hz.
2 2 1.00 T 1.00 m

f
BA

 

29.44. THINK:  First relate the magnetic flux to the angular speed and then determine the maximum angular 
speed. Use the values 0.87 T,B =  = 20.0300 m .A  
SKETCH:  A sketch is not necessary. 

RESEARCH:  For a single loop: ( ) ( )cos .t BA tωΦ =   ( )ind sindV BA t
dt

ω ωΦ
∆ = − =  

ind,max 170 V ,V BAω∆ = =  since the maximum occurs when ( )sin 1.tω =   

SIMPLIFY:  ind,maxV
BA

ω
∆

=  

CALCULATE:  
( )

ω = =
2

170 V 6513 Hz
0.87 T 0.0300 m

 

ROUND:  6500 Hzω =  
DOUBLE-CHECK:  It is reasonable that the higher the applied voltage, the higher the angular speed. 

29.45. THINK:  First determine an expression for the magnetic flux, and then use Faraday’s law to determine the 
induced voltage. 
SKETCH:  A sketch is not necessary. 
RESEARCH: 4

Earth 0.300 G 0.300 10  T,B −= = ⋅   ( )B cos ,NBA tωΦ =   2 ,A rπ=   r = 0.250 m,  51.00 10 ,N = ⋅  

( )2 150. Hz ,ω π=   ind B
ind

1 ,
V d

i
R R dt

∆ Φ 
= = − 

 
 B

ind,peak
peak

1 ,
d

i
R dt

Φ 
= − 

 
 1500. R = Ω  

SIMPLIFY:   

(a)  ( )( ) ( )ind
1 sin sin ;NBAi NBA t t
R R

ωω ω ω 
= − − = 

 
 The peak occurs at ( )sin 1:tω =  ind,peak .NBAi

R
ω

=  
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(b)  ( )avg ind,peak0.7071 ,i i=  2
avg avgP i R=  

CALCULATE:   

(a)  
( )( )( ) ( )

( )
π−⋅ ⋅

= =
Ω

24

ind p

2

, ak

5

e

1.00 10 0.300 10  T 0.250 m 2 150. Hz
0.3701 A

1500. 
i  

(b)  ( )avg 0.7071 0.3701 A 0.2617 A,i = =   ( ) ( )2

avg 0.2617 A 1500. 102.7 WP = Ω =  

ROUND:   
(a)  ind,peak 0.370 Ai =  

(b)  =avg 0.262 A,i  =avg 103 WP  
DOUBLE-CHECK:  The answer seems reasonable since there are a very large number of turns for the 
generator turning at a very fast rate. 

29.46. First solve for n: 
( )( )0 6 2 2

0

0.025 T  33158.
1.2566 10  m kg s  A 0.60 A

BB ni n
i

µ
µ − − −

= ⇒ = = =
⋅

 

( )( )( )22 6 2 2
1 0 2 1 200 1.2566 10  m kg s  A 33158 0.034 m 0.0302 H,M N n rπµ π − − −= = ⋅ =

 ( ) ( )( )2 2
0 1+ 2.4 si t i t−=  

( )( )( )( )( )20.0302 H 2 0.60 A 2.4 s 2.0 s 0.17 VdiV M
dt

−= − = − = −  

The results match those of the example. 

29.47. The potential across an inductor is given by: ind ,diV L
dt

∆ = −  where di
dt

is the slope. 

 
29.48. THINK:  The potential difference induced in the solenoid is due to the changing current in the coil.  Using 

the mutual inductance of the solenoid due to the coil, the potential difference induced in the solenoid can 
be calculated. Assume the magnetic field of the short coil is uniform. This is not strictly accurate, but 
necessary to answer the question and will give a reasonable approximation. 
SKETCH:   

 
RESEARCH:  The mutual inductance between the coil and the solenoid is 

s c s

c

,
N

M
i

→Φ
=  

where sN  is the number of turns in the solenoid, c s→Φ  is the flux in the solenoid resulting from the 
magnetic field through the coil, and ci  is the current in the coil.  The flux is given by 
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0c
2

s .in rπµ→Φ =  

ind ,diV M
dt

∆ =  s 30,N = n = 60/cm = 6000/m, r = 0.0800 m, =
2.00 A .
12.0 s

di
dt

 

SIMPLIFY:  s
2

ind 0
diV N n r
dt

πµ∆ =  

CALCULATE:  ( )( ) ( )( )π π − − 
∆ = ⋅ = ⋅ 

 

27 4
ind

2.00 A30 6000 / 4 10  H/m 0.0800 m 7.57986 10  V
12.0 s

V m  

ROUND:  −∆ = ⋅ 4
ind 7.58 10  VV  

DOUBLE-CHECK:  It makes sense that for larger changes in current, larger potential differences are 
induced.   

29.49. (a)  τ = = =
ΩL

1.00 H 1.00 μs
1.00 M

L
R

 

(b)  ( ) ( )L/emf 1 .tV
i t e

R
τ−= −  At t = 0, ( ) 0.i t =  At = 2.00 μs,t  ( ) ( ) ( )( )−= − =

Ω
2.00 μs / 1.00 μs10.0 V 1 8.65 μA.

1.00 M
i t e  

At steady state. :t →∞  ( )∞ = =emf 10.0 μ .
V

i A
R

 

29.50. For an RL circuit: ( ) ( )/emf 1 ,tV
i t e

R
τ−= −  where τ = = 0.0250 s.L

R
 

( ) ( )
( )

( )( )τ τ−    Ω
= − ⇒ − − = ⇒ = − − =      

   

/

emf emf

0.300 A 120. 
1   ln 1   ln 1 0.0576 s0.0250 s

40.0 V
ti t R i t R

e t t
V V

 

29.51. The potential drop is the sum of the potential drop across the resistor and the inductor: 

( )( ) ( )( )∆ = + = Ω + = ≈3.0 A 3.25 0.440 3.6 A/s 11 11.3 V.diV iR L
dt

 

29.52. THINK:  In a circuit containing only a resistor, the current would be established almost instantaneously.  
However, with the RL circuit, the current must increase exponentially from zero to the steady state. 

emf 1 218 V, 6.0 , 5.0 H.V R R L= = = Ω =  
SKETCH: Provided with question. 
RESEARCH: 
(a)  The inductor functions as an open-circuit, so emf 2/ 18 V / 6.0 3.0 A.i V R= = Ω =  
(b) The inductor acts as an open-circuit, so there is no current across it and hence no current across 1.R  
(c)  The current across 2R is given by Ohm’s Law, emf / .i V R=  
(d)  The potential difference across a resistor is also given by Ohm’s Law, .V iR∆ =  
(e)  Same as (d). 
(f)  The sum of the voltages around any loop is zero.  
(g)  The rate of current change across 1R  is the same as that of L. 
SIMPLIFY: 
(a) 2/i V R=  
(b) Not applicable. 
(c) 

2R emf 2/i V R=  

(d) 
1 1R R 1V i R∆ =  

(e) 
2 2R R 2V i R∆ =  

(f) 
1 1emf L R L emf R0  V V V V V V− − = ⇒ = −  
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(g) L
L   

Vdi diV L
dt dt L

= ⇒ =  

CALCULATE: 
(a)  18 V / 6.0 3.0 Ai = Ω =  
(b) 

1R 0i =  

(c) 
2R 18 V / 6.0 3.0 Ai = Ω =  

(d) ( )( )
1R 0 A 6.0 0V∆ = Ω =  

(e) ( )( )
2R 3.0 A 6.0 18 VV∆ = Ω =  

(f) L 18 V 0 18 VV = − =  

(g) 18 V 3.6 A/s
5.0 H

di
dt

= =  

ROUND:  Not necessary. The values are already to the correct number of significant figures. 
DOUBLE CHECK:  The branch of the circuit which contains only a resistor and a source of emf behaves 
as a simple resistor circuit, with the current being established almost instantaneously.  For the branch of 

the circuit which contains a resistor and an inductor, equation 29.29 states ( ) ( )/ /emf 1 .t L RV
i t e

R
− = −    

When ( )0,  0,t i t= =  as found above. 

29.53. THINK: After a long time, the inductor acts like a short-circuit.  The circuit is in steady state, so the 
current is no longer changing. emf 1 218 V, 6.0 , 5.0 H.V R R L= = = Ω =  
SKETCH: An equivalent sketch when the circuit is in steady-state is as follows. 

 

RESEARCH:  The current from the battery is given by emf
tot

net

,
V

i
R

=  where 
1

net
2 1

1 1 .R
R R

−
 

= + 
 

  The current 

through each resistor is given by Ohm’s Law, / .i V R=  The sum of the potentials around any loop must be 
zero: 

1 2emf R emf R L0,  0.V V V V V+ = + + =  

SIMPLIFY:  

(a) ( )emf
tot 1 2

1 2

V
i R R

R R
= +  

(b)  1

1

R
R

1

V
i

R
=  

(c)  2

2

R
R

2

V
i

R
=  

(d)  
1 1emf R R emf0  V V V V+ = ⇒ = −  

(e)  
2 L 2 Lemf R R emf emf+ 0  diV V V V V V V L

dt
+ = ⇒ = − − = − −  

(f)  L
diV L
dt

=  

(g)  1R L L
di di V
dt dt L

= =  
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CALCULATE: 

(a) 
( )( ) ( )tot

18 V 6.0 6.0 6.0 A
6.0 6.0 

i = Ω+ Ω =
Ω Ω

 

(b)  
1R

18 V 3.0 A
6.0 

i = =
Ω

 

(c)  
2R

18 V 3.0 A
6.0 

i = =
Ω

 

(d)  
1R 18 VV = −  

(e)  ( )( )
2R 18 V 5.0 H 0 18 VV = − − = −  

(f)  ( )L 5.0 H 0 0V = =  

(g)  1R 0 0
5.0 H

di

dt
= =  

ROUND:  Not necessary. 
DOUBLE CHECK:  Evaluating the loop containing the inductor using equation 29.29 shows that after a 

long time, ( )( )/ /emf emf
2

2 2

( ) 1 ,t L RV V
i t e

R R
−= − =  as found above.  Kirchoff’s rules can be used to show that 

1 2R R ,i i=  also as found above. 

29.54. THINK:  As the current begins to flow through the circuit, the self induced potential difference in the 
inductor opposes the change in current.  As the change in current decreases, the self induced potential 
difference also decreases until the current reaches the steady state given by Ohm’s Law, emf / .i V R=   When 
the switch is opened, the current will continue to flow, at a decreasing rate, through the loop composed of 

3 ,  ,R L and 2R until the energy which has been stored in the inductor is dissipated.   
SKETCH:   
(a) (b) 

 

  
 
(c) 

 

   
⇒

      

 

RESEARCH:   
(a)  Immediately after the switch is closed, the inductor is like an open-circuit. Clearly, 

3R 0,i =  and 

1 2 3R 1 R 2 R 3 0.V i R i R i R+ + + = so 
2 1R R

1 2

.Vi i
R R

= =
+

 

(b)  After a long time, the inductor acts like a short-circuit.  2 3
tot 1

2 3

,
R R

R R
R R

= +
+

    1
tot

VV V R
R

 
′ = −  

 
 

(c)  When the switch is opened, 
2 3L R R .i i i= =  In fact, the equivalent resistance of this circuit is 2 3R R R′ = +  

and the circuit can be redrawn accordingly. Since the current in an inductor cannot change 



Bauer/Westfall: University Physics, 2E 

  1184 

instantaneously, from part (b): 
( )1 tot

initial
3 3

/
,

V R V RVi
R R

−′
= =   2 3

tot 1
2 3

R R
R R

R R
= +

+
  and .L

R
τ =

′
  The 

current for an RL circuit is ( ) ( )/
initial .ti t i e τ−=   Immediately after opening the switch, 0t ≈  and 

( ) ( )0
0 initial initial .i t i e i= =  

SIMPLIFY:  

(a) 
1 2 2 1 3R 1 R 2 R R R

1 2

0 0  ,   0VV i R i R i i i
R R

+ + + = ⇒ = = =
+

 

(b) 
1

2 3
R

2 3tot 1 2 1 3 2 3
1

2 3

( )V R RV Vi
R RR R R R R R RR

R R

+
= = =

+ ++
+

 

2

2 3 1 2 1 3 2 3 1 2 1 3 31
R

2 2 2 1 2 1 3 2 3 2 1 2 1 2 2 3 1 2 1 2 2 3

( ) ( ) ( ) ( )
( ) ( )

V R R V R R R R R R V R R R R V RRV Vi
R R R R R R R R R R R R R R R R R R R R R R

 ′ + + + − +
= = − = = 

+ + + + + + 
   

3

2 3 1 2 1 3 2 3 1 2 1 31 2
R

3 3 3 1 2 1 3 2 3 3 1 2 1 2 2 3 1 2 1 2 2 3

( ) ( ) ( ) ( )
( )

V R R V R R R R R R V R R R RR V RV Vi
R R R R R R R R R R R R R R R R R R R R R R

 ′ + + + − +
= = − = = 

+ + + + + + 
 

(c) ( ) ( )/
initial

ti t i e τ−= , where 
1R 0,i =  ( ) ( ) ( )

3 2

1 tot 2
R R initial

3 1 2 1 3 2 3

/
,

V R V R V R
i i i t i

R R R R R R R
−

= − = = =
+ +

. 

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE CHECK:  When the switch is closed and the current is increasing according to 

( )/emf( ) 1 ,tV
i t e

R
τ−= −   as ,t →∞  emf( ) ,

V
i t

R
=  which agrees with the result.   

29.55. The energy density is given by 
µ

=
2

B
0

.
2
Bu  Determine the volume that gives B 1 J:Vu =  

( ) ( )( )

( )
πµ

−

−

= = = ⋅
⋅

⋅ ⋅
0 3

-1
3

2 5

7

2

2 4 1 10 H m J2 1 J
1.01 10  m .

5.0 10  T
V

B
 

This volume is equivalent to a 10 m by 10 m by 10 m cube. This is a fraction of the size of a house. 

29.56. (a)  The magnetic energy density is given by: 
( ) ( )

µ π −⋅ ⋅
= = = ⋅

7 -1

22 6 3
B

0

1 1 3.00 T
10

3.58 10  J/m .
2 H m2 4

u B  

(b)  The total energy is given by B B .U Vu=  2 ,V R Lπ=  R = 0.500 m, L = 1.50 m. 

( ) ( )( )π⇒ = ⋅ = ⋅
2 6 3 6

B 0.500 m 1.50 m 3.58 10  J/m 4.22 10  JU  

29.57. (a)  
( ) ( )2 2

7
10

1
3

B
0

-
261 1 4.00 10  T 6

1
.

0
366 10  

H
J m

m
/

2 2 4
u B

πµ −⋅
= = ⋅

⋅
= ⋅  

(b)  The associated mass density is then: 
26 3

9 3B
rest2 8 2 2

6.366 10  J/m 7.07 10  kg/m
(3.00 10  m/s )

u
c

ρ ⋅
= = = ⋅

⋅
 

29.58. THINK:  The emf potential and the resistance can be used to find the maximum current.  Then the energy 
stored in the magnetic field of the inductor at one fourth of this current can be found.  The equation for 
the rise in current as a function of time can be used to find the time for the circuit to reach a current of one 
fourth of its maximum value.  The inductance of the inductor is = 40.0 mH,L  the resistance of the 
resistor is = Ω0.500 ,R  and the emf potential is =emf 20.0 V.V  
 



Chapter 29: Electromagnetic Induction 

 1185 

SKETCH:  
 

 
 
 
 

 
RESEARCH:   
(a)  At steady-state,  

emf
max .

V
i

R
=  

The time of interest is when max / 4.i i=  Use the equation 2
B

1 .
2

U Li=    

(b)  ( ) ( )RL/
max max

11 ,
4

ti t i e iτ−= − =   RL
L
R

τ =  

SIMPLIFY:   

(a)  
2 2

emf emf
B 2

1 1 1
2 4 32

V LV
U L

R R
   

= =   
  

 

(b)  ( )RL/
max max RL

RL

1 3 3 31   ln ln ln
4 4 4 4

t t Li i e t
R

τ τ
τ

−      
= − ⇒ = − ⇒ = − = −     

     
 

CALCULATE:   

(a)  
( )( )

( )
 = = 
  Ω

2

2

0.0400 H 20.0 V1 2.00 J
32 0.500 

U  

(b)     
= − =   Ω   

0.0400 H 3ln 0.0230 s
0.500 4

t  

ROUND:  
(a)  U = 2.00 J 
(b)  t = 0.0230 s 
DOUBLE-CHECK:  It makes sense that the time it takes to reach one fourth of the maximum value is 
comparable to the time constant, RL .τ  

29.59. THINK:  The equation for the rate of energy production due to a potential across a resistance can be used 
to determine the heat generated.  The induced potential can be found by using Faraday’s Law.  Then the 
rise in temperature due to this heat can be found for the ring of mass = 0.0150 kgm  and specific heat 

capacity o129 J/kg C.c =   The strength of the magnetic field is B = 0.0800 T, the radius of the ring is r = 
0.00750 m, the time change between maximum and zero magnetic flux is ∆ = 0.0400 s,t  and the resistance 

of the ring is 661.9 10  .R −= ⋅ Ω   
SKETCH:  
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RESEARCH:  The induced potential in the ring is given by: ind .d BAV
dt t
Φ

∆ = − = −
∆

 The rate of energy 

production as heat is given by  

( )2

ind .
V

P
R

∆
=  

The power produced multiplied by the time difference is equal to the heat generated:  
.P t Q mc T∆ = = ∆  

SIMPLIFY:  The temperature rise is 

( ) ( )22 22
ind

BrV t t BAT
mcR mcR t mcR t

π∆ ∆ ∆  
∆ = = − = ∆ ∆ 

 

CALCULATE:  
( )( )( )

( )( )( )( )
π

−

−
∆ = = ⋅ °

⋅ Ω

22

5
o 6

0.0800 T 0.00750 m
4.1715 10  C

0.0150 kg 129 J/kg C 61.9 10  0.0400 s
T  

ROUND:  To three significant figures, the temperature rise is −∆ = ⋅ °54.17 10  C.T  
DOUBLE-CHECK:  It makes sense that for larger fields, T∆  is larger, and for larger masses, T∆  is 
smaller since it would take more work to heat up the ring.  As expected, the temperature increase is quite 
small. 

29.60. THINK:  Consider the energy of the dipole before and after the flip and relate this to the work done. 
SKETCH:  A sketch is not necessary. 
RESEARCH:  When the dipole is in alignment: .U NiAB= −  When the dipole is anti-parallel to the field: 

.U NiAB=   
SIMPLIFY:  The work done must therefore be 2 .W U NiAB= ∆ =  
CALCULATE:  No calculations are necessary. 
ROUND:  Rounding is not necessary. 
DOUBLE-CHECK:  Larger fluxes (larger NAB) yield more work for the power supply. 

29.61. THINK:  Determine the energy density of the electric field and the magnetic field separately. 
SKETCH:  A sketch is not necessary. 

RESEARCH:  2
B

0

1 ,
2

u B
µ

=   2
E 0

1 ,
2

u Eε=   0
0 ,

k E
B

ω
×

=





  
0 0

,
k

ω
µ ε

=



( ) ( )0, cos ,E x t E k x tω= • −


 

 

  

( ) ( )0, cos .B x t B k x tω= • −


 

 

  

SIMPLIFY:   

( )
( )

2 2 222 21
0 0 02B

0 2 2 2 2 22 2E 0 0 0 0 0 0 00 0 0

cos1 1 1 1 1
2 2 cos

B k x t k E k EB Bu
E

u E E k x t E k E

ω
ε

µ µ ε µ ε µ ε ωω

−  • − × ×    = = = = =       • −  




 




  





 

Note that k


 is perpendicular to 0E


 so 
2 2 2

0 0 ,k E k E× =
 
 

  so the above expression becomes B

E

1.
u
u

=  

CALCULATE:  No calculations are necessary. 
ROUND:  Rounding is not necessary. 
DOUBLE-CHECK:  This result shows that the energy in this type of wave is partitioned equally between 
the electric and magnetic fields. 
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29.62.  

 
The induced voltage is given by: 

 
( )( )

Φ
∆ = − = = ⇒ = =

∆
=ind

2.00 V2.00 V  20.0 m/s.
0.100 m 1.00 T

V
BL

dV vLB v
dt

 

29.63. The potential difference is given by Faraday’s law: 

( ) ( )π π −Φ
∆ = − = = = = ⋅

22 3
ind 0.0400 m 1.50 T/s 7.54 10  Vd dB dBV A R

dt dt dt
 

Note that the radius of the coil is irrelevant. 

29.64. The inductor cannot have the current jump instantaneously. From Kirchoff’s loop law: 

− = ⇒ =emf
emf 0  .

Vdi diV L
dt L dt  

emf emf emf emf

0 0

( )
i tV V V Vdi di dt di dt i t t C

L dt L L L
= ⇒ = ⇒ = ⇒ = +∫ ∫

 

Since ( )0 0,i =  C = 0. The expression is then ( ) emf .
V

i t t
L

=  

29.65. The energy stored in a solenoid is given by 2
B / 2.U Li=  The energy is dependent only on the magnitude, 

not the direction of the current. Therefore the energy stored in the magnetic field does not change.  

29.66. Use the formulas: 2
B

0

1 ,
2

u B
µ

=  2
E 0

1
2

u Eε=  and  
2

B
2

E 0 0

1 .
u B
u Eµ ε

=  In particular, the values of the energy 

densities are:  

( )2 4 3

6
2 2

B
1 50.0 μT 9.94 10  J/m ,

m kg2 1.257 10  
s  A

u −

−

= = ⋅
 ⋅ 
 

 

and  

( )
4 2

12 8 32

3E
1 s  8.842 10  150. N/C 9.95 10  J/m .
2  

A
m kg

u − − 
= ⋅ = ⋅ 

 
 

To compute the ratios, it is useful to remember that 2
0 01/ .cµ ε =  This is a result from light being an 

electromagnetic wave where c is the speed of light in a vacuum.  

( )
22 622

E

58B
2

50.0 10  T3.00 10  m/s 1.00 10
150. N/C

u Bc
u E

− ⋅
= = ⋅ = ⋅ 

 
 

The energy density of the magnetic field is much larger than that of the electric field. 

29.67. The current of an RL circuit is given by: ( ) ( )/emf 1 ,tV
i t e

R
τ−= −  where / .L Rτ =  For = 20.0 μs:t  

( ) ( )
/ /emf emf1 1 1 11   1   ln   ln   

2 2 2 2 ln 1/ 2
t tV V L Rte e t t L

R R R
τ τ τ− −     = − ⇒ − = ⇒ = − ⇒ = − ⇒ = −     
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( )( )
( )

−⋅ Ω ⋅
⇒ = − =

3 63.00 10  20.0 10  s
 0.0866 H.

ln 1/ 2
L  

29.68. The current of an RL circuit is given by ( ) ( )/
max 1 ,ti t i e τ−= −  where / .L Rτ =  

( )
( ) ( )

τ τ− −

−

= − ⇒ = ⇒

⋅
= − = − =

Ω

/ /
max max

6

0.995 1   0.00500 

0.200 10  H ln 0.00500 ln 0.00500 2.12 ns
500. 

t ti i e e

Lt
R

 

It is interesting to note that the voltage of the battery is irrelevant to the result of the problem. 

29.69. For a single loop of wire (N = 1), the induced potential difference is:  

( )B
ind cos .

d dV BA
dt dt

θ
Φ

∆ = − = −  

Since the normal vector of the loop and the magnetic field is parallel, cos 1.θ =   The negative sign can be 
dropped and indV∆  becomes: 

( ) ( ) ( )( )∆ = = + = = =2
ind 3.00 T 2.00  T/s 2.00 T/s 5.00 m 2.00 T/s 10.0 V.dB dV A A t A

dt dt
 

Note the magnetic field, ,B


 is increasing, and it is directed into the page. By Lenz’s law, the induced 

magnetic field, i ,B


 opposes the change in magnetic flux, B .Φ  In this case, iB


 is directed out of the page to 

oppose the increasing field, ,B


 directed into the page. The induced current is therefore counterclockwise. 

29.70. The following circuit has values: V = 9.00 V, = = Ω1 2 100. ,R R  and L = 3.00 H. 

 

(a)  When the switch is closed at t = 0 s, the current through 1R  is: = = =
Ω1

1

9.00 V 0.0900 A.
100. 

Vi
R

 The 

current through 2R  is ( ) ( ) ( )/ /
2 2

2

1   0 0.t l RVi t e i
R

− = − ⇒ =   

(b)  At t = 50.0 ms = 0.0500 s, 1i  is still 0.0900 A, while 2i  is: 

( ) ( ) ( )
  Ω 

= − − = − =   Ω     
2

9.00 V 100. 0.0500 s 1 exp 0.0500 s 0.0900 1 0.189  A 0.0730 A
100. 3.00 H

i  

(c)  At t = 500. ms = 0.500 s, 1i  is still 0.0900 A, and 2i  is: 

( ) ( ) ( )−
  Ω 

= − − = − ⋅ =   Ω     

8
2

9.00 V 100. 0.500 s 1 exp 0.500 s 0.0900 1 5.78 10  A 0.0900 A.
100. 3.00 H

i  

(d)  After 10.0 s, the equilibrium current of 0.0900 A has long since been reached. Before the switch is 
opened, the currents 1i  and 2i  oppose each other in the right-most loop, as shown below. 
 

 
 

When the switch is opened (after achieving an equilibrium current in the circuit), 1 2 .i i= −  After opening 
the switch, Kirchhoff’s loop rule becomes 1 2/ 0.Ldi dt iR iR+ + =  With 1 2 ,R R R= =  this expression 
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becomes ( )/ 2 0.Ldi dt i R+ =   Solving for i yields: ( ) L/
0 ,ti t i e τ−=  L / 2 ,L Rτ =  and 0i  is the achieved 

equilibrium current, i = 0.0900 A. At t = 0 s, ( ) ( ) τ−− = = = =L0/
1 2 0 00 0 0.0900 A.i i i e i  

(e)  At t = 50.0 ms = 0.0500 s, ( ) ( ) ( ) ( )( )− Ω= − = =2 100. 0.0500 s /3.00 H
1 20.0500 s 0.0500 s 0.0900 A 0.00321 A.i i e  

(f)  At t = 500. ms = 0.500 s, ( ) ( ) ( ) ( )( )− Ω= − = ≈2 100. 0.500 s /3.00 H
1 20.500 s 0.500 s 0.0900 A 0 A.i i e   

29.71. THINK:  A solenoid of length, l = 3.0 m, and n = 290 turns/m has a current of i = 3.0 A, and stores an 
energy of B 2.8 J.U =  Find the cross-sectional area, A, of the solenoid. 
SKETCH:  

 
RESEARCH:  The energy stored in the magnetic field of an ideal solenoid is 2 2

B 0 / 2.U n lAiµ=  

SIMPLIFY:  Solving for A yields: B
2 2

0

2
.

U
A

n liµ
=  

CALCULATE:   
( )

( )( ) ( )( ) ( )( )
2

2 227 1

2 2.80 J N m1.9625 J/T A 1.9625 1.9625 m
V s/m J/V s4 10  T m/A 290 m 3.00 m 3.00 A

A
π − −

= = = =
⋅

 
ROUND:  Rounding to three significant figures, = 21.96 m .A  
DOUBLE-CHECK:  Considering the length, l, of the solenoid, this is a reasonable cross-sectional area. 
The units of the result are also correct. 

29.72. THINK:  The rectangular loop has dimensions a by b and resistance R. It is placed on the xy-plane. The 

magnetic field direction points out of the page and varies in time according to ( )3
0 1 .B B l c t= +  Determine 

the direction of the current induced in the loop, ind ,i  and its value at t = 1 s (in terms of a, b, R, 0B  and 

1c ). 
SKETCH:   

 
RESEARCH:  Since the magnetic field is increasing as it comes out of the page, the induced magnetic field, 

i ,B  points into the page according to Lenz’s law. The induced current flows clockwise. The current is 
found from ind ind ,V i R=  where ind B / cos / .V d dt dBA dtθ= − Φ = −  

SIMPLIFY:  With ( )cos cos 0 1,θ = ° =  and A constant: 

( )3 2
ind 0 1 0 13 .dB dV A A B l c t AB c t

dt dt
 = − = − + = −   Then, 

2 2
ind 0 1 0 1

ind

3 3
.

V AB c t abB c t
i

R R R
= = =  
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CALCULATE:  At t = 1 s, 0 1
ind

3
,

abB c
i

R
=  clockwise 

ROUND:  Not applicable. 
DOUBLE-CHECK:  By dimensional analysis, the result has units of current: 

2 2 2 2 2 2
0 1

3 3

m  T s m  V s/m  s A .
s  s  V/A

abB c t
R

     
= = =         Ω    

 

29.73. THINK:  The battery with =emf 12.0 V,V  is connected in series with a switch and a light-bulb. When the 
light-bulb draws a current of i = 0.100 A, its glow becomes visible. This bulb draws P = 2.00 W when it has 
been connected and when the switch has been closed for a long time. When an inductor is put in series 
with the bulb and the rest of the circuit, the light-bulb begins to glow t = 3.50 ms after the switch is closed. 
Find the size of the inductor, L.  
SKETCH:   

 
 

RESEARCH:  The resistance of the light-bulb can be determined from 2 / .P V R=  When the inductor is 

attached, the current is given by ( ) ( ) ( )− −= − = −/ /emf
0 1 e 1 e .tR L tR LV

i t i
R

  

SIMPLIFY:  
22

emf .
VVR

P P
= =  Substitute this expression into the equation for the current to get: 

( ) ( ) ( ) ( ) ( )

( )
( )

emf/ / / /emf emf
2

emfemf

emf

emf

1 e 1 e 1 e   e 1
/

 / ln 1   .
ln 1 /

tR L tR L tR L tR L V i tV V Pi t
R V PV P

V i t tRtR L L
P V i t P

− − − −= − = − = − ⇒ = −

 
⇒ − = − ⇒ = − 

 −    

 

CALCULATE:  
( )

= = Ω
2

12.0 V
72.0 ,

2.00 W
R  

( )( )
( )( ){ }

Ω
= − =

 −  

0.00350 s 72.0 
0.27502 H

ln 1 12.0 V 0.100 A / 2.00 W
L  

ROUND:  L = 0.275 H. 
DOUBLE-CHECK:  An inductor of this capacity in this circuit is capable of storing energy 

( )( )= = =
22

B
1 1 0.300 H 0.100 A 1.50 mJ.
2 2

U Li   This is sufficient energy to power a 2.00 W light bulb for 

0.750 ms. This is a reasonable value for L in this light-bulb circuit. 

29.74. THINK:  A circular loop of cross-section A is placed perpendicular to a time-varying magnetic field of 

( ) 2
0 ,B t B at bt= + +  where 0 ,B  a, and b are constants. For purposes of making a sketch, view the loop so 

that the field points into the plane of the page. Determine (a) the magnetic flux, B ,Φ  through the loop at t 
= 0, (b) an equation for the induced potential difference, ind ,V  in the loop as a function of time, and (c) the 
magnitude and direction of the induced current if the resistance of the loop is R. 
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SKETCH:   

 
RESEARCH:   
(a)  Since the loop is perpendicular to the field, the magnetic flux is given by B .BAΦ =  
(b) From Faraday’s law, ind B / .V d dt= − Φ  Since A is constant while B varies with time, this expression 

becomes ( )ind / .V A dB dt= −  
(c) The magnitude of the induced current is found from V = iR. With the applied magnetic field directed 
into the page and increasing in time, the induced magnetic field will point out of the page to oppose the 
change in magnetic flux. The induced current flows counterclockwise.  
SIMPLIFY:   

(a)  ( ) ( )2
0B .t BA B at bt AΦ = = + +  At t = 0, ( ) 0B 0 .B AΦ =  

(b)  ( ) ( ) ( )2
ind 0 2dV t A B at bt A a bt

dt
= − + + = − +  

(c)  The magnitude of indi  is given by:  
( )ind

ind

2
,

A a btV
i

R R
+

= =  counterclockwise. 

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  By dimensional analysis, the units are correct: 

2  Wb T m ;BAΦ = ⇒ =        2/   V m  T/s;V AB t= ⇒ =        /   A V/Ω .i V R= ⇒ =                

29.75. THINK:  A conducting rod of length, L = 0.500 m, slides over a frame of two metal bars placed in a 
magnetic field of strength, B = 1000. gauss = 0.1000 T. The ends of the rods are connected by two resistors, 

= Ω1 100. R  and = Ω2 200. .R  The conducting rod moves with a constant velocity of v = 8.00 m/s. 
Determine (a) the current flowing through the two resistors, 1i  and 2 ,i  (b) the power, P, delivered to the 
resistors, and (c) the force, F, needed for the motion of the rod with constant velocity. 
SKETCH:   

 
RESEARCH:   
(a)  The induced potential difference across the resistors is ind B / .V d dt= − Φ  Since B is constant while A 

varies in time at a velocity of v, this expression becomes ( )ind / .V B dA dt BLv= − = −  The current in each 

resistor can be determined from ind ind .V i R=  

(b)  The power delivered to the resistors is 2 2
1 1 2 2 .P i R i R= +  

(c)  The force needed to move the rod with a constant velocity is obtained by calculating the total force 

acting on the rod. The magnetic force on the rod, mag ,F  is given by ( )mag eq/ ,F BiL B V R L= =  where eqR  is 

the equivalent resistance. 
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Note for n resistors in parallel, the equivalent resistance is: 

eq 1 2

1 1 1 1... .
nR R R R

= + + +  

SIMPLIFY:   

(a)  ind ,V BLv= −   ind
1

1

,
V

i
R

=   ind
2

2

V
i

R
=  

(b)  2 2
1 1 2 2P i R i R= +  

(c)  2 2
mag ind

1 2 1 2

1 1 1 1F BV L B L v
R R R R

   
= + = +   

   
 

CALCULATE:   

(a)  ( )( )( )= − = −ind 0.100 T 0.500 m 8.00 m/s 0.400 V,V   
−

= =
Ω1

0.400 V
0.00400 A,

100. 
i   

−
= =

Ω2

0.400 V
0.00200 A

200. 
i  

(b)  ( ) ( ) ( ) ( )= Ω + Ω =
2 2

0.00400 A 100. 0.00200 A 200. 0.00240 WP  

(c)  ( ) ( ) ( ) 
= + = Ω Ω 

2 2

mag
1 10.100 T 0.500 m 8.00 m/s 0.000300 N

100. 200. 
F  

ROUND:  
(a) =1 4.00 mAi , =2 2.00 mAi  
(b) = 2.40 mWP  

(c) =mag 0.300 mNF  

DOUBLE-CHECK:  The calculated values are consistent with the given values.  Dimensional analysis 
confirms all the units are correct. 

29.76. THINK:  The loop on the door has dimensions h = 0.150 m, w = 0.0800 m and resistance, 5.00 .R = Ω  
When the door is closed, it is perpendicular ( )0θ = °  to the Earth’s uniform magnetic field, 

5 
E 2.6 10 T.B −= ⋅  At time, t = 0 s, the door is opened (right edge moving into the page in the figure below) 

at a constant rate, with an opening angle of ( ) ,t tθ ω=  where 3.5 rad/s.ω =  Determine the direction and 

magnitude of the induced current, ( ),i t  at t = 0.200 s. 
SKETCH:   

 
 

RESEARCH:  The induced current, i, is found from ind / ,i V R=  where indV  is given by Bind / ,V d dt= − Φ  
and B cos .BA θΦ =  As the door opens, the B field through the loop decreases; by Lenz’s law the induced B 

field points into the page, at an angle of ( )tθ  from the plane of the page. The induced current flows 
clockwise. 
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SIMPLIFY:  ( )( ) EB cos cos ,BA t whB tθ ωΦ = =     ( )B
ind E Ecos sin

d dV whB t whB t
dt dt

ω ω ω
Φ

= − = − =  

The magnitude of i is ( ) ind E sin
.

V whB t
i t

R R
ω ω

= =  

CALCULATE:  At t = 0.200 s:  

( )
( )( )( )( ) ( )( )5

7
0.0800 m 0.150 m 2.6 10  T 3.5 rad/s sin 3.5 rad/s 0.200 s

0.200 s 1.407 10  A.
5.00 

i
−

−
 ⋅  = = ⋅

Ω
 

ROUND:  Rounding to two significant figures, ( )0.200 s 140 nAi = clockwise. 
DOUBLE-CHECK:  This induced current is reasonable for a loop with such a small cross-sectional area in 
the Earth’s magnetic field. 

29.77. THINK:  The steel cylinder has radius r = 2.5 cm = 0.025 m and length L = 10.0 cm = 0.100 m. The ramp 
is inclined at 15.0φ = °  and has a length l = 3.00 m. Determine the induced potential difference, indV  
between the ends at the bottom of the ramp if the ramp points in the direction of magnetic North. Use 

40.426 10  T−⋅  as the magnetic field of the Earth. 
SKETCH:   

 
 

RESEARCH:  The magnetic field of the Earth lies at an angle to the surface of the Earth (i.e. it is usually 
not parallel or perpendicular to the Earth's surface). Generally, as a charge q moves with velocity through a 

magnetic field, the magnetic force acting on the electrons in the conductor is mag sin ,F q v B qvB θ= × =




 

where θ  is the angle between the velocity v


 of the charge and the magnetic field vector .B


 When the 
electric force, E ,F qE=  and the magnetic force on the electrons are in equilibrium, then sin .E vB θ=  This 
means that the induced potential difference, ind ,V  between the ends of the conductor is given by 

ind sin .V EL vBL θ= =  As the cylinder rolls down the ramp (in the direction of the Earth's magnetic field, 
B), the angle between the cylinder's velocity vector and the Earth's magnetic field vector is zero, so the 
induced voltage between the ends of the cylinder is zero.  At the bottom of the ramp, the cylinder changes 
direction, and the induced potential difference between the ends is ind sin .V vBL θ=  To determine the 
speed, v, of the cylinder, recall that the cylinder rolls without slipping so the change in potential energy for 
the cylinder is equal in magnitude to the change in its kinetic energy: 

2 2/ 2 / 2 .K U mv I mghω∆ = −∆ ⇒ + =  Here I is the moment of inertia for the cylinder: 2 ,/ 2I mr=  and 
/ .v rω =  

SIMPLIFY:  Determine v: 
2

2 2 2 2
2

2 2

1 1 1 1 1
2 2 2 2 2

1 1 4 4 sin
2 4 3 3

vK U mv I mgh mv mr
r

v v gh v gh gl

ω

ϕ

 ∆ = −∆ ⇒ + = ⇒ +  
 

⇒ + = ⇒ = =

 

At the bottom of the ramp, the angle between B


 and v


 is .θ ϕ=  

[ ]ind
4sin sin sin( )
3

V vBL gl BLθ ϕ ϕ= =  

CALCULATE:  4 62
ind

4 (9.81 m/s )(3.00 m)sin15.0 (0.426 10  T)(0.100 m)sin(15 ) 3.514 10  V
3

V − − = ° ⋅ ° = ⋅   



Bauer/Westfall: University Physics, 2E 

  1194 

ROUND: ind 3.51 μV.V =  
DOUBLE-CHECK:  Considering the given values for this problem, this result is reasonable and also has 

the correct units:  2
ind 2 2

m m V s m
m/s m T m V .

s m
V

                   = ⇒ ⋅ ⇒                      
 

29.78. THINK:  The battery is connected to a resistor and an inductor in series. Determine (a) the current, ( ),i t  
across the circuit after the switch is closed, (b) the total energy, U,  provided by the battery from time, t = 0 
to t = L/R, (c) the total energy, R ,U  dissipated from the resistor, R, for the same time period, and (d) 
discuss the conservation of energy in this circuit. 
SKETCH:   

 
RESEARCH:   
(a)  In this RL circuit, current at any given time, t, is given by equation 29.29 in the text, namely 

( )/
0 1 ,ti i e τ−= −  where 0 / ,i V R=  and the time constant is / .L Rτ =  

(b)  The power provided by the battery is P = Vi. In the given time period, the total energy provided by the 
battery is .U Vidt= ∫  

(c)  The power dissipated in the resistor is 2 .P i R=  In the given time period, the total energy dissipated in 
the resistor is 2

R .U i Rdt= ∫  

(d)  Any discrepancy between the energy provided by the battery and the energy dissipated in the resistor 
is due to the fact that there is energy stored in the inductor, 2

L / 2.U Li=  
SIMPLIFY:   

(a)  ( ) ( )/1 tR LVi t e
R

−= −  

(b)  ( ) ( )

( )

2 2 2 2 2 2 2
/ / / 1

2 2 200 0 0

2

2

1

0.368

t tR L tR L R L

t

V V V L V V L V L V LU Vi t dt e dt t e e e
R R R R R R R R

V L
R

ττ τ τ ττ
= − − − −

=

  = = − = + = + − =       

=

∫ ∫  

(c)  ( ) ( ) ( )
2 2 2 / 22 22 / / /

R 2 2 20 0 00 0
2 2 2

1
2 2

21 ln
2

1 2 2 1 0 0.168
2 2

tR Lt tR L tR L tR L

t

V V L V Le V LU i Rdt e dt e e
R R R R

V L e V Le
R R

ττ ττ τ −= − − −

=

−
−

    = = − = − + −       
 

= − + + − + + = 
 

∫ ∫  

(d)  At time, / :t L Rτ= =  ( ) ( )
2 222 1

L 2 2

1 1 0.200 .
2 2

LV V LU Li e
R R

τ −= = − =  

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  The total energy of the battery is the sum of the energy dissipated in the resistor and 
the energy stored in the inductor; energy is conserved. 
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29.79. THINK:  The rectangular circuit loop has length, L = 0.600 m, and width, w = 0.150 m, with resistance, 
= Ω35.0 .R  It is held parallel to the xy-plane with one end inside a uniform magnetic field as shown in the 

figure. The magnetic field is =


R
ˆ2.00  TB z  along the positive z-axis to the right of the dotted line; L 0 TB =



 
to the left of the dotted line. Determine the magnitude of the force, app ,F  required to move the loop to the 

left at a constant speed of v = 0.100 m/s, while the right end of the loop is still in the magnetic field. 
Determine the power, P, used by an agent to pull the loop out of the magnetic field at this speed, and the 
power, R ,P  dissipated by the resistor. 
SKETCH:   

 
RESEARCH:  The magnitude of the force required to move the loop will be equal to the magnitude of the 
force, i ,F  on the current induced in the segment of the loop that lies along the y-axis in the magnetic field. 
That is, app 2 sin .F F iwB θ= =  Since the angle, ,θ  between the loop segment of length, w, and the magnetic 

field is 90 :° sin 1.θ =  The induced current, i, is ind / ,i V R=  where indV vwB=  (see equation 29.15). The 
power, P, used by an agent to pull the loop out of the magnetic field is given by app .P F v=  The power 

dissipated by the resistor is given by 2
R .P i R=  

SIMPLIFY:  The current is ind .
V vwBi

R R
= =    

(a) appF iwB=    

(b) appP F v=  

(c) 2
RP i R=      

CALCULATE:  

(a) 
( )( )( )0.100 m/s 0.150 m 2.00 T

0.85714 mA
35.0 

i = =
Ω

  

( )( )( )app 0.85714 mA 0.150 m 2.00 T 0.25714 mNF = =    

(b) ( )( )0.25714 m N 0.100 m/s 25.7714 μWP = =  

(c) ( ) ( )= Ω =
2

R 0.85714 mA 35.0 25.714 μWP  
ROUND:   
(a) app 0.257 mNF =   

(b) 25.8 μWP =   
(c) R 25.7 μWP =  
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DOUBLE-CHECK:  All the power used to move the loop while in the magnetic field is dissipated in the 
resistor: R .P P=  
 

Multi-Version Exercises 

29.80. ( ) ( )/
max 1 ,ti t i e τ−= −  /L Rτ =  

 

( )

( ) ( )

/
max max

3

3

3 11   ln  
4 4

1 33.03 10  H ln ln 4 ln 4 13.7 
4 3.35 10  s

t t tRi i e
L

L LR
t t

τ

τ
−

−

−

 = − ⇒ − = − =  
 

⋅ ⇒ = − = = = Ω  ⋅ 
 

29.81. ( ) ( )/
max 1 ,ti t i e τ−= −  /L Rτ =  

 

( )

( ) ( )

/
max max

3

3 11   ln  
4 4

1 / ln / ln 4 (3.45 10  s)(17.88 ) / ln 4 44.5 mH
4

t t tRi i e
L

L tR tR

τ

τ
−

−

 = − ⇒ − = − =  
 

 ⇒ = − = = ⋅ Ω = 
 

 

29.82. ( ) ( )/
max 1 ,ti t i e τ−= −  /L Rτ =  

 

( )

( ) ( )

/
max max

3

3 11   ln  
4 4

1 55.93 10  H ln ln 4 ln 4 3.55 ms
4 21.84 

t t tRi i e
L

L Lt
R R

τ

τ
−

−

 = − ⇒ − = − =  
 

⋅ ⇒ = − = = =  Ω 
 

29.83. ( )B cos 2 ,NAB ftπΦ =  which means that ( ) ( )Bind / 2 sin 2 .V d dt NAB f ftπ π= − Φ =  

 The maximum occurs when ( )sin 2 1.ftπ =  N = 1, so 
 ( ) ( )( )22 2 5 1 6

max (2 ) (0.25 ) (2 ) 0.5 0.0195 m 4.77 10  T 13.3 s 1.19 10  V.V AB f d B fπ π π π − − −= = = ⋅ = ⋅
 

29.84. ( )B cos 2 ,NAB ftπΦ =  which means that ( ) ( )Bind / 2 sin 2 .V d dt NAB f ftπ π= − Φ =   

 The maximum occurs when ( )sin 2 1.ftπ =  N = 1, so
 

 ( ) ( )( )

2
max

2 6 5 1 2
max

(2 ) (0.25 ) (2 )

2 / 2 1.446 10  V / 4.97 10  T 13.5 s 2.09 cm.

V AB f d B f

d V Bf

π π π

π π− − −

= =

⇒ = = ⋅ ⋅ =  

29.85. ( )B cos 2 ,NAB ftπΦ =  which means that ( ) ( )Bind / 2 sin 2 .V d dt NAB f ftπ π= − Φ =   

 The maximum occurs when ( )sin 2 1.ftπ =  N = 1, so 
 

( ) ( )
2

max

2 2 7 1 2 2 5
max

(2 ) (0.25 ) (2 )

2 / ( ) 2 6.556 10  V / (13.7 s ) (1.63 cm) 3.65 10  T.

V AB f d B f

B V f d

π π π

π π− − −

= =

⇒ = = ⋅ = ⋅  
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Chapter 30:  Alternating Current Circuits 
 

Concept Checks 

30.1. b  30.2. b  30.3. a  30.4. a  30.5. d  30.6. b  30.7. d  30.8. c 
 
Multiple-Choice Questions 

30.1. d  30.2. c  30.3. b  30.4. a  30.5. d  30.6. b  30.7. d  30.8. c  30.9. a  30.10. b 
 

Conceptual Questions 

30.11. The impedance of an RLC circuit in series is  

( )22 .L CZ R X X= + −  

At resonance, .L CX X=  Therefore, the impedance is at is minimum value of .Z R=  

30.12. The total energy stored in a magnetic field is the magnetic energy density times the volume of the field, 
,B BU u V=  where ( )2

0/ 2Bu B= µ  (Equation 29.35). For the = 5.00 kmd thick shell above the Earth’s 

surface, the volume is, ( ) ( ) ( )3 3
E E4 / 3 4 / 3 ,V R d Rπ π= + −  where E 6378 kmR = is the Earth’s radius. The 

total energy stored in this field above the Earth’s surface is  

( )( ) ( )
( ) ( ) ( )( )π π

µ π

−

−

 ⋅ = + − = ⋅ − ⋅ = ⋅
 ⋅
 

242 3 33 3 6 6 12
E E 7

0

0.500 10  T4 2 6.383 10  m 6.378 10  m 2.54 10  kJ.
6 3 4 10  T m/AB

BU R d R  

30.13. No, charges are not crossing the gap (dielectric) of the capacitor.  It simply means that, because of the 
periodic change in the polarity of the emf source, the capacitor is being periodically charged and 
discharged.  No charge crosses the gap of the capacitor, whether in a DC or AC circuit.  (This presumes 
that the potential on the capacitor does not get so big that the electric field exceeds the dielectric strength.) 

30.14. In an RL circuit with alternating current, the expression “the current lags behind the voltage” means that 
the current achieves its maximum value at a delayed time compared to the time when the applied voltage 
achieves its maximum value.  This is due to the phenomenon of self-induction: the changing current 
through the coil of the inductor creates a changing magnetic flux through the coil.  Faraday’s law will 
result in an induced emf in the coil, which will oppose the externally applied emf, in compliance with 
Lenz’s law.  The net effect is that the current will always try to “catch up” with the applied voltage, but will 
“lag behind” because of the self induced emf of the inductor. 

30.15. The voltages given in the problem are root-mean-square values.  Of course, Kirchhoff’s rules will be 
obeyed at any instant of time, but not when using root-mean-square values since the voltages are out of 
phase with each other.  This circuit does not violate Kirchhoff`s rules. 

30.16. The power depends upon the voltage.  For an AC circuit, the voltage oscillate about zero, so the average 
voltage is zero.  Thus, the average power for any AC circuit would be zero regardless of amplitude, which 
would not be very informative as an average value.  Hence, RMS power is used instead. 

30.17. Each device has its own specific operating current and voltage.  Each needs its own transformer with a 
specific ratio of primary to secondary coils to convert the normal household current and voltage into the 
required current and voltage in order to prevent damage to the device.  
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30.18. When electrons arrive at one plate of the capacitor, they repel an equal number of electrons off the 
opposite plate.  For this reason, the amount of current flowing into one plate of the capacitor is equal to 
the amount of current flowing out of the other plate, despite the fact that charge does not actually flow 
across the gap.   

30.19. Any surrounding high-frequency electromagnetic waves can induce unwanted signals.  In parallel pairs, 
noise sources may affect one wire more than the other and this can be disruptive.  Twisting the pairs 
minimizes this effect, since for each half twist the wire nearest to the noise source is exchanged.   

30.20. (a)  In this circuit capacitive reactance can be neglected since there is no capacitor.  The  root-mean-square 
input voltage rmsV  and the root-mean-square current rmsI  are related by 

( )1/22 2 2
rms rms rms/ / ,I V Z V R L= = +ω  where R  is the resistance in the circuit and L  is the inductance of 

the solenoid.  The effect of the ferromagnetic core is to increase the inductance of the solenoid by the 
factor m .κ  If the inductive reactance Lω is substantially greater than the resistance ,R  inserting the core 
will greatly increase the total impedance.  Thus, the  root-mean-square current will decrease.  
(b)  With a DC power source ( )0 ,ω =  the current would have fluctuated as the magnet was being inserted 
due to induction.  Once the insertion was complete the current would return to its original value since the 
resistance of the circuit is unaffected by the presence of the core.  

30.21. The response of the tuner at any frequency is related to the amplitude of the input signal and how close to 
resonance the input signal is.  By design the response should be dominated by the signal that is at 
resonance.  However, if the signal at some other non-resonant frequency is large and somewhat close to 
the resonant frequency, noticeable crosstalk can occur.   

30.22. A sine or cosine signal is termed “pure” or “monochromatic”; it consists of a single frequency.  Any other 
periodic signal is a superposition of harmonics.  For simplicity, consider a square wave ( )S t which takes 

the value 1+ (“on”) for ( )0 / 2t T≤ < and 1− (“off”) for ( )/ 2 ,T t T≤ <  repeating periodically for all 
time, ,t  in both directions.  As this is an odd function, it can be written as a sum of sine functions of period 

:T ( ) ( )( )
1

sin 2 / .n
n

S t b n T tπ
∞

=

=∑  From Fourier analysis (see below), the coefficients nb  can be determined 

by multiplying both sides by ( )( )sin 2 /k T tπ and integrating from 0t =  to .t T=   

( ) ( )

( )( ) ( )( )( ) ( ) ( )( )( )

0
/2

0 /2

/2

0 /2

1 2( )sin
/ 2

2 2 21 sin 1 sin

2 2 2 2cos cos
2 2

1 cos cos 0 cos 2 cos

1 2 2cos

T

k

T T

T

t T t T

t t T

kb S t t dt
T T

k kt dt t dt
T T T

T k T kt t
T k T T k T

k k k
k

k

π

π π

π π
π π

π π π
π

π
π

= =

= =

 
=  

 
    

= + − −         

   − −   
= −      

      

= − − − + −

= −

∫

∫ ∫

( )( )
4 if  is odd;

0 if  is even.

k

k
k

k
π


= 


 

Hence, this square wave can be written as ( ) ( )
0

2 2 14 1 sin ,
2 1j

j
S t t

j T
π

π

∞

=

 +
=   +  
∑  where the harmonic 

frequencies are all odd multiples of the fundamental frequency 2 / .Tπ  Fourier analysis is a very important 
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mathematical tool, named for Jean Baptist Joseph Fourier (1768-1830), with a long and curious history. If 
such a square wave is applied as the driving voltage of an RLC circuit, the response of the circuit will be the 
sum of the responses to the fundamental ( )0j = term.  But if the frequency of the square wave is any odd 
submultiple (one-third, one-fifth, etc.) of the resonant frequency, the square wave will contain a harmonic 
at the resonant frequency and the circuit will resonate in response to that term.  The frequency response 
curve of the circuit with square-wave input will contain a sequence of resonance peaks, at its resonant 
frequency and all odd submultiples of it. 

30.23. Yes, it is possible to have the voltage amplitude across the inductor exceed the voltage amplitude of the 

voltage supply.  Since the voltage across each component is related by ( ) ( )2 22
m ,R L CV V V V= + −  the 

voltage across the battery is equal to the voltage across the resistor at resonance.  Therefore, at resonance, 
the voltage across the inductor could be anything since it is countered by the same voltage across the 
capacitor. 

30.24. The transformer works on the principle of mutual inductance, and depends on the (back) emf that is 
generated in the set of two coils in the transformer due to changing magnetic flux within the coils.  If the 
current is DC, then there is no change in flux, and therefore, no possibility of operating the two coils as a 
transformer. 

30.25. There can be no non-zero steady state current though the circuit.  The current will vary until the capacitor 
is fully charged.  Since the battery remains in the circuit, the current is not allowed to oscillate as it would 
in an LC circuit.  The current will rise to a maximum and fall to zero eventually, where a steady state is 
achieved.   

30.26. THINK:  In this RLC circuit, ,L C  and R  are connected in parallel, as shown in the provided figure.  The 
circuit is connected to an AC source providing rmsV  at frequency .f  A phasor diagram can be used to find 
an expression for rmsI  in terms of rms ,V ,f  ,  L R  and .C  
SKETCH:  Phasor diagram for current across each component in the circuit:  

 
 

RI is in phase with ,V and CI  leads .LI  
RESEARCH:  Since this is a parallel circuit, the voltage rmsV is the same across all components.  The 
current, however, has different phases and amplitudes within each component, as shown in the above 
phasor diagram.  By a similar analysis to determining the voltage in a series RLC circuit, the phasor 
diagram above shows that the current is: 

( )22
tot rms .R L CI I I I I= = + −  

Since rmsV is the same in each component, rms ,L L C C RV I X I X I R= = = where ,LX L=ω 1/CX C= ω  and 
2 .fω π=  

SIMPLIFY:  ( )
2 22

22 rms rms rms
rms rms2 2

1 1 2
2R L C

L C

V V V
I I I I V fC

X X fLR R
   

= + − = + − = + −   
  

π
π

 

CALCULATE:  Not required. 
ROUND:  Not required. 
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DOUBLE-CHECK:  By dimensional analysis of the above expression, the units are correct: 
1/2 1/22 2

rms 2 2

1 s F 1 1 1 VV V A.
H sΩ Ω ΩΩ Ω

I
      = + − = + − = =                  

 

 
Exercises 

30.27. From the inductance and capacitance, 32.0 mHL =  and 45.0 μF,C =  the frequency of oscillation is 

( ) 1/2
0 .LC −
=ω  The total energy is constant at 2

0 / 2U q C=  where 0 10.0 μC,q =  and the charge varies as 

( )0 0cos .q q t= ω  Since energy remains constant, when the energy in both is the same, it is ( )1/ 2 .U   

( ) ( )

( )( )

2 2 2
0 0 2 10

E 0
0

1 1 4

cos1 1 1 1 1    cos   cos
2 2 2 2 22

1 1 cos 32.0 mH 45.0 μF cos 9.42 10  s
2 2

q t qU U t t
C C

t LC

ω
ω

ω
−

− − −

  = ⇒ = ⇒ = ⇒ =   
   

   
⇒ = = = ⋅   

   

 

Note that the result does not depend on the original amount of charge, 0q . Dimensional analysis shows 

that the result has the correct units: [ ] [ ]
2

·
F

Fs = s
 
 
 

. 

30.28. (a)  From conservation of energy, ( )2 2
max max/ / 2,2E BU U q LiC= ⇒ =  where max ,q CV=  with 2.00 μF,C =  

0.250 HL =  and 12.0 V.V =  Therefore,   

( ) ( )
( ) ( )

22 2
2max max

max

2.00 μF1   12.0 V 33.9 mA.
2 2 2 2 0.250 H

CVq Li CCV i V
C C L

= = = ⇒ = = =  

(b) The angular frequency of the current is ( )ω −
=

1/2
0 ,LC  so that the frequency of the oscillation is 

( )( )
0 1 1 225 Hz.

2 2 2 0.250 H 2.00 μF
f

LC

ω
π π π

= = = =  

30.29. In general, the frequency of oscillation is ( )ω −
=

1/2
0 ,LC  where =1.00 mH.L  The maximum energy in the 

capacitor is ( )= 2
E max / 2 .U q C  Since the charge varies as ( )max 0cos ,q q t= ω  and at time = 2.10 mst  the 

energy on capacitor is half the maximum value, ( )=E 1/ 2 .U U  This means  

( ) ( )

( )
( ) ( )

( )
( )

ω
ω ω −

− −

−− −

    = ⇒ = ⇒ = ⇒ =         

 ⋅ ⇒ = ⇒
 
 
 
 

= = =
 ⋅
 

2 2 2
max 0 2 1max

E 0 0

2
1

3

2
3

1 1

cos1 1 1 1 1    cos   cos
2 2 2 2 22

cos 1/ 2 2.10 10  s1 1   7.15 mF.
1.00 10  H1/ cos 1/ 2

1 ·
cos 2

q t qU U t
C tC

C
t

t
L LC

 

30.30. (a) Since the current is proportional to ( )ω0sin t  where 1
0 1200. s ,ω −=  this is at a maximum when 

ω π=0 / 2;t  therefore, ( ) ( )( )1
0/ 2 / 2 1200. s 1.31 ms.t π ω π −= = =  

(b) The total energy in the circuit is = 2
max / 2,U Li  where max 1.00 A.i =  Since the angular frequency is 

( )ω −
=

1/2
0 ,LC  then ( )ω= 2

01/ ,L C  where 10.0 μF.C =   The total energy of the circuit is then 

( )
( ) ( )

max max
2 21
0

1.00 A
34.7 mJ.

2 2 2 1200. s 10.0 μF

Li i
U

Cω −
= = = ≈  
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(c) The inductance is  

( ) ( )2 21
0

1 1 69.4 mH.
1200. s 10.0 μF

L
Cω −

= = =  

30.31. THINK: The charge on the capacitor will oscillate with time as a cosine function with a period determined 
by the inductance, 0.200 H,L =  and capacitance, 10.0 μF.C =  The potential, emf 12.0 V,V =  will give the 
initial charge on the capacitor.  Ignoring the sign of the charge, the charge on the capacitor will equal 

80.0 μCQ =  periodically. 
SKETCH:  

 
RESEARCH: The initial (and maximum) charge on the capacitor is =max .q CV  The charge will oscillate as 

( )max 0cos ,q q t= ω  where 0 1/ .LC=ω  

SIMPLIFY: The first time 1t  when the charge on the capacitor is equal to Q is 

( ) 1
max 0 1 1

0 max

1cos   cos ;Qq Q q t t
q

−   
= = ⇒ =    

   
ω

ω
 

By symmetry, the second time 2t  and the third time 3t  are given by   

0 2 0 1 0 1 2 1
0 0

  t t t t t
 

= − = − ⇒ = − 
 

π πω π ω ω
ω ω

 and  

0 3 0 1 0 1 3 1
0 0

  .t t t t t
 

= + = + ⇒ = + 
 

π πω π ω ω
ω ω

 

CALCULATE:  
( )( )0

1 707.107 rad/s
0.200 H 10.0 μF

ω = =   

( )( )max 10.0 μF 12.0 V 120. μCq = =   

( )
1

1

80.0 μC1 cos 0.0011895 s
707.107 rad/s 120. μC

t −
   

= =       
  

( )2 0.0011895 s 0.0032534 s
707.107 rad/s

t π
= − =   

( )3 0.0011895 s 0.0056323 s
707.107 rad/s

t = + =
π  

ROUND:  Rounding the times to three significant figures gives: 1 1.19 ms,t =  2 3.25 ms,t = and 

3 5.63 ms.t =  
DOUBLE-CHECK:  Given the high frequency, small times are expected, so the answers are reasonable.   

30.32. THINK:  The current, max 3.00 A,i =  will oscillate with time as a sine function with a period determined 
by the inductance, 7.00 mH,L =  and capacitance, 4.00 mF.C =  The charge will also vary with the same 
period as the current, but as a cosine function. The maximum charge on the capacitor is related to the 
energy of the system. 
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SKETCH:  Not required. 
RESEARCH: The total energy in circuit is found either when the current is at a maximum, 

( )= 2
max1/ 2 ,E Li   or when charge on capacitor is a maximum, ( )2

max / 2 .E q C=  The charge varies as 

( )max 0cos ,q q t= ω  where ω =0 1/ .LC   
SIMPLIFY:   

(a) The energy in the circuit is = 2
max

1 .
2

U Li  

(b) The maximum charge on the capacitors is found by = ⇒ = =
2
max

max max  2 .
2

q
U q CU i LC

C
 Therefore, 

the expression for charge is max cos .tq i LC
LC

 
=  

 
 

CALCULATE:   

(a)  ( )( )21 7.00 mH 3.00 A 0.0315 J
2

U = =  

(b)  ( ) ( )( )
( )( )

( )3.00 A 7.00 mH 4.00 mF cos 0.01587cos 189.0 C
7.00 mH 4.00 mF

tq t
 
 = =
 
 

 

ROUND:   
(a)  31.5 mJU =  
(b)  It is best not to round the coefficients of the expression. Keep the answer as ( )0.01587cos 189.0 ,q t=  
with the intention of rounding after particular values of t are substituted. 

DOUBLE-CHECK:  The equation for the charge has the proper units since LC  has units of s  and maxi  
has units of C/s.  

30.33. The angular frequency without the resistor is 0 1/ LCω = , and with the resistor it is ( )22
0 /2R Lω ω= − . 

The fractional change is 

   
2 2

0

0 0 0 0

1 1 1 1 1
2 4

R R C
L L

ω ωω ω
ω ω ω ω

 −∆
= = − = − − = − − 

 
. 

Inserting the numbers, we find 

   
3 2 9

3
0

(1.00 10  ) (4.5 10  F)1 1 0.152
4(4.00 10  H)

ω
ω

−

−

∆ ⋅ Ω ⋅
= − − = −

⋅
. 

This means that the fractional change is a drop of 15.2%. 

30.34. THINK:  For an RLC circuit, the charge on the capacitor is described by equation 30.6.  The capacitance is 
found by equating the term in the exponential to the period determined from the term in the cosine.  The 
resistance and inductance are 50.0 R = Ω and 1.00 mH.L =  
SKETCH:  Not required. 
RESEARCH: The general expression for an RLC circuit is  

( )/2
max cos ,Rt Lq q e t−= ω  

where ( )ω ω= −
22

0 / 2R L  and where ω =0 1/ .LC  The period of the oscillation is π ω= 2 / .T  The decay 

rate of the exponential is 2 / .L Rτ =  
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SIMPLIFY:  Capacitance is found by letting ,T=τ  which gives the result: 

( ) ( )
22 2222 2 20 20 2 2

02 2 2

/ 22 2 14    4 1 .
2 2 4 4 4

R
R LL R R RL

R L LCL L

ωωπ π ω
ω π π

  −−   = ⇒ = ⇒ = ⇒ + = =      
 

  

Therefore, 
( )π

=
+2 2

4 .
4 1

LC
R

 

CALCULATE:  
( )

( ) ( )
3

8
2 2

4 1.00 10  H
3.9527 10  F

50.0 4 1
C

π

−

−
⋅

= = ⋅
Ω +

 

ROUND:  Rounding to three significant figures, 39.5 nF.C =  
DOUBLE-CHECK: The time constant is 52 / 4 10  s.L Rτ −= = ⋅  The angular frequency, ω,  is 

2
5 11 1.5708 10  s ,

2
R

LC L
− = − = ⋅ 

 
ω  

and the period is 52 / 4.00 10  s.T π ω −= = ⋅   So ,T=τ as required. 

30.35. THINK: The frequency of the damped oscillation is independent of the initial charge, and hence potential.  
It then only depends on the inductance, 0.200 H,L =  the resistance, 50.0 ,R = Ω  capacitance = 2.00 μF.C   
SKETCH: 

 
RESEARCH: In general the charge on the capacitor is  

( )/2
max cos ,Rt Lq q e t−= ω  

where ( )ω ω= −
22

0 / 2R L and where ω =0 1/ .LC  The frequency of oscillation is ( )ω π= / 2 .f  

SIMPLIFY:  
( ) ( ) ( )22 2 2

0 / 2 1/ / 4

2 2 2

R L LC R L
f

− −
= = =

ωω
π π π

 

CALCULATE: 
( )( )( ) ( ) ( )( )2 261/ 0.200 H 2.00 10 F 50.0 / 4 0.200 H

250.858 Hz
2

f
π

−⋅ − Ω
= =  

ROUND:  Rounding to three significant figures, 251 Hz.f =  
DOUBLE-CHECK:  This frequency is typical of RLC circuits. Additionally, dimensional analysis yields: 

 
[ ]

[ ]
[ ] [ ]

11
2 2

22 2

2ΩF 1 1 1-
s sΩ·sF s

                
= =


. 

30.36. THINK:  The angular frequency of the RLC is 20% less than the angular frequency of the LC circuit where 
the inductance is 4.0 mHL = and the capacitance is 2.50 μF.C =  Even though the current is actually a 
damped oscillation, the magnitude of the oscillation is describe simply by the exponential decay, similar to 
that of the charge.  Therefore, the current is at half of its maximum when the exponential is at a half.  The 
number of periods in a given time is the number of oscillations. 
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SKETCH:  Not required. 
RESEARCH:  The RLC frequency is related to LC frequency by ω ω=RLC LC0.8 .  The RLC frequency is 

( )( )22
RLC 0 / 2 ,R L= −ω ω  where ω ω= =0 LC 1/ .LC  The current varies as /2

max .Rt Li i e−=  A wave goes 

through n  oscillations in time ,t nT=  where T is the period. 
SIMPLIFY:   
(a)  For the oscillation frequency,  

2 2 2
2 2 2 2

RLC LC 0 0 0 0 0 2

0

0.8   0.8   0.64   0.36  
2 2 4

 1.2 1.2 1.2 .

R R R
L L L

L LR L
CLC

   = ⇒ − = ⇒ − = ⇒ =   
   

 
⇒ = = = 

 

ω ω ω ω ω ω ω

ω

 

(b)  /2 /2
max max

1 1 2    ln2
2 2

Rt L Rt L Li i i e e t
R

− − = = ⇒ = ⇒ = 
 

 

(c)  The period is 
RLC

2 .T π
ω

=  Therefore, the number of oscillations is 
ω
π

= = RLC .
2

ttn
T

 

CALCULATE:   

(a)  
( )
( )

3

6

4.0 10  H
1.2 48 

2.50 10  F
R

−

−

⋅
= = Ω

⋅
 

(b)  
( )
( ) ( )

32 4.0 10  H
ln 2 0.000115525 s

48 
t

−⋅
= =

Ω
 

(c) 
( )( )

( )
( )

2

RLC 3 6 3

48 1 8000 rad/s,
4.0 10  H 2.50 10  F 2 4.0 10  H

ω
− − −

 Ω = − =
 ⋅ ⋅ ⋅ 

 and 

( )( )0.000115525 s 8000 rad/s
0.14709 cycles.

2
n

π
= =  

ROUND:  To three significant figures, 
(a)  = Ω48.0 R  
(b)  =116 μst  
(c)  = 0.147 cyclesn  
DOUBLE-CHECK:  Since the resistance is large compared to the inductance, the current will die off 
quickly, so a complete oscillations will not occur before it is at half its maximum value. 

30.37. The capacitive reactance, = Ω200. ,CX  is given by ( )1/ ,CX C= ω  where =10.0 μF;C  therefore, the 
frequency is  

( )( )
ω = = =

Ω
1 1 500. rad/s.

200. 10.0 μFCX C
 

30.38. The capacitive reactance is given by ( )ω=C 1/ ,X C  where −= ⋅ 65.00 10  FC  and 2 ,f=ω π  where 

=100. Hz.f  Therefore, the capacitive reactance is 

( )( )π π −
= = = Ω

⋅ 6

1 1 318 .
2 2 100. Hz 5.00 10  FCX

fC
 

The maximum current through the capacitor, ,CI  is given by / ,C C CI V X=  where =10.0 V.CV Therefore,  

( )
( )

= = =
Ω

10.0 V
31.4 mA.

318 
C

C
C

V
I

X
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30.39. (a) The resonant angular frequency of an RLC circuit is ω =0 1/ LC  where 0.500 HL =  and 
0.400 μF.C =  Therefore, 

( )( )
0

6

1 1 2240 rad/s
0.400 10  F 0.500 HLC −

= = =
⋅

ω  

(b) At resonance, only the resistor contributes to the overall impedance, so = emf /I V R  where 

=emf 40.0 VV  and 100.0 .R = Ω  Therefore, ( ) ( )40.0 V / 100.0 0.400 A.I = Ω =  

30.40. In general, the resonant frequency is determined by 
ω
π π

= =0
0

0

1 ,
2 2

f
LC

 when =0 5.0 MHzf  and 

0 15 pF,C =  the circuit has an inductance of L  that satisfies the given relation.  When 1 380 pF,C =  the 
same L  will give another resonant frequency.  Therefore,  

( ) ( )
( )

0 2 2
0 00

0
1 0 1

11 1
2 2

0 0

1 1  ,
42

15 pF1 1 5.0 MHz 1.0 MHz.
380 pF2

2
4

f L
f CLC

C
f f f

CLC C
f C

ππ

π
π

π

= ⇒ =

= = = = = =
  

30.41. Given the frequency, 1.00 kHz,f =  the angular frequency is 2 .f=ω π  The phase constant for an RLC 
circuit is given by 

( ) ( )ω π
φφ

πω −− −−  
⇒ =  

 
= = 1 · ·

ta
1/ 2 1/ 2

n nta L C L C L CX X
R R

f f
R

 

For the values 100. ,R = Ω  10.0 mHL =  and 100. μF,C =  the phase constant is  

( )( )( ) ( )( )( )( )
( )

1
3 6

1

3 32 1.00 10  Hz 10.0 10  H 2 1.00 10  Hz 100. 10 F
tan 0.549 rad.

100. 

π π
φ

−
− −

−

 ⋅ ⋅ − ⋅ ⋅ 
 = =

Ω
  

The impedance for this circuit is  

( )( ) ( )( )

( ) ( )( )( ) ( )( )( )( )( )
ω

π

π

π

πω

−
− −

= + − = +

= Ω + ⋅

−

⋅ − ⋅ ⋅ = Ω

22

3

22

212 3 63

1/ 2

100. 2 1.00 10  Hz 10.0 10  H 2 1.00 10  Hz 100

2 · 1

. 10

/

1

·

F 1 7 .

Z R L R L f CC f
 

30.42. For an RLC circuit with = 5.00 mHL  and = 4.00 μF,C  the resonant frequency, ω0 ,  is 0 1/ .LC=ω  
Therefore,  

( )( )
ω

− −
= =

⋅ ⋅
0

3 6

1 7070 rad/s.
5.00 10  H 4.00 10 F

 

At resonance, the resistor with = Ω1.00 k ,R  is the only contribution to the impedance. For a peak voltage 
of =m 10.0 V,V  the maximum current is   

( )
( )

= = =
Ω

m
m

10.0 V
10.0 mA.

1000. 
V

I
R

 

30.43. THINK:  Given the equation, ( ) ( )ω= 12.0 V sinV t  the peak voltage is clearly =m 12.0 V.V  When the 
circuit is in resonance, the current is dictated solely by the resistance, = Ω10.0 .R  This means the 
inductor, = 2.00 H,L  and the capacitor, =10.0 μFC  will not influence the current.  However, the current 
will dictate the voltage drop across each.  
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SKETCH:  Not required. 
RESEARCH:  At resonance, impedance is = .Z R  The maximum current at resonance is m m / .I V R=  The 

resonant frequency is ω =0 1/ .LC  The voltage drop across the inductor is ,L LV IX=  where 01/ .LX C= ω  
SIMPLIFY:  The voltage drop across the inductor is,  

m m m
L 0 .L

V V VL LV IX L
R R R CLC

= = = =ω  

CALCULATE:  
( )
( )

( )
( )−

= =
Ω ⋅ 6

12.0 V 2.00 H
536.66 V

10.0 10.0 10  FLV  

ROUND:  To three significant figures, =L 537 V.V  
DOUBLE-CHECK:  Even though the answer seems large compared to m ,V the voltage drop across the 
capacitor is the exact same.  Since the voltage across each component is related by 

( ) ( )2 22
m ,R L CV V V V= + −  the voltage across the battery is equal to the voltage across the resistor at 

resonance.  Therefore, at resonance, the voltage across the inductor could be anything since it is countered 
by the same voltage across the capacitor.  

30.44. THINK:  The inductive reactance and the capacitive reactance are needed to find the impedance of the 
RLC circuit.  The AC power source oscillates with frequency 60.0 Hzf =  and has an amplitude of 

m 220 V.V =  The resistance is 50.0 ,R = Ω  the inductance is 0.200 HL =  and the capacitance is 
= 0.040 mF.C  

SKETCH:  Not required. 
RESEARCH:  The angular frequency of oscillation is ω π= 2 .f  The inductive reactance is .LX L=ω  The 

capacitive reactance is 1/ .CX C= ω  The impedance of circuit is ( )22 .L CZ R X X= + −  The maximum 

current through the circuit is m m / .I V Z=  The maximum potential drop across each component is 

m ,i iV I X=  where i  denotes either ,R  C  or .L  
SIMPLIFY:   
(a)  2LX L fL= =ω π  

(b)  1 1
2CX

C fC
= =
ω π

 

(c)  ( )22
L CZ R X X= + −  

(d)  m
m

V
I

Z
=  

(e)  m ,RV I R=   mC CV I X=  and mL LV I X=  
CALCULATE:   
(a)  ( )( )2 60.0 Hz 0.200 H 75.398 LX = = Ωπ  
(b)   

(c)  ( ) ( )2 250.0 75.398 66.315 50.818 Z = Ω + Ω− Ω = Ω  

(d)   
(e)  ( )( )4.329 A 50.0 216.457 V,RV = Ω =   ( )( )4.329 A 66.315 287.085 VCV = Ω =  and 

( )( )4.329 A 75.398 326.409 V.LV = Ω =  
ROUND:   
(a)  75.4 LX = Ω  
(b)  = Ω66.3 CX  
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(c)  50.8 Z = Ω  
(d)  =m 4.33 AI  
(e)  220 V,RV =   290 VCV =  and 330 V.LV =  
DOUBLE-CHECK:  In order to satisfy Kirchhoff’s loop rule, the vector phasors must sum as vectors to 

match m :V


 ( )22 2
m .R L CV V V V= + −  Therefore,  

( ) ( )2 2
m 216.457 V 326.409 V 287.085 V 220 V,V = + − =  

as required. 

30.45. THINK:  The maximum current occurs for when the AC voltage is at its peak, m 110 V.V =  The angular 
frequency of the oscillation is 377 rad/s.=ω  The voltage acts across the total impedance of the circuit 
where 2.20 ,R = Ω  9.30 mHL =  and 2.27 mF.C =  The maximum current mI ′  occurs for a capacitance 
C′  that puts the RLC circuit in resonance with the supplied voltage.  At resonance, the phase constant is 
zero and only the resistor influences the current. 
SKETCH:  Not required. 
RESEARCH:  The impedance of inductor and capacitor are LX L=ω  and 1/ .CX C= ω  The maximum 

current is m m / ,I V Z=  where ( )22 .L CZ R X X= + −  The phase angle for the circuit is 

( )( )1tan / .L CX X R−= −φ  When at resonance, 0 1/ .LC= =ω ω  The maximum current at resonance is 

m m / .I V R=  
SIMPLIFY:   

(a)  The maximum current is 
( ) ( )( )

m m m
m 2 22 12

.
L C

V V V
I

Z R X X R L C −
= = =

+ − + −ω ω
 

(b)  The phase constant is 
( ) 1

1 1tan tan .L C L CX X
R R

−

− −
 −−   = =      

ω ω
φ  

(c)  The required capacitance for resonance is 

2

1 1  ,
'

C
LLC

′= ⇒ =ω
ω

 

 and maximum current at resonance is m
m .

V
I

R
=  

CALCULATE:   

(a)  
( )

( ) ( )( ) ( )( )( )
m 212 3 3

110 V
34.2675 A

2.20 377 rad/s 9.30 10  H 377 rad/s 2.27 10  F

I
−

− −

= =
 Ω + ⋅ − ⋅ 
 

 

(b)  
( )( ) ( )( )( )

( )

1
3 3

1
377 rad/s 9.30 10  H 377 rad/s 2.27 10  F

tan 0.8157 rad
2.20 

−
− −

−
⋅ − ⋅

= =
Ω

φ  

(c)  
( ) ( )

4
2 3

1 7.565 10  F
377 rad/s 9.30 10  H

C −

−
′ = = ⋅

⋅
 and 

( )
( )m

110 V
50.0 A

2.20 
I ′ = =

Ω
 

ROUND:  To three significant figures: 
(a)  =m 34.3 AI  
(b)  0.816 rad=φ  

(c)  757 μF,C′ =  ′ =m 50.0 A,I  0 rad′ =φ  
DOUBLE-CHECK:  The current is at a maximum when at resonance, so having m mI I′ >  is reasonable.  
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30.46. THINK: Although not explicitly stated, since the circuit should pass a frequency of = 5.00 kHz,f  it is 
natural to assume that it is a high-pass filter.  The ratio of the voltages is out in/ 1/ 2.V V =  
SKETCH:   

 

RESEARCH:  The ratio of the voltages for the high-pass RC filter is given by 
ω

−
 = +  

1
2

out in 2 2 2

1/ 1V V
R C

, 

where 2 .f=ω π  The phase constant for the circuit is ( )( )1tan / ,L CX X R−= −φ  with 0LX =  and 

( )1/ .CX C= ω  
SIMPLIFY:   

(a) 
( )

2 2 2out
2 2 22 2 2

in

1 1 10.500   1 4.00  
3.001 1/

V
R C

V R CR C
ω

ωω
= = ⇒ + = ⇒ =

+
 

 
1 1 1 1 .

23.00 3.00
C

R fRω π
⇒ = =   

(b)  The phase constant is 
( )( )1 1 1

0 1/ 1tan tan tan .
2

L C
CX X

R R fRC
− − −

 −  −   = = = −        

ω
φ

π
 

CALCULATE:   

(a)  
( )( )

8
3 3

1 1 1.838 10  F
2 5.00 10  Hz 1.00 10  3.00

C
π

−= = ⋅
⋅ ⋅ Ω

 

(b)  
( )( )( )

φ
π

−

−

 
 = − = −
 ⋅ ⋅ Ω ⋅ 

1
3 3 8

1tan 1.0472 rad
2 5.00 10  Hz 1.00 10  1.838 10  F

 

ROUND:   
(a)  =18.4 nFC  
(b)  φ = −1.05 rad  
DOUBLE-CHECK:  The negative phase constant simply means the current lends the voltage, which 
makes sense since the current must first reach the capacitor before it can charge it.  The values for the 
capacitor and phase constant seem reasonable.  

30.47. THINK:  For signals of frequency = 60.0 Hzf  the required noise factor is =out in/ 0.00100.V V  The given 
total impedance = 20.0 kΩ.R  Since the ratio of voltages will increase as the frequency does, the lowest 

frequency that has 90.0%  signal strength is when =out in/ 0.900.V V  
SKETCH:  
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RESEARCH: The signal ratio is ( )2 2 2
out in/ 1/ 1 1/ ,V V R C= + ω   where the angular frequency is 2 .fω π=  

SIMPLIFY:   
(a)  When −= = ⋅ 3

out in/ 0.001000 1.00 10 ,V V  then 

( )
( )

( ) ( )

ω
ωω

π

−−= ⋅ = ⇒ + = ⇒ = −
+

⇒ =
−

13 6 2 2 2 6out
2 2 22 2 2

in

6

1 11.00 10   1 10   10 1  
1 1/

1        .
10 1 2

V
R C

V R CR C

C
fR

  

(b)  When =out

in

0.900,
V
V

 then  

( )
ω

ωω

ω
π

−
 = = ⇒ + = ⇒ = − = 
 +

   ⇒ = ⇒ =   
   

1
2 2 2out

2 2 22 2 2
in

1 1 1 1 810.900   1   1
0.81 0.81 191 1/

81 1 81 1   .
19 19 2

V
R C

V R CR C

f
RC RC

  

CALCULATE:   

(a)  
( ) ( )( )( )π

−= = ⋅
⋅ − ⋅ Ω

9

6 3

1 1.3263 10  F
1.00 10 1 2 60.0 Hz 2.00 10  

C  

(b)  
( )( )π −

 
 = =
 ⋅ Ω ⋅ 

3 9

81 1 123884 Hz
19 2 2.00 10  1.3263 10  F

f  

ROUND:  To three significant figures, 
(a)  =1.33 nFC   
A capacitor of capacitance 1.00 nF needs to be used in this high-pass filter. 
(b)  =124 kHzf  
Frequencies of 120 kHz and higher will be passed with at least 90% of their amplitude. 
DOUBLE-CHECK:  Since frequencies higher than 120 kHz  will pass with 90% of their strength, this 
seems like a reasonable high-pass filter. 

30.48. In general, rms m / 2;V V= therefore, m rms2 .V V=  

(a)  For rms 110 V,V = ( )m 2 110 V 160 V.V = =  

(b)  For rms 220 V,V = ( )m 2 220 V 310 V.V = =  

30.49. The quality factor for an RLC circuit is defined as ( )0 Energy stored/Power lost .Q =ω  For the RLC circuit, 

the resonant frequency is 0 1/ .LCω =  In general, the energy stored in the circuit is /
0 .Rt LU U e−=  The 

power lost is defined as / .P dU dt= −  Therefore,  

( )
( )

( )
( )( )

/ /
0 0 0

/
/ 0

0

1 .
/

Rt L Rt L

Rt L
Rt L

U e U e LQ
d R CLC R L U eU e
dt

− −

−
−

= = =
−

ω
 

30.50. On any product label the voltage and power displayed are the rms voltage and average power.  Therefore, 

take rms 110 VV =  and 1250 W.P =  The peak value of current is related to rms current by rms m / 2.I I=   

In general, rms rmscos .P I V= φ   
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Assuming that the hair dryer acts like a resistor, cos / 1,R Z= =φ  so  

( )
( )rms m

rms rms

1250 W
  2 2 16 A.

110 V
P P

I I
V V

= ⇒ = = =  

30.51. (a)  The resonant frequency of the radio tuner is related to the inductance, 3.00 mHL =  and capacitance 

25.0 nF,C =  by 0 1/ .LCω =  Keeping in mind that ω π=0 02 ,f   

( )( )
0

0
3 9

1 1 18.4 kHz.
2 2 2 3.00 10  H 25.0 10  F

f
LC − −

= = = =
⋅ ⋅

ω
π π π

 

(b) At resonance, the total impedance is solely that from the resistance, 1.00 μ .R = Ω  Given that the 
voltage drop across the resistor is rms 1.50 mV,V =  the power in the circuit is  

( )
( )

232
rms

6

1.50 10  V
2.25 W.

1.00 10  
V

P
R

−

−

⋅
= = =

⋅ Ω
 

30.52. THINK:  The current through the circuit is driven by the AC potential, rms 50.0 VV =  and 2000. Hz,f =  
which has a total impedance from the resistance, 100. ,R = Ω  capacitance, 0.400 μFC =  and inductance, 

0.0500 H.L =  The average power lost over the circuit is determined by the rms voltage and rms current. 
SKETCH:  Not required. 
RESEARCH:  The rms current is given by 

rms
rms 2

2

.
1

V
I

R L
C

=
 + − 
 
ω

ω

 

The rms voltage drop across each component is rms ,i iV I X=  where i  denotes ,R L or .C  The average 
power drawn from the circuit is  

2
rms .P I R=  

SIMPLIFY:   
(a)  Since the angular frequency is 2 ,f=ω π   

rms
rms 2

2

.
12

2

V
I

R fL
fC

=
 

+ − 
 
π

π

 

(b)  The rms voltage drop across the resistor is rms .RV I R=  The rms voltage drop across the capacitor is 

rms
rms .

2C C

I
V I X

fC
= =

π
 The rms voltage drop across the inductor is rms rms2 .L LV I X I fL= = π  

(c) 2
rmsP I R=  

CALCULATE:   

(a)  
( )

( ) ( )( )
( )( )

rms 2

2

6

50.0 V
0.1134 A

1100. 2 2000. Hz 0.0500 H
2 2000. Hz 0.400 10  F

I

π
π −

= =
 
 Ω + −
 ⋅ 

 

(b)   ( )( )0.1134 A 100. 11.34 VRV = Ω =  

( )
( )( )6

0.1134 A
22.56 V

2 2000. Hz 0.400 10  FCV
π −

= =
⋅

   

( )( )( )2 0.1134 A 2000. Hz 0.0500 H 71.26 VLV π= =  
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(c)  ( ) ( )2
0.1134 A 100. 1.286 WP = Ω =  

ROUND:  To three significant figures, 
(a)  rms 0.113 AI =  
(b)  11.3 V,RV =  22.6 V,CV =   71.3 VLV =  

(c)  1.29 WP =  

DOUBLE-CHECK:  For an RLC circuit, the maximum voltage is given by ( )22 2
m ;R L CV V V V= + −  

therefore, as a check ( ) ( )2 2
m 11.34 V 71.26 V 22.56 V ,V = + −  which equals 50.003 V,  which is mV  

within rounding errors, so the answer is reasonable. 

30.53. THINK:  In order to receive the best signal, the radio should be tuned at resonance with the incoming 
frequency, 0 88.7 MHz.f =  The inductance of the radio receiver is 8.22 μH.L =  Signal strength is 

m 12.9 μV.V =  The similar signal with frequency 88.5 MHz,f =  is not at resonance, so its total impedance 
is influenced by the resistor, capacitor and inductor such that its current is half that of the current for the 
frequency at resonance. 
SKETCH:  Not required. 

RESEARCH: At resonance, 0 1/ ,LC= =ω ω  where the angular frequency is 0 02 .f=ω π  The impedances 

of the inductor and capacitor are LX L=ω  and ( )1/ ,CX c= ω  respectively.  The impedance of the RLC 

circuit is ( )22 .L CZ R X X= + −  At resonance, the current amplitude is m m / ,I V R=  and when not at 

resonance, the current amplitude is m m / .I V Z′ =   
SIMPLIFY:   

(a)  At resonance, 0 0 0 2 2
00

1 12   .
4

f C
f LLC

= = ⇒ =ω π
π

 

(b)  When m m
1 ,
2

I I′ =  then  

( )= ⇒ = = + − 22m m
0 0

0

1   2
2 L C

V V
R Z R X X

Z R

( ) ( ) ( ) 1
22 2

0 0 0

2 2
4   .

3 3
L C

L C

X X fL fc
R R X X R

−
− −

= + − ⇒ = =
π π

 

CALCULATE:   

(a)  
( ) ( )

13
22 6 6

1 3.9167 10  F
4 88.7 10  Hz 8.22 10  H

C −

−
= = ⋅

⋅ ⋅π
 

(b)  
( )( ) ( )( )( ) 1

6 6 6 13

0

2 88.5 10  Hz 8.22 10  H 2 88.5 10  Hz 3.9167 10  F
11.941 

3
R

−
− −⋅ ⋅ − ⋅ ⋅

= = Ω
π π

 

ROUND:  To three significant figures, 
(a)  0.392 pFC =  
(b)  0 11.9 R = Ω  
DOUBLE-CHECK:  This is an RLC circuit, so the current across the circuit decays exponentially with a 
time constant 2 / 1.38 μs.L R= =τ  Assuming that the time constant represents the delay from when the 
radio picks up the signal to when it transmits it as sound, it is reasonable that the value is small.   
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30.54. If a power station provides power ,P and delivers it over potential difference ,V then the current out of the 

station is / .I P V=  The power loss over the lines is ( )22 / .P I R P V R′ = =  Therefore, if 10 ,V V→  the 

power loss over the lines is now ( ) ( )2 2/10 / /100 /100.P P V R P V R P′′ ′= = =  Therefore, if voltage is raised 
by a factor of 10, the power loss is 100  times smaller. 

30.55. (a) From solved problem 29.1, the coil has C 31N =  turns, and the solenoid has 290 turns/cmn =  and 
length of 12.0 cm.l =  Therefore, the number of turns in the solenoid is S .N nl=  If the voltage across the 
solenoid is S 120 V,V =  and the coil and solenoid act as a transformer, then  

( )( )
( )( )

C S S C S C
C 1

C S S

120 V 31
  1.1 V.

290 cm 12.0 cm
V V V N V N

V
N N N nl −

= ⇒ = = = =  

(b)  With DC current, no magnetic flux is created within the solenoid so there is no voltage in the coil. 

30.56. The primary coil has P 800N =  turns, and the secondary coil has S 40N =  turns.  
(a) The voltages across each coil is given by P P S S/ / ,V N V N=  so when =P 100. V,V  the voltage on the 
secondary coil is  

( )( ) ( )= = =S S P P/ 40 100. V / 800 5.00 V.V N V N  

(b) The current on the secondary coil when =P 5.00 AI  is  

( )( ) ( )= = =S P P S/ 5.00 A 100. V / 5.00 V 100. A.I I V V  
(c) When the voltage is DC, no magnetic flux is created within the secondary coil, so there is no voltage on 
the secondary coil. 
(d) When the voltage is DC, the voltage on the secondary coil is zero, so the secondary coil does not carry 
a current. 

30.57. The primary coil has P 200N =  turns and the secondary coil has S 120N =  turns. The secondary coil 
drives a current I through a resistance of = Ω1.00 k .R  The input voltage applied across the primary coil is 

=rms 75.0 V.V  The voltage across the secondary coil is S rms S P/ .V V N N=  The power dissipated in the 

resistor is 
( ) ( )( ) ( )( )

( )
= = =

⋅ Ω

22
rms S P

3

75.0 V 120 / 200/
2.03 W.

1.00 10

V N N
P

R
 

30.58. The frequency of the source is S 60. Hz.f =  The full wave rectifier is a configuration of diodes that allows 
all of the current in the circuit to flow in one direction.  This is illustrated in Figure 30.35 of the textbook.  
Comparing the plot of emf as a function of the time (Figure 30.35 (a)) to the rectified current (Figure 30.35 
(d)), it can be seen that the frequency is doubled, S2 120 Hz.f f= =  The capacitor minimizes the size of 
the ripples, but the frequency stays the same. 

30.59. THINK:  The voltage applied to the primary side of the transformer is rms P 110 VV V= =  and its frequency 

is 60. Hz.f =  The ratio of primary coil turns to secondary coil turns in the transformer is P S/ 11.N N =  
The secondary coil voltage, SV  is used as the source voltage for the fullwave rectifier shown in Problem 
30.56.  Using the equations for transformers, the rms voltage in the secondary coil can be found.  To find 
the DC voltage DCV  provided to the resistor, it is necessary to integrate over the AC voltage to obtain the 
time-averaged value.   
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SKETCH:   

 
RESEARCH:   
(a)  The secondary rms voltage is given by S P S P/ .V V N N=  For any rms voltage, the maximum voltage is 

given m rms2 .V V=   
(b)  The DC voltage DCV is the time-averaged value of the rectified emf.V .  The time average is found from 
the equation 

( )/2

DC emf0

2 ,
T

V V t dt
T

= ∫  

where ( ) ( )emf m sin .V t V tω=  
SIMPLIFY:   

(a)  P S
m

P

2
V N

V
N

=  

(b)  Substitute 2T =
π
ω

 into the equation:  

( ) ( ) ( )/ /m m
DC m 0 m0

2sin cos | 1 1 .
V V

V V t dt t V= = − = − − − =∫
π ω π ωω ω ω

π π π π
 

CALCULATE:   

(a)  ( )m
12 110 V 14.14 V

11
V  = = 

 
 

(b)  ( )DC
2 14.14 V 9.003 VV
π

= =  

ROUND:  To two significant figures, 
(a)  m 14 VV =   
(b)  DC 9.0 VV =  
DOUBLE-CHECK:  The number of turns in the primary is greater than the number of turns in the 
secondary so it is expected that the voltage in the secondary is lower. 

30.60. The given quantities are:  the inductance, =100. mH;L  the frequency, = 60.0 Hz;f  and the rms voltage, 

rms 115 V.V =  The average power is given by rms rms / ,P I V R Z=  so to maximize the power output the 

impedance must be minimized.  The impedance is ( )( )22 1/ .Z R L Cω ω= + − To minimize ,Z  the 

expression in the brackets must equal zero:   

( ) ( )( ) ( )
ω

ω ω π π
−− = ⇒ = = = = ⋅ 5

2 2 2

1 1 1 10  7.04 10  F. 
2 2 60.0 Hz 0.100 H

L C
C L f L

 

30.61. This question deals with an LC circuit.  The given quantities are the frequency, =1000. kHzf  and the 
inductance, =10.0 mH.L  What is the capacitance, ,C of the capacitor when the station is properly tuned? 

Equating the expressions 2 fω π=  and 1/ LCω =  and solving for :C  2 1/ ,f LCπ =   



Bauer/Westfall: University Physics, 2E  

  1214 

( )
π

π
= ⇒ = 2

1
2

2 1f C
LC f L

 

( ) ( )( )( ) ( )π π

−

−
= = = ⋅

⋅ ⋅

12
2 2

6 2

1 1 2.53 10  F.
2 2 1.000 10  Hz 1.00 10  H

C
f L

 

30.62. This question deals with an RLC circuit. The circuit is driven by a generator with =rms 12.0 VV  and 
frequency, 0 .f  The inductance is = 7.00 mH,L  the resistance is = Ω100. R  and the capacitance is 
= 0.0500 mF.C   

(a) The angular resonant frequency of the RLC circuit is given by 0 1/ ,LC=ω  where 0 02 .f=ω π   
Therefore, the resonant frequency is  

( )( )0
3 3

1 1 269 Hz.
2 2 7.00 10  H 0.0500 10  F

f
LCπ π − −

= = =
⋅ ⋅

 

 (b)  The average power dissipated in the resistor at the resonant frequency is 

( )
( )

= = =
Ω

22
rms 12.0 V

1.44 W.
100. 

V
P

R
 

30.63. A “60-W light bulb” dissipates power at 60. W.P =  The question gives rms 110 V.V =  

(a) The maximum current is m rms2 .I I=  The average power is rms rms ,P I V=  so the maximum current is   

( )
( )m

rms

2 60. W2
0.77 A.

110 V

P
I

V
= = =  

(b)  The maximum voltage is ( )m rms2 2 110 V 160 V.V V= = =  

30.64. The given quantities are the frequency, 360 Hz,f =  the inductance 25 mHL =  and the resistance 
0.80 .R = Ω  In order for the current and voltage to be in phase, the circuit must be in resonance.  This 

occurs when the inductive reactance and the capacitive reactance are equal (Note that this is result is 
independent of the resistor value): 

( ) ( )( ) ( )2 2 2 3

1 1 1 1  7.8 μF.
2 2 360 Hz 25 10  H

L CX X L C
C L f L −

= ⇒ = ⇒ = = = =
⋅

ω
ω ω π π

 

30.65. In an RLC circuit, the inductance is = 65.0 mHL  and the capacitance is =1.00 μF.C  The circuit loses 
electromagnetic energy at a rate of ∆ = −3.50% per cycle.U  The energy stored in the electric field of the 

capacitor is expressed by ( )2 /
E max 0cos .Rt LU q e t−∆ = ω  The rate of energy loss is E, final E, initialE

E E, initial

,
U UU

U U
−∆

=  

where time initialt  is zero and finalt  is the time to complete one cycle, final 02 / .t = π ω  The rate of energy loss 
per cycle can now be written as  

( ) ( )

( )

0

2 2
2 / 2 0 2max max

2 /E
2

0 2E max

cos 2 cos 0
2 20.035 1.

cos 0
2

R L

R L

q q
e eU C C e

U q
e

C

− −

−

−

−∆
= − = = −

π ω

π ω
π
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Since 0 1/ LC=ω ,    

( ) ( )

( ) ( ) ( )
( )

π π

π π

−

−

−

− = ⇒ = −

⋅
= − = − = Ω

⋅

2 /

3

6

21 0.0350   ln 0.9650  

65.0 10  Hln 0.9650 ln 0.9650
1.45 .

2 2 1.00 10  F

R LC L R LCe
L

LR
C

 

30.66. The transformer has P 400 turnsN = on its primary coil and S 20 turnsN = on its secondary coil.  The 

average power output from the secondary coil is =1200. WP and the maximum voltage output from the 

secondary coil is =S, m 60.0 V.V   The rms current in the primary coil is given by,  

SSS, rms
P, rms

P S, rms P

.
P NI N

I
N V N

= =  

Substituting the maximum values for the rms values gives 

( )( )
( )( )

= ⇒ = = =
 
 
 

P S S, m
P, m

S, m S, m P
P

1200. W 20
2 2 2.00 A.

60.0 V 4002
2

P N P NI
I

V V N
N

 

30.67. The given quantities are the capacitance, = 5.00 μF,C  the resistance, = Ω4.00 R  and the battery voltage, 
= 9.00 V.V  The capacitor is charged for a long time by closing the switch to position a.  At time 0t =  the 

switch is closed at position b and the capacitor is discharged through an inductor with = 40.0 mH.L  

 

(a) The maximum current through the inductor is given by ω=max 0 max ,i q  where maxq is the maximum 

charge on the capacitor, and 0 1/ .LCω =  The fully charged capacitor has charge max .q CV=  Substituting 
for 0ω and maxq  gives 

( )
( ) ( )

−

−

⋅
= = = =

⋅

6

max 3

5.00 10  F
9.00 V 0.101 A.

40.0 10  H
CV Ci V

LLC
 

(b)  The current is given by ( )max 0sin .i i tω= −  For the current to be a maximum ( )0sin 1,tω =  or when 

0 / 2.tω π=  This occurs at time 

( )( )π π − − −= = ⋅ ⋅ = ⋅3 6 440.0 10  H 5.00 10  F 7.02 10  s.
2 2

t LC  

30.68. THINK:  The resistance is = Ω10.0 kR  and the capacitance is = 0.0470 μFC  in the RC high-pass filter.  
To find the frequency f  where the ratio of the output voltage to the input voltage gives 

( )out in20log / 3.00,V V = −  use the voltage ratio for an RC high-pass filter. 
SKETCH:  A sketch of the circuit is provided in the problem.  
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RESEARCH:  For an RC high-pass filter, the ratio out in/V V  is given by: 

out

in
2 2 2

1 .
11

V
V

R Cω

=

+

 

The frequency is / 2 .f ω π=  From the properties of logarithms, if ( )blogy x=  then .yx b=  

SIMPLIFY: out out

in in

20 log 3.00  log 0.150.
V V
V V

   
= − ⇒ = −   

   
 This can be rewritten as −= 0.150out

in

10 .
V
V

 

Substituting for out

in

V
V

 gives:  

0.150 0.300 0.300 2 2 2
2 2 2 0.300

2 2 22 2 2

1 1 1 110   10   1 10    
1 10 11 11

R C
R C

R CR C

ω
ω

ωω

− −= ⇒ = ⇒ + = ⇒ =
−++

 

( ) ( )0.300 0.300

1 1 1 1 .
210 1 10 1

f
RC RC

ω
π

 
= ⇒ =  

− −  
 

CALCULATE:  
( ) ( )( )π −

 
 = =
 − ⋅ Ω ⋅ 

0.300 3 6

1 1 339.43 Hz
10 1 2 10.0 10  0.0470 10

f  

ROUND:  To three significant figures, = 339 Hz.f    
DOUBLE-CHECK:  The breakpoint frequency for this RC high-pass filter is ( )B 1/ 2 338 Hz.f RC= =π  
Since the calculated frequency is larger than this value, the answer is reasonable. 

30.69. THINK:  The unknown wire-wound resistor R  is initially connected to a DC power supply.  When there 
is a voltage of =emf 10.0 VV across the resistor, the current is =1.00 A.I  Next the resistor is connected to 
an AC power source with =rms 10.0 V.V  When the AC power source is operated at frequency 

= 20.0 kHz,f  a current of =rms 0.800 AI  is measured.  Find: 
(a)  the resistance, R ; 
(b)  the inductive reactance, ,LX of the resistor; 
(c)  the inductance, ,L  of the resistor; and  
(d)  the frequency, ,f ′  of the AC power source at which .LX R=  
SKETCH:  Not required. 
RESEARCH:   
(a) The resistance of the resistor when used with the DC source can be found using Ohm’s law, / .R V I=  
(b) When connected to the AC power source, the resistor can be treated as an RL series circuit.  The 

impedance of the RL circuit is 2 2
rms rms/ .LZ R X V I= + =  

(c)  The inductance can be found with LX L=ω  and 2 .f=ω π  
(d)  , 2L R f ′= =ω ω π   
SIMPLIFY:   

(a)  
VR
I

=  

(b)  2 2 2 2 2  L LZ R X X Z R= + ⇒ = − ⇒   Substituting rms

rms

V
Z

I
=  gives, 

2

2rms

rms

.L

V
X R

I
 

= − 
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(c)  
2

L LX X
L

f
= =
ω π

 

(d)  
2

Rf
L

′ =
π

 

CALCULATE:   

(a)  
( )
( )

= = Ω
10.0 V

10.0 
1.00 A

R  

(b)  ( ) = − Ω = Ω 
 

2
210.0 V 10.0 7.50 

0.800 ALX  

(c)  
( )
( )π

−Ω
= = ⋅

⋅
5

3

7.50 
5.968 10  H

2 20.0 10  Hz
L  

(d)  
( )π −

Ω′ = =
⋅ 5

10.0 26667 Hz
2 5.968 10  H

f  

ROUND:  The answers should be reported to three significant figures. 
(a)  = Ω10.0 R  
(b)  = Ω7.50 LX  

(c)  −= ⋅ 55.97 10  HL  
(d)  ′ = 26.7 kHzf  
DOUBLE-CHECK:  Since the current decreased when the power supply was changed from DC to AC, the 
resistance must have increased.  This additional resistance is explained by the inductive reactance of the 
resistor.  The units for all calculated values are correct. 

30.70. THINK:  The components of the RLC circuit are connected in series, and their values are = Ω20.0 ,R  

=10.0 mHL  and −= ⋅ 65.00 10  F.C  They are connected to an AC source of peak voltage =10.0 VV  and 
frequency =100. Hz.f  Find: 
(a)  The amplitude of the current I. 
(b)  The phase difference φ  between the current and the voltage.  
(c)  The maximum voltage across ,R  ,L  and .C  
SKETCH:   

 
 

RESEARCH:   
(a) The amplitude of the current in an RLC series circuit is  

( )
m

m 22
,

L C

V
I

R X X
=

+ −
 

where LX L=ω  and 1/ .CX C= ω  Recall that 2 f=ω π  and m rms2 .V V=   

(b) The phase difference between the current and the voltage is 
( )1tan .L CX X

R
−  −

=   
 

φ  

(c)  For the maximum voltage across each circuit component, m ,L LV I X=  mC CV I X=  and m .RV I R=  
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SIMPLIFY:   

(a)  
( )( )

rms
m 22

2

2 1/ 2

V
I

R fL fC
=

+ −π π
 

(b) 
( )1 2 1/ 2

tan
fL fC

R
−  −

=   
 

π π
φ  

(c)  m2 ,LV fI L= π m

2C

I
V

fC
=

π
 and m .RV I R=  

CALCULATE:   

(a) 
( )

( ) ( )( )
( )( )

m 2

2

6

2 10.0 V
0.04523 A

120.0 200.  rad/s 0.0100 H
200  rad/s 5.00 10  F

I

π
π −

= =
 
 Ω + −
 ⋅ 

  

(b) 
( )( ) ( )( )( )

( )

6

1
200.  rad/s 0.0100 H 1/ 200  rad/s 5.00 10  F

tan 1.507 rad
20.0 

π π
φ

−

−
 − ⋅
 = = −
 Ω
 

 

(c)  ( )( )( )0.04523 A 200.  rad/s 0.0100 H 0.2842 VLV π= =  

( )
( )( )π −

= =
⋅ 6

0.04523 A
14.40 V

200  rad/s 5.00 10  FCV   

( )( )= Ω =0.04523 A 20.0 0.9046 VRV  
ROUND:  To three significant figures,  
(a) =m 45.2 mAI   
(b) φ = −1.51rad  

(c)  = 0.284 V,LV =14.4 V,CV = 0.905 VRV  

DOUBLE-CHECK:  It must be true that ( )22 2
m .R L CV V V V= + −   To check this, plug in the calculated 

values for each side of the equation: 

( )( ) ( )
( ) ( ) ( ) ( )( )

= = =

+ − = + − =

2 22
m rms

2222

2 2 10.0 V 200. V

0.9046 V 0.2842 V 14.40 V 200. V,R L C

V V

V V V
 

as required. 

30.71. THINK:   
(a)  The loop of wire has a diameter of = =5.00 cm 0.0500 md  and it carries current = 2.00 A.i  Find the 
magnetic energy density, B ,u  at the loop’s center.  
(b) Find the current, 'i in a straight wire that gives the same value of Bu  at a point, 
= =4.00 cm 0.0400 mr  from the wire. 

SKETCH:   
(a)                  (b) 
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RESEARCH:   
(a)  The magnetic energy density is ( )( ) 2

B 01/ 2 .u Bµ=  The magnetic field, B for the wire loop is given by 

Equation 28.8 in the textbook, 
( )
µ

= 0
loop .

2 / 2
i

B
d

  

(b) The magnetic field due to current traveling in a straight wire is given by Equation 28.4, 
( )µ π=wire 0 '/ 2 .B i r  

SIMPLIFY:   

(a)  2
B loop

0

1 ,
2

u B
µ

 
=  
 

 substituting for loopB  gives:  
( )

2 2
0 0

B 2
0

1 1 .
2 2 / 2 2

i i
u

d d
µ µ

µ
  

= =     
 

(b)  2
B wire

0

1 ,
2

u B
µ

 
=  
 

 substituting for wireB  gives: 

2 2 2 2 2 2
20 B B

B 2 2
0 0 0

' 8 81   '   ' .
2 4

i r u r u
u i i

r
µ π π

µ π µ µ
 

= ⇒ = ⇒ = 
 

 

CALCULATE:   

(a)  
( )( )

( )

27
3 3

B 2

4 10  T m/A 2.00 A1 1.005 10  J/m
2 0.0500 m

u
π −

−
⋅

= = ⋅  

(b)  
( ) ( )π

π

−

−

⋅
= =

⋅

22 3 3

7

8 0.0400 m 1.005 10  J/m
' 10.053 A

4 10  T m/A
i  

ROUND:  The answers should be reported to three significant figures.  
(a)  3 3

B 1.01 10  J/mu −= ⋅   
(b)  =' 10.1 Ai  
DOUBLE-CHECK:  The calculated values have the proper units.  It is expected that the current required 
to generate a given magnetic field would be much larger for a straight wire than for a loop. 

30.72. THINK:  The bulb of average power 75000 WP = operates at a current of rms 200. A,I =  a voltage of 

rms 440. V,V =  and a frequency of 60.0 Hz.f =  The inductive reactance of the bulb is not negligible so its 
impedance needs to be considered.  The inductive reactance can be neglected, so 0.CX =   
SKETCH: 

 
 

RESEARCH:  The average power of the bulb is 2
rms .P I R=   The rms voltage is rms rmsZ,V I=  where 

2 2
LZ R X= +  and .LX L=ω  

SIMPLIFY:  The resistance of the bulb is 

2
rms

.
P

R
I

=  
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The inductance of the bulb is 

( )
( )( )( ) ( )ω ω

ω

ω π

 
= ⇒ + = ⇒ = − 

 +

   
⇒ = − = −   

   
±

2
2 22 2 2 2rms rms

rms rms rms22 rms

2 2

2 2rms rms

rms rms

     

1 1 .
2

V V
I R L I V L R

IR L

V V
L R R

I f I

 

CALCULATE:  
( )
( )2

75000 W
1.875 

200. A
R = = Ω  

( )
( )
( ) ( )

2
2440. V1 1.875 0.003053 H

2 60.0 Hz 200. A
L

π
 

= − Ω =  
 

 

ROUND:  To three significant figures, = Ω1.88 R  and = 3.05 mH.L  
DOUBLE-CHECK:  These are reasonable values.  If this was a DC source Ohm’s Law would give, 
= = =/ 440. V / 200. A 2.20Ω,R V I  which is comparable to the total calculated impedance.  All values 

have the correct units. 

30.73. THINK:  A resistor R  is connected across an AC source which oscillates at angular frequency .ω   Show 
that the power dissipated in R  oscillates with frequency 2 .ω  
SKETCH:   

 
 

RESEARCH:  The power is 2 .RP i R=  For an AC power supply, ( )sin .R Ri I t= ω  Also useful is the 

trigonometric identity ( ) 2cos 2 1 2sin .θ θ= −  

SIMPLIFY:  ( ) ( )( ) ( )( )2 2 2 2 2
1 cos 2 1sin 1 cos 2 .

2 2R R R R

t
P i R I t R I R I R t

−
= = = = −

ω
ω ω  It can be seen from the 

above equation that the power oscillates with a frequency twice that of the voltage. 
CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK:  Power, P, is proportional to 2.i  Since i varies proportionately with V, it must be the 
case that 2i  varies proportionately with 2 .V Since V varies proportionately with ,ω it must be the case 

that 2V varies proportionately with 2 .ω Therefore by transitivity, P is proportional to 2 .ω  Therefore, there 
exists a constant, c, such that 2 .P cω=  So the change in P with respect to time, / ,dP dt will be 

proportional to 2 / ,d dtω  or 2 .ω  

30.74. THINK:  The resistor has a resistance of = Ω300. R  and is connected in series with a capacitor with 
= 4.00 μF.C  The AC power supply has rms 40.0 V.V =  Find: 

(a) the frequency f  at which ;C RV V=  
(b)  the current rmsI  at which this occurs. 
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SKETCH:   

 
RESEARCH:   
(a)  ,C CV iX=  and 1/ ,CX C= ω  while .RV iR=  Recall 2 .fω π=  

(b)  In this circuit, rms rms ,V I Z=  where 2 2
CZ R X= + (as there is no inductor). 

SIMPLIFY:   

(a)  
1 1 1        

2 2C R CV V iX iR R R f
C fC RC

= ⇒ = ⇒ = ⇒ = ⇒ =
ω π π

 

(b)  rms rms rms rms
rms 2 2 2 2

1
2

C

V V V V
I

Z RR X R R
= = = =

+ +
 

CALCULATE:   

(a)  
( )( )π

= =
Ω

1 132.6 Hz
2 300. 4.00 μF

f  

(b)  
( )
( )

= =
Ωrms

40.0 V1 0.09428 A
300. 2

I  

ROUND:  To three significant figures, =133 Hzf  and =rms 0.0943 A.I  

DOUBLE-CHECK: These values are reasonable given the initial conditions.  Dimensional analysis 
confirms the units are correct. 

30.75. THINK: The electromagnet has 200N =  loops, a length = 0.100 m,l  and a cross-sectional area 

= 25.00 cm .A  Find its resonant frequency 0f  when it is attached to the Earth. 
SKETCH:  

 

RESEARCH:  The resonant frequency is 0 1/ .LCω =  Recall 2 .fω π=  The radius of the Earth is 
66.38 10  mr = ⋅  and for a spherical capacitor, 04 .C r= πε  From Chapter 29, 2

0L n lAµ=  for a solenoid, 
where / .n N l≡  

SIMPLIFY:  
( ) ( )

0 32
0 0

0 0

1 1
42 / 4

lf
N ArN l lA r π µ επ µ πε

= =  

CALCULATE:  

( )
( )

( )( )( )( )π π − − −
= =

⋅ ⋅ ⋅ ⋅
0 3 7 12 4 3 6

0.100 m1 376.8 Hz
4 200 4 10  T m/A 8.854 10  F/m 5.00 10 m 6.38 10  m

f  

ROUND:  To three significant figures, =0 377 Hz.f  
DOUBLE-CHECK:  This is a reasonable frequency for an electromagnet.  Dimensional analysis confirms 
the units are correct. 
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30.76. THINK:  The inductance of the inductor is 1.00 H.L =  The resonance of the series RLC circuit is to occur 
at frequency 0 60.0 Hz.f =  The voltage across the capacitor (or inductor), CV  (or LV ) is to be 
20.0 times that across the resistor, .RV  Find the capacitance C  and the resistance .R  
SKETCH:   

 
RESEARCH:  At resonance, the angular frequency is 0 1/ ,LC=ω  where 0 02 .f=ω π   At resonance, 

emfRV V=  and ,L CV V= −  where .L LV IX=  Recall V IR=  and 0 .LX L=ω   

SIMPLIFY:  2 2 2
0 0

1 1 ,
4

C
L f Lω π

= = emf 0 0
0

L

2 2
  R R

L L

V V f L V f L
V IX L R

R R V
= = = ⇒ =

π π
ω   

Since 20.0 ,L RV V=  
( )

0 02
.

20.0 10.0
R

R

V f L f L
R

V
= =

π π
 

CALCULATE:  The capacitance of the capacitor must be 
( ) ( )

6
22

1 7.0362 10  F.
4 60.0 Hz 1.00 H

C
π

−= = ⋅  

The resistance of the resistor must be 
( )( )60.0 Hz 1.00 H

18.8496  .
10.0

R
π

= = Ω  

ROUND:  Rounding to three significant figures, 7.04 μFC =  and 18.8  .R = Ω  
DOUBLE-CHECK:  At resonance, 0.L CX X− =  To check this, plug in the value found for the 
capacitance: 

( )( )
( )( )0 0 6

0 0

1 1 12 2 60.0 Hz 1.00 H 0,
2 2 60.0 Hz 7.0362 10  FL CX X L f L

C f C −
− = − = − = − =

⋅
ω π π

ω π π
 

as required. 

30.77. THINK:  The RC low-pass filter has a breakpoint frequency of =B 200. Hz.f  Find the frequency at which 
the output voltage divided by the input voltage is =out in/ 0.100.V V  
SKETCH:   

 
RESEARCH:  For a RC low-pass filter, the breakpoint frequency is: ( )B 1/ ,RCω =  where B B2 .f=ω π  The 
ratio of the input voltage to output voltage is  

out

2 2 2
in

1 .
1

V
V R C

=
+ω
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SIMPLIFY:  B B
B

1 12   
2

f RC
RC f

= = ⇒ =ω π
π

 

( )
( )

2 22 2 2
22 2in in in

2
out B out B out B

11 1   1   1
2 2 2

V V V
RC

V f V f V f

      
= + = + ⇒ = + ⇒ − =      

      

ω ωω ω
π π π

 

2 2

in in
B B

out out

2 1  1
V V

f f f
V V
   

= − ⇒ = −   
   

ω π  

CALCULATE:  ( )  = − = 
 

21200. Hz 1 1989.97 Hz
0.100

f   

ROUND:  To three significant figures, =1990 Hz.f  

DOUBLE-CHECK:  Since out in/V V  is less than 1/ 2  (the value associated with the breakpoint 
frequency), by the above sketch, the frequency f  must be greater than the breakpoint frequency B .f  
 

Multi-Version Exercises 

30.78. 2 2 (605 Hz)(42.1 mH) 160. LX fLπ π= = = Ω  

30.79. [ ]/ / (2 ) (19.9 V) / 2 (669 Hz)(52.5 mH) 90.2 mAL L L LI V X V fLπ π= = = =  

30.80. [ ]81.52 2 / (2 ) ( 2 (733 Hz) 17.7 H) / mL LX fL L X fπ π πΩ= ⇒ = = =  

30.81. [ ]21.5 V) // (2 ) / (2 ) ( 2 (797 Hz)(0.1528 A) 28.1 mHL L L LI V fL L V fIπ π π= ⇒ = = =  
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Chapter 31:  Electromagnetic Waves 
 

Concept Checks 

31.1. e  31.2. c  31.3. e  31.4. c  31.5. a  31.6. d  31.7. b 
 
Multiple-Choice Questions 

31.1. c  31.2. b, c, e 31.3. b  31.4. a  31.5. a  31.6 a  31.7. c  31.8. b  31.9. c  31.10. b   
 
Conceptual Questions 

31.11. (a) The intensity of the light passing through the first polarizer is 1 0 / 2.I I=  The angle between the 

transmission axis of the first and second polarizer as a function of time is ( )1,2 45 ,t tθ ω= °+  where t is in 
seconds and ω  is in rad/s. The intensity of the light passing the second polarizer is then 

( ) ( )2 2
2 1 1,2 0 2

1cos cos 45 .
2

I I I t I tθ ω= = °+ =  The angle between the transmission axis of the second and 

third polarizer as a function of time is ( )2,3 45 .t tθ ω= °−  The intensity of the light passing the third 
polarizer is: 

( ) ( ) ( ) ( ) ( )22 2 2
3 2 2,3 0 0 3

1 1cos cos 45 cos 45 cos 45 cos 45 .
2 2

I I I t t I t t I tθ ω ω ω ω = = ° + ° − = ° + ° − =   

Now, use the trigonometric identity, ( ) ( )1cos cos cos cos :
2

u v u v u v = + + −   

( ) ( ) ( ) ( )

( )

1cos 45 cos 45 cos 45 45 cos 45 45
2
1 1cos90 cos2 cos2 .
2 2

t t t t t t

t t

ω ω ω ω ω ω

ω ω

 ° + ° − = ° + + ° − + ° + − ° + 

= ° + =
 

Therefore, ( ) ( )
2

2 2
3 0 0 0

1 1 1 1 1cos2 cos 2 cos 2 .
2 2 2 4 8

I I t I t I tω ω ω   
= = =  

   
 Next, make use of the identity 

2 1 cos2cos ,
2

uu +
=  which in this case means: ( ) ( )2 1 cos 4

cos 2 .
2

t
t

ω
ω

+
=  So: 

( ) ( ) ( )3 0 0 0

1 cos 41 1 1 cos 4 .
8 2 16 16

t
I t I I I t

ω
ω

 +
= = +  

 
 

So, the intensity of the light making it past the third polarizer will oscillate about the value of 0 /16I  as a 
cosine function with amplitude of 0 /16I  and an angular frequency that is four times the angular 
frequency at which the polarizer is rotating. Thus, the intensity oscillates between a minimum value of 
zero (when polarizer 2 is parallel to either polarizer 1 or polarizer 3) and a maximum value of 0 / 8I  when 
polarizer 2 is at 45°  with polarizer 1 and 3. The result is thus consistent with the 0 / 8I  result of Example 
31.4, where polarizer 2 was at a fixed angle of 45°.  
(b) The transmission axis of a polarizer is a direction in the plane of the polarizer, not a single specific line 
in the plane of the polarizer. Therefore, moving the second polarizer parallel to itself in any direction will 
not change anything for the light passing through the second polarizer. Light that is incident on the first 
polarizer but that does not pass through the second polarizer will not pass through the third polarizer at 
all. In other words, if the light is initially incident on the total surface area of the first polarizer, the total 
amount of light (i.e. number of photons) that passes through the third polarizer after the second polarizer 
is displaced by a distance d < R, will be proportional to the fraction of surface area of overlap between all 
three polarizers. 
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31.12. Charge moving up and down along the antenna creates an electric dipole on the antenna. This produces 
an electric field along z±



 at point A (parallel to the antenna). From Ampere’s law, the current produces a 
magnetic field along x±



 at point A. Since radiation is moving along the y±


 direction away from the 

antenna, the possible directions for E


 and B


 are: 
(a)  E



 in positive directionz −


 and B


 in the positive direction.x −


  
(b)  E



 in the negative directionz −


 and B


 in the negative direction.x −


 
See Figure 31.16 as a visual aid. 

31.13. Assuming that the randomly polarized light source (the sun) was replaced by a polarized source, the 
results are still correct since for randomly polarized light, the average of 2E  is the same as the average of 

2E  for a polarized light. 

31.14. A magnetic monopole is a magnet with only one pole. The magnetic field produced by the monopole is 
similar to the electric field produced by an electric charge. The magnetic field vector is directed radially 
outward, that is, .B r∝





 If a charged particle is moving parallel to ,r


 its motion is not affected by the 
magnetic field. However, if the particle is moving perpendicular to ,r



 then its motion is affected and there 
is a perpendicular force to its velocity producing a helical motion. 

31.15. Both signals would arrive at the same time, since the speed of both signals is the speed of light. This is 
correct provided there is no medium between the Earth and the Moon. It is known that the speed of light 
in a medium depends on its refractive index. The refractive index of the medium depends also on the 
frequency of light. 

31.16.  

 
Ampere’s law is defined as:  

0
S

,B dS J dAµ=∫ ∫
  

 

 

 
where J



is a charge density within the surface. Since the surface is closed, the Amperian loop can be made 

very small, such that 0.B dS =∫






 The integral J dA∫






 represents the net rate of charge transport out of 

the region bounded by the surface, S. In a static situation, the charge in the region is constant and the 
integral is 0.J dA =∫







 For a dynamical situation, the integral must be equal to the negative rate of change 

of charge in the region, that is,  

in 0.
dQ

J dA
dt

= − ≠∫






 

Therefore, there is inconsistency in Ampere’s law. The Maxwell-Ampere law, however, take the form: 

0 0 0
S S

.dB dS J dA E dA
dt

µ µ ε= +∫ ∫ ∫
    

  

  

 

Applying Gauss’s law, it is found that: in in
0 0 0.

dQ dQ
dt dt

µ µ− + =  Therefore, the Ampere-Maxwell law is 

satisfied. For Faraday’s law: 
S

.dE dS B dA
dt

= −∫ ∫
  

 

 

 Both sides give zero since Gauss’ law states: 
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S

0.B dA =∫






 That is, there is no magnetic charge in the region enclosed by S. Therefore, there is no 

inconsistency. 

31.17. According to Maxwell’s equations, the velocity of light always has a fixed value regardless of the observer’s 
speed. This is in direct contradiction to Newton’s laws of motion based on the Galilean addition law for 
velocities. According to the Galilean addition law, the velocity of light should not be the same in all inertial 
frames. Therefore, Maxwell’s equations and Newton’s laws of motion are mutually inconsistent. 

31.18. Our vision begins with chemical reactions in the rod and cone cells of the retinas of our eyes, which release 
neurotransmitters in response to electromagnetic radiation in the visible range. These are resonant 
processes –the transfer of energy from the electromagnetic field to the nervous system is enhanced by a 
matching of frequencies. As in all resonances, high amplification can only be achieved in a narrow 
resonance peak. In order to achieve the sensitivity necessary for seeing, a narrow bandwidth is needed. 
Therefore, the narrow frequency band is necessary for our eyes to have sufficient sensitivity. This 
sensitivity allows seeing in high and low intensity situations. This is the reason that it is impossible to have 
a wide range of frequencies that can be seen. 

31.19. (a)  From energy conservation, the power per unit area or intensity of radiation from a point source must 
be inversely proportional to 2 .r   
(b)The radiation field falls off with distance at the same rate as the electrostatic field of a point charge 
which falls off according to 2/ .E kQ r=  

31.20. As discussed in Section 31.10, LCD displays use polarizing filters in one of their display components. 
Therefore, the light emitted by the LCD is a polarized light. Since some sunglasses also have polarizing 
filters for their lenses, the intensity of LCD light passing through the glass varies as the sunglasses are 
rotated. It can be concluded that the sunglasses must be polarizing the light. 

31.21.  

 

Since the light reaching 2P  is polarized, the transmitted intensity is given by 2
2 1 cos .I I θ=  Similarly, the 

intensity passing through 3P  is given by ( ) ( )2 2 2 2
3 2 1cos 90 cos sin sin 2 / 4.I I Iθ θ θ θ= ° − = =  Therefore, as 

the intermediate filter is rotated, the intensity of light passing through the polarizers will increase to a 
maximum at 45θ = °  and then it will decrease to zero at 90θ = °  and it will continue in this pattern every 
45°  increase in the rotation of the second polarizer. 

 
Exercises 

31.22.  
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Applying Maxwell’s law of induction along a closed loop of radius, r, gives: 

E
0 0 ,

d
B dS

dt
µ ε

Φ
• =∫




 where EΦ  is given by 2
E .EA E RπΦ = =  

Substituting the expression for EΦ  into the equation for Maxwell’s law gives: 

( )2 2
0 0 0 0  2 .dE dEB dS R B r R

dt dt
µ ε π π µ ε π= ⇒ =∫  

Thus, the magnetic field is: 
2

0 0
1 .
2

R dEB
r dt

µ ε  
=  

 
 Substituting R = 0.0600 m, r = 0.100 m and 

/ 10.0 V/m sdE dt =  yields: 

( )( ) ( ) ( )
2

7 12 180.0600 m1 4 10  H/m 8.85 10  F/m 10.0 V/m s 2.00 10  T.
2 0.100 m

B π − − −= ⋅ ⋅ = ⋅  

Because /dE dt  is positive, the direction of B


 is counterclockwise, as shown in the figure above. 

31.23. THINK:  A magnetic field can be produced by a current and by induction due to a change in an electric 
flux. To solve this problem, use the Maxwell-Ampere law. There is no current between the plates, but there 
is a change in the electric flux.  The wire carries a current 20.0 A.i =  The parallel plate capacitor has 
radius 4.00 cm,R =  and separation 2.00 mm.s =  The radius of interest is 1.00 cmr = from the center of 
the parallel plates. 
SKETCH:   

 
 

RESEARCH:  Since there is no current between the capacitor plates, the Maxwell-Ampere law becomes: 

E
0 0 .

d
B dS

dt
µ ε

Φ
=∫






 

SIMPLIFY:  Applying this law along a circular Amperian loop with a radius, ,r R≤  as shown above. Since 

B


 is parallel to ,dS


 the left-hand side of the above equation is 2 .B dS B dS B rπ= =∫ ∫




 

 Assuming the 

electric field, ,E


 is uniform between the capacitor plates and directed perpendicular to the plates, the 

electric flux through the loop is 2
E r .EA E rπΦ = =  Thus, the Ampere-Maxwell law becomes: 

( ) 2
0 02 .dEB r r

dt
π µ ε π=  

Therefore, the magnetic field is: 0 0 .
2

r dEB
dt

µ ε 
=  
 

 Since the electric field of the capacitor is 0/ ,E σ ε=  the 

rate of change of the electric field is given by: 

( ) ( )0 R
0 0 0 R

1 1 1/ / .
dqdE d d d q A

dt dt dt dt A dt
σσ ε

ε ε ε
     

= = = =     
     

 

Since i = dq/dt,  2
0

.dE i
dt Rε π

=  Using this result, the magnetic field is: 0 0 0
2 2

0

.
2 2

r iiB r
R R

µ ε µ
ε π π

   
= =   
   

 

CALCULATE:  
( )( )

( )
( )

7
5

2

4 10  H/m 20.0 A
0.0100 m 2.50 10  T

2 0.0400 m
B

π

π

−
−

⋅
= = ⋅  
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ROUND:  Three significant figures are required: 52.50 10  TB −= ⋅ . 
DOUBLE-CHECK:  This is the same as calculating a magnetic field inside a wire with radius, R. Applying 
Ampere’s law gives:  

2
0 0

2 2 .
2 2

irB i r
r R R

µ µπ
π π π

   
= =   

  
 This is the same result as above. 

31.24. THINK:  To determine the electric field, apply Faraday’s law of induction.  The solenoid is 20.0 cm long, 
2.00 cm in radius, and has 500. turns.  The current varies from 3.00 A to 1.00 A in 0.100 s. 
SKETCH:   

 
 

RESEARCH:  The magnetic field inside a solenoid is given by 0 0 / .B ni Ni Lµ µ= =  Applying Faraday’s law 
along a loop with radius, r, gives: 

B1 .
2

d
E

r dtπ
Φ 

= − 
 

 

SIMPLIFY:  Substituting 2
B 0 /BA Ni r Lµ πΦ = =  into the above equation yields: 

2
0 0 0 2 11 .

2 2 2
N r Nr Nr i idi diE

r L dt L dt L t
µ π µ µ

π
  −     = − = − = −        ∆       

 

CALCULATE:  
( )( )( )

( )

7
4

4 10  H/m 500. 0.0100 m 1.00 A 3.00 A 3.142 10  V/m
2 0.200 m 0.100 s

E
π −

−
 ⋅ −  = − = ⋅    

 

ROUND:  Keeping three significant figures: 43.14 10  V/m.E −= ⋅  
DOUBLE-CHECK:  The direction of the induced electric field must be such that the magnetic field 
induced by the current opposes the change in magnetic flux.  Because the magnetic flux is decreasing, the 
induced magnetic field will be in the same direction as the original magnetic field.  The fact that the 
calculated electric field is positive confirms that this requirement is satisfied. 

31.25.   

 
 

The displacement current di produced by a rate of change in the electric field of a parallel plate capacitor is 

d 0 E / .i d dtε= Φ  The flux EΦ is given by E 0 0/ / .A qσ ε εΦ = =  Therefore, the displacement current is: 

d 0
0

1 10.0 μA.
dq

i
dt

ε
ε

= =
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31.26. THINK This problem is similar to problem 31.21 except that here, the rate of change of the potential 
difference across the capacitor is given. In order to get the induced magnetic field, apply Maxwell’s law of 
induction.  The parallel plate capacitor has radius   R =10.0 cm and separation 5.00 mm.d =  The potential 
in increasing at a rate of 1.20 kV/s.  The radius of interest is 4.00 cmr = from the center of the capacitor. 
SKETCH:   

 
 

RESEARCH:  Applying Maxwell’s law of induction along a circular loop with a radius,   r ≤ R,  and 

assuming a uniform electric field yields E
0 0 .

d
B dS

dt
µ ε

Φ
• =∫


   
 

SIMPLIFY:  
( ) 0 0E

0 0 0 0 0 0

/
2

d V d Ad dEA dVB dS B r A
dt dt dt d dt

µ ε
π µ ε µ ε µ ε

Φ
• = = = = =∫




 

The magnetic field is: 
( ) ( )2

0 0 0 0 .
2 2

d V d Vr r
B

rd dt d dt
µ ε π µ ε
π

∆ ∆   = ⋅ =   
  

 

CALCULATE:  
( )( )( )

( )
7 12

3 14
3

4 10  H/m 8.85 10  F/m 0.0400 m
1.20 10  V/s 5.338 10  T

2 5.00 10  m
B

π − −
−

−

 ⋅ ⋅
 = ⋅ = ⋅
 ⋅ 

 

ROUND:  Rounding to three significant figure gives 145.34 10  T.B −= ⋅  
DOUBLE-CHECK: Treating the area between the parallel plates as a solid conductor carrying a current of 
magnitude equal to the displacement current,   id = ε0 AdE / dt , the problem becomes one of finding the 
magnetic field inside a current carrying wire.  Applying Ampere’s Law, 

  

B =
µ0id

2πR2






r =
µ0ε0 AdE / dt

2πR2






r =
µ0ε0 πR2( )dV / dt

2πR2d









 r =

µ0ε0

2d
dV
dt

r , which is the same result as that 

obtained by applying Maxwell’s law of induction. 

31.27. THINK:  To determine the displacement current, the electric field inside the conductor is needed. 
SKETCH:   

 
 

RESEARCH:  The displacement current is defined as: d 0 E / .i d dtε= Φ  The electric flux inside the 

conductor is: ( )E / .EA V L AΦ = =  
SIMPLIFY:  Since V = iR, the electric flux becomes / .iRA LΦ =  Therefore, the displacement current is: 

d 0 .A dii R
L dt

ε  
=  

 
 

Using /R L Aρ=  or / ,RA Lρ =  the displacement current simplifies to: d 0 .dii
dt

ε ρ=  

CALCULATE:  Not required. 
ROUND:  Not required. 
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DOUBLE-CHECK:  Since the current depends in part on the resistance of the current carrying conductor, 
and the resistance depends on the geometry and resistivity of the material, it makes sense that the current 
is some function of the resistivity. 

31.28. The amplitude of the B field of an electromagnetic field is related to the electric field by / .B E c=  
Therefore, 

7
8

250. V/m 8.33 10  T.
3.00 10  m/s

B −= = ⋅
⋅

 

31.29. The distance traveled by light is given by: 

( )8 9 ft3.00 10  m/s 1.00 10  s 0.300 m 0.300 m 3.28 0.984 ft.
m

x c t −  = ∆ = ⋅ ⋅ = = = 
 

 

31.30. The interval of time taken by light to travel: 

(a)  from the Moon to the Earth is: 
8

8

3.84 10  m 1.28 s,
3.00 10  m/s

dt
c

⋅
∆ = = =

⋅
 

(b)  from the Sun to the Earth is: 
11

8

1.50 10  m 500 s 8.33 min,
3.00 10  m/s

t ⋅
∆ = = =

⋅
 

(c)  Here we first calculate the time from Jupiter to the Sun: 

Perihelion: 
11

8

7.41 10  m 2470 s
3.00 10  m/s

t ⋅
∆ = =

⋅
 

Apehelion: 
11

8

8.17 10  m 2723 s
3.00 10  m/s

t ⋅
∆ = =

⋅
 

The shortest time is then the time from Jupiter at perihelion to the Earth when it is on the same side, 
which is 2470 500 1970 s 32.8 min.− = = The longest time is the time from Jupiter at aphelion to the Earth 
on the other side, which is 2723 500 3223 s 53.7 min.+ = =  

31.31.  (a)  The time delay from New York to Baghdad by cable is 
7

8

1 10  m 0.03 s.
3.00 10  m/s

dt
c

⋅
∆ = = =

⋅
 

(b)  The time delay via satellite is given by / .t d c∆ =  The distance, d, is given by twice the distance from 

New York to the satellite, that is, ( ) ( )2 2
2 36000 km 5000 km/2 2 36345 km 72691 km.d = + = ⋅ =  The 

time delay is: 
7

8

7.269 10  m 0.24 s.
3.00 10  m/s

t ⋅
∆ = =

⋅
 

When the signal travels by the cable, the time delay is very short, so it is not noticeable. However, the time 
delay for the signal traveling via satellite is about a quarter of a second. This means in a conversation, Alice 
will find that she receives a response from her fiancé after 0.5 s, which is quite noticeable. 

31.32. THINK:  The speed of electromagnetic waves in a vacuum is different from the speed of such waves in 
different media.  The difference depends on the dielectric constant, κ , and the relative permeability, mκ , 
of the material. 
SKETCH:  Not required. 

RESEARCH:  The speed of electromagnetic waves in a material is 1/v µε=  and the speed in a vacuum 

is 0 01/ .c µ ε=  The permittivity is 0 ,ε κε=  and the permeability is m 0 .µ κ µ=   
SIMPLIFY:  The ratio of the speed of electromagnetic waves in a vacuum to the speed in a material is: 

0 0
m

0 0

1/
.

1/
c
v

µ ε µε κκ
µ εµε

= = =  This ratio is the index of refraction. 

CALCULATE:  Not applicable. 
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ROUND:  Not applicable. 
DOUBLE CHECK:  The calculated ratio is the index of refraction, which is a measure of how much the 
speed of light, or other electromagnetic waves, is reduced in a medium compared to the speed in a 
vacuum. 

31.33. The relation between the wavelength of light and the frequency is .f cλ =  Therefore, the frequencies for 
the wavelengths of 400 nm and 700 nm are: 

8
14

1 9

3.00 10  m/s 7.5 10  Hz
400 10  m

f
−

⋅
= = ⋅

⋅
 and 

8
14

2 9

3.00 10  m/s 4.3 10  Hz.
700 10  m

f
−

⋅
= = ⋅

⋅
 

The range of frequencies is 144 10  Hz⋅  to 148 10  Hz.⋅  

31.34. Using the relation between frequency and wavelength, the operating frequency of the signal of a cell phone 
is / .f c λ=  Since / 4,L λ=  the frequency is: 

( )
8

83.00 10  m/s 9.4 10  Hz 940 MHz.
4 4 0.080 m
cf
L

⋅
= = = ⋅ =  

31.35. THINK:  To solve this problem, the frequency of oscillation of an RLC circuit must be determined.  The 
circuit has a capacitor 122.0 10  F,C −= ⋅  and must have a resonance frequency such that it will generate a 
radio wave with wavelength 150 m.λ =  
SKETCH:  A sketch is not required. 

RESEARCH:  The angular frequency of the RLC circuit in resonance is 0 1/ .LCω =  

SIMPLIFY:  Using 0 2 fω π=  and / ,f c λ=  the above equation becomes: 2 1 .c
LC

π
λ

= The inductance 

required in the RLC circuit is: 
( )

2

2 .
2

L
c C

λ

π
=  

CALCULATE:  
( )

( ) ( )

2

2
8 12

150 m
0.00317 H

2 3.00 10  m/s 2.0 10  F
L

π −
= =
 ⋅ ⋅ 

 

ROUND:  Rounding to two significant figures yields 3.2 mH.L =  
DOUBLE-CHECK:  A wavelength of 150 m corresponds to a frequency of 62 10  Hz.⋅  Such a large 
frequency necessarily requires a fairly small inductance. 

31.36. THINK:  The radio frequencies given are: 1 91.1 MHz,f =  2 91.3 MHz,f =  and 3 91.5 MHz.f =  To 
determine the wavelength width of the band-pass filter used in a radio receiver, the wavelengths of the 
three radio frequencies are required. 
SKETCH:  A sketch is not required. 
RESEARCH:  Wavelength is related to frequency by / .c fλ =  The maximum bandwidth required to 

distinguish between two adjacent frequencies is given by ( )12 1 22λ λ λ= −  for 1f  and 2 ,f  and 

( )23 2 32λ λ λ= −  for 2f  and 3 .f  Thus, the maximum allowable bandwidth to distinguish all three 

frequencies is ( )12 23min , .λ λ λ∆ = ∆ ∆  
SIMPLIFY:  Simplification is not necessary. 
CALCULATE: The corresponding wavelengths of the three radio frequencies are given by: 

8

1 6
1

3.00 10  m/s 3.293 m,
91.1 10  Hz

c
f

λ ⋅
= = =

⋅
 

8

2 6
2

3.00 10  m/s 3.286 m,
91.3 10  Hz

c
f

λ ⋅
= = =

⋅
 and finally, 

8

3 6
3

3.00 10  m/s 3.279 m.
91.5 10  Hz

c
f

λ ⋅
= = =

⋅
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The differences of two adjacent wavelengths are: 
( )12 2 3293 mm 3286 mm 14 mmλ∆ = − =  and ( )23 2 3286 mm 3279 mm 14 mm.λ∆ = − =  

Therefore, the maximum allowable wavelength bandwidth is 14 mm.λ∆ =  
ROUND:  Rounding is not necessary. 
DOUBLE-CHECK:  A larger wavelength width in the band pass filter would allow overlap between two 
signals, resulting in interference.  This result is reasonable. 

31.37. The magnitude of a Poynting vector is given by:  2

Power Power .
Spherical Area 4

S
Rπ

= = Therefore, the magnitudes 

of the Poynting vectors are: 

(a)  
( )

2
2

1.5 W 1.3 W/m ,
4 0.30 m

S
π

= =  

(b)  
( )

2
2

1.5 W 1.2 W/m ,
4 0.32 m

S
π

= =  

(c)  
( )

2
2

1.5 W 0.12 W/m .
4 1.00 m

S
π

= =  

31.38. (a)  The electric field experienced by an electron is: 

( )( )
( )

9 2 2 19
11 11

22 9

8.99 10  N m / C 1.602 10  C
5.761 10  V/m 5.8 10  V/m.

0.050 10  m

kq
E

r

−

−

⋅ ⋅
= = = ⋅ ≈ ⋅

⋅
 

(b)  The intensity of a laser beam is related to the rms electric field by: 

( )
( )( )

211
2 20 2
rms 7 8

0

5.761 10  V/m1 8.8 10  W/m .
4 10  H/m 3.00 10  m/s

I E
cµ π −

⋅
= = = ⋅

⋅ ⋅
 

31.39. The intensity of the laser beam is I = P/A. This intensity is related to the amplitude of the electric field by 

( )2
0/ 2 .I E cµ=  Therefore, the amplitude of the electric field in the beam is: 

( )( )( )
( )

7 8 3
6 60

23

2 4 10  H/m 3.00 10  m/s 3.00 10  W2
1.697 10  V/m 1.70 10  V/m.

0.500 10  m

cP
E

A

πµ

π

−

−

⋅ ⋅ ⋅
= = = ⋅ ≈ ⋅

⋅
 

31.40. The electric field of an electromagnetic radiation is related to its magnetic field by .E cB=  Therefore, the 

maximum E in the region is ( )( )8 5
m m 3.00 10  m/s 0.00100 T 3.00 10  V/m.E cB= = ⋅ = ⋅   The period of 

oscillation is: 
1 1 1 s.

1 Hz
T

f
= = =  The magnitude of the Poynting vector is: 

( )( )5
8 2 8 2

m m m 7
0

3.00 10  V/m 0.001 T1 2.3873 10  W/m 2.39 10  W/m .
4 10  H/m

S E B
µ π −

⋅
= = = ⋅ = ⋅

⋅
 

31.41. The average value of the Poynting vector, ave ,S  is: 

( )
( )( )

2

2 2
ave m 7 8

0

100. V/m1 13.3 W/m .
2μ 2 4 10  H/m 3.00 10  m/s

S E
c π −

= = =
⋅ ⋅

 

(a)  The average energy density is: ( )( )22 12 2 8 3
0

1 1 8.85 10  C / N m 100. V/m 4.43 10  J/m .
2 2

u Eε − −= = ⋅ = ⋅  

(b)  The amplitude of the magnetic field is: 7
8

100. V/m 3.33 10  T.
3.00 10  m/s

EB
c

−= = = ⋅
⋅
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31.42. THINK:  The maximum electric field of a beam of light is given as 6
m 3.0 10  V/m.E = ⋅  

SKETCH:  A sketch is not necessary. 
RESEARCH:   
(a)  The magnitude of a magnetic field is related to the magnitude of an electric field by / .B E c=  
(b)  The intensity of the wave is given by ( )2

m 0/ 2 .I E cµ=  
(c)  If the electric field is above this maximum value, the air will be ionized by the presence of the electric 
field. The energy of the wave will be dissipated in the ionized air. 
SIMPLIFY:  Simplification is not necessary. 
CALCULATE:   

(a)  
6

2
8

3.0 10  V/m 1.0 10  T
3.00 10  m/s

B −⋅
= = ⋅

⋅
 

(b)  
( )

( )( )

26
10 2

7 8

3.0 10  V/m
1.19 10  W/m

2 4 10  H/m 3.00 10  m/s
I

π −

⋅
= = ⋅

⋅ ⋅
 

ROUND:  Round the results to two significant figures. 
(a)  21.0 10  TB −= ⋅  
(b)  10 21.2 10  W/mI = ⋅  
DOUBLE-CHECK:  This is a very large magnetic field, and a very high intensity, as expected for a field at 
the breakdown threshold.  The results are reasonable. 

31.43. THINK:  A laser beam has a power of 10.0 W and a beam diameter of 1.00 mm. Assume the intensity of 
the beam is the same throughout the cross section of the beam. 
SKETCH:  A sketch is not required. 
RESEARCH: 
(a)  The intensity of the laser beam is given by I = P/A. Area 2 .A rπ=  

(b)  The intensity is related to the rms electric field by ( )2
rms 0 rms 0/   .I E c E cIµ µ= ⇒ =  

(c)  The time-averaged Poynting vector is equal the intensity of the beam, ave .S I=  

(d)  ( )
( ) 2

0

,
,

E x t
S x t

cµ

  =  and ( ) ( )m, sin .E x t E kx tω φ= − +   

(e)  The rms magnetic field is rms rms / .B E c=  
SIMPLIFY:   

(d)  Substituting the expression for ( ),E x t  gives: ( ) ( )2 2
m

0

1, sin .S x t E kx t
c

ω φ
µ

= − +  Because ( )0,0 0,S =  

take 0.φ =  Therefore, ( ) ( )2, 2 sin .S x t I kx tω= −  Note that 2 2 /f cω π π λ= =  and 2 / .k π λ=  
CALCULATE:   

(a)  
( )

7 2
23

10.0 W 1.2732 10  W/m
0.500 10  m

I
π −

= = ⋅
⋅

 

(b)  ( )( )( )7 8 7 2 4
rms 4 10  H/m 3.00 10  m/s 1.2732 10  W/m 6.932809 10  V/mE π −= ⋅ ⋅ ⋅ = ⋅  

(c)  7 2
ave 1.2732 10  W/mS = ⋅  

(d)  ( ) ( ) ( )

( ) ( )

8
7 2 2

9 9

7 2 2 7 1 15

2 3.00 10  m/s2, 2 1.2732 10  W/m sin
514.5 10  m 514.5 10  m

2.5464 10  W/m sin 1.22122 10  m 3.66366 10  Hz

S x t x t

x t

ππ
− −

−

  ⋅   = ⋅ −   ⋅ ⋅    
 = ⋅ ⋅ − ⋅ 
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(e)  
4

4
rms 8

6.932809 10  V/m 2.30936 10  T
3.00 10  m/s

B −⋅
= = ⋅

⋅
 

ROUND:   
(a) 7 21.27 10  W/m .I = ⋅  This intensity is much larger than the intensity of sunlight on Earth  

( )21400 W/m .  

(b)  4
rms 6.93 10  V/mE = ⋅  

(c)  7 2
ave 1.27 10  W/mS = ⋅  

(d) ( ) ( ) ( )( )7 2 2 7 1 15, 2.5464 10  W/m sin 1.22122 10 m  3.66366 10 Hz .S x t x t−= ⋅ ⋅ − ⋅  

Rounding the coefficients to three significant figures, 

( ) ( ) ( )( )7 2 2 7 1 15, 2.55 10  W/m sin 1.22 10 m  3.66 10 Hz .S x t x t−= ⋅ ⋅ − ⋅  

Note that for given values for x and t, it would be better to keep the unrounded coefficients and then 
round the calculted value of S.  
(e)  4

rms 2.31 10  TB −= ⋅  
DOUBLE-CHECK:  The laser has a very high power output in a very narrow beam.  This is a desirable 
property in a laser.  The results make sense. 

31.44. THINK:  The Poynting vector is proportional to .E B×
 

 Assume that the electric field in a conductor is 
uniform. The conductor is placed along the y-axis and the current is flowing along the positive y-direction. 
This means the electric field is in the positive y-direction. 
SKETCH:   
(a) (b) 

 

 

 

RESEARCH:  The Poynting vector is defined as 0/ .S E B µ= ×
  

 

(a)  The electric field on the surface of the conductor is ( ) ˆ/ .E V L y=


 Assume a long cylindrical conductor 
and the magnetic field on the surface is: 

( )0 0ˆ ˆ ˆcos sin .
2 2

I I
B x z

R R
µ µ

θ θ θ
π π

= = −


 

(b)  The integral of S dA
 

  is: ,S dA S dA= −∫ ∫
 



 

 since .̂dA dAr=


 

SIMPLIFY:   
(a)  The Poynting vector is the cross product: 

( ) ( ) ( )0

0

1 ˆ ˆ ˆ ˆ ˆ ˆcos sin cos sin .
2 2 2

IV VI VIS y x z z x r
L R RL RL

µ
θ θ θ θ

µ π π π
    

= × − = − − = −    
    



 

This means that the Poynting vector is directed toward the cylindrical conductor with a magnitude of 
( )/ 2 .S VI RLπ=  
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(b)  Taking the integral over the surface of the cylinder: 

( ) ( ) 2
R R2   2 2 .

2
VIdA RL S dA S RL RL VI IR I I R

RL
π π π

π
= ⇒ = − = − = − = − = −∫ ∫

 



 

 

Note that the subscript, R, is to distinguish that RR  means resistance. 
CALCULATE:  Not necessary. 
ROUND:  Not necessary. 
DOUBLE-CHECK:  Dimensional analysis shows that the units of the calculated result are 2W/m ,  as 
required for the Poynting vector. 

31.45. (a)  The intensity above the Earth’s atmosphere is 21.40 kW/m .I =  

( )( )( )
( )

2 3 2 8 7
rms rms 0

0

rms max

1   1.40 10  W/m 3.00 10  m/s 4 10  T m/A

726.49 V/m  2 726.49 V/m 1027.4 V/m.

I E E Sc
c

E E

µ π
µ

−= ⇒ = = ⋅ ⋅ ⋅

= → = =  

6
8

1027.4 V/m 3.4247 10  T.
3.00 10  m/s

EB
c

−= = = ⋅
⋅  

6
max max1030 V/m 1.03 kV/m , 3.42 10  T.E B −= = = ⋅  

(b)  
3 2

r 8

1.00 10  W/m 3.33333 Pa 3.33 Pa,
3.00 10  m/s

IP
c

µ µ⋅
= = = ≈

⋅
  

( )( )6 2
r r  3.33333 10  Pa 0.750 m 2.50 N.FP F P A

A
µ−= ⇒ = = ⋅ =  

31.46.  (a)  First, determine the force needed to accelerate a 10.0 ton spaceship by 21 m/s .  Newton’s second law, 

,F ma=  gives: ( )( )3 2 410.0 10  kg 1.00 m/s 1.00 10  N.F = ⋅ = ⋅  Now, the radiation pressure is given by 

r / .P F A=  The radiation pressure is related to the intensity of the radiation by r /P I c=  (total 
absorption). Comparing the two equations for the radiation pressure gives: 

( )( )4 8
9 2

3 2

1.00 10  N 3.00 10  m/s
  2.14 10  m .

1.40 10  W/m
F I FcA
A c I

⋅ ⋅
= ⇒ = = = ⋅

⋅
 

This area is large. Moreover, even if the scientists are able to get the astronauts to another planet, how do 
they get them back to Earth? 

(b)  For perfect reflection: ( )9 2 9 2
r

2 1  2.14 10  m 1.07 10  m .
2 2

I F FcP A
c A I

= = ⇒ = = ⋅ = ⋅  

31.47. The net force on the sail is .F A P= ∆  The area, A, is ( )22 3 8 210.0 10  m 3.142 10  m .A Rπ π= = ⋅ = ⋅  The 

differential pressure, ,P∆  is: 
2 .I I IP
c c c

∆ = − =  

The intensity, I, is given by the Stefan-Boltzman law as: 

( )( )44 8 2 4 6 25.67 10  W/m  K 2.725 K 3.126 10  W/m .I Tσ − −= = ⋅ = ⋅  
6 2

14
8

3.126 10  W/m 1.042 10  Pa
3.00 10  m/s

P
−

−⋅
⇒ ∆ = = ⋅

⋅   

 
( )( )8 2 14 6 3.142 10  m 1.042 10  Pa 3.27 10  NF − −⇒ = ⋅ ⋅ = ⋅  

31.48. THINK:  There will be a constant force on the astronaut due to the radiation pressure from the laser. This 
force can be determined from the laser power, and then the time required to reach the shuttle can be 
determined. d = 20.0 m, m = 100.0 kg and P = 100.0 W. 
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SKETCH:   

 
 

RESEARCH:  r
2IP
c

=  (totally reflecting),   ,PI
A

=   r ,F maP
A A

= =   21
2

x at=  (constant acceleration) 

SIMPLIFY:  r
r   ,

P AmaP a
A m

= ⇒ =   
( )

r

2 /2 2 2  
P AI A P PP a

c c m Ac mc
 

= = ⇒ = = 
 

 

21 2  2
2 2

d mc dmcx d at t d
a P P

   = = ⇒ = = =   
   

 

CALCULATE:  
( )( )( )8

4
20.0 m 100.0 kg 3.00 10  m/s

7.746 10  s
100.0 W

t
⋅

= = ⋅  

ROUND:  47.75 10  s 21.5 ht = ⋅ =  
DOUBLE-CHECK:  The time decreases as the laser power increases or the mass decreases. This is what 
would be expected. 

31.49. THINK:  The applied force can be determined from the given data. From the force, the radiation pressure, 
and then the laser power used in the demonstration can be determined. d = 2.00 mm, t = 63.0 s, 
m = 0.100 g and 2r = 1.00 mm. 
SKETCH:   

 
 

RESEARCH:  / ,I P A=   2 ,A rπ=   r
2 ,I maP
c A

= =   21
2

d at=  

SIMPLIFY:  2 ,P IA I rπ= =   
2 ,

2 2
mca mcaI

A rπ
= =   

2

2da
t

= 2
2 2 2

2 
2 22

mca mca mc d mcdP r
r t t
π

π
 

⇒ = = = = 
 

 

CALCULATE:  
( )( )( )

( )

3 8 3
2

2

0.100 10  kg 3.00 10  m/s 2.00 10  m
1.512 10  W

63.0 s
P

− −

−
⋅ ⋅ ⋅

= = ⋅  

ROUND:  21.51 10  W 15.1 mWP −= ⋅ =  
DOUBLE-CHECK:  Note that the result does not depend on the spot size of the laser. The power is all that 
matters. This result is reasonable. 

31.50. THINK:  The radius of the particle can be determined if the required mass of the particle is known 
because the density is given. The mass of the particle can be determined by comparing the radiation force 
and the gravitational force. 32000. kg/m ,ρ =  111.50 10  m,d = ⋅  302.00 10  kg,M = ⋅  

rad grav/ 1.00% 0.0100,F F = =  21400. W/m .I =  
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SKETCH:   

 
 

RESEARCH:  grav 2

G ,MmF
d

=   34 ,
3

m rπ ρ=   rrad ,F P A=   2 ,A rπ=   r 2 / .P I c=  

SIMPLIFY:  3
grav 2 2

G G 4 ,
3

Mm MF r
d d

π ρ 
= =  

 
  ( )2

rad r
2IF P A r
c

π= =  

( )

3
2 2 2

rad grav 2

4 G
32 2 30.01   0.01   

0.01 2 G40.01 G
3

r M
r I I d IdF F r
c c c Md M

π ρ
π π

ρπρ

 
    = ⇒ = ⇒ = =    

 
 

 

CALCULATE: 

( )( )
( ) ( )( )( )( )

22 11
5

8 3 11 3 1 2 30

3 1400. W/m 1.500 10  m
5.901 10  m

0.0100 2 3.00 10  m/s 2000. kg/m 6.673 10  m  kg  s 2.00 10  kg
r −

− − −

⋅
= = ⋅

⋅ ⋅ ⋅
 

ROUND:  59.0 μmr =  
DOUBLE-CHECK:  If the radiation pressure on the particle is to be equal to the gravitational force on it, 
its radius would have to be smaller by a factor of 100. This indicates that very small particles would be 
pushed away from the sun, while more massive objects would be pulled toward the sun.  This is consistent 
with observation.  The result makes sense. 

31.51. THINK:  Given the density and volume, the mass can be determined. Given the power and spot size of the 
laser, the intensity and the radiation pressure of the laser can be determined. To determine how many 
lasers are needed, calculate the total force required and divide this by the force per laser applied. 

31.00 mg/cm ,ρ =  D = 2.00 mm, t = 0.100 mm, P = 5.00 mW, d = 2.00 mm. 
SKETCH:   

 
RESEARCH:   

(a) The weight is given by w = mg, where ( )2
/ 2 .m D tπ ρ=   Note that 3 31 mg/cm 1 kg/m .=   

(b)  r
IP
c

=   (absorbing material),  ,PI
A

=   
2

.
2
dA π  

=  
 

 

(c)  las r .F P A=  The number of lasers needed is given by las/ .N w F=  
SIMPLIFY:   

(a)  
2

4
D t g

w
π ρ

=  

(b)  
2 2

4 4 ,PI P
d dπ π

= =   r 2

4I PP
c d cπ

= =  

(c)  las r ,IA P PF P A A
c cA c

= = = =   
las

w wcN
F P

= =  
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CALCULATE:   

(a)  
( ) ( )( )( )23 3 3 2

9
2.00 10  m 0.100 10  m 1.00 kg/m 9.81 m/s

3.082 10  N
4

w
π − −

−
⋅ ⋅

= = ⋅  

(b)  
( )
( )

3
3 2

23

4 5.00 10  W
1.592 10  W/m ,

2.00 10  m
I

π

−

−

⋅
= = ⋅

⋅
 

3 2
6 2

r 8

1.592 10  W/m 5.30510  N/m
3.00 10  m/s

IP
c

−⋅
= = =

⋅
 

(c)  
( )( )

( )
9 8

3

3.082 10  N 3.00 10  m/s
184.9

5.00 10  W
N

−

−

⋅ ⋅
= =

⋅
 

ROUND:   
(a)  93.08 10  N 3.08 nNw −= ⋅ =  
(b)  21.59 kW/m ,I =  2

r 5.31 μN/mP =  
(c)  N = 185 lasers 
DOUBLE-CHECK:  Even though the object is very light, it would still require a large power output to 
produce enough radiation pressure to overcome the force of gravity.   

31.52. The first filter is out of alignment by 15.0°  with the incident light. The second filter is out of alignment by 
30.0°  with the incident light. The intensity of the transmitted light is 

( ) ( ) ( )2 2 2 2 2 2
0 1 2cos cos 1.00 cos 15.0 cos 30.0 0.69976 W/m 0.700 W/m .I I θ θ= = ° ° = ≈  

31.53.  

 

( ) ( ) ( )2 3 2 2 2
0 cos 10.0 10  W cos 90.0 30.0 10  W cos 60.0 2.50 mWI I θ − −= = ⋅ ° − ° = ° =  

31.54. THINK:  Only half the intensity gets through the first polarizer since the incident light is un-polarized. 
After this, multiply the transmission for each polarizer to obtain the final intensity. 10 .θ = °  
SKETCH:   

 
 

RESEARCH:  1 0 / 2,I I=  2
1 cosn nI I θ−=  (n = 2, 3, 4, 5) 

SIMPLIFY: ( )2 2
2 1 0cos cos / 2,I I Iθ θ= =  ( )2 4

3 2 0cos cos / 2,I I Iθ θ= =  ( )2 6
4 3 0cos cos / 2,I I Iθ θ= =  

( )2 8
5 4 0cos cos / 2I I Iθ θ= =  

CALCULATE:  ( )8
5 0 0cos 10 / 2 0.4424I I I= ° =  

ROUND:  5 00.442I I=  
DOUBLE-CHECK:  Only 44.2%  of the original intensity passes through the polarizers. The first polarizer 
decreases the intensity by 50%, but the subsequent polarizers allow the majority of the light to pass 
through due to the smaller angles.  This is a reasonable result. 
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31.55. THINK:  First calculate the intensity of the light after it first passes through the two polarizers. Once the 
intensity is calculated, the magnitude of the electric and magnetic fields can be determined. The angles of 
the first and second polarizers are 1 35θ = °   and 2 55θ = °,  respectively. The laser spot size diameter is 

 1.00 mmd = and the laser power is P = 15.0 mW. 
SKETCH:   

 
 

RESEARCH:  2
1 0 1cos ,I I θ=  ( )2

2 2 11 cos ,I I θ θ= −  0 ,PI
A

=  
2

,
2
dA π  

=  
 

 
2

0

1 ,
2

EI
cµ

 
=  

 
 E c

B
=  

SIMPLIFY:  ( ) ( )2 2 2
2 1 2 1 0 1 2 1cos cos cos ,I I Iθ θ θ θ θ= − = −  ( )2 2

0 2 1 2 12 2

4 4  cos cosP P PI I
A d d

θ θ θ
π π

= = ⇒ = −  

02 ,E Icµ=  B = E/c 

CALCULATE:  
( )
( )

( ) ( )
3

2 2 4 2
2 23

4 15.0 10  W
cos 35 cos 55 35 1.132 10  W/m

1.00 10  m
I

π

−

−

⋅
= ° ° − ° = ⋅

⋅
 

( )( )( )4 2 8 7 1 32 1.132 10  W/m 3.00 10  m/s 4 10  T m A 2.921 10  V/mE π − −= ⋅ ⋅ ⋅ = ⋅

3
6

8

2.921 10  V/m 9.737 10  T
3.00 10  m/s

B −⋅
= = ⋅

⋅
 

ROUND:  4 2
2 1.13 10  W/m ,I = ⋅  32.92 10  V/m,E = ⋅  69.74 10  TB −= ⋅  

DOUBLE-CHECK:  The initial intensity of the laser light is about 4 21.9 10  W/m .⋅  The initial electric and 
magnetic fields are also significantly larger.  It is expected that some of the intensity of the laser beam 
would be blocked by the polarizers. 

31.56.  

 
 

The total distance traveled by the beam is 2d.  

( )( )8 3
6

3.00 10  m/s 50.0 10  s2   7.50 10  m
2 2

d ctv c d
t

−⋅ ⋅
= = ⇒ = = = ⋅  

31.57. The total average power on all of the photovoltaic panels is equal to the average power times the area: 

( )( )( )2300. W/m 3.00 m 8.00 m 7.20 kW.=  

The total electrical energy for 30 days is the product of the total power times 30 days times the efficiency 
for converting the solar power into electricity: ( )( )( )total 7.20 kW 720 h 0.100 518 kW h.E = =  This is 
enough for a small energy-efficient home. 
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31.58. Use the fact that radiation pressure scales with intensity, and intensity goes linearly with the intrinsic 
power of the star, and inversely as the square of the distance away. Thus, if it is known that at the Earth’s 
orbit, the intensity is 21.35 kW/m , this intensity can be related to the radiation pressure at Earth’s orbit, 
and then to the hypothetical distance of Uranus’ orbit away from Betelgeuse.  Note that the radius of the 
earth's orbit is 111.50 10  m 1 AUEr ≈ ⋅ = and Uranus's orbit is 122.88 10  m 19.2 AU.Ur ≈ ⋅ =  

S
rE 2

E

P
,P

r
∝  rB 2

PB

U

P
r

∝  

( )( )
2 22

4 2rU E E
rU rE2

rE U
4 2

P P 110 27.1  I 27.1 I 27.1 1350 W/m
P 19.2P

3.66 10  W/m

B B

S US

P r r
R

P rr
   

= = = = = ⇒ = ⋅ =   
  

= ⋅

 

For a perfect absorber we have: 
2

4 2
8

36600 W/m 1.22 10  N/m ,  
3.00 10  m/s

rU
rU

I
P

c
−= = = ⋅

⋅
and for a perfect reflector we 

have: 
2

4 2
8

2 2 36600 W/m 2.44 10  N/m .
3.00 10  m/s

rU
rU

I
P

c
−⋅

= = = ⋅
⋅

Since no information is provided on the reflectivity 

of the surface being acted on by the radiation, the final solution is: 4 2 4 21 10  N/m 2 10  N/m ,  rUP− −⋅ < < ⋅  

31.59. 
2

8 2 5
06 2

0

power 200. W 2.00 10  W/m     2 3.88 10  V/m
area 21.00 10  m

ES E c S
c

µ
µ

   
= = = ⋅ = ⇒ = = ⋅   ⋅   

   

Note the 2 is in the denominator from: 
22 2

2

0 0

. Therefore,  and S =  = .  
2 22

rms
rms rms

EE E EE E
c cµ µ

= = The 

wavelength has nothing to do with the solution. 

31.60. 
8

6

2.9979 10  m/s  0.34901 m 34.901 cm.
848.97 10  Hz

cf c
f

λ λ ⋅
= ⇒ = = = =

⋅
 

31.61. ,P IAε=  
2

0

1 ,
2

EI
cµ

 
=  

 
 A = LW, and 0.18.ε =  

  
( ) ( )( )( )

( )( )
22

8 7
0

673 V/m 1.40 m 0.900 m 0.180
 136 W

2 2 3.00 10  m/s 4 10  T m/A
E LWP

c
ε

µ π −
⇒ = = =

⋅ ⋅
 

31.62. The displacement current between the capacitor plates is the same as the conventional current in the rest 
of the circuit. 

( ) ( )( )/ 3emf
6

25.0 V 0.3621 sexp 1.0288 10 0.36785 0.37845 mA
24,300 24,300 14.9 10  F

t RCV
i e

R
− −

−

 −   = = = ⋅ = Ω  Ω ⋅   
 

( )( )( )
( )11d

d 0 12 4 2
0

2 2

0.37845 mA  4.28 10  V/ m s
8.85 10  C / N m 1.00 10  m

idE dEi A
dt dt A

ε
ε − −

= ⇒ = = = ⋅
⋅ ⋅

 

31.63. 
( )

0 0
rms 0 0 2 2

4
2

µ µ
µ µ

ππ
 = = = = 
 

c P c PPE c I c
A dd

 

       
( )( )( )

( )

8 7

2

4 3.00 10  m/s 4 10  T m/A 0.40 300. W
100 V/m.

2 m

π

π

−⋅ ⋅ ⋅
= =  

31.64. ( )( )8 3  3.00 10  m/s 5.00 10  T 1.50 MV/mE c E cB
B

−= ⇒ = = ⋅ ⋅ =  
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31.65. The antinodes are spaced half a wavelength apart, / 2,d λ=  where / .c fλ =  

( )
8

2
9

3.00 10  m/s 6.25 10  m 6.3 cm
2 2 2.4 10  Hz
cd
f

−⋅
⇒ = = = ⋅ =

⋅
 

31.66. 21400 W/mI =  

(a)  ( )( )( )
2

2 8 7rms
rms 0

0

  1400 W/m 3.00 10  m/s 4 10  T m/A 726.5 V/m
E

I E Ic
c

µ π
µ

−= ⇒ = = ⋅ ⋅ =  

( ) 3
max rms2 2 726.5 V/m 1027 V/m=1.0 10  V/mE E= = = ⋅  

(b)  6 6max
max 8

1027 V/m 3.425 10  T 3.4 10  T
3.00 10  m/s

E
B

c
− −= = = ⋅ = ⋅

⋅
 

31.67. THINK:  The peak magnetic field can be determined from the speed of light and the peak electric field. 
The power of the bulb can be determined from its intensity, which can be determined from the electric 
and magnetic fields. Use the values r = 2.25 m and E = 21.2 V/m. 
SKETCH:   

 
 

RESEARCH:  ,E c
B
=  ,PI

A
=  

2

02
EI
cµ

=  

SIMPLIFY:   
(a)  B = E/c 

(b)  
2

0

.
2
EP IA A
cµ

= =  Light from a light-bulb is emitted isotropically, that is equally in all directions. To 

determine the power a distance, d, away from the light-bulb, the intensity at all points a distance, d, from 
the light-bulb must be summed. Hence, A should be the surface area of a sphere of radius, r:  

2 2
2

0

44   .
2

r EA r P
c
ππ
µ

= ⇒ =  

CALCULATE:   

(a)  8
8

21.2 V/m 7.067 10  T
3 10  m/s

B −= = ⋅
⋅

 

(b)  
( ) ( )

( )( )
2 2

8 7

4 2.25 m 21.2 V/m
37.92 W

2 3.00 10  m/s 4 10  T m/A
P

π

π −
= =

⋅ ⋅
 

ROUND:   
(a)  87.07 10  TB −= ⋅  
(b)  P = 37.9 W 
DOUBLE-CHECK:  These values are consistent with the power output for a regular household light bulb. 

31.68. THINK:  To determine the temperature of the star, the power radiated by the star must be known. To 
determine the power, the intensity is needed. The intensity can be determined from the electric field and 
the distance. D = 15 AU, E = 0.015 V/m, S2 ,r r=  5

S 6.955 10  km.r = ⋅  
SKETCH:   
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RESEARCH:  4 2 44 ,P A T r Tσ π σ= =  
2

2
024

P EI
cd µπ

= =  

SIMPLIFY:  ( )
2 2 2 2

2 4
S

0 0

4 2 4 2 ,
2

d E d EP r T
c c

π π π σ
µ µ

= = =  
1/4 1/42 2 2 2

2 2
S 0 S 0

2
8 4

d E d ET
r c r c
π
π σµ σµ

   
= =   
   

 

CALCULATE: 

( )( ) ( )

( ) ( )( )( )

1/42 211

25 3 8 2 4 7 2 8

15 1.49598 10  m 44.0 V/m
3918 K

4 6.955 10 10  m 5.670 10  W m  K 4 10  N/A 3.00 10  m/s
T

π− − − − −

 ⋅ = =
 ⋅ ⋅ ⋅ ⋅ ⋅ 

 

ROUND:  T = 3920 K 
DOUBLE-CHECK:  This temperature is realistic for a K-class star. 

31.69. THINK:  From the power and the spot size, the intensity of the beam can be determined. From the 
intensity, the electric field can be determined. For the total energy, multiply the energy density by the 
volume of the beam. P = 5.00 mW, d = 2.00 mm, l = 1.00 m. 
SKETCH:   

 
 

RESEARCH:     2
0 max

1
2Eu Eε=  

SIMPLIFY:   

(a)   

(b)  ( ) ( )2 2
0 max 0 rms 0 0 0 0

1 .
2E EU u V u Al E Al E A P c l c Plε ε ε µ ε µ= = = = = =  

2
0 0 2

0 0

1 1    .c
c

ε µ
ε µ

= → =   

/ .U Pl c=   
CALCULATE:   

(a)   

(b)  
( )( )3

11
8

5.00 10  W 1.00 m
1.6667 10  J.

3.00 10  m/s
U

−
−

⋅
= = ⋅

⋅
  

ROUND:   
(a)  rms 775 V/m.E =   

(b)  111.67 10  J.U −= ⋅   
DOUBLE-CHECK:  It is expected that a laser pointer would have small electric field and generate a small 
amount of energy, considering it’s intended use.  A laser pointer with more power would be dangerous. 

31.70. THINK:  The total power incident on the roof is the intensity of the light times the area of the roof. From 
the intensity, the radiation pressure can be determined, and from this the force can be determined. 

21.00 kW/m ,I =  l = 30.0 m, w = 10.0 m. 
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SKETCH:   

 
 

RESEARCH:  P = IA,  A = lw,  r / .p I c=    
SIMPLIFY:   
(a)  P = Ilw 
(b)  r /p I c=  
CALCULATE:   

(a)  ( )( )( )3 2 51.00 10  W/m 30.0 m 10.0 m 3.00 10  WP = ⋅ = ⋅  

(b)  
3 2

6 2
r 8

1.00 10  W/m 3.33 10  N/m
3.00 10  m/s

p − ⋅
= = ⋅ 

⋅ 
 

ROUND:   
(a)  53.00 10  WP = ⋅  
(b)  6 2

r 3.33 10  N/mp −= ⋅  
DOUBLE-CHECK:  The radiation force is small, as expected, while the amount of power incident on the 
roof is fairly large.  This large source of energy can be harnessed by the use of solar panels. 

31.71. THINK:  The laser will apply a force to the particle. Assume the particle starts from rest and 2.00% of the 
laser light is absorbed. The laser applies a force to a known mass for a time interval  from which we can 
calculate the impulse applied by the laser. Use the values: 500./192 TW,P =  2.00 mm,d =  

3 3 32.00 g/cm 2.00 10 kg/m ,ρ = = ⋅  91.00 10  s,t −∆ = ⋅  and 0.0200.ε =  
SKETCH:   

 

RESEARCH:  ,r
r

p AvF t m v p A t a
t m

∆
∆ = ∆ = ∆ ⇒ = =

∆
,r

Ip
c
ε

=  ,PI
A

=  
3 34

3 2 6
d dm π ρπ ρ = = 

 
 

SIMPLIFY:  3 3

6 6 .rp Av A I A P P P Pa
t m m c mc A mc c d d c

ε ε ε ε ε
π ρ π ρ

 ∆    = = = = = = =    ∆      
 

CALCULATE:  
( )( )

( ) ( )( )

12
7 2

33 3 3 8

6 0.0200 500. 10  W/192
2.0723 10  m/s .

2.00 10  m 2.00 10 kg/m 3.00 10  m/s
a

π −

⋅
= = ⋅

⋅ ⋅ ⋅
 

ROUND:  To three significant figures, 7 22.07 10  m/s .a = ⋅  
DOUBLE-CHECK:  This is a reasonable result for 2% of the power of one very powerful laser. 

31.72. THINK:  Power will be dissipated out of the curved surface of the resistor. The result should be 2 .P i R=  
This can be derived by determining the expressions for the electric and magnetic fields at the surface of the 
resistor and using the Poynting vector definition of power/area. 
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SKETCH:   

 
 

RESEARCH:  
0

,EBS
µ

=  ,P SA=  2 ,A rLπ=  ,V iR=  ,VE
L

=  0

2
i

B
r

µ
π

=  

SIMPLIFY:  ( ) ( ) 20

0 0

22
2

iEB rL VP SA rL Vi iR i i R
L r

µππ
µ µ π

  
= = = = = =  

  
 

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  This is consistent with previous results for the power dissipated by a resistor. 

31.73. THINK:  The direction of the Poynting vector is the direction in which energy is transported, in this case 
radially away from the antenna. From the definition of the Poynting vector as power/area, the magnitude 
can be calculated given the power and the radial distance. Once the Poynting vector is known, the electric 
field can be determined.  The power emitted toward the ground is reflected so we assume that the power is 
emitted into a hemisphere rather than a sphere.  43.00 10  W,P = ⋅ d = 12.0 km. 
SKETCH:   

 
 

RESEARCH:  
0

1 ,S E B
µ

= ×
  

 
2

0

,P ES S
A cµ

= = =


 rms ,
2

EE =  22 ,A dπ= rms rmsF qE=  

SIMPLIFY:  (a) 22
PS
dπ

=  

(b) 0 rms 0  / 2,E cS E cSµ µ= ⇒ = 0 / 2rms eF q cSµ=  
CALCULATE 

(a) 
( )

4
5 2

23

3.00 10  W 3.3157 10  W/m .
2 12.0 10  m

S
π

−⋅
= = ⋅

⋅
 

(b)  ( ) ( )( )( )19 7 8 5 2 20
rms 1.602 10  C 4 10  T m/A 3.00 10  m/s 3.3157 10  W/m / 2 1.26649 10  N.F π− − − −= ⋅ ⋅ ⋅ ⋅ = ⋅  

ROUND:  
(a)  5 23.32 10  W/m .S −= ⋅  
(b)  20

rms 1.27 10  N.F −= ⋅  
DOUBLE-CHECK:  Dimensional analysis shows the results all have the correct units. 
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31.74. THINK: To answer these questions, use the classical equation for the momentum and angular 
momentum, and use the quantum equation for the energy. 
SKETCH:   

 
 

RESEARCH:  ,U Ep
c c

= =   U EL
ω ω

= =  

SIMPLIFY:   

(a)  Ep
c c

ω
= =

  

From the dispersion relation of light (see Exercise 29.61): 0 0 / .k cω µ ε ω= =


 Then the vector 

momentum can be written: 

  .p k p k= ⇒ =
 

 

   

(b)  EL Lω
ω ω

= = = =




  

The angular momentum of a photon is constant! 
(c)  The spin quantum number is given by: /   1.s L s= ± ⇒ = ±  
CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  These results are classically unreasonable. However, they are correct nonetheless. 
They all stem from the purely quantum fact that light is quantized in units of .  For light of frequency, ,ω  
ω  is the smallest amount of energy the electromagnetic wave can be measured to have. 

31.75. THINK:  To determine how long it takes the ice to melt, first determine how much total energy is required 
to melt the ice cube, and then determine the intensity of the microwaves at the location of the ice cube. To 
determine the number of photons hitting the ice per second, the energy of one photon must be calculated 
and compared to the total radiation power incident on the ice. 0 250. W,P =  l = 2.00 cm, d = 10.0 cm, 

30.960 g/cm ,ρ =  10.0 cm.λ =  The fraction of incident light absorbed by ice is 0.100.ε =  
SKETCH:   

 
RESEARCH:  The energy required to melt the ice is f 334 J/g.c =  The intensity of light at the cube is 

2
0 / 4 .I P dπ=  The radiation power incident on the cube is 2 .Il  The power absorbed by the cube is 

2 / .P Il E tε= =  The mass of the ice is given by 3 .m lρ=  The energy of one photon is given by 

ph / .E hf hc λ= =  

SIMPLIFY:  The energy required to melt the ice is given by 3
m f f .E mc l cρ= =  The power absorbed by the 

cube is given by: 

2 2 0
2 .

4
P EP Il l

td
ε ε

π
 

= = = 
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The time required to melt the cube can be determined as follows: 
2 2

0
2 2

0

4  ,
4

l PE Edt
t d l P

ε π
π ε

= ⇒ =   3
m fE E l cρ= =    

3 2 2
f f

2
00

4 4
 .

l c d ld c
t

Pl P
πρ πρ

εε
⇒ = =  

The total power incident on the cube is given by: 2 2 2
0 / 4  J/s.Il P l d xπ= =   x J/s is supplied by N photons of 

energy phE every second: 

( )ph
/   J/s   J   J ,

s
Nhc Nhc NhcNE x x N x

hc
λ λ

λ λ
= ⇒ = ⇒ = ⇒ =  

2 2
0 0

2 2 J  s   s.
4 4
P l P l

x N
d hd c

λ
π π

= ⇒ =  

CALCULATE:  
( )( )( ) ( )

( )

23
4

4 0.960 g/cm 2.00 cm 10.0 cm 334 J/
3.223 10  s 8.954 h

0.100 250. J/s

g
t

π
= = ⋅ =  

( )( ) ( )
( )( ) ( )

2

23
234 10

250. J/s 2.00 cm 10.0 cm  s
 4.003 10

4 6.626 10  J s 10.0 cm 3.00 10  cm/s
N

π −
= = ⋅

⋅ ⋅
 

ROUND:  t = 8.95 h (or 8 hours 57 minutes), 234.00 10N = ⋅  
DOUBLE-CHECK:  The number of photons per second, N, is reasonable. The time is correct, although a 
real microwave will work much faster. This is because a real microwave is not a single point source. Also, a 
microwave has shielding which serves to reflect all waves hitting the walls, which keeps the intensity of the 
radiation high. 

31.76. THINK:  The Poynting vector is directed along the propagation axis, ˆ.z  Its magnitude is given by the laser 
power and the beam’s cross-sectional area. The electric field is along the polarization direction, and the 
magnetic field is directed in the y-direction, perpendicular to both E



 and .S


 P = 6.00 kW, 10.6 μmλ =  
and   100.0 μm.d =  Note that due to the properties of electromagnetic waves the relative phase between 
the magnetic field and electric field is 0 degrees.     
SKETCH:   

 
 

RESEARCH:  ( )0
ˆsin ,E E kz t xω= −



 2 / ,k π λ=  ( )0
ˆsin ,B B kz t yω= −



 / ,k cω =  0 0

0

2 ,
E B PS

Aµ
= =   where P 

is the average power, 
2

,
2
dA π  

=  
 

  and 0

0

.
E

c
B

=  

SIMPLIFY:  
2

2 8P PS
A dπ

= =  and 
( ) 2

0 0 0

0 0

/
.

E E c E
S

cµ µ
= =  Set these expressions equal to each other to get: 

2
0 0

02 2
0

88   ,
E P cP E

cd d
µ

µπ π
= ⇒ =  0 0

0 2

8
.

E P
B

c d c
µ

π
= =  

Then, with 2 ,k π
λ

=   2 :cck πω
λ

= = 0
2

8 2 2 ˆsin
P c z ctE x

d
µ π π

λ λπ
 

= − 
 



 and 0
2

8 2 2 ˆsin .
P z ctB y
d c
µ π π

λ λπ
 

= − 
 



   

CALCULATE:  
( )( )( )

( )

3 7 8
7

0 24

8 6.00 10  W 4 10  T m/A 3.00 10  m/s
2.400 10  V/m

1.000 10  m
E

π

π

−

−

⋅ ⋅ ⋅
= = ⋅

⋅
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7
2

0 8

2.400 10  V/m 8 10  T,
3 10  m/s

B −⋅
= = ⋅

⋅
 5 1

6

2 2 5.928 10  m
10.6 10  m

π π
λ

−
−

= = ⋅
⋅

  

( )5 1 8 14 12 5.928 10  m 3 10  m/s 1.778 10  scπ
λ

− −= ⋅ ⋅ = ⋅  

ROUND: ( ) ( )7 5 1 14 1 ˆ2.40 10  V/m sin 5.93 10  m 1.78 10  sE z t x− −= ⋅ ⋅ − ⋅


 
( ) ( )2 5 1 14 1 ˆ8.00 10  T sin 5.93 10  m 1.78 10  sB z t y− − −= ⋅ ⋅ − ⋅



 

DOUBLE-CHECK:  Check that 0

0

:
E

c
B

=  
7

8
2

2.40 10  V/m 3.00 10  m/s.
8.00 10  T−

⋅
= ⋅

⋅
 Also, it is necessary that :c

k
ω
=  

14 1
8

5 1

1.78 10  s 3.00 10  m/s.
5.93 10  m

−

−

⋅
= ⋅

⋅
 These results are reasonable. 

 

Multi-Version Exercises 

31.77. 
2

2 8 7rms
rms 0

0

(182.9 W/m )(2.998 10 m/s)(4 10 Tm/A) 262.5 V/m
E

I E Ic
c

µ π
µ

−= ⇒ = = ⋅ ⋅ =  

31.78. 2 2 7 8 7
rms 0 rms 0/ / (191.4 W/m )(4 10 Tm/A)/(2.998 10 m/s) 8.957 10  TI B c B I cµ µ π − −= ⇒ = = ⋅ ⋅ = ⋅  

31.79. 2 7 2 8 7 2
rms 0/ (9.142 10  T) (2.998 10 m/s)/(4 10 Tm/A) 199.3 W/mI B c µ π− −= = ⋅ ⋅ ⋅ =  

31.80. ( )2 2 8 7 2
rms 0/ (279.9 V/m) / (2.998 10 m/s)(4 10 Tm/A) 208.0 W/mI E cµ π − = = ⋅ ⋅ =   

31.81. If I0 is the intensity of the incoming sunlight, then the light passing through the first polarizer has intensity 
1

1 02 .I I=  The intensity of the light passing through the second polarizer is given by 2
2 1 2 1cos ( ),I I θ θ= −  so 

that 21
2 0 2 12 cos ( ).I I θ θ= −  The reduction in intensity, then, is

 
  

2 20 2 1 1
2 12 2

0

1 cos ( ) 1 cos (88.6 28.1 ) 87.9%.
I I

R
I

θ θ
−

= = − − = − °− ° =  

31.82. As in the preceding problem, reduction of initial intensity R = 21
2 121 cos ( ).θ θ− −  

  ( ) ( )1 1
2 1 cos 2 2 38.3 cos 2 2 0.7584 84.3Rθ θ − −= + − = ° + − ⋅ = °  

31.83. As above, reduction of initial intensity R = 21
2 121 cos ( ).θ θ− −  

  ( ) ( )1 1
1 2 cos 2 2 110.6 cos 2 2 0.7645 63.9Rθ θ − −= − − = ° − − ⋅ = °  
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Chapter 32:  Geometric Optics 
 

Concept Checks 

32.1 a  32.2 e  32.3 b  32.4 c  32.5. b  32.6 b  32.7. c  32.8. c  32.9 b  
 
Multiple-Choice Questions 

32.1. c  32.2. c  32.3. a  32.4. c  32.5. b  32.6. a  32.7. e  32.8. d  32.9. b  32.10. c  32.11. a  32.12. a 
 

Conceptual Questions 

32.13. In a step-index fiber, there is a discontinuity of the index of refraction at the core-cladding interface. 
Consequently, light will undergo total internal reflection at the core-cladding interface, and will propagate 
through the fiber in a zigzag path. By contrast, in a graded-index fiber, the refractive index changes 
gradually in moving from core to cladding. A light ray entering the core of a graded-index fiber will 
continuously change its direction as the refractive index continuously changes.  Consider light incident at 
the core at an angle of i .θ  The incident ray moves from the core, of refractive index core ,n  to a refractive 
index of core ,n n− ∆  where n∆  is a small change in the index of refraction.  For subsequent refractions, 
assume that the index of refraction changes by the same amount and the new incident angle is the previous 
final angle.  The first three refractions are given by:  

( ) (1) (1) core
core i core f f i

core

sin sin   sin sin
n

n n n
n n

 
= − ∆ ⇒ =  

− ∆ 
θ θ θ θ  

( ) ( )(1) (2) (2) (1)core
core f core f f f

core

sin 2 sin   sin sin
2

n n
n n n n

n n
 − ∆

− ∆ = − ∆ ⇒ =  
− ∆ 

θ θ θ θ  

( ) ( )(2) (3) (3) (2)core
core f core f f f

core

2
2 sin 3 sin   sin sin .

3
n n

n n n n
n n

 − ∆
− ∆ = − ∆ ⇒ =  

− ∆ 
θ θ θ θ  

Combining these equations gives: 

(3) (2) (1)core core core
f f f

core core core

core core core core
i i

core core core core

2 2
sin sin sin

3 3 2

2
sin sin .

3 2 3

n n n n n n
n n n n n n

n n n n n n
n n n n n n n n

    − ∆ − ∆ −∆
= =    

− ∆ − ∆ − ∆    
     − ∆ − ∆

= =     
− ∆ − ∆ −∆ − ∆     

θ θ θ

θ θ
 

For N refractions,  

( ) core
f i

core

sin sin .N n
n N n

 
=  

− ∆ 
θ θ  

As the light approaches the cladding, core cladding ,n N n n− ∆ →  so  

core
f i

cladding

sin sin .
n

n

 
=   
 

θ θ  

In the limit, Snell’s Law is recovered.  If coren  and claddingn  are chosen correctly, then total internal reflection 

will occur. The difference between the two fibers is that for a step-index fiber, the reflection occurs 
instantly (zigzag path), but for a graded-index fiber, the reflection occurs gradually (sinusoidal path) since 
the light gets refracted along the way. 

32.14. Ray A will leave the plexiglass at some angle, .φ  This ray extrapolated back will reconnect with ray B, 
which does not get refracted since it is normal to the interface. The location where the rays reconnect is 
where the image will appear to form.  
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From the diagram, two equations are apparent:  
tand D= θ  and tan .d D′= φ  

Equating these gives, 
tantan tan   .
tan

D D D D′ ′= ⇒ =
θθ φ
φ

 

Therefore, the apparent height of the text is:  
tan1 .
tan

y D D D
 ′= − = − 
 

θ
φ

 

The angle, ,φ  is given by Snell’s Law:  

( )
( ) ( )1 11

1 2
2

1.51
sin sin   sin sin sin sin 25.0 39.65 .

1.00
n

n n
n

− −
  

= ⇒ = = ° = °       
θ φ φ θ  

Therefore, the height is:  

( ) ( )
( )

tan 25.0
2.00 cm 1 0.875 cm.

tan 39.65
y

 °
= − =  ° 

 

32.15. Due to spherical aberration, light rays a distance d from the center axis of a mirror of curvature R will 
cross the optical axis a distance y from the center of the mirror, where y is approximated as: 

2

21 .
2 2
R dy

R
 

≈ − 
 

 

When there is no spherical aberration, the image is formed at the focal point; that is, / 2.y f R= =   

Therefore, to reduce the spherical aberration produced by the mirror, ( )2 2/ 2 0.d R →   Since the mirror 

cannot be changed (R cannot change), the only way to reduce the spherical aberration is to make the 
height of the object, d, small. 

32.16. (a)  If one were to look straight down, the cone of rays coming from a point at the bottom of the pool 
would refract away from the normal when they cross the water/air interface. If the rays were then 
extrapolated back, they would intersect at a point above the bottom of  the pool. Therefore, the pool would 
appear to be less deep than it actually is.  This finding can be confirmed by considering Example 32.3 for 
very small angles 1θ  and 2θ :  the formula for apparent depth becomes  

apparent actual

air

water

.
n

d d
n

=
 

The result can also be confirmed by examining two drinking glasses side by side, one empty and one 
containing water. 
(b)  If one were to look at an angle, the cone of rays coming from a point at the bottom of the pool would 
refract away from the normal when they cross the water/air interface.  If the rays were then extrapolated 
back, they would intersect at a point above the bottom of  the pool.  Therefore, the pool would appear to be 
less deep than it actually is.  Figure 32.40 illustrates this for a similar situation. 
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32.17. When the light enters a medium, it will interact with the atoms that make up the material.  Electrons will 
vibrate and then re-emit the light, which will then go along and interact with another electron. This effect 
will continue all the way through the material.  The interactions with the electrons take a finite amount of 
time, causing delays along the way through the material.  This gives the appearance that the light is 
traveling at a different speed. 

32.18. If the fiber is bent too much, then the incident angle of light on the edge of the fiber exceeds the critical 
angle, and light is lost, reducing signal transmission. 

32.19. The drum acts like a concave or converging mirror. From Table 32.1, it can be seen that when the object 
moves from just inside the focal point of a converging mirror to just outside the focal point, the image 
changes from an upright image to an inverted image. Hence, if she starts with her finger close enough to 
the drum that she sees an upright image and slowly moves it away, the point at which the image flips is the 
focal point, and the distance from her finger to the mirror at that point is the focal length. Twice the focal 
length is the radius of curvature. 

32.20. True. The speed of the light wave in vacuum is given by .v c f= = λ  In a medium, the speed is given by 
/ .v c n f ′= = λ  Since the frequency f is constant, these equations can be solved in terms of  wavelength: 

/ .n′ =λ λ   Therefore, the wavelength of any type of light in water 1.33n =  is less than its wavelength in air 
1.00n =  

32.21. A ray of light incident at any angle on a corner cube of mirrors will always be reflected back at the same 
angle as the incident ray due to the law of reflection.  The array of cubes is then necessary to provide a 
larger surface to strike. The smaller the corner cube, the closer to the original path the reflected path will 
be, minimizing any possible change in path length between the two rays.  Therefore, when light is incident 
on the array, the reflected beam will be sent back virtually along the same path as the incident beam. The 
change in path length of the two beams will be insignificant compared to the large distance between the 
Earth and the Moon, thus still providing excellent precision in the measurement. 

32.22. (a)  Inside the prism, the reflected beam would hit each leg of the prism at 45°.  For the prism-water 
interface, the critical angle is: 

( )
( )

2 2H O H O1 1
c c

glass glass

1.333
sin   sin sin 61.28 .

1.520

n n

n n
− −
   

= ⇒ = = = °        
θ θ  

Therefore, when the light strikes the legs at 45°  when in water, total internal reflection will not occur and 
most of the light will exit the prism. Some of the light will get reflected, but its intensity will be low, 
rendering the prism ineffective. 
(b)  Prisms are used for several reasons: (1) Cost; quality mirrors require expensive reflecting coatings 
while prisms do not. (2)  Quality; total internal reflection reflects all of the light while all mirrors reflect 
with some loss in intensity. (3)  Durability; there is no reflective coating on the prisms to corrode or 
degrade over time. It is only necessary to keep it clean and dry. 

32.23. It the upper half of the mirror is covered then only the bottom portion of the mirror will focus the rays.  
The image will be at the same location, but will appear dimmer since fewer light rays will be brought to a 
focus. 

32.24. The light entering the water will bend towards the vertical, so you will observe the light at a steeper angle 
than you would if you were not under water.  Therefore, the Sun will appear to be higher in the sky than it 
actually is. 

32.25. The spoon can be treated as a spherical convex mirror. Decent estimates for the radius of curvature of the 
spoon and object distance are 5.0 cmR =  and o 15.0 cm,d =  respectively.  Since the spoon is a convex 
mirror, the radius of curvature is negative. The basic mirror equation then gives the image distance: 
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( ) ( )

11

i
o i o

1 1 1 2 2 1 2 1  2.14 cm 2.1 cm.
5.0 cm 15.0 cm

d
d d f R R d

−−   
 + = = ⇒ = − = − = − ≈ −   −   

 

The magnification is: 
( )
( )

i

o

2.14 cm
0.14.

15.0 cm
d

m
d

−
= − = − =  

32.26. No, it is not possible to attain temperatures exceeding the temperature of the photosphere of the Sun. The 
second law of thermodynamics prevents this from happening. For a perfectly efficient process, the 
maximum attainable temperature is 6000 K.   
 

Exercises 

32.27. For plane mirrors, the object distance, =o 1.00 m,d  is always equal to the image distance, but the image is 
located behind the mirror.  Therefore, the location of the image is = − = −i o 1.00 m.d d  

32.28.  

 
The distance D  of the final image of the yellow hat from the lower mirror is 

o 3.00 m 0.400 m 3.40 m.D d L= + = + =  

32.29.   

 

The object has an image in each mirror equidistant from the mirror and the object, so o i .d d=  This 
means the distance between the two images is the hypotenuse of a triangle, where each leg is a length, 

o i o2 .d d d+ =  So, the distance between the images is 

( ) ( ) ( )= + = = =2 2 22
o o o2 2 8 8 2.00 m 5.66 m.D d d d  

32.30. THINK:  If a photon bounces once, it has 99.997% of its energy, so after n bounces it has ( )0.99997 n  of its 
original energy left. The longest length in the cube room, sides l = 3.00 m, is the diagonal along the cube. 
The average distance a photon goes in the room is half the longest distance. 
SKETCH:   
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RESEARCH:  The maximum distance of the room is 3 .d l=  The average distance is then / 2.d d〈 〉 =  

The energy after n bounces is ( ) 00.99997 .nE E′ =  The time for one bounce is / .t d c∆ = 〈 〉  The total time is 
.t n t= ∆  

SIMPLIFY:  The number of bounces to reduce to 0.0100E′ =  is: 

( ) ( )
( )0 0

ln 0.0100
0.99997 0.0100   .

ln 0.99997
nE E E n′ = = ⇒ =  

The total time of light dissipation is:  

3 .
2 2

d nd lt n t n n
c c c
〈 〉

= ∆ = = =  

CALCULATE:   
( )

( )
( )
( )8

3 3.00 m ln 0.0100
0.001329 s

ln 0.999972 3.00 10  m/s
t

 
= =  ⋅  

 

ROUND:  To three significant figures, 1.33 ms.t =  
DOUBLE-CHECK:  Such a small time would be undetectable for an average human.  This is expected, 
considering the speed of light. 

32.31. The focal length is given by .
2
Rf =   For = −25.0 cm,R  the focal length is: 

( )−
= = ≈ −

25.0 cm
12.5 cm.

2 2
Rf  

32.32.   

 
For a radius of curvature of 10.0 cmR =  and an object distance of o 30.0 cm,d =  the image distance is: 

( ) ( )

11

i
o i o

1 1 1 2 2 1 2 1 6.00 cm.
10.0 cm 30.0 cm

d
d d f R R d

−−   
+ = = ⇒ = − = − =       

 

Therefore, the position of the image is 
( ) ( )i o i 30.0 cm 6.00 cm 24.0 cm.x d d= − = − =  

The magnification is i o i o/ / .m h h d d= = −  For an object height of o 5.00 cm,h =  the image height is: 

( )( )
( )

i o
i o

o

6.00 cm 5.00 cm
1.00 cm.

30.0 cm
d h

h mh
d

= = − = − = −  

Since i 0,h <  the image is inverted.  Since i 0,d >  the image is real. 

32.33. For a radius of curvature of 14.0 mR = −  and an object distance of o 11.0 m,d =  the image distance is: 

( ) ( )

11

i
o i o

1 1 1 2 2 1 2 1 4.28 m.
14.0 m 11.0 m

d
d d f R R d

−−   
+ = = ⇒ = − = − = −    −   
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The magnification of the mirror is: 
( )
( )

i

o

4.28 m
0.389.

11.0 m
d

m
d

−
= − = − =  

32.34. For a focal length of 10.0 cmf = −  and an object distance of o 30.0 cm,d =  the image distance is: 

( ) ( )

11

i
o i o

1 1 1 1 1 1 1  7.50 cm.
10.0 cm 30.0 cm

d
d d f f d

−−   
+ = ⇒ = − = − = −    −   

 

For an object height of o 5.00 cm,h =  the image height is:  

( )( )
( )

i o
i

o

7.50 cm 5.00 cm
1.25 cm.

30.0 cm
d h

h
d

−
= − = − =  

Since i 0,d <  the image is virtual.  Since i 0,h >  the image is upright.   

32.35. For an object a distance of o 2.0 md =  in front of a convex mirror with magnification 0.60,m =  the image 
distance is 

i
i o

o

  .
d

m d md
d

= − ⇒ = −  

The focal length is: 
( )( )
( )

o

o i o o o

0.60 2.0 m1 1 1 1 1 1 1   3.0 m.
1 0.60 1

mdm f
f d d f d md md m

−
= + ⇒ = − = ⇒ = = = −

− −
 

32.36. THINK:  The object, at o 100. cm,d =  is behind the second mirror (which is located at the focal point of 
the first mirror of focal length 1 20.0 cm)f =  of focal length 2 5.00 cm.f =  For simplicity, ignore the fact 
that the second mirror sits between the first mirror and the object. That is, assume the second mirror is a 
two-way mirror so that the light rays from the object go through it, reflect from the first mirror, and then 
reflect from the second mirror. The reflections will continue until the final image is formed outside of both 
mirrors. 
SKETCH:   

 
 

RESEARCH:  The relevant equations are the mirror equation and the magnification equation:  

o i

1 1 1 ,
d d f

+ =  i

o

.
d

m
d

= −  

SIMPLIFY:  When the object is first reflected by mirror 1, the image distance and magnification are: 
1

1
o 1 1 1 o

1 1 1 1 1  d
d d f f d

−
 

+ = ⇒ = − 
 

 and  1
1

o

.
d

m
d

= −  
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This image must form behind mirror 2 since mirror 2 is at the focal point of mirror 1.  Therefore, the 
image is a virtual object for mirror 2 at a distance of ( )2 1 1 .d d f= − −  The image distance and 
magnification are: 

1

3
2 3 2 2 2

1 1 1 1 1  d
d d f f d

−
 

+ = ⇒ = − 
 

 and  3
2

2

.
d

m
d

= −  

The total magnification of the system is then 1 3
1 2

o 2

.
d d

m m m
d d

= =  

CALCULATE: 
( ) ( )

1

1
1 1 25.0 cm,

20.0 cm 100. cm
d

−
 

= − =  
 

 ( ) ( )( )2 25.0 cm 20.0 cm 5.00 cmd = − − = −   

The final image distance and total magnification is: 

( ) ( )

1

3
1 1 2.50 cm

5.00 cm 5.00 cm
d

−
 

= − =  − 
 and 

( )( )
( )( )

= = −
−

25.0 cm 2.50 cm
0.125

100. cm 5.00 cm
m  

ROUND:  Remaining at 3 significant figures, the final image location is between the two mirrors, a 
distance of 3 2.50 cmd =  from mirror 2.  The total magnification is = −0.125.m  
DOUBLE-CHECK:  For two plane mirrors facing each other, an infinite number of virtual images are 
formed. For two concave mirrors, it is expected that a real image must form after some number of 
reflections. 

32.37. THINK:  An arbitrary point on the elliptical mirror can be chosen: ( ), .p x y+ −   Two ray vectors exist that 

point from p to ( ), 0 ,c±  where 2 2 .c a b= −   The normal line, which is perpendicular to the surface of the 

elliptical mirror, can be determined.  The dot product can be used to determine the angle between the two 
ray vectors and the normal vector. If perfect reflection occurs, the angles between the normal vector and 
the two ray vectors should be the same. 
SKETCH:   

 
 

RESEARCH:  The two ray vectors are defined as ( ) ˆ ˆu x c x yy= − − +
  and ( ) ˆ ˆ,v x c x yy= − + +

  and they 

make an angles of uθ  and vθ  with .N


 The normal vector to a surface is defined as: 

( ) ( ), ,
ˆ ˆ.

f x y f x y
N x y

x y
∂ ∂

= +
∂ ∂



 

SIMPLIFY:  First, determine the normal vector: 

( ) ( ) 2 22 2

2 2 2 2 2 2

, , 22ˆ ˆ ˆ ˆ ˆ ˆ.
f x y f x y y y yx x xN x y x y x y

x y x ya b a b a b
∂ ∂    ∂ ∂

= + = + + + = +   ∂ ∂ ∂ ∂   
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For point ( ),x y− :  

2 2

22 ˆ ˆ.
yxN x y

a b
= −



 

The unit vectors of u  and v  are given by:  
( )
( )2 2

ˆ ˆ
ˆ

x c x yyuu
u x c y

− − +
= =

− +





 and 
( )
( )2 2

ˆ ˆ
ˆ .

x c x yyvv
v x c y

− + +
= =

+ +





 

The dot product of N


 with the two unit vectors gives  
ˆ ˆ cos cosu uN u N u Nθ θ= =

  

  and ˆ ˆ cos cos .v vN v N v Nθ θ= =
  

  

It is known from the law of reflection that the two angles must be equal.  Therefore, if ˆ ˆN u N v=
 

   is 
shown, then the proof will be complete. 

( )
( )( )

( )

22 22

2 2 22 2
2

2 2 2 22

22 ˆ ˆ ˆ ˆ 4
ˆ

2

yx xcyx x y x c x yy
a a ba b

N u
x xc c yx c y

    − + −− − − +    
    = =

− + +− +





  

Recall that 
2 22 2

2 2 2 21  1 .
y yx x

a b b a
+ = ⇒ = −   Also, ( )

2 2
2 2 2 2

2 21 1 .x xy b a c
a a

   
= − = − −   

   
 Substitution gives:  

( )
( )

2 2 2

2 422

2 22
2 2 2 2 22 2 2 2

22

2 2
2

2 2

2 2 2
2

2

24 14 1
ˆ

22 1

4 2
4 .

2

xc x cxc
a aaN u

x cx x xc c a c xx xc c a c
aa

x ca xc
a a

x c aa xc
a

   − +− +   
   = =

  − + + − − +− + + − − 
 

 
− + 

 = =
− +





 

( )
( )( )

( )

22 22

2 2 22 2
2

2 2 2 22

22 ˆ ˆ ˆ ˆ 4
ˆ

2

yx xcyx x y x c x yy
a a ba b

N v
x xc c yx c y

    − − −− − + +    
    = =

+ + ++ +





  

Making the same substitutions as above gives:  

( )
( )

2 2 2

2 422

2 22
2 2 2 2 22 2 2 2

22

2 2
2

2 2

2 2 2
2

2

24 14 1
ˆ

22 1

4 2
4 .

2

xc x cxc
a aaN v

x cx x xc c a c xx xc c a c
aa

x ca xc
a a

x c aa xc
a

   + +− −   
   = =

  + + + − − ++ + + − − 
 

 
+ + 

 = =
+ +





 

2

4ˆ ˆ ,N u N v
a

= =
 

   u v u v cos cos   θ θ θ θ⇒ = ⇒ = , since the angles are both in the same quadrant. 

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  The above derivation proves that, given the law of reflection, the vector that goes 
through a focal point will be reflected through the other focal point of an elliptical mirror. 
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32.38. The velocity of light in a medium with refractive index n is / .v c n=  For crown glass with index of 
refraction of 1.52,n =  the velocity is: 

( )
( )

8
8

3.00 10  m/s
1.97 10  m/s.

1.52
cv
n

⋅
= = = ⋅  

32.39. The critical angle is given by c 2 1sin / .n nθ =   The critical angles of the optical fiber in air, water and oil are:  

θ −  = = °, 
 

1
c,air

1.000sin 41.8
1.50

 θ −  = = ° 
 

1
c,water

1.333sin 62.7
1.50

 and θ −  = = ° 
 

1
c,oil

1.50sin 90.0 .
1.50

 

32.40. The helium-neon laser light of wavelength vac 632.8 nmλ =  is in water with an index of refraction of 
1.333.n =  

(a)  The velocity is:  

( )
( )

8
8

2.998 10  m/s
2.249 10  m/s.

1.333
cv
n

⋅
= = = ⋅  

(b)  The frequency remains unchanged (it is independent of the medium), so using values in a vacuum 
gives: 

( )
( )

8
14

vac 9
vac

2.998 10  m/s
  4.738 10  Hz.

632.8 10 m
cc f fλ
λ −

⋅
= ⇒ = = = ⋅

⋅
 

(c)  The wavelength is:  

( )
( )

vac 632.8 nm
474.7 nm.

1.333n
λ

λ = = =  

(d)  Technically the color does not change because it is the frequency of light that our eyes receive and 
interpret. Therefore, the color is still that of 144.738 10 Hz⋅  on the spectrum (red-like). 

32.41. To get fully polarized light, the incident light must strike the water-plate glass interface at the Brewster 
angle: 

1 12
B

1

1.73tan tan 52.4 .
1.33

n
n

θ − −   = = = °   
  

 

32.42. THINK:  Regardless of the angle of incidence, light rays from the air will enter the water.  However, some 
light rays coming from underwater will hit the surface at or above the critical angle and will undergo total 
internal reflection, creating a virtual mirror. For light incident from water to air, the indices of refraction 
are 1 1.333n =  and 2 1.000.n =   This means that the only clear window is the circle created by the cone, 
with the angle from the vertical equal to the critical angle of the water/air interface.  The tip of the cone is 

2.00 mh =  below the surface of the water. 
SKETCH:   

 
 

RESEARCH:  The critical angle is defined as c 2 1sin / .n nθ =  The radius of the circle is ctan .r h θ=  The 
diameter of the window is 2 .d r=  
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SIMPLIFY:  The diameter of the window is:  

1 2
c

1

2 2 tan 2 tan sin .
n

d r h h
n

θ −  
= = =   

   
 

CALCULATE:  ( ) 1 1.0002 2.00 m tan sin 4.538 m
1.333

d −  = =  
  

 

ROUND:  To 3 significant figures, 4.54 m.d =  
DOUBLE-CHECK:  This value is reasonable considering the depth of the observer. 

32.43. THINK:  Since the normal line of the first surface bisects the opposite angle, the refracted ray must hit the 
other angled surface. Simple geometry must be utilized to determine all the angles involved. The index of 
refraction of air and the prism are a 1.00n =  and p 1.23,n =  respectively. 

SKETCH:   

 
 

RESEARCH:  Since the incident beam is parallel to the base, the incident angle is i 30θ = °.   Snell’s Law is 
used to determine refracted angles: i i j jsin sin .n n=θ θ  

SIMPLIFY:  At the first interface:  

1 a
a i p 1 1 i

p

sin sin   sin sin .
n

n n
n

θ θ θ θ−
 

= ⇒ =   
 

 

Based on the geometry shown in the figure above, 1 190= °−φ θ  and ( )2 1180 60 .= °− ° +φ φ  Therefore,  

( )2 1 1 1120 120 90 30 .= °− = ° − ° − = ° +φ φ θ θ  

Also, 2 290 .= °−θ φ  Therefore,  

( ) 1 a
2 1 i

p

90 30 60 sin sin .
n
n

θ θ θ−
 

= ° − ° + = ° −   
 

 

At the second interface, Snell’s Law is reapplied as the light exits the prism: 

p p1 1 1 a
p 2 a 3 3 2 i

a a p

sin sin   sin sin sin sin 60 sin sin .
n n n

n n
n n n

θ θ θ θ θ− − −
    
  = ⇒ = = °−             

 

The change in direction is equal to the sum of the changes in angle at each interface: 

( ) ( ) ( )f i 1 3 2 i 1 3 1 i 3

p1 1 a
f i i

a p

60 60 ,

60 sin sin 60 sin sin .
n n
n n

θ θ θ θ θ θ θ θ θ θ θ

θ θ θ− −

= − + − = − + − °− = − ° +

   
  = − ° + ° −        

 

CALCULATE:  ( ) ( )
( )

( )
( ) ( )1 1

f

1.23 1.00
30 60 sin sin 60 sin sin 30 16.322

1.00 1.23
θ − −

   
 = ° − ° + ° − ° = °        

    

ROUND:  Rounding to three significant figures, f 16.3= °.θ  
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DOUBLE-CHECK:  The change in direction depends on the initial incident angle, the refractive index of 
air and the refractive index of the prism, as expected.  This is a reasonable angle for the ray of light to be 
deflected after going through a prism.   

32.44. THINK:  The light is refracted as it crosses the air-glass interface and the glass-air interface. The air and 
the glass have a refractive index of a 1.00n =  and g 1.55,n =  respectively. 

SKETCH:  

 
 

RESEARCH:  The angle of refraction at each interface can be determined using Snell’s Law:  

1 1 2 2sin sin .n nθ θ=  
SIMPLIFY:  At the first interface,  

1 a
a i g 1 1 i

g

sin sin sin sin .
n

n n
n

θ θ θ θ−
 

= ⇒ =   
 

 

Based on the geometry of the glass block, 

1 a
2 1 i

g

30.0 30.0 sin sin .
n
n

θ θ θ−
 

= ° − = ° −   
 

 

At the second interface, 

g g1 1 1 a
g 2 a 3 3 2 i

a a g

sin sin   sin sin sin sin 30.0 sin sin .
n n n

n n
n n n

θ θ θ θ θ− − −
    
  = ⇒ = = °−             

 

The angle from the horizontal is  

g1 1 a
BT 3 i

a g

30.0 30.0 sin sin 30.0 sin sin .
n n
n n

θ θ θ− −
   
  = ° − = ° − ° −        

 

CALCULATE:  
( )
( )

( )
( ) ( )1 1

BT

1.55 1.00
30.0 sin sin 30.0 sin sin 20.0 2.632

1.00 1.55
θ − −

   
 = ° − ° − ° = °        

 

ROUND:  Rounding to three significant figures, BT 2.63θ = °.  
DOUBLE-CHECK:  This result is reasonable. 

32.45. THINK:  The maximum incident angle max 14.033α = °  corresponds to the light ray that reaches the core-
cladding interface at an angle equal to the critical angle.  Knowing the critical angle and the refractive 
index of core 1.48,n =  the index of refraction of the cladding can be determined using Snell’s Law.  
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SKETCH:   

 
 

RESEARCH:  Snell’s Law is given by 1 1 2 2sin sin ,n nθ θ=  and the critical angle is given by c 2 1sin / .n nθ =   

SIMPLIFY: By Snell’s Law, 1 a
a max core max max max

core

sin sin sin sin
n

n n
n

α β β α−  
= ⇒ =  

 
.  The critical angle is 

1 a
c max max

core

90 90 sin sin .
n

n
θ β α−  

= ° − = ° −  
 

 At the core-cladding interface:  

1 a
cladding core c core max

core

sin sin 90 sin sin .
n

n n n
n

θ α−
  

= = ° −     
 

The percent difference between the index of refraction of the core and the index of refraction of the 
cladding is: 

( ) ( )cladding 1 a
max

core core

% difference 1 100% 1 sin 90 sin sin 100% .
n n

n n
α−

     
= − = − ° −              

 

CALCULATE:  
( )
( ) ( ) ( )1 1.00

% difference 1 sin 90 sin sin 14.033 100% 1.3513%
1.48

−
   
 = − ° − ° =        

 

ROUND:  To three significant figures, the percent difference between the index of refraction of the core 
and the index of refraction of the cladding is 1.35%. 
DOUBLE-CHECK:  This result is reasonable. One would expect the difference to be small. 

32.46. THINK:  The colors of a rainbow occur because white light from the sun is refracted into its component 
colors by water droplets in the atmosphere. A rainbow is observed at an angle of 42°  from the direction of 
the sunlight, because at this angle, the intensity of the various colors is greatest.  This occurs because, for 
angles less than 42°,  the separation of the colors is less pronounced and rays merge to form white light.  
The angle of 42°  represents the maximum angle at which light rays exit a spherical water droplet.     
SKETCH:   

 
 

RESEARCH:  The path of the ray inside the water droplet can be determined using Snell’s Law, the law of 
reflection, i r ,θ θ=  and the geometry of circles and triangles. 
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SIMPLIFY:  The angle, 0 ,θ  is given by Snell’s Law: 1 a
a i w 0 0 i

w

sin sin sin sin .
n

n n
n

θ θ θ θ−  
= ⇒ =  

 
 Due to 

the geometry of a circle, the incident angle at point B is equal to 0 .θ  This is true of the incident angle at C 
as well.  Therefore, the refracted ray leaving at C is iθ  by Snell’s Law.  The angle θ ′  is the change in 
direction of the light ray. For the two refractions and the one reflection, the total change in direction is:  

( ) ( ) 1 a
0 i 0 0 i 0 i i i

w

2 4 2 4sin sin 2 .
n
n

θ θ θ θ θ θ θ θ θ θ−  
′ = − + + − = − = − 

 
 

The maximum value of θ ′  occurs when i/ 0.d dθ θ′ =   The following derivatives can be found in a table of 
derivatives: 

( )1

2

1sin
1

d duu
dx dxu

− =
−

 and sin cos .d x x
dx

=  

The value of iθ  for the maximum value of θ ′  is given by: 
2

2a a a
i i i2

i w w w
2a

i
w

2 2 2

2 2 2 2a a w
i i i i

w w a

4 cos 2 0 2 cos 1 sin

1 sin

4 cos 1 sin 4cos sin .

n n nd
d n n nn

n

n n n
n n n

θ θ θ θ
θ

θ

θ θ θ θ

     ′
= − = ⇒ = −     

      
−  
 

     
= − ⇒ + =     

     

 

Using the trigonometric identity 2 2sin 1 cosx x= −  gives: 

( )
2 2 2 2

2 2 2w w w a
i i i 2

a a a

2 2
1 w a

i 2
a

4cos 1 cos 3cos 1

cos
3

n n n n
n n n

n n
n

θ θ θ

θ −

    −
+ − = ⇒ = − =   

   
 −
 =
 
 

 

CALCULATE:  
( ) ( )

( )

2 2

1
i 2

1.333 1.000
cos 59.4105

3 1.000
θ −

 − = = °
 
 

 

( )
( ) ( ) ( )1

max

1.000
4sin sin 59.4105 2 59.4105 42.078

1.333
θ −

 
′ = ° − ° = °  

 
   

ROUND:  Rounding to four significant figures, the maximum angle is 42.08 .°  Therefore, the observed 
angle for a rainbow is 42.08°  from the direction of the sunlight. 
DOUBLE-CHECK:  This is the angle that the question asked to derive. 

32.47. THINK:  Fermat’s Principle states that the path taken by a ray between two points in space is the path that 
takes the least amount of time. The law of reflection can be found by using this principle. To accomplish 
this, determine the time it takes for a ray to travel from one point to another by hitting the mirror. Using 
calculus, this time can be minimized and the law of reflection is recovered. 
SKETCH:   

 
 RESEARCH:  The time it takes the ray to reach the mirror is / .t d v=   To minimize the time, set 

/ 0.dt dx =  
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SIMPLIFY:  ( ) ( )22 2 21 2
1 2

1d d nt d d h x h l x
v v v c

 = + = + = + + + − 
 

 

The path of least time is determined from: 

( ) ( ) ( )
( )

( )
( )

( )i r2 2 2 2 2 22 2

i r i r

1/ 2 2 1/ 2 2
0 sin sin

sin sin 0

x l x l xdt n n x n
dx c c ch x h xh l x h l x

θ θ

θ θ θ θ

   − −   = = − = − = −   + ++ − + −      
− = ⇒ =

 

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  The law of reflection was recovered using Fermat’s Principle.  

32.48. THINK:  Fermat’s Principle states that the path taken by a ray between two points in space is the path that 
takes the least amount of time. Snell’s Law can be determined by using this principle. To accomplish this, 
determine the time it takes for a ray to travel from one point to another by traveling through both 
materials.  Using calculus, this time can be minimized and the Snell’s Law is recovered. 
SKETCH:   

 
 

RESEARCH: The time it takes the ray to reach the point is / .t d v=   To minimize the time, set 
/ 0.dt dx =  

SIMPLIFY:  ( )22 2 21 2 1 2 1 2
1 2

1 2

/ 4 / 4
d d n n n n

t d d x D h x D
v v c c c c

= + = + = + + − +  

The path of least time is determined from: 

( ) ( ) ( )
( )

( )
( )

1 2 1 2

2 2 2 2 2 22 2

1 2
1 2 1 1 2 2

1/ 2 2 1/ 2 2
0

/ 4 / 4/ 4 / 4

sin sin 0 sin sin

x h x h xn n n ndt x
dx c c c cx D x Dh x D h x D

n n
n n

c c
θ θ θ θ

      − −  = = − = −          + +   − + − +    

− = ⇒ =

 

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  Fermat’s Principle was used to derive an equation involving the indices of refraction 
and angles from the horizontal, as desired.  The resulting equation is Snell’s Law. 

32.49. In the case of a plane mirror, we have that =0 ih h  and that =0| | | |id d . Therefore: 
(a)  The image distance is 50.0 cm behind the mirror. 
(b)  The image has the same height, h = 2.00 m. 
(c)  The image is upright. 
(d)  The image is virtual. 
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32.50. (a)  The frequency of the ray does not change in the medium, so: 

( )
( )

8
14

7
air

3.00 10  m/s
4.29 10  Hz.

7.00 10  m
cf
λ −

⋅
= = = ⋅

⋅
 

(b)  The speed inside the liquid is: 
( )

( )

8
8

2

3.00 10  m/s
1.84 10  m/s.

1.63
cv

n

⋅
= = = ⋅  

(c)  The wavelength of the refracted ray is: 
( )
( )

air

2 air 2

700. nm1 429 nm.
/ 1.63

v c
f n c n

λ
λ

λ
 

= = = = = 
 

 

32.51. For the image to be twice the size of the object, the magnification is:  

i
i o

o

2 2 .
d

m d d
d

= = ⇒ = ±   

The spherical mirror equation is: 

( ) ( )
o i o o

o
o

1 1 1 2 1 1 2  
2

2 1 2 12
2 4

d d f R d d R
R

d
d R

+ = = ⇒ ± =

± ±
= ⇒ =

 

The object can be placed at:  

( )o
3 3 20.0 cm 15.0 cm
4 4

d R= = =  or 
( )

o

20.0 cm
5.00 cm,

4 4
Rd = = =  

to produce an image that is twice the size of the object.  If the object is placed at 15.0 cm, the image 
distance will be ( )i 2 15.0 cm 30.0 cm.d = =  Since i 0,d >  this image will be real.  If the object is placed at 

5.00 cm, the image distance will be ( )i 2 5.00 cm 10.0 cm.d = − = −   Since i 0,d <  this image will be virtual. 

32.52. The critical angle is given by c 2 1sin / .n nθ =  Thus, the critical angle for a water-air interface is: 

1 12
c

1

1.000sin sin 48.61
1.333

n
n

θ − −   = = = °.   
  

 

32.53.  

 
The reflected ray has the same angle to the normal as the incident ray. The refracted ray has an angle given 
by Snell’s Law: 

( )
( )

1 1i
i i 0 0 0 i

0

1.000
sin sin   sin sin sin sin30.0 22.0

1.333
n

n n
n

θ θ θ θ− −
  

= ⇒ = = ° = °.       
 

The angle between the reflected and refracted rays is v r 0180.0 180.0 30.0 22.0 128.0 .θ θ θ= ° − − = ° − ° − ° = °  
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32.54. The focal point of the ornament is / 2 / 4.f R d= =  By convention, a convex mirror has a negative value 
for R, so d is negative. Using the mirror equation, the image distance is: 

1

i
i o o o

1 1 1 4 1 4 1 .d
d f d d d d d

−
 

= − = − ⇒ = − 
 

 

Saint Nicholas will see his reflection at:  

( ) ( )

1

i
4 1 1.97 cm.

8.00 cm 156 cm
d

−
 

= − = −  − 
 

The image is virtual since i 0.d <   

32.55. The critical angle is given by:  

12 2
c c

1 1

sin   sin .
n n
n n

θ θ −  
= ⇒ =  

 
 

The critical angle for the diamond-air interface is:  

1
c, a

1.000sin 24.44 .
2.417

θ −  = = ° 
 

 

The critical angle for the diamond-water interface is:  

1
c, w

1.333sin 33.47 .
2.417

θ −  = = ° 
 

 

Therefore, the critical angle in water is 9.03°  greater than the critical angle in air.  

32.56. Since / 2,f R=  Table 32.1 shows that  

(a) for o ,d R>  the image is real, 

(b) for o/ 2 ,R d R< <  the image is real,  

(c) and for o / 2,d R<  the image is virtual. 

32.57. Since the incident angle is equal to the reflected angle, 1 40.0 .θ = °   The refracted angle θ  is given by Snell’s 
Law: 

( )
( )

( )θ θ θ θ− −   
= ⇒ = = ° = °       

1 11
1 1 2 1

2

1.000
sin sin sin sin sin sin 40.0 28.8 .

1.333
n

n n
n

 

32.58. THINK:  The object is moved around from one point to another. Using the magnification of the two 
points and the change in the image distance, the focal point of the mirror and the change in the distance of 
object can be determined. The magnification of the image at the first position is 2m =  and the 
magnification of the image at the second position is 3.m′ =  The difference between the image distances is 

i i i 75 cm.d d d′∆ = − =  
SKETCH:   
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RESEARCH:  The magnification is given by i o/ .m d d=  The mirror equation is: 
o i

1 1 1 .
d d f

+ =  

SIMPLIFY:  The object distances are o i /d d m=  and o i / .d d m′ ′ ′=  The mirror equation gives: 

( ) ( )i
o i i i i

11 1 1 1 1 ,
mm d m f

f d d d d d
+

= + = + = ⇒ = +    

( ) ( )i
o i i i i

11 1 1 1 1 .
mm d m f

f d d d d d

′ +′
′ ′= + = + = ⇒ = +

′ ′ ′ ′ ′
  

The focal length is given by  

( ) ( ) ( ) ( )
i

i i i 1 1 .
d

d d d m f m f m m f f
m m
∆

′ ′ ′∆ = − = + − + = − ⇒ =
′−

 

The change in the object distance is:  

( ) ( ) ( ) ( )
( )

i i
o o o i

1 1
.

m m f m m f m m m md d
d d d f d

m m mm mm m m mm

′ ′ ′ ′+ − + − −′
′∆ = − = − = = = ∆

′ ′ ′ ′ ′−
 

CALCULATE:  
( )
( )
75 cm

75 cm
3 2

f = =
−

  

( )
( )( )( ) ( )o

2 3
75 cm 12.5 cm

3 2 2 3
d

−
∆ = = −

−
 

ROUND:  To two significant figures, the focal length of the mirror is 75 cmf =  and the object was moved 

o 13 cm.d∆ =  
DOUBLE-CHECK:  Since the image is larger after it is moved, the object should be moved towards the 
mirror.  This is indicated by the negative value for the change in the object distance. 

32.59. THINK:  The rays of light from the point are refracted before they reach the person, according to Snell’s 
Law. Because the index of refraction of air is less than that of water, the image appears shallower. The 
point is 3.00 md =  from the surface and 2.00 mw =  from the edge of the pool.  
SKETCH:   

 
 

RESEARCH:  The angle of the ray is given by Snell’s Law: w w a asin sin .n n=θ θ  The triangles also relate the 
angles to the lengths:  

w 2 2
sin w

w d
=

+
θ  and a 2 2

sin .w

w h
=

+
θ  

SIMPLIFY:  Combining the above equations gives: 

w a
w w a a2 2 2 2

sin sin .
n w n w

n n
w d w h

= = =
+ +

θ θ  
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Solving for the apparent depth gives:  

( ) ( )
( ) ( )

2 2 2 2 2 2 2 2 2 2
w a w a

2 2 2 2 2 2 2 2 2 2 2 2
w a w a a w a

w

  

1   .

n w h n w d n w h n w d

n h n n w n d h n n w n d
n

+ = + ⇒ + = +

⇒ = − + ⇒ = − +

 

CALCULATE:  
( )

( ) ( )( )( ) ( ) ( )= − + =2 2 2 2 21 1.00 1.30 2.00 m 1.00 3.00 m 1.92 m
1.30

h  

ROUND:  Remaining at 3 significant figures, the apparent depth of the pool is 1.92 m.h =  
DOUBLE-CHECK:  The apparent depth is less than the true depth of the pool, as expected. 

32.60. THINK:  For the smallest incident angle, total internal reflection at the surface occurs at the critical angle. 
Snell’s Law and the geometry of the prism can be used to find this incident angle. 
SKETCH:   

 
RESEARCH:  Snell’s Law at the air-glass interface is a i g 2sin sinn nθ θ=  and the critical angle at the glass-

air interface is given by θ = a
c

g

sin .
n
n

  The angles are related by c 2 2 c90 70 20 .θ θ θ θ° = ° + − ⇒ = − °  

SIMPLIFY:  The critical angle is given by θ −
 

=   
 

1 a
c

g

sin .
n
n

 Therefore, θ −
 

= − °  
 

1 a
2

g

sin 20 .
n
n

 The incident 

angle is given by: 

g g g1 1 1a a
i 2 i

a a g a g

sin sin sin sin 20   sin sin sin 20 .
n n nn n
n n n n n

θ θ θ− − −
       
    = = − ° ⇒ = − °                 

 

CALCULATE:  
( )
( )

( )
( )

1 1
i

1.500 1.000
sin sin sin 20 33.87

1.000 1.500
θ − −

    = − ° = °         
 

ROUND:  The angle 70°  was given in a geometric figure, so treat it as having two significant figures. To 
two significant figures, the smallest incident angle is i 34 .θ = °  
DOUBLE-CHECK:  This result is reasonable. 

32.61. (a)  Time reversal leaves the charge and electric field the same, but reverses the current and magnetic field. 
The time reversal solution is obtained with: 

( ) ( ),t tρ ρ→ −  ( ) ( ),j t j t→− −
 

( ) ( ),E t E t→ −
 

 and ( , ) ( , ).B x t B x t→− −
 

   
By plugging these transformations in Maxwell’s equations in Table 31.1, it is seen that the negative signs 
cancel out in each of the equations, and the original equations are recovered. 
(b) One-way mirrors do not violate Maxwell’s equations since light can go both ways through a one-way 
mirror.  A one-way mirror is a partially silvered mirror mounted between a brightly lit room and a 
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darkened room. The mirror is partially reflective and partially transparent.  The key to its operation is the 
difference in lighting between the two rooms.  In the brightly lit room, reflected light overwhelms light 
transmitted from the dark room and the one-way mirror looks like a mirror.  Seen from the dark room, 
the light transmitted from the bright room overwhelms reflected light and the one-way mirror looks like a 
window into the bright room.  Ordinary windows demonstrate the same effect.  A window in a brightly lit 
room looks like a mirror from the room side at night, but a window to the outdoors in daylight.  

32.62. THINK:  The path a ray of light takes between two points minimizes the time required for the trip. This 
problem asks for the time it takes light to travel between two points via various paths. The situation is 
depicted below. 
SKETCH:   

 
RESEARCH:  The time it takes the light ray to travel its path is / .t d v=   The speed of the ray in a medium 
is / .v c n=  
SIMPLIFY:   
(a) The time of travel for light along path a is:  

w 1 a 21 2
a

1 2 1 2

1 .
cos cos
n d n dl l

t
v v c θ θ

 
= + = + 

 
 

(b)  The time of travel for light along path b is:  

w 1 a 2 w 1 a 21 2
b

1 2 3 3 3

1 ,
cos cos cos
n d n d n d n dl l

t
v v c cθ θ θ

  +
= + = + = 

 
 

where the angle 3θ  is given by:  

1 2 1 1 2 2
3 3

1 2 1 2

tan tan
tan tan .

w w d d
d d d d

θ θ
θ θ

+ +
= ⇒ =

+ +
 

Thus  

w 1 a 2
b

1 1 1 2 2

1 2

.
tan tan

cos tan

n d n d
t

d d
c

d d
θ θ−

+
=

  +
  +   

 

(c)  The time of travel for light along path c is:  

( ) ( )2 22 2w 1 a
c 2 1 2 w 1 a 2 1 1 2 2

1 tan tan .
n d n

t d w w n d n d d d
c c c

θ θ = + + + = + + + 
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(d)  The time of travel for light along path d is:  

w a a 2 w a a 21 2
d

1 2 2 2 2

1 .
cos cos cos
n d n d n d n dl l

t
v v c cθ θ θ

  +
= + = + = 

 
 

CALCULATE:   

(a)  
( )

( )( )
( )

( )( )
( )

8
a 8

1.333 1.50 m 1.000 1.70 m1 1.5873 10  s
cos 32.0 cos 45.03.00 10  m/s

t −
 

= + = ⋅  ° °⋅  
 

(b)  
( )( ) ( )( )

( ) ( ) ( ) ( )
( ) ( ) ( )

8
b

1 8

1.333 1.50 m 1.000 1.70 m
1.5980 10  s

1.50 m tan 32.0 1.70 m tan 45.0
cos tan 3.00 10  m/s

1.50 m 1.70 m

t −

−

+
= = ⋅

  ° + °
⋅   +   

 

(c)  
( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( )

22

c 8

1.333 1.50 m 1.000 1.70 m 1.50 m tan 32.0 1.70 m tan 45.0

3.00 10  m/s
t

+ + ° + °
=

⋅
 

             81.7109 10  s−= ⋅  

(d)  
( )( ) ( )( )

( ) ( )
8

d 8

1.333 0.937 m 1.000 1.70 m
1.3902 10  s

3.00 10  m/s cos 45.0
t −+
= = ⋅

⋅ °
 

ROUND:  Round the results to three significant figures. 
(a)  8

a 1.59 10  st −= ⋅  

(b)  8
b 1.60 10  st −= ⋅  

(c)  8
c 1.71 10  st −= ⋅  

(d)  8
d 1.39 10  st −= ⋅  

(e)  Path d has the shortest travel time, but the rays are not actually starting at the location where the fish 
appears to be.  Path a, given by Fermat’s Principle (using Snell’s Law), has the smallest travel time for light 
from the fish to the observer. Therefore, Fermat’s Principle holds since path a is the actual path taken by 
the light. 
DOUBLE-CHECK:  The path given by Fermat’s principle (i.e. Snell’s Law) does take the least amount of 
time, as expected. 

32.63. The focal length of a liquid mirror is 
ω

= 2 ,
2

g
f  where ω  is the angular velocity of the rotating mirror.  

The angular velocity is: 

( )
( )

29.81 m/s
1.40 rad/s.

2 2 2.50 m
g
f

ω = = =  

32.64. THINK:  A proposal for a space telescope is to place a rotating liquid mirror, of focal length 347.5 mf =  

and diameter 100.0 m,d =  on the Moon, where the gravitational acceleration is 2
M 1.62 m/s .g =  

SKETCH:   

 
 

RESEARCH:  The focal length of a rotating mirror is given by 2/ 2 .f g= ω   The linear speed of a rotating 
point a distance r from the axis of rotation is .v rω=   The height of the liquid can be determined by 
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considering the conservation of energy.  The kinetic energy of the liquid is ( ) 21/ 2K mv=  and the 

potential energy is M .U mg h=  
SIMPLIFY:   
(a)  The angular velocity of the liquid is given by  

M .
2
g

f
ω =  

(b)  The linear speed of a point on the perimeter is  

M .
2 2

gdv r
f

ω= =  

(c)  The height of the liquid at any point on the mirror is given when the potential energy and kinetic 
energy are equal: 

( )22 2 2
M2

M
M

2

M

2 / 21 1   .
2 2 2 2 2 16

dgr dK U mv m r mg h h
g f g f

ωω
 

= ⇒ = = ⇒ = = = 
 

 

CALCULATE:   

(a)  
( )
( )

2
2

1.62 m/s
4.82798 10  rad/s

2 347.5 m
ω −= = ⋅   

(b)  
( ) ( )

( )

21.62 m/s100.0 m
2.41399 m/s

2 2 347.5 m
v = =    

(c)  
( )
( )

2100.0 m
1.79856 m

16 347.5 m
h = =  

ROUND:  Round the answers for parts (a) and (b) to three significant figures, and the answer for part (c) 
to four significant figures. 
(a)  The angular velocity of the mirror is 24.83 10  rad/s.−= ⋅ω  
(b)  The linear speed of a point on the perimeter of the mirror is 2.41 m/s.v =  

(c)  The perimeter is at a height of 1.799 mh =  above the center of the mirror. 
DOUBLE-CHECK:  Each result has the appropriate units. 

 
Multi-Version Exercises 

32.65.  o
i

i o o

1 1 1 d f
d

f d d d f
= + ⇒ =

−
 

 

2
o o

o o i
o o

2
o o

i i i i
o o

( ) / 2
/ 2   and   

/ 2 2

11.7 cm
2 2

R x R R Rx
f R d R x d

R x R R x
R Rx Rx

d R x x d R R
R x R x

+ +
= = + ⇒ = =

+ − +
+

= + ⇒ = − = − = − = −
+ +  

32.66. o
i

i o o

1 1 1 d f
d

f d d d f
= + ⇒ =

−
  

 

2
o o

o o i
o o

2
oi

o o o o

( ) / 2
/ 2   and   

/ 2 2

0.429
( 2 )( ) 2

R x R R Rx
f R d R x d

R x R R x
R Rxd Rm

d R x R x R x

+ +
= = + ⇒ = =

+ − +
+

= − = − = − = −
+ + +  
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32.67. o i

i o o i

1 1 1 d d
f

f d d d d
= + ⇒ =

+
 

 

o o i i

2
o i o i o i

o i o i
2 2

o i o i o i

o i

o i

/ 2   and      and   

( )( ) ( )
2 2
2 ( ) 2 2 ( ) 2

2
55.5 cm

f R d R x d R x

R x R x R R x x x xR
R x R x R x x

R R x x R R x x x x
x x

R
x x

= = + = +

+ + + + +
⇒ = =

+ + + + +
⇒ + + = + + +

⇒ = − =
+

 

32.68. o i

i o o i

1 1 1 d d
f

f d d d d
= + ⇒ =

+
  

 

o o i i

2
o i o i o i

o i o i
2 2

o i o i o i

o i o i

o i o i

/ 2   and      and   

( )( ) ( )
2 2
2 ( ) 2 2 ( ) 2

2
28.3 cm

f R d R x d R x

R x R x R R x x x xR
R x R x R x x

R R x x R R x x x x
x x x x

R f
x x x x

= = + = +

+ + + + +
⇒ = =

+ + + + +
⇒ + + = + + +

⇒ = − ⇒ = − =
+ +

 
32.69. This is simply Snell’s Law, but with a slight twist that the angles are measured relative to the interface 

between the two media, not relative to the normal. 

 

1 1

1
2 1 1 2

1
2 2 1 1 2

1

90

sin ( sin( ) / )

90 90 sin ( sin(90 ) / )

90 sin (1.329sin(90 61.07 ) /1.310) 60.61

n n

n n

θ ϕ

θ θ

ϕ θ ϕ

−

−

−

= ° −

=

= ° − = ° − ° −

= ° − ° − ° = °

 

32.70. This is simply Snell’s Law, but with a slight twist that the angles are measured relative to the interface 
between the two media, not relative to the normal. 

 
1 1 2 2

1 1 2 2

2
1 2

1

90 ;    90
sin( ) sin( )

sin(90 )
1.111

sin(90 )

n n

n n

θ ϕ θ ϕ
θ θ

ϕ
ϕ

= °− = ° −
=

° −
⇒ = =

°−

 

32.71. This is simply Snell’s Law, but with a slight twist that the angles are measured relative to the interface 
between the two media, not relative to the normal. 

 

2 1

1
1 2 2 1

1
1 1 2 2 1

1

90

sin ( sin( ) / )

90 90 sin ( sin(90 ) / )

90 sin (1.310sin(90 72.06 ) / ) 661.00045 .21

n n

n n

θ ϕ

θ θ

ϕ θ ϕ

−

−

−

= ° −

=

= ° − = ° − ° −

= ° − ° − ° = °

 

32.72. This is simply Snell’s Law, but with a slight twist that the angles are measured relative to the interface 
between the two media, not relative to the normal. 

 

1 1 2 2

1
1 1 2 2 2 1

2
8

82

2 1 1

90 ;    90
sin(90 )

sin( ) sin( )
sin(90 )

sin(90 ) (2.9979 10 m/s)sin(90 72.98) 1.818 10 m/s
sin(90 ) 1.333sin(90 68.77)

n n n n

ccv
n n

θ ϕ θ ϕ
ϕ

θ θ
ϕ

ϕ
ϕ

= °− = ° −
° −

= ⇒ =
°−

° − ⋅ ° −
= = = = ⋅

° − ° −
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Chapter 33:  Lenses and Optical Instruments 
 

Concept Checks 

33.1.  c  33.2.  b  33.3. d  33.4. b  33.5. c  33.6. e  33.7. d  33.8. a  33.9. e  33.10. a  33.11. a  33.12. d   
 
Multiple-Choice Questions 

33.1. b  33.2. b  33.3. c  33.4. d  33.5. a  33.6. d  33.7. b  33.8. d 33.9. b  33.10. b  33.11. b  33.12. a  33.13. d  33.14. e  
33.15. e  33.16. b  33.17. d 
 
Conceptual Questions 

33.18. The dots are on the lens of the glasses, so they are too close to be brought into focus by the eyes of the 
painter.  Since they are so small, they will not appear in what the painter sees.  However, the dots will block 
the light coming from other objects, reducing the brightness of other objects.  

33.19. When the diver is wearing the mask, light rays enter the eye from the air (index of refraction is 1) so the 
diver’s vision is normal.  When the mask is removed light rays enter the eye from the water (having an 
index of refraction of 1.33).  As a result, the strength of the lens of the eye decreases and objects that are 
near will not be able to be brought into focus and the diver becomes farsighted.  As the index of refraction 
of the medium approaches that of the lens (in this case, 1.40),n =  the focal length of the lens approaches 
infinity and even distant objects will appear blurred.    

33.20. In order to focus light properly, the index of refraction of the lenses of his eyes must be greater than the 
index of refraction of the surrounding medium.  Since his lens has the same index of refraction as that of 
air, the focal length of the lens will be at infinity.  This means that everything will be totally unfocused and 
he will only be able to detect changes in brightness and color. 

33.21. A lens cannot focus all colors to the same point, due to chromatic aberration. The index of refraction of a 
lens varies with the wavelength of light.  By allowing only one wavelength to pass through their telescopes, 
astronomers eliminate chromatic aberration.  The disadvantage is that the intensity of the light is reduced 
and images appear fainter.   

33.22. In order to start a fire the image of the Sun must be focused to a small area. Focusing the light concentrates 
the energy of the Sun’s rays, creating a large amount of heat at that point and making it possible to start a 
fire. If the glasses are for myopia (nearsightedness) then they are diverging lenses.  Since diverging lenses 
only produce virtual images, light cannot be focused on a point.  If the glasses are for hyperopia 
(farsightedness) then they are converging lenses.  Since converging lenses can create real images, light can 
be focused to a point. Therefore, it is possible to start a fire with eye glasses, but only if they are for 
correcting hyperopic vision. 

33.23. The magnification produced by the lens is due to its ability to refract light.  Since the difference between 
the index of refraction of water and glass is less than the difference between that of air and glass, light will 
refract less at a water/glass boundary.  Hence, when the lens is submerged in water, the magnification will 
decrease. 

33.24. Light is reflected in all directions from each point of an object.  In order to create an image of an object, 
the light arriving at one point of an image must be originating from one point on the object.  Imagine what 
is involved in seeing, the light from each object in the field of view enters the eye and is projected onto a 
particular spot on the retina by using a lens to focus the light. Without the lens in our eye, all of the rays 
diverging from a particular point on any object would not be focused and would be projected over the 
entire retina.  Without using optical elements, an image can be made by allowing light to pass through a 
very small hole.  Such a device is called a “pinhole camera” where light passes in a straight line from a 
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point on an object through the hole and then onto one point on the image.  Essentially, a pinhole camera 
eliminates the angular spread of light reaching the image from a point on an object.  The drawback is that 
only the light along a straight path enters so the image will be faint since only a small amount of light can 
enter through the hole.   

33.25.  (a)  A ray diagram through the system is presented below:  
 

 
 

From the ray diagram it can be seen that in a telecentric system, due to the stop aperture being at the 
common focal point, only the rays that are parallel (or near parallel) to the axis of the system will 
contribute to the image formed.  The image magnification does not depend on the distance from the 
system. 

(b)  Based on the geometry of the system, the magnification is given by 2

1

.
f

m
f

=  

(c)  To achieve the maximum resolution, the image of the circular object must cover the entire short 
dimension (5.00 mm)  of the CCD detector.  Therefore, 

= = = = ⇒ =i 2
2 1

o 1

5.00 mm 0.100 0.100 .
50.0 mm

h f
m f f

h f
 

No specific values for 1f and 2f  can be determined, but the first lens will have to have a focal length ten 
times longer than the second lens.  In addition, to accept only parallel rays, the first lens must have a 
diameter larger than the diameter of the disk to be imaged, and the second lens a diameter larger than the 
diagonal dimension of the CCD detector. 

33.26. (a)  The “speed” of a lens is directly connected to the speed with which a photographic exposure can be 
made in any given lighting situation.  The amount of light through the lens per unit time is proportional to 
the area of the lens aperture, i.e. the square of the aperture diameter or the inverse square of the f- number.  
Hence the exposure time or shutter speed required is inversely proportional to the aperture area, or 
proportional to the square of the f-number.  A “fast” lens (low f-number) requires a faster shutter speed or 
shorter exposure than a “slower” lens of larger f-number.  The traditional values for f-numbers correspond 
to factors of two in aperture area or inverse factors of two in shutter speed. 
(b)  The Keck Observatory document Interfacing Visitor Instruments to the Keck Telescopes gives the 
maximum diameter of the Keck II primary mirror as 10.95 m; it has an area equal to a circular aperture 
9.96 m.  The focal length of the primary is 17.5 m.  So the f-number of the primary mirror is: 

= = =
17.5 m-number 1.76,
9.96 m

f
f

D
 

which is fairly fast in comparison with ordinary camera lenses.  The text gives 2.40 mD = and 57.6 mf =  
for the primary mirror of the Hubble Space Telescope.  These imply 

= = =
57.6 m-number 24.0,
2.40 m

f
f

D
 

which is slow compared to an ordinary camera lens.  The National Astronomy and Ionosphere 
Center/Arecibo Observatory document The 305  meter Radio Telescope gives the diameter of the Arecibo 
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radio telescope as 305 m,  and its focal length, the height of the receiving platform above the dish as 
450 feet or 137 m.  The f-number of this primary mirror is  

= = =
137 m-number 0.449,
305 m

f
f

D
 

which is very fast compared to an ordinary camera lens.  

33.27. In an image, the portion of a scene within the depth of field of a lens appears in focus.  Of course, a lens 
can only focus at one distance, but the decrease in sharpness away from this point on the image may be 
gradual enough so that it appears in focus to the human eye.  If a large aperture is placed in front of a lens, 
rays reaching the lens far from the optical axis (small f-number) will be bent through large angles.  
Therefore, rays exiting the lens will intercept the optical axis at large angles and the range of distances over 
which an image will be in focus will be small. That is, the depth of field is small for large apertures.  
Conversely, a lens with a small aperture (high f-number) excludes highly diverging rays so that the rays 
exiting the lens approach the optical axis at shallow angles.  Thus, the range of distances over which an 
image will be in focus will be larger.  In this case, the depth of field is large.  The limiting case of a very 
small aperture or high f-number approximates the pinhole camera, which forms images by excluding all 
rays except those passing through the pinhole.  It has no focal length, and can form images of objects at 
any distance in any plane beyond the pinhole.  

33.28. For astronomical mirrors the accuracy and precision of the reflection properties of the mirror are 
paramount.  First-surface mirrors are used for astronomical instruments to avoid refraction through the 
glass before and after reflection off of the coating, and the accompanying distortion and dispersion 
(“chromatic aberration,” as the refraction would be different for different wavelengths of light).  For 
household mirrors such precision is not required.  Second-surface mirrors are used because of their 
greater durability since the reflective coating is protected by the glass covering.   

33.29. When your friend adjusts the binoculars to his vision, the light rays exiting them are focused by his eyes 
onto his retina.  However, since your friend wears glasses and you do not, the lenses in your eyes are 
different from his.  Therefore, when you use the binoculars on his setting, the light rays are not properly 
focused onto your retina, so a re-adjustment is required to suit your eyes. 

33.30. The ray tracing diagram is shown below:  

 
Since the light rays diverge from the lens and it is the extrapolated rays that actually produce the image, 
the image is virtual.  It is seen from the diagram that the image height is less than the object height. 

33.31. If the objective lens intercepts the converging rays from the objective lens before they fully converge, then 
they will converge sooner, still beyond the eyepiece lens and on the same side of the optical axis as the 
image from the objective lens. So the final image is real and inverted. 

33.32. (a)  A nearsighted person can only focus on objects that are near. Without corrective lenses, light rays 
from farther away come to a focus at a point before the retina.  Diverging lenses are required, to separate 
the rays before they enter the eye so that the focal point advances to the retina. 
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(b)  A farsighted person can only focus on objects that are far away. Without corrective lenses, light rays 
from a near object come to a focus at a point after the retina.  Converging lenses are required, to converge 
the rays more sharly before entering the eye so that the focal point recedes onto the retina. 

33.33. The make-shift microscope has converging lenses, one with focal length 1 6.0 cmf =  and the other with 

2 3.0 cm.f =  The lenses are separated by a distance = 20. cm.L  The magnification of a microscope is 

given by: ( ) ( )= − 0 e0.25 m / .m L f f  It therefore does not matter which lens is used as the eyepiece and 
which is used as the objective. However, it is more practical to use the lens with the smaller focal length as 
the objective in order to bring the object closer to the microscope.  

 
Exercises 

33.34. The setup is as shown:  

 
 

(a)  Assume the lens is a thin lens.  For the image to form at a distance i 3d f=  on the right side of the lens, 

od must be: 
( )( )i

o i o i i

31 1 1 1 1 1    1.5 .
3o

f ffd
d f

d d f d f d d f f f
+ = ⇒ = − ⇒ = = =

− −
 

(b)  The magnification m  must be i

o

3
2,

1.5
d f

m
d f

= − = − = − where the negative sign denotes that the image 

is inverted. 

33.35. The distance to the image id  is: 

o
i

o i i o o

1 1 1 1 1 1  
fd

d
d d f d f d d f

+ = ⇒ = − ⇒ =
−

 

Therefore, the magnification is  

o

o

o o

9.0 cm
3.0.

6.0 cm 9.0 cm

fd
d f f

m
d d f

 
 − = − = − = − =

− −
 

33.36. The radius of curvature of the front surface of the ice lens is =1 15.0 cmR  and that for the back is 
= −2 20.0 cm.R  To start a fire with the ice lens the twigs would need to be placed at the location where the 

light rays are focused.  Presume the source of the light rays (the Sun) is at infinity; o .d = ∞  Use the Lens-

Maker’s formula in the following form: ( ) 
+ = − − 

 o i 1 2

1 1 1 11 .n
d d R R

 Since ice has an index of refraction of 

1.31,n =  this becomes:  

( ) ( )
−

            + = − − ⇒ = + =           ∞ −            

1

i
i

1 1 1 1 1 11.31 1   0.31 27.6 cm
15.0 cm 20.0 cm 15.0 cm 20.0 cm

d
d

 

It would be best to put the twigs about 27.6 cm  from the ice lens in order to create a fire. 

33.37. For the purposes of this question, the laser can be treated as an object at a distance od  with height 
−= ⋅ 3

o 1.06 10 m.h  The image height is 6
i 10.0 10  mh −= ⋅  and the distance to the image is 

= =i 20.0 cm 0.200 m.d  Since the image is to be formed behind the lens and reduced in size, the lens must 
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be a converging lens, and the object should be greater than 2 f  away from the lens, where f  is the focal 
length.  This means that both the object distance od  and the image distance id  are positive.  From the 

magnification equation i o i o/ / ,m d d h h= =  the object distance must be 

( )( )
( )

−

−

⋅
= = =

⋅

3
i o

o 6
i

0.200 m 1.06 10  m
21.2 m.

10.0 10  m
d h

d
h

 

This large value for od  is consistent with how a laser beam is highly collimated, that is the rays are almost 
parallel.  From the thin equation o i1/ 1/ 1/ ,d d f+ =  the focal length is 

−= + = ⇒ =11 1 1 5.0472 m   0.198 m.
21.2 m 0.200 m

f
f

 

For incoming rays that are parallel with the optical axis, the focal point is the focus.  Since these rays are 
highly collimated it is reasonable that image location is near the focal point.  

33.38. The plastic cylinder, shown below, has length  30. cm,L =  and the radius of curvature of each end is 
10. cm.R =  The index of refraction of the plastic is 1.5.n =  The object distance is o 10. cmd =  from the 

left end.   

 
Assume the object is in a medium with an index of refraction of 1n =  (like air, or a vacuum). The image 
distance from the left end of the plastic cylinder is:  

( )
( )

( )( )( )
( )( ) ( )

o,1
i,1

o,1 i,1 o,1

1.5 10. cm 10. cm11   30. cm.
1 10. cm 1.5 1 10. cm

n nRdn d
d d R d n R

  −
 + = ⇒ = = = −    − − − −   

 

The negative sign indicates that the image is to the left of the cylinder.  Therefore, the object for the right 
end is at a distance o,2 i,1 60. cm.d d L= + =  The image distance from the right end of the cylinder is: 

( )
( )

( )( )
( )( ) ( )( )

o,2
i,2

o,2 i,2 o,2

10. cm 60. cm11   40. cm.
1 60. cm 1 1.5 1.5 10. cm

n Rdn d
d d R d n nR

 − −
 + = ⇒ = = =    − − − − −   

 

Therefore, a real image is formed 40. cm to the right of the right end of the cylinder. 

33.39. THINK: The object height is o 2.5 cm,h = and is o 5.0 cmd =  from a converging lens of focal length 
3.0 cm.f =  The thin lens equation can be used to find the image distance and the magnification can be 

found from this. 
SKETCH:   

 
 

RESEARCH:  The magnification m  is: i o/ .m d d= −  The thin lens equation is: o i1/ 1/ 1/ .d d f+ =  

SIMPLIFY:  The image distance is: o
i

o i i o o

1 1 1 1 1 1    .
fd

d
d d f d f d d f

+ = ⇒ = − ⇒ =
−

 Therefore, the 

magnification is: = −
−o

.
f

m
d f

 



Chapter 33: Lenses and Optical Instruments 
 

 1275 

CALCULATE:  The magnification is: ] = − = −
−

3.0 cm 1.5.
5.0 cm 3.0 cm

m  Since the magnification is negative, 

the image is inverted and since 1,m >  the image is enlarged. 
ROUND:  To two significant figures, the magnification of the image is 1.5.m = −  
DOUBLE-CHECK:  The ray tracing shown above confirms that the image is inverted and enlarged.  As 
seen in Table 33.1, this is what it is expected for < <o 2 .f d f    

33.40. THINK:  There are three different locations for placing a real object in front of a thin convex lens which 
results in a real image.  Consider each case separately: Case 1:  The object distance is >o 2 .d f Case 2:  The 
object distance is =o 2 .d f Case 3:  The object distance is > >o2 .f d f (Note that when =od f  no image is 
formed and when <o ,d f  the image is virtual.)  The thin lens equation can be used to find the minimum 
distance between a real object and a real image. 
SKETCH:    

 
 

RESEARCH:  For a thin lens, = +o i1/ 1/ 1/ .f d d  When the image of a real object is on the opposite side 
of the lens, the image is real and both od  and id  are positive by convention. 
SIMPLIFY:  For separation distance L between the object and the image, write + =o i .d d L  Then 

= −i o .d L d  The thin lens equation becomes: 

( ) ( )− −
= + ⇒ = =

− − +
o o o o

o o o o

1 1 1   .
d L d d L d

f
f d L d L d d L

 

Solving for L  gives: = − ⇒ =
−

2
2 o

o o
o

  .
d

Lf d L d L
d f

 

Case 1:  If ∞ > >o 2 ,d f  the distance L lies between 
( )

( )
( )→∞

> > ⇒ ∞ > >
− −o

22
o

o

2
lim    4 .

2d

fd
L L f

d f f f
 

Case  2:  If =o 2 ,d f  the distance L is 
( )

( )

22
4 .

2
f

L f
f f

= =
−

 

Case 3:  If > >o2 ,f d f  the distance L  lies between 
( )

( )
( )

( )

2 22
  4 .

2
f f

L f L
f f f f

> > ⇒ > > ∞
− −

 So the 

minimum separation distance between a real object and a real image for a thin convex lens is 4 .L f=  
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CALCULATE:  Not required. 
 
ROUND:  Not required. 
DOUBLE-CHECK:  This is consistent with the ray diagrams. 

33.41. THINK:   
(a) An air-filled cavity bound by two spherical surfaces is created inside a glass block.  The two spherical 
surfaces have radii of curvatures of 1 30.0 cmR = −  and 2 20.0 cm.R = −   Both values are negative because 
each surface is concave.  The LED is a distance o,1 60.0 cmd =  from the cavity.  The thickness of the cavity 

is 40.0 cm.d =  The index of refraction for glass and air is g 1.50n =  and a 1.00,n =  respectively. The 

equations for thick lenses can be used to find the final position of the image of the LED through the cavity.  
The image formed by the first (left) surface will act as the object for the second (right) surface. 
SKETCH:   

 

RESEARCH:  In the paraxial approximation,  1 2 2 1

o i

.
n n n n
d d R

−
+ =   

SIMPLIFY:  For the first surface the interface is glass to air, so the image distance is:  

( )
g a g a o,1 1a

,1
o,1 i,1 1 o,1 a g 1 g

  .i

n n n n d Rn
d

d d R d n n R n

−
+ = ⇒ =

− −
 

For the second surface the interface is air to glass, so the image distance is: 

( )
−

+ = ⇒ =
− −

g g a g o,2 2a
i,2

o,2 i,2 2 o,2 g a 2 a

  .
n n n n d Rn

d
d d R d n n R n

 

CALCULATE:  The image for the first lens is: 
( )( )( )

( )( ) ( )( )i,1

1.00 60.0 cm 30.0 cm
120. cm.

60.0 cm 1.00 1.50 30.0 cm 1.50
d

−
= = −

− − −
 

The negative sign indicates that the image is to the left of the first surface, so object distance for the second 
surface is given by o,2 i,1 40.0 cm 120. cm 160. cm.d d d= + = + − =   Therefore, the image formed is at a 

distance of 

( )( )( )
( )( ) ( )( )i,2

1.50 160. cm 20.0 cm
48.0 cm.

160. cm 1.50 1.00 20.0 cm 1.00
d

−
= = −

− − −
 

The negative sign indicates that the image is to the left of the second surface and that it is virtual. 
ROUND:  All values are given to two significant figures.  The final position of the virtual image of the LED 
through the cavity is 48.0 cm to the left of the second surface (or 8.00 cm to the left of the first surface). 
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DOUBLE-CHECK: The ray diagram below is consistent with the calculated position of the final image:  
 

 
 

The dotted lines drawn from the center of each curve to the respective curve’s surface makes a normal line 
to that surface.  The dashed lines represent rays being extrapolated back to find the location of the virtual 
image.  Note the light rays refract at each interface, bending away from the normal when going from glass 
to air, and bending toward the normal when going from air to glass. 

33.42. The magnification of a lens is given by i o/ .m d d= −  The object distance is given as =o 3.00 cm.d  From 
the thin lens equation:  

o
i

o i o

1 1 1 .
fd

d
f d d d f
= + ⇒ =

−
 

Therefore, the magnification is:  
5.00 cm

2.50.
3.00 cm 5.00 cmo

f
m

d f
= − = − =

− −
 

33.43. The angular magnification of a magnifying glass is approximately near / .m d fθ ≈  With a given focal length 
of = 5.0 cm,f  and assuming a near point of =near 25 cm,d  the magnifying power of this lens with the 

object placed at the near point is θ = =
25 cm 5.0.
5.0 cm

m  

33.44. Generally, magnification is defined as the ratio of image height to object height, i o/ .m h h=   With an 
object height of =o 1.0 mmh  and an image height of =i 10. mm,h  the magnification is 

= =10. mm /1.0 mm 10.m  The angular magnification of a magnifying glass is approximately 

( )θ ≈ 25 cm / ,m f  where a near point of 25 cm  is assumed.  The focal length of the magnifying glass is:  

≈ = =
25 cm 25 cm 2.5 cm.

10.
f

m
 

33.45. THINK:  The person’s near-point distance is near 24.0 cm.d =  The magnifying glass gives a magnification 

nearm  that is 1.25 times  larger when the image of the magnifier is at the near point that when the image is 
at infinity, that is near 1.25 .m m∞=  Find the focal length of the magnifying glass, .f  
SKETCH:   
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RESEARCH:  When the image is place at infinity, the angular magnification of a magnifying glass is: 

near / .m d f∞ =  When the image is placed at the near-point, the text shows that the equation becomes 

( )near near / 1.m d f= +  

SIMPLIFY:  near near near
near near

1.25 0.25
1.25   1   1   0.25

d d d
m m f d

f f f∞= ⇒ + = ⇒ = ⇒ =  

CALCULATE:  The focal length is ( )= =0.25 24.0 cm 6.00 cm.f  

ROUND:  To three significant figures, the focal length of the magnifying glass is 6.00 cm.f =  
DOUBLE-CHECK: The focal length should be less than neard  if the image is to form at near .d  

33.46. A beam of  light parallel to the optic axis has a diameter 1 1.00 mm.d =   It passes through the first lens of 
focal length 1 10.0 cm,f =  then a second lens of focal length 2 20.0 cm.f =  The emerging light is again 
parallel.  
(a)  Light from the first lens is focused at its focal point 1.f  Since the light exiting the second lens is 
parallel to the optic axis, the object location for the second lens must be located a distance in front of that 
lens equal to its focal length, 2 .f  The total separation between the two lenses is therefore the sum of their 
focal lengths: 10.0 cm 20.0 cm 30.0 cm.L = + =  
(b)  A triangle can be formed for the original lens with a height of 0.50 mm (the radius of the beam) and 
length of 10.0 cm ( )1 .f  For the second lens a triangle can be drawn whose height is the outgoing beam’s 

radius and whose length is 20.0 cm ( )2 .f  See the diagram below:  

 
 

Since these triangles are similar triangles (same angles), the ratio of length to height must be the same for 

both:  = ⇒ = = = 
 

1 2 2
2 1

1 2 1

20.0 cm  0.50 mm 1.00 mm.
10.0 cm

r r f
r r

f f f
 And the width of the outgoing beam is 

( )2 2 1.00 mm 2.00 mm.d = =  

33.47. The total magnification is the product of the magnification after passing through the first lens, 1 ,m and the 
magnification of the second lens, 2 .m  Magnification is = − =i o i o/ / .m d d h h  The focal length of each lens 
is 5.0 cm,f =  and the distance that the insect is from the first lens is =o,1 10.0 cm.d  Using the thin lens 
equation the image distance from the first lens is: 

( )( )o,1
i,1

o,1

5.0 cm 10.0 cm
10. cm.

(10.0 cm 5.0 cm)
fd

d
d f

= = =
− −

 

Then ( ) ( )1 i,1 o,1/ 10.0 cm / 10.0 cm 1.00.m d d= − = − = −  This image is inverted, but the size does not 

change. This image acts as an object for the second lens, and is a distance o,2 i,1d L d= −  from the second 
lens, where L is the separation distance of the two lenses, 12 cm.L =  Using the thin lens equation, the 
image distance from the second lens is:  

( )( )
( )( )

o,2
i,2

o,2

5.0 cm 12.0 cm 10.0 cm
3.333 cm.

12.0 cm 10.0 cm 5.0 cm

fd
d

d f

−
= = = −

− − −
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Then  ( ) ( )2 i,2 o,2/ 3.333 cm / 12.0 cm 10.0 cm 1.667.m d d= − = − − − = This image is oriented the same way as 

the object (inverted). The final magnification of the insect is 1 2 ( 1.0)(1.667) 1.667.m m m= = − = −  
Therefore, the final image of the insect has a size of 

( )i o 1.667 5.0 mm 8.333 mm 8.3 mm.h mh= = − = − ≈ −  
With respect to the original insect, the final image is enlarged, inverted (since magnification is negative) 
and virtual (since i,2d  is negative). 

33.48. THINK:   Three converging lenses of focal length 5.0 cmf =  are arranged with a spacing of 20. cmL =  
between them.  They are used to image an insect o,1 20. cmd =  away. In each case, the image formed by the 
preceding lens will act as the object for the next lens.  (a) To find the location and orientation of the image, 
the thin lens equation can be applied consecutively for the different lenses. (b) If the final image is to the 
right of the third lens then the image is real, and if it is to the left then it is virtual.  (c) Every time a real 
image is formed by a convex lens, the image is inverted. 
SKETCH:   

 
 

RESEARCH:  In each case, the image formed by the preceding lens will act as the object for the next lens.  
The thin lens equation is o i1/ 1/ 1/ .f d d= +   
SIMPLIFY:   
(a) Find the first image location, ,1 :id  

o,1
i,1

o,1 i,1 i,1 o,1 o,1

1 1 1 1 1 1  .
d f

d
f d d d f d d f
= + ⇒ = − ⇒ =

−
 

This image acts as the object for the second lens.  The second image location, i,2 ,d  is:   

o,2
i,2

o,2 i,2 i,2 o,2 o,2

1 1 1 1 1 1  .
d f

d
f d d d f d d f
= + ⇒ = − ⇒ =

−
 

The final image location, ,3 ,id  is: 

o,3
i,3

o,3 i,3 i,3 o,3 o,3

1 1 1 1 1 1  .
d f

d
f d d d f d d f
= + ⇒ = − ⇒ =

−
 

 
CALCULATE:  

(a) The first image is at location: 
( )( )
( ) ( )i,1

20. cm 5.0 cm
6.667 cm.

20. cm 5.0 cm
d = =

−
 This image acts as the object for 

the second lens. Since i,1d  is positive, o,2 20. cm 6.667 cm 13.33 cm.d = − =   The second image is at 

location: 
( )( )
( ) ( )i,2

13.33 cm 5.0 cm
8.00 cm.

13.33 cm 5.0 cm
d = =

−
 This image acts as the object for the third lens.  Since i,2d  

is positive o,3 20. cm 8.00 cm 12 cm.d = − =  The final image is at location:  

( )( )
( ) ( )i,3

12 cm 5.0 cm
8.57 cm.

12 cm 5.0 cm
d = =

−
 

(b) Since i,3d  is positive, the final image is on the right side of the third lens, so the image is real.  
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(c) Since the image of each object is inverted, and there are an odd number of lenses, the final image is 
inverted. 
ROUND:   
(a) To two significant figures, the image is located i,3 8.6 cmd =  to the right of the third lens. 
DOUBLE-CHECK:  It is reasonable that the image due to each lens is real since each object is outside of 
the focal length of each lens.  Using the equation for magnification the orientation of the final image is 
verified (recall od  and id  are positive in each case): 

i,1 i,2 i,3
1 2 3

o,1 o,2 o,3

0.
d d d

m m m m
d d d

   
= = − − − <      

   
 

Therefore, the final image is inverted. 

33.49. THINK:  Two identical thin convex lenses, each of focal length, ,f are separated by a distance 2.5 .d f=  
An object is placed in front of the first lens at a distance o,1 2 .d f=  The thin lens equation can be used to 
find the location, orientation, and size of the final image.  The image formed by the first lens will act as the 
object of the second lens.  
SKETCH:   

 

RESEARCH:  The thin lens equation, o i1/ 1/ 1/ ,f d d= +  can be used in succession to determine the final 
image location.  The magnification is given by: i o i o/ / .m d d h h= − =  The total magnification is the 
product of the magnification of the first lens, 1 ,m and the magnification of the second lens, 2 ;m  that is, 

1 2 .m m m=   

SIMPLIFY:  For the first image: o,1
i,1

i,1 o,1 o,1

1 1 1 .
d f

d
d f d d f

= − ⇒ =
−

  Since o,1 ,d f>  i,1d  is positive so 

the object distance for the second lens is o,2 i,1.d d d= −  For the final image:  

o,2
i,2

i,2 o,2 o,2

1 1 1 .
d f

d
d f d d f

= − ⇒ =
−

 

The magnification is i,1 i,2
1 2

o,1 o,2

.
d d

m m m
d d

  
= = − −    

  
 

CALCULATE:   

(a) 
( )
( )i,1

2
2 ,

2
f f

d f
f f

= =
−

 o,2 2.5 2 0.5 .d f f f= − =  Therefore, 
( )
( )i,2

0.5
.

0.5
f f

d f
f f

= = −
−

 The final image is at 

the focal point on the left side of the second lens.  It must be a virtual image.   

(b) The total transverse magnification of the system is: 
2

2.
2 0.5

f f
m

f f
  −

= − − = −  
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(c)  

 
(d) Since i,2d  is negative, the final image is virtual.  Since 0,m <  the final image is inverted.  Since 1,m >  
the final image is enlarged.  
ROUND:  Not required. 
DOUBLE-CHECK: The ray tracing diagram of part (c) is consistent with the calculations of part (a) and 
part (b). 

33.50. THINK:  Two converging lenses with focal lengths =1 5.00 cmf  and =2 10.0 cmf  are placed = 30.0 cmL  
apart.  An object of height =o,1 5.00 cmh  is placed =o,1 10.0 cmd  to the left of the first lens.   The thin lens 
equation can be used to.  The image formed by the first lens will act as the object for the second lens.  The 
thin lens equation can be used consecutively to find the position i,2d  of the final image produced by this 

lens system.  The magnification equation can be used to find the final image height i,2 .h  
SKETCH:   

 
 

RESEARCH:  The thin lens equation is given by: = +
o i

1 1 1 .
f d d

 The total magnification is the product of 

the magnification after passing through the first lens 1 ,m  and the magnification of the second lens, 2 ;m  
that is 1 2 .m m m=  The magnification is given by: = − =i o i o/ / .m d d h h  

SIMPLIFY:  The first image is at location: = − ⇒ =
−

o,1 1
i,1

i,1 1 o,1 o,1 1

1 1 1 .
d f

d
d f d d f

 Since >o,1 1 ,d f  i,1d  is positive 

so the object distance for the second lens is = −o,2 i,1.d L d  For the final image: 

= − ⇒ =
−

o,2 2
i,2

i,2 2 o,2 o,2 2

1 1 1 .
d f

d
d f d d f

The magnification of the final image is 
  

= = − −    
  

i,1 i,2
1 2

o,1 o,2

.
d d

m m m
d d

  

Therefore, the final image height is 
  

= − −    
  

i,1 i,2
i,2 o,1

o,1 o,2

.
d d

h h
d d

  

CALCULATE:  The image distance of the first lens is 
( )( )
( ) ( )

= =
−i,1

10.0 cm 5.00 cm
10.0 cm.

10.0 cm 5.00 cm
d  The object 

distance for the second lens is then: = − =o,2 30.0 cm 10.0 cm 20.0 cm.d   The final image distance is 

( )( )
( ) ( )

= =
−i,2

20.0 cm 10.0 cm
20.0 cm.

20.0 cm 10.0 cm
d  The final image is 20.0 cm to the right of the second lens.  This 

image is real since >i,2 0.d  The final height is   = − − =  
  

i,2
10.0 cm 20.0 cm5.00 cm 5.00 cm.
10.0 cm 20.0 cm

h  The 

image is the same size as the object and since the height is positive, the image is upright. 
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ROUND:  To three significant figures, the location of the final image is =i,2 20.0 cmd  to the right of the 

second lens and the final image height is =i,2 5.00 cm.h  

DOUBLE-CHECK:  Since for each converging lens o ,d f> the image produced must be real.  Upon each 
pass through a lens, the image is inverted.  Thus after two lenses, the final image is upright. 

33.51. The object is =o,1 10.0 cmh  tall and is located =o,1 30.0 cmd  to the left of the first lens.  Lens 1L is a 
biconcave lens with index of refraction 1.55n =  and has a radius of curvature of 20.0 cm for both 
surfaces.  The first surface has negative radius of curvature as its surfaces is concave with respect to the 
object: 1 20.0 cm.R = −  The second surface is convex with respect to the object, so its radius of curvature is 
positive: 2 20.0 cm.R =  Lens 2L is 40.0 cmd = to the right of the first lens 1.L  Lens 2L is a converging lens 
with a focal length of 2 30.0 cm.f =  The image formed from the first lens acts as the object for the second 
lens.  The position of the image formed by lens 1L  is found from the Lens Maker’s Formula with the thin 

lens approximation: ( ) 
+ = − − 

 o i 1 2

1 1 1 11 .n
d d R R

 Then the image distance is: 

( )
−

  = − − − = −  −  

1

i,1
1 1 11.55 1 11.32 cm.

20.0 cm 20.0 cm 30.0 cm
d  

This image is on the left side of lens 1L  and it acts as the object for lens 2 .L   The object distance for lens 

2L  is  = + = + =o,2 i,1 40.0 cm 11.32 cm 51.32 cmd d d  from lens 2 .L   From the thin lens equation, the 

image distance of lens 2L  is: 
−

 = − ⇒ = − = 
 

1

i,2
i,2 2 o,2

1 1 1 1 1 72.2 cm.
30.0 cm 51.32 cm

d
d f d

 Since this 

distance is positive, the final image is real and  is 72.2 cm  to the right of lens 2 ,L  or 
30.0 40.0 72.2 142 cm+ + = to the right of the original object. The focal length of lens 1L  is required for a 
ray diagram.  The Lens Maker’s Formula gives:  

( ) ( )
1 1

1 1
1 2

1 1 1 11 = 1.55 1   18.2 cm.
20.0 cm 20.0 cm

f n f
R R

− −     = − − − − ⇒ = −     −      
 

 
33.52. THINK:  Light rays are described at any point along the axis of the system by a two-component column 

vector containing ,y the distance of the ray from the optic axis, and ',y the slope of the ray.  Components 
of the system are described by 2 2× matrices which incorporate their effects on the ray; combinations of 
components are described by products of these matrices. 
(a)  Construct the matrix for a thin lens of focal length .f  
(b)  Write the matrix for a space of length .x  
(c)  Write the matrix for the two-lens “zoom lens” system described in the text. 
SKETCH:  Not required. 
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RESEARCH:   
(a) As stated, a thin lens does not alter the position of a ray, but increases (diverging) or decreases 
(converging) its slope an amount proportional to the distance of the ray from the axis. The constant of 
proportionality between the distance of the ray from the optic axis and the change in its slope must be 

1/ ,f− so that a ray initially parallel to the axis (zero slope) will descend to the axis after traveling a 
distance f from the lens.  So the matrix corresponding to a thin lens of focal length f  is  

( )
1 0

,
1/ 1

L f
f

 
=  − 

 

where it is assumed that the displacement of a ray from the axis is the first component of the column 
vector describing the ray, and its slope is the second. 
(b)  A space between components does not alter the slope of a ray; the distance of the ray from the axis 
changes by the slope of the ray times the length of the space.  As described, the matrix for a space of length 
x along the optic axis  

( )
1

.
0 1

x
S x

 
=  
 

 

(c)  The zoom lens described consists of a lens of focal length 1f  followed by a space of length ,x  then a 

second lens of focal length 2 .f  The corresponding matrix is ( ) ( ) ( )2 1 .Z L f S x L f=   
SIMPLIFY:  For part (c),  

( ) ( ) ( ) ( ) ( )
1

2 1
1 2 1 2 22 1

1 /1 0 1 1 0
.

/ 1/ 1/ 1 /1/ 1 0 1 1/ 1
x f xx

Z L f S x L f
x f f f f x ff f

−    
= = =      − + −− −     

 

CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK:  A ray parallel to the optical axis will descend to the optical axis a distance i,2d from 

the second lens.  Using the matrix above, the distance i,2d  is given by the negative of the original distance 
from the axis divided by the effective slope of the two-lens system: 

( )
( )

−
−

= =
− + 

− + 
 

2 11
i,2

2 1

1 2 1 2

1
.

1 1

x
f x ff

d
x f fx

f f f f

 

In the text, the effective focal length efff  of the combination is measured from the first lens.  This result 

implies 
( )
( )
−

= + = +
− +
2 1

eff i,2
2 1

,
f x f

f x d x
x f f

in exact agreement with the analysis in the text. 

33.53. The typical length of a human eyeball is 2.50 cm.  Use the thin lens equation: + =
o i

1 1 1 .
d d f

  

(a) When od  is large, ≈ i .f d  The effective focal length for viewing objects at large distances is 
2.50 cm.f =  

(b)  When the object is at a typical near point, = ≈o near 25 cmd d  and the image forms at the back of the 
eye at =i 2.50 cm,d  the effective focal length is:  

11 1  2.27 cm.
25 cm 2.50 cm

f
−

 = + ≈  
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33.54. The effective focal length of two thin lenses placed close together is: 
eff 1 2

1 1 1 .
f f f

= +  The cornea in a typical 

human eye has a fixed focal length of 1 2.33 cm.f =  For very distant objects the effective focal length of the 
lens-cornea system was found to be eff 2.50 cmf =  in the previous problem.   In this case the focal length 

2f  of the lens of the eye would have to be:  
1 1

2
eff 1

1 1 1 1  34.3 cm.
2.50 cm 2.33 cm

f
f f

− −   = − = − = −     
 

For objects at the near point the effective focal length of the lens-cornea system was found to be 

eff 2.273 cmf =  in the previous problem.  In this case the focal length 2f  of the lens of the eye would have 
to be:  

1 1

2
eff 1

1 1 1 1  92.9 cm.
2.273 cm 2.33 cm

f
f f

− −   = − = − =     
 

Therefore, the lens in the human eye must have a range of focal lengths between 34.3 cm−  and 92.5 cm.  

33.55. Jane’s near point is near 125 cmd =  and the computer screen is =o 40. cmd  from her eye.  Use the thin lens 

equation: + =
o i

1 1 1 .
d d f

 Also, the power of a lens (in diopters) is =
1P
f

 where f  is in meters.   

(a) The object distance is just the distance to the computer screen: =o 40. cm.d  
(b) The image distance is Jane’s near point: = − = −i near 125 cm.d d  It is negative because the image appears 
on the same side of the eye as the object (the image is virtual). 

(c)  The focal length is 
−

 = + = − 

11 1 59 cm.
40. cm 125 cm

f  

(d)  Jane’s near point is 1.25 m;  to read the computer screen at =o 0.40 m,d the image must be located at 
the near point, = −i near .d d  The power of this corrective lens would be:  

= = + = + = +
−o i

1 1 1 1 1 1.7 Diopter.
0.40 m 1.25 m

P
f d d

 

(e)  Since the focal length is positive, the corrective lens is converging.   

33.56. Bill’s far point is far 125 cm.d =  Use the thin lens equation: + =
o i

1 1 1 .
d d f

 Also, the power of a lens (in 

diopters) is =1/P f  where f  is measured in meters. 

(a)  The objects he wishes to see are far away, so the object distance is .od = ∞  
(b)  The image distance is = − = −i far 125 cm.d d  It is negative because the image appears on the same side 
of the eye as the object (the image is virtual). 

(c)  The focal length is 
11 1   125 cm.

125 cm
f f

−
 = + ⇒ = − ∞ − 

 

(d) Bill’s far point is 1.25 m,  so images of distant objects ( )= ∞od  must be located at the far point, 

= −i far .d d  The power of this corrective lens would be:  

= = + = + = −
∞ −o i

1 1 1 1 1 0.800 diopter.
1.25 m

P
f d d

 

(e)  Since the focal length is negative, the corrective lens is diverging. 
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33.57. The newspaper is located at =o 25 cm.d  The converging part of the lens has a focal length of c 70. cm.f =  
The diverging part of the lens has a focal length of d 50. cmf = − (it is negative because the lens is a 
diverging lens).  The converging lens places the image at the near point.  Since the image is on the same 
side of the lens as the object, i near .d d= −  From the thin lens equation  

−   
+ = ⇒ − = ⇒ = − = − =  

    

1

near
o i o near c o c

1 1 1 1 1 1 1 1 1 1    39 cm;
25 cm 70. cm

d
d d f d d f d f

 

The diverging lens places the image at the far point.  Since the image is on the same side of the lens as the 
object, far i .d d= −  The objects are at .od = ∞  From the thin lens equation, 

−   
+ = ⇒ − = ⇒ = − = − =   ∞ −    

1

far
o i o far d o d

1 1 1 1 1 1 1 1 1 1    50. cm;
50. cm

d
d d f d d f d f

 

33.58. The radius of curvature for the outer part of the cornea is 3
1 8.0 10 m,R −= ⋅  while the inner portion is 

relatively flat, so 2 .R = ∞  The radius of curvature 1R  is positive because the surface facing the object is 
convex. The index of refraction of the cornea and the aqueous humor is 1.34.n =  

(a)  The power of the cornea is =1
1P
f

 where the focal length is measured in meters. From the Lens 

Maker’s Formula, the power of the cornea is:  

( ) ( ) −

   = = − − = − − = ≈   ⋅ ∞  
1 3

1 2

1 1 1 1 11 1.34 1 42.5 diopter 43 diopter.
8.0 10  m

P n
f R R

  

(b)  The combination of the lens and the cornea has a power of =eff 50. diopter.P  For two adjacent lenses 

placed closely together, the effective focal length is = +
eff 1 2

1 1 1 .
f f f

 Rewriting in terms of power yields 

= +eff 1 2 .P P P  The power 2P  of the lens is = − = − =2 eff 1 50. diopter 42.5 diopter 7.5 diopter.P P P  

33.59. THINK:  As objects are moved closer to the human eye the focal length of the lens decreases.  The shortest 
focal length is min 2.3 cm.f =  The thin lens equation can be used to determine the closest one can bring an 
object to a normal human eye, o,norm ,d  and still have the image of the object projected sharply onto the 

retina, which is =i,norm 2.5 cm.d behind the lens.  A near sighted human eye has the same minf  but has a 
retina that is 3.0 cm behind the lens.  The thin lens equation can be used to determine the closest one can 
bring an object to this nearsighted human eye, o,near ,d and still have the image of the object projected 

sharply on the retina at =i,near 3.0 cm.d   
SKETCH:  Provided with the problem.  
RESEARCH:  In each case the object is in front of the lens, and the image is formed behind the lens, so 
both od  and id  are positive.  The thin lens equation is: + =o i1/ 1/ 1/ .d d f  The angular magnification is 
given by near / .m d fθ ≈  

SIMPLIFY:  
−

 
= − ⇒ = − 

 

1

o
o i i

1 1 1 1 1  .d
d f d f d

 The ratio of angular magnifications is: 

near, normnorm near

near norm near, near

.
dm f

m f d
  

=      
 

Since the object is placed at the near point for the image to form on the retina and near norm minf f f= = , this 
becomes  

    
= =           

o, norm o, normnorm near

near o, near norm o, near

.
d dm f

m d f d
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CALCULATE:  For the normal eye the minimum distance is: 
−

 = − = 
 

1

o, norm
1 1 28.75 cm.

2.3 cm 2.5 cm
d  

For the elongated eye the minimum distance is: 
−

 = − = 
 

1

o, near
1 1 9.86 cm.

2.3 cm 3.0 cm
d  The ratio of 

angular magnifications is norm

near

28.75 cm 2.916.
9.86 cm

m
m

= =  

ROUND:  To two significant figures, =o, norm 29 cm,d =o, near 10. cm,d  and norm near 2.9 .m m=  
DOUBLE-CHECK:  The nearsighted eye should have a closer near point than the normal eye. 

33.60. THINK:  The power of the eyeglasses lens is = −5.75 diopters.P  The negative power implies that the 
lenses are diverging lenses, and that the person is indeed nearsighted.  Objects at a far distance must have 
an image formed at the person’s near point to be resolved.  The lenses are 1.00 cmL =  in front of his 
corneas.  The thin lens equation can be used to find the prescribed power of his contact lenses.   
SKETCH:   

 
RESEARCH:  The power of a lens is =1/P f  where f  is measured in meters.  The thin lens equation is 

+ =
o i

1 1 1 .
d d f

 Since the person is nearsighted it can be assumed that the objects are distant: = ∞o .d  The 

near point neard  is = +near id d L (see sketch above).  The image distance id  is negative because the image 
forms on the same side of the lens as the object.  The image formed from the contact lenses must be at the 
near point as well.  In this case = −i neard d  since there is no space between the contacts and the cornea.   

SIMPLIFY:  With the glasses, 
− −

   
= + = − + = − + = + = +   ∞  

1 1

near i
o glasses

1 1 1 1 1 .d d L L L f L L
f d f D

 

With ,od = ∞  the power of the contacts is = − =

+
contacts

near

glasses

1 1 .
1

P
d

L
P

 

CALCULATE:  
( )contacts 1 2

1 5.437 diopter.
1/ 5.75 m 1.00 10  m

D
− −

= − = −
− + ⋅

 

ROUND: To three significant figures, the prescribed power of the contact lenses is 
= −contacts 5.44 diopter.P  

DOUBLE-CHECK: The power of the contacts should be slightly less than the power of the glasses, since 
the contacts are on the eye. 

33.61. Equation 33.7 gives the effective focal length of a two lens system as: 
( )
( )

2 1
eff

2 1

.
f x f

f x
x f f

−
= +

− +
 

For a separation of 50. mmx =  between the lenses, with focal lengths of = ⋅ 2
1 2.0 10 mmf  and 

= − ⋅ 2
2 3.0 10 mmf  for the first and second lens, respectively, the effective focal length is:  
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( )( )
( )

2

eff

2

2 2

3.0 10 mm 50. mm 2.0 10 mm
50. mm 350 mm.

50. mm 3.0 10 mm 2.0 10 mm
f

− ⋅ − ⋅
= + =

− − ⋅ + ⋅
 

For a separation of = ⋅ 21.0 10  mmx  between the lenses, the effective focal length is:  

( )( )
( )

2 2 2
2

2 2 2eff

3.0 10 mm 1.0 10 mm 2.0 10 mm
1.0 10 mm 250 mm.

1.0 10 mm 3.0 10 mm 2.0 10 mm
f

− ⋅ ⋅ − ⋅
= ⋅ + =

⋅ − − ⋅ + ⋅
 

33.62. The distance between the lens and the film is 10.0 cm.  Initially, objects that are very far away appear 
properly focused on the film, so the distance from the lens to an object can be taken as = ∞o .d  Since the 
images form on the film, the image distance is =10.0 cm.id  Approximating the lens as a thin lens, the 

focal length of the lens is ( ) ( )− −
+ = ⇒ = + = ∞ + =

1 1
o i o i1/ 1/ 1/   1/ 1/ 1/ 1/10.0 cm 10.0 cm.d d f f d d  To 

properly focus an object =o 100. cmd  away, the film must lie at the location where the image forms, at 

i :d  ( )−= − ⇒ = − =
1

i o i1/ 1/ 1/   1/10.0 cm 1/100. cm 11.1 cm.d f d d  Therefore, you would have to move 
the lens about 1.1 cm in order for it to focus an object 1.00 m away. 

33.63. The focal length of the original lens is fixed at 60. mmf =  and the zoom lens has a variable focal length.  
The object is a distance = ∞od  from the lens.  Using the thin lens equation for the original lens shows 

0

1 1 1 1 1 1
i

i i

f d
d d f d f

+ = ⇒ + = ⇒ =
∞

, the image appears at = =i 60. mm.d f  With the zoom lens set to a 

focal length of ' 240. mm,f =  the image appears at i ' ' 240. mm.d f= =  The ratio of magnifications of 
each lens is:  

original i o i

zoom i o i

/ 60. mm 1 .
'/ ' 240. mm 4.0

m d d d
m d d d

−
= = = =
−

 

The zoom lens (at ' 240. mmf = ) produces an image that is 4.0 times the size of the image produced by 
the original 60. mmf =  lens. 

33.64. THINK:  The first lens is the diverging lens of focal length = −1 10.0 cm;f  the second lens is the 
converging lens of focal length =2 5.00 cm.f  The two lenses are held = 7.00 cmL  apart.  A flower of 
length =o,1 10.0 cmh  is held upright at a distance =o,1 50.0 cmd  in front of the diverging lens.  The thin 

lens equation can be used to find the location i,2d  of the final image, and the magnification equation can 

be used to find the orientation, size i,2 ,h  and the magnification m  of the final image. 
SKETCH:   
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RESEARCH:  The thin lens equation is: + =
o i

1 1 1 .
d d f

 The magnification equation for each lens is: 

= = −i o i o/ / .m h h d d  For multiple lenses, the total magnification is the product of the magnification of 
each lens: 1 2 .m m m=  

SIMPLIFY:  The image produced by the diverging lens is formed at position: =
−

o,1 1
i,1

o,1 1

.
d f

d
d f

 For a 

diverging lens, 0.f <  Since >o,1 0,d from the above equation <i,1 0;d  that is, the image is on the left side 

of the lens.  This image acts as the object for the converging lens at a distance of = +o,2 i,1 .d L d  The 

position of the image produced by the converging lens is: =
−

o,2 2
i,2

o,2 2

.
d f

d
d f

 The final magnification is 

  
= − −    
  

i,1 i,2

o,1 o,2

.
d d

m
d d

 The size of the final image is =i,2 o,1.h mh  

CALCULATE:  The image formed by the first lens is at location:  

( )( )
( ) ( )

−
= = −

− −i,1

50.0 cm 10.0 cm
8.3333 cm.

50.0 cm 10.0 cm
d  

The object distance for the second lens is: = + − =o,2 7.00 cm 8.3333 cm 15.33 cm.d  The final image 
formed by the second lens is at location:  

( )( )
= =

−i,2

15.33 cm 5.00 cm
7.4201 cm.

15.33 cm 5.00 cm
d  

The total magnification is   
  −

= − − = −    
  

8.3333 cm 7.4201 cm
0.08067.

50.0 cm 15.33 cm
m  

The size of the final image is ( )( )= − = −i,2 0.08067 10.0 cm 0.8067 cm.h  Since 0,m < the final image is 
inverted.   
ROUND:  To three significant figures: the final image is =i,2 7.42 cmd  to the right of the convex lens, the 

magnification of the final image is = −0.0807m  and the size of the final image is = −i,2 0.807 cm.h  
DOUBLE-CHECK: These results are consistent with the ray diagram: 

 

33.65. The magnification of a microscope is given by the equation: ( ) o e25 cm / .m L f f=  The magnitude of the 

desired magnification is 23.0 10 .m = ⋅  Treating the lens attached to the tube as the objective lens with 

focal length, o 0.70 cm,f =  the focal length, e ,f  of the eyepiece required, should be 

( ) ( ) ( )( )
( )( )

= ⇒ = = =
⋅

e 2
o e o

25 cm  25 cm  25 cm 20. cm
  2.4 cm.

0.70 cm 3.0 10
L L

m f
f f f m

 (Note that the designation of 

eyepiece and objective to the two lenses is independent of the magnification.) 
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33.66. The objective lens in a laboratory microscope has a focal length of o 3.00 cmf =  and provides an overall 

magnification of = ⋅ 21.0 10 .m  The distance between the two lenses is 30.0 cm.L =  The focal length of the 

eyepiece, e ,f  is given by:  

( ) ( ) ( )( )
( )

= ⇒ = = =
⋅e 2

o e o

25 cm  25 cm  25 cm 30.0 cm  
  2.5 cm.

3.00 cm  1.0 10

L L
m f

f f f m
 

33.67. The focal length of the objective lens is =o 7.00 mm.f  The distance between the objective lens and the 

eyepiece lens is = 20.0 cm.L  The magnitude of the magnification is 200.m =  The viewing distance to the 

image is =i, 2 25.0 cm.d  The focal length of the eyepiece, e ,f  can be found from the equation for the 

magnification of a microscope: 
( )

= =i, 1 i, 2

o, 1 o, 2 o e

25.0 cm
.

Ld d
m

d d f f
 The focal length of the eyepiece is:  

( ) ( )( )
( )( )

= = =e
o

0.250 m 25.0 cm 20.0 cm
3.57 cm.

0.700 cm 200.
L

f
f m

 

The best choice is the lens marked with a 4.00 cm  focal length. 

33.68. The focal length of the eyepiece is e 2.0 cm.f =  The focal length of the objective lens is o 0.800 cm.f =  The 
relaxed viewing distance is typically =i,2 25 cm.d  The distance between the lenses is 16.2 cm.L =  In a 
microscope, the image of the objective lens forms approximately at the focal length of the eyepiece (see 
Figure 33.36 in the text) so that i,1 o,2 i,1 e .L d d d f= + ≈ +  Then ≈ − = − =i,1 e 16.2 cm 2.0 cm 14.2 cm.d L f  

The object distance from the objective lens, o,1d  is given by the thin lens equation, = +
o o,1 i,1

1 1 1 .
f d d

 Then 

− −   = − = − =       

1 1

o,1
o i,1

1 1 1 1 0.85 cm.
0.80 cm 14.2 cm

d
f d

 

33.69. THINK:  The distance between the two lenses of the microscope, ,L is fixed.  The magnitude of the 
magnification is to vary from 1 150m =  to 2 450m =  for substituted eyepieces of various focal lengths. 
The equation for the magnification of a microscope can be used to determine the focal length.  The longest 
focal length eyepiece corresponds to the smallest magnification. 
SKETCH:   

 

RESEARCH:  The equation for the magnification of a microscope is: 
( )

= =i, 1 i, 2

o, 1 o, 2 o e

25 cm
.

Ld d
m

d d f f
  

SIMPLIFY:   

(a)  
( ) ( )

1
o e o e, 1

25 cm 25 cm
  

L L
m m

f f f f
= ⇒ =  and 

( )
2

o e, 2

25 cm L
m

f f
=  

( ) ( )2 1e, 1
e, 2 e, 1

1 o e, 2 o e, 1 e, 2 2

25 cm 25 cm
  

m mL L f
f f

m f f f f f m
   

= ÷ = ⇒ =      
   

 

(b)  
( ) ( )

o
o e 1 e, 1

25 cm 25 cm
  .

L L
m f

f f m f
= ⇒ =  
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CALCULATE:   

(a)  ( )e, 2
15060. mm 20.0 mm
450

f = =  

(b)  
( )( )
( )( )o

25 cm 35 cm
9.72 mm

150 6.0 cm
f = =  

ROUND:  To two significant figures, (a) the shortest focal length of the eyepiece is e, 2 20. mm,f =  and (b) 

the focal length of the objective lens should be o 9.7 mm.f =  
DOUBLE-CHECK: Using the calculated value of e,2 20 mmf =  and its corresponding magnification 

2 450m =  yields a focal length for the objective lens of:  

( ) ( )( )
( )o

2 e, 2

25 cm 25 cm 35 cm
9.7 mm.

450 2.0 cm
L

f
m f

= = =  

33.70. The angular magnification of a refracting telescope is o e/ .m f fθ = −  With an objective lens of focal length 

o 10.0 m,f = and an eyepiece of focal length 2
e 2.00 10  m,f −= ⋅  the magnification of this telescope is: 

210.0 m / 2.00 10  m 500.,mθ
−= − ⋅ = −  where the negative sign indicates that the image is inverted. 

33.71. The angular magnification of a refracting telescope is o e/ .m f fθ = −  With an objective lens of focal length 

o 100. cm,f =  and an eyepiece of focal length e 5.00 cm,f =  the magnification of this telescope is: 
100. cm / 5.00 cm 20.0,mθ = − = −  where the negative sign indicates that the image is inverted. 

33.72. The angular magnification of a refracting telescope is e o o e/ / .m f fθ θ θ= − = −  The telescope has an 
eyepiece focal length of e 25.0 mmf = and an objective focal length of o 80.0 mm.f =  The magnification of 
this telescope is, therefore: o e/ 80.0 mm / 25.0 mm 3.20.m f f= = − = −  Using the small angle 
approximation of tan ,θ θ≈  the angle subtended by the moon (the object) when viewed by the unaided 

eye is (in radians) 
( )6

3moon
8

moon

2 1.737 10  m2
9.037 10  rad.

3.844 10  mo

R
d

θ −
⋅

= = = ⋅
⋅

 Thus, the angle subtended by the 

image of the moon through the eyepiece is: ( )3 2
e 3.20 9.037 10  rad 2.89 10  rad.omθ θ − −= = ⋅ = ⋅  

33.73. Galileo’s telescope had an objective lens with a focal length of =o 40.0 inchesf  and an eyepiece lens with a 
focal length of =e 2.00 inches.f  The angular magnification of the refracting telescope is o e/ .m f fθ = −  

Therefore, θ = − = −
40.0 inches 20.0,
2.00 inches

m  where the negative sign indicates that the image is inverted. 

33.74. The two distant stars are separated by an angle of o 35 arcseconds.θ =  The stars are observed to be 
separated by e 35 arcminutes 2100 arcsecondsθ = =  through a refracting telescope.  (There are 
60 arcseconds  in one arcminute.)  This telescope has an objective lens of focal length o 3.5 m.f =  The 
focal length of the eyepiece, e ,f  is found from the equation for the angular magnification of a refracting 
telescope, e o o e/ / .m f fθ θ θ= − = −  Then ef  is  

( )( )o o
e

e

3.5 m 35 arcseconds
5.8 cm.

2100 arcseconds
f

f
θ
θ

= = =  

33.75. THINK:  The telescope is a refracting telescope with a magnification of 180.m =  It is adjusted for a 
relaxed eye when the two lenses are 1.30 mL =  apart.  The telescope is designed such that the image 
formed by the objective lens (which appears at its focal length o )f  lies at the focal length of the eyepiece.  
Then the distance L  between the two lenses is the sum of the two focal lengths: o e .L f f= +  The 
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magnification equation for a telescope can be used to find the focal length of each the objective lens, o ,f  
and the eyepiece lens, e .f  
SKETCH:   

 
 

RESEARCH:  The angular magnification of a refracting telescope is o e/ .m f fθ = −  With two equations 
and two unknowns, the two focal lengths of  and ef  can be determined.  

SIMPLIFY:  o e o e/   ,m f f f f mθ θ= ⇒ =  θ
θ

= + = + ⇒ =
+o e e e e  .

1
LL f f f m f f
m

 

CALCULATE: 
( )e

1.30 m 7.182 mm,
1 180

f = =
+

 ( )( )o 7.182 mm 180 1.293 m.f = =  

ROUND: Rounding to two significant figures, the focal length of the eyepiece is 7.2 mm. The focal length 
of the objective lens is 1.3 m.  
DOUBLE-CHECK: The focal point of the objective should be much greater the focal length of the 
eyepiece for a refracting telescope. 

33.76. THINK:  The objective focal length of both telescopes is o 95.0 cmf = and the eyepiece focal length of both 
telescopes is e 3.80 cm.f =  Telescope A has an objective diameter of oA 10.0 cmD =  while telescope B has 
an objective diameter of oB 20.0 cm,D =  and for the eyepiece diameter, eB eA2 .D D=  
(a)  The angular magnifications of telescopes A and B can be found by using the magnification equation 
for telescopes.  Both telescopes have the same angular magnification since both of their lenses have the 
same focal lengths. 
(b)  The brightness of an image is proportional to the area of the lenses. 
SKETCH:   

 
RESEARCH:   
(a) The angular magnification of a refracting telescope is o e/ .m f fθ = −   

(b)  The area of a lens is 2 / 4,A Dπ=  where D is the diameter of the lens. 
SIMPLIFY:  Not required. 
CALCULATE:   

(a) 95.0 cm 25.0,
3.80 cm

mθ = − = −  where the negative sign indicates that the image is inverted.  
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(b) 
2 2

A A A

B B A

1 .
2 4

A D D
A D D

   
= = =   
   

  Therefore, the images of telescope B are four times brighter than the 

images of telescope A.  
ROUND:   
(a) To three significant figures, the magnification of telescopes A and B is 25.0.mθ = −  
DOUBLE-CHECK:   
(a) The magnification of the telescopes should have a magnitude greater than 1.  
(b) It is reasonable that the images of telescope B are brighter since more light enters through its larger 
lens. 

33.77. THINK:  Some reflecting telescope mirrors utilize a rotating tub of mercury to produce a large parabolic 
surface.  The tub is rotating on its axis with an angular frequency .ω  Conservation of energy can be used 
to show that the focal length of the resulting mirror is: 2/ 2 .f g ω=  
SKETCH:   

 
RESEARCH:  Consider a single drop of mercury in the rotating tub.  The kinetic energy of this drop of 
mercury is given by: 

( )221 1
2 2

K mv m rω= =  

The gravitational potential energy relative to the bottom of the lowest point of the surface is given by: 

gU mgh=  

SIMPLIFY:  By conservation of energy, g :K U=  

( )
2 2

21
2 2

rm r mgh h
g

ωω = ⇒ =  

Now, the equation of a parabola with its vertex at the origin is given by 
2

2 24 4 ,
4
rx fy r fh h

f
= ⇒ = ⇒ =  

where f  is the focal length.  Substitution gives: 
2 2 2

2 .
4 2 2

gr r f
f g

ω
ω

= ⇒ =  

CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK: It is reasonable that the focal length is inversely proportional to the angular frequency 
of the tub since a faster rotation results in a steeper parabola.  

33.78. The object height is =o 4.0 cm.h  It is projected onto a screen using a converging lens with a focal length 
of 35 cm.f =  The image on the screen is = −i 56 cmh  in size.  (It is negative to represent the fact that the 
image has been inverted; the image must be real to be projected onto a screen, and for a converging lens a 
real image is always inverted). The distance from the lens to the screen is id  and the distance from the 
object to the screen is +i o .d d  The magnification is: = = −i o i o/ / .m h h d d  Then 

( ) ( )= − = − − =o o i i i i/ 4.0 cm / 56 cm /14.d h d h d d  From the thin lens equation, ( )= −i o o/ .d d f d f  

Substitution for od  gives the distance from the lens to the screen: 
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( )
( ) ( )   = ⇒ − = ⇒ = + = = = = ≈   −    

i i
i i

i

/14 1 15      14 1 14 15 15 35 cm 5.25 m 5.3 m.
/14 14 14 14 14

d f d f
d f d f f f

d f
  

Therefore, the distance from the object to the screen is ( )+ = + =i o 5.25 m 5.25 m /14 5.6 m.d d   

33.79. The eyeglasses of a near sighted person use diverging lenses and create virtual images of objects for the 
near sighted wearer.  When a normal person wears these eyeglasses, the person with normal vision will 
only be able to focus on these virtual images if they fall within the focusable distances of a normal eye, 
which is from 25 cm out to infinity.  Since only the most distant objects can be focused on, the objects at 
infinity must be making virtual images at the normal near point of 25 cm.  This will happen when: 

−= + = + = −
∞ −

1

o i

1 1 1 1 1 4.0 m .
0.25 mf d d

 Note that id  is negative because the image is virtual.  The 

prescription strength of the eyeglasses is about 4.0 diopter.−  

33.80. The focal length of the spectacles is the reciprocal of the power, so the focal length is 

= = −
−

1 5.0 m.
0.20 diopter

f  Therefore, light from a distant object will form a virtual image 5 m  in front 

of the spectacles.  Since this is a distance at which your eye can bring objects to a focus, you will still be able 
to focus on distant objects.  The problem comes from near objects.  This is a diverging lens (negative focal 
length), so light from nearby objects will be even more divergent, and therefore, more difficult for your eye 
to focus.  Since the near point of your eye is 20. cm , virtual images formed by the spectacles cannot be 
closer than 20. cm.   Otherwise, your eye will not be able to focus.  From the thin lens equation  

( )

−−   
+ = ⇒ = − = − =    −− ⋅   

11

o 2
o i i

1 1 1 1 1 1 1 21 cm.
20. cm5.0 10  cm

d
d d f f d

  

Thus, the range over which you will be able to see is from 21 cm  to infinity.  The spectacles have hardly 
changed your range because they are low in power. 

33.81. In the derivation of the Lens Maker’s Formula, the following relation can be inferred (in the text it was 

assumed that 1 1) :n =  
−

+ =1 2 2 1

o i

.
n n n n
d d R

 In this case, the refracting surface is flat so R  is infinite ( ).R = ∞  

The equation can be rearranged as ( )= −o 1 2 i/ .d n n d  With the fish (the object) in water, 1 1.33n =  and with 

you in air, 2 1.n =  The apparent depth of the fish is the virtual image distance, = −i 10. cm.d  (it is negative 
because it is on the same side of the surface as the object and therefore, a virtual image.)  Then 

( )( )= − − =o 1.33 /1 10. cm 13 cm.d  The fish is actually 13 cm  under the surface of the water, and must be 
grabbed at this position. 

33.82. The mirror has a focal length of = 40.0 cm.f  To project the image onto a screen, the image must be real, 
and therefore, the mirror must be a concave mirror with 0.f >  The bird has a height =o 10.0 cmh  and is 

=o 100. md  away from the mirror.  From the mirror equation, =
−
o

i
o

.
d f

d
d f

 From the equation for 

magnification, = = −i i

o o

,
h d

m
h d

  the image height is:  

( )( )
( ) ( )

= − = − = − = − = −
− − ⋅ −
o oi

i o o 4
o o o o

40.0 cm 10.0 cm1 0.402 mm.
1.00 10 cm 40.0 cm

·
d f fhd

h h h
d d f d d f

 

The image of the bird is inverted, but it is much smaller than one centimeter in size.  Therefore, he will not 
make good on his claim. 
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33.83. The object is =o 6.0 cmd  away from a thin lens of focal length 9.0 cm.f =  The image distance id  is 

determined from the thin lens equation: + =
o i

1 1 1 .
d d f

 Therefore,  

−−   
= − = − = −       

11

i
o

1 1 1 1 18 cm.
9.0 cm 6.0 cm

d
f d

 

The image is 18 cm  from the lens, and on the same side of the lens as the object (the negative sign 
indicates that it is a virtual image). 

33.84. The spherical lens bulges outwards in the middle on both sides so it is a convex lens.  The surfaces are 
ground to radii of 0.25 m  and 0.30 m.  The radii will have opposite signs, and since there will be an 
absolute value it does not matter which is taken to be negative. Take 1 0.25 mR =  and 2 0.30 m.R = −   
Using the Lens Maker’s Formula, the power of the lens is:  

( ) ( )= = − − = − − =
−glass

1 2

1 1 1 1 11 1.5 1 3.7 diopter.
0.25 m 0.30 m

P n
f R R

 

33.85. The convex surface is part of a sphere with radius 0.45 m.r =  The concave surface is part of a sphere with 
radius 0.20 m,R =  and r  and R  have the same sign.  Using the Lens Makers Formula, the power of the 
lens is: 

( ) ( )= = − − = − − =glass
1 1 1 1 11 1.5 1 1.4 diopter.

0.45 m 0.20 m
P n

f r R
 

Since the lens is a diverging lens, the answer should be taken to be negative. The answer is 
= −1.4 diopter.P  

33.86. The farsighted person can clearly see an object if it is at least 2.5 m  away; therefore, for this person the 
image distance is = −i 2.5 m.d  Using the thin lens equation, the power of the lenses required to read a 
book a distance =o 0.20 md  away is:  

= = + = + =
−o i

1 1 1 1 1 4.6 diopter.
0.20 m 2.5 m

P
f d d

 

Since the power is positive, the will require glasses with converging lenses. 

33.87. The magnifying glass is a converging lens.  If you hold the magnifying glass at =i 9.20 cmd  above your 
desk you can form a real image on the desk of a light directly overhead.  The distance from the light to the 
table is 235 cm.h =   
 

 
 

Using the thin lens equation, where = −o i ,d h d  the focal length of the magnifying glass is:  
− − −     = + = + = + =     − −   

1 1 1

i o i i

1 1 1 1 1 1 8.84 cm.
9.20 cm 235 cm 9.20 cm

f
d d d h d

 

33.88. The girl needs to hold the book at a distance 15 cm  from her eyes to clearly see the print.  This is her near 
point.   
(a) The girl is nearsighted since she can see objects close to her eye.  Therefore, she requires diverging 
lenses in order to see the book 25 cm away. 
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(b)  The thin lens equation can be used to find the focal length of the lens: = +
o i

1 1 1 .
f d d

 Substituting 

=o 25 cmd  and = −i 15 cmd  gives a focal length of 
−

 = − = − 
 

11 1 38 cm.
25 cm 15 cm

f  

33.89. The focal length of the camera lens is 38.0 mm.f =  The lens must be moved a distance d∆ to change 

focus from a person at = ⋅ 4
o 3.00 10  mmd  to a person that is at = ⋅ 3

o ' 5.00 10  mm,d  where ∆ = −i i ' .d d d  

Using the thin lens equation, =
−

o
i

o

fd
d

d f
 and =

−
o

i
o

'
' .

'
fd

d
d f

 Therefore, the lens must be moved a distance  

( )( )
( )

( )( )
( )

⋅ ⋅
∆ = − = − = − =

− − ⋅ − ⋅ −

4 3

o o
i i 4 3

o o

38.0 mm 3.00 10  mm 38.0 mm 5.00 10  mm'
' 0.243 mm.

' 3.00 10  mm 38.0 mm 5.00 10  mm 38.0 mm
fd fd

d d d
d f d f

 

33.90. The magnitude of a telescope’s magnification is 41.m =  The focal length of the eyepiece is e 0.040 m.f =  

The magnitude of the magnification is given by: o e/ .m f f=  Solving for of  gives: 

( )( )o e 41 0.040 m 1.6 m.f m f= = =  

33.91. THINK:  The object is =o,1 2.0 cmh  high and is located at 0 0 m.x =  A converging lens with focal length 

50. cmf =  is located at = =L o,1 30. cm.x d  A plane mirror is located at m 70. cm,x =  so the distance 

between the lens and the mirror is m L 40. cm.L x x= − =  The image formed by the lens will act as the 
object for the plane mirror.  The thin lens equation can be used to determine the position i,2x  and the size 

i,2h  of the final image.     
SKETCH:   

 
 

RESEARCH: The thin lens equation is + =
o i

1 1 1 .
d d f

 The magnification of a lens is = = −i o i o/ / .m h h d d  

For plane mirrors, =i od d  and =i o .h h  
SIMPLIFY:  When the thin lens equation is rearranged to solve for the image distance, it becomes 

=
−

o
i

o

.
fd

d
d f

 The image produced by the lens is located a distance of =
−
o,1

i,1
o,1

fd
d

d f
 from the lens.  Since 

> o,1 ,f d  i,1d  will be negative, and therefore, on the same side of the lens as the object.  This image acts as 

the object for the mirror, and is a distance = +o,2 i,1d L d  from the plane mirror.  The final image is the 

image created by the plane mirror, and will appear =i,2 o,2d d  to the right of the mirror.  The final image 

position is given by = +i,2 m i,2 .x x d  Since the mirror does not change the height of the image, the 

magnification is due to the lens, and the final height of the image is = − i,1
i,2 o,1

o,1

.
d

h h
d
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CALCULATE:  The image distance for the lens is 
( )( )
( ) ( )

= = −
−i,1

30. cm 50. cm
75 cm.

30. cm 50. cm
d  The object distance 

for the plane mirror is = + − =o,2 40. cm 75 cm 115 cm.d  Therefore, the position of the final image is 

= + =i,2 70. cm 115 cm 185 cm.x  The size of the final image is 
( )( )

( )
−

= − =i,2

75 cm 2.0 cm
5.0 cm.

30. cm
h  

ROUND:  To two significant figures, the final image is =i,2 190 cmx  to the right of the object and the size 

of the final image is =i,2 5.0 cm.h  

DOUBLE-CHECK: Since <od f for the converging lens, the image of the lens must be virtual, enlarged 
and upright.  The plane mirror cannot change these attributes, so the calculated results agree with these 
expectations ( )> >i,2 o,1 0 .h h  

33.92. The distance from the lens to the retina at the back of the eye is 2.0 cm. The focal length can be found with 

the thin lens equation: 
−

 
= + 
 

1

o i

1 1 .f
d d

  (a) The focal length of the lens when viewing a distant object 

( )= ∞od  is 
−

 
= + =  ∞ 

1
1 1 2.0 cm.

2.0 cm
f  (b) The focal length of the lens when viewing an object 

=o 25 cmd  from the front of the eye is 
−

 
= + =  
 

1
1 1 1.9 cm.

25 cm 2.0 cm
f  

33.93. You require lenses of power = −8.4 diopter.P  A negative power infers that the focal length is negative, so 
diverging lenses are being used.  In a nearsighted eye, light comes to a focus before it reaches the retina 
and diverging lenses are required to correct this.  Therefore, you are nearsighted.  For nearsighted eyes, 
corrective lenses focus distant objects ( )= ∞od  at the near point, so = −i near .d d  Solving the thin lens 

equation for neard  gives:  

( )−= = + = ∞ − ⇒ − = = − − =1
o i near near1/ 1/ 1/ 1/ 1/   1/ 1/ 8.4 m 0.12 m.D f d d d d D  

−

 
= = + = − ⇒ − = = − =  ∞ − 

near 1
o i near

1 1 1 1 1 1 1  0.12 m.
8.4 m

P d
f d d d P

 

Without glasses the book must be held 12 cm from your eye in order to read clearly. 

33.94. Jack has a near point of near 32 cm 0.32 md = =  and the power of the magnifier is  = 25 diopter.P              
(a)  The focal length is given by =1 /f P  and the angular magnification of a magnifier for an image 

formed at infinity is near .
d

m
f

=  Therefore,  ( )( )−= = =1
near 0.32 m 25 m 8.0.m d P  

(b)  If the final image is at the near point then 
 −−

= = − = 
 

near neari

o o o

.
d dd

m
d d d

 Using the thin lens equation:  

−−
  

= + ⇒ = − = + =   +   

11

near
o

i o i near near

1 1 1 1 1 1 1  .
fd

d
f d d f d f d f d

  Therefore the magnification is: 

( ) ( )( )= = + = + = + = + =

+

near near
near near

near

near

1 1 1 1 25 m 0.32 m 9.0.
d d

m f d Pd
fd f f

f d

 



Chapter 33: Lenses and Optical Instruments 
 

 1297 

33.95. The diameter of the glass marble ( )=g 1.5n  is = =2.0 in 5.1 cm.d  The radius of curvature of the marble is 

then / 2.R d=  Holding the marble a distance of = =o,1 1.0 ft 30. cmd  from your face, the distance of the 
image formed by the first side of the marble is:  

( )
( )

( )( )( )
( )( ) ( )

−
+ = ⇒ = = =

− −− −

gg g o,1
i,1

o,1 i,1 o,1 g

2 1 1.5 5.1 cm 30. cm1 9.217 cm.
2 30. cm 1.5 1 5.1 cm2 1

nn n dd
d

d d d d n d
 

This image acts as the object for the second surface, for which the radius of curvature is negative 
(concave), = −5.1 cm.d   Since >i,1 ,d d  the image for the second surface appears past it, so = −o,2 i,1 .d d d  
Therefore, the final image distance can be computed as follows. 

( )
( )

( )
( )( )

gg i,1o,2
i,2

o,2 i,2 o,2 g g i,1 g g

2 11 ,
2 1 2 1

nn d d ddd
d

d d d d n dn d d n dn

− −
+ = ⇒ = =

− + − − +
 

( )( )
( )( ) ( )( )

− +
= = =

+ − + −i,2

5.1 cm 9.217 cm 5.1 cm
3.324 cm 1.3 in.

2 9.217 cm 5.1 cm 1 1.5 5.1 cm 1.5
d  

The magnification is 
( )

( )( )
( )( )

= − = − = − = −
− +

i,1 i,2 i,1 i,2

o,1 o,2 o,1 i,1

9.217 cm 3.324 cm
0.070,

30.48 cm 9.217 cm 5.1 cm
d d d d

m
d d d d d

 where 

the negative sign indicates that the image is inverted. 

33.96. THINK:  The diverging lens has a focal length of 2 30.0 cm.f = −  It is placed a distance 15.0 cmx =  
behind a converging lens with focal length, 1 20.0 cm.f =  The thin lens equation can be used to find the 
image location for an object that is located at infinity in front of the converging lens.  The image formed by 
the converging lens will act as the object for the diverging lens. 
SKETCH:   

 
 

RESEARCH:  The thin lens equation is: = +
i o

1 1 1 .
f d d

  

SIMPLIFY:  For the converging lens: = + = + ⇒ =
∞ i, 1 1

1 o, 1 i, 1 i, 1

1 1 1 1 1   .d f
f d d d

 The object distance of the 

diverging lens can now be written as: = − = −o, 2 i, 1 1.d x d x f  Substituting this into the thin lens equation 
for the diverging lens gives:  

( ) ( )

−
 

= + = + ⇒ = −  − − 

1

i, 2
2 o, 2 i, 2 1 i, 2 2 1

1 1 1 1 1 1 1  .d
f d d x f d f x f

 

CALCULATE:  
( )

−
 
 = − =
 − − 

1

i, 2
1 1 6.00 cm

30.0 cm 15.0 cm 20.0 cm
d  
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ROUND:  To three significant figures, the object at infinity will be focused =i, 2 6.00 cmd  to the right of 
the diverging lens. 
DOUBLE-CHECK: This result agrees with the diagram shown above.  It is expected that the diverging 
lens causes the focal point to be beyond the focus of the converging lens. 

33.97. THINK:  The instructor wants the lens to project a real image of a light bulb onto a screen a distance 
1.71 mD =  from the bulb.  The thin lens equation can be used to find the focal length that is required to 

achieve a magnification of 2.m =  
SKETCH:   

 
 

RESEARCH:  The image is real and enlarged; therefore, the focal length f must be smaller than the object 
distance o .d  The distance from the bulb to the screen is = +o i ,D d d  where id  is the image distance.  The 

magnitude of the magnification is = i o/ .m d d  The thin lens equation is: = +
i o

1 1 1 .
f d d

 

SIMPLIFY:  Also, = = ⇒ =i o i o2 / 2 .m d d d d   Therefore, = + = + =i o o o o2 3D d d d d d  or =o / 3.d D  

From the thin lens equation, 
( ) ( )

11

i o

1 1 1 1 2 .
2 / 3 / 3 9

f D
d d D D

−−   
= + = + =       

  

CALCULATE:  ( )2 1.71 m 0.380 m
9

f = =  

ROUND:  To three significant figures, the focal length required is 38.0 cm.f =   
DOUBLE-CHECK: The calculated focal length has the correct units.  The answer seems reasonable 
considering the values provided in the question. 

33.98. THINK:  The length of the refracting telescope is 55 cmL =  and it has a magnification of 45.m =  The 

equation for the magnification of a telescope can be used to find the focal length of its objective, of  and 
the focal length of its eye lens, e .f   The length of a refracting telescope is just the sum of the focal lengths, 

o e .L f f= +  
SKETCH:   

 
RESEARCH:  The magnification of a refracting telescope is: o e/ .m f f=  
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SIMPLIFY:  The focal length of the eye lens is: ( ) ( )o e e e e e1 .
1

Lf f m L f m f f m f
m

= ⇒ = + = + ⇒ =
+

 

The focal length of the objective lens is:  
( )o .
1

L m
f

m
=

+
 

CALCULATE:  
( )e

55 cm
1.196 cm,

1 45
f = =

+
 

( )( )
( )o

55 cm 45
53.80 cm

1 45
f = =

+
 

ROUND:  To two significant figures, the focal length of the objective lens is o 54 cmf =  and the focal 
length of the eye lens is e 1.2 cm.f =  
DOUBLE-CHECK: As shown in the diagram, it is expected that o e .f f>  

33.99. THINK:  The converging lens has a focal length =L 50.0 cm.f  It is 175 cmL = to the left of a metallic 
sphere.  This metallic sphere acts as a convex mirror of radius = −100. cmR  (the radius of curvature of a 
diverging mirror is negative) and focal length = = −m / 2 50.0 cm.f R  The object of height, = 20.0 cm,h  is 
a distance =o,1 30.0 cmd  to the left of the lens.  The thin lens equation, the mirror equation, and the 
magnification for a system of optical elements can be used to find the height of the image formed by the 
metallic sphere, i,2 .h  The image formed by the lens acts as the object for the mirror. 
SKETCH:   

 
 

RESEARCH:  The thin lens equation is 
i o

1 1 1 ,
f d d
= +  The magnification (for lenses and mirrors) is 

i o i o/ / .m h h d d= = −  The total magnification m  is the product of the magnification of the lens and the 
mirror: L m .m m m=  

SIMPLIFY:  For the lens, the thin lens equation can be rearranged as: o,1 L
i,1

o,1 L

.
d f

d
d f

=
−

 Since L o,1 ,f d>  i,1d  

is negative, so the image is on the same side as the object (the image is virtual).  This image acts as the 
object for the mirror at a distance of o,2 i,1d L d= +  from the metallic sphere.  The location of the image 

produced from the sphere is o,2 m
i,2

o,2 m

.
d f

d
d f

=
−

 The final image height is  

( )( )
( )

  
     − −  = = = = =               − + −     −    

o,1 L o,2 m

i,1 i,2 o,1 L o,2 m L m
i,2 L m

o,1 o,2 o,1 o,2 o,1 L
o,1 L m

o,1 L

.

d f d f
d d d f d f f f h

h mh m m h h h
d d d d d f

d f L f
d f

 

CALCULATE: 
( )( )( )

( ) ( )( ) ( )

−
= =

 
 − + − −
 − 

i,2

50.0 cm 50.0 cm 20.0 cm
8.3333 cm

30.0 cm 50.0 cm
30.0 cm 50.0 cm 175 cm 50.0 cm

30.0 cm 50.0 cm

h  

ROUND:  To three significant figures, the height of the image formed by the metallic sphere is 
=i,2 8.33 cm.h  
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DOUBLE-CHECK: It is expected that <i,2 .h h  For a converging lens, an image produced by an object 
placed within the focal length of the lens is enlarged, virtual and upright.  For a diverging mirror, the 
image is always virtual, upright and reduced.  Therefore, the height of the final image should be less than 
the height of the object since both the lens and the mirror act to reduce it.  

33.100. THINK:  The lens has a focal distance, 10.0 cm.f =  The laser beam exits a pupil of diameter, 

o 0.200 cmD =  that is located a distance o 150. cmd =  from the focusing lens.  Consider the case when the 
image of the exit pupil forms on the sample.  (a) The thin lens equation can be used to find the distance, 

i ,d  from the sample to the lens and (b) the magnification equation can be used to find the diameter, i ,D  
of the laser spot on the sample (this is the image of the exit pupil).  
SKETCH:   

 
RESEARCH:   

(a)  The thin lens equation is: 
i o

1 1 1 .
f d d
= +  

(b) The magnification is i i

o o

.
D d

m
D d

= = −  

SIMPLIFY:   

(a)  
1

i
o

1 1 d
f d

−
 

= − 
 

 

(b)  i oi i
i

o o o

  
d DD d

D
D d d

= − ⇒ = −  

CALCULATE:   

(a)  
1

i
1 1 10.714 cm

10.0 cm 150. cm
d

−
 

= − =  
 

 

(b)  
( )( )

i

10.714 cm 0.200 cm
0.1429 mm,

150. cm
D = − = −  where the negative sign indicates that the image is 

inverted.  
ROUND:  Round to three significant figures.  
(a) The sample is located i 10.7 cmd =  past the lens.  
(b) The image of the exit pupil has a diameter of i 0.143 mm.D =  
DOUBLE-CHECK: The laser beam is being focused on the sample so it is reasonable that the diameter of 
the laser sport on the sample is smaller than the exit pupil. 

33.101. THINK:  The computer monitor is at a distance of 0.55 mL =  from his eyes. The image of the monitor 

must be located at his near point, near 1.15 m.d =  Since the image is located in front of the lens (the image is 

virtual), the image distance is ( )= − −i near e .d d d  Since the lens-eye distance for his glasses is known to be 

e 0.020 m,d = the object distance from the lens to the computer monitor is = −o e .d L d  The thin lens 
equation can be used to find the lens power required. 
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SKETCH:   

 
 

RESEARCH:  The thin lens equation is given by = +
o i

1 1 1 .
f d d

 

SIMPLIFY:  The power of the lens is defined as 1/D f=  where f is in meters.  Therefore,  

= = −
− −e near e

1 1 1 .P
f L d d d

 

CALCULATE:  = − =
− −
1 1 1.0018 diopter

0.55 m 0.020 m 1.15 m 0.020 m
P  

ROUND:  To two significant figures, his optician should prescribe a power of =1.0 diopter.P  
DOUBLE-CHECK: Since the power is positive, a converging lens must be used.  Since the object is inside 
his near point a converging lens is expected in order to correct his vision. 

33.102. THINK:  An image of a far away object produced by an objective lens of a telescope is located at the focal 
point of the objective lens.  This image becomes the object for the eyepiece.  The focal length of the 
eyepiece is e 8.0 cmf =  and the image is to be projected on a screen that is a distance of 150 cmL =  past 
the original location of the eyepiece.  The thin lens equation can be used to determine how far the eyepiece 
must be moved.   
SKETCH: 

 

RESEARCH:  The thin lens equation is given by: = +
o i

1 1 1 .
f d d
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SIMPLIFY:  The distance from the object to the eyepiece is = +o ed f d  and the distance from the image to 
the eyepiece is = −i .d L d  Therefore, the thin lens equation becomes:  

( )( ) ( )( ) ( )( ) ( )e e
e e e

e e e e

1 1 1 L d f d L f
f d L d f L f

f f d L d f d L d f d L d
− + + +

= + = = ⇒ + − = +
+ − + − + −

 

( ) ( )2 2 2 2
e e e e e e  0.d L f d f L f L f d f L d f⇒ − + − + = + ⇒ + − + =  

Solving this quadratic equation for d yields: 
( ) ( )2 2

e e e4
.

2

f L f L f
d

− − ± − −
=  

CALCULATE:  Substituting the numerical values gives:  

( ) ( ) ( )2 28.0 cm 150 cm 8.0 cm 150 cm 4 8.0 cm
0.452 cm or 142 cm.

2
d

− − ± − −
= =  

The most realistic distance is 0.452 cm.d =  

ROUND:  To two significant figures, the eyepiece should be moved a distance of 4.5 mmd =  towards the 
screen. 

DOUBLE-CHECK: Since ,L d>>  the thin lens equation can be approximated by 
e e

1 1 1 .
f f d L
≈ +

+
 Solving 

this equation for d  gives  
1 1 1

e e
e e

1 1 1 1 1 1  8.0 cm 0.45 cm.
8.0 cm 150 cm

f d d f
f L f L

− − −     + = − ⇒ = − − = − − =     
    

 

This approximation is the same as what was obtained above.  
 

Multi-Version Exercises 

33.103. lens water
water

water 1 2

1 1 1n n
P

f n R R
 −

= = − 
 

 

 

air lens
1 2

water lens water

air water lens

lens water
water air

water lens

1 1( 1)

Take the ratio:

( 1)
Solve for power in water:

1.723 1.333(4.29 D) 1.74 D
( 1) 1.333(1.723 1)

P n
R R

P n n
P n n

n n
P P

n n

 
= − − 

 

−
=

−

− −
= = =

− −
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33.104. lens water
water

water 1 2

1 1 1n n
P

f n R R
 −

= = − 
 

 

 

( )

air lens
1 2

water lens water

air water lens

water water lens water water air lens water

lens water water air water water a

1 1( 1)

Take the ratio:

( 1)
Solve for the index of the lens:

( )

P n
R R

P n n
P n n

P n n P n P n n

n P n P P n P

 
= − − 

 

−
=

−

− = − ⇒

− = − ir water

water water air water
lens

water water air

2.262 1.333 5.55 1.333 1.73
2.262 1.333 5.55

n
P n P n

n
P n P

⇒
−

=
−

⋅ − ⋅
= =

⋅ −

 

33.105. lens water
water

water 1 2

1 1 1n n
P

f n R R
 −

= = − 
 

 

 

air lens
1 2

air water lens

water lens water

water lens
air water

lens water

1 1( 1)

Take the ratio:
( 1)

Solve for power in air:
( 1) 1.333(1.735 1)(2.794 D) 6.810 D

1.735 1.333

P n
R R

P n n
P n n

n n
P P

n n

 
= − − 

 

−
=

−

− −
= = =

− −

 

33.106. o e
e o

e o

81.4(0.234 D) 19.0 D
f P

m P m P
f Pθ θ= = ⇒ = = =  

33.107. o
1

e e o

1 1 101 times
(0.0533 m)(0.186 m )

f
m

f f Pθ −= = = =  

33.108. o

e

646.7 cm 120 times
5.41 cm

f
m

fθ = = =  
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Chapter 34:  Wave Optics 
 

Concept Checks 

34.1. c  34.2. a  34.3. b  34.4. b  34.5. b  34.6. b  34.7. a  34.8. a  34.9. c   
 
Multiple-Choice Questions 

34.1. c  34.2. c  34.3. d  34.4. a  34.5. a  34.6. a  34.7. b  34.8. c  34.9. d  34.10. a  34.11. b  34.12. c 
 
Conceptual Questions 

34.13. The fringe width, defined as the distance between two bright or dark fringes, is given by / .y L dλ∆ =   
(a)  If the wavelength is increased, the fringe width will increase, and thus the pattern will expand. 
(b)  If the separation distance between the slits is increased, the fringe width will decrease, and thus the 
pattern will shrink. 
(c)  If the apparatus is placed in water, the wavelength is decreased and the fringe width will decrease, 
causing  the pattern to shrink. 

34.14. Diffraction effects depend on the ratio between the size of an obstacle and the wavelength of light.  If the 
diffraction effect for a sound wave is similar to that of light, the wavelength of a sound wave should be 
similar to light.  Let us assume the wavelength of sound is about 500 nm.λ =  Since the speed of sound is 
about 340 m/s,  the frequency corresponding to this wavelength is  

9

340 m/s 680 MHz.
500 10  m

vf
λ −

= = =
⋅

 

34.15. A radio telescope is so much larger than an optical telescope because the wavelength of a radio wave is 
much larger than the wavelength of visible light.  Since the resolution of a telescope is proportional to the 
ratio / Dλ ( D  is the diameter of the telescope), in order to get similar resolution as the visible light, the 
diameter of the telescope must be larger. With similar reasoning, since the wavelength of x-ray’s are much 
less than visible light, the diameter of an x-ray telescope can be smaller than a visible light telescope.  

34.16. Yes, light can pass through such a slit.  Using Huygens’s principle, where each point on the wave front of 
light acts as a source of a spherical wave, the diffraction pattern of a very narrow slit is produced by a 
single spherical wave.  The intensity as a function of angle from the direct beam is 

( ) ( )( )
( )( )

π θ λ
θ

π θ λ
=

2

o 2

sin sin /
,

sin /

a
I I

a
 where oI is the intensity at 0.θ =  Since d is less than ,λ the ratio λ/a is 

less than 1.  As a consequence, the intensity falls off with the angle ;θ but it never reaches the minimum. 

34.17. (a)  A hologram is an interference pattern produced by the interference of two light sources (object and 
reference sources).  The recorded pattern acts as a diffraction grating for the light shining on it.  The scale 
of a diffraction pattern is set by the wavelength of the light.  The size of the image produced by the 
hologram is proportional to the wavelength of the light that produced the hologram.  Therefore, if white 
light is used, it will produce a set of nested images of different colors, the size of each image is proportional 
to its wavelength.  
(b)  The size of each image is proportional to the wavelength.  The longest wavelengths of the visible light, 
is those of red light, produce the largest images.  Conversely, the violet light, the smallest wavelength, 
produces the smallest image.  

34.18.  No, it will not.  No interference pattern will be produced since the light source is not a coherent light 
source.  
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34.19.  There are two advantages: 
(a)  The intensity of the collected radio wave is increased. 
(b)  The effective diameter of the telescopes is increased producing a better resolution. 

34.20. The maxima of a diffraction pattern are located at angles determined by the equation θ λ=sin / .m d  For a 
maximum to be visible on screen, the angle must be less than 90°  or λ /m d <1.  This means there is an 
upper limit on the value of m  that satisfies the above equation.  Therefore, the number of maxima is finite. 

34.21. For a circular aperture telescope, the minimum angle resolvable or the limiting angle is given by Rayleigh’s 
criterion, ( )1

R sin 1.22 / ,dθ λ−=  where λ is the wavelength and d is the diameter of the aperture.  Since the 
blue light has smaller wavelength than the red light, the minimum angle for the blue light is also smaller 
than for the red light.  Therefore, two blue stars are more resolvable than two red stars.  

34.22. Bright spots on the screen behind a diffraction grating are produced when there is a constructive 

interference.  The condition for the constructive interference is sind mθ λ= or ( )θ λ−= 1sin / .m d  Since 
green light has smaller wavelength than red light, it will produce bright spots at smaller angles.  Therefore, 
the green bright spots will be closer together.  
 

Exercises 

34.23. The wavelength of EM radiation in a medium with a refractive index n  is o / nλ λ=  where oλ  is the 
wavelength of light in a vacuum.  Similarly the speed of light in the medium is = / .v c n  

(a) The wavelength of a helium-neon laser in Lucite is o 632.8 nm 421.9 nm
1.500n

λ
λ = = =  

(b) The speed of light in the Lucite is 
8

82.998 10  m/s 1.999 10  m/s.
1.500

cv
n

⋅
= = = ⋅  

34.24. The wavelength of light in a medium is o / .nλ λ=  Thus, the wavelength of the light from a HeNe laser in 

water is 632.8 nm 474.7 nm.
1.333

λ = =  The color of the light in water is the same as the color in the air, since 

the color of a light is determined from its frequency, not its wavelength.  The frequency of light does not 
change as it passes into a different medium. 

34.25. One wavelength corresponds to a phase difference of 2 .π  Therefore, the minimum path difference which 

causes a phase shift by / 4π is ( )/ 4 1 1 700. nm 87.5 nm.
2 2 8 8

x θ πλ λ λ
π π
∆

∆ = = = = =  

34.26. A constructive interference occurs when the path difference between two coherent light sources is a 
multiple of wavelength.  A destructive interference occurs when the path difference is ( )1/ 2 .x m λ∆ = +  
By dividing the path difference by the wavelength, the properties of the interference can be determined.  

The ratio of the path difference and wavelength is 
2

5
9

20.25 10  mratio 4.500 10 .
450.0 10  m

x
λ

−

−

∆ ⋅
= = = ⋅

⋅
 The ratio is a 

multiple of the wavelength.  Therefore, the interference is constructive.  

34.27. For a Young’s interference experiment, the maxima of the interference pattern is located at / .y m L dλ=  
Substituting 1m =  for the first maximum intensity yields / .y L dλ=  Therefore, the distance between the 

slits and the screen is 
( )( )3 3

9

5.40 10  m 0.100 10  m
1.0 m.

540 10  m
yd

L
λ

− −

−

⋅ ⋅
= = =

⋅
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34.28. The maxima of the fringe pattern is located at / .y m L dλ=  The separation between the central maximum 

intensity ( )0m = to the next maximum intensity ( )1m =  is / .y L dλ∆ =  Note that d  is the distance 

between the centers of the two slits, that is, 1.00 mm 1.50 mm 2.50 mm.d = + =  Thus, the separation 

between the maxima is 
( )( )9

3

633 10  m 5.00 m
0.001266 m 1.27 mm.

2.50 10  m
y

−

−

⋅
∆ = = ≈

⋅
 

34.29. THINK:  The intensity of light is proportional to the square of the electric field.  The light has wavelength 
514 nmλ =  and the slits are separated by a distance of 0.500 mm.d =  The intensity of the radiation at 

the screen 2.50 m away from each slit is 180.0 W/cm2 (not the maximum intensity, max ).I  However, this 
intensity is not needed to find the position where max / 3.I I=   
SKETCH:   

 
 

RESEARCH:  The intensity of the light produced by the interference from two narrow slits on a distant 
screen is given by:  

2
max4 cos .

dy
I I

L
π
λ

 =  
 

 

SIMPLIFY:  For max 1/3/ 3, :I I y y= →   

2 11/3 1/3max
max 1/3

1 14 cos cos cos .
3 12 12

dy dyI LI y
L L d

π π λ
λ λ π

−     
= ⇒ = ⇒ =     

     
 

CALCULATE:  Substituting the numerical values gives  

( )( )
( )

9
1

1/3 4

514 10  m 2.50 m 1cos 0.001045 m.
5.00 10  m 12

y
π

−

−

−

⋅  
= = 

⋅  
 

ROUND:  To three significant figures, 1/3 1.05 mm.y =  
DOUBLE-CHECK:  As a comparison the first minimum intensity is located at  

( ) ( )( )( )
( )

9

4

1/ 2 514 10  m 2.50 m1/ 2
1.29 mm.

5.00 10  m

L
y

d
λ −

−

⋅
= = =

⋅
 

The result for 1/3y  is less than 1.29 mm,  as expected. 
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34.30. THINK:  The new wavelength as light passes through a medium of refractive index of n  is given by 

o / .nλ λ=  The 10th dark fringe corresponds to a path difference of ( )1/ 2 ,x m λ∆ = +  with 9.m =  
SKETCH:  

 
 

RESEARCH:  The path difference between two paths 1(P and 2 )P  is given by ( )sin 1 ,x d n tθ∆ = − −  where 

t is the thickness of a glass slide.  The central fringe is when 0,x∆ = that is ( )sin 1 .d n tθ = −  This central 
fringe corresponds to the 10th dark fringe for the interference without the glass slide. The condition for the 
10th dark fringe is ( )θ λ= +sin 9 1/ 2 .d  

SIMPLIFY:  From the equations in the Research step, it can be concluded that ( ) ( )1 9 1/ 2 .n t λ− = +   

Therefore, the refractive index is λ = + + 
 

19 1.
2

n
t

 

CALCULATE:  Putting in the numerical values gives  = + + = 
 

1 633 nm9 1 1.5011.
2 12000 nm

n  

ROUND:  Keeping three significant figures yields =1.50.n  
DOUBLE-CHECK:  This value is within the expected range for glass. 

34.31. The minima of the interference pattern produced by a thin film is related to its thickness by 2 / .t m nλ=  
The first dark band which corresponds to the thinnest and is when m D=  or when the thickness is much 
less than .λ  The next dark bands are for 1m = and 2.m =  Therefore, the thicknesses that produces the 

dark bands are 
( )

λ
= = = ≈1

1 550 nm 208 nm 210 nm
2 2 1.32

t
n

and λ λ
= = = = ≈2

2 550 nm 417 nm 420 nm.
2 1.32

t
n n

 

34.32.  

 

Since airn is less than oil ,n  there will be a phase change of ( )1/ 2 λ  and 180°  in the light reflected by the 

air-oil interface.  However, for the oil-water interface, there will be no phase change since oil water .n n>  
Therefore, in order to get  a constructive interference, the path difference between two reflected light 

waves must be 
oil

1 .
2

x m
n
λ ∆ = + 

 
 Using 2 ,x t∆ =  it becomes 

oil

12 .
2

t m
n
λ = + 

 
 The wavelength that 

satisfies this requirement is 
( )( )oil 2 100.0 nm 1.472 294 nm .

1/ 2 1/ 2 1/ 2
tn

m m m
= = =

+ + +
λ  Since 0,1,2...,m =  the only 

possible light within the given wavelength range that is reflected is for 0.m =  Thus 
( )2 294 nm 588 nm.λ = =   
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34.33. Sketch the reflection, with incidence slightly away from normal, for ease of visualization. 

 

The first interface (air-hafina) causes a phase change of 180°  in the first reflected light wave ( )1 .r  The 

second interface does not cause a phase change since 1 2 .n n>  Therefore, to get a constructive interference 

in the reflected light, the path difference must be 
1

12 .
2

x t m
n
λ ∆ = = + 

 
 The minimum thickness of the 

thin film is when 0,m = that is, 
( )1

1.06 μm1 0.139 μm 139 nm.
4 4 1.90

t
n
λ

= = = =  

34.34.  

 
A constructive interference is needed in the reflected light.  There are two possible answers to this problem 
depending on the value of lens .n  If 1 lens ,n n> using similar reasoning as in problem 34.29, the minimum 

thickness is 
( )1

1 800.0 nm 145 nm.
4 4 1.38

t
n

= = =
λ   If 1 lens ,n n< there will be a phase change of 180°  in the light 

reflected by the MgF2-lens interface.  Therefore, the condition for constructive interference is the path 

difference 12 / .x t m nλ∆ = =  The minimum thickness ( )1m =  is 
( )1

1 800.0 nm 290. nm.
2 2 1.38

t
n

= = =
λ  Since 

camera lenses (whether made of glass or another material) normally have a refractive index of 1.5 or 
greater, choose 290 nm as the final answer.  

34.35. THINK:  It is assumed that the refractive index of mica is independent of wavelength.  In order to solve 
the problem, the condition for destructive interference of the reflected light is required. The film has 
thickness 1.30 μm.t =  The wavelengths of interest are 433.3 nm, 487.5 nm, 557.1 nm, 650.0 nm, and 
780.0 nm.  
SKETCH:   

 
RESEARCH:  Since air mica ,n n<  the light reflected by the first interface 1I  has a phase change of 180 .°  The 

light reflected by the second interface ( )2I  has no phase change.  The condition for destructive 
interference in the reflected light is  
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air 2 ( 0,1, 2,...).m t m
n

= =
λ

 

For two adjacent wavelengths with 2 1 ,λ λ>  2 1 1.m m= −  Therefore, 

1 1
1 2

2 2and 1 .nt ntm m
λ λ

= − =  

SIMPLIFY:  Solving these two equations for the refractive index n gives:  

( )
1 2

1 2 1 2 2 1

2 2 1 11 2 1 .
2

nt nt nt n
t
λ λ

λ λ λ λ λ λ
 

= + ⇒ − = ⇒ =  − 
 

CALCULATE:  Choosing two adjacent wavelengths, 1 433.3 nmλ = and 2 487.5 nmλ = and substituting 

into the above equation yields 
( )( )

( ) ( )( )
9 9

6 9

433.3 10  m 487.5 10  m
1.499.

2 1.30 10  m 487.5 433.3 10  m
n

− −

− −

⋅ ⋅
= =

⋅ − ⋅
 

ROUND:  To three significant figures, the refractive index of the mica is 1.50.n =  
DOUBLE-CHECK:  Choosing another two adjacent wavelengths, 1 650.0 nm=λ  and 2 780.0 nm,=λ the 
refractive index is found to be  

( )( )
( ) ( )( )

9 9

6 9

650.0 10  m 780.0 10  m
1.50.

2 1.30 10  m 780.0 650.0 10  m
n

− −

− −

⋅ ⋅
= =

⋅ − ⋅
 

This is in agreement with the previous result. 

34.36. THINK:  To determine the condition for a bright band (constructive interference), the phase shift at the 
interfaces and the path difference between the two exiting beams of light need to be determined.  Since 
both Beam 1 and Beam 2 pass through the same thickness of glass, the refractive index of glass is not 
needed to solve the problem.  This means that the location of the bright bands will be the same for any 
material. 
SKETCH:   

 
RESEARCH:  Since gn  is larger than air ,n  there is no phase change in the reflected light 1.r  But for the 

reflected light 2 ,r  there is a phase change of 180 .°  Therefore, the condition for constructive interference 
is,  

( ) air
air

2 112
2 4

m
t m t

λ
λ

+ = + ⇒ = 
 

  ( 0,1, 2,...).m =  

This can be related to the location x  of the bright fringes from the geometry of the set up. The air wedge 

has length 2
max 8.00 10 mx −= ⋅  and at this location it has thickness 5

max 2.00 10  m.t −= ⋅  
SIMPLIFY:  If θ  is the angle of the wedge:   

max

max
tan .

t
x

=θ  
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In general, the location of bright fringes is: 
( ) air maxmax

bright
max max

2 1
.

4
m xtx

x
t t

λ+
= =  

The number of bright bands is found by setting bright maxx x=  and solving for :m   

( ) air max

max air

2 1 4
1 2 1 ,

4
m t

m
t

λ
λ

+
= ⇒ + =  

max

air

2 1 .
2

t
m

λ
= −  

CALCULATE:  The location of the bright bands as a function of m  is: 

( )( )
( ) ( ) ( )

9 2
4

bright 5

633 10 m 8.00 10 m
2 1 2 1 6.33 10 m.

4 2.00 10 m
x m m

− −
−

−

⋅ ⋅
= + = + ⋅

⋅
 

The number of bright bands is: 

( )
( )

5

9

2 2.00 10  m 1 62.69.
2633 10  m

m
−

−

⋅
= − =

⋅
 

ROUND:  To three significant figures, ( ) ( )4
bright 2 1 6.33 10  m, 0,1, 2,... .x m m−= + ⋅ =  The number of full 

bright bands is 62.m =  
DOUBLE-CHECK: Setting 62.69m =  should give 8.00 cm:x =   

( )( ) 4
bright 2 62.69 1 6.33 10  m 0.0800 m 8.00 cm,x −= + ⋅ = =  as required. 

34.37. THINK:  The path length difference between the two beams and phase shifts at the interfaces need to be 
considered. For a plano-convex lens with focal length 0.8000 mf =  and index of refraction l 1.500,n =  the 
Lens-Maker’s Formula can be used to determine the radius of curvature of the lens. The third bright circle 
is observed to have a radius of 30.8487 10 m.r −= ⋅       
SKETCH:   

 
 

RESEARCH:  Since l air,n n> there is no phase change in the reflected beam 1.r  However, there is a phase 
change of 180°  for the beam reflected by the mirror.  Because the path length difference between the two 
beams is 2x d∆ =  and there is a phase change of 180°  in one of the beams, the condition for constructive 
interference is ( )2 1/ 2x d m λ∆ = = +  with 0,1,2... .m =   The Lens-Maker’s Formula is given by: 

( )l
1 2

1 1 11 .n
f R R

 
= − − 

 
 

SIMPLIFY:  Using 2 2 ,d R R r= − −  the wavelength is given by 
( )2 22

.
1/ 2

R R r

m
λ

− −
=

+
 If ,R r>>  

2 2R r− can be approximated by,  
1/22 2

2 2
2

11 .
2

r rR r R R
RR

 
− = − ≈ − 
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Therefore, the wavelength simplifies to  

( )
2

.
1/ 2
r

m R
λ =

+
 

An expression for R  can be found by using the Lens-Maker’s Formula using 1R R=  for the radius of 
curvature of the bottom surface of the lens and 2R →∞  for the plane surface:  

( ) ( )l
l l

11 1 11 1 .
n

n R f n
f R R

− = − − = ⇒ = − ∞ 
 

The wavelength of light is therefore: 

( )( )
2

l

.
1/ 2 1

r
f m n

λ =
+ −

 

CALCULATE:  Substituting 2m =  for the third bright circle ( 0m =  corresponds to the first) yields: 

( )
( )( )( )

230.8487 10  m
720.29 nm.

0.8000 m 2 1/ 2 1.500 1
λ

−⋅
= =

+ −
 

ROUND:  Rounding the answer to four significant figures gives 720.3 nm.λ =  
DOUBLE-CHECK:  This is within the range of wavelengths of visible light. 

34.38. In a wavelength meter, the number of counted fringes corresponds to the number of wavelengths in the 
path difference.  Since the path difference is 2 ,x d∆ = ∆  the number of fringes is / 2 / .N x dλ λ∆ = ∆ = ∆  
Therefore, the number of fringes for two wavelengths are 1 12 /N d λ∆ = ∆  and 2 22 / .N d λ∆ = ∆  
(a)  Taking a ratio of 1N∆  and 2N∆  gives 1 2 2 1/ / .N N λ λ∆ ∆ =  If 1λ  is a known wavelength, then the 

unknown wavelength is ( )
4

1
2 1 4

2

6.000 10 632.8 nm 488.0 nm.
7.780 10

N
N

λ λ
∆ ⋅

= = =
∆ ⋅

 

(b)  The displacement, ,d∆  is 
( )4

1 1 6.000 10 632.8 nm
0.01898 m 18.98 mm.

2 2
N

d
λ ⋅∆

∆ = = = ≈  

34.39. The number of fringes is given by the ratio of the path difference and the wavelength, that is, 

( )3 29/ 2 / 2 0.381 10  m / 449 10  m 1697 17.0 10 .N x dλ λ − −= ∆ = = ⋅ ⋅ = ≈ ⋅  

34.40. THINK:  The phase difference of two light beams is given by 2 /xθ π λ= ∆  where x∆  is the path 
difference between the two beams and 9550.0 10  mλ −= ⋅  is the wavelength of each beam. 
SKETCH:   

 
RESEARCH:  If the number of round trips is 100N =  and the length of the interferometer arm is denoted 
by 4000. mL =  then the total distance traveled by each beam is total 2 .L NL=   
SIMPLIFY:  If there is a decrease in the length of one path and an increase in the length of the other path 
due to gravitational waves, each by a fractional change of 211.000 10 ,δ −= ⋅  then the net fractional change is 
2 .δ   Therefore, the difference in path length between the two beams is 4 .x NLδ∆ =   
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The phase difference is 
( )2 4 8 .

NL NLπ δ πδθ
λ λ

= =  

CALCULATE:  Substituting in the numerical values yields  

( )( )( )21
8

9

8 1.000 10 100 4000. m 
1.8278 10  rad.

550.0 10  m

π
θ

−

−
−

⋅
= = ⋅

⋅
 

ROUND:  The value of 100N =  can be taken as an exact number.  Rounding the answer to four 
significant figures gives 81.828 10  rad.θ −= ⋅  
DOUBLE-CHECK:  A very small phase change is expected since the effect that gravitational waves have 
on the path length of light is always neglected. 

34.41.  

 
The first minima on either side of the central maximum are described by 

( )sin 1 ,a θ λ=  where 32.0 / 2 16.0 .θ = ° = °    

The width of the slit is given by 
( )( )1 653 nm

2370 nm.
sin16.0

a = =
°

 

34.42. The width of the central maximum is given by: 2 /w L aλ= from problem 34.1.  

( )( )
( )( )λ

−

−

⋅
= = =

⋅

3

9

0.0500 m 0.135 10  m
5.33 m

2 2 633 10  m
waL  

34.43. The minima of a single slit width are given by: sin .a mθ λ=  The first minimum corresponds to 1,m =  
sin .a θ λ=  Minima do not appear for 90θ = °  or larger angles. Solving for a gives: 

/ sin   600. nm.a aλ θ λ= ⇒ = =  If a is any larger θ  would be less than °90 ,   since θ λ=sin / .a  

34.44. The dark fringes of a single slit are given by: sin .a mθ λ= The second dark fringe corresponds to 2,m =  

( )θθ λ λ −°
= ⇒ = = = ⋅ =20.0200 m sin43.0sinsin 2   0.682 10  m 0.682 cm.

2 2
aa  

34.45. Using Rayleigh’s Criterion, the minimum angular resolution for green light is: 

( )9
1 1 6

R

1.22 550 10  m1.22sin sin 2.7 10  degrees.
14.4 md

λθ
−

− − −
 ⋅   = = = ⋅      
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34.46. The first diffraction minimum is given by: sin 1.22 / .dθ λ=   
 

 

The angle θ  is then given by 1 2.0 mm 1tan 0.0286
2 2.0 m

−   = ° 
 

and 
( )
( )

91.22 570 10  m1.22
sin sin 0.0286

d λ
θ

−⋅
= =

°
 where 

λ  is taken to be 570 nm, the average wavelength of sunlight. 1.39 mm 1.4 mm.d = ≈  

34.47. The angular resolution is given by Rayleigh’s Criterion ( )1
R sin 1.22 / .dθ λ−=  For the Hubble Space 

Telescope the value is ( )( )1 9 5
R sin 1.22 450. 10  m / 2.40 m 1.31 10  degrees.θ − − −= ⋅ = ⋅ For the Keck Telescope 

the value is ( )( )1 9 6
R sin 1.22 450. 10  m /10.0 m 3.15 10  degrees.θ − − −= ⋅ = ⋅ For the Arecibo radio telescope, 

the value is ( )( )1
R sin 1.22 0.210 m / 305 m 0.0481 degrees.θ −= = The radio telescope is clearly worse than 

the other telescope in terms of angular resolution.  The Keck Telescope is better than the Hubble Space 
Telescope due to its larger diameter. 

34.48. Angular resolution is given by the Rayleigh Criterion Rsin 1.22 / ,dθ λ=  which is R 1.22 / dθ λ=  using the 

small angle approximation. Therefore 
( )( ) 5

7

1.22 0.100 m
4.357 10  m 436 km.

2.80 10  radians
d −= = ⋅ ≈

⋅
 

34.49. (a) Rayleigh’s Criterion is given by: 

( )9
1 1 3

R

1.22 550. 10  m1.22sin sin 0.007689 7.69 10  degrees.
0.00500 md

λθ
−

− − −
 ⋅   = = = ° ≈ ⋅      

 

(b) 

 

From the diagram the distance is given by 
( )3

1.50 m 1 11,177 m 11.2 km.
2 tan 7.70 10  / 2

L
−

= = ≈
⋅ °

 

34.50. For the first dark fringe due to double slit interference:  

( ) ( ) ( )sin 1/ 2   / 1/ 2 .d m d y L m= + ⇒ = +θ λ λ  

The width of the central maximum is twice ,y so 2 .w y=  Using 0,m =   

( )( )
( )

9
5

1.60 m 635 10  m
2.42 10  m.

2 0.0420 m
L Ld

y w

−

−
⋅

= = = = ⋅
λ λ  
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The missing bright fringe is due to single slit destructive interference, with 1.m =   The size of the 
individual slits is  

, whereL m La y
y d

′= =
′
λ λ

 

with 4m =  for the forth bright spot due to double slit interference.  Therefore, 

( )5
6

2.42 10  m
6.05 10  m

4 4
da

−

−
⋅

= = = ⋅  

The slit separation is 4 times the slit width causing the fourth double slit maximum to be missing due to 
single slit interference. 

34.51. THINK:  Light of wavelength 600. nmλ =  illuminates two slits.  The slits are separated by a distance 

24μmd =  and the width of each slit is 7.2μm.a =   A screen 1.8 mw =  wide is 2.0 mL =  from the slits.  
The problem can be approached by determining the number of fringes that appear due to the double slit 
and eliminate those removed by the minima due to single-slit diffraction. 
SKETCH:   

 
 

RESEARCH:  The maximum angle maxθ  is given by maxtan / 2 .w Lθ =  The bright fringes occur when 
sin / .m dθ λ=   The disallowed fringes occur when sin / .n aθ λ=  
SIMPLIFY:  The maximum number of bright fringes that can appear on the screen is 

1

max
max

sin tan
2sin

.

wd
Ld

m
θ
λ λ

−  
  

  = =  

The disallowed fringes occur when  

.m n m d
d a n a
λ λ
= ⇒ =  

CALCULATE:  The number of bright fringes is: 

( ) ( )
( )

1

max
max

1.8 m
24 μm sin tan

2 2.0 msin
16.4.

600. nm
d

m
θ
λ

−
  
      = = =  

The disallowed fringes occur when: 

= = =
24μm 10 .
7.2μm 3

m d
n a

 

The only scenario this can occur for (since max 16)m = is 10m = and 3.n =  Therefore, the only disallowed 
value of m  is 10, so there are 15  bright fringes on either side of the central maximum.   
ROUND:  To the nearest integer, there are 31 fringes on the screen.   
DOUBLE-CHECK:  Without the effects from single-slit diffraction there would be 33.  It is expected that 
there would be fewer fringes due to the effects of single-slit diffraction. 
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34.52. THINK:  Equations for the angular positions of the dark fringes due to single-slit and double-slit 
diffraction can be used to determine a relation between the slit width a  and the slit separation .d  Then 
this can be used to find the number of fringes present with the blue filter.   The equation for the width of 
the central diffraction maximum is required to find the new width using blue light.  
SKETCH:   

 
 

 
RESEARCH:  For the red light, the nine interference maxima correspond to four bright fringes (and five 
dark fringes) on either side of the central diffraction maximum.  The angular positions of the dark fringes 
due to single-slit diffraction are given by: 

( )sin 1, 2, 3,... .m m
a
λθ = =  

The angular positions of the dark fringes due to double-slit diffraction are given by: 

( )1sin 0,1, 2,... .
2

m m
d
λθ  = + = 
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The width of the central diffraction maximum is given by:  

( )2 1, 2, 3,... .m Lw m
a
λ

= =  

SIMPLIFY:  The angular position of the first ( )1m =  dark fringe due to single-slit diffraction is equal to 

the angular position of the fifth ( )= 4m  dark fringe due to double-slit diffraction, so 

r r1 94 .
2 2

ad
a d
λ λ = + ⇒ = 

 
 

Since the slit width stays constant: 

b br
b r

r b r

22
.

m Lm L
a w w

w w
λ λλ

λ
= = ⇒ =  

CALCULATE:   For blue light, the angular position of the first ( )1m =  dark fringe due to single-slit 

diffraction is equal to the angular position of the fifth ( )4m =  dark fringe due to double-slit diffraction, so 

b b b b1 1 1 9 4
2 2 9 / 2 2 2

m m m m
a d a a
λ λ λ λ   = + ⇒ = + ⇒ + = ⇒ =   

   
 

Therefore, the number of fringes is independent of wavelength.  There will still be nine bright fringes.  The 
width of the central diffraction maximum for blue light is: 

( )
( ) ( )b

450 nm
4.50 cm 3.02 cm

670 nm
w = =  

ROUND:  To two significant figures, b 3.0 cm.w =  
DOUBLE-CHECK:  It is reasonable that the width of the central diffraction maximum will decrease 
slightly for the blue light.  

34.53. (a)  The first minimum on either side of the central maximum is given by: sin ,a mθ λ= 1,m =  sinθ θ≈  
for small angles .aθ λ=  From the graph 0.1,θ ≈ / 0.1 10 .a λ λ= =  
(b)  Note that the mth interference maxima for a double slit setup is given by: sin ,d mθ λ=  sinθ θ≈  for 
small angles .d mθ λ=  From 0  to 0.1 radians there are 10  interference maxima 

/ 10 / 0.1 100 .d mλ θ λ λ= = =  
(c) / 10 /100 1/10a d λ λ= = so the ratio is 1:10. 
(d)  Without ,λ  there is insufficient information to find a  or .d  

34.54. Constructive interference of a grating is given by sinm dλ θ=  we have 
( ) ( )unknown unknown3 sin 2 600. nm   2 / 3 600. nm 400. nm.dλ θ λ= = ⇒ = =  

34.55.  

 

From the above diagram, 0.332 mtan .
1.00 m

θ =  For a diffraction grating with 1,m =  the wavelength of light is  

( )
1 7

5

0.332 m1sin   sin tan 4.49 10  m 449 nm.
1.00 m7.02 10 / m

dλ θ λ − −
  

= ⇒ = = ⋅ =    ⋅   
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34.56. THINK:  A diffraction grating with width 25.000 10 ma −= ⋅  and 200N =  grooves is used to resolve two 

beams of wavelength a 629.8 nmλ =  and b 630.2 nm.λ =  The condition for constructive interference of 
the grating is required to determine the angular position of the beams. 
SKETCH:   

 
RESEARCH:  The expression for the angle of constructive interference from a diffraction grating is 

sin .d mθ λ=  For first-order diffracted beams use 1.m =  Resolving power is given by: ,R Nmλ
λ

= =
∆

 

where λ  is the average wavelength. 
SIMPLIFY: The spacing of the gratings is / .d a N=   The angle of the first-order diffraction peak is 

1 1sin sin .N
d a
λ λθ − −   = =   

   
 

The order of diffraction required to resolve the two lines is 
b a

1 1 .m
N N

λ λ
λ λ λ

= =
∆ −

 

CALCULATE:   
( )( )

( )
9

1
1a 2

200 629.8 10 m
sin 0.144340

5.000 10 m
θ

−

−

−

 ⋅
 = = °
 ⋅ 

 

( )( )
( )

9
1

1b 2

200 630.2 10 m
sin 0.144431

5.000 10 m
θ

−

−

−

 ⋅
 = = °
 ⋅ 

  

( )
( )

630.0 nm 1 7.875
630.2 nm 629.8 nm 200

m  = = −  
 

ROUND:  Taking 200N =  to be an exact number, the angles should be rounded to four significant 
figures: 1a 0.1443θ = °  and 1b 0.1444 .θ = °  Since the order of diffraction must be an integer, rounding up is 
appropriate: 8,m =  or the eighth-order diffracted beams. 
DOUBLE-CHECK:  It is reasonable that the angles of the first-order diffracted beams are very close since 
their wavelengths are very close. The high order of m is necessary due to the closeness of two spectral lines 
and is to be expected. 

34.57. THINK:  The condition for constructive interference for the grating is required. For each order of 
diffraction  ,m  compute the wavelengths λ  that fall into the range of visible light.  The question gives the 
range for white light as the interval (400. nm - 700. nm).  Wavelength is inversely proportional to m, and 
hence, an interval of allowable values for wavelength must correspond to an interval of allowable values for 
m. It is sufficient to find the least value of m for which the wavelength is in the interval, and then to 
increment m until the wavelength falls outside the given interval. Use the known values of 45.0θ = ° and 

( ) 15 14.00 10 m .d
−−= ⋅  
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SKETCH:   

 
RESEARCH:  For constructive interference, sin .d mθ λ=   
SIMPLIFY:  The wavelength is given by  

sin  .d
m
θλ =  

CALCULATE:  Set m = 1, 2, 3, …,: 

( ) ( )15 14.00 10 m sin 45.0

m
λ

−−⋅ °
=  

1  1767.8 nm
2  883.9 nm
3  589.3 nm

 visible
4  441.9 nm
5  353.6 nm

m
m
m
m
m

λ
λ
λ
λ
λ

= ⇒ =
= ⇒ =

= ⇒ = 
= ⇒ = 

= ⇒ =

 

ROUND:  To three significant figures, the wavelengths that will be visible are 589 nm and 442 nm.  
DOUBLE-CHECK:  Constructive interference occurs at integral multiples of the wavelength. As m  
increases, λ decreases, so there will be no values of λ more than 400 when m is greater than 5. 

34.58. Bragg’s Law is given by 2 sin .a mθ λ=  First order implies:  
1,m = ( ) ( )2 sin / 2 sin 0.256 nm 2sin 23.0 0.200 nm.a m aλ θ θ= = = ° =  

34.59. The number of lines per centimeter is related to the slit separation :d θ =sin .d mx   No second order 
spectrum occurs if for the smallest wavelength 90 ,θ = °   

( ) 6 4sin90 2 400. nm   800. nm  1/ 1.25 10  lines/m 1.25 10  lines/cm.d d d° = ⇒ = ⇒ = ⋅ = ⋅  

34.60. This is similar to two slit interference where destructive interference is desired along the 45°  line. 
( )sin 1/ 2d mθ λ= +  for destructive interference. It is important to note that θ here is the angle to the 

bisector of the line joining the antennas. θ  in this case is θ = ° − ° = °90.0 45.0 45.0 .  Also / ,c fλ =   
8

6

1 1 1 1 1 3.00 10  m/s 1 2.41 m.
2 sin 2 sin 2 88.1 10 / sec sin45.0

c cd m
f fθ θ

     ⋅ = + = = =       ⋅ °      
 

34.61. The width of the central maximum is given by twice the distance of the first minima.  / 1.22 /y L dλ= for 

the first diffraction minimum, where d is the diameter of the aperture, so  ( )1.22 / ,y L dλ=   

( )22 1.22 width of central maximum .Ly w
d
λ

= =  Therefore, 

( ) ( )( )( )6 9

3

2 1.22 384 10  m 633 10  m2 1.22
0.593 m.

1.00 10  m
L

d
w

λ −⋅ ⋅
= = =

⋅
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34.62. (a) The maximum occurs for 90 ,θ = °  sin   sin90 ,d m d mθ λ λ= ⇒ ° =    
1 1 15.79.

1000 / cm 633 nm
d m
λ
= = =   The maximum is 15.m =  

(b)  For 10000 / cm, 1 1 1.579.
10000 / cm 633 nm

m = =  The maximum is 1.m =  

34.63. The distance moved in an interferometer is given by water2 ,d Nλ=   

air air

water water water water water

1.33 ,
fc cn

v f f
λ

λ λ
= = = =  

since air water ,f f= water air / .nλ λ=   

( )( )3
7air

air

2 1.33 0.200 10  m22   6.65 10  m 665 nm.
800

N ndd
n N
λ

λ
−

−
⋅

= ⇒ = = = ⋅ =  

34.64. Destructive interference is given by 
( ) air

coating

1/ 2
2

m
t

n
λ+

=  for 0m =  corresponding to minimum thickness  

air

coating

1 1 405 nm 64.1 nm.
4 4 1.58

t
n
λ

= = =  

For CD illuminated with infrared light of wavelength 750 nm,  
λ

= = =air

coating

1 1 750 nm 119 nm,
4 4 1.58

t
n

  almost 

double the thickness. 

34.65. It is assumed that the refractive index of the material that the body of the airplane is made from is greater 
than that of the polymer coating.  For this case, there will be a phase change at both interfaces of the 
coating, so the condition for destructive interference is given by  

1
air

air
1 12   2 .
2 2

m t m tn
n
λ

λ
−

   + = ⇒ = +   
   

 

The maximum wavelength for which the plane is invisible occurs for 0,m =  

( )( )air, max 4 4 5.00 mm 1.50 30.0 mm.tnλ = = =  It makes sense to consider the maximum wavelength. 

34.66. The bright spot from a double slit source is given by: / .y m L dλ=  So the distance between two 
consecutive bright spots is given by:  

5
2 7

mt m
2.00 10  m6.00 cm  6.00 cm 6.00 10  m 5.00 10  m 500. nm.

2.40 m
L dy y

d L
λ λ

−
− −⋅

− = = ⇒ = = ⋅ = ⋅ =  

34.67. Constructive interference for a thin film is given by 
( ) air1/ 2

2 .
m

t
n

λ+
=  For the minimum thickness,  

0 :m =  air

coating

1 1 550. nm 104 nm.
4 4 1.32

t
n
λ

= = =  

34.68. The angle of deflection is given by: sin ,m dλ θ= sin /y Lθ = with the small angle approximation for 
1,m = / .dy Lλ =  The wavelengths to be resolved are 588.995 nm  and 589.5924 nm.   

( )589.5924 nm 588.9950 nm  80.0 cm 238.96 nm
2.00 mm

d y
L d

L y
λλ

∆ ∆ −
∆ = ⇒ = = =

∆
 

So the number of lines is given by 1.50 cm 62,800.
238.96 nm

N = =  
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34.69. The distance moved is related to the wavelength by:  

( )6

9

2 200. 10  m22   666.7 667 fringes.
600. 10  m

dN d Nλ
λ

−

−

⋅
= ⇒ = = = ≈

⋅
 

34.70. The Rayleigh criterion is given by:  

( )( )λθ − − − −  = = = ⋅ = ⋅       

1 1 3 4
R

1.22 400 nm1.22sin sin 7.99 10  degrees 1.39 10  rad
3.5 mmd

 

For small angles R tan /y Lθ θ≈ = ∆  where y∆  is the smallest object separation able to be resolved.  Since 
y∆  is to be as small as possible, L  is chosen to be the near point: 

( )( )− − −∆ = ⋅ ⋅ = ⋅4 2 51.39 10  rad 25 10  m 3.5 10  m.y  

34.71. The Rayleigh criterion is given by: 

R
1.22 1.22sin   ,

y
d L d
λ λθ

∆
= ⇒ =  

where 384,000 kmL =  is the distance to the Moon. 

( ) ( )
9

6
2

1.22 550. 10  m1.22 384 10  m 2147.2 m 2.15 km
12.0 10  m

y L
d
λ

−

−

⋅
∆ = = ⋅ = ≈

⋅
 

34.72.  

 
 

The angles are exaggerated.  The first wave has a phase change of .π  The second has a path difference of 

2t and a phase change of 2 .nt π
λ

 The factor of n accounts for the difference of wavelength in air and in the 

soap bubble.  1 12 ,
2 2

tn mλ λ − = + 
 

 / 2t m nλ=  for 1,m =  
( )

500. nm 176 nm.
2 2 1.420

t
n
λ

= = =  

34.73. The Rayleigh Criterion is given by: R
1.22 1.22sin   

y
d L d
λ λθ

∆
= ⇒ =  with the small angle approximation 

where y∆  is the minimum separation distance.   

( )100. mm1.22 1.22 1.00 nm 122 nm
1.00 mm

Ly
d

λ∆ = = =  

34.74. THINK:  The Michelson interferometer uses a light source with a wavelength of air 600. nmλ =  to measure 
the thickness t  of a piece of glass with refractive index 1.50.n =   Upon insertion of the glass, the fringe 
pattern shifts by 1000N∆ =  fringes.  The presence of the glass causes a change in number of wavelengths 
travelled by the light, which is equal to the number of fringes that the pattern is shifted by.  
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SKETCH:   

 
RESEARCH:  The number of wavelengths travelled by the light in a distance L  is given by / .N L λ=  The 
index of refraction of the glass can be expressed in terms of the speed of the light in air and glass:  

air

glass

,
fcn

v f
λ
λ

= =  

The wavelength of the light in the glass is glass air / .nλ λ=   

SIMPLIFY: A factor two is needed to account for the light going through the section of air and glass twice: 

( ) ( ) ( )glass air
glass air air air air

22 2 2 1 .
/

L L L L LN N N n
nλ λ λ λ λ

   
∆ = − = − = − = −        

 

( )
air

2 1
N

L
n

λ ∆
=

−
 

CALCULATE:  
( )( )

( )
4600. nm 1000.

6.00 10  m
2 1.50 1

L −= = ⋅
−

 

ROUND:  To three significant figures, 600. μm.L =  
DOUBLE-CHECK:  The final expression indicates that the width of the glass is proportional to the 
increase in the number of fringes which is reasonable, since as the glass gets thicker we expect the phase 
change to be larger. 

34.75. THINK:  Upon reflection, light undergoes a phase change of half a wavelength at the first interface, but 
not at the second interface.  Since maxima are seen for two adjacent wavelengths, the layer thickness can 
be found by using the conditions for constructive interference.  
SKETCH:   

 
RESEARCH:  Since air mica ,n n<  the light reflected by the first interface has a phase change of 180 .°  The 
light reflected by the second interface has no phase change.  The condition for constructive interference in 
the reflected light is  

air1 2 ( 0,1, 2,...).
2

m t m
n
λ + = = 
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For two adjacent wavelengths with 2 1 ,λ λ>  2 1 1.m m= −  Therefore, 

1 2 1
1 2

2 1 2 1and 1 .
2 2

nt ntm m m
λ λ

= − = − = −  

SIMPLIFY:  Solving these two equations for the thickness t gives:  

( )
1 2

1 2 1 2 2 1

2 1 2 1 1 12 1 .
2 2 2

nt nt nt t
n
λ λ

λ λ λ λ λ λ
 

− = + ⇒ − = ⇒ =  − 
 

CALCULATE:  
( )( )

( )( )
516.9 nm 610.9 nm

1070.8 nm 1.07 m.
2 1.57 610.9 nm 516.9 nm

t µ= = =
−

 

ROUND:  To three significant figures, the thickness of the mica layer is 1.07 m.t µ=  
DOUBLE-CHECK:  As expected, the layer thickness is much larger than the observed wavelengths. 

34.76. THINK: Show (a) =2 2x Rd  and (b) λ
  = +  
  

1/2
1 
2nx n R for Newton’s ring apparatus. (c) For 

10.0 m,R =  and a plane glass disk of diameter = 5.00 cm,D  with light of wavelength 700. nm,λ =  find 

the number of bright fringes observed.  Note that maximum radial distance = =max / 2 0.0250 m.x D  
SKETCH:   
(a)   

 
RESEARCH:   

(a) x, R and d are related by the Pythagorean Theorem, ( )22 2 .x R d R+ − =  
(b) Since there is a phase shift from a reflected light from the plane glass disk, it needs an additional phase 
shift by an angle of π (half wavelength) due to path difference.  The condition for constructive 
interference (bright fringes) is ( ) ( )2 1/ 2 , 0,1,2... .d n nλ= + =  
(c) Use the result from (b) to find the number of fringes.   
SIMPLIFY:   

(a)  ( )22 2 2 2 2 2  2 ,x R d R x R Rd d R+ − = ⇒ + − + =  neglecting the 2d  term, which is very small, gives the 

equation, 2 2 .x Rd=  

(b)  λ = + 
 

12  ,
2

d n  but since = ⇒ =
2

2 2 :
2
xx Rd d
R

 

λ λ λ
        = + ⇒ = + ⇒ = +        

       

1/22
21 1 12    .

2 2 2 2
x n x n R x n R
R

 

(c)  Solving for n from the result of (b): ( ) ( )
λ

λ
 = + ⇒ = − 
 

2
2 max

max
1 1  .
2 2

x
x n R n

R
 

CALCULATE:   

(c) 
( )

( )( )

2

9

0.0250 m 1 88.8.
2700. 10  m 10.0 m

n
−

= − =
⋅

 The outermost visible fringe corresponds to n = 88. Since the 

innermost bright fringe corresponds to n = 0, there are 89 bright fringes. 
ROUND:   
(c) 89 bright fringes. 
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DOUBLE-CHECK: In parts (a) and (b), the appropriate equations have been derived. In part (c), the 
quantity found is unitless, as would be expected. 

 
Multi-Version Exercises 

34.77. 
9

5

(477 10 m)(1.23 m) 1 2.36 cm
(2.49 10 m)

L my
d

λ −

−

∆ ⋅ ⋅
∆ = = =

⋅
 

34.78. 
5

7(3.41 10 m)(2.30 cm) 4.81 10  m 481. nm
(1.63 m) 1

d yL my
d L m

λ λ
−

−∆∆ ⋅
∆ = ⇒ = = ⋅ =

∆ ⋅
 

34.79. 
9

5(485 10 m)(2.01 m) 2 4.33 10  m 43.3 m
(4.50 cm)

L m L my d
d y

λ λ µ
−

−∆ ∆ ⋅ ⋅
∆ = ⇒ = = = ⋅ =

∆
 

34.80. 
5

9

(1.25 10 m)(0.2805 m) 2.39 m
(489 10 m) 3

d yL my L
d m

λ
λ

−

−

∆∆ ⋅
∆ = ⇒ = = =

∆ ⋅ ⋅
 

34.81. 
9

3

2 2(495 10 m)(2.77 m) 5.63 mm
(0.487 10 m)

Lw
a
λ −

−

⋅
= = =

⋅
 

34.82. 
3 32 (5.81 10 m)(0.555 10 m) 509 nm

2 2(3.17 m)
L waw

a L
λ λ

− −⋅ ⋅
= ⇒ = = =  

34.83. 
9

3

2 2 2(503 10 m)(3.55 m) 0.625 mm
(5.71 10 m)

L Lw a
a w
λ λ −

−

⋅
= ⇒ = = =

⋅
 

34.84. 
3 3

9

2 (5.75 10 m)(0.693 10 m) 3.93 m
2 2(507 10 m)

L waw L
a
λ

λ

− −

−

⋅ ⋅
= ⇒ = = =

⋅
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Chapter 35:  Relativity 
 
Concept Checks 

35.1. c, d, e  35.2. a, c, d, e  35.3. e  35.4. a) True b) False c) True 35.5. a  35.6. b and c  35.7. b, c, d  35.8. a  35.9. d   
 
Multiple-Choice Questions 

35.1. a  35.2. d  35.3. c  35.4. d  35.5. a  35.6. d  35.7. c  35.8. c  35.9. a  35.10. c  35.11. c  35.12. b  35.13. d  35.14. d 
 
Conceptual Questions 

35.15. A direct corollary of Einstein’s special theory of relativity postulates that no entity or interaction in the 
universe can propagate with a speed greater than the speed of light in vacuum. Therefore, instantaneous 
effects of events at one point in space on another point in space are impossible.  The translational motion 
of a perfectly rigid object would imply that, by moving one end of the object, the other end of the object 
would also move instantaneously, without any time delay. This contradicts Einstein’s theory. 

35.16. The y-axis is the time given in μs and the x-axis is the ‘distance’ ( )/x c  given in units of  μs  also, since the 

speed of light can be written = ⋅ = ⋅ =8 23.00 10  m/s 3.00 10  m/μs 0.300 km/μs.c  To hit the target, the world 
line from  13 μst = − of the person (Eddie and/or Martin) must lie inside the past light cone of the target 
at 0x =  and 0.t =  As seen in the diagram, Eddie’s world line is inside the past light cone of the target 
from  13 μst = − to 2 km / 0.3 km/μs 20 / 3 μst = − = −  and so Eddie could hit the target. However, Martin’s 
world line lies outside of the light cone for all time after  13 μst = − and so he could not have hit the target. 
Eddie and Martin find out the target has been hit at the point where their individual world lines intersect 
the light cone from the target at the origin at some time after the target is hit at  t = 0. As shown in the 
diagram, Eddie finds out the target has been hit at 20 / 3 μst = and Martin finds out it has been hit at 

5 km / 0.3 km/μs 50 / 3 μs.t = − = −  
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35.17. If the lens was situated symmetrically about the mass, there would be indeed be a halo, but since the 
alignment is typically not exact, we see arcs instead.  Likewise, the curvature is a result of the object’s mass, 
so if the object does not have a uniform mass distribution, different rays would be affected non-uniformly. 

35.18. In the relativistic limit, velocities must be added relativistically (using the Lorentz transformation) rather 
than classically (using the Galilean transformation), as your friend is suggesting.  Let F ′  be the frame of 
the rocket and F  be the frame of the Earth. The torpedo has a speed of ' 2 / 3u c=  with respect to the 
rocket (frame F ′ ) and the rocket travels at a speed of 2 / 3v c=  with respect to Earth (frame F ). 
According to the Lorentz transformation the velocity, u, of the torpedo in the Earth’s frame is   

( ) ( )
( )2 2 2

2 / 3 2 / 3' 12 .
131 '/ 1 4 / 9 /

c cu vu c
vu c c c

++
= = =

+ +
 

This is less than the speed of light, so no violation of the theory of relativity occurs.  

35.19. Yes, the observer still sees the positive charge attracted to the wire.  If the positive charge is moving, with 
velocity v



 in the lab frame, parallel to the current, then it is actually moving anti-parallel to electrons, 
which have velocity u−



 in the lab frame.  Since the positive charge sees only a magnetic field, this must 
mean that the wire is electrically neutral, i.e. there are equal positive charges (ion cores) per unit length as 
there are negative charges per unit length.  When the wire is seen in the reference frame of the positive 
charge, the positive charge is stationary while the ion cores are moving away from the positive charge with 
velocity .v−



 The electrons are also moving away from the positive charge with a velocity 

2' .
1 /

u vu v
vu c

− −
= < −

+
 

Both the electrons and ion cores have their separation contracted due to their velocities.  Since the 
electrons are; however, moving faster than the ion cores, their separation is smaller than the separation of 
the ion cores, meaning the positive charge now sees a net electric charge in any given length of wire and is 
therefore, attracted to the wire via an electric force instead of the magnetic force in the lab frame.  

35.20. The pilot of the rocket sees the garage length contracted. At the speed of the rocket the value of γ  is: 

( )
1/221/22

2 2

0.866
1 1 2.

cv
c c

−−     = − − =      
γ  

The rocket pilot therefore thinks that the garage has a length that is reduced by the γ  factor of 2; that is, 
( )/ 2 /  / 4L Lγ = . 

35.21. Since the rod makes an angle with the x-axis, it has a projected length on both the x and y axes.  Since the 
velocity is in the x-direction, only the projection of the length on the x-axis will be contracted, meaning the 
y-projection length remains unchanged.  Since the angle is given by ( )1tan / ,y xθ −=  as x  decreases, the 
angle increases as viewed by an observer on the ground. 

35.22. The primary reason that this presents no contradiction is that the two observations are made in reference 
frames that are not equivalent. As such, the measurements cannot be directly compared simply by making 
comparison of observed dimensions.  The Earth’s shape is distorted from the usual spherical shape due to 
the fact that length contraction that occurs in the direction of the observers motion only – perpendicular 
to the axis of rotation for the first astronaut and along the axis of rotation for the second astronaut.  If the 
two observers really want to compare what they’ve seen, they must exchange information that includes 
their own relative speed and direction with respect to the Earth.   
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35.23. The Lorentz transformation for the positions relating the coordinates in the moving frame (primed 
coordinates) to our reference frame (unprimed coordinates) takes the form 

( )' ,x x vt= −γ  
with γ  and z-coordinates unchanged, and γ  given by 

1/22

21 .v
c

−
 

= − 
 

γ  

Hence, the moving clock at ' 0x =  has coordinate x vt=  and the clock at 'x l=  has coordinate 
/ .x vt l γ= +  The time readings are then related by the Lorentz transformation, 

2' .vxt t
c

 
= − 

 
γ  

For the clock at ' 0x =  the reading is 

( ) 2

0 2 2 2 2

1' 1 .
v vt v t tt t t t t t t t

c c

        
= − = − = − − = − + =                  
γ γ γ γ

γγ γ
 

For the clock at 'x l=  the reading is 

( ) 2

1 2 2 2 2 2 2

/ 1' 1 .
v vt l v vl vl t lvt t t t t t

c c c c c

 +     
= − = − − = − − − = −              

γ
γ γ γ

γγ γ γ
 

These results display two important effects. First, time dilation is apparent, as the advance of the 't values 
is slowed compared to the advance of t by factor 1/ .γ  Second, relativity of simultaneity is also manifest, as 
the readings on the moving clocks – which are synchronized in their own reference frame – differ by 

2/lv c at fixed time t in our reference frame. The clock behind in position is “ahead” in time reading.  That 
is, “the same time” at different positions is a reference-frame-dependent notion.  This effect is often 
overlooked, but most purported relativistic kinematics are resolved unambiguously once it is take into 
account. 

35.24. Velocities are added using the relativistic velocity transformation. Assume that the velocities are along the 
x-axis. Then the transformation equation is  

2 ,
11 /
x yu vu c

xyuv c
−−′ = =
−−

 

where x and y represent the fractions of the speed of light of the two sub-light velocities being added. Now, 
since 1,x < it follows that 2 1.x < Multiply both sides of this inequality by 21 y−  (which is positive since 

1y < ), to obtain ( )2 2 21 1 .x y y<− − Expand, and add the negative terms to the opposite sides to get 
2 2 2 21 .yx y x+ < +  Subtract 2xy from both sides, to yield: 2 2 2 22 1 2 .x xy y xy x y− + < − + Factoring both 

sides as squares gives the inequality: ( ) ( )2 2
1x y xy− < − . Divide both sides by the right-hand side (which 

is positive since 1xy < ) which results in the inequality 
( )
( )

2

2 1.
1

x y

xy

−
<

−
  Taking square roots of both sides 

preserves the inequality (with absolute values), so 1.
1
x y

xy
−

<
−

 It follows that the velocity added 

relativistically is still less than c, since .
1 1
x y x y

u c c c
xy xy
− −′ = = <
− −
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35.25. Classically, conservation of kinetic energy in an elastic collision for identical particles of mass m means 
that  

2 2 2
1i 1f 2f

1 1 10 ,
2 2 2

mv mv mv+ = +  

Where 1iv  is the velocity before the collision and 2iv  and 2fv  are the velocities after the collision. If the 

particles have the same mass this reduces to 2 2 2
1i 1f 2f ,v v v= +  which can only be true if the velocities are 

perpendicular (since conservation of momentum requires also that 1i 1f 2fv v v= +
  

).  Let the energy and 
momentum of the originally moving particle be E  and .p  Let the two particles have total energies after 
the collision of 1E  and 2 ,E  and momenta after the collision of 1p  and 2 ,p respectively. Energy-
momentum conservation implies the relationships: 

2
1 2

1 2 .
E mc E E

p p p
+ = +

= +
 

The term 2 2 2E p c−  is a scalar invariant so it is the same before and after the collision, implying: 

( ) ( ) ( )

( ) ( ) ( )

2 2 22 2 2 2 2
1 2 1 2

2 2 2 4 2 2 2 2 2 2 2 2 2
1 1 2 2 1 2 1 2

2 2 2 2 2 4 2 2 2 2 2 2 2
1 1 2 2 1 2 1 2

2 2 2

2 2 2

E mc p c E E c p p c

E Emc m c p c E E E E p c p c p p c

E p c Emc m c E p c E p c E E p p c

+ − = + − +

+ + − = + + − − −

− + + = − + − + −

 

Using the term 2 2 2 2 4 ,E p c m c− =  this reduces to  
2 4 2 2 4 2

1 2 1 2
2 2

1 2 1 2

2 2 2 2 2m c Emc m c E E p p c

Emc E E p p c

+ = + −

= −
 

Hence, the dot product of the momenta 1p and 2p  is given by 

( )
2 2

1 2 1 2

2 2
1 1 .

p p c E E Emc

E E mc E Emc

= −

= + − −
 

Energy 1E  can take values from 2mc  to E  (as can 2E ).  Therefore, the function on the right-hand side of 
this equation increases monotonically from zero to the value  

( )221
4

E mc−  for ( )2 2
1

1 ,
2

mc E E mc≤ ≤ +  

and decreases monotonically back to zero for ( )2
1

1 .
2

E mc E E+ ≤ ≤  It is never negative over the allowed 

range of 1.E  This implies 1 2 0,p p ≥  with equality only for 2
1E mc=  or 1 ,E E= i.e., only if one of the 

particles remains at rest after the collision.  Otherwise the dot product is positive, meaning the two 
particles emerge from the collision on trajectories forming an acute angle.  Therefore, it is not necessary 
for the velocities of the two particles to be perpendicular. 

35.26. The spaceship is accelerating, and since special relativity deals only with objects moving with constant 
velocity, one might think that general relativity is required to solve this problem.  However, the fact that 
the spaceship is accelerating is irrelevant since at any point in the trajectory, its velocity is constant.  Since 
the direction of the speed is constantly changing, the length will also appear to be warped along the 
curvature of the orbit.    The observed length of the spaceship is 

( ) ( )2 20
0 0 01 / 1 0.800 0.600 .

L
L L v c L L

γ
= = − = − =  

So, the length would look to be 60.0%  of the original length.   
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Exercises 

35.27. The speed of light converted from SI to ft/ns is: 

8 8
9

1 s 3.2808 ft2.9979 10  m/s 2.9979 10  m/s 0.984 ft/ns.
1 m10  ns

c   
= ⋅ = ⋅ =  

  
 

 You can see that our result is quite close to 1 foot per nanosecond, which makes this a great way to 
visualize the speed of light: light moves about a foot in a time interval of a billionth of a second! 

35.28. Convert the acceleration due to gravity from SI units into units of 2ly/year .   

7365.25 days 24 hours 3600 s1 year 1 year 3.1556 10  s
1 year 1 day 1 hour

   
= = ⋅   

   
27

2 2
15

1 ly 3.1556 10  s9.81 m/s 1.03 ly/year
1 year9.461 10  m

g
 ⋅ 

= =  ⋅  
 

Just as in Exercise 35.28, the numerical coefficient comes out to be very close to 1.  However, unlike the 
answer in 35.28, the answer to the present problem is more of a curiosity than a useful number for any 
practical purposes. 

35.29. The boat has a velocity of v with respect to the water. The velocity of the water is u downstream. So in 
order for the boat to directly cross the river, the boat must be headed upstream at an angle such that the 

velocity of the boat with respect to the ground is 2 2 .v u−   The cross-stream time across the river of 
width D  with this velocity is 

cs 2 2

2 .Dt
v u

=
−

 

Going upstream, the boat has velocity ,v u−  and going downstream it is .v u+  Over a distance ,D  the 
upstream-downstream time is: 

( ) ( )
( )( ) 2 2ud

2 .
D v u D v uD D Dvt

v u v u v v uu v u
+ + −

= + = =
− + − −+

 

The ratio of times is then: 
( )

2 2 2 2
cs

2 2
ud

2 / .
2 /

t D v u v u
t vDv v u

− −
= =

−
 

35.30. For 0.800 ,v c=  

( ) ( )2 2

1 1 1.6667.
1 / 1 0.800v c

γ = = =
− −

 
For three significant figures, we have 1.67.γ =   

35.31.  (a) Another astronaut on the ship sees the meter stick in the same (rest) frame as the astronaut holding 
the stick and so its length remains unchanged at one meter. 
(b) For a ship moving at 0.50 ,v c=  the length of the meter stick as measured by an observer on Earth is 

( ) ( ) ( )2 20
0 1 / 1.00 m 1 0.50 / 0.87 m.

L
L L v c c c= = − = − =

γ
 

35.32. (a)  According to a clock on Earth the trip takes  

( )
( )

8

0
8

3.84 10  m
2.6 s.

0.50 3.00 10  m/s

L
t

v

⋅
∆ = = =

⋅
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(b)  According to a clock on the spaceship the trip takes, 

( ) ( ) ( )2 2

0 1 / 2.56 s 1 0.50 / 2.2 s.tt t v c c c∆
∆ = = ∆ − = − =

γ
 

(c)  On the ship, the distance to the Moon is contracted to :L  

( ) ( ) ( )2 28 80 1 / 3.84 10 m 1 0.50 / 3.3 10  m.
L

L D v c c c= = − = ⋅ − = ⋅
γ

 

35.33. The time that passes in the rest frame of the Earth is 30. yr.t∆ =  The time that passes in the mother’s 
frame is 0 10. yr.t∆ =  Therefore,  

( ) ( )
2

2 20 0
0

1/2 1/22 2
0

1  1 /   1 /  

10. 1 1 0.94 .
30.

t t
t t v c v c

t t

t
v c c c

t

γ
γ

∆ ∆ 
∆ = ∆ ⇒ = = − ⇒ = − ∆ ∆ 

   ∆      ⇒ = − = − =     ∆      

 

35.34. The muon’s lifetime t∆  when it is moving at 0.90v c=  will be longer than 2.2μst∆ =  when it is at rest in 
the laboratory frame due to time dilation:  

( )
( )
( )

6
60

0 2 2

2.2 10 s
5.0 10  s.

1 / 1 0.90 /

t
t t

v c c c
γ

−

−
⋅∆

∆ = ∆ = = = ⋅
− −

 

35.35. The fire truck of length 0 10.0 mL =  is traveling fast enough so a stationary observer sees its length 
contracted to 8.00 m.L =  Therefore,  

( ) ( )
1/2 1/22 2 2

2 20
0

0 0

8.00 m1 /   1 /   1 1 0.600 .
10.0 m

L L LL L v c v c v c c c
L Lγ

           = = − ⇒ = − ⇒ = − = − =               
  

(a) The time taken from the garage’s point of view is  
( )
( )

8
g 8

8.00 m
  4.44 10  s.

0.600 3.00 10 m/s
Lt
v

−= = = ⋅
⋅

 

(b) From the fire truck’s perspective the length of the garage will be contracted to  

( ) ( ) ( )2 20
0 1 / 8.00 m 1 0.600 / 6.40 m.

L
L L v c c c

γ
= = − = − =  

Therefore, the truck will not fit inside the garage from the fire truck’s point of view since the length of the 
truck from its rest frame is 10.0 m. 

35.36. The rest frame time taken by Phileas Fogg is 0 80 days,t∆ =  while time dilation makes the time seem like 
81 days.t∆ =  Therefore  

( )( ) ( )
2

1/22 20 0
0

1  1 /   1 / .
t t

t t v c v c
t t

∆ ∆ 
∆ = ∆ ⇒ = = − ⇒ = − ∆ ∆ 

γ
γ

 

Therefore,  

    ∆    = − = − =     ∆      

1/21/2 22

0 80 days
1 1 0.16 .

81 days
t

v c c c
t

 

35.37. THINK:  The planet is 0 35 lyL =  away, but the astronauts cannot travel as fast as c  and hence will take 
longer than 35 years in the NASA (Earth) reference frame while it will take only 0 25 yearst∆ = in the 
astronauts’ reference frame.  The astronauts will see the distance as being contracted. 
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SKETCH:   

 
RESEARCH:  The time it takes to reach the planet as observed from Earth is 0 / .t L v∆ =   The relationship 

between t∆  and 0t∆  is  0 ,t t∆ = ∆γ  where ( )( ) 1/22
1 / .v c

−

= −γ   

SIMPLIFY:   

(a) 
( )

2 2
0 0 0

0 2  
1 /

L L t
t t

v v v c

∆ 
∆ = = ∆ ⇒ = 

  −
γ  

       = − ⇒ + = ⇒ =        ∆ ∆ ∆         ∆
+  
 

2 2 22
2 2 20 0 0

2
0 0 0

0

0

1

11
L L Lvv v v v c
t c t c t t c

L

 

(b) 0 .
L

L =
γ

 

CALCULATE:   

(a)  Since 0 / 35 years,L c =   

1/22
25 years

1 0.81373 .
35 years

v c c

−
   = + =    

  

(b)  ( ) ( )2
35 ly 1 0.81373 = 20.343 lyL = −  

ROUND:  The answers should be given to two significant figures. 
(a)  0.81v c=  
(b)  20. lyL =  
DOUBLE-CHECK: The velocity found for the astronauts is less than the speed of light and the distance of 
the planet from the perspective of the astronauts does contract; so these values are reasonable. Also, the 
astronauts believe that 25 years pass during their trip. Their length contracted distance to the planet is 
20.343 ly. This means their speed in terms of c during the trip is ( ) ( )20.343 ly / 25 yr 0.81c=  which agrees 

with the value found.  

35.38. THINK:  Since the velocity of frame F is in the x-direction, the projection of the length of the rod on the x-
axis will experience a contraction, while the projection on the y-axis will remain unchanged.  The angle 
that the meter stick makes with the x-axis changes from 0 37= °θ  to 1 45= °θ  in frame .F ′   Trigonometry 
can give equations relating the angles to the speed and length. 
SKETCH:   

 
RESEARCH:  In both frames, 0 1  sin sin .y yL L L Lθ θ′ ′= ⇒ =  In frame ,F 0cos ,xL L= θ  and in frame ,F ′  

1cos .xL L′ ′= θ   The x-axis contraction is given by / .x xL L γ′ =  
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SIMPLIFY:   

(a) 0
0 1

1

sin
sin sin   .

sin
L L L L

θ
θ θ

θ
′ ′= ⇒ =   In frame ,F ′  the x-axis projection is 

22

0 0 0 0
1

1 1 1

sin sin cos tan1cos     
tan tan tan

x
x

L L L L
L L

  ′ ′= ⇒ = ⇒ = ⇒ =   
   

θ θ θ θ
θ

θ γ θ γ γ θ
 

( )
1/22 2

2 0 0

1 1

tan tan
1 /   1 .

tan tan
v c v c

     − = ⇒ = −   
     

θ θ
θ θ

 

(b) The length of the rod in frame F ′  is 0

1

sin
.

sin
L L

θ
θ

′ =  

CALCULATE:   

(a) 
( )
( )

1/22
tan 37

1 0.6574
tan 45

v c c
  ° = − =   °  

 

(b) ( ) ( )
( )

sin 37
1.00 m 0.8511 m

sin 45
L

°
′ = =

°
 

ROUND:  The answers should be rounded to two significant figures. 
(a) 0.66v c=  
(b) 0.85 mL′ =  
DOUBLE-CHECK:  The velocity does not exceed the speed of light and the length does contract; 
therefore, the answers are reasonable. 

35.39. THINK:  The tip of the triangle is the direction of the speed, 0.400 ,v c=  so that only the length, 
50.0 m,L =  will be contracted and the width, 20.0 m,w =  is not affected.  The length of the ship L  is not 

the same as the length of a side of the ship .l   Relate the observed angle θ ′  to the speed of the ship.    
SKETCH:   

 
 

RESEARCH:  The lengths are related to the angles, in both frames, by cos / 2,l wθ =  cos / 2,l wθ′ ′ =  
sin ,L l θ=  sin ,L l θ′ ′ ′=  and tan 2 / .L wθ =  The length of the ship contracts by / .L L γ′ =  

SIMPLIFY:  Determine l′ in terms of :l   
coscos cos   .

2 cos
w l l l lθθ θ

θ
′ ′ ′= = ⇒ =

′
 

The contracted length is then  

( )2sin tan 2sin cos tan tan 1 / .L l LL l l v c
w

′ ′ ′ ′ ′= = = = ⇒ = = −
θ θθ θ θ θ

γ γ γ
 

Therefore, ( )21 2( ) tan 1 / .Lv v c
w

−  ′ = − 
 

θ  
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The plot of the angle between the base and side of the ship as a function of the speed of the ship as 
measured by a stationary observer is shown below. 

 

CALCULATE:  ( ) ( )
( ) ( )θ −

 
′ = = − = °  

 

21 2 50. m
0.40 tan 1 0.40 / 77.69

20. m
v c c c  

ROUND:   To three significant figures, ( )0.400 77.7 .v cθ ′ = = °  
DOUBLE-CHECK: As v approaches c, the expression under the square root approaches zero and hence 
the angle will also approach zero. This agrees with the graph where the angle is smaller at higher velocities.  
When ,v c=  the side of the ship would effectively contract to zero, thus making an angle of zero with the 
width.  

35.40. Since the light whose rest wavelength, 0 480 nm,λ = appears as 660 nm,λ = it is red-shifted, so you must 
be travelling away from the light.  

( ) ( )2 2 2 2
0 0 0    c v c v c v c v

c v c v
+ +

= ⇒ = ⇒ − = +
− −

λ λ λ λ λ λ   

( ) ( )
( ) ( )

2 22 2
0

2 2 2 2
0

660 nm 480 nm
0.31

660 nm 480 nm
v c c c

 − −  = = =    + +   

λ λ
λ λ

 

35.41. The light with wavelength 0 650 nmλ =  is blue-shifted and appears as 520 nm,λ =  as expected since the 
driver is travelling towards the light. Therefore,  

( ) ( )2 2 2 2
0 0 0    c v c v c v c v

c v c v
− −

= ⇒ = ⇒ + = −
+ +

λ λ λ λ λ λ  

( ) ( )
( ) ( )

2 2
2 2
0
2 2 2 2
0

650 nm 520 nm
0.22 .

650 nm 520 nm
v c v c c

 − −  = ⇒ = =    + +   

λ λ
λ λ

 

You would have been traveling 0.22c, or 22% of the speed of light.  This explanation would likely result in 
a speeding ticket!   

35.42. Since the light has a rest wavelength of 0 532 nm=λ  and must appear to have 560 nm,λ =  it must be red-
shifted and therefore must travel away from the meteor. 

( ) ( )2 2 2 2
0 0 0    c v c v c v c v

c v c v
+ +

= ⇒ = ⇒ − = +
− −

λ λ λ λ λ λ   
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( ) ( )
( ) ( )

2 22 2
0

2 2 2 2
0

560 nm 532 nm
0.051

560 nm 532 nm
v c c c

 − −  = = =    + +   

λ λ
λ λ

 

35.43. Since the car, moving with a speed 1000 m 1 h32.0 km/h 8.889 m/s,
1 km 3600 s

v   
= =  

  
 is moving away from 

the radar of frequency 0 10.6 GHz,f =  the shift in frequency is,  

( ) ( ) ( )
( ) ( )

8
9

0 0 8

3.00 10  m/s 8.889 m/s
1 10.6 10 Hz 1 314.078 Hz.

3.00 10  m/s 8.889 m/s
c vf f f f
c v

 ⋅ − −  ∆ = − = − = ⋅ − = −    + ⋅ +    

 

Therefore, the frequency is red-shifted by 314 Hz.  

35.44. THINK:  Since the spaceship is moving towards the station, the wavelength will be blue-shifted, resulting 
in the original wavelength of 0 632.8 nm=λ  being reduced to 514.5 nm.λ =  Using the relativistic 
formula for wavelength shift the speed of the ship can be deduced. 
SKETCH:   

 
 

RESEARCH:  Since the ship is moving towards the station, the relevant formula for wavelength shift is 

0 .c v
c v

λ λ −
=

+
 The shift parameter is by definition: 0

0

.z
λ λ
λ
−

=  

SIMPLIFY:  ( ) ( )
2 2

2 2 2 2 0
0 0 0 2 2

0

    c v c v c v c v v c
c v c v

 −− −
= ⇒ = ⇒ + = − ⇒ =   + + + 

λ λ
λ λ λ λ λ λ

λ λ
 

CALCULATE:  
( ) ( )
( ) ( )

2 2

2 2

632.8 nm 514.5 nm
0.20405 ,

632.8 nm 514.5 nm
v c c

 − = =
 + 

( ) ( )
( )

514.5 nm 632.8 nm
0.186946

632.8 nm
z

−
= = −  

ROUND:  To four significant figures, 0.2041v c=  and 0.1869.z = −  
DOUBLE-CHECK: The velocity is less than the speed of light and the shift parameter is negative, which is 
what it should be for blue shift, so it makes sense.  

35.45. In Sam’s reference frame, each event occurs at the following points: 0 m,Ax =  0 s,At =  = 500. mBx  and 
0 s.Bt =   To find the timing of the events in Tim’s reference frame, use the Lorentz transformation 

( )2/ .t t vx c′ = −γ  Therefore, since = 0x , 0 sAt ′ =  and 

( )( )
( ) ( )

γ −−−′ = = = − ⋅
⋅ −

5
2 28

0.999 500. m
3.73 10  s.

2.9979 10  m/s 1 0.999
B

vxt
c

 

(a)  Therefore, Tim experiences event B before event A. 
(a) For Tim, event A occurs 53.73 10  s−⋅  after event B. 

35.46. Let an inertial reference frame F be at rest and let another inertial reference frame F ′  move at a constant 
speed v along a common x-axis with respect to reference frame F.  According to the relativistic velocity 
addition formula,  
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( )
2

2

1 /

  ,
1 1

u vu
vu c

c c vc v c vu c u c
vc v c v

cc

−′ =
−

−− −′= ⇒ = = = =
−− −

 

as required.  Thus, the result is independent of the specific value of v. 

35.47. Let all speeds be in a common x-direction. Let frame F be the ground and frame F ′  be the frame of your 
car. The speed of your car with respect to the ground is 50.0 m/sv =  and the speed of the oncoming car is 

50.0 m/su = −  in frame F. Using the relativistic velocity transformation, the relative speed of the 
oncoming car is 

( ) ( )
( )( ) ( )

2 28

50.0 m/s 50.0 m/s
99.99999999999862 m/s 100. m/s.

1 / 1 50.0 m/s 50.0 m/s / 2.9979 10  m/s

u vu
uv c

− −−′ = = = − ≈ −
+ + − ⋅

The relative velocity is about the same as a Galilean velocity transformation 2 100 m/s,u u v u′ = − = = −  
since the speed of the cars is so small compared to the speed of light. In order to detect a difference, 
fourteen significant figures would need to be kept. This shows how close the values are. 

35.48. Assuming all speeds are measured along the same direction, let 0.90v c=  be the speed of the ship (frame 
F ′ ) relative to Earth (frame F) and let 0.50u c′ =  be the speed of the missile relative to the ship. The speed 
of the missile as seen from the Earth is given by 

( ) ( )
( )( )

+′ +
= = =

′+ +2 2

0.50 0.90
0.97 .

1 / 1 0.90 0.50 /

c cu vu c
vu c c c c

 

35.49. (a)  The total distance travelled, as measured by Alice is 

( ) ( )20 2 3.25 ly 1 0.65 / 4.940 ly 4.9 ly.
L

L c c
γ

= = − = ≈  

(b)  The total time duration for the trip as measured by Alice is 
( )
( )
4.940 ly

7.6 years.
0.65

Lt
v c

= = =  

35.50. THINK:  The spaceship that Alice boards travels at a speed of 0.650u c=  to a station 0 3.25 lyL =  away.  
The question asks for the speed v  Alice must travel so that she measures a relative speed of 0.650u c=  on 
the return journey. In Alice’s frame, the distance of the return flight will be length contracted. The 
relativistic velocity transformation and length contraction formulae can be used to solve the problem.   
SKETCH:   

 
RESEARCH:   
(a) The relativistic velocity transforms as  

2 .
1 /

u vu
vu c
−′ =

−
 

(b)  The time of the return flight as measured by Alice is / ,t L v=  where 0 /L L= γ  is the length contracted 
distance in her frame.  
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SIMPLIFY:   
(a)  The speed of the spaceship is given by 

2 2 2 2   .
1 / 1 /

u v uvu uvu u uu u u v u u v v
uv c c c uu c

′ ′ ′− −′ ′ ′= ⇒ − = − ⇒ − = − ⇒ =
′− −

 

(b)  The time for Alice’s return flight is ( )20 0 1 / .
L L

t v c
v v

= = −
γ

 

CALCULATE:   
(a)  To Alice, the Earth is moving toward her with a speed of 0.650 ,u c′ = −  so 

( ) ( )
( )( )

2

0.650 0.650
0.91388 .

0.650 0.650
1

c c
v c

c c
c

− −
= =

−
−

 

(b)  The time duration of the flight as measured by Alice is 
( )
( ) ( )23.25 ly

1 0.91388 / 1.4438 years.
0.91388

t c c
c

= − =  

ROUND:  The answers should be given to three significant figures. 
(a) As required, the velocity of the ship relative to the Earth is 0.914 .v c=  
(b) The duration of Alice’s return flight as measured by her is 1.44 years.t =  
DOUBLE-CHECK:  The speed 0.914v c= gives  

( ) ( )
( )( ) 2

0.650 0.914
0.650 .

1 0.650 0.914 /

c c
u c

c c c

−
′ = = −

−
 

35.51. THINK:  The arrow has a velocity of 0.300u c′ =  in Robert’s reference frame.  The railroad car has a 
length of =0 100. mL  and travels at a speed of 0.750 .v c=  The velocity transformation equations and the 
equation for length contraction can be used to determine the values observed by Jenny.   
SKETCH:   

 
RESEARCH:  As observed by Jenny,  

(a) the railroad car is length contracted:  0 ,
L

L
γ

=   

(b) the velocity of the arrow is given by the inverse relativistic velocity transformation: 
2 ,

1 /
u vu
vu c
′ +

=
′+

  

(c) the time of the arrow’s flight is given by the inverse Lorentz transformation: 2 ,vxt t
c

γ
′ ′= + 

 
 and 

(d) the distance traveled by the arrow is given by the inverse Lorentz transformation: ( ).x x vtγ ′ ′= +  

SIMPLIFY:  Here 0x L′ =  is the length of the railroad car and 0 /t L u′ ′=  is the time of the arrow`s flight 
in Robert`s frame of reference.  As observed by Jenny,  

(a) ( )2

0 1 / ,L L v c= −   
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(c) the time taken by the arrow to cover the length of the car is 
( )

0
22

1 ,
1 /

L vt
u cv c

 
= + ′ −

 , so if we take v 

as =v kc and ′ =u jc , we have 
( ) ( )

   
= + = +   

   − −

0 0
22 2

·1 1 1

1 / 1 /

L Lkct k
jc c c jv c v c

, and  

(d) the distance covered by the arrow is 
( )

0

2
1 .

1 /

L vx
uv c

 
= + ′ −

 

CALCULATE:   

(a)  ( ) ( )2
100. m 1 0.750 / 66.14 mL c c= − =   

(b)  
( ) ( )
( )( ) 2

0.300 0.750
0.85714

1 0.750 0.300 /

c c
u c

c c c

+
= =

+
  

(c)  
( )

( ) ( ) ( ) ( ) 6

28

100. m 1 0.750 2.059 10  s
0.3002.9979 10 m/s 1 0.750 /

t
c c

−
 

= + = ⋅  
 ⋅ −

 

(d)  
( )
( )

( )
( )2

100. m 0.750
1 529.2 m

0.3001 0.750 /

c
x

cc c

 
= + =  

 −
 

ROUND:  The answers should be given to three significant figures. As observed by Jenny, 
(a) the railroad car is 66.1 mL =  long, 
(b) the velocity of the arrow is 0.857 ,u c=  
(c) the time it takes the arrow to cover the length of the railroad car is 2.06 μs,t =  and 
(d) the arrow covers a distance of 529 m.x =  
DOUBLE-CHECK:  The railroad car length is contracted from Jenny’s viewpoint, as expected. 
Multiplying the answer to part (b) by the answer to part (c): 

( )( )( )8 60.8571 2.9979 10 m/s 2.059 10 s 529 m,x −= ⋅ ⋅ =  

as found in part (d).  So, the answers are consistent. 

35.52. THINK:  The speed of an object can be described by the relation tanhv c θ=  where θ  is known as the 
rapidity.  The question asks to prove that two velocities adding via the Lorentzian rule, corresponds to 
adding the rapidity of the two velocities.  The question also asks for the Lorentz transformation of two 
coordinate systems using the rapidity. The Lorentz transformation equations can be used to solve this 
problem. 
SKETCH:   

 
RESEARCH:  

(a)  The Lorentzian rule for adding two velocities is 1 2
2

1 2

.
1 /

u u
v

u u c
+

=
+

 The Lorentz transformation between 

two frames with relative velocity v in the x direction is given by the equations 
( ),x x ct′ = −γ β  ,y y′ =  ,z z′ =  and ( )/ .t t x c′ = −γ β  

Velocities that add according to the Lorentzian rule correspond to adding the rapidity of each: 

( ) 1 2 1 2
1 2 2

1 21 2

tanh tanh
tanh

1 tanh tanh1 /
u u c c

v c
u u c
+ +

= + = =
++

θ θ
θ θ

θ θ
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(b)  For the derivation it is useful to know that the hyperbolic tangent is related to exponentials by 

tanh .
x x

x x

e ex
e e

−

−

−
=

+
 

The following relations are also useful: 

2 21 sech tanh= +θ θ  and sinhtanh .
cosh

θθ
θ

=  

SIMPLIFY:   
(a) According to the Lorentzian rule,  

( )

( )( ) ( )( )
( )( )

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2

1 21 2
2

1 21 2

tanh tanhtanh tanh
1 tanh tanh1 tanh tanh /

1

e e e e
c c e e e ev c c
c c c e e e e

e e e e

e e e e e e e e
c

e e e e e

− −

− −

− −

− −

− − − −

− −

− −
+++ + += = =

++   − −
+   

+ +  
− + + + −

=
+ + +

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ θ θ θ θ

θ θ θ θ θ

θ θθ θ
θ θθ θ

( )( )
( )

( ) ( )
1 21 2

1 21 1 2 2 1 2
1 2

2 2 tanh ,
2 2

e ec c
e e e e e

− ++

− +− − +

−
= = +

− − +

θ θθ θ

θ θθ θ θ θ θ
θ θ

 

as required. 
(b)  If tanhv c θ=  then,  

( )( ) ( )( ) ( ) ( )
1 1 1 1

2 22 2 2 22 21 / 1 tanh / 1 tanh sech coshv c c c
− − − −

= − = − = − = =γ θ θ θ θ  and 

tanh tanh .v c
c c

θβ θ= = =    

The Lorentz transformation becomes  
( ) cosh cosh tanh cosh sinh ,x x ct x ct x ct′ = − = − = −γ β θ θ θ θ θ   

,y y′ =   
,z z′ =  and  

( )/ cosh cosh tanh cosh sinhx xt t x c t t
c c

′ = − = − = −γ β θ θ θ θ θ  

CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK:  Note that the transformation is similar to a transformation from one coordinate 
system to another where they differ by the angle :θ   

 
cos sinx x y′ = +θ θ  and sin cos .y x y′ = − +θ θ  

35.53. The relativistic momentum is .p mvγ=   If the momentum is equal to p mc=  then mv mcγ =  or  

( ) ( )

2 2 2

22

1 1 1 1 2 .
21 /1 /

c c c c cv
v v v vv cv c

     
= = ⇒ = ⇒ = − ⇒ = ⇒ =     

     −−
γ  

This can be left in exact form, or written as 0.707 .v c≈  
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35.54.  (a)  The energy of the electron is 2 .E mcγ=  For the energy to be 10 times greater than its rest energy of 
2

0 ,E mc=   

( )
( )2

2

1 1 99= 10 1 / 0.995
100 1001 /

v c v c c
v c

= ⇒ − = ⇒ = =
−

γ  

(b)  The momentum is ( )( )210 0.511 MeV/ 99 /100 5.08 MeV/ .p mv c c c= = =γ  

35.55. The kinetic energy of the colliding beams in the center-of-mass reference frame is related to the fixed-
target equivalent, or lab reference frame by  

( ) ( )( )
( )( )( )
( )( )

= + = + = ⋅

2 2cm
lab cm 6

2

2 2 197 100. GeV
4 4 197 100. GeV 4.02 10  GeV.

197 1.00 GeVp

K
K K

m c
 

This is an incredibly large energy. 

35.56. The work done on the proton is equal to the change in kinetic energy of the proton.  

( )
( )

( )
( )( )

γ γ

−

 
 = ∆ = − = − = −  − 

 
 = − ⋅ ⋅  − 

= ≈

2 2 2 2
p p p p2

227 8

2

11 1
1 /

1 1 1.672 10  kg 2.9979 10  m/s
1 0.997 /

11.1179 GeV 11.1 GeV.

W K m c m c m c m c
v c

c c
 

35.57. The energy of the proton is 

 
( )

( )

( )
( )

γ −
   
         

= =

= = ≈

−

−



2 18
27 8

6
2

p 2

2

1 MeV6.241·10 eV
·10 k1 m1.672 2.9979

s 1 J 11 0.61 /
1 938 MeV 1183.53 MeV 1200 MeV.

1 0

g ·10
· 0

6

1

. 1 /

eV
E m c

c c

c c

 

35.58. THINK:  Two protons in an accelerator are on a head-on collision course.  In the lab reference frame 
(frame F) the protons reach a speed of 0.9972 .v c=  The relativistic velocity transformation and the 
relativistic formula for kinetic energy can be used to solve the problem. 
SKETCH:   

 
RESEARCH:  The speed of the proton in the other proton’s rest frame (frame F ′ ) is given by 

2 .
1 /

u vu
vu c
−′ =

−
 The kinetic energy of a relativistic particle is ( ) 21 .K mcγ= −  The mass of a proton is 

2
p 938.27 MeV/ .m c=  
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SIMPLIFY:  Let u denote the speed of the proton in the lab frame.  In the proton reference frame, the 
speed of the other proton is 

( )
( ) ( )2 2

2 .
1 / 1 /

v v vu
v v c v c

− −
′ = =

− − +
 

The kinetic energy K of the protons in the lab reference frame is the sum of the kinetic energy of each 
proton:  

( ) ( ) ( )
( )

2 2 2 2
1 2 p p p p2

11 1 2 1 2 1 .
1 /

K K K m c m c m c m c
v c

 
 = + = − + − = − = − 
 − 

γ γ γ  

The kinetic energy K ′  in the proton reference frame is ( )
( )

2 2
p p2

11 1 .
1 /

K m c m c
u c

 
 ′ = − = − 
 − 

γ  

CALCULATE:   

(a)  
( )
( )2

2 0.9972
0.999996

1 0.9972 /

c
u c

c c
′ = =

+
  

(b)  
( )

( )2 2

2

12 1 938.27 MeV/ 23217.35 MeV
1 0.9972 /

K c c
c c

 
 = − = 
 − 

 

(c)  
( )

( )2 2

2

1 1 938.27 MeV/ 333689.6 MeV
1 0.999996 /

K c c
c c

 
 ′ = − = 
 − 

 

ROUND:  (a) To six significant figures, the speed of one proton with respect to another is 0.999996 .u c′ =  
(b)  To four significant figures, in the lab reference frame, the particles have a kinetic energy of 

23,220 MeV.K =  
(c)  To four significant figures, in the proton’s reference frame, the other proton has a kinetic energy of 
333,700 MeV.  
DOUBLE-CHECK:  These are typical speeds and energies for protons to have in proton accelerators.  

35.59. THINK:  Electrons acquire kinetic energy as they accelerate through the potential difference.  The speed 
acquired by the electron after moving through this potential can be found and then the appropriate 
classical and relativistic formulae can be used to find the total energy and momentum. Many of the 
answers only make sense if they are given to three significant figures, so rounding will be nonstandard. 
SKETCH:   

 
RESEARCH:   
(a) The kinetic energy gained by the electron in moving through the potential difference V is equal to the 
work done by the potential difference: .W K qV= =  

(b) The kinetic energy of a relativistic particle is ( ) 01 .K E= −γ   
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(c) The relativistic values for the total energy and momentum are R 0E E= γ  and R .p mv= γ   Classically, 

these values are given by 2
C C

1
2

E K mv= =  and C C .p mv=   

The rest mass energy of an electron is 0 511 keV.E =  
SIMPLIFY:   
(a)  K eV=  
(b)  The speed of the particle is found using the relativistic formula ( ) 01 :K E= −γ   

( )
( )
( )

22 2 2
0 0 00 0

22
0 0 00

21 1 .
1 /

K E E K KEK E E
v c c c

E K E K EK Ev c

+ − + +
= = ⇒ = − = = 

+ ++ −
γ  

(c)   The relativistic values for the total energy and momentum are  

R 0 0 ,E E K E= = +γ  and 
2

0 20 0
R 02

0 0

2
 2 / .

K KEK E E
p mv c K KE c

E K Ec
+ +  

= = = +   +  
γ  

Classically, the total energy and momentum are   

C ,E K=  and 

C C 02 / 2 2 / .p mv m K m Km KE c= = = =  
CALCULATE:   
(a)  ( )= =5.00 kV 5.00 keVK e   

(b)  
( ) ( )( )

( ) ( )
+

= =
+

2
5.00 keV 2 5.00 keV 511 keV

0.1389
5.00 keV 511 keV

v c c  

(c) ( ) ( )= + =R 5.00 keV 511 keV 516 keVE   

( ) ( )( )= + =
2

R 5.00 keV 2 5.00 keV 511 keV / 71.659 keV/p c c    

=C 5.00 keVE  

( )( )C 2 5.00 keV 511 keV / 71.484 keV/p c c= =  

ROUND:   
(a) The kinetic energy that the electron acquires is = 5.00 keV.K  
(b) The electron has a speed of 0.139 ,v c=  thus the electron will have only a small difference between its 
classical and relativistic values, but this can still be considered a relativistic speed.  
(c) The relativistic and classical energies are R 516 keVE =  and 5.00 keV,  respectively. (The difference is 
due to the fact that the relativistic energy includes the rest energy).  The relativistic and classical momenta 
are R 71.7 keV/p c=  and C 71.5 keV/ ,p c=  respectively. 
DOUBLE-CHECK:  The classical and relativistic momenta are similar, as expected for such a low speed. 

35.60. The momentum before the collision must equal the momentum after the collision. 

 
1 2 1 2

1 1 1 1 1 1 2 2 2 .
p p p p

m v m v m v
′ ′+ = +
′ ′ ′ ′= +γ γ γ
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The ratio is 

( )
( )

( )
( )

( )
( )

2 2

2 1 1 1 1

1 2 2

2

0.700 0.500

1 0.700 / 1 0.500 /
7.63.

0.200

1 0.200 /

c c

c c c cm v v
m v c

c c

γ γ
γ

−
−

− −′ ′−
= = =

′ ′

−

 

35.61. THINK:  Two particles collide inelastically.  One particle has a mass of 1m m=  and momentum 1 .p mc=  

The second particle has a mass of 2 2 2 .m m=   Conservation of energy and momentum can be used with 
the relativistic energy equation to determine the speed and mass of the new particle. 
SKETCH:   

 
RESEARCH:  The relativistic momentum is .p mvγ=  The energy of the particles is 2 2 2 2 4E p c m c= + after 
the collision. 
SIMPLIFY:   
(a) The speed of the projectile with momentum 1p mc=  before the collision is given by 

( ) ( ) ( )2 2 2 2 2
1 1 1 1 1 11 / / 1 / 2 .

2
mc cv c v c v c v c v c v
mγ

= = − ⇒ = − ⇒ = ⇒ =  

(b)  The total energy is conserved before and after the collision.  Therefore,  

( ) ( )

f i

2 2 2 4 2 2 2 4 2 2 2 4
1 1 2 2

222 2 2 4 2 2 4 4

2 2 2 4 2 2

2 2 2 4 2

2 2 2 2 2

0 2 2

2 2 2

3 2

18

E E

p c M c p c m c p c m c

p c M c mc c m c m c

p c M c mc mc

p c M c mc

p M c m c

=

+ = + + +

+ = + + +

+ = +

+ =

+ =

 

From conservation of momentum, 1 .p p mc= =   Therefore, the above equation becomes:   

( )2 2 2 2 2

2 2 2 2

18

17

17

mc M c m c

M c m c

M m

+ =

=

=

 

Note that there is more mass than there was before the collision.  Some kinetic energy has become mass 
energy.  
(c) Using the conservation of momentum  

( )

( )

2 2 2 2 2 2 2
1

2 2 2
2

1 /

1817

p p Mv mc Mv mc v c M v m c m v

mc mc cv
M m m m

γ= ⇒ = ⇒ = − ⇒ = −

= = =
+ +

 

CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK:  It is reasonable that the speed of the new particle is smaller than the speed of the 
projectile.  The momentum of the new particle is given by 
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( )( )
( )( ) ( )2 2

17 / 18 17 17 .
18 118 1 1/181 ( / ) 1 / 18 /

m cMvp Mv mc mc mc
v c c c

γ= = = = = =
−−− −

 

This is the initial momentum of the projectile, as expected by conservation of momentum. 

35.62. THINK:  To derive the Lorentz transformation for momentum, follow Derivation 35.3.  In this case, the 
momentum is similar to the position coordinates and the energy is analogous to the time.   
SKETCH:   

 
 

RESEARCH:  The energy is given by 2E mcγ=  and the momentum is given by .p mvγ=  In order to use 

the energy as a momentum, it must be of the form 
2 .v Ep E

cc
= = β  

SIMPLIFY:  In frame ,F  the vectors are  

,xOA p=


 xp
O A

′
′ =


γ
 and 

2 .EvOO
c

′ =


 

Using the equation OA O A OO′ ′= +
  

 gives  

2 2 .x
x x x

p Ev Evp p p
c c

′  ′= + ⇒ = − 
 

γ
γ

                                                         (1) 

For frame ,F ′ the vectors are  

,xp
OA =


γ
 ,xO A p′ ′=


  and 
2 .E vOO

c
′

′ =


 

Using the equation OA O A OO′ ′= +
  

 gives  

2 .x
x

p E vp
c
′

′= +
γ

                                                                             (2) 

Substituting from equation (1) for xp′  into equation (2) gives 2 2 .x
x

p Ev E vp
c c

′ 
= − + 

 
γ

γ
 Solving for :E′   

2 2 2

2 2

1 1 11 .x
x x x

pc c cE p E p E E vp
v v v

  ′ = − + = − + = − −  
   

γ γ γ γ γ γ
γ γ β γ

 

From 
2

1 ,
1

=
−

γ
β

it is easy to show that 2 2

1 11 1.
β γ

 
− = 

 
 Therefore, ( ).xE E vp′ = −γ  Of course, for 

motion in one dimension (the x-direction), y yp p′ =  and .z zp p′ =  Thus the Lorentz transformation for 

momentum and energy is established. 
CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK:  This result matches with the required expressions. 
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35.63. THINK:  The Lorentz transformations for energy and momentum in the frame F ′  can be used to write 
the quantity 2 2 2E p c′ ′−  in terms of the values in the unprimed frame F.  
SKETCH:  Not required. 
RESEARCH:  The Lorentz transformations are  

( ),xE E vp′ = −γ  ( )2/ ,x xp p vE c′ = −γ  y yp p′ =  and .z zp p′ =  

SIMPLIFY:  Apply the transformations: 

( ) ( )

( )( ) ( )
( )( ) ( )( )

222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

22 2 2 2 2 2 2 2 2 2

2 22 2 2 2 2 2 2 2 2

/

2 2 /

1 /

1 / 1 /

x y z x x y z

x x x x y z

x y z

x y z

E p c E p c p c p c E vp p vE c c p c p c

E Evp v p p c p vE v E c p c p c

v c E v c p p c p c

v c E v c p c p c p c

′ ′ ′ ′ ′ ′− = − − − = − − − − −

= − + − + − − −

= − + − − −

= − − − − − =

γ γ

γ γ γ γ γ γ

γ γ

γ γ 2 2 2 .E p c−

 

CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK:  The statement in the problem has been proved using only the Lorentz transformation 
equations. One could check the result for special and limiting cases. For example, if v = 0 then γ = 1 and 
the Lorentz transformations reduce to E E′ =  and ,x xp p′ =  so the result holds. When p = 0 in the frame F,  

( )
( )( )

22 2 2 2 2 2 2 2 2 2 2 2 2 2 2

22 2 2 2 2 2 2 2 2

/

/ 1 / .

x y zE p c E p c p c p c E vE c c

E v E c v c E E

′ ′ ′ ′ ′ ′− = − − − = − −

= − = − =

γ γ

γ γ γ
 

35.64. The gravitational potential at the surface of the Earth – taking the potential to be zero at infinity – is the 
same as would be produced by a point mass m⊕  at the center of the Earth.  Hence, the desired ratio is: 

( )( )( )
( ) ( )

11 3 2 24

10
2 2 28 6

6.674 10  m / kg s 5.9736 10  kg
6.962 10 ,

2.998 10  m/s 6.371 10  m

Gm
c c r

−

−⊕

⊕

⋅ ⋅Φ
= − = − = − ⋅

⋅ ⋅
 

a dimensionless quantity.  The deviation from flat space-time geometry produced by the Earth’s 
gravitation is rather small. 

35.65. (a) Using the formula for the Schwarzschild radius, the Schwarzschild radius corresponding to the mass of 
the Sun is  

( )( )( )
( )

11 3 2 30

S
S 2 28

2 6.674 10  m / kg s 1.989 10  kg2
2.954 km,

2.998 10  m/s

GM
r

c

−⋅ ⋅
= = =

⋅
 

a characteristic size scale for stellar-mass black holes.  
(b) The Schwarzschild radius corresponding to a proton mass is  

( )( )( )
( )

11 3 2 27

54P
S 2 28

2 6.674 10  m / kg s 1.673 10  kg2
2.485 10  m.

2.998 10  m/s

Gm
r

c

− −

−
⋅ ⋅

= = = ⋅
⋅

 

This is much smaller than the femtometer size scale usually associated with protons: it is orders of 
magnitude smaller than the Planck scale (see Chapter 39), generally considered the smallest scale on which 
our basic notions of length make sense.   Hence, it is unlikely that a proton could usefully be described via 
a classical black-hole geometry.   
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35.66. The time dilation between the Earth and the satellite is 2
0 0

11 .
2

t t t 
∆ = ∆ ≈ + ∆ 

 
γ β  The difference per 

Earth second is: ( )β β βγ
∆ − ∆

∆ −∆ ∆ = ∆ ≈ + ∆ ⇒ ⇒ == ∆
 ∆


2

0 0
2 20

0 0
0

1 1
2 2

11 .
2

t t
t

t
t tt tt  

 

( )
( ) ( ) ( )

2
3

2 11
8

12
6

4.00 10  m/s1 1 8.90 10  s/ Earth second 89.0 ps/ Earth second
2 2 2.9979 10  m/s

1s 86,400 Earth seconds89.0 ps 7.69
Earth second 10 ps 1 Earth Da

· 0 s.
y

1

β −

−

 ⋅
 = = ⋅ =
 ⋅ 

⇒ ⋅ ⋅ =

 

This corresponds to a difference of 67.69 10  s/day 8 μs/day.−⋅ ≈  

35.67. The Schwarzschild radius of a black hole is S 2

2 .GMR
c

=  The black hole at the center of the Milky Way in 

Example 12.4 was found to be 63.72 10⋅  solar masses. The mass of the Sun is 301.989 10  kg.⋅  The 
Schwarzschild radius of this black hole is  

( )( )( )
( )

−⋅ ⋅ ⋅  = = ⋅  ⋅ ⋅

=

11 2 2 6 30
9

S 2 98

2 6.674 10  N m / kg 3.72 10 1.989 10  kg AU10.99 10  m
149.60 10  m2.9979 10  m/s

0.0735 AU.

R
 

35.68. In the garage’s reference frame, the limousine is length contracted.  The speed required for it to fit into the 
garage is 

( ) ( ) ( )

( ) ( ) ( )( )

2 2 20
0 0

22
0

1 / / 1 /

1 / 1 35.0 ft / 50.0 ft 0.71 .

L
L L v c L L v c

v L L c c c

γ
= = − ⇒ = −

= − = − =

 

In the limousine’s reference frame, the length of the garage is length contracted by a factor of  

γ
γ

= = == ⇒0 0 50.0 ft
1.43.

35.0 ft
L

L
L

L
 

35.69. The relativistic momentum of an electron is given by 
( )

γ= =
−

R 21 /
e

e
m v

p m v
v c

where me  is the mass of the 

electron. The classical momentum is C .p mv=  Therefore, the percentage difference between the classical 
and relativistic momenta is 

( ) ( ) ( ) ( )( )R C

C

100 % 100 % 1 100 %e e

e

p p m v m v
p

p m v
− −

∆ = = = −
γ

γ  

For an electron moving at ( )82.00 10  m/s 2.00 / 3. 00 ,v c= ⋅ =   

( ) ( )2 21/ 1 / 1/ 1 2.00 / 3.00 1.342.v cγ = − = − =  

Its relativistic momentum is 

( ) ( ) ( )γ − − = = = ⋅ ⋅ = ⋅ 
 

31 8 2
R

221.342 (2 / 3) 0.8944 9.109 10  kg 3.00 10  m/s 2.44 10  kg m/s,
3e ep m v m c  

which differs from its classical value by ( )( )1 100 % 34 %.p γ∆ = − =  For an electron moving at 

( )3 52.00 10  m/s 2.00 10 / 3.00 ,v c−= ⋅ = ⋅  
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( ) ( )22 51/ 1 / 1/ 1 2.00 10 / 3.00 1.000v cγ −= − = − ⋅ =  

Its relativistic momentum is 

( ) ( ) ( )( )( )35 5
R

1 8 271.000 2.00 10 / 3 9.109 10 2.00 10 / 3 3.00 10  m/s 1.82 10  kg m/s.e ep m v m cγ −− −−= = ⋅ = ⋅ ⋅ ⋅ = ⋅  

This does not differ appreciably from its classical value since ( )( )1 100 % 0− =γ  to many decimal places.  

For small velocities, the classical momentum of the electron is a good approximation.  

35.70. Let the Earth be frame F and rocket A be the moving frame .F ′   The speed of rocket B in frame F is then 
0.95 .u c=  The speed of frame F ′  with respect to frame F is 0.75 .v c=   The speed of rocket B relative to 

rocket A is then 
( ) ( )
( )( )2 2

0.95 0.75
0.70 .

1 / 1 0.95 0.75 /

c cu vu c
uv c c c c

−−′ = = =
− −

 

35.71. The Newtonian and relativistic kinetic energies of a particle are ( ) 2
N 1/ 2K mv= and ( ) 2

R 1 ,K mcγ= −  
respectively. In Newtonian mechanics, the difference in their kinetic energy is  

( ) ( )

( )( )

∆ = − = − = −

= − =

2 2 2 2 2 2 2
N 1 2 1 2

2 2 2 2

1 1 1 1 0.9999 0.9900
2 2 2 2
1 0.9999 0.9900 0.511 MeV/ 5.03 keV.
2

K mv mv m v v mc

c c
 

The difference using special relativity is  

( ) ( ) ( )
( ) ( )

( )

γ γ γ γ
 
 ∆ = − − − = − = − 
 − − 

 
= − =  − − 

2 2 2 2
R 1 2 1 2 2 2

1 2

2 2

1 11 1
1 / 1 /

1 1 0.511 MeV 32.5 MeV.
1 0.9999 1 0.9900

K mc mc mc mc
v c v c  

Therefore, we see that at velocities near c, the Newtonian approximation of Kinetic energy diverges from 
the relativistic Kinetic energy by several orders of magnitude.  

35.72. (a)  The clock of the friend waiting in B will show a longer time interval due to time dilation.  The person 
traveling experiences time “slowing down” relative to a stationary observer. 
(b) The time dilation is given by 0 .t tγ∆ = ∆  Since the velocity of the airplane is small compared to the 

speed of light, γ  can be approximated as 211 .
2

≈ +γ β  The difference in time between the two clocks is  

( )( )
2

2
0 0 0 0 8

1 1 240 m/s 3.00 h 3600 s/h 3.5 ns.
2 2 3.00 10  m/s

t t t t tγ β  
∆ − ∆ = ∆ −∆ = ∆ = = ⋅ 

 

35.73. The mass can be found from the energy:  

( )( )
( )

12
2 4

22 8

15.0 4.18 10  J
6.9667 10  kg 0.697 g.

3.00 10  m/s

EE mc m
c

−
⋅

= ⇒ = = = ⋅ =
⋅

 
35.74. The speed can be found using the equation for length contraction: 

( ) ( ) ( ) ( )
γ

 = = − ⇒ = − ⇒ = − = − = 
 

2
2 2 2 20

0 0 0
90.0 cm1 /   / 1 /   1 / 1 0.436 .
100. cm

L
L L v c v c L L v L L c c c  
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35.75. Using the relativistic velocity transformation, the speed of object A relative to object B as measured by an 
observer on object B is  

( ) ( )
( )( )

A B
2 2

A B

0.600 0.600
0.882 .

1 / 1 0.600 0.600 /

c cv v
u c

v v c c c c

− −−
′ = = =

− − −
 

35.76. The length contraction factor is one-third so 3.=γ  Therefore, the relative velocity is  

( )
( ) ( )= ⇒ − = ⇒ − = ⇒ =

−

2 2

2

1 1 1 2 23 1 / 1 /
9 9 31 /

v c v c v c
v c

 

35.77. The average speed on the trip, which took 40.0 hours to travel 2200.0 miles, was 55.0 mph.  Since the 

velocity of the vehicle is small compared to the speed of light, γ  can be approximated as 211 .
2

≈ +γ β  

Therefore, the difference in time between your watch and your professor’s watch (your watch runs slow) is  

( )( )

2

2
0 0 0 0 8

1 h 1609.3 m55.0 mph
3600 s 1 mi1 1 40.0 h 3600. s/h 0.484 ns

2 2 3.00 10  m/s
t t t t tγ β

   
   

   ∆ − ∆ = ∆ −∆ = ∆ = =
 ⋅
 
 

 

This amount of time is very tiny and could not be a reason for being late. 

35.78. Because of the second postulate of relativity, both observers measure the speed of light to be the same.  
(a) The speed of light measured on the spaceship is c. 
(b) The speed of light measured on the asteroid is also c. 

35.79. The distance of 100. ly was measured by someone on one of the space stations.  Someone on the spaceship 
will measure a different distance, one that is shorter according to the formula for length contraction, 

0 / .L L= γ  The time it takes to travel from one space station to the next as measured by someone on the 
spaceship is 

( ) ( )
( ) ( )

γ
= = = − = − = ≈2 20 0

1

100. ly
1 / 1 0.950 / 32.8684 years 33 years.

0.950
L LLt v c c c

v v v c
 

As seen by someone on the space station, the time will be  
( )
( )2

100. ly
105 years.

0.950
Lt
v c

= = =  

35.80. The electron gains kinetic energy from the potential: ( ) 21 .K mc qVγ= − =  Solving for the velocity :v  

( )
( ) ( )

( )

γ γ

−

 − = ⇒ − = ⇒ = + ⇒ = + 
 −−

 ⇒ − = ⇒ = − + 
  + 

 

2
2

22 2 22

2
2

2 2

2

1 11   1   1  1  
1 /1 /

1 1 /   1 1 .
1

qV qV qV
mc qV

mc mc mcv cv c

qV
v c v c

mcqV
mc

 

The rest mass energy of the electron is 2 0.511 MeVmc =  and the potential energy is 

( )61.0 10  V 1.0 MeV.qV e= ⋅ =  Thus the electron attains a speed of  

( )
( )

2
1.0 MeV

1 1 0.94 .
0.511 MeV

v c c

−
 
 = − + =
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35.81. As seen by those on the ship, the round trip distance is length contracted to 0 ,
L

L =
γ

 where 

=0 / 4000.0 yr L c constitutes the time for round-trip travel.  If the speed of the ship is v and the journey 
must take only 40.000 yrt =  then the required speed is 

( ) ( )
( )

( ) ( )( )

2 2 2 2 20 0
0 2

0

2

1 / /
1 /

0.99995 .
1 40.000 yr / 4000.0 yr

L L cv v c ct L v c v v
t t ct L

cv c

γ
= = − ⇒ = − ⇒ =

+

= =
+

 

35.82. THINK:  The particle is moving at a speed of 0.800 .v c=  The mass of the particle is unknown, but the 
momentum of the particle is 201.00 10  N s.p −= ⋅  This is all that is required to find the energy of the 
particle. 
SKETCH:   

 
RESEARCH:  The energy and momentum of a relativistic particle are 2E mcγ= and p mvγ= respectively. 

SIMPLIFY:  
2

2 2p pc
E mc mc

mv v
γ= = =  

CALCULATE:  
( )( )

( )

20 82
12

1.00 10  N s 2.9979 10  m/s  
3.747 10  J 23.392 MeV

0.800

cpc
E

v c

−

−
⋅ ⋅ ⋅

= = = ⋅ =  

ROUND:  To three significant figures, the energy of the particle is 123.75 10  J−⋅  or 23.4 MeV.  
DOUBLE-CHECK:  This is a typical energy for a high energy particle. For 0.800 ,v c=  the value of γ  is 

found to be 5/3. Hence the mass of the particle is 28/ 0.25 10  kgm p vγ −= = ⋅ , which is a reasonable mass 
for an atomic particle. Using this mass, the energy of the particle is 

2 28 8 2 12(5 / 3)(0.25 10 kg)(2.9979 10 m/s) 3.747 10 J,E mc − −= = ⋅ ⋅ = ⋅γ  
which agrees with the calculated value. 

35.83. THINK:  The running back is travelling at 55.0% the speed of light relative to the field.  He throws the ball 
to a receiver running at 65.0% the speed of light relative to the field in the same direction.  The speed of the 
ball relative to the running back is 80.0% the speed of light. The relativistic velocity transformation can be 
used to find the speed that the receiver perceives the ball to be travelling at.  Recall that the speed of light is 
the same in all reference frames. 
SKETCH:   
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RESEARCH:  The velocity of the ball with respect to the running back is 0.800 .xu c′ =   The velocity of the 
running back with respect to the field is rb 0.550 .v c=  The inverse Lorentz transformation can be used to 
find the velocity xu  of the ball in the field frame:  

,rb rb
2

,rb rb

.
1 /

x
x

x

u v
u

u v c

′ +
=

′+
 

Using a Lorentz transform gives the speed of the ball relative to the receiver:  

rec
,rec 2

rec

,
1 /

x
x

x

u v
u

u v c
−

′ =
−

 

where rec 0.650v c=  is the velocity of the receiver relative to the field.  
SIMPLIFY:  Not required. 
CALCULATE:   

(a)  
( ) ( )
( )( )

( ) ( )
( )( ),rec 22

0.800 0.550 0.9375 0.650
0.9375 0.7360

1 0.9375 0.650 /1 0.800 0.550 /x x

c c c c
u c u c

c c cc c c

+ −
′= = ⇒ = =

−+
  

(b)  Photons travel at the speed of light and the speed of light is the same in any reference frame; therefore, 
the photons would appear to be travelling at the speed of light to the receiver.  
ROUND:   
(a) To three significant figures, the speed of the ball perceived by the receiver is 

e
8

,r c 0.736 2.21 10  m/s.xu c′ = = ⋅  
DOUBLE-CHECK:  The calculated value of the football’s relative speed was less than the speed of light as 
it must be, since no massive object can travel at the speed of light. 

35.84. THINK:  The 14 C  electrons have kinetic energy 00.305 ,K E=  where 0E  is the rest energy.  The baseline 
between the detectors is 2.0 m.x∆ =   Find the necessary timing accuracy needed by the detectors to show 
that the expression for the relativistic momentum, and not the expression for the non-relativistic 
momentum, is correct. 
SKETCH:  Not required. 
RESEARCH:  The rest energy is 2

0 .E mc=  The non-relativistic momentum is nr e nr ,p m v=  and the non-

relativistic kinetic energy is ( ) 2
nr e nr1/ 2 ,K m v=  where em  is the electron’s mass.  The non-relativistic 

velocity nrv  can be determined from these equations. The relativistic momentum is r e r ,p m v= γ  where 

( )2

r1/ 1 / .v cγ = −  The relativistic kinetic energy is ( ) 01 .K E= −γ  The relativistic velocity rv  can be 

determined from these equations.  Finally, the time needed to travel a distance x∆  is / .t x v= ∆  
SIMPLIFY:  Non-relativistic case: 

( )2
nr e nr 0 nr 0 e

1 0.305 2 0.305 /
2

K m v E v E m= = ⇒ =  

Substituting 2
0 eE m c=  into the equation gives  

( )2
nr e e nr

nr

2 0.305 / 0.610
0.610

x xv m c m c t
v c
∆ ∆

= = ⇒ = =   

Relativistic case: 
( ) 0 01 0.305 1.305K E E= − = ⇒ =γ γ  

( )
( ) ( ) ( )

( ) ( )( ) ( )
( )

( )
( )

2
2 2 2 2 2

2 22

r

2 2
2 22 2

r r r2 2
r

1 1.305  1.305   1.305
1 /

1.305 1 1.305
 1.305 1.305 1 0.6425   

1.305 1.305 1

r
r

c c v c
c vv c

x xv c v c c t
v c

= = ⇒ = ⇒ − =
−−

− ∆ ∆
⇒ = − ⇒ = = ⇒ = =

−

γ
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CALCULATE:  
( )
( )nr 8

2.0 m
8.5358 ns,

0.610 3.00 10  m/s
t = =

⋅
  

( )
( )

( )
( )

= =
⋅ −

2

r 28

2.0 m 1.305
10.376 ns

3.00 10  m/s 1.305 1
t   

ROUND:  To two significant figures, nr 8.5 nst =  and =r 10. ns.t  By comparison of the calculated values 

nrt  and r ,t  the necessary timing accuracy is on the order of 1 ns.  
DOUBLE-CHECK:  The calculated values for nrt  and rt  had the correct units. 

35.85. THINK:  The spacecraft travels a distance of 31.00 10  lyd −= ⋅  in a time of 20.0 hrst∆ =  as measured by 
an observer stationed on Earth.  The length of the journey, 0 ,t∆  as measured by the captain of the 
spacecraft will be shorter due to time dilation. 
SKETCH:  Not required. 
RESEARCH:  The speed of the spacecraft is given by / .v d t= ∆  The expression for time dilation is given 
by 0 .t tγ∆ = ∆   

SIMPLIFY:  
( )

( ) ( )220
0 02

  1 / 1 /
1 /

t
t t t v c t t d c t

v c

∆
∆ = ⇒ ∆ = ∆ − ⇒ ∆ = ∆ − ∆

−
 

CALCULATE:  Since 3/ 1.00 10  yr,d c −= ⋅  

( ) ( )( )
( )

2
3 3

0

1.00 10  yr 8.766 10 hr/yr
20.0 hr 1 17.977 hr.

20.0 hr
t

− ⋅ ⋅
 ∆ = − =
 
 

 

ROUND:  To three significant figures, 0 18.0 hr.t∆ =  
DOUBLE-CHECK:  The time measured by the captain is shorter than the time measured by the observer 
on the Earth.  This makes sense because the captain is traveling at the same speed as the spacecraft (e.g. the 
captain is at rest with respect to the spacecraft).  According to the time dilation theory, a moving clock 
runs slower than a clock at rest. 

35.86. THINK:  A hypothetical particle with rest mass 21.000 GeV/m c=  and kinetic energy 1.000 GeVK =  
collides with an identical particle at rest.  The two particles fuse to form a single new particle.  Total energy 
and momentum are both conserved in the collision. Find (a) the momentum p and speed v of the first 
particle and (b) the rest mass newm  and speed newv  of the new particle. 
SKETCH:   

 
RESEARCH:  The total energy is 2

0 ,E mc E Kγ= = +  where 2
0 1.000 GeVE mc= =  and ( ) 01 .K E= −γ    

The relationship between energy and momentum is given by 2 2 2 2 4 .E p c m c= +   
SIMPLIFY:   
(a) The momentum of the first particle is given by 

( )

2 2
2 2 2 2 4 2 2 2 2 0

0 2

2 2 2
0 0 0

  

/ 2 / .

E E
E p c m c p c E p

c

p E K E c E K K c

−
= + = + ⇒ =

= + − = +
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The speed of the first particle is given by  

( ) ( ) ( )

2
0 0

0 0 22 2
0

1 1    1 .
1 / 1 /

E E
K E K E v c

K Ev c v c

      = − ⇒ + = ⇒ = −   + − −   

 

(b) The rest mass newm  of the new particle can be found by using the relationship between energy and 
momentum:  

2 2 2
2 2 2 2 4 2 2 2 2 2new new
new new new new new new new4    / .

E p c
E p c m c m m E p c c

c
−

= + ⇒ = ⇒ = −  

By energy and momentum conservation, the newly formed particle has the same total energy and 
momentum as the two original particles did prior to the collision, so  

new 02 3.000 GeV,E E K= + =  
and new ,p p=  which was found in part (a).  The speed of the new particle is given by: 

( ) ( )

2 2 2 2 2
2new new new new new new

new new new new 2 2 22
newnewnew

  
1 /1 /

m v m v m c v
p m v p

c vv cv c
= = ⇒ = =

−−−
γ  

2 2 2 2 2 2 2 new
new new new new new new 2 2 2

new new

 .
p c

p c p v m c v v
m c p

− = ⇒ =
+

 

CALCULATE:   

(a) ( )( ) ( )2
2 1.000 GeV 1.000 GeV 1.000 GeV / 1.73205 GeV/p c c= + =  

( )
( ) ( )( )

2

2

1.000 GeV
1 0.86603

1.000 GeV 1.000 GeV
v c c

 
 = − =  + 

  

(b) ( ) ( )2 2 2 2 2
new 3.000 GeV 1.73205 GeV/ / 2.44949 GeV/m c c c c= − =  

( )

( ) ( )
new 2 22 2

1.73205 GeV/
0.57735

2.44949 GeV/ 1.73205 GeV/

c c
v c

c c c
= =

+
 

ROUND:  To four significant figures, 
(a) 1.732 GeV/ ,p c=  0.8660v c=  

(b)  2
new 2.449 GeV/ ,m c=  new 0.5774v c=  

DOUBLE-CHECK:  The mass of the new particle is on the same order as the mass of a proton, 
2

p 0.938 GeV/ ,m c=  so it is reasonable.  The calculated speeds are large, but are realistic for small masses.  

35.87. THINK:  In considering accelerating bodies with special relativity, the acceleration experienced by the 
moving body is constant; that is, in each increment of the body’s own proper time, ,dτ  the body acquires 
velocity increment dv gdτ=  as measured in the body’s frame (the inertial frame in which the body is 
momentarily at rest).  Given this interpretation, 
(a)  Write a differential equation for the velocity v of the body, moving in one spatial dimension, as 
measured in the inertial frame in which the body was initially at rest (the “ground frame”). 
(b)  Solve this equation for ( ),v t  where both v and t are measured in the ground frame. 
(c)  Verify that the solution behaves appropriately for small and large values of .t   
(d)  Calculate the position of the body ( ),x t  as measured in the ground frame.  
(e)  Identify the trajectory of the body on a Minkowski diagram with coordinates x  and ,ct  as measured 
in the ground frame. 
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(f)  For 29.81 m/s ,g =  calculate how much time t  it takes the body to accelerate from rest to 70.7%  of ,c  
as measured in the ground frame, and how much ground-frame distance, ,x∆  the body covers in this 
time.  
SKETCH:  Not required. 
RESEARCH:  In moving from the ground frame to the next frame, the body’s velocity was incremented by 

.dv  Since we are interested in a differential equation for the velocity as measured in the ground frame, an 
inverse Lorentz transformation from the next frame to the ground frame is necessary: 

next
ground 2 2

next

  .
1 / 1 /

u v v dvu v dv
u v c vdv c

+ +
= ⇒ + =

+ +
 

The increment of the body’s proper time dτ  is related to the increment of ground-frame time dt  by time 

dilation, ( )( )1/22
1 / .d v c dt= −τ  The trajectory of the body in a space-time diagram will be determined by 

examining the position as a function of time, which is determined in part (d). 
SIMPLIFY:   
(a) Ignoring squares and higher powers of differentials,  

( ) ( )( )2

2 21 ... 1 / ...,
1 /

v gd vgd
v dv v gd v g v c d

vgd c c
τ τ

τ τ
τ

+  
+ = = + − + = + − + +  

 or ( )( )2
1 / .dv g v c d= − τ  

But the increment of proper time dτ  is related to the increment of ground-frame time dt  by time dilation 
so the differential equation, in terms of ground frame quantities, becomes  

( )( ) ( )( ) ( )( )
( )( )

1/22 2 2

3/22

1 / 1 / 1 /

1 /

dv g v c d g v c v c dt

dv g v c
dt

= − = − −

= −

τ
 

(b)  The above differential equation separates, yielding  

( )( )
( ) ( )

( )( )( )3/2 1/20 0 22
.

1 / 1 /

t v t v tdvg dt gt
v c v t c

′
′ = ⇒ =

′− −
∫ ∫   

This is readily solved, giving ( )
( )( )1/22

1 /

gt
v t

gt c
=

+
 for the ground-frame velocity of the accelerating body 

as a function of ground-frame time. 
(c)  For ,gt c<<  i.e., the Newtonian limit, the above result takes the form ( ) ,v t gt≅  exactly as expected.  
The relativistic limit, as time approaches infinity is: 

( )
( ) ( )2 2

lim lim .
1 / /

t t

gt gt
v t c

gt c gt c
→∞ →∞

= = =
+

 

That is, the velocity of the accelerating body asymptotically approaches ,c  as expected. 
(d)  The position follows from the velocity through integration: 

( ) ( )
( )

1/2 1/22 22 2 2 2 2

1/20 0 2

0

1 1
1 /

t

t t gt dt gt gtc c c c cx t v t dt
g g g g c g cgt c

   ′ ′ ′   ′ ′= + = + = + + = +      
       ′    +  

∫ ∫  

(e) The above result implies the simple relation ( )22 4 2/ .x ct c g− =  The right-hand side is constant.  
Hence, the trajectory is a branch of a hyperbola on a Minkowski diagram. 
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(f)  Consider the ground-frame speed as a function of ground-frame time from part (b), 

( )
( )2

.
1 /

gt
v t

gt c
=

+
 

The time t  required for the body to accelerate from rest to 0.707v c=  is given by:  

( )
( )( ) ( )

( )
2 22

2 2
1 / .

1 / 1 /

gt vv v gt c gt t
gt c g v c

= ⇒ + = ⇒ =
+ −

 

The ground-frame distance travelled in this time is ( ) ( )0 .x x t x∆ = −  As stated in the problem, the 

ground-frame position at ground-frame time 0t =  is ( ) 20 / .x c g=  Then 

( )
( )

1/2 222 2 2

2

/
1 1 1 .

1 /

v cgtc c cx
g c g g v c

     ∆ = + − = + −       −    

 

CALCULATE:   

(f)  
( )( )

( ) ( )( )

8
7

22

0.707 2.998 10  m/s
3.055 10  s 353.6 days,

9.81 m/s 1 0.707 /
t

c c

⋅
= = ⋅ =

−
 

( )
( )

( )( )
( )( )

2 28
15

22

2.998 10  m/s 0.707 /
1 1 3.793 10  m 0.4009 ly

9.81 m/s 1 0.707 /

c c
x

c c

 ⋅  
∆ = + − = ⋅ = 

− 
 

 

ROUND:  The answers should be quoted to three significant figures:  
(f)  354 days,t =  and 0.401 ly.x∆ =   
DOUBLE-CHECK:  The motion of an object with constant proper acceleration in special relativity should 
be described by a hyperbola, as found in parts (d) and (e).  The values found in part (f) are reasonable 
considering the relatively slow acceleration of 29.81 m/s .   
 

Multi-Version Exercises 

35.88. 2 2
2 1 2 2

2 1

1 1( )
1 ( / ) 1 ( / )

W E mc mc
v c v c

γ γ
 
 = ∆ = − = −
 − − 

 

     
2 2

1 1 (183.473 GeV)  GeV  GeV
1 0.8433 1 0

116.4493263
.5785

116
 

= − = = − −    Note that because of the subtraction rule  the answer has only three significant figures. 
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35.89. 2 2
2 1 2 2

2 1

1 1( )
1 1

W E mc mcγ γ
β β

 
 = ∆ = − = −
 − − 

 

 

2 2 2
1 2

2
22

2 2
1

2 2 2

22 2
1

1 1

1 1
1 1

1

1

1 11 1 0.8453
11 140.779

183.473 0.41 41 2 3

W
mc

W
mc

W
mc

β β

β

β

β

β

⇒ + =
− −

⇒ = −
 
 +
 − 

⇒ = − = − =
   

+   +    − − 

 

35.90. 2 2
2 1 2 2

2 1

1 1( )
1 1

W E mc mcγ γ
β β

 
 = ∆ = − = −
 − − 

 

 

22 2
1 2

2
12

22
2

1 2 2

222
2

137.782
183.4730.8475

1 1

1 1
1 1

1

1

1 11 1 0.4701
11

11

W
mc

W
mc

W
mc

β β

β

β

β

β

⇒ = −
− −

⇒ = −
 
 −
 − 

⇒ = − = − =
   

−   −    − − 

 

35.91. 2 2 2
lab cm cm4 2 / 4( ) 2(503.01 GeV 503.01 GeV 50.30 GeV) / ( ) 1  2.072 TeVK K K mc= + = + =  

35.92. 2 2
lab cm cm4 2 /K K K mc= +  

 
2 2

cm lab cm

2

2 / ( 4 )

2( ) / (621.38 GeV 15161.70 GeV .38 G4(621 )) 60.9  G V2eV e

mc K K K⇒ = −

= − =
 

35.93. 2 2
lab cm cm4 2 /K K K mc= +  

 

2 2 21
cm cm lab2

2 2 4 21
cm lab2

21
2 10868.96 GeV) 23.94

2 0

( ( ) ( GeV 23.94 GeV) ( )
337

23.94 GeV
 GeV.6

K K mc K mc

K K mc m c mc

⇒ + − =

⇒ = + −

= + −

=
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Chapter 36: Quantum Physics  
 
Concept Checks 

36.1. a  36.2. b  36.3. d  36.4. d  36.5. b  36.6. d 
 
Multiple-Choice Questions 

36.1. b  36.2. e  36.3. a and c  36.4. c  36.5. c  36.6. c  36.7. c  36.8. b  
 
Conceptual Questions 

36.9. The spectral emittance as a function of wavelength is given by equation (36.13): ( ) ( )λ

πε λ
λ

=
−

2

/( )5

2 .
1Bhc K T

hc
e

 

For a given temperature the emittance depends on the wavelength of the light. Red light corresponds to a 
certain wavelength, but white light is made up of a distribution of visible light with different wavelengths. 
This is shown in Figure 36.4 of the textbook. The temperature of an object is inversely proportional to its 
minimum wavelength, as ε  is explained by Wien’s displacement law. In the spectrum shown in Figure 
36.4, you can see that the minimum wavelength of the red light corresponds to a longer wavelength than 
that of the white light, therefore the white-hot object is hotter than the red-hot object. 

36.10. It is generally accepted that electrons exhibit both wave and particle like behavior. The wave like nature of 
electrons was postulated by de Broglie and experimental evidence was provided later. Details of the 
experimental evidence of the wave like properties of elections are discussed in the double-slit experiment 
for particles in the textbook. Einstein’s analysis of the photoelectric effect provides evidence of the particle 
like behavior of electrons. 

36.11. The formula for Compton scattering is given by equation (36.20) in the textbook: ( )
e

1 cos .h
m c

λ λ θ′ = + −  

Blue light corresponds to photons with wavelength ranging from 9450 10  m−⋅  to 9495 10  m.−⋅   If you 
choose a value of 45θ = °  and 9450 10  m,λ −= ⋅  then the final wavelength of the photon after scattering is:  

( )
( )( ) ( )λ

−

− −

−

⋅
′ = ⋅ + − ° = ⋅

⋅ ⋅

34
9 9

31 8

6.626 10  Js
450 10  m 1 cos45 450.00071 10  m,

9.109 10  kg 3.00 10  m/s
 

which is still well within the range of wavelengths corresponding to the blue light. The increase in 
wavelength after Compton Scattering is on the order of 1210  m,−  which is too small to affect wavelengths 
in the visible spectrum. 

36.12. The Heisenberg uncertainty relation for energy and time is given by equation (36.27) in the textbook: 
∆ ⋅∆ ≥  / 2.E t  Rearranging this equation to solve for t∆  gives: ( )∆ = ∆ / 2 .t E  For a proton-antiproton 

pair ( ) ( )( )22 27 8 6
p 19

1 eV2 2 1.672 10  kg 3.00 10  m/s 1879 10  eV.
1.602 10  J

E m c −
−∆ = = ⋅ ⋅ ≈ ⋅

⋅
 Substituting this into 

the equation for t∆  gives: 
( )

16
25

6

6.5821 10  eV s 1.75 10  s.
2 1879 10  eV

t
−

−⋅
∆ = ≈ ⋅

⋅
 This is the maximum lifetime of the 

proton-antiproton pair. 

36.13. If Planck’s constant was 5 J s  the wavelength of the tennis ball, as well as other objects, would be very large 
relative to our universe. Consider a tennis ball with a mass, = 0.050 kgm  that is travelling at a speed 

20 m/s.v =  In the universe where 5 J sh =  the tennis ball would have a wavelength of 
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( )( )
λ′ = =

5 J s 5 m.
0.050 kg 20 m/s

  By comparison in our universe 346.626 10  J s,h −= ⋅  so the wavelength of 

the tennis ball is 
( )( )

λ
−

−⋅
= = ⋅

34
346.626 10  J s 6.626 10  m.

0.050 kg 20 m/s
 The tennis ball with the 5 m wavelength would 

appear very fuzzy and could possibly diffract through the spacing in the tennis rackets or the net. 

36.14. In classical mechanics force is defined as ,F ma=
 

where m  is the mass of the object and a


 is its 

acceleration. If 0F =


 for a massive particle it means that 0a =


 which implies the particle is travelling at a 
constant velocity. If you know the particles position and velocity at one point you can predict where the 
particle will be at some later time. In quantum mechanics the Heisenberg uncertainty relation states that 
you cannot instantaneously know, with absolute certainty an object’s position and momentum. Since 
momentum depends on the object’s mass and velocity ( =p mv ), you cannot predict with certainty the 
object’s trajectory from this information. 

36.15. The classical physicist would expect that increasing the intensity of the UV light shining on the metal 
surface should increase the maximum kinetic energy of the electrons ejected from that surface. This was 
not observed in experiments. The experimental observations showed that increasing the intensity of the 
light increased the number of elections ejected from the metal surface but it did not increase their kinetic 
energy. 

36.16. The power of the visible light source is v 60 W 60 J/s.P = =  The power of the X-ray source is 

x 0.002 W 0.002 J/s.P = =  The wavelength of visible light, vλ  is on the order of 7~1 10  m−⋅  to 61 10  m.−⋅  

The wavelength of X-rays are on the order of 13~1 10  m−⋅ (hard X-rays) to 810  m−  (soft X-rays). The 
electromagnetic spectrum is shown in Figure 31.10 of the textbook. If you consider a one second time 
interval, the energy of the visible light is v 60 JE =  and the energy of the X-rays is x 0.002 J,E =  so in terms 
of the total energy from the visible light source is v x30000E E=  in one second. In terms of energy per 
photon, the X-ray photons will have higher energy and be much more damaging to the skin than a photon 
of visible light. For example taking values of 6

v 1 10  mλ −= ⋅  and 10
x 1 10  m.λ −= ⋅  Using the 

equation λ= /E hc  you can obtain the ratio 4v x

x v

1 10
E
E

λ
λ

−′
= = ⋅

′
 or 4

v x1 10 ,E E−′ ′= ⋅  where the prime denote 

that we are discussing energy per photon. It should be noted that hard X-rays ( 12~10  mλ − ) are very 
energetic and can cause immediate damage to human cells. 

36.17. Neutrons in the neutron beam that have spins that are aligned with the spin of the neutrons in the nucleus 
of the polarized 3 He  will not be absorbed because of the Pauli Exclusion Principle (The Pauli exclusion 
principle is discussed in the textbook). Fewer neutrons in the unpolarized beam will be absorbed to form 
4 He  nuclei. The aligned neutrons in the beam that are not absorbed by the 3 He  can be reused on a 
neutron beam to polarize the neutron beam. 

36.18. The photocathode is made of Cesium which has a work function 2.1 eV,φ =  this corresponds to a 

maximum wavelength of 9
max 590 nm 590 10  mλ −= = ⋅ (see Table 36.1 in textbook). Using green laser light 

of wavelength 514.5 nmλ =  corresponds to an energy of / 2.4 eVE hc λ= ≈  which is enough energy to 
cause electrons to be emitted from the Cesium cathode. Doubling the power of the green laser results in an 
increase in intensity of the light hitting the cathode, this will increase the number of ejected electrons, but 
the energy per electron will remain the same. 
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Exercises 

36.19. Assuming the surface temperature of the Sun is Sun 5800. KT =  and the surface temperature of the Earth is 

earth 300. KT = , Wien’s displacement law can be used to calculate the respective peak wavelengths.  

(a) 
3 3

7
m,Sun

Sun

2.90 10  K m 2.90 10  K m 5.00 10  m
5800. KT

λ
− −

−⋅ ⋅
= = = ⋅  

(b) 
3 3

6
m,Earth

Earth

2.90 10  K m 2.90 10  K m 9.67 10  m
300. KT

λ
− −

−⋅ ⋅
= = ≈ ⋅  

36.20. The peak emission temperature can be calculated using Wien’s displacement law: 
λ

−⋅
=

3

m

2.90 10  K m .T  The 

total intensity of the radiation from the filament at a given temperature can be found using equation (36.1) 
from the textbook: 4 ,I Tσ=  where σ  is the Stefan-Boltzmann constant. At the short end of the visible 

spectrum λ = ⋅
1

-9
m 380 nm=380 10  m  and 

−

−

⋅
= =

⋅

3

1 9

2.90 10  K m 7631.6 K.
380 10  m

T  The intensity at this 

temperature is ( ) ( )−= ⋅ ⋅ = ⋅
48 2 4 8 2

1 5.6704 10  W/ m  K 7631.6 K 1.9 10  W/m .I  At the long end of the visible 

spectrum λ = ⋅
2

-9
m 780 nm=780 10  m  and 

−

−

⋅
= =

⋅

3

2 9

2.90 10  K m 3717.9 K.
780 10  m

T  

The intensity at this temperature is: 

( ) ( )−= ⋅ ⋅ = ⋅
48 2 4 7 2

2 5.6704 10  W/ m  K 3717.9 K 1.1 10  W/m .I  

36.21. A gamma ray with energy 123.5 10  eVE = ⋅  would have a very short wavelength. The wavelength of a 

gamma ray with this energy is 
( )( )

γλ
−

− −
⋅ ⋅

= = = ⋅ ≈ ⋅
⋅

15 8
19 19

12

4.136 10  eV s 3.00 10  m/s
3.545 10  m 3.5 10  m.

3.5 10  eV
hc
E

 

The rest mass energy of a proton is = 2
,p p ,oE m c  where = ⋅ 6 2

p 938.3 10  eV/c ,m  so = ⋅ 6
,p 938.3 10  eV.oE  

The energy of the gamma ray is 
12

6

3.5 10  eV 3700 times
938.3 10  eV

⋅
≈

⋅
greater than the rest mass energy of a proton. 

36.22. The temperature of the object is 20. °C 293 K.T = =  Consider the radiation the object emits at the peak of 
the spectral energy density.  
(a) The peak wavelength can be calculated using Wien’s displacement law. 

3
6 6

m
2.90 10  m K 9.8976 10  m 9.90 10  m

293 K
λ

−
− −⋅

= = ⋅ ≈ ⋅  

(b)  The frequency at this wavelength is 
8

13 13
6

m

3.00 10  m/s 3.0310 10  Hz 3.03 10  Hz.
9.8976 10  m

cf
λ −

⋅
= = = ⋅ ≈ ⋅

⋅
  

(c)  The energy of one photon of light at this frequency is given by: 

( )( )34 13 1 20 206.626 10  J s 3.0310 10  s 2.008366 10  J 2.01 10  J.E hf − − − −= = ⋅ ⋅ = ⋅ ≈ ⋅  

Expressed in eV,  20
19

1 eV2.008366 10  J 0.125366 eV 0.125 eV.
1.602 10  J

E −
−

= ⋅ ⋅ = ≈
⋅

 

36.23. THINK: The temperature of your skin is approximately 35.0 °C 308.15 K.T = =  Assume that it is a 
blackbody. Consider a total surface area of 22.00 m .A =  (a) The Wien displacement law can be used to 
determine the peak wavelength λm  of the radiation emitted by the skin, (b) the Stefan-Boltzmann 
radiation law can be used to determine the total power P  emitted by your skin, and (c) the wavelength of 
the radiation needs to be considered.  
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SKETCH:  

 
RESEARCH:  
(a) The Wien displacement law is 3

m 2.90 10  K m.Tλ −= ⋅   
(b) The total power is ,P IA=  where I , the intensity, is given by the Stefan-Boltzmann radiation law:  

4 ,I Tσ=  using ( )8 2 45.6704 10  W/ m  K .σ −= ⋅  

(c) Power is energy per unit time. The relationship between energy and wavelength for photons is: 
/ .E hc λ=    

SIMPLIFY:  

(a) λ
−⋅

=
3

m
2.90 10  K m

T
 

(b) ,P IA=  substituting 4P Tσ=  gives: σ= 4 .P T A  
CALCULATE:  

(a) λ
−

−⋅
= = ⋅

3
6

m
2.90 10  K m 9.4110 10 m

308.15 K
 

(b) ( )( )( ) ( )48 2 4 25.6704 10  W/ m  K 308.15 K 2.00 m 1022.57 WP −= ⋅ =   

(c)  Considering that a typical light bulb has a power of 100 W, why is it that a person does not glow with a 
power output of about 1000 W?  The reason is because in order for you to “glow” your wavelength must be 
in the visible spectrum.  However, the peak wavelength calculated in part (a) is m 9.4111 μm.λ =  This 
wavelength is in the infrared part of the spectrum, not the visible part. Your wavelength is not in the 
visible spectrum. 
ROUND:  
(a) To three significant figures, the peak wavelength is m 9.41 μm.λ =   
(b) To three significant figures, the total power emitted by your skin is 1.02 kW.P =  
DOUBLE-CHECK: The calculated values seem reasonable considering the given values. Comparing the 
calculated peak wavelength to the values in Figure 31.10 of the textbook shows that the wavelength of the 
emitted radiation is out of the visible spectrum. 

36.24. THINK: The known room-temperature band-gap energies for germanium, silicon and gallium-arsenide 
are Ge 0.66 eV,E =  Si 1.12 eV,E =  and Ga-As 1.42 eV,E = respectively.  The wavelength of photons can be 
calculated from the photon energy to (a) find the room-temperature transparency range of these three 
semiconductors, and (b) to explain the yellow color observed for ZnSe crystals, which have a band-gap of 
2.67 eV.  Semiconductors are only transparent if the energy (wavelength) of the photon is lower (higher) 
than the band-gap energy.  (c) For a material to be used as a light detector, it must be able to absorb the 
incident light. This means the detecting material must have a band-gap corresponding to a longer 
wavelength than the incident light. 
SKETCH:  
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RESEARCH: The wavelengths associated with the given band-gap energies can be determined using the 
equation: / .hc Eλ =  
SIMPLIFY:  Not required. 
CALCULATE:  

(a) 
( )( )

( )
λ

−

−
⋅ ⋅

= = ⋅
15 8

6
Ge

4.136 10  eV s 3.00 10  m/s
1.880 10  m

0.66 eV
 

( )( )
( )

λ
−

−
⋅ ⋅

= = ⋅
15 8

6
Si

4.136 10  eV s 3.00 10  m/s
1.108 10  m

1.12 eV
 

( )( )
( )

λ
−

−
⋅ ⋅

= = ⋅
15 8

7
Ga-As

4.136 10  eV s 3.00 10  m/s
8.738 10  m

1.42 eV
  

(b) 
( )( )

( )
λ

−

−
⋅ ⋅

= = ⋅
15 8

7
ZnSe

4.136 10  eV s 3.00 10  m/s
4.647 10  m

2.67 eV
  

ROUND: The transparency range for these semiconductors is:  
(a) Ge 1900 nm,λ > Si 1110 nm,λ >  and Ga-As 874 nm.λ >    
(b) The photon wavelength corresponding to the band-gap energy for ZnSe is ZnSe 465 nm.λ =  Therefore, 
only the blue end of the visible spectrum will be absorbed by the ZnSe. This results in the yellow color that 
is observed for ZnSe crystals. 
(c) The only material that had a wavelength greater than 1550 nm was germanium ( )λ =Ge 1880 nm .  This 
means that germanium is not transparent to the 1550 nm light and would be useful as a detector for this 
optical communications wavelength. 
DOUBLE-CHECK: The calculated wavelengths are reasonable and all had the correct units.  It is expected 
that a material with a low band-gap energy will be able to absorb radiation with a large wavelength. 

36.25. THINK: The mass of a dime is -32.268 10  kg,m = ⋅  its diameter is -317.91 10  m,d = ⋅  and its thickness is 

= ⋅ -31.350 10  m.t   (a) The Stefan-Boltzmann radiation law can be used to determine the total radiant 
energy coming from the dime.  (b)  Wien’s displacement law can be used to determine the wavelength of 
peak emission of each photon.  Since each photon carries the same amount of energy, the number of 
photons can be determined. (c) With the temperature known, the thermal energy of air can be calculated.  
The Ideal Gas Law can be used to determine the volume of air required for it to have the same energy as 
the energy radiated from the dime in 1 second.  Take room temperature to be = ° =20.0 C 293.15 K.T   
SKETCH:  
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RESEARCH:   
(a) The radiant energy per second can be found using the equation ,P IA=  where I  is the intensity and 

tA  is the total surface area of the dime, given by: ( )( )π= +t / 2 .A d d t  By assuming the dime is an ideal 

radiator, it is valid to use the Stefan-Boltzmann radiation law: 4 .I Tσ=     
(b) The energy of one photon is given by / .E hc λ=  The wavelength that corresponds to peak emission 

can be found using Wien’s displacement law: λ −= ⋅ 3
m 2.90 10  K m.T    

(c) If it is assumed that the air is made up of diatomic molecules, the energy per molecule is: 

( )=air B3 / 2 .E k T  Note that at at room temperature and standard pressure one mole ( 236.022 10⋅  molecules) 

of air occupies a volume of 3 3
1 22.4 10  m .V −= ⋅    

SIMPLIFY:  

(a) ,P IA=  substituting 4I Tσ=  gives: ( )( )σ π= +4 / 2 .P T d d t  The radiant energy per second is 

⋅1 second.P  
(b) ,E nhf=   where /f c λ=  therefore the energy is: / .E nhc λ=  The wavelength can be found from 

Wien’s displacement law λ −= ⋅ 3
m 2.90 10  K m,T  substitution into the energy equation gives:  

( )
( ) ( )

−

−

= ⋅

= ⋅

3

3

/ 2.90 10  K m

2.90 10  K m /

E nhcT

n E hcT
 

(c) =air B
3 .
2

E k T  The number of molecules of air corresponding to the radiant energy emitted from the 

dime in one second is: air/ .N E E=  The volume of air with energy equal to one second of radiation from 

the dime is given by:  

  
VT =νN =

(22.4 L)N
6.022 ⋅1023  

CALCULATE: 

(a) ( )( )( ) ( )

( )( )

48 2 4 -3 3 317.915.6704 10  W/ m K 293.15 K 17.91 10  m 10  m+1.350 10  m
2

0.2428 W

0.2428 J/s 1 sec 0.2428 J

P

E

π− − − = ⋅ ⋅ ⋅ ⋅ 
 

=

= =

 

(b) 
( )( )

( )( )( )

−

−

⋅
=

⋅ ⋅

= ⋅

3

34 8

19

2.90 10  K m 0.2428 J

6.626 10  Js 3.00 10  m/s 293.15 K

1.208 10  photons/second

n   

(c) 
( )( )− −

= = ⋅
⋅

19

23 1

0.2428 J 3.998 10  molecules of air
3 1.381 10 J K 293 K
2

N  

( )( )
( )
−

−
⋅ ⋅

= = ⋅
⋅

3 3 19
6 3

T 23

22.4 10  m 3.998 10  molecules
1.487 10  m

6.022 10  molecules
V  

ROUND: The calculated values should be reported to three significant figures, therefore:  
(a) 0.243 JE =   

(b)   n =1.21⋅1019  photons per second   
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(c)   VT =1.49 ⋅10−6  m3 .  

DOUBLE-CHECK: The calculated values all had the correct units. It is reasonable that only a very small 
amount of energy is radiated from the dime at room temperature. It also seems reasonable that the volume 
of air that has energy equal to one second of radiation from the dime is small.  

36.26. The given work function is 5.8 eV.φ =  The minimum light frequency necessary for the photoelectric 
effect to occur is given by equation (36.15) in the textbook.  

15 1 15 1
min 15

5.8 eV 1.402321 10  s 1.4 10  s
4.136 10  eV s

f
h
φ − −

−
= = = ⋅ ≈ ⋅

⋅
 

36.27. The light that is incident on the sodium surface is 9470 nm 470 10  nm.λ −= = ⋅  The work function for 
sodium is 2.3 eVφ =  (see Table 36.1 in textbook). The maximum kinetic energy of the electrons ejected 
from the sodium surface is max 0 .K eV hf φ= = −  For photons / ,f c λ=   

8
14 1

9

3.00 10  m/s 6.38 10  s .
470 10  m

f −
−

⋅
= = ⋅

⋅
 

Inserting this value into the equation for maxK  gives:  

( )( )15 14 1
max 4.136 10  eV s 6.38 10  s 2.3 eV 0.34 eV.K − −= ⋅ ⋅ − =  

36.28. The threshold wavelength is given as 9400. nm 400. 10  m.λ −= = ⋅  Frequency and wavelength for photons 
are related by the equation / .f c λ=  The work function, φ  of the alloy can be determined using equation 
(36.15) from the textbook:  

( )( )8 15

min 9
min

3.00 10  m/s 4.136 10  eV s
3.10 eV

400. 10  m
hcf hφ
λ

−

−

⋅ ⋅
= = = =

⋅
  

36.29. The work function of Cesium is φ = 2.100 eV.  The stopping potential for this material is 

0 0.310 V.V = When the laser is shined on cathode made of an unknown material the stopping potential is 
found to be 0 0.110 V.V ′ =   

(a) The wavelength of the laser light is found using equation (36.16): 0 .hceV hf φ φ
λ

= − = −  

Where
( )

( )( )
( )

λ
φ

−
⋅ ⋅

= = = ⋅
+ +

-15 8
7

0

4.136 10  eV s 3.00 10  m/s
5.15 10  m,

0.310 eV 2.100 eV
hc

eV
 this wavelength can be used to 

find the work function of the unknown material, u .φ   

( )( )
φ

λ −

⋅ ⋅
= − = − =

⋅

-15 8

u 0 7

4.136 10  eV s 3.00 10  m/s
0.110 eV 2.30 eV

5.1485 10  m
hc eV  

(b) Work function for a number of common elements are listed in Table 36.1 in the textbook. Possible 
candidate materials for the unknown cathode would be potassium or sodium. They both have work 
functions of 2.3 eV.  

36.30. The incident light has a wavelength of 9550 nm 550 10  m.λ −= = ⋅  The work function of zinc is 4.3 eV.φ =  
(See table 36.1 in text) In order for the photoelectric effect to occur the energy of the incident light must be 
equal to or greater than the work function of zinc. The energy of a photon of light with 9550 10  mλ −= ⋅  is 

given by: 
( )( )

λ −

⋅ ⋅
= = =

⋅

-15 8

9

4.136 10  eV s 3.00 10  m/s
2.3 eV.

550 10  m
hcE  The energy of the incident light is not 

sufficient to eject any electrons from the zinc surface so there will not be any photoelectric current and 
therefore no stopping voltage is required.  
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36.31. White light is made up of photons with wavelengths ranging from λ = ⋅ 24.00 10  nm  to ⋅ 27.50 10  nm  
( −⋅ 74.00 10  m  to −⋅ 77.50 10  m ). The work function of barium is given as 2.48 eV.φ =   
(a) The maximum kinetic energy of an electron ejected from the barium surface will correspond to a 
photon with the minimum wavelength.  

( )( )
φ

λ −

⋅ ⋅
= − = − =

⋅

-15 8

max 7
min

4.136 10  eV s 3.00 10  m/s
2.48 eV 0.622 eV

4.00 10  m
hcK  

(b) The longest wavelength of light that could eject electrons is given by 

( )( )
λ

φ
−

⋅ ⋅
= = = ⋅ = ⋅

-15 8
7 2

4.136 10  eV s 3.00 10  m/s
5.00 10  m 5.00 10  nm.

2.48 eV
hc  This means that the 

⋅ 27.50 10  nm  wavelength light would not eject electrons from the barium surface.  

(c) The wavelength of light that would eject electrons with zero kinetic energy is given by: /hcλ φ=  

which was solved in part (b). The wavelength was λ = ⋅ 25.00 10  nm.   

36.32. THINK: The maximum kinetic energy measured is =max 1.50 eVK  when the wavelength is .λ  When the 
wavelength is decreased to / 2,λ  the maximum kinetic energy measured is ′ =max 3.80 eV.K  By 
considering the photoelectric effect, (a) the work function of the material and (b) the original wavelength 
can be determined.   
SKETCH:  

 
RESEARCH: Combining equation (36.14) and (36.16) from the textbook gives: max ,K hf φ= −  where the 
frequency is / .f c λ=   
SIMPLIFY:  

(a) max max
hc hcK Kφ φ
λ λ

= − ⇒ = + , ( )max
max max/ 2 2 2 2

Khc hcK Kφ φφ φ
λ λ

′
′ = − ⇒ = − = + − , 

max
max2 2

K
K φ′

= + , so max max 2K Kφ ′= −  

(b)  
( )max

max max max max2
hc hc hcK

K K K K
φ λ

λ φ
= − ⇒ = =

′+ + −
, and therefore 

max max

hc
K K

λ =
′ −

. 

CALCULATE:  
(a) ( ) ( )3.80 eV 2 1.50 eV 0.800 eVφ = − =  

(b) 
( )( )

( ) ( )

-15 8
7

4.136 10  eV s 3.00 10  m/s
5.39478 10  m

3.80 eV 1.50 eV
λ −

⋅ ⋅
= = ⋅

−
  

ROUND:   
(a) To three significant figures, the work function is 0.800 eV.φ =   
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(b) To three significant figures, the original wavelength is 539 nm.λ =  
DOUBLE-CHECK: The calculated values have the correct units.  

36.33. The X-rays have wavelength, 90.120 nm 0.120 10  m.λ −= = ⋅  They are scattered by the carbon. The angle 
between the incoming and outgoing photon is 90.0 .θ = °  The formula for Compton scattering is given by 

Equation (36.20) in the textbook: ( ) ( )λ λ θ λ λ λ θ′ ′= + − ⇒ − = ∆ = −
e e

1 cos .  1 cos .h h
m c m c

 Inserting the 

proper values gives:  

( )( )
( )( )

34
12

31 8

6.626 10  J s 1 cos90.0
2.42 10  m

9.109 10  kg 3.00 10  m/s
λ

−

−

−

⋅ − °
∆ = = ⋅

⋅ ⋅
 

 This is the Compton wavelength shift. 

36.34. The wavelength of the incoming photon is: λ − −= = = ⋅ = ⋅
⋅

4 13
6

1240 eV nm 6.20 10  nm 6.20 10  m.
2.0 10  eV

hc
E

 The 

outgoing photon’s wavelength can be found using the Compton scattering formula 

( ) ( ) ( )( )λ λ θ − − − −′ = + − = ⋅ + ⋅ − ° = ⋅ = ⋅13 12 12 31 cos 6.20 10  m 2.426 10  m 1 cos53 1.6 10  m 1.6 10  nm.
e

h
m c

 

36.35. The wavelength of the incoming photon is λ = 0.30 nm;  its original energy was: 

( )( )
λ

−

−

⋅ ⋅
= = = =

⋅

15 8

10

4.13567 10  eV s 2.998 10  m/s
4133 eV.

3.0 10  m
hcE hf  It rebounds at angle of 160 .θ = °  Its new 

wavelength can be found using the Compton scattering formula. 

( ) ( ) ( )( )
( )( )

λ λ θ
−

− −

−

⋅ − °
′ = + − = ⋅ + = ⋅

⋅ ⋅

34
10 10

31 8
e

6.626 10  J s 1 cos160
1 cos 3.0 10  m 3.047 10  m

9.109 10  kg 2.998 10  m/s
h

m c
 

Its new energy is: 
( )( )15 8

10

4.13567 10  eV s 2.998 10  m/s
4069 eV.

3.047 10  m
hcE
λ

−

−

⋅ ⋅
′ = = =

′ ⋅
 The amount of energy lost is 

4133 eV 4069 eV 64 eV.E E E′∆ = − = − =   

36.36. THINK: The X-rays have an initial energy 54.000 10 eV.E = ⋅  They undergo Compton scattering from a 
target, and the scattered rays are detected at 25.0θ = °  relative to the incident rays. (a) The formula for 
Compton scattering can be used to find the energy of the scattered X-ray, ,E′  and (b) conservation of 
energy can be used to find the energy of the recoiling electron, e .E  
SKETCH:  

 
RESEARCH:  
(a) The energy of a photon is / .E hc λ=  The wavelength of the scattered X-ray is given by the Compton 
scattering formula:  

( )
e

1 cos .h
m c

λ λ θ′ = + −  

(b) Due to energy conservation in Compton scattering, the energy lost by the scattered photon is imparted 
onto the electron, that is, .eK E E′= −   
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SIMPLIFY:  
(a) The energy of the scattered X-ray is:  

( )
( ) 1

2
e

e

1 cos1 .
1 cos

hc hcE
hc h E m c
E m c

θ
λ θ

−
 −

′ = = = +  ′  + −
 

(b) No simplification is required.  
CALCULATE:  

(a) 
( )

( )( )
( )

1

5
5 6

1 cos 25.01 3.7267 10 eV
4.000 10 eV 0.51100 10 eV

E

−
 − °
 ′ = + = ⋅
 ⋅ ⋅ 

 

(b) ( ) ( )5 5 44.000 10  eV 3.7267 10  eV 2.7332 10  eVeK = ⋅ − ⋅ = ⋅   

ROUND:   
(a) The energy of the scattered X-ray is 373 keV.E′ =   
(b) The kinetic energy of the recoiling electron is 27.3 keV.eK =   
DOUBLE-CHECK: The X-ray should lose energy after scattering off of the electron.  As expected, this 
energy loss is equal to the kinetic energy of the electron: 372.7 keV 27.33 keV 400.0 keV .eE K E′ + = + = =  

36.37. THINK:  
(a) X-rays of energy 14

0 140. keV 2.243 10 JE −= = ⋅  bounce off of a proton at θ = °90.0 .   The Compton 

scattering formula can be used to find their fractional change in energy, ( )= −0 0/ .f E E E   
(b) The equation derived in part (a) can be used to find the energy of a photon that would be necessary to 
cause a 1.00% change in energy at  θ = °90.0  scattering.  
SKETCH:  

 
 

RESEARCH: The energy of a photon is / .E hc λ=  The wavelength of the scattered photon is found from 
the Compton scattering formula, but with the mass of a proton substituted for the mass of an electron:  

( )λ λ θ′ = + −
p

1 cosh
m c

 

The mass of a proton is −= ⋅ 27
p 1.673 10  kg.m  

SIMPLIFY: 

 (a) 

( )

( )
( )

0
00

2
0 0 0 p 0

0
0 p

1 cos
1 1

1 cos
1 cos

hcE EE E hc hcf
E E E m c Ehc hE

E m c

θλ
λ θ

θ

− −− ′= = = − = − =
′ + − 

+ −  
 

 

 (b) Using the equation from part (a),  

( )
( ) ( )( ) ( ) ( )( )

θ
θ θ

θθ
−

= ⇒ + − = − ⇒ =
− −+ −

2
p0 2

p 0 0 02
p 0

1 cos
  1 cos 1 cos   

1 1 cos1 cos

fm cE
f f m c E E E

fm c E
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CALCULATE:  

(a) 
( )( )

( )( )

14
4

27 8 2 14

2.243 10  J 1 cos90.0
1.491 10

(1.673 10  kg)(2.998 10  m/s) 2.243 10  J 1 cos90.0
f

−

−

− −

⋅ − °
= = ⋅

⋅ ⋅ + ⋅ − °
 

(b) For a 1.00% change in energy, 0.0100 :f =  

( )( )( )
( )( )

227 8
12

0

0.0100 1.673 10  kg 2.998 10  m/s
1.519 10  J 9.481 MeV

1 (0.0100) 1 cos90.0
E

−
−

⋅ ⋅
= = ⋅ =

− − °
 

ROUND:  
(a) 41.49 10f −= ⋅   
(b) 0 9.48 MeVE =  
DOUBLE-CHECK: To get a 1.00% fractional change in energy, gamma-rays would be required. These are 
extremely high energy photons. This is one reason why electrons are used for scattering experiments (the 
photons do not have to be as energetic). 

36.38. THINK: The X-ray photon has an energy of 45.00 10 eV.E = ⋅  It strikes an electron which is initially at 
rest inside a metal and is scattered at an angle of 45 .θ = °  The Compton scattering formula can be used to 
find the kinetic energy eK  and momentum ep  (magnitude and direction) of the electron after the 
collision.  Conservation of energy and momentum can also be used to solve the problem.     
SKETCH:  

 
 

RESEARCH: The energy of a photon is / .E hc λ=  The momentum of a photon is / .p h λ=  The 
wavelength of the scattered photon, according to the Compton scattering formula, is  

( )λ λ θ′ = + −
e

1 cos .h
m c

 

In Compton scattering, energy is conserved. The energy that is lost by the photon is imparted to the 
electron, that is, ′= −e .K E E  Momentum is also conserved in this collision, that is, .ep p p′= +

  

 For 
scattering in two dimensions, this becomes x x exp p p′= +  and .y y eyp p p′= +  The magnitude of the 

electron’s momentum is 2 2 ,e ex eyp p p= +  and the direction is ( )θ −= 1tan / .e ey exp p   

SIMPLIFY:  The kinetic energy of the electron is given by:  

( ) ( )λ λ θ θ

λ

′ = + − = + −

′= − = −
′

e e

e

1 cos 1 cosh hc h
m c E m c

hcK E E E
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The momentum of the electron is given by: 

2 2

1

coscos cos

0 sin sin

tan

ex x x

ey y y

e ex ey

ey
e

ex

h h E hp p p p p
c

hp p p p

p p p

p

p

θθ θ
λ λ λ

θ θ
λ

θ −

′ ′= − = − = − = −
′ ′

′ ′= − = − = −
′

= +

 
=   

 

 

CALCULATE: 

( )( )
( )

( ) ( )( )
( )( )

-15 8 34
11

4 31 8

4.13567 10  eV s 2.998 10  m/s 6.626 10  J s 1 cos 45
2.5508 10  m

5.00 10  eV 9.109 10  kg 2.998 10  m/s
λ

−

−

−

⋅ ⋅ ⋅ − °
′ = + = ⋅

⋅ ⋅ ⋅
 

( ) ( )( )
( )

( )( )
( )

( ) ( )
( )

-15 8
4

e 11

4 19 34
24

e 8 11

4.13567 10  eV s 2.998 10  m/s
5.00 10  eV 50.0 keV 48.607 keV 1.393 keV

2.5508 10  m

5.00 10  eV 1.602 10 J/eV 6.626 10  J s cos 45
8.350 10  kg m/s

2.998 10  m/s 2.5508 10  m
x

K

p

−

− −

−

−

⋅ ⋅
= ⋅ − = − =

⋅

⋅ ⋅ ⋅ °
= − = ⋅

⋅ ⋅

 

( ) ( )
( )

34 o
23

e 11

6.626 10  J s sin 45
1.837 10  kg m/s

2.5508 10  myp
−

−

−

⋅
= − = − ⋅

⋅
 

( ) ( )2 224 23 23
e 8.350 10  kg m/s 1.837 10  kg m/s 2.018 10  kg m/sp − − −= ⋅ + − ⋅ = ⋅

( )
( )

23
1

e 24

1.837 10  kg m/s
tan 65.6  

8.350 10  kg m/s

(The negative means the angle is made below the positive -axis.)x

θ
−

−
−

 − ⋅
 = = − °
 ⋅ 

 

ROUND: To two significant figures: 23
e e e1.4 keV, 2.0 10  kg m/s, and 66 .K p θ−= = ⋅ = − °   

DOUBLE-CHECK: Using the non relativistic equation, the momentum of the electron is e e e ,p m v=  when 

e
e

e

2
.

K
v

m
=   Then,  

( )( )( )− − −= = ⋅ ⋅ ⋅ ≈ ⋅3 19 31 23
e e e2 2 1.393 10  eV 1.602 10  J/eV 9.109 10  kg 2.0 10  kg m/s.p K m  

This is in agreement with the value in the solution.  

36.39. (a) The wavelength of a photon is / .hc Eλ =  For a photon of energy 2.00 eV,E =  the wavelength is: 

( )( ) ( )-15 8 74.13567 10  eV s 2.998 10  m/s / 2.00 eV 6.1994 10  m 620. nm.λ −= ⋅ ⋅ = ⋅ ≈   

(b) The wavelength of an electron is ( )λ = = e/ / ,h p h m v  and its kinetic energy is 2
e / 2.K m v=  In terms 

of ,K  the velocity v  is 
e

2 .Kv
m

=  Then the wavelength of the electron is 
2

e

e e

.
2 2
mh h

m K Km
λ = =  For an 

electron of kinetic energy ( ) ( ) ( )19 192.00 eV 1.602 10  J / 1 eV 3.204 10  J,K − −= ⋅ ⋅ = ⋅  the wavelength is: 

( )
( )( )

234
-10

19 -31

6.626 10  J s
8.673 10  m 0.867 nm.

2 3.204 10  J 9.109 10  kg
λ

−

−

⋅
= = ⋅ ≈

⋅ ⋅
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36.40. The car has a mass of = ⋅ 32.000 10  kgm  and a speed 

( )( )( )= ≈100.0 km/h 1000 m/km 1 hr/3600 s 27.78 m/s.v  

The de Broglie Wavelength is ( )λ = =/ / .h p h mv  The wavelength of this car is therefore  

( ) ( )( )λ − − = ⋅ ⋅ = ⋅ 
34 3 386.626 10  J s / 2.000 10  kg 27.78 m/s 1.193 10  m  

36.41. The nitrogen molecule has a mass of 264.648 10  kgm −= ⋅  and a speed 300.0 m/s.v =   

(a) The de Broglie wavelength is ( )λ = =/ / .h p h mv  The wavelength of this nitrogen molecule is 

therefore ( ) ( )( )λ − − − = ⋅ ⋅ = ⋅ ≈ 
34 26 116.626 10  J s / 4.648 10  kg 300.0 m/s 4.752 10  m 47.52 pm.  

(b) For a double slit experiment, the fringes are 0.30 cmx∆ =  apart and the screen is 70.0 cmL =  in front 
of the slits. In a double slit experiment with particles the distance between the fringes is / .x L dλ∆ =  In 

that case, the distance d  between the slits is ( )( ) ( )λ −= ∆ = ⋅ =11/ 4.752 10  m 70.0 cm / 0.30 cm 11 nm.d L x  

36.42. The alpha particles are accelerated through a potential difference of magnitude 20000 V.V =  Alpha 
particles are composed of 2 protons and 2 neutrons, and therefore have a charge of 2 ,q e=  where 

191.602 10  C.e −= ⋅  Assuming the alpha particles are accelerated from rest, the final kinetic energy of each 
alpha particle is ( ) ( )= ∆ = = ⋅ =2 e 20000 V 40000 eV,K U q V  or 156.408 10  J.−⋅  The de Broglie 

wavelength is ( )λ = =/ / .h p h mv  Kinetic energy is 2 / 2.K mv=  In terms of kinetic energy, the speed is 

e

2 .Kv
m

=  Substituting, the de Broglie wavelength becomes e

e e

.
2 2

mh h
m K Km

λ = =  Note the mass of an 

alpha particle is 276.645 10  kg.m −= ⋅  The de Broglie wavelength of the alpha particle is  

( )( )
34

14

15 27

6.626 10  J s 7.18 10  m.
2 6.408 10  J 6.645 10  kg

λ
−

−

− −

⋅
= = ⋅

⋅ ⋅
 

36.43. The electron has a de Broglie wavelength of 550 nm.λ =   
(a) The de Broglie wavelength is ( )λ = =/ / .h p h mv  The speed of the electron is  

( )( )λ

−

−

⋅
= = = ≈

⋅ ⋅

34

-31 7
e

6.626 10  J s 1323 m/s 1300 m/s.
9.109 10  kg 5.5 10  m

hv
m

 

(b) This speed is much less than the speed of light, so the non-relativistic approximation is sufficient. 
(c) In non-relativistic terms, the electron’s kinetic energy is  

( )( )−

−
⋅

= = = ⋅

2312
25

9.109 10  kg 1323 m/s
7.967 10  J.

2 2
mvK  

In eV, this becomes ( )( ) ( )25 -19 -67.967 10  J 1 eV / 1.602 10  J 4.973 10  eV 5.0 μeV .K −= ⋅ ⋅ = ⋅ ≈   

36.44. THINK: The roommate wants to know if he could be diffracted when passing through a doorway. His 
mass is 60.0 kg.m =  The width of the doorway is 0.900 m.d =  The de Broglie wavelength can be used to 
find (a) the maximum speed maxv  at which the roommate can pass through the doorway in order to be 
significantly diffracted and (b) the time t∆  it would take the roommate to make a step of length 

0.75 mx∆ = in order to be significantly diffracted. Assume that significant diffraction occurs when the 
width of the diffraction aperture is less than 10.0 times the wavelength of the wave being diffracted, that is, 

rm10.0 ,d λ<  where rmλ  is the de Broglie wavelength of the roommate.    
SKETCH: Not applicable. 
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RESEARCH:  

(a) The de Broglie wavelength is .h h
p mv

λ = =   

(b) Speed is .xv
t

∆
=
∆

   

SIMPLIFY:  

(a) For significant diffraction take rm .
10.0

dλ >  The speed is given by: .hv
mλ

=  Since v  and λ  are 

inversely proportional, the minimum λ  will yield a maximum v . Then:  

max
rm

10.0 h hv
m mdλ

= =  

(b) 
max

xt
v
∆

∆ =   

CALCULATE:  

(a) 
( )

( )( )

−

−
⋅

= = ⋅
34

34
max

10.0 6.626 10  J s
1.2270 10  m/s

60.0 kg 0.900 m
v   

(b) 
( )

( )
33

34

0.75 m
6.1123 10  s

1.2270 10  m/s
t

−
∆ = = ⋅

⋅
  

 
ROUND: 
(a) 34

max 1.23 10  m/sv −= ⋅   

(b) 336.1 10  st∆ = ⋅  
(c)  To achieve a de Broglie wavelength capable of diffracting through the doorway the roommate must 
move at a speed of 341.23 10  m/s.v −= ⋅  This would take him 336.11 10  s,⋅  or 261.94 10⋅ years! This is more 

than 1610  times the age of the universe. The roommate does not need to worry about diffracting through 
the doorway. Particles like electrons and protons can diffract because they are many orders of magnitude 
smaller in mass than a person.  
DOUBLE-CHECK:  It is reasonable that the roommate would have to move extremely slow in order for 
him to be diffracted since his mass is so large and the doorway is so large. 

36.45. THINK: The de Broglie waves have a wavelength /h pλ =  and a frequency / .f E h=  A Newtonian 

particle of mass ,m  has momentum ,p mv=  and energy ( )= 2 / 2 .E p m  (a) To calculate the dispersion 
relation for the de Broglie waves of a Newtonian particle, the angular frequency ω  needs to be found as a 
function of wave number, .κ  (b) The phase velocity pv  and group velocity gv  can be determined by using 

the dispersion relation.    
SKETCH: Not applicable. 
RESEARCH:  
(a) The dispersion relation is an expression for the angular frequency, 2 ,fω π=  as a function of wave 

number 2 / ;κ π λ=  that is, ( ).ω ω κ=   

(b) The phase velocity of a wave is p / ,v ω κ= while the group velocity of a wave is g / .v ω κ= ∂ ∂   
SIMPLIFY:  
(a) For a Newtonian particle, the dispersion relation is  

( )
( )

2 2 2 2 2

22

2 2 22   2   .
2 2 42 2
pE h h hf

h h m h m h mm
π π π κ κω π ω π ω κ

λ ππ

    
 = ⇒ = = = = ⇒ =         
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(b) For the same particle, the phase velocity is,  

p ,
4 2 2

ph hv
m m m

ω κ
κ π λ

= = = =  

while the group velocity is  

g .
2

pd h hv
dk m m m
ω κ

π λ
= = = =  

Note: since the momentum of a Newtonian particle is ,p mv=  it is the group velocity that corresponds to 
the classical velocity of the particle.    
CALCULATE: Not applicable. 
ROUND: Not applicable. 
DOUBLE-CHECK: When several waves are superimposed to result in a single wave shape (the envelope 
of the wave) the speed of the overall wave shape is described by the group velocity. The phase velocity 
describes the velocity at which the peaks, or phases, of the waves propagate. The classical velocity should 
correspond to the group velocity of the particle.    

36.46. THINK: The de Broglie waves have a wavelength /h pλ =  and a frequency / .f E h=  A relativistic 

particle of mass m  has momentum p mvγ=  and energy 2 ,E mc γ=  where ( )γ
−

= −
1/22 21 / .v c  (a) To 

calculate the dispersion relation for the de Broglie waves of a relativistic particle, the angular frequency ω  
needs to be found as a function of wave number, .κ  (b) The phase velocity pv  and group velocity gv  can 

be determined by using the dispersion relation.     
SKETCH: Not applicable. 
RESEARCH:  
(a) The dispersion relation is an expression for the angular frequency 2 ,fω π=  as a function of wave 

number 2 / ;κ π λ=  that is, ( ).ω ω κ=  

(b) The phase velocity of a wave is p / ,v ω κ= while the group velocity of a wave is g / .v ω κ= ∂ ∂   
SIMPLIFY:  
(a) For a relativistic particle, the dispersion relation is  

( )

( )

1/2 1/22 21/22 2 4 2 4 2 4

1/22 2 4
2 2

2

2 2 22 2
2

4

E hc h cf pc m c m c m c
h h h h

m cc
h

π π π κω π π
λ π

πω κ κ

       = = = = =+ + +              

 ⇒ = + 
 

 

(b) For the same particle, the phase velocity is,  
1/2 1/22 2 4 2 2 2

2
p 2 2 2 2

4 4 ,1m c m cv cc
h h

ω π π
κ κ κ

   = = =+ +   
   

 

while the group velocity is,  
2

g 1/2 1/22 2 4 2 2 2
2 2

2 2 2

.
4 41

d c cv
d m c m cc

h h

ω κ
κ π πκ

κ

= = =
   

+ +   
   

 

Using the relation, 2 2 2 24 ,h pκ π=  the group velocity can be written as: 

( )
( )

2 2 2 42 2 2
2
g 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4

2 2 2 2 2

22 2

g 22 2 2 4

4 41 1 1
4

.

p c p cc c cv
m c m c m c p m c p c m c

h p p
mv cpc pc

v v
E mcp c m c

π π
κ π

γ
γ

= = = = =
+ +

+ + +

= = = =
+

 

Therefore, (c) the group velocity is the classical velocity of the particle.     
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CALCULATE: Not applicable. 
ROUND: Not applicable. 
DOUBLE-CHECK: Note that the phase velocity can exceed the speed of light (this is not unusual, or 
worrisome, as the phase velocity does not transmit any energy or information), while the group velocity 
cannot. This further enforces that it must be the group velocity, and not the phase velocity, which 
corresponds to the classical velocity of the particle.  

36.47. The mass of the particle is 50.0 kg.m =  It has a de Broglie wavelength of 20.0 cm.λ =    

(a) The de Broglie wavelength is ( )λ = =/ / .h p h mv  The speed is therefore 
34

35 356.626 10  J s 6.626 10  m/s 6.63 10  m/s.
(50.0 kg)(0.200 m)

hv
mλ

−
− −⋅

= = = ⋅ ≈ ⋅  

(b) From the uncertainty relation ( ) ( )1/ 2   1/ 2 ,x xx p x m v∆ ⋅∆ ≥ ⇒ ∆ ⋅ ∆ ≥   the uncertainty in the speed 

must be ( ) ( )1/ 2 / .xv x m∆ ≥ ∆ ⋅  The minimum uncertainty is  

( )( )
34

36 361.0546 10  J s 5.273 10  m/s 5.27 10  m/s.
2 2 0.200 m 50.0 kgxv

x m

−
− −⋅

∆ = = = ⋅ ≈ ⋅
⋅∆ ⋅
  

36.48. The distance through a hydrogen atom of radius 100.53 10  mr −= ⋅  is 102 1.06 10  m.d r −= = ⋅  The time 
required for the light to travel through it is  

10
19

8

1.06 10  m 3.54 10  s.
2.998 10  m/s

d dt
v c

−
−⋅

= = = = ⋅
⋅

 

The largest time uncertainty cannot be greater than the actual travel time, that is 19
max 3.54 10  s.t −∆ = ⋅  The 

uncertainty relation between time and energy is (1/ 2) .E t∆ ⋅∆ ≥   The uncertainty in the energy is 
therefore  

( ) ( )
34

16
19

1.0546 10  J s1/ 2   1.4895 10  J.
2 2 3.54 10  s

E t E
t

−
−

−

⋅
∆ ⋅∆ ≥ ⇒ ∆ ≥ = = ⋅

⋅∆ ⋅



  

 In terms of eV, this is  

( )( ) ( )16 191.4895 10  1 eV / 1.602 10  J 929.8 eV 0.930. keV.E J− −∆ ≥ ⋅ ⋅ = ≈  

The smallest E∆  can be is 0.930 keV.  As t∆  decreases from its maximum value, E∆  must increase 
according to the uncertainty relation. 

36.49. The uncertainty relation between time and energy is ( )1/ 2 .E t∆ ⋅∆ ≥   In terms of mass, 2 .E mc∆ = ∆  The 

neutron’s mass is 271.67 10  kg.m −= ⋅  It has an average lifetime of 882 s.t =  The largest time uncertainty 
cannot be greater than the actual lifetime of the particle, which is max 882 s.t∆ =  The uncertainty in the 

mass of the neutron is therefore ( )2 1/ 2 /E mc t∆ = ∆ ≥ ∆ . 

( )( )
34

55 55
22 8

1.0546 10  J s 6.643 10  kg 6.64 10  kg.
2 2 882 s 3.00 10  m/s

m
tc

−
− −⋅

∆ ≥ = = ⋅ ≈ ⋅
∆ ⋅

  

As the uncertainty in the time t∆  decreases from its maximum value, the uncertainty in the mass 
increases, according to the uncertainty relation.  

36.50. Fuzzy lives in a universe where 1.00 J s.=  Fuzzy’s mass is 0.500 kgm =  and he lives somewhere within 
a 0.750 m  wide pond. The uncertainty relation between position and momentum (in one dimension) 
is ( )∆ ⋅∆ ≥ 1/ 2 .x p  In terms of velocity, ,p m v∆ = ∆  and so the uncertainty relation becomes 



Bauer/Westfall: University Physics, 2E 

1370 
 

( )∆ ⋅∆ ≥ 1/ 2 / .x v m  Since the largest uncertainty in Fuzzy’s position is the width of the pond, 

max 0.750 m,x∆ =  the minimum uncertainty in his speed is  

( ) ( ) ( )( ) ( )( ) ∆ = ∆ = = ≈ min max1/ 2 / 1/ 2 1.00 J s / 0.500 kg 0.750 m 1.3333 m/s 1.33 m/s.v m x  

As the uncertainty in his position x∆  decreases from its maximum value, the uncertainty in his velocity 
increases, according to the uncertainty relation. If the uncertainty prevails for 5.00 s,t =  Fuzzy could 
move ( )( )∆ = ∆ = = ≈1.3333 m/s 5.00 s 6.6666 m 6.67 mx vt  away from his pond. 

36.51. The uncertainty relation between position and momentum (in one dimension) is ( )1/ 2 .x p∆ ⋅∆ ≥   In 

terms of speed, ,p m v∆ = ∆  and so the uncertainty relation becomes ( )1/ 2 / .x v m∆ ⋅∆ ≥   The electron is 
confined to a box of dimensions 20.0 m.L µ=  The maximum uncertainty in the (one-dimensional) 
position of the electron is the dimension of the box, that is max 20.0 m.x L µ∆ = =  The minimum 
uncertainty in the speed of the electron is 

( ) ( ) ( )( ) ( )( )34 31
min max1/ 2 / 1/ 2 1.05457 10  J s / 9.109 10  kg 20.0 m 2.894 m/s.v m x µ− − ∆ = ∆ = ⋅ ⋅ =   

The minimum speed the electron can have is 2.89 m/s. 

36.52. THINK: The dust particle has mass 161.00 10  kgm −= ⋅  and diameter 5.00 μm.d =  It is confined to a box 
of length 15.0 μm.L =  The Heisenberg uncertainty relation can be used to determine (a) if the particle can 
be at rest, (b) the range of its velocity, and (c) how long it will take for it to move a distance of 

31.00 10 mx −= ⋅  at the lower range of the velocity.   
SKETCH:  

 
RESEARCH: The uncertainty relation between position and momentum (in one dimension) is 

1 .
2xx p∆ ∆ ≥   

In terms of velocity, ,p m v∆ = ∆  and so the uncertainty relation becomes  

( ) 1 .
2xx m v∆ ∆ ≥   

The equation for velocity is / .xv x t=   
SIMPLIFY:  
(a) If the particle is at rest, then there is no uncertainty in the momentum, 0.p∆ =  Then Heisenberg’s 
uncertainty relation,  

1 1  ,
2 2x

x

x p x
p

∆ ∆ ≥ ⇒ ∆ ≥
∆


  

would required that .x∆ = ∞  However, the particle is known to be contained in the box, so x L∆ =  (the 
length of the box).   Therefore, due to Heisenberg’s uncertainty relation, we cannot know if the particle is 
at rest. 
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(b) With the particle confined to the box, the uncertainty in position is ∆ = − .x L d  The uncertainty in the 
speed is:  

∆ ≥
∆


2xv
m x

 

Therefore, the particle’s velocity must be somewhere in the range 

2 2
x x

x

v v
v

∆ ∆
− ≤ ≤  

.
4 4xv

m x m x
− ≤ ≤

∆ ∆
   

(c) / xt x v=    
CALCULATE:  

(b)
( )

( )( )
34

14
16 6

1.0546 10  J s
2.6365 10  m/s

2 4 1.00 10  kg 10.0 10 m
xv

−

−

− −

⋅∆
= = ⋅

⋅ ⋅  

(c) 
( )

( )
3

10
14

1.00 10  m
3.79 10  s

2.6365 10  m/s
t

−

−

⋅
= = ⋅

⋅
 

ROUND:  To three significant figures: 
(b) 14 142.64 10  m/s 2.64 10  m/sxv− −− ⋅ ≤ ≤ ⋅  
(c) 

10 33.79 10  s 1.20 10  yearst = ⋅ ≈ ⋅  
DOUBLE-CHECK: For all intent, the dust particle is at rest since it would take it 2400 years to move just 
1 mm. However, by the Heisenberg uncertainty principle, one cannot be sure that at any given time the 
particle is truly at rest.  

36.53. THINK: A quantum state of energy E  can be occupied by any number n  of bosonic particles (including 
0).n =  At absolute temperature ,T  the probability of finding n  particles in this state is 

B

exp ,n
nEP N
k T

 
= − 

 
 where Bk  is Boltzmann’s constant and N  is the normalization factor. Calculate the 

mean or expected value of n, ,n  i.e. the occupancy of this state, given this probability distribution.    
SKETCH: Not applicable. 

RESEARCH: The expectation value of n  is 
0

.n
n

n nP
∞

=

=∑  The value of the constant N  is determined by 

the requirement that all the probabilities sum to one, that is 
0

1.n
n

P
∞

=

=∑  To simplify the notation, let 

B
exp .Ez

k T
 

= − 
 

 With this, .n
nP Nz=  

SIMPLIFY: In order to evaluate the normalization factor N: 
0 0

1   1 .
1n

n

n n

NP N z N z
z

∞ ∞

= =

= = = ⇒ = −
−∑ ∑  Then 

simplify the expected value to  

( )
0 1 1 1

0 exp 1 .n
n n n n

n n

B

nE
nP N n N nz z nzn k T

∞ ∞ ∞ ∞

= = = =

 
−= = + = = − 
 

∑ ∑ ∑ ∑  

There are several ways to evaluate the sum in this expression. If 1,z < then the original series 
1n

nnz
∞

=
∑  is 

absolutely convergent, and it is okay to interchange the order of the sums.  
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One way to evaluate it is as a sequence of sequences: 
1 1 2 3 0

... .n n n n

n n n n

k

n

n

k k

nz z z z z z
∞ ∞ ∞ ∞ ∞ ∞

= = = = = =

 
= + + + =  

 
∑ ∑ ∑ ∑ ∑ ∑  

Next, 
0

1 .
1

j

n k n k j

n k n k k kz z z z z z
z

∞ ∞ ∞

= = =

−= = = ⋅
−∑ ∑ ∑  Substituting this into the sequence of sequences formula:  

( )1 0
2

0 0

1 1 .
1 1 1 1 1

k

n k n k k k

n k n k z z znz z z z z
z z z z z

∞ ∞ ∞ ∞ ∞

= = = = =

    = = = = ⋅ =    − − − −  −   
∑ ∑ ∑ ∑ ∑  

Altogether, this makes the occupancy: 

( )
( )

∞

=

 −
 
 = = − = =

−  −− −  
 

∑
1

2

exp
1 .

11 1 exp

Bn

B

n

E
k Tz zN nz zn

z Ez
k T

 

CALCULATE: Not applicable. 
ROUND: Not applicable. 
DOUBLE-CHECK: The expectation value of n  calculated above is an expected result as it is the Bose-
Einstein distribution, which describes the distribution of identical (and therefore indistinguishable) 
bosons in an energy state E  at thermal equilibrium.  

36.54. THINK: The quantum state of energy E  and temperature T  has a probability distribution  

B

exp ,n
nEP N
k T

 
= − 

 
 

(as the preceding problem), but with fermionic particles. Here Bk  is Boltzmann’s constant and N  is the 
normalization factor. Due to the Pauli exclusion principle, the only possible occupation numbers are 0n =  
and 1.n =  Calculate the mean occupancy n  of the state in this case.    
SKETCH: Not applicable. 
RESEARCH: The expectation value of n  is  

1

0

.n
n

n nP
=

=∑  

The normalization factor N  is determined by the requirement that all the probabilities sum to unity:  
1

0

1 .n
n

P
=

=∑  

SIMPLIFY:  
1

n 0 1 1
0

(0) (1) .
n

n nP P P P
=

= = + =∑  The normalization factor N  is determined from 

1

0 1
0

1 .n
n

P P P
=

= = +∑  

From the probability distribution: 

( )0 exp 0P N N= =  and 1
B

exp .EP N
k T

 
= − 

 
 

Therefore,  

B B

B

11 exp 1 exp .
1 exp

E EN N N N
Ek T k T

k T

    
= + − = + − ⇒ =    

       −+  
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The occupancy of the state is 

B
1

B B

exp
1 .

1 exp exp 1

E
k T

Pn
E E

k T k T

 
− 
 = = =
   −+ +   
   

 

CALCULATE: Not applicable. 
ROUND: Not applicable. 
DOUBLE-CHECK: The expectation value of n  calculated above for fermions is an expected result as it is 
the Fermi-Dirac distribution, which describes the distribution of identical (and therefore indistinguishable) 
fermions in an energy state E  at thermal equilibrium.   

36.55. THINK: The system is made up of N  particles. The average energy per particle is given by  
B/

,
iE k

i
TE e

E
Z

−

= ∑  

where Z is the partition function, 
i B/ ,E k T

i
i

Z g e−=∑  

and ig  is the degeneracy of the state with energy .iE  This system is a 2-state system with 1 0E =  and 

2E E=  and 1 2 1.g g= =  Calculate the heat capacity of the system, ( )/ ,C N d E dT= and approximate its 

behavior at very high and very low temperatures (i.e. B 1k T   and B 1k T  ).    
SKETCH: Not applicable. 
RESEARCH: Not applicable as the necessary equations were all given in the problem. 
SIMPLIFY:   The average energy per particle is for 1 0E =  and 2E E=  is: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
BB B

BB B

0
0 exp exp exp

0 1 exp1 exp 1 exp

E EE Ek Tk T k T
E

EE
k Tk T k T

      + −−    −           = =
     −++− −             

 

Therefore, 

B B

.
1 exp 1 exp

E NEE N E
E E

k T k T

= ⇒ =
   

+ +   
   

 

The heat capacity of the system is, 

( ) B
B

B

2

B

2

exp
.

exp 1

E
d N k TEd EEC N Nk

k TdT dT E
k T

 
    = = =  

    
+     

 

For Bk T  >> 1, 
B

exp 1:
E

k T
 

≈ 
 

  

B

B

2

4
ENk

C
k T

 
≈  
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For 0 < Bk T << 1, ( )Bexp 1:/E k T >>   

B
B B

B B

2

B

2

B

2

exp
exp

exp

E
k TE E E

C Nk C Nk
k T k T k TE

k T

 
        −≈ ⇒ ≈     

       
     

 

For each temperature extreme, the heat capacity approaches zero.  
CALCULATE: Not applicable. 
ROUND: Not applicable. 
DOUBLE-CHECK: In general, in the extremely low temperature limit, the heat capacity must approach 
zero to be consistent with the third law of thermodynamics.  
 

36.56. The work function of tungsten is 4.55 eV.φ =  For a photon of wavelength 360 nm,λ =  its energy is  

( )( )
λ

−

−

⋅ ⋅
= = = = ≈

⋅

15 8

ph 7

4.13567 10  eV s 2.998 10  m/s
3.44409 eV 3.4 eV

3.6 10  m
hcE hf  

These photons are not energetic enough to overcome the work function of tungsten, and so no electrons 
are ejected from the tungsten cathodes. No stopping potential is required ( 0 0v = ). 

36.57. The de Broglie wavelength is / .h pλ =  The proton and the electron have the same kinetic energy. In 

terms of kinetic energy, momentum p  can be written as: 
2

  2 .
2
p

K p mK
m

= ⇒ =  Then, the de Broglie 

wavelength becomes: .
2

h h
p mK

λ = = The ratio of the de Broglie wavelengths of a proton and an electron 

of the same kinetic energy K  is:  

31
pp e

27
e p

e

2 9.109 10  kg
0.0233.

1.673 10  kg
2

h
m K m
h m
m K

λ
λ

−

−

⋅
= = = =

⋅
 

36.58. In one einstein of light there are 236.02 10N = ⋅  photons. If these photons have a wavelength of 
400 nm,λ =  the energy contained in one Einstein of photons is  

( )( )( )23 34 8

tot ph
5

7

6.02 10 6.626 10  J s 2.998 10  m/s
2.99 10  J.

4.00 10  m
hcE NE N
λ

−

−

⋅ ⋅ ⋅
= = = = ⋅

⋅
 

36.59. The de Broglie wavelength is / .h pλ =  The momentum of the baseball is:  

( )( )( )( )0.100 kg 100. mi/h 1609 m/mi 1 h/3600 s 4.469 kg m/s.p mv= = =  
The de Broglie wavelength of the baseball is: 

( ) ( )34 34/ 6.626 10  J s / 4.469 kg m/s 1.48 10  m.h pλ − −= = ⋅ = ⋅  

The momentum of the spacecraft is:  

( )( )( )( ) 6250. kg 125000 km/h 1000 m/km 1 h/3600 s 8.681 10  kg m/s.p mv= = = ⋅  
The de Broglie wavelength of the spacecraft is:  

( ) ( )34 6 41/ 6.626 10  J s / 8.681 10  kg m/s 7.63 10  m.h pλ − −= = ⋅ ⋅ = ⋅  

36.60. The Heisenberg uncertainty relation can be used to find the uncertainty in the velocity. In one dimension 
it is stated as: / 2.x p∆ ∆ ≥   Writing p∆  as ,p m v∆ = ∆  the uncertainty relationship becomes 

/ 2.xm v∆ ∆ ≥   The uncertainty in the velocity is therefore ( )∆ ≥ ⋅∆ ⋅ / 2 .v x m  The minimum uncertainty 
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in the velocity corresponds to the maximum uncertainty in the position. In this case, if the particle of mass 
121.0 ng 1.0 pkg 1.0 10  kgm −= = = ⋅  is restricted to be somewhere on the pinhead, the maximum 

uncertainty in its position is the width of the pinhead, max 1.0 mm 0.0010 m.x∆ = =  The minimum 
uncertainty in the velocity of the particle is  

( )( )
34

20 20
min 12

max

1.0546 10  J s 5.273 10  m/s 5.3 10  m/s.
2 2 0.0010 m 1.0 10  kg

v
x m

−
− −

−

⋅
∆ = = = ⋅ ≈ ⋅

∆ ⋅
  

36.61. The wavelength of light is 7700. nm 7.00 10  m.λ −= = ⋅  The energy of each photon is therefore  

( )( )34 8
-19

ph 7

6.626 10  J s 2.998 10  m/s
2.8378 10  J.

7.00 10  m
hcE
λ

−

−

⋅ ⋅
= = = ⋅

⋅
 

The light intensity on the surface of area 210.0 cmA =  is 20.300 W/cm .I =  The total power incident on 

the surface is therefore ( )( )2 20.300 W/cm 10.0 cm 3.00 W 3.00 J/s.P IA= = = =  The photon flux ,Φ  or 

number of photons per unit time, through the surface A  is  

19 1
19

ph

3.00 J/s 1.06 10  s .
2.8378 10  J

P
E

−
−

Φ = = = ⋅
⋅

 

36.62. The intensity of the Sun is measured to be about 21400. W/m .I =  The peak of the wavelength spectrum 
emitted by the Sun is at 500. nm.λ =   
(a) The corresponding photon frequency is  

8
14 14

7

2.998 10  m/s 5.996 10  Hz 6.00 10  Hz.
5.00 10  m

cf
λ −

⋅
= = = ⋅ ≈ ⋅

⋅
 

(b) The corresponding energy per photon is  

( )( )34 14 -19 -19
ph 6.626 10  J s 5.996 10  Hz 3.973 10  J 3.97 10  J.E hf −= = ⋅ ⋅ = ⋅ ≈ ⋅  

(c) The number flux of photons Φ  arriving at the Earth (assuming all light emitted by the Sun has the 
same peak wavelength) is 

2
21 2 1

19
ph

1400. W/m 3.52 10  m  s .
3.973 10  J

I
E

− −
−

Φ = = = ⋅
⋅

 

That is, about 213.52 10⋅  photons hit one meter-squared of surface area of the Earth per second.  

36.63. The plates have a potential difference of 5.0 VV =  between them. The magnitude of the stopping 
potential is therefore 0 5.0 V.V =  The work function of silver is 4.7 eV.φ =  The largest wavelength (lowest 
frequency and energy) of light maxλ  that can be shined on the cathode to produce a current through the 
anode is found from the equation, 0 .eV hf φ= −  The wavelength of light is  

( ) ( )
( )

( )( )
( ) ( )

( )( )
( ) ( )

0 0
min max

max 0

15 8 15 8
7

max

max

    

4.136 10  eV s 3.00 10  m/s 4.136 10  eV s 3.00 10  m/s
1.279 10 m

5.0 V 4.7 eV 5.0 eV 4.7 eV
130 nm.

eV eVc hcf
h h eV

e

φ φ
λ

λ φ

λ

λ

− −
−

+ +
= ⇒ = ⇒ =

+

⋅ ⋅ ⋅ ⋅
= = = ⋅

+ +
≈  

36.64. The surface has an area 210.0 m .A =  A force of 0.100 NF =  is exerted on the surface by photons of 
wavelength 600. nm.λ =  In general, force is the rate of change of momentum (by Newton’s Second Law). 
By the conservation of momentum, the momentum supplied to the plate must be the momentum of the 
incoming photons. The momentum of a single photon is =ph / .p E c   
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Since the photon energy is given by ,E hf=  the momentum of each photon is:  

( ) ( )34 7 27
ph / / 6.626 10  J s / 6.00 10  m 1.1043 10  kg m/s.p hf c h λ − − −= = = ⋅ ⋅ = ⋅  

The total momentum transferred by the photons is total ph ,p np=  where n is the total number of photons. 

The total momentum per second transferred to the surface must be equal to the force F  exerted on the 
surface, that is total / .p s F=   The number of photons required per second is  

ph 25 1 25 1
27

ph

0.100 N  9.05551 10  s 9.06 10  s .
1.1043 10  kg m/s

np n FF
s s p

− −
−

= ⇒ = = = ⋅ ≈ ⋅
⋅

 

About 259.06 10⋅  photons per second must strike the surface to exert a force of 0.100 N.F =   

36.65. The wave function describing an electron predicts a statistical spread of 41.00 10  m/sv −∆ = ⋅  in the 
electron’s velocity. The corresponding statistical spread in its position x∆  is found from the Heisenberg 
uncertainty principle, / 2.x p∆ ∆ ≥  In terms of velocity and electron mass, this is ∆ ⋅ ∆ ≥ e / 2.x m v Solving 
for x∆  gives:  

( )
( ) ( )( )

e

34 31 4

/ 2

1.0546 10  J s / 2 9.109 10  kg 1.00 10  m/s

0.579 m

x m v

x

x

− − −

∆ ≥ ∆

 ∆ ≥ ⋅ ⋅ ⋅ 
∆ ≥



 

The uncertainty in the electron’s position is at least 0.579 m.x∆ =   

36.66. Wien’s displacement law states 32.90 10  K m.Tλ −= ⋅  For a blackbody whose peak emitted wavelength is in 
the X-ray portion of the  spectrum, that is, 13 810  m 10  m,λ− −< <  the temperature of the blackbody ranges 
from:  

( ) ( )
( ) ( ) ( ) ( )

λ λ− −

− − − −

⋅ < < ⋅

⋅ < < ⋅

⋅ < < ⋅

3 3
max min

3 8 3 13

5 10

2.90 10  K m / 2.90 10  K m /

2.90 10  K m / 10  m 2.90 10  K m / 10  m

2.90 10  K 2.90 10  K

T

T

T

 

or, approximately, 5 1010  K 10  K,T< <  depending on the exact wavelength of the emitted light.  

36.67. A nocturnal bird’s eye can detect monochromatic light of frequency 145.8 10  Hzf = ⋅  with a power as 
small as 172.333 10  W.P −= ⋅  The energy of each detected photon is  

( )( )−= = ⋅ ⋅ = ⋅34 14 -19
ph 6.626 10  J s 5.8 10  Hz 3.843 10  J.E hf  

The number of photons, ,n  detected by the bird per second is:  

( ) ( )
ph

17 19

/ /

/ 2.333 10  W / 3.843 10  J 61 photons/s.

n s P E

n s − −

=

= ⋅ ⋅ ≈
 

That is, the minimum number of photons that this bird can detect in one second is about 61 photons. 

36.68. The UV light wavelength is 355 nm.λ =  The work function of calcium is 2.9 eV.φ =  The stopping 
potential is found from 0eV .hf φ= −  The stopping potential in this case is  

( ) ( )( )
( )( ) ( )
( )

0

15 8 7
0

0

/ / /

4.13567 10  eV s 2.998 10  m/s / 3.55 10  m 2.9 eV /

3.493 eV 2.9 eV / 0.593 V 0.59 V.

V hf e hc e

V e

V e

φ λ φ

− −

= − = −

 = ⋅ ⋅ ⋅ − 
= − = ≈

 

36.69. The electron is accelerated from rest through a potential difference of 51.00 10  V.V −= ⋅  From energy 
conservation, ( ) 2

e f  1/ 2 .U K e V m v∆ = −∆ ⇒ ∆ =  The electron’s final velocity is then  

( ) ( )( ) ( ) 1/21/2 19 5 31
f e2 / 2 1.60 10  C 1.00 10  V / 9.109 10  kg 1874.30 m/s.v e V m − − − = ∆ = ⋅ ⋅ ⋅ =   
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From the de Broglie wavelength formula, the wavelength of the electron is  

( )
( ) ( )( )34 31

7

/ /

6.626 10  J s / 9.109 10  kg 1874.30 m/s

3.88098 10  m 388 nm.

h p h mvλ

λ

λ

− −

−

= =

 = ⋅ ⋅ 
= ⋅ ≈

 

36.70. THINK: Compton used photons of wavelength 0.0711 nm.λ =  The formula for Compton scattering can 

be used to find (a) the wavelength eλ ′  of the photons scattered at o180.θ =  from an electron, (b) the 

energy of these photons, and (c) the wavelength pλ ′  of the photons scattered at o180.θ =  from a proton.     

SKETCH:  

 
 

RESEARCH:  For an electron, the formula for Compton scattering is  

( )e
e

1 cos .h
m c

λ λ θ′ = + −  

The energy of a photon is / .E hc λ=  If the target were a proton and not an electron, the electron mass em  
in the Compton scattering formula would need to be replaced with the mass of a proton, p .m    

SIMPLIFY:  

(b) 
e

hcE
λ

′ =
′

  

(c) ( )p
p

1 cosh
m c

λ λ θ′ = + −   

CALCULATE:  

(a) ( )
( ) ( )( )
( )( )

34 o

e 31 8

6.626 10  J s 1 cos 180.
0.0711 nm

9.109 10  kg 2.998 10  m/s

0.0711 nm 0.00485 nm
0.07595 nm

λ
−

−

⋅ −
′ = +

⋅ ⋅

= +
=

 

(b) 
( )( )

( )
34 8

15
9

6.626 10  J s 2.998 10  m/s
2.6155 10  J

0.07595 10 m
E

−
−

−

⋅ ⋅
′ = = ⋅

⋅
  

(c) For a proton target,  

( )
( ) ( )( )
( )( )

34

p 27 8

6

6.626 10  J s 1 cos 180.
0.0711 nm

1.673 10  kg 2.998 10  m/s

0.0711 nm 2.64 10  nm
0.07110264 nm.

λ
−

−

−

⋅ − °
′ = +

⋅ ⋅

= + ⋅
=
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ROUND:  

(a) To four decimal places, e 0.0760 nm.λ ′ =

 

(b) To three significant figures, 152.62 10  J.E −′ = ⋅   

(c) To four decimal places, p 0.0711 nm.λ ′ =   Therefore, the wavelength of the photon will be smaller if the 
target electron is replaced by a proton.  
DOUBLE-CHECK: Since some of the initial photon’s energy is imparted on the electron upon scattering, 
it is expected that the wavelength of the photon will increase.  Since a proton is about 1000 times more 
massive than an electron, it is expected that the wavelength of the photon will change very little (in this 
case, by a negligible amount).  

36.71. THINK: To estimate the number of photons that impact the Earth, it is useful to know that the intensity of 
the Sun’s radiation on the Earth is 21370 W/m .I =  Use the peak wavelength of the light emitted by the 
Sun, 500. nm,λ =  as stated in section 36.2. Note that the Earth’s upper atmosphere, the ionosphere, is 

300. kmd =  above the Earth’s surface. The radius of the Earth is 6378 km.R =  Finally, keep in mind that 
only half of the Earth’s surface can face the Sun at any given time. Note that one year has approximately 

( )( )( )1 year 365.24 days/yr 24 hr/day 3600 s/hr 31,556,736 s.t = =  

SKETCH:  

 

RESEARCH: The energy of a photon is ph / .E hf hc λ= =  The photon flux rate Φ  (the number of 

photons per unit area per unit time) is found from ph/ .I EΦ =  The number of photons N  that strike the 

Earth’s upper atmosphere per year is atm
year .

2
A

N t= Φ ⋅ ⋅  The area that the Earth presents to the flux of 

photons from the Sun is 2 .A rπ=  

SIMPLIFY:  
ph

I I
E hc

λ
Φ = = , ( )( ) ( )2

2 year
atm year year

1 1 .
2 2 2

I R d tIN A t R d t
hc hc

π λλ π
+ = Φ ⋅ = + = 

 
  

CALCULATE: 
( )( )( ) ( )( )

( )( )

22 7 6
42

34 8

1370 W/m 5.00 10  m 6.678 10  m 1 yr 31556736 s/yr
7.618 10 .

2 6.626 10  J s 3.00 10  m/s
N

π −

−

⋅ ⋅
= = ⋅

⋅ ⋅
  

ROUND: To three significant figures, the number of photons received by Earth’s upper atmosphere in one 

year is 427.62 10 .N = ⋅  
DOUBLE-CHECK: This is a huge number, but is expected for the number of photons from the Sun to hit 
the Earth in one full year. Dimensional analysis confirms that the calculation yields a dimensionless result. 

36.72. THINK: The energy of the backscatter peak corresponds to the energy of the gamma-ray after Compton 
scattering at an angle of o180. .θ =  The Compton edge energy is the energy cut off or the maximum energy 
that can be transferred to an electron. The Compton scattering formula can be used to determine the 
energies of the Compton edge and the back scatter peak for a gamma-ray photon of energy 511 keV.E =  
The mass of an electron is = 2

e 511 keV/ .m c  
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SKETCH:  

 
RESEARCH: The Compton scattering formula is given by  

( )1 cos
.

h
mc

θ
λ λ

−
′ = +  

Using ,hc
E

λ =  it becomes 
( )1 coshhc hc

E E mc
θ−

= +
′

 or 
( )

2

1 cos1 1 .
E E mc

θ−
= +
′

   

SIMPLIFY: For the backscatter peak energy, substituting o180θ =  yields  

= + ⇒ =
+

2
e

bs2 2
bs e e

1 1 2 .
2

Em c
E

E E m c E m c
 

The maximum energy transferred to an electron occurs when the scattered photon energy is a minimum, 
which occurs when o180. ,θ =  or when bs .E E′ =    

′= − = − = − ⇒ =
+ +

2 2
e

edge bs edge2 2
e e

2  .
2 2

Em c EE E E E E E E
E m c E m c

 

CALCULATE:  
( )( )
( ) ( )

2 2

bs 2 2

511 keV 511 keV/
170.333 keV

2 511 keV 511 keV/

c c
E

c c
= =

+
 

( )
( ) ( )

2

edge 2 2

2 511 keV
340.667 keV

2 511 keV 511 keV/
E

c c
= =

+
 

ROUND:  Rounding to three significant figures, =bs 170. keVE  and edge 341 keV.E =  

DOUBLE-CHECK: Since the energy of the incident gamma-ray is the same as the rest energy of an 
electron, it is reasonable that the energy of the Compton edge is exactly twice the energy of the backscatter 
peak. 
 

Multi-Version Exercises 

36.73. THINK: An X-ray has an initial wavelength of 6.37 nm.λ =   Its wavelength is increased by 
1.13 pmλ∆ = in a collision with an electron.  Some of the energy of the photon will be imparted to the 

electron, giving it a velocity. To solve this problem, the conservation of energy is used.  It is assumed that 
the electron is initially at rest.  
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SKETCH:  

 
RESEARCH: Since energy is conserved in this scattering event, the kinetic energy that the electron 
receives is simply equal to the photon’s energy loss:  

′= −e .K E E  
Before the collision, the energy of the photon is / .E hc λ=  After the collision, the energy of the X-ray is  

.hc hcE
λ λ λ

′ = =
′ + ∆

 

SIMPLIFY:   The kinetic energy of the electron after the collision is: 

( )

( )

λ λ λ λ
λ λ λ λ λ λ λ λ λ

λ
λ λ λ

 + ∆ − ∆
= − = = =  + ∆ + ∆ + ∆ 

∆
=

+ ∆

2
e 2 2

2
e

1
2

2

e
hc hc hcK hc m v

hcv
m

 

CALCULATE:  
( )( )( )

( ) ( ) ( )( )

34 8 12

231 9 9 12

2 6.626 10  J s 2.998 10  m/s 1.13 10  m
110,200 m/s

9.109 10  kg 6.37 10  m 6.37 10  m 1.13 10  m
v

− −

− − − −

⋅ ⋅ ⋅
= =

 ⋅ ⋅ + ⋅ ⋅  

 

ROUND: Rounding the result to two significant figures gives 110.2 km/s.v =  
DOUBLE-CHECK: Momentum must also be conserved: e .p p p′= +  The initial momentum of the 
photon is / .p h λ=   Since the x-direction is chosen to be the initial direction of the photon,  

xp p=  and 0.yp =  

The final direction of the photon is given by the Compton scattering formula, 

[ ] 1 oe

e
1 cos   cos 1 57.70 .

m ch
m c h

λ
λ λ θ θ − ∆ ′ = + − ⇒ = − = 

 
 

The components of the final momentum of the photon are  

cos cosx
h hp θ θ
λ λ λ

′ = =
′ + ∆

 and sin sin .y
h hp θ θ
λ λ λ

′ = =
′ + ∆

 

The difference between the final and initial momentum of the photon must be equal to the final 
momentum of the electron. 

 

( )

( )

34 34
o 26

e, 9 9

34
o 26

e, 9

e e,

6.626 10  J s 6.626 10  J scos cos 57.70 4.8452 10  kg m/s
6.37 10  m 6.37113 10  m
6.626 10  J s0 sin sin 57.70 8.7912 10  kg m/s

6.37113 10  m

x x x

y y y

h hp p p

hp p p

p p

θ
λ λ λ

θ
λ λ

− −
−

− −

−
−

−

⋅ ⋅′= − = − = − = ⋅
+ ∆ ⋅ ⋅

⋅′= − = − = − = − ⋅
+ ∆ ⋅

= ( ) ( ) ( ) ( )2 222 26 26 25
e, 4.8452 10  J s/m 8.7912 10  J s/m 1.0038 10  kg m/sx yp − − −+ = ⋅ + − ⋅ = ⋅

 

The momentum of the electron from the original calculation is 
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( )( )31 25
e e 9.109 10  kg 110,200 m/s 1.0038 10  kg m/s.p m v − −= = ⋅ = ⋅  

Since the calculated momentum using two methods is the same, the speed of the electron found is correct.  

36.74. 21
2E K mv∆ = =  

( )( ) ( )22 312 / 2 28.52 meV 1.602 10  J/meV / 9.109 10  kg 100.2 km/sv E m − −⇒ = ∆ = ⋅ ⋅ =  

36.75. ( )( ) ( )22 31 221 1
2 2 9.109 10  kg 92170 m/s / 1.602 10  J/meV 24.15 meVE K mv − −∆ = = = ⋅ ⋅ =   

36.76. 21
i f2

i i

hc hcK mv E E
λ λ λ

= = − = −
+ ∆

 

( )( )
( )( ) ( )( )

21
2

34 8
9

34 8
231

9

6.626 10  J s 2.998 10  m/s
5.43 10  m

6.626 10  J s 2.998 10  m/s 1 9.109 10  kg 132700 m/s
5.43 10  m 2

1.19 pm

i

i

hc
hc mv

λ λ

λ
−

−
−

−
−

⇒ ∆ = −
−

⋅ ⋅
= − ⋅

⋅ ⋅
− ⋅

⋅
=

 

36.77. 2 2 121 1
i f i f2 2( ) / 9.65 10  HzK mv E E h f f f mv h= = − = − ⇒ ∆ = − = − ⋅   

36.78. 
2

2 2 2 4 2 4;    h hcp E p c m c m c
λ λ

 = = + = + 
 

 

( )( )
( )

2
21 8

2

15

4.136 10  MeV s 2.998 10  m/s
938.272 MeV 998.5 MeV

3.63 10  m

−

−

 ⋅ ⋅
 = + =

⋅  
 

36.79. 2 2 2 4;    hp E p c m c
λ

= = +  

( )( )
( ) ( )

2
2 2 4 2

2
21 8

2

15

4.136 10  MeV s 2.998 10  m/s
938.272 MeV 938.272 MeV 40.9 MeV

4.43 10  m

hcK E mc m c mc
λ

−

−

 = − = + − 
 

 ⋅ ⋅
  + − =

⋅  

 

36.80. 
34

19
15

6.626 10  J s 3.8749 10  kg m/s
1.71 10  m

hp
λ

−
−

−

⋅
= = = ⋅

⋅
 

( ) ( ) ( ) ( )
( )( )

2 2 2 419 8 27 8 10

219 82
5

10

 3.8749 10  kg m/s 2.9979 10  m/s 1.6726 10  kg 2.9979 10  m/s 1.8998 10  J

3.8749 10  kg m/s 2.9979 10  m/s
1.833 10  km/s

1.8998 10  J

E

pc
v

E

− − −

−

−

= ⋅ ⋅ + ⋅ ⋅ = ⋅

⋅ ⋅
= = = ⋅

⋅
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Chapter 37:  Quantum Mechanics 
 

Concept Checks 

37.1.  e  37.2. b  37.3. d  37.4. b 
 
Multiple-Choice Questions 

37.1. c   37.2. b   37.3. d   37.4. b   37.5. b   37.6. e   37.7. d   37.8. a, e   37.9. a   37.10. a    

 
Conceptual Questions 

37.11. The answer can be true or false depending on the system.  Let us consider the case of a particle in an 

infinite potential well.  The wave function for this potential is given by ( ) 2 sinn
n xx

a a
πψ  =  

 
 where a  is 

the width of the infinite potential well.  The kinetic energy is given by 
2 2 2

2
.

2n
nE

ma
π

=
  It can be seen that if 

the amplitude of ,nψ  2 / ,a is larger, a must be smaller.  As a consequence, the kinetic energy is larger as 
long as n is the same.  Therefore, the statement is true.  However, if n is not the same, the kinetic energy 
cannot be compared from the amplitude of wave functions.   

37.12. Since the wave functions of a particle in an square infinite potential well have symmetric property for odd 
n and an antisymmetric property for an even n, where n is the quantum number.  Therefore, the 
probability of the particle is symmetric about / 2.c L=  This means that the probability of finding the 
particle in the interval between 0  and / 2L  is the same as for the interval between / 2L  and .L  This does 
not depend on the energy of the particle.  Therefore, the probability of finding the particle between 0  and 

/ 2L stays the same regardless the value of the energy of the particle. 

37.13. The wave function for a particle in an infinite square well is given by n
2 sin ,n x
L L

πψ  =  
 

 where L  is the 

width of the potential well.  The probability of finding the particle is ( ) π ∏ =  
 

22 sin .n xx
L L

 As n  

increases, the probability density fluctuates around an average probability density given by 

( ) π ∏ =  
 

22 sin .n xx
L L

 Since 2 1sin ,
2

n x
L
π  = 

 
 it becomes ( )∏ =

1 .x
L

 This is exactly the classical 

probability distribution.  Therefore, it does obey the correspondence principle. 

37.14. It is known that the wave functions for a particle in a one dimensional harmonic oscillator are symmetric 
for even-n states.  It can be shown that the first derivative of the wave functions with respect to the spatial 
variable is antisymmetric for even-n states. Since the expectation value of the momentum is defined as 

 ( )  ( ) ( ) ( )* *
n nn n

dP x P x dx i x x dx
dx

ψ ψ ψ ψ
∞ ∞

−∞ −∞
= = −∫ ∫   and ( )*

n
xψ  is symmetric and nd

dx
ψ

 is 

antisymmetric.  Therefore, the above integral is zero, and thus   0.P =  

37.15. The expectation value of the position is defined as 2 .x xdxψ= ∫  Since x  is an odd function 

(antisymmetric), the integral becomes zero where 2ψ  is symmetric (or even function).  The probability 

( ) ψ∏ = 2x  is symmetric when the wave function is a symmetric function or an antisymmetric function.  
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For an antisymmetric wave function, the probability at 0x =  is zero.  Therefore, 0x =  and ( )∏ =0 0  for 
an antisymmetric or odd wave function.  As an example, the first excited state of a particle in a harmonic 
oscillator.  

37.16. The two lowest energies for an electron in an infinite potential wall are 

( )
( )( )

234 22 2
22

1 2 231 9

1.0546 10  J s
1.506 10  J 0.00094 eV

2 2 9.109 10  kg 20 10  m
E

ma

ππ
−

−

− −

⋅
= = = ⋅ ≈

⋅ ⋅

  and 2
2 12 0.0038 eV.E E= =  

 
 

Since 0v  is much larger than 1E  or 2 ,E  the two lowest energies for the particle in a finite well is 
approximately the same as 1E  and 2E  for the infinite well.  However, since the electron in the finite well 
can penetrate into the classically forbidden region, the effective wavelength for the finite well is larger than 

the wavelength for the infinite well.  Since energy is proportional to κ 2  or 21/ ,λ  the energy of the particle 
in the finite well is lower than the energy of the particle in the infinite well. 

37.17.  

 
 

The Coulomb potential energy of the central nucleus due to only two adjacent nuclei is 

( ) 2 2

0

1 1 1 .
4

U x z e
a x a xπε
 = + − + 

 For small oscillation about an equilibrium point ( )0 ,x =  the potential 

energy can be approximated by a simply harmonic oscillator potential.  Expanding the potential energy in 
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Taylor series about 0x =  and keeping only up to the term 2x  yield 

( ) ( ) ( ) ( ) ( )≈ + + 20 ' 0 1/ 2 " 0 ,U x U U x U x  where 

( )
2 2

0

10 ,
2

z eU
aπε

 
=  
 

( )' 0 0U =  and 

( )
( ) ( )πε πε

=

 
 = − + =
 − + 

2 2
2 2

3 3 3
0 0

0

1 1 1" 0 .
2

x

z eU z e
aa x a x

 

Thus ( ) ( ) ( ) ( ) ( )− = = −2 20 1/ 2 " 0 1/ 2U x U U x kx  with 
2 2

3
0

.z ek
aπε

=  The energy ( )0U  is just a shift in 

energy and it can be neglected.  The energy states of this harmonic oscillator is  

( ) ( )
( ) ( )( )π

−
−

− − −

−

⋅ = + ⋅ 
  ⋅ ⋅ ⋅

 = ⋅ + 
 

22 19
34

327 12 2 2 15

14

6 1.6 10  C1 1.054 10  J s
2 12 1.66 10  kg 8.85 10  C / (N m ) 20 10  m

14.8 10  J .
2

nE n

n

 

The maximum energy allowed is given by ( )23 4 19
max B

3 3 1.38 10  J/K 10  K 2 10  J.
2 2

E k T − −= = ⋅ ⋅ = ⋅  Therefore, 

the central nucleus is in its ground state 0.n =  

37.18. The wave functions for a finite square well is in the form of 

( ) ( )
( ) ( )

0

0

exp exp    if  
sin cos            if  

A x B x E U
C kx D kx E U

α α
ψ

 − + + <= 
+ >

 

where  
( )0

2

2m E U
k

−
=



and 
( )0

2

2
.

m U E
α

−
=



 If 0 ,U U=  both solutions are equal,  a constant.ψ =  

This corresponds to a wavelength .λ = ∞  This is impossible. 

37.19. Since the potential ( )U x = ∞  for ≤ 0,x the condition for the solution is ( )0 0.xψ = =  For ≤ 0,x the 

solution is known to be ( ) 0.xψ =  For 0,x > the wave function must satisfy a harmonic oscillation 
potential.  Therefore, the solution of the potential should be the wave functions of the harmonic oscillator 
with the requirement ( )0 0.xψ = =  This requirement is satisfied by all wave functions with odd .n  Thus 

the energies of the states are ( )( ) 01/ 2nE n w= +   where n is an odd number. 

37.20. The probability density is given by ( ) ( )* .P x xψ ψ=  The new probability is 

( ) ( ) ( ) ( ) ( ) ( )φ φψ ψ ψ ψ ψ ψ− += = = =new new new* * * .i iP x x x e e x x x P  The probability is the same.  An 
additional phase does not change the probability. 

37.21. The ground state is approximated by approximating the potential of a harmonic oscillator potential about 

the equilibrium position.  The equilibrium position of the potential in Taylor series up to 2x  yields 

( ) ( ) ( ) ( ) ( ) 20 ' 0 1/ 2 " 0 ,U x U U x U x≈ + +  where ( ) = 00 ,U U  

( )' 0 0U = and ( ) 0 0
2 2

" 0 cos .
U UxU h

aa a
 = = 
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Since ( ) 2
0" 0 / ,k U U a= =  ω =0 /k m and the ground state energy for the harmonic oscillator is 

( ) ω= osc 01/ 2 ,E  the ground state energy of the particle in ( )U x  is therefore, 

( )
1
20

osc 0 2
10 .
2

U
E U E U

ma
  = + = +   

   
  

37.22. The operator for energy is ( )/i t∂ ∂  and the operator for momentum is .i− ∇  Replacing the energy and 

the momentum in the relativistic energy-momentum relation, − =2 2 2 2 4E p c m c  yields  

( ) ( ) ( ) ( )

( ) ( )

( )

ψ ψ

ψ ψ

ψ

 ∂
− − ∇ = 

∂  
 − ∂

+∇ = 
∂  

 ∂
∇ − − = 

∂  

 





2
2 2 2 2 2 4

2

2
2 2 2 2 4

2 2

2 2 2
2

2 2 2

1

1 0.

i i c r m c r
t

c r m c r
c t

m c r
c t

 

This is known as the Klein-Gordon equation. 
 

Exercises 

37.23. The kinetic energy of a neutron is 1210.0 MeV 1.60 10  J.−= ⋅  The size of an object that is necessary to 
observe diffraction effects is on the order of the de Broglie wavelength of the neutron.  The (relativistic) de 
Broglie wavelength is given by 

2 2
.

2

h hc
p K Kmc

λ = =
+

 

( )( )
( ) ( )( )( )

34 8
15

2 212 12 27 8

6.63 10  J s 3.00 10  m/s
9.0454 10  m = 9.05 fm.

1.60 10  J 2 1.60 10  J 1.67 10  kg 3.00 10  m/s
λ

−
−

− − −

⋅ ⋅
= = ⋅

⋅ + ⋅ ⋅ ⋅
 

Since protons and neutrons have a diameter of about 1.00 fm, they would be useful targets to demonstrate 
the wave nature of 10.0-MeV neutrons. 

37.24. Given ( ) ( ) ( )8 3 7 2 (8 7 ) (3 2 ) ,f x i i x x x i= + + − = + + −   

( ) ( ) ( )

( )

2 *

2 2 2

22 2

2 2

2 2

2

(8 7 ) (3 2 ) (8 7 ) (3 2 )

(8 7 ) (8 7 )(3 2 ) (8 7 )(3 2 ) (3 2 )

(8 7 ) (3 2 ) 1

(8 7 ) (3 2 )

64 112 49 9 12 4

53 100 73.

f x f x f x x x i x x i

x x x i x x i x i

x x

x x

x x x x

x x

= = + − − + + −    
= + + + − − + − − −

= + − − −

= + + −

= + + + − +

= + +

  

37.25. The energies of an electron in a box are given by 
2 2

2
2

.
2nE n

ma
π

=
  The two lowest energies are: 

( )
( )( )

( )
π−

−

− −

⋅
= = ⋅ =

⋅ ⋅

234 2
2 20

1 231 9

1.055 10 J s
1 1.5 10  J 0.094 eV

2 9.11 10 kg 2.0 10  m
E  and  

( )2 20
2 12 6.0 10  J 0.38 eV.E E −= = ⋅ =  
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37.26. The energies of a proton in a box are given by 
2 2

2
2

.
2nE n

ma
π

=
  The three lowest energies are 

( )
( )( )

π−
−

− −

⋅
= = ⋅ =

⋅ ⋅

234 2
21

1 227 10

1.055 10 J s
3.3 10  J 0.021 eV,

2 1.67 10 kg 1.0 10  m
E  ( )2 20

2 12 1.3 10  J 0.082 eVE E −= = ⋅ =  and  

( )2 20
3 13 3.0 10  J 0.18 eV.E E −= = ⋅ =  

37.27. The energies for a particle in an infinite square well are 
2 2

2
22nE n

mL
π

=
  for a square well of length L  and 

( )

2 2
2

22 2
nE n

m L

π
=

  for a square well of length 2 .L  Therefore, 
( )
( )

( ) ( )
( ) ( )

2 2 2 2 2
2 1

2 2 2 2 2
2 1

2 1 / 2
4.

2 2 1 / 8

mLE E L
E E L mL

π

π

−−
= =

− −





 

37.28. THINK:  The second excited state is the state with 3.n =   
 SKETCH:   

 

RESEARCH:  The energy state of an electron in a one-dimensional infinite well is given by 
2 2

2
2

.
2nE n

ma
π

=
  

The wavelength of light emitted by the transition from the second excited state to the ground state is found 

by .hcE
λ

∆ =  

SIMPLIFY:   
(a) The energy difference between the second excited state and the ground state is: 

( )
2 2 2 2

2 2
3 1 2 2

3 1 8 .
2

E E E
ma ma
π π

∆ = − = − =
   

(b)  The wavelength is .hc
E

λ =
∆

 

CALCULATE:   

(a)  
( )

( )( )

234 2
19

231 9

1.055 10  J s
8 4.823 10  J 3.0 eV

2 9.11 10 kg 1.0 10  m
E

π−
−

− −

⋅
∆ = = ⋅ =

⋅ ⋅
 



Chapter 37: Quantum Mechanics 

 1387 

(b)  
( )( )

( )
34 8

7
19

6.63 10  J s 3.00 10  m/s
4.12 10 m

4.823 10  J
λ

−
−

−

⋅ ⋅
= = ⋅

⋅
 

ROUND:  Round to two significant figures.  
(a) The energy difference between the second excited state and the ground state is 3.0 eV.E∆ =   
(b) The wavelength of light emitted is 410 nm.λ =  
DOUBLE-CHECK:  The wavelength of falls in the visible part of the electromagnetic spectrum.  The 
energy and wavelength are reasonable results. 

37.29. THINK:  In order to get the solution of the Schrödinger equation for a given potential, the continuity 
conditions need to be satisfied. 
SKETCH:   

 
 

RESEARCH:  In regions I and III the potential energy is infinite, so the wave function is ( ) 0xψ =  for 
these regions.  In region II, the potential energy is zero.  Therefore, the potential energy is given by: 

  for / 2
( ) 0  for / 2 / 2

  for / 2

x a
U x a x a

x a

∞ < −
= − ≤ ≤
∞ >

 

The wave function must satisfy the Schrödinger equation, 

 
( ) ( )

22

2
.

2
d x

E x
m dx

ψ
ψ− =

  

The solution of this equation has the form of ( ) ( ) ( )sin cos ,x A x B xψ κ κ= +  where 22 /mEκ =   for an 
infinite square well.  Since the wave function must be continuous at the boundaries, the wave function 
must satisfy ( ) ( )/ 2 / 2 0.a aψ ψ= − =   
SIMPLIFY:  Continuity at the boundaries gives: 

( ) ( ) ( )/ 2 sin / 2 cos / 2 0a A a B aψ κ κ= + =                                                       (1) 

( ) ( )( ) ( )( ) ( ) ( )/ 2 sin / 2 cos / 2 0 sin / 2 cos / 2 0a A a B a A a B aψ κ κ κ κ− = − + − = ⇒ − + =            (2) 

Subtracting (1) with (2) yields ( )2 sin / 2 0.A aκ =  This implies that / 2 / 2 / ,a n n aκ π κ π= ⇒ =  with n 

even. Adding equations (1) and (2) yields ( )2 cos / 2 0.B aκ =  This implies that 
/ 2 / 2 / ,a n n aκ π κ π= ⇒ =  with n odd.  Therefore, there are two sets of solutions:  

( )
sin ,  with  even

cos ,  with  odd

n xA n
a

x
n xB n

a

π

ψ
π

  
    = 
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The normalization condition can be used to determine the constants A and B.  The result is the same as 

that shown in the text: 2 / .A B a= =   Therefore, the solution to the Schrödinger equation for this 
potential is:  

( )

        0                      for / 2 and / 2

2 sin          for / 2 / 2 with even 

2 cos          for / 2 / 2 with odd 

x a x a

n xx a x a n
a a

n x a x a n
a a


 < − >
  = − ≤ ≤  

 
   − ≤ ≤    

πψ

π

 

CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK:  The above solutions can be found from the solutions for the infinite square well with 
interval ( )0,a  by replacing the variable x  with / 2.x a+  Doing so yields: 

( ) 2/ 2 sin .
2

n ax a x
a a

πψ
  + = +  

  
 

Using the trigonometric identity ( )sin sin cos cos sin ,α β α β α β+ = +  the above equation becomes: 

( ) 2/ 2 sin cos cos sin .
2 2

n x n n x nx a
a a a

π π π πψ
        + = +        

        
 

Here if n is odd then ( ) ( )cos / 2 0, sin / 2 1n nπ π= = ±  and if n is even then ( ) ( )sin / 2 0, cos / 2 1.n nπ π= = ±   
Therefore, the wave function is given by:    

( ) 0 for / 2 or / 2

2 sin  for / 2 / 2 with even 

2 cos  for / 2 / 2 with odd 

x x a x a

n x a x a n
a a

n x a x a n
a a

ψ

π

π

= < − >


 ± − ≤ ≤    


 ± − ≤ ≤   

 

This matches the solution above to within a minus sign, which is physically insignificant. 

37.30. THINK:  The three dimensional Schrödinger equation can be used and separation of variables can be 
assumed in order to solve the problem. 
SKETCH: 
 
 
 
       

 
  
 
 
 

RESEARCH:  Separation of variables allows us to write the potential as 1 2 3( , , ) ( ) ( ) ( )U x y z U x U y U z= ⋅ ⋅  
with: 

1 2 3

  for 0   for 0   for 0
( ) 0  for 0 ,   ( ) 0  for 0 ,   ( ) 0  for 0

  for   for   for 
x y z

x zy

x y z
U x x L U y y L U z z L

x L z Ly L

 ∞ < ∞ < ∞ <
 = ≤ ≤ = ≤ ≤ = ≤ ≤  

  ∞ > ∞ >∞ > 

 

 The three dimensional Schrödinger equation is given by  
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( ) ( ) ( ) ( )
2 2 2 2

2 2 2
, , , , , , , , .

2
x y z U x y z x y z E x y z

m x y z
ψ ψ ψ

 − ∂ ∂ ∂
+ + + =  ∂ ∂ ∂ 

  

SIMPLIFY:  The wave function is also a product of three separable functions, 

1 2 3( , , ) ( ) ( ) ( )x y z x y zψ ψ ψ ψ= ⋅ ⋅  with: 

( )1

0 for 0

2 sin with 1,2,3... for 0

0 for 

x
x x

x x

x

x

n x
x n x L

L L
x L

π
ψ

<


 = = ≤ ≤  
 

 >

 

( )2

0 for 0

2 sin with 1,2,3... for 0

0 for 

y
y y

y y

y

y

n y
y n y L

L L

y L

π
ψ

 <


 = = ≤ ≤     
 >

 

( )3

0 for 0

2 sin with 1,2,3... for 0

0 for 

z
z z

z z

z

z

n z
z n z L

L L
z L

π
ψ

<


 = = ≤ ≤  
 

 >

 

(a)  Therefore, the solution of the wave function of an electron in a potential rectangle is:  

( ) 1 2 3
8,  ,  ( ) ( ) ( ) sin sin sin .yx z

x y z x y z

n yn x n z
x y z x y z

L L L L L L

ππ π
ψ ψ ψ ψ

    
= ⋅ ⋅ =          

 

In the same fashion that the allowed energies were derived in the text for the one-dimensional infinite 
potential well, the allowed energies are:  

π π π
= + +
  

2 2 2 2 2 2
2 2 2

, , 2 2 2
.

2 2 2x y zn n n x y z
x y z

E n n n
mL mL mL

 

(b)  The lowest energy for a potential cube with side L occurs when 1,x y zn n n= = =  and is given by: 
2 2

1,1,1 2
3 .
2

E
mL
π

=
  

CALCULATE:   
(b) For a potential cube with side 101.00 10 m,−⋅  the lowest allowed energy for the electron is:   

( )
( )( )

π−
−

− −

⋅
= = ⋅ =

⋅ ⋅

234 2
17

1,1,1 231 10

3 1.055 10  J s
1.81 10  J 113.0 eV.

2 9.11 10  kg 1.00 10  m
E  

ROUND:   
(b) To 3 significant figures, the lowest energy is 1,1,1 113 eV.E =  
DOUBLE-CHECK:  This is a reasonable amount of energy for an electron to have in such a small volume. 

37.31. The potential energy for the well is given by:  

1

  for 0
( ) 0  for 0

  for 

x
U x x a

U x a

∞ <
= ≤ ≤
 >
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 This is illustrated in the diagram: 

 
 

Since the question states that the electron is confined to the potential well, 1.E U<  As shown in the text, 
the wave function for this finite potential well can be written as: 

( ) ( )
0 for 0

sin for 0

 for x

x
x A x x a

Be x aγ

ψ κ
−

 <
= ≤ ≤
 >

 

Where 
2

2mEκ =


and 
( )1

2

2
.

m U E
γ

−
=



 The wave function ( )xψ  must satisfy the boundary conditions 

at :x a=   

( ) ( )
( ) ( )
1    sin

2   cos .

a

a

A a Be

A a Be

γ

γ

κ

κ κ γ

−

−

=

= −
 

Dividing (1) and (2) yields 
( )tan 1aκ
κ γ

= −  or ( )tan .a κκ
γ

= −  Since κ  and γ  are positive, ( )tan aκ  must 

be negative.  This is satisfied when  

( )2 1 , 1,2,3...
2

n a n nπ κ π− < < =  

For the third state ( )3 :n =   
2 2 2

2 2 2 2
2

5 25 25 23 9   9 .
2 4 4

mEaa aπ π πκ π κ π π< < ⇒ < < ⇒ < <


 

Therefore,  
2 2 2 2

3 1 3 12 2
25 259   9 ,
4 42 2

E E E E
ma ma
π π

< < ⇒ < <
   

where 1E is the ground state energy for the infinite square well:  

( )
( )( )

π−
−

− −

⋅
= = ⋅ =

⋅ ⋅

234 2
20

1 231 9

1.055 10  J s
6.03 10  J 0.376 eV.

2 9.11 10  kg 1.0 10  m
E  

Therefore,  

( ) ( )3
25 0.376 eV 9 0.376 eV
4

E< < ⇒ 32.4 eV 3.4 eV.E< <  

Since 1 32.0 eV ,U E= <  the third state is not a bound state. 
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37.32. The tunneling probability or transmission coefficient is given by:  

( )12 ( )
2

2
where .b a m U E

T e γ γ− − −
= =



 

( )( )( )
( )

27 13
14 1

234

2 1.67 10  kg 29.8 MeV 18.0 MeV 1.602 10  J/MeV
7.53 10  m

1.055 10  J s
γ

− −
−

−

⋅ − ⋅
= = ⋅

⋅
 

The tunneling probability is ( )( )− −− ⋅ ⋅
= =

14 1 152 7.53 10  m 1.00 10  m
0.222.T e  Therefore, there is a 22.2% chance that 

the proton will tunnel through the barrier. 

37.33. THINK:  The equation for the transmission coefficient can be used to calculate the tunneling probability.  
The factor that the neutron’s probability of tunneling through the barrier increases by can be found by 
taking a ratio of the tunneling probabilities.  The potential barrier is − = 8.40 fmb a  wide and 

1 36.2 MeVU =  high.  Originally, the neutron has a kinetic energy of 1 22.4 MeVE =  and this is increased 

to 2 11.15 .E E=    
SKETCH:   

 
 

RESEARCH:  The tunneling probability for a square barrier is given by 

( )12 ( )
2

2
where .b a m U E

T e γ γ− − −
= =



 

SIMPLIFY:  The ratio of the two tunneling probabilities for the two energies 2E  and 1E is  

( )2
2 1

1

2 ( )
2 ( )2

2 ( )
1

.
b a

b a
b a

T e e
T e

γ
γ γ

γ

− −
− − −

− −
= =  

CALCULATE:  Since 2 11.15 :E E=  

( ) ( )( )( )( )
( )

( )( )( )
( )

27 13

2 1 234

27 13

234

14 1

2 1.67 10  kg 36.2 MeV 1.15 22.4 MeV 1.6 10  J/MeV

1.055 10  J s

2 1.67 10  kg 36.2 MeV 22.4 MeV 1.6 10  J/MeV
          

1.055 10  J s

1.060 10  m .

γ γ
− −

−

− −

−

−

⋅ − ⋅
− =

⋅ ⋅

⋅ − ⋅
−

⋅ ⋅

= − ⋅

 

Therefore, ratio is ( )( )14 1 152 1.060 10  m 8.4 10 m2

1
5.935.

T
e

T

− −− − ⋅ ⋅
= =  
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ROUND:  To two significant figures, the neutron’s probability of tunneling through the barrier increases 
by 5.9 times. 
DOUBLE-CHECK:  Due to the exponential equation it is reasonable that a small increase in energy leads 
to a large increase in the probability of tunneling.  

37.34. THINK:  The rate of tunneling TI  is proportional to the tunneling probability and the rate of incidence 
1000. electrons/s,II =  and the rate of reflection RI  is the rate of incidence minus the rate of tunneling.  

The width and height of the potential barrier are 1.00 nmb a− =  and 1 2.51 eV,U =  respectively. Each 
electron has kinetic energy = 2.50 eV.E   
SKETCH:   

 
 

RESEARCH:  The tunneling probability is given by: 

( )12 ( )
2

2
where .b a m U E

T e γ γ− − −
= =



 

 The reflection probability is given by 2 ( )1 1 .b aR T e γ− −= − = −  The wavelength of the electron is calculated 

using 
2 2

.
2

h hc
p K Kmc

λ = =
+

 

SIMPLIFY:  The rate of tunneling is given by T II I T=  and the rate of reflection is = = −I I T .RI I R I I  

CALCULATE:  
( )( )( )

( )
γ

− −
−

−

⋅ − ⋅
= = ⋅

⋅

31 19
8 1

234

2 9.11 10  kg 2.51 eV 2.50 eV 1.602 10  J/eV
5.121 10  m ,

1.055 10  J s
 

( ) ( )( )− −− ⋅ ⋅
= =

8 1 92 5.12110  m 1.00 10  m
T 1000. electrons/s 359.1 electrons/s,I e  and  

( )= − =R 1000. 359.1  electrons/s 640.9 electrons/s.I  The wavelength of an electron is 

( )( )
( )( )( ) ( )( )( )( )

34 8

2 219 19 31 8

10

6.63 10  J s 3.00 10  m/s

2.50 eV 1.602 10  J/eV 2 2.50 eV 1.602 10  J/eV 9.11 10  kg 3.00 10  m/s

7.761 10  m.

λ
−

− − −

−

⋅ ⋅
=

⋅ + ⋅ ⋅ ⋅

= ⋅

 

The wavelength of an electron before and after passing the barrier is the same because ( ) 0U x =  on either 
side of the barrier. 
ROUND:  To three significant figures, the rate at which electrons pass through the barrier is 

=T 359 electrons/s,I  the rate at which electrons reflect back from the barrier is  =R 641 electrons/s,I  and 
the wavelength of the electrons before and after they pass through the barrier is 0.776 nm.λ =  
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DOUBLE-CHECK:  Since there is such a small difference in energy between the energy of the incident 
electrons and the potential energy of the barrier, it is reasonable that a large portion of the electrons tunnel 
through the barrier. 

37.35. THINK:  Given that the tunneling probability is 0.100,T =  the equation for the transmission coefficient 
can be used to calculate the energy of the electron.  The potential barrier is 2.00 nmb a− =  wide and 

1 7.00 eVU =  high.     
SKETCH:   

 
RESEARCH:  The tunneling probability of the electron is given by: 

( )12 ( )
2

2
where .b a m U E

T e γ γ− − −
= =



 

SIMPLIFY:  Solving for E gives: 

( ) ( )

( )
( )

( )

( )

1
2

2

1
2

2
2

1

2
2

1

2
ln( ) 2

2 ln( )
2

ln( )
2 2

ln( ) .
2 2

m U E
T b a

m U E T
b a

TU E
m b a

TE U
m b a

−
= − −

 −
= −  − 

 
− = −  − 

 
= − −  − 









 

CALCULATE:   

( )( ) ( )
( )

( )
( )

−
− −

− −

 ⋅
 = ⋅ − − = ⋅ =
  ⋅ ⋅ 

2234
19 18

31 9

1.055 10  J s ln 0.100
7.00 eV 1.602 10  J/eV 1.119 10 J 6.987 eV

2 9.11 10  kg 2 2.00 10 m
E  

ROUND:  To three significant figures, the energy of the electron is 6.99 eV.E =  
DOUBLE-CHECK:  The electron energy comes out as less than the potential barrier, as expected. 

37.36. THINK:  The three dimensional Schrödinger equation can be used and separation of variables can be 
assumed in order to solve the problem.  The infinite potential box has dimensions 1.00 nm,xL =  

2.00 nmyL =  and 3.00 nm.zL =  
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SKETCH:   

 
RESEARCH:  Separation of variables allows us to write the potential as 1 2 3( , , ) ( ) ( ) ( )U x y z U x U y U z= ⋅ ⋅  
with: 

1 2 3

  for 0   for 0   for 0
( ) 0  for 0 , ( ) 0  for 0 , ( ) 0  for 0

  for   for   for 
x y z

x zy

x y z
U x x L U y y L U z z L

x L z Ly L

 ∞ < ∞ < ∞ <
 = ≤ ≤ = ≤ ≤ = ≤ ≤  

  ∞ > ∞ >∞ > 

 

 The three dimensional Schrödinger equation is given by  

( ) ( ) ( ) ( )
2 2 2 2

2 2 2
, , , , , , , , .

2
x y z U x y z x y z E x y z

m x y z
ψ ψ ψ

 − ∂ ∂ ∂
+ + + =  ∂ ∂ ∂ 

  

SIMPLIFY: The wave function is also a product of three separable functions, 

1 2 3( , , ) ( ) ( ) ( )x y z x y zψ ψ ψ ψ= ⋅ ⋅  with: 

( )1

0 for 0

2 sin with 1,2,3... for 0

0 for 

x
x x

x x

x

x

n x
x n x L

L L
x L

π
ψ

<


 = = ≤ ≤  
 

 >

 

( )2

0 for 0

2 sin with 1,2,3... for 0

0 for 

y
y y

y y

y

y

n y
y n y L

L L

y L

π
ψ

 <


 = = ≤ ≤     
 >

 

( )3

0 for 0

2 sin with 1,2,3... for 0

0 for 

z
z z

z z

z

z

n z
z n z L

L L
z L

π
ψ

<


 = = ≤ ≤  
 

 >

 

Therefore, the solution of the wave function of an electron in a potential rectangle is:  

( ) 1 2 3
8,  ,  ( ) ( ) ( ) sin sin sin .yx z

x y z x y z

n yn x n z
x y z x y z

L L L L L L

ππ π
ψ ψ ψ ψ

    
= =          

 

In the same fashion that the allowed energies were derived in the text for the one-dimensional infinite 
potential well, the allowed energies are:  

22 22 2

, , 2 2 2
.

2x y z

yx z
n n n

x y z

nn n
E

m L L L
π  

 = + +
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CALCULATE:  By trial and error one finds from the term  
2 22 2 2 2

2 2 2 2 2 2
,

1.00 nm 4.00 nm 9.00 nm
y yx z x z

x y z

n nn n n n
L L L

+ + = + +  

that the six lowest energy levels correspond to:  

( ) ( ) ( ) ( ) ( ) ( ) ( )=, , 1,1,1 ,  1,1,2 ,  1,2,1 ,  1,1,3 ,  1,2,2 ,  1,2,3 .x y zn n n  

The energy is given by: 

( )
( ) ( )

( )

( )

π−

−

−

 ⋅
 = + +
 ⋅  
 
 = ⋅ + +
 
 

 
 = + +
 
 

234 2 22 2 29
, , 2 2 231

22 2
20 2

2 2 2

22 2
2

2 2 2

1.055 10 J s
10

1.00 m 4.00 m 9.00 m2 9.11 10 kg

6.02915 10  J m
1.00 m 4.00 m 9.00 m

0.37635 eV m
1.00 m 4.00 m 9.00 m

x y z

yx z
n n n

yx z

yx z

nn n
E

nn n

nn n

 

The six lowest energy states are given by 

,  ,  x y zn n n  ( ), , eV
x y zn n nE  

(1,1,1) 0.51225 
(1,1,2) 0.63770 
(1,2,1) 0.79452 
(1,1,3) 0.84679 
(1,2,2) 0.91997 
(1,2,3) 1.12905 

Since none of the quantum states have the same energy, none of the levels are degenerate. 
ROUND:  The answers should be rounded to three significant figures:  

,  ,  x y zn n n  ( ), , eV
x y zn n nE  

(1,1,1) 0.512 
(1,1,2) 0.638 
(1,2,1) 0.795 
(1,1,3) 0.847 
(1,2,2) 0.920 
(1,2,3) 1.13 

DOUBLE-CHECK:  These are reasonable energy values for an electron confined to a small infinite 

potential box.  Any other combination of ( ), ,x y zn n n  leads to a larger energy, so these are the six lowest 

energy states.  

37.37. THINK:  The work function is given by 1 .W U E= −  The equation for the transmission coefficient can be 
used to find the work function of the probe given that the width of the barrier is 0.100 nmb a− =  and the 

tunneling probability is 0.100% or 0.00100.T = Use the conversion factor: 181.000 J = 6.242 10 eV.⋅  
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SKETCH:   

 
RESEARCH:  The tunneling probability of the electron is given by: 

( )12 ( )
2

2
where .b a m U E

T e γ γ− − −
= =



 

SIMPLIFY:  Solving for the work function W gives: 

( )

( )

( )

2

2

2

2
2

2ln( ) 2

2 ln( )
2

ln( ) .
2 2

mWT b a

mW T
b a

TW
m b a

= − −

 
= −  − 

 
= −  − 







 

CALCULATE:  
( )
( )

( )
( ) ( )

2234
18

31 9
18

1.055 10  J s ln 0.00100
7.287 10  J 6.242 10  eV/J 45.5 eV

2 9.11 10  kg 2 0.100 10  m
W

−
−

− −

 ⋅
 = − = ⋅ ⋅ =
  ⋅ ⋅ 

 

ROUND:  To 3 significant figures, the work function of the probe of the scanning tunneling microscope is 
45.5 eV.W =  

DOUBLE-CHECK:  The unit of the work function is electron volts, as expected. 

37.38. THINK:  The attractive square well potential is given by the function: 

( )
α

α α
α

 < −
= − − < <
 >

0

0          for 
     for

0          for 

x
U x U x

x
            

The one-dimensional Schrödinger equation and the boundary conditions can be used to determine the 
reflection amplitude, R.  
SKETCH:   
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RESEARCH:  The solution to the Schrödinger equation for each region is given by: 

( )
   for 

 for 

        for 

i x i x

i x i x

i x

e Re x

x Ae Be x

Te x

κ κ

κ κ

κ

α

ψ α α

α

−

′ ′−

 + < −
= + − < <
 >

 

where R  is the amplitude of the reflected wave, T  is the amplitude of the transmitted, and   

( ) ( )
κ κ

+
′= =

 

2 02
2 2

22 ,
m E UmE  

As is suggested in the question, boundary conditions at x α= −  and x α=  are required in order to find an 
expression for .R Boundary conditions require that the wave function and its derivative are continuous at 

:x α= −   
i i i ie Re Ae Beκα κα κ α κ α′ ′− −+ = +                                                                  (1) 

( ) ( )'i i i ii e Re i Ae Beκα κα κ α κ ακ κ ′ ′− −− = −                                                          (2) 

At :x α=    
' 'i i iAe Be Teκ α κ α κα−+ =                                                                        (3) 

( )' i i ii Ae Be i Teκ α κ α κακ κ′ ′−− =                                                                  (4) 

SIMPLIFY:  There are four equations and four unknown coefficients, so an expression for R can be found.   
Equations (3) and (4) can be used to eliminate T:  

i i i i

i i i i

Ae Be Ae Be

Ae Be Ae Be

κ α κ α κ α κ α

κ α κ α κ α κ α

κ κ
κ κ

κ κ κ κ

′ ′ ′ ′− −

′ ′ ′ ′− −

′ ′
+ = −

′ ′+ = −
 

( )
( )

2iA Be κ ακ κ
κ κ

′−
′ +

=
′ −

                                                                        (5) 

Substituting (5) into (1) and solving for B gives: 
( )
( )

3 ,i i i ie Re B e Beκα κα κ α κ ακ κ
κ κ

′ ′− −
′ +

+ = +
′ −

 which implies: 

( )
( )

3

.
i i

i i

e ReB
e e

κα κα

κ α κ ακ κ
κ κ

−

′ ′−

+
=

′ +
+

′ −

                                                                    (6) 

Substituting (5) into (2) and solving for B gives: 
( )
( )

3 ,i i i ie Re B e Beκα κα κ α κ ακ κ
κ κ κ κ

κ κ
′ ′− −

′ +
′ ′− = −

′ −
 which 

implies: 

( )
( )

3

i i

i i

e ReB
e e

κα κα

κ α κ α

κ κ
κ κ

κ κ
κ κ

−

′ ′−

−
=

′ +
′ ′−

′ −

                                                                (7) 

Setting (6) and (7) equal and solving for R gives:
( )
( )

( )
( )

3 3

.
i i i i

i i i i

e Re e Re

e e e e

κα κα κα κα

κ α κ α κ α κ α

κ κ
κ κ κ κ

κ κ
κ κ κ κ

− −

′ ′ ′ ′− −

+ −
=

′ ′+ +
′ ′+ −

′ ′− −

 

( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )

( )
( )

( ) ( )

3 3 3

3...

i i i i i i

i i

e e R e R e e e

R e R e

κ κ α κ κ α κ κ α κ κ α κ κ α κ κ α

κ κ α κ κ α

κ κ κ κ κ κ
κ κ κ κ κ κ

κ κ κ κ κ κ
κ κ

κ κ
κ κ

′ ′ ′ ′ ′ ′− + − − + − + −

′ ′− +

′ ′ ′+ + +
′ ′ ′ ′− + − = + −

′ ′ ′− − −
′ +

− −
′ −
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Gathering like terms and simplifying gives: 

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

3 3

2 23 3

2 23 32 2

i i i i

i i i i

i i i i

R e e e e

R e e e e

R e e e e

κ κ α κ κ α κ κ α κ κ α

κ κ α κ κ α κ κ α κ κ α

κ κ α κ κ α κ κ α κ κ α

κ κ κ κ
κ κ κ κ κ κ κ κ

κ κ κ κ

κ κ κ κ κ κ κ κ

κ κ κ κ κ κ

′ ′ ′ ′− + − − +

′ ′ ′ ′− + − − +

′ ′ ′ ′− + − − +

′ ′ + +
′ ′ ′ ′+ − − = + − − ′ ′− −  

   ′ ′ ′ ′+ − − = + − −  
   ′ ′ ′+ − − = − −  

 

At this point it is convenient to multiply both sides by ( ) .ie κ κ α′−   Doing so and solving for R gives: 

( ) ( ) ( ) ( ) ( )

( )

2 2 2 22 2 2 2

2 2 2 2 2

i ii i

i i i

R e e e e

e e e

κ κ α κ κ ακ α κ α

κα κ α κ α

κ κ κ κ κ κ

κ κ

′ ′− − +′ ′−

′ ′− −

   ′ ′ ′+ − − = − −  
 ′= − − 

 

( )
( ) ( )

2 2 2 2 2

2 22 2
.

i i i

i i

e e e
R

e e

κα κ α κ α

κ α κ α

κ κ

κ κ κ κ

′ ′− −

′ ′−

 ′ − − =
′ ′+ − −

                                                          (8) 

Using Euler`s formula, ϑ ϑ ϑ= +cos sin ,ie i  the exponential terms become: 

( ) ( )
( ) ( ) ( ) ( )

2

2

cos 2 sin 2

cos 2 sin 2 cos 2 sin 2

i

i

e i

e i i

κ α

κ α

κ α κ α

κ α κ α κ α κ α

′

′−

′ ′= +

′ ′ ′ ′= − + − = −
 

Substitution of these expressions into (8) and further simplification gives: 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )

κα

κα

κα

κ κ κ α κ α κ α κ α

κ κ κ α κ α κ κ κ α κ α

κ κ κ α

κ κκ κ κ α κ α κ κκ κ κ α κ α

κ κ κ α

κκ

−

−

−

 ′ ′ ′ ′ ′− + − − =
′ ′ ′ ′ ′ ′+ − − − +

′ ′−
=

′ ′ ′ ′ ′ ′ ′ ′+ + − − − + +

′ ′−
=

′

2 2 2

2 2

2 2 2

2 2 2 2

2 2 2

cos 2 sin 2 cos 2 sin 2

cos 2 sin 2 cos 2 sin 2

2 sin 2

2 cos 2 sin 2 2 cos 2 sin 2

sin 2

2 cos 2

i

i

i

e i i
R

i i

ie

i i

ie

( ) ( ) ( )κ α κ κ κ α′ ′ ′− +2 2 sin 2i

 

No reflected wave, 0,R =  occurs when: 

( ) ( ) ( )
( )

2 2 2 2
2 02 2 2 2 2

02 2 2

2
sin 2 0 2 2 .

2 2 2
n

m E U nn n E U n
m

π πκ α κ α π κ α π α
α

+
′ ′ ′= ⇒ = ⇒ = ⇒ = ⇒ + =





 

CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK:  The energies, 

( )

2 2
2

0 2
,

2 2
nE U n

m

π

α
+ =

  

are the allowed energies for the infinite square well of width 2 .α  Remarkably, perfect transmission occurs 
when the energy of the particle plus the potential of the well is equal to the allowed energies of an infinite 
square well. 

37.39. THINK:   
(a) The Schrödinger equation and the relevant boundary conditions can be used to find the wave function 
and the energy levels. 
(b) The solution to the Schrödinger equation can be used to find the penetration distance η  for a decrease 
in the wave function by a factor of 1/ .e  
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(c) This particular quantum well has width 1 nm and depth 0.300 eV with energy 0.125 eV.  
The finite well potential is given by the function: 

( )
 ≤ −
= − ≤ ≤
 ≥

0

0

        for / 2
0     for / 2 / 2

        for / 2

U x a
U x a x a

U x a
 

SKETCH:   

 
RESEARCH:   
(a) The solution to the Schrödinger equation for each region is given by: 

( ) ( ) ( )
γ γ

γ γ

ψ κ κ

−

−

 + ≤ −
= + − ≤ ≤
 + ≥

   for / 2
cos sin  for / 2 / 2

   for / 2

x x

x x

Ae Be x a
x C x D x a x a

Ge Fe x a

 

where, 

κ γ
−

= =
 

2 2 0
2 2

2 ( )2 , .
m U EmE

 

Combining these expressions gives  

γ κ γ κ
−

= = − ⇒ + =
  

2 2 2 20 0 0
2 2 2

2 ( ) 2 2
  ,

m U E mU mU
 

which represents circles in the κγ-plane of radius 


0
2

2
.

mU
 However, in the region < − / 2,x a as x →−∞  

the B term blows up and in the region > / 2,x a  as x →∞  the G term blows up.  Therefore, the physical 
solution is given by: 

( ) ( ) ( )
γ

γ

ψ κ κ
−

 ≤ −
= + − ≤ ≤
 ≥

   for / 2
cos sin  for / 2 / 2

   for / 2

x

x

Ae x a
x C x D x a x a

Fe x a
 

 

b) For ≥ / 2x a  the solution requires that  

( ) ( )η
ψ ψ

= + =
=

/2 /2

1
x a x a

x x
e

 

SIMPLIFY:   
(a) At / 2,x a= −  continuity of the function and its derivative requires:  

/2 cos( / 2) sin( / 2) cos( / 2) sin( / 2)aAe C a D a C a D aγ κ κ κ κ− = − + − = −                          (1) 

( )/2 sin( / 2) cos( / 2) sin( / 2) cos( / 2)aA e C a D a C a D aγγ κ κ κ κ κ κ κ κ−− = − − = − +  
/2 sin( / 2) cos( / 2)aA e C a D aγγ κ κ κ κ− = +                       (2) 

At / 2,x a= continuity of the function and its derivative requires:  
/2 cos( / 2) sin( / 2)aFe C a D aγ κ κ− = +                                                          (3) 
/2 sin( / 2) cos( / 2)aF e C a D aγγ κ κ κ κ−− = − +                                     (4) 
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These four equations can be simplified: 
Adding (1) and (3):  

γ κ−+ =/2( ) 2 cos( / 2)aA F e C a                                         (5) 
Subtracting  (4) from (2):  

/2( ) 2 sin( / 2)aA F e C aγγ κ κ−+ =              (6) 
Adding (2) and (4):  

/2( ) 2 cos( / 2)aA F e D aγγ κ κ−− =                             (7) 
Subtracting (1) from (3):  

/2( ) 2 sin( / 2)aF A e D aγ κ−− =                                                        (8) 
If ≠ 0C and ≠ − ,A F  dividing (6) by (5) yields: 

tan( / 2) tan( / 2) /a aγ κ κ κ γ κ= ⇒ =  
If ≠ 0D  and ≠ ,A F  dividing (7) by (8) yields: 

γ κ κ κ κ γ− = ⇒ = −cot( / 2) tan( / 2) /a a  

If these two equations are simultaneously valid then they imply that 2tan ( / 2) 1aκ = −  which cannot be 

true for real values of the energy (i.e. κ must be real). This means that solutions can be divided into two 
separate classes.  The wave functions split into even and odd parity solutions are given by: 
 (i)  For even parity solutions where κΨ =( ) cos( )x C x  in the well, = =0 and .D A F  The wave function is   
given by: 

γ

γ

ψ κ
−

 ≤ −


= − ≤ ≤
 ≥

for / 2
( ) cos( ) for / 2 / 2

for / 2

x

x

Ae x a
x C x a x a

Ae x a

 

This leads to the solution κ κ γ=tan( / 2) .a  
(ii)  For odd parity solutions where ( ) sin( )x D xκΨ = in the well, = = −0 and .C A F  The wave function is 
given by: 

γ

γ

ψ κ
−

 ≤ −


= − ≤ ≤
− ≥

for / 2
( ) sin( ) for / 2 / 2

for / 2

x

x

Ae x a
x D x a x a

Ae x a  
This leads to the solution κ κ γ= −cot( / 2) .a The energy levels can be found by solving numerically or 

graphically each of these solutions with the required relation between κ and γ : γ κ= −


2 20
2

2mU
.  Solving 

κ κ γ=tan( / 2)a
 
and κ κ γ= −cot( / 2)a  graphically (intersection points) gives discrete values for  and κ γ  

and hence the allowed energy levels are obtained from the κ  values at the intersection points and 
κ

=


2 2

2
E

m
. A sketch of such a graph is shown: 
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 (b) ( ) ( )( )γ η γ γ η γ η− + − − −= ⇒ = ⇒ =/2 /2 11 1a aFe Fe e e
e

 

The penetration distance is given by 
( ) ( )

η
γ

= = =
− −

 

2

0 0

1 .
2 2m U E m U E

 

CALCULATE:   

(c) 
( )

( )( )( )
η

−

−

− −

⋅
= = ⋅

⋅ − ⋅

34
10

GaAs-GaAlAs
31 19

1.055 10 J s
4.668 10  m

2 9.109 10 kg 0.300 eV 0.125 eV 1.602 10 J/eV
 

ROUND:   
(c)  To three significant figures, the penetration distance is η =GaAs-GaAlAs 467 pm.  
DOUBLE-CHECK:  It is reasonable that the penetration depth is independent of the width of the well.  A 
unit analysis of the units for the penetration depth provides the correct unit of length: 

( )2 2 22
2

kg m / s  sJ s J s m m.
kg kgJ kg

= = = =  

37.40. The energy states of a harmonic oscillator are given by: 0
1 ,
2nE n ω = + 

 
  14

0 2.99 10  rad/s.ω = ⋅  The 

energy of the ground state and the first two excited states are: 

( )( )
( )( )
( )( )

ω

ω

ω

− −

− −

− −

= = ⋅ ⋅ = ⋅ =

= = ⋅ ⋅ = ⋅ =

= = ⋅ ⋅ = ⋅ =







34 14 20
0 0

34 14 20
1 0

34 14 20
2 0

1 1 1.055 10  J s 2.99 10  rad/s 1.58 10  J 0.0985 eV,
2 2
3 3 1.055 10  J s 2.99 10  rad/s 4.73 10  J 0.295 eV,
2 2
5 5 1.055 10  J s 2.99 10  rad/s 7.89 10  J 0.492 eV.
2 2

E

E

E

 

37.41. The energy levels of a harmonic oscillator are given by: 0
1 .
2nE n ω = + 

 
  The energy of a photon is given 

by / .E hc λ=  The energy of the photon with wavelength 3  1λ → is given by:  

3  1 3 1 0 0
7 3 2 .
2 2

E E E ω ω→
 ∆ = − = − = 
 

   

The energy of a photon with wavelength 3  2λ →  is given by:  

3  2 3 2 0 0
7 5 .
2 2

E E E ω ω→
 ∆ = − = − = 
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Then  
( )
( ) ( )03  1 3  1 3  2 3  1

3  2 3  1
3  2 3  2 3  1 3  2 0

2/
360 nm 720 nm.

/
E hc E
E hc E

ωλ λ
λ λ

λ λ ω
→ → → →

→ →
→ → → →

∆ ∆
= = ⇒ = = =

∆ ∆





 

37.42. The spacing of two energy levels in a harmonic oscillator is given by: 20
1 0 9 10  J.n nE E E ω −
+∆ = − = = ⋅  

For a spring, the frequency is given by: 0 /k mω =  where − −= ⋅ ⋅ = ⋅27 272 1.67 10 3.34 10  kgm  is the mass 
of a diatomic hydrogen molecule.  Therefore,  

( ) ( ) ( )
( )

− −

−

⋅ ⋅∆
∆ = ⇒ = = = ≈

⋅




220 272

2 234

9 10  J 3.34 10  kg
2431 N/m 2000 N/m.

1.055 10  J s

E mkE k
m

 

37.43. THINK:  Since the electron is confined to a cube, the electron can be treated as if it was inside a three-
dimensional infinite potential well.  In the text, the equation for the energy states for a two dimensional 
infinite potential is derived.  An analogous form for the three dimensional case can be used to determine 
the ground state energy of the electron in the cube of side length 2R, where 0.0529 nm.R =  The spring 
constant can be found by setting the ground state energy for a potential well equal to the ground state 
energy for a harmonic oscillator.  
SKETCH:   

 
RESEARCH:  The three dimensional energy states (analogous to equation (37.16)) for the electron are:   

2 2 2 2 2 2
2 2 2

, , 2 2 2
e e e

,
2 2 2x y zn n n x y zE n n n

m a m a m a
π π π

= + +
     

where a is the side length of the cube and em  is the mass of an electron. The ground state of a harmonic 
oscillator is given by:  

0 0
e

10 ,
2 2

kE
m

ω = + = 
 



  

where k  is the spring constant. 

SIMPLIFY:  The ground state, ( ) ( ), , 1,1,1 ,x y zn n n =  energy for a three dimensional infinite potential well 

of side length 2a R=  is: 
2 2

1, 1, 1 2
e

3 .
8

E
m R
π

=
  

For the case 1, 1, 1 0 :E E=  
2 2 2 2 4

1, 1, 1 2 2 4
e ee e e

3 3 9    .
28 4 16

k kE k
m mm R m R m R

π π π
= = ⇒ = ⇒ =
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CALCULATE:  
( )

( )( )

234 22 2
17

1,1,1 22 31 9
e

3 1.055 10  J s3 1.6159 10  J 100.87 eV
8 8 9.11 10  kg 0.0529 10  m

E
m R

ππ
−

−

− −

⋅
= = = ⋅ =

⋅ ⋅

  

( )
( )( )

234 4
4

431 9

9 1.055 10  J s
8.5484 10  N/m

16 9.11 10  kg 0.0529 10  m
k

π−

− −

⋅
= = ⋅

⋅ ⋅
  

ROUND:  To three significant figures, the ground state energy for an electron confined to a cube of twice 
the Bohr radius is 101 eVE =  and the spring constant that would give the same ground state energy for a 
harmonic oscillator is 85.5 kN/m.k =  
DOUBLE-CHECK:  The ionization energy of an electron in a hydrogen atom is 13.6 eV and is comparable 
to the energy calculated. 

37.44. THINK:  The normalization condition,  

( ) 2
1,x dxψ

∞

−∞

=∫  

 can be used to normalize the given wave function, ( ) ( ) ( )0 1,0 .x A x xψ ψ ψ = +    

SKETCH:  Not required. 

RESEARCH: The oscillator wave functions are given by: ( )
2 2/2

0 1/4
1 ,xx e σψ

σπ
−=  and 

( )
2 2/2

1 1/4
1 1 2 ,

2
xxx e σψ

σσπ
− =  

 
where

0
.

mw
σ =

  Normalization of the wave function requires that, 

( ) ( ) 22
0 1 1.A x x dxψ ψ

∞

−∞
+ =∫  

SIMPLIFY:    

2 2 2 2

2 2

2 2

2 2

2 2

2
2 /2 /2

1/4 1/4

22
2 /2

1/4

22
/

1/2

2 2
/

1/2 2

2 2
/

1/2 2

1 1 11 2
2

1 11 2
2

21

2 2 21

1

x x

x

x

x

x

xA e e dx

xA e dx

A xe dx

A x xe dx

A xe

σ σ

σ

σ

σ

σ

σσπ σπ

σσπ

σσπ

σσπ σ

σπ σ

∞ − −

−∞

∞ −

−∞

∞ −

−∞

∞ −

−∞

−

 = +  
 

    = +    
    

 
= +  

 
 

= + +  
 


= +


∫

∫

∫

∫

dx
∞

−∞


  


∫  

The 
2 2/ 2 2x xe σ

σ
− 

  
 

 term vanishes because this is an odd function, so the result will be zero when 

integrating from to .−∞ ∞  Using integral tables, the Gaussian integrals are evaluated: 
3

2 2
1/2 2

1 1 1 21 1   .
2 2 3

A A Aσ πσ π
σπ σ

   = + = + ⇒ =   
   

 

CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK:  As expected, the coefficient A  does not depend on ,σ  so it is unitless.   
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37.45. THINK: The normalization condition,  

( ) 2
1,x dxψ

∞

−∞

=∫  

can be used to normalize the given wave function, ( )
2 2

2
/2

0 .x bx A e−=ψ   
SKETCH:   

 
RESEARCH:   
(a)  The oscillator wave function is given by: 

( )
2 2

2
/2

0 .x bx A e−=ψ  
Normalization of the wave function requires that, 

( ) 2

0 1.x dxψ
∞

−∞
=∫  

(b)  As seen from the sketch, the probability that the quantum harmonic oscillator will be found in the 
classically forbidden region is given by:  

( ) ( ) ( )2 2 2
0 0 02 .

b

b b
x dx x dx x dxψ ψ ψ

∞ − ∞

−∞
Π = + =∫ ∫ ∫  

SIMPLIFY:   

(a)  ( ) 2 2 2 222 /2 2 / 2
0 2 2 2 2 4

11 x b x bx dx A e dx A e dx A b A
b

∞ ∞ ∞
− −

−∞ −∞ −∞
= = = = ⇒ =∫ ∫ ∫ψ π

π
 

(b) Consider the equation: 
π

∞ ∞− −Π = =∫ ∫
2 2 2 22

/2 /
2

22 .x b x b

b b
A e dx e dx

b
 With the substitution 

/ ,u x b dx bdu= =  the expression becomes:  
2

1

2 .ue du
π

∞ −Π = ∫  
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CALCULATE:   

(b) An integration table provides 
2

1
0.139,ue du

∞ − =∫  so ( )12 0.139 0.157Π = =
π

 

ROUND:  No rounding is required. 
DOUBLE-CHECK:  The ratio is less than one, as it must be.  

37.46. The wave function for an infinite square well is derived in the text. For a well of width L and for the 3n =  
state, the wave function inside the well is given by:  

( ) 2 3sin xx
L L

πψ  =  
 

 

The probability that the particle is found in the rightmost 10.0%  of the well is given by:  

( ) 2 2

0.9 0.9

2 3sin
L L

L L

xx dx dx
L L

πψ  Π = =  
 ∫ ∫  

The identity 22sin 1 cos2θ θ= −  can be used to simplify the integrand: 

( )

π

π
π

π π
π

  Π = −  
  

  = −  
  

 = − − = = 
 

∫0.9

0.9

1 61 cos

1 6sin
6

10.100 sin6 sin5.4 0.0495 4.95%.
6

L

L

L

L

x dx
L L

L xx
L L

 

37.47. (a) Normalization requires that ( ) 2
1.x dxψ

∞

−∞
=∫  Given that the wave function of the electron in the 

region 0 x L< <  is ( ) ( )sin 2 / ,x A x Lψ π=   

2 2

0

2sin 1
L xA dx

L
π  = 

 ∫  

The identity 22sin 1 cos2θ θ= −  can be used to simplify the integrand: 
2

0

2

0
2

41 1 cos
2

4sin  
2 4

2
. 

2

L

L

A x dx
L

A L xx
L

A L A
L

π

π
π

  = −  
  

  = −  
  

= ⇒ =

∫

 

(b)  The probability of finding the electron in the region 0 / 3x L< <  is: 

( )
2

/3 /3 /32 2

0 0 0

/3

0

2 2 2 2sin sin

1 4 1 1 4sin sin 0.402.
4 3 4 3

L L L

L

x xx dx dx dx
L L L L

L xx
L L

   Π = = =   
   

    = − = − =    
    

∫ ∫ ∫
π πψ

π π
π π

 

37.48. The wave function for an infinite square well is derived in the text. For a well of width 2.00 nmL =  and 
for the 2n =  state, the wave function inside the well is given by:  

( ) 2 2sin .
2.00 nm 2.00 nm

xx πψ
 

=   
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The probability that the particle is found between 0.800 nmx =  and 0.900 nmx =  is given by: 

( )
2

0.900 nm 0.900 nm 0.900 nm2 2

0.800 nm 0.800 nm 0.800 nm

2 2 2 2sin sin .
2.00 nm 2.00 nm 2.00 nm 2.00 nm

x xx dx dx dxπ πψ
   Π = = =       

∫ ∫ ∫  

The identity 22sin 1 cos2θ θ= −  can be used to simplify the integrand: 

π

π
π

π π
π

  Π = −  
  

  = −  
  

    
= − −         
=

∫
0.900 nm

0.800 nm

0.900 nm

0.800 nm

1 41 cos
2.00 nm 2.00 nm

1 2.00 nm 4sin
2.00 nm 4 2.00 nm

0.100 nm 0.900 nm 0.800 nm1 sin 4 sin 4
2.00 nm 4 2.00 nm 2.00 nm

0.0210

x dx

xx

=9 2.11%.

 

37.49. THINK:  An electron is trapped in a one dimensional infinite potential well of width 300. pm.L =   The 
wave function for a particle in an infinite potential well can be integrated over the range 

( )0.500 L, 0.750 L  to find the probability that the electron in its first excited state is within this range.  

SKETCH:   

 
RESEARCH:  The wave function for an infinite square well is derived in the text. For a well of width L  
and for the first excited state =( 2)n , the wave function inside the well is given by:  

( ) 2 2sin .xx
L L

πψ  =  
 

 

SIMPLIFY:  The probability that the particle is found in the range < <0.500 0.750L x L  is given by: 

( )
2

0.750 0.750 0.7502 2

0.500 0.500 0.500

2 2 2 2sin sin .
L L L

L L L

x xx dx dx dx
L L L L

π πψ    Π = = =   
   ∫ ∫ ∫  

The identity 22sin 1 cos2θ θ= −  can be used to simplify the integrand: 
0.750

0.500

0.750

0.500

1 41 cos

1 4sin
4

L

L

L

L

x dx
L L

L xx
L L

π

π
π

  Π = −  
  

  = −  
  

∫
  

CALCULATE: ( ) ( )( )π π
π

Π = − ⋅ − ⋅ =
10.250 sin 4 0.750 sin 4 0.500 0.250

4
 

ROUND:  Therefore, the probability that the electron in the first excited state is found in the range 
0.500 0.750L x L< <  is 0.250.  
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DOUBLE-CHECK:  It is reasonable that the actual length, = 300. pm,L  is irrelevant in finding the 
probability since the range was given in terms of L.  The diagram agrees with this probability that was 
found. 

37.50. THINK:  The relationship shown in the text for the uncertainty in position can be used for the wave 
function,  

( )
2

, .x i tx t Ae eλ ω− −Ψ =  
Leave the normalization constant A as a variable, and do not attempt to determine it numerically. 
SKETCH:  Not required. 

RESEARCH: The uncertainty is given by ( ) ( )22 .x x x∆ = −  Since ( ),x tΨ  is symmetric about 

0,x = 0,x =  and so  

( ) ( ) ( )2 2 2, , .x x x t x x t dx
∞ ∗

−∞
∆ = = Ψ Ψ∫  

SIMPLIFY:  ( )
2 2 2 2 22 2 2 2 2 2 2x i t x i t x x xx Ae e x Ae e dx A e x e dx A x e dxλ ω λ ω λ λ λ∞ ∞ ∞− − − − − −

−∞ −∞ −∞
∆ = = =∫ ∫ ∫   

CALCULATE:  Using integral tables, the uncertainty of x for the given wave function is: 

4
3

.
32

x A π
λ

∆ =  

ROUND:  Not required. 
DOUBLE-CHECK:  The expression of the uncertainty in x states that the larger λ  is, the smaller the 
uncertainty is.  This is logical since ( ),x tΨ  decays more rapidly for larger λ  making ( ),x tΨ  more 
localized. 

37.51. THINK:  A one dimensional plane-wave wave function can be generalized for three dimensions to find 
( ),  r tΨ
  for a non relativistic particle of mass m  and momentum .p  For a free particle, ( ) 0U r =

  
identically. It is constantly zero. 
SKETCH:   

 
RESEARCH:  A plane-wave wave function in one dimension is given by: 

( ), , where / and / .i x i tx t Ae e p Eκ ω κ ω−Ψ = = =


   
The wave function can be assumed separable into spatial and time dependent parts. Here p is the 

momentum of the particle and E is the energy.  The probability density function is ( ) 2
, .r tΨ
  

 
SIMPLIFY:  The spatial wave function for such a particle can be written as the product of three plane 
waves.  Hence, the wave function takes the form  

( ) ( )/ /, ,i p r iEtr t Ae e⋅ −Ψ =
 





  

where .= + +
   r x y z  κ  and ω have been rewritten as / and / .κ ω= = p E  Since ( )2 / 2E p m=  is the 

energy of a non relativistic particle, the full wave function can also be written as  

( ) ( ) 2/ /2, .i p r ip t mr t Ae e⋅ −Ψ =
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The probability density is  ( ) ( )( ) ( )( )2 22 / //2 /2 2, .i p r i p rip t m ip t mr t Ae e Ae e A− ⋅ ⋅ −Ψ = =
   

 

 

  

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK: The spatial part of this wave function clearly represents a plane wave as ,k r c⋅ =



  

where c is a constant, is the general form of a plane perpendicular to k


. The wave function can also be 
substituted into the time dependent Schrödinger Equation satisfying the equation: 

( ) ( )2 2 2( / 2 ) ( , ) / ( ) ( , ) ( , ) /m r t r U r r t i r t t− ∂ Ψ ∂ + Ψ = ∂ Ψ ∂
   

   
Since U = 0 for a free particle Schrödinger’s Equation becomes: 

( ) ( )2 2 2( / 2 ) ( , ) / ( , ) /m r t r i r t t− ∂ Ψ ∂ = ∂ Ψ ∂
  

   

 Substituting for ( ) ( ) ( ) ( ) 2/ /2, i p r ip t mr t r t Ae e⋅ −Ψ = Ψ Ψ =
 





 

and differentiating, the left side is: 
( ) 2/2 2 /2

2

( )
2

i p r ip t mp Ae e
m

⋅ −− −











 

and the right side is: 
( ) 2/2 /2

2

⋅ −−
 









i p r ip t mi Aip e e
m

 

After cancelling like terms and recalling that i2 = −1 these are equal and so the wave function does satisfy 
the time dependent Schrödinger Equation.  

37.52. THINK:  Separation of variables can be used to write the wave function as a product of two functions that 
depend on only one variable.  The equation for the expectation value of x is given in the text.   The 
derivative of this expression provides / .d x dt  
SKETCH:  Not required. 

RESEARCH:  The expectation value of the particle’s position is given by: ( ) ( ), , .x x t x x t dx
∞ ∗

−∞
= Ψ Ψ∫   

As shown in the text, the wave function can be written as: 

( ) ( ) ( ) ( ) /, , where iEtx t x t t Aeψ χ χ −Ψ = =   
using separation of variables.  Therefore, the expectation value of x is: 

( ) ( ) ( ) ( ) .x x t x x t dxψ χ ψ χ
∞ ∗ ∗

−∞
= ∫  

SIMPLIFY:  The expectation value of x can be simplified as:    

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2 / /

2

iEt iEt

x x x x t t dx

A x x x e e dx

A x x x dx

ψ ψ χ χ

ψ ψ

ψ ψ

∞ ∗ ∗

−∞
∞ ∗ −

−∞
∞ ∗

−∞

 =  

 =  

 =  

∫
∫
∫

   

Since the time dependence vanishes, 

( ) ( )2 0
d x d A x x x dx

dt dt
ψ ψ

∞ ∗

−∞

 = = 
 ∫  

CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK:  It is reasonable that for a stationary state, the expectation value of the position of the 
particle does not depend on time (i.e. it remains stationary). 
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37.53. THINK:  A quantum particle of mass m is in an infinite one dimensional potential well and has a wave 

function given by: ( ) ( ) ( )1 2
1, , , .
2

x t x t x t Ψ = Ψ +Ψ   The time-independent wave function for an 

infinite potential well is derived in the text.  Since the wave function is separable,  

( ) ( ) ( ) ( ) /, , with .iEtx t x t t eψ χ χ −Ψ = =   

The probability density distribution is just ( ) 2
, .x tΨ    

SKETCH:   

 
RESEARCH:  The probability density distribution is given by:  

( ) ( ) ( ) ( ) ( )2
1 2 1 2

1, , , , ,
2

x t x t x t x t x t∗ ∗   Ψ = Ψ +Ψ Ψ +Ψ    

The wave functions 1Ψ  and 2Ψ are: 

( )

( )

1

2

/
1

/
2

2, sin

2 2, sin

iE t

iE t

xx t e
a a

xx t e
a a

π

π

−

−

 Ψ =  
 
 Ψ =  
 





 

with 
2 2

1 22
E

ma
π

=
  and 

2 2

2 2
2 .E
ma
π

=
  

SIMPLIFY:  The probability density distribution is: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( )

π π π π

π π

π π

∗ ∗

−

− −

 Ψ = Ψ + Ψ +Ψ Ψ +Ψ Ψ  
        + + +        

        =
    +    

    
 = + 
 





1 2

1 2

2 2 2
1 2 1 2 1 2

/2 2

/

2 2

1, , , , , , ,
2

2 2 2 2 2sin sin sin sin
1
2 2 2sin sin

1 2sin sin

i E E t

i E E t

x t x t x t x t x t x t x t

x x x x e
a a a a a a a

x x e
a a a

x x
a a

( ) ( )π π − − −       + +              

 1 2 1 2/ /2sin sin i E E t i E E tx x e e
a a a

 

Using Euler`s formula, cos sin ,ie iθ θ θ= +  the exponential terms become: 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2

1 2

/ 1 2 1 2

/ 1 2 1 2 1 2 1 2

cos sin

cos sin cos sin

i E E t

i E E t

E E t E E t
e i

E E t E E t E E t E E t
e i i

−

− −

   − −
= +      

   
       − − − −

= − + − = −              
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Therefore, the imaginary terms cancel out to give: 

( ) ( )2 1 22 2

2 2
2 2

2

2 2

1 2 2, sin sin 2sin sin cos

1 2 2 3sin sin 2sin sin cos
2

1 2sin sin

E E tx x x xx t
a a a a a

x x x x t
a a a a a ma

x
a a

π π π π

π π π π π

π

  −       Ψ = + +                     
         = + + −                     

 = + 
 







2

2
2 32sin sin cos

2
x x x t

a a a ma
π π π π       +                 



 

Using trig identities, this reduces to: 

( )
22 2 2
2

1 3, sin 1 4cos 4cos cos .
2

x x x tx t
a a a a ma

π π π π       Ψ = + +                 

  

CALCULATE:  Not required. 
ROUND:  Not required. 
DOUBLE-CHECK:  The probability density function is real and has units of inverse length, as expected. 

37.54. The energy released by the annihilation of a proton and an antiproton is  

( )( )22 2 27 8 10 9 9
p2 2 1.6726 10  kg 3.00 10  m/s 3.01 10  J 1.88 10 eV 1.9 10 eV.E mc m c − −= = = ⋅ ⋅ = ⋅ = ⋅ ≈ ⋅  

The energy released from the annihilation is about 4500 times greater than that for a nuclear-fusion 
reaction. 

37.55. The energy time uncertainty relation is given by:  

 .
2

E t∆ ∆ ≥


 

A violation of classical energy conservation by an amount E∆  is then possible as long as the time interval 
over which this happens is at most t∆ , the value of which is given by the minimal value obtained from the 
uncertainty relation. E∆  in this case is at least the sum of the rest energies of the particle and the 
antiparticle. This means that the maximum lifetime of the particle-antiparticle pair is given by: 
 (a) For an electron/positron pair:  

( )
( )

( )( )

2

34

231 8

22

2 2

1.055 10 J s

2 2 9.11 10 kg 3.00 10 m/s

3.22 10  s.

e

t
m c

−

−

−

∆ =

⋅
=

 ⋅ ⋅ 
 

= ⋅



 

(b) For a proton/anti-proton pair:  

( )
( )

( )( )

34
25

22 27 8

1.055 10 J s
1.75 10  s.

2 2 2 2 1.67 10 kg 3.00 10 m/sp

t
m c

−
−

−

⋅
∆ = = = ⋅

 ⋅ ⋅ 
 

  

37.56. The positron-electron annihilation releases two 2.0 MeV  gamma rays or a total of tot 4.0 MeV.E =  Since 
energy must be conserved, the kinetic energy of the two particles and the energy created due to the 
annihilation must be equal to 4.0 MeV.  The energy released when the positron and electron annihilate is: 

( )( )− −= = = ⋅ ⋅ = ⋅ =
22 2 31 8 13

e2 2 9.11 10 kg 3.00 10 m/s 1.64 10  J 1.02 MeV.E mc m c  

Therefore, the total kinetic energy of the particles is + = −p e tot .K K E E   Since =e p / 2,K K  the kinetic 

energy of the electron is: 
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( )

( )

+ = − ⇒ = − ⇒ = −

= − =

p
p tot p tot p tot

p

3 2
2 2 3

2 4.0 MeV 1.02 MeV 2.0 MeV
3

K
K E E K E E K E E

K
 

Finally, = = =e p / 2 2.0 MeV / 2 1.0 MeV.K K  

37.57. The allowed energies for a proton in a one dimensional infinite potential well of width α  are 
2 2

2
n 2

.
2

E n
m
π
α

=
  For the first excited state, 2.n =  Therefore, the energy of the first excited state of a proton 

is: 

( )
( )( )

234 2
22

2 2
4

27 9

4 1.055 10  J s
1.31558 10  J 8.21 10  eV.

2 1.67 10  kg 1.00 10  m
E

π−
− −

− −

⋅
= = ⋅ = ⋅

⋅ ⋅
 

37.58. The probability of tunneling is given by:  

( ) ( )2
2

2
, where  b a em U E

T e γ γ− − −
= =



 

The factor by which the tunneling current changes is:   
( )

( )

( )

( )( )( )
( )

( )

γ

γ

γ

− −

− − +

− −
−

−

=

 =  
 ⋅ ⋅ 

= ⋅ 
 ⋅
 

=

2
i

2 0.10 nm
f

31 19
9

234

exp 2 0.10 nm

2 9.11 10 kg 4.0 eV 1.602 10 J/eV
exp 2 0.10 10 m

1.055 10 J s

7.8.

b a

b a

T e
T e

 

Therefore, the tunneling current decreases by a factor of 7.8 when the tip moves 0.10 nm farther from the 
surface. 

37.59. The normalized solution of the wave function in the ground state ( )1n =  for an electron in an infinite 
cubic potential well of side length L is given by: 

(a)  ( ) ( ) ( )
3

2 sin sin sin ;  0  , ,x y z L
yx zx y z x y z

L L L L
<

 
= = <  

 

ππ πψ ψ ψ ψ  

(b)  Since the energies are given by 

( )π
= + +


2 2
2 2 2

2
,

2 x y zE n n n
mL

 

the different energies depend on the energy state, ( )2 2 2 .x y zn n n+ +  The ground state is for 

( ) ( ), , 1,1,1 ,x y zn n n =  the first excited state is for ( ) ( ) ( ) ( ), , 1,2,1 ,  2,1,1 ,  1,1,2 ,x y zn n n =  and the second 

excited state is for ( ), ,x y zn n n  ( ) ( ) ( )1,2,2 ,  2,1,2 ,  2,2,1 .=  Since an electron has two spin states (up or 

down), there are a total of 14 possible energy states. 
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37.60. The energy of a harmonic oscillator is given by ω  = + 
 

 0
1 .
2nE n  The quantum excitation number is then  

( )( )ω − −
= − = − = ⋅

⋅

33
34 1

0

1 1.00 J 1 2.13 10 .
2 21.055 10  J s 4.45 s

nE
n  

37.61. The distance between fringes (central maximum and first order peak) for a double slit setup is given by 

.Ly
d
λ

∆ =  The wavelength is given by:  

( )
( )( )

λ
−

−

− −

⋅
= = = = ⋅

⋅ ⋅

34
10

27 21

6.626 10  J s
1.812 10  m

2 2 1.67 10  kg 4.005 10  J

h h
p mK

 

The distance between interference peaks is: 

( )( )
( )

10
7

3

1.812 10  m 1.5 m
5.44 10  m 0.54 m.

0.50 10  m
y µ

−
−

−

⋅
∆ = = ⋅ =

⋅
 

37.62. The ground state ( )1n =  energy of an electron in a one dimensional quantum box (infinite well) of length 
0.100 nmL =  is:  

 

 

 
37.63. The ground state ( )1n =  energy of an electron in a one dimensional infinite well of length L  is:  

2 2

1 22
E

mL
π

=
  

(a) For 2 GaAs layers, 0.56 nm,L =  so the energy is: 

( )
( )( )

π−
−

− −

⋅
= = ⋅ =

⋅ ⋅

234 2
19

1 231 9

1.055 10  J s
1.9 10 J 1.2 eV.

2 9.11 10  kg 0.56 10 m
E  

(b) For 5 GaAs layers, =1.4 nm,L  so the energy is: 

( )
( )( )

π−
−

− −

⋅
= = ⋅ =

⋅ ⋅

234 2
20

1 231 9

1.055 10  J s
3.1 10 J 0.19 eV.

2 9.11 10  kg 1.4 10 m
E  

37.64. (a)  The ground state ( )1n =  energy of a water vapor molecule in a room (an infinite potential well) is: 

( ) ( ) ( )

( )
( ) ( ) ( ) ( )

2 2

1 2 2 2

234 2

2 2 226

43 25

1 1 1
2 10.0 m 10.0 m 4.00 m

1.055 10  J s 1 1 1

2 2.992 10  kg 10.0 m 10.0 m 4.00 m

1.5145 10  J 9.45 10  eV.

E
m
π

π−

−

− −

 
 = + +
 
 

 ⋅
 = + +
 ⋅  

= ⋅ = ⋅



 

(b) The average kinetic energy of a molecule is given by: 

avg
3 ,
2

K kT=  

where k is the Boltzmann constant and T is the temperature.  

( )
( )( )

234 22 2
18

1 2 231 9e

1.055 10  J s
6.02915 10  J 37.6 eV.

2 2 9.11 10  kg 0.100 10  nm
E

m L

ππ
−

−

− −

⋅
= = = ⋅ =

⋅ ⋅
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Therefore, 

( )( )23 21
avg

3 1.38 10 J/K 300. K 6.21 10 J 0.0388 eV.
2

K − −= ⋅ = ⋅ =  

 (c)  Since avg ,K E>>  thermal energies are so great on a macroscopic scale that quantum effects cannot be 

observed. 

37.65. The fundamental state ( )1n =  energy of a neutron between rigid walls (a one dimensional infinite 

potential well) 8.4 fmL =  apart is:  

( )
( )( )

ππ
−

−

− −

⋅
= = = ⋅ =

⋅ ⋅



234 22 2
13

1 2 227 15

1.055 10  J s
4.7 10 J 2.9 MeV.

2 2 1.67 10 kg 8.4 10 m
E

mL
 

37.66. THINK:  Since the tunneling current is proportional to the tunneling probability, the ratio of the current 
is found by using the given wave function dependence and the two working gap distances.  
SKETCH:   

 
RESEARCH:  The electron wave function falls off exponentially as: 

( )110.0 nm .aeψ
−−

=  

SIMPLIFY:  Equation 37.23 shows that the ratio of tunneling currents is: 
( )( )

( )( )

1

1

2 2 10.0 nm 0.400 nm
2

2 2 10.0 nm 0.420 nm
1

.e

e

ψ

ψ

−

−

−

−
=  

CALCULATE:  ( )( )12
2 10.0 nm 0.020 nm2

2
1

1.49e
ψ

ψ

−

= =  

ROUND:  To three significant figures, the ratio of the current when the STM tip is 0.400 nm above a 
surface feature to the current when the tip is 0.420 nm above the surface is 1.49.  
DOUBLE-CHECK:  It is expected that the tunneling current is greater when the STM is closer to the 
surface since tunneling probability is greater. 

37.67. THINK:  The equation for the allowed energy states of a particle in an infinite square well can be found in 
the text.  The energy difference between the 4n =  state and the 2n =  state is the energy of the resulting 
radiation.  The wavelength of the radiation can be found from this energy.   
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SKETCH:   

 
RESEARCH:  The energy of a particle in a one dimensional infinite potential well of width L is given by: 

2 2
2

2
.

2nE n
mL
π

=
  

The wavelength of a photon with energy E is given by: .hc
E

λ =   

SIMPLIFY:  For an electron transition from the 4n =  state to the 2n =  state the change in energy is 

( )
2 2 2 2

4 2 2 2
616 4 .

2 e e

E
m L m L
π π

→ = − =
   

Therefore, the corresponding wavelength of the radiation is given by:  
2

4 2
4 2

.
3

ecm Lhc
E

λ
π→

→
= =



 

CALCULATE: The wavelength of the radiation for a transition from the 4n =  state to the 2n = state is:   

( )( )( )
( )

28 31 9
6

4 2 34

3.00 10  m/s 9.11 10  kg 2.00 10  m
1.099 10 m 1099 nm.

3 1.055 10  J s
λ

π

− −
−

→ −

⋅ ⋅ ⋅
= = ⋅ =

⋅
 

ROUND:  To 3 significant figures, the wavelength is 3
4 2 1.10 10  nm.λ → = ⋅  

DOUBLE-CHECK:  The units work out to get a length for the wavelength, as it should. 
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37.68. THINK:  This scenario can be modeled as a tunneling problem with a potential barrier height of 
1.00 eVU∆ =  and a width of 2.00 nm.b a− =  

SKETCH:   

 
RESEARCH:  The tunneling probability for an electron is given by:  

( )2 ,b aT e γ− −=  where 
2

2
.em U

γ
∆

=


  

SIMPLIFY:  ( )2

2
exp 2 .em U

T b a
 ∆

= − − 
  

 

CALCULATE:  
( )( )( )

( )
( )

31 19
9 9

234

2 9.11 10  kg 1.00 eV 1.602 10  J/eV
exp 2 2.00 10  m 1.270 10 .

1.055 10  J s
T

− −
− −

−

 ⋅ ⋅ 
= − ⋅ = ⋅ 

 ⋅
 

 

ROUND:  To 3 significant figures, the probability that a conduction electron in one wire will be found in 

the other wire after arriving at the gap is 91.27 10 .T −= ⋅  
DOUBLE-CHECK:  Classically, the probability that an electron in one wire can be found in the other wire 
is zero.  However, quantum mechanically it is expected that there is a small probability that this can 
happen.  

37.69. THINK:  In the text, the equations for the energy states for a one and two dimensional infinite potential 
are derived.  An analogous form for the three dimensional case can be used to determine the ground state 
energy of the electron in the potential cube of side length 0.10 nm.a =  
SKETCH:   
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RESEARCH:  The allowed energies for the one dimensional infinite potential well are given by:  
2 2

2
, 1D 2

.
2nE n

ma
π

=
  

The allowed energies for the three dimensional infinite potential cube in its ground state are given by: 

( )
2 2

2 2 2
, 3D 2

.
2n x y zE n n n

ma
π

= + +
  

SIMPLIFY:  The electron confined to the cube is in its ground state, so: 
2 2

1, 3D 2
3 .
2

E
ma
π

=
  

, 1DnE  is closest to 1, 3DE  for 2n =  (the first excited state), so the smallest energy difference is given by:  

2 2 2 2 2 2

min 2, 1D 1,3D 2 2 2
4 3 .
2 2 2

E E E
ma ma ma
π π π

= − = − =
    

CALCULATE:  
( )

( )( )

234 2
18

min 231 9

1.055 10  J s
6.029 10 J 37.6 eV

2 9.11 10  kg 0.10 10  m
E

π−
−

− −

⋅
= = ⋅ =

⋅ ⋅
 

ROUND:  To two significant figures, the minimum energy difference is 38 eV.  
DOUBLE-CHECK:  The energy is of the same order of magnitude with the ionization energy of an 
electron ( )13.6 eV  in a hydrogen atom.  Therefore, the answer is reasonable. 

37.70. THINK:  This scenario can be modeled as a tunneling problem with a potential barrier height of 1U  and 
width 2116.8 fm 529.2 fmb a− = −  for an electron with energy 129 keV.E =   Given that the probability of 
tunneling is 10%,  the equation for the tunneling probability can be used to determine the height of the 
potential barrier 1.U  
SKETCH:   

 
RESEARCH: The probability of tunneling is given by: 

( ) ( )γ γ− − −
= =



2 e 1
2

2
, where  b a m U E

T e  
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SIMPLIFY:  
( ) ( )

( ) ( ) ( )

( )
( )

( )

( )
( )

1
2

e 1
2

2
e 1

2

22

1
e

2
exp 2

2
ln 2

ln 21
4

ln
8

em U E
T b a

m U E
T b a

T m U E
b a

T
U E

m b a

 −
 = − −
  

−
= − −

  −
=  − 

 
= +  − 









 

CALCULATE: 

( )
( )

( )
( )( ) ( )( )

2234
3 19

1 31 15

14

1.055 10  J s ln 0.100
129 10  eV 1.602 10 J/eV

2 9.11 10  kg 2 2116.8 fm 529.2 fm 10 m/fm

2.388 10 J 149.1 keV

U
−

−
− −

−

 ⋅
 = + ⋅ ⋅
  ⋅ − 

= ⋅ =

 

ROUND:  To three significant figures, the height of the potential barrier is 1 149 keV.U =  
DOUBLE-CHECK:   It is expected that the potential barrier is larger than the energy of the particle in 
order to allow for tunneling.  Since the tunneling probability is 10.0% it is reasonable that the potential 
barrier is comparable to the kinetic energy of the particle. 

37.71. THINK:  The equation for the allowed energies of a two dimensional infinite potential well is given in the 
text.   
SKETCH:   

 
RESEARCH:  The allowed energies for an electron in an infinite potential rectangle of dimensions 

andx yL L are given by:  

222 2

, 2 2
.

2x y

yx
n n

x y

nn
E

m L L
π  

 = +
 
 

  

SIMPLIFY:  For and 2 ,x yL w L w= =  

( )
222 2 2 2

2 2
, 2 2 2

4 .
2 4 8x y

yx
n n x y

nn
E n n

m w w mw
π π 

 = + = +
 
 

   

CALCULATE:  The lowest energy for which degeneracy occurs is for: 

( ) ( ), 2,2x yn n = and ( ) ( ), 1,4 .x yn n =  
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ROUND:  Not required. 

DOUBLE-CHECK: ( ) ( )( )
2 2 2 2

2 2
2, 2 2 2

54 2 2
8 2

E
mw mw
π π

= + =
   and ( ) ( )( )

2 2 2 2
2 2

1,4 2 2
54 1 4 .

8 2
E

mw mw
π π

= + =
   These 

values are the same, as required. 
 

Multi-Version Exercises 

37.72. 2 ;  widthwT e wγ−= =  

 

2 2

2 1

2(1.40767)(11.7) 15

decay constant 2( )( ) / ( )

2(3727.4 MeV)(15.5 MeV 5.15 MeV) / (197.327 MeV fm) 1.40767 fm

4.95 10

mc U E c

T e

γ
−

− −

= −

= − =

= = ⋅



 

37.73. 2 2decay constant 2( )( ) / ( )mc U E cγ = −   

 2 12(3727.4 MeV)(15.7 MeV 6.31 MeV) / (197.327 MeV fm) 1.3 fm−= − =  

37.74. 2 22( )( ) / ( )mc U E cγ = −   

 
2 2 2

1 2 2

( ) / (2 )

15.7 MeV (1.257 fm ) (197.327 MeV fm) / (2 3727.4 MeV) 7.4 MeV

E U c mcγ
−

⇒ = −

= − ⋅ =



 

37.75. 2 ;  width (ln ) / (2 )wT e w Tγ γ−= = = −  

 

2 2

2 1

18 1

decay constant 2( )( ) / ( )

2(3727.4 MeV)(15.9 MeV 8.59 MeV) / (197.327 MeV fm) 1.183 fm

ln(1.042 10 ) / (2 1.183 fm ) 17 fm

mc U E c

w

γ
−

− −

= −

= − =

= − ⋅ ⋅ =



  The value of w comes out very close to 17.5 fm, but the subtraction of the two energies in the calculation of 
the decay constant limits the final result to two significant figures. 

37.76. 
2 2 2 2

2 2
f i f

34

31i 2 2
21

9

(1.0546 J 10 10
9.109 1

s)( ) (25 1) 7.93 J
2 2( k0 10g)(13.5 m)

E E E n n
ma
π π−

−
− −

⋅
∆ = − = − = − = ⋅

⋅ ⋅
   

37.77. 
2 2

2 2
f i f i 2( )

2
E E E n n

ma
π

∆ = − = −
   

 
27 9 6

2
2 2
f i 2 2

2

2 2

19

34

1.673 10  kg 10  m) 10  eV)(1.

2

2( )(23.9 (1.08
(1.0546 J s)

3 (allowing for rounding e

602 10  J/eV)
0

r r)
1

ro

ma En n
π

π

− − − −

−

∆
⇒ − =

⋅ ⋅ ⋅ ⋅
=

⋅
=



 

 With nf =2, this means ni =1, which is our answer. 

37.78. 
2 2

2 2
f i f i 2( )

2
E E E n n

ma
π

∆ = − = −
  

 

2 2
2 2
f i 2

234
27

9

2

2 25

( )
2

(1.0546 J s)(4 1) 1.675 kg
2(

10 10
10 2.639 1019.3 m) ( J)

m n n
a E
π

π−
−

− −

⇒ = −
∆
⋅

= − = ⋅
⋅ ⋅



 

 It looks like our particle is a neutron. 
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Chapter 38:  Atomic Physics 
 

Concept Checks 

38.1. c  38.2. e  38.3. c  38.4. d  38.5. a  38.6. c 
 
Multiple-Choice Questions 

38.1. d  38.2. c  38.3. d  38.4. a  38.5. b  38.6. c  38.7. b  38.8. a and c 
 

Conceptual Questions 

38.9. Electrons are not solid particles, so the idea of an electron orbiting the nucleus (analogous to a planet 
orbiting the Sun) is not an accurate description.  As described by quantum mechanics, electrons are point 
particles whose locations are described by probability density distributions filling three-dimensional 
orbitals. 

38.10. A hydrogen atom cannot absorb just any wavelength of light because of the quantization of orbital angular 
momentum and energy predicted by the Bohr model.  Only light of a specific wavelength, which allows the 
hydrogen atom to transition to an excited quantum state, can be absorbed. In addition, a photon of more 
than 13.6 eV will just ionize the H atom, so there is a minimum absorbable wavelength.  

38.11. As shown in Chapter 37, the energy levels for an infinite square well are given by, 
2 2

2
2 ,

2nE n
ma
π

=
  

and the energy levels for a quantum harmonic oscillator are given by, 

0
1 .
2nE n ω = + 

 
  

For a hydrogen atom, the energy levels are given by: 
2 4

2 2

1 .
2n
k eE

n
µ

= −


 

Therefore, for increasing n, the difference in energy levels increases for an infinite square well, remains 
constant for a quantum harmonic oscillator, and decreases for a hydrogen atom. 

38.12. The energy levels for a hydrogen atom are given by  
2 4

2 2

1 ,
2n
k eE

n
µ

= −


 

and the orbital radius is given by 
2

2
2 .r n

keµ
=
  

Since the Coulomb force is proportional to k, doubling the Coulomb force effectively changes k to 2k.  
Therefore, the energy levels would increase by a factor of four and the size of the atoms would decrease by 
a factor of two. 

38.13. The Bohr model predicts that the electron orbits the nucleus at a certain distance.  In the ground state, the 
electron orbits at the Bohr radius. The quantum mechanical model predicts that the location of the 
electron is governed by the probability density distribution of its wave function.  Therefore, the quantum 
mechanical model predicts that the electron spends more time near to the nucleus than the Bohr model 
does. 
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38.14. The associated Legendre functions, ( )cos ,m
lP θ  for 4l <  are given on page 1266:  

 
 

m = 0 m = 1 m = 2 m = 3 

l = 0 1    

l = 1 cosθ  sinθ−    

l = 2 ( )21 3cos 1
2

θ −  3cos sinθ θ−  23sin θ   

l = 3 ( )31 5cos 3cos
2

θ θ−  ( )23 sin 5cos 1
2

θ θ− −  215cos sinθ θ  315sin θ−  

The xy-plane occurs at / 2.θ π=   Since ( )cos / 2 0π =  and ( )sin / 2 1,π =  the wave functions that have a 

maximum probability in the xy-plane are: 1,  1l m= =  and 2,  2l m= =  and 3,  3.l m= =  

38.15. Electrons are fermions and by the Pauli exclusion principle, two identical fermions cannot exist together.  
Therefore, within a subshell, electrons must have opposite spins (one electron must be spin up and one 
must be spin down).  By Hund’s rule, the orbitals are each occupied by electrons of parallel spin before 
double occupation of electrons with opposite spin takes place.  This occurs because electrons having 
parallel spins (symmetric wave functions) are, on average, further apart than electrons having opposite 
spins (antisymmetric wave functions).  It is commonly thought that this larger separation between 
electrons reduces the electron-electron repulsion energy and puts the atom in a lower energy state.  
However, it is now known that parallel-spin electrons of larger separation are less effectively shielded by 
one another from the nucleus.  This results in orbitals that are more tightly bound to the nucleus, yielding 
a lower energy state. 

38.16. The nonradiative transitions have to be faster to achieve the population inversion needed for laser 
operation. The fast nonradiative transition from level 4 to level 3 feeds level 3 at a rate higher than the laser 
transition rate, allowing for population build-up on this level. At the same time, the fast nonradiative 
transition from level 2 to level 1 depletes the lower level of the laser transition (level 2) fast enough for a 
population inversion to exist between levels 2 and 3 at all times. 

38.17. When the wave function is zero it means that the particle will never be found at that point, since the 
probability density is zero. There is a difference between the two given descriptions.  Electrons cannot be 
observed passing through a point because that would violate the Heisenberg uncertainty principle.  

38.18. The electron in the ground state ( 1)n =  of the hydrogen atom has an energy of 13.6 eV,−  and the electron 
in the first excited state ( 2)n =  has an energy of 3.4 eV.−  The difference in energy between these two 
states is 10.2 eV.  This is the minimum energy required to excite the hydrogen atom.  The 10 eV electron 
does not have enough energy to excite the hydrogen atom, so it will remain in the ground state. Therefore, 
no emission of photons will occur.   

 
Exercises 

38.19. The shortest wavelength of light that a hydrogen atom can emit occurs when an electron is captured by the 
hydrogen atom and jumps directly to the ground state, i.e. a transition from 2n = ∞  to 1 1.n =  The 
Rydberg formula gives a wavelength of:   

( )
1 1

7 -1
H 2 2

1 2

1 1 1 11.097 10 m 91.16 nm
1

R
n n

λ
− −     = − = ⋅ − =     ∞    

 

or 91.2 nm to the usual three significant figures. 
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38.20. The second line in the Paschen series corresponds to the transition of an electron from the 2 5n =  state to 
the 1 3n =  state. The Rydberg formula gives a wavelength of: 

( )
( ) ( )

11

7 1
H 2 22 2

1 2

1 1 1 11.097 10  m 1282 nm.
3 5

R
n n

λ

−−

−
       = − = ⋅ − =           

 

38.21. The shortest wavelength photons emitted in the Pfund series occurs when an electron is captured by the 
hydrogen atom and jumps directly to the fourth excited state, i.e. a transition from  2n = ∞  to 1 5.n =   The 
Rydberg formula gives the shortest wavelength:    

( )
( )

11

7 -1
H 22 2

1 2

1 1 1 11.097 10 m 2279 nm.
5

R
n n

λ

−−        = − = ⋅ − =    ∞       
 

The longest wavelength photons emitted in the Pfund series corresponds to the transition of an electron 
from the fifth excited state to the fourth excited state, i.e. a transition from 2 6n =  to 1 5.n =   The Rydberg 
formula gives the longest wavelength:  

( )
( ) ( )

11

7 -1
H 2 22 2

1 2

1 1 1 11.097 10 m 7458 nm.
5 6

R
n n

λ

−−        = − = ⋅ − =           
 

Both of these wavelengths lie in the near-infrared range, so they are not visible. 

38.22. The electron in the second excited state has 3.n =  There are two different paths the electron can take to 
get to the ground state:  

3  2  1n n n= → = → =  or 3  1.n n= → =  
Two photons are emitted for the first path. The wavelength of the first photon is 

( )
( ) ( )

11

7 -1
3 2 H 2 2 2 2

1 2

1 1 1 11.097 10 m 656.3 nm,
2 3

R
n n

λ

−−

→

       = − = ⋅ − =           
 

and the wavelength of the second photon is 

( )
( ) ( )

11

7 -1
2 1 H 2 2 2 2

1 2

1 1 1 11.097 10 m 121.5 nm.
1 2

R
n n

λ

−−

→

       = − = ⋅ − =           
 

One photon is emitted for the second path.  The wavelength of this photon is  

( )
( ) ( )

11

7 -1
3 1 H 2 2 2 2

1 2

1 1 1 11.097 10 m 102.6 nm.
1 3

R
n n

λ

−−

→

       = − = ⋅ − =           
 

The photon of wavelength 656.3 nm is red.  The other two photons are in the UV part of the spectrum so 
they are not a visible color. 

38.23. The quantum number of the fifth excited state is 6.n =  The energy of the fifth excited state is:  

( )
( )0 62 2

1 113.6 eV 0.378 eV.
6

nE E E
n

= − ⇒ = − = −  

38.24. The allowed energies for the hydrogen atom are given by:  

0 2

1 .nE E
n

= −  

The bombarding electron has an energy of 13.1 eV, which is less than the ionization energy of the 
hydrogen atom, so there is specific state that the hydrogen atom cannot be excited beyond.  The shortest 
wavelength that can be emitted occurs for a transition from the highest possible state to the ground state.  
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To determine the highest possible state, the difference in energy between the excited states and the ground 
state is required: 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2 1 2

3 1 2

4 1 2

5 1 2

6 1 2

113.6 eV 1 10.20 eV
2

113.6 eV 1 12.09 eV
3

113.6 eV 1 12.75 eV
4

113.6 eV 1 13.06 eV
5

113.6 eV 1 13.22 eV
6

E

E

E

E

E

→

→

→

→

→

 
 ∆ = − − =
 
 
 
 ∆ = − − =
 
 
 
 ∆ = − − =
 
 
 
 ∆ = − − =
 
 
 
 ∆ = − − =
 
 

 

Since the bombarding electron has an energy of 13.1 eV, the highest possible state that the bombarding 
electron can excite the hydrogen atom into is the 5n =  state.  Therefore, the shortest wavelength line that 
the atom will emit is 

( )( )
( )

15 8
8

4.136 10 eV s 2.998 10  m/s
9.4973 10  m 94.97 nm.

13.06 eV
hc
E

λ
−

−
⋅ ⋅

= = = ⋅ ≈  

38.25. (a)  In a hydrogen atom, the nucleus is composed of a single proton. The modified Rydberg constant for 
hydrogen is: 

( )
( ) ( )

7 1
7 1H

modified 31 27

1.09737 10  m
1.0968 10  m .

1 / 1 9.10938 10 kg / 1.67262 10 kg
R

R
m M

−
−

− −

⋅
= = = ⋅

+ + ⋅ ⋅
 

(b)  In a positronium atom, the nucleus is composed of a single positron. The mass of the positron is the 
same as the mass of an electron, so / 1.m M =  The modified Rydberg constant for positronium is: 

( )
( )7 1

6 1H
modified

1.09737 10  m
5.4869 10  m .

1 / 2
R

R
m M

−
−

⋅
= = = ⋅

+
 

38.26. (a)  The reduced mass of a hydrogen-like muonic atom is: 

( )( )
( ) ( )

28 27
muon p 28

28 27
muon p

1.88 10  kg 1.67 10  kg
1.69 10  kg.

1.88 10  kg 1.67 10  kg

m m

m m
µ

− −

−

− −

⋅ ⋅
= = = ⋅

+ ⋅ + ⋅
 

 (b)  The reduced mass of the muonic atom is about 186 times that of the hydrogen atom.  Since the 
ionization energy of the hydrogen is directly proportional to the reduced mass, the ionization energy of the 
muonic atom is about 186 times that of the hydrogen atom. Since it takes 13.6 eV to ionize the hydrogen 
atom, it would take ( )186 13.6 eV 2520 eVE = =  to ionize the hydrogen-like muonic atom. 

38.27. THINK:  An excited hydrogen atom emits a photon with an energy of ph 1.133 eV.E =  When emitting a 

photon, the hydrogen atom loses the energy of the photon. To determine the initial and final states of the 
hydrogen atom, the energy levels must be analyzed to determine which set of two can be separated by the 
given photon energy.  Start with the final energy level being the ground state, and then progress to higher 
states as the final state. 
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SKETCH:   

 

RESEARCH:  The energy of the nth energy level in a hydrogen atom is 213.6 eV/ .nE n= −  Since the 
hydrogen atom loses the energy that is gained by the emitted photon, ph i f .E E E E= −∆ = −   

SIMPLIFY:  i f phE E E= +  

CALCULATE:  The lowest energy levels of the hydrogen atom are: 1 13.597 eV,E = −  2 3.399 eV,E = −  

3 1.511 eV,E = −  4 0.850 eV,E = −  5 0.544 eV,E = −  6 0.378 eV.E = −  For f 1 ,E E=  

( ) ( )i 13.597 eV 1.133 eV 12.464 eV,E = − + = −   which is not an allowed level. For f 2 ,E E=  

( ) ( )i 3.399 eV 1.133 eV 2.266 eV,E = − + = −  which is not an allowed level. For f 3 ,E E=  

( ) ( )i 1.511 eV 1.133 eV 0.378 eV,E = − + = −  which is the energy level 6 .E   The photon was emitted when 

an excited atom in the 6n =  state transitioned to the 3n =  state.  This is the only allowed transition. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  For a transition from the 6n =  state to the 3n =  state, the emitted photon has 
energy ( ) ( )6 3 0.378 eV 1.511 eV 1.133 eV,E E E= − = − − − =  as required. 

38.28. THINK:  The incident photon has an energy of ph 8.00 eV.E =  The electron is in an initial state with 

quantum number i 2.n =  To calculate the final speed, v, of the electron, the final kinetic energy of the 
electron must be determined.  To determine the kinetic energy of the electron, the amount of energy 
required to remove the electron from the atom needs to be determined. 
SKETCH:   

 
 

RESEARCH:  The energy of the nth electron state is 213.6 eV/ .nE n= −   Since the photon is absorbed, the 
final energy of the electron is f i ph .E E E= +  The non-relativistic speed of the electron is found from 

considering its kinetic energy, 2 / 2.K mv=  
SIMPLIFY:  The initial energy of the electron is 2

i i13.6 eV/ .E n= −  The final energy of the electron is 
2

f ph i13.6 eV/ .E E n= −  The final energy is equal to the kinetic energy of the electron: 
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2
f ph ph2 2

i i

ph 2
i

e

1 1 113.6 eV 13.6 eV
2

12 13.6 eV

eE K E m v E
n n

E
n

v
m

= = − ⇒ = −

 
− 

 =

 

CALCULATE:  

( )
( )

( )

( )

19
2

6
31

12 8.00 eV 13.6 eV 1.602 10 J/eV
2

1.272 10 m/s
9.109 10  kg

v

−

−

 
 − ⋅
 
 = = ⋅

⋅
 

ROUND:  Rounding to three significant figures, 61.27 10  m/s.v = ⋅  
DOUBLE-CHECK:  The final speed of the ejected electron is only about 0.4% the speed of light. This 
justifies using a non-relativistic method to determine the final speed.  

38.29. THINK:  Assume that Bohr’s quantized energy levels apply to planetary orbits; that is, there are discrete 
allowed radial distances from the center of rotation for which a planet can orbit. Consider Newton’s law of 
universal gravitation, the equation for centripetal acceleration, and the quantization of orbital angular 
momentum to derive an equation similar to 38.6 and to determine the value of the principal quantum 
number for the Earth’s orbit.  
SKETCH:   

 
 

RESEARCH:  Newton’s law of gravitational attraction is 2G / .F Mm r=  The equation for centripetal 
acceleration is 2

c / .a v r=  Orbital angular momentum has discrete values, and is characterized by a 

principal quantum number, n: , with 1, 2, 3, ... .L r p n n= × = =




  For circular motion, r  and p  are 

perpendicular, so .L rp rmv n= = =   The following values are useful for the problem: Earth’s mass, 
24

E 5.974 10  kg;m = ⋅  the Sun’s mass, 30
S 1.989 10  kg;m = ⋅  and the center-to-center distance between the 

Earth and the Sun, 111.4960 10  m.R = ⋅  
SIMPLIFY:  Using Newton’s second law, :F ma=   

2

2

G   ,Mm mv GMv
r rr

= ⇒ =  

2 2 2GML rmv rm m GMr n m GMr n
r

= = = = ⇒ =   

Therefore, the allowed radius of the orbits is given by  
2

2
2 ,r n

GMm
=

  

where M  is the mass at the center of the orbit and m is the mass orbiting M. 
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The principal quantum number is then 

.m GMrn =


 

CALCULATE:  With S ,M m=  Em m=  and :r R=  

( ) ( )( )( )
( )

24 11 3 2 30 11

74
34

5.974 10  kg 6.674 10  m / kg s 1.989 10  kg 1.4960 10  m
2.52342 10 .

1.055 10  J s
n

−

−

⋅ ⋅ ⋅ ⋅
= = ⋅

⋅
 

ROUND:  Rounding to four significant figures, the principal quantum number is 742.523 10 .n = ⋅  
DOUBLE-CHECK:  For macroscopic objects such as the Earth and the Sun, the principal quantum 
number of the Earth’s orbit should be very large. Note the derived expression for r has the correct units: 

2 22 2 2 2 4 2

3 2 3 23 2 23 2

kg m / s sJ s kg  m /s
m.

kg  m /sm  kg / sm / kg s kg
r

         = = = =          
 

38.30. THINK:  The period of rotation of an electron on the nth Bohr orbit is given by: 
3

H

, with 1, 2, 3, ... .
2

nT n
cR

= =   

To prove this, define the period in terms of the radius of the Bohr orbit and the speed of an electron in the 
Bohr orbit, and use the corresponding equations to simplify the period into the desired result. It is useful 
to know that the Rydberg constant can be written as ( )2 4 3

H / 4 .R k e cµ π=   

SKETCH:  Not applicable. 
RESEARCH:  The period for any circular motion is 2 / .T r vπ=  The radius of the nth Bohr orbit is:  

2
2 2

02 .r n a n
keµ

= ≡
  

The speed of the electron in the Bohr orbit is:  
2

2
00

.ke e kv
n aa n µµ

= =  

SIMPLIFY:  
( )32 23 6

2 3 3 30 0
0 2 4 6

/2 2 2 22
kea ar nT a n n n n

v e k e k e k e k e

µ µµ µπ π π ππ
µ

 
= = = = =  

 



  

( ) ( )
3 3 3 3

3 3 3 3
2 4 2 4 2 4

H H

2 2 2 1 4 1 1 , with 1, 2, 3, ... .
2 2 2 2

c c nn n n n n
c c c R cRk e k e k e

π π π
µ µ µ

   = = = = = =   
     

    

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  The units of HR  are 1m .−  By dimensional analysis, the units of the derived equation 
are: 

( )
3

1
H

1 1 s.
2 1/ sm/s m

n
cR −

 
= = = 

 
 

This result is a unit of time, which is appropriate for a period. 

38.31. For an electron in the 5n =  shell, the orbital angular momentum quantum number can range from 0 to 

1;n−  that is, 0,  1,  2,  3,  4.=  The magnitude of the total orbital angular momentum is ( )1 .L = +    

The largest possible value for the angular momentum occurs with 4 :=  

( ) 344 4 1 20 4.716 10  J s.L −= + = ≈ ⋅   The smallest possible value for the orbital angular momentum 

occurs with 0 :=  ( )0 0 1 0.L = + =  
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38.32. (a) The K shell has quantum number 1.n =  The electron configuration of a full K shell is 21 .s  Therefore, 
the maximum allowed number of electrons is 2. 
(b) The L shell has quantum number 2.n =  The electron configuration of a full L shell is 2 62 2 .s p  
Therefore, the maximum allowed number of electrons is 8. 
(c) The M shell has quantum number 3.n =  The electron configuration of a full M shell is 2 6 103 3 3 .s p d  
Therefore, the maximum allowed number of electrons is 18.  
In general, the maximum number of electrons in a shell n is 22 .n  

38.33. THINK:  The hydrogen atom is in the stationary state ( ) ( ), , 3, 2,1 .n m =  Determine the angle, ,θ  

between the total angular momentum vector and the z-axis for this state. 
SKETCH:  The classical picture of angular momentum is shown below. 

 
RESEARCH:  The magnitude of the total orbital angular momentum is ( )1 .L = +    The z-projection 

of the total orbital angular momentum is .zL m=   
SIMPLIFY:  From the classical picture above,  

( )
cos .

1
zL m

L
= =

+ 

θ  

CALCULATE: 
( )

11 1 1cos   cos 65.905
6 62 2 1

θ θ −  
= = ⇒ = = ° 

+  
  

ROUND:  The value can be given to arbitrary precision. It is reasonable to use three significant figures, so 
65.9= °.θ  

DOUBLE-CHECK:  The angle should be between 0°  and 180 .°  Note that the value of zL  can never 
exceed the magnitude of the total orbit angular momentum, L. 

38.34. THINK:  A hydrogen atom is in its fifth excited state, with principal quantum number 6.n =  The atom 
emits a photon with a wavelength of 410 nm.λ =  This photon is emitted when the electron falls from the 

6n =  energy level to a less energetic energy level. By energy conservation, the energy of the emitted 
photon must match the change in energy of the fallen electron. Determine the maximum possible orbital 
angular momentum, L, of the electron after emission. 
SKETCH:   

 
 

RESEARCH:  The maximum possible orbital angular momentum of the electron is related to the 
maximum possible orbital angular momentum quantum number, ,  of the final state. Specifically, 
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( )1 ,L = +    where the maximum   is max 1.n= −  The energy of the nth level in a hydrogen atom is 
213.6 eV/ .nE n= −  The energy of a photon is / .E hc λ=  

SIMPLIFY:  When the photon is emitted, the electron loses energy, ph .E  The final state of the electron 

must have an energy that is accessible via this photon emission; that is, 
1 2 ph .n nE E E= −  Substitution gives  

1 2 2 2
2 1 2

13.6 eV 13.6 eV 13.6 eV .n
hc hcE

n n nλ λ
= − − ⇒ − = − −  

The quantum number of the final state is  

1

2
2

13.6 eV .
13.6 eV

n
hc

n λ

−
=

 
− − 
 

 

Then, max 1 1n= −  and ( ) ( )max max max 1 11 1 .L n n= + = −     

CALCULATE:  

( )
( )( )

( )

1 15 8

2 9

13.6 eV 1.999 2
4.136 10 eV s 2.998 10 m/s13.6 eV

410 10 m/s6

n
−

−

−
= = ≈

 ⋅ ⋅
 − −
 ⋅ 

 

( )max 2 2 1 2L⇒ = − =   

ROUND:  Since 1n  is an integer, it was rounded to 2 above. 
DOUBLE-CHECK:  The electron transitioned from the 6n =  state to the 2n =  state by emitting a photon 
of wavelength 410 nm.λ =  This matches the case shown in Figure 38.6 for the 6n =  to 2n =  transition, 
in which a photon is emitted of wavelength 410 nm.λ =  

38.35. THINK:  The radial wave function for hydrogen in the 1n =  state is given by ( ) 0/
1 1 ,r ar A eψ −=  where the 

normalization constant is calculated in Example 38.2 to be ( )3/2
1 01/ .A aπ=   The radial part of the 

hydrogen wave function must normalize to 1.  
SKETCH:   

 
RESEARCH: The probability density is given by 

( ) ( ) 22 .n nP r r rψ=  

The radial wave function for 1n =   is 

( ) 0/
1 3/2

0

1 .r ar e
a

ψ
π

−=  

SIMPLIFY:  (a) The probability density is given for 1n =  by 

( ) ( ) 0 0

2
2

2 / 2 /2 2
1 1 33/2

00

1 .r a r a
n

rP r r r r e e
aa

ψ
ππ

− −
= = = =
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For 0 / 2,r a=  

( ) ( ) ( )0 0

2
2 /2 /0 1

1 0 3
0 0 0

/ 2 1 1/ 2 .
4 4

a a
n

a
P a e e

a a a eπ π π
− −

= = = =  

 (b) The radial function, ( )1 rψ  has a maximum at the origin ( 0).r =   To find the maximum in the 
probability density we need to take its derivative with respect to ,r  set it equal to zero, and solve for .r   

( )
0 0 0

2 2
1 2 / 2 / 2 /

3 3
0 0 0

1 22 0.r a r a r adP r d r re re e
dr dr a a aπ π

− − −   
= = − =   

   
 

0 0

2
2 / 2 /

0
0 0

22     1     .r a r ar rre e r a
a a

− −= ⇒ = ⇒ =  

Thus, because the probability density contains an r2 factor instead of the r in the wavefunction, it has a 
maximum at a0 rather than the origin. 
CALCULATE:   
Not applicable 
ROUND:  Not applicable. 
DOUBLE-CHECK:  The probability density for 1n =  peaks at 0 .r a=  We can see that this is true in 
Figure 38.9b.  However, the probability density does not peak at 04r a=  for 2n =  and it does not peak at 

09r a=  for 3.n =   

38.36. THINK:  The value of r for which its probability is a maximum is determined by taking the derivative of 
the probability function with respect to r, then setting it to zero and solving for r. 
SKETCH:   

 
RESEARCH:  The given wave function is  

( ) 0/
100 3/2

0

1 .r ar e
a

ψ
π

−=  

The probability function is ( ) ( ) 22
1004 .P r r rπ ψ=  

SIMPLIFY:  Taking the derivative of ( )P r  with respect to r  gives: 

( ) ( )( ) ( )
0

0
0

0 0

2
/

2 2 /2 2 2
100 33/2

00

2
2 / 2

2 /
/

3 3
0 00 0

44 4

4 2 82 1

r a
r a

r a r a
r a

dP r d d e dr r r r e
dr dr dr draa

r re rre e
a aa a

π ψ π
π

−
−

−
−

−

 
 = = =
 
 

   
= − = −   

   

 

Setting 
( )

0 :
dP r

dr
=   

02 /

0
3

00

8 1 0  1 0 and 0,
r are r r r

a aa

−  
− = ⇒ − = = 
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which corresponds to 00 and .r r a= =  The probability is zero when r = 0, so this solution is a minimum.  
Therefore, the value for r  for which the probability function is a maximum is 0 .r a=   
CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  The second derivative test can be used to verify that 0r a=  corresponds to a 
maximum. The second derivative is: 

02 /2 2

2 3 2
0 00

( ) 8 2 4 1 .
r ad P r e r r

adr a a

−  
= − +  

 
 

In order for  0r a=  to be a local maximum point for the function P, it must be the case that 

0

2

2
( ) 0.

r a

d P r
dr =

<  

Check:  

( )
0

0 0

2 /2 2 2 2

2 3 3 3
00 0 0

2
0

( ) 8 2 4 8 81 2 4 1 0.
r

r a r

a

a

d P r e r r e e
adr a a a a

− −

= =

− 
= − + = − + = − <  

 
 

Hence, 0r a=  is a local maximum for ( ).P r   

38.37. THINK:  To calculate the probability that the electron is found within the Bohr radius, 0 0.05295 nm,a =  
the function,  

( ) 02
2 3

00

1 2 ,
4 2

r
a

s
rr e
aa

ψ
π

− 
= − 

 
 

must be squared and integrated from a radius of 0r =  to 0 .r a=  
SKETCH:   

 
RESEARCH:  The probability that the electron is between 0r =  and 0r a=  is given by: 

( ) ( )0 3
0 20

.
a

sP r a r d rψ≤ = ∫  

SIMPLIFY:  ( ) ( )0 2
0 20

4
a

sP r a r r drπ ψ≤ = ∫  

CALCULATE:   

( ) 0 0
0 0

0 0 0
0 0 0

22 3 4
2

0 3 3 20 0
0 00 0 0

2 3 4
3 4 50 0 0
0 0 0

1 44 2 4
32 8

1 1 1
2 2 8

r r
a aa a

r r r
a a aa a a

r r r rP r a e dr r e dr
a aa a a

r e dr r e dr r e dr
a a a

π
π

− −

− − −

     ≤ = − = − +       

= − +

∫ ∫

∫ ∫ ∫

 

After evaluating the integrals, the probability is: 

( ) ( )
0

0 4 3 2 2 4
0 0 0 1 0

0 4
0

0

8 8 4 21 211 0.0343165.
8 88

ar
ae a a r a r r

P r a e e
ea

−

−

 
− + + +   ≤ = = − + = − =   
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ROUND:  Rounding to four decimal places is sufficient.  The probability of finding the electron within the 
Bohr radius is ( )0 0.03432.P r a≤ =  
DOUBLE-CHECK:  Figure 38.8(b) shows the probability density function for 2n =  (blue curve).  Here, 
for 0/ 1,r a ≤  the area under the curve looks to be about small, so an answer of about 3% is reasonable. 

38.38. The energy of the electron in He+  is given by: 
2 2 4 2

2 2
1 02

0

,
22

k Z e keE Z Z E
a

µ  −
= = − = − 

 

 where 0 13.6 eVE =  and 2Z =  for helium.  

Therefore, the energy required to convert He+  to 2He +  is ( ) ( )2
1 2 13.6 eV 54.4 eV.E = − =   This is four 

times the energy needed to ionize the hydrogen atom. 

38.39. By following the derivation of the Bohr radius for hydrogen from the textbook, but using 2e for the charge 
of the nucleus, one obtains: 

( ) 2
2 2 2 2 2 2

2

2 2 2 2
2 0

0 02 2 2

2
  2  

1 0.05295 nm   0.0265 nm.
2 2 2 2 2

k e e v r k e v r n
r r

anr a n a
ke ke ke

µ µ µ

µ µ µ

= ⇒ = = ⇒

 
′ ′= = ⇒ = = = = = 

 



  

 

The Bohr radius of He+  is half that of hydrogen. 

38.40. THINK:  The Paschen series occurs for transitions to the 3n =  state, so the three lowest energies 
correspond to transitions from the 4,n =  5,n =  and 6n =  states.  The Paschen series for He+  is 
determined in the same manner as that for hydrogen. The main difference is that the Rydberg constant, 

H ,R  will be different. 
SKETCH:   

 
 

RESEARCH:  The Rydberg constant for hydrogen is given by ( )2 4 3
H / 4 .R k e cµ π=   The charge of a 

helium nucleus is 2e.  The Paschen series is given by: 

H 2

1 1 1 , with 4, 5, 6...
9n

R n
nλ

 = − = 
 

  

SIMPLIFY:  Since the charge of a helium nucleus is 2e, the Rydberg constant for He is:  

( )22 2 2 4

H H3 3

2
4 4 .

4 4

k e k eR R
c c

µ µ
π π

′ = = =
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The wavelength for the Paschen series is then:  
1 1

2 2
H H

1 1 1 1 1 1 .
9 4 9n R Rn n

λ
− −

   = − = −   ′    
 

CALCULATE:  
( )

1
9

4 7 1

1 1 1 468.81 10  m
9 164 1.097 10  m

λ
−

−

−

 = − = ⋅ ⋅  
  

( )
1

9
5 7 1

1 1 1 320.48 10  m
9 254 1.097 10  m

λ
−

−

−

 = − = ⋅ ⋅  
   

( )
1

9
6 7 1

1 1 1 273.47 10  m
9 364 1.097 10  m

λ
−

−

−

 = − = ⋅ ⋅  
 

ROUND:  Rounding to three significant figures is sufficient: 4 469 nm,λ =  5 320. nmλ =  and 

6 273 nm.λ =  
DOUBLE-CHECK:  While 5λ  and 6λ  are outside the visible spectrum, 4λ  does coincide with a 
wavelength in the visible spectrum, so the answers are reasonable. 

38.41. THINK:  The Coulomb constant is given by ( )01/ 4 .k πε=  We can derive the effective Coulomb constant 

by replacing 0ε  with 0 .κε  So ( )eff 01/ 4 / .k kπκε κ= =  Since the ground state energy of the hydrogen-like 
atom is proportional to k, it will then be affected by .κ  In addition, we replace the reduced mass of the 
electron with the effective mass of the electron effm  in the crystal.  The reduced mass in this case is very 
close to the mass of the electron. 
SKETCH:   

 
 

RESEARCH: The ground state energy of a hydrogen atom is ( )2 4 2
0 / 2 .E k eµ=   

SIMPLIFY:  The ground energy of a hydrogen-like atom is in the silicon crystal is 

( )2 4 2 4 2 4
eff effeff e e 0

0 2 2 2 2 2 2

0.200 0.2000.200 .
2 2 2

m k e m k e m k e E
E

κ κ κ
 

= = = = 
   

 

CALCULATE:   
(a) Not necessary 

(b)  
( )

( )eff
0 2

0.200 13.6 eV 0.0272 eV.
10.0

E = =  

ROUND:  To three significant figures, eff
0 27.2 meV.E =  

DOUBLE-CHECK:  Since silicon is considered a semiconductor, it should have a relatively low binding 
energy so that at room temperature, 300 K,T =  the thermal energy ( )B 26 meVE k T≈ =  is enough to free 
the electrons for conduction. The result is reasonable. 

38.42. THINK:  The spacing between energy levels in 2Li +  will be proportional to 21/ .n  The energy level 
spacing will then be inversely proportional to the wavelength of light for that transition from level n to .n′  
The lowest end of the visible spectrum is min 380 nm.λ =  The wavelength increases with decreasing energy, 
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so if the transition ends on level ,n′  the lowest wavelength associated with that final position is when 
1.n n′= +  The series can be examined starting with 1n′ =  until the desired wavelength is obtained.   

SKETCH:   

 
 

RESEARCH:  Change in energy is given by / .E hc λ∆ =  The energy of each level is given by 2
0 / .nE E n′=  

For lithium, 2
0 0 ,E Z E′ =  where 3.Z =  

SIMPLIFY:  The energy difference between level n′  and n  ( )n n′>  is, 

0 0
02 2 2 2

1 19 .
E E hcE E
n n n n λ
′ ′  ∆ = − = − = ′ ′ 

  

Therefore, the wavelength of the emitted photon is,  
1

2 2
0

1 1 .
9n
hc
E n n

λ
−

 = − ′ 
 

CALCULATE:  2, 1 :n n′= =  
( )( )

( )

15 8 1

1

4.136 10  eV s 3.00 10  m/s 11 13.51 nm
9 13.6 eV 4

λ
− −⋅ ⋅  = − = 

 
   

3, 2 :n n′= =  
( )( )

( )

15 8 1

2

4.136 10  eV s 3.00 10  m/s 1 1 72.99 nm
9 13.6 eV 4 9

λ
− −⋅ ⋅  = − = 

 
 

4, 3 :n n′= =  
( )( )

( )

15 8 1

3

4.136 10  eV s 3.00 10  m/s 1 1 208.54 nm
9 13.6 eV 9 16

λ
− −⋅ ⋅  = − = 

 
 

5, 4 :n n′= =
( )( )

( ) ( )
15 8 1

4 min

4.136 10  eV s 3.00 10  m/s 1 1 450.55 nm 
9 13.6 eV 16 25

λ λ
− −⋅ ⋅  = − = > 

 
      

ROUND:  Rounding to three significant figures is sufficient.  For doubly ionized lithium, the transition 
from state 5n =  to state 4n′ =  is the first visible, with wavelength 451 nm. 
DOUBLE-CHECK:  The next two closest possible transitions (going down two levels) would be 5,n =  

3n′ =  and 6,n =  4,n′ =   which give wavelengths of 143 nm and 292 nm, respectively. Since neither of 
these is in the visible spectrum, the result found must be the first transition to cross the threshold. 

38.43. THINK:  The derivations for the desired expressions are the same as the derivation in the textbook for 
hydrogen, except instead of the Coulomb force being proportional to 2 ,e  it is now proportional to 2 .Ze  
SKETCH:  Not applicable. 
RESEARCH:  The Coulomb force and the centripetal forces on the electron are equal: 

2 2

2 .Ze vk
rr

µ
′

=
′′

 

The ground state energy is given by: 
2

2
0

1 .
2

ZeE v k
r

µ′ ′= −
′
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SIMPLIFY:   
(a)  Solving for r ′  in terms of Z gives:  

2 2
2 2 2 2

2   .Ze vk r kZe v r
rr

µ µ µ
′

′ ′ ′= ⇒ =
′′

 

Recall 2 2 2 2 2 ,v r nµ ′ ′ =   so  
22 2

2 2 2 0
2  .

a nnr kZe n r
Z Zke

µ
µ

 
′ ′= ⇒ = = 

 



  

(b)  Solving for v′  in terms of Z gives: 

( )
2 2 2 2 2 2 2

2
2 22

000

    .
/

Ze v Zke Zke Z ke Z kek v v
r r n ar a na n Z

µ
µ µµµ

′
′ ′= ⇒ = = = ⇒ =

′ ′′
 

(c)  Solving for E′  in terms of Z gives:  

( )
2 2 2 2 2 2 2 2

2 2 2 0
2 2 22

000

1 1 .
2 2 2 222 /

EZe Ze Ze Ze kZe ke Z keE v k k k k Z Z
r r r r aa n n na n Z

µ
     −  ′ ′= − = − = − = − = − = = −      ′ ′ ′ ′      

 

CALCULATE:  There is nothing to calculate. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  As Z increases, there are more protons attracting the electron. The radius decreases 
and the speed increases with Z, which is expected for a stronger attractive force. Likewise, as the electron 
gets closer and Z gets larger it will be more bound to the nucleus, so 2E Z′ ∝  is also reasonable.  

38.44. THINK:  The solution from Problem 38.43 indicates that for an atom with atomic number Z, the energy 
of the electron in the orbit is directly proportional to 2 .Z  This means the Rydberg constant for helium will 
be different than that for hydrogen. For each of the series, the maximum wavelength occurs between the 
two lowest levels, while the minimum wavelength occurs between the lowest energy level and the 
ionization energy. For He, 2.Z =  
SKETCH:   

 
 

RESEARCH:  From the previous question, the energy of the electron is:  
2

02 .ZE E
n
−′ =  

The energy is given by / .E hc λ=    
SIMPLIFY:  For an electron transition from 1n  to 2 ,n  the energy of the emitted photon is:  

2 2
2

2 1 0 0 02 2 2 2
2 1 1 2

1 1 .Z ZE E E E E Z E
n n n n

 − −
= − = − = − 
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Therefore, the wavelength of the emitted photon is: 

( )
( )1

1

1

2
02 2 2 2 2

1 2 0 1 2

1 1 1 1 .n

n

hc hcZ E
n n Z E n n

λ
λ

−
   

= − ⇒ = −   
   

 

The maximum and minimum wavelengths are given by: 

( )

( )
1

1

max 2 2 2
0 1 1

1 1

1
n hc

Z E n n
λ

−
 
 = −
 + 

 and ( )1

1 2
1

min 2 2 2
0 1 0

1 1 .n hcnhc
Z E n Z E

λ
−

 
= − = 

∞ 
 

CALCULATE:  For the Lyman series: 

( ) ( )( )
( ) ( ) ( ) ( )

115 8
1 9

max 2 2 2

4.136 10 eV s 3.00 10 m/s 1 1 30.41 10  m
2 13.6 eV 1 1 1

λ

−−

−
 ⋅ ⋅
 = − = ⋅
 + 

 

( ) ( )( )( )
( ) ( )

215 8
1 9

min 2

4.136 10 eV s 3.00 10 m/s 1
22.81 10  m

2 13.6 eV
λ

−

−
⋅ ⋅

= = ⋅  

For the Balmer series: 

( ) ( )( )
( ) ( ) ( ) ( )

115 8
2 9

max 2 2 2

4.136 10 eV s 3.00 10 m/s 1 1 164.2 10  m,
2 13.6 eV 2 2 1

λ

−−

−
 ⋅ ⋅
 = − = ⋅
 + 

 

( ) ( )( )( )
( ) ( )

215 8
2 9

min 2

4.136 10 eV s 3.00 10 m/s 2
91.24 10  m.

2 13.6 eV
λ

−

−
⋅ ⋅

= = ⋅  

For the Paschen series: 

( ) ( )( )
( ) ( ) ( ) ( )

115 8
3 9

max 2 2 2

4.136 10 eV s 3.00 10 m/s 1 1 469.2 10  m,
2 13.6 eV 3 3 1

λ

−−

−
 ⋅ ⋅
 = − = ⋅
 + 

  

( ) ( )( )( )
( ) ( )

215 8
3 9

min 2

4.136 10 eV s 3.00 10 m/s 3
205.3 10  m.

2 13.6 eV
λ

−

−
⋅ ⋅

= = ⋅  

ROUND:  Rounding to three significant figures is sufficient:  
( )1
max 30.4 nm,λ =  ( )1

min 22.8 nm,λ =  ( )2
max 164 nm,λ =  ( )2

min 91.2 nm,=λ  ( )3
max 469 nm,λ =  ( )3

min 205 nmλ =  
DOUBLE-CHECK:  As the energy level, n, increases, the difference in the energy between the maximum 
and minimum transition decreases. Therefore, the wavelength difference should increase. This trend is 
observed in the results. 

38.45. For hydrogen, the wavelength to go from 1 1n =  to 2 2n =  is:  

( ) ( ) ( )

11

1 2 2 2 27 1
H 1 2

1 1 1 1 1 1 121.5 nm.
1.097 10  m 1 2R n n

λ

−−

−

  
 = − = − =   ⋅   

 

The wavelength to go from 1 2n =  to 2 3n =  is: 

( ) ( ) ( )

11

2 2 2 2 27 1
H 1 2

1 1 1 1 1 1 656.3 nm.
1.097 10  m 2 3R n n

λ

−−

−

  
 = − = − =   ⋅   

 

Therefore, a laser with a wavelength 5.4 times larger is needed. 
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38.46. (a) The intensity of the laser is its power, L 0.50 mW,P =  divided by its cross-sectional area, which is a 
circle of diameter 3.0 mm.d =  Therefore, the intensity is: 

( )
( )
( )

2L L
L 2 2

0.50 mW
71 W/m .

/ 2 1.5 mm

P P
I

A dπ π
= = = =  

(b) The intensity of the light bulb is its power, B 100. W,P =  divided by the area of the sphere of radius 
2.0 m.r =  Therefore, the intensity is: 

( )
( )

2B B
B 2 2

100. W
2.0 W/m .

4 4 2.0 m

P P
I

A rπ π
= = = =  

The ratio of intensities is:  

( )
( )

2

L
2

B

71 W/m
35.

2.0 W/m
I
I

= =  

Therefore, the laser is 35 times more intense than the light bulb. 

38.47. The laser has a power of 3.00 kWP =  and a wavelength of 694 nm.λ =  It emits a light pulse of duration 

10.0 ns.t∆ =  
(a) The energy of each of the photons in the pulse is 

  ( )
8

34 19
0 9

3.00 10  m/s6.626 10  J s 2.86 10  J.
694 10

cE hf h
λ

− −
−

⋅
= = = ⋅ = ⋅

⋅  
(b) The total energy in each laser pulse is 
  ( )( )3 93.00 10  W 10.0 10  s 30.0 J.E P t µ−= ∆ = ⋅ ⋅ =  

The number of chromium atoms undergoing stimulated emission is: 

 
6

14
19

0

30.0 10 J
1.05 10 .

2.86 10  J
EN
E

−

−

⋅
= = = ⋅

⋅
 

38.48. The green laser has wavelength G 543 nmλ =  and power G 5.00 mW.P =  The red laser has wavelength 

R 633 nmλ =  and power R 4.00 mW.P =  The energy of each photon is given by 0 / .E hc λ=  For a time 
duration ,t∆  the total energy of the photons is given by .E P t= ∆  The number of photons per unit time is: 

0   .Nhc N PE P t NE
t hc

λ
λ

= ∆ = = ⇒ =
∆

 

The number of photons per second produced by the green laser is:  

( )( )
( )( )

3 9
16 1G G G

34 8

5.00 10 W 543 10 m
1.37 10 s .

6.626 10 J s 3.00 10 m/s
N P

t hc
λ

− −

−

−

⋅ ⋅
= = ⋅

∆ ⋅ ⋅
 

The number of photons per second produced by the red laser is:  

( )( )
( )( )

3 9
16 1R R R

34 8

4.00 10 W 633 10 m
1.27 10 s .

6.626 10 J s 3.00 10 m/s
N P

t hc
λ

− −

−

−

⋅ ⋅
= = ⋅

∆ ⋅ ⋅
 

The green laser produces more photons per second. 

38.49. The Lyman series has the electron falling to 1 1.n =  The shortest possible wavelength occurs when 2 .n = ∞   
Therefore, the shortest possible wavelength of the Lyman series in hydrogen is: 

( ) ( )

11

min 2 2 27 1
H 1 2

1 1 1 1 1 1 91.16 nm.
1.097 10 m 1R n n

λ

−−

− −

  
 = − = − =   ∞⋅   
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38.50. The binding energy of the electron is given by: 0 2

1 .E E
n

= −  Therefore, the energy required in ionize 

hydrogen when the electron is in the nth level is 0 2

1 .E E
n

=  

38.51. The mass of an electron is 319.109 10  kg.m −= ⋅  The mass of a proton is 271.673 10  kg.M −= ⋅  By using the 

reduced mass, ( )/ ,mM m Mµ = +  the percent change in mass of the electron is: 

( )
( ) ( )

27

31 27

1.673 10  kg
1 100% 1 100% 0.05442%.

9.109 10  kg 1.673 10  kg
m M

m m M
µ

−

− −

 ⋅−     = − = − =     + ⋅ + ⋅     
 

If ,M m=  the reduced mass would be:  

( )312
31

9.109 10  kg
4.555 10  kg.

2 2 2
mM m m

m M m
µ

−
−

⋅
= = = = = ⋅

+
 

 
38.52. For a given n,   lies between 0 1.n≤ ≤ −  For each ,  the number of possible orbitals (characterized by 

the quantum number, m) is 2 1.+  By the Pauli exclusion principle, only one fermion can exist in a 
certain state at a time. This means that up to two electrons can exist in a certain orbital at the same time, 
where the two electrons have opposite spin angular momenta. Then, in the case of electrons, for each ,  
the number of possible electron states is ( )2 2 1 .+  The number of possible states for a given n is therefore: 

( ) ( )1 1 1
2

0 0 0

1
2 2 1 4 2 4 2 2 .

2

n n n n n
n n

− − −

= = =

−
+ = + = + =∑ ∑ ∑

  

   

38.53. In Section 38.2, the speed of the electron in a hydrogen atom was determined to be  
2

2
0

.kev
a nµ

=  

To scale with increasing atomic charge, replace 2e  with 2 .Ze   Therefore, the radius is given by: 
2

2 20
2 .

a
r n n

kZe Zµ
= =

  

Changing 0a  to 0 /a Z  and 2e  to 2Ze  in the equation for speed gives: 

( )( ) ( )( )( )
( )( )

22
0

2 2
0

231 11
8

29 2 2 19

9.104 10  kg 5.295 10  m 1
0.500 2.998 10 m/s 68.5.

8.99 10  N m /C 1.602 10  C

a nkev Z Z v
a n ke

Z

µ
µ

− −

−

= ⇒ =

⋅ ⋅
= ⋅ =

⋅ ⋅

 

This is either the element erbium, Er, Z = 68, or the element thulium, Tm, Z = 69. 
38.54. There are various paths from the third excited state to the ground state.  These paths are: 

(1)  4 3 2 1,n n n n= → = → = → =  
(2)  4 3 1,n n n= → = → =   
(3)  4 2 1,n n n= → = → =  and  
(4)  4 1.n n= → =   
The wavelength is given by: 

1

2 2
H 1 2

1 1 1 .
R n n

λ
−

 
= − 
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The possible photon wavelengths are calculated below. 
(1)  In the first case, three photons are emitted.  For 4 3,n n= → =  

( ) ( ) ( )

1

4 3 2 27 1

1 1 1 1875 nm.
1.097 10 m 3 4

λ

−

→ −

 
 = − =
 ⋅  

 

For 3 2,n n= → =    

( ) ( ) ( )

1

3 2 2 27 1

1 1 1 656.3 nm.
1.097 10 m 2 3

λ

−

→ −

 
 = − =
 ⋅  

 

For 2 1,n n= → =  

( ) ( ) ( )

1

2 1 2 27 1

1 1 1 121.5 nm.
1.097 10 m 1 2

λ

−

→ −

 
 = − =
 ⋅  

 

(2)  For 3 1,n n= → =  

( ) ( ) ( )

1

3 1 2 27 1

1 1 1 102.6 nm.
1.097 10 m 1 3

λ

−

→ −

 
 = − =
 ⋅  

 

(3)  For 4 2,n n= → =  

( ) ( ) ( )

1

4 2 2 27 1

1 1 1 486.2 nm.
1.097 10 m 2 4

λ

−

→ −

 
 = − =
 ⋅  

 

(4)  For 4 1,n n= → =  

( ) ( ) ( )

1

4 1 2 27 1

1 1 1 97.23 nm.
1.097 10 m 1 4

λ

−

→ −

 
 = − =
 ⋅  

 

38.55. For the muonic hydrogen atom the energy is calculated in the same way as that of the usual hydrogen 
atom with an electron, but with a new reduced mass, .µµ   The energy is   

2 4 2 4

, 02 2 2 2 2

1 1 1 ,
2 2n

k e k eE E
n n n

µ µ µ
µ

µ µ µµ
µ µ
 

= − = − = − 
  

 

where 0E  is the ionization energy of hydrogen.  The ratio of reduced masses is 

( )
( )

( ) ( )
( ) ( )

p e p e p

p e p e p

2 2 2
2

2 2 2

105.66 MeV/ 0.511 MeV/ 938.27 MeV/
185.94 MeV/ .

0.511 MeV/ 105.66 MeV/ 938.27 MeV/

m m m m m mm
m m m m m m m

c c c
c

c c c

µµ µ

µ µ

µ
µ

    + +
= =        + +    

 +
 = =
 + 

 

Therefore, the first three energy levels are: 

( )
( )

( )

( )
( )

( )

( )
( )

( )

1, 2

2, 2

3, 2

1185.94 13.6 eV 2530 eV
1
1185.94 13.6 eV 632 eV
2
1185.94 13.6 eV 281 eV
3

E

E

E

µ

µ

µ

= − = −

= − = −

= − = −
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38.56. The energy required to ionize an electron from the 2n =  state is the absolute value of the binding energy:  

( )
( )02 2

1 1 13.6 eV 3.40 eV.
2

E E
n

 = − = = 
 

 

38.57. For helium, the atomic number is 2Z =  since there are two protons in the nucleus.  Using equation 38.32, 
the energy levels are given by: 

22 2 4

02 2 ,
2n
k Z e ZE E

nn
µ µ

µ
′ ′  = − = −  

 

 

where 0E  is the ionization energy of the hydrogen atom.  The ratio of the reduced masses is: 

( ) ( ) ( )
( ) ( )

31 27
e p e p e p

31 27
e p e p e p

2 9.10938 10  kg 1.67262 10  kg
2 2 1.0002722.

2 2 9.10938 10  kg 2 1.67262 10  kg

m m m m m m

m m m m m m
µ
µ

− −

− −

  ⋅ + ⋅   + +′  = = = =       + + ⋅ + ⋅    
 

The first three energy levels of the He+  are: 

( ) ( )

( ) ( )

( ) ( )

2

1

2

2

2

3

21.0002722 13.6 eV 54.4 eV
1

21.0002722 13.6 eV 13.6 eV
2

21.0002722 13.6 eV 6.05 eV
3

E

E

E

 = − = − 
 

 = − = − 
 

 = − = − 
 

  

38.58. The energy of a transition capable of producing light of wavelength 10.6 μm  is: 

( )( )
( )
15 8

6

4.136 10  eV s 2.998 10  m/s
0.117 eV.

10.6 10  m
hcE
λ

−

−

⋅ ⋅
= = =

⋅
 

38.59. The energy of an electron in the nth orbital of a hydrogen atoms is given by:  

02

1 .nE E
n

= −  

The energy of the orbiting electron in a hydrogen atom with quantum number 45n =  is: 

( )
( )45 2

1 13.6 eV 6.72 meV.
45

E = − = −  

38.60. THINK:  One first must determine the expression of the ground state energy in terms of the electron 
mass, m, and the mass of the proton, M. 
SKETCH:   

 
 

RESEARCH:  The ground state energy for hydrogen is given by ( )2 4 2
0 / 2 ,E k eµ=   where the reduced 

mass is ( )/ .mM M mµ = +  The reduced mass of deuterium is given by ( )2 / 2 ,mM m Mµ′ = +  since the 
mass of the proton is about the same as the mass of a neutron.  
SIMPLIFY:  The energy difference is given by:  

( )
2 4 2 4

02 2 1 1 .
2 2
k e k eE Eµ µ µµ µ

µ µ
′ ′   ′∆ = − = − = −   
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The term 1µ
µ
′ 
− 

 
 is given by: 

( )
( )

( )2 / 2 2 2 2 21 1 1 .
/ 2 2 2

mM m M m M m M m M m
mM m M m M m M m M

µ
µ

+ +′ + − −
− = − = − = =

+ + + +
 

Therefore, the energy difference between the ground state of hydrogen and deuterium is:  

0 .
2

mE E
m M

 ∆ =  + 
 

CALCULATE:  
( )

( ) ( ) ( )
31

3
31 27

9.109 10  kg
13.6 eV 3.704 10  eV

9.109 10  kg 2 1.672 10  kg
E

−

−

− −

 ⋅
 ∆ = = ⋅
 ⋅ + ⋅ 

 

ROUND:  To three significant figures, 3.70 meV.E∆ =  
DOUBLE-CHECK:  Since the neutron is not charged, adding it to the system will not affect the energy 
significantly, so the answer is reasonable. 

38.61. THINK:  The electron emits a photon in going from the 4n =  state to the ground state, so the atom will 
recoil since the photon carries momentum.  
SKETCH:   

 
 

RESEARCH:  The momentum of the photon is given by / .p E c=    The energy of the electron is: 

02

1
nE E

n
= −  

The momentum that the hydrogen atom gains is p in the opposite direction. The speed is given by 

H/ .v p m=   The ground state energy for a hydrogen atom is 0 13.6 eV.E =   
SIMPLIFY:  For a transition from the 4n =  state to the 1n =  state, the energy of the emitted photon is: 

( ) ( )0 02 2

1 1 15
164 1

E E E
 
 = − − =
 
 

 

Therefore, the speed of the hydrogen atom is  

0

H H H

15 .
16

Ep Ev
m m c m c

= = =  

CALCULATE:  
( )( )

( )( )
19

27 8

13.6 eV 1.602 10  J/eV15 4.067 m/s
16 1.674 10  kg 3.00 10  m/s

v
−

−

⋅
= =

⋅ ⋅
 

ROUND:  To three significant figures, the speed of the recoiling hydrogen atom is 4.07 m/s.v =  
DOUBLE-CHECK:  This recoil speed is reasonable for a low energy photon emitted from a small mass. 

38.62. THINK:   
(a)  Using the equation for the allowed radii in the Bohr model, an expression for the radius as a function 
of  n can be determined. 
(b)  The Rydberg formula provides the wavelength of the emitted radiation. 
(c)  Helium has a different atomic number and reduced mass. 
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SKETCH:   

 
RESEARCH: 
(a)  The allowed radii in a hydrogen atom is 2

0 .r a n=   

(b)  The Rydberg formula for the wavelength in the hydrogen atom is H 2 2
1 2

1 1 1 .R
n nλ

 
= − 

 
 The frequency is 

given by / .f c λ=  

(c)  The reduced mass for He+  is 
2 .

2
mM

m M
µ′ =

+
 

The Bohr radius for He+  is given by 
2

0 2 .a
keµ

′ =
′
  

For larger atoms, the 2e  term is replaced with 2 .Ze    
SIMPLIFY:   

(b)  
1

H2 2 2 2
H 1 2 1 2

1 1 1 1 1, .f cR
R n n n n

λ
−

   
= − = −   

   
 

(c)  
2 2

0 02 2a a
Zke ke

µ µ
µ µµ µ

′ = = =
′ ′′

   

( )
2 2 2 2

6, He 0 0 0 0
2 .

2 2
2

mM
m Mm Mr a n a n a n a n

mMZ Z m MZ
m M

µ
µ

 
  ++ ′= = = =

′ + 
 + 

 

CALCULATE:   

(a)  ( )( )2
6 0.053 nm 6 1.908 nmr = =  

( )
( )

2
06

2
1 0

6
36

1

ar
r a
= =  

(b)  
( ) ( ) ( )

1

8
2 27 1

1 1 1 9.376 10 m
1.097 10 m 1 6

λ

−

−

−

 
 = − = ⋅
 ⋅  

 

( )( )
( ) ( )

8 7 1 15
2 2

1 12.998 10 m/s 1.097 10 m 3.197 10 Hz
1 6

f −
 
 = ⋅ ⋅ − = ⋅
 
 

 

Therefore, ultra-violet radiation was emitted. 

(c) 
( ) ( )
( ) ( ) ( )( ) ( )( )

31 27
2

6, He 31 27

9.109 10 kg 2 1.673 10 kg
0.053 nm 6 0.9537 nm

2 2 9.109 10 kg 1.673 10 kg
r

− −

− −

⋅ + ⋅
= =

⋅ + ⋅
 

The ratio of the radii would be the same: 6, He

1, He

36.
r

r
=   
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ROUND:    
(a)  To two significant figures, 6 1.9 nmr =  and 6 1/ 36.r r =  

(b)  Rounding to three significant figures is sufficient: 93.8 nm,λ =  153.20 10 Hz.f = ⋅  

(c)  To two significant figures, 6, He 0.95 nmr =  and 6, He 1, He/ 36.r r =  

DOUBLE-CHECK:  UV radiation is reasonable for a transition from the 6n =  state to the ground state. 

38.63. THINK:  The probability of finding the electron within the Bohr radius is determined by integrating the 
wave function,  

( ) 0/
1 3

0

1 ,r a
s r e

a
ψ

π
−=  

from 0 to 0 0.05295 nm.a =  
SKETCH:   

 
RESEARCH:  The probability is given by: ( ) ( )0 2 3

0 10

a

sP r a r d rψ≤ = ∫  

SIMPLIFY:  Using an integration table: 

( )
0

0
0 0

2
2 / 2 /2 20 0

0 03 30
0 0 0

2 2 20 0
0 03

0
2

4 4
2 2

4 5 1
2 2 2 2

1 5 .

a
a r a r aa a

P r a r e dr e ra r
a a

a a
e a a

a
e

π
π

− −

−

−

  
≤ = = − + +  

   
    = − +    

    
= −

∫  

CALCULATE:  ( ) 2
0 1 5 0.32332P r a e−≤ = − =  

ROUND:. Rounding the answer four significant figures gives as ( )0 0.3233.P r a≤ =  
DOUBLE-CHECK:  Figure 38.8(b) shows the probability density function for 1n =  (red curve).  Here, for 

0/ 1,r a ≤  the area under the curve looks to be about 30%, so the answer is reasonable. 
 

Multi-Version Exercises 

38.64. THINK:  The kinetic energy of the electrons must provide enough energy for an electron in the hydrogen 
atom to move from the 1 1n =  state to the 2 2n =  state.  Then the emission of light from the 2 2n =  to 

1 1n =  can occur. Note that in this collision between the electron and the atom the total momentum is also 
conserved, and the hydrogen atom will recoil from the collision.  However, the effect of this is a very small 
correction to the overall energy, because the mass of the hydrogen atom is ~2,000 that of the electron.  
This is why the problem statement instructs us to neglect the recoil. 

 SKETCH:  No sketch is needed. 

 RESEARCH:  The wavelength is given by: H 2 2
1 2

1 1 1 .R
n nλ

 
= − 

 
 The kinetic energy must be equal to the 

energy of the photon 2
e

1 .
2

hcK m v
λ

= =  
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 SIMPLIFY:  2 H
e H 2 2 2 2

1 2 e 1 2

21 1 1 1 1  
2

hcR
m v hcR v

n n m n n
   

= − ⇒ = −   
   

 

 CALCULATE:  
( )( )( )34 8 7 1

6
31

2 6.626 10  J s 2.998 10  m/s 1.097 10  m 1 1 1.894327754 10  m/s
9.109 10  kg 1 4

v
− −

−

⋅ ⋅ ⋅  = − = ⋅ ⋅  
 

 ROUND:  Rounding to four significant figures, 61.894 10  m/s.v = ⋅  If we wanted to be conservative, due to 
our neglect of the recoil correction, we could round to three figures and give the result as 

61.89 10  m/s.v = ⋅   
 DOUBLE-CHECK:  In the final expression, for larger values of ,m  v is smaller. This is reasonable. Also 

comforting is that the speed required increases with higher value of 2n  and decreases with higher value of 

1 ,n  both of which are expected. 

38.65. THINK:  Assume that some of the excited atoms are in the n = 3 state. The kinetic energy of the electrons 
must provide enough energy for an electron in the hydrogen atom to move from the 1 3n =  state to the 
higher state. Note that in this collision between the electron and the atom the total momentum is also 
conserved, and the hydrogen atom will recoil from the collision.  However, the effect of this is a very small 
correction to the overall energy, because the mass of the hydrogen atom is ~2,000 that of the electron.  
This is why the problem statement instructs us to neglect the recoil. 

 SKETCH:  We can use the same basic sketch as in the previous problem. 
 RESEARCH: The energy levels of the hydrogen atom are given by: 0 13.6 eVE = − , with 

0 2 2
2 1

1 1E E
n n

 
∆ = − 

 
  The kinetic energy of the electron is 2

e
1
2

K m v= . 

 SIMPLIFY:  We set the kinetic energy of the incoming electrons equal to the energy difference between 
the two levels:  

2 22 1
2 0 e 1e 21

0 e22 2 2 2 2
2 1 2 1 0 1 0

0
2 1 2 21

0 e 12

1 1 1 1
2

E m v nm v
E E m v

n n n n E n E

E
n n

E m v n

  +
∆ = − = ⇒ = + = ⇒ 

 

=
+

 

 CALCULATE:  It is perhaps easiest to compute the kinetic energy of the electron in eV and insert this 
value. We can easily obtain it from using that 2

e 511 keVm c = . So 

( ) ( )222 2 5 81 1 1
e e2 2 2/ (511 keV) 6.7601 10 / 2.998 10 1.2991 eVm v m c v c= = ⋅ ⋅ =  

 Now we can insert this into our expression for the final quantum number and obtain 

2
13.6 eV3 8.009

13.6 eV+(1.2991 eV)9
n −

= =
−

 

 ROUND:  Obviously, our answer needs to be an integer, so we round our final result to 2 8n = . 
 DOUBLE-CHECK:  Just the fact that all of our units cancel out and that we are left with a dimensionless 

number is comforting by itself.  That we find a value for 2 13n n> =  is also as expected. 

38.66. THINK: The kinetic energy of the electrons must provide enough energy for an electron in the hydrogen 
atom to move from some initial state with quantum number 1n  state to the higher state with quantum 
number 2 10n = . Note that in this collision between the electron and the atom the total momentum is also 
conserved, and the hydrogen atom will recoil from the collision.  However, the effect of this is a very small 
correction to the overall energy, because the mass of the hydrogen atom is ~2,000 that of the electron.  
This is why the problem statement instructs us to neglect the recoil. 

 SKETCH:  We can use the same basic sketch as in the previous problem. 
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 RESEARCH: The energy levels of the hydrogen atom are given by: 0 13.6 eVE = − , with 

0 2 2
2 1

1 1E E
n n

 
∆ = − 

 
.  The kinetic energy of the electron is 2

e
1
2

K m v= . 

 SIMPLIFY:  We set the kinetic energy of the incoming electrons equal to the energy difference between 
the two levels:  

2 22 1
2 0 e 2e 21

0 e22 2 2 2 2
2 1 1 2 0 2 0

0
1 2 2 21

0 e 22

1 1 1 1
2

E m v nm v
E E m v

n n n n E n E

E
n n

E m v n

  −
∆ = − = ⇒ = − = ⇒ 

 

=
−

 

 CALCULATE:  It is perhaps easiest to compute the kinetic energy of the electron in eV and insert this 
value. We can easily obtain it from using that 2

e 511 keVm c = . So 

( ) ( )222 2 5 81 1 1
e e2 2 2/ (511 keV) 3.7892 10 / 2.998 10 0.40815 eVm v m c v c= = ⋅ ⋅ =  

 Now we can insert this into our expression for the final quantum number and obtain 

1
13.6 eV10 4.9993

13.6 eV (0.40815 eV)100
n −
= =

− −
 

 ROUND:  Obviously, our answer needs to be an integer, so we round our final result to 1 5.n =  
 DOUBLE-CHECK:  Just the fact that all of our units cancel out and that we are left with a dimensionless 

number is comforting by itself. That we find a value for 1 210n n< =  is also as expected. 

38.67. ( ) ( )2 2lower
2 1 B

higher

exp ( 13.6 eV) 1/ 1/ /
n

n n k T
n

 = − −    

 ( ) ( )2 2 5 11 11lower

higher

exp ( 13.6 eV) 1/ 7 1/ 3 / (8.61733 10 eV/K)(528.3 K) 5.85722 10 5.86 10
n
n

− = − − ⋅ = ⋅ = ⋅   

38.68. ( ) ( )2 2lower
2 1 B

higher

exp ( 13.6 eV) 1/ 1/ /
n

n n k T
n

 = − −   

 ( )2 2
2 1

B lower higher

( 13.6 eV) 1/ 1/

ln( / )

n n
T

k n n

− −
⇒ =  

 ( )
55

( 13.6 eV) 1/ 64 1/ 9
1146.02 K 1150 K

(8.61733 10 eV/K)ln 5.1383 1 )0(
T −

− −
= = =

⋅ ⋅
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Chapter 39: Elementary Particle Physics  
 
Concept Checks 

39.1. b  39.2. c  39.3. b 
 
Multiple-Choice Questions 

39.1. a  39.2. c  39.3. c  39.4. c  39.5. d  39.6. b  39.7. c  
 
Conceptual Questions 

39.8. (a) The Baryon number is not conserved so this reaction cannot occur.  
(b) The Lepton number is not conserved so this reaction cannot occur. 
(c) The Baryon number is conserved. The masses can be considered:  

0

2 2 2 2 2

(1116)

1116 MeV/c 938.272 MeV/c 493.68 MeV/c 139.570 MeV/c 1572 MeV/c

p K π− +Λ → + +

< + + =
 

This decay is not possible since conservation of energy is violated.   
(d) The Baryon number is conserved.  The masses can be considered:  

0

2 2 2 2 2

(1450)

1450 MeV/c 938.272 MeV/c 493.68 MeV/c 139.570 MeV/c 1572 MeV/c

p K π− +Λ → + +

< + + =
 

This decay is not possible since conservation of energy is violated. 

39.9. Electromagnetic waves would be more appropriate for investigating the scattering cross-section of the 
atom since electromagnetic waves are scattered by the electrons surrounding the nucleus. On the other 
hand, since neutrons are electrically neutral particles they do not interact with the electron cloud. This 
allows neutrons to penetrate to the nucleus of an atom. Atoms with a larger atomic number Z have larger 
electron clouds, so electromagnetic waves are more affected by the atomic number. The atomic number 
will not affect neutrons.   

39.10. The Heisenberg uncertainty relation allows a violation of energy conservation on the order of E∆  over a 

time ( )2/ / .pt E m c∆ < ∆ <   Since the maximum speed of the boson is the speed of light, the range is 

.x c t∆ ≤ ∆  Therefore, the maximum range of such a force would be:  

( )( )
34

16
27 8

1.055 10 J s
2.10 10  m.

1.673 10 kg 3.00 10 m/sp

x
m c

−
−

−

⋅
∆ < = = ⋅

⋅ ⋅

  

This distance is overestimated since the particle would require a great deal of additional energy to reach a 
speed close to c. In this case, the maximum range of the force would be significantly smaller. 

39.11. No, the spin and the mass also determine the type of meson. π −  and ,−ρ  for example, have the same 
quark constituents ( ud ) but different spin and mass. 

39.12. Composite particles are defined by their constituent particles.  Both protons and neutrons are baryons, 
and both are composed of three quarks.  This is the basis of grouping particles together, not their time 
scales of decay.  A neutron is not considered to be a proton-electron composite because the fundamental 
make-up of a neutron is three quarks, as for the proton.  For this reason a neutron and a proton are both 
considered to be baryons. 

39.13. A positron will collide with an electron in the metal and result in two gamma rays. Since conservation of 
momentum must be obeyed, measuring the momentum of the two gamma rays allows one to infer the 
momentum of the electron.  
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39.14. The Heisenberg uncertainty relation allows a violation of energy conservation on the order of E  over a 
time / .t E∆ <   Since the speed of the virtual photon is the speed of light, the range is .x c t∆ = ∆  Therefore, 
the range of the electromagnetic interaction is given by: / .x c E∆ <     

39.15. (a) Absorption of a photon by a positron.  
(b) Electron-positron annihilation into a photon.  
(c) Electron-positron scattering.  

39.16.  
(a) (b) (c) 

  
 

(d) (e)  

 

 

 

39.17. The neutron and the proton are both baryons so the baryon number is conserved. Checking energy 
conservation:  

2 2 2 2939.6 MeV/c 938.3 MeV/c 139.6 MeV/c 1078 MeV/c

n p π −→ +

< + =
 This decay is not possible since conservation of energy is violated. 

39.18. In the decay ,eµπ µ ν ν+ +→ + +  the left side has a lepton number of zero and the right side has a lepton 
number of 1 1 1 1.− + + =   Since the lepton number is not conserved, this decay cannot occur.   

39.19. Baryon number is conserved. Strangeness is conserved. Checking energy conservation: 
0

2 2 2 2

2 2

135.0 MeV/c 939.6 MeV/c 493.7 MeV/c 1189.4 MeV/c

1074.6 MeV/c 1683.1 MeV/c

n K − ++ → +Σ

+ → +

<

π
 

This reaction cannot occur since conservation of energy is violated.        
39.20. The scattering process e eµ µν ν+ ++ → +  cannot proceed through a charged W boson because it would 

have to be a W +  boson and this would decay into a positron and an electron neutrino (just as W − a W– 
boson decays into an electron and an anti-electron-neutrino, as mentioned in the text).  Therefore, the 
scattering process must proceed through the Z boson.  The scattering process e ee eν ν+ ++ → +  is 

completely permissible, because emission of a W + boson by a positron yields an electron neutrino and 
absorption of a W +  boson by a neutrino yields a positron. The neutral exchange, elastic scattering by 
means of a Z boson is perfectly permissible as well for this interaction.  

39.21. The baryons with quarks uds are: 0 2 0 2: 1115.683 MeV/c ;  : 1192.642 MeV/c .Λ Σ  
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39.22. ( ) mesonud
u u u d

n d d p p u u n
d u d d

−
   → →
   → → →   
   → →   

π
 The virtual particle is a −π  meson.  

 
Exercises 

39.23. minr  occurs when the initial kinetic energy is equal to the potential energy at min .r  

( )( )

( )( ) ( ) ( )( )( )

p t

min

2
p t p t

min

4.50 MeV ( )

1.44 MeV fm 2 78
49.9 fm

4.50 MeV

k Z e Z e
K U r

r

k Z e Z e ke Z Z
r

K K

= = =

= = = =

 

39.24. The alpha particle has energy, 6.50 MeV.E =α  It is incident on a lead nucleus. The alpha particle has a 
charge number of p 2Z =  and the lead nucleus has a charge number of t 82,Z =  where e is the elementary 

unit of charge.        
(a) minr  can be determined using the equation: 2

p t min( ) / ,U r kZ Z e r=  where k  is the Coulomb constant. 

From conservation of energy it is reasoned that at the point of closest approach all of the alpha particles 
energy has been converted from kinetic to potential so ( ) 6.50 MeV.U r =  Solving for minr  gives: 

( )= =2 2
min p t p t/ ( ) / ( ).r kZ Z e U r ke Z Z U r  It is common to use 2 1.44 MeV fm,ke = as found in Example 39.1. 

This gives: 
( )( )( )

= =min

1.44 MeV fm 2 82
36.3 fm.

6.50 MeV
r    

(b) If the kinetic energy is increased, the potential energy of the alpha particle at the point of closest 
approach will increase due to conservation of energy. The potential ( )U r  is inversely proportional to min ,r  
which implies that if the potential energy is higher, then minr will be smaller.  Therefore, if the kinetic 
energy of the alpha particle is increased, the particle’s distance of approach will decrease. It should be 
noted that at higher values of kinetic energy this model breaks down because at high enough values of 
kinetic energy the model would predict the two nuclei would “touch”. This is discussed further in the text. 

39.25. Assuming Rutherford scattering, the equation for the differential scattering cross section is given by 

equation 39.3 in the text: 
( )

22
p t

4 1
2

1 ,
4 sin

kZ Z ed
d K
σ

θ

 
=   Ω  

 where k  is the Coulomb constant and K  is the 

kinetic energy of the projectile. The energy of the alpha particle is 

( ) ( )6 6 19 126.50 MeV 6.50 10  eV 6.50 10  eV 1.602 10  J/eV 1.0413 10  J.K − −= = ⋅ = ⋅ ⋅ ⋅ = ⋅  The angle is 60.0 .θ = °  

The charge number for the alpha particle is p 2,Z =  the charge number for the lead nucleus is t 82.Z =  
Inserting the known values into equation (39.3) gives: 

( )( )( )( )
( ) ( )

229 2 19

412

27 2

8.9876 10  J m/C 2 82 1.602 10  C 1
sin 30.04 1.0413 10  J

1.32 10  m /sr 13.2 b/sr.

d
d

d
d

σ

σ

−

−

−

 ⋅ ⋅ =
 Ω °⋅ 
 

= ⋅ =
Ω

 

39.26. The protons have kinetic energy of ( ) ( )− −= = ⋅ ⋅ ⋅ = ⋅6 19 132.00 MeV 2.00 10  eV 1.602 10  J/eV 3.204 10  J.K  

Each proton has a charge number of p 1Z = and the gold nucleus has a charge number of t 79.Z =  The 

equation for the differential scattering cross section is given by equation 39.3 in the text: 



Chapter 39: Elementary Particle Physics  

1447 
 

( )
σ

θ

 
=  
 Ω  

22
p t

4 1
2

1 ,
4 sin

kZ Z ed
d K

 

where θ = °30.0  and k is the Coulomb constant. Inserting the known values into equation (39.3) gives:  

( )( )( )( )
( ) ( )

229 2 19
26 2

413

8.9876 10  J m/C 1 79 1.602 10  C 1 4.51 10  m /sr 451 b/sr.
sin 15.04 3.204 10  J

d
d
σ

−
−

−

 ⋅ ⋅ = = ⋅ =
 Ω °⋅ 
 

 

39.27. THINK: The alpha particle has a de Broglie wavelength of 15
 6.40 fm 6.40 10 m−= = ⋅λ  and kinetic energy 

65.00 MeV 5.00 10  eV.K = = ⋅  The closest distance this alpha particle can get to the gold nucleus is 
15

 min 45.5 fm 45.5 10 m.r −= = ⋅  Determine how the ratio min /r λ  varies with the kinetic energy of the alpha 
particle. Note that min /r λ  is unitless.   
SKETCH:  

 
 

RESEARCH: At the point of closest approach all of the alpha particle’s kinetic energy has been converted 
into potential energy: ( ) =min ,U r K  where K is the initial kinetic energy of the alpha particle and ( )minU r  

is given by the Coulomb potential: ( ) α= 2
min Au min/ .U r kZ Z e r  The de Broglie wavelength of the alpha 

particle is ( )α αλ = =/ / .h p h m v  The equation for K  is ( ) α α= 21/ 2 .K m v  The charge number for an 

alpha particle is 2,Z =α  the charge number for gold is Au 79.Z =    

SIMPLIFY: ( ) α α α α α α

λ
= = ⇒ = ⇒ = =

2 2 2 2
Au Au Au Aumin

min min
min

    ,
kZ Z e kZ Z e kZ Z e p kZ Z e m vr

U r K r
r K Kh Kh   

but  2 .m v m K=α α α  Substituting this into the equation gives:  
2

Aumin

2 2 2
Au Au

2

2 2 158 2
.

kZ Z e m Kr
Kh

kZ Z e m Z Z ke m ke m

h K h K h K

α α

α α α α α

λ
=

= = =

 

Therefore, the ratio of min /r λ  is proportional to 1/ .K  
CALCULATE:  

 
ROUND: Not applicable. 
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DOUBLE-CHECK: It makes sense that the ratio min /r λ  is affected by kinetic energy but not rapidly; that 
is, it is not inversely proportional to the square or cube of kinetic energy. Greater kinetic energy means one 
can probe smaller distances, and at the same time it means smaller wavelength. So minr  and λ  both get 
smaller, but minr  does so a little faster. 

39.28. THINK: Gold foil of thickness −= = ⋅ 61.00 μm 1.00 10  mt  is bombarded with alpha rays of energy 

= = ⋅ 6
E 8.00 MeV 8.00 10  eV.K  Find the fraction of particles scattered to an angle: (a) between °5.00  and 
°6.00  and (b) between °30.0  and °31.0 .  The atomic mass of gold is Au 197 g/molm =  and its density is 

319.3 g/cm .=ρ    
SKETCH:  

 
 

RESEARCH: The equation for the differential scattering cross section is given by equation 39.3 in the text: 

( )
σ σ θ

θθ

 
=   =
 Ω Ω 

22
p t

4 1
2

1
4 sin

kZ Z ed d d
d K d d

 where 1 .
2 sin

d
d

=
Ω
θ

π θ
  The charge number for an alpha particle is 

p 2Z = and the charge number for gold is t 79.Z = The number of scattering centers per unit volume is 

v A Au/n N m= ρ  where 1 mole has Avogadro’s number of particles ( 23 16.022 10  molAN −= ⋅ ). The number 
of scattering centers per unit area is t v .n n t=  The cross section is defined as: 

2

Number of reactions per scattering center/s
Number of impinging particles/s/m

=σ  . Therefore the fraction of particles scattered into the 

angle range θ∆  is given by ( )σ σ θ θ∆ = ∆t t / .n n d d  Note that 1 0.01745 radians.° =  

SIMPLIFY: 
22

p t
4

E

1 2 sin    ,
2 sin 4sin ( / 2)

kZ Z ed d d d d d
d d d d d d K

 
= ⇒ = ⇒ =  

 Ω Ω Ω  

σ σ θ σ σ σ π θ
θ θ π θ θ θ   

since 1
2 sin

d
d

=
Ω
θ

π θ
 

and 
( )

22
p t

4 1
2

1 .
4 sin

kZ Z ed d d
d K d d
σ σ θ

θθ

 
=   =
 Ω Ω 

 t v ,n n t=  substituting A
v

Au

N
n

m
=
ρ

 gives A
t

Au

.
N t

n
m

=
ρ

 

Substituting the above expressions into the equation for the number of particles scattered through an angle 
gives:  

( )

22
p tA

t t t 4
Au E

2 sin  .
sin / 2 4

kZ Z eN tdn n n
d m K

ρσ π θσ θ σ θ
θ θ

 
∆ = ∆ ⇒ ∆ = ∆  

 
 

CALCULATE:  

(a) ( )( ) ( )22 2 28 2 3
t 4

sin5.005.8997 10  m 3.177 10  m /sr 0.01745 rad 7.8748 10
sin 2.50

n σ − − −°
∆ = ⋅ ⋅ = ⋅

°
  

(b) ( )( ) ( )22 2 28 2 5
t 4

sin30.05.8997 10  m 3.177 10  m /sr 0.01745 rad 3.6445 10
sin 15.0

n σ − − −°
∆ = ⋅ ⋅ = ⋅

°
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ROUND: The answers should be reported to three significant figures so the fraction of particles scattered 
to an angle: (a) between °5.00  and °6.00  is −⋅ 37.87 10  and (b) between °30.0  and °31.0  is −⋅ 53.64 10 .  
DOUBLE-CHECK: By inspection of the θ  dependence in our derived equation it is reasonable that the 
fraction particles scattered between °5.00  and °6.00  was higher than the fraction scattered between °30.0  
and °31.0 . If you look at the geometry of the experiment that is shown in Figure 39.10 of the text the 
finding that a large fraction of particles are scattered at lower values of θ  appears to make physical sense 
as well. 

39.29. THINK: The differential scattering cross section for particles to scatter by 55.0θ = °  off a target is 
18 2/ 4.00 10  m /sr.d dσ −Ω = ⋅  The detector has an area of 2 4 21.00 cm 1.00 10  mA −= = ⋅  and is placed a 

distance 1.00 md = away from the target. The target has an area of 2 6 2
T 1.00 mm 1.00 10  m .A −= = ⋅  

Assume that 173.00 10N = ⋅  particles hit the target area every second. Find the number of particles Dn  that 

hit the detector per second. Note: 17 2 23 23.00 10  particles/mm 3.00 10  particles/mN = ⋅ = ⋅      
SKETCH: A suitable sketch is provided with the question.  
RESEARCH: Equation 39.1 in the text states that the differential cross section is: 

σ Ω
=

Ω 2

Number of scatterings into solid angle  per scattering center/s
.

Number of impinging particles / s / m
dd

d
 

The total number of particles that hit the detector in one second is Dn  and is given by D beam ,n I= ∆σ  

where beamI  is the number of particles per 2m  per second and ( )σ σ∆ = Ω ∆Ω/d d . The solid angle 

difference ( )π∆Ω = 4 / Cross sectionalarea of sphere ,A  where the cross sectional area of the sphere that 

the detector lies on is 24 ,dπ  therefore ∆Ω = 2/  sr.A d   

SIMPLIFY: D beam 2

d An I N
d d

= ∆ =
Ω
σσ   

CALCULATE: 
18 2 4 2 2 23 2

D (4.00 10  m /sr)(1.00 10  m /sr /1.00 m )(3.00 10  particles/m  s) 120.0 particles/s.n − −= ⋅ ⋅ ⋅ =  
ROUND: The answer should be reported to three significant figures, so D 120. particles/s.n =  
DOUBLE-CHECK: It seems reasonable that the detector will only be struck by a relatively small number 
of particles per second because the detector occupies only a small portion of the scattering sphere. 

39.30. THINK: Assume symmetry about the axis of the incoming particle beam. Manipulate the Rutherford 
scattering formula to obtain the total number of particles, ,N  detected within angle range dθ as a function 
of the scattering angle ,θ  off a target hit by n particles where the density of the scattering centers is ρ. 
SKETCH: Figure 39.10 in text. 
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RESEARCH: The Rutherford formula is given by equation (39.3) in the text: 
( )

σ
θ

 
=  
 Ω  

22
p t

4 1
2

1 .
4 sin

kZ Z ed
d K

 

The differential cross section is defined by equation (39.1) in the text:  

2

Number of scatterings into solid angle  per scattering center / s
Number of impinging particles / s / m

dd
d
σ Ω

=
Ω

 By the chain rule, d d d
d d d
σ σ θ

θ
=

Ω Ω
 and therefore / .

/
d d d
d d d
σ σ
θ θ

Ω
=

Ω
 Having found ,d

d
σ
θ

 we can write 

2

2

Number of scatterings into angle  per scattering center / s
Number of impinging particles / s / m

Number of scatterings into 
(Number of impinging particles)(scattering centers / m )

dd
d

d

θσ
θ

θ

=

=   

So then 

.d N dd d N n d n d
d n d
σ σσ θ ρ σ ρ θ
θ ρ θ

= = ⇒ = =
 
 

SIMPLIFY:  ,d d d
d d d

=
Ω Ω
σ σ θ

θ  and since the solid angle of a sphere is sin ,
S

d dθ θ φΩ = ∫∫    sin .d d dθ θ φΩ =  If 

there is symmetry about the axis of the incoming particle beam, this expression can be simplified to 

( )θ θ πΩ = sin 2d d  or 1 .
2 sin

d
d

=
Ω
θ

π θ
  Substituting this into the equation gives: 1 ,

2 sin
d d
d d

=
Ω
σ σ

θ π θ  but 

( )
σ

θ

 
=  
 Ω  

22
p t

4 1
2

1
4 sin

kZ Z ed
d K

 so the equation becomes: 
( )

σ
θ π θθ

 
  =
 
 

22
p t

4 1
2

1 1 ,
4 2 sinsin

kZ Z e d
K d

 solving for 

dσ  gives: 
( )

π θσ θ
θ

 
=  

 
 

22
p t

4 1
2

2 sin .
4sin

kZ Z e
d d

K
 The total number of particles scattered as a function of the 

scattering angle θ  can be written as 
( )

22
p t

4 1
2

2 sin .
sin 4

kZ Z enN n d d
K

ρ π θρ σ θ
θ

 
= =   

 
  

CALCULATE: Not applicable.  
ROUND: Not applicable. 
DOUBLE-CHECK: From inspection of Figure 39.10 in the text it can be seen that the number of scattered 
particles that are detected should depend onθ . The functional form of the derived equation implies that 
more particles will be detected while moving through small values ofθ .  

39.31. THINK: The form factor is 2 ( )F p∆  and the Coulomb scattering differential cross section is σ Ω/ .d d  
Evaluate these quantities for an electron beam that is scattering off a uniform density sphere. The sphere 
has total charge  Ze  and radius R. Describe the scattering pattern.  
SKETCH: See Figure 39.14 in the text. 

RESEARCH: The differential cross section is given by equation 39.8 in the text: ( )σ σ 
= ∆ Ω Ω 

2

point

,d d F p
d d  

where 
( )

( )
σ 

= Ω  ∆

22
p t p

4
point

2kZ Z e md
d p

 (equation 39.4 in the text) and the form factor is given by equation 

39.7: ρ ∆ ⋅∆ = ∫







2
2 /1( ) ( ) .i p rF p r e dV

Ze
 Note that in equation 39.4, pm  is the mass of the projectile. The total 
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charge of the sphere is ρ ρ π= = 34
3

Ze V R . Because of the symmetry of the problem it will be most 

convenient to use spherical coordinates when evaluating the form factor. Note that by the definition of the 
dot product cos .p r pr θ∆ = ∆

 

  
SIMPLIFY: First determine the form factor. In spherical coordinates  

( ) π π πθ θρ πρθ θ φ θ θ∆ ∆∆ = =∫ ∫ ∫ ∫ ∫ 

2 2
22 cos / 2 cos / 2

0 0 0 0 0

2sin sin .
R Ri pr i prF p e r drd d e r drd

Ze Ze
 

Now, consider just the integral cos /

0
sin .i pre d∆∫ 

π θ θ θ  This integral can be evaluated using substitution: let 

/i pr∆ = α  and let cos ,u=θ  then sin .du d= − θ θ  Substituting these values into the integral gives:  

α α αθ
θ α

− = − = −∫ ∫
sin 1 .

sin
u u udue e du e  

Evaluating gives: ( )
πθ∆

− ∆ ∆−
− = −

∆ ∆



 

 

cos /
/ /

0

,
i pr

i pr i pre e e
i pr i pr

 note that 
/ /

sin ,
2

i pr i pr pre e
i

∆ − ∆ ∆−  
=  

 

 



 so the 

evaluated value is 2 sin .
pr

pr
∆ 

 ∆  





 Substituting this back into the integral equation for ( )∆2F p  gives: 

( ) πρ ∆ 
∆ =  ∆  ∫





2

2

0

4 sin .
R pr

F p r dr
Ze p

  This integral can be solved using integration by parts. Let β∆ =/ ,p  

let ,u r=  ,du dr=  sin( )dv r= β  and β β= −( 1/ )cos( ).v r   

( ) ( ) ( ) ( ) ( )
β βπρ πρ πρβ β β

β β β β

   − − = + = +   ∆ ∆ ∆   
∫ ∫
  

20 0
0

cos cos4 4 1 4 1sin cos sin
R

R Rr r R R
r r dr r dr R

Ze p Ze p Ze p
 

Substituting for β gives the desired version of the form factor:  

πρ  ∆ ∆ ∆     
∆ = −      ∆       



  

2
3

2
3

4( ) sin cos .
( )

pR pR pR
F p

Ze p
 

Substituting 2 ( )F p∆  and 
point

d
d

 
 Ω 

σ into the differential cross section gives:  

σ πρ  ∆ ∆ ∆     
= −        Ω ∆ ∆        



  

22 2 3
p t p

4 3

(2 ) 4 sin cos .
( ) ( )

kZ Z e m pR pR pRd
d p Ze p

 

Recall that ρ ρ π= = 34
3

Ze V R so this can be substituted into the equation to get:  

( )
σ   ∆ ∆ ∆      = −       Ω ∆      ∆   



  

2
2 2 3

p t p
4 3 3

(2 ) 3 sin cos .
( )

kZ Z e m pR pR pRd
d p p R

 

For 
∆

≈


1
pR

 this equation gives the expected result for Rutherford scattering, but at large values of 

momentum transfer the differential cross section decreases much faster.    
CALCULATE: Does not apply. 
ROUND: Does not apply.  
DOUBLE-CHECK: The derived equation implies that the differential cross section drops off quickly for 
larger values of p∆ , this is consistent with the discussion of quantum limitations in the text and explains 
why at high kinetic energies the Rutherford model breaks down. 
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39.32. Table 39.1 in the text provides a list of elementary fermions with their symbols, charges, masses and 

antiparticles. The proton is made up of 2 up quarks and 1 down quark. The charge of an up quark is +
2
3

e  

and the charge of a down quark is −
1 .
3

e  The proton’s charge is: − 
= − = = ⋅ 

 
192 12 1.602 10  C.

3 3
q e e e  

39.33. The observed magnetic moment of the proton is µ −= ⋅ 26 21.4 10  Am .  Estimate the speed of the quarks. 

Assume that the quarks move in circular orbits of radius 150.80 fm 0.80 10  mr −= = ⋅  and that they all 
move at the same speed and direction. The relationship between magnetic moment and orbital angular 

momentum can be used solve this problem. Using Equation 28.15 gives: µ =
 

orborb ,
2
q

L
m

 where the 

magnitude of orbL


is orb .L rmv=  Substituting for orbL  in the equation gives: µ = =orb .
2 2

qrmv qrv
m

 Note that 

the total magnetic moment is the sum of the moments from the three quarks in the proton. The proton 

has two up quarks, each with charge = +
2
3

q e  and one down quark with charge = −
1 .
3

q e  Inserting these 

values into the equation for µorb  gives:  

orb
2 2 1 .
3 2 3 2 3 2 2

rv rv rv erve e e     
= + − =     
     

µ  

Solving for v  gives: 
26 2

8orb
19 15

2 2(1.4 10  A m ) 2.2 10  m/s.
(1.602 10  C)(0.80 10  m)

v
er
µ −

− −

⋅
= = = ⋅

⋅ ⋅
 

39.34. The energy of the photon is min 2.0 keV.E =  The minimum particle energy to probe a spatial size x∆  

 is given by the equation: 
2 2

2 4
min 2 ,cE m c

x
= +

∆
  but for a photon 0m =  so the equation reduces to 

min .cE
x

=
∆
  Solving for x∆  gives: 

16 8
11

3
min

(6.582 10  eVs)(3.00 10  m/s) 9.9 10  m.
2.0 10  eV

cx
E

−
−⋅ ⋅

∆ = = = ⋅
⋅

  

39.35. The Feynman diagram for an election–proton scattering event, ,e p e p− −+ → +  that is mediated by 
photon ( γ ) exchange can be drawn as follows:  

 

39.36. The mass of the Higgs boson is listed as 2125 GeV/cM =  in Table 39.2 of the text. The range of reactions 
mediated by bosons is discussed in the text. The upper bound on the range of a reaction that is mediated 
by a Higgs boson can be found using the following equation:   

( )
16 8

18
2 9 2 2

b

(6.582 10  eVs)(3.00 10  m/s) 1.58 10  m.
125 10  eV/c

cx
m c c

−
−⋅ ⋅

∆ < = = ⋅
⋅

  

39.37. a) For the purposes of this question, the main scenario is interaction via the strong force. However, the 
electromagnetic force is another possibility.  
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Proton-proton scattering, strong interaction:    Proton-proton scattering, EM interaction:  

    
  

b) Neutron beta decays to a proton: ν−→ + + en p e : 

 
39.38. THINK:  

(a) Perform a rough estimate of the mass, m, of the meson. Use the uncertainty principle and the known 
dimensions of a nucleus, −≈ 1510  m.d  Assume that the meson travels at relativistic speed. 
(b) Follow the method of part (a) to prove that the theoretically expected rest mass of the photon is zero. 
SKETCH: Not applicable. 
RESEARCH: The Heisenberg uncertainty relations for energy and time, and position and momentum, are 
respectively / 2E t∆ ⋅∆ ≥   and / 2.x p∆ ⋅∆ ≥   For relativistic energies, 2 ,E K mc= +  where ≅ 2 / 2K mv  

for relativistic particles with mass and ( )= +
22 2 2 2 .E p c mc  Recall that ∆ ≅ ∆p m v  for relativistic particles 

with mass, and generally /v x t∆ = ∆ ∆  (or equally useful, /t x v∆ = ∆ ∆ ). Recall for photons .v c=   In this 
problem, the minimum uncertainty in the energy corresponds to the maximum uncertainty in time; the 
minimum uncertainty in energy is therefore ( )∆ = ∆ / 2 .E t  Similarly, the minimum uncertainty in the 

momentum is ( ) ( )∆ = ∆ = / 2 / 2 ,p x d  where the maximum uncertainty in the position is restricted to 

the size of the nucleus, that is the maximum uncertainty in the position is .x d∆ =   For particles with mass 
the minimum uncertainty in the velocity corresponds to the maximum uncertainty in the position, that is 
the minimum uncertainty in the velocity is ( ) ( )∆ = ∆ = / 2 / 2 .v m x md   
SIMPLIFY:  

(a) ( ) ( ) ( ) ( ) ( ) ( ) ( )∆ = ∆ = ∆ ∆ = ∆ = ⋅∆ = ⋅ =      

2 2/ 2 / 2 / 2 / 2 / 2 / 2 / 4E t v x v d d v d md md  

Also ( ) ( )( ) ( )∆ = ∆ + = ∆ + = + = + 

222 2 2 2 2 2/ 2 / 2 / 2 / 8 .E K mc m v mc m md mc md mc  

Equating both expressions, ( ) ( )
( ) ( )
( )
( )
( )

+ =

= −

=

=

= = ⋅

 

 









2 2 2 2 2

2 2 2 2 2

2 2 2

2 2 2 2

2

/ 8 / 4

/ 4 / 8

/ 8

/ 8

1/ 8
8

md mc md

mc md md

mc md

m c d

cm cd
cd
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(b) For the photon, assume :v c= ( ) ( ) ( )∆ = ∆ = ∆ =  / 2 / 2 / 2 .E t c x c d  Also 2 2 2 2 2( ) ( ) ( ) .E p c mc∆ = ∆ +  

Then equating both expressions: ( ) ( ) ( )
( )( ) ( ) ( )

( ) ( ) ( )
( ) ( )

∆ + =

+ =

+ =

= − =



 

 

 

22 2 2 2 2 2

22 2 2 2 2 2

22 2 2 2 2 2 2

2 2 2 2 2 2 2 2

/ 4

/ 2 / 4

/ 4 / 4

( ) / 4 / 4 0

p c mc c d

d c mc c d

c d mc c d

mc c d c d

  

Therefore the rest mass is zero for the photon. 
CALCULATE:  

(a) 
( )( )

( )
−

−

⋅ ⋅
= = ⋅

⋅

16 8
6 2

15 2

6.582 10  eV s 3 10  m/s
69.812652 10  eV/c

8 1 10  m
m

c
  

(b) Not applicable. 
ROUND: The answer should be reported to one significant figure, therefore a) 

6 2 270 10  eV/c 70 MeV/c .m = ⋅ =  
DOUBLE-CHECK: Comparing the calculated mass to the values listed in Table 39.3 of the textbook 
shows that the calculated mass is of the right order of magnitude. 

39.39. The Carbon dioxide molecule ( 2CO ) is made up of 1 carbon atom and 2 oxygen atoms. The atomic 
number for carbon is 6,Z =  so there are 6 protons, 6 neutrons and 6 electrons in this atom. Each proton is 
made of 3 quarks (uud) and each neutron is made of 3 quarks (udd), so the carbon atom has 6 electrons 

3(6)+ quarks + 3(6) quarks =  42 fermions. The atomic number for oxygen is 8,Z =   so there are 8 
electrons + 3(8) quarks + 3(8) quarks = 56 fermions in each oxygen atom. The total number of fermions in 
the carbon dioxide molecule = 42+56 +56 = 154 fermions.        

39.40. (a) The equation describing a neutral pion decaying into photons is given by equation 39.13 in the text: 
2 .°→π γ  The mass of the neutral pion is listed in Table 39.3: 6 2

pion 134.977 10  eV/c .m = ⋅  Using the mass-

energy equivalence equation gives 2
pion .E m c=  By conservation of energy the energy of each of the two 

identical photons is 
1 .
2

E  The energy of each photon is therefore given by:  

( )( )⋅
= = = = ⋅

6 2 22
pion 6

photon

134.977 10  eV/c1 67.4885 10  eV
2 2 2

cm c
E E  

(b) The energy of a photon can also be written as photon ,E hf=  solving for f  gives  
6

photon 22 1 22 1
15

67.4885 10  eV 1.6317336 10  s 1.632 10  s .
4.136 10  eVs

E
f

h
− −

−

⋅
= = = ⋅ ≈ ⋅

⋅
 

(c) A photon with this high of frequency would be in the gamma ray portion of the electromagnetic 
spectrum. This is shown in Figure 31.10 of the text.  

39.41. THINK: The neutral kaon decays into two charged pions via the reaction: 0 .K π π+ −→ +  Draw the quark 
level Feynman diagram for this process.          
SKETCH: The diagram will be developed during the question. 
RESEARCH: Figure 39.31 in the text shows that the neutral kaon decays via the weak interaction. Table 

39.3 tells us that the neutral kaon ( 0K ) contains a down quark ( d ) of charge 1
3

e−  and an anti-strange 

quark ( s ) of charge 1 .
3

e+  The positively charged pion (π + ) has an up quark ( u ) of charge 2
3

e+  and an 
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anti-down quark ( d ) of charge 1 .
3

e+  The negatively charged pion (π − ) has an anti-up quark ( u ) of 

charge 2
3

e−  and a down quark ( d ) of charge 1 .
3

e−  The anti-strange quark beta-decays to an anti-up 

quark, charge 2 ,
3

e−  emitting a W +  boson.  The W +  boson then decays into an up quark of charge 2
3

e+  

and an anti-down quark of charge 1
3

e+ , which form a positively charged pion. 

SIMPLIFY:   

 
 

CALCULATE: Not applicable. 
ROUND: Not applicable. 
DOUBLE-CHECK: The quark level Feynman diagram is consistent with charge conservation.  The mass 
of the 0K  is 497.61 MeV/c2.  The sum of the masses of the two pions is 2 ⋅ 139.57 MeV/c2 = 279.14  MeV/c2.  
Thus, the decay is energetically allowed because the mass of the neutral kaon is larger than the summed 
mass of the two pions. 

39.42. During the radiation-dominated era the temperature was gradually decreasing with time. This relationship 

is given by equation 39.17 in the text: ( ) = ⋅ 10 1/21.5 10 K s / .T t t  Stefan’s law describes the power radiated 

per unit area and is given by equation 36.1 in the text: 4 ,I T=σ  where σ  is the Stefan-Boltzmann 

constant (σ − − −= ⋅ 8 2 45.670400 10  W m  K ). Substituting equation 39.17 into equation 36.1 gives:  

( ) ( )410 1/2 4 2 8 2 4 10 1/2 2

33 2 2 33 2 2

(1.5 10  K s ) / 5.670400 10  W m  K 1.5 10  K s /

2.870640 10  W m 2.9 10   W m .

I t t

I t t

σ − − −

− − − −

= ⋅ = ⋅ ⋅ ⋅

= ⋅ ≈ ⋅
 

The background radiation intensity during the radiation dominated era −∝ 2t . 

39.43. Equation 39.17 from the text gives the time dependence of the temperature during the radiation-

dominated era. ( ) = ⋅ 10 1/21.5 10 K s / .T t t  In the text, in the section discussing Quark-Gluon plasma, it is 

mentioned that color singlets began to form at a temperature of approximately 122.1 10  K.⋅  This can be 
used as the temperature when proton and neutrons began to form. Solving equation 39.17 in terms of time 
gives:  

( ) ( )
( )

−
⋅ ⋅

= = = ⋅
⋅

2 210 1/2 10 1/2
5

2 212

1.5 10  K s 1.5 10  K s
5.1 10  s.

2.1 10  K
t

T
 

This would be the estimated age of the universe when protons and neutrons began to form.  

39.44. The average temperature of the universe three hundred thousand years after the Big Bang was ≈ 3000 K.T  
(a) Wien’s displacement law can be used to find the peak wavelength ( λmax ) of the blackbody spectrum at 
this temperature.  

3 3 6
max max2.90 10  K m  2.90 10  K m / 3000 K 1 10  mTλ λ− − −= ⋅ ⇒ = ⋅ = ⋅  

(b) Radiation of this wavelength would be in the infrared portion of the electromagnetic spectrum. 
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39.45. THINK: At a time of about 610  st −=  after the Big Bang, the universe had cooled to a temperature of 
1310  K.T ≈ The electron volt can be used as a unit of temperature.  

SKETCH: Not applicable. 

RESEARCH: The thermal energy is B ,E k T=  where 23
B 1.381 10  J/Kk −= ⋅ is the Boltzmann constant. The 

electron volt can be used as a unit of temperature by the following conversion: 

( )19
B1 eV 1 eV 1.602 10  J/eV 1/ .k−= ⋅ ⋅ ⋅  Einstein’s mass energy equivalence theorem can be stated as: 

2 .E mc=  The masses of the most important baryons are listed in Table 39.4 of the text. The masses of the 
elementary fermions are listed in Table 39.1. 
SIMPLIFY:  

(a) In units of eV, the equation BE k T= can be stated as ( )19
B / 1.602 10  J/eV .E k T −= ⋅  

CALCULATE:  

(a) ( )( ) ( )23 13 19 81.381 10  J/K 1 10  K / 1.602 10  J/eV 8.620 10  eVE − −= ⋅ ⋅ ⋅ = ⋅  

(b) At this temperature there were a small number of protons and neutrons present. At this thermal energy 
( ≈1 GeV ) the protons and neutrons would be constantly converted into one another. This was possible 
because energy was much greater than the mass difference between the proton and neutron. This implies 
that the protons and neutrons were in equilibrium at this temperature.  
(c) The energy required to form an electron-position pair is given by the equation 

( )= = ⋅ = ⋅2 6 2 2 6
e2 2 0.511 10  eV / c 1.02 10  eV.E m c c  A temperature of ≈ 1310  K  would facilitate this easily. 

At this temperature there were a large number of electrons and positrons present. The temperature at 
which there was not sufficient thermal energy for electron-position pairs to form was approximately 

1010  K,  at this temperature the thermal energy was approximately 59 10  eV.⋅  From Figure 39.42 in the 
text, the temperature of the universe dropped below this value ~1 s after the Big Bang. 

ROUND:  The answer should be reported to one significant figure: (a) 8 59 10  eV 9 10  keV.E = ⋅ = ⋅  

DOUBLE-CHECK: The thermal energy that was calculated for a temperature of ≈ 1310  K  is consistent 
with the values presented in Chapter 39 of the text. The discussion of protons, neutrons, electrons and 
positrons follows the reasoning given in the text.   

39.46. THINK: The initial temperature to consider is i 3000 K,T =  and the final temperature to consider is 

f 2.75 K.T =  Model the universe as an ideal gas and assume that the expansion of the universe is adiabatic. 
Determine how much the volume of the universe has changed. Next assume that the process is irreversible 
and determine the change in the entropy of the universe, ,S∆  based on the change in volume.    
SKETCH:  

 
 

RESEARCH: For a reversible adiabatic process 1TV − =γ  constant as given by Equation 19.27 in the text. 
Modeling the universe as a monatomic ideal gas, 5 / 3.=γ  The change in entropy with respect to the 
change in volume is given by: B f iln( / ),S k V V∆ =  where Bk  is the Boltzmann constant. Let iV  be the 
volume of the universe at temperature iT  and fV  be the volume at temperature f .T  
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SIMPLIFY: 1TV − =γ  constant, so 
( ) 11 1

1 1 i f f i
i i f f

f i i f

    
T V V T

TV T V
T V V T

γ γ

γ γ

−− −

− −    
= ⇒ = ⇒ =   

   
   

CALCULATE: 

15 1 3/2
3

f

i

3000 K 3000 K 36031.5,
2.75 K 2.75 K

V
V

−
 − 
    = = =   

   
 

( ) ( )− −∆ = ⋅ = ⋅23 221.381 10  J/K ln 36031.5 1.449 10  J/KS  

ROUND: The answers should be reported to one significant figure, therefore f i/ 40,000V V =  and 
221 10  J/K.S −∆ = ⋅   

DOUBLE-CHECK: It seems reasonable that there would be a large increase in the volume of the universe 
because there was a large decrease in its temperature. It is also reasonable that the entropy increased (by a 
small amount) because the entropy of a closed system always stays the same or increases.  

39.47. THINK: The ratio of the wavelength of light received, recλ  from a galaxy to its wavelength at emission, 

emitλ  is equal to the ratio of the scale factor (e.g., radius of curvature) of the Universe at reception to its 
value at emission ( rec emit/a a ). The redshift, z  of the light is defined by rec emit rec emit1 / / .z a a+ = =λ λ   
(a) Hubble’s Law states that the redshift z  of light from a galaxy is proportional to the galaxy’s distance 
from us (for reasonably nearby galaxies). Derive this law from the first relationships above, and determine 
the Hubble constant in terms of the scale-factor function ( ).a t   
(b) If the present Hubble constant has the value 0 72 (km/s)/MpcH =  determine the distance s∆  from us 
to a galaxy which has light with a redshift of 0.10.z =     
SKETCH: Not applicable.  
RESEARCH:  
(a) Hubble’s law states 1 ,z c H s−≈ ∆  where c  is the speed of light in vacuum, H  is the Hubble constant, 
and s∆  is the distance to the galaxy. The scale factor function emit ( )a t  can be expanded backwards in time 
from the present using a Taylor expansion. For a reasonably close source, expanding the series to first 
order should be a good approximation: emit rec rec( ) ( / )a t a da dt t≈ − ∆  
(b) Although the numerical value is not required in the calculation, the megaparsec (Mpc) is a unit of 
length equal to 63.26 10⋅  light years. Hubble’s law can be used to calculate the distance.     
SIMPLIFY:  
(a) ≅ − ∆emit rec rec( / ) ,a a da dt t  substituting this into the equation that defines the redshift gives: 

−
    

+ ≅ = − ∆ ⇒ + ≅ + ∆               − ∆ − ∆        

1

rec rec

rec rec
rec rec

rec rec rec

1 11 = 1  1 1
11

a a da daz t z t
a dt a dtda daa t a tdt a dt

. We 

know that / .t s c∆ = ∆  Therefore,    
+ ≅ + ∆ ⇒ ≅ ∆   

   rec rec

1 1 1 11 1   .da daz s z s
c a dt c a dt

 Comparison of this 

equation and the equation for Hubble’s law shows that 
rec

1 .daH
a dt

 
=  
 

  

(b) 0/s zc H∆ ≈     
CALCULATE:  
(a) Not applicable. 

(b) ⋅
∆ ≅ =

5(0.10)(3.00 10  km/s) 416.66 Mpc
72 (km/s)/Mpc

s   

ROUND: The answer should be reported to two significant figures, therefore (b) 420 Mpc.s∆ =   
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DOUBLE-CHECK: The calculated distance to the galaxy has units of length, which is expected. This 
distance is approximately 1.4 billion light years. This distance corresponds to a time that falls within the 
age of the universe.   

39.48. To produce an electron-positron pair, the photon must have at least enough energy to create an electron 
and a position at rest. The rest mass of both the electron and the positron is 20.511 MeV/c .m =  The 
minimum energy required to produce this pair is therefore:  

= + = = = ⋅2 2 2 2 6
ph e- e+ 2(0.511 MeV/c ) 1.022 MeV 1.022 10 eV.E m c m c c  

The wavelength of this photon is found from ph / .E hc= λ  Rearranging 

( )( ) ( )λ −= = ⋅ ⋅ ⋅ =15 8 6
ph/ 4.13567 10  eV s 2.998 10  m/s / 1.022 10  eV ) 1.21 pm.hc E  

39.49. (a) The kinetic energy K  of the neutron is found from 2 / 2 .K p m=  The de Broglie wavelength formula is 
/ .h p=λ  Solving for momentum p  in terms of the neutron’s wavelength gives: 

( ) ( )λ − − −= = ⋅ ⋅ = ⋅34 9 24/ 6.626 10  J s / 0.15 10  m 4.417 10  kg m/s.p h  Since the mass of a neutron is 
271.675 10  kg,−⋅  the kinetic energy of the neutron is:  

( ) ( )224 27 214.417 10  kg m/s / 2 1.675 10  kg 5.825 10  J 0.036 eV.K − − −= ⋅ ⋅ ⋅ ≈ ⋅ ≈     

The energy of a photon with the same wavelength is: 

( )( ) ( )λ − − −= = ⋅ ⋅ ⋅ = ⋅ =34 8 9 15
ph / 6.626 10  J s 2.998 10  m/s / 0.15 10  m 1.3 10  J 8.3 keV.E hc  

The energy of the X-ray photon is more than 200,000 times greater than that of the neutron having the 
same wavelength.  
(b) While the wavelength is the same, the X-rays are orders of magnitude more energetic, and bound to 
create more damage (induce serious molecular degradation). For reference, the C-C  bond energy is only 
about 4 eV.  Neutrons, on the other hand, have very little kinetic energy are less likely to damage the 
biological samples investigated.  

39.50. To produce a proton-antiproton pair, the photon must have at least enough energy to create a proton and 
antiproton at rest. The rest mass of each of the particles is 2938 MeV/c .m =  The minimum energy 
required of the photon is therefore: = + = =2 2 2 2

ph p p 2(938 MeV/c ) 1880 MeV.E m c m c c   

39.51. The resolution provided by the electrons with kinetic energy 2 / 2 100. eVK p m= =  is dependent on their 
de Broglie wavelength ( λ = /h p ), which is inversely proportional to their momentum. With the rest mass 

of an electron being = 2
e 0.511 MeV/c ,m  the momentum of the electrons is:  

( ) ( )( )( ) −= = ⋅ = = ⋅
1/21/2 2 24

e2 2 0.511 MeV/c 100. eV 10.1 keV/c 5.40 10  kg m/sp m K  

To obtain the same resolution, the neutrons must have the same momentum (wavelength) as the electrons. 
Since the mass of the neutron is −= ⋅ 27

n 1.675 10  kg,m  this corresponds to a kinetic energy of:  

( ) ( )22 24 27 21
n/ 2 5.40 10  kg m/s / 2 1.675 10  kg 8.71 10  J 0.0544 eV.K p m − − −= = ⋅ ⋅ ⋅ = ⋅ =  

The neutrons would require a kinetic energy of 54.4 meV.   

39.52. The rest mass of the α-particle is = = ⋅2 3 2
α 3.73 GeV/c 3.73 10  MeV/c .m  The kinetic energy of the α-article 

is given as = =2
α/ 2 100. MeV.K p m  Solving for p  gives:  

( ) ( )( )( )= = ⋅ ⋅ = ⋅
1/21/2 3 2 8

α2 2 3.73 10  MeV/c 100. MeV 863.7 MeV/c = 8.637 10  eV/cp m K  

Using the de Broglie formula / ,h p=λ   

( ) ( )λ − −= ⋅ ⋅ = ⋅15 8 154.13567 10  eV s / 8.637 10  eV/c 1.44 10  m  
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The de Broglie wavelength of this α-particle is 1.44 fm.=λ  Figure 39.13 shows a length scale between 
1510  m−  and 1610  m−  for a 100.-MeV  α-particle. This is comparable to the de Broglie wavelength.    

39.53. The Heisenberg uncertainty relation allows a violation of energy conservation on the order of E∆  over a 
time ∆ < ∆ / .t E  Since the maximum speed of the boson is the speed of light, the range of interaction is 

.x c t∆ ≤ ∆  Therefore 
( )( )

( )( )
−

−

−

⋅ ⋅
∆ < = = ⋅

∆ ⋅ ⋅



8 34
18

9 19

2.998 10  m/s 1.0546 10  J s
2.164 10  m.

91.1876 10  eV 1.6022 10  J/eV
cx

E
  The order of 

magnitude of the range of the weak interaction is 1810  m.−  

39.54. For the momentum to be conserved, the energies of the two photons must be equal and must sum to the 
combined rest mass energy of the proton and antiproton.  

( )( )
λ λ

−
−

−

⋅
= ⇒ = = = ⋅

⋅ ⋅

34
2 15

0 27 8
0

6.63 10  J s2 2 /   1.32 10  m.
1.6726 10  kg 2.9979 10  m/s

hm c hc
m c

 

39.55. The cross section of the interaction is 2( )xΛ = ∆σ  where x∆  is the interaction range. The range is  related 

to the decay time by .x c∆ ≈τ  Therefore ( ) ( )( )σ τ − −
Λ = ∆ ≈ = ⋅ ⋅ = ⋅

2
2 2 10 28 4( ) ( ) 10  s 3.00 10  m/s 9 10  m .x c  

39.56. The classical Rutherford differential scattering is described by σ
θ

 
=  
 Ω  

22
p t

4

1 .
4 sin ( / 2)

kZ Z ed
d K

 The alpha 

particle has a charge number =p 2Z  and uranium has a charge number =t 92Z . The differential 

scattering cross section is then 

( )( )( )( )
( )( ) ( )

σ
−

−

− −

 ⋅ ⋅ =  Ω °⋅ ⋅ 
 

= ⋅ = ⋅

229 2 2 19

46 19

26 2 2 26 2

8.9876 10  N m /C 2 92 1.602 10  C 1
sin 35.0 / 24 5.00 10  eV 1.602 10  J/eV

2.15 10  (N m /J) 2.15 10  m .

d
d  

39.57. (a) The speed of the alpha particle is only 5.00%  of the speed of light. This speed allows for a classical 
approach. The kinetic energy must equal the Coulomb potential between the particles at closest approach. 

=
2

p t21
2

kZ Z e
mv

r
 or 

( )( )( )22 2 2

2 2 2 2

2 2 792 2 316p t p t
kekZ Z e Z Z ke ker

mv mv mv mv
= = = =  

(b) The mass of the alpha particle is 23.73 GeV/c .  
( )

( )( )
= =

⋅
min 23 2

316 1.44 MeV fm
48.8 fm.

3.73 10  MeV/c 0.0500
r

c
 

39.58. THINK: The two photons created by the annihilation of the electron-positron pair must have the same 
energy as the combined energy of the particles. To conserve momentum, the photons must have equal and 
opposite momentum. The electron and positron have the same rest mass 0 0.511 MeVE =  and are each 
traveling at 0.99v c=  with respect to their center of mass. 
SKETCH:  
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RESEARCH: The energy of a relativistic particle is 2 2
0 0 / 1 ( / ) .E mc E E v c= = = −γ γ  The wavelength of a 

photon of energy γE  is λ = γ/ .hc E  

SIMPLIFY: The energy of one photon is half that of the total energy of the electron-positron pair: 

- +
0

γ 0 0 0e e 2

1 1( ) ( ) .
2 2 1 ( / )

E
E E E E E E

v c
γ γ γ= + = + = =

−
 

The wavelength of the photon is then 
2

γ 0

1 ( / )
.

hc v chc
E E

−
= =λ   

CALCULATE: 2
6

1240 eV nm 1 0.99 342.3 fm
0.511 10  eV

λ = − =
⋅

 

ROUND: The speed is given to two significant figures, so the wavelength is accurate to two significant 
figures. The annihilation produces photons of wavelength λ −= ⋅ 133.4 10  m = 340 fm.  
DOUBLE-CHECK: Because the electrons are traveling at a speed close to that of light, the annihilation 
should produce very energetic photons. Energetic photons have a high frequency, but a small wavelength 
as these photons do.   

39.59. THINK: The solid-angular distribution of the tau-leptons varies as 2(1 cos ).+ θ  The fraction of particles 
detected is proportional to the integral over the solid angle that the detector covers. In this case, the 
detector covers 1 60= °θ  to 2 120 .= °θ  
SKETCH:  

 
 

RESEARCH: The intensity varies: 2

1

2(1 cos )sin .I d∝ +∫
θ

θ
θ θ θ   

SIMPLIFY: Let cosx = θ  and sin .dx d= − θ θ   Then the fraction is:  
2 2

1
1

3 3 32
2 2 1 1

1 2 3 1tot
11

1 1 1|(1 )
3 3 3
1 8(1 ) |
3 3

x x
xx

x x x x x xx dxI
I x dx x x −−

+ + − −− +
= = =
− + +

∫
∫

 

CALCULATE: 1 cos60 1/ 2x = ° =  and 2 cos120 1/ 2.x = ° = −  

tot

1 1 1 1 1 1
2 3 8 2 3 8 13 0.40625.

8 32
3

I
I

         − + − − −         
         = = =  

ROUND: There is no need to round. The fraction of the tau-leptons captured is 13 / 32.   
DOUBLE-CHECK: With a distribution of 2(1 cos ),+ θ  the majority of the leptons are captured at angles 
close to 0°  and 180° . The detector is not located at these regions, so a value of less than half is reasonable.     

39.60. THINK: The beam has a luminosity of 33 2 14.00 10  cm  sL − −= ⋅  and the cross section for the creation of a 
Higgs boson is 1.00 pb.σ =  How many Higgs events can be expected at the LHC in 1.00 year? 
SKETCH:  
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RESEARCH: The number of Higgs created per second is .R Lσ=  The total number of Higgs produced in 
a time period t is .N Rt=  Use  

7365 day3600 s 24 hr1 yr 1 yr 3.1536 10  s.
1 hr 1 day 1 yr

t
 

= = ⋅ ⋅ ⋅ = ⋅  
 

 

SIMPLIFY: Higgs/yr .N Rt Ltσ= =  

CALCULATE: ( )( ) ( )
2

12 28 2 33 2 1
Higgs/

7
yr

100 cm1 10  b 10  m /b 4.00 10  cm  s 3.1536 10  s/yr
1 m

126,252 Higgs/yr.

N − − − −
  = ⋅ ⋅ ⋅ ⋅ ⋅  

   
=

 

ROUND: The value is accurate to three significant figures. The number of Higgs produced in a year at 
LHC is 126,000. 
DOUBLE-CHECK: The Higgs boson is an extremely hard particle to produce. The rate of Higgs boson 

production in this case is 126,000 Higgs / 73.15 10  s⋅  =  14 Higgs bosons per hour. 
39.61. THINK: What is the differential cross section for a beam of electrons Coulomb-scattering off a thin 

spherical shell of total charge Ze and radius a? Can this experiment distinguish between the thin-shell and 
a solid-sphere charge distribution?   
SKETCH:  

 
 

RESEARCH: The differential cross section is given by 
( )

( )
22

2
4

0

2 1 ,
4

eZe md F p
d p
σ

πε
 

= ∆ Ω ∆ 
 with form factor 

2
2 1( ) ( )exp .iF p r p r dV

Ze
ρ  ∆ = ∆ 

 ∫


 





 But in this case the target charge density ρ  is concentrated in a 

thin spherical shell of radius a. The integral over r extends only over the thickness of the shell, with all the 

functions in the integrand evaluated at .r a=  The charge density takes the form 
2( ) ( ),

4
Zer r a

a
= −ρ δ

π
 

using the Dirac delta function. Equivalently, the integral can be taken to be a surface integral, with the 
charge density ρ  replaced by a surface charge density 2/ (4 ).Ze aπ  The cross section for a solid sphere of 
radius a is (see Solution 39.31)  

( ) ( )
( ) ( ) ( )σ

πε

     ∆ ∆ ∆    = −           Ω  ∆ ∆        



  

222

4 3 3
0

2 1 3 sin cos
4

e
p a p a p aZe md

d p p a
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SIMPLIFY: The form factor is given by   

( )

( )

( )

( )

( ) ( )( )

π π

π π

π

π

θ θ θ φ
π

θ θ θ φ
π

θ θ θ

θ

 ∆
∆ =   

 
 ∆

=   
 

 ∆
=   

 

  ∆
 = −   ∆    

= ∆ − − ∆
∆

=

∫ ∫

∫ ∫

∫













 

2 2
2 0 0

2

2
2

0 0

0

0

1( ) exp cos sin
4

1 exp cos sin
4

1 exp cos sin
2

exp cos
2( )

exp[ / ] exp[ / ]
2( )
sin

i p a
F p a d d

a

i p a
a d d

a

i p a
d

i p a
p ai

i p a i p a
p ai
( )

( )
∆

∆





[ / ]
/

p a
p a

 

The cross section is therefore 
( )

( )
( )

σ
πε

 ∆ 
=      Ω ∆∆   





222

4
0

sin[ / ]2 1 .
4 /

e
p aZe md

d p ap
 

CALCULATE: There is no need to calculate. 
ROUND: There is no need to round. Like the cross section for the solid sphere, this matches the point-
target result in the 0p∆ → limit, but falls off much more rapidly for large momentum transfer. It also has 
zero for (in this case, periodic) values of the momentum transfer, so this scattering pattern too can show a 
central maximum surrounded by bright and dark rings. However, this pattern is distinguishable from that 
for the solid sphere target. It falls off more quickly with increasing p∆  for small values, but for large values 

it falls off much more slowly: as ( )−∆
6

p , rather than ( )−∆
8

p  though still faster than the ( )−∆
4

p fall off of 
the point-target cross section. So, yes, a scattering experiment with sufficient data could distinguish 
between a solid and a hollow spherical target. 
DOUBLE-CHECK: The technique should be able to distinguish between the two charge distributions. 
One might expect that both spheres can be approximated by a point charge at the center of the sphere. The 
charge distribution, however, that the electron ‘sees’ is a function of its momentum. The faster the electron 
goes the closer it gets to the real particles and the more it can resolve the real charge distribution.  
 

Multi-Version Exercises 

39.62. /AN t Mρ σΠ =  

      
( )( )( )( )( )3 23 38 2

12

2.77 g/cm 6.022 10 /mole 68.5 cm 0.68 10  cm /GeV 337 GeV

27.0 g/mole
9.7 10

−

−

⋅ ⋅
=

= ⋅

 

39.63. /AN t Mρ σΠ = ⇒  

 ( )

( )( )( )( )3

1

38

2

23 2

/ A
(27.0 g/mole)(4 )

2.77 g/cm 6.022 10 /mole 0.68 10  cm /GeV 143 GeV

70. 

.19·1

m

0

c

t M Nρ σ

−

−

= Π

=
⋅ ⋅

=
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39.64. ( )38 2/ 0.68 10 cm /GeV /A AN t M N t E Mρ σ ρ −Π = = ⋅ ⇒  

 ( )

( )( )( )( )

38 2

3 23

2

12

38 2

/[ 0.68 10 cm /GeV ]A
(27.0 g/mole)(6 )

2.77 g/cm 6.022 10 /mole 71.1 cm 0.68 10  cm
.00·1

/GeV

2.0 10  Ge

0

V

E M N tρ −

−

−

= Π ⋅

=
⋅ ⋅

= ⋅

 

39.65. 4 1
2( ) sin ( )I θ θ−∝ ⇒  

 
4 41 1

2 1 1 22 2
4 4 3

( ) ( )sin ( ) / sin ( )

(853 /s)sin (47.45 ) / sin (30.25 ) 3900.671 /s 3.90 10  /s

I Iθ θ θ θ=

= ° ° = = ⋅
  

39.66. 4 1
2( ) sin ( )I θ θ−∝ ⇒  

 

4 41 1
2 2 1 12 2

1 14
2 1 2 12

1 4

( )sin ( ) ( )sin ( )

2sin [ ( ) / ( ) sin ]

2sin [ 1129 / 4840 sin(47.55 )] 61.7

I I

I I

θ θ θ θ

θ θ θ θ−

−

= ⇒

=

= ° = °

  

39.67. 4 1
2( ) sin ( )I θ θ−∝ ⇒  

 
4 41 1

1 2 2 12 2
4

( ) / ( ) sin ( ) / sin ( )

[sin(31.45) / sin(42.55)] 0.354

I Iθ θ θ θ=

= =
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Chapter 40:  Nuclear Physics 
 

Concept Checks 

40.1. a  40.2. b  40.3. b, e  40.4. d  40.5. d 
 
Multiple-Choice Questions 

40.1. b  40.2. c  40.3. b  40.4. e  40.5. d  40.6. b  40.7. d 
 

Conceptual Questions 

40.8. If the half-life is long then a given species of radioactive nuclei will decay very slowly and if the half-life is 
short the species will decay very quickly.  Since radioactive particles are dangerous, a radioactive material 
with a short half-life is more dangerous. 

40.9. There are many high energy particles that travel to Earth from cosmic ray sources. As these particles 
collide with the atoms, they turn into non-harmful particles. Thus, very few of these particles reach the 
surface of the Earth due to the atmosphere. However, since pilots climb to an altitude of 10 km above sea-
level or higher there are more harmful particles since they have interacted with a smaller amount of the 
atmosphere. Health concerns are one reason why flight times must be limited. 

40.10. The magic numbers: 2, 8, 20, 28, 50, 82, 126, etc., are the number of nucleons of each type that are needed 
to form closed shells. When either the protons or the neutrons form a closed shell, a nucleus becomes 
more stable. 

40.11. The binding energy difference between 3
2 He  and 3

1H  is 0.764 MeV. The Coulomb interaction energy 

between two protons that are separated by a distance of the nuclear radius of 3
2 He  is 2 / ,U ke R=  where 

( )1/31/3
0 1.12 fm 3 1.615 fm.R R A= = =  Then, 131.429 10  J 0.892 MeV.U −= ⋅ =  This accounts for the 

difference in binding energy between the two atoms and why the binding energy of 3
2 He  is lower than that 

of 3
1H,  where there is no repulsive Coulomb interaction. 

40.12. All the quantities are conserved during a nuclear reaction, not for the individual nuclei involved in the 
reaction, but for the ensemble of nuclei in the reaction. 

40.13. Gamma radiation is an electromagnetic wave and hence does not remain in one location. When it is 
emitted from the radioactive source, it either continues traveling or is absorbed by matter. When it is 
absorbed, its energy is transformed into other types of energy and hence the original gamma radiation 
ceases to exist. Thus, the food will not contain any gamma radiation when it is sold unless the radiation 
treatment caused nuclei in the food to be transformed into radioactive isotopes. 

40.14. The confinement of the particles and energy are kept together under high pressure and temperature by the 
enormous gravity of the Sun. Since this is not available on Earth, other methods must be found. 

40.15. The nuclear strong force must balance the Coulomb repulsion, as well as the asymmetry term in the 
binding energy equation. Having too many protons is prohibited by the Coulomb repulsion, while the 
asymmetry term keeps the neutrons and protons more or less in balance (Pauli exclusion principle). On 
the other hand, the force that holds the nuclei together is comparatively short-ranged. Thus, when too 
many protons get close enough together, the Coulomb repulsion is more prevalent (over the longer range) 
than the strong nuclear force.  This limits the size of nuclei. 

 



Bauer/Westfall: University Physics, 2E 

  1376 

40.16. (a) Helium-3 has “picked up” a neutron from the target nucleus. With this characteristic, this kind of 
reaction is traditionally called a pickup reaction. 
(b) From the conservation of mass number, which started at 15, the final product should also have the 
same mass number of 15. The alpha particle has 4 nucleons, so the X nucleus should have 11 nucleons. 
From the conservation of protons, the X nucleus must be 11

6C.  

(c) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )
 = + − − 
 = + − − 

=

2

2 2

1,2 6,6 5,6 2,2

3.016029 u 12.000000 u 11.0114336 u 4.0026033 u 931.4940 MeV/ u

1.856 MeV

Q m m m m c

c c

 

(d) Since the Q-value is positive, the reaction is exothermic. 

40.17. (a) Four states can be constructed with two 1/ 2t =  objects: ( )1/2,1/2 ,  ( )1/2, 1/2 ,−  ( )1/2,1/2 ,−  and 

( )1/2, 1/2 .− −  The state ( )1/2,1/2 ,  a symmetric combination of ( )1/2, 1/2 ,−  ( )1/2,1/2−  and 

( )1/2, 1/2 ,− −  is grouped together in an iso-triplet or 1t =  set of states. The state ( )1/2, 1/2 ,− −  an anti-

symmetric combination of ( )1/2, 1/2−  and ( )1/2,1/2 ,−  forms an “iso-singlet” or 0t =  object. The iso-

triplet states would correspond to the di-proton or 2 He  nucleus, a variant of the deuteron or 2 H  nucleus, 
and the di-neutron, but these do not exist as bound states. The iso-singlet is the deuteron, or 2 H  nucleus. 
(b)  Eight states can be formed from three 1/ 2t =  objects. Four of these can be grouped into a 3 / 2t =  set 
of states: ( )1/2,1/2,1/2 ;  symmetric combinations of ( )1/2,1/2, 1/2 ,−  ( )1/2, 1/2,1/2 ,−  and 

( )1/2,1/2,1/2 ;−  symmetric combinations of ( )1/2, 1/2, 1/2 ,− −  ( )1/2, 1/2,1/2 ,− −  and ( )1/2,1/2, 1/2 ;− −  

and ( )1/2, 1/2, 1/2 .− − −  These would correspond to 3 Li,  a variant of 3 He,  a variant of 3 H  (tritium), and 

the tri-neutron, respectively, but again, they do not exist as bound states. The other four states can be 
grouped into two iso-doublet, 1/ 2t =  sets. They consist of combinations of ( )1/2,1/2, 1/2 ,−  

( )1/2, 1/2,1/2 ,−  and ( )1/2,1/2,1/2 ;−  and ( )1/2, 1/2, 1/2 ,− −  ( )1/2, 1/2,1/2 ,− −  and ( )1/2,1/2, 1/2 .− −  

These correspond to the nuclei 3 He  and 3 H.  

40.18. The deuteron is a spin-1 object. The combination of spin-1/2 objects to produce spin-1 is symmetric: “up-
up”, the symmetric combination of “up-down” and “down-up”, and “down-down”. As fermions, the two 
nucleons making up the deuteron must have anti-symmetric total wave function. The iso-spin portion of 
the wave function is anti-symmetric; the neutron and proton have opposite iso-spins, with no companion 
parallel iso-spin states (no di-proton or di-neutron). With the spins in a symmetric combination, the 
spatial portion of the wave function is forced to be asymmetric. This enhances the probability density at 
the origin, i.e. zero separation. It puts the nucleons closer together, on average, than the alternative. This 
enables the nuclear force between the nucleons to produce a bound state. A spin-zero deuteron, with an 
anti-symmetric spin wave function, must have an anti-symmetric spatial wave function as well. This would 
keep the nucleons farther apart on average (see Problem 38.4). The nuclear force between them is not 
strong enough to produce a bound state in this case. As such, the spin-1 deuteron is only weakly bound. 

40.19. 39 Ar  has 18.Z =  In β −  decay, a neutron gets converted into a proton, an electron and an antineutrino: 
39 39
18 19Ar X ee−→ + +ν   

Therefore, the new isotope is 39 K.  

40.20. A neutron star is the core of a star that has undergone a supernova explosion, leaving only the core 
collapsed to nuclear density. An ordinary star exists in a hydrostatic equilibrium between gas pressure and 
its own gravity. A neutron star exists in an equilibrium between “degeneracy pressure” (pressure arising 
from the Pauli exclusion principle) and its own gravity. Neutrons fill every available quantum state from 
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the ground state up to their Fermi surface. The neutron star contains just enough protons so that the 
Fermi surface for protons is high enough to make the decay of a neutron into a proton (which must go 
into the next available energy level) and an electron energetically unfavorable. Hence, it is energetically 
favorable for surplus protons to combine with electrons to form neutrons. The number of electrons is just 
that required for overall charge neutrality. This is, of course, a highly simplified description. To 
understand the structure of neutron stars in detail, one must take into account nuclear physics, elementary 
particle physics, general relativity, fluid dynamics and even superfluidity. 

40.21. Alpha decay emits a 4
2 He  atom. Thus, the decay equation is 157 4 153

72 2 70Hf He X. → +  The daughter nucleus is 

( )Yb 153, 70 .A Z= =  

 
Exercises 

40.22. For 235 U,  the mass number is A = 235.  Since 1/3
0( ) ,R A R A=  the volume is: 

( ) ( )
33 315 42 3044 ( ) 4 1.12 10  m 235 1.38 10  m .

3 3 3
R AR AV − −= = = ⋅ = ⋅

ππ π  

40.23. In general, binding energy is given by  

( ) ( ) 2
n, (0,1) , ,B N Z Zm Nm m N Z c = + −   

where (0,1) 1.007825032 u,m =  n 1.008664916 um =  and 21 u 931.4940 MeV/ .c=  The choice of how to 
round the values is arbitrary. Round to the nearest integer. 
(a)  7 Li  has N = 4, Z = 3 and m(4,3) = 7.0160045 u, so: 

( ) ( ) ( ) ( ) ( ) = + − 
=

2 24, 3 3 1.007825032 4 1.008664916 7.0160045 931.4940 MeV/

39 MeV.

B c c  

(b)  12C  has N = 6, Z = 6 and m(6,6) = 12.000000 u, so: 

( ) ( ) ( ) ( ) ( )2 26, 6 6 1.007825032 6 1.008664916 12.000000 931.4940 MeV/

92 MeV.

B c c = + − 
=

 

(c)  56 Fe  has N = 30, Z = 26 and m(30,26) = 55.93493748 u, so: 

( ) ( ) ( ) ( ) ( )2 230, 26 30 1.007825032 26 1.008664916 55.93493748 931.4940 MeV/

489 MeV.

B c c = + − 
=

 

(d)  85 Rb  has N = 48, Z = 37 and m(48,37)= 84.91178974 u, so: 

( ) ( ) ( ) ( ) ( )2 248, 37 48 1.007825032 37 1.008664916 84.91178974 931.4940 MeV/

731 MeV.

B c c = + − 
=

 

40.24. When in standard notation, 134
54 Xe  is the same as X,A

Z  where A is the number of nucleons, Z is the number 
of protons and electrons, and A Z−  is the number of neutrons. Therefore, there are 134 nucleons, 54 
protons and electrons, and 134 54 80− =  neutrons. 
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40.25. THINK:  Since the derivative is performed when ( ),r R A=  the term in the exponential will disappear, 
meaning the result should be independent of the number of nucleons, A. 
SKETCH:   

 

RESEARCH:  The Fermi function is given by: ( ) ( )( )
0

/
.

1 r R A a

n
n r

e −
=

+
 

SIMPLIFY:  The derivative with respect to r, when Ar R=  is: 

( )
( )

( )( )( )
( )

( )( )( ) ( )( )

( )

( )( )

( )( )( )
( )

( )

1 2
/ / /0

/ 0

2 20/

/ 11 1

1 .
411

r R A a r R A a r R A a

r R A r R Ar R A

r R A a

r R A a

r R A

dn r n d e e e
dr dr a

e e
aa ea e

− −
− − −

= ==

−

−

=

     
= + = − +     
     

 
 − −

= = = − 
  ++  

 

CALCULATE: 
( )

( ) ( )
0 1/ 1 0.46296 fm

4 0.54 fm
r R A

dn r n
dr

−

=

 
= − = − 

  
 

ROUND:  To two significant figures, the relative change in density at the nuclear surface is 

( )
( )

0 1/
0.46 fm .

r R A

dn r n
dr

−

=

 
= − 

  
 

DOUBLE-CHECK:  The number should decrease with increasing r, so a negative value for the rate change 
is appropriate. 

40.26. THINK:  238
92 U  has 92 protons and electrons, each of which have a mass of ( )0,1 1.007825032 u,m =  and 

146 neutrons each with a mass of n 1.008664916 u.m =  The overall atomic mass is 

( )146,92 238.0507826 u.m =  235
92 U  has 92 protons and electrons as well, but has only 143 neutrons and has 

a total atomic mass of ( )143,92 235.0439299 u.m =   
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SKETCH:   
(a)          (b) 

       
 

RESEARCH:  The binding energy is given by ( ) ( ) ( ) 2
n, 0,1 , .B N Z Zm Nm m N Z c = + −    

SIMPLIFY:  Not applicable. 
CALCULATE:   

(a)  ( ) ( ) ( ) ( ) ( )2 2146,92 92 1.007825032 146 1.008664916 238.0507826 931.4940 MeV/

1.80169 GeV

B c c = + − 
=

 

(b)  ( ) ( ) ( ) ( ) ( )2 2143,92 92 1.007825032 143 1.008664916 235.0439299 931.4940 MeV/

1.78386 GeV

B c c = + − 
=

 

ROUND:  Rounding to the nearest hundredth is sufficient to contrast the results. 
(a)  ( )146,92 1.80 GeVB =  

(b)  ( )143,92 1.78 GeVB =  

The binding energy of 238 U  is larger, so it is more stable.  
DOUBLE-CHECK:  The half-life of 238 U  is 4.5 billion years, and for 235 U  it is 700 million years. Since the 
half-life of 238 U  is greater, it is more stable than 235 U.   

40.27. In β − decay, the atomic number, Z, increases by one, and an electron and electron anti-neutrino is 
emitted.  
(a)  60 60

27 28Co Ni ee v−→ + +  

(b)  3 3
1 2H He ee v−→ + +  

(c)  14 14
6 7C N ee v−→ + +  

40.28. Each α  decay emits a 4
2 He  atom, so the atomic number, Z, decreases by two and the daughter nucleus 

has four fewer nucleons.  
(a)  212 208 4

86 84 2Rn Po He→ +  

(b)  241 237 4
95 93 2Am Np He→ +   

40.29. The decay of 14
6C  via β −  decay is given by: 14 14

6 7C N .ee−→ + +ν  The Q-value of this reaction is 

( ) ( ) e8,6 7,7 .Q m m m= − −  The energy released is then 2 .E Q c=  Substituting the expression for Q gives: 

( ) ( ) ( ) ( )4 2 214.0032420 14.003074 5.485799 10 931.4940 MeV/ 0.352 MeV.E c c−= − − ⋅ =  

40.30. (a) When the isotope goes through three half-lives, there is ( )3
1/ 2 1/ 8=  of the original amount 

remaining. Therefore, in t = 5.0 h, three half-lives have occurred. Therefore,  
( )

1/2 1/2

5.0 h
3   1.667 h 1.7 h.

3 3
tt t t= ⇒ = = = =  
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(b)  The mean lifetime, ,τ  is related to the half-life by: 

( )1/2
1/2

1.667 h
ln2  2.4 h.

ln2 ln2
t

t τ τ= ⇒ = = =  

40.31. Since the isotope decays to 1/8 its original amount in ′ = 5.00 h,t  it goes through three half-lives. 
Therefore the equation describing the amount of isotope remaining after t hours is  

( )
1/2

1/2

/
ln 2 /

00 0
1( )
2

t t
t ttN t N e N e N−−  

= = =  
 

λ

( ) ( )
( )

( )
( ) ( )

1/2 1/2/ /

0 1/20

ln 0.900 ln 0.9001 10.900 0.900 5.00 h / 3 0.253 h
2 2 ln 1/ 2 ln 1/ 2

t t t t

N t N N t t   = = ⇒ = ⇒ = = =   
   

 

40.32. The decay constant is: 

( )
4 1

1/2

ln2 ln2 4.3 10  yr .
1600 yrt

− −= = = ⋅λ  

40.33. The mass of 228 Th  is =1.00 g,m  while the molar mass is ( )138, 90 228.0287411 g/mol.m =  Therefore, the 

number of 228 Th  atoms present is: 

( )
 

= = ⋅ = ⋅ 
 

23 21
A

1.00 g
6.022 10  atoms/mol 2.6409 10  atoms.

228.0287411 g/mol138,90
mN N

m
 

The measured activity is 75 counts/day.A′ =  Since only 10.0% of all decays are picked up, the actual 
activity is ten times greater, therefore, 10 750 decays/day.A A′= =  The activity is also given by: 

( )
( )

19 1
21

750 decays/day
  2.8399 10  day .

2.6409 10  atoms
AA N
N

− −= ⇒ = = = ⋅
⋅

λ λ  

Therefore, the lifetime is: 

( )
τ

λ − −

 
= = = ⋅ = ⋅ 

⋅  
18 15

19 1

1 yr1 1 3.5212 10  days 9.65 10  yr.
365 days2.8399 10  day

 

40.34. The half-life is 1/2 10 min,t =  and there are initially 11
0 10  atoms.N =   In 100 min, 10 half-lives have passed 

and in 200 min, 20 half-lives have passed. Therefore, the number of alpha particles emitted over this time 
frame is: 

( ) ( ) ( ) ( ) ( ) ( )10 20 10 2011 8
1/2 1/2 0 010 20 1/ 2 1/ 2 10 1/ 2 1/ 2 10  particles.N N t t N t t N N  ∆ = = − = = − = − =   

40.35. THINK:  Carbon-14 has a half-life of 1/2 5730 yr.t =   For a piece of wood, the radioactive decay of 14 C  

follows an exponential decay law, while the number of 12 C  isotopes stays constant in time because this 
isotope is stable.  Since the ratio of the number of 14 C  atoms to the number of 12C  stays constant until the 
intake of 14 C  ceases (when the tree died), the initial amount of 14 C  can be found.  It can be assumed that 
12C  and 14 C  comprise all of the mass of the wood, = 5.00 g.m  Even though the wood was cut on January 
1, 1700, the actual date today is not important to determine the activity today. It can be easily 
approximated by simply using the year associated with the date of the measurement (i.e. 2010). This is 
because the half-life is large (on a year scale), so being off by a few months (or even a full year) would only 
result in an error of less than 1%. 
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SKETCH:   

 

RESEARCH:  The number of atoms in a given mass is A / ,N mN M=  where M  is the molar mass.  The 
activity of a material is ,A Nλ=  where the decay constant is 1/2ln2 / .t=λ   The specific activity is 

( )14/ C .AS A m=  The radioactive decay law is given by ( ) 0 .tN t N e λ−=  As stated in the text, the initial 

ratio of 14 C  to 12C  atoms is ( ) ( )14 12 12
0 C / C 1.20 10 .r N N −= = ⋅  

SIMPLIFY: 
(a)  The number of 14 C  atoms per gram is given by:  

( ) ( )
( )

( )
( ) ( )

14 14
A14 A

14 14 14

C C
C   .

C C C

m N N N
N

M m M
= ⇒ =  

The specific activity of 14 C  is then: 

( )
( )
( )

( )
( ) ( )

14 14

A
14 14 14 14

1/2 1/2

C C ln2ln2 .
C C C CA

N N NAS
tm m m t M

= = = =
λ

 

(b)  To find the initial activity of a piece of wood with = 5.00 g,m  the mass of 14 C  present in the piece of 
wood needs to be found: 

( ) ( ) ( )
( ) ( ) ( )

12 12
12 14

14 14
0

C C
C C

C C

N M
m m

N M

 
 =
 
 

  and  ( ) ( )12 14C Cm m m+ =  

( ) ( ) ( )
( ) ( )

14

12 12

14 14
0

C
C C

1
C C

mm
N M

N M

=
 
  +
 
 

 

Then, the initial activity is given by:  

( )14 C .AA S m=  

(c) The time passed in years is 2010 yr 1700 yr 310. yr.t∆ = − =  Treating the year 1700 as t = 0, the change 
in the number of atoms, i.e. disintegrations is: 

( ) ( ) ( ) ( )( ) ( )
( ) ( )1/2

14
A ln 2/14 14 14 14

0 0 14

C
C C C C 1 1 .

C
t tt

m N
N N N N e e

M
−−∆ = − = − = −λ  
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CALCULATE:   

(a)  
( )

( )( )( )( )( )
( )

23

11

11

ln2 6.022 10  atoms/mol

5730 yr 365.25 days/yr 24 hr/day 3600 s/hr 14.0032420 g/mol

1.64846 10  disint/ g s

1.64846 10  Bq/g
4.4553 Ci/g

AS
⋅

=

= ⋅

= ⋅
=

 

(b)  ( ) ( )
( )

( )( )

−

−

= = ⋅
 
  +
 ⋅ 

14 12

12

5.00 g
C 7.001621 10 g

12.0000000 g
1

1.20 10 14.0032420 g

m  

( )( )11 121.64846 10  Bq/g 7.001621 10 g 1.15419 BqA −= ⋅ ⋅ =  

(c)  ( ) ( )( )
( )

( )( )
12 23

310. yr ln 2/5730 yr14 10
7.001621 10 g 6.022 10  atoms/mol

C 1 1.108219 10  disint
14.0032420 g/mol

N e
−

−
⋅ ⋅

∆ = − = ⋅  

ROUND:   
(a)  ( )11 111.65 10  disint/ g s 1.65 10  Bq/g 4.46 Ci/gAS = ⋅ = ⋅ =  
(b)  =1.15 BqA  

(c)  ( )∆ = ⋅14 10C 1.11 10  disintN  

DOUBLE-CHECK:  These are reasonable results for radioactive decay over a long time period. 

40.36. THINK:  The radioactive decay of 14 C  follows an exponential decay law, while the number of 12 C  
isotopes stays constant in time because this isotope is stable.  Since the ratio of the number of 14 C  atoms 
to the number of 12C  stays constant until the intake of 14 C  ceases (when the tree died), the initial amount 
of 14 C  can be found.  It can be assumed that 12C  comprises all of the mass of the charcoal; that is, 

( )12C 7.2 g.m m= =  The activity, 0.42 Bq,A =  can be used along with the half-life, 3
1/2 1.81 10  s,t = ⋅  to 

determine the current number of 14 C  atoms.  Using all of this information will provide an approximate 
age for the site. 
SKETCH:   

 
 

RESEARCH:  The exponential decay law for the number of atoms remaining as a function of time is given 
by  

0( ) ,tN t N e−= λ  
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where 1/2ln2 / .t=λ  The activity of 14 C  is given by ( )14 C .A N= λ   As stated in the text, the initial number 

ratio of 14 C  to 12C  atoms is ( ) ( )14 12 12
0 C / C 1.20 10 .r N N −= = ⋅   Therefore, the number of initial 14 C  

atoms is ( ) ( )14 12
0 C C .N rN=  The number of 12 C  atoms is given by  

( ) ( )
( )

12
12

A12

C
C ,

C

m
N N

M
=  

where ( )12CM  is the molar mass of 12C . 

SIMPLIFY:  The decay for 14 C  is 

( ) ( ) ( )14 14 12
0C C C .t tN N e rN e− −= =λ λ  

Simplifying and solving for t gives: 

( )
( )

( )
( )

( )
( )

( )
( )

1/2

1/2

ln 2 /12 12 12
A A 1/2ln 2 /1/2

12 12 12
A

12
1/21/2

12
A

C C C

ln2C C C ln2

C
ln .

ln2 C ln2

t tt
t t

rm N e rm N e AM tAtA e
M M rm N

AM tt
t

rm N

−−
−= ⇒ = ⇒ =

 
 = −
 
 

λ

λ
 

CALCULATE:

( ) ( )( )( )
( )( )( )

11 11
11

12 23

1.81 10  s 0.42 Bq 12.0000 g/mol 1.81 10  s
ln 3.5894 10 s 11382 yr

ln2 1.20 10 7.2 g 6.022 10  atoms/mol ln2
t

−

 ⋅ ⋅
 = − = ⋅ =
 ⋅ ⋅ 

 

ROUND:  To two significant figures, 11000 yr.t =  
DOUBLE-CHECK:  11000 years is well within the history of mankind and is still old enough to warrant 
an excavation site. Therefore, the result makes sense. 

40.37. THINK:  The specific activity decays exponentially. The initial specific activity is ,0 0.270 Bq/g,AS =  and 

the current specific activity is 0.268 Bq/g.AS =  The half-life of 14 C  is 3
1/2 5.73 10  yr.t = ⋅  

SKETCH:   

 
 

RESEARCH:  The specific activity decays exponentially as ( ) ,0 ,t
A AS t S e−= λ  the decay constant is given by 

1/2ln2 / .t=λ  
SIMPLIFY:  Solving for time yields:  

,01/2
,0

,0 1/2

ln2  ln   ln .
ln2

At A
A A

A A

StS tS S e t
S t S

−
   

= ⇒ = − ⇒ =       

λ  

CALCULATE:  
( )35.73 10  yr 0.270 Bq/g

ln 61.462 yr
ln2 0.268 Bq/g

t
⋅  

= = 
 

 

ROUND:  To three significant figures, 61.5 yr.t =  The victim was murdered in 1946 or 1947. 
DOUBLE-CHECK:  While this is an old crime, it still warrants an investigation; therefore, the result is 
reasonable. As the question does not indicate when in 2008 the remains were found, the answer might be 
1946 or 1947. 
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40.38. THINK:  For part (a), the energy required for the combustion is the heat of combustion of hydrogen, 
285.83 kJ/mol.E∆ =  This is the change in energy for this reaction, which is related to its change in mass. 

For the remaining processes, the difference in their atomic masses is all that needs to be considered. 
SKETCH:  Not applicable. 
RESEARCH:  The change in mass is converted to energy via 2/ .m E c∆ = ∆  The fractional change in mass 
that is converted to energy is / .m m∆  
SIMPLIFY:   
(a)  For every mole of 2H ,  the combustion uses a half mole of 2O .  The initial molar mass of the reaction 

is then ( ) ( )2 2H O / 2.M M M= +  Therefore,  

( ) ( )
2

2 2

/ .
H O / 2

m E c
m M M
∆ ∆

=
+

 

(b)  The fractional change in mass for this reaction is given by: 

( ) ( )
( )

n

n

53, 36 86, 56 5
1 .

143, 92

m m mm
m m m

+ +∆
= −

+
 

(c)  The fractional change in mass for this reaction is given by:  

( )
( ) ( )

n3, 4
1 .

3, 3 1,1

m mm
m m m

+∆
= −

+
 

(d)  The fractional change in mass for this reaction is given by: 

p e v p e

n n

1 1 .e
m m m m mm

m m m

+ + +∆
= − ≈ −  

The electron antineutrino ev  has virtually no mass. 
(e)  The fractional change in mass for this reaction is given by: 

e ve e
1 1 .

v vm m m m mm
m m m

+ + +∆
= − ≈ −µ µ

µ µ

 

The electron antineutrino, ,ev  has virtually no mass, but the muon neutrino, ,vm
µ

 has a non-negligible 

mass. 
(f) Since raysγ −  have no mass, all the mass is converted to energy.  Therefore,  

1.e e

e e

m mm
m m m

− +

− +

+∆
= =

+
 

CALCULATE:   

(a)  
( ) ( )

( )

28
13

285.83 kJ/mol / 3.00 10  m/s
1.76288 10

2.015894 g/mol 31.9988 g/mol / 2
m

m
−

⋅∆
= = ⋅

+
 

(b)  
( ) ( ) ( )

( ) ( )
488.917631 u 141.916454 u 5 1.008664916 u

1 7.421 10
235.0439299 u 1.008664916 u

m
m

−+ +∆
= − = ⋅

+
 

(c)  
( ) ( )
( ) ( )

47.0169292 u 1.008664916 u
1 4.521 10

6.0151223 u 2.014101778 u
m

m
−+∆

= − = ⋅
+

 

(d)  
( ) ( )

( )

4
4

1.007276467 u 5.485799 10 u
1 8.327 10

1.008664916 u
m

m

−

−
+ ⋅∆

= − = ⋅  

(e)  
( ) ( )

( )

4 75.485799 10 u 1.825025 10  u
1 0.99516

0.1134290 u
m

m

− −⋅ + ⋅∆
= − =  
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(f)  1m
m
∆

=  

ROUND:  Rounding to three significant figures is sufficient to compare the results: 

(a)  131.76 10m
m

−∆
= ⋅    

(b) 47.42 10m
m

−∆
= ⋅    

(c)  44.52 10m
m

−∆
= ⋅    

(d)  48.33 10m
m

−∆
= ⋅    

(e)  0.995m
m
∆

=  

(f)  1m
m
∆

=  (exact) 

DOUBLE-CHECK:  Since reaction (a) does not split up any atoms and simply recombines them, very 
little mass energy is lost. For reactions (b) (d),→  the atoms are split up quite considerably, so binding 
energies would change by an appreciable amount, thus releasing energy or causing a noticeable change in 
mass. For reaction (e), the upper limit value of vm

µ
 was used. Anything smaller and the value of /m m∆  

gets closer to one, which makes sense since the mass of an electron is about 200 times smaller than ,vm
µ

 

meaning: 

( )/ 200
0.995.

v vm mm
m m

µ µ

µ

−∆
= ≈  

Obviously for reaction (f), all of the mass is converted so it is the most efficient. For these reasons, the 
results are reasonable. 

40.39. THINK:  ( )BN t  decreases via decay B C,→  but is then replenished via A B.→  Thus, the total activity of 
B is the difference between the activity of A becoming B, and the activity of B becoming C. Initially, both A 
and B have some nuclei. 
SKETCH:   

 
 

RESEARCH:  The activity of each nuclei at any time is ( ) ( )/ .i i idN t dt N tλ= −  The number of atoms 

present at any time is ( ) 0 ,it
i iN t N e−= λ  where subscript i denotes either A, B or C. 

SIMPLIFY:  The total activity of atom B is: 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

A A

B AB B

B
B B A A B B A A0 B A A0 B B

B B B A A0

  

 .

t t

tt t

dN t
N t N t N t N e dN t N e dt N t dt

dt
dN t e N t e dt N e dt

− −

−

= − + = − + ⇒ = −

⇒ + =

λ λ

λ λλ λ

λ λ λ λ λ λ

λ λ
 

Consider ( ) B
B :tN t eλ   

( )( ) ( ) ( ) ( )( ) ( ) ( )B B B B B BB
B B B B B B B  .t t t t t tdN td N t e e N t e d N t e dN t e N t e dt

dt dt
λ λ λ λ λ λλ λ= + ⇒ = +  
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Therefore,  
( ) ( )( ) ( )

( ) ( )

( )

B B AB

B,0

B AB

A B

B A A00

A A
B B0 A0 A0

B A B A

A A
B A0 B0 A0

B A B A

 

.

N t t tt

N

tt

t t

d N t e N e dt

N t e N N e N

N t N e N N e

−

−

− −

=

− = −
− −

 
= + − 

− − 

∫ ∫ λ λλ

λ λλ

λ λ

λ

λ λ
λ λ λ λ
λ λ

λ λ λ λ

 

CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  In general, the population of atom B would decrease. However, if A B ,λ λ>>  then B is 
replenished by A faster than B can decay to C. The solution when A B ,λ λ>>  simplifies to: 

( ) ( )A B B B A
B A0 B0 A0 B0 A0 A0 .t t t t tN t N e N e N e N N e N eλ λ λ λ λ− − − − −≈ − + + ≈ + −  

The first term is the regular decay of B if all of A was instantly converted to B (which is true when 

A B ).λ λ>>  The second term is the number subtracting the actual number of atoms still in A. Since this 
approximation validates what is known should happen in the limit, the solution is reasonable. 

40.40. THINK:  ( )BN t  decreases via decay C,B →  but is then replenished via A B.→  Thus, the total activity of 
B is the difference between the activity of A becoming B, and the activity of B becoming C.  Initially, only 
A nuclei are present and the daughter B nuclei are not present. 
SKETCH:   

 

RESEARCH:  The activity of each nuclei at any time is ( ) ( )/ .i i idN t dt N tλ= −  The number of nuclei at 

any time is ( ) 0 ,it
i iN t N e−= λ  where subscript i denotes either 1 or 2. 

SIMPLIFY:   
(a) Since the nuclei of A have to decay through both 1λ  and 2λ  to get to C, and C increases as A decreases, 

then ( ) ( )1 2
3 1,0 1 .tN t N e− + = − 

λ λ  The A nuclei decrease as ( ) 1
1 1,0 .tN t N e−= λ  The total activity of nuclei B is: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

2 12 2

2
2 2 1 1 2 2 1 1,0 2 2 2 1 1,0

2 2 2 1 1,0

  

 .

t t

tt t

dN t
N t N t N t N e dN t N t dt N e dt

dt
dN t e N t e dt N e dt

− −

−

= − + = − + ⇒ + =

⇒ + =

λ λ

λ λλ λ

λ λ λ λ λ λ

λ λ
 

Consider ( ) 2
2 :tN t eλ   

( )( ) ( ) ( ) ( )( ) ( ) ( )2 2 2 2 2 22
2 2 2 2 2 2 2  .t t t t t tdN td N t e e N t e d N t e dN t e N t e dt

dt dt
= + ⇒ = +λ λ λ λ λ λλ λ  

Therefore,  
( ) ( )( ) ( ) ( ) ( )2 2 1 2 12 2 1 1

2 1 1,0 2 1,0 1,00 0
2 1 2 1

  
N t t t tt td N t e N e dt N t e N e N− −= ⇒ = −

− −∫ ∫ λ λ λ λλ λ λ λ
λ

λ λ λ λ
 

( ) ( )1 21
2 1,0

2 1

 .t tN t N e e− −⇒ = −
−

λ λλ
λ λ

 

The activity of B is then: ( ) ( )1 22 1
2 1,0

2 1

.t tA t N e e− −= −
−

λ λλ λ
λ λ
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(b)  When 2 110 ,≈λ λ  2te−λ  dies off faster than 1 ,te−λ  therefore, 

( ) ( ) ( )
( )

1 11 1 2 1
2 1,0 1

2 1 2 1 12

  .t N t
N t N e N t

N t
− −

≈ = ⇒ =
− −

λλ λ λ λ
λ λ λ λ λ

 

At any time, the ratio of atoms is constant.  When 2 1100 ,≈λ λ  the result is the same as before, except also 

2 1 2 .− ≈λ λ λ  Therefore, 

( )
( ) ( ) ( ) ( ) ( )1 2

1 1 2 2 1 2
12

    A A .
N t

N t N t t t
N t

= ⇒ = ⇒ =
λ

λ λ
λ

 

The activities are the same. 
CALCULATE:  Not applicable. 
ROUND:  Not applicable. 
DOUBLE-CHECK:  At t = 0, ( )3 0 0,N =  ( )2 0 0N =  and ( )1 1,00 ,N N=  which is expected. As ,t →∞  

( )3 1,0 ,N t N=  ( ) ( )2 1 0,N t N t= =  which is also expected. When 2 1 ,>>λ λ  as soon as an atom in A decays 
to B, it decays to C before another A can decay. Therefore, for every A decay, there is one B decay, in some 
time interval, so the activities are expected to be equal. 

40.41. THINK:  To determine the binding energy, multiply both sides of the Bethe-Weizsäcker formula by A. 
Since A = Z + N, if A is odd then either Z is odd and N is even or Z is even and N is odd. The most stable 
isotope for when 117A =  is for a Z where the binding energy is at a minimum. Therefore, once the 
quadratic equation is obtained, differentiate with respect to Z and set it equal to solve for Z. 
SKETCH:  Not applicable. 
RESEARCH:  The Bethe-Weizsäcker formula multiplied by A is: 

( ) ( ) ( )
22

2/3 1/2
v s c a p1/3

1, 1 1 .
2

N ZZ ZB N Z a A a A a a A a A
AA

−   = − − − − + − + −     
 

SIMPLIFY:  When Z is odd and N is even (or vice-versa), the last term becomes: 

( ) ( ) ( )even odd 1/2 1/2
p p1 1 1 1 0.a A a A− − − + − = − =  

  

Therefore, the equation is: 

( )
2

2/3 2 1/3
v s c a 2

2/3 2 2a c a
v s a 1/3

1,
4

.
4

Z ZB N Z a A a A a Z A a A
AA

a A a a
a A a A a Z Z a bZ cZ

AA

−  
= − − − − + 

 
   

= − − + + − − ≡ + +   
   

 

The minimum in ( ),B N Z  is when: 

( ) ( )

( )

2
117

117117

a
1/3

117 c a
117

,
2 0

 .
2 2 / /

A
AA

A
A

dB N Z d a bZ cZ b cZ
dZ dZ

abZ
c a A a A

=
==

=
=

   
= + + = + =     
   
 −   ⇒ = − =   − −   

 

CALCULATE:  The values for the constants are given in the text: 
( )

( ) ( ) ( ) ( )( )1/3

92.86 MeV
49.455

2 0.71 MeV / 117 92.86 MeV / 117
Z

−
= =

− −
 

ROUND:  Since the result must be an integer and rounded up, Z = 50. 
DOUBLE-CHECK:  This atom (Z = 50, A = 117) corresponds to 117

50Sn,  which does exist and is stable. 
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40.42. THINK:  Plot Sn  and 2S n  for element Sn  (Z = 50) versus neutron number, N. Since N is an integer, 
simply examining the plot will be sufficient to determine when each plot crosses into the negative. The 
following constants are given on page 13.47: V s c15.85 MeV, 18.34 MeV, 0.71 MeV,a a a= = =  

a 92.86 MeV,a = P 11.46 MeV.a =  Use the fact that A N Z= +  to write the formulas that will be obtained 
in the RESEARCH step in terms of N and Z. 
SKETCH:  The plots will be in the CALCULATE step. 
RESEARCH:  The Bethe-Weizsäcker formula is given in Equation 40.37: 

( ) ( ) ( )22
1/3

v s c a p4/3 3/2

, 1 11 .
2

Z N
B N Z Z Za a A a a a

A AA A
− − + − 

= − − − − + 
 

 

Page 1333 discusses the separation energy, S, required to separate some part of an isotope away from the 
remainder of the nucleus. It gives the formula ( ) ( ) ( )1 2 1 2 1 1 2 2, ,, .S B N N Z B NZ Z ZB N= + − −+  To 

compute ,nS  let 2 21,  and 0.N Z= = To compute 2 ,nS  let 2 22,  and 0.N Z= =  As mentioned in Example 
40.2, the binding energy of two neutrons is zero. Also, the binding energy for a single neutron is zero, as 
there is nothing to bind. This means ( ) ( )1,0 2,0 0.B B= =  

SIMPLIFY:   ( ) ( ) ( ) ( ) ( )1, 1,0, ,1,,nS B N Z B B B N ZN Z N ZB− −= − − = − and  

( ) ( ) ( ) ( ) ( )2 2, 2,0 2,, , .nS B N Z B B B N ZZ ZBN N= − − = −− −  Now find expressions for ( ), ,B N Z  

( )1, ,B N Z−  and ( )2, .B N Z−  

( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )
( )

22
2/3

v s c a p1/3 1/2

2
2

2/3

v s c a p1/3 1/2

1 1
,

2

1 1
2

Z N

Z N

Z AB N Z a A a A a a Z a
A A

Z NZa Z N a Z N a a Z a
Z N Z N

− + − 
= − − − − + 

 

 + − + −
= + − + − − − +  + + 

 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

2 12
2/3

v s c a p1/3 1/2

1 1 1
1, 1 1

21 1

Z N
Z NZB N Z a Z N a Z N a a Z a

Z N Z N

− + − − + −
− = + − − + − − − − +  + − + − 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

2
2

2/3

v s c a p1/3 1/2

2 1 1
2, 2 2

22 2

Z N
Z NZB N Z a Z N a Z N a a Z a

Z N Z N

 + − − + −
− = + − − + − − − − +  + − + − 

( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( )

2
2

2/3

v s c a p1/3 1/2

2 12
2/3

v s c a p1/3 1/2

, ,

1 1
2

1 1 1
2

1

1 1
1

,

1

Z N

Z N

nS N Z B N Z B

Z NZa Z N a Z N a a Z a
Z N Z N

Z NZa Z N a Z N a a Z a
Z

N Z

N Z N

−

= −

  + − + − = + − + − − − +   + +  
  + − − + − − + − − + − −

−

− − +   + − + −  
( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( )

2
2

2/3

v s c a p1/3 1/2

2
2

2/3

v s c a p1/ /

2

3 1 2

, 2,

1 1
2

2 1 1
2 2

22 2

,n

Z N

Z N

S N Z B N Z B

Z NZa Z N a Z N a a Z a
Z N Z N

Z NZa Z N a Z N a a Z a
Z N N

N Z

Z

= −

  + − + − = + − + − − − +   + +  
  + − − + − − + − − + − − − − +   + − + −  

−

At this point, further algebraic simplification will only make the functions messier. Move on to the 
following step where the substitution of some values will give the explicit function. 
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CALCULATE:  These formulas are unpleasant, and clearly impossible to graph without the aid of a 
computer graphing utility. 

( ) ( )
( )

( )

( )
( )

( )

2

2/3

1/3

2

1
2/3

1/3

25 1 11775 2,50 15.85 18.34 50 92.86 11.46
50 5050

25.5 1 11775 218.34 49 92.86 11.46
49 4949

N

n

N

N

S N N
N NN

N

N
N NN

−

 −  + −
= − + − − + 

+ ++   
 

 −  + −
+ + + + − 

+ ++   
 

 

 
Here is the same function plotted again zoomed in on where it crosses the x-axis: 

 

( ) ( )
( )

( )

( )
( )

( )

2

2/3

2 1/3

2

2/3

1/3

25 1 11775 2,50 31.70 18.34 50 92.86 11.46
50 5050

26 1 11775 2           18.34 48 92.86 11.46
48 4848

N

n

N

N

S N N
N NN

N

N
N NN

 −  + −
= − + − − + 

+ ++   
 

 −  + −
+ + + + − 

+ ++   
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Again, the function is replotted, zoomed in on where it crosses the x-axis: 

 
ROUND:  Sn  becomes negative for the first time at N = 99. 2S n  becomes negative at N = 113. 
DOUBLE-CHECK:  As the number of neutrons in the atom increases, they help keep the atom together so 
that the binding energy decreases, which is evident in the plots. Also, when the separation energy is 
negative, energy is necessary to separate the atom.  

40.43. Given that the power plant with P = 1.50 GW has an efficiency of 0.350,=ε  the total power that is created 
is 0 / .P P= ε The energy that the plant produces in 1 dayt∆ =  is given by 0 .E P t= ∆  Since each 235 U  

reaction is ∆ = 200. MeV,E  the number of 235 U  consumed per day is given by / .N E E= ∆  Since 235 U  has 
a molar mass of M 235.0439299 g/mol,m =  the mass of 235 U  consumed in one day is: 

( )( )( )
( )( )( )( )ε −

⋅∆
= = = =

∆ ∆ ⋅ ⋅ ⋅

=

9

M M
M 6 19 23

A A A

1.50 10 W 86400 s/day 235.0439299 g/mol

0.350 200. 10 eV 1.602 10 J/eV 6.022 10 atoms/mol

4.51 kg.

Em P tmNm m
N EN EN  

40.44. The reaction is 2 2 4
1 1 2H+ H He .Q→ +  The atomic masses of 2

1H  and 4
2 He  are ( )1,1 2.014101778 um =  and 

( )2, 2 4.002603254 u.m =  

(a)  The energy released is 2 ,E Qc∆ =  where Q is the change in mass; therefore, 

( ) ( )( ) ( ) ( ) ( )2 2 22 1,1 2, 2 2 2.014101778 4.002603254 931.4940 MeV/ 23.8465 MeV.E m m c c c ∆ = − = − =   

(b)  The total mass of water in the ocean is approximately 161.50 10  kg.M = ⋅  Since every reaction needs 

two 2
1H  atoms, and 0.0300% of the mass is 2

1H  atoms, then the number of reactions that could occur is: 

( )
( )

( )( )
( )( )−

⋅
= = = ⋅

⋅

16
38

27

1.50 10  kg 0.0003000.000300
6.7256 10  reactions.

2 1,1 2 2.014101778 u 1.661 10  kg/u

M
N

m
 

Therefore, the total energy is: 

( )( )( )−= ∆ = ⋅ ⋅ = ⋅19 38 2723.8465 MeV 1.602 10  J/eV 6.7256 10 2.57 10  J.E N E  
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(c)  If the world uses 131.00 10  W,P = ⋅  then the energy would last for: 

( )
( )

27
14 6

13

2.569 10  J 1 day 1 yr1 hr2.57 10  s 8.15 10 yr.
3600 s 24 hr 365 day1.00 10  J/s

Et
P

⋅    
∆ = = = ⋅ = ⋅   

⋅    
 

40.45. (a)  The Sun radiates energy at a rate of 263.85 10  W,P = ⋅  giving off energy E∆  in time :t∆  / .P E t= ∆ ∆  

The change in energy is related to the change in mass by 2 .E mc∆ = ∆  Therefore, the mass loss rate is: 

( )
( )

262
9 9

2 28

3.85 10  W  4.2778 10  kg/s 4.28 10  kg/s.
3.00 10  m/s

E mc m PP
t t t c

⋅∆ ∆ ∆
= = ⇒ = = = ⋅ ≈ ⋅
∆ ∆ ∆ ⋅

 

(b)  This result is the rate at which mass itself is converted into energy.  In Example 40.6, the result was the 
rate of proton mass required as protons fuse to form helium-4 (only a fraction of the proton’s mass gets 
converted into energy). 
(c) If a star loses mass at a constant rate, / ,m t∆ ∆  for = ⋅ 94.50 10  yr,T  and its current mass is 

301.99 10  kg,M = ⋅  then the percent change in mass over the star’s lifetime, T, is: 

( )
( ) ( )

( )( )( )( )( )
( ) ( )( )( )( )( )

( )

∆ ∆
∆ =

+ ∆ ∆

⋅ ⋅
=

⋅ + ⋅ ⋅

=

9 9

30 9 9

/
% 100%

/

4.2778 10  kg/s 4.50 10  yr 365 days/yr 24 hr/day 3600 s/hr
100%

1.99 10  kg 4.2778 10  kg/s 4.50 10  yr 365 days/yr 24 hr/day 3600 s/hr

0.0305%.

m t T
m

M m t T

 

40.46. The reaction is:  
3 4 7
2 2 4He+ He Be ,γ→ +  

where ( )2,1 3.016029 u,m =  ( ) =2, 2 4.002603 u,m  ( )4, 3 7.0169298 u,m =  and the energy of the photon 

is given by 2 .E mc= ∆  Therefore, the minimum possible energy of the photon that is emitted is: 

( ) ( ) ( )( )
( ) ( )

= + −

= + − =

2
min

2 2

2,1 2, 2 4, 3

3.016029 4.002603 7.0169298 931.4940 MeV/ 1.58559 MeV.

E m m m c

c c
 

The maximum possible wavelength of this photon is: 

( )( )
( )( )

34 8

max 6 19
min

6.626 10  J s 3.00 10  m/s
783 fm.

1.58558 10 eV 1.602 10  J/eV
hc

E
λ

−

−

⋅ ⋅
= = =

⋅ ⋅
 

40.47. THINK:  In order for the two 3
2 He  atoms to bind, they must come close enough for the strong force to 

overcome the Coulomb repulsion. The closest the two can get is when their centers are separated by the 
sum of the radii of the atoms, i.e. the diameter of one atom. Assuming that one is at rest, the kinetic energy 
of the other atom must be greater than the potential barrier due to the repulsion force. The kinetic energy 
is directly proportional to the temperature of the surroundings.  
SKETCH:   
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RESEARCH:  Thermal energy of a particle is given by B
3 .
2

K k T=  The Coulomb potential is given by 

2
C / ,U kq d=  where 2q e=  for 3

2 He.  The diameter of 3
2 He  is d = 2 R(A).  

SIMPLIFY:  The temperature is given by: 
( )
( )

2 2

C B 1/3
B 0

23 4  .
2 2 3

k e keK U k T T
R A k R A

= ⇒ = ⇒ =  

CALCULATE:  
( )( )
( )( ) ( )

29 2 2 19
9

1/315 23

4 8.99 10  N m / C 1.602 10  C
13.790 10  K

3 1.12 10 m 3 1.381 10  J/K
T

−

− −

⋅ ⋅
= = ⋅

⋅ ⋅
 

ROUND:  To three significant figures, the temperature required to make the fusion occur is T = 13.8 GK. 
DOUBLE-CHECK:  This result is about 1000 times hotter than the core of the Sun. However, the 
temperature really only needs to be a fraction of this because there will be nuclei in the high energy “tail” 
of the energy distribution of a lower temperature. 

40.48. THINK:  From the principle of conservation of energy, the net Coulomb repulsion can be determined. 
SKETCH:   

 
RESEARCH:  The conservation of energy is given by  

( ) ( )2 2
i f i f68, 52 2 34, 26 .E E K m c m c U K= ⇒ + = + +  

The Coulomb potential energy is given by: 
2 2

C .kZ eU
R

=  

SIMPLIFY:  Letting i f 0,K K= =  the potential energy U of the two Fe nuclei is given by  

( ) ( )( ) 268, 52 2 34, 26 .U m m c= −  

This energy must be equal to the Coulomb potential energy, C ,U U=  so the separation between the two 

iron nuclei is given by 
( ) ( )( )

2 2

2
.

68, 52 2 34, 26

kZ eR
m m c

=
−

 

CALCULATE:  Substituting the values for the masses and 26Z =  gives: 

( )( ) ( )
( ) ( ) ( )( )

229 2 2 19
14

2 6 2 19

8.99 10  N m / C 26 1.602 10  C
2.9126 10  m.

119.904040 2 59.934078 931.494 10  eV/ 1.602 10  J/eV
R

c c

−

−

−

⋅ ⋅
= = ⋅
 − ⋅ ⋅ 

 

ROUND:  Rounding the result to three significant figures gives 29.1 fm.R =  
DOUBLE-CHECK:  A typical distance between nucleons is of the order of 10 fm, so the answer is 
reasonable. 

40.49. THINK:  From the definition of the mass excess, the atomic mass can be determined. For this problem, 
use the energy conversion, 21 u 931.49 MeV/ .c=  
SKETCH:  A sketch is not necessary. 
RESEARCH:   
(a)  The definition of the mass excess is ( ), u.m m N Z A∆ = −  
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(b) Using the atomic masses, the mass-energy difference between the initial and final states for a fission 
reaction is ( ) ( )2 2

i f i f .E m m c m m c∆ = − = ∆ − ∆∑ ∑ Since mass number is conserved, the mass excess can 

be used. 
SIMPLIFY:   
(a)  The atomic mass is ( ), u .m N Z A m= + ∆  

(b)  The mass-energy difference between the initial and the final states of two fission reactions are: 

( ) ( ) ( )( ) 2
Cf n154, 98 84, 56 67, 42 3E m m m m c∆ = ∆ −∆ −∆ − ∆   

( ) ( ) ( )( ) 2
Fm n156,100 86, 54 46, 66 4 .E m m m m c∆ = ∆ −∆ −∆ − ∆  

(c)  Since CfE∆  and FmE∆  are larger than zero, the reactions can occur spontaneously.  Therefore, energy 
is released in both reactions. 
CALCULATE: 
(a) Using the energy conservation and 21 u 931.49 MeV/ ,c=  the atomic masses are determined and given 
in the following table (rounding to five significant figures). 

No. Nuclide Mass 
number, A 

Mass excess, 

( )2 keV/cm∆  

Atomic mass 
(u) 

1 1
0n  1 8071.3 1.0087 

2 252
98Cf  252 76034 252.08 

3 256
100 Fm  256 85496 256.09 

4 140
56 Ba  140 -83271 139.91 

5 140
54 Xe  140 -72990 139.92 

6 112
46 Pd  112 -86336 111.91 

7 109
42 Mo  109 -67250 108.93 

(b)  ( )Cf 76034 83271 67250 3 8071.3  keV 202.3411 MeVE  ∆ = + + − =   

( )Fm 85496 72990 86336 4 8071.3  keV 212.5368 MeVE  ∆ = + + − =   

(c)  Not necessary. 
ROUND:   
(a)  Not necessary. 
(b)  ∆ =Cf 202.34 MeVE  and ∆ =Fm 212.54 MeV.E  
(c)  Not necessary. 
DOUBLE-CHECK:  As a comparison, the mass-energy difference is U 173.3 MeVE∆ =  for the reaction:  

235 141 92U Ba Kr 3 ,n n+ → + +  
so the values obtained here are of a reasonable magnitude. 

40.50. It is known that the nuclear radius is proportional to 1/3 ,A  as given by 1/3
0 .R R A=  So, ( )3

0/ ,A R R=  

where 0 1.12 fmR =  and A is the number of nucleons in a nucleus. Therefore, the number of nucleons in a 
10.0 km diameter star is: 

−

 ⋅
= = ⋅ 

⋅ 

33
55

15

5.00 10  m 8.90 10  nucleons.
1.12 10  m

A  
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40.51. The average kinetic energy is related to the temperature by ave 3 / 2.K kT=  Substituting the numerical 
values gives:  

( )( )− −= ⋅ ⋅ = ⋅23 7 16
ave

3 1.38 10  J/K 1.00 10 K 2.07 10  J.
2

K  

This corresponds to an average velocity of: 

( )
( )

−

−

⋅
= ⇒ = = = ⋅

⋅

16
2 5ave

ave ave ave 27

2 2.07 10  J21 4.98 10  m/s.
2 1.67 10  kg

K
K mv v

m
 

40.52. THINK:  It is possible to make a rough estimate of the age of the solar system by comparing the current 
ratio of 235 U to 238 U isotopes to the ratio which is believed to have been present at the time of the solar 
system’s formation. 
SKETCH:  Not applicable. 
RESEARCH:  It is known that the half-life of 235 U  and 238 U  are 162.22 10  s⋅  and 171.41 10  s,⋅  respectively. 

Using the exponential decay law, 1/2ln 2/
0 ,t tN N e−=  the ratio of the numbers of the two isotopes yields: 

( )
( )

1/2, 238

1/2, 235

ln 2/
238 0,238

ln 2/
235 0,235

.
t t

t t

N t N e
N t N e

−

−
=  

SIMPLIFY:  Since initially, 0,238 0,235 ,N N=  the ratio becomes:  

( )
( )

( )
( )

( ) ( )( )

238

235238

1/2, 238 1/2, 235235 1/2, 238 1/2, 235

ln
1 1exp ln2 .

ln2 1/ 1/

N t
N tN t

t t
t tN t t t

 
        = − − ⇒ = −

   −  
 

CALCULATE:  
( ) ( )( )

17 9

17 16

0.9928ln
0.0072

1.873 10  s 5.938 10  yr
ln2 1/1.41 10  s 1/ 2.22 10  s

t

 
 
 = − = ⋅ = ⋅

⋅ − ⋅
 

ROUND:  The answer should be rounded to two significant figures. The explosion was about 5.9 billion 
years ago. 
DOUBLE CHECK:  The formation of our solar system is believed to have occurred approximately 4.5 
billion years ago.  The calculated answer is of the correct order of magnitude. 

40.53. The activity at time, t, is related to the initial activity by ( ) ( ) 1/2/

0 1/ 2 .
t t

A t A=  The activity after 2.50 h is 

( ) ( )( ) 1/22.50 h /

02.50 h 1/ 2 1.50 μCi.
t

A t A= = =  Thus, the initial activity should be: 

( ) ( ) ( )2.50 h / 6.05 h
0 1.50 μCi 2 2.00 μCi.A = =  

40.54. The frequency of a photon is given to be 640.58 10  Hz.f = ⋅  The wavelength of the photon is:  

( )
( )

8

6 1

2.998 10  m/s
7.388 m.

40.58 10  s
c
f −

⋅
= = =

⋅
λ  

The energy of the photon is ( )( )34 6 1 266.626 10  J s 40.58 10  s 2.689 10  J.E hf − − −= = ⋅ ⋅ = ⋅  This photon lies in 

the radio wave spectrum. Since the energy is much less than the energy to ionize electrons from an atom, it 
is not harmful to the human body.  Radio waves are constantly around us. 
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40.55. The exponential decay law can be expressed as ( ) 1/2/

0 1/ 2 .
t t

N N=  It is given that =0/ 0.1000.N N   
The time required is determined using:  

( )
( ) ( ) ( )

( )
   

= ⇒ = = =   
  

0
1/2

0 1/2

ln / ln 0.10001ln ln   3.825 days 12.71 days.
2 ln 1/ 2 ln 1/ 2

N NN t t t
N t

 

40.56. The absorbed dose is given by:  

= = = = =
amount of radiation energy 0.180 Jdose 3.60 J/kg 3.60 Gy 360 rd.
mass of absorbing material 0.0500 kg

 

40.57. Using the mass-energy relation, 2 ,E mc=  the energy required to take apart the nucleus into its constituent 
pieces is: 

( ) ( ) ( ) ( )
2 2 2

f i p p n n i

2 211 1.007276 11 1.008665 21.994435 931.494 MeV/ 168.522 MeV.

E E E N m c N m c m c

c c

= − = + −

 = + − = 
 

40.58. The initial measurement is 0 7210 count/s.N =  After 45 min, the measurement is N = 4585 counts/s. 
Using the exponential decay law,  

/
0

tN N e τ−=  or 
1/2/

0
1 ,
2

t t

N N  
=  

 
 

it is found that the half-life of the material is: 

( )
( )

( ) ( )
( )

1/2
0 1/2 0

1/2

ln 1/ 21ln ln
2 ln /

ln 1/ 2
45 min 69 min.

ln 4585 / 7210

N t t t
N t N N

t

    = ⇒ =     
      

 
= = 

  

 

40.59. Initially, all of the energy is in the form of kinetic energy (assume the potential is zero at a large distance).  
When the particles are at their closest approach, all of the energy is potential energy.  Therefore,  

2 2
1 2 p 1 2 p

i f i
i

kZ Z q kZ Z q
K U K r

r K
= ⇒ = ⇒ =  

( )( )( )( )
( )( )

−

−

⋅ ⋅
= =

⋅ ⋅

29 2 2 19

6 19

8.99 10  N m / C 2 92 1.602 10  C
53.0 fm.

5.00 10  eV 1.602 10  J
r  

40.60. The activity of a radioactive material is given by .A N= λ  The number of nuclei in the sample of mass, m, 
is A / ,N mN M=  where M is the molar mass of the material. Therefore, the activity is: 

( )( )
( )( )( )

23 1
12A

A 7
1/2

1.00 kg 6.02 10 mol ln2ln2
2.30 10  Bq.

24100 yr 3.1536 10  s/yr 0.239052 kg/mol
mNmA N

M t M

−⋅
= = = = ⋅

⋅
λ  

40.61. The activity of a sample is determined using the exponential decay law, 0
tA A e λ−=  or ( ) 1/2/

0 1/ 2 .
t t

A A=   
After one year, the activity is  

( )
( ) ( )365 days / 5.01 days

-2211.000 μCi 1.17 10  μCi.
2

A  
= = ⋅ 
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40.62. Denote the fraction of mass of carbon atoms in a human body by C 0.14.f =  For a living object, it is 

known that the abundance of 14 C  to 12C  is ( ) ( )14 12 12C / C 1.20 10 .r N N −= = ⋅  The activity of 14 C  is given 

by ( )14 C .A N= λ  The decay constant is given by 1/2ln2 / t=λ  and the number of 14 C  nucleons is 

( ) ( )
( )

14
A14

14

C
C ,

C

m N
N

M
=  

where ( )14 CM  is the molar mass of 14 C.  For this person of mass 75 kg,m =  the mass of 14 C  present is 

given by: 

( ) ( ) ( )
( ) ( ) ( )

12 12
12 14

14 14

C C
C C

C C

N M
m m

N M

 
 =
 
 

  and  ( ) ( )12 14
CC Cm m f m+ =  

( ) ( ) ( )
( ) ( )

14 C

12 12

14 14

C .
C C

1
C C

f m
m

N M

N M

=
 
  +
 
 

 

Combining the above equations and simplifying gives the activity: 

( ) ( )( )
( )( )( )( )

( ) ( ) ( )( )( )

A C

12 14
1/2

23 1 12 3

11 12

3

ln2

C C

6.02 10  mol 0.14 1.20 10 75 10 g ln2

1.81 10  s 12.000000 g/mol 1.20 10 14.003242 g/mol

2.4 10 Bq

N f rm
A

t M rM
− −

−

=
+

⋅ ⋅ ⋅
=

⋅ + ⋅

= ⋅

 

40.63. The binding energy of a nucleus is given by  

( ) ( ) ( ) 2
n, 0,1 , .B N Z Zm Nm m N Z c = + −   

Substituting 3,Z =  5,N =  ( )0,1 1.007825032 u,m =  n 1.008664916 u,m =  ( )5,3 8.022485 um =  and 

= 2u 931.494 MeV/c  gives:  

( ) ( ) ( ) ( ) ( ) = + − = 
2 25,3 3 1.007825032 5 1.008664916 8.022485 931.494 MeV/ 41.279 MeV.B c c  

40.64. The energy released in decay e ,n p e−→ + +ν  is equal to the difference between the initial and final 
energies, i f .E E E= −  Since the mass of a neutrino is negligible, the total energy released is: 

( ) ( )
( ) ( ) ( )( ) ( )−

= − + = − −

= − − ⋅ =

2 2 2 2
n p e n p e

4 2 21.008664916 1.007276467 5.4858 10 931.494 MeV/ 0.782 MeV.

E m c m c m c m m m c

c c
 

40.65. The rest mass energy is defined by the mass-energy relation, 2 .E mc=  Therefore, the rest mass energy is  

( )( )( )( )22 3 3 3 8 11737 kg/m 3.785 L 10  m / L 3.00 10  m/s 2.51 10  MJ.E Vcρ −= = ⋅ = ⋅  

40.66. The exponential decay law is given by ( ) 0
tN t N e−= λ  or ( ) ( ) 1/2/

0 1/ 2 .
t t

N t N=  If 1/210 ,t t=  the number of 
remaining atoms is  

( ) ( )10

1/2 010 1/ 2 .N t t N= =  

If 1/220 ,t t=  the number of remaining atoms is 

( ) ( ) ( ) ( ) ( )( )20 10 10 10

1/2 0 0 1/220 1/ 2 1/ 2 1/ 2 10 1/ 2 .N t t N N N t t = = = = =  
  



Chapter 40: Nuclear Physics 

 1397 

Thus, 

( ) ( )( )1030 27
1/220 10 1/ 2 10  atoms.N t t= = =  

40.67. The binding energy per nucleon is: 

( ) ( ) ( ) 2
n

, 1 0,1 , .
B N Z

Zm Nm m N Z c
A A

 = + −   

(a)  For 4
2 He,  

( )
( ) ( ) ( ) ( )2 2

2, 2 1 2 1.007825032 2 1.008664916 4.002603 931.494 MeV/
4 4

7.074 MeV

B
c c = + − 

=

 

(b)  For 3
2 He,  

( ) ( ) ( ) ( ) ( ) = + − 
=

2 2
1, 2 1 2 1.007825032 1.008664916 3.016030 931.494 MeV/
3 3

2.572 MeV

B
c c  

(c)  For 3
1 H,   

( ) ( ) ( ) ( ) ( ) = + − 
=

2 2
2,1 1 1.007825032 2 1.008664916 3.016050 931.494 MeV/
3 3

2.827 MeV

B
c c  

(d)  For 2
1 H,   

( ) ( ) ( ) ( ) ( ) = + − 
=

2 2
1,1 1 1.007825032 1.008664916 2.014102 931.494 MeV/
2 2

1.112 MeV

B
c c  

40.68. The mean lifetime is related to the half-life by 1/2 ln2.t =τ  Therefore, the half-life is: 

( ) 3
1/2 4300 s ln2 3.0 10  s.t = = ⋅  

40.69. The exponential decay law is given by 0
tN N e λ−=  or ( ) 1/2/

0 1/ 2 .
t t

N N=  Since 90% of the sample has 

decayed, there is 10.0% of the sample remaining. Therefore, 0/ 0.100.N N =  The time required to reach 

0/ 0.100.N N =  is: 

( ) ( ) ( )
( )

( ) ( )
( )

1/2/
0

0 1/2
0 1/2

ln /1  ln 1/ 2 ln /   
2 ln 1/ 2

ln 0.100
26.8 min 89.0 min.

ln 1/ 2

t t N NN t N N t t
N t

t

 
= ⇒ = ⇒ = 
 

= =

 

40.70. THINK:  The concentrations of 238 U  and its first five daughters are in equilibrium, that is each daughter 
is produced as fast as it decays. This means the rates of decay (or activities) of 238 U  and its daughters are 
the same. 
SKETCH:   

 
RESEARCH:  The rate of decay or activity is defined as A/ ,A dN dt N nNλ λ= − = =  where n is the 

number of moles.  For simplicity, denote 238 U  and its daughters by letters A, B, C, D, E, F, and G.  Since 
the mixture is in equilibrium, the rates of decay are the same for all nuclei, except for Rn that is: 
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A B C D E FA A A A A A A= = = = = ≡  or A A B B C D D E E F F .Cn n n n n nλ λ λ λ λ λ= = = = =  Therefore, the amount of 
each species is A A / ,i in nλ λ=  where i = B, C, D, E, and F.  The masses of all the species must add up to the 

total mass, tot .m  This means: tot ,i i
i

m n M=∑  where iM  is the molar mass of ith species. 

SIMPLIFY:   

(a)  tot
tot A A A A A A

i i
i

  
/

F F
i i

F
i A i A

i
i A

M M m
m n n n

M= =

=

= = ⇒ =∑ ∑
∑

λ λ λ
λ λ λ

 

Using 1/2ln2 / ,t=λ  the above equation becomes:  

tot
A A

1/2,

ln2
F

i i
i A

m
n

M t
=

=

∑
λ  or tot A

1/2,

ln2
.F

i i
i A

m N
A

M t
=

=

∑
 

Then, the rate, in mass per unit time, that 222 Rn  is produced is: 

G

A

AM
r

N
=  

(b)  The rate of activity of radon is:  

Rn Rn
Rn Rn

1/2,G

ln2 .
dA dN AA

dt dt t
 

= = = 
 

λ λ  

CALCULATE:   
(a)  The following values are found in Appendix B:  
238 U:  A 238.0508 g/molM =  and 17

1/2,A 1.41 10  s,t = ⋅   
234 Th:  B 234.0436 g/molM =  and 6

1/2,B 2.08 10  s,t = ⋅   
234 Pa:  C 234.0433 g/molM =  and 4

1/2,C 2.41 10  s,t = ⋅   
234 U:  D 234.0410 g/molM =  and 12

1/2,D 7.74 10  s,t = ⋅   
230 Th:  E 230.0331 g/molM =  and 12

1/2,E 2.38 10  s,t = ⋅   
226 Ra:  F 226.0254 g/molM =  and 10

1/2,F 5.05 10  s,t = ⋅  and 
222 Rn:  G 222.0176 g/molM =  and 5

1/2,G 3.30 10  s.t = ⋅   

Therefore, the sum is: 19 16
1/2, 3.35675 10  g s/mol 3.35675 10  kg s/mol.

F

i i
i A

M t
=

= ⋅ = ⋅∑  The activity is given by:  

( ) ( )( )
( )

23 1
7

16

1.00 kg ln 2 6.02 10  mol
1.2431 10  decay/s.

3.35675 10  kg s/mol
A

−⋅
= = ⋅

⋅
 

The rate, in mass per unit time, that 222 Rn  is produced is: 

( )( )
( )
7

15
23 1

1.2431 10  decay/s 222.0176 g/mol
4.5845 10  g/s 0.1446 μg/yr.

6.02 10  mol
r −

−

⋅
= = ⋅ =

⋅
  

(b)  
( )

( )
7

2 8Rn
5

1.2431 10  decay/s ln2
26.11 decays/s 26.11 Bq/s 8.234 10  Bq/yr 22.25 mCi/yr.

3.30 10  s

dA
dt

⋅
= = = = ⋅ =

⋅
 

ROUND:  Round the results to three significant figures. 
(a)  0.145 μg/yrr =  

(b)  Rn 22.3 mCi/yr
dA

dt
=  
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DOUBLE-CHECK:  The activity of radon can be approximated by assuming that the sample is composed 
of only 238 U.  That is, 

( )( )
( )( )

23 1
7A

17
1/2,A A

1.00 kg 6.02 10  mol ln2ln2
1.24 10  decays/s.

1.41 10  s 0.2380508 kg/mol
mN

A N
t M

−⋅
= = = = ⋅

⋅
λ  

This is in agreement with the activity calculated above.  

40.71. THINK:  The radioactive decay of 14 C  follows an exponential decay law, while the number of 12 C  
isotopes stays constant in time because this isotope is stable.  It can be assumed that 12C  comprises all of 

the mass of the ash; that is, ( )= =12C 50.0 g.m m  The activity, = 20.0 decays/hr,A  can be used along with 

the half-life, 1/2 5730 yr,t =  to determine the current number of 14 C  atoms.  Using all of this information 
will provide an approximate age for the tree. 
SKETCH:   

 
RESEARCH:  The exponential decay law for the number of atoms remaining as a function of time is given 
by  

0( ) ,tN t N e−= λ  

where 1/2ln2 / .t=λ  The activity of 14 C  is given by ( )14 C .A N= λ   As stated in the question, the initial 

ratio of 14 C  to 12C  atoms is ( ) ( )14 12 12
0 C / C 1.300 10 .r N N −= = ⋅   Therefore, the number of initial 14 C  

atoms is ( ) ( )14 12
0 C C .N rN=  The number of 12 C  atoms is given by  

( ) ( )
( )

12
12

A12

C
C ,

C

m
N N

M
=  

where ( )12CM  is the molar mass of 12C . 

SIMPLIFY:  The decay law for 14 C  is 

( ) ( ) ( )14 14 12
0C C C .t tN N e rN e− −= =λ λ  

Simplifying and solving for t gives: 

( )
( )

( )
( )

( )
( )

( )
( )

1/2

1/2

ln 2 /12 12 12
A A 1/2ln 2 /1/2

12 12 12
A

12
1/21/2

12
A

C C C

ln2C C C ln2

C
ln .

ln2 C ln2

t tt
t t

rm N e rm N e AM tAtA e
M M rm N

AM tt
t

rm N

−−
−= ⇒ = ⇒ =

 
 = −
 
 

λ

λ
 

CALCULATE:  
( ) ( )( )( )( )

( )( )( )− −

 
 = − =
 ⋅ ⋅ 

12 23 1

5730 yr 20.0 decays/hr 8760 hr/yr 12.000000 g/mol 5730 yr
ln 63813 yr.

ln2 1.300 10 50.0 g 6.02 10 mol ln2
t  

ROUND:  Rounding to three significant figure yields = 63800 yr.t  
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DOUBLE-CHECK:  This is a reasonable age for a campfire, considering that fossil evidence indicates that 
modern humans originated in Africa 200,000 years ago. 

40.72. THINK:  It is known that protons decay according to an exponential decay law. To determine the number 
of protons that would decay during 70.0 years, the initial number of protons inside a human body is 
needed. It is assumed that the mass of the human body is 70.0 kg and the human body is made entirely of 
water. 
SKETCH:   

 
RESEARCH:  The exponential decay law is given by 0

tN N e λ−=  or ( ) 1/2/

0 1/ 2 .
t t

N N=  The initial number 

of protons, 0 ,N  is determined by assuming the human body is composed entirely of water. The number of 
water molecules in the human body is w A w/ ,N mN M=  where m is the mass and wM  is the molar mass.  
Each water molecule contains ten protons, so the initial number of protons is 0 w A w10 10 / .N N mN M= =  
SIMPLIFY:  The number of protons that decay during an interval of time, t, is: 

1/2 1/2/ /
A

decay 0 0
w

101 11 1 .
2 2

t t t tmN
N N N N

M

        = − = − = −              
 

CALCULATE:  Substituting the numerical values gives: 

( )( )
( )

( ) ( )

( )

30

-29

3 23 1 70.0 yr / 1.00 10  yr

decay

7.00 10  yr
28

10 70.0 10  g 6.022 10 mol 11
218.015 g/mol

12.33993994 10 1 .
2

N
− ⋅

⋅

 ⋅ ⋅   = −     
   = ⋅ −     

 

Evaluating this expression is tricky on a handheld calculator, because the first factor is very large, while the 
second factor is indistinguishable from zero when evaluated. The product is not easily determined. To deal 
with this complication, we rewrite the exponential term using the approximation ex ≈ 1 + x, which is good 
for small x (as is certainly the case here): 

( )( )
( )( )
( )( )
( )( )( )

28 -29
decay

28 -29

28 -29

1

2.33993894 10 1 exp 7.00 ln(2) 10

2.33993894 10 1 1 7.00 ln(2) 10

2.33993894 10 7.00 ln(2) 10

2.33993894 7.00 ln(2) 10

1.1353

N

−

 = ⋅ − − ⋅ 

 ≈ ⋅ − − ⋅ 

= ⋅ ⋅

=

=

 

ROUND:  Rounding to three significant figure gives =decay 1.14 decays.N  

DOUBLE-CHECK:  The activity of the protons is: 

( )
( )

28

0
30

1/2

2.34 10 ln2ln2
0.01622 decays/yr.

1.00 10  yr
N

A N
t

λ
⋅

= ≈ = =
⋅

 

Therefore, during 70.0 years, the number of decays is approximately (since 0 ) :N N≈   

( )( )decay 0.01622 decays/yr 70.0 yr 1.14 decays.N A t≈ ∆ = =  

This agrees with the above result. This is expected since the half-life of the proton is very large. 
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40.73. THINK:  Since the theory predicts that protons never get any older it can be assumed that the activity is 
constant.  The half-life of the proton, = ⋅ 29

1/2 1.80 10  yr,t  can be used to determine how many protons, in a 

tank with ⋅ 41.00 10  tons  of water, will decay over two years. 
SKETCH:  Not necessary. 
RESEARCH:  Assuming that the activity is constant, the number of decays over a given time period is 

decay ,N N t≈ ∆λ  where 1/2ln2 / .t=λ  Since there are ten protons in a water molecule, the number of 

protons, N, is given by A w10 / ,N mN M=  where w 18.015 g/molM =  is the molar mass of water. 
SIMPLIFY:  The number of proton decays is  

A
decay

w 1/2

10 ln2
.

mN t
N

M t
∆

=  

CALCULATE:  
( )( )( )

( )( )
−⋅

= = ⋅
⋅

10 23 1
4

decay 29

10 1.00  g 6.02 10  mol 2 yr ln2
2.5736 10  decays

18.015 g/mol 1.80 10 yr
N  

ROUND:  Rounding to three significant figures, = ⋅ 4
decay 2.57 10  decays.N  

DOUBLE-CHECK:  Although the half-life of the proton is very large, a large number decay over two years 

because there are so many ( )333 10N = ⋅  in the tank of water. 

40.74. THINK:  When a proton is placed in a magnetic field, the magnetic dipole moment of the proton can have 
only two directions: parallel or anti-parallel to the external field. By introducing a time-varying electric 
field at a proper frequency, it can induce a proton to flip its magnetic dipole moment. 
SKETCH:  

 
RESEARCH:  The energy required to flip the dipole moment of the proton is equal to 2 .E Bµ∆ =  This 
corresponds to a frequency given by / .f E h= ∆  

SIMPLIFY:  The magnetic field is given by: .
2
hf

B =
µ

 

CALCULATE:  
( )( )

( )
34 6 1

26

6.626075 10  J s 15.35850 10  s
0.360718828 T

2 1.410608 10  J/T
B

− −

−

⋅ ⋅
= =

⋅
 

ROUND:  To seven significant figures, 0.3607188 T.B =  
DOUBLE-CHECK:  This result is a typical value used in NMR spectroscopy of a proton. 

40.75. THINK:  Radioactive decay follows an exponential decay law. In this problem, two species of radioactive 
nuclei, A and B, are compared.  After a time of 100. s, it is observed that A B100N N=  with A B2 .τ τ=  The 
initial number of nuclei for both species is 0 .N  
SKETCH:  A sketch is not necessary. 
RESEARCH:  The exponential decay law is given by /

0 .tN N e τ−=  After an interval of time, t, the number 

of nuclei A and B are A/
A 0

tN N e τ−=  and B/
B 0 .tN N e τ−=  
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SIMPLIFY:  Taking the ratio of AN  to BN  and using A B2τ τ=  gives 

( ) ( ) ( )

( )
BA B / 1/2 11/ 1/A A

B
B B B A B

ln .
2 2ln /

ttN N t te e
N N N N

 − −− −  
 

= = ⇒ = ⇒ = 
 

ττ τ τ
τ

 

CALCULATE: 
( )

( )
τ = =B

100. s
10.86 s

2ln 100
 

ROUND:  Rounding to three significant figure, τ =B 10.9 s.  
DOUBLE-CHECK: If B 10.86 s,τ =  then A 21.72 s.τ =  Inserting these results into the equation 

( ) /
0

tN t N e τ−=  gives  

( )= =A 0100. s 0.01N t N  and ( )= =B 0100. s 0.0001 .N t N  

( )=A 100. sN t  is larger than ( )=B 100. sN t  by a factor of 100, as required.  

 
Multi-Version Exercises 

40.76. 12 1

1/2

ln2 ln2 3.833 10 s
5730 yt

λ − −= = = ⋅  

 
( )

( )
( )( )( )

( )( )( )

12

12
A

12 1
12 23 1 12 1

C
ln /

C

105. decays/min 1 min/60 s 12 g/mol
ln / (3.833 10 s )

1.20 10 12.43 g 6.022 10 mol (3.833 10 s )

4100 yr.

A M
t

r m N
λ

λ

− −
− − − −

 ⋅
 = −
 ⋅ 
 
 = − ⋅
 ⋅ ⋅ ⋅ 

=

 

40.77. 12 1

1/2

ln2 ln2 3.833 10 s
5730 yt

λ − −= = = ⋅  

 
( )

( )
( )

( )

( ) ( )

( )( )( )
( )( )

12 12

12 12
A A

12
12

A

12 1
12 23 1 12 1

C C
ln /

C C

C
C

107. decays/min 1 min/60 s 12 g/mol
exp (3.833 10 s )(4384 y)

1.20 10 6.022 10 mol (3.833 10 s )

13.1 g

t

t

A M A M
t e

r m N r m N

A M e
m

r N

λ

λ

λ
λ λ

λ

−

− −
− − − −

 ⋅ ⋅
 = − ⇒ = ⇒
 ⋅ ⋅ 

⋅
=

⋅

 = ⋅ ⋅ ⋅ ⋅

=

 

40.78. 12 1

1/2

ln2 ln2 3.833 10 s
5730 yt

λ − −= = = ⋅  

 
( )

( )
( )

( )
( )
( )

( )( )
( )

12 12

12 12
A A

12
A

12

12 23 1 12 1 12 1

C C
ln /

C C

C

C

1.20 10 6.022 10 mol (13.83 g)(3.833 10 s )exp (3.833 10 s )(4814 y)

12 g/mol

107 /min

t

t

A M A M
t e

r m N r m N

r N m e
A

M

λ

λ

λ
λ λ

λ

−

−

− − − − − −

 ⋅ ⋅
 = − ⇒ = ⇒
 ⋅ ⋅ 

⋅
=

 ⋅ ⋅ ⋅ − ⋅ =

=
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