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10.1 Introduction

Optical imaging suffers from a drawback inherent to the process of recording: the recording
media (either photographic film or a digital camera) captures only the intensity of the inci-
dent light, sacrificing the three-dimensional data in the process, which lies in the phase of the
electric field. In 1948 Dennis Gabor invented a technique which circumvents the loss of phase
by adding a reference field to the recorded object [1]. This technique is dubbed holography,
where the interference patterns between the object and the reference field can be recorded.
These interference fringes depend on the phase of the object, therefore maintaining this infor-
mation. If we write the recorded object in terms of amplitude and phase, a = |a|ej𝜙 add a
reference field A and record the obtained intensity we have

||a|ej𝜙 + A|2 = |a|2 + |A|2 + aA cos𝜙 (10.1)

The first term is the intensity of the recorded field as in a conventional imaging system and
the second term is the intensity of the reference field. The last term reveals that the phase
information is maintained and recorded on the imaging medium as well.
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As in every imaging system, holography is limited in both resolution and field of view (FOV).
Another drawback in this technique is the excess information: the intensity of the reference
beam (the second term in Eq. (10.1)) and the so-called twin image problem which is explained
in the next section. Both factors deteriorate the quality of the hologram.

In this chapter we show how metal nanoparticles come to the aid of holography in improving
the resolution, FOV, and eliminating the twin image and reference field.

10.2 Digital Holography

The original holography scheme, suggested by Dennis Gabor, is presented in Fig. 10.1. In the
Gabor hologram the object is assumed to be highly transmissive, with transmission function

T(x, t) = T + ΔT(x, y), (10.2)

where T is the average transmission and ΔT(x, y) is the variation in space. The high transmis-
sivity of the object means that ΔT << T . In this configuration, T serves as the reference beam.
Looking as before at the scattered object beam a and the reference beam A we can write the
recorded intensity as

I = |A + a|2 = |A|2 + |a|2 + A∗a + Aa∗. (10.3)

If we illuminate the developed recording medium I by a reference beam A′, the result is
I′ = A′I. Note that, in writing both the recorded intensity and the reconstructed intensity, we
assumed that the amplitude transmittance of the developed hologram is proportional to the
exposure, and for simplicity of argument it is assumed that this proportionality constant is 1.
The generalization of the theory in that case is straightforward [2]. Looking at the four terms
of Eq. (10.3) we can neglect the second term due to our assumption about the transmissivity of
the object. We are left with three terms: the first term of Eq. (10.3) that is the reference beam,
the third term of Eq. (10.3) that is our desired field multiplied by a constant, and the last term
of Eq. (10.3) that is the complex conjugate of the field, termed the twin image. The reference
beam and the twin image deteriorate the quality of the hologram and are a major drawback of
the on-axis hologram.

To solve the DC term (reference wave) and twin image problem Leith and Hupetnieks [3]
suggested using an off-axis setup, where the reference is incident on the recording medium at
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Z0

Figure 10.1 Gabor hologram. Source: Amihai Meiri, Eran Gur, Javier Garcia, Vicente Micó, Bahram
Javidi, Zeev Zalevsky 2013. Reproduced with permission from SPIE
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an angle: Ae−j2𝜋 sin 2𝜃x∕𝜆, where 𝜃 is the angle between the reference beam and the optical axis.
The recorded hologram in this case is

I = |||a + Ae−j2𝜋 sin 2𝜃x∕𝜆|||
2
= |A|2 + |a|2 + A∗ej2𝜋 sin 2𝜃x∕𝜆a + Ae−j2𝜋 sin 2𝜃x∕𝜆a∗. (10.4)

The phase factors of the last two terms translate into spatial shift as a result of the free space
propagation. Now we have two on axis fields – the intensity of the object and the reference
beam, and two off axis – the last two terms, one above the optical axis and one below it. This
enables us to spatially filter out the unwanted terms. The information bandwidth captured by
this solution is smaller than the on-axis hologram.

Since all the information is present in the recorded hologram, a digitally recorded hologram
does not need a reconstruction method, but the information can be digitally analyzed. As an
example to such a procedure we can look at the focusing of the hologram. In presenting the
basic theory of holography we neglected the axial position of the hologram. Looking at a point
source in the reference beam location, the object source location, and the reconstruction source
location, we can show that the object beam results in a virtual image positioned at a distance
of Z0 before the recording medium and a twin image being a real image formed at a distance of
Z0, behind the recording medium [2]. Assuming that the distance Z0 is relatively large, we look
at the unfocused recorded hologram. By digitally implementing a Fresnel diffraction integral
we can propagate the recorded hologram by a distance of −Z0 and obtain the focused virtual
image. Now the real image (the twin image) is highly unfocused and its influence on the quality
of the recorded hologram is relatively small. In the case of microscopy, where the distances are
small, such a solution is inadequate and the twin image must be eliminated by other means,
such as phase retrieval [4], deconvolution [5], and recording of multiple holograms in different
axial locations [6].

10.3 Metal Nanoparticles

Owing to their various size, shapes and materials, metal nanoparticles became a major inter-
est, especially in the fields of imaging and biomedical engineering. Their attractiveness stems
from the sensitivity of their absorption and scattering spectrum to these attributes [7,8]. This
sensitivity is explained by the oscillation of electrons in the conduction bend as a result of an
incident electric field. When these electrons oscillate coherently the absorption and scattering
are at their peak and a distinct resonance can be observed [9]. This phenomenon is known as
surface plasmon resonance (SPR).

The simplest of shapes for these nanoparticles is a sphere (see Fig. 10.2). Looking at gold
(Au) spheres, their apparent color is red, where the exact shade depends on the size of the
nanoparticles. An example of SPR can be seen in Fig. 10.3, where the absorption spectra of
variously sized nanospheres are presented.

The sensitivity of the extinction spectrum of metal nanoparticles is not limited to their size.
Their shape is also an important factor. Nanorods, cigar shaped nanoparticles, exhibit different
spectra to nanospheres where the peak is red-shifted. In addition, their aspect ratio, the ratio
between their length and diameter, also determines the location of the extinction peak [10].
Other factors that determine their spectrum are the surrounding medium’s refractive index [11],
the material from which the nanoparticles are made [7], and their density due to inter-particle
coupling [12,13].
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Figure 10.2 Metal nanoparticles are fabricated in various shapes. Left – a nanorod with an aspect ratio
of L/R. Right – a nanoshpere. Source: Amihai Meiri, Eran Gur, Javier Garcia, Vicente Micó, Bahram
Javidi, Zeev Zalevsky 2013. Reproduced with permission from SPIE
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Figure 10.3 Measured spectra of various gold nanospheres. Source: Amihai Meiri, Eran Gur, Javier
Garcia, Vicente Micó, Bahram Javidi, Zeev Zalevsky 2013. Reproduced with permission from SPIE

Metal nanoparticles are attractive not only due to SPR. They also exhibit a high scattering
cross section, which reduces the image acquisition time and high stability [14], all in compar-
ison to fluorescent markers, which are in common use in various imaging systems [15,16].

Usually metal nanoparticles are suspended in liquid and due to their small size they move
in Brownian motion. The Brownian motion was used by Gur et al. [17] as a random encod-
ing mask for super-resolved microscopy, a technique that is the foundation of the methods
presented in this chapter. This technique is presented briefly here.

When metal nanoparticles are suspended in liquid and are placed close to a high resolution
object, their location constantly changes. Each metal nanoparticle couples the non-propagating
near field to a propagating field that can be recorded by a camera. Since the near field is not
diffraction limited, its resolution is not limited, but by the size of the nanoparticles in a manner
that resembles apertureless Near field Scanning Optical Microscope (aNSOM) [18]. If we
denote the high resolution object by s(x), the time varying random nanoparticles mask by
g(x, t), and the point spread function (PSF) of the optical system by p(x), each frame that is
captured by the camera can be written as

I(x, t) = ∫ s(x′)g(x′, t)p(x − x′)dx′. (10.5)

When multiple frames are recorded, over time, the nanoparticles cover the entire area of
the object to be imaged. Due to their small size, each nanoparticle can be considered as a
point source and therefore, on the recording medium it has a shape of a PSF. When these
nanoparticles are sparse enough (a distance of at least half a wavelength is required), each
of these nanoparticles can be localized and the mask can be computed for each frame. The
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center of the PSF has a Gaussian like shape; therefore, it can be localized precisely by simple
Gaussian fitting. This localization can be shown to have an error that depends on the number
of detected photons and reach accuracy of a few nanometers [19–22].

Multiplying each frame by the computed nanoparticles mask and applying time averaging,
results in

R(x) = ∫
[
∫ s

(
x′
)

g(x′, t)p(x − x′)dx′
]

g̃(x, t)dt, (10.6)

where g̃(x, t) is the computed nanoparticle mask. Due to the random nature of the nanoparticle
mask and the high localization accuracy we can assume that

∫ g(x′, t)g̃(x, t)dt = 𝜅 + 𝛿(x′ − x). (10.7)

Using this in Eq. (10.6) results in

R(x) = s(x)p(0) + 𝜅 ∫ s(x′)p(x − x′)dx′. (10.8)

The first term here is the high resolution object multiplied by a constant (the value of the
PSF at the center) and the second term is the low resolution object obtained by the optical
system. Since this term is the conventionally captured image, it can be subtracted from R(x)
to obtain s(x).

10.4 Resolution Enhancement in Digital Holography

The principle presented in the previous Section 10.3 can be adapted to digital holography
(DH) configuration [23]. The setup is presented in Fig. 10.4 (Plate 17), in which a Fourier
plane hologram is recorded. In this setup the object is placed close to a pinhole, which serves
as the reference beam that is required for the holography recording process.

We denote the high resolution object we would like to resolve by s(x1) and the random decod-
ing pattern by g(x1, t). The pinhole is positioned in the Fourier domain hologram at a distance
of Δx from the object s(x1). The detector captures the Fourier transform of the composed input
field. Due to the nature of the CCD the result is multiplied by a rectangular function with a
width of D. At the CCD plane we write the expression obtained at the CCD as:

I(x2, t) =
||||∫

(
𝛿 (x − Δx) + s(x1)g(x1, t)

)
e−2𝜋ix1x2∕𝜆Fdx1

||||
2

rect
(x2

D

)
. (10.9)

This expression can be expended into three terms I(x2, t) = T1(x2, t) + T2(x2, t) + T3(x2, t)
where

T1(x2, t) =
(

1 + ∫ s
(
x1

)
g(x1, t)e−2𝜋ix1x2∕𝜆Fdx1

)
rect

(x2

D

)
.

T2(x2, t) =
(

e−2𝜋iΔxx2∕𝜆F∫ s
(
x1

)
g(x1, t)e−2𝜋ix1x2∕𝜆Fdx1

)
rect

(x2

D

)

T3(x2, t) =
(

e2𝜋iΔxx2∕𝜆F∫ s∗
(
x1

)
g∗(x1, t)e2𝜋ix1x2∕𝜆Fdx1

)
rect

(x2

D

)
(10.10)
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Figure 10.4 (Plate 17) Digital holography super-resolution setup. Source: Zalevsky Z., Gur E.,
Garcia J., Micó V., Javidi B. 2012. Figure 1. Reproduced with permission from The Optical Society.
See plate section for the color version

The first step in the decoding is the inverse Fourier transform of I(x2, t), which results in
a separation of the three terms in space. The T1 term will appear on the optical axis and the
T2,T3 terms will appear on the +1 and −1 orders due to the exponential term e±2𝜋iΔxx2∕𝜆F. This
separation allows us to take only the term we are interested in, that is, T2. The inverse Fourier
transform of T2 can be written as:

I.F.T .
{

T2

(
x2, t

)}
= s

(
x3 − Δx

)
g
(
x3 − Δx, t

)
⊗

(
D sin c

( x3

𝜆F
D
))

, (10.11)

where ⊗ denotes convolution. The first two terms stem from the inverse Fourier transform
of the Fourier transform of the object multiplied by the mask and the shift due to the delta
function. The delta function is a result of the inverse Fourier transform of the exponential term
before the integral in T2. The last term is the Fourier transform of the rect function.

In the same manner as that presented in Section 10.3 we can calculate the decoding mask.
We now multiply the resulting term by the decoding pattern and perform time averaging to
obtain

R
(
x3

)
= ∫ I.F.T

{
T2

(
x3, t

)}
g
(
x3 − Δx, t

)
dt. (10.12)

By substituting (10.11) into (10.12) we have

R(x3) = ∫ s(x3 − Δx)g(x3 − Δx, t)⊗
(

D sin c
( x3

𝜆F
D
))

g(x3 − Δx, t)dt. (10.13)

We now look at the time-dependent terms in Eq. (10.13), which is the nanoparticles mask.
Due to their small size of the nanoparticles and their random distribution we can write

∫ g(x′ − Δx, t)g(x3 − Δx, t)dt = 𝜅 + 𝛿(x′ − x3). (10.14)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10.5 Numerical simulations for a binary amplitude resolution target (top row), Lena image
(middle row), and phase resolution target (bottom row). The left column is the original high resolution
object. The low resolution DH is in the center column and the super resolved object using metal nanopar-
ticles is in the right column. Source: Zalevsky Z., Gur E., Garcia J., Micó V., Javidi B. 2012. Figure 2.
Reproduced with permission from The Optical Society

We use the last equation to obtain the reconstruction

R(x3) = D𝜅∫ s(x′ − Δx) sin c

(
x3 − x′

𝜆F
D

)
dx′ + Δxs(x3 − Δx). (10.15)

The first term here is the convolution from Eq. (10.13) and it corresponds to the low res-
olution image obtained by the convolution between the high resolution object and the sinc
function caused by the finite size of the CCD. The second term is the term of interest to us and
it is the high resolution reconstruction obtained by the proposed technique. Simulation results
for the original object, the low resolution object and the super-resolution reconstruction are
shown in Fig. 10.5.

10.5 Field of View Enhancement in Digital Holography

The resolution increase due to the placement of the nanoparticles in the object plane can be
explained by considering the uncertainty principle of the Fourier transform. This principle
states that

ΔxΔfx = const (10.16)
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Figure 10.6 Numerical simulations for the FOV DH reconstruction. (a) The FOV reduced by
a factor of 8. (b) Successful recovery of the original FOV with the nanoparticles’ mask method.
Source: Zalevsky Z., Gur E., Garcia J., Micó V., Javidi B. 2012. Figure 3. Reproduced with permission
from The Optical Society

where x is the spatial coordinate and fx is the spatial frequency. Δ designates the uncertainty
or the range of values for each one of those two parameters. By using the metal nanoparticles
in the object plane we limit our sampling of the object in each time frame to smaller Δx which
now has the size of a metal nanoparticle; therefore, Δfx increases; that is, more spatial fre-
quencies can be recorded by the camera. Since, in the optical Fourier transform the frequency
corresponds to real spatial coordinates, it means that in the Fourier plane we effectively need
to increase the size of the CCD. Following this discussion, and remembering that up to mul-
tiplicative factors, the Fourier transform and Inverse Fourier transform are the same, if we
reduce the sampling point in the CCD plane (the Fourier plane), we can obtain a larger FOV in
the object plane. The finite size of the pixel on the CCD limits our ability to obtain large FOV,
but using metal nanoparticles we can obtain sub-sampling in the CCD plane and thus larger
FOV in the object plane.

In this case the term we are interested in, T2 equals:

T2(x2) =
[(

e−2𝜋iΔxx2∕𝜆F∫ s
(
x1

)
e−2𝜋ix1x2∕𝜆Fdx1

)
g(x2, t)

]
⊗ p(x2). (10.17)

Here p(x2) is the PSF that reduces the resolution of the recorded DH (the outcome of the finite
sized pixels of the CCD). The decoding will include multiplication by high resolution pattern
g(x2, t), inverse Fourier transform and time averaging:

R
(
x3

)
= ∫ I.F.T

{
T2

(
x2

)
g
(
x3, t

)}
dt, (10.18)

thus

R
(
x3

)
= ∫

[(
s
(
x3 − Δx

)
⊗ G

( x3

𝜆F
, t
))

P
( x3

𝜆F
, t
)]
⊗ G

( x3

𝜆F
, t
)

dt, (10.19)
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where G and P are the Fourier transforms of g and p respectively. Since

∫ G

(
x′

𝜆F
, t

)
G

(
x3 − x3

′

𝜆F
, t

)
dt = 𝛿

(
x′ − x3 − x3

′) + 𝜅, (10.20)

the result is

R
(
x3

)
= s

(
x3 − Δx

)
∫ P

(
x3

′

𝜆F
, t

)
dx′3 + 𝜅𝜂s𝜂P, (10.21)

where 𝜂s, 𝜂P are the averages of s and P respectively. The simulation results of this method are
shown in Fig. 10.6.

10.6 Eliminating the DC Term and the Twin Images

A similar technique can be implemented in on-axis holographic scheme in order to eliminate
the DC term and the twin image in the recorded hologram. Looking at the hologram with metal
nanoparticles that are placed in proximity to the object, the time varying recorded frame can
be written as

I (x, t) = |a (x) g (x, t) + A|2, (10.22)

where the reference is assumed to be a plane wave. Again, as before we capture multiple
frames, localize the nanoparticles, and compute a decoding mask for each frame g(x, t) ≈
g(x, t). Each frame is then digitally multiplied by the complex conjugate of the nanoparticles
mask and time averaging of all frames is performed:

O (x) = ∫ I (x, t)g∗ (x, t) dt, (10.23)

which can be written as

O (x) = ∫ |A|2g∗ (x, t) dt + ∫ |a (x) g (x, t)|2g∗ (x, t) dt + ∫ A∗a (x) g (x, t)g∗ (x, t) dt

+ ∫ Aa∗ (x) g∗ (x, t)g∗ (x, t) dt (10.24)

We now wish to eliminate all the terms but the third one which contains the actual imaged
object. For this the nanoparticles should be chosen such that

g (x, t) = exp (i𝜙 (x, y)) , (10.25)

where 𝜙 (x, t) can have one of four values: 𝜙 (x, t) = n𝜋∕2, n = 0, 1, 2, 3. These four values
can come from four different nanoparticle species. Since in the computed decoding mask we
have to know not only the location of the nanoparticle, but also its phase, we can determine
it by identifying to which of the four species the localized nanoparticle belongs. This can be
accomplished by taking nanoparticles in different colors, shapes, scattering cross sections and
so on. By considering Eq. (10.25), we observe that the third term in (10.24) equals

∫ A∗a (x) g (x, t)g∗ (x, t) dt = ∫ A∗a (x)dt = ΔTA∗a, (10.26)



234 Multi-dimensional Imaging

where ΔT is the integration time. Due to the random nature of the nanoparticles mask, and
the phase values associated with each nanoparticle, the averaging of the other terms is zero,
that is

∫ g∗ (x, t) dt = ∫ g∗ (x, t) g∗ (x, t) dt = ∫ |g (x, t)|2g∗ (x, t) dt = 0. (10.27)

(a) (b)

(c) (d)

Figure 10.7 Simulation results for the reconstruction of amplitude and phase. The amplitude is a Lena
image and the phase has a Gaussian profile. (a) Original field amplitude. (b) Reconstructed field ampli-
tude. (c) Original field phase. (d) Reconstructed field phase. Source: Amihai Meiri, Eran Gur, Javier
Garcia, Vicente Micó, Bahram Javidi, Zeev Zalevsky 2013. Reproduced with permission from SPIE
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Figure 10.8 Phase error as a function of number of frames. Source: Amihai Meiri, Eran Gur, Javier
Garcia, Vicente Micó, Bahram Javidi, Zeev Zalevsky 2013. Reproduced with permission from SPIE

Therefore we are left with

O (x) = ΔTA∗a, (10.28)

which is our imaged object, where the amplitude and phase are maintained. The simulated
results for such a reconstruction are shown in Fig. 10.7 for 1000 recorded frames. The noise
pattern of the reconstructed amplitude image in Fig. 10.7(a) is a result of this reconstruction
and depends on the number of frames.

The relative error in phase reconstruction was calculated from the results of the simulations
and shown on Fig. 10.8. This error was averaged over all pixels of the image and the results
indicate that, even for a 100 frames, the error is as small as 0.5% and reduces rapidly with
an increase in number of frames. This shows that using metal nanoparticles results in a very
accurate reconstruction of the object phase.

10.7 Additional Applications

The random nanoparticle mask encoding can be used in other applications as well. As an
example, we show the joint transform correlator (JTC) [24]. The JTC is a system that can
be used to calculate the convolution of correlation between two functions in an all-optical
setup. The setup for the JTC is presented in Fig. 10.9. A collimated beam is incident on two
objects, h1, h2, which is located at the focal plane of lens L1. At the back focal plane of the
lens the recording medium is placed: see Fig. 10.9(a). In order to obtain the desired output
(correlation of convolution between h1 and h2) we illuminate the recorded transparency by
a collimated beam. The transparency is located at the focal plane of lens L2 and the output
is obtained at the back focal plane of the lens, see Fig. 10.9(b).

Using the metal nanoparticles random mask is depicted in Fig. 10.9(c). Here the nanoparti-
cles are placed close to object h1 and have the different phases as in Eq. (10.25). We now look
at the intensity recorded by the transparency. The field at plane x1 can be written as

U1

(
x1, t

)
= h1

(
x1 − X∕2

)
g
(
x1 − X∕2, t

)
+ h2

(
x1 + X∕2

)
, (10.29)
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Figure 10.9 Joint transform correlator. (a) Recording the filter. (b) Obtaining the output

where g is the time varying nanoparticles phase encoding. In the rear focal plane of the lens
L1 we find the Fourier transform of the field

U2

(
x2, t

)
= 1
𝜆f

H1

(
x2

𝜆f

)
⊗ G

(
x2

𝜆f
, t

)
e−j𝜋x2X∕𝜆f + 1

𝜆f
H2

(
x2

𝜆f

)
ej𝜋x2X∕𝜆f , (10.30)

where ⊗ denotes convolution. Therefore, the intensity recorded by the transparency is:

I
(
x2, t

)
= 1
𝜆2f 2

[||||H1

(
x2
𝜆f

)
⊗ G

(
x2
𝜆f
, t
)||||

2

+
|||||H2

(
x2

𝜆f

)|||||
2
]

+ 1
𝜆2f 2

[
H1

(
x2

𝜆f

)
⊗ G

(
x2

𝜆f
, t

)
H∗

2

(
x2

𝜆f

)
e−j2𝜋x2X∕𝜆f

]

+ 1
𝜆2f 2

[
H∗

1

(
x2

𝜆f

)
⊗ G∗

(
x2

𝜆f
, t

)
H2

(
x2

𝜆f

)
ej2𝜋x2X∕𝜆f

]
. (10.31)

We now compute the Fourier transform of the nanoparticle mask, multiply each frame by
the corresponding computed mask, and perform time averaging:

∫ I
(
x2, t

)
G

(
x2

𝜆f
, t

)
dt (10.32)
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The result is

I
(
x2, t

)
= 1
𝜆2f 2∫

[|||||H1

(
x2

𝜆f

)
⊗ G

(
x2

𝜆f
, t

)|||||
2

+
|||||H2

(
x2

𝜆f

)|||||
2]

G

(
x2

𝜆f
, t

)
dt

+ 1
𝜆2f 2

[
∫ H1

(
x2

𝜆f

)
⊗ G

(
x2

𝜆f
, t

)
H∗

2

(
x2

𝜆f

)
e−j2𝜋x2X∕𝜆f G

(
x2

𝜆f
, t

)
dt

]

+ 1
𝜆2f 2

[
∫ H∗

1

(
x2

𝜆f

)
⊗ G∗

(
x2

𝜆f
, t

)
H2

(
x2

𝜆f

)
ej2𝜋x2X∕𝜆f G

(
x2

𝜆f
, t

)
dt

]
(10.33)

We look at the time integrals and obtain that:

∫
|||||H1

(
x2

𝜆f

)
⊗ G

(
x2

𝜆f
, t

)|||||
2

G

(
x2

𝜆f
, t

)
dt = 0

∫
|||||H2

(
x2

𝜆f

)|||||
2

G

(
x2

𝜆f
, t

)
dt = 0

∫ G

(
x2

𝜆f
, t

)
G

(
x2

𝜆f
, t

)
dt = 0

∫ G∗
(

x2

𝜆f
, t

)
G

(
x2

𝜆f
, t

)
dt = const (10.34)

as in the first three integrals of (10.34) there is a remaining time varying phase, which is
averaged to zero while only in forth integral the time varying phase term is cancelled. The
calculation of the nanoparticle mask is performed in the same way as in Section 10.6: we have
four nanoparticle species, with different phases 𝜙(x, t) = n𝜋∕2, n = 0, 1, 2, 3. The nanoparticle
mask equals

g (x, t) = exp (i𝜙 (x, y)) . (10.35)

We can now localize each nanoparticle and identify its associated phase by identifying the
species. Therefore

∫ I
(
x2, t

)
G

(
x2

𝜆f
, t

)
dt = 1

𝜆2f 2
H∗

1

(
x2

𝜆f

)
H2

(
x2

𝜆f

)
ej2𝜋x2X∕𝜆f . (10.36)

When illuminating the transparency as in Fig. 10.9(b) the field at the output is the Fourier
transform of Eq. (10.36) and can now be expressed as

U3

(
x3

)
= 1
𝜆f

[
h∗1

(
−x3

)
⊗ h2

(
x3

)
⊗ 𝛿

(
x3 + X

)]
. (10.37)

The result is the cross correlation of objects h1 and h2 shifted in space by X.
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