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4.1 Introduction

Unlike standard imaging, digital holography allows an indirect way to capture the complex
field amplitude of a wavefront originating from an object. This provides three-dimensional
(3D) information on the object recorded in a single two-dimensional (2D) recording device.
Currently, digital holography is captured using a semiconductor based device and often recon-
structed using numerical means on a computer. This type of holography is referred to as Digital
Holography (DH) [1]. Digital holography is used in many areas including 3D imaging, digital
holographic microscopy, aberration correction, holographic interferometry, and object surface
and tomographic imaging.

During the last few years, holography was successfully combined with the rapidly grow-
ing signal acquisition-reconstruction scheme known as compressive sensing (CS) [2—-5]. With
introduction of CS, a theory that introduced a dramatic breakthrough in signal acquisition,
implementations in optics were pursued. Shortly, research groups working on the implemen-
tation of the CS principle in optics realized that holography is a natural field for applications of
CS principles [6—11]. The synergy between holography and compressive sensing has yielded
new applications and also addressed classical holographic problems. Many compressive digital
holographic sensing applications were demonstrated using different optical setups and having
different goals. Amongst them are compressive Gabor holography [8], compressive Fresnel
holography [9,11], off-axis frequency shifting holography [10], millimeter wave compressive
holography [12], off-axis holography of diffuse objects [13], sectioning from optical scanning
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holography [14], super-resolved wide field florescent microscopic holography [15,16], recov-
ery of an object from holography in low illumination conditions [17], reduced scanning effort
in incoherent multiple view-projection holography [18], video rate microscopic tomography
[19], the use of compressive holography to see through partially occluding objects [20], sin-
gle shot acquisition of spatial, spectral, and polarimetric information using a single exposure
acquired hologram [21], nanometer accuracy object localization [22] and improved tomo-
graphic object reconstruction with multiple illumination angles [23,24]. The works in [25,26]
provide an overview of the subject. The growing number of publications in the field indicates
the importance of an obvious indication for the importance of the field.

This chapter reviews both the theoretical and the applicative aspects for using compres-
sive sensing in digital holography. First, we equip the reader with the relevant background on
compressive sensing. We then show how compressive sensing can be applied to DH, where
the presentation is divided into three main parts, corresponding to different DH aspects that
benefit from the CS theory:

1. Sensor design, particularly reducing the number of detector pixels, or baseline projections.

2. Reconstruction of an object from its truncated wavefront after encountering partially
opaque obstacles.

3. Reconstruction of 3D object tomography from a single 2D projection.

4.2 Compressive Sensing Preliminaries

This section surveys briefly the theory of compressive sensing [2,3]. CS theory asserts that one
can recover sparse signals and images from far fewer samples or measurements than traditional
methods. Sparsity expresses the idea that the “information rate” of a continuous signal may be
much smaller than its bandwidth, or in other words, that a discrete signal depends on a number
of degrees of freedom that is much smaller than its (finite) length. More precisely, compressive
sampling exploits the fact that many natural signals are sparse or compressible in the sense
that they have concise representations when expressed in the proper basis or dictionary, ¥.
The sparsifying transform ¥ may be the Fourier or some wavelet basis, or a dictionary of
waveforms tailored from a-priori information about the object.

The sensing mechanism requires correlating the signal with a small number of fixed wave-
forms that are incoherent (in the sense defined in Section 4.2.1) with the sparsifying basis V.
Signal reconstruction is performed numerically using appropriate algorithms. A block diagram
of the CS process is shown in Fig. 4.1.
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Figure 4.1 Imaging scheme of compressed sensing [27]. Source: A. Stern and B. Javidi 2007. Repro-
duced with permission from The Optical Society
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The signal\image f consisting of N samples\pixels is sensed by taking a set, g, of M projec-
tions. We assume that f has a sparse representation in some known domain so that it can be
composed by a transform W and only S nonzero coefficients of a vector a, that is, f = W, where
only S (§ < N) entries of a are nonzero. We refer to such an object as an S-sparse object. The
transform W can be for instance the Fourier or wavelet transforms that are commonly used in
digital compression techniques. The sensing step is represented by the operator @ in Fig. 4.1.
Mathematically, @ can be represented by an M by N matrix, hence the ith component of the
measurement vector g is given by:

&=, i=12,..M, (4.1

where ¢; is the ith row of @, and (-, -) denotes the inner product. That is, we simply correlate
the object we wish to acquire with the waveforms ¢;. For instance, if the sensing waveforms
are Dirac deltas (“spikes”), then g is a vector of sampled values of f in the time or space
domain. Particularly, if the sensing waveforms are indicator functions of pixels, then g is the
image collected by sensors in an ideal digital camera. CS applies in the case that M < N,
meaning that the sensed signal is undersampled in the conventional sense. This means that there
are more variables than equations leading to an underdetermined system of equations. The
reconstruction of f from the measurement g is a highly ill-posed problem. A classic approach
for such data inversion would be to minimize the root mean square error between o and the
estimated solution @:

o = min ||a||, such that g = Qa, 4.2)

where Q,,. v = @Y, is the operator combining the sensing and sparsity operators. This solu-
tion, however, does not take advantage of the sparsity of the image and therefore does not
necessarily lead to the correct reconstruction. Given the a-priori information that the signal
can be sparsely represented, an intuitively more appropriate approach would be to apply the
¢ -norm solution that satisfies the given constraints. Thus,  is defined as:

& = min ||a||, such that g = Qa, 4.3)

1/p

N
where |laf|, = Z |0ci| is the £, norm of a. The #,-norm solution program (4.3) simply
i=1

counts the numbelr of nonzero terms in all possible a (that satisfy the acquisition model, g =
Qa) and chooses the one with the fewest number of terms. Unfortunately, solving this problem
essentially requires exhaustive searches over all subsets of columns of Q, a procedure which is
combinatorial in nature and has exponential complexity. This computational intractability has
led researchers to develop alternatives to the £y-norm solution [2,3,28]. One of the approaches
(frequently used in CS theory) is the minimum #,-norm solution according to which @ is
found by:

o = min ||a||, such that g = Qa. (4.4)

Unlike the #j-norm, which counts the nonzero coordinates, the #;-norm is convex and thus
can be recast as linear programming. A linear program is solved in polynomial time, while the
¢-norm is solved in combinatorial time. In many cases, the minimum #;-norm solution is a
good approximation of the minimum ¢-norm solution [2,4,28,29].
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Another minimization problem, which is often used in the context of compressive sensing,
is formulated using total variation (TV) minimization [30] as follows:

n}in TV(f) such that g= ®f

with V) = /(s = i+ Gigar = fip?- 4.5)

This framework is extensively being used in compressive imaging applications, and only
recently its performance guarantees were formulated [31].

The uniqueness of the solution of Eq. (4.4) and the equivalence between the #; norm and the
¢ norm solution holds if the number of compressive measurements M obeys certain condi-
tions. These conditions can be derived from the signal sparsity and the coherence between the
sensing and sparsifying operators and quantified using the coherence parameter. The coher-
ence parameter expresses the idea that objects having a sparse representation in ¥ must be
spread out, in the domain in which they are sensed, just as a spike in the time domain is spread
out in the frequency domain. We shall distinguish between two different definitions of the
coherence parameter, each applicable for different sensing system schemes.

4.2.1 The Coherence Parameter
4.2.1.1 Compressive Sensing by Uniformly Random Subsampling

In this measurement scheme we uniformly place our detectors at random in our measurement
plane [4,29]. Mathematically, it is described as uniformly picking M out of N rows of ® at ran-
dom, where @ is an NXN matrix describing the optical sensing operator in nominal sampling
conditions. In this case, the appropriate coherence parameter definition is:

p = max [, )l (4.6)

where ¢; is arow vector of ®, y; is a column vector of ¥, and (-, -) denotes inner product. Thus,
4, measures the incoherence, or dissimilarity, between sensing and sparsifying operators. In
the common case that @ and W are orthonormal bases it can be shown that 1/ \/ﬁ <u L1
[4,29]. According to the CS theory the signal can be reconstructed by taking M uniformly at
random projections obeying [4,29]:

% > CuiSlogN, 4.7

where C is a small constant. It is clear from Eq. (4.7) that the smaller 4, is, the smaller the rel-
ative number of measurements required to allow for accurate reconstruction of the signal. The
uniformly at random sampling scheme is useful when reducing the sensing effort is desired.
For example, this may be the case when only a relatively small number of detectors are allowed
due to the substantial cost of each detector.

4.2.1.2 Compressive Sensing by Structured Subsampling

This sampling scheme refers to the case when we cannot idealize (in the CS sense) the subsam-
pling mechanism to be randomly uniform or that the sensing operator cannot be considered as
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an orthonormal basis (prior to its subsampling). In this case, the coherence parameter should
be calculated as follows [5]:
_ max |<wi’wj>|

=, T (4.8)
1% ol

Ho

where (-, -) denotes inner product, w; is the column vector of Q = ®¥, Q € C**N and ||.||,
is the £,-norm. It can be shown that \/(N —M)/IM(N — 1)] < py < 1. Using this definition,
an S-sparse signal reconstruction guarantee is given by [5]:

Sﬁl{l+i}. 4.9)
2 Ha

As p, gets smaller we can accurately reconstruct higher dimensional S-sparse signals. As the
number of measurements M — N, the coherence parameter y, — 0, for large M. The struc-
tured subsampling case is more suitable for describing sensing mechanisms where we wish to
extract more information from a measurement where its subsampling mechanism is imposed
by the physical attributes of a given system, as we shall see in the rest of the chapter.

4.3 Conditions for Accurate Reconstruction of Compressive Digital
Holographic Sensing

4.3.1 Compressive Sensing Reconstruction Performance for a Plane Wave
llluminated Object

In this subsection we discuss reconstruction of an object where the measurement is given by

its Fresnel transform. Let us consider the 2D free-space propagation conditions in the Fresnel

approximation. The input object, f(x,y), is illuminated by a plane wave of wavelength A and the

complex values of a propagating wave are measured at a plane which lies at distance z away
from the input plane (as illustrated in Fig. 4.2) such that:

Z
. . "
=exp{%(x2+y2)}/ f(é,n)em{%(éz+n2)}em{ ’ﬂz” (X§+yn)}d§dn-

(4.10)

g(x.y) = f(x.y) * exp {’f (2 +5?) }

where “*” denotes convolution in Eq. (4.10). In order to capture g(x,y) any of the well-known
digital holographic recording techniques can be used [1]. The quadratic phase term

/R

object CCD
<>

z

Figure 4.2 Fresnel propagation from an object illuminated by a plane wave [26]. Source: Y. Rivenson,
A. Stern, and B. Javidi 2013. Reproduced with permission from The Optical Society
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exp{jz(x> +y?)/(Az)} determines the behavior of the Fresnel integral. In the Fraunhofer
approximation regime as Az — oo, the Fresnel transform approaches the Fourier transform.
Fourier transform is extensively used in CS literature as a preferred sensing operator [4,29,32]
because it holds low coherence with the canonical (unit) and several wavelet expansions [33].
This provides the main motivation for applying CS in DH. However, as Az — 0 the captured
field approaches the object’s field distribution. In such a case, the coherence parameter
between the object and hologram plane receives its maximal value, meaning that the com-
pressive sensing ratio M /N — 1; that is, the number of measurements needs to be exactly the
same as the number of pixels representing the object. Thus, we see that the Fresnel sensing
basis is dependent on the reconstruction distance z and the wavelength A, therefore, the
performance of compressive digital holographic sensing depends on these parameters as well.
In order to analyze the dependence of compressive digital holographic sensing on z and other
optical system parameters, we need to also account for the fact that in DH the numerical version
of the Fresnel wave propagation (Eq. 4.10) is used. To do so, we need to distinguish between
near and far field numerical approximations [34]. The numerical near field approximation is
given by:
2 2

Ax,, qAx,) = F;lexp{ —jmiz| —— + ——
8(pAx,, gAx, 2D p{] (NAXS Nay

) } Foplf(lAxy, kAyy)},  (4.11)

where Ax,, Ay, are object and CCD resolution pixel size, with 0 < p, g, k,[ < \/IV — 1 and
F,p is the 2D Fourier transform. We assume that the size of the object and sensor size are

\/IV Axy X \/N Ay,. The near field model is valid for the regime where z < z; = \/]Tf Ax(z) /A

[34]. For the working regime of z > z, = \/ﬁ Axé /A the far field numerical approximation is
given by the following:

g(pAx,, qAy,)

n i
=exp { e (pZAxg + qu)’?) } Fop [f (kAxO, lAyO) exp { P (k2Ax(2) + I2Ay(2)) }] ,
(4.12)

where Ax, = Az/ (\/ﬁAxo) is the output field’s pixel size.

Let us consider the case where one wishes to design a sensing system that samples the
object’s diffraction field at some distance away from it using a small number of detectors.
In this case the sensing system is best described using the randomly uniform subsampling
scheme. If the object is sparse in the spatial domain, that is, ¥ = L, it is shown in [11] that the
coherence parameter for the near field numerical approximation is given by:
= N[Ax2 /(A% (4.13)

'ul(near field)

which means that the number of compressive measurements that are needed to accurately
reconstruct the object is given by:

M> czv;% log N, (4.14)
AxpAyg

where N denotes the recording device Fresnel number N = N i and Cis a small constant
factor [29]. Equation (4.14) determines that as the working distance gets larger, N decreases
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A

Figure 4.3 Illustration of numerical near and far field diffraction, and its relation with the coherence
parameter, y,[26], Source: Y. Rivenson, A. Stern, and B. Javidi 2013. Reproduced with permission from
The Optical Society

implying that fewer samples are required in order to reconstruct the signal accurately. It can
be shown (see [11]) that when the near field approximation is not valid, the far field numerical
approximation can be considered, and the coherence parameter becomes:

Hl(near field) =1. (415)
The number of required measurements is given by:
M > CSlogN, (4.16)

which remains constant regardless of working distance. A physical intuition about these results
isillustrated in Fig. 4.3 and explained as follows: It is known that the object’s diffraction pattern
spatial spread is inversely proportional to its Fresnel number. Thus, as we move away from
the object plane (and the Fresnel number decreases) each sample contains information about a
larger portion of the object. This implies that discarding some of the samples is possible since
the missing information can be extracted from other samples, thus allowing reduction in the
number of samples required to accurately reconstruct the object.

4.3.2 Compressive Sensing Reconstruction Performance for a Spherical
Wave Illluminated Object

In many holographic applications, the object is illuminated by a spherical wavefront, especially
in compact microcopy (lensless) systems. This illumination scheme is illustrated in Fig. 4.4.

Vise,

object CCD

Figure 4.4 Fresnel propagation from an object illuminated by a diverging spherical wave
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In this case, the calculation of the coherence parameter is slightly changed. Fresnel approx-
imation for a 1D (for simplicity) diverging spherical wave in the free space is given by:

2 2 2
¢(x) = exp <jﬂj{—>f(x,y)*exp <j,;x_> _/exp <jﬂ§_>f(§ ) exp <M( - & >d§
% Az Az;
X2 CE (11 —j2r
=exp \Jjr— f@&exp|jr= -+ =) )exps == (x&) ; d&. 4.17)
z A\z Z; Az

For proper numerical representation, one can follow the same trail that leads to the determi-
nation of the near and far field numerical approximations for the plane wave case. Accordingly,
the sampling criterion for the far field model is given by [34]:

Ax?
— <1 + 1) <L (4.18)
A Z Z; \/N

from which we can derive the far field limit of the Fresnel transform:

\/N Ax(z)

> ZO = ——-: (419)

A—VNAX/z

It is evident that the far field limit is dependent on the distance between the illumination
source and the object and is higher compared with the plane wave case due to the — \/ﬁ Axg /7
term in the denominator. Therefore, we can rewrite the coherence parameter, for the near field
Fresnel approximation, when a spherical illumination is used as:

\/ﬁ Ax(Z)

h=— 0 (4.20)
1 2(A — \/ZVAx(Z)/z,-)

As in the previous case, in the far field approximation y; = 1. In the limit of Az; = oo,
Eq. (4.20) reduces to the coherence parameter, 4, for the case of planar field illumination:

py(Az; — 00) = VNAXZ/(Jz) = 4.21)

'ul(plane wave)”
Equation (4.21) shows us that the coherence factor obtained with the diverging spherical

wave is higher than that with plane wave. Hence, the number of required samples with spherical

wave illumination is higher. For the 2D case, it can be shown that [35]:

Ax? Ay?

120 = /N 0 N 0 , (4.22)

2= VNAR/z) 22— VNAYY/z)

therefore, the required number of samples in the near field regime for the case where Ax, =
Ay, is given by:

2

Axé
M > CN| SlogN. (4.23)

) </1 - \/NAX(Z)/Zl)




Multi-dimensional Imaging by Compressive DH 83

1 T T T

—— Plane Wave

0.9 —— Converging Wave (z1 = 0.1m)
—— Converging Wave (z1 = 0.05m)

08 - Diverging Wave (z1 = 0.1m) | |
07t . —— Diverging Wave (z1 = 0.05m)
06f N====z .
z I
IS 0.5 N ™ < W © n

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
z[m]

Figure 4.5 Compressive sensing ratio dependence on z for planar and spherical wave illumination.
Simulation results obtained for the USAF 1951 resolution chart (inset)

Note that an illumination with a converging plane wave will give the opposite result, that
is, the coherence parameter would be smaller for the same z distance of the object from the
detector. The coherence parameter for the 1D converging wave is given by:

_ \/ﬁ Ax(z)
WA+ VNAR/Z)

which means that for some applications it might be beneficial to use the converging wave illu-
mination when the system number of pixels is the main issue rather than its axial compactness.

Figure 4.5 shows the compressive measurement ratio M/N as a function of imaging distance
for different illumination schemes (planar wave, converging wave, and diverging wave). The
results were obtained by simulating a compressive sensing Fresnel holography with under-
sampling the hologram field. The object used was a 1024 x 1024 pixel 1951 USAF resolution
chart. The pixel spacing of the resolution chart is Ax, = 5 pm and the illuminating wavelength
was A = 632.8 nm. The detector was assumed to have 1024 X 1024 pixels. Fresnel samples
were randomly chosen for different values of z. The algorithm ceased whenever it reached
32 dB reconstruction PSNR. From Fig. 4.5, it is evident that the compressive measurement
ratio M/N was worse for the diverging wave illumination than for plane wave illumination. In
this example converging wave illumination does not show any significant advantage over the
planar wave illumination.

m (4.24)

4.3.3  Reconstruction Performance for Non-Canonical Sparsifying
Operators

When the object is not sparse in the spatial domain, that is, the sparsifying operator W#£I, the
number of necessary measurements, M, may differ according to the coherence parameter, 4,
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Figure 4.6 (Plate 6) Simulation results showing the normalized compressive sampling ratio for dif-
ferent sparsifying bases [26]. Source: Y. Rivenson, A. Stern, and B. Javidi 2013. Reproduced with
permission from The Optical Society. See plate section for the color version

between the Fresnel transform and the sparsifying operator. Unfortunately, deriving analytical
results such as those in Eqs (4.13) and (4.15) for other sparsifying operators, can be extremely
tedious. However, we shall demonstrate empirically that the trend of the analysis shown in
[11], and predicted by Eqs. (4.13), (4.15) is valid for other popular sparsifying transforms. In
Fig. 4.6 (Plate 6), we show simulation results for the normalized samples number ratio M/S
obtained with various sparsifying bases: Haar, Coiflet, and Symlet wavelet expansions, com-
pared with those obtained with the canonical representation W = I. The object is a 1024 X
1024 pixel USAF 1951 resolution target. In order to reflect the dependence of the number of
required samples, M, on z, the curves in Fig. 4.6 were normalized with respect to the sparsity
level, S. This is because S depends on the wavelet type being used. For example, in this sim-
ulation the Haar expansion yielded S/N = 0.017, the Coiflets expansion yielded S/N = 0.024,
the Symlet expansion yielded S/N = 0.025, while S/N = 0.21 for the canonical basis. It is wit-
nessed from Fig. 4.6 that the ratio M/S, obtained with various wavelet sparsifying operators,
W, shares the same trend as predicted by Eq. (4.13) for ¥ = I [11]; that is, it monotonically
decreases with the working distance, z, until it approaches a constant asymptote, as predicted
by Eq. (4.13). Figure 4.6 also shows that the lowest M/S ratio is achieved by the canonical
sparsifying basis. This is expected from the relation between the Fresnel and Fourier trans-
forms, and the fact that Fourier transform holds minimum coherence with the spikes’ basis
(see Section 4.2).

4.4 Applications of Compressive Digital Holographic Sensing

In this section, we consider holography based applications that take advantage of the
CS paradigm. The applications presented here are versatile and include reconstruction
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of holograms captured with sparse pixel arrays, sparse camera positions for incoherent
holography, reconstruction of an image through a partially occluding aperture, and object
tomography from its recorded hologram. These applications, along with others, demonstrate
why digital holography has based itself as a leading sensing modality for optical compressive
sensing applications.

4.4.1 Compressive Fresnel Holography by Undersampling the Hologram
Plane

In this subsection, the problem we wish to address is how to maintain high reconstruction accu-
racy of the scene while substantially reducing the number of detector pixels. These properties
may be useful for reducing detector costs, scanning effort, reducing the captured data volume,
or for extracting more information from a measurement. This may be of particular importance
for holography in various spectral regimes (e.g., UV, IR, and THz), for incoherent holography
or for improving imaging performance.

4.4.1.1 Improved Reconstruction using a Variable Density Subsampling Scheme

A more sophisticated approach can be applied when considering the subsampling scheme in
light of the spatial distribution of the sparse coefficients obtained according to the optical
setup, and not to just uniformly placing detectors at random across the sampling plane as
prescribed by the conventional CS theory. In [9], it was shown that better reconstruction results
are achieved when the sampling process puts more emphasis on sampling near the origin of
the recorded Fresnel hologram, and less emphasis as we move away from the origin, according
to some (non-uniform) probability density function [36].

In Fig. 4.7 we demonstrate this principle by applying a variable density subsampling to
an off-axis Fresnel hologram. The object is a 2NIS coin recorded hologram with 100% of the
pixels and is shown in Fig. 4.7(a). In Fig. 4.7(b) we see the reconstruction of the +1 order from
standard Fresnel back propagation, from the full hologram. Subsampling using the proposed
variable density of the full hologram is shown in Fig. 4.7(c), where only 6% of the hologram
pixels were selected. This corresponds to only 6% of the measurements. In Fig. 4.7(d) the
standard Fresnel back propagation from the subsampled hologram of Fig. 4.7(c) is shown. Due
to the subsampling of data the reconstruction in Fig. 4.7(d) is much poorer than in Fig. 4.7(b).
However, by applying the CS and reconstruction algorithm the image in Fig. 4.7(e) is obtained,
which is almost similar to that obtained with the standard back propagation from full data.

4.4.1.2 Reducing the Scanning Effort in Multiple View Point Projection Incoherent
Holography

Compressive digital holographic sensing was also demonstrated to dramatically improve
the performance of multiple view projection (MVP) incoherent holography [37]. Multiple
view projection holography is a method to obtain a digital hologram using a simple optical
setup operating under spatially and temporarily “white” light illuminating conditions. The
method requires only a conventional digital camera as a recording device. The MVP method
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(©) (d) (e)

Figure 4.7 CDHS for a reflection, single shot, off-axis hologram. (a) Fresnel hologram of a 2NIS coin.
(b) Back propagation reconstruction from the fully sampled hologram in (a). (c) 6% variable density
random subsampling of (a). (d) Back propagation reconstruction from (c). Compressive sensing recon-
struction in (e) yielding 31.2 dB PSNR (for the region of interest)

is basically divided into two steps as illustrated in Fig. 4.8. The first one is a scene acquisition
step, in which multiple views of the scene are acquired by a camera translation. This step
usually involves a tedious scanning effort, because it requires a separate camera exposure
for each hologram pixel generation [37]. For instance, in order to record a hologram suitable
for high definition display, 600 x 800 ~ 2.88 x 103 projections should be acquired. The
second step is referred to as the digital stage, where each view is digitally multiplied by a
corresponding phase functions, and added afterwards. This process ultimately yields a digital
Fourier or Fresnel hologram [37].

It was shown in [18] that by adopting the compressive digital holographic sensing approach
to MVP holography, a significant reduction of the scanning effort in the acquisition step is pos-
sible. This is because (as discussed in Section 4.2), it requires about only M = SlogN hologram
pixels in order to accurately reconstruct the scene. Therefore, only M = SlogN different views
in the MVP method need to be acquired, instead of N views. Hence, an accurate reconstruction
of the 3D scene can be obtained with only a fraction of the nominal number of exposures. The
procedure works as follows:

1. Acquire O(SlogN) projections of the 3D scene, instead of N projections required for the
original MVP algorithm.
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Figure 4.8 An illustration of compressive multiple view projection incoherent holography [18,37].
Using a CCD camera located at distance z,, from a scene, KlogN projections (denoted by p,) are captured.
Each acquired projection is digitally multiplied and summarized by a corresponding complex function
to generate a subsampled hologram. Source: Y. Rivenson, A. Stern, and J. Rosen 2011 and N. T. Shaked,
B. Katz, and J. Rosen 2009. Reproduced with permission from The Optical Society

2. Multiply each acquired projection by the corresponding phase function, as described previ-
ously. This way, a partial Fourier hologram is created, with only a fraction of the projection
(coefficients).

3. Reconstruct the signal using the total variation (TV) minimization constraint (4.5). The 3D
scene, is reconstructed with focusing on the different planes.

Figure 4.9 (Plate 7) demonstrates simulation results of compressive MVP holography. The
simulation was carried as follows: a 3D scene was synthesized where the letters B,G,U were
placed at different axial and transversal locations. Each acquired projection was multiplied
with a phase function f,,, and then summed, as shown in Fig. 4.8. This way, we have generated
a Fourier hologram. The hologram we created was of size 256 X 256 pixels, which corresponds
to 256 X 256 projections. We than subsampled our resultant Fourier hologram according to the
sampling scheme described in Fig. 4.8. For a real experiment, there is no need to acquire all
the projections and then subsample; instead one can simply acquire a fraction of the projec-
tions needed to reconstruct the scene. The 100% samples were generated in this simulation
in order to get a reference for our results. At the next stage a TV (4.5) or (£;) minimization
(4.4) is performed. Figure 4.9 depicts simulation results for different number of compressive
samples and different B,G,U letter displacements. No evident difference is found for compres-
sive sensing based reconstruction from 6% of the samples (Figs. 4.9b and e) compared with
reconstruction from the fully acquired hologram (Figs. 4.9a and d). The reconstruction results
from the compressive sensing when using only 2.5% of the samples is quite satisfactory as
well. Other, including real experimental results can be found in [18].

The proposed compressive digital holographic sensing approach for MVP holography holds
a number of advantages: First, the acquisition effort is substantially reduced. For instance, if
the projections are captured by a scanning process, then the total scanning time may be reduced
in order of 15-20 (15-20 times faster). Secondly, less data needs to be transmitted or stored
in comparison with conventional MVP methods. The method does not require any additional
hardware at the sensor level, and can remedy a temporal object’s resolution limitations and
bandwidth bottlenecks.
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(d) (e) ()

Figure 4.9 (Plate 7) Reconstruction examples of the B (forward) and U (backward) planes. (a) Recon-
struction of the B plane form 100% of the projections. (b) CS reconstruction of the B plane forms 6% of
the projections. (c) CS reconstruction of the B plane forms 2.5% of the projections. (d) Reconstruction
of the U plane forms 100% of the projections. (e) CS reconstruction of the U plane forms 6% of the
projections. (f) CS reconstruction of the U plane forms 2.5% of the projections. See plate section for the
color version

4.4.1.3 Other Applications Applying Compressive Fresnel Holography

The framework of compressive Fresnel holography can also be applied in order to extract
super resolved information. This was demonstrated in work by Coskun et al. in [15], where
the in-line holography framework was used to extract superresolved fluroscence beads and by
Liu et al. [22], where a compressive digital holograhphy in-line setup was used in order to
localize a moving object at an accuracy of (1/45)th of the detector’s pixel size.

Another interesting effort is towards the reconstruction of multi-dimensional images as pro-
posed in [21]. Owing CS, only a fraction of the pixels needs to be captured, therefore one
can create a sensor in which a small number of pixels capture different information about
the object, for example, polarization, color, and so on. Hence it is possible to reconstruct
multi-dimensional data with a single shot and without the need of detection hardware for each
dimension.
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2 o 2z

Figure 4.10 A schematic setup for the acquisition of a partially occluded object field. In the object and
occluded planes, black represents totally opaque regions, the gray level represents turbid regions

4.4.2 Compressive Digital Holography for Reconstruction of an Object Set
Behind an Opaque Medium

Here we show the application of compressive Fresnel holography reconstruction for an object
that is set behind a partially opaque media. The sensing mechanism is based on the Fresnel
transform of the object. The approach is briefly described in the following paragraphs.

4.4.2.1 Partially Occluded Object Recovery as a Compressive Sensing Problem

The schematic optical setup is shown in Fig. 4.10. Let us assume that the input object f{x,y) is
illuminated with a coherent plane wave of wavelength A. The object’s wavefront propagates
a distance z; and hits a partially occluding plane, o(x,y). The truncated and distorted wave-
front propagates another distance, z, until it reaches the CCD sensor. This wavefront can be
recorded using any of the various holographic techniques.

The occluded object wavefront can be described as follows:

g(x,y) = [f(x, y) % exp { % (x* +y%) }] X 0(x,y) * exp { % (¥ +y%) } . (4.25)
1 2

It is noted that essentially no information is added or discarded with the free space propa-
gation from the occluding plane to the detector plane; therefore, the information loss is from
fix,y) to g(x,,y,). After discretization and applying the numerical far field Fresnel approx-
imation given in Eq. (4.12), together with standard numerical Fresnel back propagation for
distance —z,, we obtain:

~ jrm
8(pAx,1, gAY.;) = 0o(pAx.;, gAY, ) X exp { T (PP + A }
X Fap [f(kAxO, lAyO) exp { i_” (szxg + ley%) }] , (4.26)
<1
where 0 < p,q,k,l < N — 1. The forward sensing model in Eq. (4.26) can be described as a

subsampling or distortion (given by the fact that o is not a clear aperture) of the object’s Fresnel
wave propagation. In this sense it resembles the CS scheme. However, unlike conventional
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CS, real world occluding environments are most likely to preserve some sort of structure and
certainly cannot be modeled as randomly drawn samples from a uniform distribution.

4.4.2.2 Object Recovery Performance Guarantees

Examining Eq. (4.26) suggests that our ability to accurately reconstruct the object should be
determined by u, and Eq. (4.9). For the numerical far field approximation, it can be shown
[20] that the coherence parameter u, is given by:

MFF |O(m — 1) ® O(m — 1)

= max s 4.27)
2 m#l lloll?

where ® denotes the correlation operator, ||.||, is the £,-norm operator and O is the two dimen-
sional Fourier transform of o, 8 = F,plo}. The indices 0 < m,l < N — 1 denote the sensing
matrix columns. Equation (4.27) holds for the common case where Ax,; = Az;/ (\/ﬁAxO)
[1,34], while for the more general formulation the reader is referred to [20].

The result in Eq. (4.27) formulates the coherence parameter dependence on the structural
properties of the occluding plane. The number of S-sparse signal elements that can be accu-
rately recovered is inversely proportional to u,, according to Eq. (4.9).

4.4.2.3 Simulation — Reconstruction of an Object Through a Turbid, Partially Opaque
Medium

In the following we illustrate the effectiveness of the method using a simulation. Real experi-
mental results may be found in [20]. The proposed method is demonstrated using a MATLAB
simulation. The schematic optical description is shown in Fig. 4.10.

The object in Fig. 4.11(a) is a 512 X 512 pixel phantom image. A hologram recording pro-
cess is simulated, according to Eq. (4.26), where an occluding plane shown in Fig. 4.11(b) is
composed from totally opaque regions denoted in black and non-opaque regions, which are
composed from a complex random media. The non-opaque regions cover merely 28% from the
field of view, thus almost three-quarters of the field is blocked. Noise is added at the detector,
such that the hologram’s SNR is 30 dB. Reconstruction from a noisy hologram of the occluded
object using numerical back propagation is shown in Fig. 4.11(c). It can be seen that due to the
occlusion most of the object’s features are lost. In contrast, an almost perfect reconstruction is
shown in Fig. 4.11(d) where the reconstruction is carried out by the proposed formulation of
the problem as a compressive Fresnel holography problem.

Thus, we have shown that by using a compressive sensing formulation scheme for holo-
graphic imaging of objects located behind a complex partially occluding media an almost
exact recovery is possible. This can be achieved using a single shot with an off-axis hologra-
phy setup or a small number of acquisitions using a phase-shifting holography procedure. The
results may be applicable to partially opaque, turbid, or non-linear media, where its physical
properties are known in advance, or can be extracted during the object sensing process [20].

4.4.3 Reconstruction of 3D Tomograms from a 2D Hologram

Here we discuss the reconstruction of a 3D object tomography from its single recorded 2D
hologram. Numerical reconstruction obtained by digitally focusing on different object depth
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Figure4.11 Simulation results for phantom reconstruction for an occluded phantom, with added detec-
tor noise (SNR of 30dB). (a) Original object (b) Occluding plane, which is composed from complex
random areas (grayscale regions) and totally opaque (black regions). (c) Back propagation from the
acquired hologram. (d) Reconstruction carried out using the proposed compressive Fresnel holography
approach. The resultant reconstruction PSNR = 24.54 dB

planes may be distorted due to out-of-focus object points located in other object planes, as
seen in Fig. 4.9. These disturbances are the result of an incomplete model of the system
because the back propagation model of Egs. (4.11)—(4.12) represents a 2D-2D model linking
the hologram plane to a single depth plane, thus ignoring other object planes. Clearly, applying
reconstruction techniques based on 2D-2D models for 3D-2D acquisition systems is subject to
distortions at object points disobeying the model; that is, object points located in another depth
planes.

4.4.3.1 Recasting the 3D Object Reconstruction from a Single 2D Hologram as a
Compressive Sensing Problem

In order to avoid the out of focus distortions, a 3D-2D forward model relating all the N,;,;,, =

N, XNy XN, voxels to Ny, = Ny X N, hologram pixels should be used. We may formulate
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mathematically the (discrete) forward model relating the 3D object, Of.), to its 2D wavefront
recorded with the holography process, U(.), as follows:

Nz
. 2m
U(kAx’ lAy) = Z PZ_DI {e_jﬂerZ[(AUXm)2+(Avyn)2]e_JT rAz X T’2D [f(pr’ qu’ I’AZ)] }’ (428)

r=1

with0<p,m<N,-1,0<¢q,n sNy —1,and 1 <r <N, - 1. In Eq. (4.28) the 3D object
space is partitioned in a grid with N, X N, X N_ voxels, each of size Ax X Ay X Az. The 7,
operator denotes the 2D discrete Fourier transform. The numerical model in Eq. (4.28) is based
on the near field Fresnel approximation but other models may also be considered as discussed
in Section 4.3.1. The spatial frequency variables are Av, = 1/(N,Ax) and Ao, = 1/(N,Ay).
This model assumes regular sampling intervals Az between the different depth planes. The
problem of reconstructing the 3D object from its 2D hologram is naturally ill-posed, since there
are N, times more variables than equations. In order to handle this problem we assume that the
object is sparse, such that § < N,,,;,, therefore we may recast it as a compressive sensing prob-
lem. In case where the object in sparse in space domain, we solve the following minimization
problem:

min{||U—<I>OT||§+r||O||1}. (4.29)

In Eq. (4.29) @ is the 3D-2D forward model from Eq. (4.28) written as a matrix-vector
multiplication such that the vector U representing the impinging field is:

U= [F;l;e—JZT”AZQAZAZFZD; ;F;;ef'ZT”NzAZQAZNZAZFZD] [0a:5 - s0y,a:1" = DO,

' (4.30)
where the matrix Q 2, is a diagonal matrix which accounts for the quadratic phase terms
of Eq. (4.28) and [0,;; ... s 0y, AZ]T is a lexicographical representation of the 3D object. In
this case, the reconstruction guarantees for the accurate 3D object from its 2D holographic
projection is given by [38]:  Axdy
M= A

Thus, by combining Eqgs (4.31) and (4.9) we obtain the number of sparse object features that
can be accurately reconstructed:

4.31)

S < 0.5[1 + AAz/(AxAy)], (4.32)

It can be shown that under certain conditions Eq. (4.32) implies axial super-resolution 3D
object reconstruction. For more information the reader is referred to [38].

The most widely used tomographic 3D object reconstruction considers the solution of the
following TV-norm minimization problem:

min{||U — @O 13 + z[|O|l 7y}, (4.33)

which is the unconstraint formulation of Eq. (5), where ||||;y is the 3D total variation operator
given by:

1017y = 2 Z \/(Oi+1J,l =07 + (0,541, = 0%, (4.34)
T iy
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and 7 is a regularization parameter that controls the ratio between the fidelity term and the
sparsity level of the object.

This reconstruction approach using the 3D-2D forward model was successfully applied to
reconstruction of a 3D object from a single recorded Gabor hologram [8], for reconstruction
of a 3D object in the THz regime [12], tomographic reconstruction for diffuse objects from
multiple off-axis exposures [13], for incoherent optical scanning holography [14], and also for
video rate tomographic microscopy [19]. Recently it was shown that by changing the optical
setup and recording the holographic projections of the object from different angles, using the
same principles from classic tomography, it is possible to improve reconstruction accuracy
[23,24] when combined with the compressive holography technique.

4.4.3.2 Improved Depth Resolution with the Multiple Projection Holography
Technique

Here we discuss two other applications of this method. The first is using it for the MVP
hologram reconstruction that we have presented in Subsection 4.4.1.2. Like other hologra-
phy, object reconstruction using the 3D-2D reconstruction model also gives us the ability
to improve the tomographic sectioning of the scene; that is, while still taking only a frac-
tion of the projections as explained in Subsection 4.4.1.2. Demonstration of tomographic
sectioning of a scene with white light illumination and standard cameras has been shown
in [18].

Another benefit from using the compressive holography framework for the MVP generated
hologram is described by the following: In multiple aperture systems, the axial resolution
increases linearly with the extension of the system’s baseline typically defined by its synthetic
aperture. This means that the resolution of MVP is linearly proportional to the number of
acquired views. However, as shown in [18], when using the compressive digital holographic
sensing scheme the axial resolution increases at a higher rate than the required number of pro-
jections, by a ratio of N/SlogN. This stems from the rule of thumb, which predicts that as
the amount of pixels in an image grows, its sparsity level increases at a slower rate. Therefore,
the term N/S increases as the dimensionality of the problem increases, and in turn, the ratio
of the axial resolution gain relative to the number of projections grows accordingly. Hence, it
is possible to obtain the superior axial resolution benefits of the MVP method while reducing
the scanning effort. In Fig. 4.12, we illustrate the benefits of CS applied to multiple view pro-
jection holography using the following numerical experiment: A synthetic object composed
from the letters CDHS was generated where the letters DH were placed at one plane and the
letters CS were placed in a more distant plane. A multiple view projection hologram was
recorded using only 3275 projections (a representative projection is shown in Fig. 4.12a),
which form just about 5% of the nominal number of the 256 X 256 projections required
in the multiple view projection holography method. The obtained hologram is illustrated in
Fig. 4.12(b). For contrast, reconstruction using standard numerical back propagation from the
subsampled hologram is shown in Fig. 4.12(c). While the reconstruction in Fig. 4.12(c) suf-
fers from severe out-of-plane crosstalk noise, the reconstruction in Fig. 4.12(b) exhibits clear
depth slicing.
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(b)
)
)

Figure4.12 Compressive digital holographic sensing (CDHS) applied to multiple view projection inco-
herent holography. (a) One of the captured views of the scene. (b) Acquired, subsampled hologram, where
only 5% of the nominal number views are acquired. (c) Standard numerical back propagation of two of
the object planes from (b). (d) The two corresponding planes from (c) reconstructed using the compres-
sive sensing approach. The depth sectioning is evident [26]. Source: Y. Rivenson, A. Stern, and B. Javidi
2013. Reproduced with permission from The Optical Society
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Figure 4.13 A schematic single exposure in line (SEOL) holography setup [26]. Source: Y. Rivenson,
A. Stern, and B. Javidi 2013. Reproduced with permission from The Optical Society

4.4.3.3 Improved Depth Discrimination using the Single-Exposure In-Line
Holography and Compressive Sensing

Another application that was recently demonstrated combined the 3D-2D compressive holog-
raphy framework with the single exposure in line (SEOL) holography recording setup which
was proposed in [39]. The SEOL digital holography was designed for capturing dynamic
events in a 3D scene, a micro-organism, or its movement [39—-43]. As illustrated in Fig. 4.13,
SEOL digital holography utilizes a Mach—Zehnder interferometer setup to record the Fresnel
diffraction field of the 3D object in a way similar to phase-shifting digital holography. How-
ever, in contrast to phase-shifting on-line digital holography techniques, SEOL digital holog-
raphy uses only a single exposure. Prior works [39—-43] that employed the SEOL holography
setup have applied image processing, image recognition, and statistical inference techniques
in order to perform tasks such as recognition, tracking, and visualization of micro-organisms.
Although it was shown that most interference terms, that is, bias and twin image effects, can
often be reduced or neglected in SEOL digital holographic microscopy [42], there are still
reconstruction distortions due to out-of-focus object fields located in other object planes, which
may impair the analysis tasks.

As explained in Section 4.4.3.1, using the compressive sensing approach with the 3D-2D
forward operator leads to improved reconstruction results. This improvement is also apparent
when the SEOL recording scheme is employed. Experimental results can be found in [43].

Furthermore, it can be shown that combining the SEOL and compressive holography frame-
work can yield an almost perfect setup for practicing compressive holography. This is owing
to three properties of the SEOL. First, the resolution of the system is the same as the in-line
holography setup, which is at least twice as high when compared to achievable resolution from
an off-axis recording setup. The second property is that for practical microscopic objects, the
hologram’s acquisition can be performed in a single shot, while allowing satisfactory recon-
struction results [41]. The first and second properties are also common for Gabor holography.
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Figure 4.14 (a) Three depth planes of a 3D object. (b) Noisy hologram, (c) depth planes reconstructed
using conventional field back-propagation, (d) CS reconstruction results from (b), (e) noisy hologram
with reference wave intensity four times larger than in (d), (f) CS reconstructions from (e)

The third property, which differs from Gabor (in-line) holography, is that the SEOL holography
behaves as a heterodyne system. This enables the recording of digital holograms with an
improved signal-to-noise ratio (SNR) by proper control of the amplitude partition of the refer-
ence and object arms. The SNR is a figure of merit in DH, and generally its improvement yields
enhanced lateral object resolution details [43—45]. Combining this property of the SEOL setup,
while introducing the CS formulation, has yielded improved axial resolution with comparison
to compressive reconstruction from a Gabor holographic recording [43]. This is demonstrated
in Fig. 4.14 where the results of a numerical experiment demonstrates improved axial resolu-
tion (3D sectioning) by approaching SEOL in a CS framework together with proper intensity
partition on the reference and object beams [43]. In this simulation, the reference beam was set
to be four times larger than the object’s beam intensity. Comparing the reconstruction results
from of the standard back-propagation, compressive holography reconstruction with the holo-
gram recorded in Gabor setup, and compressive SEOL holography reconstruction, it can be
witnessed that the latter gives the most accurate reconstruction results.

We may conclude that the SEOL digital holographic setup, combined with the compressive
sensing framework can be considered an almost ideal 3D object inference digital holographic
based system; it offers the high resolution and large FOV associated with Gabor holography,
and provides the robustness and sensitivity associated with off-axis holography setup, along
with rapid frame acquisition rate associated with Gabor and off-axis configurations.

4.5 Conclusion

In this chapter we have demonstrated the usefulness of compressive sensing theory in the realm
of digital holography. The basic compressive sensing theory was presented along with theo-
retical analysis of implementation aspects for digital holography. The analysis accounted for
the imaging geometry, type of illumination, sensor size and resolution, object spatial size and
resolution, sparsity of the object, and sparsifying transform used for representing the object.
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A brief survey of compressive digital holographic sensing applications was presented. We have
also demonstrated that CS together with appropriate modeling can help in recovering objects
imaged through a complex random and/or partially opaque media. Furthermore, inference of
an object tomography from its hologram was discussed. Improvement of the 3D resolution
with incoherent multiple view projection holography, and with in-line SEOL holography, were
demonstrated.

In summary, we have shown that CS can drastically improve the extraction of the information
captured with holographic setups. We believe that future mutual synergies between digital
holography and compressive sensing will demonstrate further improvements in 3D imaging
performance, will yield new optical setup designs, and enable new applications.
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