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perature profile could be obtained. The obtained temperature profiles over the width
of the reaction channel are displayed in Figure 2.37 for two different materials
covering the channel. Attached to the cover membrane is a platinum heater, where
one version thereof spans a considerable section of the channel width and the other
version consists of strips located in both halves of the channel. The version with
two heating strips apparently produces temperature profiles which qualify better
to carry out reactions at a uniform temperature level.

2.6
Mass Transfer and Mixing

Similarly to heat transfer, fast mass transfer is one of the key aspects of micro
reactors. Again, owing to the short diffusion paths, micro reactors permit a rapid
mass transfer and a uniform solute concentration within the flow domain. Good
control of reactant concentration throughout the whole reactor volume is a prereq-
uisite for highly selective chemical reactions and helps to avoid hazardous opera-
tion regimes. In addition, overcoming mass transfer limitations by rapid mixing
allows the exploitation of the rapid intrinsic kinetics of chemical reactions and
allows a higher yield and conversion. However, when dealing with liquid-phase
reactions, fast mixing remains a challenge even at length scales of 100 µm or less
owing to the small diffusion constants in liquids.

Figure 2.37  Temperature profiles across the membrane covering the
reaction channel of the T micro reactor for a silicon and a silicon
nitride membrane and two different heater designs, as discussed by
Quiram et al. [128].
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2.6.1
Transport Equation for Species Concentration

The governing equation for mass transport in the case of an incompressible flow
field is easily derived from the general convection–diffusion equation Eq. (32) with
Φ = c and is given by

Ê ˆ∂ ∂ ∂ ∂
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i i i

c c c
u D r

t x x x
, (89)

where c is the concentration of a solute in units of mol/volume, ui the flow velocity,
D the molecular diffusivity and r a source term due to chemical reactions. For a
given velocity field and a vanishing source term, the solution of Eq. (89) is gov-
erned by a single dimensionless group, which is the Peclet number:
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u d

D
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In this expression, u is a typical velocity scale and d a typical length scale, for
example the diameter of a micro channel. The Peclet number represents the ratio
of the diffusive and the convective time-scales, i.e. flows with large Peclet numbers
are dominated by convection.

2.6.2
Special Numerical Methods for Convection-Dominated Problems

As already indicated in Section 2.3.1, the numerical solution of convection–diffu-
sion equations such as Eq. (89) is often impaired by numerical diffusion. From
Eq. (42), it is obvious that for the upwind scheme the dimensionless group deter-
mining the strength of numerical diffusion is the cell-based Peclet number, i.e. the
Peclet number to which the dimension of a grid cell enters as a length scale. When
considering mass transfer in gases, the cell size can often be chosen small enough
to suppress numerical diffusion artefacts. However, for mass transfer in liquids
this is often not possible owing to the molecular diffusion constant, which is about
three orders of magnitude smaller.

The solution of a pure convection equation for a scalar field Φ:
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can be regarded as a benchmark problem for the validation of corresponding nu-
merical schemes. Considering a constant velocity field ui and an initial distribution
Φ(t = 0), Eq. (91) describes the displacement of this distribution along the stream-
lines of the flow. Apart from such a displacement, the distribution of the scalar
field remains undisturbed. A numerical solution usually cannot reproduce this
behavior, rather some distortion and a dispersion of the field distribution will be
induced. In order to shed more light on the numerical structure of the problem,
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consider a one-dimensional version of Eq. (91) discretized on a finite difference
grid as shown in Figure 2.38 Based on first-order explicit time differencing, the
discretized version of the convection equation can be written in the general form

Φ Φ

∆
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= -

1/2 1/21 i in n
i i

F F

x
, (92)

where the superscripts refer to the temporal and subscripts to the spatial coordi-
nates. The Fi ± 1/2 are the fluxes between node i and its neighboring nodes which
effect an increase or decrease of Φi in the next time step. They are in general a
function of the values of Φ at different node locations, depending on the specific
differencing scheme used. In stable discretization schemes, the fluxes usually have
a diffusive component which damps off fluctuations. An undesired side effect of
such numerical diffusion is that it also disperses the real, physical concentration
peaks. In contrast, diffusion-free schemes such as central differencing may lead to
instabilities, since unphysical over- and undershoots and new maxima and minima
of the solution field are produced.

In order to minimize numerical diffusion, Boris and Book [131] formulated the idea
of blending a low-order stable differencing scheme with a higher order, potentially
unstable, scheme in such a way that steep concentration gradients are maintained
as well as possible. The algorithm they proposed consists of the following steps:

� Compute an approximation of the solution at the next time step using a low-
order scheme (indicated by superscript L):
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Figure 2.38  Finite-difference grid for the solution of the one-dimensional convection equation.
The Fi ± 1/2 denote the fluxes from node i to the neighboring nodes.
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� Based on a higher order scheme (indicated by superscript H), compute ‘anti-
diffusive’ fluxes:

± ± ±
= -

H L
1/2 1/2 1/2i i iA F F . (94)

� Multiply Ai ± 1/2 with a flux limiter:
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� Add the limited antidiffusive fluxes to the approximate solution
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Without the third step, the multiplication with the flux limiter, addition of the
antidiffusive fluxes would just remove the terms causing diffusion from the ap-
proximate solution obtained with the low-order scheme. However, such a simple
correction would usually result in an unstable numerical scheme. For this reason,
the flux limiter Ci ± 1/2 is chosen such that the antidiffusion stage generates no new
maxima or minima of Φ and does not accentuate already existing extrema. The
choice of the flux limiter is crucial for the quality of the numerical approximation.
Effectively, the procedure described above can be regarded as switching between
high- and low-order approximations adaptively depending on the smoothness of
the solution. The potentially unstable high-order approximation is used in regions
where owing to the structure of Φ, an instability cannot be created.

Methods based on the addition of antidiffusive fluxes to a low-order differencing
scheme are termed flux-corrected transport (FCT) algorithms. A multidimensional
version of a FCT method was first developed by Zalesak [132]. The quality of corre-
sponding numerical schemes is usually assessed by solving benchmark problems
such as the convection of a rectangular pulse. For a considerable number of such
examples, it has been shown that FCT methods are able to preserve steep gradients
and stepwise changes of the solution field much better than standard differencing
schemes [131, 132].

2.6.3
Mixing Channels

In the literature, a variety of different micro mixing devices have been described
[133], most of which operate in the laminar flow regime. In order to understand
the dynamics of micro mixers and to determine optimized designs, modeling and
simulation techniques were applied in some cases. The simplest micro mixer is
the so-called mixing tee which is displayed on the top of Figure 2.39. Two inlet
channels merge into a common mixing channel where mixing of the two co-flow-
ing fluid streams occurs. The mixing characteristics of T-type mixers was investi-
gated by Gobby et al. [134] using CFD methods. Mixing of gases in a channel of
500 µm width was considered and certain geometric parameters such as the aspect
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ratio of the mixing channel or the angle at which the two inlet channels meet were
varied. In order to quantify mixing, a mixing length was defined as the length in
flow direction after which the gas composition over all positions of a channel cross-
section deviates by no more than 1% of the equilibrium composition. The CFD
results for the mixing length as a function of Peclet number are displayed on the
right side of Figure 2.39.

In addition to the CFD results, estimates of the mixing length based on the Fourier
number:

= 2Fo
D t

l
(97)

are shown in Figure 2.39. The Fourier number relates a residence time t in the
mixing channel to the binary diffusion constant and a characteristic length scale l,

Figure 2.39  Schematic design of a mixing tee (above) and CFD results for mixing of gases in a
channel of 500 µm width and 300 µm depth, taken from [134] (below).
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which is the width of the channel. For a given value of Fo and a given flow rate, the
length along the mixing channel necessary to achieve the corresponding Fourier
number was determined. As is apparent from Figure 2.39, the Fourier number is a
reasonable indicator for mixing which occurs for Fourier numbers between 0.1
and 1.0. The linear increase of the CFD-based mixing length as a function of Peclet
number points to a very simple mixing mechanism via diffusion between co-flow-
ing fluid lamellae. Obviously, complex convection-dominated mixing mechanisms
(for example driven by swirls or recirculating flows) are absent in the simple mix-
ing-tee configuration for the range of Peclet numbers studied.

Microfluidic mixing tees are useful for the processing of species with high diffu-
sion constants at comparatively low volume flows. However, for mixing of liquids
at only moderate volume flows, more elaborate micro mixing concepts are needed.
The next level of complexity in micro mixer design is to go from a straight mixing
channel to a curved channel or a channel with structured walls. In that context, a
design that has been studied in some detail is a zigzag micro channel, the geom-
etry of which is shown in Figure 2.40. Mengeaud et al. [135] studied mixing in
zigzag micro channels in a 2-D finite-element model and conducted experiments
using fluorescein to visualize the mixing process. In order to suppress artefacts
from numerical diffusion, the Peclet number of the flow was fixed at moderate
values (Pe = 2600). When the flow velocity was varied, the diffusion constant was
varied along with it in order to keep the Peclet number fixed. Owing to this fact,
diffusion constants of up to 10–6 m2 s–1 were used, three orders of magnitude larger
than typical liquid diffusion constants. Several channel geometries with varying
widths of the order of 100 µm and varying periods of the zigzag structures were
considered. The configuration with maximum mixing efficiency was studied in
more detail and exhibits an interesting behavior when the Reynolds number is
increased. For Reynolds numbers up to 80 the mixing efficiency is equal to an
equivalent straight mixing channel, indicating that convective mixing effects are
negligible. For larger Reynolds numbers an increase of the mixing efficiency sets
in, indicating that the flow pattern changes and convective mass transfer promotes
mixing. Specifically, recirculation zones as shown on the right side of Figure 2.40
begin to form. Hence, for comparatively large Reynolds numbers, zigzag mixing
channels achieve a distinctively higher mixing efficiency than straight channels.

Figure 2.40  Zigzag micro mixer with concentration field (left) and flow stream lines (right)
obtained from a CFD simulation for a Reynolds number of 38. In [135] a sawtooth geometry of
larger amplitude was considered and distinctive recirculation zones were found only at Reynolds
numbers larger than 80.
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This observation is supported by experiments carried out with a phosphate buffer
and a fluorescein solution for visualization of the mixing process. However, in the
experiments there are indications that the critical Reynolds number where the mass
transfer enhancement sets in is lower (~7) than predicted by the simulations, a fact
which is not well understood.

Another strategy to promote the mixing of two fluid streams merging in a chan-
nel is to induce a helical flow which redistributes the fluids in the mixing channel.
Stroock et al. [136, 137] described a method to induce helical flows in straight chan-
nels. As a fundamental principle to induce recirculating flow patterns they consid-
ered the flow over grooved surfaces. Their theoretical studies were done for a slab
geometry where one boundary is a sinusoidally modulated surface [136]. By writ-
ing down a perturbation series in the amplitude of the sinusoidal grooves they
were able to solve the Stokes equation for flow parallel and perpendicular to the
grooves. By a linear superposition of the two specific solutions, the general solu-
tion for an arbitrary flow direction is obtained. It turns out that on length scales
large compared with the amplitude and the inverse wavenumber of the sinusoidal
modulations, the grooved surface can be regarded as inducing a slip flow the direc-
tion of which in general does not coincide with the direction of the pressure gradi-
ent. The slip velocity ui is obtained from a boundary condition of the form
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on the grooved surface. The 2 × 2 tensor Zeff depends on the applied pressure gra-
dient and the orientation of the grooves in the surface located at z = 0. When at
least one of the walls of a micro channel contains grooves standing at an angle θ  to
the main flow direction, a situation as depicted in Figure 2.41 is encountered. Owing

Figure 2.41  Schematic diagram of a micro channel with grooves in
the bottom wall, taken from [136]. The ribbon indicates a typical
streamline in the channel. In the box at the bottom the velocity profile
over a channel cross-section is drawn schematically.

2.6  Mass Transfer and Mixing
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to the slip flow not being aligned with the pressure gradient along the channel, a
helical flow is induced with helices extending over the entire cross-section of the
channel.

For micro mixing applications, a helical flow would allow one to increase the
interfacial area between the two fluid lamellae to be mixed, but it would usually not
effect a dramatic improvement of mixing efficiency. Aref [138] showed that two
vortex structures need to be superposed in an alternating fashion in order to create
a chaotic flow pattern (‘blinking vortex flow’). The corresponding flow can be de-
scribed mathematically as a non-integrable Hamiltonian system. Aref computed
the distribution of tracer particles by the blinking vortices in the chaotic regime
and was able to show that the particles spread over the entire flow domain after
some cycles.

In order to realize the blinking vortex flow principle in a mixing channel, Stroock
et al. proposed to use a periodic, staggered arrangement of grooves to induce a
chaotic flow pattern even at low Reynolds numbers [137]. The corresponding mixer
geometry is shown in Figure 2.42. The bottom of the channel of height h and width
w contains a staggered arrangement of grooves, where a fraction p of the lower
channel wall has grooves inducing a left-handed recirculation and the remaining
wall fraction induces a right-handed recirculation. A schematic view of the channel
cross-section is shown on top of Figure 2.42. If p ≠ 1/2, the vortex pattern is asym-
metric, and a superposition of two patterns exhibiting the larger of the two vortices
on the left and right sides, respectively, could result in chaotic flow. The superposition
is achieved by the alternating, staggered groove patterns shown in Figure 2.42. The
lower part of the figure shows channel cross-sections with two streams of fluores-
cent and clear solutions after 0, 0.5 and 1 cycle. The images were recorded using a
confocal microscope. The two different vortices are clearly visible and the third

Figure 2.42  Micro mixer geometry with staggered groove structures on
the bottom wall, as considered in [137]. The top of the figure shows a
schematic view of the channel cross-section with the vortices induced by
the grooves. At the bottom, confocal micrographs showing the
distribution of two liquids over the cross-section are displayed.
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frame shows first indications of a chaotic disturbance of the flow. By analyzing the
gray-scale distribution of their confocal micrographs, Stroock et al. were able to
show that chaotic mixing occurs in their mixer comprising a staggered arrange-
ment of grooves. An indication of the chaoticity of the mixing process is the mix-
ing length which was found to scale as ln Pe.

The theoretical results obtained by Stroock et al. are based on the Stokes flow
regime and rely on surface modulations of comparatively small amplitude.
Schönfeld and Hardt [139] studied helical flows in micro channels by numerically
solving the full Navier–Stokes equation for different channel geometries including
channels with corrugated walls. They compared the transversal velocities due to
the helical flow to the analytical results and found good agreement even for grooves
almost as deep as the channel itself.

Furthermore, as an alternative principle to induce helical flows, they studied the
Dean effect as described in Section 2.4.3. In contrast to the single vortex induced
by simple grooved channel walls, in curved channels at least two counter-rotating
vortices are formed. Schönfeld and Hardt showed that in the curved micro chan-
nels considered, the transverse velocities due to the vortex-like structures are of
comparable order of magnitude to those obtained with grooved channel walls. Typi-
cal results obtained from the numerical solution of the convection–diffusion equa-
tion for the concentration field are displayed in Figure 2.43. The left side of the
figure shows the channel geometry, where typical dimensions are a = 200 µm and
R = 1000 µm. On the right side the evolution of two initially vertical fluid lamellae

Figure 2.43  Model geometry for the CFD calculations on flow in
curved micro channels (above) and time evolution of two initially
vertical fluid lamellae over a cross-section of the channel (below),
taken from [139].The secondary flow is visualized by streamlines
projected on to the cross-sectional area of the channel. The upper
row shows results for K = 150 and the lower row for K = 300.

2.6  Mass Transfer and Mixing
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for a vanishing diffusion constant is displayed, in the upper row for a Dean number
of K = 150 and in the lower row for K = 300. Depending on the Dean number, a
flow pattern with either two or four counter-rotating vortices is found.

In order to permit efficient mixing, a chaotic flow pattern would be desirable.
Schönfeld and Hardt suggested a method to realize a version of the blinking vortex
principle in curved channels [139]. By a periodic arrangement of channel sections
of different hydraulic diameters, the two- and the four-vortex pattern could be gen-
erated in an alternating sequence, thus effecting a stretching and folding of the
fluid lamellae in a chaotic manner. Alternatively, at Dean numbers high enough
for the four-vortex pattern to emerge, a periodic sequence of channel sections of
alternating curvature could allow switching between flow patterns with the two
small vortices either on the left or on the right side of the channel cross-section.

2.6.4
Estimation of Mixing Efficiency by Flow-field Mapping

For flows created in channels which exhibit a certain periodicity, due either to alter-
nating groove patterns in the walls or to alternating curved sections, there is an
elegant method to compute the growth of interfacial area per spatial period and to
estimate the mixing efficiency. By the fluid streamlines, each point of a channel
cross-section (xk, yk) is mapped to another point (xk + 1, yk + 1) of the corresponding
cross-section after one period of the fluidic structures, as shown in Figure 2.44.
Such a so-called Poincaré map can be written formally as

+ +
=k 1 k 1 k k( , ) [( , )]x y P x y . (99)

The function P can be computed from either an analytical or a numerical repre-
sentation of the flow field. In such a way, a 3-D convection problem is essentially
reduced to a mapping between two-dimensional Poincaré sections. In order to
analyze the growth of interfacial area in a spatially periodic mixer, the initial distri-

Figure 2.44  Section of a
mixing channel with a map
P connecting the points of
two cross-sectional planes.
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bution of fluids may be represented as a set of grid cells or points distributed over
the inlet patch and tagged with different colors according to binary concentration
values. By successively applying the mapping of Eq. (99) the points are redistrib-
uted or the grid cells are tagged with different colors. In such a way the growth of
interfacial area and the stretching and folding of fluid lamellae can be analyzed.
The Poincaré map method was applied by Linxiang et al. [140] to study mixing in
curved channels.

2.6.5
Multilamination Mixers

Usually, even with zigzag mixing channels or chaotic mixers, liquid micro mixing
can only be completed at moderate volume flows. In chemical process technology,
throughput is often an important issue, and for this reason micro mixer designs
going beyond the concept of two streams merging in a single mixing channel are
needed. When abandoning mixer architectures where the fluid streams to be mixed
are guided through only a single layer and going to multilayer architectures, the
principle of multilamination becomes accessible. In multilamination mixers the
two fluid streams are split into a multitude of sub-streams which are subsequently
merged to form an interdigital arrangement of fluid lamellae. A design of a
multilamination mixer is shown on the left side of Figure 2.45. From the flow dis-
tribution zone an interdigital arrangement of fluid lamellae enters a constriction
with a width of 500 µm where the width of the lamellae is decreased, a principle
known as hydrodynamic focusing. Subsequently the fluid streams enter a constric-
tion which opens up to a wider channel.

Figure 2.45  Design of a multilamination mixer with hydrodynamic focusing (upper left) and flow
pattern in such a mixer for a total volume flow of 10 ml h–1 of water (lower left), taken from
[141]. The right side of the figure shows the orientation of liquid lamellae over a cross-section of
the constriction for different Reynolds numbers [142].

2.6  Mass Transfer and Mixing
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Hessel et al. [141] studied mixing in interdigital micro mixers experimentally,
where different degrees of hydrodynamic focusing and mixers with and without
opening of the constriction to a wider channel were considered. A result of such an
experiment at a total volume flow of 10 ml h–1 is displayed at the lower left of Fig-
ure 2.45. Pure water and water colored with a dye were used as liquids. Apparently,
it can be deduced that mixing has not proceeded to any sufficient degree, since the
different colors are still visible in the reopening section. When the volume flow is
increased substantially, downstream from the center of the constriction an average
color becomes visible. Such a result could possibly be interpreted as complete mix-
ing, but CFD simulations performed for this mixer geometry [142] offer a different
explanation.

The CFD simulations were done in a 3-D model of the mixer based on the finite-
volume method. Owing to artefacts from numerical diffusion occurring at high
Peclet numbers, it was not possible to obtain satisfactory solutions of the convec-
tion–diffusion equation for typical liquid diffusion constants. In order to study the
flow patterns in the mixer, a streamline-tracking technique was employed. From
the velocity field obtained as solution of the Navier–Stokes equation, the flow stream-
lines were determined by numerical integration starting at the interface from the
flow distribution zone to the actual mixer. The streamlines corresponding to pure
and dyed water were tagged with a different color. By this means it is possible to
compute flow patterns such as the one displayed on the right in Figure 2.45, which
however, do not incorporate effects of diffusive mass transport. The diagram shows
a cross-section through the constriction of the mixer for different Reynolds num-
bers. For small Reynolds numbers, the fluid lamellae are mainly oriented verti-
cally. When the Reynolds number increases, the lamellae become deformed and
assume a U-shape. This explains why at high flow rates a uniform color is observed
in the mixing zone: a light beam cutting vertically through the flow domain inter-
sects lamellae of different color, thus averaging out the coloring of the two differ-
ent liquids. Hence it follows that experimental techniques for characterizing
multilamination mixing processes based on the diffusion of a dye have to be viewed
with care.

The streamline-tracking technique allows the extraction of qualitative informa-
tion on the flow patterns in micro mixers, but does not permit a quantitative pre-
diction of mixing efficiency. When hydrodynamic focusing does not proceed as
rapidly as in the mixer displayed in Figure 2.45, the distortion of liquid lamellae is
less pronounced and a semi-analytical method can be used to predict the efficiency
of multilamination micro mixers, as proposed by Hardt and Schönfeld [142]. Ap-
proximately, a mixing process can be viewed as a pure diffusion process in a frame
of reference co-moving with the average velocity of the flow. The solution of the
diffusion equation for an initial condition being defined as a parallel, interdigital
arrangement of liquid lamellae of width L and concentration values of 0 and 1 can
be written as
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where D is the diffusion constant and kn = nπ/L. On the basis of Eq. (100), the
concentration field at different positions in the mixing channel of a multilamination
mixer can be computed approximately. Hardt and Schönfeld used this approach
to compare the mixing efficiency of different multilamination mixers and to de-
sign a new mixer allowing for a very high throughput and short mixing times
[142].

2.6.6
Active Micro Mixing

In chemical micro process technology there is a clear dominance of pressure-driven
flows over alternative mechanisms for fluid transport. However, any kind of sup-
plementary mechanism allowing promotion of mixing is a useful addition to the
toolbox of chemical engineering. Also in conventional process technology, actua-
tion of the fluids by external sources has proven successful for process intensifica-
tion. An example is mass transfer enhancement by ultrasonic fields which is uti-
lized in sonochemical reactors [143]. There exist a number of microfluidic principles
to promote mixing which rely on input of various forms of energy into the fluid.

The large surface-to-volume ratio of micro flows suggests the use of an actuation
mechanism based on surface forces. One suitable mechanism is electroosmotic
flow which is induced due to the force that an external electric field exerts on the
electric double layer (EDL) building up at a solid/liquid interface. The extension of
the EDL is usually very small compared with the width of a micro channel and the
electroosmotic flow can be modeled by the Helmholtz–Smoluchowski slip-flow
boundary condition Eq. (21). The zeta potential ζ determines the magnitude and
direction of the electroosmotic flow close to the solid surface. Among other factors,
ζ depends on the electric potential of the surface. An electric field normal to the
solid/liquid interface can be imposed with the aid of electrodes embedded in the
channel walls. In such a way, it is possible to reverse the direction of the electro-
osmotic flow building up in a micro channel. For this purpose, an electric field
along the axis of the channel is created. A field perpendicular to the channel walls
due to the embedded electrodes is used to tune the zeta potential. The direction of
the flow induced by the driving electric field then depends on the potential of the
electrodes. When using arrays of electrodes embedded in the upper and lower walls
of a micro channel, periodic recirculating flow patterns can be generated. A possi-
ble electrode arrangement (represented by black rectangles) together with stream-
lines of flow patterns emerging in such channels is depicted on the left side of
Figure 2.46.

Qian and Bau [144] have analyzed such electroosmotic flow cells with embedded
electrodes on the basis of the Stokes equation with Helmholtz–Smoluchowski
boundary conditions on the channel walls. They considered electrode arrays with a
certain periodicity, i.e. after k electrodes the imposed pattern of electric potentials
repeats itself. An analytic solution of the Stokes equation was obtained in the form
of a Fourier series. Specifically, they analyzed the electroosmotic flow patterns with
regard to mixing applications. A simple recirculating flow pattern such as the one

2.6  Mass Transfer and Mixing
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shown on left side of Figure 2.46 will not promote mixing substantially, since tracer
particles with a small diffusivity will follow the streamlines, while transport trans-
verse to the streamlines will be negligible. In order to speed up mixing, an alternat-
ing flow created by switching between the single-vortex and the four-vortex pattern
shown on the left side of Figure 2.46 was considered. Inertial effects were neglected
and it was assumed that for the first half of the switching cycle T the flow is given
by the single-vortex pattern, whereas for the second half of the cycle the four-vortex
pattern prevails. With the flow pattern given, the time evolution of an ensemble of
massless particles can be computed by integration along the streamlines. Qian and
Bau positioned a small blob of massless particles in the center of the flow cell and
computed their trajectories by solving the kinematic equations numerically. Their
numerical results for times between 0 and 15T are displayed on the right side of
Figure 2.46 The tracer particles spread over the volume of the cell in a chaotic
manner and filled almost the complete cell volume in the final frame. The results
suggest that chaotic advection based on alternating electroosmotic flows is a pow-
erful principle for mixing of chemical species with a small diffusion constant. The
principle suggests itself especially for fluidic cells with a slowly flowing liquid or a
liquid at rest.

An electroosmotic mixer allowing to enhance the efficiency of mixing tees was
proposed by Meisel and Ehrhard [145]. The corresponding geometry with a cylin-
der in the center of a mixing channel is displayed on top of Figure 2.47. When
mixing ionic liquids, an electric double layer will form above the solid/liquid inter-

Figure 2.46  Section of a micro channel with electrodes embedded in the channel walls (left).
When an electric field is applied along the channel, different flow patterns may be created
depending on the potential of the individual electrodes. The right side shows the time evolution
of an ensemble of tracer particles initially positioned in the center of the channel for a flow field
alternating between the single- and the four-vortex pattern shown on the left [144].
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faces including the surface of the cylinder. An oscillatory electric field applied per-
pendicular to the channel in the region of the cylinder induces an electroosmotic
flow around the cylinder perpendicular to the main flow along the mixing channel
which may be pressure driven. Meisel and Ehrhard studied the performance of
such cylindrical mixing structures by solving the Navier–Stokes equation in the
channel numerically using a finite-element approach. The electroosmotic flow on
the surface on the cylinder was modeled by imposing the Helmholtz–Smoluchowski
slip-flow boundary condition. Characteristic results of these simulations are dis-
played on the bottom of Figure 2.47. The diagrams show the paths of massless
particles on both sides of the interface separating the two liquids (which is not an
interface in the strict sense since the liquids are miscible). In the upper diagram,
the electric field is switched off and the particles follow a straight path. In the lower
diagram a vortex street is created due to the oscillatory electroosmotic flow. Such
vortex structures increase the interfacial area between the two liquids and promote
mixing. A more quantitative analysis of the mixing efficiency and an optimization
of the mixing device based on an arrangement of multiple cylinders requires fur-
ther studies.

Figure 2.47  Micro mixer based on the excitation of an electro-
osmotic flow around a cylinder by an oscillatory electric field (top).
The bottom of the figure shows particle traces on both sides of the
liquid/liquid interface with no electric field (above) and with the
electric field switched on (below), as described in [145].
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An alternative mechanism allowing promoting mass transfer between two liq-
uids that has been studied in some detail is magneto-hydrodynamic mixing. The
idea is based on flow patterns originating from the force an external magnetic field
exerts on ions moving in a liquid. In order to induce a motion of the ions, elec-
trodes are integrated in a micro channel which create an electrophoretic current
when a voltage is applied. When an external magnetic field acts on the moving
ions, they experience a Lorentz force driving them to a direction orthogonal to
their momentary velocity and orthogonal to the magnetic field and drag the sur-
rounding liquid molecules along with them. In short, the magneto-hydrodynamic
forces are implemented by adding a source term

( )iJ B¥ (101)

which is the cross product of the current density of the ions and the magnetic field
to the Navier–Stokes equation Eq. (16). The current density is given by

[ ]( )i i iJ E u Bσ= + ¥ , (102)

where σ is the conductivity of the liquid, Ei the electric field strength and ui the
fluid velocity.

On top of Figure 2.48 a schematic design of a magneto-hydrodynamic mixer as
proposed by Bau et al. [146] is displayed. The mixer consists of a micro channel of
width w and depth 2h and contains electrodes separated by a distance L. A DC
voltage is applied in such a way that the potential alternates between + and – for
neighboring electrodes. Orthogonal to the channel a magnetic field is applied. In
their theoretical treatment, Bau et al. exploited the symmetry of the problem and
considered only the section of the channel enclosed by the gray faces. The rectan-
gular patches orthogonal to the channel walls intersect the centerline between two
electrodes. Based on the assumptions h << w and h << L, they were able to obtain
an approximate solution of the Navier–Stokes equation in the form of a series ex-
pansion. Their solution describes the flow in a static electric field along the chan-
nel and a static magnetic field perpendicular to the channel. The corresponding
evolution of the interface between two liquid lamellae initially oriented in the x
direction and each filling half of the channel is displayed on the bottom of Fig-
ure 2.48. Each of the diagrams shows a x–y section through the computational
domain and the different diagrams are labeled with a time coordinate non-
dimensionalized by a characteristic time-scale of the system. By the magneto-hy-
drodynamic forces a vortex flow is induced which causes an entanglement of the
liquid lamellae. In a pure diffusion process without convection, mass transfer be-
tween the lamellae is governed by a t1/2 law. In the magnetohydrodynamic mixer of
Bau et al., the interfacial area is found to increase approximately linearly with time,
an effect which superposes diffusion and effects a substantial reduction in mixing
times. However, the linear interfacial stretching falls short of chaotic advection
which exhibits an exponential growth as a function of time. In experiments con-
ducted with a prototype system, the theoretical results were confirmed qualita-
tively [146].
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Gleeson and West [147] proposed another type of magneto-hydrodynamic micro
mixer based on an annular geometry. The device, sketched on the left of Figure 2.49,
consists of an annular micro channel, where the curved inner and outer walls of
the channel are plated and act as electrodes. Perpendicular to the plane of the chan-
nel a magnetic field is applied. Both the electric and the magnetic field are alternat-
ing and in-phase. It can be shown that a magneto-hydrodynamic force is induced
which acts in the azimuthal direction and drives an azimuthal flow. Gleeson and
West obtained a solution of the equations of magneto-hydrodynamics in the form

Figure 2.48  The top shows the schematic design of a
magneto-hydrodynamic mixer with equally spaced
electrodes arranged in a micro channel and an
external magnetic field oriented along the z-axis. On
the bottom theoretical results for the evolution of
two parallel liquid lamellae as a function of
dimensionless time are shown [146].

2.6  Mass Transfer and Mixing
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of a Fourier–Bessel series. Based on this solution, the growth of the interfacial area
of two liquids initially positioned in two 180° azimuthal regions of the mixer was
computed. The results of these analyzes are displayed on the right of Figure 2.49.
By the azimuthal motion of the fluid, the interfacial area is increased substantially.
A calculation of the length of the interface [147] shows that the long-time asymptotics
are characterized by a linear increase, a result similar to the findings of Bau et al.
[146] for their magneto-hydrodynamic mixer.

Whereas the previous studies were restricted to liquids with dissolved species of
zero diffusivity, Gleeson et al. [148] extended their analysis to include finite diffu-
sion constants. They considered the regimes of pure diffusion (zero Peclet number)
and intermediate and high Peclet numbers and found analytical and numerical
solutions for the mixing time in all three regimes. The predictions derived from
the analytical expressions agreed fairly well with the numerical results. It was shown
that convection speeds up mixing considerably, for example at Peclet numbers
around 102 the mixing times are a factor of 102–103 shorter than the mixing times
obtained from pure diffusion.

2.6.7
Hydrodynamic Dispersion

Mass transfer of a solute dissolved in a fluid is not only the fundamental mecha-
nism of mixing processes, it also determines the residence-time distribution in
microfluidic systems. As mentioned in Section 1.4, in many applications it is desir-

Figure 2.49  The left side shows the schematic design of an
annular magneto-hydrodynamic mixer. On the right, the
evolution of the interface between two liquids, as described
in [147], is depicted.
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able to have a narrow residence-time distribution of concentration tracers being
transported through a microfluidic system. An initially narrow concentration tracer
will suffer a broadening (i.e. a dispersion) due to two different effects. First, in
some regions of the flow domain of a system the fluid velocity will be smaller than
in others, thus leading to a longer residence time of molecules being transported
preferably through these parts of the domain. However, owing to Brownian mo-
tion the molecules will also sample some of the other regions with higher flow
velocity. Hence molecular diffusion might reduce the dispersion of a concentra-
tion tracer. On the other hand, by diffusion an initially localized concentration
tracer in a fluid at rest will become dispersed. From these arguments it becomes
clear that hydrodynamic dispersion depends on a subtle interplay of convective
and diffusive mass transfer, and the evolution of a concentration tracer as it is
transported through the flow domain depends on various factors such as the flow
profile, and the magnitudes of the flow velocity and the diffusion constant.

The key analysis of hydrodynamic dispersion of a solute flowing through a tube
was performed by Taylor [149] and Aris [150]. They assumed a Poiseuille flow pro-
file in a tube of circular cross-section and were able to show that for long enough
times the dispersion of a solute is governed by a one-dimensional convection–
diffusion equation:

∂ ∂ ∂
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∂ ∂ ∂
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, (103)

where c  denotes the concentration averaged over the cross-section of the tube, u
the average velocity and De an effective diffusivity, also denoted dispersion coeffi-
cient, which is given by
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where D is the molecular diffusivity and R the radius of the tube. The factor 1/48
multiplying the velocity-dependent term is generic for tubes of circular cross-sec-
tion and is modified when other geometries are considered. In many cases the sec-
ond term, which can be rewritten as D Pe2/48, dominates over the first, which is a
purely diffusive contribution. Hence, due to convection a concentration tracer is
usually dispersed much more strongly than it would have been by diffusion alone.
A notable feature of Eqs. (103) and (104) is their independence of any initial condi-
tion. Independent of how the solute is distributed over the channel cross-section and
along the channel initially, the description given by Taylor and Aris will be valid in
the limit of long times (t → ∞). When exactly this limit is reached with a given ac-
curacy depends on the initialization of the concentration field. A rough guideline
is provided by the Fourier number of Eq. (97) evaluated with the tube radius as length
scale. The Fourier number can be regarded as a dimensionless time coordinate which
compares the actual time with the time a molecule needs to sample the cross-sec-
tional area of the tube. The validity of the Taylor–Aris description should be related
to the condition that the Fourier number assumes values of order 1 or larger.

2.6  Mass Transfer and Mixing



216 2  Modeling and Simulation of Micro Reactors

The analysis of Taylor and Aris was extended to arbitrary time values by Gill and
Sankarasubramanian [151] for the dispersion of an initially plug-like profile, i.e.
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, (105)

where the radial coordinate of the tubular geometry is denoted by r and l is the
length of the plug. They derived a generalized evolution equation for the area-
averaged concentration of the form:
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which is valid without any restriction on t. The derivatives in the infinite series
appearing on the right side are multiplied by time-dependent dispersion coeffi-
cients kn. In the Taylor–Aris limit, all of the dispersion coefficients except k1, which
describes the convection of the tracer with the flow, and k2, which determines the
spreading of the tracer, are negligible. When moving to smaller times, the time-
dependence of k2 needs to be taken into account, while all higher dispersion coeffi-
cients are still negligible [151]. Only at very small times do the higher dispersion
coefficients become important. For the case they considered, Gill and Sankarasub-
ramanian found that k2 can be regarded as time independent for Fourier numbers
greater than about 0.5.

Although the results discussed above highlight some of the most important as-
pects of hydrodynamic dispersion, they were based on cylindrical ducts which are
not the generic geometry used in the field of microfluidics. In chemical micro
process technology, tubular sections are used to connect different units; however,
the channels contained in micro reactors typically have a rectangular or tub-like
cross-section. Dispersion in rectangular channels was studied in detail by Doshi et
al. [152] and Dutta and Leighton [153]. The evolution equation Eq. (106) is still valid
in this case, but the expression for the dispersion coefficient Eq. (104) needs to be
modified. While Aris [154] was still able to obtain a simple analytical expression for
the dispersion coefficient related to flow between parallel plates, the correspond-
ing expression for rectangular channels is a complicated series expansion. This is
not very surprising, since the exact form of the flow profile in a rectangular chan-
nel is given in the form of an infinite series as well. Dutta and Leighton [153] found
a simple functional dependence which approximates the exact expression for the
dispersion coefficient in rectangular channels within an error of 10%. In addition,
they considered tub-like channel cross-sections which are typically obtained by iso-
tropic etching processes. For the latter they employed a numerical scheme allow-
ing the computation of the dispersion coefficient. On this basis, they compared
different channel geometries and identified favorable and less favorable designs.

While the previous studies refer to straight channels exceptionally, microfluidic
devices often comprise channels with a curvature. It is therefore helpful to know
how hydrodynamic dispersion is modified in a curved channel geometry. This as-
pect was investigated by Daskopoulos and Lenhoff [155] for ducts of circular cross-
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section. They assumed the diameter of the duct to be small compared with the
radius of curvature and solved the convection–diffusion equation for the concen-
tration field numerically. More specifically, a two-dimensional problem defined on
the cross-sectional plane of the duct was solved based on a combination of a Fourier
series expansion and an expansion in Chebyshev polynomials. The solution is of
the general form

È ˘= +Î ˚
cur 2
e 1 Pe ( ,Sc)D D f K , (107)

where cur
eD is the dispersion coefficient in curved ducts, D the molecular diffusiv-

ity, Pe the Peclet number of the flow, and the function f depends on the Dean
number K defined in Eq. (72) and on the Schmidt number Sc, which is the ratio of
the kinematic viscosity and the diffusivity. Daskopoulos and Lenhoff found the
following asymptotic behavior for the ratio of the dispersion coefficients in curved
and straight ducts:
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As mentioned earlier, in curved channels a secondary flow pattern of two coun-
ter-rotating vortices is formed. Similarly to the situation depicted in Figure 2.43,
these vortices redistribute fluid volumes in a plane perpendicular to the main flow
direction. Such a transversal mass transfer reduces the dispersion, a fact reflected
in the K–1 dependence in Eq. (108) at large Dean numbers. For small Dean num-
bers, the secondary flow is negligible, and the dispersion in curved ducts equals
the Taylor–Aris dispersion of straight ducts.

Mass transfer in micro channels can exhibit complex dynamics going far beyond
the usual dispersion phenomena when adsorption on the channel walls is taken
into account. The reason for this complex behavior lies in the kinetics of the ad-
sorption process, which depend on the concentration of the adsporbed species and
on temperature [156]. Fedorov and Viskanta [157] set up a model of micro channels
with coated walls, where the coating layer adsorbs certain species dissolved in the
gas flowing through the channel. They solved the momentum equation in combi-
nation with the enthalpy equation and the mass transport equation for the adsorb-
able species using a finite-difference method. The problem studied was the trans-
port of a step-function concentration and temperature profile through the channel.
By virtue of alternating adsorption and desorption processes, complex oscillatory
temperature and concentration patterns appeared. Such examples illustrate that
when mass transfer dynamics are coupled to adsporption/desorption dynamics at
solid surfaces, a behavior qualitatively different from dispersion phenomena in
micro channels might emerge.

2.6  Mass Transfer and Mixing
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2.7
Chemical Kinetics

Most plants or reactors in chemical micro process technology inevitably contain a
unit where chemical conversion takes place. The goal might be to produce fine
chemicals with a high yield and selectivity or to screen a large number of reactions
in parallel. Hence a thorough understanding of chemical kinetics is a key require-
ment for the successful design and optimization of micro reaction devices. For this
purpose, reliable models of reaction kinetics coupled to the transport equations of
momentum, heat and matter are needed.

2.7.1
Kinetic Models

The effect of chemical kinetics on mass transport in incompressible flows is sum-
marized by the reaction term r in Eq. (89). Applied to a chemical species a, it de-
scribes the rate of disappearance of this species per unit volume:
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where na denotes the molar amount of a. Especially in gas-phase reactions a com-
plicated coupling between chemical kinetics on the one hand and momentum,
heat and mass transfer on the other might occur. An exothermic or endothermic
reaction releases or consumes energy, an effect which has to be included as a source
term in the enthalpy equation Eq. (77). Furthermore, certain chemical species are
consumed or produced, which is expressed by the source term in Eq. (89).

The reaction rate ra determines how fast the concentration of a chemical species
a increases or decreases due to chemical reactions. It depends on temperature and
on the concentrations of other chemical species involved in the reaction. Consider
the case of a simple reaction:

ν ν ν+ Æa b cA B C , (110)

where νa, νb, νc are stoichiometric coefficients and it is assumed that the stoichio-
metric equation truly represents the mechanism of the reaction. The law of mass
action then states that the reaction rate of species a is given by

βα

=a a br k c c , (111)

where k is a rate constant, ca and cb denote the species concentrations and α = νa,
β = νb. In general, the reaction mechanism will be more complex than suggested
by Eq. (110), and the exponents α and β may take non-integer values. The rate
constant of many reactions is given by the Arrhenius equation (see, e.g., [126]):
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where k0 is the pre-exponential factor, E the activation energy, R the gas constant
and T temperature. The exponential dependence on temperature and the occur-
rence of an activation energy indicate that the reaction proceeds via an intermedi-
ate state which is accessible to the molecules in the high-energy tail of the thermal
ensemble.

Power-law kinetic models such as Eq. (111) in combination with the Arrhenius
equation and their obvious generalizations to a larger number of reacting species
find widespread applications in the simulation of reacting flows. However, strictly
the validity of such models is questionable when solid catalytic reactions are con-
sidered. Solid catalysis is of major importance in chemical micro process technol-
ogy, and prominent examples of reactions being conducted in micro reactors are
partial oxidations or steam reforming reactions. Such heterogeneously catalyzed
reactions are described by more complex models which take into account the ad-
sorption kinetics on the solid surface. In this context, a simple picture of a reaction
as described by Eq. (110) could be the following: first, both species are adsorbed to
the catalyst surface, where the surface coverage depends on the gas-phase concen-
tration in the vicinity of the surface and on temperature. After having been adsorbed,
the species react and the products are released to the gas phase. Assuming first-
order adsorption kinetics, the adsorption rate of a chemical species to a catalyst
surface can be written as

θ= -abs abs(1 )r F s , (113)

where F is the number of molecules per unit area and time hitting the surface, sabs

is the adsorption probability at an active site of the surface and θ  is the surface
coverage, i.e. the percentage of active sites occupied by molecules. The desorption
rate is given by

θ=des desr s , (114)

with a site-specific desorption probability sdes. The adsorption equilibrium is deter-
mined by equating the adsorption and the desorption rate. Taking into account
that the flux F is proportional to the partial pressure p of the chemical species, the
surface coverage can then be written as

θ =

+1

b p

b p
, (115)

where b can be determined from the parameters appearing in Eqs. (113) and (114).
Assuming that the species react while being adsorbed at the catalyst surface, the
rate of a reaction A + B → C is obtained as

θ θ= a br k , (116)

with a rate constant k. The mechanism just described is known as the Langmuir–
Hinshelwood mechanism and is the most prominent model describing catalysis on
solid surfaces. Depending on the specific adsorption and desorption mechanisms,
1 – θ and θ  in Eqs. (113) and (114) may have to be replaced by more general ex-

2.7  Chemical Kinetics
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pressions fads(θ) and fdes(θ) [156]. Furthermore, the rate equation has to be modi-
fied when dissociation reactions have to be taken into account or when an adsorbed
species reacts with molecules in the gas phase [126]. For practical applications such
as industrial processes it is often very difficult to determine uniquely all the param-
eters of a Langmuir–Hinshelwood model experimentally. For this reason, often
power-law kinetic models such as Eq. (111) are employed to describe solid-catalytic
reactions. Such models are usually not justified from a first-principles standpoint,
but they may provide a reasonable parametrization of the kinetics in a limited tem-
perature and partial-pressure range.

2.7.2
Numerical Methods for Reacting Flows

Numerical computations of reacting flows are often difficult owing to the different
time-scales involved and the highly non-linear dependence of the reaction rate on
concentrations and temperature. The solution of the species concentration equa-
tions in combination with the momentum and the enthalpy equation generally
requires an iterative procedure such as the one outlined in Section 1.3.4. A rough
sketch of the numerical structure of a stationary reacting-flow problem is given as

È ˘ È ˘ È ˘
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where c, u and T denote the vector of concentration, velocity and temperature fields,
respectively. Owing to the non-linear nature of the problem, the coefficients of the
different matrices A

αβ
 still depend on the unknowns c, u and T. The cross-coupling

between different field quantities is provided by those matrices A
αβ

 with α ≠ β. The
set of non-linear algebraic equations is solved iteratively, i.e. starting with an initial
guess the approximation is successively improved until convergence is reached.
Depending on the nature of the chemical reaction term entering the species-con-
centration equation, different strategies may be applied to solve Eq. (117). For in-
trinsic kinetics characterized by a much shorter time-scale than transport of mo-
mentum, heat and matter, it is often preferable to set up an iteration scheme where
a number of iterations of the species-concentration equation are performed during
one iteration cycle of the remaining equations. However, for a fast reaction which
is heat and mass transfer limited (for example, in a situation where the reactants
are not premixed), comparable iteration cycles of the species-concentration equa-
tion and the remaining equations might be sufficient.

Apart from the coupling of chemical kinetics with the transport equations, the
chemical reaction dynamics itself may pose numerical challenges when a number
of different reactions are superposed. In such a case the rate of disappearance of a
chemical species i can be written as
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where rj is the rate of the jth reaction and Rij is a matrix defining how a specific
reaction contributes to a change in concentration of the chemical species involved.
Frequently it occurs that the time-scales characterizing the different reactions vary
by orders of magnitude, such that the fast reactions are already completed while
the slow reactions have not yet progressed to any appreciable degree. The corre-
sponding stiff differential equations are usually solved using an implicit time-inte-
gration scheme which allows comparatively large time steps without suffering from
numerical instabilities or predicting unrealistic asymptotic states [85]. However,
implicit time integrators involve the solution of a (generally non-linear) algebraic
system of equation for each time step which is done by some iterative scheme such
as Newton’s method. For reaction systems with a broad spectrum of time-scales,
these iteration schemes can fail to converge, with the consequence that very small
time steps have to be chosen. Such a situation is related to high computational costs,
and methods are needed to simulate extremely stiff reaction systems more efficiently.

Methods based on the partitioning of a reaction system into fast and slow com-
ponents have been proposed by several authors [158–160]. A key assumption made
in this context is the separation of the space of concentration variables into two
orthogonal subspaces Qs and Qf spanned by the slow and fast reactions. With this
assumption the time variation of the species concentrations is given as

- = +

�

� �s, s f , f( ) ( ) ( ) ( )i
j i j j i j

n
Q y Q y

V
. (119)

The notation is such that (Qs,j)i, (Qf,j)i denotes the ith component of the jth basis
vector in the subspace of slow and fast reactions, respectively. The corresponding
expansion coefficients are �s( ) jy  and �f( ) jy , respectively, and are expressed by the
reaction rates via

( )=�s s,( ) T
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If the time-scale of the fast reactions is much shorter than that of the slow reac-
tions, it can be assumed that the former are completed at an initial stage of the
latter. Mathematically, this assumption reads

( ) =f , 0T
j jk ki

Q R r . (122)

Eq. (122) represents a set of algebraic constraints for the vector of species con-
centrations expressing the fact that the fast reactions are in equilibrium. The intro-
duction of constraints reduces the number of degrees of freedom of the problem,
which now exclusively lie in the subspace of slow reactions. In such a way the fast
degrees of freedom have been eliminated, and the problem is now much better
suited for numerical solution methods. It has been shown that, depending on the
specific problem to be solved, the use of simplified kinetic models allows one to
reduce the computational time by two to three orders of magnitude [161].

2.7  Chemical Kinetics
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2.7.3
Reacting Channel Flows

In chemical micro process technology there exists one class of reactor designs which
deserves the term ‘generic’, since many of the micro reactors reported in the litera-
ture are based on this design concept. The design comprises at least one rectangu-
lar micro channel, often a multitude thereof, with a solid catalyst attached on the
channel walls. The reacting fluid flows through the channel, while the reagents
diffuse to the channel wall where they undergo chemical reactions. There exist two
versions of this design concept, as displayed in Figure 2.50. Either a smooth sur-
face, often a metal layer, acts as catalyst, or the reaction occurs in a catalytically
active porous medium. Clearly, the advantage of the porous catalyst layer is the
higher specific surface area offering more reaction sites to the reagents. However,
all of the studies reported in this section are based on the concept of wall-catalyzed
reactions.

For the reasons described above, reaction–convection–diffusion problems tend
to be difficult to solve numerically. Hence the simulation of reacting flows in three
dimensions or parameter studies of micro reaction devices may be very time con-
suming. In order to permit rapid prototyping of micro reactors, efficient modeling
strategies with a minimum expenditure of computational resources are needed.
The modeling approach developed by Gobby et al. [162] allows the assessment of a
limited class of reacting micro channel flows very quickly. They assumed a micro
channel of length L and depth h with a first-order reaction occurring at one of the
channel walls, as depicted in Figure 2.51. In cases where the flow profile is inde-
pendent of the axial position in the channel and the problem can be approximated
by a two-dimensional model, the mass transport equation for a chemical species a
can be written in dimensionless form as
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where the axial and transverse coordinates ζ and η were non-dimensionalized by
the channel length L and the channel depth h. The reactant concentration is de-
noted by ca, the velocity by u, and the Peclet number is expressed by the average

Figure 2.50  Reaction channels with a smooth surface (left)
and a porous medium (right) as catalyst.
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velocity u  and the diffusion constant D as =Pe /u h D . Eq. (123) is solved subject
to the boundary conditions of an impermeable upper channel wall and a first-order
reaction with rate constant k occurring at the lower channel wall. Such a first-order
reaction term surely does not adequately capture the mechanism of heterogeneous
catalysis; it might, however, be a reasonable approximation to the kinetics in a
limited parameter or operation range. An important dimensionless group charac-
terizing the reactive flow is the Damköhler number, defined as

=Da
k h

D
, (124)

which characterizes the ratio of the diffusive and the reactive time-scale. The mass
transport equation has a separable solution of the form

ζ η ζ η=( , ) ( ) ( )a a ac c f , (125)

where
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On inserting this ansatz into Eq. (123), the solution can be determined in the
form of an eigenfunction expansion, as shown by Walker [163]. The parameter
controlling the number of terms of this expansion having to be taken into account
is Pe h/L, which is usually of the order of O(0.01 – 1) in micro reactors. For this
reason, often only the first term contributes. With the entrance condition ( ) 1ac ζ = ,
the axial dependence can then be written as

ζ λ ζ= -( ) exp( )a ac , (127)

where the eigenvalue λa is given as the solution of a non-linear algebraic equation.
Gobby et al. compared their analytical results with full numerical simulations and
found good agreement. In addition to isothermal flows, they also determined ana-
lytical solutions for non-isothermal reacting flows and extended their model to
second-order kinetics. Hence they developed a class of models which may provide
a simple characterization of reacting flows in micro channels without the need to
do a full numerical simulation.

Figure 2.51  Two-dimensional model geometry of a micro
channel with a reaction occurring at the lower channel wall.

2.7  Chemical Kinetics
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Commenge et al. [164] used a similar analytical model for reacting flows in mi-
cro channels to assess the quality of simple plug-flow models which may be used to
estimate reaction-rate constants. Micro reactors lend themselves to measure in-
trinsic rate constants of chemical reactions, as owing to the short diffusion paths,
heat and mass transfer limitations can be eliminated. The simplest way to deduce
the rate constant k of a first-order heterogeneously catalyzed reaction at the walls of
a tube is by assuming the reaction to occur in the volume of a plug-flow reactor. In
this way the wall reaction is replaced by a pseudo-homogeneous reaction and the
velocity profile of the flow is ignored, which means that effectively a one-dimen-
sional model is used. By measuring the inlet and outlet concentrations of the react-
ing component, the rate constant is then obtained as
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where the notation is chosen similarly to the previous paragraph and L and R meas-
ure the length and radius of the tube, respectively. Two effects are not taken into
account by this expression. First, radial concentration gradients are ignored. Sec-
ond, dispersion in the tube, as discussed in Section 2.6.7, is neglected.

Commenge et al. extended the one-dimensional model of reacting flows to in-
clude Taylor–Aris dispersion, i.e. they considered an equation of the form
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where Pe* is a modified Peclet number containing the Taylor–Aris dispersion con-
stant instead of the diffusivity and β is a dimensionless parameter representing the
pseudo-homogeneous reaction. In order to study the influence of dispersion on
chemical conversion, the solution of Eq. (129) was compared with the solution of
the corresponding two-dimensional problem, obtained in a similar way as sketched
in the previous paragraph. It turned out that for a Damköhler number of 1, no
satisfactory agreement between the one- and the two-dimensional models was
achieved. The inclusion of Taylor–Aris dispersion improved the concentration pro-
files to a certain degree with respect to a plug-flow model; however, the main rea-
son for the deviations are the radial concentration gradients which are not accounted
for in the one-dimensional models. Hence, when attempting to extract intrinsic
reaction-rate constants from comparisons of experimental results with results of
one-dimensional reactor models, care should be taken to work in a regime of
Damköhler numbers significantly smaller than 1.

2.7.4
Heat-exchanger Reactors

The design of multichannel micro reactors for gas-phase reactions is typically based
on a stack of micro structured platelets. For strongly endothermic or exothermic
reactions, it lends itself to alternate between layers of reaction channels and heat-
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ing or cooling gas channels which supply energy to or withdraw it from the reac-
tion. Such a set up is similar to the heat exchanger design depicted in Figure 2.30.
Within this class of micro reactor designs a choice can be made between different
flow schemes of the gas streams in adjacent layers (co-, counter- or cross-current).
The counter-current coupling of an endothermic reaction to a heating gas stream
in a multi-layer architecture was studied by Hardt et al. [120]. The 2-D geometry
their model was based on is displayed in Figure 2.52.

The dynamics of a heterogeneously catalyzed gas-phase reaction occurring in a
nanoporous medium in combination with heat and mass transfer was simulated
using a finite-volume approach. In contrast to other studies of similar nature, heat
and mass transfer in the nanoporous medium were explicitly accounted for by
solving volume-averaged transport equations in the porous medium (for a discus-
sion of transport processes in porous media, see Section 1.9). Such an approach
made it possible to compare the transport resistances in the gas phase and in the
porous medium and to study the trade-off between maximization of catalyst mass
and minimization of mass transfer resistance due to pore diffusion. A typical con-
centration profile of a reacting chemical species which is converted by the catalyst
is displayed in Figure 2.53. Owing to the small pore size with an average diameter
of 40 nm, the effective diffusivity in the porous medium is small and large concen-
tration gradients build up, whereas in the micro channel the gradients are negligi-
ble. Typical catalyst effectiveness factors for a 100 µm catalyst layer were found to
be of the order of 0.4. One of the outstanding potential features of micro reactors is
an efficient utilization of the catalyst material. In conventional fixed-bed technol-
ogy, catalyst pellets for liquid reactions are usually of a size of 2–5 mm [126]. Ow-
ing to diffusive limitations in such comparatively large pellets, reactions often oc-
cur in a region close to the surface.

A main objective of the work of Hardt et al. was to study the influence of heat
transfer on the achievable molar flux per unit reactor volume of the product spe-
cies. They compared unstructured channels to channels containing micro fins such
as shown in Figure 2.31. Heat transfer enhancement due to micro fins resulted in
a different axial temperature profile with a higher outlet temperature in the reac-
tion gas channel. Owing to this effect and by virtue of the temperature dependence

Figure 2.52  2-D model of a counter-current heat-exchanger reactor
with a nanoporous catalyst layer deposited on the channel wall.

2.7  Chemical Kinetics
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of the reaction rate, an improvement of heat transfer resulted in a significantly
higher specific product molar flux. For the system under study, the heat transfer
enhancement achievable with micro fins was found to increase the specific molar
flux by about a factor of two. Such model studies show that a complex interplay
between flow, heat and mass transfer may occur in micro reactors and underline
the need for fully coupled simulations incorporating conjugate heat transfer and
transport in porous media.

The optimization of heat transfer in a heat-exchanger reactor was also the objec-
tive of the work of TeGrotenhuis et al. [165]. Specifically, the exothermic water–gas
shift (WGS) reaction:

+ +�2 2 2CO H O H CO (130)

which is utilized in fuel reformers to reduce the level of carbon monoxide was
considered. When the temperature level of an exothermic, reversible reaction such
as the WGS reaction increases, the kinetics are accelerated but the equilibrium is
shifted more towards the feed components. As a result, neither very low nor very
high temperatures are optimal when the goal is to maximize the space–time yield
for a given conversion. Rather, there is a specific temperature trajectory, i.e. a spe-
cific functional dependence of the reaction temperature on time, which allows the
space–time yield to be maximized. Owing to their short thermal diffusion paths,
micro reactors allow the temperature profile in a reaction channel to be controlled
much better than conventional equipment.

TeGrotenhuis et al. studied a counter-current heat-exchanger reactor for the WGS
reaction with integrated cooling gas channels for removal of the reaction heat. The
computational domain of their 2-D model on the basis of the finite-element method

Figure 2.53  Normalized concentration profile of a reacting species
across a micro channel of 500 µm width with a 100 µm catalyst layer
deposited on the wall.
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is sketched in Figure 2.54. The reactor design does not allow for a detailed adjust-
ment of the temperature profile in the reaction gas channel; however, by varying
the cooling gas inlet temperature and the ratio of cooling gas and reaction gas flow
rates, different temperature profiles can be imposed.

Simulation results for the CO conversion as a function of the ratio of cooling and
reaction gas flux are displayed in Figure 2.55. All of the results shown are based on
a fixed reaction gas inlet temperature of 350 °C and a fixed inlet composition of the
reaction gas. All of the curves obtained with different cooling gas inlet tempera-
tures start at a conversion of about 70%. This is due to the fact that by release of
reaction heat close to the inlet, the reaction gas temperature rises to above 400 °C,
a region where the conversion is limited to 70% by the chemical equilibrium. The
maximum achievable conversion increases by 2.7% when the cooling gas tempera-
ture is raised from 125 to 225 °C. The reaction dynamics are such that, owing to the
fast kinetics at high temperatures, a large degree of conversion is obtained in the
inlet region of the channel. For the remaining few percent conversion, a compara-
tively large reactor volume is needed. Hence even minor differences in conversion

Figure 2.54  Model of a counter-current heat-exchanger reactor for exothermic reactions.
The dashed lines indicate symmetry planes.

Figure 2.55  The effect of cooling gas flow rate and inlet temperature on CO conversion in the
WGS reactor, as described in [165]. The cooling gas flow rate was varied for a fixed reaction gas
flow rate and three different inlet temperatures were considered.
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achievable with improved temperature control may result in a considerable reduc-
tion in reactor size and the required amount of catalyst. When considering more
advanced reactor designs allowing for fine-tuning of the temperature trajectory,
CFD simulations are indispensable for performance optimization.

2.7.5
Periodic Processing

As compared with macroscopic reactors, micro reactors not only permit fast heat
and mass transfer, they also allow improved process control. In this context, one
aspect that has been studied in some detail is periodic process control. It is well
known that in some cases periodic variations of the process parameters permit
improved reactor performance [166–168]. In macroscopic reactors, short cycle times
are often not accessible owing to limitations of heat and mass transfer. In micro
reactors, the large heat transfer coefficients achievable allow rapid thermal cycling.
Furthermore, low-Peclet number flow in narrow channels allows concentration
plugs to be transported without axial mixing. The potential of periodic process
control for enzymatic reactions in micro reactors was investigated by Stepanek et
al. [169]. They studied a reaction–adsorption process in a micro channel with alter-
nating wall segments, as displayed on top of Figure 2.56. The channel comprises
alternating segments with reaction and adsorption zones. In the reaction zones an

Figure 2.56  Micro channel with alternating segments for
reaction and adsorption (above) and operating cycle with
pulsed substrate inlet concentration (below).
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immobilized enzyme catalyzes the synthesis of a biomolecule, which can be re-
moved from the flow by wall adsorption in the adsorption zones. The reason for
such different channel segments is the kinetics of the reaction which show both
product and substrate inhibition, i.e. the reaction rate decreases with increasing
substrate and product concentration. Hence, by removing the product from the
flow in the adsorption zones, the reaction rate can be increased.

Stepanek et al. [169] used a one-dimensional plug flow model to describe the
reaction dynamics in a micro channel for a periodic processing regime. In such a
model the reaction is regarded as pseudo-homogeneous. An additional reaction
term was included for the product to describe removal from the flow by adsorp-
tion. The partial differential equations for the two chemical species, substrate and
product, were solved for periodic inlet conditions which are depicted on the bot-
tom of Figure 2.56. For a fraction tf/tp of the temporal period tp, the substrate con-
centration at the inlet is adjusted to a specific value and the pH is chosen in such a
way as to promote product adsorption. For the remaining fraction of the period,
the substrate concentration is zero and the pH is shifted to values favoring elution.

Typical results for the outlet concentration of substrate and product are shown in
Figure 2.57 for two different values of tf/tp. When tf/tp = 0.9, for most of a cycle the

Figure 2.57  Substrate (dashed line) and product (full line) concentrations at
the channel outlet for two different operation modes, taken from Stepanek
et al. [169].
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substrate is fed to the channel, whereas the substrate inlet concentration is zero for
half of the cycle when tf/tp = 0.5. In the former case, the average product concentra-
tion is fairly high, but substrate and product are not easily separated, since for
most of the cycle a mixture of substrate and product is found at the channel outlet.
In the latter case, the average product concentration is lower, but the separability of
substrate and product is considerably higher. Stepanek et al. [169] made a system-
atic parameter study of the reactor varying the cycle period, the switch-on time of
the substrate and the inlet flow velocity. They found a trade-off between product
yield and separability of the different chemical components. A high product yield
usually resulted in a mixture of product and substrate (low separability) at the out-
let and vice versa. Furthermore, the reactor performance increased with decreas-
ing cycle time. Hence, in cases where the capital and/or the process costs for prod-
uct separation are considerable, a micro reactor with periodic process control may
offer a solution, since an adjustment of the process parameters allows a product
separation in situ and the reactor can be operated with favorable short cycle times.

2.8
Free Surface Flow

Multi-phase flows of immiscible fluids are omnipresent in chemical process tech-
nology. In various processes, gases or liquids are dispersed in a surrounding liquid
phase, or aerosols of liquid droplets in a gas phase are formed. A standard method
to model such types of flow is the Euler–Euler description of interpenetrating con-
tinua [171]. In this approach, both the disperse phase, i.e. the droplets or the bub-
bles, and the surrounding continuous phase are treated as continua which occupy
a certain fraction of each volume element of the fluid domain. Via exchange terms
in the transport equations, the two phases are coupled to each other and may ex-
change momentum, heat and matter. In micro reactors the Euler–Euler descrip-
tion is often inappropriate. When the size of droplets or bubbles becomes compa-
rable to the channel dimensions, the continuum assumption breaks down and the
dynamics of multi-phase flow confined in narrow spaces deviates considerably from
that in macroscopic vessels. Hence, in general the usual modeling approaches for
multi-phase flow cannot be applied in micro reactors and special techniques are
needed to predict the flow patterns.

In most cases the only appropriate approach to model multi-phase flows in mi-
cro reactors is to compute explicitly the time evolution of the gas/liquid or liquid/
liquid interface. For the motion of, e.g., a gas bubble in a surrounding liquid, this
means that the position of the interface has to be determined as a function of time,
including such effects as oscillations of the bubble. The corresponding transport
phenomena are known as free surface flow and various numerical techniques for the
computation of such flows have been developed in the past decades. Free surface
flow simulations are computationally challenging and require special solution tech-
niques which go beyond the standard CFD approaches discussed in Section 2.3.
For this reason, the most common of these techniques will be briefly introduced in
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this section, followed by a number of examples highlighting their application in
the field of micro process technology.

2.8.1
Computational Modeling of Free Surface Flows

In order to describe correctly the dynamic evolution of a fluid/fluid interface, a
number of boundary conditions have to be implemented into the computational
models.

The kinematic condition requires that no fluid can transverse the interface, i.e.
the local flow velocity iu  relative to the velocity of the interface int

iu  should be zero

- =

int
int( ) 0i i iu u n , (131)

where ni are the components of a unit vector normal to the interface and the whole
expression is to be evaluated at an interfacial position.

The dynamic condition requires that the net force on any portion of the interface
has to vanish. In a local coordinate frame attached to an interfacial position, three
constraints are derived expressing the force balance for each of the three coordi-
nate directions:
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where τij represents the stress tensor, σ the interfacial tension and Rt and Rs, the
radii of curvature of the interface along the two orthogonal coordinate directions.
The subscripts 1 and 2 refer to the two different phases. The position vector is
expressed by two unit vectors ti and si in the tangent plane of the interface and one
orthogonal unit vector ni as

= ◊ + ◊ + ◊t s nr t s n . (135)

Eq. (132) states that the interfacial tension has to be balanced by a pressure dif-
ference between the two phases. The terms containing derivatives of σ in Eqs. (133)
and (134) are non-zero only if there are local variations of the interfacial tension,
which might be due to differences in concentration or temperature. The flow in-
duced by such an effect is known as Marangoni convection.

The constraint to be implemented at the three-phase contact line between the
two fluids and a solid surface requires that the contact angle θ  (compare Figure 2.58)
assumes a prescribed value. As discussed in Section 2.2.3, the contact angle might
also be allowed to vary with the velocity of the contact line. Especially in microfluidic

2.8  Free Surface Flow
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systems surface effects often dominate over volumetric effects. Therefore, a cor-
rect implementation of the boundary conditions outlined above is of major impor-
tance for the modeling of free surface flows in micro reactors.

There are two major classes of numerical methods for free surface flow simula-
tions, interface tracking and interface capturing methods. In the interface tracking
method (see, e.g., [172] or [173]), the interface coincides with a specific grid line,
i.e. each cell either belongs to phase 1 or phase 2. When the interface becomes
deformed, the grid follows its motion and the grid cells are adjusted in such a way
that their identification with the fluid phases is maintained. An example of a corre-
sponding grid deformation for a gas/liquid free surface flow is shown in Figure 2.59.
In that case, only the liquid is modeled, and the stresses exerted on the surface by
the gas phase above the liquid are so small that they can be neglected. The part of
the grid shown in the figure follows the motion of a surface wave travelling from
right to left. An advantage of the interface tracking method is the fact that by con-
struction a sharp, well-localized interface is maintained throughout the simula-
tion. Furthermore, in the case of gas/liquid flows the gas can often be neglected
and only the liquid domain needs to be modeled, as indicated in Figure 2.59. How-
ever, a disadvantage is the fact that changes in topology of the flow domain, for
example the decay of a liquid volume into droplets or droplet coalescence, are diffi-
cult to take into account. As such processes play an important role in chemical
process technology, interface tracking methods will not be further considered here.

Figure 2.58  Two fluids in contact with a solid
surface at a contact angle θ.

Figure 2.59  Grid deformation following a wave propagating from right to left on a liquid surface.
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In contrast to the interface tracking method, in interface capturing techniques a
fixed grid is used. Relative to that grid the two fluid phases move and the location
of the interface has to be reconstructed. In general, different fluid phases cannot
be uniquely assigned to different cells, there may be cells containing fractions of
both fluids. The great advantage of interface capturing methods lies in their ability
to model in principle all kinds of topological changes fluid volumes surrounded by
a second immiscible phase might undergo. A disadvantage of some interface cap-
turing methods is an artificial smearing of the interface due to numerical diffu-
sion, as discussed in Section 2.3.1. Furthermore, local or even global mass conser-
vation is sometimes not guaranteed, and the grid always needs to be larger than
the fluid volume to be considered, since it is not co-moving with the fluid.

Among interface capturing methods, one of the most popular and most success-
ful schemes is the volume-of-fluid (VOF) method dating back to the work of Hirt
and Nichols [174]. The VOF method is based on a volume-fraction field c, assum-
ing values between 0 and 1. A value of c = 1 indicates cells that are filled with phase
1, and phase 2 corresponds to c = 0. Intermediate values of c indicate the position
of the interface between the phases; however, the goal is to maintain a sharp inter-
face in order to identify the different fluid phases uniquely. Volumes assigned to
the different phases are moving with the local flow velocity ui, and therefore the
evolution of c is determined by a convection equation:
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u c
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Via Eq. (136) the kinematic condition Eq. (131) is fulfilled automatically. Further-
more, a conservative discretization of the transport equation such as achieved with
the FVM method guarantees local mass conservation for the two phases separately.
With a description based on the volume fraction function, the two fluids can be
regarded as a single fluid with spatially varying density and viscosity, according to

ρ ρ ρ µ µ µ= + - = + -1 2 1 2(1 ), (1 )c c c c , (137)

where the subscripts 1 and 2 refer to phase 1 and 2, respectively.
When the transport equation for c is solved with a discretization scheme such as

upwind, artificial diffusive fluxes are induced, effecting a smearing of the inter-
face. When these diffusive fluxes are significant on the time-scale of the simula-
tion, the information on the location of different fluid volumes is lost. The use of
higher order discretization schemes is usually not sufficient to reduce the artificial
smearing of the interface to a tolerable level. Hence special methods are used to
guarantee that a physically reasonable distribution of the volume fraction field is
maintained.

A simple method used to maintain a sharp interface is based on a correction
algorithm [175]. After each time step, the amount of fluid of a specific phase hav-
ing penetrated the interface at c = 0.5 is determined. Then the fluid is redistributed
such that the ‘voids’ on the other side of the interface are filled up. The redistribu-
tion is done globally, as information on the origin of fluid volumes having pen-
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etrated the interface is not available. Owing to the global nature of the correction
step, mass conservation is only fulfilled globally and not locally. Especially when a
number of disconnected fluid volumes exist (for example, various droplets), arte-
facts might be induced by the correction algorithm. The artefacts show up as an
exchange of mass between the disconnected volumes, i.e. one volume might in-
crease at the expense of another.

Typically, the interface obtained with the versions of the VOF method described
above is smeared over a few grid cells, which, on sufficiently fine grids, allows one
to identify uniquely the simply connected volumes belonging to the different phases.
Instead of regarding the dynamic conditions of Eqs. (132)–(134) as boundary con-
ditions, surface tension can be implemented as a volume force in those cells where
c lies between 0 and 1. In the method developed by Brackbill et al. [176], a momen-
tum source term of the form
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is added to the Navier–Stokes equation, where σ is the interfacial tension and κ the
local curvature of the interface. Owing to the spatial derivative appearing in Eq. (138),
the interfacial tension acts only in those regions where steep gradients of the vol-
ume-fraction field exist, which are the regions around the interface. Even for a
sharp interface, the description given by Brackbill et al. can still be applied when c
is replaced by a smoothed volume-fraction function �c , which is the result of the
convolution of c with, e.g., a Gaussian kernel.

In the methods described above, a priori no information on the position of the
interface within computational cells or on the radii of curvature of the interface is
available. This information has to be obtained from the values of the volume-frac-
tion field in the neighborhood of the point of interest. However, in some versions
of the VOF method, an algorithm allowing tracking the position of the interface
within single computational cells is available. Two important examples of such
algorithms are the Single-Line Interface Construction (SLIC) [177] and the Piecewise-
Linear Interface Construction (PLIC) (see [178] and references therein) schemes.
In the SLIC scheme for rectangular grids the interface in each computational cell
is represented as a line (or a plane in 3-D) which is parallel to the faces of the cell.
The more exact PLIC scheme still assumes a linear interface within single compu-
tational cells, but allows for an arbitrary interface orientation. A basic form of the
SLIC algorithm is represented graphically in Figure 2.60. The interface orientation
within a cell in a specific time step depends on the status of the cell under consid-
eration and its neighbors in the previous time step. The figure shows an ‘upwind’
cell and a cell located downstream with respect to the local flow velocity (the ‘down-
wind’ cell). Depending on the status of both of these cells, the interface orientation
in the next time step is computed according to the diagram on the right. In this
context, a cell shaded in gray contains fluid 1 (for example, a liquid), a white cell
fluid 2 (for example a gas) and a hatched area represents a cell containing a mix-
ture of both fluids.
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Within the PLIC scheme, an interface is allowed locally to stand at any tilted
angle with respect to the grid cell. Such a more realistic description goes along with
increased accuracy and computational complexity. By reconstructing the position
of the interface within single computational cells, both the SLIC and PLIC schemes
add information on sub-grid scales to the VOF model. In such a way, a sharp inter-
face is maintained throughout the complete simulation and volumes belonging to
different immiscible fluids may be tracked accurately over long time-scales.

Another popular class of schemes for interface capturing is constituted by level-
set methods, introduced by Osher and Sethian [179]. Level-set methods are based
on the same type of equation as Eq. (136), but the field c is no longer interpreted as
a volume fraction field. Instead, c is regarded as a level-set function, assuming
positive values in the regions occupied by fluid 1 and negative values in the regions
of fluid 2. The interface is interpreted as the surface for which c is equal to zero.
The absolute values of c measure the distance to the interface, which, by construc-
tion, is always maintained as a well-defined surface, since it is simply identified
with the value c = 0. However, the price to pay for this somewhat artificial construc-
tion is a violation of mass conservation. In order to enforce mass conservation,
algorithms have been developed which re-initialize c after a number of time steps
based on a special evolution equation [180].

In addition to the methods described above, there exist a number of other meth-
ods for the computation of free-surface flows which allow a sharp interface to be
maintained. The approach which resembles computational methods for single-

Figure 2.60  Pictorial representation of the SLIC scheme showing the updating scheme
for an upwind and a downwind cell. Cells filled with fluid 1 are indicated in gray, those
with fluid 2 in white. Cells containing a mixture of both fluids are represented by hatched
areas. In the right column the configuration at the new time step is shown, with interface
positions depicted explicitly.
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phase flows most closely is the front-tracking scheme. This technique essentially
assumes a single fluid with local variations of density and viscosity, thus allowing
modeling of different phases. The interface is marked by tracer particles moving
with the local flow velocity. Surface tension is included as a volumetric force being
applied to the computational cells in the vicinity of the interface.

A current version of the front-tracking method was developed by Tryggvason et
al. [181]. As the tracer point density may become too small or too large in specific
regions during the evolution of the interface, their algorithm creates additional
points or deletes points wherever necessary. For 3-D problems, the tracer points
are connected by triangular elements which may then have to be subdivided or
merged. Since the front is represented by a line or a surface over which the points
are distributed, a scheme for smoothing the surface tension on to the higher di-
mensional computational grid is needed. The advancement of the tracer particles
is done with the local flow velocity, thus ensuring that there is no flow across the
interface. Changes in the front topology are difficult to model in the framework of
front-tracking schemes. Essentially it is necessary to equip the method with a search
algorithm which determines interfacial sections that are close to each other and
decides to change the connectivity of the interface whenever needed.

2.8.2
Micro Flows of Droplets and Bubbles

Owing to the transient nature of free-surface flows, the simulation of correspond-
ing flow phenomena in multi-phase micro reactors remains a challenge, especially
when 3-D models are needed. Nevertheless, in a few examples the use of surface
capturing methods to study free-surface flows for applications in micro process
technology has been demonstrated. So far the work has been focused mostly on
pure flow phenomena and seems to have been restricted to non-reacting flows.
One of the best established applications of micro process technology in the context
of multi-phase flows is the generation of emulsions and dispersions. Although
micro mixers showed some advantages for creating disperse systems compared
with, e.g., conventional stirred tanks, it remained unclear by which physical mecha-
nism droplet or bubble formation occurs and how the formation mechanism can
be varied and regulated to create tailor-made emulsions and dispersions. In order
to understand the physical phenomena better, multilamination mixers were fabri-
cated from glass, thus allowing optical images to be taken showing the formation
of droplets or bubbles. In parallel, simulations based on the VOF method were
carried out, the results of which have been summarized [182, 183]. As an example
of the experimental results, the formation of water droplets in silicone oil in a
multilamination mixer with a rectangular mixing chamber is shown in Figure 2.61.
From the figure it is apparent that in the mixing chamber liquid ‘lamellae’ are
formed which subsequently decay into droplets.

The decay of liquid lamellae of circular cross-section at rest was studied in a 2-D
model using the VOF method without subcellular tracking of the interface (in the
following denoted ‘basic VOF method’) in combination with a correction algorithm
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to compensate numerical diffusion [175]. In order to initiate the decay, a sinusoidal
fluctuation was imposed on the surface of the cylinder. The corresponding time
evolution of a water cylinder is shown in Figure 2.62. The initial fluctuation im-
posed on the surface becomes damped, but initiates a decay of the cylinder into
droplets with about twice the wavelength of the initial perturbation. The CFD re-
sults are in agreement with linear hydrodynamic stability theory pioneered by
Rayleigh (see, e.g., [184]). Rayleigh stability theory predicts that fluctuation wave-
lengths below a certain cut-off are damped, and that a liquid cylinder decays with a

Figure 2.61  Formation of water droplets in silicone oil
in a multilamination micro mixer.

Figure 2.62  VOF-based simulation of a water cylinder decaying into droplets by a hydrodynamic
instability [182].
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preferred wavelength. In the free-surface flow simulation the correct decay wave-
length is selected [182].

While the 2-D simulation has to be regarded as a test case rather than a serious
attempt to describe droplet formation in micro mixers, a more elaborate 3-D model
incorporating the actual geometry of the mixing chamber and a non-zero flow ve-
locity was set up, again using the basic VOF method. Specifically, the system sili-
cone oil/water was considered at various flow rates. Also with the 3-D model liquid
lamellae were found to decay into droplets, while the decay mechanism depends
on the contact angle between the glass surface and the two fluids. At contact angles
of about 40° (referring to a drop of silicone oil resting on a glass surface and sur-
rounded by water), almost cylindrical rods of water detaching from the walls of the
mixing chamber are formed; at contact angles close to 90° the liquid lamellae of
approximately rectangular cross-section are still in contact with the channel walls
when they decay into droplets [183]. Snapshots of these two different droplet for-
mation mechanisms are shown in Figure 2.63.

Experimentally, contact angles around 40° were determined for the system un-
der study, which means that droplet formation should proceed as shown on the left
of Figure 2.63. For a quantitative comparison of experiments and simulations, the
droplet diameter, the decay wavelength (i.e. the distance between successive drop-
lets) and the diameter of the water lamellae were determined [183]. In general, the
agreement between the simulation results and the experimental data was fairly
good. Especially the decay wavelength was found to agree reasonably with Rayleigh’s
linear stability theory, thus indicating that droplet formation occurs through the
well-known Rayleigh plateau instability. Obviously, the dynamics of droplet forma-
tion are influenced by shear forces due to the non-zero flow velocity inside the
mixer only to a very small extent. Based on this work, it may be claimed that one
significant dynamic aspect of emulsion formation in micro mixers was revealed.

Another numerical study of free-surface flow patterns in narrow channels was
conducted by Yang et al. [185]. They considered the flow of bubbles of different size
driven by body forces, for example the rising of bubbles in a narrow capillary due
to buoyancy. The lattice Boltzmann method [186] was used as a numerical scheme

Figure 2.63  Droplet formation in a micro mixer for a wall contact angle of 40° (left)
and 90° (right), with silicone oil being the continuous and water the disperse phase.
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which recovers a numerical solution of the Navier–Stokes equation from a solution
of the Boltzmann equation. Correspondingly, in addition to the computational grid
in position space, a grid in velocity space is introduced and a collision term is used
which rapidly drives the phase-space distribution into thermal equilibrium.

An important quantity determining the nature of the bubble flow considered by
Yang et al. is surface tension, which often plays a dominant role in free-surface
micro flows. However, viscous forces are also important in many cases. Hence the
ratio of the viscous force and the surface tension force:

µ

σ

=Ca
u

(139)

termed ‘capillary number’, is an important dimensionless group characterizing
the flow. When a bubble of diameter d enters a capillary of smaller diameter, a thin
liquid film is formed between the bubble and the capillary wall. A quantity which
has been determined experimentally is the thickness of this liquid film. Yang et al.
compared their simulation results with corresponding experimental results for a
range of capillary numbers between 0 and 0.117 and found good agreement. An
interesting result of their studies is the fact that the rise velocity depends strongly
on the bubble size. Owing to this effect, coalescence occurs in a rising column of
bubbles of different sizes. The evolution of such a multi-bubble arrangement is
shown in Figure 2.64. The smaller bubbles approach the bigger ones in front of
them and undergo coalescence. For an ensemble with a certain size distribution
this is a multi-step process, as shown in the figure.

Figure 2.64  Time sequence showing the movement and coalescence
of an ensemble of bubbles in a narrow capillary, taken from [185].
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In another study of free-surface flow in confined geometries, Tryggvason et al.
[187] used their front-tracking method to study the movement of droplets in chan-
nels under the influence of an electric field. When droplets are suspended in a
phase of different conductivity and dielectric permittivity, the dielectric mismatch
between the two phases induces a stress at the fluid interface. Furthermore, in an
external electric field the droplets attain a dipole moment. The dipoles attract each
other and the droplets tend to line up in columns. Tryggvason et al. studied the
conformation of a droplet suspension in a channel limited by two parallel plates
between which an electric field is applied. At vanishing flow rate the droplets line
up in columns between the plates, as depicted on the left of Figure 2.65. The lines
in the figure represent the streamlines of the flow. When the flow is turned on, the
columns break up and the droplets accumulate at the walls. At comparatively high
flow rates, the droplets are resuspended all over the channel, as shown on the right
of Figure 2.65. Although giving valuable insight into the dynamics of, e.g., micro
emulsions inside electric fields, these simulations still suffer from the fact that
droplet coalescence has not been accounted for.

2.9
Transport in Porous Media

In the last few years, an increasing number of micro reactors containing micro
channels with porous catalyst layers have been reported [13, 14]. In addition to
such devices providing a large specific surface area, also the smooth metal surface
of the channel walls itself was used as catalyst. The latter approach is suited for
proof-of-principle studies rather than the development of systems meeting certain
performance requirements such as a specific molar flux of the desired product.
Nowadays, micro reactors are starting to be utilized in commercial processes. Hence
demands for reaching certain performance benchmarks are raised and the use of
smooth metal surfaces as catalysts often is no longer sufficient owing to the disad-
vantageous surface-to-volume ratio as compared with porous catalyst media.

Figure 2.65   Droplet distribution in a channel due to an electric field
perpendicular to the channel walls, as described in [187]. At vanishing
flow rate the droplets line up in columns (left) and accumulate at the
walls as the flow rate is increased (middle). At comparatively high flow
rates the droplets get resuspended over the channel (right).
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Porous media have a long-standing history in chemical process technology. One
important application is the use of fixed beds of catalyst pellets for heterogene-
ously catalyzed gas-phase reactions, where a gas mixture is being chemically con-
verted in a tubular section filled with catalyst. In such processes gas is forced through
the voids between the pellets by a pressure gradient and the mass transfer charac-
teristics are determined by the transport of chemical species from the void space to
the pellet surface and by diffusion within the porous pellets themselves. Analo-
gously, porous media find their application as catalyst carriers in micro reactors.
However, in contrast to the fixed-bed technology, porous layers are attached to the
micro channel walls with a gas flow passing by.

Owing to the importance of transport in porous media not only in chemical
process technology but also in other areas such as geology, more than a century of
intense research has resulted in a variety of theoretical and experimental results.
Depending on whether flow, heat or mass transfer is considered, a number of dif-
ferent transport mechanisms have to be taken into account. Flow through a porous
medium is equivalent to convection of a fluid through the voids or the pore throats.
Mass transfer is often dominated by diffusive transport and, similar to flow, occurs
exceptionally in the void space of the porous medium. In contrast, heat transfer
may occur in the fluid occupying the voids and also in the surrounding solid phase.
In chemical micro process technology with porous catalyst layers attached to the
channel walls, convection through the porous medium can often be neglected.
When the reactor geometry allows the flow to bypass the porous medium it will
follow the path of smaller hydrodynamic resistance and will not penetrate the pore
space. Thus, in micro reactors with channels coated with a catalyst medium, the
flow velocity inside the medium is usually zero and heat and mass transfer occur
by diffusion alone.

2.9.1
Morphology of Porous Media

A porous medium consists of a pore space and a solid matrix. Depending on the
chemical composition and the preparation technique used to deposit the porous
catalyst layer on the micro channel walls, a variety of pore space geometries and
topologies may be found. Figure 2.66 shows an image of a catalyst layer deposited
in a micro channel using a wash-coat technique and a scanning electron microscopy
(SEM) image of the surface morphology of such catalyst carriers. The SEM image
gives an impression of the pore structure of the catalyst layer. One of the most
important quantities characterizing a porous medium is the porosity ε, defined as
the volume fraction of the pore space. The porosity of some materials, e.g. foams,
may assume values in the proximity of 1 [117]. An important topological feature of
a porous medium is the coordination number Z, defining the number of pore
throats meeting at a node of the pore space. Another essential topological aspect is
the existence of closed loops in the pore network, i.e. alternative pathways connect-
ing two given points. On a larger scale, the connectivity of the pore space is an
aspect which influences the transport properties of the medium. For a given mate-

2.9  Transport in Porous Media



242 2  Modeling and Simulation of Micro Reactors

rial sample there might not exist a sample-spanning cluster of pores connecting
two opposite boundaries. In such a case, flow or mass transfer between these
boundaries cannot occur. Besides these topological features, the geometry of the
pore space characterizes a porous medium. Roughly speaking, there might be com-
paratively small nodes connected by long pore throats, or there might exist a pore
space which is dominated by the nodes and does not possess distinct pore throats.

2.9.2
Volume-averaged Transport Equations

As far as modeling of transport phenomena in porous media is concerned, the task
is to provide a generic description which is applicable to as broad a class of materi-
als as possible. The models should to some extent be idealized, allowing them to
capture a broad class of phenomena without the need to model all geometric de-
tails of the pore space and allowing for a fundamental understanding of transport
processes in porous media.

A popular semi-empirical approach is to assign effective transport coefficients to
the porous medium. In the context of such models, taking heat transfer as an
example, the porous medium would act as if it was equipped with an effective
thermal conductivity λe being a function of the fluid and solid thermal conductiv-
ity λf and λs. The formal justification of this approach relies on a volume-averaging
procedure for the local transport equations. In Figure 2.67 a schematic representa-
tion of a porous medium together with the volume over which the averaging is
performed is displayed. The averaging volume should be much larger than a typi-
cal pore dimension and much smaller than the size of the material sample taken
into consideration in order to allow for meaningful variations of the field quantity
being looked at. In the case of heat conduction in a porous medium, the funda-
mental equation to be solved is

ρ λ

Ê ˆ∂ ∂ ∂
= Á ˜∂ ∂ ∂Ë ¯

( ) i
p i i i

k k

T
c T

t x x
, (140)

Figure 2.66  Cross-section of a micro channel coated with a catalyst layer (left) (source: INM,
Saarbrücken, Germany) and typical surface morphology of wash-coat catalyst carriers (right).
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where ρ, cp and T denote density, specific heat and temperature and the subscript i
either indicates the fluid (f) or the solid (s) phase. In order to obtain an exact solu-
tion of the heat conduction problem, Eq. (140) would have to be solved together
with appropriate continuity conditions on the solid/fluid interface. Clearly, this is
an unmanageable task for macroscopic material samples with a complex pore struc-
ture.

Following the line of arguments developed by Carbonell and Whitaker [188] and
Nozad et al. [189], a volume-averaged temperature is introduced as

= Ú
1

d
i

i
i V

T T V
V

, (141)

where the subscript i indicates either fluid or solid and the integral is either over
the fluid or the solid volume embraced by the averaging volume shown in Fig-
ure 2.67. One proceeds by averaging Eq. (140) over the fluid or solid volume, de-
pending on which phase is considered. In addition, the temperature field is split
into a mean value (defined by the local averaging procedure) and a fluctuating
component, according to

¢= +i iiT T T . (142)

Assuming local thermal equilibrium, i.e. the equality of the averaged fluid and
solid temperature, a transport equation for the average temperature results which
still contains and integral over the fluctuating component. In order to close the
equation, a relationship between the fluctuating component and the spatial deriva-
tives of the average temperature of the form

Figure 2.67  Microstructure of a porous medium together with sample volume over which field
quantities are averaged.

2.9  Transport in Porous Media
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∂
=¢

∂
( )i i k
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T b

x
(143)

is assumed, where the transformation vector (bi)k might depend on the spatial co-
ordinates. With that assumption a diffusion equation for the average temperature
can be derived, given as

ε ρ ε ρ Λ

È ˘∂ ∂∂
È ˘+ - = Í ˙Î ˚ ∂ ∂ ∂Î ˚

f s e( ) (1 ) ( ) ( )p p kl
k l

T T
c c

t x x
. (144)

The effective thermal conductivity tensor Λe depends on the transformation vec-
tor (bi)k introduced above and on the geometry of the pore space. Hence, under the
assumptions made, heat conduction in a porous medium is described by an effec-
tive transport coefficient matrix Λe. Similarly, for mass transfer and flow effective
transport equations may be derived using the volume-averaging approach. In such
a way, the well-known Darcy equation for flow in porous media may be obtained
[190]:

µ

∂
= -

∂
k

k

pK
u

x
, (145)

where ‹uk› denotes the average velocity, K the permeability of the medium, µ the
fluid viscosity and p pressure.

2.9.3
Computation of Transport Coefficients

In order to be useful in practice, the effective transport coefficients have to be
determined for a porous medium of given morphology. For this purpose, a broad
class of methods is available (for an overview, see [191]). A very straightforward
approach is to assume a periodic structure of the porous medium and to compute
numerically the flow, concentration or temperature field in a unit cell [117]. Two
very general and powerful methods are the effective-medium approximation (EMA)
and the position-space renormalization group method.

The EMA method is similar to the volume-averaging technique in the sense that
an effective transport coefficient is determined. However, it is less empirical and
more general, an assessment that will become clear in a moment. Taking mass
diffusion as an example, the fundamental equation to solve is

Ê ˆ∂ ∂ ∂
= Á ˜∂ ∂ ∂Ë ¯k k

c c
D

t x x
, (146)

where c is the concentration field and D the diffusivity. Following the derivation
given in [191], a grid is introduced with nodes i, j connected by bonds which are
characterized by transport coefficients Wij being proportional to the local diffusiv-
ity between i and j. The bonds represent the pore throats and the transport coeffi-
cients Wij reflect the geometry of the pore throats, for example a very narrow pore
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will have assigned a very small value of Wij. Implemented on such a grid, Eq. (146)
translates to

∂
= -

∂
Â [ ( ) ( )]i

ij i j
j

c
W c t c t

t
, (147)

where ci is the concentration at node i. The initial concentration is assumed to be
of the form δ= = 0 0( 0)i ic t c . Taking the Laplace transform of Eq. (147), one ob-
tains

ω ω δ ω ω- = -Â� � �0( ) [ ( ) ( )]i i ij j i
j

c W c c , (148)

where ω is the variable conjugate to t and the tilde indicates a transformed func-
tion. The essential idea of the EMA method is to introduce a node independent,
but generally ω-dependent, transport coefficient which represents the average prop-
erties of the medium, according to

ω ω δ ω ω ω- = -Â �

� � �

e e
0( ) ( ) [ ( ) ( )]e

i i e j i
j

c W c c , (149)

where ω�

e( )ic  is the Laplace transform of the effective concentration field obtained
in the medium described by the effective transport coefficient. By subtracting
Eq. (148) from Eq. (149), an equation involving both ω� ( )ic  and ω�

e( )ic  is obtained.
When solving this equation approximately and demanding

ω ω=� �

e( ) ( )i ic c , (150)

where the average is defined with respect to a specific probability distribution for
Wij, the function ω

�

e ( )W  can be determined. When computing an effective diffu-
sivity from the transport coefficient and translating the results obtained on a grid
to a continuum model, a diffusion equation with a memory term is obtained:

τ τ τ
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. (151)

The effective diffusivity depends on the statistical distribution of the pore trans-
port coefficients Wij. The derivation shows that the semi-empirical volume-averag-
ing method can only be regarded as an approximation to a more complex dynamic
behavior which depends non-locally on the history of the system. Under certain
circumstances the long-time (t → ∞) diffusivity will not depend on t (for further
details, see [191]). In such a case, the usual Fick diffusion scenario applies. The
derivation presented above can, with minor revisions, be applied to the problem of
flow in porous media. When considering the heat conduction problem, however,
some new aspects have to be taken into account, as heat is transported not only
inside the pore space, but also inside the solid phase.

As a second method to determine effective transport coefficients in porous me-
dia, the position-space renormalization group method will be briefly discussed.

2.9  Transport in Porous Media
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Consider, as an example, a porous medium represented by the two-dimensional
grid shown in Figure 2.68, where each bond stands for a pore throat and the coor-
dination number is 4. To each bond a transport coefficient (‘conductance’) is as-
signed, similar to the coefficients Wij appearing in the previous paragraph. The
transport coefficients are not equal, but are sampled from a probability distribu-
tion f0(g) characteristic of the porous medium under consideration. The idea is to
successively replace the fine grid shown on the left of Figure 2.68 by a series of
coarser grids which mimic the fine grid as far as the transport properties are con-
cerned. This replacement is indicated on the right of Figure 2.68, going along with
the task of determining a new probability distribution f1(g). In case the relationship
between f0(g) and f1(g) is simple enough this mapping can be iterated until a grid
with cells on a macroscopic scale is reached or, alternatively, until the probability
distribution for the transport coefficients remains invariant under a further scale
transformation.

Formally, the expression one allowing to compute the probability distribution
for a bond of the renormalized cell shown on the right of Figure 2.68 is

δ= - ¢Ú …1 0 1 1 0 2 2 0( ) ( ) d ( ) d ( ) d ( )n nf g f g g f g g f g g g g . (152)

In this expression, the integral is over the conductances of the bonds of the origi-
nal cell, which, when assigned values g1, g2, …, gn, result in a conductivity g′ of a
bond in the renormalized cell. The problem of finding g′ can be regarded as the
problem of determining the conductivity of an electric circuit, where, taking the
example of Figure 2.68, the clamps are arranged either horizontally (for the hori-
zontal bond of the renormalized cell) or vertically (for the vertical bond). Usually,
for not too large unit cells, g′ is a comparatively simple function of gi (i = 1, …, n).
Clearly, for reasons of symmetry the horizontal bonds in Figure 2.68 are equivalent
to the vertical ones and the same probability distribution is found for each type of
bond in the renormalized cell. Since the renormalized cell is of the same structure
as the cells of the original grid, the mapping defined in Eq. (152) can be applied
over and over again until, e.g., an invariant probability distribution fi(g) is obtained.

Although in principle a powerful and elegant method, the position-space
renormalization group method yields very complex expressions for the renormalized

Figure 2.68  Grid model of a porous medium (left) and renormalization group transformation
replacing a cluster of grid cells by a unit cell of larger scale (right).
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probability distribution fi(g) when iterated a few times. Even when using symbolic
algebra packages, the number of terms generated soon starts to exceed the capa-
bilities of most computers. For this reason, the probability distribution is often
replaced by a distribution of predetermined structure which approximates the true
distribution [191]. With such so-called optimized distributions an initial distribu-
tion f0(g) usually converges rapidly to a stable distribution whose shape does not
change under further rescaling.

In addition to the approaches for modeling transport phenomena in porous media
briefly discussed here, a large number of alternative methods with specific advan-
tages for specific applications exist. An appropriate discussion of only the most
important methods lies beyond the scope of this book. The reader is referred to the
books by Sahimi [191] and Kaviany [117] for a more detailed presentation of mod-
els for flow, heat and mass transfer in porous media. Nevertheless, one further
class of modeling approaches which is of special importance for micro reactors
should be discussed here. A special class of catalytic surface described in the litera-
ture is a monolith with more or less regular, straight and parallel pores [192, 193].
The walls of micro channels may be equipped with such monoliths in order to
increase the specific surface area and the number of active sites catalyzing chemi-
cal reactions. A microscopic image of a corresponding channel surface is displayed
in Figure 2.69, together with the typical flow scheme in corresponding reactors.
Corresponding pore structures can be created by anodic oxidation, an electro-
chemical process in the course of which spots of Al2O3 are created on an aluminum
substrate.

2.9.4
Reaction-diffusion Dynamics Inside Pores

The simple pore structure shown in Figure 2.69 allows the use of some simplified
models for mass transfer in the porous medium coupled with chemical reaction
kinetics. An overview of corresponding modeling approaches is given in [194]. The
reaction-diffusion dynamics inside a pore can be approximated by a one-dimen-
sional equation

Figure 2.69  Structure of a porous micro channel surface (left) and schematic diagram of the
flow scheme and pore arrangement (right).

2.9  Transport in Porous Media
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where time independence of the concentration profile was assumed. The concen-
tration of species i is denoted by ci, z is the coordinate along the axis of the pore, Di

the species diffusion constant inside the pore, r  the mean radius of the pore, ni

the number of moles of species i and Scat the surface area of the catalyst material.
The second factor on the right-hand side is the reaction rate per unit surface area of
the catalyst material. In order for Eq. (153) to be applicable, the radial concentra-
tion gradients inside the pore should be negligible. This condition can be expressed
mathematically as [194]
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where νi is the stoichiometric coefficient of species i in the chemical reaction un-
der consideration. Assuming a reaction of the type A → B, Eq. (153) can be solved
for all reaction orders. The functional forms of the solutions are given in [194] and
allow the diffusional flux of species i at the pore mouth to be expressed as a func-
tion of concentration.

When modeling the reaction dynamics in micro channels equipped with such
porous walls, the arguments outlined above allow the computations to be simpli-
fied considerably. Given the applicability of the one-dimensional approximation
for the reaction-diffusion dynamics inside the pores, the domain of the catalyst
monolith does no longer have to be included explicitly in the computational model.
Consider, for example, a CFD model of a reactor with gas flow past a catalyst mono-
lith with regular, parallel pores, such as depicted in Figure 2.69. It would be very
challenging in terms of CPU time and memory requirements to include the pore
space into the computational domain and define a grid inside the pores which
would have to be matched with the grid of the flow channel. Rather than that, the
techniques discussed above allow one to define the interface between the catalyst
monolith and the channel as the boundary of the computational domain, similar
to a smooth, unstructured surface acting as catalyst. The flow, heat and mass trans-
fer problem would then only be solved in a computational domain defined by the
flow channel. In such a model, the diffusional fluxes of chemical species at the
interface to the monolith would be related to the concentrations via the relations
for various reaction orders derived from the one-dimensional pore transport model,
Eq. (153). However, when employing such an approach care has to be taken that all
conditions allowing neglect of the catalyst domain in an explicit model are fulfilled.
As an example, the temperature boundary condition at the interface to the mono-
lith may a priori not be clear and heat conduction effects inside the porous me-
dium might have to be taken into account.
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