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Abstract 

This paper analyses the dependence of the structures of foamed 
Al-Si alloy on the process parameters. It takes the aid of back 
propagation (BP) neural network theory to build the nonlinear 
mapping relations between the crucial process variables and the 
quality of pores. Then by the integrating BP neural network and 
genetic algorithm (GA), the optimized process parameters for 
high porosity of foamed Al-Si alloy can be searched. The 
comparisons between experiment results and neural network 
simulation results show that GA-based on BP method can predict 
the porosity with higher prediction accuracy. The effects of 
viscosity on the foam ability are also important. The mechanism 
of thickening agent has been analyzed theoretically. 

Introduction 

Foamed metal is a porous material in which gas bubbles are 
separated by thin metal films. It is always regarded as a new 
functional material which is widespread in automotive, railway, 
aerospace and the other applications. Foamed aluminum can be 
produced by two methods, powder metallurgy and melt foaming 
[1-3]. Especially, the melting foaming method, which is relatively 
useful for commercial production because of its low cost 
compared with other methods, has been developed for the 
preparation of aluminum foam. This material generally has a 
closed cell structure which has considerable effect on properties, 
such as sound absorption, heat transfer and impact absorption [4]. 
In general, the melt foam is an unstable system and the process of 
melt foaming is difficult to control due to its multi-variability and 
invisibility [5]. 

Successful implementation of computer aided production systems 
is very important to modern manufacturing field to produce higher 
quality products at less cost [6]. Recently, neural network (NN) 
expected to be able to provide an effective tool because of its 
advantages, which describe nonlinear mapping relations. With the 
characteristics of strong self-learning, self-organization, robust 
error toleration and accurate nonlinear relation approximation, 
artificial neural network can be applied to nonlinear process 
modeling based on sufficient training. Back-propagation (BP) 
training algorithm is probably the frequently used one in practical 
application. Genetic algorithm has parallel search strategy and 
global optimization characteristics, which makes the trained 
neural network being higher classification accuracy and faster 
convergence speed. So it is necessary to combine neural network 
and genetic algorithm. The nonlinear relationship between input 
and output presented by NN and the global optimal function of 
GA are abroad applied in the engineering and scientific research 
[7, 8]. So these methods supply an efficient path to solve the 
above problems. At present, it is common to study the 

optimization of process parameters for aluminum alloy foams by 
orthogonal experimental design, but the method combining neural 
network and genetic algorithm has never been researched. This 
study organized the above advantages to optimize the process 
parameters for Al-Si alloy foams. 

Experimental procedure 

Our foaming process consisted of the following steps: 2kg of a 
Al-7wt%Si alloy melted by mixing Si with high-purity and 
electrolytic aluminums was melted at 650°C in an graphite 
crucible in a resistance furnace under atmospheric pressure. For 
modifying the melt to increase the viscosity, aluminum 
powder(~37 urn diameter) at 3-6.5 wt.% of the melt was added to 
the melt and stirred at a constant speed of 800rpm for 7min to 
make the melt viscous. When the temperature of the melt 
decreased to 610-635°Q 1 to 2.5 wt.% titanium hydride powder 
(TiH2) as a foaming agent (heated in 300°C for two hours) was 
introduced into the melt at a stirring speed of 1500 rpm. After 
stirring, the melt remained in the furnace for 5 min to allow the 
titanium hydride to decompose to form hydrogen gas. The 
crucible was then taken out of the furnace and directionally 
solidified in water quenching. In order to gain uniform pore 
structure, water cooling in all directions were employed during the 
solidification. Differential thermal analysis (DTA) has been used 
to study the temperature of the hydrogen release of titanium 
hydride powders before and after heated. The hydrogen release 
was monitored in the temperature range of 298-1273K in argon 
atmosphere at a heating rate of 10K/min. The morphology of the 
pore structure was characterized by both microscopes and SEM-
EDS. 
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Figure 1. TGA curve of TiH2 
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Results and Discussion 

Figure 1 shows the comparison of the DTA curve. There are two 
exothermic peaks between 600°C and 700°Gdue to the thermal 
decomposition reaction of the titanium hydride. It indicates that 
the titanium hydride starts to decompose hydrogen at 600°C and 
decomposes rapidly in heating at 646°C After TiH2 decomposed 
completely, the new titanium which have strong chemical activity 
at higher temperature will have a chemical reaction with oxygen 
and nitrogen. Then there will be another peak at 700°C This result 
indicates that the holding temperatures have to be maintained in 
the temperature range from 610°C to 650°C in order to match the 
melting point of the Al-Si alloy. 

Uniform Design 

Uniform design method through one set of selective chart to 
design the experiment scheme. The chart is a short of normalized 
form, at the same time is the base tool for uniform design. It can 
be expressed by Un(mk). U is the code name of chart, n is row 
number that means experiment times, m is the number of different 
codes in every column that means factor levels, k is column 
number that means the number of specified factors [9]. All the 
parameters in present work are defined as following. In order to 
optimize the process parameters, addition of thickening agent, 
foaming temperature, and addition of foaming agent are 
considered as the essentially influencing factors. A mapping 
relationship between variables is set up by NN method. To satisfy 
the validity and high precision in the relationship, there must be 
enough multiple typical testing points to join NN study. Six levels 
are specified for every factor in the appropriate range referenced 
experiences. The purpose of optimizing process parameters is to 

Table I. Processing Parameters and Result for Foamed Aluminum Alloy of Different Pore 

Number 

1 
2 
3 
4 
5 

| 6 

Addition of 
thickening agent (%) 

3 
3.2 
3.6 
4.8 
5 

6.5 

Addition of foaming 
agent (%) 

1.2 
2 
1.6 
1 

1.5 
2.5 

Foaming 
temperature (°C) 

615 
625 
630 
610 
635 
620 

Porosity 
(%) 
74.5 
81.2 
72.2 
53.0 
68.1 
44.1 

Size of the pores 
(mm) | 
2.53 
3.22 
237 
1.18 
1.52 
0.81 | 

Figure 3. Macrograph of foam structure for different porosity and pore of foamed aluminum alloy (a) P=44.1%, S=0.81mm; (b) 
P=53.0%, S=1.18mm; (c) P=68.1%, S=1.52mm; (d) P=72.2%, S=2.37mm; (e) P=74.5%, S=2.52mm; (f) P=81.2%, S=3.22mm 

get higher porosity. By the above analysis results, U6(6 ) chart as 
Table I is made for uniform experiments. 

Experiment Results 

As carried out in the experiment, the porosity and size of the 
foamed alloy are also shown in Table I. It shows that the porosity 
and size of the foamed alloy change with addition of aluminum 
powder, addition of hydride powder, foaming temperature. At the 
same time, Figure 2 shows that the control of pore size and 
porosity influences each other. With the increases of porosity, the 
size is increasing. 
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Figure 2. The curve of the pore size with the increasing 
of porosity. 
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Figure 3 shows the macrostructure of the foamed alloy. According 
to the morphology of the pores, the foamed aluminum alloy with 
low porosity shows spherical or sphere-like holes, while high 
porosity (P>80%) shows polygonal holes. 

Simulation results and GA-BP model 

BPNN model forming. Factors (addition of thickening agent, 
addition of foaming agent and foaming temperature) that greater 
impact on the porosity is selected as input, and the porosity is 
selected as output. 

In all sorts of NN, the most used one is called BP neural network 
with error depropagation, which can be close to any nonlinear 
mapping relations and has stable and good generalization 
capability. The three-layer BP network topology involving one 
single target output is shown in Figure 4. The hidden layer is a 
tangent type. It has been proved theoretically that this sort of 
network can approach to any rational function. 

Input layer Hidden layer Output layer 

Figure 4. BP net structure 

The BP NN model is set up by editing M files with the help of 
Matlab. All experiments in Table I are taken as input samples and 
test samples. The NN is trained by changing nerve cell quantity of 
hidden layer and other factors. According to numerous trainings 
and the experience of several experiments, the factors are 
confirmed. When the number of nerve cell is 7, learning rate 0.3, 
momentum factor 0.95, target error IE-28, the error of test 
samples is minimal. 

Genetic Algorithm. GA is an optimum searching technique by 
means of crossover, mutation, and selection that mimicking 
natural evolution mechanism. Its essence is an efficient, parallel, 
global search method. It can automatically obtain and accumulate 
knowledge about the search space, and adaptive control process in 
order to achieve the optimal solution. 

Introducing Genetic Algorithm to Improve BP Neural Network. 
Although BP has the ability of accurately optimization, it is often 
plagued by the local minimum point, low convergence or 
oscillation effects. Thus the prediction accuracy may be affected. 
There are two problems still exist in the application of BP. One is 
the determination of the network topology, especially the neuron 
number in the hidden layer without the guidance of theoretical 
formula. The other is the problem of convergence accuracy, i.e. 
how to determine a reasonable number of hidden layer and hidden 
layer neurons to achieve both the required accuracy and short-
training time. 

The trouble of falling into local optimum can be resolved by 
adjusting the initial values, while the slow convergence and 
oscillation effects is caused by network training falling into local 

minimum. So the method of GA is usually used for the 
optimization of BP, which has a strong searching capability and 
high probability in finding the global optimum solution. Although 
these two techniques seem quite different in the number of 
involved individuals and the process scheme, they can do a 
synergistic combination to provide more power of problem 
solving than either alone [10-12]. Therefore, many researchers 
have attempted to combine the two algorithms together in order to 
achieve the complementary advantages [13, 14]. 

The principle of the GA-BP algorithm is as following: before the 
optimization, GA is used to optimize the number of connection 
weights, the best connection weight and threshold for BPNN from 
its searching space which contains all the available individuals. 
After that, a global optimum solution can be achieved. Then, the 
last generation of individuals is decoded and the corresponding 
BP network topology, initial connection weights, and thresholds 
can be achieved. With these values worked as the BP network 
topology and the initial value, samples can then be trained to 
obtain the final optimal results [15]. 

Simulation and experiment results. According to the principle of 
GA-BP algorithm, the corresponding computing process is 
programmed and run with MATLAB. The corresponding 
parameters are set as following: the initial population number 
N=30, the cross probability Pc=0.8, the mutation probability 
Pm=0.1, and the error e=0.001. When the error reaches the 
intended target, the training process of BP will stop. Figure 5 
shows the simulation results with GA-BP algorithm. 

85 

80 

75 

70 

1-
to 
§ 60 
CL 

55 

50 

45 

~ 
,-'• ' -: 

-
-

^ 
,.--"' \ 

\ 
\ 

GA-BP Model 

\ 

\ ' V. 
\ 

v. 
Y / 

\ / 
V 

Predicted data 
t- Actual data |-| 

i 
j 

•A / 
/ \ J 

\ 
1 

-: 

i 
1 2 3 4 5 6 

Sample 

Figure 5. The simulation results with GA-BP algorithm 

In the process of GA optimization, with the increase of the 
evolution of generation, the fitness and sum-square error is 
becoming convergent and finally achieves the best value, 
respectively. After about 100 generations of searching, the fitness 
and the sum-square error has been stabilized, respectively, as 
shown in Figure 6. The predicted results of GA-BP algorithm are 
shown in Table II. 

Table II. Testing data of GA-BP Model 

1 Data (%) 

Predicted data 

Actual data 

1 

75.95 

74.5 

2 

78.94 

81.2 

3 

78.54 

72.2 

4 

52.07 

53.0 

5 

68.1 

68.1 

6 1 

44.1 1 

44.1 | 
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According to the above simulation results of GA-BP algorithm, 
the optimum process parameters and higher porosity are searched 
as follows: the addition of thickening agent is 3%; the addition of 
foaming agent is 1.9%; foaming temperature is 630 °C ; the 
predicted porosity is 86.46%. Based on the optimized process 
parameters, the actual predicted porosity is 83.87%. As shown in 
Figure 7, its size is 3.37mm and the biggest among the samples. 
The error of porosity between the prediction and actual result is 
3.1%. It proves the validity and availability of the algorithm. 

Thickening mechanism of aluminum powders 
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Figure 6. The curve of sum-square error and fitness of GA-BP 

Figure 7. The morphology of the foamed alloy prepared in 
accordance with the optimum process parameters: 
P=83.87%, S=3.37mm 

Figure 8. The metallograph of the Al-Si melt before and 
after adding aluminum powder 

The uniformity of the pore structure is an important indicator of 
aluminum foam structure. To obtain uniform pore structure, it is 
necessary to make thickening treatment during foaming process. 

With the addition of aluminum powder, the viscosity of the melt 
increases because of particles formation in the melt. Then the 
increase in viscosity increases the efficacy of the titanium hydride 
powder addition. Figure 8 shows the morphology of the oxides in 
the melt. This is because the addition of aluminum powder and 
subsequent agitation in the atmosphere facilitate oxidation of the 
aluminum melt and generate fine oxide particles. Due to the lower 
surface tension between oxides and liquid aluminum, the oxides 
are easily suspended in the melt, which strengthens internal 
friction among metal particles. Thus the viscosity of the melt is 
improved. 

Figure 9. SEM image and EDS pattern of oxide of Al-Si melt 
after the addition of aluminum powder 

To analyze visually the influence of aluminum powder on the 
viscosity of the melt, it is necessary to carry on a structural 
analysis to the Al-Si melt with stirring for 7min after adding 
aluminum powder. Fig.8 shows that there are many black particles 
precipitated in the grain boundaries. Select an area with black 
particles to investigate by SEM and EDS. 

As shown in Figure 9, there are a lot of O elements except Al in 
the particles. The weight percentage of O and Al is 33.83% and 
66.17%, and the atom percentage is 46.30% and 53.70%. 
According to this, the black substance is alumina. For further 
confirmation, Figure 10 indicates that the alumina can also be 
found in foamed aluminum alloy. 

524 



200 

150 

& 100 

A-A1 
B-Si 

0-A1,SIOt 

&A13Ti 

20 30 40 SO CO TO 80 9Û 

2«C) 
Figure 10. X-ray diffraction spectra of the foamed aluminum alloy 

Aluminum powders can also be used to stabilize bubbles that 
foaming agent decomposes. The stability of bubbles depends 
on the speed of drainage, the strength of liquid film and the size of 
gas permeability. After the aluminum powders are added, the 
small solid particles suspended in the melt adhere to the surface of 
air bubbles, which blocks drainage, the diffusion of gas and 
accumulation and growth of bubbles. Then the stability of the 
bubble is improved. 

Conclusion 

A three layers BP neural network is set up and trained with the 
experiment results. The test results show that the nonlinear 
relations between the foaming parameters and the porosity can be 
described by the BP neural network. 

Using the G A-BP algorithm, the foaming process parameters were 
optimized with higher porosity. With the optimal parameters, the 
porosity of foamed aluminum alloy is 86.46% in GA-BP model 
and 83.87% in experiment result. The two results are well meet 
with each other. So the GA-BP algorithm is stable and available. 

The use of aluminum powder as thickening agent can not only 
significantly increase the viscosity of liquid aluminum, but also 
stabilize the foamed bubbles generated from the decomposition of 
titanium hydride. 
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