Experimental Test for Third Secondary form 2017/2018

Subject: Dynamics

Answer the following questions:-

(a) 3	(b) e	(c) e ²	(d)3e ²	*0	0
			9		
/ = 3t ² -2t, tl	hen the distance	e covered within	n the time inter	val [0,2]	length ur
	hen the distance	e covered within	n the time inter (d) 10	val [0,2]	length ur
		Man.		val [0,2]	length ur
		Man.		val [0,2]	length ur
(a) 1		(c) 4	(d) 10		
(a) 1	(b) 2	(c) 4	(d) 10		
(a) 1	(b) 2	(c) 4	(d) 10		
(a) 1	(b) 2	(c) 4	(d) 10		
(a) 1	(b) 2	(c) 4	(d) 10		
(a) 1	(b) 2	(c) 4	(d) 10		

f +ba shanga of +b			
i the change of the	e momentum in the i	nterval 3≤t≤5 equa	ls 32 kg.m/sec
			(20)
	2 m equals		
(a)16 erg	(b) 16 Joule	(c) 32 erg	(d) 32 Joule
		(c) 32 erg	(d) 32 Joule
		(c) 32 erg	(d) 32 Joule
		(c) 32 erg	(d) 32 Joule
		(c) 32 erg	(d) 32 Joule
		(c) 32 erg	(d) 32 Joule
		(c) 32 erg	(d) 32 Joule
		(c) 32 erg	(d) 32 Joule
		(c) 32 erg	(d) 32 Joule
		(c) 32 erg	(d) 32 Joule
		(c) 32 erg	(d) 32 Joule
		(c) 32 erg	(d) 32 Joule
		(c) 32 erg	(d) 32 Joule
		(c) 32 erg	(d) 32 Joule
		(c) 32 erg	(d) 32 Joule
		(c) 32 erg	(d) 32 Joule

'5) A narticle m	oves under the	action of a constant	force $ec{F}$ newton on a body and its	
			e by the relation $\vec{S} = (3t^2 + t)\hat{\imath} - 4t\hat{\jmath}$	
Find $ec{F}$ if the po	wer of the force	$eec{F}$ equals 75 erg/ s	ec at t = 4 sec and the power of the force F , F is measured in dyne)	
			(A) 1 = 1	
		150		
	nitude 2 second		$\hat{i} - \hat{j} - 7\hat{k}$ act on a particle for a time de of the impulse of the forces (d) 10^6	
(4) 5	(8) 10	(6) 23	(4) 10	
		34. (1)		
	À			
	(3)			

passing over smooth	60 gm is placed on a rough horizontal table, then it is connected by a s pulley fixed at the edge of the table, the other end of the string is tie	_
a body of mass 38 gr	n suspended vertically. If the system moved from rest a distance of 70	cm
in one second, calcu	ate the coefficient of friction.	
$\vec{F}_1 = a \hat{\imath} - 3 \hat{\jmath} + 4$	a straight line with a uniform velocity under the action of two forces $\hat{k}, \vec{F}_2 = 6 \hat{i} + b \hat{j} - c \hat{k}$, then $a + b + c = \cdots$	
_	and the second s	
_	$\hat{k}, \hat{F}_2 = 6 \hat{i} + b \hat{j} - c \hat{k}, then a + b + c = \cdots$	
_	$\hat{k}, \hat{F}_2 = 6 \hat{i} + b \hat{j} - c \hat{k}, then a + b + c = \cdots$	
_	$\hat{k}, \hat{F}_2 = 6 \hat{i} + b \hat{j} - c \hat{k}, then a + b + c = \cdots$	
_	$\hat{k}, \hat{F}_2 = 6 \hat{i} + b \hat{j} - c \hat{k}, then a + b + c = \cdots$	
_	$\hat{k}, \hat{F}_2 = 6 \hat{i} + b \hat{j} - c \hat{k}, then a + b + c = \cdots$	
_	$\hat{k}, \hat{F}_2 = 6 \hat{i} + b \hat{j} - c \hat{k}, then a + b + c = \cdots$	
_	$\hat{k}, \hat{F}_2 = 6 \hat{i} + b \hat{j} - c \hat{k}, then a + b + c = \cdots$	
_	$\hat{k}, \hat{F}_2 = 6 \hat{i} + b \hat{j} - c \hat{k}, then a + b + c = \cdots$	
_	$\hat{k}, \hat{F}_2 = 6 \hat{i} + b \hat{j} - c \hat{k}, then a + b + c = \cdots$	
_	$\hat{k}, \hat{F}_2 = 6 \hat{i} + b \hat{j} - c \hat{k}, then a + b + c = \cdots$	
_	$\hat{k}, \hat{F}_2 = 6 \hat{i} + b \hat{j} - c \hat{k}, then a + b + c = \cdots$	
_	$\hat{k}, \hat{F}_2 = 6 \hat{i} + b \hat{j} - c \hat{k}, then a + b + c = \cdots$	
_	$\hat{k}, \hat{F}_2 = 6 \hat{i} + b \hat{j} - c \hat{k}, then a + b + c = \cdots$	
_	$\hat{k}, \hat{F}_2 = 6 \hat{i} + b \hat{j} - c \hat{k}, then a + b + c = \cdots$	

a) 2 cm/sec	(b) 2 m/sec	(c) 5 m/sec	(d) 9 m/sec
when the lift is at	ed in a spring balance for rest. The balance reading the magnitude and	ds 8 kg.wt when the le	eft moves vertically
hen the lift is at	rest. The balance rea	ds 8 kg.wt when the le	eft moves vertically
hen the lift is at	rest. The balance rea	ds 8 kg.wt when the le	eft moves vertically
when the lift is at	rest. The balance rea	ds 8 kg.wt when the le	eft moves vertically leration of the lift
hen the lift is at	rest. The balance reading the magnitude and	ds 8 kg.wt when the le	eft moves vertically leration of the lift
hen the lift is at	rest. The balance reading the magnitude and	ds 8 kg.wt when the le	eft moves vertically leration of the lift
hen the lift is at	rest. The balance reading the magnitude and	ds 8 kg.wt when the le	eft moves vertically leration of the lift
hen the lift is at acceleration. Fi	rest. The balance reading the magnitude and	ds 8 kg.wt when the le	eft moves vertically leration of the lift
hen the lift is at acceleration. Fi	rest. The balance reading the magnitude and	ds 8 kg.wt when the le	eft moves vertically leration of the lift
hen the lift is at acceleration. Fi	rest. The balance reading the magnitude and	ds 8 kg.wt when the le	eft moves vertically leration of the lift
hen the lift is at	rest. The balance reading the magnitude and	ds 8 kg.wt when the le	eft moves vertically leration of the lift
hen the lift is at acceleration. Fi	rest. The balance reading the magnitude and	ds 8 kg.wt when the le	eft moves vertically leration of the lift
hen the lift is at acceleration. Fi	rest. The balance reading the magnitude and	ds 8 kg.wt when the le	eft moves vertical leration of the lif
hen the lift is at a cceleration. Fi	rest. The balance reading the magnitude and	ds 8 kg.wt when the le	eft moves vertically leration of the lift

(9) A force F = (3t+ 1) newton acts upon a body at rest of mass 4 kg starting its motion from

		c) -1	d) 2	
inclined ane. Find	plane, and i I the maximu	ts maximum ve ım velocity whi	elocity equals 108 k ch the car moves o	y equals 54 km/ sec when it ascend m/ sec when it descends the same on a horizontal plane knowing that
inclined ane. Find	plane, and i I the maximu	ts maximum ve ım velocity whi	elocity equals 108 k	m/ sec when it descends the same on a horizontal plane knowing that
inclined ane. Find	plane, and i I the maximu	ts maximum ve ım velocity whi	elocity equals 108 k ch the car moves o	m/ sec when it descends the same on a horizontal plane knowing that
inclined ane. Find	plane, and i I the maximu	ts maximum ve ım velocity whi	elocity equals 108 k ch the car moves o	m/ sec when it descends the same on a horizontal plane knowing that
inclined ane. Find	plane, and i I the maximu	ts maximum ve ım velocity whi	elocity equals 108 k ch the car moves o	m/ sec when it descends the same on a horizontal plane knowing that
inclined ane. Find	plane, and i I the maximu	ts maximum ve ım velocity whi	elocity equals 108 k ch the car moves o	m/ sec when it descends the same on a horizontal plane knowing that
inclined ane. Find	plane, and i I the maximu	ts maximum ve ım velocity whi	elocity equals 108 k ch the car moves o	m/ sec when it descends the same on a horizontal plane knowing that
inclined ane. Find	plane, and i I the maximu	ts maximum ve ım velocity whi	elocity equals 108 k ch the car moves o	m/ sec when it descends the same on a horizontal plane knowing that
inclined ane. Find	plane, and i I the maximu	ts maximum ve ım velocity whi	elocity equals 108 k ch the car moves o	m/ sec when it descends the same on a horizontal plane knowing that
inclined ane. Find	plane, and i I the maximu	ts maximum ve ım velocity whi	elocity equals 108 k ch the car moves o	m/ sec when it descends the same n a horizontal plane knowing that
inclined ane. Find	plane, and i I the maximu	ts maximum ve ım velocity whi	elocity equals 108 k ch the car moves o	m/ sec when it descends the same n a horizontal plane knowing that
inclined ane. Find	plane, and i I the maximu	ts maximum ve ım velocity whi	elocity equals 108 k ch the car moves o	m/ sec when it descends the same on a horizontal plane knowing that
inclined ane. Find	plane, and i I the maximu	ts maximum ve ım velocity whi	elocity equals 108 k ch the car moves o	m/ sec when it descends the same n a horizontal plane knowing that

(11) A body of unity mass moves under the action of a force

(13) A ball of mass 200 gm. moves with velocity 1 m/sec collides with a ball of mass 300 gm at rest. If both of them move together as one body after collision.
Answer one of the following parts
a) Find the common velocity for both balls directly after collision and the kinetic energy lost by collision.
b) Find the distance covered by the body formed from the two balls until it comes to rest if it faces a resistance 200 gm.wt

.....

a)7	b) 14	c) 49	d) 98	
/	.,	5 / 15	,	
•••••				
velocity	. If the resist	ance is equiva	lent to 45 kg.wt who	sistance proportional to the square of its en its velocity 30 km/h . Calculate the ne equals 400 horses.
		<u> </u>		

(14) A body of mass 2 kg is projected vertically upwards with velocity 7 m/sec , then the

a)36	b) 360	c) 3600	d) 36000	10
			30	
		_	The second second	
nooth sertical .	small pulley .Tl If the system	he system is kep	t in equilibrium when then the the magnitude of its	
mooth sertical .	small pulley .Tl If the system i	he system is kep	t in equilibrium when then the the magnitude of its	ne two parts of the string are
mooth sertical .	small pulley .Tl If the system i	he system is kep	t in equilibrium when then the the magnitude of its	ends of a string passing over ne two parts of the string are s acceleration =m/sec ²
mooth sertical .	small pulley .Tl If the system i	he system is kep	t in equilibrium when then the the magnitude of its	ne two parts of the string are
mooth sertical .	small pulley .Tl If the system i	he system is kep	t in equilibrium when then the the magnitude of its	ne two parts of the string are
mooth sertical .	small pulley .Tl If the system i	he system is kep	t in equilibrium when then the the magnitude of its	ne two parts of the string are
mooth :	small pulley .Tl If the system i	he system is kep	t in equilibrium when then the the magnitude of its	ne two parts of the string are

.....

a) A body is placed on the top of a smooth inclined plane 40 m length and its height is 10 m.
Find the velocity of the body at the base of the plane. If the plane is a rough ,then the
resistance equals $\frac{1}{5}$ of its weight. Find the velocity of the body at the base of the plane (using
the principle work done and energy)
b) A body of mass 1 kg moves with a constant velocity 12m/sec, If the resistance force acts
b) A body of mass 1 kg moves with a constant velocity 12m/3cc in the resistance force acts
on it in opposite direction of its motion equals $6 x^2$ where x is measured in meter. Find the
kinetic energy at $x = 2$.
Colombia

(18) Answer one of the following parts

