
1335

C A S E 8 4

Evaluation of Capability and Error in Programming

Abstract: In assuring software quality, there are few evaluation methods with
established grounds. Previously, we have been using a trial-and-error process.
One of the reasons is that unlike the development of hardware that machines
produce, that of software involves many human beings who are regarded to
have a relatively large number of uncertain factors. Therefore, the Sensuous
Value Measurement Committee was founded in the Sensory Test Study Group
of the Japanese Union of Scientists and Engineers, which has been dealing
with the application of quality engineering to the foregoing issues. This re-
search, as part of the achievement, focuses on applying quality engineering
to a production line, including human beings with many uncertain factors.

1. Introduction

Because of diversity in production lines of software,
it is quite difficult to perform all evaluations at the
same time. Figure 1 summarizes the flow of a soft-
ware production line. We focused on software pro-
duction that can be relatively easily evaluated.
Figure 2 shows the details of software production.
By application of the standard SN ratio, we can ob-
tain a good result [4]. On the basis of the experi-
ment, delving more deeply into this issue, we
attempted to evaluate the relationship between ca-
pability in programming (coding) and errors.

2. SN Ratio for Error Occurrence in
Software Production

We created software from specifications. That is, cor-
rectness of software in a coding process is our focus.
First, we handed specifications and a flowchart to a
testee and asked him or her to write a program.
When the testee had completed a program that was
satisfactory to him or her (or whose framework is
completed), he or she saved the program (data 1).
Next, compiling this with a compiler for the first

time, the testee debugged it by himself or herself.
After this program was checked by an examiner, a
program with almost no bugs (data 2) was obtained
as a final output. Then, by comparing data 1 and 2,
we recognized a difference of code between them
as an error:

Line number in program: 1 2 3 ��� N

Representation of correct data: y1 y2 y3 ��� yn

y � 1 for a correct line and 0 for an incorrect line.

The analysis procedure (calculation of the SN ra-
tio) is as follows [2]. We compute the fraction of
the number of correct codes in data 1 to that of
lines in data 2, n:

y � y � ��� � y1 2 np � (1)
n

Because y takes up only 0 and 1, the total variation
is

2 2 2S � y � y � ��� � y � np (2)T 1 2 n

According to the variation in equation (1), the ef-
fect by the signal factor results in

Taguchi’s Quality Engineering Handbook. Genichi Taguchi, Subir Chowdhury and Yuin Wu
Copyright © 2005 Genichi Taguchi, Subir Chowdhury, Yuin Wu.

1336 Case 84

User’s
Demand

Software
Company’s

Design Target

Software
Company’s

Design Specs

Software
Production

Process

Software
Production

Product
Shipment

[Product Planning] [Product Design] [Process Planning] [Inspection] [Production Engineering]

Evaluation Method
of Target

Evaluation Scale of
Specs

Evaluation Scale of
Process

Evaluation Scale of
Product

Inspection Method

Figure 1
Work flow of software production

Specs Coding Debugging Program

This process is evaluated in this study. We could evaluate this with a standard SN ratio.

Programming

Figure 2
Details of software production

2p
S �p total of squares of coefficients

2[(y � y � ��� � y /n]1 2 n� 2 2 2(1/n) � (1/n) � ��� � (1/n)

2(y � y � ��� � y)1 2 n 2� � np � S (3)mn

Then the error variation
2S � S � S � np � np � np (1 � p) (4)e T �

An SN ratio for 0/1 data is expressed by a ratio of
signal factor variation to error variation. To obtain
additivity of measurement in the analysis, we ex-
pressed the SN ratio as a decibel value:

2S npp� � 10 log � 10 log
S np(1 � p)e

p
� 10 log

1 � p

1
� �10 log � 1 dB (5)� �p

3. Evaluation Method of Type-by-Type
Error with SN Ratio

As a next step, we devised a method of evaluating
errors of various types [1]. First, all errors were clas-
sified into four categories (Table 1). Mistake is an
error that can be corrected by a testee if others ad-
vise him or her. Unknown is an error caused by a
testee’s ignorance of coding due to insufficient ex-
perience in programming or the C language. That
is, in this case, even if others give advice, the testee
cannot correct the error.

We allocated these error types to an L8 orthog-
onal array (Table 2) We defined as level 1 a case of
using an error type, and no use as level 2, and at
the same time, evaluated an error’s significance.
The right side of Table 2 shows the number of
errors.

As below, we show an example of the calculation
for row 2 of the L8 orthogonal array. We set each
number of errors for A�, B�, C�, and D� to 2, 15, 3,
and 7, respectively, and the number of lines to 86.
Since we use level 1 for the analysis, the only nec-

Evaluation of Capability and Error in Programming 1337

Table 1
Error types and levels

Factor

Level

1 2

Logical error
A�: Mistake Use No use
B�: Unknown Use No use

Syntax error
C�: Mistake Use No use
D�: Unknown Use No use

Table 2
Error types and number of errors assigned to L8

No. A� B� C� D� e e e A� B� C� D� Total

1 1 1 1 1 1 1 1 2 15 3 7 27

2 1 1 1 2 2 2 2 2 15 3 20

3 1 2 2 1 1 2 2 2 7 9

4 1 2 2 2 2 1 1 2 2

5 2 1 2 1 2 1 2 15 7 22

6 2 1 2 2 1 2 1 15 15

7 2 2 1 1 2 2 1 3 7 10

8 2 2 1 2 1 1 2 3 3

essary data are A�, B�, and C; D� is not used for the
analysis of row 2 because its number of levels is two.

The sum of errors for experiment 1 in the L8

orthogonal array is

A� � B � � C � � 2 � 15 � 3 � 20

Therefore, the number of lines where correct codes
are written is

(total number of lines � number of errors for D�)
� number of errors � 59

Then the proportion of correct codes, p, is com-
puted as

59
p � � 0.747 (6)

86 � 7

In this case, because we disregard D� itself, it should
be excluded from the total number of lines.

Total variation:

S � np � (79)(0.747) � 79.0 (7)T

Effect by a signal factor:

2 2S � np � (79)(0.747) � 32.91 (8)p

Error variation:

S � S � S � 79.0 � 32.91 � 46.09 (9)e T p

Thus,

S 1p
� � 10 log � �10 log � 1� �S pe

� 4.70 dB (10)

Using these results we can evaluate the capability of
software production for each type of error.

4. Capability Evaluation of
Software Production

With an L12 orthogonal array, we studied an evalu-
ation method of capability of software production.
As factors regarding an instructional method and
evaluation, 10 types of factors were selected (Table
3). The C language is used and the program consists
of about 100 steps. As testees, six engineering stu-
dents who have had 10 hours of training in the C
language were chosen. Next, we tested these testees
according to the levels allocated in the L12 orthog-
onal array.

1338 Case 84

Table 3
Factors and levels

Factor

Level

1 2

A: type of program Business Mathematical

B: instructional method Lecture Software

C: logical technique F.C. PAD

D: period before deadline (days) 3 2

E: coding guideline Yes No

F: ability in Japanese language High Normal

G: ability for office work High Normal

H: number of functions Small Large

I: intellectual ability High Normal

J: mathematical ability High Normal

Because we were dealing with six testees, dividing
the L12 orthogonal array into the upper half (1 to
6) and the lower half (7 to 12), we first performed
the upper-half experiment using the six testees.
Then we performed experiments on the lower half
conducted on the same testees. That is, each testee
needs to write two programs (business and mathe-
matical programs). In this case, although a learning
effect was considered to influence them, it hardly
has an effect because this level of programming had
been completed a few times prior to the training.

The following is an explanation of the factors
selected.

❏ A: type of program. Business and mathematical
programs were prepared for the experiment.

❏ B: instructional method. A testee may have been
trained in the C language by a teacher or
may have self-studied it using instructional
software.

❏ C: logical technique. A schematic of a program’s
flow was given along with specifications.

❏ D: deadline. A testee was required to hand in
a program within two or three days after the
specifications were given.

❏ E: coding guideline. This material states ways of
thinking in programming.

❏ F: ability in Japanese language. The ability to un-
derstand Japanese words and relevant con-
cepts and to utilize them effectively is judged.

❏ G: ability for office work. The ability to compre-
hend words, documents, or bills accurately
and in detail is judged.

❏ H: number of functions. As long as the difficulty
level of each program was not changed, there
are two types of specifications, minimal and
redundant, in which a testee writes a program.

❏ I: intellectual ability. The ability to understand
explanations, instructions, or principles is
judged.

❏ J: mathematical ability. The ability to solve math-
ematical problems is judged.

For human abilities (F, G, I, and J), we examined
the testees using the general job aptitude test issued
by the Labor Ministry. After checking each testee’s
ability, we classified them into high- and low-ability
groups.

5. Experimental Results

We computed interactions between the factors se-
lected and error types. More specifically, an L8 or-

Evaluation of Capability and Error in Programming 1339

Figure 3
Layout of direct-product experiment using an L12 orthogonal array to evaluate
the capability of software production and an L8 orthogonal array to evaluate
error types

Table 4
Number of errors obtained from experiment

L8

L12

1 2 3 4 5 6 7 8 9 10 11 12

A� 2 7 3 0 6 6 4 4 6 4 4 5

B� 15 51 7 75 50 13 40 12 160 47 2 35

C� 3 2 57 8 2 0 2 0 6 1 10 5

D� 7 12 0 3 2 0 15 4 12 12 2 0

Total
number
of lines

86 96 266 113 146 60 104 84 300 94 103 116

thogonal array (outer array for error types) was
allocated to each row in an L12 orthogonal array (in-
ner array for combinations of all factors), as shown
in Figure 3. Table 4 shows the data obtained from
the experiment, and Table 5 shows the result com-
puted through an analysis of variance with respect

to the SN ratio. Boldfaced entries in Table 5 indi-
cate a large factor effect.

Next we inquired into the main effect of the fac-
tor shown in Figure 4. The factor with the greatest
main effect is the number of functions (H). A small
number of functions leads to a small number of

1340 Case 84

Table 5
ANOVA with respect to SN ratio based on capability of software production and error typesa (dB)

Factor f S Factor f S Factor f S

A 1 22.9 A � A� 1 11.0 A � C� 1 12.8

B 1 41.8 B � A� 1 1.5 B � C� 1 0.0

C 1 178.5 C � A� 1 90.5 C � C� 1 109.5

D 1 31.1 D � A� 1 2.4 D � C� 1 70.3

E 1 77.2 E � A� 1 85.2 E � C� 1 79.7

F 1 106.8 F � A� 1 141.3 F � C� 1 218.4

G 1 17.5 G � A� 1 47.5 G � C 1 146.7

H 1 929.8 H � A� 1 123.1 H � C� 1 11.4

I 1 33.7 I � A� 1 50.1 I � C 1 21.4

J 1 22.9 J � A� 1 27.5 J � C� 1 79.2

A� 1 66.4 A � B� 1 29.6 A � D� 1 7.6

B� 1 2408.7 B � B� 1 44.4 B � D� 1 8.1

C� 1 6.5 C � B� 1 23.5 C � D� 1 0.1

D� 1 236.7 D � B� 1 1.5 D � D� 1 9.1

e

(e)

ST

41

86

95

938.4

(2466.8)

6980.9

E � B�

F � B�

G � B�

H � B�

I � B�

J � B�

1

1

1

1

1

1

48.1

21.1

147.1

77.0

0.6

39.3

E � D�

F � D�

G � D�

H � D�

I � D�

J � D�

1

1

1

1

1

1

0.1

0.9

9.7

14.7

32.2

17.8

aParentheses indicate pooled error.
Ve � 938.4 /41 � 22.9. (Ve) � (2466.8) / 86 � (28.7).

Evaluation of Capability and Error in Programming 1341

Figure 4
Response graphs of the SN ratio for capability of software
production

Figure 6
Interaction between SN ratios for capability of software
production and SN ratios for error type

Figure 5
Response graphs of the SN ratio for error type

errors and subsequently, to a high SN ratio. In ad-
dition, logical technique (C) and ability in the Jap-
anese language (F) have a large effect. Since factors
other than these have a small effect, good repro-
ducibility cannot be expected. On the other hand,
since we observed no significant effect for intellec-
tual ability, even in the experiment on error-finding
ability, this factor’s effect in programming was con-
sidered trivial.

In the response graphs for error types shown in
Figure 5, level 1 represents error used for analysis,
and level 2, when it was not used. Since the SN ratio
when not using error is high, all the errors in this
study should be included in an analysis. Unknown
error in logical error (B�) turned out to be partic-
ularly important.

Furthermore, according to the analysis of vari-
ance table in Figure 6, while some factors generate
significant interactions with A�, B�, and C �, interac-
tions with D� had only trivial interactions with other
factors, but D� per se was relatively large compared

with other error types. By combining large-
interaction errors into one error and making a dif-
ferent classification, we are able to categorize errors
into one with clear interactions and one without in-
teractions in the next experiment.

It was observed that an interaction occurs more
frequently in the factors regarding ability in the
Japanese language and ability for office work. Con-
sidering that a similar result was obtained in a
confirmatory experiment on error finding [3], we
supposed that the reason was a problem relating to
the ability test itself.

6. Conclusions

As a result of classifying capability of software pro-
duction by each error type and evaluating it with an
SN ratio for the number of errors, we concluded
that our new approach was highly likely to evaluate
the true capability of software production. We are
currently performing a confirmatory experiment on
its reliability.

Since students have been used as testees in this
study, we cannot necessarily say that our results
would hold true for actual programmers. Therefore,
we need to test this further in the future.

The second problem is that a commercial ability
test has been used to quantify each programmer’s
ability in our experiment. Whether this ability test
is itself reproducible is questionable. An alternative
method of ability evaluation needs to be developed.

On the other hand, while we have classified er-
rors into four groups, we should prepare a different
error classification method in accordance with an

1342 Case 84

experimental objective. For example, if we wish to
check only main effects, we need to classify the error
without the occurrence of interaction. On the con-
trary, if interactions between error types and each
factor are more focused, a more mechanical classi-
fication that tends to trigger the occurrence of in-
teractions is necessary.

References

1. Kei Takada, Muneo Takahashi, Narushi Yamanou-
chi, and Hiroshi Yano, 1997. The study of evaluation
of capability and errors in programming. Quality En-
gineering, Vol. 5, No. 6, pp. 38–44.

2. Genichi Taguchi and Seiso Konishi, 1988. Signal-to-
Noise Ratio for Quality Evaluation, Vol. 3 in Tokyo:
Quality Engineering Series. Japanese Standards Asso-
ciation, and ASI Press.

3. Norihiko Ishitani, Muneo Takahashi, Narushi Ya-
manouchi, and Hiroshi Yano, 1996. A study of eval-
uation of capability of programmers considering
time changes. Proceedings of the 26th Sensory Test Sym-
posium, Japanese Union of Scientists and Engineers.

4. Norihiko Ishitani, Muneo Takahashi, Kei Takada,
Narushi Yamanouchi, and Hiroshi Yano, 1996. A ba-
sic study on the evaluation of software error detect-
ing capability. Quality Engineering, Vol. 4, No. 3, pp.
45–53.

This case study is contributed by Kei Takada, Muneo
Takahashi, Narushi Yamanouchi, and Hiroshi Yano.

