CASE 72

Exhaust Sensor Output Characterization
Using the MTS

Abstract: The Mahalanobis—Taguchi system (MTS) evaluation described here
considers the change in exhaust sensor signal performance resulting from an
accelerated engine test environment. This study confirmed the feasibility and
improved discrimination of the multivariable MTS approach to detect and
quantify even small changes in signal output response. Future evaluations
will increase the sample size and number of variables considered to verify
the results. Implementation of this approach allows early detection of product
performance shifts (enabling shortened testing), detailed evaluation of prod-
uct design changes, and the potential to comprehend bias introduced by test

conditions.

1. Introduction

Delphi Automotive Systems manufactures exhaust
oxygen sensors for engine management feedback
control. The stoichiometric switching sensor is lo-
cated in the exhaust stream and reacts to rich and
lean exhaust conditions. The sensor output signal
(0 to 1 V) must maintain a consistent response
throughout its life to ensure robust operation and
allow tight engine calibrations that minimize tail-
pipe emissions.

Test Engineering at Delphi performs a variety of
accelerated test schedules to expose the sensor re-
alistically to representative vehicle conditions. Sen-
sor performance measurements are conducted to
monitor the sensor output characteristics through-
out its life. Characterizing the sensor performance
is often accomplished by recording and analyzing
the sensor output voltage under a range of con-
trolled exhaust conditions.

As emission control standards become more
stringent and sensor technology improves to meet
these demands, the testing community needs to im-
prove its techniques to describe product perform-
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ance accurately. The multivariable MTS evaluation
presented here considers change in the stoichio-
metric exhaust oxygen sensor signal performance
resulting from an accelerated test environment.

2. Sensor Aging Responses

The exhaust oxygen sensor is expected to perform
in a high-temperature environment with exposures
to water, road salt and dirt, engine vibration, and
exhaust-borne contaminants with minimal change
in performance from the manufacturing line to the
end of vehicle life, which can exceed 150,000 miles.
However, decreasing development cycles do not per-
mit the accumulation of extensive vehicle mileage,
so accelerated durability cycles have been developed
in the test laboratory. These test schedules simulate
the thermal, chemical, environmental, and mechan-
ical demands that would be experienced on a
vehicle.

A new sensor and an aged sensor will respond
differently to these exposures based on product
design combinations that include the electrodes,
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coatings, and package design selections. Test Engi-
neering evaluates these design combinations by ex-
posing the product to various accelerated durability
tests and reports the sensor response. Figure 1
shows different sensor output responses after ex-
posure to a few of these durability tests.

3. Sensor Performance Testing

Various methods exist to evaluate sensor perform-
ance, including electrical checks, flow bench tests
using single or blended gases, and engine dyna-
mometers. Engine dynamometers create a realistic
exhaust gas stream as typical of a vehicle and with

proper engine control can create a wide variety of

stable engine running conditions.

One of the engine dynamometer performance
tests is an open-loop perturbation test where the test
sensor reacts to alternating rich and lean air/fuel
mixtures about stoichiometry. These air/fuel ratio
perturbations can be conducted at different fre-
quencies and amplitudes and under different ex-
haust gas temperatures. From the simple output
waveform, the measured signal is analyzed to derive
more than 100 characteristics. The most descriptive
characteristics were chosen for this preliminary eval-
uation. Figure 2 is a schematic of the system consid-
ered. The data used to support this analysis were
available from previous traditional studies.
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4. Experiment

Traditional methods of sensor performance analyses
consider key characteristics of interest to customers
and ensure that product specifications are met.
Product development teams, however, want to un-
derstand not just time to failure but also the initia-
tion and rate of signal degradation. Sensor output
characteristics must indicate this response change
over time.

The goals of this evaluation were to determine
whether discrimination among aged test samples
could be achieved, whether the analysis could com-
prehend both product and test setup variations, and
whether it would provide a tool capable of detecting
early sensor signal change. The MTS method used
here generates a numerical comparison of a refer-
ence group to an alternative group to detect levels
of abnormality. The method also identifies the key
factors associated with these differences.

Definition of Groups

This evaluation was based on sensors with differing
levels of aging. Twenty-six oxygen sensors were cho-
sen as the reference (normal) group. These sensors
had no aging and were of the same product design
with similar fresh performance. These sensors were
characterized in two groups with similar test
conditions.
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Sensor output for different sensors after various aging tests
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Next, the abnormal population was selected. A
total of nine sensors were selected based on end-of-
test postaging performance. The sensors had com-
pleted the full exposure of a highly accelerated
engine-aging environment. Six of the
showed excellent posttest performance with little to
no signal degradation (“aged”). Three of the ab-
normal sensors selected showed noticeable degra-
dation, although they were still switching and

SENSors

functional (“degraded”). Representative voltage sig-
nals are shown in Figure 3. The “fresh” belonged
to the reference group, and the “aged” and “de-
graded” were in the abnormal group.

Definition of Characteristics

As discussed, the open-loop engine-based perform-
ance test generates an exhaust stream to which the
test sensors respond. Traditional sensor output char-
acteristics that are often specified include maximum
voltage, minimum voltage, voltage amplitude, re-
sponse time in the lean-to-rich direction, and re-
sponse time in the rich-to-lean direction. These
parameters are denoted in Figure 4 and were in-
cluded in the evaluation. One test-related parame-
ter indicating the location of the test sensor (nest
position) was also included, as multiple sensors were
tested simultaneously. Considering the reference
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Sensor output voltage traces before and after aging

group sample size of 26, only nine additional char-
acteristics were selected, for a total of 15 (referred
to as factors A to O). The other characteristics, al-
though not defined here, comprise a best attempt
at variables that describe the waveform.

5. Mahalanobis Distance

The purpose of an MTS evaluation is to detect sig-
nal behavior outside the reference group. Existing

data for the 15 characteristics of interest were or-
ganized for the 26 reference (nonaged) sensors.
The data were normalized for this group (Table 1)
by considering the mean and standard deviation of
this population for each variable of interest:

z=—"— 1)

The correlation matrix was then calculated to
comprehend all 15 variables and their respective
correlations:
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Sensor output parameters during the engine perturbation test
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Table 3
Mahalanobis distances for the reference and abnormal groups
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Power of discrimination for the reference to abnormal groups
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Upon review of the correlation matrix (Table 2),
it is clear that a correlation exists between parame-
ters. For this reason, application of the multivariable
MTS approach makes sense because no single char-
acteristic can describe the output fully.

The inverse of the matrix was then calculated
[equation (3)] and finally, the Mahalanobis distance
[equation (4)], denoted by MD This completes the
calculations for the normal group. All reference
samples had MD distances of less than 2 (Table 3):

Ay g 7t gy,

R! = ?21 ’:Lzz a2k (3)
T

MD = lk IR'Z" (4)

where k is the number of characteristics, Z is the 1
X 15 normalized data vector, R™! is the 15 X 15
inverse correlation matrix, and Z7 is the transposed
vector (15 X 1).

The MD values for the abnormal samples were
then calculated. Again the data are normalized,

but now the mean and standard deviations of the
reference group were considered. The inverse cor-
relation matrix of the reference group solved
previously was also used. The resulting MD values
of the abnormal samples were calculated and are
summarized in Table 3. As evident in the MD values
of the abnormal samples, clear discrimination be-
tween fresh and degraded performance was made
possible (Figure 5). Additionally, complete discrim-
ination of the aged samples from the fresh samples
was seen. Although the MD value calculated is non-
directional and does not indicate “goodness” or
“badness,” it does indicate differences from normal.
A consistent signal (low MD over time) is one goal
for sensor output.

Importantly, this performance separation is not
apparent in the traditional one-variable-at-a-time ap-
proach. For this type of aging test, typical perform-
ance metrics that are recognized to change are V, ;|
and RL; .. As shown in Figure 6, this independent
variable consideration would merely allow detection
of the degraded sensors with no clear discrimina-
tion of the aged sensors.

6. Selection of Characteristics

Optimization with L, Orthogonal Array

To reduce data processing complexity, it is desirable
to consider fewer characteristics and eliminate those
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not contributing to product discrimination. An L4
orthogonal array was used for this purpose (Table
4).

All 15 characteristics were considered at two lev-
els. Level 1 used the variable to calculate the Ma-
halanobis distance, and level 2 did not use the
variable to calculate the MD. Reconsideration of
both the reference group and abnormal group MD
was made for each run. The experiment design and
results are shown in Table 4.

From these runs, SN ratios and mean responses
were calculated for the main effects of each variable.
As the goal was to improve discrimination, larger
MDs were preferred and the larger-the-better SN ra-
tio was used:

n = —10 log (l > %) (5)
n =1 )i

Response charts and tables are shown in Figure
7 and Table 5.

Variables C, F, I, and J are shown to have little
contribution to the SN ratio and could be consid-
ered for elimination. This would reduce the MD cal-
culation to 11 characteristics. All variables, however,
contributed positively to the mean.

Confirmation

A confirmation run with 11 variables (eliminating
the low-SN contributors) showed reduced discrimi-
nation. However, these variables all contribute sig-
nificantly to the mean (Figure 7) and therefore
cannot be eliminated. This conclusion is somewhat
indicated within the results of the L4 array (Table

4). Run 1, which considered all the variables, had
by far the largest calculated MD compared to any
other run, which considered only seven variables
each. Therefore, all of the 15 variables initially se-
lected should be used to maximize discrimination.

Discussion

Although the optimization evaluation may seem dis-
appointing, as no variables can be eliminated, it is
not an unlikely conclusion, as there are over 100
variables output in an effort to characterize the
waveform. This initial evaluation only considers 15
“best guess” candidates, and more than likely, other
important variables are still to be identified. The
MTS method does, however, confirm the value of
combining the influence of many variables to inter-
pret a change in response, as compared to consid-
ering one variable or even a few variables at a time.

The ranking of the “traditional” metrics, factors
D and H, used to detect signal degradation, are
ranked high, but not the highest in terms of con-
tribution (Table 5). The influence of factor N, the
nest position during test, is seen to have a low influ-
ence on variability and a low contribution to the
mean, as is desired.

7. Conclusions

The feasibility of use of the MTS multivariable ap-
proach has been demonstrated. The combination of
15 variables from the sensor output waveform al-
lowed much improved discrimination compared to
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the traditional one-variable-at-a-time approach. The
method also identified some alternative variables
that contributed more to discrimination than did
the traditional “favorites.”

MTS allows discrimination of even very subtle dif-
ferences due to aging, thereby allowing detailed
feedback on product performance. If continued
studies support these preliminary findings, the ex-
cellent discrimination will allow product optimiza-
tion based on significantly shorter tests. Full-length
test exposures could then be confined to the prod-
uct confirmation and validation stages. Robust
engineering evaluations for sensor product optimi-
zation are ongoing. By applying MTS to characterize
sensor performance, the MD can confirm improve-
ments in aging response over time (Figure 8).

Future Evaluations

Although this project proved excellent feasibility in
terms of its approach to discriminate performance,
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much remains to be done to extend the study and
consider other variables for better understanding
and implementation. The number of sensors in the
reference group limited this study. It would be de-
sirable to increase this sample size to allow con-
sideration of many more output characteristics.
Additionally, alternative test parameters, which may
influence sensor output response during the test,
should be considered. Future evaluations that con-
sider more test parameters should ideally compre-
hend any bias introduced by the test, thereby
identifying true product differences.

Implications of Study

Many ideas have evolved as a result of this study. The
first key finding is related to detecting small changes
in signal output through MTS. With this detection
method, shortened tests (to save time and money)
should suffice to understand aging trends and op-
timize designs. Further, rather than supplying our
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Figure 8
Used in conjunction with product optimization, MD can
confirm improvements in aging response over time

product engineers with more than 100 data varia-
bles related to a waveform, the MD distance could
help them make decisions during product devel-
opment evaluations.

This study used existing data with no new exper-
imental tests needed. The study points out the po-
tential of its application, as no new test procedures
are required, with the exception of additional data
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calculations, demonstrating the power of appropri-
ate data analysis.
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