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Application of the MTS to Thermal Ink Jet Image
Quality Inspection

Abstract: Efficient conversion of electrical and thermal energy into robust ink
drop generation (and subsequent delivery) to a wide variety of substrates
requires target directionality, drop velocity, drop volume, image darkness, and
so on, over a wide range of signal and noise space. One hundred percent
inspection is justified based on loss function estimates, considering inspection
cost, defective loss, and quality loss after shipment. The Mahalanobis–
Taguchi system (MTS) was applied to the final inspection of image quality
characteristics for a number of reasons: (1) to summarize multivariate results
with a continuous number expressing distance from the centroid of ‘‘good’’
ones; (2) to reduce measurement cost through identification and removal of
measurements with low discrimination power; (3) to balance misclassifica-
tion cost for both type I and type II errors; and (4) to develop a case study
from which practitioners and subject-matter experts in training could learn
the MTS.

1. Introduction

Classification of thermal ink jet printheads as either
acceptable (for shipment customers) or rejectable
(for scrap) is a decision with two possible errors.
Type I error occurs when a printhead is declared
conforming when it is okay. Type II error occurs
when a printhead is declared conforming when ac-
tually it is not. Type I error means that scrap costs
may be high or orders cannot be filled due to low
manufacturing process yield. Type II error means
that the quality loss after shipment may be high
when customers discover they cannot obtain prom-
ised print quality, even with printhead priming and
other driver countermeasures. Over time, type II er-
rors may be substantially more costly to Xerox than
type I errors. Consequently, engineers are forced to
consider a balance between shipping bad print-
heads and scrapping good ones.

A Mahalanobis space was constructed using mul-
tivariate image quality data from 144 good-print-

quality printheads. The data were used to create a
Mahalanobis space. Nonsequential serial numbers
were used from several months of production. In
addition, the Mahalanobis distance, D2, of 45 non-
conforming printheads were calculated using the
aforementioned Mahalanobis space. The feasibility
of the technique to better discriminate good from
bad printheads was demonstrated. In addition, from
these results, the contribution rate of each mea-
surement characteristic to the Mahalanobis distance
was calculated using L64 and analysis of variance
(ANOVA) methods. The minimum set of measure-
ment characteristics was then selected to reduce
measurement costs and to speed up the analysis
process. The accelerating pace of printhead fabri-
cation, pulled by customer demand, has put consid-
erable stress on the manufacturing system (which
worked quite well for lower quantities of print-
heads). Reduction of these inspection data to one
continuous Mahalanobis number and reducing
measures, which have very low discrimination
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Figure 1
Dot height-to-width ratio for magenta

power, will speed up the inspection and disposition
process.

2. Camera Inspection System

Assembled printheads were print-tested using 100%
inspection. During the test, power was applied to
the device, ink nozzles were primed, and a variety
of patterns of drops were ejected from the linear
array of nozzles. A standard Xerox paper was the
medium, which received the various patterns of
drops. A tricolor line scan camera captured the im-
ages of the print pattern automatically and sent the
image data to a machine vision processor. The vision
processor controlled the camera and used video
data to place templates and gather statistics on the
printed patterns. A host PC initiated inspection and
configuration processes, created reports, and pro-
vided a user interface for the operators.

Certain camera calibration steps were done be-
fore testing, including white balance (to compen-
sate for uneven light distribution over the image
plane and the spatial nonuniformity of the sensi-
tivity of the camera’s sensors). Other calibrations
included printed pattern measurement and
alignment (to center the image in the camera’s field
of view), focusing and camera pixel-size calibration,
focusing the light guides so that the maximum
amount of light was in the camera’s field of view,
and calibration of color dot size so that dots of dif-
ferent colors were considered to be of the same size.

Dot aspect ratio, the ratio of a dot’s height to its
width, was one of the many characteristics captured
by the camera system. It is shown in Figure 1 for
magenta ink. A maximum aspect ratio is allowed, to
control certain image quality problems.

A second characteristic captured by the camera
system was dot diameter. The diameter is an equiv-
alent diameter calculated for noncircular dots. For
each color, the mean and standard deviation of both
repeated dots and same jets were calculated. Upper

and lower tolerances were applied to the dot size.
Missing dot counts (or missing jets counts) were tab-
ulated. Dot misallocation (directionality) results
were summarized as both x and y error variances
from least squares fitting routines of multiple dot
patterns. If any single criteria limit is violated, the
printhead is scrapped. Inspection results are gen-
erally reported in terms of pass/fail percentages
considering decomposition by dot, by jet, and by
color for each printhead. All of this existing inspec-
tion process does not consider any correlation
among response characteristics in the decision
making.

Figure 2 shows a hypothetical plot of aspect ratio
versus dot diameter. With correlation, a printhead
is classified as abnormal; with no correlation, a
printhead is classified as normal. It is clear that a
point labeled as abnormal (because it is outside the
ellipse) would be considered normal if each char-
acteristic were considered in isolation. It is at �1.4
from the mean of the spot diameter and 0.7 from
the mean of the aspect ratio. Because of the corre-
lation between the characteristics measured, one
can say that this printhead has too large a spot di-
ameter for its aspect ratio, and therefore it should
be classified as abnormal.

3. Mahalanobis Distance

The quantity D 2 is called the Mahalanobis distance
from the measured featured vector x to the mean
vector mx, where Cov x is the covariance matrix x.
The future vector represents the vector-measured
characteristics for a given printhead in this study.
The question is: How far is a given printhead from
the database of good ones? If the distance is greater
than some threshold, it is classified as defective. If
the distance is less than some threshold, it is classi-
fied as no different from the population of good
ones. It can be shown that the surfaces on which D2

is constant are ellipsoids that are centered about
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Figure 2
Hypothetical plot of aspect ratio versus dot diameter

the mean mx. In the special case where the meas-
urements are correlated and the variances in all
directions are the same, these spheres and the Ma-
halanobis distance become equivalent to the Euclid-
ean distance.

The Mahalanobis distance, D 2, was calculated as:

2 �1 TD � (x � � )C (x � � ) (1)x x x

where x is an n-dimensional vector of measured
characteristics for a given printhead. The popula-
tion of good printheads was characterized by a
mean feature vector m � (m1, m2, ... , m144). C 1 is
the inverse of the variance–covariance matrix, �ij,
for the measured characteristics x, where

m1
Cov(x x ) � (x � m )(x � m ) (2)�i j i� i j ε jm 1

For i � j this becomes the usual equation for vari-
ance. D 2 is the generalized distance between the �th
product and the mean feature vector for the pop-
ulation of good printheads.

The covariance of two measures captures their
tendency to vary together (i.e., to co-vary). Where
the variance is the average of squared deviation of
a measure from its mean, the covariance is the av-
erage of the products of the deviations of measured
values from their means. To be more precise, con-
sider measure I and measure j. Let {x(1,I), x(2,I),
... , x(n,I } be a set of n examples of characteristic I,
and le{x(1,j), x(2,j), ... , x(n,j)} be a corresponding

set of n examples of characteristic j. [That is, x(k,I)
and x(k,j) are measures of the same pattern, pattern
k.] Similarly, let m(i) be the mean of feature I and
m( j) be the mean of feature j. Then the covariance
of features I and j is defined by c(i,j) � {[x(1,i) �
m(i)] [x(1,j) � m( j)] � ��� � [x(n,i) � m(i)] [x(n,j)
� m( j)]}/(n � 1).

The covariance has several important properties:

❏ If measure i and measure j tend to increase
together, then c(i,j) � 0

❏ If measure i tends to decrease when feature j
increases, then c(i, j) � 0.

❏ If features i and j are independent, then c(i, j)
� 0.

❏ �c(i,j)� � s(i)s( j), where s(i) is the standard
deviation of feature i.

❏ c(i,i) � s(i)2 � v(i).

Thus, the covariance C(i, j) is a number between
�s(i)s( j) and �s(i)s( j) that means dependence be-
tween measures i and j, with c(i, j) � 0 if there is no
dependence. All of the covariances c(i, j) can be col-
lected together into a covariance matrix as shown
below:

c(1,1) c(1,2) ��� c(1,d)

c(2,1) c(2,2) ��� c(2,d)

� � �

c(d,1) c(d,2) ��� c(d,d)
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This matrix provides us with a way to measure
distance that is invariant to linear transformations
of the data. The covariance among the responses is
a valuable additional piece of information charac-
terizing the se of good printheads. For this study,
the covariance matrix (among all of the responses
for the good printhead data) was calculated. The
inspection and rationalization of these results can
provide very important insights into the perform-
ance of the printheads. For example, the spot size
performance for the cyan ink is highly correlated
with the spot size performance for the magenta ink,
and moderately correlated with the spot size for the
cyan ink. None of these three measures is correlated
with the black ink spot size performance. This
should make sense to the technologist.

Mahalanobis distance calculations were per-
formed using SAS/I ML with custom macros. Fifty-
eight different image-quality summary measures
were considered, approximately 15 for each ink
color. All 144 good printhead data were standard-
ized according to

Yij � (Xij � mi)�i

This scaling creates a standardized distance of char-
acteristic X to mean, mx, relative to the standard de-
viation, �x. This scaling removes the effects of
different units for the various characteristics. All
measures were continuous data in this case, but dif-
ferent units for the various characteristics. All mea-
sures were continuous data in this case, although
other types of data could be considered. Scaling is
a particular example of a linear transformation.
This standardization is also useful since it reduces
the variance–covariance matrix to the better-known
correlation matrix R � �ij. It can be shown that the
Mahalanobis distance for the xth product is given
by

2 �1 TD � XR X (3)�

This is the form used to calculate D 2 by the software
code.

The use of the Mahalanobis metric removes sev-
eral of the limitations of the Euclidean metric for
calculating the distance between the printhead and
the population of good ones:

1. It accounts automatically for the scaling of the
coordinate axes.

2. It corrects for correlation between the differ-
ent measures.

3. It can provide curved as well as linear decision
boundaries.

4. Mahalanobis Distance Results

The Mahalanobis distance was calculated for each
good printhead using the inverse correlation ma-
trix, and values for D 2 ranged from 0.5 to 2.5. Sin-
gular matrix problems on inversion indicated very
high correlation between several of the measured
characteristics, and the elimination of one of them
was required.

The average D 2 value was 1.000 for the good
ones, as expected. (These distances are in units of
standard deviations from the centroid of the multi-
variate good printhead data.) From these results an
origin and unit amount were established. The in-
verse correlation matrix from the good ones, in
turn, was used to calculate the Mahalanobis distance
D 2 for each of the 44 bad printheads. It was ex-
pected that the D 2 values would be considerably
larger than D 2 values for the good printheads. As a
rule of thumb, a value below 4.0 for the bad ones
usually indicated a misclassification with type 1 er-
ror. These numbers ranged from 2.6 to 179.4.

The Mahalanobis distance identifies the range of
variation of the bad ones, which is much more in-
formative than a simple good or bad binary classi-
fication system. It is a simple matter to go back
through the individual printhead data to see why
the really bad ones have much higher D 2 values.
Knowing the level of badness enables continuous
improvement activities.

If the distribution of the many measured char-
acteristics is multivariate Gaussian, the D 2 follow a
chi-square distribution with k degrees of freedom.
Probabilities of membership in a defective classifi-
cation can be determined. Again, as a rule of
thumb, those printheads with D 2 values greater than
about 3.0 to 4.0 can be classified as not belonging
to the good group of printheads with fairly high
confidence.

The Mahalanobis–Taguchi system allows you to
distinguish normal and abnormal printhead con-
ditions as long as you have data for the normal
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condition. Only the normal condition produces a
uniform state, and infinite abnormal conditions ex-
ist. To collect data for all those abnormal conditions
produced the Mahalanobis space. For new data we
calculated the Mahalanobis distance, and by judging
whether it exceeds the normal range, we can distin-
guish between normal and abnormal printhead
conditions.

The traditional way is to discriminate which of
multiple preexisting categories the actual device be-
longs to. For printheads, where one has to decide
if it is good or not, a large volume of defective con-
dition data and normal condition data are mea-
sured beforehand, and a database is constructed
with both. For newly measured data (for which you
do not know whether it is a good one or bad one),
you calculate which group the data belongs to.

However, in reality, there are a multitude of
image-quality problems. So if information about var-
ious types of images is not obtained beforehand,
printheads cannot be distinguished. Because the
traditional discrimination method requires this in-
formation, it is not practical.

5. Results

A d � d correlation matrix of the 58 observed char-
acteristics is partially shown in Table 1. These cor-
relations make looking at individual measured
characteristics problematic for classifying print-
heads. When there is correlation between charac-
teristics, diagnosis cannot be made from single
characteristics. Table 2 shows the calculated D 2 val-
ues for the 145 good printheads. Table 3 shows the
Mahalanobis distance for the 44 bad printheads, us-
ing the inverse correlation matrix from the good
printheads.

Figure 3 shows the Mahalanobis distances D 2 for
both the good and bad printheads. A wide range of
D 2 values were observed for the nonconformant
printheads. Note that the good ones are quire uni-
form. This is usually the case. There are one or two
cases of printheads classified as bad but more likely
part of the good ones. The threshold value for D 2

was determined by economic considerations. Mis-
classification countermeasure costs are usually
considered.

6. Measurement System Cost Reduction

Among the 58 different measured characteristics in
this example, there were a number that were doing
most of the discrimination work. An L64 orthogonal
array was used to identify those characteristics. In
this case, the orthogonal array was used as a deci-
sion tool. One measured characteristic was assigned
to each column, using 58 of the 63 available col-
umns. L64 is a two-level design with 63 available de-
grees of freedom for assignment. A value of �1 in
any cell of the standard array layout indicated that
the measured characteristic was considered, while a
value of �1 in any given cell meant that the mea-
sured characteristic was not considered. In row 1,
for example, 27 of the 58 measures were considered
since there were 27 positive ones. Using just those
27 columns, the analysis was run to generate a Ma-
halanobis space with the good printheads, and
Mahalanobis distances D 2 for each of the 44 bad
printheads was calculated. From these 27 responses,
and 44 bad printheads, a single SN ratio (larger-the-
better characteristic) was calculated according to

1 1 1 1
� � �10 log � � ��� � (4)� �2 2 2m D D D1 2 m

where summation is from m � 1 to m � 44.
This same procedure was followed for the re-

maining L64 rows. A larger-the-better form was used,
since the intent was to amplify the discrimination
power by selecting a subset of measures. This in turn
would reduce cost and time to process inspection
data. The results are shown in Table 4 for each of
the L64 rows. The SN ratios ranged from �16.6 dB
to �4.7 dB. Row 64 of the L64 included use of each
of the 58 measures, and consequently had the high-
est positive SN ratio.

An ANOVA procedure was conducted on these
64 SN ratios to decompose the total variation into
constituent parts. Table 5 shows the large effects of
a handful of measures (e.g., measure C 2, C 8, C15, C17,
C18, C19, C29, C43, C57), and the small effects of many
of the others. This suggests that not all these mea-
sures are adding value to the decision to scrap or
ship printheads. Much of the time, the measure-
ments are adding little or nothing to the decision.
Reducing the number of measures substantially
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Table 1
Print quality inspection correlation matrix (partial for 58 variables)

1.00 �0.24 0.24 �0.25 0.12 �0.15 �0.03 �0.24 0.34 0.24 0.37 0.44 0.42
�0.20 �0.10 0.18 0.18 �0.29 0.30 �0.27 0.05 0.07 0.03 �0.08 0.29 0.38

0.25 �0.05 �0.15 0.21 0.45 �0.17 �0.05 �0.01 0.01 �0.00 0.02 0.27 0.24
0.7 0.25 0.04 �0.13 0.24 0.03 �0.19 0.07 �0.18 �0.03 0.04 �0.02 0.06

�0.04 0.20 0.16 0.06 �0.16 0.27

�0.24 1.00 0.08 0.03 0.19 0.13 0.25 �0.18 �0.42 0.18 0.12 �0.40 �0.32
0.03 �0.24 �0.15 �0.31 0.97 0.06 0.14 �0.26 0.16 �0.25 0.11 0.02 �0.41

�0.28 0.05 �0.24 �0.21 �0.11 0.94 0.01 0.06 0.02 0.06 0.01 �0.06 0.07
�0.35 �0.29 0.27 �0.28 �0.20 �0.29 0.83 �0.15 0.14 �0.19 0.23 �0.31 0.07

0.08 �0.37 �0.28 �0.02 �0.25 �0.22

0.24 0.08 1.00 �0.53 0.44 �0.21 �0.11 �0.35 �0.02 0.21 0.22 0.02 �0.01
0.16 �0.10 �0.06 �0.18 0.08 0.29 �0.35 �0.09 0.07 �0.15 �0.30 0.05 �0.03

�0.05 0.14 �0.16 �0.05 0.13 0.15 0.08 0.08 �0.22 0.08 �0.12 0.26 0.09
�0.07 �0.11 0.29 �0.15 �0.02 �0.17 0.04 0.21 �0.32 �0.18 0.28 �0.18 0.21

0.06 �0.18 �0.07 �0.03 �0.19 �0.02

�0.25 0.03 �0.53 1.00 �0.20 �0.02 �0.23 0.29 �0.10 �0.34 �0.33 �0.26 �0.16
0.04 0.24 �0.09 �0.03 0.05 �0.28 0.82 0.00 �0.09 �0.13 0.14 �0.11 �0.20

�0.09 �0.01 0.28 �0.10 �0.13 0.00 �0.15 0.29 0.37 �0.17 �0.04 �0.34 �0.05
0.11 �0.02 �0.10 0.24 �0.12 0.03 0.11 �0.28 0.72 0.04 �0.23 0.06 �0.27

�0.01 0.02 0.01 0.09 0.31 �0.12

0.12 0.19 0.44 �0.20 1.00 �0.26 �0.05 �0.08 �0.21 0.31 0.17 �0.13 0.02
�0.01 �0.06 �0.09 �0.14 0.15 0.28 �0.08 �0.05 �0.05 �0.15 �0.05 0.11 �0.22
�0.16 0.05 �0.07 �0.12 0.13 0.25 �0.06 0.13 0.03 �0.13 0.08 0.17 0.11
�0.08 �0.01 0.19 �0.06 �0.12 �0.10 0.22 �0.07 �0.06 �0.12 0.07 �0.08 0.12

0.05 �0.12 �0.10 0.07 �0.08 �0.12

�0.15 0.13 �0.21 �0.02 �0.26 1.00 0.48 0.20 �0.16 �0.07 0.01 �0.25 �0.23
�0.04 0.07 �0.02 �0.01 0.11 0.04 �0.08 0.03 0.67 0.38 0.19 0.10 �0.18
�0.09 0.06 0.11 �0.05 �0.25 0.10 0.04 �0.50 �0.02 0.53 0.14 0.01 0.03
�0.20 �0.08 �0.09 0.11 �0.07 0.10 0.01 0.12 �0.28 0.12 0.14 0.12 �0.05
�0.08 �0.10 �0.01 0.01 0.12 �0.08

�0.03 0.25 �0.11 �0.23 �0.05 0.48 1.00 0.11 �0.10 0.31 0.26 �0.11 �0.10
�0.12 �0.10 �0.01 �0.11 0.22 0.08 �0.11 �0.12 0.14 0.17 0.28 0.02 �0.11
�0.04 0.03 �0.06 �0.06 �0.09 0.23 0.00 �0.14 �0.14 0.10 0.25 0.07 0.03
�0.07 �0.04 0.05 �0.07 �0.04 �0.05 0.28 �0.18 �0.15 �0.04 �0.04 0.07 0.13
�0.01 0.02 0.02 0.03 �0.07 �0.05

reduces the time and cost of inspection and
dispositioning.

Using equation (4), a larger-the-better type of SN
ratio was calculated from each of the L64 combina-
tions, since we were looking for ways to amplify Ma-
halanobis distance by selecting just a few measures
out of the total of 58 (Tables 6 and 7).

7. Conclusions

The Mahalanobis–Taguchi system was used to ana-
lyze image-quality data collected during final
inspection of thermal ink jet printheads. A Mahal-
anobis space was constructed using results from a
variety of printheads classified as good by all criteria,
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Table 2
Print quality inspection Mahalanobis distances for 145 good printheads

0.9788539 0.7648473 0.8365425 1.1541308 1.5237813 0.6360767 1.9261662

0.6253195 1.8759381 0.6151459 0.8409623 2.3004483 0.8254882 0.9997392

0.8141697 1.0554864 1.3502383 1.4477616 1.575254 0.6408639 0.9636183

0.6377904 1.1194686 0.7462556 1.0316818 1.8069662 1.9241475 1.0319332

0.9899644 1.2182822 1.2182822 1.1331171 0.8370348 2.2826932 0.9207974

1.1467803 1.0811343 1.005008 0.9170464 1.2295005 0.5892113 0.4927686

0.8277777 0.9806735 0.9319074 0.9434869 0.8671445 0.8750086 0.8219719

1.2870564 0.6186984 1.5087154 1.0080104 1.343378 1.3982634 1.338509

0.5055908 0.9222672 1.2616672 2.0557088 0.4774843 0.7116405 0.4109008

0.9073186 1.0098421 0.610628 1.8020641 0.7664054 0.5304222 1.22455

0.6284057 1.407896 0.9961997 0.6662852 0.8032502 1.2031408 0.9997437

1.2198565 1.0614666 0.5896821 0.4663961 1.63111 0.7763159 1.0746786

0.744278 0.5047632 1.0467326 1.0163124 0.9345957 0.6408224 0.5880229

1.3450012 0.7046379 1.4418307 0.7789877 1.0798978 0.6764585 0.8649927

0.4805313 0.4805313 1.0123116 0.7207266 1.3288415 0.6955458 0.9248074

1.2550094 0.9059842 1.1129645 0.7871329 0.6158813 0.762891 0.7765336

0.5245411 0.5759779 1.0465223 1.2335352 1.6694431 0.9200819 1.4373301

0.8082051 0.9922023 0.9889715 0.5822106 1.5744132 0.5348402 1.0790753

0.6256058 0.8307524 0.8303376 1.3077433 0.6317183 1.2935359 0.509095

1.2105074 1.1197155 0.7580503 0.9266635 0.6304593

Self-check: 58.00000

Table 3
Mahalanobis distances for 44 bad printheads

22.267015 6.3039776 47.516228 86.911572 15.757659 47.675354 9.2641579

2.5930287 14.052908 11.691446 15.090696 13.894336 8.6390361 179.43874

20.041785 10.695167 29.33736 13.926274 34.2429 9.3282624 44.442126

35.30109 18.388437 55.787193 6.0059889 63.12819 16.813476 45.355212

78.914301 29.200082 42.105292 28.056818 46.802471 121.26875 8.1542113

33.730109 9.3395192 6.777362 22.493329 16.492573 4.6645559 26.666635

22.46681 153.76889
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Figure 3
Mahalanobis distance versus printhead number for both passing and failing printheads

establishing an origin and unit number. Mahalan-
obis distance for nonconforming printheads was cal-
culated, demonstrating the ability to discriminate
normal and abnormal printheads. Among the 58
product image quality attributes investigated, only a
fraction of the total were doing the work of discrim-
inating good from bad for actual production, iden-
tifying the opportunity to reduce measurement and
overhead cost for the factories. Misclassification of
printheads was checked, and as expected, scrapping
good printheads was more prevalent than shipping
bad printheads. The scrap cost was approximately
one-tenth the cost for type II error, so naturally one
would be more likely to scrap good ones.

Other opportunities to apply the Mahalanobis–
Taguchi system are being explored for asset recov-
ery. For example, when copiers and printers are
returned from customer accounts, recovery of mo-
tors, solenoids, clutches, lamps, and so on, that are
still classified as good can be reused in new or re-
furbished machines. Other opportunities include
image segmentation algorithm development, pat-
tern recognition to prevent counterfeit copying of
currencies, outlier detection in data analysis, system
test improvement, diagnosis and control of manu-
facturing processes, chemical spectral analysis,

specification-free disposition, assembly process
diagnosis, Kanji symbol recognition, magnetic ink
check reading, and others.

The Mahalanobis–Taguchi system considers the
following issues:

❏ Whether or not a newly manufactured or
remanufactured product (or subsystem or
component) is a member of the population
of previously made good products (scrap/
rework/disposition decision)

❏ How to characterize the degree of badness
of recently made product with one scalar
number derived from a multivariate set of
measures

❏ How to define the contribution of each fea-
ture measured to the overall distance from the
good population (cause detection)

❏ How to eliminate measures that do not help
discriminate good from bad products (cost re-
duction due to misclassification)

❏ Use of loss function minimization for balanc-
ing false positive and false negative errors

❏ Optimization of multivariate data to move all
output to the good classification without add-
ing cost
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Table 4
SN ratios for each L64 combination

Obs. Expt. � Obs. Expt. �

1 1 �16.1455 33 33 �137804

2 2 �15.1823 34 34 �15.8187

3 3 �13.4513 35 35 �11.5528

4 4 �14.7418 36 36 �14.3503

5 5 �13.0265 37 37 �14.3373

6 6 �13.9980 38 38 �14.3891

7 7 �14.8928 39 39 �14.0671

8 8 �15.1808 40 40 �14.8759

9 9 �14.3932 41 41 �15.3622

10 10 �15.7381 42 42 �15.4632

11 11 �16.0573 43 43 �12.5654

12 12 �13.2949 44 44 �13.9813

13 13 �11.3572 45 45 �16.3452

14 14 �12.5372 46 46 �13.0218

15 15 �14.0662 47 47 �15.3362

16 16 �15.9616 48 48 �15.8292

17 17 �10.4232 49 49 �12.2162

18 18 �12.4296 50 50 �14.5625

19 19 �14.1015 51 51 �15.3548

20 20 �11.5102 52 52 �16.6430

21 21 �15.1508 53 53 �13.9844

22 22 �14.3844 54 54 �8.9751

23 23 �12.2187 55 55 �8.3045

24 24 �15.3981 56 56 �13.8523

25 25 �13.3026 57 57 �11.0553

26 26 �9.4273 58 58 �14.9251

27 27 �12.2470 59 59 �15.4196

28 28 �15.1932 60 60 �11.7635

29 29 �14.4695 61 61 �9.8751

30 30 �14.4875 62 62 �14.5514

31 31 �14.8804 63 63 �13.5409

32 32 �14.6857 64 64 �4.7039
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Table 5
Mahalanobis distances for a sample of L64

Row 1 of L64

3.3948335 0.7672923 3.7212996 7.5160489 2.1628283 0.4735541 0.9902953
0.8921714 0.8890575 0.4336029 0.7916304 3.1689748 0.3589341 15.351063
1.6113871 0.8156152 5.1049158 3.53441 0.4765632 0.6596119 0.5178774
7.8548821 0.6789542 2.3212435 1.1780486 0.620615 4.3913711 30.419276
1.3079055 1.5259677 0.5979884 0.9019846 4.0599383 6.7014764 0.35931
0.6227532 3.3683819 1.3396863 5.3121466 0.7085592 0.7498931 11.770036
1.7869636 2.6817723

Row 2 of L64

2.1538859 0.5691297 5.0493192 6.0833953 2.26442 1.1433147 1.1618087
0.8776536 0.743007 0.861313 0.5233098 2.0991015 1.2277685 14.323771
3.5200479 0.2022022 4.8885268 2.3330918 0.8417254 1.1887293 0.7514819
4.1954716 6.0096008 1.0382971 3.080755 1.5613432 2.0078949 3.9968699
0.9804545 2.4407172 0.5850997 1.1164188 1.5777033 7.4701672 0.5262845
0.7533587 1.1707115 1.3342356 2.7278281 1.0099527 0.8908078 12.579455
2.772986 7.0534854

Row 3 of L64

2.432585 1.8731996 6.2922649 8.802438 2.2404416 1.631539 1.9070269
1.0529453 1.2410093 1.0671635 4.211971 2.7976614 0.7359613 6.9516176
1.2869917 3.3668795 4.4021798 5.6621817 1.9823413 2.2946022 0.7033499

14.94987 1.6268848 2.0984149 1.7826083 1.5005829 7.4753245 25.570186
0.9018103 7.125921 2.3458211 1.0736915 6.0013726 31.945727 3.6939773
3.2325816 2.7765327 0.5454912 3.371364 1.5793315 1.2316633 10.05149
2.5569832 2.9596748

�
Row 64 of L64

22.267015 6.3039776 47.516228 86.911572 15.757659 47.675354 9.2641579
2.5930287 14.052908 11.691446 15.090696 13.894336 8.6390361 179.43874

20.041785 10.695767 29.33736 13.926274 34.2429 9.3282624 44.442126
35.30109 18.388437 55.787193 6.0059889 63.12819 16.813476 45.355212
78.914301 29.200082 42.105292 28.056818 46.802471 121.26875 8.1542113
33.730109 9.3395192 6.777362 22.493329 16.492573 4.6645559 26.666635
22.46681 153.76889

Table 6
ANOVA procedure for L64 results

Dependent variable: �, larger-the-better form
Source d.f. Sum of Squares Mean Square F Value Pr � F

Model 58 275.93384768 4.75748013 1.06 0.5408

Error 5 22.47309837 4.49461967

Corrected total 63 298.40694604
R2

0.924690
C.V.

�15.50422
Root MSE
2.12005181

� Mean
�13.67403198
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Table 7
ANOVA table

Source d.f. ANOVA SS Mean Square F Value Pr � F

C1 1 2.86055676 2.86055676 0.64 0.4612
C2 1 34.60858396 34.60858396 7.70 0.0391

C3 1 0.187724428 0.18724428 0.04 0.8463

C4 1 1.49095175 1.49095175 0.33 0.5896

C5 1 0.37607339 0.37607339 0.08 0.7840

C6 1 1.14916741 1.14916741 0.26 0.6346

C7 1 0.16314465 0.16314465 0.04 0.8564

C8 1 29.49021893 29.49021893 6.56 0.0506

C9 1 0.82834518 0.82834518 0.18 0.6856

C10 1 8.20578845 8.20578845 1.83 0.2346

C11 1 0.19192667 0.19192667 0.04 0.8444

C12 1 0.11836547 0.11836547 0.03 0.8774

C13 1 0.34995540 0.3499540 0.08 0.7914

C14 1 2.07436008 2.07436008 0.46 0.5271

C15 1 33.60580077 33.630580077 7.48 0.0411

C16 1 7.51486220 7.51486220 1.67 0.2525

C17 1 13.34268884 13.34268884 2.97 0.1455

C18 1 9.47454201 9.47454201 2.11 0.2062

C19 1 10.53510713 10.53510713 2.34 0.1863

C20 1 1.69292927 1.69292927 0.38 0.5662

C21 1 1.27346455 1.27346455 0.28 0.6173

C22 1 0.00896986 0.00896986 0.00 0.9661

C23 1 0.37507340 0.37507340 0.08 0.7843

C24 1 0.70398097 0.70398097 0.16 0.7086

C25 1 0.13738739 0.13738739 0.03 0.8681

C26 1 0.00175670 0.00175670 0.00 0.9850

C27 1 0.09980698 0.9980698 0.02 0.8874

C28 1 0.01056163 0.01056163 0.00 0.9632

C29 1 9.74085337 9.74085337 2.17 0.2010

C30 1 0.68426748 0.68426748 0.15 0.7125

C31 1 0.05612707 0.05612707 0.01 0.9154

C32 1 0.26460629 0.26460629 0.06 0.8179

C33 1 2.35115887 2.35115887 0.52 0.5019

C34 1 5.05833213 5.05833213 1.13 0.3373
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Table 7 (Continued )

Source d.f. ANOVA SS Mean Square F Value Pr � F

C35 1 0.04174250 0.04174250 0.01 0.9270

C36 1 0.69712660 0.69712660 0.16 0.7099

C37 1 0.00644011 0.00644011 0.00 0.9713

C38 1 0.17791141 0.17791141 0.04 0.8501

C39 1 0.21159149 0.21159149 0.05 0.8368

C40 1 0.00395108 0.00395108 0.00 0.9775

C41 1 0.06935294 0.06935294 0.02 0.9060

C42 1 0.03615277 0.03615277 0.01 0.9320

C43 1 32.02214448 32.02214448 7.12 0.0444

C44 1 0.93469126 0.93469126 0.21 0.6675

C45 1 0.01268770 0.01268770 0.00 0.9597

C46 1 1.39043263 1.39043263 0.31 0.6020

C47 1 2.01474985 2.01474985 0.45 0.5328

C48 1 5.24140378 5.24140378 1.17 0.3295

C49 1 0.03621724 0.03621724 0.01 0.9320

C50 1 0.31732921 0.31732921 0.07 0.8011

C51 1 0.61788448 0.61788448 0.14 0.7260

C52 1 5.03501292 5.03501292 1.12 0.3383

C53 1 0.00618522 0.00618522 0.00 0.9718

C54 1 0.38732998 0.38732998 0.09 0.7809

C55 1 0.91071239 0.91071239 0.20 0.6715

C56 1 0.00739509 0.00739509 0.00 0.9692

C57 1 46.41832533 46.41832533 10.33 0.0236

C58 1 0.31011793 0.31011793 0.07 0.8033

❏ Definition of the probability of membership
in a certain classification category

❏ Temporal change and control of a manufac-
turing process

❏ Getting practical use from advanced statistical
concepts combined with robust design ideas
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