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Direct-Injection Diesel Injector Optimization

Abstract: Delphi Automotive Systems is entering the direct-injection diesel
business, which requires a significant shift in technologies from the current
diesel injection approach. The injector itself is the key to mastering this goal,
and its high sensitivity to sources of variation makes robust engineering a
valuable approach to optimization. A robust engineering dynamic experiment
based on a numerical model of the injector allowed us to achieve (1) a 4.46-
dB improvement in the SN ratio through parameter design, representing a
reduction of about 40% in the variability of the quantity injected; (2) an
improvement of about 26% in the manufacturing process end-of-line first-
time quality (percentage of good injectors at the end of the line) predicted;
and (3) the generation of tolerance design-based charts to support manufac-
turing tolerance decisions and reduce cost further. This robust engineering
case study shows that cost-effective and informative robust engineering
projects can be conducted using good simulation models, with hardware
being used to confirm results.

1. Introduction

The common rail direct-injection diesel fuel system
is an important technology for Delphi. For this rea-
son, a product and process engineering team, ded-
icated to the design and implementation of the best
possible common rail system with respect to both
product and process, was set up at the European
Technical Center. The direct-injection diesel com-
mon rail system is comprised of the following core
components of the engine management system:

❏ Injectors

❏ High-pressure pump

❏ Fuel rail and tubes

❏ High-pressure sensor

❏ Electronic control module

❏ Pressure control system

The main challenge with diesel common rail sys-
tems as opposed to indirect diesel injection systems
is the continuous high operating pressures. Current

common rail systems are designed to operate with
pressure levels of 1350 to 1600 bar.

Figure 1 shows a sample injector and its key var-
iability sources. The injector is the most critical and
the most complex element of the system. A diesel
common rail system will not be successful if the in-
jectors are not ‘‘world class’’ in term of quality and
reliability.

Problem
The injector complexity is due to very tight manu-
facturing tolerances and challenging customer re-
quirements for quantity injected. These issues are
confirmed by the problems reported by our com-
petitors. Some of them experienced very high scrap
levels in production. An alternative approach is to
build quality into the product at an early stage of
design.

Injector operation is affected by the following
sources of variability: (1) other elements of the en-
gine and (2) the management system.

Taguchi’s Quality Engineering Handbook.  Genichi Taguchi, Subir Chowdhury and Yuin Wu
Copyright © 2005 Genichi Taguchi, Subir Chowdhury, Yuin Wu.
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Injector and key variability sources

Objectives and Approach to Optimization
The optimization process followed the flowchart in
Figure 2. A simulation model was developed, im-
proved, and used to perform the orthogonal array
experiments. Because of the very high confidence
level in the simulation model (see Figure 7), we de-
cided to use hardware only for the confirmation
runs.

The main deliverables assigned to this optimiza-
tion process were:

❏ Reduced part-to-part and shot-to-shot varia-
tion in quantity injected

❏ Part-to-part variation among several injectors

❏ Shot-to-shot variation from one injection to
the next within the same injector

❏ Decreased sensitivity to manufacturing varia-
tion and ability to reduce cost by increasing
component tolerances as appropriate

❏ Graphical tools to increase understanding of
downstream quality drivers in the design

The following labeling is used in the experiment:

A: control factor for parameter design

A�: control factor variation considered as a noise
factor

A�: control factor included in the tolerance design

2. Simulation Model Robustness

A direct-injection diesel injector for a common rail
system is a complex component with high-precision
parts and very demanding specifications. To simu-
late such a component means representing the
physical transient interactions of a coupled system,
including a magnetic actuator, fluid flows at very
high pressure, possibly with cavitation phenomena,
and moving mechanical parts. The typical time scale
for operation is a few microseconds to a few
milliseconds.

Because pressure wave propagation phenomena
are very important in the accurate representation of
injector operation, the simulation code cannot be
limited to the injector itself but must include the
common rail and the connection pipe from the rail
to the injector (Figure 3)

The rail and the connection line are standard
hydraulic elements in which the model calculates
wave propagation using classical methods for solving
wave equations. The internal structure of the injec-
tor is illustrated in Figure 4. We can distinguish two
hydraulic circuits and one moving part (plus the
mobile part of the control valve). The first hydraulic
circuit feeds the control volume at the common rail
high pressure through a calibrated orifice. The pres-
sure, PC , in the control volume is controlled by
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activating the electromechanical control valve and
bleeding off a small amount of fluid. The duration
of electrical activation, called the pulse width, is cal-
culated by the engine control module (ECM), de-
pending on driver demand, rail pressure, and
engine torque needs. The other hydraulic circuit
feeds the nozzle volume at a pressure, PN, that re-
mains close to common rail pressure. Using internal
sealing, the area stressed by the pressure is larger
on the control volume side than on the nozzle side.
Thus, as long as PC and PN remain equal, the needle
is pushed against the nozzle seat and the injector is
closed. To start an injection event, the control valve
is activated, which lowers the pressure in the control
chamber until the force balance on the needle
changes sign. Then the needle moves up, and injec-
tion occurs. To close the injector, the control valve
is closed and the pressure builds up again in the
control chamber until the force balance on the nee-
dle changes sign again and the needle moves down
and closes.

The structure of the mathematical model of the
injector can be deduced from its physical structure
(Figure 5). Three submodels are coupled:
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Model inputs are as follows:

❏ Duration of electrical activation of electro-
magnetic actuator

❏ Rail pressure

Model outputs include time variation of the fol-
lowing elements:

❏ Magnetic force

❏ Fuel pressure and velocity in lines

❏ Flows through orifices

❏ Displacement of moving parts

The behavior of a direct-injection diesel injector
can be characterized by a mapping, which gives the
fuel quantity injected versus pulse width and rail
pressure (Figure 6). Given the initial rail pressure
and the pulse width, the model is expected to pre-
dict accurately the quantity of fuel that should be
injected.

Approach to Optimization
The difficulty in building and then optimizing such
a model is that some features have a very strong
effect on the results. Imprecision about their model
representation can affect results in an unacceptable
way. Experimental investigations have been used to
thoroughly study the characteristics of internal flows
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Comparison model data versus experimental data for various rail pressure, pulse width, and
injector control factor settings (□, reference; �, control factors A, B, G, E, and F changed;
O, control factors A, B, G, E, and I changed)

in key parts such as the control valve and the nozzle,
for instance. From these experiments, empirical
equations have been fitted and then implemented
in the model. Finally, the transient nature of the
flows is also a problem because most of the experi-
ments are done statically.

In the end, after implementing the most realistic
physical representation of variables, based either on
experiments or on theoretical calculation, injector
model optimization is a feedback loop between
model results and experimentally observable injec-
tion parameters, such as injected quantity, injection
timing, and control valve displacement. Engineer-
ing judgment is then necessary to assess the cause
of any discrepancy and to improve or even change
the physical representation of variables shown to be
inadequate.

Results
Figure 7 shows the correlation between model and
experiment for quantity injected, for rail pressures
and pulse widths covering the full range of injector
operation, and for three different injectors with dif-
ferent settings of control factor values. The agree-
ment between model and hardware is good over the
full range of operation. Figure 7 is the basis of the
high confidence level we have in the model outputs.

3. Parameter Design

Ideal Function
The direct-injection diesel injector has several per-
formance characteristics:
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Table 1
Noise factors

Noise
Factor Level Level

Relationship with
Quantity Injected

Compounded
Noise Level

1 (N1)

Compounded
Noise Level

2 (N2) Rationalea

B� �10 �10 � 1 2 Mfg.

C� �5 �5 � 1 2 Age

D� �2 �2 � 1 2 Mfg., Age

E� �3 �3 � 2 1 Mfg., Age

F� �3 �3 � 2 1 Age

G� �3 �3 � 1 2 Mfg., Age

H� �4 �4 � 2 1 Age

I� �30 �30 � 1 2 Mfg.

J� �3 �3 � 1 2 Age

L 0.6 1 � 1 2 Mfg., Age

M �10 �10 � 1 2 System

N 0 0.03 � 1 2 Mfg.

O 2 5 � 1 2 Mfg.

aMfg., manufacturing variation; Age, aging; System, influence of other components.

❏ Recirculated quantity

❏ Total opening time

❏ Delay of main injection

❏ Quantity injected

In the traditional approach, these performance
characteristics would require individual optimiza-
tions and trade-off based on experimental results.
In such a case, the power of a carefully chosen ideal
function is invaluable. For an injection system, the
customer requirement can be expressed as the
quantity of fuel required for good combustion at a
given operating point. By considering the customer
need as a signal, we can compute through the sim-
ulation model, under noise conditions, what the ac-
tual injector will deliver. This last value is the y-axis
of the ideal function. A perfect injector will have a
slope of 1, with the actual quantity equal to the
value desired (Figure 8). A design that exhibits the
ideal function shown in Figure 8 is likely to be ac-
ceptable for any of the performance characteristics
listed above.

Signal and Noise Strategies
Five levels of injected quantity desired were selected
based on customer specifications: 2, 5, 15, 25, and
40 mL. Table 1 shows the impact of the noise factors
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Table 2
Control factors and levels (%) a

Factor

Level

1 2 3

A �16.6 X �16.6

B �11.1b X �11.1

C �16.6 X �16.6

D �11.1b X �11.1

E �28.6 X �28.6b

F �18.5 X �18.5

G �18.2 X �22.7b

H �33.3 X �66.6

I �11.1 X �11.1b

J �8.62 X �6.9b

K �2.3 X �2.3b

aX is a reference value. An L27 (313) orthogonal array was
used to perform the experiment. Two columns were unused
(see Figure 9).
b Current design level.

Desired Quantity, M
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Quantity Desired
2 mL
5 mL
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25 mL
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Actual Quantity

A, B , C, D, E, F, G, H, I, J, K
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B�, C�, D�, E�, F�, G�, H�, I�, J�, L, M, N, O
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β = 1
y = M

Figure 9
Parameter design

on the quantity injected. A (�) indicates that an
increase in the noise factor will increase the injected
quantity (direct relationship). A (�) indicates that
a decrease in the noise factor will increase the in-
jected quantity (inverse relationship).

The compounded noise level 1 (N1) groups all
the noise factor levels that have the effect of reduc-
ing the quantity injected. The compounded noise
level 2 (N2) groups the noise factor levels that have
the effect of increasing the quantity injected.

B�, C� ... , J� are noise factors obtained by consid-
ering variation (from manufacturing or other
sources) of the corresponding control factors. L, M,
N, and O are noise factors not derived from control
factors. We expect these noises to be present during
product use.

Control Factors and Levels
Table 2 shows control factors and levels for the ex-
periment. Table 3 shows the experimental layout.

Data Analysis and Two-Step Optimization
The data were analyzed using the dynamic SN ratio:
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Table 3
Experimental layout

Signal

No.

Control Factor Array

A B C D E F G H I J K 12 13

2 mL

N1 N2

5 mL

N1 N2

15 mL

N1 N2

25 mL

N1 N2

40 mL

N1 N2 S/N �

1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 2 2 2 2 2 2 2 2 2

3 1 1 1 1 3 3 3 3 3 3 3 3 3

�

25 3 3 2 1 1 3 2 3 2 1 2 1 3

26 3 3 2 1 2 1 3 1 3 2 3 2 1

27 3 3 2 1 3 2 1 2 1 3 1 3 2

S � V� e� � 10 log
rVe

where S� is the sum of squares of distance between
zero and the least squares best-fit line (forced
through zero) for each data point, Ve the mean
square (variance), and r the effective divider. See
Figure 10 for the SN and sensitivity analyses. Note
the SN Y-axis values are all negative and expressed
in decibels in the figure. See Tables 4 and 5 for
further results.

Confirmation
The model in Table 6 confirms the expected im-
provement with a slight difference. Neither the op-
timum nor the current design combinations were
part of the control factor orthogonal array. The in-
itial hardware testing on the optimized configura-
tion showed promising results. See Figure 11 for
results.

Results
B and C are control valve parameters. The design
change on these parameters suggested by parameter
design is likely to improve injected quantity, part-
to-part, and shot-to-shot variation. The simulation
model confirms these improvements. Hardware
confirmation is ongoing. A, D, E, G, H, I, J are hy-
draulic parameters. Implementing the changes

suggested by parameter design will decrease our
sensitivity to most of the noise factors and to pres-
sure fluctuations in the system.

An improvement in SN ratio can be translated
directly into a reduction in variability:

variability improvement � � initial variability1 gain/6–( )2

where gain is the SN ratio gain in decibels; in our
case, the model confirmed gain is 4.46 dB (Table
6). We are making an almost 40% reduction in var-
iability from the initial design.

The slope of the ideal function is distributed nor-
mally. The tolerance on the slope can be obtained
from the tolerances at each signal point of injection
(Table 7 and Figure 12).

From the tolerances on �, and assuming a nor-
mal distribution, we can draw a curve to relate end-
of-line scrap level or first-time quality (FTQ) (Figure
13) to the deviation from the target, �. This is not
meant to reject the loss function approach. Rather,
it is to quantify the reduction in part rejection (and
therefore cost avoidance) at the end of the assembly
line if we implement the recommendations from pa-
rameter design. The end-of-assembly line first-time
quality (FTQ) is calculated by the formula

number of injectors within tolerances
FTQ �

total number of injectors produced
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Table 4
Two-step optimization

Factor

A B C D E F G H I J K

Initial design A2 B1 C1 D1 E3 F2 G3 H2 I3 J3 K3

SN maximization (first step) A3 B2 C3 D3 E? F2 G1 H3 I1 J1 K3

Adjustment for beta (second step) E1

Optimized design A3 B2 C3 D3 E1 F2 G1 H3 I1 J1 K3

Design change required Design change required

Table 5
Prediction

Design SN (dB) � (Slope)

Initial �20.7118 0.8941

Optimized �15.0439 1.0062

Gain �5.66 0.1121

The figure identifies FTQ. If � is the observed
slope, � � 1 is the mean, z is the number of stan-
dard deviations away from the mean, and � (z) is
the standard cumulative normal distribution
function.

In Figure 13, � is the observed standard devia-
tion on �, �i the standard deviation on � before
parameter design, and �opt the standard deviation
after parameter design.

� � 0.945min

� � 1.054max

� � 1 � � 1max minZ � and Z �2 1� �

FTQ � �(Z ) � �(Z ) � [1 � �(Z )] � �(Z )2 1 1 1

� 1 � 2�(Z )1

� � 1max� 1 � 2� � �
�

So FTQ is a function of the observed standard
deviation of �. If the standard deviation of � from
the initial design is �i,

2� � �0.6� � 0.77�opt i i

considering the 40% reduction in variability from
parameter design, the standard deviation of � from
the optimized design after parameter design is the
predicted end-of-line fraction of good parts is ob-
tained through the curve in Figure 14. We simulate
the improvement on FTQ with two different values
of �i on �. It is hard to know the current value of
�i, but we know that the optimized standard devia-
tion is 0.77 �i.

Possible FTQ improvement in percent with a
standard deviation on � from the initial design
equal to �i is shown in Table 8.

4. Tolerance Design

Tolerance design is traditionally conducted with
nondynamic responses. With a dynamic robust ex-
periment, this is not optimal and can result in end-
less trade-off discussions. The ranked sensitivity to
tolerances might be different from one signal point
to another. A way to solve this is the use of dynamic
tolerance design. In this robust design experiment,
tolerance design was performed both on a signal
point basis and on a dynamic basis. In dynamic tol-
erance design, optimization is based on � instead of
the quantity injected. The tolerance on � is ob-
tained by considering the tolerances at each signal
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Table 6
Model confirmation

Design

Predicted

SN (dB) �

Confirmed

Model

SN (dB) �

Hardware

SN �

Initial �20.7118 0.8941 �20.2644 0.9150 Ongoing Ongoing

Optimum �15.0439 1.0062 �15.8048 0.9752 Ongoing Ongoing

Gain 5.66 0.1121 4.46 0.06

point and drawing a best-fit line. This ensures a
more comprehensive tolerance design. (Figure 15).
To illustrate, we perform tolerance design with the
two approaches and compare them in Tables 9 and
10.

Signal Point by Signal Point Tolerance Design

Factors and Experimental Layout We used a three-
level tolerance design with 13 parameters. There-
fore, we will once again use an L27 array. The signal
point–based tolerance design is performed using
the data in the corresponding signal point column.
Analysis of variance (ANOVA) for each injection
point is shown in Table 11. The percent contribu-
tion is shown in Figure 16 (injection point 1: 2 mL
desired). (The ANOVA was performed at each sig-
nal point.)

Loss Function For the signal point tolerance de-
sign, the loss function was nominal-the-best on the
quantity injected. The calculations in Table 12 were
performed for each signal point. In the table, %r is
the percent contribution of the design parameter to
the injected quantity variability. Ltc is the total cur-
rent loss in dollars in the Taguchi loss function. �pc

is the design parameter current standard deviation
or its current tolerance level. �t is the current total
output standard deviation, considering the variation
of all design parameters. �p is a variable represent-
ing the standard deviation of a design parameter.
Lcp is the current fraction of the total loss caused by
the corresponding parameter. The higher the con-
tribution percentage (%r), the higher the Lcp value
for a given design parameter. FTQ is the first-time

quality (end of assembly line). Lp is the loss caused
by a design parameter given any value of the param-
eter standard deviation �p (Lp is a function of �p).
See also Figure 17 and Table 13. K is the propor-
tional constant of the loss function.

K �
A0 � 9.18C2�0

A0 � base average injector cost in dollars � $C

�0 � specification on quantity injected � 0.33 mL
at 1�

VT � current total variance from ANOVA � 0.7542
Ltc � KVT � $6.9235C

Figure 18 shows the loss/cost as a function of
each parameter.

Dynamic Tolerance Design
The control factor settings are the same as in the
signal point tolerance design. In this case the re-
sponse becomes the � from each combination. We
use a nominal-the-best approach with the target
� � 1 (ideal function). Results are shown in Table
14.

Dynamic Analysis of Variance � replaces the quan-
tity injected. The target for � is 1 in this case. The
boundaries for injector first-time quality correspond
here to the upper and lower lines that we can
draw on each signal point based on customer
specifications (see Figure 12). The ANOVA is given
in Table 15 and the percent contribution in Figure
19.
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Figure 11
Graphical results of initial design compared to optimized design

Dynamic Loss Function The current loss distribu-
tion is shown in Table 16 and the dynamic tolerance
design in Figure 20.

Dynamic characteristic: slope �. This is the same as
signal point by signal point tolerance design. The
response is � in this case; %r is the percent contri-
bution of the design parameter on the � variability;

and K is the proportional constant of the loss
function.

K �
A0 � 2500�C2�0

A0 � average injector cost in dollars � $C
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Table 7
Slope specifications

Quantity Desired
Minimum Quantity
Acceptable (at 3�) Target

Maximum Quantity
Acceptable (at 3�)

2 1 2 3

25 21.5 25 28.5

40 36.5 40 43.5

� (slope) 0.945 (at 3�) 1 1.054 (at 3�)
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Figure 12
Slope tolerance
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Figure 13
FTQ representation
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End-of-line FTQ as a function of the standard deviation observed on �

Table 8
End-of-line FTQ as a function of the standard deviation on the slope

�i �opt
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0.05 0.038 72 84 12 16
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Table 9
Factors and levels for tolerance designa

Factor

Level

1
X � �3/2 �

2
X

3
X � �3/2 �

Current �
(%)

A� 3.810

B� 3.704

C� 2.381

D� 1.333

E� 0.010

F� 0.004

G� 0.002

H� 2.667

I� 6.250

J� 0.002

K� 0.114

L 0.022

M 2.632

aX is the optimized level of each design parameter; � is the current tolerance of each design parameter.

Table 10
Tolerance design experimental layout

No.

Tolerance Factor

A� B� C� D� E� F� G� H� I� J� K� L M

Signal

2 mL 5 mL 15 mL 25 mL 40 mL

1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 2 2 2 2 2 2 2 2 2

3 1 1 1 1 3 3 3 3 3 3 3 3 3

�

25 3 3 2 1 1 3 2 3 2 1 2 1 3

26 3 3 2 1 2 1 3 1 3 2 3 2 1

27 3 3 2 1 3 2 1 2 1 3 1 3 2
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Table 11
ANOVA for signal point 1

Source d.f. S V F S �

A� 2 2.6413 1.3206 15.9851 2.4760 12.63

B� 2 4.3410 2.1705 26.2721 4.1758 21.30

C� 2 0.0672 0.0336 — — —

D� 2 2.2450 1.1225 13.5872 2.0798 10.61

E� 2 0.3953 0.1977 — — —

F� 2 0.9158 0.4579 5.5426 0.7506 2.83

G� 2 1.0480 0.5240 6.3427 0.8828 4.50

H� 2 0.0332 0.0166 — — —

I� 2 0.6072 0.3036 3.6750 0.4420 2.25

J� 2 0.5165 0.2582 3.1257 0.3512 1.79

K� 2 2.0346 1.0173 12.3134 1.8693 9.53

L 2 4.2696 2.1348 25.8403 4.1044 20.93

M 2 0.4940 0.2470 2.9899 0.3288 1.68

e1

(e) 6 0.4957 0.0826 — 2.1480 10.95

Total 26 19.6087 0.7542

(e) is pooled error.
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Figure 16
Percent contribution of design factors to variability per signal point
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Table 12
Percent contribution of design factors to variability (signal point 1: 2 mL desired)

Factor r (%) Ltc (c)
Current,

�pc Lcp (c)

A� 12.63 6.9235 3.81 0.8744381

B� 21.30 6.9235 3.70 1.474706

C� 0 6.9235 2.38 0

D� 10.61 6.9235 1.33 0.7345834

E� 0 6.9235 0.01 0

F� 3.83 6.9235 0.00 0.2651701

G� 4.5 6.9235 0.00 0.3115575

H� 0 6.9235 2.67 0

I� 2.25 6.9235 6.25 0.1557788

J� 1.79 6.9235 0.00 0.1239307

K� 9.53 6.9235 0.11 0.6598096

L 20.93 6.9235 0.02 1.449089

M 1.68 6.9235 2.63 0.1163148
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Figure 17
Taguchi loss function

Table 13
Summary of current total loss for some signal
points

Signal Point
(mL)

Current Total
Loss

2 $6.9235C

25 $0.5541C

40 $0.5541C

�0 � specification on � � 0.02 at 1�

VT � current total variance from ANOVA � 0.0012

Ltc � KVT � $3C

Comparison of dynamic tolerance design and signal
point tolerance design. The total loss with dynamic tol-
erance design was almost half of the total loss when
tolerance design was conducted signal point by sig-
nal point. We do not have a precise explanation for
this finding. The percent contributions of the
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Figure 18
Chart to support manufacturing tolerance decision making (signal point 1: 2 mL)

Table 14
Experimental layout for dynamic tolerance design

No.

Tolerance Factor

A� B� C� D� E� F� G� H� I� J� K� L M

1 1 1 1 1 1 1 1 1 1 1 1 1 1 �1

2 1 1 1 1 2 2 2 2 2 2 2 2 2 �2

3 1 1 1 1 3 3 3 3 3 3 3 3 3 �3

� �

25 3 3 2 1 1 3 2 3 2 1 2 1 3 �25

26 3 3 2 1 2 1 3 1 3 2 3 2 1 �26

27 3 3 2 1 3 2 1 2 1 3 1 3 2 �27

design parameters at each signal point (see Figure
16) were difficult to use for decision making, due
to the complexity of trade-off. We found it easier to
consider the global percent contributions obtained
from dynamic tolerance design (see Figure 19).

5. Conclusions

A gain of 4.46 dB in the SN ratio was realized in the
modeled performance of the direct-injection diesel
injector. This gain represents a reduction of about
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Table 15
Dynamic tolerance design ANOVA

Source d.f. S V F S� �

A� 2 0.0117 0.0059 35.4725 0.0114 35.50

B� 2 0.0010 0.0005 2.9348 0.0006 1.99

C� 2 0.0066 0.0033 20.1535 0.0063 19.73

D� 2 0.0001 0.0000 — — —

E� 2 0.0006 0.0003 — — —

F� 2 0.0002 0.0001 — — —

G� 2 0.0000 0.0000 — — —

H� 2 0.0005 0.0003 — — —

I� 2 0.0029 0.0015 8.9340 0.0026 8.17

J� 2 0.0038 0.0019 11.5096 0.0035 10.82

K� 2 0.0005 0.0003 — — —

L 2 0.0004 0.0002 — — —

M 2 0.0037 0.0018 11.0911 0.0033 10.39

e1

e2

(e) 14 0.0023 0.0002 — 0.0043 13.39

Total 26 0.0320 0.0012

(e) is pooled error.
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Figure 19
Percent contribution of design factors on the slope (dynamic tolerance design)
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Table 16
Total current loss distribution among
parameters

Factor r (%) Ltc (c) Lcp (c)

A� 35.5 3 1.065

B� 1.99 3 0.0597

C� 19.73 3 0.5919

D� 0 3 0

E� 0 3 0

F� 0 3 0

G� 0 3 0

H� 0 3 0

I� 8.17 3 0.2451

J� 10.82 3 0.3246

K� 0 3 0

L 0 3 0

M 10.39 3 0.3117
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Figure 20
Taguchi loss function for dynamic tolerance design

40% in the variability in the quantity injected. We
anticipate that the variability reduction will translate
to a 16 to 26% increase of the fraction of parts in-
side tolerances for quantities injected at the end of
the manufacturing line.

Several charts were developed to support manu-
facturing process tolerance decision making. As in-
formation on tolerance upgrade or degrade cost is
made available, the charts will be used to reduce
cost further by considering larger tolerances where
appropriate.

Recommendations
We recommend the use of dynamic tolerance de-
sign for dynamic responses. Optimization at individ-
ual signal points may not always lead to a clear and
consistent design recommendation. This case study
proposes a solution for a nominal–the-best situation
for tolerance design. A standardized approach
needs to be developed to cover dynamic tolerance
design.

Hardware cost is one of the roadblocks to Tagu-
chi robust design implementation. The develop-
ment of good simulation models will help overcome
this roadblock while increasing the amount of good
information that one can extract from the projects.
With a good model, we can conduct parameter de-
sign and tolerance design with a great number of
control factors. We are also able to simulate control
factor manufacturing variation as noise factors. The
ability to consider manufacturing variation is an im-
portant advantage compared to full hardware-based
robust engineering. Hardware confirmation should
be conducted to ascertain the results and should
not lead to a surprise if a good robustness level is
achieved up front on the simulation model.
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