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3.1  Introduction

Software defined networking (SDN) is an idea that has recently reignited the interest of network 
researchers for programmable networks and shifted the attention of the networking community 
to this topic by promising to make the process of designing and managing networks more 
innovative and simplified compared to the well‐established but inflexible current approach.

Designing and managing computer networks can become a very daunting task due to the high 
level of complexity involved. The tight coupling between a network’s control plane (where the 
decisions of handling traffic are made) and data plane (where the actual forwarding of traffic 
takes place) gives rise to various challenges related to its management and evolution. Network 
operators need to manually transform high‐level policies into low‐level configuration com­
mands, a process that for complex networks can be really challenging and error prone. Introducing 
new functionality to the network, like intrusion detection systems (IDS) and load balancers, 
usually requires tampering with the network’s infrastructure and has a direct impact on its logic, 
while deploying new protocols can be a slow process demanding years of standardization and 
testing to ensure interoperability among the implementations provided by various vendors.

The idea of programmable networks has been proposed as a means to remedy this situation 
by promoting innovation in network management and the deployment of network services 
through programmability of the underlying network entities using some sort of an open net­
work API. This leads to flexible networks able to operate according to the user’s needs in a 
direct analogy to how programming languages are being used to reprogram computers in 
order to perform a number of tasks without the need for continuous modification of the 
underlying hardware platform.
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SDN is a relatively new paradigm of a programmable network that changes the way that 
networks are designed and managed by introducing an abstraction that decouples the control 
from the data plane, as illustrated in Figure 3.1. In this approach, a software control program, 
referred to as the controller, has an overview of the whole network and is responsible for the 
decision making, while the hardware (routers, switches, etc.) is simply responsible for for­
warding packets into their destination as per the controller’s instructions, typically a set of 
packet handling rules.

The separation of the logically centralized control from the underlying data plane has quickly 
become the focus of vivid research interest in the networking community since it greatly simplifies 
network management and evolution in a number of ways. New protocols and applications can be 
tested and deployed over the network without affecting unrelated network traffic; additional infra­
structure can be introduced without much hassle; and middleboxes can be easily integrated into 
the software control, allowing new potential solutions to be proposed for problems that have long 
been in the spotlight, like managing the highly complex core of cellular networks.

This chapter is a general overview of SDN for readers who have just been exposed to the 
SDN paradigm as well as for those requiring a survey of its past, present, and future. Through 
the discussion and the examples presented in this chapter, the reader should be able to 
comprehend why and how SDN shifts paradigms with respect to the design and management 
of networks and to understand the potential benefits that it has to offer to a number of interested 
parties like network operators and researchers.
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Figure 3.1  SDN in a nutshell—key ideas underlying the SDN paradigm.
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The chapter begins by presenting a comprehensive history of programmable networks and 
their evolution to what we nowadays call SDN. Although the SDN hype is fairly recent, many 
of its underlying ideas are not new and have simply evolved over the past decades. Therefore, 
reviewing the history of programmable networks will provide to the reader a better under­
standing of the motivations and alternative solutions proposed over time, which helped to 
shape the modern SDN approach.

The next part of this chapter focuses on the building blocks of SDN, discussing the concept 
of the controller and giving an overview of the state of the art by presenting different design 
and implementation approaches. It also clarifies how the communication of the data and con­
trol plane could be achieved through a well‐defined API by giving an overview of various 
emerging SDN programming languages. Moreover, it attempts to highlight the differences of 
SDN to other related but distinct technologies like network virtualization. Additionally, some 
representative examples of existing SDN applications are discussed, allowing the reader to 
appraise the benefits of exploiting SDN to create powerful applications.

The final part of the chapter discusses the impact of SDN to both the industry and the 
academic community by presenting the various working groups and research communities 
that have been formed over time describing their motivations and goals. This in turn demon­
strates where the current research interest concentrates, which SDN‐related ideas have been 
met with widespread acceptance, and what are the trends that will potentially drive future 
research in this field.

3.2  SDN History and Evolution

While the term programmable is used to generalize the concept of the simplified network 
management and reconfiguration, it is important to understand that in reality it encapsulates a 
wide number of ideas proposed over time, each having a different focus (e.g., control or data 
plane programmability) and different means of achieving their goals. This section reviews the 
history of programmable networks right from its early stages, when the need for network pro­
grammability first emerged, up to the present with the dominant paradigm of SDN. Along 
these lines, the key ideas that formed SDN will be discussed along with other alternatives that 
were proposed and affected SDN’s evolution but that were not met with the same widespread 
success.

3.2.1  Early History of Programmable Networks

As already mentioned, the concept of programmable networks dates its origins back in the 
mid‐1990s, right when the Internet was starting to experience widespread success. Until that 
moment, the usage of computer networks was limited to a small number of services like email 
and file transfers. The fast growth of the Internet outside of research facilities led to the 
formation of large networks, turning the interest of researchers and developers in deploying 
and experimenting with new ideas for network services. However, it quickly became apparent 
that a major obstacle toward this direction was the high complexity of managing the network 
infrastructure. Network devices were used as black boxes designed to support specific 
protocols essential for the operation of the network, without even guaranteeing vendor inter­
operability. Therefore, modifying the control logic of such devices was not an option, severely 
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restricting network evolution. To remedy this situation, various efforts focused on finding 
novel solutions for creating more open, extensible, and programmable networks.

Two of the most significant early ideas proposing ways of separating the control software 
from the underlying hardware and providing open interfaces for management and control were 
of the open signaling (OpenSig) [1] working group and from the active networking [2] initiative.

3.2.1.1  OpenSig

The OpenSig working group appeared in 1995 and focused on applying the concept of pro­
grammability in ATM networks. The main idea was the separation of the control and data 
plane of networks, with the signaling between the planes performed through an open interface. 
As a result, it would be possible to control and program ATM switches remotely, essentially 
turning the whole network into a distributed platform, greatly simplifying the process of 
deploying new services.

The ideas advocated by the OpenSig community for OpenSig interfaces acted as motivation 
for further research. Toward this direction, the Tempest framework [3], based on the OpenSig 
philosophy, allowed multiple switch controllers to manage multiple partitions of the switch 
simultaneously and consequently to run multiple control architectures over the same physical 
ATM network. This approach gave more freedom to network operators, as they were no longer 
forced to define a single unified control architecture satisfying the control requirements of all 
future network services.

Another project aimed at designing the necessary infrastructure for the control of ATM net­
works was Devolved Control of ATM Networks (DCAN) [4]. The main idea was that the 
control and management functions of the ATM network switches should be stripped from the 
devices and should be assigned to external dedicated workstations. DCAN presumed that 
the control and management operations of multiservice networks were inherently distributed 
due to the need of allocating resources across a network path in order to provide quality of service 
(QoS) guarantees. The communication between the management entity and the network was 
performed using a minimalistic protocol, much like what modern SDN protocols like 
OpenFlow do, adding any additional management functionality like the synchronization of 
streams in the management domain. The DCAN project was officially concluded in mid‐1998.

3.2.1.2  Active Networking

The active networking initiative appeared in the mid‐1990s and was mainly supported by 
DARPA [5, 6]. Like OpenSig, its main goal was the creation of programmable networks that 
would promote network innovations. The main idea behind active networking is that resources 
of network nodes are exposed through a network API, allowing network operators to actively 
control the nodes as they desire by executing arbitrary code. Therefore, contrary to the static 
functionality offered by OpenSig networks, active networking allowed the rapid deployment 
of customized services and the dynamic configuration of networks at run‐time.

The general architecture of active networks defines a three‐layer stack on active nodes. At 
the bottom layer sits an operating system (NodeOS) multiplexing the node’s communication, 
memory, and computational resources among the packet flows traversing the node. Various 
projects proposing different implementations of the NodeOS exist, with some prominent 
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examples being the NodeOS project [7] and Bowman [8]. At the next layer exist one or more 
execution environments providing a model for writing active networking applications, 
including ANTS [9] and PLAN [10]. Finally, at the top layer are the active applications 
themselves, that is, the code developed by network operators.

Two programming models fall within the work of the active networking community [6, 11]: 
the capsule model, in which the code to be executed is included in regular data packets, and 
the programmable router/switch model, in which the code to be executed at network nodes is 
established through out‐of‐band mechanisms. Out of the two, the capsule model came to be 
the most innovative and most closely associated with active networking [6]. The reason is that 
it offered a radically different approach to network management, providing a simple method 
of installing new data plane functionality across network paths. However, both models had a 
significant impact and left an important legacy, since many of the concepts met in SDN 
(separation of the control and data plane, network APIs, etc.) come directly from the efforts of 
the active networking community.

3.2.2  Evolution of Programmable Networks to SDN

3.2.2.1  Shortcomings and Contributions of Previous Approaches

Although the key concepts expressed by these early approaches envisioned programmable 
networks that would allow innovation and would create open networking environments, none 
of the proposed technologies was met with widespread success. One of the main reasons 
for this failure was the lack of compelling problems that these approaches managed to solve 
[5, 6]. While the performance of various applications like content distribution and network 
management appeared to benefit from the idea of network programmability, there was no real 
pressing need that would turn the shift to the new paradigm into a necessity, leading to the 
commercialization of these early ideas.

Another reason for which active networking and OpenSig did not become mainstream was 
their focus on the wrong user group. Until then, the programmability of network devices could 
be performed only by programmers working for the vendors developing them. The new 
paradigm advocated as one of its advantages the flexibility it would give to end users to 
program the network, even though in reality the use case of end user programmers was really 
rare [6]. This clearly had a negative impact on the view that the research community and most 
importantly the industry had for programmable networks, as it overshadowed their strong points, 
understating their value for those that could really benefit like ISPs and network operators.

Furthermore, the focus of many early programmable network approaches was in promoting 
data instead of control plane programmability. For instance, active networking envisioned the 
exposure and manipulation of resources in network devices (packet queues, processing, 
storage, etc.) through an open API but did not provide any abstraction for logical control. In 
addition, while one of the basic ideas behind programmable networks was the decoupling of 
the control from the data plane, most proposed solutions made no clear distinction between the 
two [5]. These two facts hindered any attempts for innovation in the control plane, which 
arguably presents more opportunities than the data plane for discovering compelling use cases.

A final reason for the failure of early programmable networks was that they focused on 
proposing innovative architectures, programming models, and platforms, paying little or no 
attention to practical issues like the performance and the security they offered [6]. While such 
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features are not significant key concepts of network programmability, they are important 
factors when it comes to the point of commercializing this idea. Therefore, even though pro­
grammable networks had many theoretical advantages, the industry was not eager to adopt 
such solutions unless pressing performance and security issues were resolved.

Clearly, the aforementioned shortcomings of early programmable network attempts were the 
stumbling blocks to their widespread success. However, these attempts were really significant, 
since they defined for the first time key concepts that reformed the way that networks are 
perceived and identified new research areas of high potential. Even their shortcomings were of 
high significance, since they revealed many deficiencies that should be addressed if the new 
paradigm was to be successful one day. All in all, these early attempts were the cornerstones 
that shaped the way to the more promising and now widely accepted paradigm of SDN.

3.2.2.2  Shift to the SDN Paradigm

The first years of the 2000s saw major changes in the field of networking. New technologies 
like ADSL emerged, providing high‐speed Internet access to consumers. At that moment, it 
was easier than ever before for an average consumer to afford an Internet connection that 
could be used for all sorts of activities, from email and teleconference services to large file 
exchanges and multimedia. This mass adoption of high‐speed Internet and of all the new 
services that accompanied it had cataclysmic effects for networks, which saw their size and 
scope increase along with traffic volumes. Industrial stakeholders like ISPs and network 
operators started emphasizing on network reliability, performance, and QoS and required 
better approaches in performing important network configuration and management functions 
like routing, which at the time were primitive at best. Additionally, new trends in the storage 
and management of information like the appearance of cloud computing and the creation of 
large data centers made apparent the need for virtualized environments, accompanied by net­
work virtualization as a means to support their automated provisioning, automation, and 
orchestration.

All these problems constituted compelling use cases that programmable networks promised 
to solve and shifted the attention of the networking community and the industry to this topic 
once more. This shift was strengthened by the improvement of servers that became substantially 
better than the control processors in routers, simplifying the task of moving the control functions 
outside network devices [6]. A result of this technological shift was the emergence of new 
improved network programmability attempts, with the most prominent example being SDN.

The main reason for the apparent success of SDN is that it managed to build on the strong 
points of early programmable network attempts while at the same time succeeded in addressing 
their shortcomings. Naturally, this shift from early programmable networks to SDN did not 
occur at once, but, as we shall now see, went through a series of intermediate steps.

As already mentioned, one of the major drawbacks of early programmable networking 
attempts was the lack of a clear distinction between the control and data plane of network 
devices. The Internet Engineering Task Force (IETF) Forwarding and Control Element 
Separation (ForCES) [12] working group tried to address this by redefining the internal 
architecture of network devices through the separation of the control from the data plane. In 
ForCES, two logical entities could be distinguished: the forwarding element (FE), which 
operated in the data plane and was responsible for per‐packet processing and handling, and the 



Software Defined Networking Concepts	 27

control element (CE), which was responsible for the logic of network devices, that is, for the 
implementation of management protocols, for control protocol processing, etc. A standardized 
interconnection protocol lay between the two elements enforcing the forwarding behavior to 
the FE as directed by the CE. The idea behind ForCES was that by allowing the forwarding 
and control planes to evolve separately and by providing a standard means of interconnection, 
it was possible to develop different types of FEs (general purpose or specialized) that could be 
combined with third‐party control, allowing greater flexibility for innovation.

Another approach targeting the clean separation of the CE and FE of network devices was 
the 4D project [13]. Like ForCES, 4D emphasized the importance of separating the decision 
logic from the low‐level network elements. However, in contrast to previous approaches, the 
4D project envisioned an architecture based on four planes: a decision plane responsible for 
creating a network configuration, a dissemination plane responsible for delivering information 
related to the view of the network to the decision plane, a discovery plane allowing network 
devices to discover their immediate neighbors, and a data plane responsible for forwarding 
traffic. One experimental system based on the 4D architecture was Tesseract [14], which 
enabled the direct control of a network under the constraint of a single administrative domain. 
The ideas expressed in the 4D project acted as direct inspiration for many projects related to 
the controller component of SDNs, since it gave the notion of a logically centralized control 
of the network.

A final project worth mentioning during the pre‐SDN era is SANE/Ethane [15, 16]. Ethane 
was a joint attempt made in 2007 by researchers in the universities of Stanford and Berkeley 
to create a new network architecture for the enterprise. Ethane adopted the main ideas 
expressed in 4D for a centralized control architecture, expanding it to incorporate security. 
The researchers behind Ethane argued that security could be integrated to network management, 
as both require some sort of policy, the ability to observe network traffic, and a means to con­
trol connectivity. Ethane achieved this by coupling very simple flow‐based Ethernet switches 
with a centralized controller responsible for managing the admittance and routing of flows by 
communicating with the switches through a secure channel. A compelling feature of Ethane 
was that its flow‐based switches could be incrementally deployed alongside conventional 
Ethernet switches and without any modification to end hosts required, allowing the wide­
spread adoption of the architecture. Ethane was implemented in both software and hardware 
and was deployed at the campus of Stanford University for a period of a few months. The 
Ethane project was very significant, as the experiences gained by its design, implementation, 
and deployment laid the foundation for what would soon thereafter become SDN. In particular, 
Ethane is considered the immediate predecessor of OpenFlow, since the simple flow‐based 
switches it introduced formed the basis of the original OpenFlow API.

3.2.2.3  The Emergence of SDN

In the second half of the 2000s, funding agencies and researchers started showing interest in 
the idea of network experimentation at scale [6]. This interest was mainly motivated by the 
need to deploy new protocols and services, targeting better performance and QoS in large 
enterprise networks and the Internet, and was further strengthened by the success of experi­
mental infrastructures like PlanetLab [17] and by the emergence of various initiatives like the 
US National Science Foundation’s Global Environment for Network Innovations (GENI). 
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Until then, large‐scale experimentation was not an easy task to perform; researchers were 
mostly limited in using simulation environments for evaluation, which, despite their value, 
could not always capture all the important network‐related parameters in the same manner as 
a realistic testbed would.

One important requirement of such infrastructure‐based efforts was the need for network 
programmability, which would simplify network management and network service deployment 
and would allow multiple experiments to be run simultaneously at the same infrastructure, 
each using a different set of forwarding rules. Motivated by this idea, a group of researchers at 
Stanford created the Clean Slate Program. In the context of this project, which had as a mission 
to “reinvent the Internet,” the OpenFlow protocol was proposed as a means for researchers to 
run experimental protocols in everyday networking environments. Similarly to previous 
approaches like ForCES, OpenFlow followed the principle of decoupling the control and 
forwarding plane and standardized the information exchanges between the two using a simple 
communication protocol. The solution proposed by OpenFlow, which provided architectural 
support for programming the network, led to the creation of the term SDN to encapsulate all 
the networks following similar architectural principles. The fundamental idea behind SDNs 
compared to the conventional networking paradigm is the creation of horizontally integrated 
systems through the separation of the control and the data plane while providing an increasingly 
sophisticated set of abstractions.

Looking back at all the milestones and important programmable network projects presented in 
this section, we can conclude that the road to SDN was indeed a long one with various ideas 
being proposed, tested, and evaluated, driving research in this field even further. SDN was not so 
much of a new idea, as it was the promising result of the distilled knowledge and experience 
obtained through many of the ideas presented in this section. What SDN managed to do differently 
compared to these ideas is that it integrated the most important network programmability 
concepts into an architecture that emerged at the right time and had compelling use cases for a 
great number of interested parties. Even though it remains to be seen whether SDN will be the 
next major paradigm shift in networking, the promise it demonstrates is undeniably very high.

3.3  SDN Paradigm and Applications

In this section, we focus on the key ideas underlying the SDN paradigm, the most recent 
instance in the evolution of programmable networks. In order to better understand the SDN 
concepts and to comprehend the benefits that this paradigm promises to deliver, we need to 
examine it both macro‐ and microscopically. For this, we begin this section by presenting a 
general overview of its architecture before going into an in‐depth analysis of its building blocks.

3.3.1  Overview of SDN Building Blocks

As already mentioned, the SDN approach allows the management of network services through 
the abstraction of lower‐level functionality. Instead of dealing with low‐level details of net­
work devices regarding the way that packets and flows are managed, network administrators 
now only need to use the abstractions available in the SDN architecture. The way that this is 
achieved is by decoupling the control plane from the data plane following the layered 
architecture illustrated in Figure 3.1.
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At the bottom layer, we can observe the data plane, where the network infrastructure 
(switches, routers, wireless access points, etc.) lies. In the context of SDN, these devices have 
been stripped of all control logic (e.g., routing algorithms like BGP) simply implementing a 
set of forwarding operations for manipulating network data packets and flows, providing an 
abstract open interface for the communication with the upper layers. In the SDN terminology, 
these devices are commonly referred to as network switches.

Moving to the next layer, we can observe the control plane, where an entity referred to as 
the controller lies. This entity encapsulates the networking logic and is responsible for 
providing a programmatic interface to the network, which is used to implement new 
functionality and perform various management tasks. Unlike previous approaches like 
ForCES, the control plane of SDN is ripped entirely from the network device and is considered 
to be logically centralized, while physically it can be either centralized or decentralized 
residing in one or more servers, which control the network infrastructure as a whole.

An important aspect that distinguishes SDN from previous programmable network 
attempts is that it has introduced the notion of the network operating system abstraction 
[18]. Recall that previous efforts like active networking proposed some sort of node 
operating system (e.g., NodeOS) for controlling the underlying hardware. A network 
operating system offers a more general abstraction of network state in switches, revealing 
a simplified interface for controlling the network. This abstraction assumes a logically 
centralized control model, in which the applications view the network as a single system. 
In other words, the network operating system acts as an intermediate layer responsible for 
maintaining a consistent view of network state, which is then exploited by control logic to 
provide various networking services for topological discovery, routing, management of 
mobility, and statistics.

At the top of the SDN stack lies the application layer, which includes all the applications 
that exploit the services provided by the controller in order to perform network‐related tasks, 
like load balancing, network virtualization, etc. One of the most important features of SDN is 
the openness it provides to third‐party developers through the abstractions it defines for the 
easy development and deployment of new applications in various networked environments 
from data centers and WANs to wireless and cellular networks. Moreover, the SDN architecture 
eliminates the need for dedicated middleboxes like firewalls and IDS in the network topology, 
as it is now possible for their functionality to be implemented in the form of software applica­
tions that monitor and modify the network state through the network operating system ser­
vices. Obviously, the existence of this layer adds great value to SDN, since it gives rise to a 
wide range of opportunities for innovation, making SDN a compelling solution both for 
researchers and the industry.

Finally, the communication of the controller to the data plane and the application layer 
can be achieved through well‐defined interfaces (APIs). We can distinguish two main 
APIs in the SDN architecture: (i) a southbound API for the communication between the 
controller and the network infrastructure and (ii) a northbound API defining an inter­
face between the network applications and the controller. This is similar to the way 
communication is achieved among the hardware, the operating system, and the user space 
in most computer systems.

Having seen the general overview of the SDN architecture, it is now time for an in‐depth 
discussion of each of the building blocks just presented. Some examples of SDN applications 
will be discussed in the next section.
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3.3.2  SDN Switches

In the conventional networking paradigm, the network infrastructure is considered the most 
integral part of the network. Each network device encapsulates all the functionality that would 
be required for the operation of the network. For instance, a router needs to provide the proper 
hardware like a ternary content‐addressable memory (TCAM) for quickly forwarding packets, 
as well as sophisticated software for executing distributed routing protocols like BGP. 
Similarly, a wireless access point needs to have the proper hardware for wireless connectivity 
as well as software for forwarding packets, enforcing access control, etc. However, dynami­
cally changing the behavior of network devices is not a trivial task due to their closed nature.

The three‐layered SDN architecture presented in Section 3.3.1 changes this by decoupling 
the control from the forwarding operations, simplifying the management of network devices. 
As already mentioned, all forwarding devices retain the hardware that is responsible for storing 
the forwarding tables (e.g., application‐specific integrated circuits (ASICs) with a TCAM) but 
are stripped of their logic. The controller dictates to the switches how packets should be 
forwarded by installing new forwarding rules through an abstract interface. Each time a packet 
arrives to a switch, its forwarding table is consulted and the packet is forwarded accordingly.

Even though in the earlier overview of SDN a clean three‐layered architecture was presented, 
it remains unclear what the boundaries between the control and the data plane should be. For 
example, active queue management (AQM) and scheduling configuration are operations that 
are still considered part of the data plane even in the case of SDN switches. However, there is 
no inherent problem preventing these functions from becoming part of the control plane by 
introducing some sort of abstraction allowing the control of low‐level behavior in switching 
devices. Such an approach could turn out to be beneficial, since it would simplify the 
deployment of new more efficient schemes for low‐level switch operations [19].

On the other hand, while moving all control operations to a logically centralized controller 
has the advantage of easier network management, it can also raise scalability issues if physical 
implementation of the controller is also centralized. Therefore, it might be beneficial to retain 
some of the logic in the switches. For instance, in the case of DevoFlow [20], which is a 
modification of the OpenFlow model, the packet flows are distinguished into two categories: 
small (“mice”) flows handled directly by the switches and large (“elephant”) flows requiring 
the intervention of the controller. Similarly, in the DIFANE [21] controller, intermediate 
switches are used for storing the necessary rules, and the controller is relegated to the simple 
task of partitioning the rules over the switches.

Another issue of SDN switches is that the forwarding rules used in the case of SDN are 
more complex than those of conventional networks, using wildcards for forwarding packets, 
considering multiple fields of the packet like source and destination addresses, ports, 
application, etc. As a result, the switching hardware cannot easily cope with the management 
of packets and flows. In order for the forwarding operation to be fast, ASICs using TCAM are 
required. Unfortunately, such specialized hardware is expensive and power consuming, and as 
a result, only a limited number of forwarding entries for flow‐based forwarding schemes can 
be supported in each switch, hindering network scalability. A way to cope with this would be 
to introduce an assisting CPU to the switch or somewhere nearby to perform not only control 
plane but also data plane functionalities, for example, let the CPU forward the “mice” flows 
[22], or to introduce new architectures that would be more expressive and would allow more 
actions related to packet processing to be performed [23].
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The issue of hardware limitations is not only restricted to fixed networks but is extended to 
the wireless and mobile domains as well. The wireless data plane needs to be redesigned in 
order to offer more useful abstractions similarly to what happened with the data plane of fixed 
networks. While the data plane abstractions offered by protocols like OpenFlow support the 
idea of decoupling the control from the data plane, they cannot be extended to the wireless and 
mobile field unless the underlying hardware (e.g., switches in backhaul cellular networks and 
wireless access points) starts providing equally sophisticated and useful abstractions [5].

Regardless of the way that SDN switches are implemented, it should be made clear that in 
order for the new paradigm to gain popularity, backward compatibility is a very important 
factor. While pure SDN switches that completely lack integrated control exist, it is the hybrid 
approach (i.e., support of SDN along with traditional operation and protocols) that would 
probably be the most successful at these early steps of SDN [11]. The reason is that while the 
features of SDN present a compelling solution for many realistic scenarios, the infrastructure 
in most enterprise networks still follows the conventional approach. Therefore, an intermediate 
hybrid network form would probably ease the transition to SDN.

3.3.3  SDN Controllers

As already mentioned, one of the core ideas of the SDN philosophy is the existence of a net­
work operating system placed between the network infrastructure and the application layer. 
This network operating system is responsible for coordinating and managing the resources of 
the whole network and for revealing an abstract unified view of all components to the appli­
cations executed on top of it. This idea is analogous to the one followed in a typical computer 
system, where the operating system lies between the hardware and the user space and is 
responsible for managing the hardware resources and providing common services for user 
programs. Similarly, network administrators and developers are now presented with a homo­
geneous environment easier to program and configure much like a typical computer program 
developer would.

The logically centralized control and the generalized network abstraction it offers make the 
SDN model applicable to a wider range of applications and heterogeneous network technol­
ogies compared to the conventional networking paradigm. For instance, consider a heteroge­
neous environment composed of a fixed and a wireless network comprised of a large number 
of related network devices (routers, switches, wireless access points, middleboxes, etc.). In the 
traditional networking paradigm, each network device would require individual low‐level 
configuration by the network administrator in order to operate properly. Moreover, since each 
device targets a different networking technology, it would have its own specific management 
and configuration requirements, meaning that extra effort would be required by the adminis­
trator to make the whole network operate as intended. On the other hand, with the logically 
centralized control of SDN, the administrator would not have to worry about low‐level details. 
Instead, the network management would be performed by defining a proper high‐level policy, 
leaving the network operating system responsible for communicating with and configuring 
the operation of network devices.

Having discussed the general concepts behind the SDN controller, the following subsections 
take a closer look at specific design decisions and implementation choices made at this core 
component that can prove to be critical for the overall performance and scalability of the network.
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3.3.3.1  Centralization of Control in SDN

As already discussed, the SDN architecture specifies that the network infrastructure is logi­
cally controlled by a central entity responsible for management and policy enforcement. 
However, it should be made clear that logically centralized control does not necessarily also 
imply physical centralization.

There have been various proposals for physically centralized controllers, like NOX [18] and 
Maestro [24]. A physically centralized control design simplifies the controller implementa­
tion. All switches are controlled by the same physical entity, meaning that the network is not 
subject to consistency‐related issues, with all the applications seeing the same network state 
(which comes from the same controller). Despite its advantages, this approach suffers from 
the same weakness that all centralized systems do, that is, the controller acts as a single point 
of failure for the whole network. A way to overcome this is by connecting multiple controllers 
to a switch, allowing a backup controller to take over in the event of a failure. In this case, all 
controllers need to have a consistent view of the network; otherwise, applications might fail to 
operate properly. Moreover, the centralized approach can raise scalability concerns, since all 
network devices need to be managed by the same entity.

One approach that further generalizes the idea of using multiple controllers over the net­
work is to maintain a logically centralized but physically decentralized control plane. In this 
case, each controller is responsible for managing only one part of the network, but all control­
lers communicate and maintain a common network view. Therefore, applications view the 
controller as a single entity, while in reality control operations are performed by a distributed 
system. The advantage of this approach, apart from not having a single point of failure any­
more, is the increase in performance and scalability, since only a part of the network needs to 
be managed by each individual controller component. Some well‐known controllers that 
belong to this category are Onix [25] and HyperFlow [26]. One potential downside of decen­
tralized control is once more related to the consistency of the network state among controller 
components. Since the state of the network is distributed, it is possible that applications served 
by different controllers might have a different view of the network, which might make them 
operate improperly.

A hybrid solution that tries to encompass both scalability and consistency is to use two 
layers of controllers like the Kandoo [27] controller does. The bottom layer is composed of a 
group of controllers that do not have knowledge of the whole network state. These controllers 
only run control operations that require knowing the state of a single switch (local information 
only). On the other hand, the top layer is a logically centralized controller responsible for 
performing network‐wide operations that require knowledge of the whole network state. The 
idea is that local operations can be performed faster this way and do not incur any additional 
load to the high‐level central controller, effectively increasing the scalability of the network.

Apart from the ideas related to the level of physical centralization of controllers, there have 
been other proposed solutions related to their logical decentralization. The idea of logical 
decentralization comes directly from the early era of programmable networks and from the 
Tempest project. Recall that the Tempest architecture allowed multiple virtual ATM networks to 
operate on top of the same set of physical switches. Similarly, there have been proposals for 
SDN proxy controllers like FlowVisor [28] that allow multiple controllers to share the same 
forwarding plane. The motivation for this idea was to enable the simultaneous deployment of 
experimental and enterprise networks over the same infrastructure without affecting one another.
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Before concluding our discussion on the degree of centralization with SDN controllers, it is 
important to examine the concerns that can be raised regarding their performance and appli­
cability over large networking environments.

One of the most frequent concerns raised by SDN skeptics is the ability of SDN networks to 
scale and be responsive in cases of high network load. This concern comes mainly from the 
fact that in the new paradigm control moves out of network devices and goes in a single entity 
responsible for managing the whole network traffic. Motivated by this concern, performance 
studies of SDN controller implementations [29] have revealed that even physically centralized 
controllers can perform really well, having very low response times. For instance, it has been 
shown that even primitive single‐threaded controllers like NOX can handle an average work­
load of up to 200 thousand new flows per second with a maximum latency of 600 ms for net­
works composed of up to 256 switches. Newer multithreaded controller implementations have 
been shown to perform significantly better. For instance, NOX‐MT [30] can handle 1.6 million 
new flows per second in a 256‐switch network with an average response time of 2 ms in a 
commodity eight‐core machine of 2 GHz CPUs. Newer controller designs targeting large 
industrial servers promise to improve the performance even further. For instance, the McNettle 
[31] controller claims to be able to serve networks of up to 5000 switches using a single controller 
of 46 cores with a throughput of over 14 million flows per second and latency under 10 ms.

Another important performance concern raised in the case of a physically decentralized 
control plane is the way that controllers are placed within the network, as the network 
performance can be greatly affected by the number and the physical location of controllers, as 
well as by the algorithms used for their coordination. In order to address this, various solutions 
have been proposed, from viewing the placement of controllers as an optimization problem 
[32] to establishing connections of this problem to the fields of local algorithms and distributed 
computing for developing efficient controller coordination protocols [33].

A final concern raised in the case of physically distributed SDN controllers is related to the 
consistency of the network state maintained at each controller when performing policy updates 
due to concurrency issues that might occur by the error‐prone, distributed nature of the logical 
controller. The solutions of such a problem can be similar to those of transactional databases, 
with the controller being extended with a transactional interface defining semantics for either 
completely committing a policy update or aborting [34].

3.3.3.2  Management of Traffic

Another very important design issue of SDN controllers is related to the way that traffic is 
managed. The decisions about traffic management can have a direct impact on the performance 
of the network, especially in cases of large networks composed of many switches and with 
high traffic loads. We can divide the problems related to traffic management into two cate­
gories: control granularity and policy enforcement.

Control Granularity
The control granularity applied over network traffic refers to how fine or coarse grained the 
controller inspection operations should be in relation to the packets traversing the network 
[11]. In conventional networks, each packet arriving at a switch is examined individually, and 
a routing decision is made as to where the packet should be forwarded depending on the 
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information it carries (e.g., destination address). While this approach generally works for 
conventional networks, the same cannot be said for SDN. In this case, the per‐packet approach 
becomes infeasible to implement across any sizeable network, since all packets would have to 
pass through the controller that would need to construct a route for each one of them 
individually.

Due to the performance issues raised by the per‐packet approach, most SDN controllers 
follow a flow‐based approach, where each packet is assigned to some flow according to a 
specific property (e.g., the packet’s source and destination address and the application it is 
related with). The controller sets up a new flow by examining the first packet arriving for that 
flow and configuring the switches accordingly. In order to further off‐load the controller, an 
extra coarse‐grained approach would be to enforce control based on an aggregation flow 
match instead of using individual flows.

The main trade‐off when examining the level of granularity is the load in the controller 
versus the QoS offered to network applications. The more fine grained the control, the higher 
the QoS. In the per‐packet approach, the controller can always make the best decisions for 
routing each individual packet, therefore leading to improved QoS. On the other end, enforcing 
control over an aggregation of flows means that the controller decisions for forwarding packets 
do not fully adapt to the state of the network. In this case, packets might be forwarded through 
a suboptimal route, leading to degraded QoS.

Policy Enforcement
The second issue in the management of traffic is related to the way that network policies are 
applied by the controller over network devices [11]. One approach, followed by systems like 
Ethane, is to have a reactive control model, where the switching device consults the controller 
every time a decision for a new flow needs to be made. In this case, the policy for each flow is 
established to the switches only when an actual demand arises, making network management 
more flexible. A potential downside of this approach is the degradation of performance, due 
to the time required for the first packet of the flow to go to the controller for inspection. This 
performance drop could be significant, especially in cases of controllers that are physically 
located far away from the switch.

An alternative policy enforcement approach would be to use a proactive control model. In 
this case, the controller populates the flow tables ahead of time for any traffic that could go 
through the switches and then pushes the rules to all the switches of the network. Using this 
approach, a switch no longer has to request directions by the controller to set up a new flow 
and instead can perform a simple lookup at the table already stored in the TCAM of the 
device. The advantage of proactive control is that it eliminates the latency induced by con­
sulting the controller for every flow.

3.3.4  SDN Programming Interfaces

As already mentioned, the communication of the controller with the other layers is achieved 
through a southbound API for the controller–switch interactions and through a northbound 
API for the controller–application interactions. In this section, we briefly discuss the main 
concepts and issues related to SDN programming by separately examining each point of 
communication.
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3.3.4.1  Southbound Communication

The southbound communication is very important for the manipulation of the behavior of 
SDN switches by the controller. It is the way that SDN attempts to “program” the network. The 
most prominent example of a standardized southbound API is OpenFlow [35]. Most projects 
related to SDN assume that the communication of the controller with the switches is OpenFlow 
based, and therefore, it is important to make a detailed presentation of the OpenFlow approach. 
However, it should be made clear that OpenFlow is just one (rather popular) out of many 
possible implementations of controller–switch interactions. Other alternatives, for example, 
DevoFlow [20], also exist, attempting to solve performance issues that OpenFlow faces.

Overview of OpenFlow
Following the SDN principle of decoupling the control and data planes, OpenFlow provides a 
standardized way of managing traffic in switches and of exchanging information between the 
switches and the controller, as Figure 3.2 illustrates. The OpenFlow switch is composed of 
two logical components. The first component contains one or more flow tables responsible for 
maintaining the information required by the switch in order to forward packets. The second 
component is an OpenFlow client, which is essentially a simple API allowing the communi­
cation of the switch with the controller.

The flow tables consist of flow entries, each of which defines a set of rules determining how 
the packets belonging to that particular flow will be managed by the switch (i.e., how they will 
be processed and forwarded). Each entry in the flow table has three fields: (i) a packet header 
defining the flow, (ii) an action determining how the packet should be processed, and (iii) 
statistics, which keep track of information like the number of packets and bytes of each flow 
and the time since a packet of the flow was last forwarded.

Once a packet arrives at the OpenFlow switch, its header is examined, and the packet is 
matched to the flow that has the most similar packet header field. If a matching flow is found, 
the action defined in the action field is performed. These actions include the forwarding of the 
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Figure 3.2  Design of an OpenFlow switch and communication with the controller.
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packet to a particular port in order to be routed through the network, the forwarding of the packet 
in order to be examined by the controller, or the rejection of the packet. If the packet cannot be 
matched to any flow, it is treated according to the action defined in a table‐miss flow entry.

The exchange of information between the switch and the controller happens by sending 
messages through a secure channel in a standardized way defined by the OpenFlow 
protocol. This way, the controller can manipulate the flows found in the flow table of the 
switch (i.e., add, update, or delete a flow entry) either proactively or reactively as discussed 
in the basic controller principles. Since the controller is able to communicate with the 
switch using the OpenFlow protocol, there is no longer a need for network operators to 
interact directly with the switch.

A particularly compelling feature of OpenFlow is that the packet header field can be a wild­
card, meaning that the matching to the header of the packet does not have to be exact. The idea 
behind this approach is that various network devices like routers, switches, and middleboxes 
have a similar forwarding behavior, differing only in terms of which header fields they use for 
matching and the actions they perform. OpenFlow allows the use of any subset of these header 
fields for applying rules on traffic flows, meaning that it conceptually unifies many different 
types of network devices. For instance, a router could be emulated by a flow entry using a 
packet header performing a match only on the IP address, while a firewall would be emulated 
through a packet header field containing additional information like the source and destination 
IP addresses and port numbers as well as the transport protocol employed.

3.3.4.2  Northbound API

As already discussed, one of the basic ideas advocated in the SDN paradigm is the existence of 
a network operating system, lying between the network infrastructure and the high‐level ser­
vices and applications, similarly to how a computer operating system lies between the hardware 
and the user space. Assuming such a centralized coordination entity and based on the basic 
operating system principles, a clearly defined interface should also exist in the SDN architecture 
for the interaction of the controller with applications. This interface should allow the applica­
tions to access the underlying hardware, manage the system resources, and allow their interac­
tion with other applications without having any knowledge of low‐level network information.

In contrast to the southbound communication, where the interactions between the switches 
and the controller are well defined through a standardized open interface (i.e., OpenFlow), 
there is currently no accepted standard for the interaction of the controller with applications 
[11]. Therefore, each controller model needs to provide its own methods for performing 
controller–application communication. Moreover, even the interfaces current controllers 
implement provide very low‐level abstractions (i.e., flow manipulation), which make it 
difficult to implement applications with different and many times conflicting objectives that 
are based in more high‐level concepts. As an example, consider a power management and a 
firewall application. The power management application needs to reroute traffic using as few 
links as possible in order to deactivate idle switches, while the firewall might need these extra 
switches to route traffic as they best fit the firewall rules. Leaving the programmer to deal with 
these conflicts could become a very complex and cumbersome process.

To solve this problem, many ideas have been proposed, advocating the use of high‐level net­
work programming languages responsible for translating policies to low‐level flow constraints, 
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which in turn will be used by the controller to manage the SDN switches. These network 
programming languages can also be seen as an intermediate layer in the SDN architecture, 
placed between the application layer and the controller in a similar manner as to how high‐level 
programming languages like C++ and Python exist on top of the assembly language for hiding 
the complex low‐level details of the assembly language from the programmer. Some examples 
of such high‐level network programming languages include Frenetic [36] and Pyretic [37].

3.3.5  SDN Application Domains

In order to demonstrate the applicability of SDN in a wide range of networking domains, we 
briefly present two characteristic examples in which SDN could prove to be beneficial: data 
centers and cellular networks. Of course, the list of SDN applications is not only limited to 
these domains but is also extended in many others, from enterprise networks, WLANs, and 
heterogeneous networks to optical networks and the Internet of Things [5, 11].

3.3.5.1  Data Center Networks

One of the most important requirements for data center networks is to find ways to scale in 
order to support hundreds of thousands of servers and millions of virtual machines. However, 
achieving such scalability can be a challenging task from a network perspective. First of all, 
the size of forwarding tables increases along with the number of servers, leading to a require­
ment for more sophisticated and expensive forwarding devices. Moreover, traffic management 
and policy enforcement can become very important and critical issues, since data centers are 
expected to continuously achieve high levels of performance.

In traditional data centers, the aforementioned requirements are typically met through the 
careful design and configuration of the underlying network. This operation is in most cases 
performed manually by defining the preferred routes for traffic and by placing middleboxes 
at strategic choke points on the physical network. Obviously, this approach contradicts the 
requirement for scalability, since manual configuration can become a very challenging and 
error‐prone task, especially as the size of the network grows. Additionally, it becomes 
increasingly difficult to make the data center operate at its full capacity, since it cannot 
dynamically adapt to the application requirements.

The advantages that SDN offers to network management come to fill these gaps. By decoupling 
the control from the data plane, forwarding devices become much simpler and therefore cheaper. 
At the same time, all control logic is delegated to one logically centralized entity. This allows the 
dynamic management of flows, the load balancing of traffic, and the allocation of resources in a 
manner that best adjusts the operation of the data center to the needs of running applications, 
which in turn leads to increased performance [38]. Finally, placing middleboxes in the network is 
no longer required, since policy enforcement can now be achieved through the controller entity.

3.3.5.2  Cellular Networks

The market of cellular mobile networks is perhaps one of the most profitable in telecommuni­
cations. The rapid increase in the number of cellular devices (e.g., smartphones and tablets) 
during the past decade has pushed the existing cellular networks to their limits. Recently, there 
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has been significant interest in integrating the SDN principles in current cellular architectures 
like the 3G Universal Mobile Telecommunications System (UMTS) and the 4G Long‐Term 
Evolution (LTE) [39].

One of the main disadvantages of current cellular network architectures is that the core of 
the network has a centralized data flow, with all traffic passing through specialized equipment, 
which packs multiple network functions from routing to access control and billing (e.g., 
packet gateway in LTE), leading to an increase of the infrastructural cost due to the complexity 
of the devices and raising serious scalability concerns. Moreover, cell sizes of the access net­
work tend to get smaller in order to cover the demands of the ever‐increasing traffic and the 
limited wireless spectrum for accessing the network. However, this leads to increased inter­
ference among neighboring base stations and to the fluctuation of load from one base station to 
another due to user mobility, rendering the static allocation of resources no longer adequate.

Applying the SDN principles to cellular networks promises to solve some of these 
deficiencies. First of all, decoupling the control from the data plane and introducing a 
centralized controller that has a complete view of the whole network allow network equipment 
to become simpler and therefore reduce the overall infrastructural cost. Moreover, operations 
like routing, real‐time monitoring, mobility management, access control, and policy 
enforcement can be assigned to different cooperating controllers, making the network more 
flexible and easier to manage. Furthermore, using a centralized controller acting as an abstract 
base station simplifies the operations of load and interference management, no longer requiring 
the direct communication and coordination of base stations. Instead, the controller makes the 
decisions for the whole network and simply instructs the data plane (i.e., the base stations) on 
how to operate. One final advantage is that the use of SDN eases the introduction of virtual 
operators to the telecommunication market, leading to increased competitiveness. By 
virtualizing the underlying switching equipment, all providers become responsible for 
managing the flows of their own subscribers through their own controllers, without the 
requirement to pay large sums for obtaining their own infrastructure.

3.3.6 � Relation of SDN to Network Virtualization and Network  
Function Virtualization

Two very popular technologies closely related to SDN are network virtualization and network 
function virtualization (NFV). In this subsection, we briefly attempt to clarify their relation­
ship to SDN, since these technologies tend to become the cause of confusion especially for 
those recently introduced to the concept of SDN.

Network virtualization is the separation of the network topology from the underlying physical 
infrastructure. Through virtualization, it is possible to have multiple “virtual” networks deployed 
over the same physical equipment, with each of them having a much simpler topology com­
pared to that of the physical network. This abstraction allows network operators to construct 
networks as they see fit without having to tamper with the underlying infrastructure, which can 
turn out to be a difficult or even impossible process. For instance, through network virtualization, 
it becomes possible to have a virtual local area network (VLAN) of hosts spanning multiple 
physical networks or to have multiple VLANs on top of a single physical subnet.

The idea behind network virtualization of decoupling the network from the underlying 
physical infrastructure bears resemblance to that advocated by SDN for decoupling the control 
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from the data plane and therefore naturally becomes a source of confusion. The truth is that 
none of the two technologies is dependent on the other. The existence of SDN does not readily 
imply network virtualization. Similarly, SDN is not necessarily a prerequisite for achieving 
network virtualization. On the contrary, it is possible to deploy a network virtualization 
solution over an SDN network, while at the same time an SDN network could be deployed in 
a virtualized environment.

Since its appearance, SDN has closely coexisted with network virtualization, which acted 
as one of the first and perhaps the most important use cases of SDN. The reason is that the 
architectural flexibility offered by SDN acted as an enabler for network virtualization. In other 
words, network virtualization can be seen as a solution focusing on a particular problem, 
while SDN is one (perhaps the best at this moment) architecture for achieving this. However, 
as already stressed, network virtualization needs to be seen independently from SDN. In fact, 
it has been argued by many that network virtualization could turn out to be even bigger tech­
nological innovation than SDN [6].

Another technology that is closely related but different from SDN is NFV [40]. NFV is 
a carrier‐driven initiative with a goal to transform the way that operators architect net­
works by employing virtualization‐related technologies to virtualize network functions 
such as intrusion detection, caching, domain name service (DNS), and network address 
translation (NAT) so that they can run in software. Through the introduction of 
virtualization, it is possible to run these functions over generic industry‐standard high‐
volume servers, switches, and storage devices instead of using proprietary purpose‐built 
network devices. This approach reduces operational and deployment costs, since operators 
no longer need to rely on expensive proprietary hardware solutions. Finally, flexibility in 
network management increases as it is possible to quickly modify or introduce new 
services to address changing demands.

The decoupling of network functions from the underlying hardware is closely related to the 
decoupling of the control from the data plane advocated by SDN, and therefore, the distinction 
of the two technologies can be a bit vague. It is important to understand that even though 
closely related, SDN and NFV refer to different domains. NFV is complementary to SDN but 
does not depend on it, and vice versa. For instance, the control functions of SDN could be 
implemented as virtual functions based on the NFV technology. On the other hand, an NFV 
orchestration system could control the forwarding behavior of physical switches through 
SDN. However, neither technology is a requirement for the operation of other, but both could 
benefit from the advantages each can offer.

3.4  Impact of SDN to Research and Industry

Having seen the basic concepts of SDN and some important applications of this approach, 
it is now time to briefly discuss the impact of SDN to the research community and the 
industry. While the focus of each interested party might be different, from designing novel 
solutions exploiting the benefits of SDN to developing SDN‐enabled products ready to be 
deployed in commercial environments, their involvement in the evolution of SDN helps in 
shaping the future of this technology. Seeing what the motivation and the focus of current 
SDN‐related attempts will provide us with indications of what will potentially drive future 
research in this field.
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3.4.1  Overview of Standardization Activities and SDN Summits

Recently, several standardization organizations have started focusing on SDN, each 
working in providing standardized solutions for a different part of the SDN space. The 
benefits of such efforts are very significant, since standardization is the first step toward the 
wide adoption of a technology.

The most relevant standardization organization for SDN is considered the Open Networking 
Foundation (ONF) [41], which is a nonprofit industry consortium founded in 2011. It has more 
than 100 company members including telecom operators, network and service providers, 
equipment vendors, and networking and virtualization software suppliers. Its vision is to make 
SDN the new norm for networks by transforming the networking industry to a software industry 
through the open SDN standards. To achieve this, it attempts to standardize and commercialize 
SDN and its underlying technologies, with its main accomplishment the standardization of the 
OpenFlow protocol, which is also the first SDN standard. ONF has a number of working 
groups working in different aspects of SDN from forwarding abstractions, extensibility, config­
uration, and management to educating the community on the SDN value proposition.

The IETF, which is a major driving force in developing and promoting Internet standards, 
also has a number of working groups focusing on SDN in a broader scope than just OpenFlow. 
The Software Defined Networking Research Group (SDNRG) [42] focuses on identifying 
solutions related to the scalability and applicability of the SDN model as well as for developing 
abstractions and programming languages useful in the context of SDN. Finally, it attempts to 
identify SDN use cases and future research challenges. On a different approach, the Interface 
to the Routing System (I2RS) [43] working group is developing an SDN strategy, counter to 
the OpenFlow approach, in which traditional distributed routing protocols can run on network 
hardware to provide information to a centrally located manager. Other SDN‐related IETF 
working groups include application‐layer traffic optimization (ALTO) [44] using SDN 
and CDNI [45] studying how SDN can be used for content delivery network (CDN) 
interconnection.

Some study groups (SGs) of ITU’s Telecommunication Standardization Sector (ITU‐T) 
[46] are also looking on SDN for public telecommunication networks. For instance, Study 
Group 13 (SG13) is focusing on a framework of telecom SDN and on defining requirements 
of formal specification and verification methods for SDN. Study Group 11 (SG11) is devel­
oping requirements and architectures on SDN signaling, while Study Group 15 (SG15) has 
started discussions on transport SDN.

Other standardization organizations that have also been interested in applying the SDN 
principles include the Optical Internetworking Forum (OIF) [47], the Broadband Forum 
(BBF) [48], and the Metro Ethernet Forum (MEF) [49]. OIF is responsible for promoting the 
development and deployment of interoperable optical networking systems, and it supports a 
working group to define the requirements for a transport network SDN architecture. BBF is a 
forum for fixed line broadband access and core networks, working on a cloud‐based gateway 
that could be implemented using SDN concepts. Finally, MEF has as its goal to develop, pro­
mote, and certify technical specifications for carrier Ethernet services. One of its directions is 
to investigate whether MEF services could fit within an ONF SDN framework.

Apart from the work performed on standardizing SDN solutions, there exist a number of 
summits for sharing and exploring new ideas and key developments produced in the SDN 
research community. The Open Networking Summit (ONS) is perhaps the most important 
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SDN event having as a mission “to help the SDN revolution succeed by producing high‐
impact SDN events.” Other SDN‐related venues have also started emerging like the SDN & 
NFV Summit for solutions on network virtualization, the SDN & OpenFlow World Congress, 
the SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN), and the 
IEEE/IFIP International Workshop on SDN Management and Orchestration (SDNMO).

3.4.2  SDN in the Industry

The advantages that SDN offers compared to traditional networking have also made the industry 
focus on SDN either for using it as a means to simplify management and improve services in 
their own private networks or for developing and providing commercial SDN solutions.

Perhaps one of the most characteristic examples for the adoption of SDN in production net­
works is Google, which entered in the world of SDN with its B4 network [50] developed for 
connecting its data centers worldwide. The main reason for moving to the SDN paradigm, as 
explained by Google engineers, was the very fast growth of Google’s back‐end network. 
While computational power and storage become cheaper as scale increases, the same cannot 
be said for the network. By applying SDN principles, the company was able to choose the 
networking hardware according to the features it required, while it managed to develop 
innovative software solutions. Moreover, the centralized network control made the network 
more efficient and fault tolerant providing a more flexible and innovative environment, while 
at the same time it led to a reduction of operational expenses. More recently, Google revealed 
Andromeda [51], a software defined network underlying its cloud, which is aimed at enabling 
Google’s services to scale better, cheaper, and faster. Other major companies in the field of 
networking and cloud services like Facebook and Amazon are also planning on building their 
next‐generation network infrastructure based on the SDN principles.

Networking companies have also started showing interest in developing commercial SDN 
solutions. This interest is not limited in developing specific products like OpenFlow switches 
and network operating systems; rather, there is a trend for creating complete SDN ecosystems 
targeting different types of customers. For instance, companies like Cisco, HP, and Alcatel 
have entered the SDN market, presenting their own complete solutions intended for enter­
prises and cloud service providers, while telecommunication companies like Huawei are 
designing solutions for the next generation of telecom networks, with a specific interest in 
LTE and LTE‐Advanced networks. In 2012, VMware acquired an SDN start‐up called Nicira 
in order to integrate its network virtualization platform (NVP) to NSX, VMware’s own net­
work virtualization and security platform for software defined data centers. The list of major 
companies providing SDN solutions constantly grows, with many others like Broadcom, 
Oracle, NTT, Juniper, and Big Switch Networks recognizing the benefits of SDN and 
proposing their own solutions.

3.4.3  Future of SDN

Going back to the beginning of this discussion and looking at all the intermediate steps that 
led to modern software defined networks, it is tricky to predict what lies in the future. Previous 
attempts for redesigning the network architecture have shown that very promising technologies 
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can fail due to lack of the proper conditions, while success depends on a number of factors 
from finding compelling use cases for the emerging technology to managing its adoption not 
only by the research community but by the industry as well. The way that SDN deals with 
these matters makes it a very promising candidate for being the next major disruption in the 
networking field. The benefits of applying the SDN principles in different types of networks, 
the unification of heterogeneous environments, and the wide number of applications that this 
paradigm offers demonstrate its very high potential to become a major driving force commer­
cially in the very near future especially for cloud service providers, network operators, and 
mobile carriers. It remains to be seen whether these predictions will be confirmed and to what 
extent SDN will deliver its promises.
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