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31.1. Introduction

In previous chapters, the total sum of the squares was decomposed into the sum
of the variations of a correction factor, the main effect of a factor, and the error.
This decomposition can be extended by looking at what the researcher feels could
be causing the variations; or the total sum of the squares can be decomposed into
the sum of the variations of causes with a unit degree of freedom. The latter
method is described in this chapter. This chapter is based on Genichi Taguchi et
al., Design of Experiments. Tokyo: Japanese Standards Association, 1973.

31.2. Comparison and Its Variation

The analysis of variance for the example in Section 30.2 showed that A is signifi-
cant. This meant that the roundness differed by the order of the various processes
used in making the pinholes. Sometimes we would like to know whether the dif-
ference was caused by the difference between A, and A,, or between A, and the
mean of A; and A,.
Everyone knows to compare A, and A, by
) = A4 (31.1)
10 10

However, A; and the mean of A; and A, would be compared by using the following
linear equation:

A T4 A
L 20 10
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31.2. Comparison and Its Variation

L, and L, are linear equations; their sum of the coefficients for A,, A,, and Aj is
equal to zero either in L, or in L.

L;: 1. 0 (31.3)
Y100 10 "
I'L-i-i—i—() (31.4)
* 20 20 10 '
Assume that the sums A;, A,, ... , A, each has the same number of data (b) making
up their respective total.
In a linear equation with constant coefficients A;, A,, ... , A,
L= c¢A + Ay + =+ ¢,A, (31.5)
when the sum of the coefficients is equal to zero,
g+ttt =0 (81.6)
then L is called either contrast or comparison.
As described previously, in a linear equation with constant coefficients,
L= A + ody + = + A, (31.7)
the variation of L, or S, is given by
A+ o+ g A)?
(a4, Ay (31.8)

P+ 4+ Db

where S, has one degree of freedom. Calculation and estimation of a contrast are
made in exactly the same way.
In two contrasts,

L = qA + = + c,A, (31.9)

Ly, = 1A, + = + ¢LA, (31.10)
when their sum of products is equal to zero,
eyt oech o+ el =0 (31.11)
L, and L, are orthogonal. When L, and L, are orthogonal, each of

P E— (81.12)
@t et b ’

L2
S, = (31.13)
2T (2 + -+ ¢2)b
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31. Decomposition to Components with a Unit Degree of Freedom

is variation having one degree of freedom; each variation consists of one of the
components in S,. Therefore, when (¢ — 1) comparisons, L, L, ... , Ly, are
orthogonal to each other, the following equation is used:

Sy =8, + 8§, + o+ S (31.14)
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Table 31.1
Percent of deterioration

Table 31.2
ANOVA table




31.2. Comparison and Its Variation




534 31. Decomposition to Components with a Unit Degree of Freedom

31.3. Linear Regression Equation

The tensile strength of a product was measured at different temperatures, x;, x,
oy X, tO gL Y, Yoy wny Yy

Table 31.3
ANOVA table




31.3. Linear Regression Equation

The relationship of the tensile strength, y, to temperature, x, is usually ex-
pressed by a linear function:

a+ bx=y (31.39)

Then n observational values (x;, y;), (%, %), ... , (x,, y,), are put in equation
(31.39):

a+ bx; = vy, (i=1,2,..,n) (31.40)

Equation (31.40) is called an observational equation. When the n pairs of observa-
tional values are put in the equation, there are n simultaneous equations with two
unknowns, ¢ and b.

When the number of equations exceeds the number of unknowns, a solution
that perfectly satisfies both of these equations does not exist; however, a solution
that minimizes the differences between both sides of the equations can be ob-
tained. That is, to find @ and b would minimize the residual sum of the squares
or the differences between the two sides:

S,=(n—a— %)+ Oy —a—bx)? + =+ (5, — a—bx)? (3141

This solution was named by K. F. Gauss and is known as the least squares method. 1t
is obtained by solving the following normal equations:

na + (Z xi)b =>y (31.42)
<2 xi> a+ (2 x2> b= > xy (81.43)

where

N
Il

sum of coefficients squared of a in (31.40); the coefficients

are equal to 1

12 4+ 12 4 - + 12 (31.44)

sum of products of the coefficients of @ and b in (31.40)

VRS
I\
ks

~_—

Il

= 1x + 1y + = + lx (31.45)

n

(E y,) = sum of products of the coefficients of @ and observational

values of y in (31.40)
=1y, + 1y, + - + 1y, (31.46)

(Z xf) = sum of the coefficients squared of b in (31.40)
=2+ ad + o+ Al (31.47)
E x;9; = sum of products of the coefficients of b and

observational values of y in (31.40)
=y T Ry T oy, (31.48)
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It is highly desirable that the reader be able to write equations (39.42) and (31.43)
at any time. Their memorization should not be difficult.

To solve the simultaneous equations (31.42) and (31.43), x; is multiplied by
both sides of (31.42). Also, n has to be multiplied by both sides of (31.43). After
subtracting the same sides of the two equations from each other, term «a disappears
and term b is left.

[(2 xl>2 -y, xﬂ b= (2 x,.)<2 y,> - xy  (31.49)

S (=)(24)

From this,

b 3 (31.50)
and then dividing the denominator and the numerator by =, respectively,
b — 'xlyl + ot xnyn — [(‘xl + ot xn)(yl + ot yn)/n]
W= BT )
n
Sy(xy
= 3() (31.51)
S (x0)
where S, (xx) is the total variation of the temperature, x:
+ox + o+ x)?
S(xx) = a2+ ad et g2 = 1R %) (31.52)
n
Si(xy) is called the covariance of x and y and is determined by
Si(wy) =y + %y + o0+ Ky,
_ (o + 2 + o+ %)y T yp + 0+ y,) (31.53)

n

In the equation of covariance, the square term in the equation of variation is
substituted for by the product of x and y.
Putting b of (31.50) into (31.42), a is obtained:

a=1t [E y, — 2 (E ﬂ (31.54)

n S(xx)
It is known from (31.54) that when
>x=0 (31.55)

then

a=8""TI_5 (31.56)



31.3. Linear Regression Equation

Thus, the estimation of the unknowns a and b becomes very simple. For this pur-
pose, equation (31.39) may be expanded as follows:

m+ b(x —x) =y (31.57)

where x is the mean of x, x, ... , x,. Such an expansion is called an orthogonal
expansion.

The orthogonal expansion has the following meaning: Either the general mean,
m, or the linear coefficient, b, is estimated from the linear equation of y. Using
equation (31.57), the two linear equations are orthogonal; therefore, the magni-
tudes of their influences are easily evaluated.

In the observational equation

m+ b(x, — x) =y, (i=12,..,n (81.58)
the sum of the products of the unknowns m and b,
2 (=% =0
becomes zero. Accordingly, the normal equations become

nm + 0b = 2 ¥
Om + [E(xi - x)2]b = > (x,— %)y, (31.59)

Letting the estimates of m and b be 7 and 5,

m2y1+3’2+'"+5’n
n
L 2=y
b=—"——
E(xi_x)Q

_ Sy(xy)
Sy(xx)

(31.60)

(31.61)

Not only =, but also b, is a linear equation of y;, ¥y, ... , ¥,

X — X

Sy(xx)

G =

X, — X
Sp(xx)

_ %X (31.62)
TS () '
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538 31. Decomposition to Components with a Unit Degree of Freedom

The number of units of the sum of the coefficients squared is
5 — % - x| x, = x|

S+t a= DX 4|2 o [ —

Sy(x) S(x) Sy(x)

[on = %)% + (% = %)% + = (x, = )]

-t
[S/(xx)]*

o Sp(xx)
CISH(xx) ]2

1
= S, (0 (31.63)

The variations of m, b, and error are
EE 2
S = CF = O )
n
(b)*
no. of units

_ [Si(xy) /Sy (e
1/8/(xx)

S, =

_ ST(’“)’)2
= —ST(xx) (31.64)

YAyt +y2 =8, =8, (31.65)

S, =

The number of degrees of freedom is 1 for S, or S, and n — 2 for S,




31.3. Linear Regression Equation

Table 31.4
Data after subtracting a working mean
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31.4. Application of Orthogonal Polynomials

The type of contrast, or comparison, to cite is up to a researcher. The appropriate
selection is crucial if the results achieved are to be based on practical and justifiable




31.4. Application of Orthogonal Polynomials

Table 31.5

ANOVA table
Source f S v S’ p (%)
m 1 41,731.60 41,731.60 41,730.793 98.289
b 1 720.80 720.80 719.993 1.696
e 6 4.84 0.807 6.545 0.015
Total g 42,457.24 42,457.240 100.000

comparisons rather than simply on the theoretical methodologies. Only a re-
searcher or an engineer who is thoroughly knowledgeable of the products or con-
ditions being investigated can know what comparison would be practical. However,
the contrasts of orthogonal polynomials in linear, quadratic, ... , are often used.
Let A;, Ay, ... , A, denote the values of first, second, ... , a level, respectively.
Assuming that the levels of A are of equal intervals, the levels are expressed as

A = A
Ay = A + h
Ay = A + 24 (31.93)

A, = A + (a— 1)k

From each level of A, A,, ..., A, rdata are taken. The sum of each level is denoted
by ¥, Yo, ..., ¥, respectively. When A has levels with the same interval, an orthogonal
polynomial, which is called the orthogonal function of P. L. Chebyshev, is generally
used.

The expanded equation is

— _ 2 _ 1
y=10y + b(A—A) + b [(A — A)? — a 12 h2] + e (31.94)
where A is the mean of the levels of A:
— a—1
A=A + h (81.95)

The characteristics of the expansion above are that it attaches importance to
the terms of the lower orders, such as a constant, a linear function, or even a
quadratic function. First, the constant term 4, is tried. If it does not fit well, a
linear term is tried. If it still does not show linear tendency, the quadratic term is
tried, and so on. When sums y,, ¥, ... , y, were obtained from r data of the levels
Ay, Ay, ..., A, respectively, the values are &), b, ... . Equation (31.94) will be
obtained by solving the following observational equation with order a using the
least squares method:
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31. Decomposition to Components with a Unit Degree of Freedom

— _ 2 — 1
by + bi(A — A) +b2|:(A| —A)Q—a h2:| +...=&
r

12
(31.96)
A)2 Cl2 —1 2 Ya
by = b(A, = A) + by| (A, — A)* — 2|+ =2
12 r
The estimates of 4, b, ... are denoted by by, b, b, ...
e
= (31.97)
ar
A — Ay + -+ (A, — A
e (4, — 4, (31.98)

M — At (4, - Dy

It is easy to calculate %, since it is the mean of the total data. But it seems to
be troublesome to obtain 4;, b, ... . Actually, it is easy to estimate them by using
Table 31.6, which shows the coefficients of orthogonal polynomials when a = 3
(three levels). b, and b, are linear and quadratic coefficients, respectively. These
are given by

Wid, + Wody + Wedy

b= 31.99
! NS (31.99)
WA, + Wody + WAA,
by, = — e (31.100)
r(\NS) 12

In the equations above, A, A,, and Az are used instead of y;, y,, and y;. For &,
the values of W;, W,, and W are —1, 0, and 1. Also, Sis 2. §; is then

—A, + Ay
by = —— (31.101)
2rh
Similarly,
AT 24+ A
b, = o (31.102)
Table 31.6
Coefficients of orthogonal polynomial for three levels
Coefficients b, b,
w, —1l 1
W, 0 -2

>
w

N NN~

wp N O



31.4. Application of Orthogonal Polynomials

The variations of 4] and 4, are denoted by S,, and S, respectively. These are given
by the squares of equations (31.101) and (31.102) divided by their numbers of
units, respectively.

—A + Ay)?
SA,=7( Lt 4y) (31.103)
2r
A — 24, + Ay)?
S, = M (31.104)
4 67

The denominator of equations (31.103) and (31.104) is r(A%S) (A%Sis the sum of
squares of the coefficients of W). The effective number of replication, n,, is given
by

b n

e

= rSK? (31.105)

by m, = rSh (31.106)

In general, the ith coefficient b, and its variation on §,, are
_ WA A -+ WA,
r(\S) W'

— (m/lAl + o + WIA(J)Q
ST WA Wy (31.108)

b

(31.107)

Sy,

O Example

545

To observe the change of the tensile strength of a synthetic resin due to changes
in temperature, the tensile strength of five test pieces was measured at A, = 5°C,
A, = 20°C, and A; = 35°C, respectively, to get the results in Table 31.7. The main
effect A is decomposed into linear, quadratic, and cubic components to find the
correct order of polynomial to be used. From Table 31.8, find the coefficients at
the number of levels k = 4.

Table 31.7
Tensile strength (kg/mm?)
Level Data Total
A, (5°C) 43, 47, 45, 43, 45 233
A, (20°C) 43, 41, 45, 41, 39 209
A, (35°C) 37, 36, 39, 40, 38 190

A, (50°C) 34, 32, 36, 35, 35 172
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31. Decomposition to Components with a Unit Degree of Freedom

Table 31.9
ANOVA table
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