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31.1. Introduction

In previous chapters, the total sum of the squares was decomposed into the sum
of the variations of a correction factor, the main effect of a factor, and the error.
This decomposition can be extended by looking at what the researcher feels could
be causing the variations; or the total sum of the squares can be decomposed into
the sum of the variations of causes with a unit degree of freedom. The latter
method is described in this chapter. This chapter is based on Genichi Taguchi et
al., Design of Experiments. Tokyo: Japanese Standards Association, 1973.

31.2. Comparison and Its Variation

The analysis of variance for the example in Section 30.2 showed that A is signifi-
cant. This meant that the roundness differed by the order of the various processes
used in making the pinholes. Sometimes we would like to know whether the dif-
ference was caused by the difference between A1 and A2, or between A2 and the
mean of A1 and A2.

Everyone knows to compare A1 and A2 by

A A1 2L � � (31.1)1 10 10

However, A3 and the mean of A1 and A1 would be compared by using the following
linear equation:

A � A A1 2 3L � � (31.2)2 20 10
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L1 and L2 are linear equations; their sum of the coefficients for A1, A2, and A3 is
equal to zero either in L1 or in L2.

1 1
L : � � 0 (31.3)1 10 10

1 1 1
L : � � � 0 (31.4)2 20 20 10

Assume that the sums A1, A2, ... , Aa each has the same number of data (b) making
up their respective total.

In a linear equation with constant coefficients A1, A2, ... , Aa,

L � c A � c A � ��� � c A (31.5)1 1 2 2 a a

when the sum of the coefficients is equal to zero,

c � c � ��� � c � 0 (31.6)1 2 a

then L is called either contrast or comparison.
As described previously, in a linear equation with constant coefficients,

L � c A � c A � ��� � c A (31.7)1 1 2 2 a a

the variation of L, or SL, is given by

2(c A � ��� � c A )1 1 a aS (31.8)L 2 2 2(c � c � ��� � c )b1 1 a

where SL has one degree of freedom. Calculation and estimation of a contrast are
made in exactly the same way.

In two contrasts,

L � c A � ��� � c A (31.9)1 1 1 a a

L � c �A � ��� � c �A (31.10)21 1 1 a a

when their sum of products is equal to zero,

c c � � c c � � ��� � c c � � 0 (31.11)1 1 2 2 a a

L1 and L2 are orthogonal. When L1 and L2 are orthogonal, each of

2L1S � (31.12)L1 2 2(c � ��� � c )b1 a

2L2S � (31.13)L2 (c �2 � ��� � c �2)b1 a
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is variation having one degree of freedom; each variation consists of one of the
components in SA. Therefore, when (a � 1) comparisons, L1, L2, ... , L(a�1), are
orthogonal to each other, the following equation is used:

S � S � S � ��� � S (31.14)A L L L(a�1)1 2

❒ Example 1

In an example of pinhole processing,

A A1 2L � � (31.15)1 10 10

A � A A1 2 3L � � (31.16)2 20 10

The orthogonality between L1 and L2 is proven by

1 1 1 1 1
� � � 0 � � 0 (31.17)� �� � � �� � � �10 20 10 20 10

Therefore, the following relation can be made:

S � S � S (31.18)A L L2

where SL1 and SL2 are calculated from equation (31.8) as

2 2 2(A /10 � A /10) (1/10) (A � A )1 2 1 2S � �L1 2 2 2 2 2[(1/10) � (�1/10) ](10) (1/10) [1 � (�1) ](10)

2(A � A )1 2�
20

2(87 � 85)
�

20

� 0.2 (31.19)

2[(A � A )/20 � A /10)]1 2 3S �L2 2 2 2[(1/20) � (1/20) � (�1/10) ](10)

2 2(1/20) (A � A � 2A )1 2 3�
2(1/20) (6)(10)

� 173.4 (31.20)

Thus, the magnitude of the variation in roundness, which is caused by A1, A2,
and A3, namely, SA, is decomposed into the variation caused by the difference
between A1 and A2, namely, , and that variation caused by the difference betweenSL1

A3 and the mean of A1 and A2, namely, :SL2

S � S � 0.2 � 173.4 � 174 � S (31.21)L L A1 2
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❒ Example 2

We have the following four types of products:

A : foreign products1

A : our company’s products2

A : domestic: � company’s products3

A : domestic: � company’s products4

Two, ten, six, and six products were sampled from each type, respectively, and a
300-hour continuous deterioration test was made. The percent of deterioration (Ta-
ble 31.1) was determined as follows:

(value after the test) � (initial value)
y � (31.22)

initial value

2 2T 488
S � �m n 24

� 9923 (31.23)

2 2 2 2A A A A1 2 3 4S � � � � � SA m2 10 6 6

2 2 2 226 175 147 � 140
� � � � 9923

2 10 6

� 346 (31.24)

2 2 2 2S � 12 � 14 � 20 � ��� � 24T

� 10,426 (31.25)

S � S � S � Se T m A

� 10,426 � 9923 � 346

� 157 (31.26)

The analysis of variance is shown in Table 31.2.
Instead of making an overall comparison among the four products, we usually

want to make a more detailed comparison, such as:

L : difference between foreign and domestic products1

L : difference between our company and the other domestic products2

L : difference between the other domestic companies’ products3
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Table 31.1
Percent of deterioration

Level Data Total

A1

A2

A3

A4

12, 14

20, 18, 19, 17, 15, 16, 13, 18, 22, 17

26, 19, 26, 28, 23, 25

24, 25, 18, 22, 27, 24

26

175

147

140

Total 488

Table 31.2
ANOVA table

Source f S V S� � (%)

m

A

e

1

3

20

9,923

346

157

9,923

115.3

7.85

9,915

322

189

95.1

3.0

1.8

Total 24 10,426 10,426 100.0

The comparison above can be made by using the following linear equations:

A A � A � A1 2 3 4L � �1 2 22

26 462
� �

2 22

� �8.0 (31.27)

A A � A2 3 4L � �2 10 12

175 287
� �

10 12

� �6.4 (31.28)

A � A3 4L �3 6

147 � 140
�

6

� 1.2 (31.29)
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These equations are orthogonal to each other, and also orthogonal with the general
mean,

A � A � A � A1 2 3 4L � (31.30)m 24

For example, the orthogonality between Lm and L1 is proven by

1 1 1 1
(2) � � (22) � 0 (31.31)� �� � � �� �2 24 22 24

where the sum of product of the coefficients is zero. The orthogonality between L1

and L2 is proven by

1 1 1 1 1
(0)(2) � � (10) � � � (12) � 0� � � �� � � �� �2 22 10 22 12

(31.32)

After calculating the variations of L1, L2, and L3, we obtain the following
decomposition:

S � S � S � S (31.33)A L L L1 2 3

2L1S �L1 sum of the coefficients squared

2[A /2 � (A � A � A )/22]1 2 3 4�
2 2(1/2) (2) � (�1/22) (22)

2[11A � (A � A � A )]1 2 3 4�
2 2(11 )(2) � (�1) (22)

2(286 � 462)
�

264

� 117 (31.34)

2[A /10 � (A � A )/12]2 3 4S �L2 2 2(1/10) (10) � (�1/12) (12)

2[6A � 5(A � A )]2 3 4�
2 2(6 )(10) � (�5) (12)

2(1050 � 1435)
� � 225 (31.35)

660

2(A /6 � A /6)3 4S �L2 2 2(1/6) (6) � (�1/6) (6)

2(A � A )3 4�
12

� 4 (31.36)
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Table 31.3
ANOVA table

Source f S V S� � (%)

m

A
L1

L2

L3

e

1

1
1
1

20

9,923

117
225

4

157

9,923

117
225

4

7.85

9,915

109
217

185

95.1

1.0
2.0

1.8

Total 24 10,426 10,426 100.0

An ANOVA table with the decomposition of A into three components with a unit
degree of freedom is shown in Table 31.3.
From the analysis of variance, it has been determined that there is a significant
difference between L1 and L2, but none between the other domestic companies.

When there is no significance, as in this case, it is better to pool the effect with
the error to show the miscellaneous effect. Pooling the effect of L3 with the error,
the degrees of contribution would then be 1.9%.

Where the error variance, Ve, is calculated from the pooled error variation,

157 � 4
V �e 21

� 7.67 (31.37)

number of units � sum of coefficients squared
2 21 1

� (2) � � (22)� � � �2 22

1 1
� �

2 22

12
�

22

6
� (31.38)

11

The other confidence intervals were calculated in the same way. Since L3 of equa-
tion (31.29) is not significant, it is generally not estimated.

31.3. Linear Regression Equation

The tensile strength of a product was measured at different temperatures, x1, x2,
... , xn, to get y1, y2, ... , yn.
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The relationship of the tensile strength, y, to temperature, x, is usually ex-
pressed by a linear function:

a � bx � y (31.39)

Then n observational values (x1, y1), (x2, y2), ... , (xn, yn), are put in equation
(31.39):

a � bx � y (i � 1, 2, ... , n) (31.40)i i

Equation (31.40) is called an observational equation. When the n pairs of observa-
tional values are put in the equation, there are n simultaneous equations with two
unknowns, a and b.

When the number of equations exceeds the number of unknowns, a solution
that perfectly satisfies both of these equations does not exist; however, a solution
that minimizes the differences between both sides of the equations can be ob-
tained. That is, to find a and b would minimize the residual sum of the squares
or the differences between the two sides:

2 2 2S � (y � a � bx ) � (y � a � bx ) � ��� � (y � a � bx ) (31.41)e 1 1 2 2 n n

This solution was named by K. F. Gauss and is known as the least squares method. It
is obtained by solving the following normal equations:

na � x b � y (31.42)� �� �i i

2x a � x b � x y (31.43)� � �� � � �i i i i

where

n � sum of coefficients squared of a in (31.40); the coefficients

are equal to 1

2 2 2� 1 � 1 � ��� � 1 (31.44)

x � sum of products of the coefficients of a and b in (31.40)�� �i
� 1x � 1x � ��� � 1x (31.45)1 2 n

y � sum of products of the coefficients of a and observational�� �i
values of y in (31.40)

� 1y � 1y � ��� � 1y (31.46)1 2 n

2x � sum of the coefficients squared of b in (31.40)�� �i
2 2 2� x � x � ��� � x (31.47)1 2 n

x y � sum of products of the coefficients of b and� i i

observational values of y in (31.40)
� x y � x y � ��� � x y (31.48)1 1 2 2 n n
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It is highly desirable that the reader be able to write equations (39.42) and (31.43)
at any time. Their memorization should not be difficult.

To solve the simultaneous equations (31.42) and (31.43), xi is multiplied by
both sides of (31.42). Also, n has to be multiplied by both sides of (31.43). After
subtracting the same sides of the two equations from each other, term a disappears
and term b is left.

2 2

x � n x b � x y � n x y (31.49)� �� � � ��� � � � � �� �i i i i i i

From this,

n x y � x y� � �� �� �i i i i

b � (31.50)2

2n x � x� �� � � �i i

and then dividing the denominator and the numerator by n, respectively,

x y � ��� � x y � [(x � ��� � x )(y � ��� � y )/n]1 1 n n 1 n 1 nb � 2(x � ��� � x )1 n2 2x � ��� � x �1 n n

S (xy)T� (31.51)
S (xx)T

where ST(xx) is the total variation of the temperature, x :

2(x � x � ��� � x )1 2 n2 2 2S (xx) � x � x � ��� � x � (31.52)T 1 2 n n

ST(xy) is called the covariance of x and y and is determined by

S (xy) � x y � x y � ��� � x yT 1 1 2 2 n n

(x � x � ��� � x )(y � y � ��� � y )1 2 n 1 2 n� (31.53)
n

In the equation of covariance, the square term in the equation of variation is
substituted for by the product of x and y.

Putting b of (31.50) into (31.42), a is obtained:

1 S (xy)Ta � y � x (31.54)� �� � ��i in S (xx)T

It is known from (31.54) that when

x � 0 (31.55)� i

then

y � ��� � y1 na � � y (31.56)
n
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Thus, the estimation of the unknowns a and b becomes very simple. For this pur-
pose, equation (31.39) may be expanded as follows:

m � b(x � x) � y (31.57)

where is the mean of x1, x2, ... , xn. Such an expansion is called an orthogonalx
expansion.

The orthogonal expansion has the following meaning: Either the general mean,
m, or the linear coefficient, b, is estimated from the linear equation of y. Using
equation (31.57), the two linear equations are orthogonal; therefore, the magni-
tudes of their influences are easily evaluated.

In the observational equation

m � b(x � x) � y (i � 1, 2, ..., n) (31.58)i i

the sum of the products of the unknowns m and b,

(x � x) � 0� i

becomes zero. Accordingly, the normal equations become

nm � 0b � y� i

20m � (x � x) b � (x � x)y (31.59)� �� �i i i

Letting the estimates of m and b be and ,ˆm̂ b

y � y � ��� � y1 2 nm̂ � (31.60)
n

(x � x)y� i i
b̂ � 2(x � x)� i

S (xy)T� (31.61)
S (xx)T

Not only , but also , is a linear equation of y1, y2, ... , yn.ˆm̂ b

x � x1c �1 S (xx)T

x � x2c �2 S (xx)T

�

x � xnc � (31.62)n S (xx)T
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The number of units of the sum of the coefficients squared is
2 2 2x � x x � x x � x1 2 n2 2 2c � c � ��� � c � � � ��� �� � � � � �1 2 n S (xx) S (xx) S (xx)T T T

1 2 2 2� [(x � x) � (x � x) � ��� (x � x) ]1 2 n2[S (xx)]T

S (xx)T� 2[S (xx)]T

1
� (31.63)

S (xx)T

The variations of m, b, and error are

2(y � ��� � y )1 nS � CF �m n

2(b)
S �b no. of units

2[S (xy)/S (xx]T T�
1/S (xx)T

2S (xy)T� (31.64)
S (xx)T

2 2 2S � y � y � ��� � y � S � S (31.65)e 1 2 n m b

The number of degrees of freedom is 1 for Sm or Sb, and n � 2 for Se.

❒ Example

To observe the change of tensile strength of a product, given a change in temper-
ature, the tensile strength of two test pieces was measured at four different tem-
peratures, with the following results (kg/mm2):

A (0�C): 84.0, 85.21

A (20�C): 77.2, 76.82

A (40�C): 67.4, 68.63

A (60�C): 58.2, 60.44

If there is no objective value, such as a given specification, the degrees of
freedom of the total variation is 7, where the degree of freedom for the correction
factor is not included.
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Table 31.4
Data after subtracting a working mean

Level Data Total

A1

A2

A3

A4

14.0, 15.2

7.2, 6.8

�2.6, �1.4

�11.8, �9.6

29.2

14.0

�4.0

�21.4

Total 17.8

Subtracting a working mean, 70.0, the data in Table 31.4 are obtained.

217.8
CF � � 39.60 (31.66)

8

2 2S � 14.0 � 15.2 � ��� � (9.6) � CF � 765.24 � 39.60T

� 725.64 (31.67)

Assuming that tensile strength changes in the same way as the linear function of
temperature, A, the observational equations will become

y � m � b(A � A) (31.68)

where A signifies temperature and represents the mean value of the various tem-A
perature changes:

1–A � [(2)(0) � (2)(20) � (2)(40) � (2)(60)] � 30�C (31.69)8

In the linear equation, m is a constant and b is a coefficient indicating how much
the tensile strength decreases with a 1�C temperature change. The actual obser-
vational values are put into equation (31.68), as follows:

m � b(0 � 30) � 84.0

m � b(0 � 30) � 85.2

m � b(20 � 30) � 77.2

m � b(20 � 30) � 76.8 (31.70)

m � b(40 � 30) � 67.4

m � b(40 � 30) � 68.6

m � b(60 � 30) � 58.2

m � b(60 � 30) � 60.4
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The unknowns are m and b, and there are eight equations. Therefore, the least
squares method is used to find m and b.

n � sum of the coefficients squared of m (31.71)

� 8

�x�� i� sum of the coefficients of b

� (�30) � (�30) � (�10) � (�10) � 10 � 10 � 30 � 30

� 0 (31.72)

�y�� i� sum of products of y and the coefficients of m

� 84.0 � 85.2 � ��� � 60.4

� (70.0)(8) � 17.8

� 577.8 (31.73)

�2x�� i� sum of the coefficients squared of b

� (�30)2 � (�30)2 � (�10)2 � (�10)2 � 102 � 102 � 302 � 302

� 4000 (31.74)

�x y�� i i� sum of products of y and the coefficients of b

� (�30)(84.0) � (�30)(85.2) � ��� � (30)(58.2) � (30)(60.4)

� (�30)(169.2) � (�10)(154.0) � (10)(136.0) � (30)(118.6)

� �1698.0 (31.75)

The following simultaneous equations are then obtained:

8m � 0b � 577.8

0m � 4000b � �1698.0 (31.76)

Solving these yields

577.8
m̂ �

8

� 72.22 (31.77)
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�1698.0
b̂ �

4000

� �0.4245 (31.78)

The orthogonality of these equations is proved as follows: Let the eight obser-
vational data be y1, y2, ... , y8.

y � y � ��� � y1 2 8m̂ � (31.79)
8

�30(y � y ) � 10(y � y ) � 10(y � y ) � 30(y � y )1 2 3 4 5 6 7 8b̂ �
4000

�3(y � y ) � (y � y ) � (y � y ) � 3(y � y )1 2 3 4 5 6 7 8�
400

(31.80)

The sum of products of the corresponding coefficients of and isˆm̂ b

1 �3 1 �1 1 3
2 � � � 0 (31.81)�� �� � � �� � � �� ��8 400 8 400 8 400

The variation of m, Sm, is identical to the correction factor.

2577.8
S � CF �m 8

� 41,731.60 (31.82)

2S (xy)TS �b S (xx)T

2(�1698.0)
�

4000

� 720.80 (31.83)

The total sum of the observational values squared, ST, is

2 2 2S � 84.0 � 85.2 � ��� � 60.4T

� 42,457.24 (31.84)

The error variation, Se, is then

S � S � S � Se T m b

� 42,457.24 � 41,731.60 � 720.80

� 4.84 (31.85)
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The error variance, with 6 degrees of freedom, is

SeV �e 6

4.84
�

6

� 0.807 (31.86)

The pure variations of the general mean and the linear coefficient, b, are

S� � S � Vm m e

� 41,731.60 � 0.807

� 41,730.793 (31.87)

S� � S � Vb b e

� 720.80 � 0.807

� 719.993 (31.88)

Degrees of contributions are calculated as follows:

41,730.793
� �m 42,457.24

� 98.289% (31.89)

719.993
� �b 42,457.24

� 1.696% (31.90)

4.84 � (2)(0.807)
� �e 42,457.24

� 0.015% (31.91)

The analysis of variance is shown in Table 31.5.
The tensile strength y at temperature x is estimated as

ˆy � m̂ � b(x � x)

� 72.22 � 0.4245(x � 30) (31.92)

31.4. Application of Orthogonal Polynomials

The type of contrast, or comparison, to cite is up to a researcher. The appropriate
selection is crucial if the results achieved are to be based on practical and justifiable
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Table 31.5
ANOVA table

Source f S V S� � (%)

m

b

e

1

1

6

41,731.60

720.80

4.84

41,731.60

720.80

0.807

41,730.793

719.993

6.545

98.289

1.696

0.015

Total 8 42,457.24 42,457.240 100.000

comparisons rather than simply on the theoretical methodologies. Only a re-
searcher or an engineer who is thoroughly knowledgeable of the products or con-
ditions being investigated can know what comparison would be practical. However,
the contrasts of orthogonal polynomials in linear, quadratic, ... , are often used.
Let A1, A2, ... , Aa denote the values of first, second, ... , a level, respectively.

Assuming that the levels of A are of equal intervals, the levels are expressed as

A � A1 1

A � A � h2 1

A � A � 2h (31.93)3 1

�

A � A � (a � 1)ha 1

From each level of A1, A2, ... , Aa, r data are taken. The sum of each level is denoted
by y1, y2, ... , ya, respectively. When A has levels with the same interval, an orthogonal
polynomial, which is called the orthogonal function of P. L. Chebyshev, is generally
used.

The expanded equation is

2a � 12 2y � b � b (A � A) � b (A � A) � h � ��� (31.94)� �0 1 2 12

where is the mean of the levels of A:A

a � 1
A � A � h (31.95)1 2

The characteristics of the expansion above are that it attaches importance to
the terms of the lower orders, such as a constant, a linear function, or even a
quadratic function. First, the constant term b0 is tried. If it does not fit well, a
linear term is tried. If it still does not show linear tendency, the quadratic term is
tried, and so on. When sums y1, y2, ... , ya were obtained from r data of the levels
A1, A2, ... , Aa, respectively, the values are b0, b1, ... . Equation (31.94) will be
obtained by solving the following observational equation with order a using the
least squares method:
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Table 31.6
Coefficients of orthogonal polynomial for three levels

Coefficients b1 b2

W1

W2

W3

�2S

�S

S

�1

0

1

2

2

2

1

�2

1

6

2
2–3

2a � 1 y12 2b � b (A � A) � b (A � A) � h � ��� �� �0 1 1 2 1 12 r

� (31.96)

2a � 1 ya2 2b � b (A � A) � b (A � A) � h � ��� �� �0 1 a 2 a 12 r

The estimates of b0, b1, ... are denoted by b , , ... :b�, � b�0 0 0

y � ��� � y1 ab� � (31.97)0 ar

(A � A)y � ��� � (A � A)y1 1 a ab� � (31.98)1 2 2[(A � A) � ��� � (A � A) ]r1 a

It is easy to calculate , since it is the mean of the total data. But it seems tob�0
be troublesome to obtain , ... . Actually, it is easy to estimate them by usingb�, b�1 2

Table 31.6, which shows the coefficients of orthogonal polynomials when a � 3
(three levels). b1 and b2 are linear and quadratic coefficients, respectively. These
are given by

W A � W A � W A1 1 2 2 3 3b� � (31.99)1 r(�S)h

W A � W A � W A1 1 2 2 3 3b� � (31.100)2 2r(�S)h

In the equations above, A1, A2, and A3 are used instead of y1, y2, and y3. For b1,
the values of W1, W2, and W3 are �1, 0, and 1. Also, S is 2. is thenb�1

�A � A1 3b� � (31.101)1 2rh

Similarly,

A � 2A � A1 2 3b� � (31.102)2 22rh
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Table 31.7
Tensile strength (kg/mm2)

Level Data Total

A1 (5�C)

A2 (20�C)

A3 (35�C)

A4 (50�C)

43, 47, 45, 43, 45

43, 41, 45, 41, 39

37, 36, 39, 40, 38

34, 32, 36, 35, 35

233

209

190

172

The variations of and are denoted by SA1 and SAq, respectively. These are givenb� b�1 2

by the squares of equations (31.101) and (31.102) divided by their numbers of
units, respectively.

2(�A � A )1 3S � (31.103)Al 2r

2(A � 2A � A )1 2 3S � (31.104)Aq 6r

The denominator of equations (31.103) and (31.104) is r(�2S) (�2S is the sum of
squares of the coefficients of W). The effective number of replication, ne, is given
by

2b�: n � rSh (31.105)1 e

4b�: n � rSh (31.106)2 e

In general, the ith coefficient bi and its variation on areSAi

W A � ��� � W A1 1 a ab� � (31.107)1 ir(�S)h

2(W A � ��� � W A )1 1 a aS � (31.108)Ai 2 2(W � ��� � W )r1 a

❒ Example

To observe the change of the tensile strength of a synthetic resin due to changes
in temperature, the tensile strength of five test pieces was measured at A1 � 5�C,
A2 � 20�C, and A3 � 35�C, respectively, to get the results in Table 31.7. The main
effect A is decomposed into linear, quadratic, and cubic components to find the
correct order of polynomial to be used. From Table 31.8, find the coefficients at
the number of levels k � 4.
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Table 31.9
ANOVA table

Source f S V � (%)

A
Linear
Quadratic
Cubic

e

1
1
1

16

296
1
0

51

296
1
0

3.2

84.2

Total

(e)

19

(18)

348

(52) (2.9)

100.0

(15.8)

2(W A � W A � W A � W A � W A )1 1 2 2 2 2 3 3 4 4S �Al 2r(� S)

2[�3(223) � 209 � 190 � 3(172)]
�

(5)(20)

2(�172)
� � 296 (31.109)

100

2 2(223 � 209 � 190 � 172) (�4)
S � � � 1 (31.110)Aq (5)(4) 20

2 2[�223 � 3(209) � 3(190) � 172] 6
S � � � 0 (31.111)Ac (5)(20) 100

2 2 2S � 43 � 47 � ��� � 35 � CF � 348T

S � S � S � S � Se T A A Al q C

� 51 (31.112)

It is known from Table 31.9 that only the linear term of A is significant; hence,
the relationship between temperature, A, and tensile strength, y, can be deemed
to be linear within the range of our experimental temperature changes. The estimate
of the linear coefficient of temperature, b, is

�3(223) � 209 � 190 � 3(172)
b� �1 r(�S)h

�172
� � �0.23 (31.113)

(5)(10)(15)
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The relationship between temperature and tensile strength is then

y � b� � b� (A � A)0 1

794
� � 0.23(A � 27.5)

20

� 39.70 � 0.23(A � 27.5) (31.114)

b : 1 linear1

b : 2 quadratic2

W A � ��� � W A1 1 a ab̂ � (31.115)
ir(�S)h

2�ˆVar(b ) �i 2irSh

2(W A � ��� � W A )1 1 a aS �b̂i 2r(� S)


