

Overview

In this unit, you will learn about data structures. The types of data structures covered
in this unit are lists and dictionaries. You will be able to demonstrate how to create,
read and write data. You will also be able to perform various other operations on the
data structures. The range of skills and programming techniques you learned in term
2 will be useful when you work with data structures. Some of these techniques include
selection, repetition, and the use of variables.

Computer Science G10

Key terms
Table 36

removing unnecessary detail from a problem to generalise or
create a model of a physical object or process

data type a classification of data based on the values it can take
data structure a collection of related data stored in an organised manner
a type of data structure for storing the same data type organised

abstraction

array in rows and columns
a type of sequential data structure made up of an ordered
list collection of smaller data types; It can also be a collection of
other lists
- a data structure organised in a key-value manner; the keys are
dictionary . .
associated with values and the keys are used to access the values
index a way of accessing or identifying elements in an array or list
key a way of accessing or identifying elements in a dictionary
value a single unit of data in a dictionary

NS
Learning outcomes

After completing this unit, you will be able to:
® describe and use appropriate data types.
® describe data structures and their associated operations.
® test and evaluate computer programs.

® design computer programs using sequencing, selection and repetition statements.

/j

Computer Science G10

Data structures

In this section, you will learn about lists and dictionaries.

Python list

Khalid, a grade 10 student in Ras al Khaimah, has designed a Python program for his
computer science teacher. Khalid wants his teacher to use the program to record the
marks for the class.

bl print ("wWelcome to the marks entry system")

gradeStudentl = 15

gradeStudent2 = 80

gradeStudent3 = 9
Figure 119

Khalid has used several variables to store the marks
of each student.

Khalid has a problem. There are 28 students in the
class. He will need to create 28 different variables
for each student such as:

gradeStudent4 = 57
gradeStudent5 = 78

gradeStudent6 = 63

Khalid's teacher would like to use the program for
all his classes. He has 121 students in all his classes.
Can you imagine the number of variables Khalid
needs to add to his program!

Figure 120

This is where data structures are useful. We use data structures to store a collection of
related data efficiently.

You can create a type of data structure called a Zist. A list will store all the grades for each
student in the class one after the other in the same area in memory.

Uni'l' 5 Data Structures

In Python, you can declare and assign values to a list as follows:

studentGrades = [15, &0, %, 57, 78, €3, 73, 98, 91, 46, 93, 35]

Figure 121

Each value in the list has its own memory location. The locations are arranged one after
the other.

Here is a representation of the first seven elements in the studentGrades list.

element 15 80 9 57 78 63 73
index 0 1 2 3 4 5 6

The first element has an index value of 0.

You can print the whole list using the code:

| print (studentGrades)

>>>
>>> studentGrades=[15, 80, 9, 57, 78, 63, 73, 98, 91, 46, 98, 35]
>>> print (studentGrades)
ii5,8%,9%,57, 78, 63, 73, 88,
‘>>>|

[} | A £ ao e 1
71, 40, 30, 37

Figure 122

You use the index to access any element in the list. To check the value of the first element
in the list, you can print it using its index as follows:

print (studentGrades[0])

Figure 123

Computer Science G10

The results are shown below:

You can also use a similar statement to print the value of the sixth element in the list.

>2>2>

>>> print (studentGrades[0])
15

>>> |

mdex

Figure 124
You can also print the sixth element using the statement below:

print (studentGrades[5])

Figure 125
Here are the results:

>>> print (studentGrades[5])
63

>>>

Figure 126
Use the ‘=" to set the values for specific elements in the list

studentGrades[4] = 33

Figure 127

Uni'l' 5 Data Structures

The results before and after changing the value are shown below.

>>> print (studentGrades[4])
78

>>>

>>> studentGrades[4] = 33
>>>

>>> print (studentGrades([4])
33

>>>

Figure 128

You can also assign values directly using the keyboard:
studentGrades[6] = input("Enter the grade:")

Figure 129
Here are the results:

>>> print (studentGrades[6])

73

>>> studentGrades[6] = input ("Enter the grade:")
Enter the grade:91

>>>

>>> print (studentGrades[6])

91

>>>

Figure 130

Be careful about the index values when reading or setting values for elements. Your
program will crash if you try to access a memory location outside the list. For example:

print (studentGrades[77])

Figure 131
This will give an error:

>>>
>>> print (studentGrades[77])
Traceback (most recent call last):
File "<pyshell#34>", line 1, in <module>
print (studentGrades[77])
IndexError: list index out of range
>>>

Figure 132

Computer Science G10

ity

X
ﬂ Creating lists

Uni'l' 5 Data Structures

Reading and writing data to lists

You have already learned about the for and while loops. Loops are very useful when you
need to set, change or read data in a list. The following two examples are brief reminders
of the 2 types of loops you covered in term 2.

Below is an example of a for loop.

for x in range (0, 9, 1):
square = x**2
print (x, "squared is:",square)

Figure 133

Here are the results after running the code:

0 squared is:
1 squared is:
2 squared is:
3 squared is:
4 squared is: 16
5 squared is: 25
6 squared is: 36
7 squared is: 49
8 squared is: 64
>>>

OB = O

Figure 134

The code block below is an example of a while loop. The code block will be executed
until the user enters a temperature that is higher or lower than the limits.

carTemp = 23 .5

while carTemp < 25.0 and carTemp > 21.4:
print ("Enter the temperature in the car")
carTemp = input ("#>")
carTemp = float (carTemp)

print ("Turn the heating or airconon!")

Figure 135

The results are shown below:

Enter the temperature in the car
#>22

Enter the temperature in the car
#>24

Enter the temperature in the car
#>26

Turn the heating or airconon!
>>>

Figure 136

Loops are well suited for the repetitive operations usually needed to set, change, or read
values in data structures.

Computer Science G10

The example below shows how a loop is used to set the values in a list from 10, 20, 30, 40,
up to 100.

0ot ins walnes ip & liet: asinad & For Yosas

FSELEAng dlOEs 1 & 4LX S1I a lor 1&ap

percentlurbers = [0,0,0,0,0,0,0,0,0,0]
for num in range{0,10,1):
percentfumbers [num] = {(num + 1) * 10

print {percentlumbers)

Figure 137

The variable num is used to store the values from the
range function. On line 4, num is then used as an index
in the code block to point to each element in the list.

num is also used in the calculation to set the value for
each element. The index for the list starts from 0. You
can see the results below.

Figure 138

[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
>>>

Figure 139

We use the input () function to set the values to what the user enters.

1P #Using wser inpuot to set valnes

percentWumbers = [0,0,0,0,0,0,0,0,0,0]

for num in range(0,10,1):
print ("Enter value number", num + 1)
value = input()
value = int(wvalus)
percentNumbers [num] = wvalue

print {percentfHumbers)

Figure 140

U ni'l' 5 Data Structures

This code will produce the following output:

Enter value number 1
34

Enter value number 2
22

Enter value number 3
57

Enter value number 4
2

Enter value number 5
1

Enter value number 6
88

Enter value number 7
7

Enter value number 8
32

Enter value number 9
920

Enter value number 10
100
[34,22,57,2,1,88,7,32,90, 100]
>>>

Figure 141

So far, you have been printing entire lists at once. You can use a loop to print one value at
a time. You can use the index to select and print only a few values from a list.

percentNumbers = [0,0,0,0,0,0,0,0,0,0]

for num in range(0,10,1):
percentNumbers [num] = (num + 1) * 10

for number in percentNumbers:
print (number)

Figure 142

Computer Science G10

The output is shown below.

10
20
30
40
50
60
70
80
90
100
>>>

Figure 143

Sometimes you neither have the data nor the size of your list at the start of your program.
In such cases, you can create an empty list first, and then add elements and data to the
list later. You can use the append () function to add data to your list.

2 percentNumbers = []
: print ("Enter the marks. Type any letter to exit.")
4 num = "Q"

while num.isdigit():

num = input("Enter the mark:") append()
if num.isdigit(): "

used to
mark = float (num) / e
percentNumbers.append (mark)

print (percentNumbers)

Figure 144

Here is the output:

Enter the marks. Type any letter to exit.
Enter the mark:98

Enter the mark:45

Enter themark:33

Enter the mark:y

[98.0, 45.0, 33.0]

>>>

Figure 145

U ni'l' 5 Data Structures

ity

N
ﬁ Using loops to set and read values in lists
-]+ /
55 A é
@ s O4

Computer Science G10

Creating lists from other lists

So far, we have been able to create lists within
a program and by using data entered by a user.
There are other ways to make lists. Let us look at
some of these methods.

You can make a copy of a list if you need to keep
the original list the same and modify the copy.

Figure 146

1. Use the copy () function.

marksl = [73, 61, 22, 89, 45, 70, 37, 64, 70, €1, 45]
marks2 = marksl.copy()

print (marks2)

marksl[3] = 2048

print (marksl)
print (marks2)

Figure 147

Here are the results. You can see the fourth element in the first list has changed but is still
the same in the second one.

[73, &1, 22, &9, 45, 70, 37, 64, 70, 61, 45]
[73, €1, 22, 2048, 45, 70, 37, €4, 70, €1, 45]
[73, €1, 22, 89, 45, 70, 37, €4, 70, €1, 45]

Figure 148

Uni'l' 5 Data Structures

You can create a smaller list known as a sublist from longer ones.

You must specify a range as shown in the following code to create a sublist with only a few

elements from the long list.

marks = [73, 61, 22, 84, 45, 70, 37, &4, 70, &1, 45]
marks3 = marks[1:5]
print (marks3)

Figure 149

The statement will create the sublist shown below:

‘ > ‘ [61, 22, 89, 45]

Figure 150

Computer Science G10

You can also create longer lists from shorter lists using the following statements.

1. To repeat the same elements, use the ‘*' operator:

i #Repeating elements
alphabet = ["a", "b", "c", "d"]
repeathlphabet = alphabet * 3

5 print {(alphabet)
b print (repeatAlphabet)

Figure 151

This will create a longer list with repeated values from the original list.

['a', 'b', 'c', 'd']
['a', 'b', 'c', 'd", 'a', 'b", 'c', 'd", 'a', 'b', 'c', 'd']

Figure 152

U ni'l' 5 Data Structures

2.You can also use the ‘+' to merge or link lists:

1w #Joining 2 lists
animalsl = ["rabbit","cow","buffalo”]
animals2=["tiger", "wolf","lion", "lecpard"”, "fox", "cat"]
animals3 = animalsl + animals2
print{animals3)

Figure 153

You can see the results below.

["rabbit', "cow', 'buffalo', 'tiger', 'wolf', "lion', 'leopard', '"fox', '"cat']

Figure 154

Computer Science G10

KWity
Creating lists from other lists

Be
=)
(]

©& 8|
E d

l
+

N O i E
g

F

Uni'l' 5 Data Structures

Useful list operations

Below are other functions and operations you will find useful when working with lists.

You use the del () function to remove elements from a list. Use the statement below to
delete ‘lion’ from the list.

cats=["tiger", "cheetah", "lion", "jaguar", "lynx", "puma"]
del {cats[2])

print{cats)

Figure 155

Can you predict the animal that will be deleted from the list?

Computer Science G10

You use the 1en () function to get the length of a list

cats=["tiger","cheetah", "lion", "jaguar", "lynx", "puma"]

del (cats[2])
print{cats)

Figure 156
The results are shown below.
RESTART: C:/Python pro
£
Figure 157

To find out if an element is in a list, you can use the in keyword as follows:

cats=["tiger", "cheetah", "lion", "jaguar", "lynx", "puma"]

if "jaguar"” in cats:
print("Yes, the jaguar is in there!")

else:

print{"0Oh no, the jaguar is missing!")

Figure 158

Here are the results:

Yes, the jaguar it is in there!
>>>
Figure 159

Change the code to search for a leopard. What is the result?

Uni'l' 5 Data Structures

To find the elements in a list with the largest and smallest values, use the max () and
min () functions.

i gFinding the largsest and smallest valupes
marks = [73, &1, 22, 89, 45, 70, 37, &4, 70, &1, 45]
largest = max(marks)
smallest = min(marks)
print ("The highest marks was:", largest)
print({"The lowest marks was:", smallest)

Figure 160

This code produces the following results:

The highest marks was: 89
The lowest marks was: 22
>>>

Figure 161

In the marks list, change 73 to -11 and 64 to 203. Run the code and state your results.

Computer Science G10

Python dictionary

A dictionary is a data structure that
lets you store key-value pairs. We
use a key to access the value rather
than the index. It is like a language
dictionary. You use the word (= key)
to find the meaning (= value).

In the Python dictionary, you will use
a key to find the value.

From the list we made in the first
chapter, we only had the grades. We
can add names to this data to make
it more meaningful. Here is how it
looks:

Key
Mane
Rashid
Saaed
Eman
Razan
Mariam
Haitham
Hamid
Esraa

Table 42

- - . T e
-; 00;— - i ‘:l"“:
. — .’aU
'J.:‘l-‘:::’h‘nll()l}.) 23:)‘!
‘-lu un-daccen 5 ‘
:)‘:Istudy (educa_te.cli(f:
education /_,e-dju2 -
atic jnstruction ! :
stage In education
fiﬂﬂ fur e | iad oo { s wa il e
e
Figure 162
Value
15
80
9
57
78
63
73
98
91

U ni'l' 5 Data Structures

This is how you define a dictionary in Python:

ENAF 3 5 ey J3 ~F 7 A
ot L

#lerinin a 18Ty

ng tionary
grades = {"Mane":15, "Rashid":80,"Saaed":9,"Eman":57,"Razan":78}

print (grades)

key value

Figure 163

The results of running this code are shown below.

{"Mane': 15, 'Rashid': 80, 'Saaed': 9, "Eman': 57, 'Razan': 78}

Process finished with exit code 0

Figure 164

Computer Science G10

You used the index values to access the data in lists. You will use keys to access the values
in a dictionary. In the grades dictionary above, the names of the students are the keys.

1. Reading values from a dictionary

Use the key to read the value linked with any key in the dictionary. The example below
shows how to read the data.

- iy Gl &
2 La f;um &

] =
Ll Lo

{"Mane":15, "Rashid":80,"Saaed":9,"Eman":57,"Razan":78}

iy o PR (1L S ——
IR s P = ; T T
fheadiln Al1ICL1004ary

|

grades

print (grades["Rashid"])

Figure 165

Here are the results.

80

Process finished with exit code 0

Figure 166

How would you print Razan’s grade?

U ni'l' 5 Data Structures

2. Setting values in a dictionary

Again, you need to use the key to set or change values in a dictionary. In the example
below, the value for the key Saaed is changed from 9 to 93.

S = T = — =
Polldficeer LAE A LA dilebefbAllEd

P s
e diadel) LITL

grad={"Mane":15, "Rashid":30, "Saaed":%, "Hadif":57, "Razan": 78]
print {grad)
grad["Saaed"] = %3
print (grad)
Figure 167

You can see the results below.

9
93

Process finished with exit code 0

Figure 168

Computer Science G10

ity

X
ﬂ Creating, reading, and writing data in dictionaries

b

d Be
® & %E
&K =0

le-

|
+
N O o &

H

Uni'l' 5 Data Structures

In addition to creating, reading and setting values in a dictionary, this section introduces
more operations which you will find useful.

1. Deleting dictionary entries

You can delete any key and its value using the del () function:

emp={ "name" : "M am", "position":"trainee","age":1%, "car”: "VW"}

print (emp)
del {emp["car"])
print (emp)

Figure 169

Below, you can see the results before and after deleting the car key-value pair from the
emp dictionary.

>>>

>>> emp={"name" :"Mariam", "position":"trainee","age":19,"car":"VW"}
>>> print (emp)

{'name’: 'Mariam’, 'position’: 'trainee’, 'age’: 19, 'car’: 'VW'}
>>>del (emp["car”])

>>>

>>> print (emp)

{’'name’: 'Mariam’, 'position’: 'trainee’, 'age’: 19}

>>>

Figure 170

Computer Science G10

2. Adding a new entry

Use the update () function to add a new key and value to a dictionary:

emp={ "name" : "Samira", "position": "trainee", "age":1%}
print {emp)
emp.update ({ "Salary":47, "Gender":"F"})

print {emp)

Figure 171

Here are the results:

>>> print (emp)

{’'name’: 'Mariam’, 'position’: 'trainee’, 'age’: 19}

>>>

>>>

>>>

>>>

>>> emp .update ({"Salary":47,"Gender":"F"})

>>> print (emp)

{'name’: 'Mariam’, 'position’: 'trainee’, '‘age’: 19, 'Salary’: 47, 'Gender’': 'F'}
>>>

Figure 172

U ni'l' 5 Data Structures

3. Listing all the keys in a dictionary

Use the keys () function to get a list of all the keys in a dictionary.

emp={ "Hame" : "Hesza", "Title": "CEO", "age":19, "Town":"Al Hilo"}
print{emp)
print{emp.keys())

Figure 173

This code will produce a list of keys as follows:

>>>

>>> emp={"Name" :"Hessa","Title":"CEO","age":19, "Town":"Al Hilo"}
>>>print (emp)

{'Name’: 'Hessa'’, 'Title’: 'CEO’, 'age’: 19, '"Town’: 'Al Hilo'}

>>>

>>> print (emp .keys())

dict keys(['Name’, 'Title’, 'age’, 'Town’])

>>>

Figure 174

4. Listing the values in a dictionary

Use the values () function to list all the values in a dictionary.

emp={ "Name" : "Hessa", "Title": "CEO", "age":19, "Town":"Al Hilo"}
print {emp)
print {emp.keys())

Figure 175

Computer Science G10

All the values in the dictionary have been listed as shown in the results below.

>>>

>>> emp2 ={"Name" : "Ahmed","Title":"CIO","Age":92, "Town":"Sharjah"}
>>> print (emp2)

{’Name’: 'Ahmed’, 'Title’: 'CIO’, 'Age’: 92, 'Town’: 'Sharjah’}

>>>

>>>

>>> print (emp2.values())

dict_values(['Ahmed’, 'CIO’, 92, 'Sharjah’])

>>>

Figure 176

You can only use a key in the same dictionary once.

Your program will crash if you try to get values using a key that does not exist in the
dictionary.

>>>
>>>print (emp2)
{'Name': 'Ahmed’, 'Title’: 'CIO’, 'Age’: 92, '"Town': 'Sharjah’}
>>>
>>> print (emp2["Town"1])
Sharjah
>>>
>>> print (emp2["Salary"])
Traceback (most recent call last):
File "<pyshell#173>", line 1, in <module>
print (emp2["Salary"])
KeyError: 'Salary’
>>>

Figure 177

U ni'l' 5 Data Structures

Computer Science G10

Completed unit objectives
You have completed the introduction to computer programming. You should now be
able to do the following:

% Use appropriate data types.

« Describe data structures.

O

%

A Of

U ni'l' 5 Data Structures

End-of-unit activities

Khalifa Fund for Enterprise Development - Data structures |

Khalifa Fund for Enterprise Development - Data structures Il

Student reflection

