
Part VII

Software Testing
and Application

Taguchi’s Quality Engineering Handbook.  Genichi Taguchi, Subir Chowdhury and Yuin Wu
Copyright © 2005 Genichi Taguchi, Subir Chowdhury, Yuin Wu.



425

21
Application of
Taguchi Methods
to Software
System Testing

21.1. Introduction 425
21.2. Difficulty in System Testing 425
21.3. Typical Testing 426

21.1. Introduction

System testing is a relatively new area within the Taguchi methods. Systems under
testing can be hardware and software or pure software: for example, printer op-
eration, copy machine operation, automotive engine control system, automotive
transmission control, automotive antilock brake (ABS) module, computer oper-
ating systems such as Windows XP, computer software such as Word and Excel,
airline reservation systems, ATMs, and ticket vending machines. The objective of
testing is to detect all failures before releasing the design. It is ideal to detect all
failures and to fix them before design release. Obviously, you would rather not
have customers detect failures in your system.

21.2. Difficulty in System Testing

The difficulty is that there are millions of combinations of customer usage com-
mands. Let’s consider a simple system such as printing, for which usage can include
the following selections (the number of choices are shown in parentheses):

❏ Tray (5)

❏ Print range (5)

❏ Pages per sheet (6)

❏ Duplex options (4)

❏ Medium (10)

❏ Collate choice (2)

Taguchi’s Quality Engineering Handbook.  Genichi Taguchi, Subir Chowdhury and Yuin Wu
Copyright © 2005 Genichi Taguchi, Subir Chowdhury, Yuin Wu.



426 21. Application of Taguchi Metods to Software System Testing

❏ Orientation (2)

❏ Scale to paper (6)

The total number of combinations with these basic parameters alone is

5 � 5 � 6 � 4 � 10 � 2 � 2 � 6 � 144,000 combinations

In addition to these parameters, there are yes/no choices for 11 print options.
That would be 211 � 2048 combinations. Then the total combination will be

(2048)(144,000) � 294,912,000 combinations

Suppose that testing takes 1 minute per combination and assuming that testing
can be automated and can be performed 24 hours a day and 365 days per year, it
will take 561 years to complete all combinations. If it takes 1 second per combi-
nation, it will take 9.35 years.

In addition to these parameters, there are several more user selections with
variable input. One such command is the brightness setting, where user input is
between �100 and 100 in increments of 1 unit. In other words, this variable has
201 choices; and there are several parameters like this. In other words, there ex-
ist literally billions of user input combinations, and it is impossible to complete
them all.

21.3. Typical Testing

Testing people analyze the functionality of software and user operations. Then
they select common operations that would go under testing. The number of com-
binations may vary depending on the complexity of the system. But it is typical
that such testing requires several weeks to several months to complete, and such
testing is not perfect in terms of area coverage or detection rate. Taguchi methods
of software testing utilize an orthogonal array that will improve both area coverage
and detection rate.

❒ Example

The procedure for system testing using Taguchi methods is explained below using
a copy machine operation as an example.

Step 1: Design the test array. Determine the factors and levels. Factors are
operation variables and levels are alternatives for operations. Assign them to an
orthogonal array.

Factors and Levels. When an operation such as ‘‘paper tray selection’’ has, say,
six options, you may just use three options out of six for the first iteration. In the
next iteration you can take other levels. Another choice is to use all six options (a
six-level factor). It is not difficult to modify an orthogonal array to accommodate
many multilevel factors.



21.3. Typical Testing 427

If the user gets to input a continuous number, such as ‘‘enlargement/shrinkage
setting,’’ where a choice can be any percentage between 25 and 256%, you can
select some numbers. For example:

A: enlargement
A � 33% A � 100% A � 166%1 2 3

A: enlargement
A � 25% A � 66% A � 100% A � 166% A � 216%1 2 3 4 5

Basically, you can take as many levels as you like. The idea is to select levels to
cover the operation range as much as possible. As you can see in the design of
experiment section of this book, you may choose an orthogonal array to cover as
many factors and as many levels as you like.

Orthogonal Array. Recall the notation of an orthogonal array (Figure 21.1). Fol-
lowing is a list of some standard orthogonal arrays:

7 15 31 63L (2 ), L (2 ), L (2 ), L (2 )8 16 32 64

4 13 40L (3 ), L (3 ), L (3 )9 27 81

11 1 7 11 12 1 25L (2 ), L (2 � 3 ), L (2 � 3 ), L (2 � 3 )12 18 36 54

1 9 21 6 1 11L (2 � 4 ), L (4 ), L (5 ), L (2 � 5 )32 62 25 50

Below is a list of some orthogonal arrays that you can generate from a standard
array.

1 4L (4 � 2 )8

1 12 2 9 3 6 4 3 5 1 8L (4 � 2 ) L (4 � 2 ), L (4 � 2 ), L (4 � 2 ), L (4 ), L (8 � 2 )16 16 16 16 16 16

1 28 4 19 8 7 1 24 1 6 12L (4 � 2 ), L (4 � 2 ), L (4 � 2 ), L (8 � 2 ), L (8 � 4 � 2 )32 32 32 32 32

1 60 12 27 8 7 4 5 20 9L (4 � 2 ), L (4 � 2 ), L (8 � 2 ), L (8 � 4 � 2 ), L (8 )64 64 64 64 64

1 9L (9 � 3 )27

1 32 6 16 1 27 10L (9 � 3 ), L (9 � 3 ), L (27 � 3 ), L (9 )81 81 81 81

1 6L (6 � 3 )18

1 13 2L (6 � 3 � 2 )36

1 24L (6 � 3 )54

For example, L81(96 � 316) can handle up to six nine-level factors and 16 three-
level factors in orthogonal 81 runs.

In the design of experiments section of the book a technique called dummy
treatment is described. This technique allows you to assign a factor that has fewer



428 21. Application of Taguchi Metods to Software System Testing

Figure 21.1
Orthogonal array
notation

levels than those of a column. Using the dummy treatment technique, you can
assign:

❏ two-level factor to a three-level column

❏ two-level factor to a four-level column

❏ two-level factor to a five-level column etc.

❏ three-level factor to a four-level column

❏ three-level factor to a five-level column

❏ three-level factor to a six-level column etc.

❏ four-level factor to a five-level column

❏ four-level factor to a six-level column

❏ four-level factor to an eight-level column etc.

❏ seven-level factor to a nine-level column etc.

For example, using dummy treatment, L81(96 � 316) can handle:

❏ Five two-level factors

❏ Ten three-level factors

❏ One five-level factor

❏ Three seven-level factors

❏ Two eight-level factors

By having all these orthogonal arrays and dummy treatment techniques, you can
assign just about any number of factors and levels. A Japanese company, Fuji Xerox,
uses an L128 array for system testing. An L128 can handle just about any situation
as long as the number of factors is on the order of tens, up to 80 or 90.

To return to our example of copy machine operation system, factors and levels
are shown in Table 21.1. They can be assigned to an L18 (21 � 37).



21.3. Typical Testing 429

Table 21.1
Factors and levels

Factor Level 1 Level 2 Level 3

A Staple No Yes

B Side 2 to 1 1 to 2 2 to 2

C No. copies 3 20 50

D No. pages 2 20 50

E Paper tray Tray 6 Tray 5 (LS) Tray 3 (OHP)

F Darkness Normal Light Dark

G Enlarge 100% 78% 128%

H Execution From PC At machine Memory

Step 2: Conduct system testing. Table 21.2 shows the L18 test array. Eighteen
tests are conducted according to each row of the L18. The response will simply be
a 0–1 response where

0 if no problem
y � �1 if problem

It is okay to have some infeasible factor-level combinations. For example, when
OHP is selected, users should not be able to perform copying ‘‘2 to 1 side’’ or ‘‘2
to 2 sides.’’ In that case, the system should provide a proper response. If the system
provides the proper output, the data is 0; the data is 1 otherwise.

Step 3: Construct two-way response tables showing the failure rate. Once all
tests are run and 0–1 data corrected, a two-way response table is constructed for
every two-factor combination. An A � B table, A � C table, and so on, up to an
G � H table is then constructed. The entry of each combination is the sum of the
1’s of the responses. The data are then converted into the percentage of failure
(Table 21.3). For instance, since there are nine combinations of BiCj (for i � 1, 2,
3 and j � 1, 2, 3), there are two runs of B2C3 in an L18. The result is two under
B2C3, indicating 100% failure for B2C3. Similarly, A1B2 results in two failures in
three runs, indicating a 66.7% failure rate.

In general, for a combination AiBj to generate 100% failure, the total number
of failures must equal the size of the array � the number of combinations AiBj.
For this example, for A1B1 to become 100% failure, the total must be 3
(18/6 � 3).

Step 4: Investigate 100% combinations. By observing two-way tables, 100%
failure occurred for B2C3, B2F3, B2G2, C3G2, and H1F3. Now we need to investigate
those combinations for how failures occurred, and then fix the problem.



430

Ta
bl

e
2
1
.2

L 1
8

ar
ra

y A 1
A 2

B
1

0
0

B
2

2
1

B
3

0
0

B
1

B
2

B
3

C 1
0

0
0

0
0

C 2
1

0
0

1
0

C 3
1

1
0

2
0

C 1
C 2

C 3
D

1
0

1
0

1
0

0
0

1
D

2
1

0
0

1
0

0
1

0
D

3
1

0
0

1
0

0
0

1

D
1

D
2

D
3

E 1
1

0
0

1
0

0
0

1
0

0
1

E 2
0

1
0

1
0

0
0

1
1

0
0

E 3
1

0
0

1
0

0
1

0
0

1
0

E 1
E 2

E 3
F 1

1
0

0
1

0
0

0
1

0
0

1
1

0
0

F 2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
F 3

1
1

0
2

0
0

1
1

1
1

0
0

1
1

F 1
F 2

F 3
G

1
1

0
0

1
0

0
1

0
0

1
0

0
0

1
0

0
1

G
2

1
1

0
2

0
0

0
2

1
0

1
1

1
0

1
0

1
G

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

G
1

G
2

G
3

H
1

1
1

0
2

0
0

1
1

1
1

0
0

1
1

0
0

2
1

1
0

H
2

1
0

0
1

0
0

0
1

0
0

1
1

0
0

1
0

0
0

1
0

H
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0



431

Ta
bl

e
2
1
.2

(C
on

ti
nu

ed
)

A 1
B 2

C 3
D 4

E 5
F 6

G 7
H 8

1
�

P
ro

bl
em

1 2 3

1 1 1

1 1 1

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

0 0 0

4 5 6

1 1 1

2 2 2

1 2 3

1 2 3

2 3 1

2 3 1

3 1 2

3 1 2

0 1 1

7 8 9

1 1 1

3 3 3

1 2 3

2 3 1

1 2 3

3 1 2

2 3 1

3 1 2

0 0 0

1
0

1
1

1
2

2 2 2

1 1 1

1 2 3

3 1 2

3 1 2

2 3 1

2 3 1

1 2 3

0 0 0

1
3

1
4

1
5

2 2 2

2 2 2

1 2 3

2 3 1

3 1 2

1 2 3

3 1 2

2 3 1

0 0 1

1
6

1
7

1
8

2 2 2

3 3 3

1 2 3

3 1 2

2 3 1

3 1 2

1 2 3

2 3 1

0 0 0



432

Ta
bl

e
2
1
.3

P
er

ce
nt

ag
e

of
fa

ilu
re

A 1
A 2

B
1

0
0

B
2

6
7

3
3

B
3

0
0

B
1

B
2

B
3

C 1
0

0
0

0
0

C 2
3
3

0
0

5
0

0
C 3

3
3

3
3

0
1
0
0

0

C 1
C 2

C 3
D

1
0

3
3

0
5
0

0
0

0
5
0

D
2

3
3

0
0

5
0

0
0

5
0

0
D

3
3
3

0
0

5
0

0
0

0
5
0

D
1

D
2

D
3

E 1
3
3

0
0

5
0

0
0

0
5
0

0
0

5
0

E 2
0

3
3

0
5
0

0
0

0
5
0

5
0

0
0

E 3
3
3

0
0

5
0

0
0

5
0

0
0

5
0

0

E 1
E 2

E 3
F 1

3
3

0
0

5
0

0
0

0
5
0

0
0

5
0

5
0

0
0

F 2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
F 3

3
3

3
3

0
1
0
0

0
0

5
0

5
0

5
0

5
0

0
0

5
0

5
0

F 1
F 2

F 3
G

1
3
3

0
0

5
0

0
0

5
0

0
0

5
0

0
0

0
5
0

0
0

5
0

G
2

3
3

3
3

0
1
0
0

0
0

0
1

0
0

5
0

0
5
0

5
0

5
0

0
5
0

0
5

0
G

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

G
1

G
2

G
3

H
1

3
3

3
3

0
1
0
0

0
0

5
0

5
0

5
0

5
0

0
0

5
0

5
0

0
0

1
0
0

5
0

5
0

0
H

2
3
3

0
0

5
0

0
0

0
5
0

0
0

5
0

5
0

0
0

5
0

0
0

0
5

0
0

H
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0



21.3. Typical Testing 433

It is important to recognize that this system test method will lead us to where
problems may reside, but it does not pinpoint the problem or provide solutions to
solve problems.

Xerox, Seiko Epson, and ITT Defense Electronics are three companies that pre-
sented applications for this method in public conferences in the late 1990s. All
three companies report that they achieved 400% improvement in both area cov-
erage and detection rate. For more case studies, see Section 2 in this book.




