
151

Chapter 4

Software Quality Engineering: A Practitioner’s Approach, First Edition. Witold Suryn.
© 2014 the Institute of Electrical and Electronics Engineers, Inc.
Published 2014 by John Wiley & Sons, Inc.

Trustworthiness of IT Systems
and Services

4.1  WHAT IS TRUSTWORTHINESS IN THE IT DOMAIN?

The evolution of information technology and its products is one of the most rapid
evolutions in the history of humanity. There are signals, from an IT evolution point
of view, that we are fast approaching a trustworthiness critical entry point. Some
indicators supporting this hypothesis are the IT market size and recent estimations
on data quantities being processed globally. As can easily be found if one surfs
patiently over the Internet, different sources give rather similar information:

•	 In 2006, the amount of digital information created, captured, and replicated
was 1,288 × 1,018 bits. In computer parlance, that is 161 exabytes or 161
billion gigabytes. This is about 3 million times the information in all the books
ever written.

•	 Between 2006 and 2010, the information added annually to the digital uni-
verse increased more than six-fold, from 161 exabytes to 988 exabytes.

All these enormous numbers make necessary two simple questions to be asked:

•	 What happens if only 0.001% of important information becomes
untrustworthy?

•	 What happens if some of the systems involved in processing these data go
“untrustworthy”?

The answer to these questions makes the most real raison d’être for intensified IT
trustworthiness development efforts.

What trustworthiness means in the IT domain is the result of many decades of
evolution of different, not always closely related sciences such as psychology, sociol-
ogy, engineering, and even history. The widely known definition of trustworthiness
applied in software engineering domain has been proposed and published in

152    Chapter 4  Trustworthiness of IT Systems and Services

Reference 1 and is related to conformance to requirements: “An entity is trustworthy
if there is sufficient credible evidence leading one to believe that the system will
meet a set of given requirements. Trust is a measure of trustworthiness, relying on
the evidence provided.”

The notion of trustworthiness applied in human relationships is being continu-
ously discussed on different open fora, with one of the most interesting perspectives
published on Wikipedia [2]: “Trustworthiness is a moral value considered to be a
virtue. A trustworthy person is someone in whom we can place our trust and rest
assured that the trust will not be betrayed.”

The records of the Minnesota State Archives [3] give a very succinct yet precise
illustration of what trustworthiness may mean for the history: “[Trustworthiness]
refers to the reliability and authenticity of records.”

Finally, the linguistic definition related to engineering that can be found in most
online and printed dictionaries is: “Trustworthiness is an attribute of an entity deserv-
ing of trust or confidence, being dependable and reliable.”

The key notions that can be withdrawn as a common denominator from all the
above definitions are: reliability, credibility, and dependability. And, in the essence,
they represent the lion’s share of what a contemporary IT user (consumer) would
expect from software or system that processes his or her sensitive information.
However, to be true to the reality, to present a twenty-first century user’s perception
of trustworthiness, a larger list of attributes must be drawn:

•	 Quality

•	 Reliability

•	 Credibility

•	 Dependability

•	 Completeness of required functions

•	 Proper quality–cost ratio (so the software was not overpaid)

•	 Post-sale maintenance and service

•	 Pre- and post-sale training

•	 Documentation

•	 Responsibility for the product.

Some of these elements may seem secondary in comparison with, for example,
quality or dependability, but the real market shows cases where suppliers have lost
the trust of their customers after offering “lousy” post-sale support.

The introduction of the Internet and wireless broadband networks together with
service-oriented architectures has facilitated the composition of interactive services
using web technologies and web communities.

The interrelationships and interdependencies between formerly stand-alone
systems and networks are leading to complexities in the infrastructures of our society
that have never been seen before. These complex systems and networks have access
to massive amounts of personal and business data, information, and content in ways

Trustworthiness of IT Systems and Services    153

that are difficult for users to understand and control. In recent years we have wit-
nessed a growing series of accidents and attacks on the Internet and on applications
and databases. Through service attacks, viruses, phishing, spyware, and other
malware, criminals disrupt service provisioning and steal personal or confidential
business data for financial gain or other purposes. These disruptive attacks impact
the e-market on an international scale.

Apart from external attacks, there are also development-related causes for soft-
ware to fail. Some of these are:

•	 Change of the program source code

•	 Modification of its context by updating libraries or changing its
configuration

•	 Modification of its test suite.

Any of these changes can cause differences in program behavior and, as a result,
influence the user’s level of trust associated with it. A popular belief here is that the
remedy for losing the user’s trust is tests.

Software testing is a way to find faults in software. It is a process of supplying
a system under test with some values and making conclusions on the basis of its
behavior. The most significant weakness of testing is that the functioning of the
tested system can, in principle, only be verified for those input situations that were
selected as test data. According to Dijkstra [4], testing can only show the existence
but not the nonexistence of errors. Proof of correctness can only be produced by a
complete test, that is, a test with all possible input values, input value sequences,
and input value combinations under all practically possible constraints, which is
theoretically possible but unfeasible in practice. In conclusion, tests are one of
crucial components in building software or system trustworthiness, but alone are not
enough.

The literature related to trust and software trustworthiness attributes and factors
mentions several different approaches, with few of them presented briefly in the
following. The National Science and Technology Council (NSTC) in the United
States concentrates on high confidence systems and cyber-physical systems that are
categorized into physical, biological, and engineered systems whose operations
are integrated, monitored, and/or controlled by a computational core. Components
are networked at every scale. Computing is “deeply embedded” into every physical
component, possibly even into materials. The computational core is an embedded
system, usually demanding real-time response, and is most often distributed. The
behavior of a cyber-physical system is a fully integrated hybridization of computa-
tional (logical) and physical action [5]. In this category, the emphasis is on safety,
stability, and performance attributes.

Avizienis et al. have defined dependability as the reliance that can justifiably be
placed on the service that the system delivers [6]. Dependability has become an impor-
tant aspect of computer systems since everyday life increasingly depends on software.
Although there is a large body of research in dependability, architectural level reason-
ing about dependability is only just emerging as an important theme in software

154    Chapter 4  Trustworthiness of IT Systems and Services

engineering. This is due to the fact that dependability concerns are usually left until too
late in the process of development. Additionally, the complexity of emerging applica-
tions and the trend of building trustworthy systems from existing untrustworthy com-
ponents are urging dependability concerns to be considered at the architectural level.
Lemos et al. have recognized fault prevention, fault removal, fault tolerance, and fault
forecasting as important quality attributes for dependable systems [7].

A group of multinational technology and consulting firms such as HP, IBM,
Intel, and Microsoft have formed the Trusted Computing Platform Alliance (TCPA)
[8]. Their belief is that the totality (hardware, firmware, software) of the components
is responsible for enforcing a security policy so that the system operates as expected.
The group eventually grew to over 190 members and focused on “improving trust
and security on computing platforms.” Later, TCPA was replaced by the Trusted
Computing Group (TCG) that concentrates on hardware and software security and
use of cryptography in maintaining security.

Microsoft has developed an integrated process called trustworthy computing for
improving the security of commercial software as it is being developed. Microsoft
believes that there are three facets for building more secure software: repeatable
process, engineer education, and metrics and accountability [9]. In Microsoft’s
experience, the benefits of providing more secure software (e.g., fewer patches, more
satisfied customers) outweigh the costs.

The Trusted Computer National Evaluation Criteria (TCNEC) restricted trust-
worthiness based on security as the only attribute to consider [10]. Parnas et al.
define software trustworthiness as level of appropriateness of using software engi-
neering techniques to reduce failure rates, including techniques to enhance testing,
reviews, and inspections [11]. In the study of Trustworthy Software Methodology
(TSM) originally performed by the US National Security Agency, software trustwor-
thiness was defined as “the degree of confidence that exists to meet a set of
requirements.”

The Data and Analysis Center for Software (DACS) has produced two reports,
Software Assurance for Project Management [12] and Software Security Assurance
[13]. In the former, the researchers emphasized that software trustworthiness factors
and metrics are only restricted to the project management-related factors and metrics,
while in the latter the focus is on security assurance for measuring software trust-
worthiness and they used a number of security-enhanced software methodologies
such as Microsoft’s Trustworthy Computing SDL.

There are also works discussed in the next sections that develop trustworthiness
structures based entirely on the notions of quality and applying as its framework the
ISO/IEC 9126 set of standards. As can be seen, the perception of trustworthiness
and related concepts vary from one organization or researcher to another and all of
them are in some sense partial.

Before going further into the details of the contemporary positioning of trust-
worthiness, it may be profitable to shortly repaint the actual IT market diversity. OTS
(off-the-shelf) applications enjoy the biggest population of users. In this category we
find, among others, software that supports individual tasks or set of tasks such as
text editing, media processing and playing, individual accountancy or finance, some

Trustworthiness of IT Systems and Services    155

data processing, and simple database applications. Using such software usually does
not require specific IT knowledge but rather some self-learning about how to use it
and eventually adapt it to our needs.

Commercial Modular Systems (CMS) are built from predeveloped modules or
subsystems for a known user, having large, configurable, yet finished set of func-
tionalities. In most cases, functionalities are linked together into “services.” The user
population is mostly corporate and as such requires intensive training before becom-
ing fully operational and productive. The training may be divided into end-user type,
which is service-oriented, and technical user training, which goes into the category
of operation and maintenance. In both cases, the training is done by the supplier or
his or her delegated representatives (certified companies). One of the best-known
examples would be the ERP type of IT systems.

Individual On-Demand Systems (IOS) are developed to meet individual and
unique requirements of the known user. The system may offer functionalities, ser-
vices, or both. As in case of a CMS, the user population is mostly corporate and in
consequence also requires intensive training. The training types are similar too, that
is, they may be divided into end-user and technical-user training, but are done by
the supplier only, as the supplier is usually is the only source of knowledge available
to the user.

What do all these applications/systems have in common?

•	 The user owns them (or at least the license to use them)

•	 The user knows how build them

•	 The user knows whom to pursue (or sue) if something goes wrong

•	 The trustworthiness in this context is manageable, as the responsibility can
be pinpointed to a known entity.

The last statement is a bit of wishful thinking, for actual legal and market ramifica-
tions make the fight of an individual consumer against an IT giant very difficult at
best. However, the framework is there, which means that there is a known entity (a
supplier) that can be reached and made accountable for its actions. Except we are
not there yet. This aspect becomes even more disputable if the recent developments
in IT domain are taken into consideration. For some years now there are two buzz-
words that excite both suppliers and IT consumers, not necessarily for the same
reasons: service-oriented architecture and cloud computing.

Service-Oriented Architecture (SOA) is essentially a collection of services.
These services communicate with each other in order to establish the cooperation
that can involve two or more services coordinating some activity in order to “do a
job.” The technology of Web services is the most likely connection technology of
service-oriented architecture. The idea by itself is not necessarily very new, as its
younger, less “fancy” predecessors such as DCOM or CORBA have been well
known for a few decades now. The user’s position in regard of trustworthiness is in
such a case “undefined” at best, as there is no “named entity” that could eventually
be linked to the service as a whole. In other words, there is no one to blame within
a given SOA structure for eventual losses that the consumer has suffered.

156    Chapter 4  Trustworthiness of IT Systems and Services

Cloud computing is a general term for anything that involves delivering hosted
services over the Internet. These services are broadly divided into three categories:
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a
Service (SaaS). IaaS is simply a virtual server instance with a unique IP address and
blocks of storage on demand that can be used by the customer as it suits him or her.
PaaS represents a set of software and product development tools hosted on the pro-
vider’s infrastructure that allow the customer create his or her own application or
even system. SaaS is a vendor-supplied hardware and software product infrastructure
that interacts with the user through a front-end portal. The user’s position in regard
to trustworthiness in these three categories of services seems to be a bit more con-
trollable, as there is a “vendor” or “supplier” who can theoretically be linked to the
given service, but in fact the user may easily fall into a modern version of a classic
“dot com” pattern. All these “vendors” and “suppliers” are no more than virtual
entities, hidden somewhere in the “cloud” of the Internet, never seen, never talked
to, practically out of any direct control.

So what could or would be a twenty-first century IT user’s perception of trust-
worthiness in an era of cloud computing or SOA? It can be analyzed in a rather
speculative way from the perspective of trustworthiness attributes discussed earlier,
although the obtained results most probably would be too general for a particular IT
consumer. Instead, it would be recommended that the user, before deciding whether
a given application/service/system potentially exhibits required trustworthiness,
analyze as precisely as possible the known trustworthiness attributes by answering
the few related questions listed in the following:

•	 Quality. Of what? Service, system, SOA sub-services, PaaS?

•	 Reliability. (Same as the above.)

•	 Credibility. Whose credibility? Supplier’s, vendor’s, system’s?

•	 Dependability. (Same as the above.)

•	 Completeness of required functions. In an era of SOA and cloud computing,
are we still talking about “functionalities”?

•	 Proper quality–cost ratio (so the software was nor overpaid). “How easy will
it be to be verified in my particular case?”

•	 Post-sale maintenance and service. “What and how should and can be done
in my particular case?”

•	 Pre- and post-sale training. (Same as the above.)

•	 Documentation. Who, what, and how should deliver?

•	 Responsibility for the product. Who represents the “product”?

4.2  ROLE OF IT TRUSTWORTHINESS IN
CONTEMPORARY SOCIETY

Contemporary society has gradually become profoundly dependent on information
technology. We are so used to its presence that it has become almost transparent,

Trustworthiness of IT Systems and Services    157

invisible, until something bad happens. Once it happens and once it is bad, the trust
in our technological “servant” immediately diminishes. The existence of this lack of
trust in information technology is known in the industry or we would not have
backups, RAID solutions (redundant array of independent disks), redundant systems,
and so on, however, the social objective of verifying the level of system or service
trustworthiness goes far beyond mere technology. This objective is to assure a user in
a proof-based way that he or she can trust the service (product, software) he or she
wants or has to use. Obviously, if the developer puts a “you can trust it” stamp on his
or her products no one will take it seriously, at least no one who lost data or hours of
work trusting the “professionalism” of previously used software. Attribution of such
a stamp should come from an independent, trusted, and professional entity having a
good history of correct evaluations and should be a normal market practice.

The user could then, before buying a software product or service, verify the
credibility of the supplier/producer, the quality of his or her services (meant here as,
e.g., post-sale or customer support services) and seeing on the product a “you can
trust it” stamp from the certification agency be relatively well assured that the risks
of using it are reduced to an acceptable minimum.

This idea can be more precisely expressed through three practical domains of
activities of a trustworthiness certification entity:

•	 Validation of IT solutions. This activity falls into the category “process for
the evaluator” discussed in Section 4.3.2.2, and has as an objective to validate
an IT solution on behalf of the future user. The “you can trust it” stamp,
together with the exhaustive trustworthiness evaluation report, could serve,
among others, as the crucial attachment to the main contract.

•	 Verification of IT suppliers. In this case, the certification could be applied to
the supplier rather than to the product. In fact, not every “product” has to be
software-based even if it exists in IT domain. The whole market of IT con-
sultancy is based on services as products and the certified service supplier
would be probably more sought after than an uncertified one.

•	 Certification of IT products and services. The whole market of OTS products
and Internet-based (SOA, cloud computing) services would be the addressee
of this part of a trustworthiness evaluation effort. The user then could choose
between a box with a stamp that says “Trustworthiness Level y/10. Certified
by National Trustworthiness Certification Agency. Valid until 20xx” and a box
with no such stamp. The same could be applied to services, so the user would
not be afraid that his or her sensitive data will begin its own quest in the laby-
rinth of the World Wide Web.

4.3  MONITORING, MEASUREMENT, AND
CERTIFICATION OF IT TRUSTWORTHINESS

If the role of trustworthiness is to be effectively realized, at the base of this process
there has to be an intellectually defendable and practically applicable understanding

158    Chapter 4  Trustworthiness of IT Systems and Services

of what exactly constitutes trustworthiness in contemporary IT domain. Being a
rather new technological concept, trustworthiness is under scientific scrutiny in
several different ways, beginning with a quality-only static approach, through semi-
dynamic, architecture-based solutions to dynamic, behavior-based measurement and
evaluation process. These different perspectives are discussed further in the follow-
ing sections.

4.3.1  Classic Approaches

The numbers quoted in previous section are widely known and acknowledged within
the IT community. Several scientific efforts and research projects have been under-
taken to tackle the problem of building the proper mechanisms (models, theories,
methodologies) to allow for efficient estimation of trustworthiness of, generally
speaking, information technology products. Same of them, such as the method
proposed in Reference 14 (Fig. 4.1), the solution developed in Beijing University
project “TRUSTIE” (Fig. 4.2) [15] or the methodology HATS (Highly Adaptable
and Trustworthy Software Using Formal Models) [16] developed by Swedish
Chalmers University of Technology (Fig. 4.3), have taken as their basis software
quality measurement and evaluation approach represented in ISO/IEC 9126. As can
be noticed, both models are parametrical, attribute-oriented, and heavily based on
the ISO/IEC 9126 quality model.

Figure 4.1  Software trustworthiness model (adapted from [14]).

Figure 4.2  Methodology “TRUSTIE” (adapted from [15]).

Trustworthiness of IT Systems and Services    159

A relatively recent and rather innovative development is the dynamic,
architecture-based solution, having two cooperating “engines”: the trust engine
and the auction engine [17]. The trust engine is “responsible for trust negotiation
among services in order to establish the services that will be exchanged between
the participating modules and set up a negotiated trust level for service access.”
The second “engine,” the auction engine, is responsible for a computing trust
level that the service provider has to prove. Once the trust level is bilaterally estab-
lished and agreed upon, the whole service architecture may begin the realization of
required tasks.

4.3.2  Dynamic Approaches: Behavioristic  
Method of Software, System, and Service
Trustworthiness Certification

The notion of software trustworthiness evaluation in the literature is inherently sub-
jective. It depends on how the software is used and in what context it is used.
Moreover, different users evaluate a software system according to different criteria,
point of view, and background. Therefore, when assessing software trustworthiness,
it may be counterproductive to look for a general set of characteristics and param-
eters; instead, there is need to define a model that is tailored to the functional and
quality requirements that the software has to fulfill. Such an approach is introduced
in a behavioristic model for verifying software trustworthiness (BeMSET) based on
scenarios of interactions between the software and its users and environment. These
interactions consist of simple scenarios of examples or counterexamples of desired
behavior. The approach supports incremental changes in requirements/scenarios.

4.3.2.1  General Concepts of the Method
The general concept behind the behavioristic approach to IT system or service trust-
worthiness is constructed on four basic points [18]:

•	 The final user does not want or have to be IT literate. He or she simply wants
to be a user.

Figure 4.3  HATS (adapted from [16]).

160    Chapter 4  Trustworthiness of IT Systems and Services

•	 The trust for a system or service does not have to be total. It is enough if it
is contextual, that is, within the space of user’s interests or needs.

•	 The behavior of a service/system in the given usage context can be represented
in a formal way, applying one of the existing formal notation methods. In case
of BeMSET, this notation is a combination of unified modeling language
(UML) scenarios and finite state machine (FSM) computation model.

•	 The observed trends in information technology indicate that the distance
between a consumer (user) of IT services and executive mechanisms neces-
sary for these services grows.

The behavioral trustworthiness in order to fulfill its objectives as stated in Section
4.2 has to be supported by a process allowing for a transition from technical or
descriptive expression of evaluation requirements (depending on the type and IT
proficiency of the requester) to the documented results of evaluation and eventual
issuance of a certificate.

Figure 4.4 presents such a framework process, a general model of BeMSET
where the whole procedure is divided into six consecutive steps:

•	 Identification of required scenarios/objects.  In this step the trustworthiness
context and related usage scenarios are identified (example: context: online
banking; scenario: transfer of funds from account A to account B).

•	 Transformation of scenarios to their FSM representations.  In this step, the
scenarios from Step 1 are transformed into FSM table(s) of states, transitions,
and stimuli. This formal form of the service under evaluation is stored in a
database for further processing and as part of the knowledge base for a given
category of services.

•	 Execution of scenarios by a real service or system.  In this step the scenarios
from Step 1 are executed by a real system or service under evaluation. The
states and transitions exhibited by it are recorded in FSM table(s) and stored
in the database.

•	 Comparison of transformed and recorded FSM tables.  This step applies
mathematical methods of comparison of the two obtained FSM representa-
tions of the service or system under evaluation. As the result, the differences
(deltas) in paths, states, and transitions between the real and required behavior
of a system or service are found and documented.

•	 Results evaluation.  This step has as an objective to qualitatively and quanti-
tatively analyze the comparison results from the previous step. The applied
analysis method (of the choice of the evaluator) should allow for classifying
the discrepancies into at least three basic categories: fail, conditional pass,
pass.

•	 Issuance of the certificate.  The certificate must be based on a sound evalua-
tion from the previous step and can be full, conditional, refused, one-time,
renewable, periodic, or with no time limit. In case of a failed reevaluation,

Trustworthiness of IT Systems and Services    161

the certificate may also be revoked. All these cases should follow the rules
established in and for a given certification authority.

In reality the BeMSET process is considerably more complex. In its form pro-
posed in Reference 19, the process is built in three phases, each having several stages
or steps (Fig. 4.5).

Phase 1: Identifying attributes of software or service trustworthiness. This phase
is dedicated to identifying and characterizing the attributes and factors from user
scenarios and/or UML scenarios. It is important to note that not only are the quality
attributes that are important for the overall trustworthiness taken into account, but
also the domain of software systems or services as well (see Section 1.2.3). The
context of use is taken into consideration as the third perspective. It can be found
out by answering the following questions:

•	 Who will use the software (users and roles)?

•	 What will be done with the software (functional requirements)?

•	 Where the software will be used (environment)?

•	 How will the software be used (quality requirements)?

Figure 4.4  General model of BeMSET.

F
ig

ur
e

4.
5 

B
eM

SE
T

 t
ru

st
w

or
th

in
es

s
ev

al
ua

tio
n

pr
oc

es
s.

162

Trustworthiness of IT Systems and Services    163

As the result, a generic list of all possible factors and attributes will be created and
presented to the user. Then the user will choose those attributes and factors that relate
and matter to the software system or service under investigation and will identify
and define the properties of his or her interest. Therefore, the result of this phase is
the definition of a generic model for factors and attributes of functional and/or
quality requirements of a software system or services.

Phase 2: Developing a formal behavioristic model. In this phase, the selection
(or development, if need be) of a formal specification language and the choice of a
suitable formal notation (in case of BeMSET, FSM) for developing a formal behav-
ioristic model are made. There are three stages and each stage has its own steps, as
follows:

•	 Stage 1: Transforming reference requirements to FSM representation
○	 identification of reference requirements
○	 extraction of reference functionalities and quality attributes
○	 generation of reference use cases
○	 extraction of reference scenarios
○	 transformation of any hierarchical (tree format) scenarios to nonhierarchical

(linear format) scenarios
○	 generation of reference FSM tables from each nonhierarchical (linear

format) scenario
○	 execution of reference FSM tables to obtain the reference path

representation
○	 saving reference path representation into reference database.

•	 Stage 2: Recording real software system or service behavior
○	 execution of real software system or services
○	 recording of the real behavior into real FSM tables
○	 execution of real FSM tables and development of the real path

representation
○	 saving real path representation into the recording database.

•	 Stage 3: Comparing real behavior with reference behavior
○	 reading real path representation from the recording database
○	 reading reference path representation from the reference database
○	 comparing reference path representation with real path representation
○	 analyzing and interpreting the observed behavior and its discrepancy

from reference behavior for the software system or services under
investigation.

This mechanism of the model enables recording of paths of all the states, transitions,
events, and actions in the sequence in which they are performed (real) or should
have been performed (reference). These paths are saved in a database for future
reference for both real and expected (reference) behavior of software system and
services.

Phase 3: Evaluation method. In this phase, the analysis of the results of com-
parison between real FSM paths and reference FSM paths for all requested scenario(s)

164    Chapter 4  Trustworthiness of IT Systems and Services

is executed. The evaluation of the results (whether the software system or services
passed or not) is used as the basis for awarding (or not) the certification. The devel-
opment or choice of the appropriate evaluation method of trustworthiness for soft-
ware system or service under investigation is the most important part of this phase.
For evaluation, all the information and results from Phase 1 and Phase 2 are taken
into account. Also, the evaluation grid and qualification model are used to evaluate
the behavior of software system or services. One other dimension of this phase is
related to the interpretation of discrepancies between real behavior and reference
behavior of software systems or services under investigation. The specific grids
relate, among the others, to the category of the system or service under evaluation
that should be used in certification process.

An additional remark about this process: let’s keep in mind that the attributes
and factors for trustworthiness of a system or software should be identified from
user scenarios and/or UML scenarios. These attributes and factors contribute to
analyzing and evaluating trustworthiness of the software system or service under
investigation in a way shown in Fig. 4.6.

A scenario can be represented as a path consisting of state nodes and transition
edges through the statechart diagram. Statechart diagrams have different types of
actions that are performed within the state, such as [20]:

•	 Entry actions

•	 Input actions triggered by input conditions that do not cause state changes

•	 Exit actions

or cause state transitions, such as:

•	 Transition actions, which are a type of input action but are bound to a
transition.

Figure 4.6  Views required to capture relevant aspects of scenarios.

Trustworthiness of IT Systems and Services    165

A new scenario is written by adding states and state transitions to the state
machine incrementally, in such a way that the requested scenario becomes execut-
able as a path through the same statechart diagram. It should be noted that all those
states and state transitions belong to the same use case. The following additional
information is needed to generate a scenario and a statechart [21]:

•	 Any actions or events causing a trigger or state transitions such as clock
events, pressing a button, or selecting a menu item

•	 Any action or events related to entering or choosing a data input or a change
to data, such as completing a form or selecting a data item from a dropdown
menu or trigger of timer or guard condition

•	 The object status of the system at the beginning state of scenario execution.

4.3.2.2  Service Trustworthiness Analysis and Certification
Let’s recall that a basic definition of the adjective “trustworthy” uses the notion of
“worthy of confidence” and “dependable” [22]. The term “trustworthiness” in the
context of IT comes as the extrapolation of this definition and can be explained as
“the assurance that a system deserves to be trusted, that it will perform as expected
despite environmental disruptions, human and operator error, hostile attacks, and
design and implementation errors” [23]. In real life, such an assurance is most often
partial (or contextual) and needs to be evaluated using a stable and correct process
and tangible data. The series of standards ISO 14598 provide the guidance and
requirements for the evaluation process of software product quality from three dif-
ferent perspectives: development, acquisition, and an independent evaluation. It is
also broadly known that quality makes an inherent component of trust, but equating
it alone to trustworthiness would be considered a risky limitation of a trustworthiness
concept. However, a practical question would be: Could the ISO/IEC 14598 evalu-
ation processes be applied to evaluate trustworthiness, or it is necessary to develop
something new? In light of the development of the ISO/IEC 25040, ISO/IEC 25041,
and ISO/IEC 25042 standards dedicated to quality evaluation, the same question
would apply to them. This possibility was analyzed using an example where an
IT system was represented applying the behavioristic model of trustworthiness,
BeMSET.

4.3.2.2.1  IT System Example
The IT system used in the analysis is a system for remote monitoring of diabetic
patients in serious condition. In simple terms, a diabetic patient must connect each
day before 10 a.m. to the system via its web portal, enter his or her blood sugar
level, blood pressure, and weight, and submit these data for evaluation by the system.
The basic functional requirements are then:

•	 The system shall collect patient’s submitted data via its portal

•	 The system shall save the data in the medical history of the patient

•	 The system shall validate the collected data

166    Chapter 4  Trustworthiness of IT Systems and Services

•	 If the data represent a normal situation, the system shall wait for the next
scheduled submission

•	 Otherwise, the system shall send an alert message to the patient’s doctor

•	 If the patient does not submit the data before 10 a.m., an alert message shall
be sent to the patient’s doctor

•	 The alert message shall be sent in two minutes after the discovery of the
patient’s abnormal condition

•	 The alert message shall be sent by SMS (Short Message System), via tele-
phone and email.

These requirements can be represented then as a state table or the series of paths
built of required states and related transitions, such as when the system goes from
the “waiting” state to the “send alert” state if there is no valid connection from a
patient at or before 10 a.m.

From the BeMSET perspective, the important elements are:

•	 Contextual elements: the existence and execution of all required transition
paths and their related states built from system behavior scenarios

•	 Quality elements: the existence of all required quality attributes of both states
and transitions.

In the example, the contextual behavior is verified by examining all required transi-
tions among states, while quality behavior is verified by measuring and evaluating
related quality attributes, for which ISO/IEC 14598 (and its ISO/IEC 2504x) offers
ready-to-use support. It seems justified, then, to verify whether this support could
be extended to the evaluation of trustworthiness as the whole process in the context
of BeMSET.

4.3.2.2.2  ISO/IEC 14598-3 Process for Developers
ISO/IEC 14589-3 [24] “provides requirements and recommendations for the practi-
cal implementation of software product evaluation when the evaluation is conducted
in parallel with the development and carried out by the developer.” From the perspec-
tive of BeMSET, the process (Fig. 4.7) corresponds rather to auto-evaluation by the
service supplier prior to submitting the service to a certification organization.

The phases of the evaluation process for developers are defined as follows
(from ISO 14598-3):

•	 “analysis of evaluation requirements which consists of identifying the quality
requirements according to an agreed quality model”

•	 “specification of the evaluation which consists of determining the external
measures and target measurement values (criteria for evaluation)”

•	 “design of the evaluation which consists of determining the internal measures
and target measurement values (criteria for evaluation)”

•	 “execution of the evaluation which consists of collecting internal measure-
ment values during development and comparing with target values (evaluation

Trustworthiness of IT Systems and Services    167

during development). Internal attribute values (quality indicators) are used to
estimate end product quality”

•	 “conclusion of the evaluation which consists of collecting external measure-
ment values when they become available and comparing with target values
(evaluation of product quality).”

The first essential difference between evaluation of quality alone and evaluation of
trustworthiness is the service (or software) life cycle phase in which the evaluation
takes place.

Applying BeMSET requires the existence of a fully operational service, which
means being far past internal quality definition and measurement stage. However,
external quality may and should be perceived as “behavioral” as it applies to a
running software or system that exhibits actions and reactions (services). Using this
approach as a filtering mechanism to the process described in ISO/IEC 14598-3
automatically removes from it all activities related to internal quality, thus leaving
the evaluation design and evaluation execution phases temporarily void.

Figure 4.7  ISO/IEC 14598-1 evaluation process (adapted from [25]).

168    Chapter 4  Trustworthiness of IT Systems and Services

The second essential difference between evaluation of quality and trustworthi-
ness is the role of a verifier. In the ISO/IEC 14598 the developer is the verifier,
while in auto-evaluation of trustworthiness using BeMSET, the developer becomes
principally the user who evaluates both contextual and quality elements of the
service, system, or software. Applying this observation to ISO/IEC 14598-3 indi-
cates that the notion of “external quality” is too narrow and should be adjusted in
all phases and activities that relate to it (analysis, specification, and conclusion of
evaluation).

The third essential difference between evaluation of quality and trustworthiness
is the notion of the “model.” From the perspective of BeMSET, the quality model
becomes a component of a larger model that also includes all the scenarios in which
the system has to be trustworthy. The quality model should be used as an agreed-
upon reference for structuring the quality requirements, and as such it can be a
proprietary solution as well as a standardized one, like the model from ISO/IEC
9126 or ISO/IEC 25010. Additionally, keeping in mind that the ultimate objective
of the analyzed process (of auto-evaluation) is the certification by an independent
accrediting organization, the scenarios’ parts of the overall model should come
from the certification organization and be used as reference for granting the
certification.

Despite being substantial, the aforementioned differences do not rule out the
possibility of reusing the ISO/IEC 14598 (and ISO/IEC 2504x) process for develop-
ers in auto-evaluation of trustworthiness. After addressing them, the adapted process
could consist the following five phases:

•	 Analysis of evaluation requirements, which consists of identifying all required
transition paths, their related states, and corresponding quality requirements
according to an agreed-upon BeMSET model

•	 Specification of the evaluation, which consists of determining the reference
transition paths, required states, related quality measures, and target measure-
ment values

•	 Design of the evaluation, which consists of determining execution sequences
of evaluated paths, their order, recording and measurement techniques, and
target quality measurement values

•	 Execution of the evaluation, which consists of executing and recording all
specified paths and states and measuring quality values

•	 Conclusion of the evaluation, which consists of comparing recorded transition
paths and states with their references, comparing quality measures with target
values, and preparing the evaluation report.

ISO/IEC 14598-4 [26] contains “requirements, recommendations and guide-
lines for the measurement, assessment and evaluation of software product quality
during acquisition of off-the-shelf software products, custom software products, or
modifications to existing software products, in conjunction with the requirements of
ISO/IEC 12207.” From the perspective of BeMSET, the process (Fig. 4.8) corre-
sponds to evaluation by the future user prior to the purchase of the service.

Trustworthiness of IT Systems and Services    169

The phases of the evaluation process for acquirers are defined as follows (direct
quotation from ISO 14598-4):

•	 Establish evaluation requirements, define objectives and scope clearly.
Identify:
○	 what questions must be answered?
○	 how rigorously should the evaluation be performed?
○	 how complete are the inputs to the evaluation?
○	 is additional evaluation planned for other phases of the project?
○	 has any evaluation been done in previous phases of the project or by

others?
○	 what acquisition process is to be followed and how are evaluation input

requirements communicated to the vendor?

•	 Specification of the evaluation. Once the requirements of the evaluation are
understood:
○	 select metrics that correlate to the characteristics of the software product

and establish rating levels
○	 select the most effective set of evaluation methods
○	 establish procedures for summarizing the results of the evaluation of differ-

ent quality characteristics and other aspects that contribute to the assessment
of quality of a software product in a particular environment.

Figure 4.8  ISO/IEC 14598-4 evaluation process for acquirers (adapted from [26]).

Product view
Product-in-use

view

Pr
oc

es
s

vi
ew

Evaluation Process

quality requirements
user and technical

documents

quality
system

engineering
process

maintenance
process

quality achievement
confidence level

product usage constraints

need for additional quality
verification

prototyping/testing

failure information

operating history

cost assessment

Execute the evaluation

Design the evaluation

Specify the evaluation

Establish evaluation requirements

View of evaluation results

170    Chapter 4  Trustworthiness of IT Systems and Services

•	 Design of the evaluation. Prepare an evaluation plan describing the evaluation
methods and the schedule of the evaluator actions. Identify the tie-points
between evaluation activities and acquisition activities

•	 Execution of the evaluation. Conduct the selected evaluation activities, and
analyze and record the results to determine the suitability of the software
product(s). Analyze the impact of identified deficiencies and options to regu-
late the use of the existing software product. Draw conclusions with respect to
the acceptability of the product and the ultimate decision to buy or not to buy.

The application of the analysis method used previously renders the following
observations:

•	 In the phase of establishing evaluation requirements, the references to “phases
of the project” are inapplicable and should be removed or modified to better
adhere to the nature of trustworthiness evaluation

•	 In the phase of specification of the evaluation, the references to “metrics that
correlate to the characteristics of the software product” are inapplicable and
should be modified to better adhere to the nature of trustworthiness
evaluation.

As the remaining phases of the ISO 14598 process for acquirers are applicable
as they are, the adapted and simplified process could consist the following four
phases:

•	 Establish evaluation requirements, define objectives and scope. Identify:
○	 what questions must be answered from the point of view of evaluated

service behavior and its quality?
○	 how rigorously should the evaluation be performed?
○	 how complete are the inputs to the evaluation?
○	 has any evaluation been done prior to this acquisition or by others?
○	 what acquisition process is to be followed and how are evaluation input

requirements communicated to the vendor?

•	 Specification of the evaluation. Once the requirements of the evaluation are
understood:
○	 select reference transition paths, states and related quality measures and

establish rating levels
○	 select the most effective set of evaluation methods
○	 establish procedures for summarizing the results of the evaluation

•	 Design of the evaluation. Prepare an evaluation plan describing the evaluation
methods and the schedule of the evaluator actions. Identify the tie-points
between evaluation activities and acquisition activities

•	 Execution of the evaluation. Conduct the selected evaluation activities, and
analyze and record the results to determine the suitability of the software
product(s). Analyze the impact of identified deficiencies and options to regu-
late the use of the existing service. Draw conclusions with respect to the
acceptability of the service and the ultimate decision to buy or not to buy.

Trustworthiness of IT Systems and Services    171

ISO/IEC 14598-5 [27] provides “requirements and recommendations for the
practical implementation of software product evaluation when several parties need
to understand, accept and trust evaluation results.” From the perspective of BeMSET
the process (Fig. 4.9) corresponds to evaluation of the service by the certification
organization.

The phases of the process for evaluators are defined as follows (due to its origi-
nal volume, the presented quotation from ISO 14598-5 has been shortened):

•	 Analysis of evaluation requirements:
○	 expressing the extent of the coverage of the evaluation by the requester
○	 explaining the extent of confidence and stringency of evaluation by the

evaluator
○	 agreeing on the evaluation requirements

•	 Specification of the evaluation based on the evaluation requirements and on
the description of the product provided by the requester
○	 specifying the measurements to be performed on the product and its

components
○	 verifying the specification produced with regards to the evaluation

requirements

•	 Design of the evaluation which produces an evaluation plan on the basis of
the evaluation
○	 documenting evaluation methods and producing a draft plan
○	 optimizing the evaluation plan
○	 scheduling evaluation actions with regard to available resources

•	 Execution of the evaluation plan which consists of inspecting, modeling,
measuring and testing the products and its components according to the evalu-
ation plan
○	 manage the product components provided by the requester
○	 manage the data produced by the evaluation actions (including report and

records
○	 manage the tools to be used to perform the evaluation actions
○	 manage evaluation actions performed outside the evaluator’s premises
○	 manage the requirements implied by the use of specific evaluation

techniques.

•	 Conclusion of the evaluation, which consists of the delivery of the evaluation
report and the disposal by the evaluator of the product evaluated as well as
its components when they have been transmitted independently.

The application of the analysis method used previously indicates that this
process can be applied to evaluation of trustworthiness after three minor
adjustments:

•	 Replacement of the term “ product” by the term “service”

•	 Replacement of the term “ product and its components” by the term “service”

•	 Removing the term “modeling” from execution of the evaluation plan
phase.

F
ig

ur
e

4.
9 

IS
O

/I
E

C
 1

45
98

-5
 e

va
lu

at
io

n
pr

oc
es

s
fo

r
ev

al
ua

to
rs

 (
ad

ap
te

d
fr

om
 [

27
])

.

E
st

ab
lis

h
ev

al
ua

tio
n

re
qu

ire
m

en
ts

E
st

ab
lis

h
re

qu
ire

m
en

ts
R

eq
ue

st
er

’s
re

qu
ire

m
en

ts

P
ro

du
ct

de
sc

rip
tio

n

P
re

de
fin

ed
ev

al
ua

tio
n

sp
ec

ifi
ca

tio
n

E
va

lu
at

io
n

m
et

ho
ds

E
va

lu
at

io
n

to
ol

s

E
va

lu
at

io
n

sp
ec

ifi
ca

tio
n

P
ro

du
ct

 c
om

po
ne

nt
s

E
va

lu
at

io
n

re
co

rd
s

R
ev

ie
w

ed
ev

al
ua

tio
n

re
po

rt

E
va

lu
at

io
n

pl
an

E
xe

cu
te

 th
e

ev
al

ua
tio

n

C
on

cl
us

io
n

of
 th

e
ev

al
ua

tio
n

R
ec

or
d

of
ev

al
ua

tio
n

ac
tio

ns

S
yn

th
es

iz
ed

ev
al

ua
tio

n
re

co
rd

s

D
ra

ft
ev

al
ua

tio
n

re
co

rd
s

D
es

ig
n

th
e

ev
al

ua
tio

n

S
pe

ci
fy

 th
e

ev
al

ua
tio

n

E
va

lu
at

or
’s

in
pu

t

R
eq

ue
st

er
’s

in
pu

t

172

Trustworthiness of IT Systems and Services    173

In conclusion, the ISO/IEC 14598 (and ISO/IEC 2504x) evaluation offers a
considerable support to the BeMSET-based evaluation of trustworthiness of software
systems and services; however, not without sometimes substantial modifications.

The most essential identified modifications apply to the process for the devel-
oper, where the activities relating to internal quality and its measures should be
removed; the evaluation requirements, specification, design, and execution should
be focused on both contextual elements and quality elements rather than on quality
alone; the model should be contextual quality rather than quality alone; and the role
of the developer as verifier should be enhanced to cover the end-user perspective.

The modifications required for the process for the acquirers are relatively small
and focus mostly on references to life cycle phases where the evaluation might take
place and on direct references to evaluation of quality only.

The modifications required for the process for evaluators are reduced to replac-
ing the term “product” by a more specific term, “service.”

REFERENCES

  1.  Bishop M. Computer Security: Art and Science. Pearson Education, 2003.
  2.  “Trustworthiness,” http://en.wikipedia.org/wiki/Trustworthiness.
  3.  Minnesota State Archives, http://www.mnhs.org/preserve/records/index.htm.
  4.  Dijkstra EW, Dahl OJ, Hoare CAR. Structured Programming. London: Academic Press,

1972.
  5.  Gill H. “High Confidence Software and Systems: Cyber-Physical Systems Progress

Report: Semantics Perspective.” In Second Workshop on Event-based Semantics/IEEE
RTAS; April 22–24, 2008. Missouri: IEEE, 2008.

  6.  Avizienis A, Laprie JC, Randell, B. “Fundamental Concepts of Dependability.” Technical
Report 739; 2001. Department of Computing Science, University of Newcastle upon
Tyne. Available at http://www.cs.cmu.edu/∼garlan/17811/Readings/avizienis01_fund
_concp_depend.pdf. Accessed May 16, 2013.

  7.  De Lemos R, Gacek C, Romanovsky A. “ICSE 2002 Workshop on Software Architectures
for Dependable Systems (Workshop Summary).” ACM Software Engineering Notes 2003;
28(5).

  8.  Safford D. “The Need for TCPA.” IBM Research. http://www.ibm.com. Accessed April
30, 2011.

  9.  Mundie C. “Trustworthy Computing: Microsoft White Paper.” Available at http://
download.microsoft.com/download/a/f/2/af22fd56-7f19-47aa-8167-4b1d73cd3c57/twc
_mundie.doc. Accessed May 15, 2013.

10.  DOD 5200.28 STD Trusted Computer System Evaluation Criteria. Department of
Defense, National Computer Security Center, 1985.

11.  Parnas, D. “Evaluation of Safety-Critical Software.” Communications of the ACM 1990;
33(6):635–648.

12.  Fedchak E, McGibbon T, Vienneau R. “Software Project Management for Software
Assurance: A DACS State-of-the-Art-Report.” Final report September 30, 2007. Air Force
Research Lab, Griffiss. Report number 347617. Contract Number SP0700-98-D-4000.
Available from https://buildsecurityin.us-cert.gov/bsi/dhs/906-BSI.html. Accessed May
15, 2013.

http://en.wikipedia.org/wiki/Trustworthiness
http://www.mnhs.org/preserve/records/index.htm
http://www.cs.cmu.edu/<223C>garlan/17811/Readings/avizienis01_fund_concp_depend.pdf
http://www.cs.cmu.edu/<223C>garlan/17811/Readings/avizienis01_fund_concp_depend.pdf
http://www.ibm.com
http://download.microsoft.com/download/a/f/2/af22fd56-7f19-47aa-8167-4b1d73cd3c57/twc_mundie.doc
http://download.microsoft.com/download/a/f/2/af22fd56-7f19-47aa-8167-4b1d73cd3c57/twc_mundie.doc
http://download.microsoft.com/download/a/f/2/af22fd56-7f19-47aa-8167-4b1d73cd3c57/twc_mundie.doc
http://https://buildsecurityin.us-cert.gov/bsi/dhs/906-BSI.html

174    Chapter 4  Trustworthiness of IT Systems and Services

13.  Goertzel KM, Winograd T, McKinley HL, Oh L, Colon M, McGibbon T, Fedchak E,
Vienneau R. “Software Security Assurance: A State-of-the-Art-Report.” DACS and
IATAC joint report, July 31, 2007. Available at http://iac.dtic.mil/csiac/download/
security.pdf. Accessed May 15, 2013.

14.  Voas J, Agresti WW. “Software Quality from a Behavioral Perspective.” IT Professional
2004; 6(4):46–50.

15.  Yin G. “Practices and Thinking of the Models in Trustie Environment.” International ABC
Conference March 15, 2010; Tokyo, Japan. Available from www.trustie.net. Accessed
May 15, 2013.

16.  Hahnle R. “HATS: Highly Adaptable and Trustworthy Software Using Formal Models.”
International Symposium on Formal Methods for Components and Objects; October 23,
2008, Sofia-Antipolis. Available at http://www-sop.inria.fr/oasis/FMCO/2008/slides/
FMCO2008-HATS-ReinerHahnle.pdf.

17.  Phoomvuthisarn S. “An Architecture Approach to Dependable Trust-Based Service
Systems.” In 6th International Conference on Service Oriented Computing; December
1–5, 2008. Sydney, Australia: ICSOC, 2008.

18.  Suryn W. Yuan Y. “Trustworthiness of Software, the Challenge of the 21st Century.” In
The International Standard Conference on Software Trustworthy Testing; December 28,
2009–January 2, 2010. Beijing, China: BUPT, 2009.

19.  Nami M. Suryn W. “From Requirements to Software Trustworthiness Using Scenarios
and Finite State Machine.” In 38th IECON conference; October 25–28, 2012. Montreal,
Canada: IEEE, 2012.

20.  Wagne F, Schmuki R, Wagner T, Wolstenholme P. “Modeling Software with Finite State
Machines: A Practical Approach.” Boca Raton, FL: CRC Press, Taylor & Francis Group,
2006.

21.  Behrens H. “Requirements Analysis and Prototyping Using Scenarios and Statecharts.”
ICSE 2002 Workshop; May 19–25, 2002, Orlando, Florida.

22.  Merriam-Webster Dictionary, 2010.
23.  “Mobius Glossary.” Available at http://www-sop.inria.fr/marelle/Mobius/mobius.inria.fr/

twiki/bin/view/Mobius/Glossary.html#T.
24.  ISO/IEC 14598-3 Software Engineering—Product Evaluation—Part 3: Process for

Developers. Geneva, Switzerland: International Organization for Standardization, 2000.
25.  ISO/IEC 14598-1 Information Technology—Software Product Evaluation—Part 1:

General Overview. Geneva, Switzerland: International Organization for Standardization,
1999.

26.  ISO/IEC 14598-4 Software Engineering—Product Evaluation—Part 4: Process for
Acquirers. Geneva, Switzerland: International Organization for Standardization, 1999.

27.  ISO/IEC 14598-5 Information Technology—Software Product Evaluation—Part 5:
Process for Evaluators. Geneva, Switzerland: International Organization for Standardiza-
tion, 1998.

http://iac.dtic.mil/csiac/download/security.pdf
http://iac.dtic.mil/csiac/download/security.pdf
http://www.trustie.net
http://www-sop.inria.fr/oasis/FMCO/2008/slides/FMCO2008-HATS-ReinerHahnle.pdf
http://www-sop.inria.fr/oasis/FMCO/2008/slides/FMCO2008-HATS-ReinerHahnle.pdf
http://www-sop.inria.fr/marelle/Mobius/mobius.inria.fr/twiki/bin/view/Mobius/Glossary.html#T
http://www-sop.inria.fr/marelle/Mobius/mobius.inria.fr/twiki/bin/view/Mobius/Glossary.html#T

