AL SHABHANA S	CHOOL PHYSICS	G10:GENERAL	REVISION : SEM 1, 2018-2019				
Chapter 1: A Phy	<u>sics Toolkit</u>						
1 - The standard SI u	nit of mass is the	·					
A) kilometer	B) kilogram	C) pound	D) kilomole				
2 - If one were to div	ide 3.90 by 7.2, what wo	uld the answer be with tl	the correct number of significant digits?				
A) 0.54	B) 0.542	C) 1 D)) 0.5417				
3 - The valid digits ir	a measurement are calle	ed					
A) uncertain digits	B) significant di	gits C) powers	of 10 D) valid digits				
4 - Solve the following problem and express the answer in scientific notation: 4.75×10^3 kg + 8.24×10^3 kg.							
A) 1.299x10 ³ kg	B) 1.299×10 ⁴ kg	C) 1299×10 ³ kg	g D) 12,990 kg				
5 - Convert 243 ng to	5 - Convert 243 ng to its equivalent in kilograms.						
A) 2.43×10 ⁻¹⁰ kg	B) 2.43×10 ⁻¹¹ kg	C) 2.43×10 ⁹ k	kg D) 2.43×10 ⁻⁷ kg				
6 - The multiplier for	^r SI units with the prefix p	vico is					
A) 10 ⁻¹⁵	B) 10 ⁻¹²	C) 10 ⁻⁹	D) 10 ⁻⁶				
7 - The SI base unit c	of length is the	<u>.</u>					
A) foot	B) meter (C) kilometer	D) candela				
8 - In order to conve	rt a quantity expressed in	one unit into the same c	quantity in a different unit, use a(n)				
A) calculation coeffic	cient B) notation	n factor C) conv	version factor D) algebraic quantity				
9 - The multiplier for	r SI units with the prefix n	nega is					
A) 10 ⁶	B) 10 ⁹	C) 10 ¹²	D) 1,015				
10 - Convert 57.7 kg	to grams.						
A) 5.77 x 10 ⁵ g	B) 5.77×10 ³ g	C) 5.77×10 ⁴ g	D) 5.77×10 ⁶ g				
11 - Combinations o	f SI base units are called						
A) significant units	B) base units	C) calculated u	units D) derived units				
12 - Which of the fol	llowing operations would	l yield an answer of 0.54	17 to the correct number of significant digits?				
			MR: ABDELKHALE				

AL SHABHANA SCH	AL SHABHANA SCHOOL PHYSICS G10: GENERAL REVISION: SEM 1, 2018-2019							
A) 3.900/7.200	B) 3.9000/ 7.20	C) 3.900/7.20	D) 3.9000 / 7.2000					
13 - The multiplier for S	51 units with the prefix micro i	s						
A) 10 ⁻¹⁵	B) 10 ⁻¹²	C) 10 ⁻⁹	D) 10 ⁻⁶					
14 - Convert 1.45 km to	o meters.							
A) 14.5×10 ³ m	B) 1.45×10 ⁻³ m	C) 0.145×10 ⁻³ m	D) 1.45×10 ³ m					
15 - The multiplier for S	51 units with the prefix femto	is						
A) 10 ⁻¹⁵	B) 39733	C) 10 ⁻⁹	D) 10 ⁻⁶					
16 - The standard SI un	it of time is the							
A) minute	B) hour	C) millisecond	D) second					
17 - The multiplier for S	51 units with the prefix deci is	·						
A) 10 ¹	B) 10 ²	C) 10 ⁻¹	D) 10 ⁻²					
18 - The apparent shift	in the position of an object w	hen it is viewed from different	angles is caused by					
A) imprecise measurem	nent B) inaccu	iracy C) parallax	D) faulty instruments					
19 - In the figure below	r, if a fourth student measured	l the spring's length to be 14.2 -	\pm 0.2 cm, would this agree with any of the					
other students' measur	ements?		Mini Lab Data					
A) Yes, it agrees with or	nly student 1.	B) Yes, it agrees only with stud	ent 3					
C) Yes, it agrees with st	udents 1 and 3.	D) No.	5 -					
20 - describ	es how well the results of an	experiment agree with the stan	dard					
value.			14.0 T					
A) Significance	B) Accuracy	,	13.7					
C) Certainty	D) Precisio	on	1 2 3 Student					
21 describ	es the degree of exactness in	a measurement.						
A) Precision	B) Significance	C) Certainty	D) Accuracy					
			MR · ABDEL KHALEK					

•	 		•	-	- '	_	• •	• •	-	-	,	_
 _	 	_		 		_		-		_		

AL SHABHANA SC	HOOL PHYSIC	CS G10 : GENERAL		REVISION : SEM 1, 2018-2019		
22 - The property of a	straight line on a gra	ph that is the ratio of th	e vertical differ	rence between two points to the horizontal		
difference between the	e same two points is	the				
A) slope	B) rise	C) intercept		D) tangent		
23 - Extrapolating from	n the figure below, if	a mass of 45.0 g were h	nung on the spr	ring, how long would the spring be?		
A) 17.3 cm	B)	576 cm	ſ	Length of a Spring		
C) 3.6 cm	D)	46.1 cm		17.0 for Different Masses		
24 - What value is calc	ulated by dividing ri	se by run?		16.0 Ê		
A) acceleration of a mo	oving object exhibiti	ng uniform motion		f 15.0 rise		
B) angular velocity				^{14.0} b = 13.7 run		
C) the slope of a straig	ht line			0 5 10 15 20 25 30 35		
D) the angle of a straight line Mass (g)						
25 - In the figure below	v, what is the physic	al meaning of the value	for b?	Length of a Spring		
A) It is the distance from the bottom of the spring to the suspended mass.				for Different Masses		
B) It is the length of the	e spring when no ma	usses are suspended from	m it.	16.0		
C) It is the length of th	e spring when the ex	periment is over.		€ € 15.0		
D) It is the distance fro	om the top of the spri	ing to the suspended ma	155.	14.0 run		
Chapter 2: Repres	enting Motion			5 10 15 20 25 30 35 Mass (g)		
1 - A(n) is a	series of images of a	a moving object that rec	ords its positio	on after equal time intervals.		
A) frame	B) operational defin	ition	C) motion (diagram D) association		
2 - The vector that rep	resents the sum of tv	vo or more vectors is ca	lled the			
A) displacement	B) spo	eed	C) result	tant D) direction		
3 - In the particle mod	el, the of	the object are (is) ignore	ed.			
A) internal motions	B) mo	tion diagram	C) positi	tion D) acceleration		
				MR:ABDELKHALEK		

F

AL SHABHANA SCI	HOOL PHYSICS G10:GE	NERAL REVISION	N:SEM 1, 2018-2019			
4 - The length of the po	osition vector on a motion diagram	is proportional to the				
A) distance of the object	ct from the origin	B) distance of the object	from the vertical intercept			
C) average speed		D) velocity				
5 - A motion diagram is	s a series of images of a moving obj	ect that records its position after				
A) 1/30 s B)	equal time intervals	C) it comes to rest	D) an acceleration			
6 - The is th	e point at which all variables in a co	oordinate system have zero magnitu	de.			
A) axis	B) origin	C) intercept	D) coordinate system			
7 - Which of the following correctly describes the displacement of an object that moves from position di to df?						
A) $\Delta d = df - di$	B) $\nu = \Delta d / \Delta t$	C) $\Delta df = di - df$	D) $\Delta d = df + di$			
8 - Which of the following is not a scalar quantity?						
A) 314.7 g	B) 150 km southwest	C) 25°C	D) 2 hours 27 minutes			
9 - To subtract two vec	tors,					
A) reverse the direction	n of the second vector and then add	them B) use the	equation $R_2 = A_2 - B_2$			
C) use the same proces	ss as for adding them, then change t	he sign of the final value				
D) subtract 180° from	heta, then use the Law of Cosines					
10 - Displacement is a	change in					
A) speed	B) position	C) distance	D) velocity			
11 - The magnitude of	a vector is always					
A) a positive quantity	B) equal to the direction	C) equal to the displacemen	t D) a negative quantity			
12 - When an object is in motion, its must change.						
A) position	B) shape	C) size	D) acceleration			
13 - Two displacement	s are equal when					
A) the two magnitudes	and directions are the same	B) the two direction	ons are the same			
			MR: ABDELKHALEK			

F

AL SHABHANA SCHOOL	PHYSICS	G10:GENERAL	REVISION : SEM	1, 2018-2019		
C) they end at the same point		[D) they begin at the same p	oint		
14 - The difference between ti a	nd tf is the	·				
A) displacement	B) velocity	C) time interva	D) avera	age speed		
15 - To calculate the distance tra	veled continue	ously in a straight line,				
A) divide the distance traveled b	y the time nee	ded to travel the distance				
B) subtract the cosine of the ang	le between the	e starting and finishing positio	ons from the square of the o	distance traveled		
C) divide the change in velocity by the time over which the change occurs						
D) subtract starting position from final position.						
16 - A(n) tells you where the zero point of the variable you are studying is located and the direction in which the						
values increase.						
A) coordinate system	B) orig	in C)	axis	D) intercept		
17 - On a position-time graph, ru	17 - On a position-time graph, run =					
A) Δ_{a}	Β) Δν	C)	Δt	D) 🛆 d		
18 - On a position-time graph, ri	se =					
A) Δ d	B) Δt	C)	Δs	D) Δν		
19 - You and a friend leave scho	ol at the same	time. You drive at a constant	5.5x10^1 km/h and your fi	riend drives 7.0×10^1		
km/h. How long does it take eac	h car to reach	a mall that is 25 km from the	school?			
A) you: 1 hour 40 minutes, your	friend 36 mini	utes	B) you: 2.2 hours, your frie	end: 2.8 hours		
C) you: 27 minutes, your friend:	21 minutes		D) you: 21 minutes, your f	friend: 27 minutes		
20 - You drive a car for 2.0 h at 6	60 km/h, then f	or another 3.0 h at 85 km/h.	What is your average veloc	ity?		
A) 75 km/h ² B) 7	3 km/h	C) 75 km/h	D) 7	′3 km/h		
21 - The slope of the line tangen	t to the curve o	on a position-time graph at a	specific time is the			
A) instantaneous acceleration	B) in	stantaneous velocity	C) average velocity	D) displacement		
			MR	: ABDELKHALEK		

REVISION : SEM 1, 2018-2019

/Luis

Tai

20.0

30.0

Time (s)

8

40.0

10

12

50.0

10.0

50.0

45.0

40.0

35.0 30.0

20.0 15.0

10.0

5.0

25.0

2

4

10.0

20.0

6

time (s)

30.0

Time (s)

40.0

50.0

60.0

Position v. Time

AL SHABHANA SCHOOL	PHYSICS	G10: GENERAL	L REVISION : SEM 1, 2018-2019				
Chapter 3: Accelerated N	<u>lotion</u>						
1 is the change in	velocity dividec	by the time needed	d for the change to occur.				
A) Displacement	B) Average ve	locity	C) Average acceleration D) Speed				
2 - Acceleration describes the r	rate of change ir	I					
A) position	B) velocity		C) mass D) gravity				
3 means that equa	al displacement	s occur during succes	essive equal time intervals.				
A) Average speed	B) Uniform m	notion (C) Average acceleration D) Uniform acceleration				
4 - If a car travels 100 km in a s this way, its motion is	4 - If a car travels 100 km in a straight line in the first hour of its trip, 100 km in a straight line in the next hour, and continues in this way, its motion is						
A) accelerated	B) dynamic	C) ir	irregular D) uniform				
5 - The slope of the line tangen	it to the curve o	n a velocity-time graj	aph at a specific instant of time is the				
A) average velocity B)	instantaneous	velocity C)) instantaneous acceleration D) displacement				
6 - A car moving north at 80 kr velocity?	n/h turns and tr	avels south at 65 km	n/h. What are the magnitude and direction of the change i	n			
A) 145 km/h, south to north		B) 145 k	km/h, north to south				
C) 25 km/h, north to south		D) 25 kr	km/h, south to north				
7 - If the motion in the figure b acceleration, what would the c	elow continued object's speed be	on at that same e at t = 10.00 s?	25.0 Velocity v. Time				
A) 25.0 m/s	B) 100.0	m/s	20.0	2			
C) 50.0 m/s	D) 40.0	m/s	ຊີຍ 15.0 ຊີຍ	_			
8 - How far does a car travel in	30.0 s while its	velocity is changing	g 9 10.0				
from 50.0 km/h to 80.0 km/h a	at a uniform rate	e of acceleration?	5.00 $m = \frac{\text{nse}}{\text{run}} = \frac{10.0 \text{ m/s}}{2.00 \text{ s}}$ = 5.00 m/s ²				
A) 1.95 × 10 ³ m	B) 252	m	0.00 1.00 2.00 3.00 4.00	5.00			
C) 5.41×10 ²	D) 1.08	$3 \times 10^3 \mathrm{m}$	Time (s)				

AL SHABHANA S	CHOOL PHYSICS	G10:GENERAL	REVISION : SEM 1, 2018-2019
9 - In the figure below	w, what is the displacem	ent of the object between 0.0 a	ind 5.0 s?
A) 75.0 m	B)) 5.0 m	30.0
C) 150.0 m	D)	30.0 m	L 20.0
10 - A car with a velo m/s ² for 10 s. What is	ocity of 30 m/s accelerate s its final velocity?	es uniformly at the rate of 2.0	 ▼ 0.0 5.0 10.0 15.0 20.0 25.0 30.0 Time (s)
A) 50 m/s ² D) 50 m/s	B) 40 m/s ²	C) 40 m/s	
11 - How long will it that is required for ta	take an airplane at rest t ke off?	hat accelerates uniformly at 2.5	5 m/s ² to reach the ground velocity of 7.0×10^1 m/s
A) 28 s	B) 35 s	C) 11 s	D) 4 s
 12 - A car accelerates is 23 m/s. What is the A) 18 m/s² C) 28 m/s² 13 - The a-t graph co A) straight line with a B) line beginning at t C) straight vertical line D) straight horizonta 14 - What is the mining reach a ground veloce 	s uniformly at a rate of 0 e initial velocity? B) 28 m/s D) 18 m/s rresponding to the v-t gr a constant positive slope he origin with increasing ne I line above the t axis mum length runway ne- city of 64 m/s before the	.50 m/s ² for 1.0×101 s. Its final raph below would be a g positive slope eded to accommodate airplane y can take off?	velocity $ \begin{array}{c} 15.0 \\ 15.0 \\ 5.00 \\ 0.00 \end{array} $ $ \begin{array}{c} m = 20.0 \text{ m/s} - 15.0 \text{ m/s} \\ 4.00 \text{ s} - 3.00 \text{ s} \\ = 5.00 \text{ m/s}^2 \\ 1.00 2.00 3.00 4.00 5.00 \\ \text{Time (s)} \end{array} $ s that can accelerate uniformly at 2.7 m/s ² and must
A) 7.6×10 ² m	B) 1.5×10 ² m	C) 7.6×10 ³	³ m D) 1.5×10 ³ m
15 - Find the uniform	n acceleration that would	d cause a car's velocity to chang	ge from 27 m/s to 45 m/s in a 6.0-s period.
A) 3.0 m/s	B) 18.0 m/s	C) 18.0 m/s ²	D) 3.0 m/s ²
			MR:ABDELKHALEK

AL SHABHANA S	CHOOL PHYSIC	S G10: GENERAL	REVISION : SEM 1, 2018-2019				
16 - In the graph belo	ow, what is the total di	splacement of the object?					
A) 75.0 m	B) 0 m C) -25	.0 m D) 500.0 m	(see 30.0 20.0				
17 - A 75-kg swimme	er steps off a 10.0-m to	wer. What is the swimme	rs 😳 10.0				
velocity on hitting the	e water?	× /					
A) -14.0 m/s	B) 27.1 m/s 0	C) 38.3 m/s D) 0.25	0.0 5.0 10.0 15.0 20.0 25.0 30.0 Time (s)				
18 - A ball falls freely	from rest for 15.0 s. C	alculate the ball's velocity	after 15.0 s.				
A) -78 m/s	B) 78 m/s	C) 0 m/s	D) -147 m/s				
19 - A tennis ball is dropped from 1.5 m above the ground, touches the ground for 0.008 s and rebounds to a height of 0.75 m. What is the ball's velocity when it hits the ground?							
A) -5.4 m/s ²	B) -5.4 m/s	C) -3.8 m/s	D) 3.8 m/s ²				
20 - A bicycle rider tr	avels 15 km in 1.25 ho	ours. What is the rider's ave	erage speed?				
A) 10.5 km/h	B) 13.7	'5 km/h (D) 22.5 km/h				
21 - Displacement is	a change in	-					
A) speed	B) posit	ion () velocity D) distance				
22 - A track runner be	egins running from the	e starting line and reaches	his race pace of 4-minutes per mile in 5 seconds. What is				
the runner's accelera	tion?						
A) 1.33 m/s ²	B) 6.67	m/s ² C)	0.05 m/s ² D) 0.001 m/s				
1- If a car accelerates (speeds up) uniformly from 5 m/s to 15 m/s in 2 seconds, calculate the car's acceleration? $a_{avg} = \frac{v_f - v_i}{t_f - t_i} = \frac{15 - 5}{2 - 0} = 5.0 \ m/s^2$							

2 - : If a bus retards (slows down) uniformly from 14 m/s to 4 m/s in 5 seconds, find the acceleration of the bus?

$$a_{avg} = \frac{v_f - v_i}{t_f - t_i} = \frac{4 - 14}{5 - 0} = -2.0 \ m/s^2$$

3 - An automobile starts at rest and accelerates at 3.5 m/s2 after a traffic light turns green. How far will it have gone when it is travel in get 25 m/s?

AL SHABHANA SCHOOL PHYSICS G10: GENERAL

REVISION : SEM 1, 2018-2019

$$v_f^2 = v_i^2 + 2a \Delta x \implies \Delta x = \sqrt{\frac{v_f^2 - v_i^2}{2a}} = \sqrt{\frac{25^2 - 0^2}{2 \times 3.5}} = 9.44 m$$

4 - A race car travels on a straight racetrack with a forward velocity of 44 m/s and slows at a constant rate to a velocity of 22 m/s over 11 s. How far does it move during this time?

$$\Delta x = \frac{1}{2} (v_i + v_f) t$$

= $\frac{1}{2} (22 + 44) 11 = 363 m$

5 - A car with an initial velocity of 24.5 m/s east has an acceleration of 4.2 m/s² west. What is its displacement at the moment that its velocity is 18.3 m/s east?

$$v_f^2 = v_i^2 + 2a \Delta x \implies \Delta x = \sqrt{\frac{v_f^2 - v_i^2}{2a}} = \sqrt{\frac{18.3^2 - 24.5^2}{2 \times -4.5}} = 5.29 m$$

6 - You are driving a car, traveling at a constant velocity of 25 m/s along a straight road, when you see a child suddenly run onto the road. It takes 0.45 s for you to react and apply the brakes. As a result, the car slows with a steady acceleration of 8.5 m/s² in the direction opposite your motion and comes to a stop. What is the total displacement of the car before it stops?

$$v_f^2 = v_i^2 + 2a \Delta x \implies \Delta x = \sqrt{\frac{v_f^2 - v_i^2}{2a}} = \sqrt{\frac{0^2 - 25^2}{2 \times -8.5}} = 6.06 m$$

7 - Find the displacement of the objects represented by the following velocity-time graphs

 $\Delta x = 8 \times 12 = 96 m$ $\Delta x = \frac{1}{2} \times 8 \times 12 = 48 m$ $\Delta x = 8 \times 12 + \frac{1}{2} \times 8 \times 12 = 144 m$

8 - A construction worker accidentally drops a brick from a high scaffold.

a. What is the velocity of the brick after 4.0 s?

$$v_f = v_i + g t = 0 + (-9.81) \times 4 = -39.24 m/s$$

b. How far does the brick fall during this time?

$$\Delta y = v_i t + \frac{1}{2} g t^2 = 0 \times 4 + \frac{1}{2} \times -9.81 \times 4^2 = -78.48 m$$

AL SHABHANA SCHOOL PHYSICS G10: GENERAL

9 - A different rock is thrown with an initial upward speed of 20 m/s and

the graph shown to the right is obtained

a. What is the acceleration of the rock?

$$a_{avg} = slop = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i} = \frac{0 - 20}{10 - 0} = -10 \ m/s^2$$

b. Is the rock being thrown on Earth? No, it is thrown upward

c. What is the speed of the rock when it reaches its highest point? **0** m/s

e. What is the displacement of the rock when it reaches its highest point?

$$\Delta y = \sqrt{\frac{v_f^2 - v_i^2}{2g}} = \sqrt{\frac{0^2 - 20^2}{2 \times -10}} = 4.47 m$$

REVISION : SEM 1, 2018-2019

قوانين عاشر عام ف 1								
1 - مدخل الى الفيزياء A Physics Toolkit								
Slope = $m = \frac{rise}{run} = \frac{\Delta y}{\Delta x}$ $y = mx + b$ $y = a x^2 + bx + c$ $y = c$								
2 - وصف الحركة REPRESENTING MOTION								
$R = A + B \qquad \Delta t = t_f - t_i \qquad Slop = \vec{v}_{avg} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_h - t_h}$								
R = A - B	$R = A - B \qquad \Delta X = x_f - x_i \qquad \Delta t t_f - t_i$							
Average Speed = v_{avg}	Average Speed = $v_{avg} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i} $ $x_f = vt + x_i$							
	Accelerated motion	فة المتسارعة	3 - الحرك					
$a_{avg} = slop = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$	ركة بعجلة ثابتة	معادلات الح	حركة للسقوط الحر	معادلات ال				
	$v_f = v_i + a$	at	$v_f = v_i + v_i$	g t				
	$v_f^2 = v_i^2 + 2$	$a \Delta x$	$v_f^2 = v_i^2 + 2$	$2g \Delta y$				
	$\Delta x = \frac{1}{2} (v_i + i)$	$(v_f) t$	$\Delta y = \frac{1}{2} (v_i + $	v_f) t				
	$\Delta x = v_i t + \frac{1}{2} a t^2 \qquad \qquad \Delta y = v_i t + \frac{1}{2} g t^2$							
$g = -9.81 \text{ m/s}^2$								