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3
Probability and Life Distributions 
for Reliability Analysis

In reliability engineering, data are often collected from analysis of incoming parts and 
materials, tests during and after manufacturing, fielded products, and warranty 
returns. If  the collected data can be modeled, then properties of the model can be 
used to make decisions for product design, manufacture, reliability assessment, and 
logistics support (e.g., maintainability and operational availability).

In this chapter, discrete and continuous probability models (distributions) are intro-
duced, along with their key properties. Two discrete distributions (binomial and 
Poisson) and five continuous distributions (exponential, normal, lognormal, Weibull, 
and gamma) that are commonly used in reliability modeling and hazard rate assess-
ments are presented.

3.1  Discrete Distributions

A discrete random variable is a random variable with a finite (or countably infinite) 
set of values. If  a discrete random variable (X ) has a set of discrete possible values 
(x1, x2, . . . xn), a probability mass function (pmf), f(xi) , is a function such that
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The cumulative distribution function (cdf) is written as:

	 F x P X xi i( )= ≤{ }. 	 (3.2)
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The mean, μ, and variance, σ2, of a discrete random variable are defined using the 
pmf as (see also Chapter 2):

	 μ= [ ]= ( )∑E X x f xi i

i

	 (3.3)

	 σ µ µ2 2 2 2= [ ]= −( ) ( )= ( )−∑ ∑V X x f x x f xi i

i

i i

i

. 	 (3.4)

3.1.1  Binomial Distribution

The binomial distribution is a discrete probability distribution applicable in situations 
where there are only two mutually exclusive outcomes for each trial or test. For 
example, for a roll of a die, the probability is one to six that a specified number will 
occur (success) and five to six that it will not occur (failure). This example, known as 
a “Bernoulli trial,” is a random experiment with only two possible outcomes, denoted 
as “success” or “failure.” Of course, success or failure is defined by the experiment. 
In some experiments, the probability of the result not being a certain number may be 
defined as a success.

The pmf, f(x), for the binomial distribution gives the probability of exactly k suc-
cesses in m attempts:
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where p is the probability of the defined success, q (or 1  –  p) is the probability of 
failure, m is the number of independent trials, k is the number of successes in m trials, 
and the combinational formula is defined by
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where ! is the symbol for factorial. Since (p +  q) equals 1, raising both sides to a 
power j gives

	 p q j+( ) =1. 	 (3.7)

The general equation is

	 f k F m p q
k

m
m( )= ( )= +( ) =

=
∑

0

1. 	 (3.8)

The binomial expansion of the term on the left in Equation 3.7 gives the probabilities 
of j or less number of successes in j trials, as represented by the binomial distribution. 
For example, for three components or trials each with equal probability of success (p) 
or failure (q), Equation 3.7 becomes:

	 p q p p q pq q+( ) = + + + =3 3 2 2 33 3 1. 	 (3.9)
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The four terms in the expansion of (p + q)3 give the values of the probabilities for 
getting 3, 2, 1, and no successes, respectively. That is, for m = 3 and the probability 
of success = p, f(3) = p3, f(2) = 3p2q, f(1) = 3pq2, and f(0) = q3.

The binomial expansion is also useful when there are products with different success 
and failure probabilities. The formula for the binomial expansion in this case is

	 p qi i

i

m

+( )=
=
∏

1

1, 	 (3.10)

where i pertains to the ith component in a system consisting of m components. For 
example, for a system of three different components, the expansion takes the form

	
p q p q p q p p p p p q p q p q p q

p q q
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1 2 3

+( ) +( ) +( )= + + +( )
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where the first term on the right side of the equation gives the probability of success 
of all three components, the second term (in parentheses) gives the probability of 
success of any two components, the third term (in parentheses) gives the probability 
of success of any one component, and the last term gives the probability of failure 
for all components.

The cdf for the binomial distribution, F(k), gives the probability of k or fewer suc-
cesses in m trials. It is defined by using the pmf for the binomial distribution,
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For a binomial distribution, the mean, μ is given by

	 μ=mp 	 (3.13)

and the variance is given by

	 σ2 1= −( )mp p . 	 (3.14)

Example 3.1

An engineer wants to select four capacitors from a large lot of capacitors in which 10 
percent are defective. What is the probability of selecting four capacitors with:

(a)	 Zero defective capacitors?

(b)	 Exactly one defective capacitor?

(c)	 Exactly two defective capacitors?

(d)	 Two or fewer defective capacitors?

Solution:
Let success be defined as “getting a good capacitor.” Therefore, p = 0.9, q = 0.1, and 
m = 4. Using Equation 3.5 and Equation 3.6, f  (4) is the probability of all four being 
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good (no defectives)—that is, based on four components (trials), the values of p and 
q are equal for all the capacitors.

f 4
4

4
0 9 0 1 0 65614 0( )=






( ) ( ) =. . . .

Another way to solve this problem is by defining success as “getting a certain 
number of defective capacitors” with p = 0.1 and thus q = 0.9. In this case, f(0) gives 
the probability that there will be no defectives in the four selected samples. That is,

(a)	 f 0
4

0
0 1 0 9 0 65610 4( )=


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

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( ) ( ) =. . .

Continuing with the latter approach, the solution to problems (b), (c), and (d), respec-
tively, are:

(b)	 f 1
4

1
0 1 0 9 0 29161 3( )=
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(c)	 f 2
4

2
0 1 0 9 0 04862 2( )=
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(d)	 F f f f2 0 1 2 0 9963( )= ( )+ ( )+ ( )= . .

Example 3.2

Consider a product with a probability of failure in a given test of 0.1. Assume 10 of 
these products are tested.

(a)	 What is the expected number of failures that will occur in the test?

(b)	 What is the variance in the number of failures?

(c)	 What is the probability that no product will fail?

(d)	 What is the probability that two or more products will fail?

Solution:
Here m = 10, and p = 0.1.

(a)	 The expected number of failures is the mean,

μ= = ×( )=mp 10 0 1 1. .

(b)	 The variance is:

σ2 1 10 0 1 1 0 1 0 9= −( )= × × −( )[ ]=mp p . . . .

(c)	 The probability of having no failures is the pmf with k = 0. That is,

f 0
10

0
0 1 1 0 1 0 3490 10( )=


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


× × −( ) =. . . .
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(d)	 The probability of having two or more failures is the same as 1 minus the prob-
ability of having zero or one failures. It is given by:

Pr

. .

two or more failures( )= − ( )+ ( ){ }[ ]

= − − × × −

1 0 1

1 0 349 10 0 1 1

f f
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Example 3.3

An electronic automotive control module consists of three identical microprocessors 
in parallel. The microprocessors are independent of each other and fail independently. 
For successful operation of the module, at least two microprocessors must operate 
normally. The probability of success of each microprocessor for the duration of the 
warranty is 0.95. Determine the failure probability of the control module during 
warranty.

Solution:
The module fails when two or more microprocessors fail. In other words, the module 
fails when only one or none of the microprocessors is working. So the probability of 
failure of the module during warranty will be given by:

Pr ,module fails during warranty( )= ( )+ ( )[ ]f f0 1

where m = 3 components, k = 0 or 1 is the total number of working components, 
p = 0.95, and q = 0.05. Therefore:

Pr . . .module fails during warranty( )= ( ) + × ×( ){ } 0 05 3 0 95 0 053 2





= 0 00725. .

Example 3.4

The probability of a Black Hawk helicopter surviving a mission is 0.91. If  seven 
helicopters are sent on a mission and five must succeed for mission success, what is 
the probability of mission success?

Solution:
This is also called a 5-out-of-7 system in reliability (see Chapter 17). If  the number 
of successes is five or more, the mission will be a success. Hence, the probability of 
mission success or mission reliability is
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3.1.2  Poisson Distribution

In situations where the probability of success (p) is very low and the number (m) of 
samples tested (i.e., the number of Bernoulli trials conducted) is large, it is cumber-
some to evaluate the binomial coefficients. A Poisson distribution is useful in such 
cases.

The pmf of the Poisson distribution is given as:

	 f k
k
e k

k

( )= =−μ μ

!
; , , , ,0 1 2 … 	 (3.15)

where μ is the mean and also the variance of the Poisson random variable.
For a Poisson distribution for m Bernoulli trials, with the probability of success in 

each trial equal to p, the mean and the variance are given by:

	 µ σ= =mp mp, .2 	 (3.16)

The Poisson distribution is widely used in industrial and quality engineering  
applications. It is also the foundation of some of the attribute control charts.  
For example, it is used in applications such as determination of particles of contami-
nation in a manufacturing environment, number of power outages, and flaws in rolls 
of polymers.

Example 3.5

Solve Example 3.2 using the Poisson distribution approximation.

Solution:
The expected number of failures is the same as the mean,

μ=( )( )=10 0 1 1. .

The variance is also equal to 1.
The probability of obtaining no failures is the same as the pmf with k = 0,

f e e0 0 36781( )= = =− −μ . .

The probability of getting two or more failures is the same as 1 minus the probabil-
ity of obtaining zero or one failures. It is given by:

Pr

.

two or more failures( )= − ( )+ ( ){ }[ ]

= − +{ }[ ]=−

1 0 1

1 0 3678 1

f f

e 00 2642. .

Note the differences from Example 3.2, because m is not very large.

3.1.3  Other Discrete Distributions

Other discrete distributions that are used in reliability analysis include the geometric 
distribution, the negative binomial distribution, and the hypergeometric distribution.
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3.2  Continuous Distributions

With the geometric distribution, the Bernoulli trials are conducted until the first 
success is obtained. The geometric distribution has the “lack of memory” property, 
implying that the count of the number of trials can be started at any trial without 
affecting the underlying distribution. In this regard, this distribution is similar to the 
continuous exponential distribution, which will be described later.

With the negative binomial distribution (a generalization of the geometric distribu-
tion), the Bernoulli trials are conducted until a certain number of successes are 
obtained. Negative binomial distribution is, however, conceptually different from the 
binomial distribution, since the number of successes is predetermined, and the number 
of trials is a random variable.

With the hypergeometric distribution, testing or sampling is conducted without 
replacement from a population that has a certain number of defective products. The 
hypergeometric distribution differs from the binomial distribution in that the popula-
tion is finite and the sampling from the population is made without replacement.

3.2  Continuous Distributions

If  the range of a random variable, X, extends over an interval (either finite or infinite) 
of real numbers, then X is a continuous random variable. The cdf is given by:

	 F x P X x( )= ≤{ }. 	 (3.17)

The probability density function (pdf) is analogous to pmf for discrete variables, 
and is denoted by f(x) , where f(x) is given by (if  F(x) is differentiable):

	 f x
d
dx

F x( )= ( ), 	 (3.18)

which yields

	 F x f u du
x

( )= ( )
−∞
∫ . 	 (3.19)

The mean, μ, and variance, σ2, of a continuous random variable are defined over 
the interval from –∞ to +∞ in terms of the probability density function as (see 
Chapter 2):

	 μ= ( )
−∞

+∞

∫ xf x dx 	 (3.20)

	 σ µ µ2 2 2 2= −( ) ( ) = ( ) −
−∞

+∞

−∞

+∞

∫ ∫x f x dx x f x dx . 	 (3.21)

Reliability is concerned with the time to failure random variable T and thus X is 
replaced by T. Thus, Equation 3.19 corresponds to Equation 2.5 and Equation 3.20 
corresponds to Equation 2.46.
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Example 3.6

The pdf for the time to failure of an appliance is given by:

f t t e t( )= ⋅ −
1

16
4,

where t is in years, and t > 0.

(a)	 What is the probability of failure in the first year?

(b)	 What is the probability of the appliance lasting at least 5 years?

(c)	 If  no more than 5% of the appliances will require warranty service, what is the 
maximum number of months for which the appliance should be warranted?

Solution:

(a)	 For the given pdf, the cdf is

F t e d
t

e
t

t( )= ⋅ ⋅ = − +








− −∫
1

16
1

4
14

0

4τ ττ .

The probability of failure during the first year = F(1) = 0.0265.

(b)	 The probability of lasting more than 5 years is =  [1 – F(5)] =  [1 – 0.3554] = 
0.6446.

(c)	 For this case, F(t0) has to be less than or equal to 0.05, where t0 is the 
warranty period. From the above results, we find that the time has to be more 
than 1 year. Also, F(2) is equal to 0.09, hence the warranty period should be 
between 1 and 2 years. We can find that for no more than 5% warranty service, 
t0 =  1.42 years. Therefore, the warranty should be set at no greater than 17 
months.

Example 3.7

The time-to-failure random variable, T, of  a product follows the following probability 
density function:

F t
t

t( )= ≤ ≤

=
80 000

0 400

0
,

,

, otherwise.

We give solutions to the following four parts.

(a)	 Find the standard deviation for the time-to-failure random variable.
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Solution:

E T t
t

dt
t

E T t
t

[ ]= ⋅ = =

[ ]= ⋅

∫ 80 000 240 000
266 67

80 000

0

400 3

0

400

2 2

, ,
.

,
ddt

t
0

400 4

0

400

320 000
80 000∫ = =

,
, ,

then variance V[T] and the standard deviation are given by (see Eq. 2.35 in  
Chapter 2)

V T E T E T

V T

[ ]= [ ]− [ ]( ) =

= [ ] =

2 2 8888 89

94 28

.

. .Standard deviation

(b)	 Find the coefficient of skewness of the distribution for the time-to-failure 
random variable.

Solution:

μ μ μ

μ μ

μ

1 1

2
2

2

3
3

0

400 5

80 000 400 00

= = ′= [ ]
′ = [ ] = [ ]

′ = =∫

E T
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t
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, , 00
25 6 10

0

400
6= ×. .

Using Equation 2.52 (Chapter 2), we have

μ μ μμ μ μ μ

μ μμ μ
3 3 2

2
1

3

3 2
3

3 3

3 2 474 074

= ′− ′ + ′−

= ′− ′ + =− , .

Hence,

α
µ
µ

3
3

2
3 2 1 5

474 074

8888 89
0 5657= =

−
( )

=−
,

.
. ..

The above triangular distribution is negatively skewed, which is good in terms of 
reliability because the time to failure is a “larger the better” characteristic for the 
product.

(c)	 Find the B5 and B50 life of the product based on the above probability density 
function.

Solution:
Using Equation 2.5 and Equation 2.40, give
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F t
u

du
t

F B
B

B

F B

t

( )= =

( )= =

=

∫ 80 000 160 000

0 05
160 000

89 44

0

2

5
5
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.
,

.

550
50
2
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0 5
160 000

282 843

( )= =

=

.
,

. .

B

B

(d)	 Draw the failure rate (or hazard rate) curve for the above product by evaluating 
it at t = 0, 50, 100, 300, 400.

Solution:
Using Equation 2.5, the following table can be developed and the hazard rate function 
h(t) is drawn as shown in Figure 3.1.

Value of h(t) vs. t

t f(t) R(t) h(t)

0 0 1 0
50 0.000625 0.984375 0.000635

100 0.00125 0.9375 0.001333
300 0.00375 0.4375 0.008571
400 0.005 0 Infinity

The values of the hazard function are given in Figure 3.1. It is clear that for the 
above triangular distribution, the failure rate is increasing; such distributions have the 
property of an increasing failure rate (IFR). Many products that wear or deteriorate 
with time will exhibit IFR behavior.

Figure 3.1  Hazard rate function, h(t).
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3.2  Continuous Distributions

3.2.1  Weibull Distribution

The Weibull distribution is a continuous distribution developed in 1939 by Waloddi 
Weibull (1939), and who presented it in detail in 1951 (Weibull 1951). The Weibull 
distribution is widely used for reliability analyses because a wide diversity of hazard 
rate curves can be modeled with it. The distribution can also be approximated to other 
distributions under special or limiting conditions. The Weibull distribution has been 
applied to life distributions for many engineered products, and has also been used for 
reliability testing, material strength, and warranty analysis.

The probability density function for a three-parameter Weibull probability distribu-
tion function is

	 f t t e
t

( )= −( )− − −
−





βη γβ β
γ
η

β

1 , 	 (3.22)

where β > 0 is the shape parameter, η > 0 is the scale parameter, which is also denoted 
by θ in many references and books, and γ is the location or time delay parameter. The 
reliability function is given by

	 R t f d e
t

t

( )= ( ) =
∞

−
−





∫ τ τ
γ
η

β

. 	 (3.23)

It can be shown that Equation 3.23 gives, for a duration t = γ + η, starting at time 
t = 0, a reliability value of R(t) = 36.8%, regardless of the value of β. Thus, for any 
Weibull failure probability density function, 36.8% of the products survive for 
t = γ + η.

The time to failure of a product with a specified reliability, R, is given by

	 t R t= + − ( )[ ]γ η βln .1 	 (3.24)

The hazard rate function for the Weibull distribution is given by

	 h t
f t
R t

t
( )=

( )
( )
=

−











−
β
η

γ
η

β 1

. 	 (3.25)

The conditional reliability function is (see Eq. 2.39):

	

R t t
R t t
R t

t t t

,

exp

1
1

1

1 1

( )=
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( )

= −
+ −








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+
−














γ
η

γ
η

β β








.
	 (3.26)

Equation 3.26 gives the reliability for a new mission of duration t for which t1 hours 
of operation were previously accumulated up to the beginning of this new mission. 
It is seen that the Weibull distribution is generally dependent on both the age at the 
beginning of the mission and the mission duration (unless β = 1). In fact, this is true 
for most distributions, except for the exponential distribution (discussed later).



3  Probability and Life Distributions for Reliability Analysis

56

Table 3.1 lists the key parameters for a Weibull distribution and values for mean, 
median, mode, and standard deviation. The function Γ is the gamma function, 
for which the values are available from statistical tables and also are provided in 
Appendix B.

The shape parameter of a Weibull distribution determines the shape of the hazard 
rate function. With 0 < β < 1, the hazard rate decreases as a function of time, and 
can represent early life failures (i.e., infant mortality). A β =  1 indicates that the 
hazard rate is constant and is representative of the “useful life” period in the “ideal-
ized” bathtub curve (see Figure 2.6). A β > 1 indicates that the hazard rate is increas-
ing and can represent wearout. Figure 3.2 shows the effects of β on the probability 
density function curve with η = 1 and γ = 0. Figure 3.3 shows the effect of β on the 
hazard rate curve with η = 1 and γ = 0.

The scale parameter η has the effect of scaling the time axis. Thus, for a fixed γ and 
β, an increase in η will stretch the distribution to the right while maintaining its start-
ing location and shape (although there will be a decrease in the amplitude, since the 
total area under the probability density function curve must be equal to unity). Figure 
3.4 shows the effect of η on the probability density function for β = 2 and γ = 0.

The location parameter locates the distribution along the time axis and thus esti-
mates the earliest time to failure. For γ =  0, the distribution starts at t =  0. With 
γ >  0, this implies that the product has a failure-free operating period equal to γ. 
Figure 3.5 shows the effects of γ on the probability density function curve for β = 2 
and η = 1. Note that if  γ is positive, the distribution starts to the right of the t = 0 

Table 3.1  Weibull distribution parameters

Location γ
Shape parameter β
Scale parameter η
Mean (arithmetic average) γ + η + Γ(1/β + 1)
Median (B50, or time at 50% failure) γ + η(ln2)1/β

Mode (highest value of f(t)) for β > 1 γ + η(l − 1/β)1/β

for β = 1 γ
Standard deviation

η
β β

Γ Γ
2

1
1

12+






− +









Figure 3.2  Effects of shape parameter β on prob-
ability density function, where η = 1 and γ = 0.
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3.2  Continuous Distributions

line, or the origin. If  γ is negative, the distribution starts to the left of the origin, and 
could imply that failures had occurred prior to the time t = 0, such as during trans-
portation or storage. Thus, there is a probability mass F(0) at t = 0, and the rest of 
the distribution for t > 0 is given in Figure 3.5. The Weibull distribution can also be 
formulated as a two-parameter distribution with γ = 0.

The reliability function for the two-parameter Weibull distribution is

	 R t f d e
t

t

( )= ( ) =
∞

−





∫ τ τ η

β

	 (3.27)

and the hazard rate function is

	 h t
f t
R t

t
( )=

( )
( )
=











−
β
η η

β 1

. 	 (3.28)

The two-parameter Weibull distribution can be used to model skewed data. When 
β < 1, the failure rate for the Weibull distribution is decreasing and hence can be used 
to model infant mortality or a debugging period, situations when the reliability in 
terms of failure rate is improving, or reliability growth. When β =  1, the Weibull 
distribution is the same as the exponential distribution. When β > 1, the failure rate 
is increasing, and hence can model wearout and the end of useful life. Some examples 
of this are corrosion life, fatigue life, or the life of antifriction bearings, transmission 
gears, and electronic tubes.

Figure 3.3  Dependence of hazard rate on shape 
parameter, where η = 1 and γ = 0.
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Figure 3.4  Effects of scale parameter η on the pdf 
of a Weibull distribution, where β = 2 and γ = 0.
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The three-parameter Weibull distribution is a model when there is a minimum life 
or when the odds of the component failing before the minimum life are close to zero. 
Many strength characteristics of systems do have a minimum value significantly 
greater than zero. Some examples are electrical resistance, capacitance, and fatigue 
strength.

Example 3.8

Assume that the time to failure of a product can be described by the Weibull  
distribution, with estimated parameter values of η = 1000 hours, γ = 0, and β = 2. 
Estimate the reliability of the product after 100 hours of operation. Also determine 
the MTTF.

Solution:
From Equation 3.27, we have:

R e100 0 990100 1000 2
( )= =−( )/ . .

And from Table 3.1 we have

MTTF hours= +( )= ( )=1000 1 2 1 1000 1 50 886Γ Γ . .

where the value of Γ (1.50) can be found from the table in Appendix B.

Example 3.9

Suppose that the life distribution for miles to failure for a give failure mode for the 
transmission of a GM Cadillac model follows the two-parameter Weibull distribution 
with η = 150,000 mi, β = 4.5.

(a)	 Find the mean miles between failures or the expected life in miles of these 
transmissions.

Figure 3.5  Effects of location parameter γ, 
where β = 2 and η = 1.
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Solution:
Using the table in Appendix B, we have

E T[ ]= +






= +









= ×

η
β

Γ Γ

Γ

1
1

150 000 1
1

4 5

150 000 1

,
.

, .22222 150 000 0 912573

136 886

( )= ×

=

, .

, .mi

(b)	 Find the standard deviation for the miles to failure random variable.

Solution:
Again, using the table in Appendix B,

V T[ ]= +






− +





















=

η
β β

2 2

2

1
2

1
1

150 000 1

Γ Γ

Γ, .. .

, . . .

4444 1 2222

150 000 0 8858 0 912573 1 19

2

2 2

( )− ( )





= × −( )=

Γ

××109

Standard deviation mi= ( )= × =V T 1 19 10 34 5139. , .

(c)	 If  GM gives a warranty for 70,000 mi on these transmissions, what percent of 
these transmissions will fail during the warranty period?

Solution:

1 70 000 1 0 03188
70 000

150 000

4 5

− ( )= − =
−






R e, . .

,
,

.

Thus, 3.188% of the transmissions will fail during the warranty period for the given 
failure mode.

Example 3.10

Suppose that the life distribution (life in years of continuous use) of hard disk drives 
for a computer system follows a two-parameter Weibull distribution with the following 
parameters: β = 3.10 and η = 5 years.

(a)	 The manufacturer gives a warranty for 1 year. What is the probability that a 
disk drive will fail during the warranty period?

Solution:

F R1 1 1 1
1
5

1 0 993212 0 00

3 10

( )= − ( )= − −



















= − =

exp

. .

.

66788.

(b)	 Find the mean life and the median life (B50) for the disk drive.
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Solution:

mean

year

= +






= ( )

= × =

5 1
1

3 10
5 1 32258

5 0 89431 4 47155

Γ Γ
.

.

. . ss.

And to find the median life, we have

R B
B

B

50
50

3 10

50
3 1

5
0 5

5

( )= −

















 =








exp .
.

. 00

50

0 5 0 693147

0 888492 5 4 44246

=− ( )=

= × =

ln . .

. .B years.

(c)	 By what time will 95% of the disk drives fail? (Find the B95 life).

Solution:

R B
B

B

95
95

3 10

95
3

5
0 05

5

( )= −

















 =








exp .
.

.110

95

0 05 2 99573

1 42466 5 7 12329

=− ( )=

= × =

ln . .

. .B years.

Example 3.11

The failure rate of a component, in failures per year, is given by:

h t t t( )= ≥0 003 02. , .

(a)	 Find an expression for the reliability function and the probability density func-
tion for the time to failure of the component.

Solution:
Using Equation. 2.35 and Equation 2.36 in Chapter 2, we have

h t t

H t x dx t

R t t

f t

t

( )=

( )= =

( )= −[ ]
(

∫

0 003

0 003 0 001

0 001

2

2

0

3

3

.

. .

exp .

))= −[ ]0 003 0 0012 3. exp . .t t
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This is easily recognizable as a Weibull distribution with the following values of the 
parameters:

Weibull: , .β η= =3 10

(b)	 Find the expected life (MTTF) for the component.

Solution:

E T[ ]= +








= +






= × =

θ
β

Γ

Γ

1
1

10 1
1
3

10 0 89298 8 9298. . yeears.

(c)	 Find the B10 (the 10th percentile) for the life of the component.

Solution:
We need to find the value of t, such that the item has a 10% chance of failing. This 
is equivalent to finding the point at which R(t) = 0.9. Solving for t:

0 9

0 9 0 001

0 9
0 001

4 72

0 001

10
3

10
3

10
3

.

ln . .

ln .
.

.

.=

=− ( )

=
− ( )

=

− ( )e

B

B

B

33 years.

3.2.2  Exponential Distribution

The exponential distribution is a single-parameter distribution that can be viewed as 
a special case of a Weibull distribution, where β = 1. The probability density function 
has the form

	 f t e tt( )= ≥−λ λ
0

0 0, , 	 (3.29)

where λ0 is a positive real number, often called the constant failure rate. The parameter 
λ0 is typically an unknown that must be calculated or estimated based on statistical 
methods discussed later in this section. Figure 3.6 gives a graph for an exponential 
distribution, with λ0 = 0.10. Table 3.2 summarizes the key parameters for the expo-
nential distribution.

Once λ0 is known, the reliability can be determined from the probability density 
function as

	 R t f d e d e
t

t

t

t( )= ( ) = =
∞

−
∞

−∫ ∫τ τ λ τλ λ
0

0 0 . 	 (3.30)

The cdf or unreliability is given by

	 F t Q t t( )= ( )= − −[ ]1 0exp .λ 	 (3.31)
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As mentioned, the hazard rate for the exponential distribution is constant:

	 h t
f t
R t e

e
t

t( )=
( )
( )
= ( )=−

−1
0

0
0 0λ

λλ λ . 	 (3.32)

The conditional reliability is

	 R t t
R t t
R t

e e et t t t, .1
1

1

0 1 0 1 0( )=
+( )
( )

= =− +( ) − −λ λ λ 	 (3.33)

Equation 3.33 shows that previous usage (e.g., tests or missions) do not affect future 
reliability. This “as good as new” result stems from the fact that the hazard rate is a 
constant and the probability of a product failing is independent of the past history 
or use of the product.

The mean time to failure (MTTF) for an exponential distribution, also denoted  
by θ, is determined from the general equation for the mean of a continuous 
distribution:

	 MTTF= ( ) = =
∞

−

∞

∫ ∫R t dt e dtt

0 0
0

0
1λ

λ
. 	 (3.34)

Thus, the MTTF or the MTBF is inversely proportional to the constant failure rate, 
and thus the reliability can be expressed as

	 R t e t MTBF( )= − . 	 (3.35)

The MTBF is sometimes misunderstood to be the life of the product or the time 
by which 50% of products will fail. For a mission time of t = MTBF, the reliability 

Figure 3.6  An example of an exponential 
distribution.
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Table 3.2  Exponential distribution parameter

Scale parameter 1/λ0

Median (B50) 0.693/λ0

Mode (highest value of f(t)) 0
Standard deviation 1/λ0

Mean 1/λ0
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calculated from Equation 3.30 gives R(MTBF) = 0.368. Thus, only 36.8% of the 
products survive a mission time equal to the MTBF.

Example 3.12

Show that the exponential distribution is a special case of the Weibull distribution.

Solution:
From Equation 3.22, set β = 1 and γ = 0

f t e
t

( )=
−1

η
η.

Thus, in this case, the Weibull distribution reduces to the single-parameter exponential 
distribution with λ0 = 1/η. The reliability and the hazard rate functions simplify to:

R t e

h t

t

( )=

( )=

−
η

η
1

,

where

η
λ
=

1

0

.

If  β = 1 and γ > 0, then the Weibull distribution is the same as the exponential dis-
tribution with minimum life, γ, or is also a two-parameter exponential distribution.

Example 3.13

Consider an electronic product that exhibits a constant hazard rate. If  the MTBF is 
5 years, at what time will 10% of the products fail?

Solution:
Using Equation 3.35 with R = 0.90 and MTBF ≈ 43,800 hours (5 years), we solve 
for t, where t is in hours. Thus, t = –[(MTBF) × ln(R)] ≈ 4600 hours, or nearly half  
a year.

Example 3.14

Here we consider a mixture of exponential distributions. The pdf for the life of a 
device is given by the following probability density function, which is a mixture of 
two exponential distributions.

f t e e tt t( )= + ≥− −1
4

3
2

02 , .

(a)	 Prove that the above function is a valid pdf.
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Solution:

1
4

3
2

1
4

3
2

1
2

1
4

0 1
3
4

2

0

2

0

e e dt e et t t t− −

∞

− −
∞

+






 =− − ×

=− −( )−

∫

00 1 1−( )= .

Therefore, the above function is a valid pdf.

(b)	 Find the probability that a device will last at least 3 hours.

Solution:

f t e e t

R t f d e e

t t

t

( )= + ≥

( )= ( ) = +








− −

∞

− −∫

1
4

3
2

0

1
4

3
2

2

2

, .

τ τ τ τ


= − −






 = +

( )= +

∞

− −
∞

− −

−

∫ d

e e e e

R e

t

t

t t

τ

τ τ1
4

3
4

1
4

3
4

3
1
4

3

2 2

3

44
0 014316e− = . .

Alternatively: R(t) = 1 − F(t).

F t e e d e e
t t

( )= +






 = − −









− − − −∫
1
4

3
2

1
4

3
4

2

0

2

0

τ τ τ ττ

==− − +− −1
4

3
4

12e et t

F e e3
1
4

3
4

1 0 985693 6( )=− − + =− − .

R F3 1 3 1 1 0 98569 0 01431( )= − ( )= = − =. . .

(c)	 Find the expected life or the MTBF of the device.

Solution:

MTBF= ( ) = +








= − −



∞

− −

∞

− −

∫ ∫R t dt e e dt

e e

t t

t t

0

2

0

2

1
4

3
4

1
4

3
8




 = + =
∞

0

1
4

3
8

5
8

hours.

3.2.3  Estimation of Reliability for Exponential Distribution

For reliability tests in which the hazard rate is assumed to be constant, and the time 
to failure can be assumed to follow an exponential distribution, the constant failure 
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rate can be estimated by life testing. There are various ways to test the items. Figure 
3.7 gives an example of a failure-truncated test, in which n items on individual test 
stands are monitored to failure. The test ends as soon as there are r failures (without 
replacement r ≤ n), as shown in Figure 3.7.

The total time on test, TT, considering both failed and unfailed (or suspended) units, 
is calculated by the following equation:

	 T t n r tT i

i

r

r= + −( )
=
∑

1

. 	 (3.36)

Another test situation is called time-truncated testing. In Figure 3.8, there are n test 
stands (or n items on test in a test chamber). The units are monitored and replaced 
as soon as they fail. Testing for these units continues until some predetermined time, 
t0. In this case, the total time on test is

	 T ntT = 0. 	 (3.37)

Then the point estimator (minimum variance unbiased estimator) for θ, the 
MTBF, is

	 ˆ .θ=
T
r
T 	 (3.38)

Further details are given in Chapter 13. Also, the point estimator for λ is

	 ˆ
ˆ .λ
θ

=
1

	 (3.39)

Chapter 13 will present the methodology for the point estimation and confidence 
interval for several test situations and underlying life distributions.

Figure 3.7  Failure-truncated test. Failures are 
denoted by .
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Example 3.15

Seven prototypes are monitored for some failure during development testing or as 
fielded products. The failures on the products are fixed (it is assumed that we can 
renew the product) and testing continues. Then testing is stopped at the times given 
below for each product:

Product no. Hours when failures are recorded Hours when testing is stopped

01 2467; 3128; 3283; 7988 8012
02 None 6147
03 1870; 6121; 6175 9002
04 3721; 4393; 5848; 6425; 6353 11,000
05 498 4651
06 184; 216; 561; 2804 5012
07 2342; 4213 12,718

Estimate the MTBF for this product.

Solution:
In this case, TT, the total time on test, is obtained by adding all the hours when testing 
was stopped:

TT = + + =8012 12 718 56 542� , , .hours

During this total test period, there were 19 failures. Thus, the point estimator for the 
MTBF, under the assumption that the time between failures follows the exponential 
distribution, is

ˆ , .θ= =56 542 19 2975 hours

Example 3.16

Estimate the MTBF (point estimator) or (θ̂) for the following reliability test 
situations:

(a)	 Failure terminated, with no replacement. Twelve items were tested until the 
fourth failure occurred, with failures at 200, 500, 625, and 800 hours.

(b)	 Time terminated, with no replacement. Twelve items were tested up to 1000 
hours, with failures at 200, 500, 625, and 800 hours.

(c)	 Failure terminated, with replacement. Eight items were tested until the third 
failure occurred, with failures at 150, 400, and 650 hours.

(d)	 Time terminated, with replacement. Eight items were tested up to 1000 hours, 
with failures at 150, 400, and 650 hours.

(e)	 Mixed replacement/nonreplacement. Six items were tested through 1000 hours 
on six different test stands. The first failure on the test stand occurred at 300 
hours, and its replacement failed after an additional 400 hours. On the second 
test stand, failure occurred at 350 hours, and its replacement failed after an 
additional 500 hours. On the third test stand, failure occurred at 600 hours, and 
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its replacement did not fail up to the completion of the test. The items on the 
other three test stands did not fail for the duration of the test.

Solution:

(a)	 MTBF hourse( )= = + + + + ( )( ) =ˆ ,θ 200 500 625 800 8 800 4 2 131

(b)	 MTBF hourse( )= = + + + + ( )( ) =ˆ ,θ 200 500 625 800 8 1000 4 2 531

(c)	 MTBF hourse( )= =( )( ) =ˆ ,θ 8 650 3 1 733

(d)	 MTBF hourse( )= =( )( ) =ˆ ,θ 8 1000 3 2 667

(e)	 MTBF hourse( )= = + + +( )( )( ) =ˆ ,θ 700 850 1000 3 1000 5 1 110 .

Example 3.17

Forty modules were placed on life test for 20 days (24 hours per day). Failed boards 
were replaced on the test stands with new ones. The test produced two failures. Esti-
mate the MTBF or the failure rate for the modules.

Solution:
In this case, the total time on test is

TT = × × =20 24 40 19 200, hours

ˆ ,θ= = =TT r hours19 200 2 9600

ˆ , . .λ= = = × −r failures per hourTT 2 19 200 1 04 10 4

3.2.4  The Normal (Gaussian) Distribution

The normal distribution occurs whenever a random variable is affected by a sum of 
random effects, such that no single factor dominates. This motivation is based on 
central limit theorem, which states that under mild conditions, the sum of a large 
number of random variables is approximately normally distributed. It has been used 
to represent dimensional variability in manufactured goods, material properties, and 
measurement errors. It has also been used to assess product reliability.

The normal distribution has been used to model various physical, mechanical, 
electrical, or chemical properties of systems. Some examples are gas molecule velocity, 
wear, noise, the chamber pressure from firing ammunition, the tensile strength of 
aluminum alloy steel, the capacity variation of electrical condensers, electrical power 
consumption in a given area, generator output voltage, and electrical resistance.

The probability density function for the normal distribution is based on the follow-
ing Gaussian function:

	 f t
t

t( )= −






−

















 −∞≤ ≤+∞

1

2

1
2

2

σ π
µ
σ

exp , , 	 (3.40)

where the parameter μ is the mean or the MTTF, and σ is the standard deviation of 
the distribution. The parameters for a normal distribution are listed in Table 3.3. 
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Figure 3.9 shows the shape of the probability density function for the normal 
distribution.

The cdf, or unreliability, for the normal distribution is:

	 F t
x

dx
t

( )= −






−




















−∞
∫

1

2

1
2

2

σ π
µ
σ

exp . 	 (3.41)

A normal random variable with mean equal to zero and variance of 1 is called a 
standard normal variable (Z), and its pdf is given by

	 φ
π

z e z( )= −1

2

2 2, 	 (3.42)

where z ≡ (t – μ)/σ.
The properties of the standard normal variable, in particular the cumulative prob-

ability distribution function, are tabulated in statistical tables (provided in Appendix 
C). Table 3.4 provides the percentage values of the areas under the normal curve at 
different distances from the mean in terms of multiples of σ. For example,

	 P X ≤ −[ ]=µ σ3 0 00135. 	 (3.43)

and

Table 3.3  Normal distribution parameters

Mean (arithmetic average) μ
Median (B50 or 50th percentile) μ
Mode (highest value of f(t)) μ
Location parameter μ
Shape parameter/standard deviation σ
s (an estimate of σ) B50 − B16

Figure 3.9  Probability density function for 
normal distribution.Mean
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	 P X ≤ +[ ]=µ σ3 0 99865. . 	 (3.44)

There is no closed-form solution to the integral of Equation 3.41, and, therefore, 
the values for the area under the normal distribution curve are obtained from the 
standard normal tables by converting the random variable, t, to a random variable, 
z, using the transformation:

	 z
t

=
−µ
σ

, 	 (3.45)

given by Equation 3.42. We have

	 F t z
t

( )= ( )=
−





Φ Φ
µ
σ

	 (3.46)

or

	 R t
t

( )= −
−





1 Φ
µ
σ

	 (3.47)

and

	 h t
t
R t

( )=
−( )[ ]
( )

φ µ σ
σ

, 	 (3.48)

where φ(.) is the pdf for the standard normal distribution and Φ(z) is the cdf for the 
standard normal random variable Z.

From Equation 3.48, we can prove that the normal distribution has an increasing 
hazard rate (IHR). The normal distribution has been used to describe the failure 
distribution for products that show wearout and that degrade with time. The life of 
tire tread and the cutting edges of machine tools fit this description. In these situa-
tions, life is given by a mean value of μ, and the variability about the mean value is 
defined through standard deviation. When the normal distribution is used, the prob-
abilities of a failure occurring before or after this mean time are equal because the 
mean is the same as the median.

Example 3.18

A machinist estimates that there is a 90% probability that the washer in an air com-
pressor will fail between 25,000 and 35,000 cycles of use. Assuming a normal distribu-
tion for washer degradation, find the mean life and standard deviation of the life of 
the washers.

Table 3.4  Areas under the normal curve

μ – 1σ = 15.87% μ + 1σ = 84.130%
μ – 2σ = 2.28% μ + 2σ = 97.720%
μ – 3σ = 0.135% μ + 3σ = 99.865%
μ – 4σ = 0.003% μ + 4σ = 99.997%
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Solution:
Assuming that 5% of the failures are at fewer than 25,000 cycles and 5% are at more 
than 35,000 cycles, the mean of the distribution will be centered at 30,000 cycles of 
use, that is, μ = 30,000.

In this condition:

Φ

Φ

z z

z z

1 1

2 2

0 05
25 000

0 95
35 000

( )= =
−

( )= =
−

. ,
,

. ,
,

.

µ
σ

µ
σ

From the normal distribution table, z1 = –1.65, and z2 = 1.65. Hence, –1.65σ = 25,000 – μ 
and 1.65σ = 35,000 – μ.

Solving the above two equations with the mean value of 30,000 cycles results in a 
σ of  3030 cycles.

Example 3.19

The time for failure due to fungi growth is normally distributed with mean μ = 2.8 
hours and standard deviation σ = 0.6 hours.

(a)	 What is the probability that the failure due to fungi growth will occur in 1.5 
hrs?

(b)	 If  we accept a probability of failure due to fungi growth of only 10%, after 
what time from the start should the fungi be analyzed?

Solution:

(a)	 The probability that the fungi will grow in less than 1.5 hours is given by:

P T Q<{ }= ( )= ( )1 5 1 5. . ,Φ z

z t= −( ) = −( ) =−µ σ 1 5 2 8 0 6 2 1667. . . . .

From the standard normal table, Φ(–2.1667) = 0.0151.

(b)	 For this condition, F(t) = 0.1 = Φ(z), then from the standard normal table, z 
is approximately –1.28. Therefore, –t + μ = 1.28σ, hence t = 2.03 hours.

Example 3.20

A component has the normal distribution for time to failure, with μ = 20,000 hours 
and σ = 3000 hours.

(a)	 Find the probability that the component will fail between 14,000 hours and 
15,000 hours.
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Solution:

P T

P
T

14 000 15 000

14 000 20 000
3000

15 000 20 000
30

, ,

, , , ,

≤ ≤[ ]

=
−

≤
−
≤

−µ
σ 000

2 1 667

1 667 2

1 0 95225 1 0





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



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= − ≤ ≤−[ ]
= −( )− −( )
= −( )− −

P Z .

.

.

Φ Φ

..

. . . .

97725

0 04775 0 02275 0 025

( )
= − =

(b)	 Find the failure rate of a component that has been working for 14,000 hours.

Solution:

f 14 000
14 000 20 000

3000
3000

1 7997 10
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5

,
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.
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

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
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
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
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


= >−[ ]= ( )=
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( )
= ×

P Z

h t
f t
R t

Φ .

. −−9 failures cycle.

Example 3.21

The time to failure random variable for a light bulb made by Company X follows a 
normal distribution, with μ = 1600 hours and σ = 250 hours.

(a)	 Find the B10 life of these light bulbs.

Solution:
Setting the value of reliability at B10 equal to 0.90, we have

R B

z
B

B

10

10

10

0 9

1 28
1600

250
1 28 250 1600 1280

( )=

=− =
−

= −( )( )+ =

.

.

. hourrs.

(b)	 Find the reliability of the light bulbs for 1100 hours.

Solution:

R Z Z1100
1100 1600

250
2 0 0 9773( )= ≥

−





= ≥−( )=Pr Pr . . .
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(c)	 What is the failure rate or hazard rate of a light bulb that has not failed for 
1100 hours?

Solution:

h
f
R

1100
1100
1100

2 0 250
2 0

0 05399 250
0 9773

( )=
( )
( )

=
−( )
−( )

=

=

φ .
.

.
.Φ

00 0002210. .failures hour

where:

φ φ
1100 1600
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−
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
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= −( )= . .

based on MS Excel evaluation, where:
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
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2
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Alternatively,

f e

h
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2
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(d)	 Company X has 5 million light bulbs in the field that have been in use for 1100 
hours and have not failed so far. How many light bulbs will fail in the next day 
(or 24 hours)? Assume that light bulbs are used on average for 10 hours per 
day.

Solution:
Using the concepts covered in Section 2.2.1 of Chapter 2, we have Ns(1100) = 5 × 106 
and Δt = 10 hours.

h

N N
N t

NS S

S

S

1100 0 0002210

1100 1100 10
1100

1100

( )= =

( )− +( )
( )×

=
( )

.

∆
−− +( )
× ×

NS 1100 10
5 10 106

.

Then the number of failures between 1100 and 1110 hours is given by:

0 0002210 5 10 10 11 0506. , .( ) ×( )( )= light bulbs
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3.2.5  The Lognormal Distribution

For a continuous random variable, there may be a situation in which the random 
variable is a product of a series of random variables. The lognormal distribution is a 
positively skewed distribution and has been used to model situations where large 
occurrences are concentrated at the tail (left) end of the range. Some examples are 
the amount of electricity used by different customers, the downtime of systems, the 
time to repair, the light intensities of light bulbs, the concentration of chemical process 
residues, and automotive mileage accumulation by different customers. For example, 
the wear on a system may be proportional to the product of the magnitudes of the 
loads acting on it. Thus, a random variable may be modeled as a lognormal random 
variable if  it can be thought of as the multiplicative product of many independent 
random variables each of which is positive. If  a random variable has lognormal dis-
tribution, then the logarithm of the random variable is normally distributed. If  X is 
a random variable with a normal distribution, then Y = eX has a lognormal distribu-
tion; or if  Y has lognormal distribution, then X = log Y has normal distribution.

Suppose Y is the product of n independent random variables given by

	 Y YYY Yn= ……1 2 3 . 	 (3.49)

Taking the natural logarithm of Equation 3.49 gives

	 ln ln ln ln ln .Y Y Y Y Yn= + + + +1 2 3 � 	 (3.50)

Then ln Y may have approximately normal distribution based on the central limit 
theorem.

The lognormal distribution has been shown to apply to many engineering situa-
tions, such as the strengths of metals and the dimensions of structural elements, and 
to biological parameters, such as loads on bone joints. Lognormal distributions have 
been applied in reliability engineering to describe failures caused by fatigue and to 
model time to repair for maintainability analysis. The probability density function for 
the lognormal distribution is:

	 f t
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, 	 (3.51)

where σ is the standard deviation of the logarithms of all times to failure, and μ is 
the mean of the logarithms of all times to failure. If  random variable T follows a 
lognormal distribution with parameters μ and σ, then ln T follows a normal distribu-
tion so that

	 E T V Tln ln .[ ]= [ ]=µ σand 2 	 (3.52)

The cdf (unreliability) for the lognormal distribution is:
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The probability density function for two values of σ are as shown in Figure 
3.10. The key parameters for the lognormal distribution are provided in Table 3.5.

The MTTF for a population for which the time to failure follows a lognormal 
distribution is given by

	 MTTF= +












exp µ
σ2

2
	 (3.54)

and the failure rate is given by

	 h t
t

t R t( )=
−






 ( )φ
µ

σ
σ

ln
. 	 (3.55)

The hazard rate for the lognormal distribution is neither always increasing nor always 
decreasing. It takes different shapes, depending on the parameters μ and σ. We can 
prove that the hazard rate of a lognormal distribution is increasing on average (called 
IHRA).

From the basic properties of the logarithm operator, it can be shown that if  vari-
ables X and Y are distributed lognormally, then the product random variable Z = XY 
is also lognormally distributed.

Figure 3.10  Lognormal probability density 
function where σ = 0.1 and σ = 0.5.
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Table 3.5  Lognormal distribution parameters

Mean exp[μ + 0.5σ2]

Variance e eσ µ σ2 2
1 2−( ) +

Median (B50 or time at 50% failures) B50 = eμ

Mode (highest value of f(t)) t = exp[μ – σ2]
Location parameter eμ

Shape parameter σ
s (estimate of σ) ln(B50/B16)
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Example 3.22

A population of industrial circuit breakers was found to have a lognormal failure 
distribution with parameters μ = 3 and σ = 1.8. What is the MTTF of the popula-
tion? What is the estimate of reliability of these circuit breakers for continuous opera-
tion over 30 years?

Solution:
From Equation 3.54 for the MTTF,

MTTF years.= + ×( )( )=exp . . .3 0 5 1 8 2 101 5

For a 30-year operation (from Eq. 3.53),

z=
( )−

=
−
=

ln
.

.
.

. .
30 3
1 8

3 41 3
1 8

0 223

Hence, from the table of standard normal distribution, the estimate of reliability for 
a 30-year operation is given by:

R z30 1 1 0 223 1 0 588 0 412( )= − ( )[ ]= − ( )[ ]= −[ ]=Φ Φ . . . .

Example 3.23

The time to repair a copy machine follows the lognormal distribution with μ = 2.50 
and σ = 0.40. Time is in minutes.

(a)	 Find the probability that the copy machine will be repaired in 20 minutes.

Solution:

P T P T P Z

P Z

≤[ ]= ≤[ ]= ≤
−









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= ≤[ ]=

20 20
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0 40

1 23933 0

ln ln
ln .

.
. .. .89239

(b)	 Find the median value, or B50 life, for the time to repair a random variable.

P T B P Z

T

T

≤[ ]= = ≤[ ]

=
−

=

50 0 5 0

0
2 5

0 40
12 185

.

ln .
.

. .

3.2.6  Gamma Distribution

The probability density function for the gamma distribution is given by

	 f t t e tt( )=
( )

≥− −λ
η

η
η λ

Γ
1 0, , 	 (3.56)
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where Γ(η) is the gamma function (values for this function are given in Appendix B). 
The gamma distribution has two parameters, η and λ, where η is called the shape 
parameter and λ is called the scale parameter. The gamma distribution reduces to 
the exponential distribution if  η =  1. Adding η exponential distributions, η ≥  1, 
with the same parameter λ, provides the gamma distribution. Thus, the gamma dis-
tribution can be used to model time to the ηth failure of a system if  the underlying 
system/component failure distribution is exponential with parameter λ. We can also 
state that if  Ti is exponentially distributed with parameter λ, i = 1, 2, .  .  . , η, then 
T =  T1 + T2 + .  .  . + Tη has a gamma distribution with parameters λ and η. 
This distribution could be used if  we wanted to determine the system reliability for 
redundancy with identical components all having a constant failure rate.

From Equation 3.56, the cumulative distribution or the unreliability function is

	 F t e d tt

t

( )=
( )

≥− −∫
λ
η
τ τ

η
η λ

Γ
1

0

0, . 	 (3.57)

If  η is an integer, then the gamma distribution is also called the Erlang distribution, 
and it can be shown by successive integration by parts that

	 F t
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Then,
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	 (3.59)

and

	 h t
f t
R t

( )=
( )
( )

. 	 (3.60)

Also,

	 E T( )=
η
λ

	 (3.61)

and

	 V T( )=
η
λ2

. 	 (3.62)

The failure rate for the gamma distribution is decreasing when η < 1, is constant when 
η = 1(because it is an exponential distribution), and is increasing when η > 1.
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Example 3.24

The time to a major failure in hours for a copy machine follows a gamma distribution 
with parameters η = 3 and λ = 0.002.

(a)	 What is the expected life, or mean time between failures (MTBF), for the copy 
machine?

Solution:
Using Equation 3.61, we have

MTBF hours.= = =
η
λ

3
0 002

1500
.

(b)	 What is the reliability of the copy machine for 500 hours of continuous 
operation?

Solution:
Using Equation 3.59,
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(c)	 What is the failure rate of a copy machine that has been working for 500 hours?

Solution:
Using Equation 3.56 and Equation 3.60, we have

f t t e

f e

t( )=
( )

( )=
( )

=

− −

− −( )

λ
η

η
η λ

Γ

Γ

1

3
3 1 0 002 500500

0 002
3

500 0
.

.. * 0000368

500 500 500

0 0004001

h f R( )= ( ) ( )
= . failures per hour.

Thus, the failure rate is 0.0004 failures per hour, or 4 failures per 10,000 hours of 
total use.

3.3  Probability Plots

Probability plotting is a method for determining whether data (observations) conform 
to a hypothesized distribution. Typically, computer software is used to assess the 
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hypothesized distribution and determine the parameters of the underlying distribu-
tion. The method used by the software tools is analogous to using constructed prob-
ability plotting paper to plot data. The time-to-failure data is ordered from the 
smallest to the largest in value in an appropriate metric (e.g., time to failure and cycles 
to failure). An estimate of the percent of unreliability is selected. The data are plotted 
against a theoretical distribution in such a way that the points should form a straight 
line if  the data come from the hypothesized distribution. The data are plotted on 
probability plotting papers (these are distribution specific), with ordered times to 
failure in the x-axis and the estimate of percent unreliability as the y-axis. A best-fit 
straight line is drawn through the plotted data points.

The time to failure data used for the x-axis is obtained from the field or testing. 
The estimate of unreliability against which to plot this time-to-failure data is not that 
obvious. Several different techniques, such as “midpoint plotting position,” “expected 
plotting position,” “median plotting position,” “median rank,” and Kaplan–Meier 
ranks (in software) are used for this estimate. Table 3.6 provides estimates for unreli-
ability based on different estimation schemes for a sample size of 20.

The median rank value for the ith failure, Qi, is given by the solution to the follow-
ing equation:

	
N

k N k
Q Qi

N k
i
k

k i

N !
! !

. ,
−( )

−( ) =−

=
∑ 1 0 5 	 (3.63)

where N is the sample size, i is the failure number, and Qi is the median rank (or 
estimate of unreliability at the failure time of the ith failure). Equation 3.64, which 

Table 3.6  Examples of cdf estimates for N = 20

Rank  
order (i)

Estimate of cumulative distribution function or unreliability

Midpoint plotting 
position

Expected plotting 
position

Median plotting 
position Median rank

  1 2.5 4.8 3.4 3.406
  2 7.5 9.5 8.3 8.251
  3 12.5 14.3 13.2 13.147
  4 17.5 19.0 18.1 18.055
  5 22.5 23.8 23.0 22.967
  6 27.5 28.6 27.9 27.880
  7 32.5 33.3 32.8 32.795
  8 37.5 38.1 37.7 37.710
  9 42.5 42.8 42.6 42.626
10 47.5 47.6 47.5 47.542
11 52.5 52.4 52.5 52.458
12 57.5 57.1 57.4 57.374
13 62.5 61.9 62.3 62.289
14 67.5 66.7 67.2 67.205
15 72.5 71.4 72.1 72.119
16 77.5 76.4 77.0 77.033
17 82.5 80.1 81.9 81.945
18 87.5 85.7 86.8 86.853
19 92.5 90.5 91.7 91.749
20 97.5 95.2 96.6 96.594
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estimates the median plotting positions, can be used in place of the median rank as 
an approximation:

	 Q
i

N
i =

× −( )
+

100 0 3
0 4

.
.

. 	 (3.64)

The axes used for the plots are not linear. The axes are different for each probability 
distribution and are created by linearizing the cmf or unreliability function, typically 
by taking the logarithm of both sides repeatedly. For example, mathematical manipu-
lation based on Equation 3.27 for a two-parameter Weibull distribution will result in 
an ordinate (y-axis) as log log reciprocal of R(t) = 1 – Q(t) scale and the abscissa as 
a log scale of time to failure, and is derived below:
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where x = ln(t) and y = ln(−ln(1 − Q(t))).
Once the probability plots are prepared for different distributions, the goodness of 

fit of the plots is one factor in determining which distribution is the right fit for the 
data. Probability distributions for data analysis should be selected based on their 
ability to fit the data and for physics-based reasons. There should be a physics-based 
argument for selection of a distribution that draws from the failure model for the 
mechanism(s) that caused the failures. These decisions are not always clear-cut. For 
example, the lognormal and the Weibull distribution both model fatigue failure data 
well, and hence it is often possible for both to fit the failure data; thus, experience-
based engineering judgments need to be made.

There is no reason to assume that all the time-to-failure data taken together need 
to fit only one failure distribution. Since the failures in a product can be caused by 
more than one mechanism, it is possible that some of the failures are caused by one 
mechanism and the others by a different mechanism. In that case, no single probability 
distribution will fit the data well. Even if  it appears that one distribution fits all the 
data, that distribution may not have good predictive ability. That is why it may be 
necessary to separate the failures by mechanisms into sets and then fit separate dis-
tributions for each set.

Table 3.7 shows times to failure separated into two groups by failure mechanism. 
Figure 3.11 shows the Weibull probability plots for the competing failure mecha-
nism data. Note that the shape and scale factors for the two sets are distinct, with 
one set having a decreasing hazard rate (β  =  0.67) and the other set having 
an increasing hazard rate (β =  4.33). If  the data are plotted together, the result 
shows an almost constant hazard rate. However, spare part and support decisions 
made based on results from a combined data analysis can be misleading and 
counterproductive.
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Table 3.7  Time to failure data separated by failure mechanism

Ordered Data State F or S Time to F or S Failure Mechanism Group

  1 F 2 V
  2 F 10 V
  3 F 13 V
  4 F 23 V
  5 F 23 V
  6 F 28 V
  7 F 30 V
  8 F 65 V
  9 F 80 V
10 F 88 V
11 F 106 V
12 F 143 V
13 F 147 W
14 F 173 V
15 F 181 W
16 F 212 W
17 F 245 W
18 F 247 V
19 F 261 V
20 F 266 W
21 F 275 W
22 F 293 W
23 S 300
24 S 300
25 S 300
26 S 300
27 S 300
28 S 300
29 S 300
30 S 300

F, failure; S, suspension; V, failure mechanism 1; W, failure mechanism 2.

Figure 3.11  Weibull probability plot 
for competing failure mechanism 
data shown in Table 3.7. β1 =  0.67, 
η1 = 450; β2 = 4.33, η2 = 340.
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3.3  Probability Plots

Example 3.25

Figure 3.12 shows reliability test data for 10 identical products out of which six  
products failed within the test duration of 600 hors. The time to failure is plotted  
on two-parameter Weibull probability plotting paper. Using the plot, estimate the 
following:

(a)	 The unreliability and reliability at the end of 50 hours.

(b)	 The reliability for a new period of 50 hours, starting after the end of the previ-
ous 50-hour period.

(c)	 The longest duration that will provide a reliability of 95% assuming the opera-
tion starts at 50 hours.

Solution:

(a)	 For this example, we find that β = 0.65, and η is estimated to be 825 hours. It 
is now possible to write the equation for the reliability and use it for analysis. 
The plotted straight line can also be used to determine the reliability values 
directly.

From Figure 3.12, the unreliability estimate for a mission time of 50 hours can 
be read directly from the straight line. The value is Q(50) =  15%. Thus, the 
reliability for this duration is R(50) = 1 – Q(50) = 85%.

Figure 3.12  Two-parameter Weibull 
probability plot for time-to-failure data 
shown in Table 3.8. β1 = 0.65, η1 = 825.Time (t) 
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Table 3.8  Test Data for Example 3.25

Sample number Time to failure (hours) Sample number Time to failure (hours)

1 14 6 563
2 58 7 –
3 130 8 –
4 245 9 –
5 382 10 –
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(b)	 The reliability for a new 50-hour period starting with an age of 50 hours is 
given by the conditional reliability equation as

R
R

R
R
R

50 50
50 50

50
100
50

0 78
0 85

91 7,
.
.

. %,( )=
+( )
( )

=
( )
( )

= =

where R(100) = 1 – Q(100) can be taken directly from the curve.

(c)	 For a mission time, t, that starts after a 50-hour period and must have a reli-
ability of 95%,

R t
R t
R

R t
,

.
.50

50
50

50
0 85

0 95( )=
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( )

=
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=

or

R t+( )= × =50 0 95 0 85 0 808. . . .

To obtain this reliability, the unreliability is 0.192 or 19.2%. From the curve, the time 
to obtain this unreliability is about 75 hours. Thus, 50 + t = 75 gives a maximum new 
mission time of 25 hours in order to have a reliability of 95%.

When the life data contains two or more life segments—such as infant mortality, 
useful life, and wearout—a mixed Weibull distribution can be used to fit parts of the 
data with different distribution parameters. A curved or S-shaped Weibull probability 
plot (in either two or three parameters) is an indication that a mixed Weibull distribu-
tion may be present.

Statistical analysis provides no magical way of projecting into the future. The results 
from an analysis are only as good as the assumed model and assumptions, including 
how failure is defined, the validity of the data, how the model is used, and taking into 
consideration the tail of the distribution and the limits of extrapolations and inter-
polations. The following example demonstrates the absurdity of extrapolating times 
to failure beyond their reasonable limits.

Example 3.26

A Weibull probability plot was made for a population collected over the first 10 years 
of its life containing failures (see Figure 3.13).

(a)	 Estimate the percentage of this population expected to fail by 300 years.

(b)	 Does the answer make sense if  the time-to-failure data is for human mortality? 
Explain.

Solution:

(a)	 The results show that the probability of failure at 300 years is approximately 
2%.

(b)	 The mortality data for over a billion people for a 10-year period from the time 
of birth fits a Weibull distribution very well. This looks impressive, but is nev-
ertheless all wrong. It is clear that this data should not be used for making any 
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3.4  Summary

judgment on human longevity, even though all the calculations are correct. The 
mortality pattern of humans in the first 10 years of life cannot be extrapolated, 
because the mortality pattern changes with age. This is also often true for engi-
neered goods. Failures that occur in postmanufacturing tests are often caused 
by defects introduced in manufacturing. The first 10 years of time-to-failure 
data will result in a shape factor (β) of less than one. However, during early 
childhood through a large part of adulthood, the shape factor will be close to 
one, where most deaths can be considered random (e.g., caused by many causes 
such as accidents). Then the population will enter a wearout stage during which 
people die from old age. Complete human mortality data should be modeled 
using a mixed Weibull distribution.

3.4  Summary

The reliability function is used to describe the probability of successful system opera-
tion during a system’s life. A natural question is then, “What is the shape of a reli-
ability function for a particular system?” There are basically three ways in which this 
can be determined:

1.	 Test many systems to failure using a mission profile identical to use conditions. 
This would provide an empirical curve based on the histogram that can give 
some idea about the nature of the underlying life distribution.

Figure 3.13  Weibull probability plot of time-to-failure data for Example 3.26.
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2.	 Test many subsystems and components to failure under use conditions recreated 
in the test environment. This empirically provides the component reliability 
functions. Then derive analytically or numerically or through simulation the 
system reliability function. (Chapter 17 covers topics related to system 
reliability.)

3.	 Based on past experience with similar systems, hypothesize the underlying failure 
distribution. Fewer systems can be tested to determine the parameters needed 
to adapt the failure distribution to a particular situation. However, this will not 
account for new failure mechanisms or new use conditions.

In some cases, the failure physics involved in a particular situation may lead to the 
hypothesis of a particular distribution. For example, fatigue of certain metals tends 
to follow either a lognormal or Weibull distribution. Once a distribution is selected, 
the parameters for a particular application can be ascertained using statistical or 
graphical procedures.

In this chapter, various distributions were presented. However, the most appropriate 
distribution(s) for a particular failure mechanism or product that exhibits certain 
failure mechanisms must be determined by the actual data, and not guessed. The 
distribution(s) that best fit the data and that also make sense in terms of the failure 
processes should be used.

Problems

3.1  Prove that for a binomial distribution in which the number of trials is m and the 
probability of success in each trial is p, the mean and the variance are equal to mp 
and mp(1 – p), respectively.

3.2  Prove that for a Poisson distribution, the mean and the variance are equal to the 
Poisson parameter μ.

3.3  Compare the results of Examples 3.2 and 3.5. What is the reason for the 
differences?

3.4  Consider a system that has seven components; the system will work if  any five of 
the seven components work. Each component has a reliability of 0.930 for a given 
period. Find the reliability of the system.

3.5  For an exponential distribution, show that the time to 50% failure is given by 
0.693/λ0.

3.6  For an exponential distribution, show that the standard deviation is equal to 1/λ0.

3.7  Show that for a two-parameter Weibull distribution, for t =  η, the reliability 
R(t) = 0.368, irrespective of β.

3.8  The front wheel roller bearing life for a car is modeled by a two-parameter Weibull 
distribution with the following two parameters: β = 3.7, θ = 145,000 mi. What is the 
100,000-mi reliability for a bearing?
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Problems

3.9  The life distribution (life in years of continuous use) of hard disk drives for a 
computer system follows the Weibull distribution with the following parameters:

β θ= =2 7 5 5. . .and years

(a)	 The manufacturer gives a warranty for 1 year. What is the probability that a disk 
drive will fail during the warranty period?

(b)	 Find the mean life and the median life (B50) for the disk drive.

(c)	 By what time will 99% of the disk drives fail? (That is, find the B99 life.)

3.10  The life distribution for miles to failure for the engine of a Lexus car follows the 
Weibull distribution with

β θ= =3 8 185 000. , .and mi

(a)	 Find the mean miles between failures, or the expected life for the engine.

(b)	 Find the standard deviation for miles to failure.

(c)	 What percent of these engines will fail by 100,000 mi?

(d)	 What is the failure rate of an engine that has a life of 100,000 mi?

If  a certain model has 200,000 engines in the field with a life of 100,000 mi, how many 
engines on average will fail in the next 100 mi of use out of the 200,000 engines?

3.11  A component has the normal distribution for time to failure, with μ = 26,000 
hours and σ = 3500 hours.

(a)	 Find the probability that the component will fail between 22,000 hours and 23,000 
hours.

(b)	 Find the failure rate of a component that has been working for 22,000 hours.

3.12  The time to failure random variable for a battery follows a normal distribution, 
with μ = 800 hours and σ = 65 hours.

(a)	 Find the B10 life of these batteries.

(b)	 Find the probability that a battery will fail between 700 and 710 hours, given that 
it has not failed by 700 hours.

(c)	 What is the failure rate or hazard rate of a battery that has a life of

(i)	 700 hours

(ii)	 710 hours.

3.13  The time to failure for the hard disk drives for a computer system follows a 
normal distribution with

μ= =mean life hours14 000,

σ= =standard deviation hours1500 .
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(a)	 A manufacturer gives a warranty for 1 year of continuous use, or 365 ×  24 
hours of use. What percentage of hard disk drives will fail during this warranty 
period?

(b)	 What is the failure or hazard rate of a drive that has been working successfully 
for 1 year of continuous use?

(c)	 An IT manager of a large company, based on field surveys and inventory  
management, finds that the company has 250,000 of these drives on which the 
warranty has just expired—that is, they are working today after one year of con-
tinuous use. What is the expected number of these drives that will fail in the next 
24 hours?

3.14  The time to repair a communication network system follows a lognormal distri-
bution with μ = 3.50 and σ = 0.75. The time is in minutes.

(a)	 What is the probability that the communication network will be repaired by 60 
minutes?

(b)	 Find the B20 value (the 20th percentile) for the time-to-repair random variable.

(c)	 Find the mean time to repair (MTTR) for the communication network.

3.15  The time to repair a copy machine follows the lognormal distribution with 
μ = 2.70 and σ = 0.65. Time is in minutes.

(a)	 Find the probability that the copy machine will be repaired in 30 minutes.

(b)	 Find the median value or B50 life for the time-to-repair random variable.

3.16  The time to failure for a copy machine follows a gamma distribution with param-
eters η = 2 and λ = 0.004.

(a)	 What is the expected or mean time between failures (MTBF) for the copy  
machine?

(b)	 What is the reliability of the copy machine for 200 hours of continuous 
operation?

(c)	 What is the failure rate of a copy machine that has been working for 200  
hours?

3.17  Describe two examples of systems that require a failure-free operating period, 
without any maintenance. What are the timeframes involved?

3.18  Describe two examples of systems that require a failure-free operating period, 
but may allow a maintenance period. Discuss the timeframes.

3.19  Show that the mode of the three parameter Weibull distribution is for

t= + −( )γ η β β1 1 1

for β > 1.
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Problems

3.20  A company knows that approximately 3 out of every 1000 processors that it 
manufactures are defective. What is the probability that out of the next 20 processors 
selected (at random):

(a)	 All 20 are working processors?

(b)	 Exactly 2 defective processors?

(c)	 At most 2 defective processors?

(d)	 At least 18 are defective?




