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2
Reliability Concepts

In Chapter 1, the reliability of a product was defined as “the ability of a product to 
perform as intended (i.e., without failure and within specified performance limits) for 
a specified time, in its life cycle conditions.” This chapter presents the fundamental 
definitions and measures needed for quantifying and communicating the reliability of 
a product. The focus in this chapter is on reliability and unreliability functions, the 
probability density function, hazard rate, conditional reliability function, percentiles 
of life, and time-to-failure metrics.

The purpose of, and the need for, a particular product determines the kind of reli-
ability measures that are most meaningful and most useful. In general, a product may 
be required to perform various functions, each having a different reliability. In addi-
tion, at any given time (or number of cycles, or any other measure of the use of a 
product), the product may have a different probability of successfully performing the 
required function under the stated conditions.

2.1  Basic Reliability Concepts

For a constant sample size, n0, of identical products that are tested or being moni-
tored, if  nf products have failed and the remaining number of products, nS, are still 
operating satisfactorily at any time, t, then

	 n t n t nS f( )+ ( )= 0. 	 (2.1)

The factor t in Equation 2.1 can pertain to age, total time elapsed, operating time, 
number of cycles, distance traveled, or be replaced by a measured quantity that could 
range from –∞ to ∞ for any general random variable. This quantity is called a variate 
in statistics. Variates may be discrete (for the life of a product, the range is from 0 to 
∞; e.g., number of cycles) or continuous when they can take on any real value within 
a certain range of real numbers.
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The ratio of failed products per sample size is an estimate of the unreliability,  
Q̂ t( ), of  the product at any time t:

	 ˆ ,Q t
n t

n
f( )=
( )

0

	 (2.2)

where the caret above the variable indicates that it is an estimate. Similarly, the esti-
mate of reliability, R̂ t( ), of  a product at time t is given by the ratio of operating (not 
failed) products per sample size or the underlying frame of reference:

	 ˆ ˆ .R t
n t
n

Q tS

o

( )=
( )
= − ( )1 	 (2.3)

As fractional numbers, R̂ t( ) and Q̂ t( ) range in value from zero to unity; multiplied by 
100, they give the estimate of the probability as a percentage.

Example 2.1

A semiconductor fabrication plant has an average output of 10 million devices per 
week. It has been found that over the past year 100,000 devices were rejected in the 
final test.

(a)	 What is the unreliability of the semiconductor devices according to the con-
ducted test?

(b)	 If  the tests reject 99% of all defective devices, what is the chance that any device 
a customer receives will be defective?

Solution:
The total number of devices produced in a year is:

(a)	 n0 = 52 × 10 × 106 = 520 × 106

The number of rejects (failures), nf , over the same period is:

nf = ×1 105.

Therefore, from Equation 2.2, an estimate for device unreliability is:

ˆ . ,Q t
n t

n
f( )=
( )
=
×
×

≈ × −

0

5

6
41 10

520 10
1 92 10

or 1 chance in 5200.

(b)	 If  the rejected devices represent 99% of all the defective devices produced, then 
the number of defectives that passed testing is:

xd =
×

− ×( )











≈

1 10
0 99

1 10 1010
5

5

.
.
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Therefore, the probability of a customer getting a defective device, or the unreli-
ability of the supplied devices on first use, is:

ˆ . ,Q t( )=
×( )− ×( )

≈ × −1010
520 10 1 10

1 94 10
6 5

6

or 1 chance in 515,000.

Reliability estimates obtained by testing or monitoring samples in the field generally 
exhibit variability. For example, light bulbs designed to last for 10,000 hours of opera-
tion that are all installed at the same time in the same room are unlikely to fail at 
exactly the same time, let alone at exactly 10,000 hours. Variability in both the mea-
sured product response as well as the time of operation is expected. In fact, product 
reliability assessment is often associated with the measurement and estimation of this 
variability.

The accuracy of a reliability estimate at a given time is improved by increasing 
the sample size, n0. The requirement of a large sample is analogous to the condi-
tions required in experimental measurements of probability associated with coin 
tossing and dice rolling. This implies that the estimates given by Equation 2.2 and 
Equation 2.3 approach actual values for R(t) and Q(t) as the sample size becomes 
infinitely large. Thus, the practical meanings of reliability and unreliability are that 
in a large number of repetitions, the proportional frequency of occurrence of 
success or failure will be approximately equal to the R̂ t( ) and Q̂ t( ) estimates, 
respectively.

The response values for a series of measurements on a certain product parameter 
of interest can be plotted as a histogram in order to assess the variability. For 
example, Table 2.1 lists a series of time to failure results for 251 samples that were 
tested in 11 different groups. These data are summarized as a frequency table in 
the first two columns of Table 2.2, and a histogram was created from those two 
columns (Figure 2.1). In the histogram, each rectangular bar represents the number 
of failures in the interval. This histogram represents the life distribution curve for 
the product.

The ratios of the number of surviving products to the total number of products 
(i.e., the reliability at the end of each interval) are calculated in the fourth column of 
Table 2.2 and are plotted as a histogram in Figure 2.2. As the sample size increases, 
the intervals of the histogram can be reduced, and often the plot will approach a 
smooth curve.

Figure 2.1  Frequency histogram or 
life characteristic curve for data from 
Table 2.2.
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Table 2.1  Measured time to failure data (hours) for 251 samples

Group number

1 2 3 4 5 6 7 8 9 10 11
Data

1 1 1 1 1 1 1 1 1 1 1
1 1 2 2 2 2 2 2 2 2 2
2 3 2 2 3 3 3 3 3 3 3
3 3 3 3 3 3 3 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6 6
6 6 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 9 9 9
9 9 9 9 10 10 11 11 11 11 11

11 12 12 12 12 12 12 13 13 13 13
13 14 14 14 14 15 15 15 15 15 15
16 16 16 16 17 17 17 17 17 18 18
18 18 18 18 18 18 19 19 19 19 20
20 20 20 21 21 22 22 23 23 24 24
25 25 26 26 27 27 27 28 28 28 28
28 28 29 29 29 29 29 29 30 31 31
32 32 33 33 34 34 35 35 36 36 36
36 37 38 39 41 41 42 42 43 44 45
46 47 48 49 49 51 52 53 54 55 56
58 59 62 64 65 66 67 69 72 76 78
79 83 85 89 93 97 99 105 107 111 115

117 120 125 126 131 131 137 140 142 – –

Table 2.2  Grouped and analyzed data from Table 2.1

Operating 
time interval 
(hours)

Number of 
failures in  

the interval

Number of surviving 
products at the end 

of the interval
Relative 

frequency

Estimate of 
reliability at 

the end of the 
interval

Estimate of 
hazard rate in 
each interval 

(failures/hour)

0–10 105 146 0.418 0.582 0.042
11–20 52 94 0.207 0.375 0.036
21–30 28 66 0.112 0.263 0.030
31–40 17 49 0.068 0.195 0.026
41–50 12 37 0.048 0.147 0.024
51–60 8 29 0.032 0.116 0.022
61–70 6 23 0.024 0.092 0.021
71–80 4 19 0.016 0.076 0.017
81–90 3 16 0.012 0.064 0.016
91–100 3 13 0.012 0.052 0.019

101–110 2 11 0.008 0.044 0.015
111–120 3 8 0.012 0.032 0.027
121–130 3 5 0.012 0.020 0.038
131–140 4 1 0.016 0.004 0.080
Over 140 1 0 0.004 0.000 –
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2.1.1  Concept of Probability Density Function

One reliability concern is the life of a product from a success and failure point of 
view. The random variable used to measure reliability is the time to failure (T ) random 
variable. If  we assume time t as continuous, the time to failure random variable has 
a probability density function f (t). Figure 2.3 shows an example of a probability 
density function (pdf).

The ratio of the number of product failures in an interval to the total number of 
products gives an estimate of the probability density function corresponding to the 
interval. For the data in Table 2.1, the estimate of the probability density function for 
each interval is evaluated in the fourth column of Table 2.2. Figure 2.4 shows the 

Figure 2.2  Reliability histogram of 
data from Table 2.1.
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Figure 2.3  Probability density function.
20 40 60 80 100 120 140

0.002

0.004

0.006

0.008

0.010

0.012

0.014

f(t
)

Q(t) R(t)

t

Figure 2.4  Probability density function for the data in Table 2.1.
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estimate of the probability density function for the data in Table 2.1. The sum of all 
values in the pdf is equal to unity (e.g., the sum of all values in column four of Table 
2.2 is equal to 1).

The probability density function is given by:

	 f t
n

d n t

dt
d Q t
dt

f( )=
( )[ ]
=

( )[ ]1

0

. 	 (2.4)

Integrating both sides of this equation gives the relation for unreliability in terms 
of f(t),

	 Q t
n t

n
f df

t

( )=
( )
= ( )∫

0
0

τ τ, 	 (2.5)

where the integral is the probability that a product will fail in the time interval 
0 ≤ τ ≤ t. The integral in Equation 2.5 is the area under the probability density func-
tion curve to the left of the time line at some time t (see Figure 2.3). The reliability 
at any point in time, called the reliability function, is

	
R t t P T t

P T t

( )= >[ ]= >[ ]
= − ≤[ ]

Probability Product life

1 .
	 (2.6)

P[T ≤  t] is the cumulative probability of failure, denoted by F(t), and is called the 
cumulative distribution function (cdf), as explained above.

Similarly, the percentage of products that have not failed up to time t is represented 
by the area under the curve to the right of t by

	 R t f d
t

( )= ( )
∞

∫ τ τ. 	 (2.7)

Since the total probability of failures must equal 1 at the end of life for a population, 
we have

	 f t dt( ) =
∞

∫
0

1. 	 (2.8)

Figure 2.5 gives an example of the cdf and the reliability function and their rela-
tionships. The cdf is a monotonically nondecreasing function, and thus R(t) is a 
monotonically nonincreasing function.

Example 2.2

From the histogram in Figure 2.4:

(a)	 Calculate the unreliability of the product at a time of 30 hours.

(b)	 Also calculate the reliability.
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Solution:

(a)	 For the discrete data represented in this histogram, the unreliability is the sum 
of the failure probability density function values from t =  0 to t =  30. This 
sum, as a percentage, is 73.7%.

(b)	 The reliability is equal to 26.3% and can be read from column 5 of Table 2.2. 
The sum of reliability and unreliability must always be equal to 100%.

Example 2.3

A product has a maximum life of 100 hours, and its pdf is given by a triangular 
distribution, as shown in the figure below. Develop the pdf, cdf, and the reliability 
function for this product.
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Solution:
Its pdf, cdf, and reliability function, respectively, are given below:
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Figure 2.5  Example of F(t) and R(t).
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2.2  Hazard Rate

The failure of a population of fielded products can arise from inherent design weak-
nesses, manufacturing- and quality control-related problems, variability due to cus-
tomer usage, the maintenance policies of the customer, and improper use or abuse of 
the product. The hazard rate, h(t), is the number of failures per unit time per number 
of nonfailed products remaining at time t. An idealized (though rarely occurring) 
shape of the hazard rate of a product is the bathtub curve (Figure 2.6). A brief  
description of each of the three regions is given in the following:

1.	 Infant Mortality Period.  The product population exhibits a hazard rate that 
decreases during this first period (sometimes called “burn-in,” “infant mortality,” 
or the “debugging period”). This hazard rate stabilizes at some value at time t1 
when the weak products in the population have failed. Some manufacturers 
provide a burn-in period for their products, as a means to eliminate a high pro-
portion of initial or early failures.

2.	 Useful Life Period.  The product population reaches its lowest hazard rate level 
and is characterized by an approximately constant hazard rate, which is often 
referred to as the “constant failure rate.” This period is usually considered in the 
design phase.

3.	 Wear-Out Period.  Time t2 indicates the end of useful life and the start of the 
wear-out phase. After this point, the hazard rate increases. When the hazard rate 
becomes too high, replacement or repair of the population of products should 
be conducted. Replacement schedules are based on the recognition of this 
hazard rate.

Optimizing reliability must involve the consideration of the actual life-cycle periods. 
The actual hazard rate curve will be more complex in shape and may not even exhibit 
all of the three periods.

Figure 2.6  Idealized bathtub hazard 
rate curve.Age or life (hours, cycles, km, etc.)
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2.2  Hazard Rate

2.2.1  Motivation and Development of Hazard Rate

Suppose N items are put on test at time t = 0. Let NS(t) be the random variable denot-
ing the number of products functioning at time t. NS(t) follows the binomial distribu-
tion (see Chapter 3) with parameters N and R(t), where R(t) is the reliability of a 
product at time t. Denoting the expected value of NS(t) by N tS ( ), we have

	 E N t N t NR tS S( )[ ]= ( )= ( ) 	 (2.9)

or

	 R t
N t
N
S( )=
( )

. 	 (2.10)

Also, we have

	 F t R t
N N t

N
S( )= − ( )=

− ( )
1 . 	 (2.11)

And by differentiating, we have

	
f t

dF t
dt N

dN t
dt

N t N t t
N t

S

t

S S

( )=
( )
=−

( )

=
( )− +( )

→

1

0
lim .
∆

∆
∆

	 (2.12)

Equation 2.12 illustrates that the failure pdf is normalized in terms of the size of 
the original population, N. However, it is often more meaningful to normalize the 
rate with respect to the average number of units successfully functioning at time t, 
since this indicates the hazard rate for those surviving units. If  we replace N with 
N tS ( ), we have the hazard rate or “instantaneous” failure rate, which is given by Equa-
tion 2.13:

	

h t
N t N t t

N t t

N
N t

f t
f t
R t

t

s s

s

s

( )=
( )− +( )

( )

=
( )
( )=

( )
( )

→
lim

.

∆

∆
∆0

	 (2.13)

Thus, the hazard rate is the rate at which failures occur in a certain time  
interval for those items that are working at the start of the interval. If  N1 units are 
working at the beginning of time t, and after the time increment Δt, N2 units are 
working, that is, if  (N1 – N2) units fail during Δt, then the failure rate ĥ t( ) at time t 
is given by:

	 ˆ .h t
N N
N t

( )≈
−1 2

1∆
	 (2.14)

Or, in words,
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Hazard rate
of failures in the given time interval

of survi
=

vvors at the start of interval interval length×
.

Hazard rate is thus a relative rate of failure, in that it does not depend on the original 
sample size. From Equation 2.13, a relation for the hazard rate in terms of the reli-
ability is:

	 h t
R t

dR t
dt

( )=
−
( )

( )1
	 (2.15)

because

	 f t
dR t
dt

( )=−
( )

. 	 (2.16)

Integrating Equation 2.15 over an operating time from 0 to t and noting that 
R(t = 0) = 1 gives:

	 h d
R

dR R t
t t

τ τ
τ

τ( ) =−
( )

( )=− ( )∫ ∫0 0

1
ln 	 (2.17)

	 R t e
h d
t

( )= ∫− ( )τ τ
0 . 	 (2.18)

2.2.2  Some Properties of the Hazard Function

Some properties of the hazard rate are valuable for understanding reliability. We can 
prove that

	 h d
t

t
τ τ( )  → ∞∫ →∞

0
. 	 (2.19)

In order to prove it, first note that

	 h t
f t
R t R t

d
dt
R t( )=

( )
( )
=
( )
− ( )












1
. 	 (2.20)

Hence,

	

h d
R

d
d

R d

R

R

t t

t

τ τ
τ τ

τ τ

τ

τ

( ) =−
( )

( )












=− ( )[ ]

=− ( )[ ]

∫ ∫0 0

0

1

ln

ln ++ ( )[ ]ln .R 0

	 (2.21)

Now, R(t) → 0 as t → ∞, hence −ln[R(t)] → ∞ as t → ∞, and ln[R(0)] = ln[1] = 0. Thus,

	 h t dt( ) →∞
∞

∫0
. 	 (2.22)
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We also note:

	 h d
f
R

d
f
F

d
t t t

τ τ
τ
τ
τ

τ
τ
τ( ) =

( )
( )

=
( )

− ( )

→∞ →∞ →∞

∫ ∫ ∫
0 0 0

1
. 	 (2.23)

We can let u = 1 – F(τ), and then we have

	 du f d=− ( )τ τ. 	 (2.24)

So,

	 − =− →∞∫
du
u

u
1

0

1

0

ln | . 	 (2.25)

The rate at which failures occur in a certain time interval [t1, t2] is called the hazard 
(or failure) rate during that interval. This time-dependent function is a conditional 
probability defined as the probability that a failure per unit time occurs in the interval 
[t1, t2] given that a failure has not occurred prior to t1. Thus, the hazard rate is

	
R t R t
t t R t

1 2

2 1 1

( )− ( )
−( ) ( )

. 	 (2.26)

If  we redefine the interval as [t, t + Δt], the above expression becomes:

	
R t R t t

t R t
( )− +( )

⋅ ( )
∆

∆
. 	 (2.27)

The “rate” in the above definitions is expressed as failures per unit “time,” where 
“time” is generic in the sense that it denotes units of product usage, which might be 
expressed in hours, cycles, or kilometers of usage.

The hazard function, h(t), is defined as the limit of the failure rate as Δt approaches 
zero:

	 h t
R t R t t

t R t R t
d
dt
R t

f t
t

( )=
( )− +( )

⋅ ( )
=
( )
− ( )






=→

lim
∆

∆
∆0

1 (( )
( )R t

. 	 (2.28)

Thus, h(t) can be interpreted as the rate of change of the conditional probability of 
failure given that the system has survived up to time t.

The importance of the hazard function is that it indicates the change in failure rate 
over the life of a population of devices. For example, two designs may provide the 
same reliability at a specific point in time; however, the hazard rates can differ over 
time. Accordingly, it is often useful to evaluate the cumulative hazard function, H(t). 
H(t) is given by:

	 H t h d
t

( )= ( )
=
∫ τ τ
τ 0

. 	 (2.29)
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Both R(t) and F(t) are related to h(t) and H(t), and we can develop the following 
relationships:

	 h t
f t
R t R t

d
dt
R t

d R t
dt

( )=
( )
( )
=
( )
− ( )






=−

( )[ ]1 ln
	 (2.30)

or

	 − ( )( )= ( )d R t h t dtln . 	 (2.31)

Integrating both sides leads to the following relationship:

	 − ( )[ ]= ( ) = ( )
=
∫ln R t h d H t
t

τ τ
τ 0

	 (2.32)

or

	 R t h d H t
t

( )= − ( )











= − ( )( )

=
∫exp exp .τ τ
τ 0

	 (2.33)

Using the data from Table 2.1 and Equation 2.14, an estimate (over Δt) of the 
hazard rate is calculated in the last column of Table 2.2. Figure 2.7 is the histogram 
of hazard rate versus time.

Example 2.4

The failure or hazard rate of a component is given by (life is in hours):
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Figure 2.7  Hazard rate histogram of data from Table 2.1.
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Thus, the hazard rate is piecewise constant.
Find an expression for the reliability function of the component.

Solution:
Using Equation 2.18 or Equation 2.33, we have

R t h d
t

( )= − ( )














∫exp .τ τ
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
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t
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
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








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200
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= − ( )+ − ( )( )[ ]
= − −( )[

0 015 200 0 025 0 025 200
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. . .

exp .

t

t ]]= −[ ]exp . .2 0 025t

The four functions f(t), F(t), R(t), and h(t) are all related. If  we know any one of 
these four functions, we can develop the other three using the following equations:

	 h t
f t
R t

( )=
( )
( )

	 (2.34)

	 R t h u du
t

( )= − ( )














∫exp

0

	 (2.35)

	 f t h t h u du
t

( )= ( ) − ( )














∫exp

0

	 (2.36)

	 Q t F t R t( )= ( )= − ( )1 . 	 (2.37)

2.2.3  Conditional Reliability

The conditional reliability function R(t, t1) is defined as the probability of operating 
for a time interval of duration, t, given that the nonrepairable system has operated 
for a time t1 prior to the beginning of the interval. The conditional reliability can be 
expressed as the ratio of the reliability at time (t + t1) to the reliability at t1, where t1 
is the “age” of the system at the beginning of a new test or mission. That is,
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	 R t t P t t T T t
P t t T
P T t

, |1 1 1
1

1

( )= +( )> >[ ]=
+( )>[ ]
>[ ]

	 (2.38)

or

	 R t t
R t t
R t

, .1
1

1

( )=
+( )
( )

	 (2.39)

For a product with a decreasing hazard rate, the conditional reliability will increase 
as the age, t1, increases. The conditional reliability will decrease for a product with an 
increasing hazard rate. The conditional reliability of a product with a constant rate 
of failure is independent of age. This suggests that a product with a constant failure 
rate can be treated “as good as new” at any time.

Example 2.5

The reliability function for a system is assumed to be an exponential distribution (see 
Chapter 3) and is given by

R t e t( )= −λ0 ,

where λ0 is a constant (i.e., a constant hazard rate).
Calculate the reliability of the system for mission time, t, given that the system has 

already been used for 10 years.

Solution:
Using Equation 2.39

R t
R t
R

e
e

e R t
t

t, .10
10

10

0

0

0

10

10
( )=

+( )
( )

= = = ( )
− +( )

−
−

λ

λ
λ

That is, the system reliability is “as good as new,” regardless of the age of the system.

Example 2.6

If  T is a random variable representing the hours to failure for a device with the fol-
lowing pdf:

f t t
t

t( )=
−




 ≥exp , .

2

2
0

(a)	 Find the reliability function.

Solution:
To develop the reliability function, R(t), we have

R t f d d
t t

( )= ( ) = −( )
∞ ∞

∫ ∫τ τ τ τ τexp .2 2
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Let u = τ2/2, du = τdτ; then we have

R t u du
t

t
t

( )= −( ) =
−




 ≥

∞

∫ exp exp , .
2

2

2

2
0

(b)	 Find the hazard function.

Solution:
To develop the hazard function h(t), we have

h t f t R t t t( )= ( ) ( )= ≥, .0

Thus the hazard rate is linearly increasing with a slope of 1.

(c)	 If  50 devices are placed in operation and 27 are still in operation 1 hour later, 
find approximately the expected number of failures in the time interval from 1 
to 1.1 hours using the hazard function.

Solution:
To answer this question, we can use the information in Section 2.2.1, and we have

N N N N NS S S S0 50 1 27 1 1 1( )= ( )= = ( )− ( )=, , . ?hour ∆

For small Δt, the expected number failing can be calculated using Equation 2.14:

∆ ∆ ∆N N t N t t h t t N tS S S= ( )− +( )≈ ( ) ( )
= × × =1 0 0 1 27 2 7. . . .

Note that by the using the concept of conditional reliability, we also get,

P T T
R
R

> >[ ]=
( )
( )

= =1 1 1 0
1 1
1 0

0 54607
0 60653

0 8904. | .
.
.

.

.
.

or

∆N = × −( )=27 1 0 9 2 7. . .

2.3  Percentiles Product Life

The reliability of a product can be experienced in terms of percentiles of life. Because 
this approach was originally used to specify the life of bearings, the literature often 
uses the symbol Bα , where the Bα life is the time by which α percent of the products 
fail, or:

	 F Bα
α

( )=
100

	 (2.40)



2  Reliability Concepts

34

or

	 R Bα
α

( )= −1
100

. 	 (2.41)

For example, B10 life is the 10th percentile of life of the product. Thus,

	 F B10
10
100

0 10( )= = . . 	 (2.42)

Similarly, B95 is the 95th percentile of life of the product and is given by

	 F B95
95

100
0 95( )= = . 	 (2.43)

or

	 R B95 1
95

100
0 05( )= − = . . 	 (2.44)

Median life is the 50th percentile of life and is denoted by B50. Thus, the median 
life, M, of  a probability distribution is the time at which the area under the distribu-
tion is divided in half  (i.e., the time to reach 50% reliability). That is,

	 f t dt
M

( ) =∫
0

0 50. . 	 (2.45)

Example 2.7

The failure rate or hazard rate of a component is:

h t t t( )= ≥0 02 01 7. , ..

The failure rate is in failures per year.

(a)	 What is the reliability function of this component and what is the value of the 
reliability for a period of 2 years?

Solution:

R t h d d e
t t

( )= − ( )















= −
















=∫ ∫exp exp . .τ τ τ τ

0

1 7

0

0 02 −−0 007407 2 7. .t

R e e2 0 9530090 007407 2 0 0481312 7
( )= = =− × −. ..

. .

(b)	 What is the median life or B50 life of this component?
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Solution:

R B e B
50

0 0074070 50 50
2 7

( )= = − ( ). . .

ln . . .0 50 0 007407 50
2 7=− ( )B

B50

1 2 70 50
0 007407

5 37=
−





 =

ln .
.

.
.

years.

2.4  Moments of Time to Failure

The mean or expected value of T, a measure of the central tendency of the random 
variable, also known as the first moment, is denoted as E[T] or μ, and given by

	 E T tf t dt[ ]= = ( )
−∞

∞

∫μ . 	 (2.46)

Higher order moments are discussed in the following section.

2.4.1  Moments about Origin and about the Mean

The kth moment about the origin of the random variable T is

	 ′ = [ ]= ( ) =
−∞

∞

∫μk k kE T t f t dt k, , , , .1 2 3 … 	 (2.47)

Notice that the first moment about the origin is just the mean. That is,

	 E T[ ]= ′ =μ μ1 . 	 (2.48)

The kth moment about the mean of the random variable T is

	
μ μ μk

k kE T t f t dt

k

= −( )



 = −( ) ( )

= …
−∞

∞

∫
2 3 4, , , .

	 (2.49)

For large k, the above integration can be tedious. The equation to derive the kth 
moment about the mean is:

	 μ μ μk
j j

k j

j

k k

j
= −( )








′−
=
∑ 1

0

	 (2.50)

where

	 C
k

j
k

j k j
j
k =





= −( )

!
! !

. 	 (2.51)
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2.4.2  Expected Life or Mean Time to Failure

For a given underlying probability density function, the mean time to failure (MTTF) 
is the expected value for the time to failure. It is defined as

	 E T tf t dt[ ]= = ( )
∞

∫MTTF
0

. 	 (2.52)

It can also be shown that MTTF is equivalent to

	 MTTF= ( )
∞

∫ R t dt
0

. 	 (2.53)

Thus, E[T ] is the first moment or the center of gravity of the probability density 
function (like the fulcrum of a seesaw). E[T ] is also called the mean time between 
failures (MTBF), when the product exhibits a constant hazard rate; that is, the failure 
probability density function is an exponential.

The MTTF should be used only when the failure distribution function is specified, 
because the value of the reliability function at a given MTTF depends on the probabil-
ity distribution function used to model the failure data. Furthermore, different  
failure distributions can have the same MTTF while having very different reliability 
functions.

The first few failures that occur in a product or system often have the biggest impact 
on safety, warranty, and supportability, and consequently on the profitability of the 
product. Thus, the beginning of the failure distribution is a much more important 
concern for reliability than the mean.

2.4.3  Variance or the Second Moment about the Mean

Information on the dispersion of the values with respect to the mean is expressed in 
terms of variance, standard deviation, or coefficient of variation. The variance of  
the random variable T, a measure of variability or spread in the data about the 
mean, is also known as the second central moment and is denoted as V[T ]. It can be 
calculated as

	 μ2
2 2= [ ]= − [ ]( )



 = − [ ]( ) ( )

−∞

∞

∫V T E T E T t E T f t dt. 	 (2.54)

Using Equation 2.50, we have

	
μ μ μμ μ μ μ μ

μ μ μ

2 2 1
2

0 2
2

0
0

0
1

2

1

= ′ − ′+ ′ = ′ −

′ = ( ) = = ′
∞

∫because andt f t dt .
	 (2.55)

Since the second moment about the origin is E T 2
2[ ]= ′μ , we can write the variance 

of a random variable in terms of moments about the origin as follows:
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	 V T E T E T[ ]= [ ]− [ ]{ } = ′ −2 2
2

2μ μ . 	 (2.56)

The positive square root of the variance is called the standard deviation, denoted by 
σ, and is written as

	 σ= [ ]+V T . 	 (2.57)

Although the standard deviation value is expressed in the same units as the mean 
value, its value does not directly indicate the degree of dispersion or variability in the 
random variable, except in reference to the mean value. Since the mean and the stan-
dard deviation values are expressed in the same units, a nondimensional term can be 
introduced by taking the ratio of the standard deviation and the mean. This is called 
the coefficient of variation and is denoted as CV[T ]:

	 α
µ
µ

σ
µ

2
2
1 2

= [ ]= =CV T . 	 (2.58)

2.4.4  Coefficient of Skewness

The degree of symmetry in the probability density function can be measured using 
the concept of skewness, which is related to the third moment, μ3. Since it can be 
positive or negative, a nondimensional measure of skewness, known as the coefficient 
of skewness, can be developed to avoid dimensional problems as given below:

	 α
µ
µ

3
3

2
3 2= . 	 (2.59)

If  α3 is zero, the distribution is symmetrical about the mean; if  α3 is positive, the 
dispersion is more above the mean than below the mean; and if  it is negative, the 
dispersion is more below the mean. If  a distribution is symmetrical, then the mean 
and the median are the same. If  the distribution is negatively skewed, then the median 
is greater than the mean. And if  the distribution is positively skewed, then the mean 
is greater than the median.

For reliability, we want products to last longer and hence we should design products 
so that the life distribution is negatively skewed. For maintainability, we want to 
restore the function of the system in a small amount of time, and hence the time to 
repair or restoration should follow a positively skewed distribution.

2.4.5  Coefficient of Kurtosis

Skewness describes the amount of asymmetry, while kurtosis measures the concentra-
tion (or peakedness) of data around the mean and is measured by the fourth central 
moment. To find the coefficient of kurtosis, divide the fourth central moment by the 
square of the variance to get a nondimensional measure. The coefficient of kurtosis 
represents the peakedness or flatness of a distribution and is defined as:

	 α
µ
µ

4
4

2
2

= . 	 (2.60)
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The normal distribution (see Chapter 3) has α4 = 3, and hence sometimes we define 
a coefficient of kurtosis as

	 α
µ
µ

4
4

2
2

3 3− = − , 	 (2.61)

to compare the peakness or flatness of the distribution with a normal distribution.

Example 2.8

For the triangular life distribution given in Example 2.3, calculate the E[T], V[T], and 
standard deviation.

Solution:
We have

f t
t

t
( )=

≤ ≤








5 000
0 100

0
,

,

,

for

otherwise.

Now

E T tf t dt

t
t

dt
t

[ ]= ( )

= = =

=

∞

∫

∫
0

0

100 3

0

100 3

5 000
1

5 000 3
1

5 000
100

3

2

, , ,

33
100 66 67⋅ = . hours

and

E T t f t dt

t
t

dt
t

2 2

0

2

0

100 4

0

100 4

5 000
1

5 000 4
100

20 000

[ ]= ( )

= = =

∞

∫

∫ , , ,
== 5 000,

so,

V T E T E T[ ]= [ ]− [ ]( )

= −






 = =

2 2

2

5 000
200
3

5 000
9

555 55,
,

. .

The standard deviation, σ, is 23.57, and the coefficient of variation is 23.57/66.67 = 
0.354.



39

2.5  Summary

Example 2.9

The failure rate per year of a component is given by:

h t t t( )= ≥0 003 02. , .

(a)	 Find an expression for the reliability function and the probability density func-
tion for the time to failure of the component.

Solution:

R t h d d
t t

( )= − ( )






= −









=

∫ ∫exp exp .

ex

τ τ τ τ
0

2

0
0 003

pp .−( )0 001 3t

and for the probability density function, we have

f t h t R t t t( )= ( ) ( )= −( )0 003 0 0012 3. exp . .

(b)	 Find the B20 (the 20th percentile) for the life of the component.

Solution:
We have

0 80 0 001

0 80
0 001

6 065

20
3

20

1 3

. exp .

ln .
.

.

= −( )

=
−






 =

B

B yearss.

(c)	 Find the expected life (MTTF) for the component.

Solution:

E T R t dt t f t dt t t dt[ ]= ( ) = ⋅ ( ) = −( )
∞ ∞ ∞

∫ ∫ ∫
0 0

3 3

0

0 003 0 001. exp . .

Let u = 0.00t3, du = 0.003t2dt

E T u e duu[ ]= = ( )= ×+( )− −

∞

∫
1

0 001
1

0 001
1 333 10 0 89302

1 3
1 3 1 1

0

1 3. .
. .Γ == 8 9302. years

where the value of the gamma function is found from the table in Appendix B.

2.5  Summary

The fundamental reliability concepts presented in this chapter include reliability and 
unreliability functions, the probability density function, hazard rate, conditional reli-
ability function, percentiles of life, and time-to-failure metrics. The proper reliability 
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measure for a product is determined by the specific purpose, and need, for a product. 
A single product may perform separate functions that each have a different level of 
reliability. In addition, a single product can have different reliability values at different 
times during its lifetime, depending on various operational and environmental condi-
tions. The concepts presented in this chapter represent the basis for successful imple-
mentation of a reliability program in an engineering system.

Problems

2.1  Following the format of Table 2.1, record and calculate the different reliability 
metrics after bending 30 paper clips 90° back and forth to failure. Thus, the number 
of bending cycles is the underlying random variable. Plot the life characteristics curve, 
the estimate of the probability density function, the reliability and unreliability, and 
the hazard rate. Do you think your results depend on the amount of bend in the paper 
clip? Explain.

2.2  A warranty reporting system reports field failures. For the rear brake drums on 
a particular pickup truck, the following (coded) data were obtained. For the data 
provided, plot the hazard rate, the failure probability density function, and the reli-
ability function. Assume that the population size is 2680 and that the data represent 
all of the failures.

Kilometer interval Number of failures

M < 2000 707

2000 ≤ M < 4000 532
4000 ≤ M < 6000 368
6000 ≤ M < 8000 233
8000 ≤ M < 10,000 231
10,000 ≤ M < 12,000 136
12,000 ≤ M < 14,000 141
14,000 ≤ M < 16,000 78
16,000 ≤ M < 18,000 101
18,000 ≤ M < 20,000 46
20,000 ≤ M < 22,000 51
22,000 ≤ M < 24,000 56

2.3  Consider the piecewise linear bathtub hazard function defined over the three 
regions of interest given below. The constants in the expressions are determined so 
that they satisfy the normal requirements for h(t) to be a hazard function.

h t

h t b c t t t

h t b c t c t t t t t

h t

( )=
( )= − ≤ ≤

( )= − − −( ) ≤ ≤

(

1 1 1 1

2 1 1 1 2 1 1 2

3

0,

,

))= − − −( )+ −( ) ≤ ≤∞







 b c t c t t c t t t t1 1 1 2 2 1 3 2 2, .

Develop the equations for the reliability function and the probability density function 
for the time to failure random variable based on the above hazard function.
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Problems

2.4  Consider the following functions:

(a)	 e–at

(b)	 eat

(c)	 ct5

(d)	 dt–3

where a, c, and d are positive constants.
Which of the above functions can serve as hazard function models? Also, develop 

mathematical expressions for the probability density function and the reliability func-
tion for the valid hazard functions.

2.5  Prove that

MTTF= tf t dt R t dt( ) = ( )
∞ ∞

∫ ∫
0 0

.

2.6  The time to failure random variable, t, for a product follows the following prob-
ability density function, where time is in years:

f t
t

t
( )=

≤ ≤







200
0 20

0

,

,
.

otherwise

(a)	 Find the standard deviation for the time to failure random variable.

(b)	 Find the B10 and B50 life of the product based on the above probability density 
function.

(c)	 Draw the failure rate (or hazard rate) curve for the above product by evaluating 
it at t = 0, 1, 2, 5, 10, 15, 20.

(d)	 Find the coefficient of skewness, α3, for this life distribution of the product.

2.7  The hazard rate or failure rate of a product is given by

h t t t( )= ≥0 002 0. , .

The failure rate is in failures per year.

(a)	 Find an expression for the reliability function and the probability density function 
for the time to failure of the product.

(b)	 Find the B10 (the 10th percentile) life of the product.

(c)	 Find the expected value for the life of the product.

2.8  The failure rate of a component is given by:

h t t t( )= ≥0 006 02. , .
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The failure rate is in failures per year.

(a)	 Find an expression for the reliability function and the probability density function 
for the time to failure for the component.

(b)	 Find the B20 (the 20th percentile) for the life of the component.

2.9  Calculate the MTTF for a failure probability density function given by:

f t

t t

t t
t t t

t t

( )=

<( )

−
≤ ≤( )

>( )











0

1

0

1

2 1
1 2

2

,

,

,

for

for

for











.

2.10  The failure or hazard rate of a component is given by (life is in hours):

h t
t

t
( )=

≤
>






0 015 200

0 025 200

. ,

. , .

Find the expected life or MTTF for the component.

2.11  The failure density function for a group of components is:

f t t t( )= −






 ≤ ≤0 25

0 25
8

8.
.

, for 0

(f(t) is 0 otherwise). Time is in years.

(a)	 Show how this is a valid pdf.

(b)	 Find F(t), h(t), and R(t).

(c)	 Find MTTF.

(d)	 Find B10 and B90 for the life of the components.

(e)	 Find the probability that this component fails within the first year of operation.

2.12  Assume that the system in Example 2.5 is a car. Do the results in the example 
2.5 make sense? Why? Provide some examples of systems where the results may be 
more appropriate.

2.13  What does the conditional reliability reduce to if  the hazard rate is a 
constant?

2.14  The time to failure random variable T of a product follows the following prob-
ability density function:

f t
t

t
( )=

≤ ≤








80 000
0 400

0
,

,

, otherwise.
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Problems

(a)	 Find the standard deviation for the time to failure random variable.

(b)	 Find the coefficient of skewness for the distribution for the time to failure random 
variable.

(c)	 Find the B5 and B50 life of the product based on the above probability density 
function.

Draw the failure rate (or hazard rate) curve for the above product by evaluating it at:

t= 0 50 100 300 400, , , , .

2.15  The failure rate or hazard rate of a component is:

h t t t( )= ≥0 02 01 7. , ..

The failure rate is in failures per year.

(a)	 What is the reliability function of this component for a period of 2 years?

(b)	 What is the median life or B50 life of this component?

(c)	 What is the expected life for this component?

2.16  Calculate the coefficient of kurtosis for the probability density function given in 
Problem 2.9, where t1 = 3 and t2 = 10.

2.17  If  the unreliability for a part is given as:

F t

t

t t t

t

( )=
<

+ ≤ ≤
<

















0 0

0 5 0 5 0 1

1 1

2

,

. . ,

,

.

What is the hazard rate as a function of time?




