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Double, Triple and Complex Multilayered Emulsions
Takasi Nisisako

21.1
Introduction

Emulsions with complex multilayered structures are referred to as multiple emul-
sions. A well-known example is a double emulsion, in which microdroplets that
enclose even smaller droplets are suspended in a continuous liquid phase [1–3].
Figure 21.1 shows the two main types of double emulsions: water-in-oil-in-water
(W/O/W) emulsions, in which a water-in-oil (W/O) emulsion is dispersed in an
aqueous phase (Figure 21.1a) and oil-in-water-in-oil (O/W/O) emulsions, in which an
oil-in-water (O/W) emulsion is dispersed in an oil phase (Figure 21.1b). Usually, both
hydrophilic and lipophilic surfactants are required to stabilize these multilayered
dispersions.
BothW/O/WandO/W/O emulsions have attracted considerable attention because

of their potential applications in food science [4–7], cosmetics [8–10] and pharma-
ceutics [11]. In particular, there have been many studies on the pharmaceutical
applications ofW/O/Wemulsions because the internal aqueous droplets can contain
water-soluble drugs for controlled release or targetable delivery [12–14]. Solid micro-
capsules loaded with bioactive polymers are also prepared from W/O/W droplets by
the solvent evaporation method [15–18]. Other applications studied thus far include
the synthesis of shaped polymeric microparticles [19] and the use of the intermediat-
ing phase as the permeation membrane in separation technology [20–25].
Double emulsions are conventionally manufactured through two-step bulk emul-

sification [26] (Figure 21.2). In the first step, a primary single emulsion (e.g. W/O
or O/W emulsion) is produced through the high-shear mixing of two immiscible
liquids (Figure 21.2a). Then, the single emulsion is gently emulsified within a third
immiscible liquid under low-shear conditions in order to prevent the disruption
of the initial single emulsion and the produced double emulsion droplets
(Figure 21.2b). This technique is widely used in industry because it is simple and
easy to use. In this technique, however, it is difficult to producemonodisperse double
emulsions due to the lack of control over the droplet size and droplet size distribution
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in both the emulsification steps. Phase inversion [27–31] and other conventional
techniques [32, 33] also have similar drawbacks. On the other hand, several new
methods that utilize variousmicrofabricated structures have recently been developed
for producing quasi-monodisperse or highly monodisperse double emulsions.
Moreover, some of these methods can precisely control the size, structure and
composition of the double emulsions.

Figure 21.2 Schematic illustration of the two-step
homogenization for producing W/O/W emulsions. (a) Step 1:
high-shear mixing to produce a fine W/O emulsion. (b) Step 2:
low-shear mixing to produce a W/O/W emulsion.

Figure 21.1 Schematic illustration of typical double emulsions.
(a) W1/O/W2 emulsion: (b) O1/W/O2 emulsion.
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In this chapter, we describe the new technologies that can produce various double
emulsions of controlled sizes, structures and compositions. We also explain the
emerging new applications of the monodisperse double emulsions prepared using
those technologies. Section 21.2 describes the use of porous materials for emulsifi-
cationmembranes. Section 21.3 describes the use of a channel array or through-holes
fabricated on a silicon substrate. Section 21.4 describes the use of microfluidic
channels on a planar substrate. Section 21.5 explains coaxial microcapillary devices.
Section 21.6 describes the applications ofmonodispersemultiple emulsions to a new
class of functional materials.

21.2
Membrane Emulsification

Membrane emulsification [34–39] is a technique developed in the 1980s that employs
porous membranes to form emulsions. Among the several porous materials avail-
able, Shirasu porous glass (SPG) is a well-known permeation membrane because it
has pores with narrow size distributions and the pore size can be precisely controlled
in the range from sub-micrometers to tens of micrometers. Nearly monodisperse
emulsion droplets are formed by forcing a phase to be dispersed into a continuous
phase through the pores on the membranes. The coefficient of variation (CV) of
the droplet diameters, which is calculated as the standard deviation of the droplet
diameters divided by the mean droplet diameter, is generally around 10%. The
droplet size depends on the pore size and the linear relation is given by the following
equation:

Dd ¼ aDp ð21:1Þ
where Dd is the average droplet diameter, Dp the average pore diameter and a the
proportionality coefficient, which can range typically from 2 to 10 [35, 38]. The
hydrophilic surface of SPG is suitable for the production of O/Wemulsions because
the organic droplets can easily detach from the membrane surface. For producing
W/Oemulsions, the SPGsurface is chemicallymodified to behydrophobic by a silane
coupling agent [e.g. octadecyltrichlorosilane (OTS)]. The SPG membrane emulsifi-
cation is applied commercially to various products [35], such as low-fat spreads,
polydivinylbenzene microspheres [40] for spacers in liquid crystal displays and silica
powder for liquid chromatography. Various SPG emulsification devices are now
commercially available [41].
Nearly monodisperse double emulsions can be prepared using membrane emul-

sification by using a single emulsion as the phase to be dispersed [42, 43]. The
primary single emulsion is usually prepared by conventional homogenization,
although the use of two-step membrane emulsification (Figure 21.3) has also been
proposed [35]. The preparation of W/O/W emulsions by using membrane emulsifi-
cation was first reported by Mine et al. [42]. First, they used conventional homogeni-
zation to prepare a W/O emulsion with a mean diameter of 0.54mm. This W/O
emulsion was then forced into the external aqueous phase through a microporous
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glass membrane with a mean pore size of 1.0mm, producing W/O/W emulsion
droplets with a mean size of 4.8mm. The W/O/W emulsions thus prepared were
stable for at least 6 weeks when stored at low temperature (298K).
Higashi and coworkers [44–47] used SPG membrane emulsification to prepare

W/O/W emulsions for arterial injection chemotherapy of liver cancer. By means of
sonication, they produced a sub-micron W/O emulsion in which aqueous droplets
containing epirubicin, a water-soluble anticancer drug, are dispersed in iodized
poppy seed oil (IPSO), which selectively deposits itself on the cancerous tumor. They
then used the SPG membrane to produce quasi-monodisperse IPSO droplets with
diameters of 30.1� 5.1mm (CV� 16.9%) or 70.0� 6.7mm (CV� 9.6%) in order to
encapsulate the aqueous phase containing the anticancer agent. Finally, they used the
W/O/W emulsions for clinical applications and reported that the IPSO droplet size
determines the anticancer effect.
Membrane emulsification is also used for producing a fineW/O/Wemulsion from

a coarse W/O/W emulsion that has been prepared using the conventional two-step
homogenization [48–50].
The preparation of double emulsions by using membrane emulsification is

comprehensively described in a review by van der Graaf et al. [51].

21.3
Microchannel (MC) Emulsification

Microchannel (MC) emulsification [52–58] is a technique developed in the 1990s,
which utilizes lithographically fabricated geometries for producing monodisperse
emulsion droplets. Thus far, two configurations have mainly been studied: one
consists of amicron-sized comb-like channel arraymicrofabricated on a silicon plate
[52–54], whereas the other is called a straight-throughMCplate and has thousands of

Figure 21.3 Preparation of a monodisperse W/O/W emulsion by
using two-step membrane emulsification. (a) Preparation of the
W/O emulsion by using a hydrophobic membrane with smaller
pores; (b) preparation of the W/O/W emulsion by using a
hydrophilic membrane with larger pores.
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microfabricated through-holes with oblong cross-sections [55]. In both configura-
tions, monodisperse droplets with CVs of diameters below 5% can be formed by
forcing a phase to be dispersed into a continuous phase through the arrayed channels
having the same sizes. In this technique, the formation of droplets is induced by
interfacial tension [54] and the droplet sizes can be adequately controlled in the range
from a few micrometers to �100mm, by changing the sizes of the microfabricated
structures. The hydrophilic surface of the silicon substrates is suitable for producing
O/W emulsions, whereas a hydrophobic surface is required for W/O emulsions.
The preparation of double emulsions by using MC emulsification was first

reported by Kawakatsu et al. [56]. In the first step, a W/O emulsion, which was used
as a feed emulsion,was prepared by conventional homogenization. It was then forced
into the microchannel array on a silicon substrate to produce a W/O/W emulsion.
Solid-in-oil-in-water (S/O/W) pectin microcapsules were also formed by the gelation
of the internal aqueous phase – the pectin solution – using a calcium solution
containing Tween 20 as an external water phase.
Sugiura et al. [57] also produced nearly monodisperseW/O/Wemulsions by using

a two-step emulsification process employing MC emulsification as the second step
(Figure 21.4). They tested four organic fluids (decane, ethyl oleate, medium-chain
triglyceride and triolein) as the middle organic phase. W/O emulsions, which were
used as feed emulsions, were prepared by conventional homogenization and had
diameters of 17.9–21.0mm with CVs of 26.0–29.6%. They then prepared W/O/W
emulsiondroplets having diameters of 31.8–35.7mmwithCVsof 5.5–19.0%byusing
MC emulsification. The mild emulsification in this technique led to a high entrap-
ment yield of the W/O/Wemulsion, which was determined fluorimetrically as 91%.
Kobayashi et al. [58] prepared monodisperse W/O/W emulsions having internal

aqueous phase contents of 10–30%by using a two-step emulsification using straight-
through MC emulsification as the second step (Figure 21.5). A homogenizer and a
microfluidizer were used to produce sub-micron W/O emulsions having diameters

Figure 21.4 Schematic of the MC array device for producing a
W/O/W emulsion. (a) Equipment; (b) formation of W/O/W
droplets at a microfabricated array. Reprinted from Ref. [57],
Copyright 2004, with permission from Elsevier.
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of 0.25–0.36mm with CVs of 42–53%. Then, monodisperse W/O/W emulsions with
diameters of 39.0–41.0mm with CVs below 5% were formed by forcing the W/O
emulsion into the external aqueous phase using the straight-through MC device.

21.4
Two-dimensional Microfluidic Systems

Two-dimensional (2D) microfluidic systems that can produce highly monodisperse
emulsion droplets have been intensively studied in various fields [59–63]. Confined
microfluidic channels such as T-junctions [64–68], cross-junctions [69–71], flow-
focusing geometries [72–79] and other co-flow geometries [67, 80, 81] are generally
used. Under the conditions of low Reynolds and capillary numbers [66], highly
monodisperse emulsion droplets are reproducibly formed in the channels, typically

Figure 21.5 Schematic of the straight-throughMC emulsification
device used for producingmonodisperse double emulsions. (a) A
straight-through MC plate; (b) an experimental setup for
producingW/O/Wemulsions. Reprinted fromRef. [58], Copyright
2005, with permission from AOCS Press.
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with CVs of 1–3%. The droplet size and breakup rate can be controlled precisely by
changing the channel geometry, fluid properties and fluid speed. Channels with a
hydrophobic surface are usually suitable for producing W/O droplets, whereas
channels with a hydrophilic surface are used for producing O/W droplets. For
example, polydimethylsiloxane (PDMS) [66, 68, 70–72, 78] and poly(methyl methac-
rylate) (PMMA) [65] can be used for the formation of aqueous droplets in an organic
stream. O/Wemulsion droplets can be formed in channels made of glass [67, 80, 81],
silicon [69, 73], polyurethane [74–77], thiolene-based optical adhesive [79], etc.
Since the wettability of the channel determines the type of emulsions that can be

formed, double emulsions can be produced in two consecutive microfluidic junc-
tions each having opposite wetting properties [82–88]. For producing W/O/W
droplets, for example, the combination of a hydrophobic upstream junction and
hydrophilic downstream junction is needed (Figure 21.6a). At the upstream junction,
aqueous droplets of uniform sizes that are to be encased are formed with regular
periodicity in the middle organic stream. Then, in a continuing series, organic
droplets that encapsulate aqueous droplets are formed in the external aqueous phase
at the hydrophilic junction. By reversing the order of hydrophilic and hydrophobic
junctions, O/W/O emulsions can be formed similarly. Both the size of internal and
external droplets and the number of internal droplets can be precisely controlled by
varying the flow rates of the three streams. For producing monodisperse capsules
having an equal number of cores, two droplet-breakup rates at two junctions must

Figure 21.6 Controlled production of monodisperse double
emulsions in a two consecutive microfluidic junctions [82, 83].
(a) Schematic illustration of two consecutive T-junctions for
producing W/O/W droplets; (b) formation of W/O/W emulsion
with single core in a glass microchannel. The channel has a
uniform depth of 100mm. Scale bar is 200mm.
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satisfy the following equation:

R1

R2
¼ N ð21:2Þ

where R1 is the breakup rate at the upstream junction, R2 is the breakup rate at the
second junction and N is a positive integer (1, 2, . . .). Small discrepancies in the two
breakup rates cause a fluctuation in the number of internal droplets and the size of
external droplets.
Figure 21.6b shows the formation of a W/O/W droplets through two consecutive

T-junctions [82, 83]. An array of uniform aqueous droplets is formed within the
organic streamat the hydrophobic upstreamT-junction. Each aqueous droplet is then
reliably encapsulated within an organic droplet at the next hydrophilic T-junction.
Thus, highly monodisperse core–shell droplets with CVs below 3% can be formed
reproducibly. By slight adjustment of theflow conditions, it is possible to control both
the droplet size and the number of internal droplets precisely (Figure 21.7a–c).
Moreover, it is also possible to control the compositions of the double emulsions by
choosing an appropriate microfluidic geometry (Figure 21.7d).
A key question in this technique is how to pattern both hydrophilic and hydro-

phobic regions inside microchannels on a chip. One method is to prepare a
hydrophobic section in a hydrophilic microchannel by localized surface modifica-
tion [82–86]. This can be achieved by introducing reagents such as a silconizing
fluid [82, 83, 85] and silane-coupling agents [84, 86, 89] into the channel networks. On
the other hand, preparation of hydrophilic regions on anaturally hydrophobic surface
is also possible. For example, Barbier et al. [87] reported the preparation of a stable
hydrophilic section on a hydrophobic PDMS surface by deposition of a plasma-
polymerized acrylic acid coating. They reported that the formation of a double
emulsion using this hydrophilic surface is stable for more than 3 weeks, whereas
PDMS treated with O2 plasma became unstable within 1 day. Kumacheva and
coworkers [88] also prepared hydrophilic regions in hydrophobic PDMS channels
by using graft polymerization of acrylic acid.
Organic core–shell droplets in an aqueous phase, which can be described as an

O1/O2/W emulsion, can be produced in hydrophilic microfluidic channels [90–93].
In this case, localized surface modification is not needed when the organic phase to
be encased (O1) is more hydrophobic than the middle organic phase (O2). For
example, Kumacheva and coworkers [90] produced photopolymerizable droplets that
encapsulate smaller droplets of silicone oil through the flow focusing of a coaxial
stream of the two organic phases. Encapsulation of fluorinated oil droplets in other
organic phases has also been reported [91–93].

21.5
Three-dimensional (3D) Coaxial Microcapillary Systems

Manufacturing equipment that consists of coaxial multiple nozzles is used commer-
cially for the production of seamless multilayered microcapsules with diameters in
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the range 0.3–10.0mm [94, 95]. Recently, similar systems consisting of concentric
multiple microcapillaries have been studied for producing much smaller multi-
layered emulsions with more complex internal structures.
A flow-focusing microcapillary platform [96–98] has been widely studied for the

preparation of single- and multi-layered emulsions of uniform sizes. This technique
is characterized by a narrow pinched geometry that hydrodynamically focuses a fluid
stream to produce highly monodisperse droplets or bubbles. Figure 21.8a shows a
microcapillary device developed by Weitz and coworkers [99–101] for producing
highlymonodisperse double emulsions. The device consists of three glass capillaries:
two cylindrical inner tubes and an outer square tube lying in one axis. For producing
O/W/O emulsions, the internal organic phase is pumped through a tapered injection
tube and the middle aqueous phase is pumped through the outer region, forming a
coaxial stream with the internal organic phase at the exit of injection capillary. The
external organic phase is pumped through the outer region from the opposite

Figure 21.7 Monodisperse W/O/W emulsions with a controlled
number of cores (n) and compositions [82, 83]. n¼ (a) 1; (b) 2;
(c) 6–8. (d) Organic droplets with two aqueous cores from
different sources. Scale bars are 100mm.
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direction and the three fluids are forced into the collection capillary, breaking up into
highly monodisperse O/W/O emulsion droplets (Figure 21.8b). The capillary geom-
etry and relative flow rates can be varied to adjust the droplet size and the number of
encased droplets. Similar axisymmetric coaxialflow-focusing devices are prepared by
inserting micropipettes into a PDMS slab [102, 103] or fabrication of embedded
orifices in SU-8 resist through layer-by-layer photolithography [104].
A distinct advantage of the coaxial capillary approach is in the surface treatment of

the device; both W/O/W and O/W/O emulsions can be formed without any surface
modification of the capillaries, because neither themiddle nor the innerfluid touches
the capillary wall surface. This is clearly different from the other techniques
mentioned above in this section. An additional advantage is the flexibility of the
system. For example, the structure of the device canbe easilymodified tomakehigher
order multiple emulsions, such as triple emulsions [100, 101].
The use of the electrified jetting technique has also been reported for producing

core–shell droplets and particles [105]. Two immiscible fluids are introduced at
appropriate flow rates through two concentrically located needles. Then, by applying
suitable voltages, a structured Taylor cone is formed and a steady jet that consists of
compound droplets is generated. The size of the core–shell droplets can be varied in
the range from sub-micrometers to 10mm by changing experimental parameters
such as flow rate, applied voltage and capillary diameter. The formation of polymeric
shells with an internal aqueous phase has also been reported.

Figure 21.8 A microcapillary device for generating monodisperse
doubleemulsion.(a)A schematic of the deviceand floworientation;
(b) formation of monodisperse O/W/O emulsion consisting of
uniformwater dropletshaving a single siliconeoil droplet. CV is less
than 1%. From Ref. [99]. Reprinted with permission from AAAS.
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21.6
Applications to Novel Materials

There are a myriad of potential applications of highly monodisperse multiple emul-
sions with precisely controlled sizes and internal structures. Many new applications
have recently been proposed by several groups. For example, Weitz and coworkers
have reported various particulate materials synthesized from monodisperse double
emulsions produced by their coaxial microcapillary devices. Examples include poly-
meric shells cured by UV irradiation [99], polymerosomes made from diblock
copolymers [99, 106, 107] andshells of liquid crystalswithnovel defect structures [108].
They also produced thermosensitivemicrocapsules fromaW/O/W/O triple emulsion,
affording pulsed release of the innermost aqueous droplets by elevating the tempera-
ture of the environment [101]. Kumacheva and coworkers [90] produced polymeric
microparticles with tunable morphologies from O1/O2/Wemulsions prepared in the
2D coaxial flow-focusing geometry. Other new materials reported thus far include
polymeric shells with a pore on their surfaces [91, 92], templated silica particles
synthesized from an O/W/O emulsion [85] and acoustically active dual-layer lipo-
spheres for drug delivery made from a gas/O1/O2 emulsion [109].
The industrial production of these newmaterials would require drastic scale-up of

the productivity, because the throughput in each microstructured device is very low,
typically below a few grams per hour. One promising solution to this issue might be
the large-scale parallelization of the 2D microfluidic channels on a chip, which has
been successfully demonstrated for the mass production of monodisperse single
emulsions and polymeric microparticles [110].

21.7
Conclusion

In this chapter, an overview is provided of new emerging technologies for the
preparation of monodisperse emulsions with complex multilayered structures. The
droplet size, internal structure, and even the compositions ofmultilayered emulsions
can be flexibly controlled by using various microstructured devices. Since each
emulsification technology has its own characteristics, the combination of different
technologiesmight enhance the type ofmultilayered emulsions that can be prepared.
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