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Liquid- and Liquid-Liquid-phase Reactions — Oxidations
and Reduction

Jun-ichi Yoshida and Aiichiro Nagaki

Oxidation and reduction are fundamental processes in the synthesis of organic and
inorganic compounds. Some oxidation and reduction reactions are difficult to control
in macro-scale batch reactors and in such cases microflow reactors serve as powerful
tools for accomplishing the reactions in a highly controlled manner. This is especially
true for many oxidation reactions because of their exothermic nature. It should also
be noted that the danger of unexpected explosions can be avoided by the use of
microflow reactors because of the small volume and highly efficient heat transfer
ability of microflow systems. This chapter provides an overview of oxidation and
reduction reactions using chemical, electrochemical and biochemical methods in
microflow reactors.

7.1
Oxidation

7.1.1
Chemical Oxidation

Microflow systems serve as effective environments to perform various oxidation
reactions using chemical reagents. The oxidation using dimethyl sulfoxide (DMSO),
which is known as Moffatt—-Swern type oxidation, is one of the most versatile and
reliable methods for the oxidation of alcohols into carbonyl compounds in laboratory
synthesis [1, 2]. However, it is well known that activation of DMSO leads to an
inevitable side-reaction, Pummerer rearrangement, at temperatures above —30°C
(Scheme 7.1). Therefore, the reaction is usually carried out at low temperatures
(=50°C or below), where such a side-reaction is very slow [3, 4]. However, the
requirement for such low temperatures causes severe limitations in the industrial
use of this highly useful reaction. The use of microflow systems solves the problem.
For example, the oxidation of cyclohexanol can be accomplished using a microflow
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Scheme 7.1 Mechanism of the Swern oxidation using TFAA.

system consisting of micromixers and microtube reactors at room temperature
(Figure 7.1) [5].

Oxidation of primary, secondary, cyclic and benzylic alcohols and cyclohexanol also
takes place smoothly to give the corresponding carbonyl compounds in good yields
and selectivities (Table 7.1). A dramatic effect of the microflow system seems to be
attributable to precise temperature control and extremely fast mixing by virtue of
a short diffusion path. A short residence time by fast transfer of the reactive
intermediate to the next reactor also seems to be essential for the success of the
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Figure 7.1 Schematic diagram of the microflow system for Swern oxidation.
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Table 7.1 Swern oxidation of alcohols by using the microflow system and macrobatch system.

OH o) O S O_CFs
o= - gy

cyclohexanone methylthiomethyl trifluoroacetate
ether
Temperature Residence Yield (%)
(°C) time (s)
Methylthiomethyl
Cyclohexanone ether Trifluoroacetate

Batch -70 - 83 10 5

-20 - 19 2 70
Microreactor —20 2.4 88 6 5

0 2.4 64 6 14

0 0.01 89 7 1

20 0.01 88 5 2

transformation at much higher temperatures that those for the conventional route.
Microsystems also serve as a quick means for scale-up, because the quality of the
product did not change during the course of scale-up (numbering-up), although
batch methods suffer from such a problem.

Microflow systems are also effective for the oxidation of benzyl alcohol to
benzaldehyde using a catalytic amount of tetrapropylammmonium perruthenate
(TPAP) and a stoichiometric amount of N-methylmorpholine-N-oxide (NMO) [6]. At
a reaction time of 2min, the conversion of benzyl alcohol in the microreactor is
higher than that in the flask (Scheme 7.2).

Hydrogen peroxide is one of the best oxidizing agents from viewpoints of
environment and economy [7]. Hydrogen peroxide oxidation of 2-methylnaphthalene
to 2-methyl-1,4-naphthoquinone, known as antihemorrhagic vitamin, can be carried
out using a microflow system, where the oxidation with a high concentration of
peroxide at 100 °C can be performed by virtue of precise temperature control [8]. The
conversion of 2-methylnaphthalene and the yield of 2-methyl-1,4-naphthoquinone
increased in comparison with those for batch system (Scheme 7.3). The reaction time
is significantly short (30s) compared with that in the batch system (15 min). It is
noteworthy that the selectivity of the desired product, 2-methyl-1,4-naphthoquinone,
isashigh as 50% because of the suppression of consecutive side-reactions by virtue of
a short residence time.

0.02 M TPAP HO
©/\OH 0.4M NMO
—»
CHaCN
r.t. .
2 min. conversion

microreactor > batch reactor
Scheme 7.2 Oxidation of benzyl alcohol by tetrapropylammonium perruthenate.
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Scheme 7.3 Oxidation of 2-methylnaphthalene.

Scheme 7.4 Titanium silicalite-1 (TS-1)-catalyzed oxidation of aniline.
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Scheme 7.5 Baeyer—Villiger oxidation.

Titanium silicalite-1 (TS-1)-catalyzed H,0O, oxidation of aniline gives several
important oxygen-containing compounds, including hydroxylamines [9-11]. A
multichannel membrane microreactor can be used for the continuous selective
oxidation of aniline with hydrogen peroxide on TS-1 nanoparticles (Scheme 7.4) [12].
The product yield and selectivity of azoxybenzene can be improved, although the
microreactor operation suffers from bubble formation and hydrogen peroxide
decomposition. Titanium silicalite-1 catalyzed epoxidation of 1-pentene with hydro-
gen peroxides was also carried out in a continuous microfabricated reactor [13-15].

The Baeyer—Villiger reaction catalyzed by scandium bis(perfluorooctanesulfonyl)
amide leads to higher yields and regioselectivities than those for analogous batch
reactions [16, 17]. For example, the oxidation of 2-methylcyclopentanone gives the
corresponding lactones in essentially quantitative yield with high regioselectivity
(97:3) (Scheme 7.5).

7.1.2
Electrochemical Oxidation

Electrochemical reactions serve as a powerful method for the oxidation and reduction
of organic compounds [18-20], and various redox transformations can be achieved
without using chemical reagents. The conventional electrochemical method, how-
ever, suffers from several disadvantages such as difficulty in mass transfer on the
surface of the electrodes and high ohmic drop between the electrodes [21]. Microflow
systems serve as solutions to these problems, by virtue of the inherent advantages
of microstructures such as large surface-to-volume ratio. Various types of
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Figure 7.2 Schematic diagram of microreactor for electrochemical synthesis.

electrochemical micro devices have been developed, including electrochemical
detection devices for electrophoresis [22, 23], electrochemical analytical studies [24]
and electrogenerated chemiluminescence [25, 26]. Microflow systems for electro-
chemical synthesis have also been developed and the following part outlines the state
of art of electrochemical oxidation using microflow systems. A microreactor for
electrochemical synthesis consisted of a plate-to-plate electrode configuration
mounted in a non-conducting housing has been developed. The working electrode
and the counter electrode are separated using a 75 um thick polyimide foil between
them, as shown in Figure 7.2 [27, 28].

The electrochemical microreactor is fairly effective for the oxidation of p-methox-
ytoluene and 4-methoxybenzaldehyde is obtained after hydrolysis. The efficiency of
the microreactor reaction (98%) is higher than that of the common industrial
processes (85%) (Scheme 7.6) [29].

Oxidation of furans can be also carried out using a ceramic microflow electro-
chemical reactor (CEM) using H,SOy, as the supporting electrolyte [30]. Scheme 7.7
shows the oxidative methoxylation of methyl 2-furoate.

CHa MeO.__OMe CHO
- 4e, - 4H* hydrolysis
0.1 MKF
OMe MeOH OMe OMe
microreactor 98%

common industrial processes  85%

Scheme 7.6 Electrochemical oxidation of p-methoxytoluene followed by hydrolysis.

i 0.1 M H,S0 HiCQ i
0 OCH, — A1250 O OCHg
\ | MeOH HsCO— __

r.t.
Scheme 7.7 Electrochemical dimethoxylation of methyl 2-furoate.
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Figure 7.3 Cyanation reaction of PyH in a microchannel.

Oxidation of pyrene (PyH) in the presence of NaCN can be accomplished [31, 32]
using polymeric microchannel chips (100 um wide x 20 um deep) integrated with
the electrode [33-35]. An acetonitrile solution of PyH containing tetrabutylammo-
nium perchlorate and an aqueous NaCN solution are introduced into the chip by
pressure-driven flow (Figure 7.3). PyH is then oxidized at the working band electrode
in the channel. Under the optimum conditions, 1-cyanopyrene (PyCN) is produced
very efficiently (61% yield). The PyCN:Py(CN), ratio is 15.3 in the microchannel chip,
whereas it is 2.9 in the bulk.

PyCN can be obtained as the sole product by using the electrochemical micro-
reactor shown in Figure 7.4.

The electrochemical method is also effective for the oxidation of heteroatom
compounds. For example, oxidation of carbamates using a microflow electrochemi-
cal cell leads to the formation of N-acyliminium ion, which is allowed to react with
various carbon nucleophiles such as allylsilanes in the flow system (Figure 7.5). This
is a microflow version of the “cation pool” method, in which highly reactive organic
cations are generated and accumulated in the absence of nucleophile and are allowed
to react with nucleophiles in the next step [36—47]. The microflow version is called the
“cation flow” method [48, 49]. The “cation flow” method can be applied, in principle,
to more reactive and unstable organic cations, which are difficult to accumulate in a
macro-scale batch system.

The generation of the cation can be monitored using an FTIR spectrometer (ATR
method) equipped with a low-temperature flow cell attached to the outlet of the
electrochemical microflow reactor. The absorption at 1814 cm ™", which is assigned
as the C=0 vibration, increases with increase in the electric current. An interesting
application of the “cation flow” method is continuous sequential combinatorial

NaCN aq
> Counter
electrode
-------------------------- PyCN
PyH-propylene
carbonate Worki
e orking

electrode
Figure 7.4 Cyanation reaction of PyH in a microchannel with a different configuration.
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Figure 7.5 Schematic diagram of the “cation flow” system.

synthesis based on simple flow switching as shown in Figure 7.6 [50]. In the first step,
the cation flow generated from a carbamate is allowed to react with nucleophiles in a
sequential fashion. In the next step, the precursor of the cation is switched to a
different carbamate and the cation flow generated is allowed to react with nucleo-
philes sequentially. Then the precursor of the cation is switched to a different one and
the cation flow is allowed to react with nucleophiles sequentially. Hence 3 x 3
combinatorial synthesis can be accomplished with one flow system.

It is noteworthy that both anodic and cathodic reactions can be used for desired
transformations in some cases. For example, the anodic oxidation of silyl-substituted
carbamates can be combined with the cathodic reduction of allylic halides in the
presence of chlorotrimethylsilane (paired electrolysis) [51]. The products of both
reactions, i.e. N-acyliminium ion and the allylic silane, are then allowed to react with
each other to obtain a final coupling product (Table 7.2).

Let us briefly consider electrochemical synthesis without an added electrolyte. The
use of supporting electrolytes is one of the major problems in electrochemical
synthesis. Although various electrolyte-free electrochemical systems have been
developed [52-61], an approach based on microchemical systems is attractive [62].
A high electrode surface area to reactor volume and a short distance between
electrodes are advantageous from the viewpoints of conductivity and reaction
efficiency. One of the most typical microflow electrochemical cells has a parallel
electrode configuration. Two electrodes are placed facing each other at a distance of
the order of micrometers and the substrate solution flows through the chamber
between them (Figure 7.7). Therefore, the liquid flow and the current flow are
perpendicular. By using this microflow electrochemical cell, one-electron oxidation
of ferrocene and the two-electron—two-proton reduction of tetraethyl ethylenetetra-
carboxylate in ethanol can be achieved without intentionally added electrolyte [63].
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Figure 7.6 Continuous serial combinatorial synthesis using the “cation flow” system.

There is another type of microflow cell that is used for electrolyte-free electroly-
sis [64]. Two carbon fiber electrodes are separated by a spacer (porous PTFE
membrane, pore size 3 um, thickness 75 pm) at a distance of the order of micro-
meters. A substrate solution is fed into the anodic chamber where the oxidation takes
place. The anodic solution flows through the spacer membrane into the cathodic
chamber where the reduction takes place. The product solution leaves the cell from
the cathodic chamber. In this cell, the electric current flow and the liquid flow are
parallel. The effectiveness of the cell is shown by the oxidation of p-methoxytoluene. A
solution of p-methoxytoluene in methanol is fed into the electrochemical microflow
system and the reaction is carried out under constant current conditions to obtain the
desired product in more than 90% yield based on consumed starting material
(Figure 7.8). The microflow system can also be used for the oxidative methoxylation
of N-methoxycarbonylpyrrolidine and acenaphthylene.
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Table 7.2 Coupling of an N-acyliminium ion and an allylic silane
generated by using a paired electrochemical microsystem.

e
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Figure 7.7 Electrochemical microflow process without adding supporting electrolyte.
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Figure 7.8 Methoxylation of N-methoxycarbonyl pyrrolidine.
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Figure 7.9 Electrochemical oxidation of furans.

Electrochemical oxidation of furans can also been carried out without inten-
tionally added electrolyte using a microflow system. In this case, an electrochemical
thin-layer flow cell, which has a simple geometry with a glassy carbon anode and a
platinum cathode directly facing each other at a distance of 80 um apart is used
(Figure 7.9) [65, 66]. 2,5-Dimethoxy-2,5-dihydrofuran is obtained in 98% yield by
the oxidation of furan in methanol solvent. Similar electrochemical methoxylation
and acetoxylation of various organic molecules can also be carried out using this
system.

7.1.3
Biochemical Oxidation

Enzymatic reactions have attracted significant research interest because of their
environmentally friendly nature. Microflow systems can serve as efficient tools for
the development of enzyme processes [67].

The peroxidase-catalyzed reaction of 3,3’-diaminobenzidine tetrahydrochloride
(DAB) with sodium N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methylaniline, 4-aminoan-
tipyrine and H,0, can be achieved in a stopped-flow microreactor using photothermal
temperature control and equipped with an IR diode laser (Figure 7.10) [68, 69].
The time to reach the end of the reaction in the microchip is half of that in a batch
process.

Oxidation of xanthine with H,0, is achieved using microreactors with immobi-
lized xanthine oxidase (Scheme 7.8). The reactors can be used for the detection of
xanthine using chemiluminescence [70].

Oxidation reaction of glucose is achieved with microfluidic channels fabricated
from poly(dimethylsiloxane) (PDMS) using immobilized microbead-supported

Enzyme solution Detection point
14 mm
250%X100 um O
\ laser
DAB + H202

Figure 7.10 Peroxidase-catalyzed reaction of 3,3'-
diaminobenzidine tetrahydrochloride (DAB) with H,0,.
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Scheme 7.8 Oxidative reaction of xanthine using microreactors
with immobilized xanthine oxidase.
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Figure 7.11 Oxidative reaction of glucose.

glucose oxidase and biotin-labeled glucose oxidase (GOX) on microbeads coated with
streptavidin (Figure 7.11) [71]. Multistep reactions can be also carried out by connecting
multiple reactors having different immobilized microbead-supported enzymes.
P450-catalyzed polyketide hydroxylation is achieved in a microfluidic channel
using an enzyme immobilized on Ni-NTA agarose beads (Figure 7.12) [72]. The use

“10--0 HOW
Hm W\
NMe2

(Ni-NTA agarose)
microbeads P450

(Ni-HisTag)
Figure 7.12 P450-catalyzed polyketide hydroxylation in a
microfluidic channel using immobilized microbead-supported
enzyme.
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Figure 7.13 Enzyme-immobilized magnetic microparticles.

of the microreactor with the immobilized enzyme permits rapid hydroxylation of the
macrolide YC-17 to methymycin and neomethymycin.

Immobilization of enzymes in microchannels can be achieved using magnetic
power. Enzyme-immobilized magnetic microparticles (EMMP) are introduced into a
microchannel and are retained there by using small permanent magnets as shown in
Figure 7.13 [73]. The system can be used for the assay of glucose. The oxidation of
glucose with immobilized glucose oxidase (GOx) produces hydrogen peroxide, the
amount which is determined by the amperometric analysis.

Oxidative homocoupling of 4-hydroxy-3-methoxyphenylacetic acid using H,0,
is achieved using a miniaturized reactor having peroxidase immobilized on
alumina surfaces to give 2,2'-dihydroxy-3,3'-dimethoxybiphenyl-5,5 -diacetic acid
(Figure 7.14) [74].

Although the use of microbead-supported enzymes is fairly easy for small-scale
reactions [75-92], large-scale processing suffers from problems such as increasing
pressure. There is another method, i.e. immobilization of enzymes on the surface of
the microchannel wall. This method enjoys the advantage of high surface area to
volume ratio of microstructures and solves the pressure drop problem. For example,
a microreactor having streptavidin-conjugated enzyme linked to Dbiotinylated
phospholipid bilayers coated inside poly(dimethylsiloxane) microchannels

COOH
Aex =310 nm

COOH O A det = 430 nm
COOH

+ H202 OMe + 2H20

OH
T acrylic glass

| acrylic glass

A
\
\peroxidase

(alumina microstructure)

Figure 7.14 Reaction of 4-hydroxy-3-methoxyphenylacetic acid
and hydrogen peroxide using a miniaturized peroxidase reactor.
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Figure 7.15 Immobilized avidin-conjugated glucose oxidase.

(Figure 7.15) is used for analysis. The presence of glucose can be detected by two
coupled steps employing immobilized avidin-conjugated glucose oxidase and strep-
tavidin-conjugated horseradish peroxidase [93, 94]. The process can be operated by
employing glucose oxidase in the first step to oxidize glucose to gluconolactone and
hydrogen peroxide, which are used in a second step to convert the low-fluorescent
Amplex molecule into a highly fluorescent red resorufin molecule (Scheme 7.9).

A membrane inside a microchannel can serve as an effective support for an
enzyme. A chemically functionalized polymer membrane can be produced by an
interfacial polycondensation reaction using multilayer flow inside a microchannel
(Figure 7.16) [95]. Single and parallel dual-membrane structures can be successfully
prepared by using organic—aqueous two-layer flow and organic-aqueous—organic
three-layer flow inside the microchannel followed by an interfacial polycondensation
reaction. By using the inner-channel membrane, horseradish peroxidase can be
immobilized on one side of the membrane surface to integrate the chemical
transform function on to the inner-channel membrane.

Enzymatic reaction of N-ethyl-N-(2-hydroxy-3-sulfopropyl)-m-toluidine (TOOS)
and 4-aminoantipyrine (4-AAP) with H,0, at the membrane surface can be success-
fully performed using this system (Figure 7.17).

HO. HO
HO HO.
0, + 0 —_— o +

HO OH HO @]

OH
m (I ) SN KI r.,

O O

Amplex Resorufin

Little fluorescent Red fluorescent

Scheme 7.9 Oxidation of glucose to gluconolactone.
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>@-< : hexamethylenediamine
Figure 7.16 Design and synthesis of a chemically functional
polymer membrane by an interfacial polycondensation reaction
and multilayer flow inside a microchannel.

7.1.4
Miscellaneous Oxidations

Recently, ionic liquids have been employed as solvents in many catalytic processes,
because they provide effective media for reactions involving ionic intermediates. Easy
separation of organic products from ionic liquids is also advantageous. An efficient
and rapid method for the oxidation of cyclohexene in an ionic liquid medium has
been developed using a microreactor (length of the channel of the microreactor 3 cm,
width 200 pm, depth 50 pm) (Scheme 7.10) [96, 99]. The yield of product is higher
than that with conventional batch reactors. The water-soluble ionic liquid 1-butyl-3-
methylimidazolium tetrafluoroborate is used to improve the solubility of cyclohexene
in the reaction buffer.

An efficient oxidation of glucose to gluconic acid in phosphate buffer solution can
be performed using a porous gold(0) catalyst in a Pyrex capillary tubing microreactor
(Figure 7.18) [98]. The yield increases with increase in reaction time. A pH range of

4-aminoantipyrine
and 0
N-ethyl-N-(2-hydroxy- ——= 9. ——= Quinoneimine

3-sulfopropyl moluidine  QOQQQ000QQ0000.

Hz0; e Ag.

Figure 7.17 Enzyme reaction with N-ethyl-N-(2-hydroxy-3-
sulfopropyl)-m-toluidine (TOOS) and 4-aminoantipyrine (4-AAP).
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HO  OHOH HQ  OHOH
j_g_g Au(0) sponge P
_ —_—
40 min HO
HO  OH 5 KV OHO  OH

microreactor  99%
flask 48%
Scheme 7.11 Oxidation of p-glucose to gluconic acid.

6-10 gives rise to the maximum yield of gluconic acid. The catalytic activity seems to
be higher in comparison with that for the conventional procedure. The approach
using a capillary microreactor offers a convenient and highly efficient means to
optimize the reaction conditions (Scheme 7.11).

7.2
Reduction

In contrast to a large number of reports on oxidation using microflow systems, only a
few examples of reduction have been reported in the literature.

An asymmetric transfer hydrogenation reaction between acetophenone and
2-propanol has been carried out using a microflow reactor containing a ruthenium
complex of NH-benzyl-(1R,2S)-(—)-norephedrine covalently tethered to silica
(Scheme 7.12) [99].

The electrochemical method also serves as an effective means of reducing organic
compounds. For example, the electrochemical reduction of 4-nitrobenzyl bromide in
N,N-dimethylformamide in the presence and absence of intentionally added
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Scheme 7.12 Reduction of acetophenone.
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Figure 7.19 Homo-coupling reaction of benzyl bromides.
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Figure 7.20 Coupling reaction of various alkenes with benzyl bromides.

160 pum

supporting electrolyte using a microflow electrochemical cell leads to the formation
of the homocoupling product (Figure 7.19) [100].

The electrochemical reductive coupling reaction of various alkenes with benzyl
bromides can also been achieved in the absence of supporting electrolyte using the
microflow cell (Figure 7.20) [101]. When the inter-electrode gap is 160 um, the
desired cross coupling product is obtained effectively, whereas a significant amount
of homocoupling product is obtained when the gap is 320 um.

As mentioned in Section 7.1.2, the electrochemical reduction of allylic halides in
the presence of chlorotrimethylsilane can be achieved using a microflow cell and the
desired allylic silanes are obtained (Table 7.2).

7.3
Conclusion

Oxidation and reduction using chemical, electrochemical and biochemical methods
are attained by virtue of characteristic features of microflow systems. Microflow
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reactors serve as powerful tools for accomplishing oxidation and reduction that are
difficult to control in conventional macrobatch reactors.
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