
CHAPTER 22

Earthquake Geoengineering

This chapter serves as an introduction to the large and complex
field of geotechnical earthquake engineering. The book by
Kramer (1996), the book by Towhata (2008), and the FHWA
manual by Kavazanjian et al. (2011) are excellent references
for further study.

22.1 BACKGROUND

Plate tectonics is the main reason for earthquakes on our
planet. The Earth’s crust is made of six continental plates
(Figure 22.1) that have travelled large distances over geologic
times. The plates move because of the thermal difference
between the earth surface and the deeper layers. This thermal
difference creates convection currents in the rock mass, which
move the plates. The boundaries between plates are called
faults. The problem is that the movement of the plates with
respect to one another is not smooth. Indeed, the interface
between plates or faults is rough and stresses accumulate
along the fault over time. When the stress becomes equal
to the strength of the fault surface, the fault shears in a
dramatic motion known as an earthquake (Figure 22.2). A bit
of lubricant would solve that problem!

An earthquake originates at some depth below the ground
surface; this point is called the hypocenter. The point on the
ground surface directly above the hypocenter is the epicenter.
The distance between a site on the ground surface and the
epicenter is the epicentral distance. An earthquake starts at
one location, propagates along a fault, then propagates up into
the rock mass and then into the soil mass (earthquake), and
then sometimes into ocean (tsunami). This propagation is in
the form of compression waves and shear waves (see section
8.2.1). Seismographs record the passage of the waves. A
compression wave moves faster than the corresponding shear
wave and will arrive first. The difference in time between the
arrival of the compression wave and the shear wave can be
used to determine the distance d between the location of the
seismograph and the epicenter:

d = �tp−s

1

vs

− 1

vp

(22.1)

where �tp-s is the difference in time between the arrival of
the p wave and the s wave, vs is the shear wave velocity,
and vp is the compression wave velocity. One seismograph
can give the distance d but not the direction of the wave
generating the signal; three seismographs are necessary to
locate the epicenter (Foster 1988) (Figure 22.3).

22.2 EARTHQUAKE MAGNITUDE

The size of an earthquake can be quantified in several ways.
The first and oldest way is the earthquake intensity, which
is a qualitative description of the effect of the earthquake.
The Mercalli scale (1883) is the best known and goes from
I (not felt) to XII (total destruction). Giuseppe Mercalli was
an Italian seismologist and volcanologist who proposed this
scale in the late 1800s. It was revised a few times after that.
The problem with the Mercalli scale is that it relies on human
reactions and structural damage observations, both of which
depend on more than just the size of the earthquake.

The Richter scale is the most well-known of the magnitude
scales (Richter 1935). The Richter magnitude (ML, with the
subscript L used to designate local magnitude) is defined
as the logarithm base 10 of the magnitude trace amplitude
in micrometers recorded on a Wood-Anderson seismometer
located 100 km from the epicenter of the earthquake. Seismic
instruments were developed and installed around 1930 and
are used extensively today to quantify earthquake magnitude.
The Richter scale has been modified over the years and led
to the use of the body wave magnitude and surface wave
magnitude scales.

The body wave magnitude (mb) is calculated from the
amplitude of compression waves with periods of about 1 sec
toward the beginning of the record. The surface wave magni-
tude (Ms) is calculated from the amplitude of Rayleigh waves
with periods of about 20 sec. One limitation with these scales
is that they are unable to recognize large earthquakes; this is
called saturation. Saturation occurs at a magnitude of about
6.2 for mb and 8 for Ms. Saturation is due to the fact that
very large earthquakes release more of their energy at longer
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Figure 22.1 Tectonic plates on Earth. (Photo by United States Geologic Survey [USGS])

(b)(a)

Figure 22.2 Movement of tectonic plates.

periods; because the periods associated with the mb and Ms
calculations are fixed, they cannot acknowledge higher peri-
ods and therefore larger earthquakes. Another limitation of
these magnitude scales is that they do not address the amount
of time associated with the shaking.

The moment magnitude (Mw) takes that aspect into account
and is broadly used today. It is rooted in the seismic moment

Mo associated with the work done by the earthquake along
the fault:

Mo = GAD (22.2)

where G is the shear modulus of the rock, A is the area
over which the slip occurs, and D is the amount of slip
movement. Because Mo is a very large number, and because
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Figure 22.3 Locating the epicenter with three seismographs.

the public is used to the Richter scale, Kanamori (1977)
proposed a transformation that makes Mw consistent with
the other scales, including the Richter scale. The moment
magnitude Mw is then obtained by:

Mw = 0.66 log M0(N.m) − 6.05 (22.3)

As an example, let’s calculate the moment magnitude of
the December 26, 2004, Sumatra-Andaman earthquake. As
reported by Lay et al. (2005), the fault surface was 1300 km
long and 220 km deep, and the slip distance was 5 m. For a
typical value for G of 3 × 1010 N/m2, the seismic moment
Mo was 4.7 × 1022 N.m. Then the moment magnitude is very
close to 9 or a huge earthquake. Though this is the moment
magnitude, the news media would report that the earthquake
registered as 9 on the Richter scale. Note that all these scales
are log scales, so that, for example, a magnitude 9 earthquake
is 10 times larger than a magnitude 8 earthquake.

Yet another way to classify an earthquake is to calculate
the energy released during the slip. Bath (1966) proposed to
obtain the energy E from:

log E = 5.24 + 1.44M (22.4)

where E is the energy in N.m or joules and M is the magnitude.
So if M is 9, then E is 1.6 × 1018 joules.

To give you an idea of how much energy this represents,
it is enough to cover the electrical consumption of the entire
United States for one month. So if we could harness that
energy and turn it to good use, it would be very valuable, and
unfortunately it seems to be renewable energy!

22.3 WAVE PROPAGATION

For specifics on wave propagation, see section 8.2.1.

22.4 DYNAMIC SOIL PROPERTIES

Dynamic soil properties have been discussed in previous
chapters:

• See section 7.2 for the seismic CPT
• See section 7.11.5 for the lightweight deflectometer test

• See sections 8.2.2, 8.2.3, 8.2.4, and 8.2.5 for dynamic in
situ tests based on wave propagation

• See section 9.13 for the resonant column test, shear
modulus, and damping ratio

• See section 14.10 for the initial tangent shear modulus
Gmax

• See section 14.11 for the normalized shear modulus
G/Gmax and damping ratio vs. shear strain γ curves

• See sections 14.15 and 14.16 for the resilient modulus
• See sections 18.8.7 and 18.8.8 for the rate of loading and

cyclic loading effects

22.5 GROUND MOTION

During an earthquake, the rock fault shears and sends shear
waves and compression waves through to the ground surface.
This shaking of the rock and soil mass can be recorded
using instruments sensitive to motion. These are generally
accelerometers that use the piezoelectric effect. They contain
microscopic crystal structures (crystal quartz) that get stressed
by inertia forces and react by creating a change in voltage.
This voltage is measured and correlated by calibration to
accelerations. While the soil motion created by an earthquake
is in three directions, the horizontal motion is usually the one
of most interest because it tends to cause the most damage.
Figure 22.4 shows an acceleration record for an earthquake
along with the velocity and the displacement. The velocity
and the displacement are obtained by integrating once and
then twice the acceleration versus time.

These time domain signals are quite complex, and there is a
need to report simpler parameters to describe an earthquake.
These parameters include information on the amplitude A, the
frequency f, and the duration t of the acceleration a; velocity
v; and displacement u. The amplitudes of a, v, and u can be
characterized by the peak values, which are the highest values
in the signal. The PGA is the peak ground acceleration, the
PGV is the peak ground velocity, and the PGD is the peak
ground displacement. The PGA, PGV, and PGD are indicated
in Figure 22.4. A huge earthquake can generate 10 m/s2 or
1 g acceleration, whereas acceleration of 0.1 m/s2 or 0.01 g is
associated with small earthquakes. Figure 22.5 shows a PGA
map of the United States prepared by the United States Ge-
ologic Service (USGS) for two distinct return periods: 2275
years and 475 years. Also useful are the effective acceleration
(acceleration closest to the structural response and damage
of the structure), the sustained maximum acceleration (accel-
eration sustained for 3 or 5 cycles), and the effective design
acceleration (peak acceleration after filtering accelerations
above 8Hz).

A more detailed inspection of Figure 22.4 shows that the
frequencies associated with the acceleration signal are higher
than the frequencies associated with the velocity signal, which
are themselves higher than the frequencies associated with
the displacement signal. The frequency content is differ-
ent and is best obtained by performing a Fourier transform
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Figure 22.4 Ground motion for an earthquake (FHWA 1998).

analysis (Kramer 1996). This transformation is a mathemat-
ical transformation named after the work of Jean Baptiste
Joseph Fourier, a French mathematician and physicist, who
developed it around 1800. It transforms the signal from a plot
of amplitude vs. time into a plot of amplitude vs. frequency
(Figure 22.6) or from the time domain to the frequency do-
main. This amplitude vs. frequency plot is called a Fourier
spectrum, so one will have a Fourier acceleration spectrum,
a Fourier velocity spectrum, and a Fourier displacement
spectrum. The Fourier spectra describe the ground motion.

Another spectrum is the response spectrum to a particular
earthquake input motion. A response spectrum is a plot of
the maximum response (a, v, or u) of a linear single degree
of freedom (SDOF) system to an earthquake input motion
versus the natural period T of the system for a given damping
ratio β. The natural period T of an undamped SDOF system
is given by:

T = 2π

√
m

k
(22.5)

where m is the mass of the system (kg) and k is the spring
stiffness (N/m).

The damping ratio β in percent is given by:

β = c

ccrit
× 100 = c

2
√

mk
× 100 (22.6)

where c is the damping coefficient of the dashpot (N.s/m) and
ccrit is the critical damping.

The critical damping is what brings the system back to zero
without oscillations. Nowadays many doors are equipped
with critically damped pistons so they close back without
oscillations. (Old saloon bar doors, for example, did not have
critical dampers.) In earthquake engineering, a damping ratio
equal to 5% is common. Three response spectra are typically
created: one each for the acceleration (Sa), the velocity (Sv),
and the displacement (Sd).

The process followed to obtain an acceleration response
spectrum is illustrated in Figure 22.7 and an example is shown
in Figure 22.8. The step-by-step procedure is as follows:

1. Choose the input motion signal for the earthquake.
2. Choose a value of the damping ratio β and the mass m

for the SDOF.
3. Select a value of the stiffness k of the SDOF and excite

the system with the selected earthquake motion.
4. Record the highest value (acceleration, velocity, dis-

placement) of the output motion of the SDOF.
5. Repeat steps 3 and 4 for different values of k.
6. Plot the maximum values of step 4 (spectral value)

versus the fundamental period of the SDOF. This is the
response spectrum.

Note that structures have fundamental periods that increase
with their height (Figure 22.9); these are generally in the
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PGA with 2% in 50 year PE. BC rock. 2008 USGS

PGA with 10% in 50 year PE. BC rock. 2008 USGS
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Figure 22.5 USGS maps of peak ground acceleration for 2% and 10% probability of exceedance
over 50 years corresponding to 2275-year and 475-year return periods respectively. (Courtesy of
USGS.)

range of 0.1 seconds for very small buildings to 10 seconds for
extremely tall and flexible buildings. The spectral acceleration
on the ordinate of the spectrum depends on the rock motion,
the soil properties, the damping ratio, and the ratio of the
SDOF stiffness over mass. It does not depend on k and m
separately, because of the mathematics behind the problem.

The spectrum itself—meaning the curve of a vs. T—is a
function of the rock motion, the soil properties, and the
damping ratio, but not of the stiffness and the mass of the
SDOF. This unique property makes it possible to recommend
a single design spectrum that can be used for any structure,
given a damping ratio.
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Figure 22.6 Fourier transforms of signals.

m

aomax 5 amax
m

m

m

m

a

t

a3max

c
c

c c

k1

S
p

e
c

tr
a

l 
a

c
c

e
le

ra
ti

o
N

, 
S

a
 (
g

)

Period, T (sec)T1 T2 T3 Tn

a3max

a2max

a1max

c1

c2 < c1

a

t

anmax

a t

a2max
a

t

a1max

a

t

aomax

k2 k3 kn

aomax 5 amax

anmax

Figure 22.7 Development of an acceleration response spectrum.
(After Matasovic 1993.)

The response spectrum is very useful because, for a building
with a given fundamental period, this spectrum defines the
highest spectral acceleration to which the structure is likely to
be subjected. This acceleration times the mass of the building

gives the inertia force to be resisted by the structure and
the foundation. Table 22.1 shows orders of magnitudes of
accelerations and velocities for the soil and the structures
placed on it.

The duration of the earthquake’s strong motion has a
major influence on the amount of damage inflicted. The most
common way to measure duration is to use the bracketed
duration, which is defined as the time between the first and
last exceedance of a chosen threshold of acceleration. This
threshold is often taken as 0.05 g. Figure 22.10 shows an
example in which the bracketed duration is 15 seconds.

22.6 SEISMIC HAZARD ANALYSIS

Now that we know how to characterize ground motion, we
need to establish what parameters to consider for the site
where the construction will take place, or where the stability
must be evaluated, or where liquefaction is an issue. A
distinction is made here between a deterministic analysis and
a probabilistic analysis. In a seismic hazard deterministic
analysis, the steps are as follows:

1. Identify all earthquake sources capable of creating sig-
nificant ground motion at the site.

2. Determine the distance between the source and the site.
3. Select the controlling earthquake, that is, the earthquake

most likely to produce the highest level of shaking at
the site.
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Figure 22.8 Examples of response spectrum.
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Figure 22.9 Relationship between fundamental period and height
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4. Determine the ground motion parameters at the site
associated with the controlling earthquake: peak accel-
eration, peak velocity, response spectrum.

Step 3 requires the use of an attenuation relationship,
a relationship that gives the decrease in acceleration, for
example, as a function of the distance from the source. Such
attenuation relationships have been developed based mostly
on experimental data. These empirical equations (e.g., Cornell
et al. 1979) are typically of the form:

log(PGA) = A + BM − C log(R + D) (22.7)

Table 22.1 Order of Magnitude of Soil and Structure
Horizontal Acceleration and Velocity for Different
Earthquake Magnitudes

Accelerations
(Gravities)

Velocity
(mm/second)

Magnitude
Ground
Motion Structure

Ground
Motion Structure

8 0.60 0.33 740 410
7.5 0.45 0.22 560 280
7 0.30 0.15 360 180
5.5 0.12 0.1 150 130

(After Hall and Newmark 1977)

where PGA is the peak ground acceleration, M is the earth-
quake magnitude, R is the distance from the source to the site,
and A, B, C, and D are calibration constants. Figure 22.11
shows a correlation by Boore et al. (1997), including the data
points used.

In a seismic hazard probabilistic analysis, the steps are
somewhat different and consist of the following:

1. Identify all earthquake sources capable of creating sig-
nificant ground motion at the site. This is the same step
as in a deterministic analysis, except that a probability
distribution is associated with the location of the source
to quantify that uncertainty.
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Figure 22.11 Attenuation of peak horizontal ground acceleration (Boore et al. 1997).

2. Determine the magnitude and recurrence of earthquakes
from each source. Small earthquakes occur more of-
ten than large earthquakes. The magnitude-recurrence
relationship gives the number N of earthquakes of a
given magnitude or higher that may occur every year.
Gutenberg and Richter (1944) proposed the following
model:

log N = a − bM (22.8)

where N is the number of earthquakes per year of
magnitude M or greater, and a and b are regional
parameters.

This model has been revised (Figure 22.12) based
on further measurements over the years and also by
including geologic and geodetic data. Note that the

reciprocal of N is called the recurrence interval or
return period. In the building industry, the recurrence
interval of the earthquake to use for insuring collapse
prevention is the 2500-year earthquake; in the bridge
industry, it is the 1000-year earthquake.

3. Determine the ground motion at the site by using an
appropriate attenuation relationship. This is the same
step as in a deterministic seismic hazard analysis, except
that the uncertainty regarding the attenuation is now
included as shown in Figure 22.11.

4. The uncertainties in steps 1 through 3 are combined to
obtain the probability that the ground motion parameters
will be exceeded over a chosen period of time and
ensure that this probability meets a target value chosen
as acceptable by design.
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Figure 22.12 Magnitude-recurrence relationship. (Kavazanjian
et al. 2011, based on Gutenberg and Richter 1944, and Schwartz and
Coppersmith 1984.)

22.7 GROUND RESPONSE ANALYSIS

When a rock fault slides, it shakes the adjacent rock into
motion. This motion is propagated in all directions, including
upward toward the ground surface. Although most of the
travel is through rock, the last few 100 meters may be through
soil. The propagation through soil may have a significant
impact on the motion of the ground surface, and this ground
response is addressed in this section. Propagation analysis can
be done as a one-dimensional (1D), two-dimensional (2D), or
three-dimensional (3D) analysis. The theory for such analyses
can get quite complex. Two simple cases of one-dimensional
analysis are presented here. More advanced coverage is given
in Kramer (1996).

22.7.1 One-Dimensional Solution for Undamped
Linear Soil on Rigid Rock

In the case of undamped linear soil on rigid rock
(Figure 22.13), the shaking of the rock generates, among
other waves, a shear wave travelling in the soil at a shear
wave velocity vs and generating a horizontal movement
equal to u(t,z) where t is time and z is depth. The equation of
motion for an element of soil (see section 18.3.4) is:

∂2u

∂t2
= vs

2 ∂2u

∂z2
(22.9)

If the rock imposes a harmonic motion at the base of the
soil layer which is H thick, two waves will be generated in

Linear soil Down waveUp wave

Ground surface
u (0, t)

Rigid rock

Figure 22.13 Linear soil on rigid rock.

the soil layer: one going up and one going down. The solution
to this differential equation in complex notation reflects this
decomposition and is of the form:

u(z, t) = aei(ωt+kz) + bei(ωt−kz) (22.10)

where a and b are the amplitude of the wave going up and the
wave going down respectively, ω is the circular frequency of
the harmonic motion, and k is a wave number given by:

k = ω

vs

(22.11)

Recall that:

T = 1

f
= 2π

ω
(22.12)

where T is the period (s), f is the frequency (Hz), and ω is
the circular frequency (rd/s) of the harmonic motion. Because
the ground surface is considered to be a free boundary, the
shear stress τ (z,t) and shear strain γ (z,t) must be zero on
that boundary (z = 0). The shear strain γ (0,t) must therefore
satisfy:

γ (0, t) = ∂u(0, t)

∂z
= 0 (22.13)

This leads to the condition that a = b and the final expression
for u is:

u(z, t) = 2a cos(kz) eiωt (22.14)

This represents a stationary wave (a wave that remains in a
constant position) due to the superposition of the upward wave
and the downward wave. Remember that we are interested
in transforming the motion of the rock at the base of the
soil layer into a motion at the ground surface. The transfer
function F(ω) is therefore:

F(ω) = umax(0, t)

umax(H, t)
= 1

cos(kH)
= 1

cos

(
ωH

vs

) (22.15)

While in the general case the transfer function will be a
complex number, in this simple case it is a scalar. To obtain
the horizontal displacement vs. time signal at the soil surface,
the horizontal displacement vs. time at the rock boundary is
simply multiplied by the transfer function for each time in the
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record. Note that if ωH/vs is equal to π /2, Eq. 22.15 indicates
that the transfer function becomes infinite and the soil is in
resonance with the rock motion. Therefore, the natural period
T of a soil layer with a height H and a shear wave velocity vs,
also called the characteristic site period, is:

ωH

vs

= π

2
or

2πH

T vs

= π

2
or T = 4H

vs

(22.16)

Equation 22.15 shows that the important factors in the
response of a soil layer to an earthquake are the frequency of
the rock motion, the thickness of the layer, and its shear wave
velocity or small strain shear modulus, which are closely
related (see section 8.2.1). In the United States, the natural
period of soil deposits is on the order of 0.4 to 2 seconds.

22.7.2 One-Dimensional Solution
for Damped Linear Soil on Rigid Rock

Let’s assume that the damping in a soil layer can be repre-
sented by a Kelvin-Voigt model (see section 12.2.1). In the
case of a damped linear soil on rigid rock, the governing dif-
ferential equation becomes a bit more complicated (Kramer
1996):

∂2u

∂t2
= vs

2 ∂2u

∂z2
+ η

ρ

∂3u

∂z2∂t
(22.17)

where η is the soil viscosity (N.s/m2) and ρ is the mass
density of the soil (kg/m3). The solution is similar to the
preceding undamped case except that the wave number k is
now a complex number k* with a real part k1 and a complex
part k2:

u(z, t) = aei(ωt+k∗z) + bei(ωt−k∗z) (22.18)

with:
k∗ = ω

vs

(1 − iβ) (22.19)

where β is the damping ratio, which is usually a small number
between 0.05 and 0.1. The transfer function is:

F(ω) = 1

cos(k ∗ H)
(22.20)

and the modulus of that function or amplification function
is the ratio of the movement at the ground surface over the
movement at the rock level:

|F(ω)| = umax(0, t)

umax(H, t)
= 1√

cos2

(
ωH

vs

)
+ sinh2β

(
ωH

vs

)

≈ 1√
cos2

(
ωH

vs

)
+

(
β

ωH

vs

)2
(22.21)
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This amplification function |F(ω)| is shown in Figure 22.14
for several values of the damping ratio β. As can be seen, the
amplification is maximum for the lower frequencies.

Solutions can also be found for more complex situations,
such as damped linear soil on elastic rock, layered damped
soil on elastic rock, and nonlinear soil behavior (Kramer
1996).

22.7.3 Layered Soils

One very useful solution is that for a layered system. This
solution was coded by Schnabel et al. (1972) with the program
SHAKE and modified by Idriss and Sun (1992) with the
program SHAKE91. It solves the problem of a soil deposit
made of n layers (i = 1 to n), �z thick, with a shear modulus
Gi for each layer i. A column of soil is considered and each
layer is represented by an element being deformed in simple
shear (Figure 22.15).

The horizontal cross section of the column is 1 m × 1 m.
Horizontal equilibrium of an element leads to:(

τ + ∂τ

∂z
dz

)
1 × 1 − τ × 1 × 1 = ma = 1 × 1 × dz × ρ

× ∂2u

∂t2
(22.22)
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Figure 22.15 Column of soil elements deformed in simple shear
during shear wave propagation.
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or:
∂τ

∂z
= ρ

∂2u

∂t2
(22.23)

where τ is the shear stress on the horizontal plane, z is depth, ρ
is the soil mass density, u is the horizontal displacement, and t
is time. This equation is solved by the finite difference method
(see section 11.5.1) and ends up for a centered expression as:

τi+1,t − τi−1,t

�z
= ρ

ui,t+�t − 2ui,t + ui,t−�t

�t2
(22.24)

where τ i,t is the shear stresses at time t on element i, �z is the
increment of depth, ρ is the mass density of the soil, ui,t is the
displacement of element i at time t, and �t is the increment
of time.

Boundary conditions exist at the bottom and at the top of
the soil column. At the bottom, the displacement is equal to
the input rock displacement at any time t. At the top, the shear
stress is zero. The shear strain γ i,t is linked to the horizontal
displacements of the nodes of the soil column as follows:

γi,t = ui+1,t − ui,t

�z
(22.25)

The shear stress τ i,t can then be calculated as:

τi,t = Giγi,t + ηi

∂γi,t

∂t
(22.26)

where G is the shear modulus of the soil and η is the viscosity
of the soil. It can be shown (Kramer 1996) that the viscosity
η of the soil is linked to the damping ratio β by:

η = 2G

ω
β (22.27)

where G is the shear modulus and ω is the circular frequency
of the motion.

The input of the problem consists of a shear modulus, a
damping ratio, and a mass density for each element in the
soil column. Then, the boundary conditions together with
Eqs. 22.24, 22.25, 22.26, and 22.27 are written for all nodes
in the soil column to solve for the unknown displacements
in all elements. The solution consists of starting at t = 0
and stepping into time an amount �t per step. The boundary
conditions provide the first values of the displacements and
shear stress, which are usually zero for most nodes except
for the boundary condition nodes. At the ground surface,
the shear stress is always zero, whereas the displacement at
the rock level is set equal to the displacement of the bottom
element. The displacement at the rock level at the beginning
of the earthquake provides the first value.

More realistic analyses include the strain level dependency
of the shear modulus and damping ratio and the influence
of the confinement on the shear modulus. The process of
deconvolution is the reverse process, where the ground surface
motion is observed during an earthquake and the rock motion
is back-calculated at the base of the soil column. The use
of programs like SHAKE and other techniques has helped
produce graphs like the one in Figure 22.16, which shows the
acceleration at the ground surface for a given acceleration at
the rock level.

22.8 DESIGN PARAMETERS

The design approach often considers two levels of earth-
quakes: a rare earthquake and an expected earthquake. A
rare earthquake may be defined as an earthquake with a
2% probability of exceedance in 50 years, whereas an ex-
pected earthquake would correspond to a 10% probability of
exceedance in 50 years (Figure 22.5). These definitions corre-
spond approximately to a return period of 2500 years and 500
years respectively. The design parameters, including ground
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Figure 22.16 Amplification of rock motion at soil sites (After Idriss. 1990).
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motion, are selected in one of two ways. The first way is to
perform a site-specific analysis (as discussed in section 22.7)
or by using recommendations outlined in building codes. This
next section addresses the code approach.

22.8.1 Site Classes A–E for Different Soil Stiffness

The design spectrum depends on the soil at the site and in
particular its stiffness. This is why site classes have been
defined, ranging from site class A for hard rock to site class E
for soft soil, as shown in Table 22.2. Site class F is a special
category for which a site-specific dynamic site response
analysis is recommended (section 22.7) instead of a code
approach. The site classes use the average soil parameters
within the top 30 m from the surface as a classification basis,
because this depth is most influential in determining the
dynamic response. The shear wave velocity is the parameter
of choice, but the SPT blow count and the undrained shear
strength are also helpful. Once the soil is classified according
to the definitions listed in Table 22.2, the amplification factors
can be selected to modify the acceleration spectrum.

22.8.2 Code-Based Spectrum

In the code approach, the acceleration response spectrum is
constructed from the analysis of existing data, past experi-
ence, and engineering judgment. Such a spectrum is shown
in Figure 22.17. First the reference spectrum is developed
assuming that the soil at the site is rock (site class B) and then
the values obtained for the reference spectrum are modified
for the proper site class. The reference spectrum parameters
are:

1. The spectral acceleration at a period equal to 0 seconds
taken as the peak ground acceleration PGA. The PGA
is used here because for a fundamental period of 0
seconds, the structure is infinitely stiff and the maximum
acceleration of the structure is the same as the maximum
acceleration from the ground.

2. The spectral acceleration at a short period equal to 0.2
seconds, called Ss.

3. The spectral acceleration at a long period equal to
1 second, called S1.

These values come from the selection of the design earth-
quake (e.g., 1000-year or 2500-year return period) and the use

Table 22.2 Site Class Definitions

Average Properties in Top 30 m

Site Class Soil Profile Name
Shear wave
velocity, v̄s , (m/s)

Standard
penetration
resistance, N
(blow/0.3m)

Undrained shear
strength, su, (kPa)

A Hard rock v̄s > 1500 N/A N/A
B Rock 750 < v̄s ≤ 1500 N/A N/A
C Very dense soil and

soft rock
360 < v̄s ≤ 750 N > 50 Su ≥ 100

D Stiff soil profile 180 ≤ v̄s ≤ 360 15 ≤ N ≤ 50 50 ≤ su ≤ 100
E Soft soil profile v̄s < 180 N < 15 Su < 50

E

Any profile with more than 3 m of soil having the following characteristics:

1. Plasticity index PI > 20s
2. Moisture content ω ≥ 40%, and
3. Undrained shear strength su < 25 kPa

F

Any profile containing soils having one or more of the following characteristics:

1. Soils vulnerable to potential failure or collapse under seismic loading, such
as liquefiable soils, quick and highly sensitive clays, collapsible weakly
cemented soils.

2. Peats and/or highly organic clays (H > 3 m of peat and/or highly organic
clay where H = thickness of soil)

3. Very high-plasticity clay (H >7.5 m with plasticity index PI > 75)
4. Very thick soft/medium stiff clays (H > 36 m)

(After Kavazanjian et al. 2011.)
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Figure 22.17 Design code acceleration response spectrum. (After
Kavazanjian et al. 2011)

of the dedicated USGS web site, for example (Kavazanjian
et al. 2011).

The site-specific spectrum is obtained from the values of
the reference spectrum. The site-specific spectrum parameters
are:

1. The spectral acceleration at a period equal to 0 seconds,
called As:

AS = FPGA × PGA (22.28)

where FPGA is the site factor for the PGA found in
Table 22.3.

2. The spectral acceleration at a short period equal to 0.2
seconds, called SDS:

SDS = FA × SS (22.29)

Table 22.3 Site Factor FPGA

Mapped Spectral Response Accelerations
at Short Periods

Site
Class

PGA
≤ 0.1 g

PGA
= 0.2 g

PGA
= 0.3 g

PGA
= 0.4 g

PGA
≥ 0.5 g

A 0.8 0.8 0.8 0.8 0.8
B 1.0 1.0 1.0 1.0 1.0
C 1.2 1.2 1.1 1.0 1.0
D 1.6 1.4 1.2 1.1 1.0
E 2.5 1.7 1.2 0.9 0.9
F a a a a a

a: Site-specific geotechnical investigation and dynamic site
response analysis are required in this case.
(After Kavazanjian et al. 2011)

Table 22.4 Site Factor FA

Mapped Spectral Response Accelerations
at Short Periods

Site
Class

Ss
≤ 0.25 g

Ss
= 0.50 g

Ss
= 0.75 g

Ss
= 1.00 g

Ss
≥ 1.25 g

A 0.8 0.8 0.8 0.8 0.8
B 1.0 1.0 1.0 1.0 1.0
C 1.2 1.2 1.1 1.0 1.0
D 1.6 1.4 1.2 1.1 1.0
E 2.5 1.7 1.2 0.9 0.9
F a a a a a

a: Site-specific geotechnical investigation and dynamic site
response analysis are required in this case.
(After Kavazanjian et al. 2011)

where FA is the site factor for SS, found in Table 22.4.
3. The spectral acceleration at a long period equal to

1 second, called SD1:

SD1 = FV × S1 (22.30)

where FV is the site factor for S1, found in Table 22.5.
4. The period TS corresponding to the end of the spectrum

plateau is given by:

TS = SD1

SDS
(22.31)

5. The period To corresponding to the beginning of the
spectrum plateau:

To = 0.2TS (22.32)

Table 22.5 Site Factor FV

Mapped Spectral Response Accelerations
at 1-Second Periods

Site
Class

S1
≤ 0.1 g

S1
= 0.2 g

S1
= 0.3 g

S1
= 0.4 g

S1
≥ 0.5 g

A 0.8 0.8 0.8 0.8 0.8
B 1.0 1.0 1.0 1.0 1.0
C 1.7 1.6 1.5 1.4 1.3
D 2.4 2.0 1.8 1.6 1.5
E 3.5 3.2 2.8 2.4 2.4
F a a a a a

a: Site-specific geotechnical investigation and dynamic site
response analysis are required in this case.
(After Kavazanjian et al. 2011)
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In that fashion the design spectrum is completely defined
(Figure 22.17) and can be used for structural or geotechnical
analysis. In Figure 22.17, the elastic seismic coefficient Csm
is the ratio between the design horizontal shear force due to
inertia and the effective weight of the structure.

22.8.3 Hazard Levels

The severity of an earthquake is described by the hazard
level, which ranges from I to IV. Each level is tied to the SD1
or SDS value. Recall that SD1 is the long-period (1 second)
spectral acceleration, adjusted for the site factor, and SDS
is the short-period (0.2 second) spectral acceleration, also
adjusted for the site factor. The hazard levels are defined in
Table 22.6.

22.9 LIQUEFACTION

22.9.1 Phenomenon

When a loose coarse-grained soil under the groundwater level
is shaken rapidly enough, it tends to decrease in volume. The
decrease in volume causes the water to be pushed out of the
pores. If the water cannot escape fast enough, the water stress
uw increases and can reach a value equal to the vertical total
stress σ ov. At that point the effective stress (σ ′

ov = σ ov − uw =
0) becomes zero: The soil loses its strength and behaves like
a thick liquid. This is the phenomenon of liquefaction. Loose
sands under the groundwater level are particularly sensitive
to this condition. Dense coarse-grained soils and fine-grained
soils are much less sensitive. Liquefaction of the soil leads
to flow slides, lateral spreading, loss of bearing capacity,
increased earth pressures against retaining walls as the soil
becomes a heavy liquid, and postearthquake settlement as the
water stress dissipates.

22.9.2 When to Do a Liquefaction Study?

The need for liquefaction studies is tied first to the severity
of the earthquake. This severity is described by hazard levels
ranging from I to IV, as described in Table 22.6. For hazard

Table 22.6 Seismic Hazard Levels

Hazard Level SD1 = FV S1 SDS = FA SS

I SD1 < 0.15 SD1 < 0.15
II 0.15 < SD1 < 0.25 0.15 < SD1 < 0.35
III 0.25 < SD1 < 0.40 0.35 < SD1 < 0.60
IV 0.40 < SD1 0.60 < SD1

Note: These hazard levels apply for site classifications A, B,
C, and D. Further description and conditions apply for site
classifications E and F (see Kavazanjian et al. 2011).

levels I and II, a liquefaction study is not required. For hazard
level IV, a liquefaction study is always required. For hazard
level III, a liquefaction study is required unless:

1. The mean earthquake magnitude for the design event is
less than 6, or

2. The mean magnitude is between 6 and 6.4, and N1–60 >

20 (mean normalized SPT blow count; see section 7.1)
3. The mean magnitude is between 6 and 6.4, N1–60 > 15,

and SDS < 0.35 g

If the soil is resistant to liquefaction, a liquefaction study is
not necessary even for hazard levels III and IV. Liquefaction-
resistant soils include:

1. Bedrock
2. Fine-grained soils with more than 15% clay, liquid limit

wL higher than 35%, and water content lower than
0.9wL

3. Sands with N1–60 > 30 bpf or qt1 > 160 (mean cor-
rected and normalized cone penetrometer resistance; see
section 7.2)

4. Soils where the water table is deeper than 15 m below
the ground surface

Note that quick clays should be considered as potentially
liquefiable; however, the liquefaction is not due to the same
process as the liquefaction of fine sands discussed here.

22.9.3 When Can a Soil Liquefy?

To predict whether a soil can liquefy, cyclic tests can be
performed in the laboratory by cyclic triaxial testing, or
(better) by cyclic simple shear testing, or (even better) by
cyclic torsional shear testing. During such tests, the sample is
subjected to an initial effective stress and then a chosen value
of shear stress or deviator stress is applied cyclically in two-
way symmetrical shearing. This means that the shear stress
varies between +τ c and −τ c. The frequency of the cycles
is selected to be representative of earthquake frequencies
(say, 1 to 10 Hz). Typical results for cyclic simple shear tests
on saturated sand are shown in Figures 22.18 and 22.19.
Liquefaction may or may not occur after a number of cycles
or an amount of time consistent with typical earthquakes (less
than 30 seconds for most cases and up to 2 minutes for a huge
earthquake).

The cyclic stress ratio CSR is the ratio of the horizontal
shear stress τ c applied cyclically to a soil at a depth z over the
vertical effective stress σ ′

vo on the soil at the same depth. The
lowest value of the CSR that triggers liquefaction is called
the cyclic resistance ratio or CRR. Figure 22.20 shows the
results of shaking table tests performed by De Alba et al.
(1976); that figure indicates how the CRR decreases as the
number of cycles increases. The goal of liquefaction studies
is to calculate the CSR and the CRR within the depth of
interest. Liquefaction is predicted if:

CRR < CSR (22.33)
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The drawbacks of using laboratory tests to predict liquefac-
tion include sample disturbance, difficulty in reproducing in
situ stresses, and difficulties in reproducing a true earthquake
cyclic shear loading. As a result, the preferred approach in
design has been to use earthquake case histories at sites where
liquefaction did or did not occur.

The combination of the average shear stress τ av due to the
earthquake shaking, a measure of the soil strength, and the
knowledge of whether the soil liquefied are used to produce
design charts. The results of in situ tests are preferred in
this approach to quantify the soil strength. The first charts,
such as the one shown in Figure 22.21, were based on the
SPT blow count. Additional charts were then proposed based
on cone penetrometer data (Figure 22.22) and then shear
wave velocity data (Figure 22.23). The chart based on the
dilatometer is preliminary in nature (Figure 22.24).

In these charts, the vertical axis is the cyclic stress ratio
CSR, defined as τ av/σ ′

ov where τ av is the average shear stress
generated during the design earthquake and σ ′

ov is the vertical
effective stress at the depth investigated and at the time of
the in situ soil test. The shear stress τ av is related to the
maximum shear stress τmax, which is obtained from a site
response analysis (e.g., using the program SHAKE) for the
design earthquake, or, more simply, by using the peak ground
acceleration PGA obtained from maps such as the one show
in Figure 22.5. If the PGA is used to obtain τ av for a 7.5
magnitude, the expression is (Seed and Idriss 1971):

CSR = τav

σ ′
vo

= 0.65

(
amax

g

) (
σvo

σ ′
vo

)
rd (22.34)

where amax is the PGA for the design earthquake, g is the
acceleration due to gravity, σ vo is the total vertical stress
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Figure 22.23 Shear wave velocity-based liquefaction chart for
magnitude 7.5. (After Andrus and Stokoe 2000)

at the depth being investigated, σ ′
vo is the effective vertical

stress at the depth being investigated, and rr is a flexibility
factor. The flexibility factor depends on the depth at which
the liquefaction is being evaluated. Such a factor is necessary
because the PGA is acting at the ground surface while
the possibility of liquefaction is evaluated at a depth z.
Figure 22.25, after Seed and Idriss (1971), gives a range of
values for rd.
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On the horizontal axis of the charts in Figures 22.21 to
22.24 is the in situ test parameter normalized and corrected
for the effective stress level in the soil at the time of the test
and for fine content. The SPT blow count is N1–60 and the
procedure to correct it for effective stress level is described

in section 7.1. The correction for fine content is embedded
in the chart of Figure 22.21. The CPT point resistance is qt1
and the procedure to correct for effective stress level and fine
content is described in section 7.2. The shear wave velocity
is vs1 and the procedure to correct for effective stress is:

vs1 = vs

(
σa

σ ′
vo

)0.25

(22.35)

where vs is the shear wave velocity measured in the field, σ a
is the atmospheric pressure, and σ ′

vo is the vertical effective
stress at the depth investigated. Once the soil parameter is
corrected, it is entered on the horizontal axis of the chart
and the CRR is read on the liquefaction design curve of the
corresponding chart. Note that the charts in Figures 22.21 to
22.24 give the cyclic resistance ratio (CRR) for an earthquake
of magnitude 7.5. For earthquakes of different magnitude, a
magnitude scaling factor (MSF) is applied as follows:

CRRM = MSF × CRRM=7.5 (22.36)

Kavazanjian et al. (2011), building on the work of Youd and
Idriss (1997), suggested that the hatched area in Figure 22.26
be used for MSF.

In summary, the way to use the charts is (Figure 22.27):

1. Obtain the soil parameter profile.
2. Correct the profile for stress level due to depth effects

and fine content if necessary. Prepare a corrected soil
parameter profile.

3. Enter the chart corresponding to the soil parameter and
read the cyclic resistance ratio. Prepare a CRR profile.

4. Modify the CRR profile for a magnitude different from
7.5.
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Figure 22.27 Profiles of liquefaction analysis (Idriss and Boulanger 2008).

5. Calculate the CSR generated by the design earthquake.
Prepare the CSR profile.

6. Compare the CSR profile and the CRR profile.
7. The zone of potential liquefaction is the zone where

CSR > CRR.

22.10 SEISMIC SLOPE STABILITY

Seismic slope stability was covered in section 19.18. The
following summarizes the procedure to select the appropriate
value of the horizontal seismic coefficient k for a pseudostatic
analysis.

The step-by-step procedure that follows is as recommended
by Kavazanjian et al. (2011):

1. Perform a static slope stability analysis without any
earthquake loading to ensure that the slope is stable and
that the factor of safety F is sufficient in the case of no
earthquake (say, 1.5).

2. Using maps (USGS map, such as the ones shown in
Figure 22.5, for example), obtain the peak ground ac-
celeration PGA and the spectral acceleration at one
second S1 for site class B at the base of the slope for the
design earthquake.

3. Select the site adjustment factor FPGA from Table 22.3
and the factor FV from Table 22.5 for the correct site
class and the correct acceleration value.

4. Calculate the value of the maximum horizontal seismic
inertia coefficient kmax as:

kmax = FPGA × PGA (22.37)

5. Calculate the value of the average horizontal seismic
inertia coefficient kav as follows. The coefficient kav is
lower than kmax because the average horizontal acceler-
ation over the slope mass is less than the PGA due to
wave scattering:

kav = γ

(
1 + 0.01H

(
0.5

FV S1

kmax
− 1

))
kmax (22.38)

where γ is equal to 1 for all site classes except for site
classes A and B, where it is taken as 1.2; H is the height
of the slope; and Fv is the site factor from Table 22.5.

6. If the slope can tolerate a movement of 25 to 50 mm,
the value of kav can be further reduced by a factor of 2.
In the end, the factor kh is given by:

kh = 0.5γ

(
1 + 0.01H

(
0.5

FV S1

kmax
− 1

))
kmax

(22.39)

7. Under the combined static and earthquake inertia load-
ing, the target factor of safety should be at least 1.1.
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22.11 SEISMIC DESIGN OF RETAINING WALLS

The design of retaining walls under static conditions is de-
scribed in Chapter 21. This section addresses what happens
under earthquake conditions. Gravity walls are considered
first, followed by MSE walls, cantilever walls, and tieback
walls.

22.11.1 Seismic Design of Gravity Walls

The horizontal force Pa per unit length of wall due to the
active earth pressure behind a retaining wall when there is
no earthquake and the water table is below the bottom of the
wall (see sections 21.3.1 and 21.9) is given by:

Pa = 1

2
KaγH 2 (22.40)

where γ is the soil unit weight, H is the wall height,
and Ka is the active earth pressure coefficient expressed
as (Figure 22.28):

Ka = sin2(α + ϕ′)

sin2α sin(α − δ)

⎡
⎣1 +

√
sin

(
ϕ′ + δ

)
sin(ϕ′ − β)

sin(α − δ) sin(α + β)

⎤
⎦

2

(22.41)
where α is the angle of the back of the wall with the horizontal,
ϕ′ is the effective stress friction angle of the soil behind the
wall, δ is the angle of friction between the soil and the back
of the wall, and β is the angle of the ground surface behind
the wall with the horizontal.

In the case of earthquake loading on a gravity wall, the
earth pressure is increased by the horizontal shaking of the
soil and the associated horizontal inertia force. The vertical
acceleration can also modify the weight of soil acting on the
wall, but this vertical inertia force is usually ignored, mainly
because it does not occur at the same time as the horizontal
force; indeed, the horizontal and vertical accelerations are
rarely in phase, so the peak horizontal and peak vertical
accelerations do not occur simultaneously. The horizontal

Movement
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1

2
Pa 5 — KagH2
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2
DPae 5 — (Kae 2 Ka) gH2

Figure 22.28 Gravity retaining wall with earthquake loading:
active case.

inertia force generated by the earthquake is written as khW
where kh is the seismic coefficient and W is the weight of
the soil wedge. The coefficient kh is similar to the coefficient
used for slope stability; it is taken as kav (Eq. 22.38) if the
wall cannot tolerate any movement and as kh (Eq. 22.39) if a
movement of 25 to 50 mm is tolerable.

In the case of an earthquake, the force Pa becomes Pae,
which is written as:

Pae = 1

2
KaeγH 2 (22.42)

where Pae is the active force per unit length of wall due to the
active earth pressure during an earthquake, Kae is the active
earth pressure coefficient in the earthquake case, γ is the soil
unit weight, and H is the wall height. The coefficient Kae is
obtained in the same fashion as Ka (see section 21.3) except
that the earthquake force khW is added to the equilibrium
equations.

The final expression of Kae after finding the most critical
wedge angle is credited to Mononobe and Okabe (Okabe
1926; Mononobe and Matsuo 1929):

Kae = sin2(α + ϕ′ − ψ)

cos ψsin2α sin(α − δ − ψ)

[
1+

√
sin(ϕ′+δ) sin(ϕ′−β−ψ)

sin(α−δ−ψ) sin(α+β)

]2

(22.43)
where α is the angle of the back of the wall with the horizontal,
β is the angle of the ground surface behind the wall with
the horizontal, δ is the angle of friction between the back
of the wall and the soil, ϕ′ is the friction angle of the soil,
and ψ is the angle representing the earthquake inertia force
through:

ψ = tan−1
(

kh

1 − kv

)
(22.44)

where kh and kv are the horizontal and vertical seismic
coefficients respectively. Note that kv is often ignored (taken
as equal to zero). The angle of the critical surface with the
horizontal is flatter in the active earthquake case than in the
static case (Kramer 1996). Note also that Pae includes the
static component Pa and a dynamic component �Pae of the
active push (Figure 22.28) and can be rewritten as:

Pae = Pa + �Pae (22.45)

For the passive earth pressure, the equations become:

Ppe = 1

2
KpeγH 2 (22.46)

where Ppe is the passive force per unit length of wall due to
the passive earth pressure during an earthquake, Kpe is the
passive earth pressure coefficient in the earthquake case, γ is
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Figure 22.29 Gravity retaining wall with earthquake loading:
passive case.

the soil unit weight, and H is the wall height. The expression
of Kpe (Figure 22.29) is:

Kpe = sin2(α − ϕ′ + ψ)

cos ψsin2α sin(α + δ + ψ)

[
1 −

√
sin(ϕ′+δ) sin(ϕ′+β+ψ)

sin(α+δ+ψ) sin(α+β)

]2

(22.47)
Note that Ppe includes the static component Pp and dynamic

component �Ppe of the passive push (Figure 22.29) and can
be rewritten as:

Ppe = Pp + �Ppe (22.48)

The point of application of the static component of the
active and passive forces, Pa and Pp, is located at 0.33 H (H is
wall height) from the bottom of the wall in the simplest case
of a uniform soil. Note that the static pressure distribution
is triangular, but the pressure distribution associated with

the earthquake inertia force is not triangular. Recall that Kae
was obtained from a Coulomb wedge analysis, which gives
a global force solution, and not a Rankine stress analysis,
which gives a pressure distribution. In fact, the point of
application of the seismic component is different from the
point of application of the static component. The point of
application of the dynamic components of the active and
passive forces, �Pae and �Ppe, is higher than the one for
the static components, because the amplitude of the soil
movement due to the earthquake generally increases as the
shear wave propagates upward. As a result, the point of
application of �Pae and �Ppe is located at 0.6 H from the
bottom of the wall.

The Monobe-Okabe expressions of Kae and Kpe in
Eqs. 22.43 and 22.47 have the advantage of being simple to
use. They also have shortcomings. One of them is that the
failure surface is assumed to be the same for the static case
and the dynamic case, which is not true. In the active case,
the slope of the failure surface is flatter for the dynamic
case than for the static case. Second, the effect of cohesion
is not included, although it can reduce the effect of the
dynamic part of the active pressure. Figure 22.30 shows
the influence of the cohesion c′ on Kae for a friction angle
of 35◦ and for different values of the horizontal seismic
coefficient kh. The cohesion c′ is normalized in the figure by
γ H where γ is the soil unit weight and H is the wall height.
Another shortcoming is that the wedge approach assumes
a straight-line failure surface, which is not necessarily the
weakest surface. This difference is particularly severe for the
passive resistance Ppe, which can be seriously overestimated
and should be used with caution if at all. A log spiral failure
surface gives more conservative values for Kpe and should
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Figure 22.31 Coefficient of passive earth pressure in the case of earthquake loading for a log
spiral failure surface and a wall friction angle equal to 2/3 of the soil friction angle (NCHRP 2008,
Kavazanjian et al. 2011).

be preferred. Such values are shown in Figure 22.31 (after
NCHRP 2008).

22.11.2 Water Pressures on Walls during Earthquake

It is generally desirable to ensure that the groundwater table is
below the bottom of the retaining wall, as the water pressure
significantly increases the active force. This is also true for
walls in earthquake-prone areas. However, this may not be
possible; a high water level is often encountered for walls
in harbors or near shore. In such instances it is necessary
to account for the water behavior during an earthquake
in addition to the hydrostatic pressure associated with the
static case.

Water on the Side That Has No Soil

If there is water on the side of the wall that has no soil (e.g.,
berthing wall in a harbor, earth dam), the pressure in the static
case pwh is hydrostatic and given by:

pwh = γwz (22.49)

where γ w is the unit weight of water and z is the depth below
the water level. The dynamic pressure during an earthquake
�pwe is given by Westergaard (1931):

�pwe = 7

8
khγw

√
zHw (22.50)

where kh is the horizontal seismic coefficient, z is the depth
below the water level, and Hw is the total height of water
against the wall (Figure 22.32). The assumptions made by
Westergaard to develop this solution limit the application of
this formula to the case where the earthquake frequency is
below the fundamental frequency fw of the water body. This
frequency is given by:

fw = vp

4Hw
(22.51)

where vp is the compression wave velocity. Note that the
dynamic pressure works alternatively in both directions. The
most detrimental condition for the retaining wall is likely
to be when the dynamic pressure decreases the hydrostatic
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pressure, thereby decreasing the stabilization effect of the
water. By integrating the expression in Eq. 22.50, we can
obtain the resultant force �Pwe:

�Pwe = 7

12
khγwHw

2 (22.52)

The point of application of �Pwe can be calculated by
moment equilibrium and is found to be 0.6Hw below the
water surface (Figure 22.32).

Water on the Retained-Soil Side

If there is water in the backfill, the problem becomes a bit
more complicated, as the inertia force is proportional to the
total unit weight γ and the shear resistance is proportional
to the effective unit weight γ ′. Therefore, Eq. 22.42 must be
altered to reflect this dual effect. In the case where the water
level in the backfill is at the ground surface and no excess
water stress is generated, Towhata (2008) recommends the
following approach:

1. Use γ ′ in the active earth pressure equation
2. Increase the horizontal seismic coefficient kh to reflect

the increase in inertia force
3. Add the hydrostatic pressure

The equation then becomes (Figure 22.32):

P ′
ae = 1

2
Kaeγ

′H 2 (22.53)

However, the horizontal seismic coefficient kh is increased
to k′

h:

k′
h = γ

γ ′ kh (22.54)

This nearly doubles the value of kh. Then the angle ψ used
in the expression of Kae is:

ψ = tan−1
(

k′
h

1 − kv

)
= tan−1

(
kh

1 − kv
× γ

γ ′

)
(22.55)

The hydrostatic thrust must then be added:

Pw = 1

2
γwH 2 (22.56)

Pae = Pw + P ′
ae = 1

2
γwH 2 + 1

2
Kaeγ

′H 2 (22.57)

Because of the triangular distribution of pressures, both P ′
ae

and Pw act at 0.67 H from the top of the wall in the simplest
case of a uniform soil. Kramer (1996) gives recommendations
for the more complex case where the water level behind the
wall is not at the ground surface.

22.11.3 Seismic Design of MSE Walls

MSE walls retain the soil through a reinforced soil mass. The
earthquake design of these types of walls follows the same
approach as the static design (see section 21.10), except that
the coefficient Ka is replaced by the coefficient Kae in the
calculation.

22.11.4 Seismic Design of Cantilever Walls

Cantilever walls retain the soil without anchors or strut simply
by the resistance of their embedment into the foundation soil.
The earthquake design of these types of walls follows the
same approach as the static design (see section 21.11), except
that the coefficients used for the earth pressure are Kae and
Kpe instead of Ka and Kp.

22.11.5 Seismic Design of Anchored Walls

Anchored walls retain the soil through the use of anchors or
struts and through their depth of embedment. The earthquake
design of these types of walls follows the same approach as
the static design (see section 21.12), except that the coefficient
K used for the earth pressure above the excavation level is
increased by the ratio Kae/Ka. Below the excavation level, the
earth pressure coefficients are Kae and Kpe.
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22.12 SEISMIC DESIGN OF FOUNDATIONS

During an earthquake, a foundation and the soil around it will
interact. Two kinds of interactions are identified: kinematic
and inertial. Kinematic interaction refers to the interaction
between the soil and the foundation as the foundation modifies
the free field movement of the soil because of its presence.
Inertial interaction refers to the interaction between the soil
and the foundation as the foundation movement due to soil
shaking generates accelerations throughout the building and
associated inertia forces at the foundation level. In many
instances, kinematic interaction can be neglected, and the
foundation need only be designed to resist the inertia forces
due to the inertial interaction.

The approaches used for the design of foundations to resist
earthquake loading are the same for shallow foundations and
deep foundations. There are two main categories: the design
code approach and the dynamic analysis approach. Both
approaches aim at obtaining the inertia forces and moments
on the foundation and then designing the foundation to handle
these forces on a pseudostatic basis.

In the design code approach, a response spectrum is spec-
ified, and then the fundamental period of the building is
calculated. This fundamental period is entered on the hori-
zontal axis of the spectrum and the corresponding spectral
acceleration is obtained. The horizontal force H to be resisted
by the foundation is the product of the spectral acceleration
and the associated mass of the building. In this approach, the
ductility of the structure and foundation are not considered.
This ductility tends to reduce the inertia force and is included
through the use of a reduction factor Rf. Table 22.7 shows
such reduction factors for bridge substructures. The reduced
force used for design purposes is H/Rf. This force is applied to
the foundation and the ultimate limit state is checked to ensure
safety against failure. Because earthquake is considered to be

Table 22.7 Force Reduction Factor Rf for Bridges
(Kavazanjian et al. 2011)

Importance Category

Substructure Critical Essential Other

Wall-type piers, larger
dimension

1.5 1.5 2.0

Reinforced concrete pile bents
• Vertical piles only
• With batter piles

1.5 2.5 3.0
1.5 1.5 2.0

Single columns 1.5 2.9 3.0

Steel or composite steel and
concrete pile bents

• Vertical pile only
• With batter piles

1.5 3.5 5.0
1.5 2.0 3.0

Multiple-column bents 1.5 3.5 5.0

an extreme event, the load and resistance factors are close to
1 if not equal to 1.

In the dynamic analysis approach, the structure and foun-
dation are simulated numerically. The foundation is usually
simplified and represented by a system of translational and
rotational springs and dashpots. The simulation gives the
inertia forces and moments applied to the foundation. This
approach has the advantage of including the ductility of the
structure more directly. Again, this force is applied to the
foundation and the ultimate limit state is checked to ensure
safety against failure. Because earthquake is considered to be
an extreme event, the load and resistance factors are close to
1 if not equal to 1.

There is a trend toward displacement base design (service
limit state) rather than load-based design. In this approach
the displacement due to the earthquake loads are calculated
and allowance is made for what leads to no damage, medium
damage, heavy damage but still standing, and total collapse.

In the case of deep foundations, it is possible for the
liquefied soil to load the piles by flowing past them. The
load generated by liquefied soil must be added to the inertia
load. This brings in the importance of the shear strength of
liquefied soils. Seed and Harder (1990) proposed a correlation
of the liquefied soil shear strength to the corrected standard
penetration test (SPT) blow count (N1)60 (see section 7.1).
Further correction was added to the (N1)60 value for the
presence of fines, which can be approximated as follows:

(N1)60−cs = (N1)60 + P

10
(22.58)

where (N1)60 is the SPT blow count corrected for stress and
energy level, P is the percent finer than 0.075 mm (expressed
in percent), and (N1)60-cs is the SPT blow count further
corrected for the fine content. The correction increases the
value of N to bring it back to the value that would have
been obtained had the sand not contained fines (cs means
clean sand). Olson and Stark (2002) further developed the
original work of Seed and Harder, added data, and proposed
the following equation on the basis of the corrected SPT
blow count and the corrected CPT point resistance as follows
(Figures 22.33 and 22.34):

su−liq

σ ′
vo

= 0.03 + 0.0075(N1)60 for N1 ≤ 12 bpf

(22.59)
su−liq

σ ′
vo

= 0.03 + 0.0143 × qc1 for qc1 ≤ 6.5 MPa

(22.60)

where su-liq is the shear strength of the liquefied soil, σ ′
vo is

the prefailure vertical effective stress in the soil, and (N1)60
and qc1 are the prefailure corrected SPT blow count and CPT
point resistance respectively (see sections 7.1 7.2).
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Figure 22.34 Shear strength of liquefied coarse-grained soils based on CPT point resistance. (After Olson and Stark 2002)

The pressure generated by the liquefied soil flowing past
the pile can be estimated as 7 times the shear strength of the
liquefied soil:

pu = 7su−liq (22.61)

where pu is the pressure generated on the pile by the flowing
soil and su-liq is the shear strength of the liquefied soil.

PROBLEMS

22.1 After an earthquake, a seismograph installed in the bedrock records the arrival of a compression wave and 10 seconds
later the arrival of a shear wave. The rock has a compression wave velocity equal to 3000 m/s and a shear wave velocity
equal to 1500 m/s. How far is the earthquake epicenter from the seismograph? How would you find the exact location of
the epicenter?



808 22 EARTHQUAKE GEOENGINEERING

22.2 An earthquake takes place along a fault and creates 2 m of relative displacement between two tectonic plates. The area
over which the slip takes place is 500 km by 100 km and the shear modulus of the rock is 20 GPa. Calculate the seismic
moment Mo, the moment magnitude Mw, and the energy E of the earthquake.

22.3 Search the Pacific Earthquake Engineering Research (PEER) Center web site (http://peer.berkeley.edu/nga/) and select an
earthquake ground acceleration vs. time record. From this record, determine the peak ground acceleration. Then integrate
the acceleration record to generate the velocity vs. time record and find the peak ground velocity. Then integrate the
velocity record to generate the displacement vs. time record and find the peak ground displacement.

22.4 From the acceleration record of problem 22.3, find the bracketed duration for a threshold acceleration of 0.05 g and the
sustained maximum acceleration for 3 cycles and then for 5 cycles.

22.5 An event with a return period T has a yearly probability of exceedance equal to 1/T. The equation linking the return period
T of an event to the probability of exceedance P over a period of time L is:

P = 1 − (1 − 1/T )L

Calculate (a) the return period for an earthquake that has a 2% probability of exceedance in 50 years and (b) the return
period for an earthquake that has a 10% probability of exceedance in 50 years.

22.6 An 828 m tall tower weighs 6000 MN and has an equivalent stiffness of 200 MN/m.
a. Calculate the natural period of the tower. A one-story house weighs 1.4 MN and has a natural period of 0.15

seconds.
b. What is the equivalent stiffness of the house?

22.7 Search the PEER Center web site (http://peer.berkeley.edu/nga/) and select an earthquake ground acceleration vs. time
record. For the acceleration record,

a. Develop the Fourier acceleration spectrum
b. Develop the response spectrum, for a damping ratio of 5%, by choosing m and varying k.
c. Choose a first set of values for k and m and find the spectral acceleration a1, then find the spectral acceleration a2

for a second set of values equal to 2k and 2m. Compare a1 and a2.
22.8 The PGA for a magnitude 6 earthquake is 0.5 g. What is the most likely PGA 50 km away?
22.9 What is the likely return period or recurrence interval for a magnitude 6 earthquake?

22.10 Calculate the natural period of a 20 m thick stiff soil layer if the soil shear wave velocity is 200 m/s. Then calculate the
natural period of a 50 m thick soft soil layer if the shear wave velocity is 100 m/s.

22.11 What is the transfer function (amplification factor) for the displacement at the ground surface during an earthquake if the
natural period of the deposit is 1 second and the depth of soil layer above rock level is 100 m? Assume an undamped
linear soil on rigid rock. Redo the calculation for a damped linear soil on rigid rock if the damping ratio is 5%. The shear
wave velocity of the soil is 250 m/s.

22.12 A soil has a shear wave velocity equal to 250 m/s and an SPT blow count equal to 30 bpf. The design earthquake
corresponds to a PGA equal to 0.3 g. Develop the response spectrum according to Figure 22.17 if the reference spectrum
has the following characteristics: spectral acceleration at 0.2 seconds = 0.5 g, spectral acceleration at 1 second = 0.2 g.

22.13 At a depth of 5 m below the ground surface, a saturated sand deposit has a corrected SPT blow count equal to 10 bpf, a
CPT corrected and normalized point resistance of 90, and a corrected shear wave velocity of 170 m/s. The groundwater
level is at the ground surface and the soil has a total unit weight of 18 kN/m3. Will the soil liquefy in a magnitude 7.5
earthquake if the PGA is 0.6 g? What would be the highest magnitude for which the soil would not liquefy?

22.14 A slope is cut in a medium-stiff clay with an undrained shear strength su equal to 50 kPa. The site has a site class B, a
PGA of 0.45 g, and a spectral acceleration at 1 second equal to 0.3 g. Calculate the horizontal seismic coefficient kh to be
used in the slope earthquake stability analysis.

22.15 Write the expression of the earthquake active earth pressure coefficient and the corresponding static active earth pressure
coefficient. Plot the ratio versus kh for kv = 0, vertical back wall, horizontal backfill, frictionless wall, and a 30◦ friction
angle for the backfill.

22.16 A 3 m high vertical gravity retaining wall has a dry horizontal backfill with a friction angle equal to 30◦ and a unit weight
of 20 kN/m3. It must be designed for a horizontal seismic coefficient equal to 0.2. Calculate:

a. Static coefficient of active and passive earth pressure, Ka and Kp
b. Seismic coefficient of active and passive earth pressure, Kae and Kpe
c. The static component and dynamic component of the active push against the wall and their point of application,

Pa, �Pae, Xa, and Xae
d. The static and dynamic components of the passive push against the wall if the wall was pushed into the soil backfill

and their point of application, Pp, �Ppe, Xp, and Xpe
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22.17 The wall of problem 22.16 has water on the no-soil side and water in the backfill up to the ground surface. The water
depth on the no-soil side is 2 m. Calculate:

a. The hydrostatic pressure and the resultant water push on both sides of the wall, pw1, pw2, Pw1, and Pw2
b. The earthquake pressure and the resultant push on both sides of the wall if the horizontal seismic coefficient is 0.2

22.18 Demonstrate that the point of application of the dynamic water pressure in Eq. 22.50 is 0.6Hw from the top of the water
level.

22.19 An anchored wall retains 10 m of sand with a blow count of 18 bpf and a unit weight of 20 kN/m3. The water level
is deeper than the excavation level. The design earthquake will generate a horizontal seismic coefficient equal to 0.25.
Calculate:

a. The pressure p against the wall above the excavation in the case of no earthquake
b. The pressure pe against the wall above the excavation in the case of an earthquake
c. The average load per anchor in both cases if the anchors are inclined at 15◦ and the vertical and horizontal spacing

between anchors is 2.5 m.
22.20 A building is 60 m tall, weighs 500 MN, and has a horizontal stiffness of 400 MN/m. The design earthquake gives the

response spectrum shown in Figure 22.1s. Calculate the horizontal force that must be resisted by the foundation.

1 2 3 4 50

0.1

0.2

0.3

0.4

T (sec)

a
 (

g
)

Figure 22.1s Response spectrum for problem 22.20.

Problems and Solutions

Problem 22.1

After an earthquake, a seismograph installed in the bedrock records the arrival of a compression wave and 10 seconds later
the arrival of a shear wave. The rock has a compression wave velocity equal to 3000 m/s and a shear wave velocity equal to
1500 m/s. How far is the earthquake epicenter from the seismograph? How would you find the exact location of the epicenter?

Solution 22.1

The distance between the epicenter and seismograph is:

d = �tp-s

1

vs

− 1

vp

= 10
1

1500
− 1

3000

= 30,000 m

where �tp-s is the arrival time difference of a shear wave and compression wave, vs is the shear wave velocity, and vp is
the compression wave velocity. The earthquake epicenter is 30,000 m away from the seismograph. Three seismographs are
needed to find the exact location of the epicenter: The intersection of the three circles gives the location.
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Problem 22.2

An earthquake takes place along a fault and creates 2 m of relative displacement between two tectonic plates. The area over
which the slip takes place is 500 km by 100 km and the shear modulus of the rock is 20 GPa. Calculate the seismic moment
Mo, the moment magnitude Mw, and the energy E of the earthquake.

Solution 22.2

Seismic moment Mo:
Mo = GAD = (20 × 109) × (5 × 1010) × (2) = 2 × 1021 N · m

where G is the shear modulus of the rock, A is the area over which the slip occurs, and D is the amount of slip movement.
Moment magnitude Mw:

Mw = 0.66 log Mo(N · m) − 6.05 = 0.66 log(2 × 1021) − 6.05 = 8

Energy E:
log E = 5.24 + 1.44M = 5.24 + 1.44 × 8 = 16.76

Therefore, the energy E is E = 1016.76 = 5.8 × 1016 N.m = 5.8 × 1016 joules.

Problem 22.3

Search the Pacific Earthquake Engineering Research (PEER) Center web site (http://peer.berkeley.edu/nga/) and select an
earthquake ground acceleration vs. time record. From this record, determine the peak ground acceleration. Then integrate the
acceleration record to generate the velocity vs. time record and find the peak ground velocity. Then integrate the velocity
record to generate the displacement vs. time record and find the peak ground displacement.

Solution 22.3
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Figure 22.2s Acceleration, velocity, and displacement of an earthquake record.

A sample record chosen from the PEER web site is the Loma Prieta Station Gilroy #2 record. From Figure 22.2s:
Peak ground acceleration in gs (PGAg) = 0.322 g
Peak ground acceleration (PGA) = 3.159 (m/s2)
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Peak ground velocity (PGV) = 0.391 m/s
Peak ground displacement (PGD) = 0.121 (m)

Problem 22.4

From the acceleration record of problem 22.3, find the bracketed duration for a threshold acceleration of 0.05 g and the
sustained maximum acceleration for 3 cycles and then for 5 cycles.

Solution 22.4
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Figure 22.3s Bracketed duration of the ground acceleration.

The horizontal lines on Figure 22.3s show the threshold accelerations of ±0.05 g. The bracketed duration for this earthquake
(the time between the first and last exceedance) is 15.26 seconds.

The maximum acceleration for three cycles is 0.145 g.
The maximum acceleration for five cycles is 0.13 g.

Problem 22.5

An event with a return period T has a yearly probability of exceedance equal to 1/T. The equation linking the return period T
of an event to the probability of exceedance P over a period of time L is:

P = 1–(1–1/T)L

Calculate (a) the return period for an earthquake that has a 2% probability of exceedance in 50 years and (b) the return
period for an earthquake that has a 10% probability of exceedance in 50 years.
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Solution 22.5

a. For an earthquake with a 2% probability of exceedance in 50 years, the return period is:

P = 1 − (1 − 1/T )L

1 − P = (1 − 1/T )L

(1 − P)1/L = (1 − 1/T )

1/T = 1 − (1 − P)1/L

T = 1

1 − (1 − P)1/L

T = 1

1 − (1 − 0.02)1/50
= 2476 years

b. For an earthquake with a 10% probability of exceedance in 50 years, the return period is:

T = 1

1 − (1 − P)1/L

T = 1

1 − (1 − 0.10)1/50
= 475 years

Problem 22.6

An 828 m tall tower weighs 6000 MN and has an equivalent stiffness of 200 MN/m. Calculate the natural period of the tower.
A one-story house weighs 1.4 MN and has a natural period of 0.15 seconds. What is the equivalent stiffness of the house?

Solution 22.6

a. The natural period T of the tower is:

T = 2π

√
m

k
= 2π

√
W

gk

T = 2π

√
(6000/9.81)

200
= 10.98 sec

b. Rearranging the natural period equation, the stiffness k of the house is:

k = 4π2 W

gT 2
= 4 × 3.142 × 1.4

9.81 × 0.152 = 250.1 MN/m

Problem 22.7

Search the PEER Center web site (http://peer.berkeley.edu/nga/) and select an earthquake ground acceleration vs. time record.
For the acceleration record:

a. Develop the Fourier acceleration spectrum
b. Develop the response spectrum, for a damping ratio of 5%, by choosing m and varying k.
c. Choose a first set of values for k and m and find the spectral acceleration a1, then find the spectral acceleration a2 for a

second set of values equal to 2k and 2m. Compare a1 and a2.
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Solution 22.7

The record selected for this example is the station Gilroy #2 on soil. The Fourier acceleration spectrum and the three response
spectra (acceleration, velocity, and displacement) are given in Figures 22.4s and 22.5s.
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Figure 22.4s Fourier acceleration spectrum.
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Figure 22.5s Fourier response spectrum.
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Note: The response spectra are defined as the response of the SDOF with a natural period T. It is obtained by solving the
equation of motion:

mẍ + cẋ + kx = −ma(t)

By setting ω = √
k/m and c = 2 mωβ, and then dividing by m, the equation becomes:

ẍ + 2βωẋ + ω2x = −a(t)

Thus, by multiplying k and m by the same value, ω will not change and the response spectrum will not change, including
the spectral acceleration. However, a change in β (damping) will change the response spectrum.

Problem 22.8

The PGA for a magnitude 6 earthquake is 0.5 g. What is the most likely PGA 50 km away?

Solution 22.8

The peak ground acceleration at a distance R(km) for a magnitude M earthquake can be estimated by using Figure 22.6s. A
line is drawn parallel to the trend line starting at the PGA value of 0.5 g. Then the PGA value is read on that line at a distance
of 50 km.
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0.09g

50 km
0.01

1

1 10
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100
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 (

g
)

0.1

Figure 22.6s Attenuation of peak horizontal ground acceleration.

Problem 22.9

What is the likely return period or recurrence interval for a magnitude 6 earthquake?

Solution 22.9

According to Figure 22.12, the recurrence interval of a magnitude 6 earthquake is about 200 years.

Problem 22.10

Calculate the natural period of a 20 m thick stiff soil layer if the soil shear wave velocity is 200 m/s. Then calculate the natural
period of a 50 m thick soft soil layer if the shear wave velocity is 100 m/s.

Solution 22.10

Using Eq. 22.6, the natural period is:

T = 4H

vs

Stiff soil:
T = 4 × 20

200
= 0.4 sec
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Soft soil:

T = 4 × 50

100
= 2 sec

Problem 22.11

What is the transfer function (amplification factor) for the displacement at the ground surface during an earthquake if the
natural period of the deposit is 1 second and the depth of soil layer above rock level is 100 m? Assume an undamped linear
soil on rigid rock. Redo the calculation for a damped linear soil on rigid rock if the damping ratio is 5%. The shear wave
velocity of the soil is 250 m/s.

Solution 22.11

The 1 second period is used to find ω:

T = 2π

ω
= 1

Therefore, ω = 2π . The first calculation is when the soil is undamped, β = 0. The transfer function is:

F(ω) = 1√
cos2

(
ωH

vs

)
+

(
β

ωH

vs

)2

F(ω) = 1√
cos2

(
2π × 100

250

)
+ 0

= 1.24

With damping, β = 0.05, the transfer function is:

F(ω) = 1√
cos2

(
2π × 100

250

)
+

(
.05

2π × 100

250

)2
= 1.22

Problem 22.12

A soil has a shear wave velocity equal to 250 m/s and an SPT blow count equal to 30 bpf. The design earthquake corresponds
to a PGA equal to 0.3 g. Develop the response spectrum according to Figure 22.17 if the reference spectrum has the following
characteristics: spectral acceleration at 0.2 seconds = 0.5 g, spectral acceleration at 1 second = 0.2 g.

Solution 22.12

The site-specific spectral parameters are found in Table 22.2. With the given soil parameters:

vs = 250 m/s and NSPT = 30 ⇒ Soil clasification is “D”.

From Table 22.3, with a PGA = 0.3 g and a site classification of D, FPGA = 1.2.

AS = FPGA × PGA

As = 1.2 × 0.3g = 0.36 g

SDS = 0.5 g and SDl = 0.2 g (from the problem), therefore:

TS = SD1

SDS

T = 0.2 g

0.5 g
= 0.4

To = 0.2TS

To = 0.2 × 0.4 = 0.08



816 22 EARTHQUAKE GEOENGINEERING

The constants found using the site classification are used to develop the site-specific acceleration response spectrum,
shown in Figure 22.7s.
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Figure 22.7s Design code acceleration response spectrum.

Problem 22.13

At a depth of 5 m below the ground surface, a saturated sand deposit has a corrected SPT blow count equal to 10 bpf, a CPT
corrected and normalized point resistance of 90, and a corrected shear wave velocity of 170 m/s. The fine percentage is less
than 5%. The groundwater level is at the ground surface and the soil has a total unit weight of 18 kN/m3. Will the soil liquefy
in a magnitude 7.5 earthquake if the PGA is 0.6g? What would be the highest magnitude for which the soil would not liquefy?

Solution 22.13

a. The cyclic stress ratio CSR = τav

σ ′
vo

= 0.65

(
amax

g

) (
σvo

σ ′
vo

)
rd

amax = 0.6g, σvo = γ H = 18 × 5 = 90(kN/m2), σ ′
vo = γ ′H = (18 − 9.8) × 5 = 41(kN/m2)

Fig. 22.25 → rd = 0.95.

CSR = τav

σ ′
vo

= 0.65(0.6)(2.195)0.95 = 0.81

Fig. 22.21
NSPT=10−−−−−−→ Liquefy,

Fig. 22.22
q=90−−−→ Liquefy,

Fig. 22.23
vs=170(m/s)−−−−−−−−→ Liquefy

b. CSR = τav

σ ′
vo

= 0.65

(
amax

g

)(
σvo

σ ′
vo

)
rd

Fig. 22.21
CSR=0.1−−−−−→ amax = 0.07 g

Fig. 22.22
CSR=0.13−−−−−−→ amax = 0.095 g

Fig. 22.23
CSR=0.13−−−−−−→ amax = 0.095 g

Problem 22.14

A slope is cut in a medium-stiff clay with an undrained shear strength su equal to 50 kPa. The height of the slope is 10 m. The
site has a site class B, a PGA of 0.45 g, and a spectral acceleration at 1 second equal to 0.3 g. Calculate the horizontal seismic
coefficient kh to be used in the slope earthquake stability analysis.
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Solution 22.14

Class B, S1 = 0.3 g
Table 22.3−−−−−−→ FPGA = 1.0

Class B, PGA = 0.45 g
Table 22.5−−−−−−→ FV = 1.0

kmax = FPGA × PGA = 0.45 g

kav = γ

(
1 + 0.01H

(
0.5

FV S1

kmax
− 1

))
kmax

kh = kav = 1.2

(
1 + 0.01 × 10

(
0.5

1 × 0.3 g

0.45 g
− 1

))
0.45 g = 0.504 g

Problem 22.15

Write the expression of the earthquake active earth pressure coefficient and the corresponding static active earth pressure
coefficient. Plot the ratio versus kh for kv = 0, vertical back wall, horizontal backfill, frictionless wall, and a 30◦ friction angle
for the backfill.

Solution 22.15

The expression for the active earth pressure coefficient in the earthquake case, Kae, is found after finding the most critical
wedge angle. Kae is:

Kae = sin2(α + ϕ′ − ψ)

cos ψsin2α sin(α − δ − ψ)

⎡
⎣1 +

√
sin

(
ϕ′ + δ

)
sin(ϕ′ − β − ψ)

sin(α − δ − ψ) sin(α + β)

⎤
⎦

2

where α is the angle of the back of the wall with the horizontal, β is the angle of the ground surface behind the wall with the
horizontal, δ is the angle of friction between the back of the wall and the soil, ϕ′ is the friction angle of the soil, and ψ is the
angle representing the earthquake inertia force as:

ψ = tan−1
(

kh

1 − kv

)

where kh and kv are the horizontal and vertical seismic coefficients respectively. The expression for the static active earth
pressure coefficient, Ka, is:

Ka = sin2(α + ϕ′)

sin2α sin(α − δ)

⎡
⎣1 +

√
sin

(
ϕ′ + δ

)
sin(ϕ′ − β)

sin(α − δ) sin(α + β)

⎤
⎦

2

The ratio of Kae/Ka for a vertical wall (α = 90), no wall friction (δ = 0), horizontal backfill (β = 0), and a 30◦ angle of
friction for the backfill can be plotted as in Figure 22.8s.
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Figure 22.8s Ratio of the earthquake active earth pressure coefficient and the corresponding active earth pressure coefficient versus kh.
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Problem 22.16

A 3 m high vertical gravity retaining wall has a dry horizontal backfill with a friction angle equal to 30◦ and a unit weight of
20 kN/m3. It must be designed for a horizontal seismic coefficient equal to 0.2. Calculate:

a. Static coefficient of active and passive earth pressure, Ka and Kp
b. Seismic coefficient of active and passive earth pressure, Kae and Kpe
c. The static component and dynamic component of the active push against the wall and their point of application, Pa,

�Pae, Xa, and Xae
d. The static and dynamic components of the passive push against the wall if the wall was pushed into the soil backfill and

their point of application, Pp, �Ppe, Xp, and Xpe.

Solution 22.16

a. Static coefficient of active and passive earth pressure, Ka and Kp:

Ka = 1 − sin ϕ′

1 + sin ϕ′ = 1 − sin(30)

1 + sin(30)
= 0.333

Kp = 1 + sin ϕ′

1 − sin ϕ′ = 1 + sin(30)

1 − sin(30)
= 3

b. Seismic coefficient of active and passive earth pressure, Kae and Kpe:

ψ = tan−1
(

kh

1 − kv

)
= tan−1

(
0.2

1 − 0

)
= 11.3◦

The seismic coefficient of active earth pressure is:

Kae = sin2(α + ϕ′ − ψ)

cos ψsin2α sin(α − δ − ψ)

⎡
⎣1 +

√
sin

(
ϕ′ + δ

)
sin(ϕ′ − β − ψ)

sin(α − δ − ψ) sin(α + β)

⎤
⎦

2

Kae = sin2(90 + 30 − 11.3)

cos(11.3)sin2(90) sin(90 − 0 − 11.3)

[
1 +

√
sin (30 + 0) sin(30 − 0 − 11.3)

sin(90 − 0 − 11.3) sin(90 + 0)

]2 = 0.473

The seismic coefficient of passive earth pressure is:

Kpe = sin2(α − ϕ′ + ψ)

cos ψsin2α sin(α + δ + ψ)

⎡
⎣1 −

√
sin

(
ϕ′ + δ

)
sin(ϕ′ + β + ψ)

sin(α + δ + ψ) sin(α + β)

⎤
⎦

2

Kpe = sin2(90 − 30 + 11.3)

cos(11.3)sin2(90) sin(90 + 0 + 11.3)

[
1 −

√
sin (30 + 0) sin(30 + 0 + 11.3)

sin(90 + 0 + 11.3) sin(90 + 0)

]2 = 5.29

c. The static component of active push is:

Pa = 1

2
KaγH 2

Pa = 1

2
× 0.33 × 20 × (3)2 = 30

kN

m
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The dynamic component of active push is:

�Pae = 1

2
(Kae − Ka)γH 2

�Pae = 1

2
(0.473 − 0.333)(20)(3)2 = 12.6

kN

m3

The point of application of Pa from the bottom of the wall is:

Xa = 1

3
H = 1

3
(3) = 1 m

The point of application of Pae from the bottom of the wall is:

Xae = 0.6H = 0.6(3) = 1.8 m

d. The static component of passive push is:

Pp = 1

2
KpγH 2

Pp = 1

2
(3)(20)(3)2 = 270

kN

m3

The dynamic component of passive push is:

�Ppe = 1

2
(Kpe − Kp)γH 2

�Ppe = 1

2
(5.29 − 3)(20)(3)2 = 206.1

kN

m3

The point of application of Pa from the bottom of the wall is:

Xp = 1

3
H = 1

3
(3) = 1 m

The point of application of Pae from the bottom of the wall is:

Xpe = 0.6 H = 0.6 × 3 = 1.8 m

Problem 22.17

The wall of problem 22.16 has water on the no-soil side and water in the backfill up to the ground surface. The water depth
on the no-soil side is 2 m. Calculate:

a. The hydrostatic pressure and the resultant water push on both sides of the wall, pw1, pw2, Pw1, and Pw2
b. The earthquake pressure and the resultant push on both sides of the wall if the horizontal seismic coefficient is 0.2

Solution 22.17
a. The hydrostatic pressure and the resultant water push on both sides of the wall, pw1, pw2, Pw1, and Pw2:

The hydrostatic pressure on the no-soil side is:

pw1 = γwz1

pw1 = 9.81(2) = 19.62
kN

m2

The resultant push for the hydrostatic pressure on the no-soil side is:

Pw1 = 1

2
pw1z1 = 1

2
(19.62)(2) = 19.62

kN

m
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The hydrostatic pressure on the backfill side is:

pw2 = γwz2

pw2 = 9.81(3) = 29.43
kN

m2

The resultant push for the hydrostatic pressure on the backfill side is:

Pw2 = 1

2
pw2z2 = 1

2
(29.43)(3) = 44.15

kN

m

b. The earthquake pressure and the resultant push on both sides of the wall if the horizontal seismic coefficient is 0.2:
The earthquake water pressure on the no-soil side is:

�pwe1 = 7

8
khγw

√
zHw

�pwe1 = 7

8
(0.2)(9.81)

√
(2)(2) = 3.43

kN

m2

The resultant push for the hydrostatic pressure on the no-soil side is:

�Pwe1 = 7

12
khγwHw

2

�Pwe1 = 7

12
(0.2)(9.81)(2)2 = 4.58

kN

m

The resultant water push on the no-soil side is:

Pw1 + �Pwe1 = 19.62 + 4.58 = 24.2
kN

m

The earthquake push on the backfill side is obtained as follows:

γ ′ = γ − γh = 20 − 9.81 = 10.19
kN

m3

ψ = tan−1
(

kh

1 − kv
× γ

γ ′

)

ψ = tan−1
(

0.2

1 − 0
× 20

10.19

)
= 21.4◦

Kae = sin2(α + ϕ′ − ψ)

cos ψsin2α sin(α − δ − ψ)

⎡
⎣1 +

√
sin

(
ϕ′ + δ

)
sin(ϕ′ − β − ψ)

sin(α − δ − ψ) sin(α + β)

⎤
⎦

2

Kae = sin2(90 + 30 − 21.4)

cos(21.4)sin2(90) sin(90 − 0 − 21.4)

[
1 +

√
sin (30 + 0) sin(30 − 0 − 21.4)

sin(90 − 0 − 21.4) sin(90 + 0)

]2 = 0.685

P ′
ae = 1

2
Kaeγ

′H 2

P ′
ae = 1

2
(0.685)(10.19)(3)2 = 31.41

kN

m3

The resultant push on the backfill side is:

Pae = Pw2 + P ′
ae

Pae = 44.15 + 31.41 = 75.6
kN

m
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Problem 22.18

Demonstrate that the point of application of the dynamic water pressure in Eq. 22.50 is 0.6Hw from the top of the water level.

Solution 22.18

By writing the moment equation:

Z.�Pwe =
∫ z=HW

z=0
(�pwe × z)dz

From Eqs. 22.50 and 22.52, we have:

�pwe = 7

8
khγw

√
zHw

�Pwe = 7

12
khγwHw

2

By plugging Eqs. 22.50 and 22.52 into:

Kae = sin2(90 + 30 − 11.3)

cos(11.3)sin2(90) sin(90 − 0 − 11.3)

[
1 +

√
sin (30 + 0) sin(30 − 0 − 11.3)

sin(90 − 0 − 11.3) sin(90 + 0)

]2 = 0.473

we get:

Z =

∫ Hw

0

(
7

8
khγw

√
zHwz

)
dz

7

12
khγwH 2

w

Z =
12

∫ Hw

0
z

3

2 dz

8H

3

2
w

Z = 3

2
× 1

H

3

2
w

× 2

5
H

5

2
w = 6

10
Hw

Problem 22.19

An anchored wall retains 10 m of sand with a blow count of 18 bpf and a unit weight of 20 kN/m3. The wall is vertical,
the backfill is horizontal, and the wall friction is zero. The water level is deeper than the excavation level. The allowable
movement at the top of the wall is 30 mm. The design earthquake will generate a horizontal seismic coefficient equal to 0.25.
Calculate:

a. The pressure p against the wall above the excavation in the case of no earthquake
b. The pressure pe against the wall above the excavation in the case of an earthquake

Solution 22.19

1. The constant pressure p against the wall above the excavation in the case of no earthquake

Fig. 21.19 utop = 30 mm,H = 10000 mm → utop

H
= 0.003

Fig. 21.19−−−−−−→ K = 0.2

p = K × γ H = 0.2 × 20 × 10 = 40 kN/m2
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2. The constant pressure pe against the wall above the excavation in the case of the earthquake
Calculate the coefficient of active earth pressure in the case of no earthquake

Based on Fig. 15.12 → ϕ′ = 33◦
Ka = 1 − sin 33◦

1 + sin 33◦ = 0.3

Calculate the coefficient of active earth pressure in the case of earthquake

Kae = sin2(α + ϕ′ − ψ)

cos ψsin2α sin(α − δ − ψ)

⎡
⎣1 +

√
sin

(
ϕ′ + δ

)
sin(ϕ′ − β − ψ)

sin(α − δ − ψ) sin(α + β)

⎤
⎦

2

Where ψ = tan−1

(
kh

1 − kv

)
= tan−1

(
0.25

1 − 0

)
= 14◦

Kae = sin2(33 − 14)

cos(14)sin2(90) sin(90 − 0 − 14)

[
1 +

√
sin (33 + 0) sin(33 − 0 − 14)

sin(90 − 0 − 14) sin(90 + 0)

]2 = 0.466

Calculate the pressure against the wall in the case of the earthquake.

pe = Kae

Ka

× Kγ H = 0.466

0.3
× 0.2 × 20 × 10 = 62.1 kN/m2

Problem 22.20

A building is 60 m tall, weighs 500 MN, and has a horizontal stiffness of 400 MN/m. The design earthquake gives the
response spectrum shown in Figure 22.1s. Calculate the horizontal force that must be resisted by the foundation.
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g
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Figure 22.1s Response spectrum for problem 22.20.

Solution 22.20

Fundamental period: T = 2π

√
M

K
= 2π

√
500/g

400
= 2.24 sec

T
Spectrum−−−−−→ a = 0.245 g

F = Ma = (500/9.81) × 0.245 ∗ 9.81 = 122.5 MN


